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Preface

Optimization has long been a cornerstone for the advancement of various
industrial, government, military, and healthcare applications, and it plays
an increasingly important role in modern medicine and biological inves-
tigations. Many medical and biological problems can be formulated into
mathematical models and can be analyzed using sophisticated optimiza-
tion and computational techniques. Optimization is a rewarding field that
offers challenging problems for applied mathematicians, basic scientists,
computer scientists, engineers, medical professionals, and physicists.

This book covers a collection of emerging and exciting optimization
applications and advances to the fields of medicine and biology, ranging
from disease prediction and control, cancer therapeutics, to DNA sequenc-
ing, protein structure analysis, and drug design and development.

The book is divided into two parts and has an appendix. Part I covers
various topics in medicine, and Part II focuses on biology. Each part is
organized in such a way that a basic overview to the field is given followed
by specific detailed applications. All chapters are written by select lead-
ing experts in their research areas, and cover basic models, theories, and
computational approaches to the most advanced applications. The practice
of optimization largely depends on good modeling techniques as well as
efficient and robust algorithms. Therefore, some of the chapters are dedi-
cated to modeling techniques, whereas other chapters address computa-
tional algorithms for solving these very complex models, or a combination
of both. Because of the wide range of levels of technical diversity, a typical
chapter begins with a simple discussion of the topic at hand to familiarize
the reader. Further, appropriate figures are included to help the readers
better understand the subject.

The first three chapters in Part I focus on optimization techniques
for disease prediction and medical decision-making processes. Here,
mathematical programming classification models and support vector
machine techniques are introduced, and influence diagrams are described.
Specifically, Chapter 1 provides an overview of advances in mathematical
programming for classification. It summarizes linear, nonlinear, integer
programming, and support vector machine models; and model character-
istics and computational challenges. The authors then provide first-hand
successful applications of their classification models to medicine, including

ix



Lim/Optimization in Medicine and Biology AU0563_C000 Final Proof Page x 4.12.2007 07:05pm

x

prediction of diseases including skin diseases, cancer, and cardiovascular
diseases; automated drug delivery; and image recognition. Chapter 2
describes medical decision making, quality metrics, and influence dia-
grams in clinical cost-effectiveness analysis. The author describes clinical
models for venous thromboembolic disease and analyzes strategies for
cost-effectiveness in diagnosing pulmonary embolism. Chapter 3 discusses
a novel application of support vector machines in patients presenting to
an emergency department with chest pain.

The next three chapters discuss applications of optimization to medical
delivery. Chapter 4 addresses techniques for optimizing pediatric vaccine
formularies. The authors present two discrete optimization models that illu-
minate alternatives and choices by selecting a vaccine formulary that mini-
mizes the cost of fully immunizing a child and that limits the amount of extra
immunization (i.e., extra doses of vaccine) for any given childhood immu-
nization schedule. The authors analyze the computational complexity of
the models, and present several optimization algorithms—both exact and
heuristic—for solving these models. In Chapter 5, a model-based frame-
work for evaluating the cost-effectiveness of HIV prevention and treat-
ment programs is discussed. A framework of this type can help identify
the most cost-effective programs in a portfolio of HIV interventions, thus
guiding the allocation (and possible reallocation) of scarce funds. Chapter 6
describes a graph-theoretical approach for optimizing kidney paired dona-
tion. The author introduces both the medical background and mathematical
tools used to find a societal optimal allocation of organs for this type of
transplant.

The last four chapters in Part I, Chapters 7, 8, 9, and 10, are dedicated to
recent advances in radiation therapy cancer treatment planning models and
solution algorithms. Chapter 7 introduces the background in radiation ther-
apy, including three-dimensional conventional conformal radiation therapy
(3DCRT), intensity-modulated radiation therapy (IMRT), tomotherapy, and
proton therapy. Chapter 8 focuses on techniques for beam angle selection
in IMRT, whereas Chapter 9 provides matrix decomposition techniques for
leaf-sequencing in IMRT treatment delivery. Chapter 10 offers an overview
of various issues within treatment planning models, including dose cal-
culation, clinical objectives, and considerations related to constraints; the
choice of optimization approaches; the determination of leaf segments for
delivery; and 4D and fractionated planning.

Part II focuses on optimization in biology. Chapter 11 begins with
an introduction to systems biology for mathematical programmers. The
chapter covers various areas including gene regulatory networks, protein
interaction networks, and metabolic networks. Chapter 12 touches upon
popular algorithms for genomic analysis, in particular for phylogenetic
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analysis and multiple sequence alignment. The authors then introduce
a graph-theoretical approach that generalizes the complexity of various
classes of sequencing problems in computer science. The model allows
the study of a wide group of genomic analysis problems, including phy-
logenetic analysis, multiple sequence alignment, DNA sequencing, and
sequence comparison problems.

The next two chapters are related to probes in biological experiments.
Specifically, Chapter 13 examines computational issues related to probe
design and selection. Properties of probes such as the melting tempera-
ture, specificity, existence of secondary structures, and probe length are
discussed in detail. The authors highlight various algorithms and software
packages that have been developed to aid in the design and selection of
probes in practice. Chapter 14 focuses on a logical analysis framework for
selecting short oligo probes for genotyping applications.

The last three chapters deal with various classes of biological models.
Chapter 15 introduces a new dihedral angle measure for protein secondary
prediction. Specifically, the Steiner tree is used for the structure analysis
of amino acids. Chapter 16 provides an optimization approach for tumor
virotherapy with recombinant measles viruses. The last chapter describes
the design of effective dosing regimens that suppress the emergence and
proliferation of resistant microbial populations. The authors provide a com-
prehensive presentation of their recent theoretical and experimental work
on a mathematical modeling framework that can be used to optimize the
design of such dosing regimens.

As described in various chapters throughout the book, integer program-
ming (IP) is often used for modeling within various medical and biological
applications. A short tutorial chapter on integer programming is included
in the appendix.

Although optimization in medicine and biology is too broad to be
addressed entirely within one edited book, the chapters in this book high-
light some of the most recent advances in optimization techniques that
are relevant to solving complex problems arising from medical and bio-
logical research. We hope that this book will facilitate strong collaborative
relationships among optimization researchers and medical and biological
professionals.

This book will benefit medical professionals and researchers who desire
to understand and explore basic optimization concepts and their potential
use in clinical and laboratory research, as well as their potential to accel-
erate medical and biological advances. It also serves as an invaluable ref-
erence for optimization researchers to prepare and start research projects
in medicine and biology. Further, it can be used as a textbook in courses
such as optimization in medicine and biology for senior undergraduate
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and graduate students in engineering, operations research, mathematics,
computer science, and biology. Finally, it is an excellent reference/text
book for graduate students who choose to pursue research, leading to a
thesis, in this area.

Gino J. Lim
Eva K. Lee
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Abstract In this chapter, we present classification models based on
mathematical programming approaches. We first provide an overview on
various mathematical programming approaches, including linear program-
ming, mixed integer programming, nonlinear programming, and support
vector machines. Next, we present our effort of novel optimization-based
classification models that are general purpose and suitable for developing
predictive rules for large heterogeneous biological and medical datasets.
Our predictive model simultaneously incorporates (1) the ability to classify
any number of distinct groups; (2) the ability to incorporate heterogeneous
types of attributes as input; (3) a high-dimensional data transformation that
eliminates noise and errors in biological data; (4) the ability to incorporate
constraints to limit the rate of misclassification, and a reserved-judgment
region that provides a safeguard against overtraining (which tends to
lead to high misclassification rates from the resulting predictive rule); and
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(5) successive multistage classification capability to handle data points
placed in the reserved-judgment region. To illustrate the power and flex-
ibility of the classification model and solution engine, and its multigroup
prediction capability, application of the predictive model to a broad class
of biological and medical problems is described. Applications include the
differential diagnosis of the type of erythemato-squamous diseases; pre-
dicting presence/absence of heart disease; genomic analysis and prediction
of aberrant CpG island meythlation in human cancer; discriminant analysis
of motility and morphology data in human lung carcinoma; prediction of
ultrasonic cell disruption for drug delivery; identification of tumor shape
and volume in treatment of sarcoma; multistage discriminant analysis of
biomarkers for prediction of early atherosclerois; fingerprinting of native
and angiogenic microvascular networks for early diagnosis of diabetes,
aging, macular degeneracy, and tumor metastasis; prediction of protein
localization sites; and pattern recognition of satellite images in classifica-
tion of soil types. In all these applications, the predictive model yields
correct classification rates ranging from 80 to 100 percent. This provides
motivation for pursuing its use as a medical diagnostic, monitoring, and
decision-making tool.

1.1 Introduction
Classification is a fundamental machine learning task whereby rules are
developed for the allocation of independent observations to groups. Clas-
sic examples of applications include medical diagnosis—the allocation of
patients to disease classes based on symptoms and lab tests, and credit
screening—the acceptance or rejection of credit applications based on
applicant data. Data is collected concerning observations with known
group membership. This training data is used to develop rules for the
classification of future observations with unknown group membership.

In this section, we briefly describe some terminologies related to clas-
sification, and provide a brief organization of the materials written in this
chapter.

1.1.1 Pattern Recognition, Discriminant Analysis,
and Statistical Pattern Classification

Cognitive science is the science of learning, knowing, and reasoning.
Pattern recognition is a broad field within cognitive science that is con-
cerned with the process of recognizing, identifying, and categorizing input
information. These areas intersect with computer science, particularly
in the closely related areas of artificial intelligence, machine learning,
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and statistical pattern recognition. Artificial intelligence is associated with
constructing machines and systems that reflect human abilities in cogni-
tion. Machine learning refers to how these machines and systems replicate
the learning process, which is often achieved by seeking and discovering
patterns in data, or statistical pattern recognition.

Discriminant analysis is the process of discriminating between categories
or populations. Associated with discriminant analysis as a statistical tool
are the tasks of determining the features that best discriminate between
populations, and the process of classifying new objects based on these
features. The former is often called feature selection and the latter is referred
to as statistical pattern classification. This work will be largely concerned
with the development of a viable statistical pattern classifier.

As with many computationally intensive tasks, recent advances in com-
puting power have led to a sharp increase in the interest and application of
discriminant analysis techniques. The reader is referred to Duda et al. [25]
for an introduction to various techniques for pattern classification, and to
Zopounidis et al. [121] for examples of applications of pattern classification.

1.1.2 Supervised Learning, Training, and Cross-Validation
An entity or observation is essentially a data point as commonly under-
stood in statistics. In the framework of statistical pattern classification, an
entity is a set of quantitative measurements (or qualitative measurements
expressed quantitatively) of attributes for a particular object. As an example,
in medical diagnosis an entity could be the various blood chemistry levels
of a patient. With each entity is associated one or more groups (or popula-
tions, classes, categories) to which it belongs. Continuing with the medical
diagnosis example, the groups could be the various classes of heart disease.
Statistical classification seeks to determine rules for associating entities with
the groups to which they belong. Ideally, these associations align with the
associations that human reasoning would produce based on information
gathered on objects and their apparent categories.

Supervised learning is the process of developing classification rules
based on entities for which the classification is already known. Note that
the process implies that the populations are already well defined. Unsuper-
vised learning is the process of discovering patterns from unlabeled entities
and thereby discovering and describing the underlying populations. Mod-
els derived using supervised learning can be used for both functions of
discriminant analysis—feature selection and classification. The model that
we consider is a method for supervised learning, so we assume that popu-
lations are previously defined.

The set of entities with known classification that is used to develop
classification rules is the training set. The training set may be partitioned so



Lim/Optimization in Medicine and Biology AU0563_C001 Final Proof Page 7 24.11.2007 08:12am

Classification and Disease Prediction via Mathematical Programming 7

that some entities are withheld during the model-development process, also
known as the training of the model. The withheld entities form a test set that
is used to determine the validity of the model, a process known as cross-
validation. Entities from the test set are subjected to the rules of classification
to measure the performance of the rules on entities with unknown group
membership.

Validation of classification models is often performed using m-fold cross-
validation where the data with known classification is partitioned into m
folds (subsets) of approximately equal size. The classification model is
trained m times, with the mth fold withheld during each run for testing.
The performance of the model is evaluated by the classification accuracy
on the m test folds, and can be represented using a classification matrix or
confusion matrix.

The classification matrix is a square matrix with the number of rows and
columns equal to the number of groups. The ijth entry of the classification
matrix contains the number or proportion of test entities from group i
that were classified by the model as belonging to group j . Therefore, the
number or proportion of correctly classified entities are contained in the
diagonal elements of the classification matrix, and the number or proportion
of misclassified entities are in the off-diagonal entries.

1.1.3 Bayesian Inference and Classification
The popularity of Bayesian inference has risen drastically over the past
several decades, perhaps in part due to its suitability for statistical learning.
The reader is referred to O’Hagan’s volume [92] for a thorough treat-
ment of Bayesian inference. Bayesian inference is usually contrasted
against classical inference, though in practice they often imply the same
methodology.

The Bayesian method relies on a subjective view of probability, as
opposed to the frequentist view upon which classical inference is based
[92]. A subjective probability describes a degree of belief in a proposition
held by the investigator based on some information. A frequency probabil-
ity describes the likelihood of an event given an infinite number of trials.

In Bayesian statistics, inferences are based on the posterior distribution.
The posterior distribution is the product of the prior probability and the
likelihood function. The prior probability distribution represents the initial
degree of belief in a proposition, often before empirical data is considered.
The likelihood function describes the likelihood that the behavior is exhi-
bited, given that the proposition is true. The posterior distribution describes
the likelihood that the proposition is true, given the observed behavior.

Suppose we have a proposition or random variable θ about which
we would like to make inferences, and data x. Application of Bayes’
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theorem gives

dF (θ |x) = dF (θ)dF (x|θ)
dF (x)

Here, F denotes the (cumulative) distribution function. For ease of con-
ceptualization, assume that F is differentiable, then dF = f , and the above
equality can be rewritten as

f (θ |x) = f (θ)f (x|θ)
f (x)

.

For classification, a prior probability function π( g) describes the likeli-
hood that an entity is allocated to group g regardless of its exhibited feature
values x. A group density function f (x|g) describes the likelihood that an
entity exhibits certain measurable attribute values, given that it belongs to
population g. The posterior distribution for a group P(g|x) is given by the
product of the prior probability and group density function, normalized
over the groups to obtain a unit probability over all groups. The observa-
tion x is allocated to group h if h = arg max

g∈G
P( g|x) = arg max

g∈G
π(g) f (x|g)∑

j∈G π( j) f (x| j) ,

where G denotes the set of groups.

1.1.4 Discriminant Functions
Most classification methods can be described in terms of discriminant func-
tions. A discriminant function takes as input an observation and returns
information about the classification of the observation. For data from a set
of groups G, an observation x is assigned to group h if h = arg max

g∈G
lg(x)

where the functions lg are the discriminant functions. Classification meth-
ods restrict the form of the discriminant functions, and training data is used
to determine the values of parameters that define the functions.

The optimal classifier in the Bayesian framework can be described in
terms of discriminant functions. Let πg = π(g) be the prior probability
that an observation is allocated to group g and let fg(x) = f (x|g) be the
likelihood that data x is drawn from population g. If we wish to minimize
the probability of misclassification given x, then the optimal allocation for

an entity is to the group h = arg max
g∈G

P( g|x) = arg max
g∈G

πg fg(x)∑
j∈G πj fj (x)

. Under

the Bayesian framework,

P( g|x) = πg f (x|g)
f (x)

= πg f (x|g)
∑

j∈G
πj f (x|j)
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The discriminant functions can be lg(x) = P(g|x) for g ∈ G. The same
classification rule is given by lg(x) = πgf (x|g) and lg(x) = log f (x|g) +
log πg. The problem then becomes finding the form of the prior functions
and likelihood functions that match the data.

If the data is multivariate normal with equal covariance matrices
( f (x|g) ∼ N (μg,�)), then a linear discriminant function is optimal:

lg(x) = log f (x|g)+ log πg

= −1/2(x − μg)
T�−1(x − μg)− 1/2 log

∣
∣
∣
∑

g

∣
∣
∣− d/2 log 2π+ log πg

= wT
g x + wg0

where d is the number of attributes, wg =�−1μg, and wg0=
−1/2μT

g�
−1μg + log πg + xT�−1x − d/2 log 2π. Note that the last two

terms of wg0 are constant for all g and need not be calculated. When
there are two groups (G = {1, 2}) and the priors are equal (π1 = π2),
the discriminant rule is equivalent to Fisher’s linear discriminant rule [30].
Fisher’s rule can also be derived, as it was by Fisher, by choosing w so that
(wT μ1−wT μ2)

2

wT �w
is maximized.

These linear and quadratic discriminant functions are often applied
to datasets that are not multivariate normal or continuous (see Ref. [98],
pp. 234–235) by using approximations for the means and covariances.
Regardless, these models are parametric in that they incorporate assump-
tions about the distribution of the data. Fisher’s linear discriminant is
nonparametric because no assumptions are made about the underly-
ing distribution of the data. Thus, for a special case, a parametric and
nonparametric model coincide to produce the same discriminant rule.
The linear discriminant function derived above is also called the Homo-
scedastic Model, and the quadratic discriminant function is called the
Heteroscedastic Model. The exact form of discriminant functions in the
Bayesian framework can be derived for other distributions [25].

Some classification methods are essentially the methods for finding
coefficients for linear discriminant functions. In other words, they seek
coefficients wg and constants wg0 such that lg(x) = wgx +wg0, g ∈ G, is an
optimal set of discriminant functions. The criteria for optimality is different
for different methods. Linear discriminant functions project the data onto a
linear subspace and then discriminate between entities in that subspace. For
example, Fisher’s linear discriminant projects two-group data on an optimal
line, and discriminates on that line. A good linear subspace may not exist
for data with overlapping distributions between groups and therefore the
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data will not be classified accurately using these methods. The hyperplanes
defined by the discriminant functions form boundaries between the group
regions. A large portion of the literature concerning the use of mathemat-
ical programming models for classification describe methods for finding
coefficients of linear discriminant functions [121].

Other classification methods seek to determine parameters to establish
quadratic discriminant functions. The general form of a quadratic discrim-
inant function is lg(x) = xT Wgx + wT

g x + wg0. The boundaries defining
the group regions can assume any hyperquadric form, as can the Bayes
decision rules for arbitrary multivariate normal distributions [25].

In this chapter, we survey the development and advances of classifica-
tion models via the mathematical programming techniques, and summarize
our experience in classification models applied to prediction in biologi-
cal and medical applications. The rest of this chapter is organized as fol-
lows. Section 1.2 first provides a detailed overview of the development
and advances of mathematical programming-based classification models,
including linear programming (LP), mixed integer programming (MIP), non-
linear programming, and support vector machine (SVM) approaches. In
Section 1.3, we describe our effort in developing optimization-based multi-
group multistage discriminant analysis predictive models for classification.
The use of the predictive models on various biological and medical prob-
lems are presented. Section 1.4 provides several tables to summarize the
progress of mathematical programming-based classification models and
their characteristics. This is followed by a brief description of other classi-
fication methods in Section 1.5, and summary and concluding remarks in
Section 1.6.

1.2 Mathematical Programming Approaches
Mathematical programming methods for statistical pattern classification
emerged in the 1960s, gained popularity in the 1980s, and have grown
drastically since. Most of the mathematical programming approaches are
nonparametric, which has been cited as an advantage when analyzing
contaminated datasets over methods that require assumptions about the
distribution of the data [107]. Most of the literature about mathematical
programming methods are concerned with either using mathematical pro-
gramming to determine the coefficients of linear discriminant functions or
with SVMs.

The following notation will be used. The subscripts i, j , and k are used
for the observation, attribute, and group, respectively. Let xij be the value
of attribute j of observation i. Let m be the number of attributes, K be the
number of groups, Gk represent the set of data from group k, M be a big
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positive number, and ε be a small positive number. The abbreviation urs is
used in reference to a variable to denote “unrestricted in sign.”

1.2.1 Linear Programming Classification Models
The use of linear programs to determine the coefficients of linear discrim-
inant functions has been widely studied [31,46,50,74]. The methods deter-
mine the coefficients for different objectives, including minimizing the sum
of the distances to the separating hyperplane, minimizing the maximum dis-
tance of an observation to the hyperplane, and minimizing other measures
of badness of fit or maximizing measures of goodness of fit.

1.2.1.1 Two-Group Classification

One of the earliest LP classification models was proposed by Mangasarian
[74] to construct a hyperplane to separate two groups of data. Separa-
tion by a nonlinear surface using LP was also proposed when the surface
parameters appear linearly. Two sets of points may be inseparable by one
hyperplane or surface through a single-step LP approach, but they can be
strictly separated by more planes or surfaces via a multistep LP approach
(Mangasarian [75]). In Ref. [75], real problems with up to 117 data points,
10 attributes, and 3 groups were solved. The three-group separation was
achieved by separating group 1 from groups 2 and 3, and then group 2
from group 3.

Studies of LP Models for the discriminant problem in the early 1980s
were carried out by Hand [47], Freed and Glover [31,32], and Bajgier and
Hill [5]. Three LP Models for the two-group classification problem, including
minimizing the sum of deviations (MSD), minimizing the maximum devia-
tion (MMD), and minimizing the sum of interior distances (MSID) were pro-
posed. Freed and Glover [33] provided computational studies of these mod-
els where the test conditions involved normal and non-normal populations.

MSD (Minimize the sum of deviations)

Min
∑

i

di

s.t. w0 +
∑

j

xijwj − di ≤ 0 ∀i ∈ G1

w0 +
∑

j

xijwj + di ≥ 0 ∀i ∈ G2

wj urs ∀j
di ≥ 0 ∀i
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MMD (Minimize the maximum deviation)

Min d

s.t. w0 +
∑

j

xijwj − d ≤ 0 ∀i ∈ G1

w0 +
∑

j

xijwj + d ≥ 0 ∀i ∈ G2

wj urs ∀j
d ≥ 0

MSID (Minimize the sum of interior distances)

Min pd −
∑

i

ei

s.t. w0 +
∑

j

xijwj − d + ei ≤ 0 ∀i ∈ G1

w0 +
∑

j

xijwj + d − ei ≥ 0 ∀i ∈ G2

wj urs ∀j

d ≥ 0

ei ≥ 0 ∀i

where p is a weight constant.
The objective function of the MSD Model is the L1-norm distance while

the objective function of MMD is the L∞-norm distance. They are special
cases of Lp-norm classification [50,108].

In some models, the constant term of the hyperplane is a fixed num-
ber instead of a decision variable. The model MSD0 shown below is an
example where the cut-off score b replaces w0 in the formulation. The
same replacement could be used in other formulations.
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MSD0 (Minimize the sum of deviations with constant cutoff score)

Min
∑

i

di

s.t.
∑

j

xijwj − di ≤ b ∀i ∈ G1

∑

j

xijwj + di ≥ b ∀i ∈ G2

wj urs ∀j

di ≥ 0 ∀i

A gap can be introduced between the two regions determined by the
separating hyperplane to prevent degenerate solutions. Take MSD as an
example, the separation constraints become

w0 +
∑

j

xijwj − di ≤ − ε ∀i ∈ G1

w0 +
∑

j

xijwj + di ≥ ε ∀i ∈ G2

The small number ε can be normalized to 1.
Besides introducing a gap, another normalization approach is to include

constraints such as
∑m

j=0 wj = 1 or
∑m

j=1 wj = 1 in the LP Models to avoid
unbounded or trivial solutions.

Specifically, Glover et al. [45] gave the Hybrid Model, as follows:
Hybrid Model

Min pd +
∑

i

pidi − qe −
∑

i

qiei

s.t. w0 +
∑

j

xijwj − d − di + e + ei = 0 ∀i ∈ G1

w0 +
∑

j

xijwj + d + di − e − ei = 0 ∀i ∈ G2
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wj urs ∀j

d, e ≥ 0

di , ei ≥ 0 ∀i

where p, pi , q, and qi are the cost for different deviations. Including different
combinations of deviation terms in the objective function then leads to
variant models.

Joachimsthaler and Stam [50] review and summarize LP formulations
applied to two-group classification problems in discriminant analysis,
including MSD, MMD, MSID, MIP Models, and the Hybrid Model. They
summarize the performance of the LP methods together with the traditional
classification methods such as Fisher’s linear discriminant function (LDF)
[30], Smith’s quadratic discriminant function (QDF) [106], and a logistic
discriminant method. In their review, MSD sometimes but not uniformly
improves classification accuracy, compared with traditional methods. On
the other hand, MMD is found to be inferior to MSD. Erenguc and Koehler
[27] present a unified survey of LP Models and their experimental results,
in which the LP Models include several versions of MSD, MMD, MSID,
and Hybrid Models. Rubin [99] provides experimental results of comparing
these LP Models with Fisher’s LDF and Smith’s QDF. He concludes that
QDF performs best when the data follows normal distributions and that
QDF could be the benchmark when seeking situations for advantageous
LP methods. In summary, the above review papers [27,50,99] describe
previous work on LP classification models and their comparison with tradi-
tional methods. However, it is difficult to make definitive statements about
conditions under which one LP Model is superior to others, as stated in
Ref. [107].

Stam and Ungar [110] introduce a software package RAGNU, a utility
program in conjunction with the LINDO optimization software, for solving
two-group classification problems using LP-based methods. LP formulations
such as MSD, MMD, MSID, Hybrid Models, and their variants are contained
in the package.

There are some difficulties in LP-based formulations, in that some mod-
els could result in unbounded, trivial, or unacceptable solutions [34,87],
but possible remedies are proposed. Koehler [51–53] and Xiao [114,115]
characterize the conditions of unacceptable solutions in two-group LP
discriminant Models, including MSD, MMD, MISD, the Hybrid Model,
and their variants. Glover [44] proposes the normalization constraint,∑m

j=1(−|G2|∑i∈G1
xij + |G1|∑i∈G2

xij)wj = 1, which is more effective and
reliable. Rubin [100] examines the separation failure for two-group models
and suggests to apply the models twice, reversing the group designations
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the second time. Xiao and Feng [116] propose a regularization method to
avoid multiple solutions in LP discriminant analysis by adding the term
ε
∑m

j=1 w2
j in the objective functions.

Bennett and Mangasarian [9] propose the following model that mini-
mizes the average of the deviations, which is called robust linear program-
ming (RLP).

RLP (Robust linear programming)

Min
1

|G1|
∑

i∈G1

di + 1

|G2|
∑

i∈G2

di

s.t. w0 +
∑

j

xijwj − di ≤ −1 ∀i ∈ G1

w0 +
∑

j

xijwj + di ≥ 1 ∀i ∈ G2

wj urs ∀j

di ≥ 0 ∀i
It is shown that this model gives the null solution w1 = · · · = wm = 0

if, and only if, 1
|G1|

∑
i∈G1

xij = 1
|G2|

∑
i∈G2

xij for all j , in which case the
solution w1 = · · · = wm = 0 is guaranteed to be not unique. Data of
different diseases is tested by the proposed classification methods, as in
most of Mangasarian’s papers.

Mangasarian et al. [86] describe two applications of LP Models in the
field of breast cancer research, one in diagnosis and the other in prognosis.
The first application is to discriminate benign from malignant breast lumps,
while the second application is to predict when breast cancer is likely to
recur. Both of them work successfully in clinical practice. The RLP Model
[9] together with the multisurface method tree algorithm (MSMT) [8] is used
in the diagnostic system.

Duarte Silva and Stam [104] include the second-order (i.e., quadratic
and cross-product) terms of the attribute values in the LP-based models
such as MSD and Hybrid Models and compare them with linear Models,
Fisher’s LDF, and Smith’s QDF. The results of the simulation experiments
show that the methods that include second-order terms perform much
better than first-order methods, given that the data substantially violates
the multivariate normality assumption. Wanarat and Pavur [113] investigate
the effect of the inclusion of the second-order terms in the MSD, MIP,
and Hybrid Models when sample size is small to moderate. However, the
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simulation study shows that second-order terms may not always improve
the performance of a first-order LP Model even with data configurations
that are more appropriately classified by Smith’s QDF. Another result of the
simulation study is that inclusion of the cross-product terms may hurt the
model’s accuracy, whereas omission of these terms causes the model to
be not invariant with respect to a nonsingular transformation of the data.

Pavur [94] studies the effect of the position of the contaminated normal
data in the two-group classification problem. The methods for compari-
son in their study include MSD, MM (described in the MIP part), Fisher’s
LDF, Smith’s QDF, and nearest-neighbor models. The nontraditional meth-
ods such as LP Models have the potential for outperforming the standard
parametric procedures when non-normality is present, but this study shows
that no one model is consistently superior in all cases.

Asparoukhov and Stam [3] propose LP and MIP Models to solve the
two-group classification problem where the attributes are binary. In this
case, the training data can be partitioned into multinomial cells, allow-
ing for a substantial reduction in the number of variables and constraints.
The proposed models not only have the usual geometric interpretation but
also possess a strong probabilistic foundation. Let s be the index of the
cells, n1s , n2s be the number of data points in cell s from groups 1 and 2,
respectively, and (bs1, . . . , bsm) be the binary digits representing cell s. The
model shown below is the LP Model of minimizing the sum of deviations
for two-group classification with binary attributes.

Cell convensional MSD

Min
∑

s: n1s+n2s>0

(n1sd1s + n2sd2s)

s.t. w0 +
∑

j

bsjwj − d1s ≤ 0 ∀s : n1s > 0

w0 +
∑

j

bsjwj + d2s > 0 ∀s : n2s > 0

wj urs ∀j

d1s , d2s ≥ 0 ∀s

Binary attributes are usually found in medical diagnoses data. In
this study, three real datasets about disease discrimination are tested:
developing postoperative pulmonary embolism or not, having dissecting
aneurysm or other diseases, and suffering from posttraumatic epilepsy
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or not. In these datasets, the MIP Model for binary attributes (BMIP), which
will be described later, performs better than other LP Models or traditional
methods.

1.2.1.2 Multigroup Classification

Freed and Glover [32] extend the LP classification models from two-group
to multigroup problems. One formulation that uses a single discriminant
function is given below:

Min
K−1∑

k=1

ckαk

s.t.
∑

j

xijwj ≤ Uk ∀i ∈ Gk ∀k

∑

j

xijwj ≥ Lk ∀i ∈ Gk ∀k

Uk + ε ≤ Lk+1 + αk ∀k = 1, . . . , K − 1

wj urs ∀j

Uk , Lk urs ∀k

αk urs ∀k = 1, . . . , K − 1

where the number ε could be normalized to be 1, and ck is the misclassi-
fication cost. However, single function classification is not as flexible and
general as multiple function classification. Another extension from the two-
group case to multigroup in Ref. [32] is to solve two-group LP Models for
all pairs of groups and determine classification rules based on these solu-
tions. However, in some cases, the group assignment is not clear and the
resulting classification scheme may be suboptimal [107].

For the multigroup discrimination problem, Bennett and Mangasarian
[10] define the piecewise-linear separability of data from K groups as the
following: The data from K groups is piecewise-linear separable if, and
only if, there exist (wk

0 , wk
1 , . . . , wk

m) ∈ Rm+1, k = 1, . . . , K , such that wh
0 +∑

j xijwh
j ≥ wk

0 +
∑

j xijwk
j + 1, ∀i ∈ Gh ∀h, k �= h. The following LP
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will generate a piecewise-linear separation for the K groups if one exists,
otherwise it will generate an error-minimizing separation.

Min
∑

h

∑

k �=h

1

|Gh|
∑

i∈Gh

dhk
i

s.t. dhk
i ≥ −

(

wh
0 +

∑

j

xijw
h
j

)

+
(

wk
0 +

∑

j

xijw
k
j

)

+ 1

∀i ∈ Gh ∀h, k �= h

wk
j urs ∀j , k

dhk
i ≥ 0 ∀i ∈ Gh ∀h, k �= h

The method is tested in three datasets. It performs pretty well in two of
the datasets that are totally (or almost totally) piecewise-linear separable.
The classification result is not good in the third dataset, which is inher-
ently more difficult. However, by combining the MSMT [8], the performance
improves.

Gochet et al. [46] introduce an LP Model for the general multigroup clas-
sification problem. The method separates the data with several hyperplanes
by sequentially solving LPs. The vectors wk , k = 1, . . . , K , are estimated for
the classification decision rule. The rule is to classify an observation i into
group s where s = arg maxk{wk

0 +
∑

j xijwk
j }.

Suppose, observation i is from group h. Denote the goodness of fit for
observation i with respect to group k as

Gi
hk(w

h, wk) =
[(

wh
0 +

∑

j

xijw
h
j

)

−
(

wk
0 +

∑

j

xijw
k
j

)]+

where [a]+ = max{0, a}.
Likewise, denote the badness of fit for observation i with respect to

group k as

Bi
hk(w

h, wk) =
[(

wh
0 +

∑

j

xijw
h
h

)

−
(

wk
0 +

∑

j

xijw
k
j

)]−

where [a]− = −min{0, a}.
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The total goodness of fit and total badness of fit are then defined as

G(w) = G(w1, . . . , wK ) =
∑

h

∑

k �=h

∑

i∈Gh

Gi
hk(w

h, wk)

B(w) = B(w1, . . . , wK ) =
∑

h

∑

k �=h

∑

i∈Gh

Bi
hk(w

h, wk)

The LP is to minimize the total badness of fit, subject to a normalization
equation, in which q > 0

Min B(w)

s.t. G(w)− B(w) = q

w urs

Expanding G(w) and B(w) and substituting Gi
hk(w

h, wk) and
Bi

hk(w
h, wk) by γ i

hk and β i
hk , respectively, the LP becomes

Min
∑

h

∑

k �=h

∑

i∈Gh

β i
hk

s.t.

(

wh
0 +

∑

j

xijw
h
j

)

−
(

wk
0 +

∑

j

xijw
k
j

)

= γ i
hk − β i

hk

∀i ∈ Gh ∀h, k �= h

∑

h

∑

k �=h

∑

i∈Gh

(γ i
hk − β i

hk) = q

wk
j urs ∀j , k

γ i
hk ,β

i
hk ≥ 0 ∀i ∈ Gh ∀h, k �= h

The classification results for two real datasets show that this model
can compete with Fisher’s LDF and the nonparametric k-nearest-neighbor
method.

The LP-based models for classification problems highlighted above
are all nonparametric models. In Section 1.3, we describe LP-based
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and MIP-based classification models that utilize a parametric multigroup
discriminant analysis approach [39,40,60,63]. These latter models have
been employed successfully in various multigroup disease diagnosis and
biological/medical prediction problems [16,28,29,56,57,59,60,64,65].

1.2.2 Mixed Integer Programming Classification Models
Although LP offers a polynomial-time computational guarantee, MIP allows
more flexibility in (among other things) modeling misclassified observations
or misclassification costs.

1.2.2.1 Two-Group Classification

In the two-group classification problem, binary variables can be used in
the formulation to track and minimize the exact number of misclassifica-
tions. Such an objective function is also considered as the L0-norm crite-
rion [107].

MM (Minimizing the number of misclassifications)

Min
∑

i

zi

s.t. w0 +
∑

j

xijwj ≤ Mzi ∀i ∈ G1

w0 +
∑

j

xijwj ≥ −Mzi ∀i ∈ G2

wj urs ∀j

zi ∈ {0, 1} ∀i
The vector w is required to be a nonzero vector to prevent the trivial

solution.
In the MIP formulation, the objective function could include the devia-

tion terms, such as those in the Hybrid Models, as well as the number of
misclassifications [5]; or it could represent expected cost of misclassifica-
tion [1,6,101,105]. In particular, there are some variant versions of the basic
model.

Stam and Joachimsthaler [109] study the classification performance of
MM and compare it with MSD, Fisher’s LDF, and Smith’s QDF. In some
cases, the MM Model performs better, but in some cases it does not. MIP
formulations are in the review studies of Joachimsthaler and Stam [50] and
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Erenguc and Koehler [27], and contained in the software developed by
Stam and Ungar [110]. Computational experiments show that the MIP Model
performs better when the group overlap is higher [50,109], although it is
still not easy to reach general conclusions [107].

Because the MIP Model is NP-hard, exact algorithms and heuristics are
proposed to solve it efficiently. Koehler and Erenguc [54] develop a proce-
dure to solve MM in which the condition of nonzero w is replaced by the
requirement of at least one violation of the constraints w0 +∑j xijwj ≤ 0
for i ∈ G1 or w0 +∑j xijwj ≥ 0 for i ∈ G2. Banks and Abad [6] solve the
MIP of minimizing the expected cost of misclassification by an LP-based
algorithm. Abad and Banks [1] develop three heuristic procedures to the
problem of minimizing the expected cost of misclassification. They also
include the interaction terms of the attributes in the data and apply the
heuristics [7]. Duarte Silva and Stam [105] introduce the divide and conquer
algorithm for the classification problem of minimizing the misclassification
cost by solving MIP and LP subproblems. Rubin [101] solves the same prob-
lem by using a decomposition approach, and tests this procedure on some
datasets, including two breast cancer datasets. Yanev and Balev [119] pro-
pose exact and heuristic algorithms for solving MM, which are based on
some specific properties of the vertices of a polyhedral set neatly connected
with the model.

For the two-group classification problem where the attributes are binary,
Asparoukhov and Stam [3] propose LP and MIP Models that partition the
data into multinomial cells and result in fewer number of variables and
constraints. Let s be the index of the cells, n1s , n2s be the number of
data points in cell s from groups 1 and 2, respectively, and (bs1, . . . , bsm)

be the binary digits representing cell s. Below is the MIP Model for
binary attributes (BMIP), which performs best in three real datasets in
Ref. [3].

BMIP

Min
∑

s: n1s+n2s>0

{|n1s − n2s|zs +min(n1s , n2s)}

s.t. w0 +
∑

j

bsjwj ≤ Mzs ∀s : n1s ≥ n2s ; n1s > 0

w0 +
∑

j

bsjwj > −Mzs ∀s : n1s < n2s

wj urs ∀j

zs ∈ {0, 1} ∀s : n1s + n2s > 0
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Pavur et al. [96] include different secondary goals in the model MM
and compare their misclassification rates. A new secondary goal is pro-
posed, which maximizes the difference between the means of the discrim-
inant scores of the two groups. In this model, the term −δ is added to the
minimization objective function as a secondary goal with a constant mul-
tiplier while the constraint

∑
j x̄(2)j wj −∑j x̄(1)j wj ≥ δ is included, where

x̄(k)j = 1
|Gk |

∑
i∈Gk

xij ∀j , for k = 1, 2. The results of simulation study show

that an MIP Model with the proposed secondary goal has better perfor-
mance than other studied models.

Glen [42] proposes IP techniques for normalization in the two-group
discriminant analysis models. One technique is to add the constraint∑m

j=1 |wj | = 1. In the proposed model, wj for j = 1, . . . , m is represented
by wj = w+j − w−j , where w+j , w−j ≥ 0, and binary variables δj and γj

are defined such that δj = 1 ⇔ w+j ≥ ε and γj = 1 ⇔ w−j ≥ ε. The IP
normalization technique is applied to MSD and MMD, and the MSD version
is presented below.

MSD—with IP normalization

Min
∑

i

di

s.t. w0 +
m∑

j=1

xij(w
+
j − w−j )− di ≤ 0 ∀i ∈ G1

w0 +
m∑

j=1

xij(w
+
j − w−j )+ di ≥ 0 ∀i ∈ G2

m∑

j=1

(w+j + w−j ) = 1

w+j − εδj ≥ 0 ∀j = 1, . . . , m

w+j − δj ≤ 0 ∀j = 1, . . . , m

w−j − εγj ≥ 0 ∀j = 1, . . . , m

w−j − γj ≤ 0 ∀j = 1, . . . , m

δj + γj ≤ 1 ∀j = 1, . . . , m
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w0 urs

w+j , w−j ≥ 0 ∀j = 1, . . . , m

di ≥ 0 ∀i

δj , γj ∈ {0, 1} ∀j = 1, . . . , m

The variable coefficients of the discriminant function generated by the
models are invariant under origin shifts. The proposed models are validated
using two datasets from Refs. [45,87]. The models are also extended for
attribute selection by adding the constraint

∑m
j=1(δj +γj) = p, which allows

only a constant number, p, of attributes to be used for classification.
Glen [43] develops MIP Models that determine the thresholds for form-

ing dichotomous variables as well as the discriminant function coefficients,
wj . For each continuous attribute to be formed as a dichotomous attribute,
the model finds the threshold among possible thresholds while determin-
ing the separating hyperplane and optimizing the objective function such as
MSD or minimizing the number of misclassifications. Computational results
of a real dataset and some simulated datasets show that the MSD Model
with dichotomous categorical variable formation can improve classification
performance. The reason for the potential of this technique is that the gen-
erated linear discriminant function is a nonlinear function of the original
variables.

1.2.2.2 Multigroup Classification

Gehrlein [41] proposes MIP formulations of minimizing the total number of
misclassifications in the multigroup classification problem. He gives both a
single function classification scheme and a multiple function classification
scheme, as follows:

GSFC (General single function classification—minimizing the number
of misclassifications)

Min
∑

i

zi

s.t. w0 +
∑

j

xijwj −Mzi ≤ Uk ∀i ∈ Gk

w0 +
∑

j

xijwj +Mzi ≥ Lk ∀i ∈ Gk

Uk − Lk ≥ δ′ ∀k
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Lg − Uk +Mygk ≥ δ
Lk − Ug +Mykg ≥ δ
ygk + ykg = 1

⎫
⎪⎬

⎪⎭
∀g, k, g �= k

wj urs ∀j

Uk , Lk urs ∀k

zi ∈ {0, 1} ∀i

ygk ∈ {0, 1} ∀g, k, g �= k

where
Uk , Lk denote the upper and lower endpoints of the interval assigned
to group k
ygk = 1 if the interval associated with group g precedes that with
group k
ygk = 0 otherwise.

The constant δ′ is the minimum width of an interval of a group and the
constant δ is the minimum gap between adjacent intervals.

GMFC (General multiple function classification—minimizing the num-
ber of misclassifications)

Min
∑

i

zi

s.t. wh
0 +

∑

j

xijw
h
j − wk

0 −
∑

j

xijw
k
j +Mzi ≥ ε ∀i ∈ Gh, ∀h, k �= h

wk
j urs ∀j , k

zi ∈ {0, 1} ∀i

Both models work successfully on the iris dataset provided by Fisher [30].
Pavur [93] solves the multigroup classification problem by sequentially

solving GSFC in one dimension each time. Linear discriminant functions are
generated by successively solving GSFC with the added constraints that all
linear discriminants are uncorrelated to each other for the total dataset. This
procedure could be repeated for the number of dimensions that is believed
to be enough. According to simulation results, this procedure substantially
improves the GSFC Model and sometimes outperforms GMFC, Fisher’s LDF,
or Smith’s QDF.
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To solve the three-group classification problem more efficiently,
Loucopoulos and Pavur [71] make a slight modification on GSFC and
propose the model MIP3G, which also minimizes the number of misclassi-
fications. Compared to GSFC, MIP3G is also a single-function classification
model, but it reduces the possible group orderings from six to three in
the formulation and thus becomes more efficient. Loucopoulos and Pavur
[72] report the results of a simulation experiment on the performance of
GMFC, MIG3G, Fisher’s LDF, and Smith’s QDF for three-group classification
problem with small training samples. Second-order terms are also consid-
ered in the experiment. Simulation results show that GMFC and MIP3G
can outperform the parametric procedures in some non-normal datasets
and that the inclusion of second-order terms can improve the performance
of MIP3G in some datasets. Pavur and Loucopoulos [95] investigate the
effect of the gap size in the MIP3G Model for the three-group classifica-
tion problem. A simulation study illustrates that for fairly separable data,
or data with small sample sizes, a nonzero-gap model can improve the
performance. A possible reason for this result is that the zero-gap model
may be over-fitting the data.

Gallagher et al. [39,40] Lee et al. [63], and Lee [59,60] propose MIP Mod-
els, both heuristic and exact, as a computational approach to solving the
constrained discriminant method described by Anderson [2]. These models
are described in detail in Section 1.3.

1.2.3 Nonlinear Programming Classification Models
Nonlinear programming approaches are natural extensions for some of the
LP-based models. Thus far, nonlinear programming approaches have been
developed for two-group classification.

Stam and Joachimsthaler [108] propose a class of nonlinear programming
methods to solve the two-group classification problem under the Lp-norm
objective criterion. This is an extension of MSD and MMD, for which the
objectives are the L1-norm and L∞-norm, respectively.

Minimize the general Lp-norm distance

Min

(
∑

i

dp
i

)1/p

s.t.
∑

j

xijwj − di ≤ b ∀i ∈ G1

∑

j

xijwj + di ≥ b ∀i ∈ G2
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wj urs ∀j

di ≥ 0 ∀i
The simulation results show that, in addition to the L1-norm and

L∞-norm, it is worth the effort to compute other Lp-norm objectives.
Restricting the analysis to 1 ≤ p ≤ 3, plus p = ∞, is recommended. This
method is reviewed by Joachimsthaler and Stam [50] and Erenguc and
Koehler [27].

Mangasarian et al. [85] propose a nonconvex model for the two-group
classification problem:

Min d1 + d2

s.t.
∑

j

xijwj − d1 ≤ 0 ∀i ∈ G1

∑

j

xijwj + d2 ≥ 0 ∀i ∈ G2

max
j=1,...,m

|wj | = 1

wj urs ∀j

d1, d2 urs

This model can be solved in polynomial-time by solving 2m linear
programs, which generate a sequence of parallel planes, resulting in a
piecewise-linear nonconvex discriminant function. The model works suc-
cessfully in clinical practice for the diagnosis of breast cancer.

Further, Mangasarian [76] also formulates the problem of minimizing
the number of misclassifications as a linear program with equilibrium con-
straints (LPEC) instead of the MIP Model MM described previously.

MM–LPEC (Minimizing the number of misclassifications – linear program
with equilibrium constraints)

Min
∑

i∈G1∪G2

zi

s.t. w0 +
∑

j

xijwj − di ≤ −1 ∀i ∈ G1
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zi(w0 +
∑

j

xijwj − di + 1) = 0 ∀i ∈ G1

w0 +
∑

j

xijwj + di ≥ 1 ∀i ∈ G2

zi

(

w0 +
∑

j

xijwj + di − 1

)

= 0 ∀i ∈ G2

di(1− zi) = 0 ∀i ∈ G1 ∪ G2

0 ≤ zi ≤ 1 ∀i ∈ G1 ∪ G2

di ≥ 0 ∀i ∈ G1 ∪ G2

wj urs ∀j

The general LPEC can be converted to an exact penalty problem with
a quadratic objective and linear constraints. A stepless Frank–Wolfe-type
algorithm is proposed for the penalty problem, terminating at a stationary
point or a global solution. This method is called the parametric misclassi-
fication minimization (PMM) procedure, and numerical testing is included
in Ref. [77].

To illustrate the next model, we first define the step function s : R →
{0, 1} as

s(u) =
{

1 if u > 0

0 if u ≤ 0.

The problem of minimizing the number of misclassifications is equiva-
lent to

Min
∑

i∈G1∪G2

s(di)

s.t. w0 +
∑

j

xijwj − di ≤ −1 ∀i ∈ G1

w0 +
∑

j

xijwj + di ≥ 1 ∀i ∈ G2
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di ≥ 0 ∀i ∈ G1 ∪ G2

wj urs ∀j

Mangasarian [77] proposes a simple concave approximation of the step
function for nonnegative variables: t(u,α) = 1− e−αu, where α > 0, u ≥ 0.
Let α > 0 and approximate s(di) by t(di ,α). The problem then reduces
to minimizing a smooth concave function bounded below on a nonempty
polyhedron, which has a minimum at a vertex of the feasible region. A
finite successive linearization algorithm (SLA) is proposed, terminating at a
stationary point or a global solution. Numerical tests of SLA are done and
compared with the PMM procedure described above. The results show that
the much simpler SLA obtains a separation that is almost as good as PMM
in considerably less computing time.

Chen and Mangasarian [21] propose an algorithm on a defined hybrid
misclassification minimization problem, which is more computationally
tractable than the NP-hard misclassification minimization problem. The
basic idea of the hybrid approach is to obtain iteratively w0 and (w1, . . . , wm)

of the separating hyperplane: (1) for a fixed w0, solve RLP [9] to deter-
mine (w1, . . . , wm); and (2) for this (w1, . . . , wm), solve the one-dimensional
misclassification minimization problem to determine w0. Comparison of
the hybrid method is made with the RLP method and the PMM proce-
dure. The hybrid method performs better in the testing sets of the 10-fold
cross-validation and is much faster than PMM.

Mangasarian [78] proposes the model of minimizing the sum of arbitrary-
norm distances of misclassified points to the separating hyperplane. For
a general norm || · || on Rm, the dual norm || · ||′ on Rm is defined as
||x||′ = max||y||=1 xT y. Define [a]+ = max{0, a} and let w = (w1, . . . , wm).
The formulation can then be written as

Min
∑

i∈G1

[
w0 +

∑

j

xijwj

]+ +
∑

i∈G2

[
− w0 −

∑

j

xijwj

]+

s.t. ||w||′ = 1

w0, w urs

The problem is to minimize a convex function on a unit sphere. A
related decision problem to this minimization problem is shown to be
NP-complete, except for p = 1. For a general p-norm, the minimization
problem can be transformed via an exact penalty formulation to minimiz-
ing the sum of a convex function and a bilinear function on a convex set.
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1.2.4 Support Vector Machine
An SVM is a type of mathematical programming approach [112]. It has
been widely studied, and has become popular in many application fields
in recent years. The introductory description of SVMs given here is sum-
marized from the tutorial by Burges [20]. To maintain consistency with SVM
studies in published literature, the notation used below is slightly different
than the notation used to describe the mathematical programming methods
in earlier sections.

In the two-group separable case, the objective function is to maximize
the margin of a separating hyperplane, 2/||w||, which is equivalent to min-
imizing ||w||2.

Min wT w

s.t. xT
i w + b ≥ +1 for yi = +1

xT
i w + b ≤ −1 for yi = −1

w, b urs

where
xi ∈ Rm represents the values of attributes of observation i
yi ∈ {−1, 1} represents the group of observation i.

This problem can be solved by solving its Wolfe dual problem.

Max
∑

i

αi − 1

2

∑

i,j

αiαj yiyjx
T
i xj

s.t.
∑

i

αiyi = 0

αi ≥ 0 ∀i

Here, αi is the Lagrange multiplier for the training point i, and the points
with αi > 0 are called the support vectors (analogous to the support of
a hyperplane, and thus the introduction of the name support vector). The
primal solution w is given by w =∑i αiyixi . b can be computed by solving
yi(wT xi + b)− 1 = 0 for any i with αi > 0.
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For the non-separable case, slack variables ξi are introduced to handle
the errors. Let C be the penalty for the errors. The problem becomes

Min
1

2
wT w + C

(
∑

i

ξi

)k

s.t. xT
i w + b ≥ +1− ξi for yi = +1

xT
i w + b ≤ −1+ ξi for yi = −1

w, b urs

ξi ≥ 0 ∀i

When k is chosen to be 1, neither the ξi ’s nor their Lagrange multipliers
appear in the Wolfe dual problem.

Max
∑

i

αi − 1

2

∑

i,j

αiαj yiyjx
T
i xj

s.t.
∑

i

αiyi = 0

0 ≤ αi ≤ C ∀i

The data points can be separated nonlinearly by mapping the data into
some higher dimensional space and applying linear SVM to the mapped
data. Instead of knowing explicitly the mapping 
, SVM needs only the dot
products of two transformed data points
(xi)·
(xj). The kernel function K
is introduced such that K (xi , xj) = 
(xi) ·
(xj). Replacing xT

i xj by K (xi , xj)

in the above problem, the separation becomes nonlinear while the problem
to be solved remains a quadratic program. In testing a new data point x
after training, the sign of the function f (x) is computed to determine the
group of x:

f (x) =
Ns∑

i=1

αiyi
(si) ·
(x)+ b =
Ns∑

i=1

αiyiK (si , x)+ b

where
si ’s are the support vectors
Ns is the number of support vectors. Again the explicit form of 
(x)
is avoided.
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Mangasarian provides a general mathematical programming framework
for SVM, called generalized support vector machine (GSVM) [79,83]. Special
cases can be derived from GSVM, including the standard SVM.

Many SVM-type methods have been developed by Mangasarian and
other authors to solve huge-sized classification problems more efficiently.
These methods include successive overrelaxation for SVM [82], proximal
SVM [36,38], smooth SVM [68], reduced SVM [67], Lagrangian SVM [84],
incremental SVMs [37], and other methods [13,81]. Mangasarian summarizes
some of the developments in Ref. [80]. Examples of applications of SVM
include breast cancer studies [69,70] and genome research [73].

Hsu and Lin [49] compare different methods for multigroup classification
using SVMs. Three methods studied are based on several binary classifiers:
one-against-one, one-against-all, and directed acyclic graph (DAG) SVM.
The other two methods studied are altogether methods with decomposition
implementation. The experiment results show that the one-against-one and
DAG methods are more suitable for practical use than the other methods.
Lee et al. [66] propose a generic approach to multigroup problems with
some theoretical properties, and the proposed method is well applied to
microarray data for cancer classification and satellite radiance profiles for
cloud classification.

Gallagher et al. [39,40] and Lee et al. [63] offer the first discrete SVM
for multigroup classification with reserved judgement. The approach has
been successfully applied to a diverse variety of biological and medical
applications (see Section 1.3).

1.3 MIP-Based Multigroup Classification Models
and Applications to Medicine and Biology

Commonly used methods for classification, such as linear discriminant func-
tions, decision trees, mathematical programming approaches, SVMs, and
artificial neural networks (ANN), can be viewed as attempts at approximat-
ing a Bayes optimal rule for classification; that is, a rule that maximizes
(minimizes) the total probability of correct classification (misclassification).
Even if a Bayes optimal rule is known, intergroup misclassification rates
may be higher than desired. For example, in a population that is mostly
healthy, a Bayes optimal rule for medical diagnosis might misdiagnose sick
patients as healthy to maximize total probability of correct diagnosis. As a
remedy, a constrained discriminant rule that limits the misclassification rate
is appealing.

Assuming that the group density functions and prior probabilities are
known, Anderson [2] showed that an optimal rule for the problem of
maximizing the probability of correct classification subject to constraints
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on the misclassification probabilities must be of a specific form when
discriminating among multiple groups with a simplified model. The for-
mulae in Anderson’s result depend on a set of parameters satisfying a
complex relationship between the density functions, the prior probabil-
ities, and the bounds on the misclassification probabilities. Establishing
a viable mathematical model to describe Anderson’s result, and finding
values for these parameters that yield an optimal rule are challenging
tasks. The first computational models utilizing Anderson’s formulae were
proposed in Refs. [39,40].

1.3.1 Discrete Support Vector Machine Predictive Models
As part of the work carried out at Georgia Institute of Technology’s Center
for Operations Research in Medicine, we have developed a general-
purpose discriminant analysis modeling framework and computational
engine that are applicable to a wide variety of applications, including
biological, biomedical, and logistics problems. Utilizing the technology of
large-scale discrete optimization and SVMs, we have developed novel clas-
sification models that simultaneously include the following features: (1) the
ability to classify any number of distinct groups; (2) the ability to incor-
porate heterogeneous types of attributes as input; (3) a high-dimensional
data transformation that eliminates noise and errors in biological data;
(4) constraints to limit the rate of misclassification, and a reserved-judgment
region that provides a safeguard against overtraining (which tends to lead
to high misclassification rates from the resulting predictive rule); and
(5) successive multistage classification capability to handle data points
placed in the reserved-judgment region. Studies involving tumor volume
identification, ultrasonic cell disruption in drug delivery, lung tumor cell
motility analysis, CpG island aberrant methylation in human cancer, pre-
dicting early atherosclerosis using biomarkers, and fingerprinting native
and angiogenic microvascular networks using functional perfusion data
indicate that our approach is adaptable and can produce effective and reli-
able predictive rules for various biomedical and biobehavioral phenomena
[16,28,29,56,57,59,60,64,65].

On the basis of the description in Refs. [39,40,59,60,63], we summarize
below some of the classification models we have developed.

1.3.1.1 Modeling of Reserved-Judgment Region for General Groups

When the population densities and prior probabilities are known, the
constrained rules with a reject option (reserved judgment), based on
Anderson’s results, call for finding a partition {R0, . . . , RG} of R

k that
maximizes the probability of correct allocation subject to constraints on
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the misclassification probabilities; i.e.,

Max
G∑

g=1

πg

∫

Rg

fg(w)dw (1.1)

s.t.
∫

Rg

fh(w)dw ≤ αhg, h, g = 1, . . . , G, h �= g (1.2)

where
fh, h ε {1, . . . , G}, are the group conditional density functions
πg denotes the prior probability that a randomly selected entity is from
group g, g ε {1, . . . , G}
αhg, h �= g, are constants between zero and one.

Under quite general assumptions, it was shown that there exist unique
(up to a set of measure zero) nonnegative constants λih, i, h ∈ {1, . . . , G},
i �= h, such that the optimal rule is given by

Rg = {x ∈ R
k : Lg(x) = max

h∈{0,1,...,G}
Lh(x)}, g = 0, . . . , G (1.3)

where

L0(x) = 0 (1.4)

Lh(x) = πh fh(x)−
G∑

i=1,i �=h

λih fi(x), h = 1, . . . , G (1.5)

For G = 2, the optimal solution can be modeled rather straightforward.
However, finding optimal λih’s for the general case, G ≥ 3, is a difficult
problem, with the difficulty increasing as G increases. Our model offers an
avenue for modeling and finding the optimal solution in the general case.
It is the first such model to be computationally viable [39,40].

Before proceeding, we note that Rg can be written as Rg = {x ∈ R
k :

Lg(x) ≥ Lh(x) for all h ε {0, . . . , G}. So, because Lg(x) ≥ Lh(x) if, and only
if, (1

/∑G
t=1 ft(x))Lg(x) ≥ (1

/∑G
t=1 ft(x))Lh(x), the functions Lh, h = 1, . . .G,

can be redefined as

Lh(x) = πhph(x)−
G∑

i=1,i �=h

λihpi(x), h = 1, . . . , G (1.6)

where pi(x) = fi(x)
/∑G

t=1 ft(x). We assume that Lh is defined as in Equa-
tion 1.6 in our model.
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1.3.1.2 Mixed Integer Programming Formulations
Assume that we are given a training sample of N entities whose group clas-
sifications are known; say ng entities are in group g, where

∑G
g=1 ng = N .

Let the k dimensional vectors xgj , g = 1, . . . , G, j = 1, . . . , ng, contain the
measurements on k available characteristics of the entities. Our procedure
for deriving a discriminant rule proceeds in two stages. The first stage is to
use the training sample to compute estimates, f̂h, either parametrically or
nonparametrically, of the density functions fh (see Ref. [89]) and estimates,
π̂h, of the prior probabilities πh, h = 1, . . . , G. The second stage is to deter-
mine the optimal λih’s given these estimates. This stage requires being able
to estimate the probabilities of correct classification and misclassification
for any candidate set of λih’s. One could, in theory, substitute the estimated
densities and prior probabilities into Equation 1.5, and directly use the
resulting regions Rg in the integral expressions given in Equations 1.1 and
1.2. This would involve, even in simple cases such as normally distributed
groups, the numerical evaluation of k-dimensional integrals at each step of
a search for the optimal λih’s. Therefore, we have designed an alternative
approach. After substituting the f̂h’s and π̂h’s into Equation 1.5, we simply
calculate the proportion of training sample points that fall in each of the
regions R1, . . . , RG . The MIP Models discussed below attempt to maximize
the proportion of training sample points correctly classified although satis-
fying constraints on the proportions of training sample points misclassified.
This approach has two advantages. First, it avoids having to evaluate the
potentially difficult integrals in Equations 1.1 and 1.2. Second, it is non-
parametric in controlling the training sample misclassification probabilities.
That is, even if the densities are poorly estimated (by assuming, for exam-
ple, normal densities for non-normal data), the constraints are still satisfied
for the training sample. Better estimates of the densities may allow a higher
correct classification rate to be achieved, but the constraints will be satisfied
even if poor estimates are used. Unlike most SVM Models that minimize
the sum of errors, our objective is driven by the number of correct clas-
sifications, and will not be biased by the distance of the entities from the
supporting hyperplane.

A word of caution is in order. In traditional unconstrained discrim-
inant analysis, the true probability of correct classification of a given
discriminant rule tends to be smaller than the rate of correct classification
for the training sample from which it was derived. One would expect
to observe such an effect for the method described herein as well. In
addition, one would expect to observe an analogous effect with regard
to constraints on misclassification probabilities—the true probabilities are
likely to be greater than any limits imposed on the proportions of training
sample misclassifications. Hence, the αhg parameters should be carefully
chosen for the application in hand.
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Our first model is a nonlinear 0/1 MIP Model with the nonlinearity
appearing in the constraints. Model 1 maximizes the number of correct
classifications of the given N training entities. Similarly, the constraints on
the misclassification probabilities are modeled by ensuring that the number
of group g training entities in region Rh is less than or equal to a prespec-
ified percentage, αhg(0 < αhg < 1), of the total number, ng, of group g
entities, h, g ∈ {1, . . . , G}, h �= g.

For notational convenience, let G = {1, . . . , G} and Ng = {1, . . . , ng},
for g ∈ G. Also, analogous to the definition of pi , define p̂i by p̂i =
f̂i(x)/

∑G
t=1 f̂t(x). In our model, we use binary indicator variables to denote

the group classification of entities. Mathematically, let uhgj be a binary vari-
able indicating whether or not xgj lies in region Rh; i.e., whether or not
the jth entity from group g is allocated to group h. Then Model 1 can be
written as follows:

DAMIP

Max
∑

g∈G

∑

j∈Ng

uggj

s.t.

Lhgj = π̂hp̂h(x
gj)−

∑

i∈G\h
λihp̂i(x

gj), h, g ∈ G, j ∈ Ng (1.7)

ygj = max{0, Lhgj : h = 1, . . . , G}, g ∈ G, j ∈ Ng (1.8)

ygj − Lggj ≤ M (1− uggj), g ∈ G, j ∈ Ng (1.9)

ygj − Lhgj ≥ ε(1− uhgj), h, g ∈ G, j ∈ Ng, h �= g (1.10)

∑

j∈Ng

uhgj ≤ αhgng�, h, g ∈ G, h �= g (1.11)

−∞ < Lhgj <∞, ygj ≥ 0, λih ≥ 0, uhgj ∈ {0, 1}

Constraint given in Equation 1.7 defines the variable Lhgj as the value of
the function Lh evaluated at xgj . Therefore, the continuous variable ygj ,
defined in constraint given by Equation 1.8, represents max{Lh(xgj) : h =
0, . . . , G}; and consequently, xgj lies in region Rh if, and only if, ygj =
Lhgj . The binary variable uhgj is used to indicate whether or not xgj lies
in region Rh; i.e., whether or not the jth entity from group g is allocated
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to group h. In particular, constraint given by Equation 1.9, together with
the objective, force uggj to be 1 if, and only if, the jth entity from group g
is correctly allocated to group g; and constraints given by Equations 1.10
and 1.11 ensure that at most αhgng� (i.e., the greatest integer less than
or equal to αhgng) group g entities are allocated to group h, h �= g. One
caveat regarding the indicator variables uhgj is that although the condition
uhgj = 0, h �= g, implies (by Equation 1.10) that xgj /∈ Rh, the converse
need not hold. As a consequence, the number of misclassifications may
be overcounted. However, in our preliminary numerical study we found
that the actual amount of overcounting is minimal. One could force the
converse (thus, uhgj = 1 if, and only if, xgj ∈ Rh) by adding constraints
ygj − Lhgj ≤ M (1− uhgj), for example. Finally, we note that the parameters
M and ε are extraneous to the discriminant analysis problem itself, but are
needed in the model to control the indicator variables uhgj . The intention
is for M and ε to be large and small positive constants, respectively.

1.3.1.3 Model Variations

We explore different variations in the model to grasp the quality of the
solution and the associated computational effort.

A first variation involves transforming Model 1 to an equivalent linear
mixed integer model. In particular, Model 2 replaces the N constraints
defined in Equation 1.8 with the following system of 3GN +2N constraints:

ygj ≥ Lhgj , h, g ∈ G, j ∈ Ng (1.12)

ỹhgj − Lhgj ≤ M (1− vhgj), h, g ∈ G, j ∈ Ng (1.13)

ỹhgj ≤ π̂hp̂h(x
gj)vhgj , h, g ∈ G, j ∈ Ng (1.14)

∑

h∈G

vhgj ≤ 1, g ∈ G, j ∈ Ng (1.15)

∑

h∈G

ỹhgj = ygj , g ∈ G, j ∈ Ng (1.16)

where ỹhgj ≥ 0 and vhgj ∈ {0, 1}, h, g ∈ G, j ∈ Ng. These constraints, together
with the non-negativity of ygj force ygj = max{0, Lhgj : h = 1, . . . , G}.

The second variation involves transforming Model 1 to a heuristic linear
MIP Model. This is done by replacing the nonlinear constraint (Equation 1.8)
with ygj ≥ Lhgj , h, g ∈ G, j ∈ Ng, and including penalty terms in the objective
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function. In particular, Model 3 has the objective

Max
∑

g∈G

∑

j∈Ng

βuggj −
∑

g∈G

∑

j∈Ng

γ ygj

where β and γ are positive constants. This model is heuristic in that there
is nothing to force ygj = max{0, Lhgj : h = 1, . . . , G}. However, because in
addition to trying to force as many uggj ’s to one as possible, the objective in
Model 3 also tries to make the ygj ’s as small as possible, and the optimizer
tends to drive ygj toward max{0, Lhgj : h = 1, . . . , G}. We remark that β and
γ could be stratified by group (i.e., introduce possibly distinct βg, γg, g ∈ G)
to model the relative importance of certain groups to be correctly classified.

A reasonable modification to Models 1, 2, and 3 involves relaxing the
constraints specified by Equation 1.11. Rather than placing restrictions
on the number of type g training entities classified into group h, for all
h, g ∈ G, h �= g, one could simply place an upper bound on the total num-
ber of misclassified training entities. In this case, the G(G − 1) constraints
specified by Equation 1.11 would be replaced by the single constraint

∑

g∈G

∑

h∈G\{g}

∑

j∈Ng

uhgj ≤ αN � (1.17)

where α is a constant between 0 and 1. We will refer to Models 1, 2,
and 3, modified in this way, as Models 1T, 2T, and 3T, respectively. Of
course, other modifications are also possible. For instance, one could place
restrictions on the total number of type g points misclassified for each
g ∈ G. Thus, in place of the constraints specified in Equation 1.17, one
would include the constraints

∑
h∈G\{g}

∑
j∈Ng

uhgj ≤ αgN �, g ∈ G, where
0 < αg < 1.

We also explore a heuristic linear model of Model 1. In particular, con-
sider the linear program (DALP):

Max
∑

g∈G

∑

j∈Ng

(c1wgj + c2ygj) (1.18)

s.t.

Lhgj = πhp̂h(x
gj)−

∑

i∈G\h
λihp̂i(x

gj), h, g ∈ G, j ∈ Ng (1.19)

Lggj − Lhgj + wgj ≥ 0, h, g ∈ G, h �= g, j ∈ Ng (1.20)

Lggj + wgj ≥ 0, g ∈ G, j ∈ Ng, (1.21)
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−Lhgj + ygj ≥ 0, h, g ∈ G, j ∈ Ng (1.22)

−∞ < Lhgj <∞, wgj , ygj , λih ≥ 0

Constraint given by Equation 1.19 defines the variable Lhgj as the value
of the function Lh evaluated at xgj . As the optimization solver searches
through the set of feasible solutions, the λih variables will vary, causing the
Lhgj variables to assume different values. Constraints given by Equation 1.20
through 1.22 link the objective-function variables with the Lhgj variables in
such a way that correct classification of training entities, and allocation
of training entities into the reserved-judgment region are captured by the
objective-function variables. In particular, if the optimization solver drives
wgj to zero for some g, j pair, then constraints given by Equations 1.20 and
1.21 imply that Lggj = max{0, Lhgj : h ∈ G}. Hence, the jth entity from group
g is correctly classified. If, on the other hand, the optimal solution yields
ygj = 0 for some g, j pair, then constraint given by Equation 1.22 implies
that max{0, Lhgj : h ∈ G} = 0. Thus, the jth entity from group g is placed
in the reserved-judgment region. (Of course, it is possible for both wgj and
ygj to be zero. One should decide before solving the linear program how
to interpret the classification in such cases.) If both wgj and ygj are positive,
the jth entity from group g is misclassified.

The optimal solution yields a set of λih’s that best allocates the training
entities (i.e., best in terms of minimizing the penalty objective function).
The optimal λih’s can then be used to define the functions Lh, h ∈ G, which
in turn can be used to classify a new entity with feature vector x ∈ R

k

by simply computing the index at which max{Lh(x) : h ∈ {0, 1, . . . , G}} is
achieved.

Note that Model DALP places no a priori bound on the number of mis-
classified training entities. However, because the objective is to minimize
a weighted combination of the variables wgj and ygj , the optimizer will at-
tempt to drive these variables to zero. Thus, the optimizer is, in essence,
attempting either to correctly classify training entities (wgj = 0), or to place
them in the reserved-judgment region (ygj = 0). By varying the weights
c1 and c2, one has a means of controlling the optimizer’s emphasis for
correctly classifying training entities versus placing them in the reserved-
judgment region. If c2/c1 < 1, the optimizer will tend to place a greater
emphasis on driving the wgj variables to zero than driving the ygj variables
to zero (conversely, if c2/c1 > 1). Hence, when c2/c1 < 1, one should ex-
pect to get relatively more entities correctly classified, fewer placed in the
reserved-judgment region, and more misclassified, than when c2/c1 > 1.
An extreme case is when c2 = 0. In this case, there is no emphasis on
driving ygj to zero (the reserved-judgment region is thus ignored), and the
full emphasis of the optimizer is to drive wgj to zero.
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Table 1.1 Model Size

Total 0/1
Model Type Constraints Variables Variables

1 Nonlinear MIP 2GN +N +G(G− 1) 2GN +N +G(G− 1) GN
2 Linear MIP 5GN + 2N +G(G− 1) 4GN +N +G(G− 1) 2GN
3 Linear MIP 3GN +G(G− 1) 2GN +N +G(G− 1) GN
1T Nonlinear MIP 2GN +N + 1 2GN +N +G(G− 1) GN
2T Linear MIP 5GN + 2N + 1 4GN +N +G(G− 1) 2GN
3T Linear MIP 3GN + 1 2GN +N +G(G− 1) GN
DALP Linear program 3GN NG+N +G(G− 1) 0

Table 1.1 summarizes the number of constraints, the total number of
variables, and the number of 0/1 variables in each of the discrete SVM
Models, and in the heuristic LP Model (DALP). Clearly, even for moder-
ately sized discriminant analysis problems, the MIP instances are relatively
large. Also, note that Model 2 is larger than Model 3, both in terms of the
number of constraints and the number of variables. However, it is impor-
tant to bear in mind that the difficulty of solving an MIP problem cannot, in
general, be predicted solely by its size; problem structure has a direct and
substantial bearing on the effort required to find optimal solutions. The LP
relaxation of these MIP Models pose computational challenges as commer-
cial LP solvers return (optimal) LP solutions that are infeasible, due to the
equality constraints, and the use of big M and small ε in the formulation.

It is interesting to note that the set of feasible solutions for Model 2 is
tighter than that for Model 3. In particular, if Fi denotes the set of feasible
solutions of Model i, then

F1 = {(L, λ, u, y) : there exists ỹ, v such that (L, λ, u, y, ỹ, v) ∈ F2} � F3

(1.23)

The novelties of the classification models developed herein include
(1) they are suitable for discriminant analysis given any number of groups;
(2) they accept heterogeneous types of attributes as input; (3) they use
a parametric approach to reduce high-dimensional attribute spaces; and
(4) they allow constraints on the number of misclassifications, and utilize a
reserved judgment to facilitate the reduction of misclassifications. The latter
point opens the possibility of performing multistage analysis.

Clearly, the advantage of an LP Model over an MIP Model is that the
associated problem instances are computationally much easier to solve.
However, the most important criterion in judging a method for obtaining
discriminant rules is how the rules perform in correctly classifying new
unseen entities. Once the rule is developed, applying it to a new entity to
determine its group is trivial. Extensive computational experiments have
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been performed to gauge the qualities of solutions of different models
[17,18,40,59,60,63].

1.3.1.4 Validation of Model and Computational Effort

We performed 10-fold cross-validation, and designed simulation and com-
parison studies on our models. Results reported in [40,63] demonstrate
that our approach works well when applied to both simulated data and
datasets from the machine learning database repository [91]. In particular,
our methods compare favorably and at times superior to other mathematical
programming methods, including the general single function classification
(GSFC) model by Gehrlein [41], and the LP Model by Gochet et al. [46], as
well as Fisher’s LDF, artificial neural networks, quadratic discriminant anal-
ysis, tree classification, and other SVMs, on real biological and medical data.

1.3.2 Classification Results on Real-World Biological
and Medical Applications

The main objective in discriminant analysis is to derive rules that can be
used to classify entities into groups. Computationally, the challenge lies
in the effort expended to develop such a rule. Once the rule is devel-
oped, applying it to a new entity to determine its group is trivial. Feasible
solutions obtained from our classification models correspond to predic-
tive rules. Empirical results [40,63] indicate that the resulting classification
model instances are computationally very challenging, and even intractable
by competitive commercial MIP solvers. However, the resulting predictive
rules prove to be very promising, offering correct classification rates on
new unknown data ranging from 80 to 100 percent on various types of
biological/medical problems. Our results indicate that the general-purpose
classification framework that we have designed has the potential to be a
very powerful predictive method for clinical settings.

The choice of MIP as the underlying modeling and optimization tech-
nology for our SVM classification model is guided by the desire to simul-
taneously incorporate a variety of important and desirable properties of
predictive models within a general framework. MIP itself allows for incor-
poration of continuous and discrete variables, and linear and nonlinear
constraints, providing a flexible and powerful modeling environment.

Our mathematical modeling and computational algorithm design shows
great promise as the resulting predictive rules are able to produce higher
rates of correct classification on new biological data (with unknown group
status) compared to existing classification methods. This is partly due to the
transformation of raw data via the set of constraints given in Equation 1.7.
Although most mathematical programming approaches directly determine
the hyperplanes of separation using raw data, our approach transforms
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the raw data via a probabilistic model, before the determination of the
supporting hyperplanes. Further, the separation is driven by maximizing
the sum of binary variables (representing correct classification or not of en-
tities), instead of maximizing the margins between groups, or minimizing
a sum of errors (representing distances of entities from hyperplanes), as in
other SVMs. The combination of these two strategies offers better classifi-
cation capability. Noise in the transformed data is not as profound as in
raw data. And the magnitudes of the errors do not skew the determination
of the separating hyperplanes, as all entities have equal importance when
correct classification is being counted.

To highlight the broad applicability of our approach, below, we briefly
summarize the application of our predictive models and solution algorithms
to ten different biological problems. Each of the projects was carried out in
close partnership with experimental biologists or clinicians. Applications to
finance and other industry applications are described elsewhere [18,40,63].

1.3.2.1 Determining the Type of Erythemato-Squamous Disease

The differential diagnosis of erythemato-squamous diseases is an impor-
tant problem in dermatology [60]. They all share the clinical features of
erythema and scaling, with very little differences. The six groups are pso-
riasis, seboreic dermatitis, lichen planus, pityriasis rosea, cronic dermatitis,
and pityriasis rubra pilaris. Usually, a biopsy is necessary for the diagnosis
but unfortunately these diseases share many histopathological features as
well. Another difficulty for the differential diagnosis is that a disease may
show the features of another disease at the beginning stage and may have
the characteristic features at the following stages [91].

The six groups consist of 366 subjects (112,61,72,49,52,20, respectively)
with 34 clinical attributes. Patients were first evaluated clinically with 12
features. Later, skin samples were taken for the evaluation of 22 histopatho-
logical features. The values of the histopathological features are determined
by an analysis of the samples under a microscope. The 34 attributes include
(1) clinical attributes: erythema, scaling, definite borders, itching, koebner
phenomenon, polygonal papules, follicular papules, oral mucosal involve-
ment, knee and elbow involvement, scalp involvement, family history, and
age; and (2) histopathological attributes: melanin incontinence, eosinophils
in the infiltrate, PNL infiltrate, fibrosis of the papillary dermis, exocytosis,
acanthosis, hyperkeratosis, parakeratosis, clubbing of the rete ridges, elong-
ation of the rete ridges, thinning of the suprapapillary epidermis, spongi-
form pustule, munro microabscess, focal hypergranulosis, disappearance
of the granular layer, vacuolization and damage of basal layer, spongiosis,
sawtooth appearance of retes, follicular horn plug, perifollicular paraker-
atosis, inflammatory infiltrate, monoluclear and band-like infiltrate.
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Our multigroup classification model selected 27 discriminatory attri-
butes, and successfully classified the patients into six groups, each with an
unbiased correct classification of greater than 93 percent (with 100 percent
correct rate for groups 1,3,5,6) with an average overall accuracy of 98 per-
cent. Using 250 subjects to develop the rule, and testing the remaining 116
patients, we obtain a prediction accuracy of 91 percent.

1.3.2.2 Predicting Presence/Absence of Heart Disease

The four databases concerning heart disease diagnosis were collected by
Dr. Janosi of Hungarian Institute of Cardiology, Budapest; Dr. Steinbrunn
of University Hospital, Zurich; Dr. Pfisterer of University Hospital, Basel,
Switzerland; and Dr. Detrano of V.A. Medical Center, Long Beach and Cleve-
land Clinic Foundation [60]. Each database contains the same 76 attributes.
The goal field refers to the presence of heart disease in the patient. The
classification attempts to distinguish presence (values 1,2,3,4, involving a
total of 509 subjects) from absence (value 0, involving 411 subjects) [91].
The attributes include demographics, physio-cardiovascular conditions, tra-
ditional risk factors, family history, personal lifestyle, and cardiovascular
exercise measurements. This dataset has posed some challenges to past
analysis via various classification approaches, resulting in less than 80 per-
cent correct classification. Applying our classification models without res-
erved judgment, we obtain 79 and 85 precent correct classification for
each group, respectively. To gauze the usefulness of multistage analy-
sis, we apply two-stage classification. In the first stage, 14 attributes were
selected as discriminatory. 135 Group absence subjects were placed into
the reserved-judgment region, with 85 percent of the remaining were clas-
sified as Group absence correctly; while 286 Group presence subjects were
placed into the reserved-judgment region, and 91 percent of the remain-
ing classified correctly into the Group presence. In the second stage, 11
attributes were selected with 100 and 229 classified into Group absence and
presence, respectively. Combining the two stages, we obtained a correct
classification of 82 and 85 percent, respectively, for diagnosis of absence or
presence of heart disease. Figure 1.1 illustrates the two-stage classification.

1.3.2.3 Predicting Aberrant CpG Island Methylation
in Human Cancer

More details of this subsection are found in Refs. [28,29]. Epigenetic
silencing associated with aberrant methylation of promoter region CpG
islands is one mechanism leading to loss of tumor suppressor function
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Clinical attributes

Discriminant
Analysis classifier

Absence
235 (85%)

Absence
100 (74%)

Presence
203 (91%)

Presence
229 (80%)

Discriminant
Analysis classifier

Clinical attributes

920 Subjects
411 Absence
509 Presence

Reserved
judgment

135 Absence
286 Presence

Figure 1.1 A tree diagram for two-stage classification and prediction of heart
disease.

in human cancer. Profiling of CpG island methylation indicates that some
genes are more frequently methylated than others, and that each tumor
type is associated with a unique set of methylated genes. However, little is
known about why certain genes succumb to this aberrant event. To address
this question, we used Restriction Landmark Genome Scanning (RLGS) to
analyze the susceptibility of 1749 unselected CpG islands to de novo
methylation driven by overexpression of DNMT1. We found that although
the overall incidence of CpG island methylation was increased in cells
overexpressing DNMT1, not all loci were equally affected. The majority
of CpG islands (69.9 percent) were resistant to de novo methylation,
regardless of DNMT1 overexpression. In contrast, we identified a subset of
methylation-prone CpG islands (3.8 percent) that were consistently hyper-
methylated in multiple DNMT1 overexpressing clones. Methylation-prone
and methylation-resistant CpG islands were not significantly different with
respect to size, C+G content, CpG frequency, chromosomal location, or
gene- or promoter-association. To discriminate methylation-prone from
methylation-resistant CpG islands, we developed a novel DNA pattern
recognition model and algorithm [61], and coupled our predictive model
described herein with the patterns found. We were able to derive a classi-
fication function based on the frequency of seven novel sequence patterns
that was capable of discriminating methylation-prone from methylation-
resistant CpG islands with 90 percent correctness upon cross-validation,
and 85 percent accuracy when tested against blind CpG islands unknown
to us on the methylation status. The data indicates that CpG islands differ
in their intrinsic susceptibility to de novo methylation, and suggests that
the propensity for a CpG island to become aberrantly methylated can be
predicted based on its sequence context.
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The significance of this research is twofold. First, the identification
of sequence patterns/attributes that distinguish methylation-prone CpG
islands will lead to a better understanding of the basic mechanisms under-
lying aberrant CpG island methylation. Because genes that are silenced by
methylation are otherwise structurally sound, the potential for reactivating
these genes by blocking or reversing the methylation process represents
an exciting new molecular target for chemotherapeutic intervention. A bet-
ter understanding of the factors that contribute to aberrant methylation,
including the identification of sequence elements that may act to target
aberrant methylation, will be an important step in achieving this long-
term goal. Also, the classification of the more than 29,000 known (but
as yet unclassified) CpG islands in human chromosomes will provide an
important resource for the identification of novel gene targets for further
study as potential molecular markers that could impact on both cancer
prevention and treatment. Extensive RLGS fingerprint information (and
thus potential training sets of methylated CpG islands) already exists for
a number of human tumor types, including breast, brain, lung, leukemias,
hepatocellular carcinomas, and PNET [23,24,35,102]. Thus, the methods
and tools developed are directly applicable to CpG island methylation data
derived from human tumors. Moreover, new microarray-based techniques
capable of profiling more than 7000 CpG islands have been developed
and applied to human breast cancers [15,117,118]. We are uniquely poised
to take advantage of the tumor CpG island methylation profile information
that will likely be generated using these techniques over the next several
years. Thus, our general-predictive modeling framework has the potential
to lead to improved diagnosis and prognosis and treatment planning for
cancer patients.

1.3.2.4 Discriminant Analysis of Cell Motility and Morphology
Data in Human Lung Carcinoma

For more details on this subsection refer to Ref. [16]. This study focuses
on the differential effects of extracellular matrix proteins on the motility
and morphology of human lung epidermoid carcinoma cells. The behavior
of carcinoma cells is contrasted with that of normal L-132 cells, resulting
in a method for the prediction of metastatic potential. Data collected from
time-lapsed videomicroscopy was used to simultaneously produce quan-
titative measures of motility and morphology. The data was subsequently
analyzed using our discriminant analysis model and algorithm to discover
relationships between motility, morphology, and substratum. Our discrim-
inant analysis tools enabled the consideration of many more cell attributes
than is customary in cell motility studies. The observations correlate with
behaviors seen in vivo and suggest specific roles for the extracellular matrix
proteins and their integrin receptors in metastasis. Cell translocation in vitro
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has been associated with malignancy, as has an elongated phenotype [120]
and a rounded phenotype [97]. Our study suggests that extracellular matrix
proteins contribute in different ways to the malignancy of cancer cells, and
that multiple malignant phenotypes exist.

1.3.2.5 Ultrasonic-Assisted Cell Disruption for Drug Delivery

Reference [57] discusses this subsection in detail. Although biological effects
of ultrasound must be avoided for safe diagnostic applications, ultrasound’s
ability to disrupt cell membranes has attracted interest as a method to facil-
itate drug and gene delivery. This preliminary study seeks to develop rules
for predicting the degree of cell membrane disruption based on specified
ultrasound parameters and measured acoustic signals. Too much ultrasound
destroys cells, whereas cell membranes will not open up for absorption of
macromolecules when too little ultrasound is applied. The key is to increase
cell permeability to allow absorption of macromolecules, and to apply ultra-
sound transiently to disrupt viable cells so as to enable exogenous material
to enter without cell damage. Thus our task is to uncover a predictive rule of
ultrasound-mediated disruption of red blood cells using acoustic spectrums
and measurements of cell permeability recorded in experiments.

Ourpredictivemodelandsolver forgeneratingpredictionrulesareapplied
to data obtained from a sequence of experiments on bovine red blood cells.
For each experiment, the attributes consist of four ultrasound parameters,
acoustic measurements at 400 frequencies, and a measure of cell membrane
disruption. To avoid overtraining, various feature combinations of the 404
predictor variables are selected when developing the classification rule.
The results indicate that the variable combination consisting of ultrasound
exposure time and acoustic signals measured at the driving frequency and its
higher harmonics yields the best rule, and our method compares favorably
withclassification treeandotheradhocapproaches,withcorrectclassification
rate of 80 percent upon cross-validation and 85 percent when classifying
new unknown entities. Our methods used for deriving the prediction rules
are broadly applicable, and could be used to develop prediction rules in
other scenarios involving different cell types or tissues. These rules and the
methods used to derive them could be used for real-time feedback about
ultrasound’s biological effects. For example, it could assist clinicians during
a drug delivery process, or could be imported into an implantable device
inside the body for automatic drug delivery and monitoring.

1.3.2.6 Identification of Tumor Shape and Volume
in Treatment of Sarcoma

Reference [56] discusses this subsection in detail. This project involves
the determination of tumor shape for adjuvant brachytherapy treatment
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of sarcoma, based on catheter images taken after surgery. In this applica-
tion, the entities are overlapping consecutive triplets of catheter markings,
each of which is used for determining the shape of the tumor contour. The
triplets are to be classified into one of the two groups: Group 1 = triplets
for which the middle catheter marking should be bypassed, and Group
2 = triplets for which the middle marking should not be bypassed. To
develop and validate a classification rule, we used clinical data collected
from 15 soft tissue sarcoma (STS) patients. Cumulatively, this comprised 620
triplets of catheter markings. By careful (and tedious) clinical analysis of
the geometry of these triplets, 65 were determined to belong to Group 1,
the bypass group, and 555 were determined to belong to Group 2, the
do-not-bypass group.

A set of measurements associated with each triplet is then determined.
The choice of what attributes to measure to best distinguish triplets as
belonging to Group 1 or Group 2 is nontrivial. The attributes involved dis-
tance between each pair of markings, angles, and curvature formed by the
three triplet markings. On the basis of the selected attributes, our predictive
model was used to develop a classification rule. The resulting rule provides
98 percent correct classification on cross-validation, and was capable of cor-
rectly determining/predicting 95 percent of the shape of the tumor on new
patients’ data. We remark that the current clinical procedure requires man-
ual outline based on markers in films of the tumor volume. This study was
the first to use automatic construction of tumor shape for sarcoma adjuvant
brachytherapy [56,62].

1.3.2.7 Discriminant Analysis of Biomarkers
for Prediction of Early Atherosclerosis

More details on this subsection are found in Ref. [65]. Oxidative stress is an
important etiologic factor in the pathogenesis of vascular disease. Oxida-
tive stress results from an imbalance between injurious oxidant and pro-
tective antioxidant events in which the former predominate [88,103]. This
results in the modification of proteins and DNA, alteration in gene expres-
sion, promotion of inflammation, and deterioration in endothelial function
in the vessel wall, all processes that ultimately trigger or exacerbate the
atherosclerotic process [22,111]. It was hypothesized that novel biomarkers
of oxidative stress would predict early atherosclerosis in a relatively healthy
nonsmoking population who are free from cardiovascular disease. One
hundred and twenty-seven healthy nonsmokers, without known clinical
atherosclerosis had carotid intima media thickness (IMT) measured using
ultrasound. Plasma oxidative stress was estimated by measuring plasma
lipid hydroperoxides using the determination of reactive oxygen metabo-
lites (d-ROMs) test. Clinical measurements include traditional risk factors
including age, sex, low density lipoprotein (LDL), high density lipoprotein
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(HDL), triglycerides, cholesterol, body mass index (BMI), hypertension,
diabetes mellitus, smoking history, family history of CAD, Framingham risk
score, and Hs-CRP.

For this prediction, the patients are first clustered into two groups:
(Group 1: IMT >= 0.68, Group 2: IMT < 0.68). On the basis of this sepa-
rator, 30 patients belong to Group 1 and 97 belong to Group 2. Through
each iteration, the classification method trains and learns from the input
training set and returns the most discriminatory patterns among the 14 clin-
ical measurements; ultimately resulting in the development of a prediction
rule based on observed values of these discriminatory patterns among the
patient data. Using all 127 patients as a training set, the predictive model
identified age, sex, BMI, HDLc, Fhx CAD < 60, Hs-CRP, and d-ROM as dis-
criminatory attributes that together provide unbiased correct classification
of 90 percent and 93 percent for Group 1 (IMT >= 0.68) and Group 2
patients (IMT < 0.68), respectively. To further test the power of the clas-
sification method for correctly predicting the IMT status on new/unseen
patients, we randomly selected a smaller patient training set of size 90.
The predictive rule from this training set yields 80 percent and 89 percent
correct rates for predicting the remaining 37 patients into Group 1 and
Group 2, respectively. The importance of d-ROM as a discriminatory pre-
dictor for IMT status was confirmed during the machine learning process;
this biomarker was selected in every iteration as the machine learned and
trained to develop a predictive rule to correctly classify patients in the train-
ing set. We also performed predictive analysis using Framingham Risk Score
and d-ROM; in this case the unbiased correct classification rates (for the 127
individuals) for Groups 1 and 2 are 77 percent and 84 percent, respectively.
This is the first study to illustrate that this measure of oxidative stress can be
effectively used along with traditional risk factors to generate a predictive
rule that can potentially serve as an inexpensive clinical diagnostic tool for
prediction of early atherosclerosis.

1.3.2.8 Fingerprinting Native and Angiogenic Microvascular
Networks through Pattern Recognition
and Discriminant Analysis of Functional Perfusion Data

Reference [64] discusses this subsection in detail. The cardiovascular system
provides oxygen and nutrients to the entire body. Pathological conditions
that impair normal microvascular perfusion can result in tissue ischemia,
with potentially serious clinical effects. Conversely, development of new
vascular structures fuels the progression of cancer, macular degeneration,
and atherosclerosis. Fluorescence-microangiography offers superb imaging
of the functional perfusion of new and existent microvasculature, but quan-
titative analysis of the complex capillary patterns is challenging. We devel-
oped an automated pattern-recognition algorithm to systematically analyze
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the microvascular networks, and then apply our classification model herein
to generate a predictive rule. The pattern-recognition algorithm identifies
the complex vascular branching patterns, and the predictive rule demon-
strates, respectively, 100 percent and 91 percent correct classification on
perturbed (diseased) and normal-tissue perfusion. We confirmed that trans-
plantation of normal bone marrow to mice in which genetic deficiency
resulted in impaired angiogenesis eliminated predicted differences and
restored normal-tissue perfusion patterns (with 100 percent correctness).
The pattern recognition and classification method offers an elegant solu-
tion for the automated fingerprinting of microvascular networks that could
contribute to better understanding of angiogenic mechanisms and be uti-
lized to diagnose and monitor microvascular deficiencies. Such information
would be valuable for early detection and monitoring of functional abnor-
malities before they produce obvious and lasting effects, which may include
improper perfusion of tissue or support of tumor development.

The algorithm can be used to discriminate between the angiogenic
response in a native healthy specimen compared to groups with impair-
ment due to age or chemical or other genetic deficiency. Similarly, it can
be applied to analyze angiogenic responses as a result of various treat-
ments. This will serve two important goals. First, the identification of dis-
criminatory patterns/attributes that distinguish angiogenesis status will lead
to a better understanding of the basic mechanisms underlying this process.
Because therapeutic control of angiogenesis could influence physiologi-
cal and pathological processes such as wound and tissue repairing, cancer
progression and metastasis, or macular degeneration, the ability to under-
stand it under different conditions will offer new insight in developing novel
therapeutic interventions, monitoring and treatment, especially in aging and
heart disease. Thus, our study and the results form the foundation of a valu-
able diagnostic tool for changes in the functionality of the microvasculature
and for discovery of drugs that alter the angiogenic response. The methods
can be applied to tumor diagnosis, monitoring, and prognosis. In particu-
lar, it will be possible to derive microangiographic fingerprints to acquire
specific microvascular patterns associated with early stages of tumor devel-
opment. Such angioprinting could become an extremely helpful early diag-
nostic modality, especially for easily accessible tumors such as skin cancer.

1.3.2.9 Prediction of Protein Localization Sites

The protein localization database consists of eight groups with a total of 336
instances (143, 77, 52, 35, 20, 5, 2, 2, respectively) with seven attributes [91].
The eight groups are eight localization sites of protein, including cp
(cytoplasm), im (innermembranewithout signal sequence), pp (perisplasm),
imU (inner membrane, uncleavable signal sequence), om (outer membrane),
omL (outer membrane lipoprotein), imL (inner membrane lipoprotein), and
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imS (inner membrane, cleavable signal sequence). However, the last four
groups are taken out from our classification experiment as the population
sizes are too small to ensure significance.

The seven attributes include mcg (McGeoch’s method for signal
sequence recognition), gvh (von Heijne’s method for signal sequence
recognition), lip (von Heijne’s Signal Peptidase II consensus sequence
score), chg (presence of charge on N-terminus of predicted lipoproteins),
aac (score of discriminant analysis of the amino acid content of outer
membrane and periplasmic proteins), alm1 (score of the ALOM membrane
spanning region prediction program), and alm2 (score of ALOM program
after excluding putative cleavable signal regions from the sequence).

In the classification we use four groups, 307 instances, with seven
attributes. Our classification model selected the discriminatory patterns
mcg, gvh, alm1, and alm2 to form the predictive rule with unbiased correct
classification rates of 89 precent, compared to the results of 81 percent by
other classification models [48].

1.3.2.10 Pattern Recognition in Satellite Images
for Determining Types of Soil

The satellite database consists of the multispectral values of pixels in 3× 3
neighborhoods in a satellite image, and the classification associated with the
central pixel in each neighborhood. The aim is to predict this classification,
given the multispectral values. In the sample database, the class of a pixel is
coded as a number. There are six groups with 4435 samples in the training
dataset and 2000 samples in testing dataset; and each sample entity has 36
attributes describing the spectral bands of the image [91].

The original Landsat Multi-Spectral Scanner (MSS) image data for this
database was generated from data purchased from NASA by the Australian
Centre for Remote Sensing. The Landsat satellite data is one of the many
sources of information available for a scene. The interpretation of a scene
by integrating spatial data of diverse types and resolutions including mul-
tispectral and radar data, maps indicating topography, land use, etc., is
expected to assume significant importance with the onset of an era charac-
terized by integrative approaches to remote sensing (for example, NASA’s
Earth Observing System commencing this decade).

One frame of Landsat MSS imagery consists of four digital images of the
same scene in different spectral bands. Two of these are in the visible region
(corresponding approximately to green and red regions of the visible spec-
trum) and two are in the (near) infrared. Each pixel is an 8-bit binary word,
with 0 corresponding to black and 255 to white. The spatial resolution of
a pixel is about 80m× 80m. Each image contains 2340× 3380 such pixels.

The database is a (tiny) subarea of a scene, consisting of 82× 100 pix-
els. Each line of data corresponds to a 3×3 square neighborhood of pixels
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completely contained within the 82 × 100 subarea. Each line contains the
pixel values in the four spectral bands (converted to ASCII) of each of the 9
pixels in the 3×3 neighborhood and a number indicating the classification
label of the central pixel. The number is a code for the following six groups:
red soil, cotton crop, gray soil, damp gray soil, soil with vegetation stubble,
and very damp gray soil. Running our classification model, 17 discrimina-
tory attributes were selected to form the classification rule, producing an
unbiased prediction with 85 percent accuracy.

1.3.3 Further Advances
Brooks and Lee (2007) [18,19] devised other variations of the basic DAMIP
Model. They also showed that DAMIP is strongly universally consistent (in
some sense) with very good rates of convergence from Vapnik and Chervo-
nenkis theory. A polynomial-time algorithm for discriminating between two
populations with the DAMIP Model was developed, and DAMIP was shown
to be NP-complete for a general number of groups. The proof demonstrat-
ing NP-completeness employs results used in generating edges of the con-
flict graph [4,11,12,55]. Exploiting the necessary and sufficient conditions
that identify edges in the conflict graph is the central contribution to the
improvement in solution performance over industry-standard software. The
conflict graph is the basis for various valid inequalities, a branching scheme,
and for conditions under which integer variables are fixed for all solutions.
Additional solution methods are identified, which include a heuristic for
finding solutions at nodes in the branch-and-bound tree, upper bounds for
model parameters, and necessary conditions for edges in the conflict hyper-
graph [26,58]. Further, we have concluded that DAMIP is a computationally
feasible, consistent, stable, robust, and accurate classifier.

1.4 Progress and Challenges
We summarize below (Table 1.2) the mathematical programming tech-
niques used in classification problems as reviewed in this chapter.

As noted by current research effort, multigroup classification remains
NP-complete and much work is needed to design effective models as well
as to derive novel and efficient computational algorithms to solve these
multigroup instances.

1.5 Other Methods
Although most classification methods can be described in terms of dis-
criminant functions, some methods are not trained in the paradigm of
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Table 1.2 Progress in Mathematical Programming-Based Classification Models

Mathematical Programming Methods References

Linear Programming

Two-group classification
Separate data by hyperplanes [74,75]
Minimizing the sum of deviations (MSD),

minimizing the maximum deviation (MMD),
and minimizing the sum of interior
distances (MSID)

[5,31,32,33,47,99]

Hybrid Model [45,99]
Review [27,50,107]
Software [110]
Issues about normalization [34,44,51–53,87,100,114–116]
Robust linear programming (RLP) [9,86]
Inclusion of second-order terms [104,113]
Effect of the position of outliers [94]
Binary attributes [3]

Multigroup classification
Single function classification [32]
Multiple function classification [10,46]
Classification with reserved-judgment region

using LP
[39,40,60,63]

Mixed Integer Programming

Two-group classification
Minimizing the number of misclassifications [1,5,6,7,54,101,105,109,119]
Review [27,50,107]
Software [110]
Secondary goals [96]
Binary attributes [3]
Normalization and attribute selection [42]
Dichotomous categorical variable formation [43]

Multigroup classification
Three-group classification [71,72,95]
Multigroup classification [39,40,41,59,60,93]
Multigroup classification with reserved-judgment

region
[18,39,40,59,60]

Nonlinear Programming

Two-group classification
Lp-norm criterion [108]
Review [27,50,107]
Piecewise-linear nonconvex discriminant function [85]
Minimizing the number of misclassifications [21,76,77]
Minimizing the sum of arbitrary-norm distances [78]

Support Vector Machine

Introduction and tutorial [20,112]
Generalized SVM [79,83]
Methods for huge-size problems [13,36–38,67,68,80,81,

82,84]
Multigroup SVM [18,38–40,49,59,60,63,66]
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determining coefficients or parameters for functions of a predefined form.
These methods include classification and regression trees (CART), nearest-
neighbor methods, and neural networks.

Classification and regression trees [14] are nonparametric approaches
to prediction. Classification trees seek to develop classification rules based
on successive binary partitions of observations based on attribute values.
Regression trees also employ rules consisting of binary partitions, but are
used to predict continuous responses.

The rules generated by classification trees are easily viewable by plotting
them in a tree-like structure from which the name arises. A test entity may
be classified using rules in a tree plot by first comparing the entity’s data
with the root node of the tree. If the root node condition is satisfied by
the data for a particular entity, the left branch is followed to another node;
otherwise, the right branch is followed to another node. The data from
the observation is compared to conditions at subsequent nodes until a leaf
node is reached.

Nearest-neighbor methods begin by establishing a set of labeled pro-
totype observations. The nearest-neighbor classification rule assigns test
entities to groups according to the group membership of the nearest proto-
type. Different measures of distance may be used. The k-nearest-neighbor
rule assigns entities to groups according to the group membership of the
k-nearest prototypes.

Neural networks are classification models that can also be interpreted
in terms of discriminant functions, though they are used in a way that
does not require finding an analytic form for the functions [25]. Neural
networks are trained by considering one observation at a time, modifying
the classification procedure slightly with each iteration.

1.6 Summary and Conclusion
In this chapter, we presented an overview of mathematical programming-
based classification models and analyzed their development and advances
in recent years. Many mathematical programming methods are geared
toward two-group analysis only, and performance is often compared to
Fisher’s linear discriminant or Smith’s quadratic discriminant. It has been
noted that these methods can be used for multiple group analysis by find-
ing G(G − 1)/2 discriminants for each pair of groups (one-against-one)
or by finding G discriminants for each group versus the remaining data
(one-against-all), but these approaches can lead to ambiguous classification
rules [25].

Mathematical programming methods developed for multiple group anal-
ysis are described [10,32,39,40,41,46,63,93]. Multiple group formulations for
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SVMs have been proposed and tested [18,36,40,49,59,60,66], but are still
considered computationally intensive [49]. The one-against-one and one-
against-all methods with SVMs have been successfully applied [49,90].

We also discussed a class of multigroup general-purpose predictive
models that we have developed based on the technology of large-scale
optimization and SVMs [18,17,39,40,59,60,63]. Our models seek to maximize
the correct classification rate while constraining the number of misclassifica-
tions in each group. The models incorporate the following features: (1) the
ability to classify any number of distinct groups; (2) allow incorporation
of heterogeneous types of attributes as input; (3) a high-dimensional data
transformation that eliminates noise and errors in biological data; (4) con-
straining the misclassification in each group and a reserved-judgment region
that provides a safeguard against overtraining (which tends to lead to high
misclassification rates from the resulting predictive rule); and (5) succes-
sive multistage classification capability to handle data points placed in the
reserved-judgment region. The performance and predictive power of the
classification models is validated through a broad class of biological and
medical applications.

Classification models are critical to medical advances as they can be
used in genomic, cell, molecular, and system level analyses to assist in early
prediction, diagnosis, and detection of disease, as well as for intervention
and monitoring. As shown in the CpG island study for human cancer, such
prediction and diagnosis opens up novel therapeutic sites for early interven-
tion. The ultrasound application illustrates its application to a novel drug
delivery mechanism, assisting clinicians during a drug delivery process, or
in devising implantable devices into the body for automated drug delivery
and monitoring. The lung cancer cell motility offers an understanding of
how cancer cells behave under different protein media, thus assisting in
the identification of potential gene therapy and target treatment. Predic-
tion of the shape of a cancer tumor bed provides a personalized treatment
design, replacing manual estimates by sophisticated computer predictive
models. Prediction of early atherosclerosis through inexpensive biomarker
measurements and traditional risk factors can serve as a potential clini-
cal diagnostic tool for routine physical and health maintenance, alerting
doctors and patients to the need for early intervention to prevent serious
vascular disease. Fingerprinting of microvascular networks opens up the
possibility for early diagnosis of perturbed systems in the body that may
trigger disease (e.g., genetic deficiency, diabetes, aging, obesity, macu-
lar degeneracy, and tumor formation), identify target sites for treatment,
and monitoring prognosis and success of treatment. Determining the type
of erythemato-squamous disease and the presence/absence of heart dis-
ease helps clinicians to correctly diagnose and effectively treat patients.
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Thus, classification models serve as a basis for predictive medicine where
the desire is to diagnose early and provide personalized target interven-
tion. This has the potential to reduce healthcare costs, improve success of
treatment, and improve quality-of-life of patients.
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2.1 Introduction
Recent decades have seen tremendous advances in our ability to diagnose
complex diseases, intervene in various diseases at stages and to degrees
previously impossible, and sustain life in the face of crippling pathology.
In many cases, our ability to detect abnormalities has advanced beyond
our understanding of the significance of what we find. Although longevity
and quality of life have increased, significant resources are often expended
to enhance human life. As a consequence, decision making regarding
diagnostic tools and interventions has become increasingly complicated.
Within the art of medicine, there is an ever growing need for formalized
normative decision making.

2.2 Formalized Decision Making and Quality Metrics
We begin with the premise that formalized decision making with norma-
tive recommendations is preferred to ad hoc decision making in the face
of limited resources. Formalized decision making has several advantages.
It provides a reproducible process, which is amenable to critical review. It
provides a transparent view into the assumptions and contributing variables
for a decision. The clear description of assumptions creates a framework,
whereby advances in the state of information can be incorporated into
the decision-making process to assess the impact on the policy recom-
mendation. Formalized decision making can identify the consequences
of alternative decisions, thus helping decision makers make an informed,
high-quality decision.

All normative decision making requires a value metric. In medical deci-
sion problems, maximizing health state is a crucial metric. We assume that
we can attach a measure to the quality of an individual’s health state. In the
same way that people are assumed to have preference probabilities over
different outcomes in classical normative decision making, we assume that
defined health states exist and that patients can quantify preferences for
these health states relative to a state of perfect health. When we normalize
this health state’s presence for one year, we refer to it as a quality-adjusted
life year (QALY). A QALY therefore represents the relative value of living



Lim/Optimization in Medicine and Biology AU0563_C002 Final Proof Page 63 9.11.2007 04:26pm

Using Influence Diagrams in Cost-Effectiveness Analysis for Medical Decisions 63

for one year in the current state of health. The QALY value of living for
one year in a perfect state of health is 1.0 and 0 for death. This paradigm
has gained wide acceptance.1

The formalized valuation of different health states is an ongoing
process.2,3 Valuation of the quality of health states can be flawed due
to an individual’s cognitive biases,4 and by failures to use established
methodological guidelines.4,5 However, independent quality estimates of
health states by patients in different studies tend to correlate well with
each other. Furthermore, the normative results of many cost-effectiveness
studies tend to be insensitive to minor changes in quality estimates.6

Health outcomes cannot be the sole metric of concern in medical
decision-making problems. With health care expenditures exceeding 15
percent of GDP in the United States and growing at an annual rate of
roughly 7–8 percent, optimizing health resource allocation is imperative.7–9

For a patient with a diagnosed disease, costs can be driven down by
limiting resource utilization to treatments tailored to the disease process.
Such tailored therapy can maximize efficacy while avoiding unnecessary
costs. However, most patients do not present with a clearly defined disease
process. Most patients present with a set of symptoms, which can be att-
ributed to a large number of diseases. Consequently, additional costs are
incurred in diagnosis and evaluation of patients.

During the initial medical evaluation of a patient complaint, various
uncertainties interact to create a complex probabilistic framework. Consider
the evaluation of a patient presenting with chest pain. Chest pain can be
caused by physical disease of any number of organ systems stretching from
the throat down to the mid-abdomen, or it can be associated with a number
of psychiatric conditions.10,11 The clinician must differentiate between a
dizzying assortment of possibilities with disparate outcomes in a logical
and an efficient fashion. Although clinicians can develop tremendous clarity
and informed expert judgment, the quality of this judgment can be highly
variable. Ad hoc decision making in such complex environments can be
unduly dominated by anecdotal evidence, hunches, and other cognitive
biases. Thus, complex medical diagnostic problems are best modeled in a
formalized fashion, where the assumptions and data can be critiqued and
modified as new knowledge is discovered.

2.3 Influence Diagrams in Clinical Cost-Effectiveness
Analysis

Because clinical uncertainty plays so heavily into unnecessary or costly
testing, cost-effectiveness analyses of clinical problems must include the
uncertainty seen by the clinician. Bayesian networks provide an intuitive
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and natural means of representing the various uncertainties and the
relationships between them in a clinical decision problem.

Bayesian networks are directed acyclic graphs that represent probabilis-
tic relationships between uncertainties. Influence diagrams (IDs) represent
such probabilistic networks with the addition of utility measures for dif-
ferent outcomes represented in the decision problem. Broadly speaking,
every node can have a set of ancestor nodes, descendant nodes, parent
nodes, and nodes which are children.

The nodes in an ID can be uncertainties, functional nodes, decision
nodes, or utility nodes. The uncertainty nodes can be observed or unob-
served. Observed uncertainties represent random variables, whose state
has been revealed. A functional node has a fixed functional relationship to
its parents.

In an ID, the utility node can be used to represent any utility value for
the set of outcomes considered. In a medical decision-making problem,
utilities are usually costs in present value dollars and health outcomes
(usually QALYs) discounted to the present. Costs are usually computed as
incremental costs; they represent the additional cost incurred by a particular
policy beyond the costs inherent to all policies.12 For example, an electro-
cardiogram (ECG) may be considered the test that all patients receive and,
therefore, the base policy. All other policies are assessed for the associated
incremental change in the utility measure(s) relative to the base policy.

We keep costs and valuation of health outcomes separate. Some
authors convert between QALYs and costs using a set cost per QALY
value.12,13 Although this might be appropriate for some analyses, it is not a
recommended part of medical cost-effectiveness analysis.12 There are two
main reasons for this. First, there is no universally agreed upon conversion
constant. Second, when utility measures are subsumed into costs, insights
regarding the relative merits of alternative policies may be lost. This can
happen in several ways. Suppose that a policy is defined as the set of
choices representing a choice at every decision in the diagram for certain
background state of information. When a policy �∗ is the lowest cost
policy with the best outcomes among all policies considered, we have
found a dominant policy. More frequently, however, we find that alterna-
tive policies occur on an efficient frontier over the dimensions of cost and
health outcomes (Figure 2.1). Policies on this efficient frontier can have a
lower cost than other policies with the same health outcome or they result
in a better health outcome than other policies with the same cost.

When comparing policies on the efficient frontier, we can analyze
the trade-offs between policies. Consider two policies located along the
efficient frontier: �i and �j . Suppose that �i costs less than �j whereas �j

results in higher QALYs. When the cost and QALY measures are separated,
we can determine an incremental cost-effectiveness ratio (ICER) associated
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Figure 2.1 Efficient frontier of policies in (cost, QALY) space.

with switching from �i to �j . This is the cost per QALY gained to move
from policy �i to �j :

ICER is given by the following expression:

ICER =
(
Cost of policy j − Cost of policy i

)

(
QALYs achieved by policy j −QALYs achieved by policy i

)

=
[
Cost

(
�j

)− Cost (�i)
]

[
QALY

(
�j

)−QALY (�i)
]

The ICER allows one to represent the economic trade-off (cost per
incremental health outcome achieved) between any two policies under
comparison.

Whether one uses a cost/QALY conversion factor or not, when one
policy dominates all others (the case of �∗ above and shown in Figure 2.2),
a dominant policy will always be the best policy. However, even in this case,
when one converts the QALYs to costs, one can lose the powerful insight
that no matter what the cost/QALY conversion factor is, �∗ will remain the
best policy.

2.4 Model Scope and the Structure of Influence
Diagrams: Implications for Clinical Decision
Problems

2.4.1 Introduction
Frequently, model complexity contributes to difficulties in the accep-
tance and adoption of recommendations from cost-effectiveness analyses.
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Figure 2.2 Extended dominance of other policies by �∗.

The analyst must strike a balance between model realism (enough detail
to credibly address the clinical question posed) and model tractability. IDs
can be structured to mitigate problems with computational complexity.
However, structural modifications to an ID can affect the applicability of
the model to the decision problem under consideration. In this section
we discuss how the inherent conflict between model complexity and clin-
ical applicability can be mitigated. We discuss a structural condition that
uses the ID to identify at the outset the variables (and the relationships
between them) that must be included to model the clinical question under
consideration.

The standard nomenclature and icons for nodes in IDs are shown in
Figure 2.3. In contrast to an unobserved uncertainty, an observed uncer-
tainty is a random variable whose value has been set to a particular value
in its distribution. At deterministic node represents a functional relation-
ship where the functional arguments are from various nodes in the graph.
A decision node represents a choice between alternatives chosen by the
decision maker. A utility node defines the value measures for a particular
policy in the model.

Figure 2.3 Legend for influence diagram (ID) icons.
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2.4.2 Structural Characteristics of Clinical IDs
One of the most difficult aspects of cost-effectiveness analysis is deciding
which variables to include in a decision problem and which to exclude.
In clinical decision problems, large numbers of uncertainties are the norm
rather than the exception. Disease processes with vastly different outcomes
present with similar clinical symptoms. For example, in patients presenting
with chest pain, a complaint of generalized weakness can be because of
any number of etiologies including, among others, progressive frailty in
the elderly, infectious causes, and strokes.14,15 Therefore, in a graphical
representation of this notion, for a given set of symptoms S , there are many
edges from different disease processes {D1, . . . , Dn} to S (Figure 2.4).

Moreover, a particular disease can cause a wide variety of symptoms.
For example, cardiac ischemia (insufficient arterial blood flow to the heart
to meet metabolic needs) can present with symptoms as wide ranging
and nondescript as weakness, shortness of breath, nausea, lightheaded-
ness, etc., in addition to chest pain. Therefore, for a given disease pro-
cess D, many different symptoms {S1, . . . , Sn} have edges from the node D
(Figure 2.5). Furthermore, the probability of having one disease affects the
probability of having another disease (e.g., see the horizontal edge between
Di and Dj in Figure 2.5).

Owing to all of these factors, IDs for clinical decision problems are
highly connected graphs.

A large set of highly connected variables introduce problems of three
types. First, as the number of variables under consideration increases, the
computational complexity of the solution to the ID increases. Second, as
model complexity increases, even efficient graphical representations of the
decision problem can be difficult to interpret and validate. In a highly con-
nected graph, the various dependencies and independencies implied by
the relationships between variables can be difficult to follow. Third, joint
distributions over a large number of variables are rarely available from the
literature and can be difficult to elicit from experts.

D1 Dn
.....

S

.....

Figure 2.4 Different diseases have edges to the same set of symptoms.
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Figure 2.5 Different sets of symptoms have edges to the same disease and diseases
are related.

In the remainder of this section, we discuss the reasons why compu-
tational complexity increases rapidly with the number of nodes and paths
in an ID. We discuss methods, which can simplify a problem, and explain
how some simplification methods can unduly compromise the accuracy
of the cost-effectiveness analysis. Finally, we present structural conditions,
derived from an earlier work on Bayesian networks and IDs16–19 that can
be used to determine when simplification by disregarding certain variables
in the ID will not compromise the accuracy of the computational results
for the decision problem under consideration.

2.4.3 Computational Complexity in Influence Diagrams
For a discussion of computational complexity in IDs, we must formalize
the notion of trails and paths in the graph. Every node can have a set
of ancestor nodes, descendant nodes, parent nodes, and nodes which
are children. As in the traditional genealogic sense, all parents are also
ancestors and all children are also descendants. In a directed acyclic graph,
we can define a path in the graph as a directed sequence of edges and
nodes traversed when navigating between any two nodes in the graph.
A path is a directed trail. We define parents and children of a node using
the concept of paths:

Parents of a node: The parents of a node X in a directed acyclic graph
are those nodes from which node X has directed paths of length one.

Children of a node: The children of a node X in a directed acyclic graph
are those nodes to which node X has directed paths of length one.

In an ID, the more connections there are between variables, the larger
the size of the resulting conditional probability tables (CPTs) and the greater
the computational requirements. In Figure 2.6, suppose that W , X , Y , and
Z are discrete random variables, and that each variable has three potential
states. In Figure 2.6, node X has two parents (W and Y ) whereas the node
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W

Z

Y

X

Figure 2.6 Example of exponential expansion of conditional probability table
(CPT) size.

Z has three parents (W , X , and Y ). The size of the CPTs of X and Z will
therefore be quite different.

The CPT of X is for P{X |W , Y } and it can be represented as a 9× 3 table,
whereas the CPT of Z is for P{Z |W , X , Y } which must be represented by a
27× 3 table. The size of the CPT for a given node increases exponentially
with the number of parents of the node. Thus, even clinical IDs with a
modest number of nodes can have significant computational complexity
because of their highly connected nature.

Decisions add another layer of complexity. When an ID includes multi-
ple decisions, a particular policy is defined by a particular combination of
choices for the decisions in the diagram along with observations pertinent
to those decision choices. Observations, in this context, are uncertainties
whose state is known before a decision is made. For example, suppose
a particular ID has a decision about ordering a lab test (with a choice to
order the test or not to order the test) and a decision about ordering a
radiographic test (with a choice between one of R different imaging strate-
gies). Assuming that no observations are made before any of the decisions,
a policy will be defined by a combination of a decision about ordering the
lab test and a decision about the imaging strategy. Therefore, this ID has
2×R possible policies (i.e., decision choices). Complexity increases expo-
nentially in both the number of choices for and the number of decisions in
the ID.

Concerns about computational tractability in clinical decision problems
often lead to specific efforts to minimize the number of uncertainties or
decisions.

2.4.4 Reducing the Computational Burden and Model Scope
We define the scope of a clinical decision model to be the range of clinical
situations that are represented by a decision problem. Scope is related to
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the context of the problem represented by an ID, but is not completely
defined by the context alone. The context of the decision problem des-
cribes the background state of information (which might not be explicitly
represented in the model). For example, the context of patients presenting
to the emergency department (ED) with chest pain differs markedly from
the context of patients presenting to a primary care physician’s office for
chest pain.

Model scope is much more than the background state of information
or a catalogue of the decisions and uncertainties in the problem. Model
scope depends not only on the uncertainties, observations, and decisions
considered in the ID but also on the relationships between the variables
in the model. Thus, modifications to the relationships between elements
of an ID can directly affect the model scope. Conversely, model scope
can be viewed as the clinical question postulated by the analyst that, in
turn, informs the structure of the ID. This bidirectional feedback between
the structure of the ID and the decision question answered by the model
is central to understanding how attempts to control complexity affect the
model scope and vice versa.

Although reduction in complexity may be required to render a problem
computationally tractable, this should ideally occur without altering the
scope. One obvious means by which to simplify a problem is to remove
irrelevant variables. For an irrelevant variable, no distribution in the graph
is affected by the probability distribution over the variable. It is rare, how-
ever, that a thoughtful construction of a decision problem would include
irrelevant nodes in an ID. More commonly, nodes in an ID and the rela-
tionship between the nodes represent important factors that affect the prob-
lem under consideration. Consequently, attempts to reduce the complexity
of a network either by node removal or altering the relationship between
nodes can result in a model scope that does not accurately reflect the prob-
lem originally under consideration. Subsequent cost-effectiveness analysis
using such a model can generate policy recommendations that are not
globally preferred in the scope of the true clinical problem at hand.

Other techniques that can be used to reduce the number of uncertainties
and decisions include construction of causal graphs and cutset conditioning
(the so-called case-based reasoning).20,21

With causal reasoning, one reasons from cause to effect so as to gen-
erate probability distributions over an effect given a cause. With a causal
construction, one is sometimes able to remove relationships between nodes
that might otherwise complicate the graph. For example, in creating an ID
to model health outcomes of patients with chest pain, we might start with a
model, which has an edge between aortic dissection (AD) and acute myo-
cardial infarction (AMI) because patients with myocardial infarction (MI)
are potentially at increased risk of AD and vice versa. Suppose we can



Lim/Optimization in Medicine and Biology AU0563_C002 Final Proof Page 71 9.11.2007 04:26pm

Using Influence Diagrams in Cost-Effectiveness Analysis for Medical Decisions 71

identify the fundamental cause for the disease process of AD and a similar
fundamental cause for MI. In such a case, we can remove the relationship
in the ID between MI and AD, thereby simplifying the CPTs of MI and AD
and reducing the computational burden. Unfortunately, available data often
does not accommodate a causal construction.

With case-based reasoning, the ID is solved for a particular value of
an uncertainty or decision node. The ID is then solved for each possible
value that the uncertainty or decision can attain. For example, in an ID
representing chest pain and its causes, one would analyze the ID only for
cases where the chest pain is due to cardiac ischemia and then individually
for each other potential cause for the chest pain in the model.

Even with such techniques, most clinical decision problems remain
complicated. Fortunately, we can leverage structural characteristics of IDs
to quickly and accurately determine the appropriate variable set for the
clinical problem under consideration and therefore determine the model
scope for the clinical problem. These structural characteristics involve an
understanding of active trails and conditional independence.

Definition of active trail: An active trail in graph G exists between two
nodes X and Y in G if knowing something about X affects the probability
distribution over Y . In effect, when there is an active trail, there exists
a probability distribution in G where X and Y are dependent: PG{X } �=
PG{X |Y }. An active trail can go through multiple nodes in the graph G
as long as each node appears only once in the description of the path.

Definition of conditional independence: Given nodes X , Y , and Z in
graph G, X is conditionally independent of Z if there is a distribution
in G, where X and Z are independent if the value of Y is known:
P{X |Y , Z} = P{X |Y }.

This definition of an active trail derives from the principle of d-separa-
tion.19 If no active trails exist between nodes X and Y in graph G, nodes
X and Y are said to be d-separated in the graph G. A more formal discus-
sion of d-separation is beyond the scope of this chapter.19 Active paths are
directed active trails.

We can manipulate the active paths for a variable as a means to simplify
a decision problem. This alters the structural relationships between nodes
in the graph, and leads to a more manageable requisite set of nodes (the
nodes about which we require knowledge to solve the decision problem).16

When done properly, such manipulation keeps the scope of the model
aligned with the clinical problem under consideration.

If we want to remove a variable from consideration, without affecting
the usefulness and credibility of the model, we need to evaluate and, if
possible, eliminate the active paths to the utility node from that variable.
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With the removal of this d-separated node, the result is a simpler model that
is still potentially appropriate for the clinical question under consideration.
If active paths from the candidate variable to the utility node remain despite
careful consideration, removal of the variable will affect the policy rec-
ommendation and, depending on the degree and nature of the impact,
adversely impact the applicability of the resulting policy recommendation.

To specify the process for evaluating active trails for a node, we first
define a model ID G ′. Once the ID is defined, we provide a formal statement
of the conditions by which a node can be potentially removed, and then
present an illustrative example.

Construction of ID G ′

Consider an ID G. We define a set uncertainties X = {X1 ∪ X2 ∪ · · · ∪ Xn}
which are not in G. The uncertainty xij is the jth uncertainty in the set of
uncertainties Xi . Define G ′ where nodes(G ′) = nodes(G)∪X and there is a
nonempty set of trails between X and G. Within G ′ is a set of utility nodes
U = {u1, . . . , un}, a set of decision nodes D = {d1, . . . , dn} and a set of
uncertainties Y = {Y1∪Y2∪· · ·∪Yn} all of which are in the ID G ′. Recall that
X ⊆ nodes(G ′). The uncertainties X and Y are random variables describing
some element in the state of the world. The decisions D are actions that
the decision maker can take. Therefore, each uk ∈ U has a utility value
defined by the set of actions and uncertainties relevant to uk : Utility value
of uk = fU (xk , dk). Consider some Xj ⊆ X where the nodes in Xj may or
may not be observed. Define the set YO ⊆ Y , where the states of all nodes
in YO are observed before any di ∈ D. Note that {X ∩ Y } = Ø.

Suppose we want to eliminate the influence of uncertainty xij on the
computational results of the ID G ′, the uncertainty xij can be removed from
consideration if conditional independence properties along all trails to any
utility node from xij render the joint probability distribution of the variables
along the trail independent of xij .

Structural conditions to exclude an uncertainty’s impact on utility in G ′

We can remove an uncertainty xij from G ′ without affecting the maxi-
mum expected utility (MEU) of the ID G if any of the following conditions
is met

� Condition A: paths from xij to any ui ∈ U all go through some
yij ∈ YO (where YO is the set of uncertainties in Y , whose state is set
and observed).

� Condition B: paths from xij to any ui ∈ U which go through some
dij ∈ Dj , also go through a xim ∈ X , which is observed before
decision dij is made (i.e., the xim is a parent node of any such dij

and xim’s value is known).
� Condition C: for any xik and yj on the trail τj between xij and any

uj ∈ U , where yj is a parent of xij and a parent of xik on the trail
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τj then all such yj are observed (i.e., yj ∈ YO); this condition must
hold for all trails τj , which run between xij and any uj ∈ U .

Formal proofs for these conditions are beyond the scope of this chapter, but
the theory that forms the basis of the conditions is attributable to several
authors and is predicated on the notion of d-separation (and, therefore,
conditional independence or context specific independence).16–18 Shachter
discussed an efficient computational algorithm (of order O[n], where n
is the number of nodes in the network) to identify the existence of any
active path between two nodes.16 Using this algorithm to identify the active
paths for a particular node, one can quickly identify the required variables
for a particular construction of the ID. One can then alter the relationship
between variables in the diagram to inactivate any active paths between the
candidate variable for exclusion and utility nodes in the ID. If the conditions
are met, we can remove the variable without affecting the relevance of the
computational result for the clinical scope of the problem at hand.

2.4.5 Illustrative Example of Active Path Analysis
and Model Scope

To illustrate an interaction between the structure of an ID and the model’s
scope, we consider a simplified version of the clinical problem of evaluating
and diagnosing patients who present with symptoms that might be caused
by an AD.

The aorta, the major artery from the heart, supplies oxygenated blood to
the entire body. An AD is a tear in the aortic tissue that is often rapidly fatal
(the actor John Ritter recently died from an AD). If the patient survives to
make it to the ED, the mortality is very high if the condition is left untreated.
Diagnosis of AD requires aortography for definitive diagnosis. Currently, the
most common method of aortography is a computed tomographic (CT) scan
of the aorta with intravenous contrast (a radio opaque dye that is injected
into the blood stream for radiographic imaging studies). CTs are expensive,
potentially time consuming in a busy clinical setting, and not without risk.
Treatment for AD is also expensive, and incurs significant morbidity and
mortality. Consequently, neither the test (CT) nor the treatment should be
ordered without careful consideration.

Further complicating the problem, the presenting symptoms for AD are
not unique to this condition. The symptoms and signs, which we denote
by S , can be caused by many different disease processes; we denote these
other diseases (OD) by OD = {OD1, . . . , ODn}. The set OD includes condi-
tions, such as muscle strains, pleurisy, pneumonia, pulmonary mass, anxi-
ety, cardiac ischemia, pulmonary embolism (PE), gastro-esophageal reflux
(heartburn), and biliary colic (gallstone-related pain), among others. In this
example, OD and S are groups of nodes, but one can consider AD to
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Figure 2.7 Influence diagram (ID) for the simplified aortic dissection (AD) net-
work.
Note: AD = aortic dissection, S = symptoms, ODi = other disease i, which can
cause the symptoms S, CT = CT aortography, order CT = decision to order the CT
aortography, and U = utility.

be a group of nodes as well without any loss of generality. The specific
question we pose is what is the value of CT for diagnosing AD in patients
who present with signs and symptoms in S? Figure 2.7 shows the ID that
represents this problem.

We assume the symptoms S can also be caused by OD. The CPT for S
will have a different row for each combination of ODi which lead to S . For
each of the different possible values of S (i.e., for each possible set of symp-
toms) we have a probability of AD. The node AD represents the presence
or absence of AD. The CPT of the node AD encodes the probability that
the patient has AD for a given set of symptoms S . Both AD and a decision
to order a CT affect the costs and health outcomes for the patient; these
influences are represented by the arrows to the utility node U from AD and
Report of CT. Notice that the decision order CT only affects whether one
obtains a Report of CT. The outcome of the CT depends on its sensitivity
and specificity in the presence or absence of an AD. The decision about
whether to order a CT does not change the performance characteristics of
the imaging study in the setting of an AD.

In Figure 2.7, the arrow from S to the decision order CT implies that
information about all of the patient’s symptoms is available to the decision
maker before making a decision to order the CT. In reality, the clinician
looks for symptoms that might indicate an AD; symptoms that do not affect
the risk of an AD are not relevant to this problem. Moreover, some symp-
toms are not observable by the clinician

Suppose that a set of clinical criteria have been developed to risk stratify
patients who may have an AD. Clinical criteria are simply a set of observed
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Figure 2.8 Aortic dissection (AD) influence diagram (ID) with observed clinical
criteria.
Note: AD = aortic dissection, OS = observed symptoms for clinical decision rule,
ODi = other disease i which can cause the symptoms S, CT = CT aortography,
order CT = decision to order the CT aortography, and U = utility.

symptoms (OS) where OS ⊆ S . We assume that symptoms in {S\OS} do
not have an appreciable impact on the risk of AD. Figure 2.8 shows an ID,
which includes this new representation. Because OS are observed, they are
represented in Figure 2.8 as a shaded observed uncertainty node. Because
these symptoms are observed before the decision to order a CT scan is
made, the diagram shows an arrow that goes from OS to the decision order
CT. Such paths from uncertainties to decision nodes are often referred to
as informational edges.22

In Figure 2.7, there is an active path from OD→ U through S and AD:
the distribution for the uncertainty AD is affected by the distribution for the
uncertainty OD such that

P {D = d} =
∑

s

∑

od

P {D = d |S = s }P {S = s |OD = od }P {OD = od}

In this notation, P{AD = ad} is the probability that the random variable
AD equals ad. In Figure 2.8, there is no active path between OD and U .
The distribution for the uncertainty AD is not affected by the distribution
for the uncertainty OD. Because the state of OS is observed:

P {OS = os |OD = od } = P {OS = os}
Therefore,

P {AD = ad} =
∑

os

∑

od

P {AD = ad|OS = os} P {OS = os|OD = od}

=
∑

os

P {AD = ad|OS = os} P {OS = os}
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Figure 2.9 Aortic dissection (AD) influence diagram (ID) with symptoms outside
of the clinical decision rule.
Note: AD = aortic dissection, OS = observed symptoms for clinical decision rule,
ODcdr = other diseases which cause the symptoms in Scdr, ODndr = other diseases
which cause the symptoms in Sndr, CT = CT aortography, order CT = decision to
order the CT aortography, and U = utility.

Assuming that no variables other than these shown are relevant to the
clinical problem, observing the clinical criteria (OS) allows the analysis to
exclude consideration of the impact of other variables in OD.

Now consider the case where the OS do not include the full range of
symptoms that affect the probability that the patient has an AD. Suppose
that symptoms associated with AD can be grouped into two sets, those that
are observable and therefore used as part of the clinical decision rule (Scdr)

and those not used as part of the decision rule (Sndr). We assume S =
{Scdr ∪ Sndr} and {Scdr ∩ Sndr} = Ø. Likewise, suppose that the other
diseases can be grouped into two sets: those that produce symptoms in
the clinical decision rule (ODcdr) and those that produce symptoms not in
the decision rule (ODndr). In this simplified example, we make a strong
assumption that ODcdr and ODndr are mutually exclusive and collective
exhaustive subsets of OD. As discussed earlier, such a strong assumption
is not generally valid in most clinical decision problems. The new decision
problem is depicted in Figure 2.9.

In Figure 2.9, with observation of Scdr, the clinical decision problem can
exclude consideration of diseases in ODcdr, but not ODndr with observation
of Scdr. If we want to exclude both ODcdr and ODndr, we would have to
observe the symptoms in Sndr as well as those in Scdr.

So far, we have not considered the possibility that other diseases can
be detected by a CT ordered for AD. Such detection can affect the utility
measures. For example, an esophageal perforation (EP), which is a hole
in the wall of the esophagus, can cause symptoms very similar to those
caused by AD. Although not as dramatic as AD, EPs can have a significant
and measurable impact on health outcomes and costs.
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Figure 2.10 Aortic dissection (AD) influence diagram (ID) with the possibility
that CT may detect an esophageal perforation (EP).
Note: AD = aortic dissection, EP = esophageal perforation, OS = observed symp-
toms for clinical decision rule, ODcdr = other diseases which cause the symptoms
in Scdr, ODndr = other diseases which cause the symptoms in Sndr, CT = CT aor-
tography, order CT = decision to order the CT aortography, and U = utility.

Suppose that EP is the only disease in OD that could be detected by a
CT ordered for AD. Figure 2.10 shows an ID that allows for the possibility
that CT may detect an EP. It is possible that some diseases in ODcdr affect
the probability that the patient has an EP; this influence is represented
by the arrow between ODcdr and PE. In this formulation of the decision
problem, OD = {ODcdr ∪ODndr ∪ EP} and {ODcdr ∩ODndr ∩ EP} = Ø. The
effect of EP on the utility is represented by an arrow from the node EP to
the utility node.

The question posed by this construction is more general that the previ-
ous question about the value of CT in diagnosing AD. Now we are asking:
What is the value of CT in patients who present with signs and symp-
toms suggestive of AD? With this reformulation, we are no longer just con-
cerned about the value of a CT for AD, but rather about the value of CT
for modeled disease processes that lead to signs and symptoms sugges-
tive of AD. We are not asking: What are the costs and health outcomes
in patients who present with signs and symptoms suggestive of AD for
whom a CT is considered? For this latter question, we would have to take
into account the effect on utility of not just EP, but of all other diseases
in OD.

In Figure 2.10, the path from EP to the utility node and to the CT result
renders the variable for EP relevant to the computation of the ID. Because
ODcdr affects the distribution for the presence of EP, when analyzing this
ID, one cannot disregard the diseases in ODcdr. This is in contrast to the
model depicted in Figure 2.9, where one can disregard the diseases in
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ODcdr. By explicitly considering EP in the utility model, we create an active
path for both EP and ODcdr to the utility node. The inclusion of EP in the
analysis makes relevant certain variables that were previously irrelevant to
the analysis. All of the CPTs involved in determining the interrelationship
between ODcdr, previously of no concern in Figure 2.9, are now required
to solve the model in Figure 2.10. Although this increase in complexity
may be regrettable, it is unavoidable if the model is meant to provide an
accurate representation of the decision problem postulated.

2.4.6 Determining Problem Scope in Medical Decision
Problems

Armed with the above conditions and the application of a path-finding al-
gorithm, a visual appraisal of the relationship between certain variables and
the utility node/nodes can quickly determine if a variable of interest can be
excluded from consideration. In the simple example of Section 2.4.5, visual
appraisal is sufficient. In more complex IDs, a formalized path-finding
algorithm is critical.16

If inclusion of a variable and inspection for the conditions in the node
removal theorem reveal an active path from the newly included variable
and at least one utility node then one has two potential options: one can
either include the variable, or render inactive all paths to the utility node
from the newly included variable. This latter process can be subtle, as
depicted in the model for Figure 2.10. There, the introduction of the EP
node created an active trail for ODcdr that had previously been excluded
from consideration upon observing Scdr.

As shown, inactivating a path can be as simple as observing the state of
some variable: in our example of Figure 2.9, observation of the symptoms
Scdr would inactivate any active trails from ODcdr to the utility node. This
amounts to setting the value of some set of nodes to a particular value.
Once these observations have been made, the model is applicable only
to instances of the decision problem where the variables of interest rep-
resented by the observed nodes take on the observed values. In effect,
redefining the decision problem’s requisite set16,17 of variables redefines
the model scope.

Altering the model scope based upon observation of certain variables
does not necessarily nullify the applicability of the resulting model. If the
variables are truly observable by the decision maker in the clinical situation,
the model retains its clinical applicability. The following necessary condi-
tion extends our previous necessary conditions for excluding an uncertainty
beyond the notion of d-separation alone.
Conditions to exclude an uncertainty’s impact on utility and model scope
in G′
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Uncertainty xij will not impact the computational result of the ID and
will not alter the applicability of the model when

� Uncertainty xij is d-separable from the utility node.
� If d-separation of xij involves observation of a descendant dij of

xij , dij is an observable state of nature by the decision maker.

In Figure 2.10, by restricting the utility analysis to a subset of the nodes—
in this case, to AD and EP rather than AD and OD—we are, in effect,
disregarding the impact of other diseases in OD that could affect health or
cost outcomes. If the effect on utility of the diseases in OD is represented,
the ODcdr disease nodes would have active paths of length one to the
utility node that does not go through the Scdr node. In such a case, even
the observation of Scdr would not render the active paths, inactive from
diseases in ODcdr to the utility node. The absence of an active path directly
to the utility node means that excluding ODcdr from the value analysis could
adversely affect the applicability of the model’s result for certain decision
questions. This is not the case for the decision question of Figure 2.9.
Disregarding ODcdr is only truly a violation of the conditions we establish,
if we are using the results to address a question other than specific question
about the utility of the CT for diagnosing AD and other diseases amenable
to diagnosis with a CT which present with signs and symptoms suggestive
of AD.

In subsequent sections, we construct a clinical model for a common
and controversial clinical decision problem. We show how failure to apply
the techniques detailed above results in a cost-effectiveness model that
provides a policy recommendation that is dramatically different from the
policy recommendation accruing from a model with a properly circum-
scribed scope.

2.5 Introduction to Venous Thromboembolic
Disease and the D-Dimer Assay

In this section, we provide a brief introduction to venous thromboembolic
(VTE) disease to lay the foundation for the clinical model.

2.5.1 Clinical Background and Epidemiology
VTE disease consists mainly of two pathological processes: PE and DVT
(deep venous thrombosis). A DVT is a blood clot that has formed in a
non-superficial vein in an extremity (e.g., leg or arm). The majority of
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DVTs form in the veins of the pelvis and lower extremity, but roughly
2–4 percent form in the upper extremity.23–26 DVTs can remain in the vein
of formation, causing local complications, such as pain, swelling, and even
compromise of arterial blood supply (ischemia). DVTs can also dislodge
and migrate.27,28 When they migrate, they almost always lodge in the lungs
as PEs. VTE occurs with a higher incidence than average as part of sev-
eral disease processes, and can also occur as a consequence of inactivity,
surgery, or trauma.29

PEs can be fatal, symptomatic and non-fatal, or asymptomatic.30–32 Stud-
ies suggest that roughly 10 percent of patients with PEs die within the first
hour of the embolic event. Some experts have hypothesized that up to 50
percent of patients with PE die within the first hour, but this contention
is not well substantiated by available evidence.33–35 The incidence of PE
increases with age: incidence is 30 per 100,000 people per year in the
<35 year old age group, increasing to 500 per 100,000 people per year
in the >70 year old age group. In the general American population, the
rate is roughly 110 per 100,000 (for a total of 330,000 PEs per year in the
United States).35–37 National statistics suggest that up to 50 percent of PEs go
undiagnosed.

VTE, and thus PE, is associated with many different risk factors.38–41 Cer-
tain chronic medical conditions, such as end-stage liver disease and con-
gestive heart failure with associated right heart failure, predispose patients
to VTE.42,43 Other patients are susceptible because of genetic variation in
various procoagulant and anticoagulant proteins in their system: a condi-
tion referred to as thrombophilia. Certain genetic variants of these proteins
upset the homeostatic mechanisms for clot formation and clot breakdown,
thereby predisposing patients to VTE.44 Cancer, for reasons that are not
entirely clear, predisposes patients to VTE as well. Certain types of cancer
are much more associated with VTE risk than others. The cancer-related
relative risk for VTE is accrued independent of age-related increases in
risk.35,45–47

2.5.2 Diagnosis and Treatment of Venous
Thromboembolism

Pulmonary embolisms (PEs) have a variable presentation and require
resource-intensive diagnostic modalities. The mortality rate of 22–35 per-
cent in known untreated cases13,32 drops to roughly 10 percent with
anticoagulation.32 Some authors question the validity of these high mortal-
ity rates in the population of patients presenting to the ED. Calder et al.
estimate the mortality and recurrence rates of untreated PE in ambulatory
patients presenting to the ED to be 5 percent.48 Although the vast majority
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of PEs arise from DVTs, these DVTs are not uniformly detected in patients
with PE.49,50 Consequently, simple compression ultrasound (CUS) testing
of the lower extremities is not considered a reliable stand-alone test for the
diagnostic exclusion of PE.51

Direct imaging studies for PE that are readily available in most urban EDs
are computed tomographic angiogram (CTA) and the ventilation/perfusion
(V/Q) scan. VQ scan results are categorized under the prospective inves-
tigation of pulmonary embolism diagnosis (PIOPED) classification system
as very low (near normal), low, intermediate, and high. Choosing the VQ
result that triggers therapy is an active clinical decision.52–54

The treatment for VTE is systemic anticoagulation. In the acute phase,
this usually involves some form of heparin (delivered either intravenously
or by injection). In the subacute and chronic phase, oral anticoagulation
is the mainstay of therapy in most cases except where coincident medical
conditions (i.e., pregnancy), allergy, or genetic variation mandate ongoing
use of heparin. The appropriate duration of therapy is controversial. Current
recommendations call for a minimum of three–six months of therapy, with
lifetime therapy for recurrent cases.55–60

2.5.3 ELISA D-Dimer Test
Several highly sensitive serum markers for the breakdown products of
blood clots exist to aid in the evaluation of patients with suspected VTE.
One of the most widely used quantitative assays is the VIDAS enzyme-
linked immunosorbent assay (ELISA) D-dimer test.12,61

Consensus panels have provided recommendations as to which clinical
scenarios are appropriate for use of such a test. Such recommendations are
predicated on opinions of an acceptable posterior probability of disease,
rather than health outcome value measures.62 From a clinical standpoint, a
probability helps establish a measure of certainty, but does not explicitly
identify the decision with the most value: such a consideration must include
a notion of costs as well as health outcomes.

Some authors have analyzed the cost-effectiveness of CTA for the
diagnosis of PE, without considering the use of D-dimer.63,64 One study
analyzed the cost-effectiveness of PE diagnostic strategies including
D-dimer,13 but did not consider the impact of different cutoffs for either
the VQ scan or the D-dimer result, nor the use of a CTP/CTV alone with
D-dimer.

On the basis of the performance of two cutoff values (350 and 500
ng/mL) for the VIDAS D-dimer assay,61,65–67 we fitted the assay’s behavior to
a gamma distribution over populations with and without VTE (Figure 2.11).
The estimated probability mass functions (PMFs) for D-dimer levels in
patients with and without VTE are plotted in Figure 2.11.
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Figure 2.11 Estimated gamma distributions for D-dimer levels in patients with
and without venous thromboembolic (VTE).

The distributions allowed us to estimate the sensitivity and specificity
of three other cutoff values for the VIDAS D-dimer assay (Table 2.1). The
gamma distribution is a probability distribution for nonnegative values. It
has two critical parameters, whose degrees of freedom can be fully spec-
ified with the associated sensitivity and specificity of two cutoff values.
Figure 2.12 plots the receiver operating characteristic (ROC) curve of the
quantitative D-dimer assay for VTE.

2.6 Cost-Effectiveness of Strategies for Diagnosing
Pulmonary Embolism: The Recommendation
Provided Depends on Model Scope

2.6.1 Overview of the Limited Model and Results
We applied a sequential decision model to evaluate the cost-effectiveness
of different testing and imaging strategies for patients in different PE risk
categories. Clinical prediction rules, developed by Wells and colleagues,68

help clinicians stratify patients into risk categories based on a scoring rule.
Wells’ scoring rule has been prospectively validated by several authors
and has been found to be at least as effective as other available clinical
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Table 2.1 Conditional Probabilities for VIDAS ELISA D-Dimer Assaya

Sensitivity for Specificity for
D-Dimer Pr{VTE + Pr{VTE − Pulmonary Pulmonary
Level |D-Dimer} |D-Dimer} Embolism (PE) Embolism (PE)

Cutoff I
(200 mcg/L)

0.00005 0.99995 0.99998 0.08312

Cutoff II
(350 mcg/L)

0.00689 0.99311 0.99820 0.25954

Cutoff III
(500 mcg/L)

0.03944 0.96056 0.98119 0.45825

Cutoff IV
(650 mcg/L)

0.11168 0.88832 0.92071 0.63065

Cutoff V
(800 mcg/L)

0.20817 0.79183 0.79997 0.76085

a These probabilities represent the percent of patients with or without venous throm-
boembolic (VTE) who will have a D-dimer value less than or equal to the listed value
(thus, it is the cumulative distribution of the conditional probability). The published sen-
sitivity for cutoff II is 99.5 percent with a specificity of 27 percent.61,65–67 The published
sensitivity for cutoff III is 98 percent with a specificity of 47 percent.61,65–67

prediction rules.68–72 By allowing for different cutoff values for the VIDAS
ELISA D-dimer assay and VQ scans, actively framing clinical assessment
into the model, and explicitly representing the causal relationship between
DVT and PE, we extend previous work to more accurately reflect the
clinical decision and associated outcome measures in a cost-effectiveness
framework.
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Figure 2.12 Receiver operator characteristic (ROC) curve of D-dimer for venous
thromboembolic (VTE) disease.



Lim/Optimization in Medicine and Biology AU0563_C002 Final Proof Page 84 9.11.2007 04:26pm

84 Optimization in Medicine and Biology

Figure 2.13 Directed acyclic graph of the influence diagram (ID).
Note: The diagram depicts the complexity of this decision-making problem. The
structure and the implied order of probability assessment are partially dictated by
the conditional probabilities available in the literature.

We assumed the following sequence of events. A patient with a sus-
pected PE is given an initial clinical evaluation (history, exam, vital signs,
12-lead ECG, and chest radiograph) and a Wells score. The decision to
order a test is made. If a D-dimer is ordered, the clinician decides on the
cutoff value to trigger an imaging test (if any). If a VQ scan is involved,
the cutoff value of the VQ scan is chosen for when anticoagulation and
hospitalization for PE is initiated. Similar to many tests, neither the D-dimer
nor the VQ scan delivers a binary indication (normal or abnormal); our
sequential model incorporates that notion. Treatment is delivered based on
the results of the imaging test.

We modeled the sequential decision process based on the ID depicted
in Figure 2.13. The ID implies an assessment order on the relevant probabil-
ities and explicit conditional independence assumptions. The ID includes
the relevant observations, decisions, and the associated value of a diagnos-
tic policy. The ID is constructed in the causal direction for intuitive reasons
and to simplify assessment20. The probability of PE is conditioned on the
Wells pretest risk category (low, moderate, or high). The test indication is
rendered conditionally independent of the specific population under con-
sideration, once the probabilities of PE and DVT are established.73 In this
way, differences in the prevalence of PE in the Wells study population
and the prevalence of PE in populations used for various studies on the
accuracy of a particular imaging test can be used in the same probabilistic
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network.16,68,74,75 Using the terminology of Section 2.4, the study population
of the Wells study is d-separated from the prevalence of PE given a partic-
ular Wells risk category.

We assumed that a CTA may include a pulmonary portion (CTP) and
a deep venous portion (CTV). The decisions concerning which cutoffs to
choose for a D-dimer and for a VQ scan are subsumed in the decision to
order the test. The node labeled as value vector includes an incremental
cost component and a QALY component.

Tests are assumed to be conditionally independent. Whenever we use
a D-dimer with an imaging test, we perform the imaging test only if the
D-dimer test is positive. Within a compound imaging strategy, where CUS
is considered along with a VQ or a CTP, we assumed that the VQ scan or
the CTP is performed only if the CUS is negative.

The details of the parameter estimates and the methodology for the
computational model have been published and are beyond the scope of
the current discussion.76 Figure 2.14 shows an example of a policy plot in
(cost, QALY) space resulting from this model for the base case on a single
patient in a high Wells pretest category.

For the limited model, for patients with suspected PE, the use of
CTP/CTV without D-dimer is a robust strategy for diagnosis of PE under
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Figure 2.14 Results under base case assumptions for high Wells category patients
with suspected DVT.
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a wide range of assumptions. Although it is almost never a dominant
strategy, it is frequently preferred over a wide range of assumptions and,
when it is not, CTA remains part of a dominant mixed strategy with CUS
and D-dimer use. When CTA is not available, D-dimer (cutoff II or III) with
CUS/VQ is the dominant strategy for high and moderate Wells category
patients, although D-dimer cutoff IV with CUS is the dominant strategy for
low Wells category patients. The analysis was potentially limited by the
need to estimate the sensitivity and specificity of various D-dimer cutoff
values with the gamma distribution and potentially insufficient breadth and
depth of the sensitivity analyses performed.

2.6.2 Extended D-Dimer Model Results in a Change
in Policy

Although the results from the limited model are robust to sensitivity anal-
ysis on a wide range of parameters, we suspected that they may depend
critically on the breadth of the clinical situation assumed: diagnosis of PE in
a patient suspected of having PE. In a typical acute care setting, PE is usu-
ally one of several competing diagnoses in patients presenting with chest
pain or shortness of breath. When considering the use of a D-dimer in this
larger patient population, the ease and relatively low cost of the D-dimer
assay might well make it cost effective. The scope of this latter question is
much different than that posed in the limited model.

We developed an extended model to assess the value of a quantitative
D-dimer in diagnosing PE among patients presenting to an ED with chest
pain or shortness of breath (Figure 2.15). This model has two major addi-
tions to the previous model. Both of these additions represent aggregation
points for input from a subgraph of the extended model. These aggregation
points are a clear other cause for the signs and symptoms and other causes
for an elevated D-dimer.

Some patients who present with symptoms attributable to VTE have a
seemingly clear explanation for their symptoms outside of VTE. If these
potential non-VTE explanatory causes for the presenting symptoms are not
subsumed in the pretest clinical decision rule for PE (Wells criteria) then
there is an active trail from these explanatory causes to the utility node.
Thus, the probability that the patient has a PE varies with the alternative
disease process under consideration. A recent study demonstrated that the
probability of PE not only differs if there is an alternative diagnosis but
also varies with the nature of the alternative diagnosis under considera-
tion (i.e., it varies depending upon the clinician’s suspicion of anxiety, an
upper respiratory infection, a muscle strain, emphysema, etc.).77,78 From a
Bayesian standpoint, observing another likely disease process in the patient
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Figure 2.15 Extended D-dimer model (abbreviated depiction).
Note: The nodes, clear other cause for the signs and symptoms and other causes
of an elevated D-dimer are aggregation nodes that represent the joint influence of
sets of nodes.They are depicted here as single nodes for diagrammatic reasons only.

that could be the cause of the chest pain or shortness of breath reduces the
probability that PE is a candidate process.

Other disease processes such as acute coronary syndrome (ACS) and
AD can affect D-dimer results.79–86 ACS encompasses the spectrum of dis-
eases caused by acutely restricted delivery of oxygenated blood to the heart
muscle. The extreme version of this is a heart attack or AMI. Because a CTA
dedicated for the discovery of PE is executed to optimize the sensitivity and
specificity for PE, such a CTA rarely detects an AD. Therefore, the sensitiv-
ity for AD of a PE-directed CTA is markedly lower than the sensitivity of an
AD-directed CTA. The degree of crossover detection increases marginally
with more modern imaging equipment.87,88 The performance characteristics
for CT that we use in our model are predicated on current widely available
and utilized CT technology.

On the basis of initial results from this extended model, using techniques
for encoding the limited model, it appears that the D-dimer test is always
valuable in the base case with different cutoffs for different levels of pretest
risk of PE. Presumably, this is due to alterations in the probability of PE
and a positive D-dimer result which previously had not influenced the
computation. Had we considered the various potential inputs that were
amenable to modeling from the outset, the nodes in the extended model
for clear other cause for the signs and symptoms and other causes for an
elevated D-dimer would have been noted to have active paths to the utility
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Figure 2.16 Requisite observations on the extended model to exclude the new
inputs to the sub-graph representing the limited model.
Note: If we observe the shaded nodes in this diagram, we can render other potential
causes of the patient’s signs and symptoms and other causes of an elevated D-dimer
irrelevant to the computational results of the model.

node. In other words, we would have seen that knowing something about
this set of nodes tells us something about the value of the D-dimer test in
the evaluation of patients for PE. Our analysis would have indicated that
removing these nodes would compromise the computational results of the
model.

We can make a set of observations on uncertainties in the extended
model that would block any active paths from the additional nodes in the
limited model (Figure 2.16).

If we observe the presence or absence of DVT, PE, and the D-dimer
level, we create a situation in which the clinician needs to know nothing
about clear other cause for the signs and symptoms and other causes for
an elevated D-dimer. The formulation in Figure 2.16 has two major prob-
lems. First, the clinician has no clairvoyance on whether the patient has
PE or DVT, and what the D-dimer level will be. If the clinician knows
the patient has a PE or DVT, providing a lifesaving and life-prolonging
treatment is in order; and if the patient has no DVT and no PE, provid-
ing treatment is unnecessary and wasteful (and possibly harmful). Second,
even if the requisite uncertainties could be observed, the resulting model
does not answer the fundamental question under consideration: is use of a
quantitative D-dimer assay cost effective in the evaluation of patients pre-
senting to the ED with signs and symptoms that might be suggestive of PE?
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Although the second point is related to the first point, they are actually
different notions: one has to do with the feasibility of certain observations
and the other has to do with the applicability and acceptability of a model
with certain observations.

2.7 Summary
We have shown how an ID can provide an intuitive graphical framework
for understanding cost-effectiveness problems while also providing a com-
putational framework for their solution. Because computation complexity
increases rapidly with the number of modeled variables and decisions, a
balance must be struck between clinical relevance (model complexity) and
minimizing computational burden. We have shown how IDs can be used to
formally test conditions allowing for the inclusion and exclusion of certain
variables in attempts to simplify very complex models without impacting
the validity of the analysis. We created the notion of scope in this context.
There is interplay between the structural characteristics of the ID and the
scope of the problem, the analyst is seeking to answer.

The techniques outlined in this chapter are meant to manage this inter-
play to ensure that the policy recommendations from the cost-effectiveness
analysis are applied to the appropriate decision question. The principles we
have presented could be applied to any probabilistic decision problem and
are especially helpful when precision with respect to the question critically
determines the utility of the resulting analysis.

References
1. Neumann, P. J., Greenberg, D., Olchanski, N. V., Stone, P. W., and Rosen, A. B.

Growth and quality of the cost-utility literature, 1976–2001. Value in Health, 8,
3–9, 2005.

2. Tengs, T.O. and Wallace, A. One thousand health-related quality-of-life esti-
mates. Medical Care, 38, 583–637, 2000.

3. Revicki, D. A. National health preference data: A useful resource for health
services research. Medical Decision Making, 26, 310–312, 2006.

4. Kostopoulou, O. The transient nature of utilities and health preferences. Medical
Decision Making, 26, 304–306, 2006.

5. Neumann, P. J., Zinner, D. E., and Wright, J. C. Are methods for estimating
QALYs in cost-effectiveness analyses improving? Medical Decision Making, 17,
402–408, 1997.

6. Chapman, R. H., Marc, B., Milton, C. W., Jane, C. W., Sue, G., and Peter, J. N.
When does quality-adjusting life-years matter in cost-effectiveness analysis?
Health Economics, 13, 429–436, 2004.

7. Ginsburg, P. B., Strunk, B. C., Banker, M. I., and Cookson, J. P. Tracking health
care costs: Spending growth remains stable at high rate in 2005. Data Bulletin
No. 33 (Center for Studies in Health Systems and Change), 33, 1–2, 2006.



Lim/Optimization in Medicine and Biology AU0563_C002 Final Proof Page 90 9.11.2007 04:26pm

90 Optimization in Medicine and Biology

8. Anderson, G. F. Controlling U.S. health spending: Opportunities for academic
health centers. Academic Medicine, 81, 807–811, 2006.

9. Cutler, D. M., Rosen, A. B., and Vijan S. The value of medical spending in the
United States, 1960–2000. The New England Journal of Medicine, 355, 920–927,
2006.

10. Knockaert, D. C., Buntinx, F., Stoens, N., Bruyninckx, R., and Delooz, H. Chest
pain in the emergency department: The broad spectrum of causes. European
Journal of Emergency Medicine, 9, 25–30, 2002.

11. Weissman, I. A., Dickinson, C. Z., Dworkin, H. J., O’Neill, W. W., and Juni,
J. E. Evaluation of chest pain in the emergency department. Annals of Internal
Medicine, 121, 976–978, 1994.

12. Gold, M. R., Siegel, J. E., Russel, L. B., and Weinstein, M. C. Cost-Effectiveness in
Health and Medicine, Oxford University Press, New York, 1996.

13. Perrier, A., Nendaz, M., Sarasin, F., Howarth, N., and Bounameaux, H. Cost-
effectiveness analysis of diagnostic strategies for suspected pulmonary embolism
including helical computed tomography. American Journal of Respiratory and
Critical Care Medicine, 167, 39–44, 2003.

14. Thompson, D., Eitel, D., Fernandes, C. M. B., Pines, J. M., Amsterdam, J., and
Davidson, S. J. Coded chief complaints—Automated analysis of free-text com-
plaints. Academic Emergency Medicine, 13, 774–782, 2006.

15. National Hospital Ambulatory Medical Care (N. A. M. C.) Survey: 2001 emergency
department summary. Advanced Data, 1–29, 2003.

16. Shachter, R. D. Bayes-Ball: The rational pastime (for determining irrelevance
and requisite information in belief networks and influence diagrams), in G. F.
Cooper, S. Moral (eds.), Uncertainty in Artificial Intelligence: Proceedings of
the Fourteenth Conference, pp. 480–487, Morgan Kaufmann, San Francisco, CA,
1998.

17. Shachter, R. D. Efficient value of infomation computation, in: K. B. Laskey,
H. Prade (eds.), Uncertainty in Artificial Intelligence: Proceedings of the Fifteenth
Conference, pp. 594–601, Morgan Kaufmann, San Mateo, CA, 1999.

18. Pearl, J., Geiger, D., and Verma, T. In Influence Diagrams, Belief Nets, and
Decision Analysis, Oliver, R. M. and Smith, J. Q. (Eds.), John Wiley & Sons,
1990, pp. 67–87.

19. Geiger, D., Verma, T., and Pearl, J. d-Separation: From theorems to algorithms, in
Fifth Workshop on Uncertainty in Artificial Intelligence, pp. 118–125, University
of Windsor, Ontario, 1989.

20. Heckerman, D. and Shachter, R. Decision-theoretic foundations for causal rea-
soning. Journal of Artificial Intelligence Research, 3, 405–430, 1995.

21. Darwiche, A. Recursive conditioning. Artificial Intelligence, 5–41, 2001.
22. Howard, R. In Influence Diagrams, Belief Nets and Decision Analysis, Oliver,

R. M. and Smith, J. Q. (Eds.), John Wiley & Sons, 1990, pp. 3–23.
23. Hingorani, A., Ascher, E., Marks, N., Schutzer, R., Mutyala, M., Yorkovich, W.,

and Jacob, T. Morbidity and mortality associated with brachial vein thrombosis.
Annals of Vascular Surgery, 20, 297–300, 2006.

24. Hingorani, A., Ascher, E., Markevich, N., Schutzer, R. W., Kallakuri, S.,
Mutyala, M., Nahata, S., Yorkovich, W., and Jacob, T. Prospective evaluation of
combined upper and lower extremity DVT. Vascular and Endovascular Surgery,
40, 131–134, 2006.



Lim/Optimization in Medicine and Biology AU0563_C002 Final Proof Page 91 9.11.2007 04:26pm

Using Influence Diagrams in Cost-Effectiveness Analysis for Medical Decisions 91

25. Joffe, H. V., Kucher, N., Tapson, V. F., and Goldhaber, S. Z. Upper-extremity
deep vein thrombosis: A prospective registry of 592 patients. Circulation, 110,
1605–1611, 2004.

26. Malhotra, S. and Punia, V. P. S. Upper extremity deep vein thrombosis. Journal
of the Association of Physicians of India, 52, 237–241, 2004.

27. Markel, A. Origin and natural history of deep vein thrombosis of the legs. Sem-
inars in Vascular Medicine, 5, 65–74, 2005.

28. Prandoni, P., Villalta, S., Bagatella, P., Rossi, L., Marchiori, A., Piccioli, A.,
Bernardi, E., Girolami, B., Simioni, P., and Girolami, A. The clinical course of
deep-vein thrombosis. Prospective long-term follow-up of 528 symptomatic pa-
tients. Haematologica, 82, 423–428, 1997.

29. Cushman, M., Tsai, A. W., White, R. H., Heckbert, S. R., Rosamond, W. D.,
Enright, P., and Folsom, A. R. Deep vein thrombosis and pulmonary embolism
in two cohorts: The longitudinal investigation of thromboembolism etiology. The
American Journal of Medicine, 117, 19–25, 2004.

30. Kearon, C. Natural history of venous thromboembolism. Circulation, 107,
I22–I30, 2003.

31. Bulger, C. M., Jacobs, C., and Patel, N. H. Epidemiology of acute deep vein
thrombosis. Techniques in Vascular and Interventional Radiology, 7, 50–54,
2004.

32. Dalen, J. and Alpert, J. Natural history of pulmonary embolism. Progressive Car-
diovascular Diseases, 17, 259–270, 1975.

33. Stein, P. D., Kayali, F., and Olson, R. E. Estimated case fatality rate of pulmonary
embolism, 1979 to 1998. The American Journal of Cardiology, 93, 1197–1199,
2004.

34. Stein, P. D., Kayali, F., and Olson, R. E. Regional differences in rates of diag-
nosis and mortality of pulmonary thromboembolism. The American Journal of
Cardiology, 93, 1194–1197, 2004.

35. White, R. H. The epidemiology of venous thromboembolism. Circulation, 107,
I4–I8, 2003.

36. Anderson, F. A population-based perspective of the hospital incidence
and case-fatality rates of deep vein thrombosis and pulmonary embolism.
The Worcester DVT Study. Archives of Internal Medicine, 151, 933–938,
1991.

37. Silverstein, M. D., Heit, J. A., Mohr, D. N., Petterson, T. M., O’Fallon, W. M., and
Melton, L. J. Trends in the incidence of deep vein thrombosis and pulmonary
embolism: A 25-year population-based study. Archives of Internal Medicine, 158,
585–593, 1998.

38. Michota, F. Venous thromboembolism: Epidemiology, characteristics, and con-
sequences. Clinical Cornerstone, 7, 8–15, 2005.

39. Heit, J. A. Venous thromboembolism: Disease burden, outcomes and risk factors.
Journal of Thrombosis and Haemostasis, 3, 1611–1617, 2005.

40. Kroegel, C. and Reisseg, A. Principle mechanisms underlying venous throm-
boembolism: Epidemiology, risk factors, pathophysiology and pathogenesis.
Respiration, 70, 7–30, 2003.

41. Ageno, W., Squizzato, A., Garcia, D., and Imberti, D. Epidemiology and risk
factors of venous thromboembolism. Seminars in Thrombosis and Hemostasis,
32, 651–658, 2006.



Lim/Optimization in Medicine and Biology AU0563_C002 Final Proof Page 92 9.11.2007 04:26pm

92 Optimization in Medicine and Biology

42. Beemath, A., Stein, P., Skaf, E., Al Sibae, M., and Alesh, I. Risk of venous throm-
boembolism in patients hospitalized with heart failure. The American Journal of
Cardiology, 98, 793–795, 2006.

43. Northup, P., McMahon, M. M., Ruhl, A. P., Altschuler, S. E., Volk-Bednarz, A.,
Caldwell, S. H., and Berg, C. L. Coagulopathy does not fully protect hospitalized
cirrhosis patients from peripheral venous thromboembolism. American Journal
of Gastroenterology, 101, 1524–1528, 2006.

44. Simioni, P., Tormene, D., Spiezia, L., Tognin, G., Rossetto, V., Radu, C., and
Prandoni, P. Inherited thrombophilia and venous thromboembolism. Seminars
in Thrombosis and Hemostasis, 32, 700–708 2006.

45. Kearon, C. Natural history of venous thromboembolism. Circulation, 107,
122–130, 2003.

46. Monreal, M., Munoz, F. J., Rosa, V., Romero, C., Roman, P., Di Micco, P., and
Prandoni, P., Upper extremity DVT in oncological patients: Analysis of risk
factors. Data from the RIETE registry, Experimental Oncology, 28, 245–247, 2006.

47. Joung, S. and Bridget, R. Venous thromboembolism in cancer patients in
Christchurch, 1995–1999. The New Zealand Medical Journal, 115, 257–260, 2002.

48. Calder, K. K. H., Henderson, M., and Sean, O. The mortality of untreated pul-
monary embolism in emergency department patients. Annals of Emergency
Medicine, 45, 302–310, 2005.

49. Barrellier, M., Lezin, B., Landy, S., and Le Hello, C. Prevalence of duplex ultra-
sonography detectable venous thrombosis in patients with suspected or acute
pulmonary embolism. Journal of Malaysian Vascular Surgery, 26, 23–30, 2001.

50. Arcelus, J. I., Carpini, J. A., Monreal, M., Suárez, C., and González-Fajardo, J. A.
The management and outcome of acute venous thromboembolism: A prospec-
tive registry including 4011 patients. Journal of Vascular Surgery, 38, 916–922,
2003.

51. Gaitini, D. Current approaches and controversial issues in the diagnosis of deep
vein thrombosis via duplex Doppler ultrasound. Journal of Clinical Ultrasound,
34, 289–297, 2006.

52. PIOPED. Ventilation-perfusion scintigraphy in the prospective investigation of
pulmonary embolism diagnosis (PIOPED) study. Journal of Nuclear Medicine,
34, 1109–1126, 1993.

53. PIOPED. Comprehensive analysis of the results of the prospective investigation
of pulmonary embolism diagnosis (PIOPED) study. Journal of Nuclear Medicine,
36, 2380–2387, 1995.

54. PIOPED. Value of the ventilation/perfusion scan in acute pulmonary embolism.
Results of the prospective investigation of pulmonary embolism diagnosis
(PIOPED). The PIOPED investigators. JAMA, 263, 2753–2759, 1990.

55. Huisman, M. V. and Henri, B. Treating patients with venous thromboembolism:
Initial strategies and long-term secondary prevention. Seminars in Vascular
Medicine, 5, 276–284, 2005.

56. Cosmi, B. and Gualtiero, P. Extended treatment for venous thromboembolism:
How long is long enough? Current Hematology Reports, 3, 375–381, 2004.

57. Cosmi, B. and Gualtiero, P. Oral anticoagulant therapy in venous thromboem-
bolism. Seminars in Vascular Medicine, 3, 303–314, 2003.

58. Keeling, D. Duration of anticoagulation: Decision making based on absolute
risk. Blood Reviews, 20, 173–178, 2006.

59. Pinede, L., Ninet, J., and Duhaut, P. For the Investigators of the Durée Opti-
male du Traitement Antivitamines K (DOTAVK) study. Comparison of 3 and



Lim/Optimization in Medicine and Biology AU0563_C002 Final Proof Page 93 9.11.2007 04:26pm

Using Influence Diagrams in Cost-Effectiveness Analysis for Medical Decisions 93

6 months of oral anticoagulant therapy after a first episode of proximal deep
vein thrombosis or pulmonary embolism and comparison of 6 and 12 weeks of
therapy after isolated calf deep vein thrombosis. Circulation, 103, 2453–2460,
2001.

60. Schulman, S., Lindmarker, P., Holmström, M., Lärfars, G., Carlsson, A., Nicol, P.,
Svensson, E., Ljungberg, B., Viering, S., Nordlander, S., Leijd, B., Jahed, K.,
Hjorth, M., Linder, O., and Beckman, M. Post-thrombotic syndrome, recurrence,
and death 10 years after the first episode of venous thromboembolism treated
with warfarin for 6 weeks or 6 months. Journal of Thrombosis and Haemostasis,
4, 734–742, 2006.

61. de Moerloose, P., Bounameaux, H., Perrier, A., and Reber, G. Performances of
the VIDAS D-dimer new assay for the exclusion of venous thromboembolism.
Thrombosis and Haemostasis, 85, 185–186, 2001.

62. Agency for Healthcare Research and Quality (AHRQ). Diagnosis and treat-
ment of deep venous thrombosis and pulmonary embolism. Summary, Evi-
dence Report/Technology Assessment: Number 68. AHRQ Publication Number
03-E012, January 2003, Rockville, MD.

63. van Erkel, A., van Rossum, A., Bloem, J., Kievit, J., and Pattynama, P. Spiral CT
angiography for suspected pulmonary embolism: A cost-effectiveness analysis.
Radiology, 201, 209–236, 1996.

64. Paterson, D. and Schwartzman, K. Strategies incorporating spiral CT for the
diagnosis of acute pulmonary embolism: A cost-effectiveness analysis. Chest,
199, 1791–1800, 2001.

65. de Monye, W., Sanson, B., Buller, H., Pattynama, P., and Huisman, M. The per-
formance of two rapid quantitative D-dimer assays in 287 patients with clinically
suspected pulmonary embolism. Thrombosis Research, 107, 283–286, 2002.

66. Duet, M., Benelhadj, S., Kedra, W., Vilain, D., Ajzenberg, C., Elkharrat, D.,
Drouet, L., Soria, C., and Mundler, O. A new quantitative D-dimer assay appro-
priate in emergency: Reliability of the assay for pulmonary embolism exclusion
diagnosis. Thrombosis Research, 91, 1–5, 1998.

67. bioMerieux. Vidas D-Dimer New (DD2). Package Insert 2002.
68. Wells, P. S., Ginsberg, J. S., Anderson, D. R., Kearon, C., Gent, M., Turpie, A. G.,

Bormanis, J., Weitz, J., Chamberlain, M., Bowie, D., Barnes, D., and Hirsh, J. Use
of a clinical model for safe management of patients with suspected pulmonary
embolism. Annals of Internal Medicine, 129, 997–1005, 1998.

69. Kruip, M., Slob, M., Schijen, J., van der Heul, C., and Buller, H. Use of a clinical
decision rule in combination with D-dimer concentration in diagnostic workup
of patients with suspected pulmonary embolism: A prospective management
study. Archives of International Medicine, 162, 1631–1635, 2002.

70. Moores, L., Collen, J., Woods, K., and Shorr, A. Practical utility of clinical predic-
tion rules for suspected acute pulmonary embolism in a large academic institu-
tion. Thrombosis Research, 113, 1–6, 2004.

71. Cornuz, J., Ghali, W. A., Hayoz, D., Stoianov, R., Depairon, M., and Yersin, B.
Clinical prediction of deep venous thrombosis using two risk assessment meth-
ods in combination with rapid quantitative D-dimer testing. American Journal
of Medicine, 112, 198–203, 2002.

72. Anand, S., Wells, P. S., Hunt, D., Brill-Edwards, P., Cook, D., and Ginsberg, J. S.
Does this patient have deep vein thrombosis? JAMA, 279, 1094–1099, 1998.

73. Pearl, J. Fusion, propogation, and structuring in belief networks. Artificial
Intelligence, 29, 241–288, 1986.



Lim/Optimization in Medicine and Biology AU0563_C002 Final Proof Page 94 9.11.2007 04:26pm

94 Optimization in Medicine and Biology

74. Wells, P., Anderson, D. R., Rodger, M., Ginsberg, J. S., Kearon, C., Gent, M.,
Turpie, A. G., Bormanis, J., Weitz, J., Chamberlani, M., Bowie, D., Barnes, D.,
and Hirsh, J. Derivation of a simple clinical model to categorize patients prob-
ability of pulmonary embolism: Increasing the models utility with the SimpliRED
D-dimer. Thrombosis Haemostasis, 83, 416–420, 2000.

75. Wolf, S. J., Mc Cubbin, T. R., Feldhaus, K. M., Faragher, J. P., and Adcock, D. M.
Prospective validation of Wells Criteria in the evaluation of patients with sus-
pected pulmonary embolism. Annals of Emergency Medicine, 44, 503–510, 2004.

76. Duriseti, R., Shachter, R., and Brandeau, M. Value of quantitative D-dimer assays
in identifying pulmonary embolism: Implications from a sequential decision
model. Academic Emergency Medicine, 13, 755–766, 2006.

77. Kabrhel, C., Mc Afee, A. T., and Goldhaber, S. Z. The probability of pulmonary
embolism is a function of the diagnoses considered most likely before testing.
Academic Emergency Medicine, 13, 471–474, 2006.

78. Kohn, M. A., Kwan, E., Gupta, M., and Tabas, J. A. Prevalence of acute myocar-
dial infarction and other serious diagnoses in patients presenting to an urban
emergency department with chest pain. Journal of Emergency Medicine, 29,
383–390, 2005.

79. Ohlmann, P., Faure, A., Morel, O., Petit, H., Kabbaj, H., Meyer, N., Cheneau,
E., Jesel, L., Epailly, E., Desprez, D., Grunebaum, L., Schneider, F., Roul, G.,
Mazzucotteli, J., Eisenmann, B., and Bareiss, P. Diagnostic and prognostic value
of circulating D-dimers in patients with acute aortic dissection. Critical Care
Medicine, 34, 1358–1364, 2006.

80. Shilon, Y., Bar-Gil, S. A., Rudensky, B., Yinnon, A. M., Margalit, M., Sulkes, J.,
and Shitrit, D. A rapid quantitative D-dimer assay at admission correlates with the
severity of community acquired pneumonia. Blood Coagulation & Fibrinolysis,
14, 745–748, 2003.

81. Querol-Ribelles, J. M., Tenias, J. M., Grau, E., Querol-Borras, J. M., Climent, J. L.,
Gomez, E., and Martinez, I. Plasma D-dimer levels correlate with outcomes in
patients with community-acquired pneumonia. Chest, 126, 1087–1092, 2004.

82. Weber, T., Hogler, S., Auer, J., Berent, R., Lassnig, E., Kvas, E., and Eber, B.
D-dimer in acute aortic dissection. Chest, 123, 1375–1378, 2003.

83. Shitrit, D., Bar-Gil, S. A., Rudensky, B., Sulkes, J., and Tzviony, D. Determinants
of ELISA D-dimer sensitivity for unstable angina pectoris as defined by coronary
catheterization. American Journal of Hematology, 76, 121–125, 2004.

84. Akutsu, K., Sato, N., Yamamoto, T., Morita, N., Takagi, H., Fujita, N., Tanaka, K.,
and Takano, T. A rapid bedside D-dimer assay (cardiac D-dimer) for screening
of clinically suspected acute aortic dissection. Circulation Journal, 69, 397–403,
2005.

85. Sbarouni, K., Georgiadou, K., Marathias, K., Geroulanos, K., and Kremastinos,
K. D-dimer and BNP levels in acute aortic dissection. International Journal of
Cardiology, January 2007.

86. Kiernan, T. J. Aortic dissection and elevated D-dimers—an important clinical
link. International Journal of Cardiology, 114, E77–E78, 2007.

87. Johnson, T. R. C., Konstantin, N., Wintersperger, B. J., Knez, A., Boekstegers,
P., Reiser, M. F., and Becker, C. R. ECG-gated 64-MDCT angiography in the
differential diagnosis of acute chest pain. American Journal of Roentgenology,
188, 76–82, 2007.

88. Chiles, C. C. and Jeffrey, J. Vascular diseases of the thorax: Evaluation with
multidetector CT. The Radiologic Clinics of North America, 43, 543–569, 2005.



Lim/Optimization in Medicine and Biology AU0563_C003 Final Proof Page 95 10.11.2007 03:05pm

Chapter 3

Non-Bayesian
Classification to Obtain
High Quality Clinical
Decisions

Ram S. Duriseti

CONTENTS

3.1 Introduction............................................................................................ 96
3.2 Introduction to SVMs .............................................................................. 97
3.3 Asymmetric Cost SVMs for High Risk Clinical Decisions .......................... 99
3.4 Clinical Background................................................................................ 101
3.5 Methods.................................................................................................. 102

3.5.1 Descriptive Statistics of Data Set ................................................... 102
3.5.2 Data Labeling ............................................................................... 102
3.5.3 Preprocessing and Incomplete Data ............................................. 103
3.5.4 Scaling of Data ............................................................................. 103
3.5.5 Asymmetric Cost Regularization.................................................... 103
3.5.6 Choosing a Kernel........................................................................ 104
3.5.7 Setting Parameter Values .............................................................. 105
3.5.8 Principal Components Analysis..................................................... 106
3.5.9 Assessing the Accuracy of the Decision Function.......................... 106

3.6 Results .................................................................................................... 107
3.6.1 Optimal Penalties (C∗1 and C∗2 ) ..................................................... 107
3.6.2 Performance................................................................................. 107
3.6.3 Feature Selection.......................................................................... 107

95



Lim/Optimization in Medicine and Biology AU0563_C003 Final Proof Page 96 10.11.2007 03:05pm

96 Optimization in Medicine and Biology

3.7 Discussion .............................................................................................. 108
3.8 Summary ................................................................................................ 109
Appendix: Argument for a Biased Classifier..................................................... 109
References ...................................................................................................... 111

3.1 Introduction
The clinician’s goal is to make a high quality decision. From the clinician’s
standpoint, a quality decision involves not only accuracy but also a degree
of certainty about the accuracy of the decision: the clinician would like to
make an accurate decision, and do so with a high degree of confidence.
In this chapter, we discuss a novel application of a statistical learning tech-
nique called a support vector machine (SVM) to the domain of patients
presenting to an emergency department (ED) with chest pain.

We have discussed elsewhere in this text how creation of utility
assessments along with measures of uncertainty represented in the Bayesian
Framework of an influence diagram (ID) is well suited to the clinical
decision-making task. However, the same features of IDs that make them
useful for clinical decision making also make them difficult to implement.

Bayesian modeling, as used for IDs, has gained wide acceptance for
clinical applications. However, data for high quality Bayesian Models are
not always readily available. Moreover, the highly structured nature of
Bayesian networks requires significant knowledge of the relationships
between variables.1–3

Some would argue that modeling the expert’s knowledge, in the best
case, only duplicates what the expert already knows intuitively and, in the
worst case, encodes the cognitive biases of the expert. In the domains of
assessing patients for pulmonary embolism (PE) and the diagnosis of acute
coronary syndrome (ACS) among patients presenting to the ED with chest
pain or related symptoms, the experience of the practitioner has not been
shown to correlate with improved earlier probability assessments on the
risk of PE or ACS.4–11

One can use structured data to validate the underlying probabilistic
assumptions in a Bayesian network. In this manner, the assumptions of
experts are vetted and either validated or dismissed. Many data-driven
methodologies exist for learning the structure of networks and the nature
of the relationships between variables in the networks.12 However, data-
driven methods to validate Bayesian Models usually suffer from a paucity
of data to verify the independence assumptions of the network and the
probability assignments to different conditional and joint distributions.

Consequently, although Bayesian Models have an advantage over SVMs
and other machine learning techniques in that the relationships between
variables under consideration are explicitly represented (unlike the black
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box of statistical learning techniques such as SVMs),1 the need to explicitly
represent the relationships between variables in a Bayesian Model can also
be a weakness. SVMs avoid some of these pitfalls.

3.2 Introduction to SVMs
An SVM is a non-Bayesian method that takes a labeled data set (a label is
assigned to each of the n categories of instances), features of a data set
(e.g., patient variables, such as height, weight, ethnicity, etc.), ascertains
the relative importance of those features to accurately label data instances
using a portion of a data set (the training data), tests the resulting decision
model on some fraction of the remaining data, and then classifies any new
instances of data into any one of the n categories. If data instances can
fall into only two categories (i.e., disease is present or absent), an SVM
maps a new data instance into one of the two categories. This mapping
can be correct or incorrect. In this way, for a binary classification problem,
an SVM will create true positives, false positives, true negatives, and false
negatives. The degree to which an SVM can properly label all instances
of data in a particular domain refers to the separability of the data. In a
perfectly separable data set (Figure 3.1a), each instance can be classified
correctly with no errors. Some data sets are not perfectly separable in the
chosen feature space (Figure 3.1b). When there are t features, the partition
is a (t − 1) dimensional object (if the partition is linear, it is a (t − 1)
dimensional hyperplane).

The data instances in the data set of Figure 3.1a are perfectly separable;
in Figure 3.1b, they are not. For simplicity, a feature space of only two
features is shown in this example. This data set is linearly separable because
a simple line partitions the data set correctly. A nonlinear partition could
also be used. Sometimes increasing the number of features or changing
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Figure 3.1 Separable versus inseparable data sets.
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Figure 3.2 Classification with an error margin.

the geometry of the partition can help to make an inseparable data set
separable.

The classification of data instances by an SVM is designed not only
to just properly classify instances but also to classify each instance with
a high degree of certainty. To achieve this, an SVM allows for an error
margin. The algorithm tries to optimize classification while also trying to
maximize distance from the error margins. If there is no margin for error,
when data instances lie close to the classifier line (the classifier can be
any n-dimensional shape, usually represented as a kernel function), small
changes in the orientation of the classifier can result in changes to the
classification of data instances. In Figure 3.2a, the data is perfectly sep-
arable using the solid line, but a marginal change in the placement of
the classifier (the dashed line in Figure 3.2a) misclassifies a number of
instances in the data set. Figure 3.2b shows a classifier with error mar-
gins. The weights applied to the features are such that the average dis-
tance from the error lines is maximized. Small changes in the positioning
of the partition will not result in misclassification. In this way, a measure of
confidence can be attached to the classification. In the formulation of the
optimization problem for feature weights, C is the penalty incurred for a
misclassification.

When the algorithm tunes the feature weights in the setting of error
margins, minor perturbations in the classifier position will not result in
classification errors.

Using the following notations,

m = the number of events in the data set
αi = the Lagrangian for the ith training example
C = the penalty
w = vector of feature weights
b = intercept for the decision function

x(i) = the ith event in the data set
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y(i) = the data label for the ith training example where
y(i) ∈ {−1,+1}

(
x(i), y(i)

) = the data vector and the label for the ith element of the
data set

we can represent the primal optimization problem as

Min
w,b
= 1

2
‖w‖2

s.t.: y(i)
(
wT x(i) + b

) ≥ 1 for i = 1, . . . , m

0 ≤ αi ≤ C

The primal optimization problem has a dual. We derive it from the Lag-
rangian of the primal. The form of the dual is

Max
α

W (α) =
m∑

i=1

αi − 1

2

m∑

i=1

m∑

j=1

y(i)y(j)αiαj

(
x(i)
)T

x(j)

s.t.:
m∑

i=1

αiy
(i) = 0

0 ≤ αi ≤ C

SVMs are non-Bayesian: they do not depend upon beliefs about the state
of the world. The inclusion of a feature reflects a belief about the potential
relevance of the feature, but places no assumption on the importance of
the feature. In fact, the weight assigned by an SVM for a feature may be
zero, suggesting that the feature is not helpful in the classification problem
under consideration.

3.3 Asymmetric Cost SVMs for High Risk Clinical
Decisions

In this chapter, we present a method that uses SVMs with nonhomogenous
penalties for incorrect classifications in inseparable data sets. This method
is intended to maximize the sensitivity of the classification rather than both
the sensitivity and the specificity. For many high risk clinical decisions, data
sets are not perfectly separable. In addition, the consequences of false pos-
itive classifications are not the same as the consequences of false negative
classifications: the costs of mistakenly sending a patient with ACS home,
in terms of money and health outcomes, are not comparable to the costs
of admitting a patient unnecessarily because of a mistaken suspicion of
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Figure 3.3 The asymmetric cost SVM.

ACS (Appendix).13,14 This concept is portrayed in Figure 3.3 for the case
of ACS.

We applied the asymmetric cost SVM to a data set of patients who pre-
sented to an urban academic ED with signs and symptoms (e.g., chest pain
and shortness of breath) that could be attributable to ACS.

Non-acute events include not only non-ACS events, but also other events
such as AD or PE which benefit from admission.

With asymmetric penalties, the dual takes the form

Max
α

W (α) =
m∑

i=1

αi − 1

2

m∑

i=1

m∑

j=1

y(i)y(j)αiαj

(
x(i)
)T

x(j)

s.t.:
m∑

i=1

αiy
(i) = 0

0 ≤ αi ≤ C1 for y(i) = +1

0 ≤ αi ≤ C2 for y(i) = −1

Unlike traditional SVM formulations, this formulation uses asymmetric
penalties. We assume C2 > C1 > 0.

In the next section, we apply the asymmetric cost SVM to a clinical
data set that is traditionally inseparable and where the consequences of
incorrect decisions are sizable: patients with chest pain or other symptoms
referable to ACS. It is traditionally one of the most difficult decisions in
clinical medicine.
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3.4 Clinical Background
Chest pain is one of the most common presenting complaints of patients
to EDs nationally.15–17 As with PEs, the range of diseases that could
cause chest pain varies widely in both severity and organ system involved
(from psychosomatic disease to acid reflux to potentially lethal cardiovas-
cular pathology), complicating the clinical assessment.7,18 National data
suggests that only 11 percent of patients who present to EDs with the
complaint of chest pain are later found to have ACS or another diag-
nosis requiring admission.16 Moreover, of admitted patients, only 15–20
percent are thought to have chest pain related to acute ischemic car-
diovascular pathology.7,16,18–22 Unnecessary admissions incur tremendous
costs to the system without identifiable benefit.23 In 1997, more than
three million patients were admitted to U.S. hospitals with chest pain.
Conservative estimates of the total annual costs to the system for those
not found to have an ischemic etiology for the pain are well over $3
billion.24 However, injudicious discharge of these patients home can
result in major patient morbidity and mortality.22,25 Untreated myocar-
dial infarctions have a six month mortality of 25 percent, a figure very
similar to estimates of mortality for untreated PEs.5,25–30 Several studies
estimate the rate of discharge of patients with chest pain due to ACS to be
4–4.4 percent.31,32

Different computational techniques have been used to differentiate
patients with chest pain.33,34 Goldman et al. imply that no one (not even
the healthy male in his mid-twenties) is safe for discharge home based
upon an ad hoc threshold for posterior probability of disease (usually less
than 1 percent).33 The 1 percent rule has not been established with any
sort of methodological rigor beyond expert opinion.7,35

Despite tremendous clinical advances, the rate of missed myocardial
ischemia has remained roughly 4 percent since 1996.33,35 Neural networks,
Bayesian methods, and computer-designed decision rules have had vari-
able efficacy in improving on the sensitivity of experienced clinicians.9,35–43

These methodologies have improved specificity to levels up to ∼88 percent
(from a base of ∼30 percent), but often at considerable cost in sensitivity,
decreasing it to 80 percent from 88 percent. Often, practitioners do not
accept such methodologies. Hollander et al. found that out of 432 patients
enrolled in a study, feedback to physicians derived with a neural network
affected decisions in only two cases.35

Expert clinical opinion has major limitations as well. Ting et al. found
that each year of postgraduate clinical experience resulted in a 1.4 increased
odds of admitting a patient with suspected ischemic chest pain, but with
no increase in the detection of myocardial.11 Dreiseitl et al. analyzed four
standard statistical computing techniques to identify which case features, of
a possible 43 features in a data set, are most predictive of ischemic causes
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for chest pain. Different analytic methods selected different features. Eleven
features were selected as important by most algorithms. Interestingly, a
consulting cardiologist identified only three of the eleven selected features,
and five of the nine features identified by the cardiologist as important were
not selected by any of the learning algorithms.41

In this chapter, we demonstrate how one would apply an SVM to the
classification of patients presenting to the ED with a complaint poten-
tially stemming from ischemic heart disease. A review of the published
literature found no published work on the use of SVMs for this clinical
problem.44

Clinical evidence suggests that in a large enough data set, perfect classifi-
cation is not possible. Thus, success in classification should be measured by
a reduction in false positives without untoward effects on sensitivity. Such
a method of classification can yield greater economic and health benefits
than existing clinical methods: cases found by other methods, including
expert judgment, will not be missed whereas fewer patients who do not
need treatment will receive the unnecessary intervention.

3.5 Methods
We modified a data set obtained from the Department of Emergency
Medicine of the Hospital of the University of Pennsylvania. The data set
contained data on 4356 patients seen in the ED from July 1999 through
December 2002 who complained of chest pain or symptoms potentially
referable to ACS.

3.5.1 Descriptive Statistics of Data Set
Of the 4356, 20 percent (873) were diagnosed with ischemic heart disease
or a related disease process benefiting from admission. Of these 873, less
than 1 percent had an acute process such as AD or PE as the putative non-
ischemic cause for the patient’s discomfort. Demographics are presented in
Table 3.1.

3.5.2 Data Labeling
We labeled data based upon a final WHO diagnosis. We considered two
possible labels (thus, a creating a binary classification): (1) patients with
pathology that requires admission (admit), (2) patients who did not re-
quire admission (discharge). Patients who require admission are ones who
either have a final diagnosis of acute myocardial infarction (AMI), unstable
angina (USA) (where AMI and USA are points on the spectrum of ACS), AD
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Table 3.1 Demographic Descriptive Statistics
of the Data Set

Demographic Percentage of
Parameter Data Set (Percent)

Black 70
White 26
Asian 2
Hispanic 1
Other 1
Female 59

(a total of two patients), PE (a total of ten patients), or experience a major
complication within 30 days of being seen in the ED.

3.5.3 Preprocessing and Incomplete Data
In the data set, each patient did not necessarily have a value for each of the
88 features. We replaced incomplete data with a maximum likelihood esti-
mate of the feature value, estimated over patients with the same label. We
divided data categories such as blood pressure and heart rate that demon-
strate non-monotonic behavior into n variables with binary labels. The 88
features we identified are shown in Table 3.2.

3.5.4 Scaling of Data
To avoid domination of other parameters by one parameter in the com-
putation of matrix inner products, some feature values had to be scaled.
Several authors have commented on this, but this is not a formal require-
ment of an SVM application.45 In the data set we used, this is potentially an
issue. The data matrix is sparse with mostly binary indicator variables, but
with several variables that had routine values exceeding 5000. Therefore,
we scaled all data values linearly on the [0,1] interval by dividing by the
maximum value for each parameter.

3.5.5 Asymmetric Cost Regularization
Using the SVM methodology with asymmetric penalties (Figure 3.3), C2 is
the penalty incurred when a patient with an admit label is misclassified (a
data example justifying admission is labeled for discharge—a false negative)
and C1 is the penalty incurred when a patient with a discharge label is
misclassified (a data example justifying discharge is labeled for admission—
a false positive).
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Table 3.2 Features Identified after Preprocessing of Data Set

Variable Variable Domain Variable Variable Domain

Age Positive integers Radiation to arms Two binary
variables

Number of visits Positive integers Radiation of pain Five binary
variables

High pulse Binary variable Cardiac exam
findings

Three binary
variables

Normal pulse Binary variable Associated
symptoms

Six binary
variables

Low pulse Binary variable Cocaine abuse Binary variable
High systolic Binary variable Amphetamine

abuse
Binary variable

Low systolic Binary variable Personal medical
history

Eight binary
variables

High diastolic Binary variable Family medical
history

Binary variable

Low diastolic Binary variable ECG findings Ten binary
variables

Fever Binary variable Initial cardiac
markers

Three real-valued
variables

Ethnicity Five binary
variables

Urine cocaine
detected

Binary variable

Female Binary variable Medication
history

Eight binary
variables

Chest pain
duration

Positive integers ACITIPI score Real-valued
variable

Time since onset Positive integers Goldman score Positive integers
Location of chest

pain
Eight binary

variables
Chest pain

constant
Binary variable

Involvement
of arms

Two binary
variables

Relationship
to palpation

Binary variable

Involvement
of jaw

Binary variable Change with
exertion

Binary variable

Involvement
of legs

Binary variable Chest pain main Binary variable

Involvement
of back

Binary variable Qualityof pain Binary variable

3.5.6 Choosing a Kernel
The kernel is the partition used to separate data instances in the feature
space. In our case, the feature space has 88 dimensions. The data set is not
completely separable with a linear kernel for any value of C1 or C2. Con-
sequently, we considered nonlinear feature spaces including radial basis
and polynomial kernels. We used two methods to select and construct
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kernels (K): we selected kernels to minimize alignment (A) to each other
while maximizing alignment of the component kernels to the data (Y (i)).
For the second method of kernel selection, we iterated over different types
of kernels in preprocessing step to choose the kernel, which maximized
the objective function of the dual. The definition of alignment used is att-
ributable to Cristianini et al.46

A
(
Ki , YY T

) =
〈
Ki , YY T

〉

√
〈Ki , Ki〉

〈
YY T , YY T

〉 Linear kernel : XX T

A
(
Ki , Kj

) = 〈Ki , Ki〉√〈Ki , Ki〉 〈Ki , Ki〉 Radial basis kernel:

exp−
{[
γ
(
xi − xj

) (
xi − xj

)]T
}

where Ki and Ki are kernel matrices Polynomial kernel:

K(X ) = (XX T + 1
)p

XX T

In performing this task, three kernels were considered (with the under-
standing that the linear kernel is a degenerate case of the radial basis ker-
nel). The alignment method is well suited to selecting the best value for
p of the polynomial kernel.

3.5.7 Setting Parameter Values
The values of C1, the linear function C2 = f (C1), and the value gamma (γ )
for the radial basis kernel are not known a priori. Furthermore, of the three
fundamental kernel forms considered, nothing clearly identified one kernel
as better than another. Therefore, we solved the following parameter opti-
mization problem with hold-out cross validation (HOCV) using 7.5 percent
of the data set:

arg max
θ

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

arg max
C1,f (C1),γ ,K (x)

{
(
μ(sensitivity)+ specificity

)
∣
∣
∣
∣max

α
W (α)

}

arg max
C1,f (C1),γ ,K (x)

{

(1− error)

∣
∣
∣
∣max

α
W (α)

}

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
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where

W (α) =
m∑

i=1

αi − 1

2

m∑

i=1

m∑

j=1

y(i)y(j)αiαj

(
x(i)
)T

x(j)

s.t.:
m∑

i=1

αiy
(i) = 0

0 ≤ αi ≤ C1 for y(i) = +1

0 ≤ αi ≤ C2 for y(i) = −1

μ ∈ {� : μ ∈ [1, 1.3]}

The variable μ above formalizes the notion that the model is intended to
emphasize sensitivity over specificity in the non-separable case. No mixed
kernels were considered in the course of this optimization. To solve the
parameter optimization problem, we performed a binary search over the
value space. We used varying proportions of the remaining data set (the
92.5 percent of data not used in the parameter optimization) to form the
training set used to optimize the feature weights in the dual optimization
problem.

3.5.8 Principal Components Analysis
We analyzed the data with and without dimensional reduction using prin-
cipal components analysis (PCA). Owing to CPU time limitations, we did
not optimize parameters in the reduced feature spaces.

3.5.9 Assessing the Accuracy of the Decision Function
The output from the optimization posed above is a vector of weights for
each of the 88 features identified in the data set. We applied the vector of
weights in the decision function h(x(i)) to data instances that were not used
for training. The output of the decision function is either +1 or −1:

h
(
x(i)
) = g

(
wT x(i) + b

) ∈ {1,−1} where g (z) =
{

1 if z ≥ 0
−1 otherwise

For a data instance and its label:
(
x(i), y(i)

)
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if
[
h
(
x(i)
)

y(i)
] =

{
1⇒ correct classification
−1⇒ incorrect classification

Whenever we encounter a new patient, one can create a feature vector for
the patient encounter, apply the decision function with the feature weight
vector obtained from the optimization problem, and classify the new patient
as either an admit or a discharge. By applying the decision function on the
portion of the data set that was not used to train the algorithm, we can
estimate the sensitivity and specificity of the classification rule given the
feature set used.

3.6 Results

3.6.1 Optimal Penalties (C∗1 and C∗2)
From the parameter optimization step, we estimated that C ∗1 = 2.0. The
functional relationship between C ∗2 and C ∗1 is C ∗2 = f ∗(C ∗1 ) = 32× C ∗1 . As a
validation method for the value of C ∗1 selected, we constructed a receiver
operator curve (ROC) over different training sample sizes for a set value of
C1 and C2 = f (C1). The largest area under the curve is achieved for values
approximately in the range of C1 = 2, C2 = 32×C1. The match is not exact,
but the proximity of the estimates validates the optimization results.

3.6.2 Performance
The best test set performance achieved 93.5 percent sensitivity and a
43.5 percent specificity after training with 30 percent of the data set. The
overall error rate (misclassification of either type—error = false posi-
tives + false negatives) was 27.5 percent. The sensitivity and specificity of
the feature weights on the training set were 94.6 percent and 46.4 percent,
respectively. Using an SVM with symmetric penalties on our data set, we
achieved 85 percent sensitivity and 75 percent specificity with an overall
error rate of 14 percent. There was no systematic pattern to the errors when
one takes into account that the asymmetric cost algorithm is designed to
bias towards a lower false negative rate.

3.6.3 Feature Selection
The true impact of feature selection could not be accurately assessed
because parameters were not optimized before applying PCA to the data.
Generally, feature selection performed best when the top ten or eleven
features were selected.
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3.7 Discussion
The data in the data set was highly non-separable. This is consistent with the
observations of experienced clinicians and the published literature on the
topic. In fact, this was the original motivation for an asymmetric cost SVM.
If the data set were perfectly separable, we could simply optimize for error
rate. Earlier attempts at risk stratification methods for patients presenting
to an ED with complaints potentially referable to ACS or another acute
process have also been unsuccessful in perfectly categorizing cases (either
retrospectively or prospectively).9,33,36,40,41,43,47–51 This general characteristic
of non-separability, more than any other, may be what makes the problem
of diagnosing concerning causes of chest pain in the ED one of the most
difficult decision-making problems in medicine.

The full potential of the asymmetric cost SVM was likely not realized in
this study because many parameters were not fully optimized before the
training run. Despite this, the asymmetric cost SVM was able to classify
patients into a category for discharge at a rate higher than current clinical
practice. The associated drop in sensitivity may not (depending on the
pretest assignment of disease probability) meet the standard of a posterior
probability of disease, which is less than 1 percent. The asymmetric cost
SVM, achieved a higher sensitivity than did a symmetric penalty SVM.
Although this came at the cost of a lower specificity, the use of asymmetric
penalties generated the desired behavior by preferentially tuning the fea-
ture weights to increase sensitivity. The higher error rate as sensitivity is
increased with an associated drop in specificity occurs because true posi-
tives (presence of ACS) are much less frequent than true negatives in any
data set that samples from a general population of patients with and without
disease.

Our analysis has several limitations. When optimizing parameters, the
training loop was terminated if it did not converge within 2000 runs.
Allowing further iterations or requiring convergence might improve our
results. One way to facilitate this is to incorporate an improvement to
Platt’s algorithm identified by Keerthi et al. that is particularly helpful
for large values of C (in our case, C1 and C2).52 Furthermore, more
analysis of the impact of different types of kernels, including com-
pound kernels, on the performance of the algorithm needs to be car-
ried out.

It is entirely possible that the feature space over which data was col-
lected was inadequate to facilitate accurate classification. There were, for
example, some patient distinctions routinely used by some clinicians, which
were not a part of the feature space. A consensus approach among expe-
rienced clinicians should be used to establish what types of data should
be collected. Additionally, the demographics of this data set is not the
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representative of most EDs in the United States. Thus, for example, the
feature weight estimates we derived may not apply to a suburban Bay
Area ED.

3.8 Summary
The purpose of this chapter was to demonstrate the application of a novel
variation on a non-Bayesian classification method that could be used in
clinical decision problems. Many decision makers are uncomfortable with
assigning utilities to outcomes and encoding probabilistic relationships
between variables under consideration because they believe that their
estimates are not accurate. Indeed, even for experienced decision mak-
ers in clinical medicine, such fears are often well founded.4,6,8,10,11,53,54 In
medical decision problems, these tasks are critical because errors of omis-
sion with regards to testing or treatment are usually penalized (in terms
of future costs and health outcomes) much more heavily than errors of
commission (unnecessary testing or treatment). The asymmetric penalty
SVM presented here provides a methodology whereby a clinician can
utilize a data-driven methodology to classify patients. This methodology
precludes the need for consensus probabilities and assumptions about
the relationships between parameters. The drawback of the methodol-
ogy is that the relationships between various features are not transparent.
This, however, does not make the optimized decision function any less
useful.

Appendix

Argument for a Biased
Classifier

The computations below by no means represent a proper cost-effectiveness
analysis. It is intended only as an introduction to how and why one might
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Ischemia

No significant
disease

Sensitivity

1-Sensitivity

1-Specificity

Specificity

Figure A.3.1 A simple decision tree for the detection of ACS (myocardial
ischemia).

want a biased classifier and why a simple notion of accuracy does not
fully capture the difficulties inherent to the decision problem. Based
upon and average age of presentation for patients with chest pain to
the ED of 50 years old, an average remaining life span of 25 years, a
3 percent discount rate that is applicable to both costs incurred and
QALYs, average settlement costs for a missed acute cardiac ischemic
event of $250,000,55,56 symmetric costs for immediate and delayed ther-
apy (a conservative assumption as the costs are likely greater for de-
lay of therapy with a missed diagnosis),22,57 a 25 percent six month
mortality for an unrecognized acute myocardial ischemic event, and
a 10 percent six month mortality for a recognized acute myocardial
event.

Assume risk neutrality for simplicity and that P (ischemia | chest pain,
in ED) = 0.11. With the assumptions noted above, the expected utility
analysis
shows that the biased classifier is preferred.
Biased classifier (asymmetric penalties) certain equivalent
CEQALYs = 17.52 QALYs
CEcost = $10, 973
Unbiased classifier (symmetric penalties) certain equivalent
CEQALYs = 17.43 QALYs
CECost = $15, 905
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Abstract Vaccination against infectious disease has been hailed as one
of the great public health achievements of the twentieth century. How-
ever, the United States Recommended Childhood Immunization Schedule
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is becoming increasingly complex, often requiring numerous separate
injections to be administered during a single well-baby office visit. To
address the issue of vaccine delivery complexity, vaccine manufacturers
have developed combination vaccines that immunize against several dis-
eases with a single injection. These combination vaccines are creating new
challenges, such as how these vaccines should be administered to ensure that
immunity is safely achieved. Furthermore, these vaccines are also creating
a combinatorial explosion of alternatives and choices for public health
policy-makers and administrators, pediatricians, and parents/guardians.
This chapter presents two discrete optimization models that illuminate
these alternatives and choices by selecting a vaccine formulary that min-
imizes the cost of fully immunizing a child and that limits the amount of
extraimmunization (i.e., extra doses of vaccine) for any given childhood
immunization schedule. The cost of vaccinating a child contributes to the
underimmunization of children, and extraimmunization poses biological
risks, amplifies philosophical concerns with vaccination, and creates an
unnecessary economic burden on society. This chapter also discusses the
computational complexity of these models, presents several optimiza-
tion algorithms—both exact and heuristic—for solving these models,
and provides a computational comparison of these algorithms using
the 2006 Recommended Childhood Immunization Schedule as well as
several randomly generated childhood immunization schedules that may
be representative of future childhood immunization schedules.

4.1 Motivation and Introduction
The World Health Organization (WHO) states that immunization against
infectious diseases is one factor that has had the greatest impact on
world health [28]. Immunization spares millions of children each year
from contracting potentially debilitating (and sometimes fatal) infectious
diseases, thereby avoiding an enormous cost burden (both tangible and
intangible) on the individual child, family, and society at large [11]. For
example, one estimate is that pediatric immunizations prevent three million
worldwide deaths in children each year [12]. Furthermore, pediatric immu-
nizations prevent an enormous cost burden (both tangible and intangible)
for individual children, families, and society at large. For example, the 2005
National Immunization Survey, administered by the Centers for Disease
Control and Prevention (CDC), estimates a savings of US$27 in direct and
indirect costs for every dollar spent on vaccinating against diphtheria,
tetanus, and pertussis [10].

Each year, based on recommendations from the Advisory Committee
on Immunization Practices (ACIP) and the American Academy of Family
Physicians (AAFP), the National Immunization Program (NIP) publishes a
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Recommended Childhood Immunization Schedule that outlines vaccination
requirements for children through adolescence [4]. The Recommended
Childhood Immunization Schedule (see Figure 4.1) outlines the vaccines
required to protect a child against several (currently 13) infectious diseases
that pose a risk to children living in the United States. This schedule includes
the number of required doses of each vaccine and the recommended age
for each dose (D1 = Dose 1, D2 = Dose 2, etc.). For example, polio
requires four doses of vaccine, where the third dose (D3) may be adminis-
tered at age six months, twelve months, fifteen months, or eighteen months.

Each vaccine dose is typically administered by injection during a sched-
uled well-baby checkup at a healthcare clinic. For example, an infant child
should receive a dose of vaccine for hepatitis B, diphtheria, tetanus, per-
tussis, Haemophilus influenzae type b, polio, and pneumococcus at their
two-month well-baby checkup, resulting in as many as five injections. Fur-
thermore, a fifteen-month-old child, under extreme conditions, could rec-
eive as many as eight injections in a single clinic visit. These examples
demonstrate that the Recommended Childhood Immunization Schedule
is becoming overly crowded and complex. Moreover, this situation will
only worsen in the future as new diseases emerge or new vaccines are

Period (age of child)

Disease
1

(Birth)

2

(1
month)

3

(2
months)

4

(4
 months)

5

(6
 months)

6

(12
months)

7

(15
months)

8

(18
months)

9

(24
months)

10

(4–6
years)

Hepatitis B D1 D2 D3

Diphtheria, tetanus, pertussis D1 D2 D3 D4 D5

Haemophilus influenzae type b D1 D2 D3 D4

Polio D1 D2 D3 D4

Measles, mumps, rubella D1 D2

Varicella D1

Pneumococcus D1 D2 D3 D4

Influenza D1 (yearly)

Hepatitis A D1 D2

Figure 4.1 United States 2006 Recommended Childhood Immunization Sched-
ule through age 6 (excluding recommendations for selected populations).
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developed. For example, four periods and three diseases have been added
to the Recommended Childhood Immunization Schedule since 1995, and
there are currently several vaccine products being marketed and tested for
use in children [8,10,19].

Weniger [33] discusses several options that address the issues of vaccine
injection overcrowding and schedule complexity. The most feasible (and
simplest) option is the development and use of combination vaccines—
a vaccine that combines several antigens (a substance that stimulates the
production of an antibody, i.e., toxins, bacteria, foreign blood cells, and
the cells of transplanted organs) into a single injection. Some combination
vaccines are already commonly used, such as the DTaP vaccine, which
combines diphtheria and tetanus toxoids with acellular pertussis vaccine.
The ideal combination vaccine would combine antigens for every disease
in the Recommended Childhood Immunization Schedule into a single vac-
cine, which could be administered at birth. However, developing such a
vaccine is highly unlikely based on financial and biological constraints. For
example, live vaccines (vaccines that inject living antigens) can interfere
with each other by competing for binding sites. Nonetheless, several pedi-
atric combination vaccines are now coming to market, and several more are
being developed and tested for licensing in the United States [13,19]. Com-
bination vaccines will alleviate the issue of vaccine injection overcrowding
and also offer economic opportunities by being more affordable per dose
and reducing the shipping, handling, and storage costs of vaccines [13].
However, combination vaccines also pose their own unique challenges,
such as which antigens should be combined and how should these vaccines
be administered to ensure that immunity is safely achieved and remains eco-
nomically reasonable. Moreover, combination vaccines offer pediatricians,
public health policy-makers and administrators, and parents/guardians add-
itional alternatives and choices on how to best immunize a child, and hence,
these choices further amplify the schedule complexity. In fact, as the Rec-
ommended Childhood Immunization Schedule continually evolves, new
combination vaccines will lead to a combinatorial explosion of alternatives
and choices for such individuals, each with a different cost. Therefore, det-
ermining the set of vaccines that minimize the cost of immunizing a child
will become more challenging, and, hence, creates a unique opportunity
for optimization methods to be used to help make informed decisions.

Optimization and other operations research techniques have been
used to address pediatric immunization problems. Most of this research
to date addresses the economics of pediatric vaccine formulary design,
combination vaccine pricing, and vaccine wastage [21,23]. Weniger et al. [34]
report the results of a pilot study that uses operations research methods
to assess the economic value of vaccine formularies—the set of vaccines
inventoried by an immunization clinic or pediatrician. Specifically, the
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Recommended Childhood Immunization Schedule for a subset of diseases
(diphtheria, tetanus, pertussis, Haemophilus influenzae type b, and hepat-
itis B) and a reduced set of periods (1 month, 2 months, 4 months,
6 months, 12–18 months, and 60 months) were modeled as an integer
program (IP). The objective of this IP was to assist decision makers in
determining the vaccine formulary that minimized the cost to fully immu-
nize a child against all five diseases. They describe how the model may be
used to determine the best value to vaccine purchasers and briefly describe
how operations research models might help determine the economic value
of new vaccines being researched and developed. Jacobson et al. [24]
present a more rigorous presentation of this pilot study and demon-
strate how the model selects different vaccine formularies depending
on the desired economic criteria. Sewell et al. [30] embed the IP from the
pilot study into a bisection algorithm [2] to “reverse engineer” the maximum
inclusion prices (the maximum price at which a vaccine remains part of the
optimal vaccine formulary) of four combination vaccines not yet licensed
in the United States. Sewell and Jacobson [29] present a rigorous descrip-
tion of this study, including the complete IP model. This study shows
how operations research can provide beneficial economic analysis to
the pharmaceutical companies that develop and manufacture vaccines
(see Refs. [21,31] for additional applications of this bisection algorithm).
Jacobson and Sewell [22] extended the bisection/IP algorithm approach by
including it with Monte Carlo simulation, thereby determining a probability
distribution for the price of the four combination vaccines.

This chapter demonstrates how discrete optimization models can be
used to address the cost of immunizing a child and the issue of extraim-
munization. Extraimmunization means that a child receives antigens for
a given disease over the recommended quantity and timing sequence.
Because combination vaccines reduce the number of required injections
and may be more economical, pediatricians, public health policy-makers
and administrators, and parents/guardians will likely choose combination
vaccines over multiple single-antigen vaccines. However, using combina-
tion vaccines may inject children with antigens they have already received
in the recommended quantity and timing sequence. For example, injecting a
child with a DTaP-HBV-IPV (diphtheria, tetanus, pertussis, hepatitis B, and
polio) combination vaccine at age of four months would provide extra-
immunization for hepatitis B, because (according to Figure 4.1) no dose of
vaccine is required at that age. Such extraimmunization poses biological
risks and amplifies philosophical concerns. Biologically, extraimmuniza-
tion of some antigens increases the risk of adverse side effects. Such is
the case with diphtheria and tetanus vaccines [7]. Philosophically, many
people challenge the safety and effectiveness of vaccinating children and
particularly object to the use of combination vaccines, because they believe
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that injecting children with multiple antigens simultaneously overwhelm
their immune system; extraimmunization due to combination vaccines only
increases these fears [9,13]. This philosophical barrier to vaccination is
an increasing concern for pediatricians and public health administrators.
For example, in a recent national survey of pediatricians, 54 percent had
encountered parents over a 12-month period who refused to vaccinate
their child, citing safety concerns as the top reason for this refusal [14].
In another survey, 70 percent of pediatricians had encountered a parent
in the 12 months preceding the survey who refused at least one immuni-
zation for their child [12]. In addition to these biological and philosophical
concerns, the economic toll of extraimmunization is significant. For exam-
ple, the annual societal cost burden of providing one extra dose of vaccine
for each child born in the United States is over $28 million, which assumes
a birth rate of 11,100 births per day (see Ref. [26]) and a vaccine cost of $7,
both of which are conservative estimates, where the vaccine cost estimates
are based on the federal contract purchase prices of the least expensive
pediatric vaccine available (see Ref. [3]).

Specifically, this chapter presents two optimization models that minimize
the cost of immunizing a child and that limit the amount of extraimmu-
nization for any given childhood immunization schedule, and is organized
as follows. Section 4.2 formally presents these two models (formulated as
decision problems and as a discrete optimization problems) that determine
the set of vaccines (i.e., a vaccine formulary) that should be used in a
clinical environment to satisfy any given childhood immunization sche-
dule at minimum cost or while restricting extraimmunization. Section 4.3
briefly discusses the computational complexity of the decision/discrete
optimization problems, and presents a description of a dynamic program-
ming algorithm and two heuristics for solving the discrete optimization
problems. Section 4.4 presents a computational comparison of these algo-
rithms and heuristics, while Section 4.5 presents a brief conclusion of the
models and issues being reported and discussed.

4.2 Models for Optimizing Pediatric
Vaccine Formularies

This section presents a model formulation for a decision problem and
a discrete optimization problem used to design a vaccine formulary that
addresses the cost of satisfying a given childhood immunization sche-
dule [16]. A model formulation for a decision problem and a discrete
optimization problem used to design a vaccine formulary that satisfies a
given childhood immunization schedule while restricting extraimmuniza-
tion is also presented [17]. Some simplifications and extensions of the
discrete optimization problems are also described.



Lim/Optimization in Medicine and Biology AU0563_C004 Final Proof Page 123 10.11.2007 03:10pm

Optimizing Pediatric Vaccine Formularies 123

Given a childhood immunization schedule, the first decision problem,
termed the Vaccine Formulary Selection with Limited Budget Problem (VF-
SLBP), asks whether it is possible to design a vaccine formulary within a
specified budget, and the second decision problem, termed the Vaccine
Formulary Selection with Restricted Extraimmunization Problem (VFSREP),
asks whether it is possible to design a vaccine formulary that restricts extra-
immunization for a specified set of diseases. These problems are now for-
mally stated.

4.2.1 Vaccine Formulary Selection with Limited
Budget Problem

Given

A set of periods, T = {1, 2, . . . , τ },
A set of diseases, D = {1, 2, . . . , δ},
A set of vaccines V = {1, 2, . . . , υ}, available to be administered to

immunize against the δ diseases,
The number of doses of a vaccine that must be administered for

immunization against the δ diseases, n1, n2, . . . , nδ,
The cost of each vaccine, c1, c2, . . . , cυ ,
A budget B,
A set of binary parameters that indicate which vaccines immunize

against which diseases; therefore, Ivd = 1 if vaccine v ∈ V immu-
nizes against disease d ∈ D, 0 otherwise,

A set of binary parameters that indicate the set of periods in which
a particular dose of a vaccine may be administered to immunize
against a disease; therefore, Pdjt = 1 if in time t ∈ T , a vaccine may
be administered to satisfy the jth dose, j = 1, 2, . . . , nd, requirement
for disease d ∈ D, 0 otherwise,

Question: Does there exist a set of vaccines from V that can be administered
over the periods in T such that these vaccines immunize against all the
diseases in D, at a total cost no greater than B (i.e., do there exist values
for the binary variables Xtv , t ∈ T , v ∈ V, where Xtv = 1 if vaccine v ∈ V
is administered in time t ∈ T , 0 otherwise, such that for all diseases d ∈ D,
�t∈T�v∈V PdjtXtvIvd ≥ 1 for dose j = 1, 2, . . . , nd and �t∈T�v∈V cvXtv ≤ B)?

4.2.2 Vaccine Formulary Selection with Restricted
Extraimmunization Problem

Given

Sets T = {1, 2, . . . , τ }, D = {1, 2, . . ., δ}, and V = {1, 2, . . ., υ}, as defined
in VFSLBP,
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Parameters {nd : d ∈ D}, {Ivd : v ∈ V, d ∈ D}, {Pdjt : d ∈ D, j =
1, 2, . . ., nd, t ∈ T }, and {mdt : d ∈ D, t ∈ T } as defined in VFSLBP,

A set of diseases where extraimmunization is permitted, DE ⊆ D, with
|DE| = δE,

A set of diseases where extraimmunization is not permitted, DNE =
D\DE, with |DNE| = δNE,

A set of binary parameters that indicate the set of periods in which no
dose of a vaccine may be administered to immunize against a disease
where extraimmunization is not permitted; therefore, Rdt = 1 if in
time t ∈ T , no dose of a vaccine may be administered to immunize
against disease d ∈ DNE, 0 otherwise, (i.e., for any disease d ∈ DNE

and time t ∈ T , Rdt = 1 if and only if Qdt = 0).

Question: Does there exist a set of vaccines from V that can be administered
over the periods in T such that these vaccines immunize against all the
diseases in D while restricting extraimmunization (i.e., do there exist values
for the binary decision variables Xtv, t ∈ T , v ∈ V, where Xtv = 1 if
vaccine v ∈ V is administered in time t ∈ T , 0 otherwise, such that for all
diseases d ∈ DE, �t∈T�v∈V PdjtXtvIvd ≥ 1 for dose j = 1, 2, . . ., nd, and for
all diseases d ∈ DNE, �t∈T�v∈VRdtXtvIvd = 0 and �t∈T�v∈VPdjtXtvIvd = 1 for
dose j = 1, 2, . . ., nd)?

In the formulations of VFSLBP and VFSREP, the given sets and parameters
correspond to a childhood immunization schedule together with budget
and vaccine cost information (for VFSLBP) or the specified set of diseases
for which extraimmunization is restricted (for VFSREP). Unless otherwise
stated, the phrase “Childhood Immunization Schedule” refers to an arbi-
trary general immunization schedule, whereas the phrase “Recommended
Childhood Immunization Schedule” refers to the published CDC immu-
nization schedule (depicted in Figure 4.1). Define Tdj = {t ∈ T : Pdjt = 1}
to be the time window for disease d ∈ D and dose j = 1, 2, . . ., nd, which
is the set of periods when dose j = 1, 2, . . ., nd, may be administered for
disease d ∈ D. Unless otherwise stated, assume that for all diseases d ∈ D
and doses j = 1, 2, . . ., nd, the periods in Tdj are consecutive. Moreover,
assume that the time windows for disease d ∈ D are pairwise mutually
exclusive (i.e., Tdi ∩ Tdj = Ø for all i, j = 1, 2, . . ., nd, i �= j). This means
that the set of periods when dose j may be administered for disease d ∈ D
does not overlap with the set of periods when dose i may be administered,
for all doses i �= j . Observe, for a given disease d ∈ D, that all of the time
windows in the 2006 Recommended Childhood Immunization Schedule
are pairwise mutually exclusive, though this was not always the case in
past schedules. For example, hepatitis B did not have pairwise mutually
exclusive time windows in the 2005 Recommended Childhood Immu-
nization Schedule [5]. Hall et al. [16,17] relax the assumption of pairwise
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mutually exclusive time windows to generalize these models. Note that
the above assumption implies that the doses for all diseases d ∈ D are
sequentially ordered, which means that for all doses j , k = 1, 2, . . ., nd,
j < k, there exists a time t ′ ∈ T such that Pdjt′ = 1 and Pdkt = 0 for all
t ≤ t ′, t ∈ T . Define the valency, denoted by Val(v), as the number of
antigens contained in vaccine v ∈ V, and hence, Val(v) = �d∈D Ivd. Com-
bination vaccines are often referred to as multivalent vaccines, or simply
multivalents, because Val(v) ≥ 2 when v ∈ V is a combination vaccine.
Furthermore, vaccine v ∈ V, where Val(v) = 1, 2, 3, 4, 5, or 6 is often
referred to as a monovalent, bivalent, trivalent, tetravalent, pentavalent,
or hexavalent vaccine, respectively. In practice, the dose parameters, nd

and mdt , and schedule parameters, Pdjt , depend on biological constraints
and are determined by the recommendations of the ACIP and AAFP [6].
Note that schedule parameters Pdjt specify the periods when vaccination is
permitted (or useful) for disease d ∈ D, while the schedule parameters Rdt

(in VFSREP) specify the periods when vaccination is restricted for disease
d ∈ DNE. For example, assuming disease d = hepatitis B ∈ DNE, Figure 4.1
implies Pdjt = 1(0) for time t = 1, 2, 3, 5, 6, 7, 8(4, 9, 10) for some dose
j = 1, 2, 3, and Rdt = 1(0) for time t = 4, 9, 10(1, 2, 3, 5, 6, 7, 8).

In the formulation of VFSLBP, cv is a general parameter that quantifies
the economic cost of vaccine v ∈ V. For example, Weniger et al. [34] con-
sidered the actual vaccine purchase price, the cost of preparing the vaccine
by medical staff, and the cost of administration (needle/syringe, needle-free
injections, or oral) for a given vaccine v ∈ V. The question in VFSLBP asks
if there exists a vaccine formulary administered over the periods in T that
satisfies a given childhood immunization schedule and is within the given
budget B (i.e., a variable assignment for the binary variables Xtv, for all
periods t ∈ T and vaccines v ∈ V, that satisfies the individual dose require-
ments [�t∈T�v∈VPdjtXtvIvd ≥ 1 for dose j = 1, 2, . . ., nd] for each disease
d ∈ D, and the budget constraint [�t∈T�v∈VcvXtv ≤ B]).

In the formulation of VFSREP, the set DNE is the set of diseases where
extraimmunization is restricted based on biological or philosophical con-
straints, and, hence, may change for each child, on a case-by-case basis.
The question in VFSREP asks if there exists a vaccine formulary adminis-
tered over the periods in T that satisfies the given childhood immunization
schedule and restricts extraimmunization for the diseases in the set DNE

(i.e., a variable assignment for the binary decision variables Xtv, for all
periods t ∈ T and vaccines v ∈ V, that satisfies the per dose requirements
[�t∈T�v∈VPdjtXtvIvd ≥ 1 for dose j = 1, 2, . . ., nd] for each disease d ∈ DE,
and does not exceed the dosage requirements [�t∈T�v∈VPdjtXtvIvd = 1 for
dose j = 1, 2, . . ., nd] or provide a dose in a period when no dose of a
vaccine may be administered [�t∈T�v∈V RdtXtvIvd = 0] for each disease
d ∈ DNE).
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Both decision problems VFSLBP and VFSREP can be addressed by
solving a discrete optimization problem. More specifically, the following
binary integer program can be used to answer VFSLBP.

4.2.3 Integer Programming Model for Vaccine Formulary
Selection with Limited Budget Problem

The Integer Programming Model for VFSLBP is represented as VFSLBP(O).

Min
∑

t∈T

∑

v∈V
cvXtv, (4.1)

s.t.
∑

t∈T

∑

v∈V
PdjtXtvIvd ≥ 1 for all d ∈ D, j = 1, 2, . . ., nd, (4.2)

Xtv ∈ {0, 1} for all t ∈ T , v ∈ V, (4.3)

where sets T , D, and V, parameters {cv}, {nd}, {Pdjt}, and {Ivd}, and variables
{Xtv} are defined in VFSLBP.

The objective function given by Equation 4.1 minimizes the total cost
of the vaccine formulary subject to the dose requirements for each disease
d ∈ D. Therefore, if the minimum total cost is less than or equal to the
specified budget B, then the answer to VFSLBP is yes. Constraint given
by Equation 4.2 ensures that for each disease d ∈ D, at least one vaccine
that provides immunization for disease d ∈ D is administered in some
period when dose j = 1, 2, . . ., nd may be administered. Constraint given
by Equation 4.3 is the binary requirement for the decision variables.

To describe the discrete optimization problem for VFSREP, several add-
itional parameters and variables are needed. Let

ρd ∈+ be the weight of extraimmunization for disease d ∈ DNE for all
time t ∈ T such that

Pdjt = 1 for some dose j = 1, 2, . . ., nd (i.e., in periods when vaccination
is permitted)

γd ∈ Q+ be the weight of extraimmunization for disease d ∈ DNE for all
periods t ∈ T such that Rdt = 1 (i.e., in periods when vaccination is
restricted),

ZP
dj ∈ Z+ ∩ {0} be the number of extra vaccine doses administered for
disease d ∈ DNE in all periods t ∈ T such that Pdjt = 1 (i.e., in periods
when vaccination is permitted), and
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ZR
d ∈ Z+ V{0} be the number of extra vaccine doses administered for
disease d ∈ DNE in all periods t ∈ T such that Rdt = 1, (i.e., in
periods when vaccination is restricted)

where Q+ and Z+ V{0} correspond to the set of all positive rational num-
bers and the set of all nonnegative integers, respectively. Therefore, the
following integer program can be used to answer VFSREP.

4.2.4 Integer Programming Model for Vaccine Formulary
Selection with Restricted Extraimmunization Problem

The Integer Programming Model for VFSREP is represented as VFSREP(O).

Min
∑

d∈DNE

⎡

⎣ρd

⎛

⎝
nd∑

j=1

ZP
dj

⎞

⎠+ γdZR
d

⎤

⎦ , (4.4)

s.t.

∑

t∈T

∑

v∈V
PdjtXtvIvd ≥ 1 for all d ∈ DE, j = 1, 2, . . . , nd, (4.5)

∑

t∈T

∑

v∈V
PdjtXtvIvd − ZP

dj = 1 for all d ∈ DNE, j = 1, 2, . . . , nd, (4.6)

∑

t∈T

∑

v∈V
RdtXtvIvd − ZR

d = 0 for all d ∈ DNE, (4.7)

Xtv ∈ {0, 1} for all t ∈ T , v ∈ V, (4.8)

ZP
dj ∈ Z+ V{0} for all d ∈ DNE, j = 1, 2, . . . , nd, (4.9)

ZR
d ∈ Z+ V{0} for all d ∈ DNE, (4.10)

where sets T , D, DNE and V, parameters {nd}, {Ivd}, {Pdjt}, and {Rdt}, and
variables {Xtv} are defined in VFSREP.

The objective function given by Equation 4.4 minimizes the total
weighted amount of extraimmunization in the vaccine formulary subject
to the dose requirements for each disease d ∈ D and extraimmunization
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restrictions for each disease d ∈ DNE. The objective function weights are
subjective, and hence, allow the model user to weight extraimmunization
differently for each disease d ∈ DNE or for periods when vaccination is
permitted versus when vaccination is restricted. For example, a pediatrician
may weigh those diseases that pose biological risks from extraimmunization
more heavily. In the non-weighted case (i.e., ρd = γd = 1 for all disease
d ∈ DNE), the objective function minimizes the total number of extra doses
administered for all diseases d ∈ DNE. In any case, if the minimum total
weighted amount of extraimmunization equals zero, then the answer to
VFSREP is yes. Constraint given by Equation 4.5 ensures that for each
disease d ∈ DE, at least one vaccine that provides immunization for disease
d ∈ D is administered in some period when dose j = 1, 2, . . . , nd may
be administered. Similarly, Constraint given by Equation 4.6 ensures that
for each disease d ∈ DNE, exactly one vaccine that provides immunization
for disease d ∈ D is administered in some period when dose j = 1, 2, . . . , nd

may be administered, plus any extra doses that are administered in the
periods when dose j = 1, 2, . . . , nd is permitted. Finally, constraint given
by Equation 4.7 ensures that the number of doses administered in periods
when vaccination is restricted equals zero, plus any extra doses that are
administered in the periods when vaccination is restricted. Constraints
given by Equations 4.8 through 4.10 are the binary and integer constraints
on the respective decision variables.

4.3 Computational Complexity, Algorithms,
and Heuristics

This section briefly discusses the computational complexity of VFSLBP and
VFSREP, and presents a description of an exact dynamic programming algo-
rithm and two heuristics for solving the discrete optimization problems in
Section 4.2.

VFSLBP and VFSREP are NP-complete in the strong sense [15–17]. There-
fore, in the worst case, both these problems are intractable, which means it
is likely that a significant amount of computing effort will be needed to find
the optimal vaccine formulary for a given childhood immunization sched-
ule. In fact, both VFSLBP and VFSREP remain NP-complete even when the
sets T , D, and V, or when dose (nd, d ∈ D) and cost (cv, v ∈ V) parameters
are significantly restricted (see Refs. [16,17]). However, there exist special
cases of VFSLBP and VFSREP that are solvable in polynomial time [16,17].
These polynomial special cases occur when the valency of the vaccine set is
restricted. For example, in the case of monovalent vaccines (i.e., Val(v) = 1
for all vaccines v ∈ V), the constraint matrix for VFSLBP(O) and VFSREP(O)
is totally unimodular, which implies that VFSLBP(O) and VFSREP(O) may
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be solved using linear programming [1,16,17]. Other polynomial special
cases occur when the flexibility in the childhood immunization schedule
is removed. For example, a childhood immunization schedule is said to
be tight if every required dose of vaccine for each disease d ∈ D may be
administered in exactly one period (i.e., for dose j = 1, 2, . . . , nd and dis-
ease d ∈ D, Pdjt = 1 for exactly one period t ∈ T ), and hence, a tight
childhood immunization schedule implies a less flexible childhood immu-
nization schedule (see Refs. [16,17] for detailed special cases of VFSLBP
and VFSREP).

In Section 4.2, VFSLBP(O) and VFSREP(O) are modeled as integer
programming (IP) problems, and hence, may be solved using several
well-known integer optimization techniques (such as branch and bound;
see Ref. [27]). Another useful and robust exact algorithm is dynamic pro-
gramming (DP). A DP algorithm for VFSLBP(O) and VFSREP(O) is now
presented.

Given the stated set of inputs for VFSLBP(O) or VFSREP(O), the DP
algorithm solves each respective problem one period at a time beginning
at the first period (i.e., t = 1), and steps through each period in T until
t = τ . Therefore, the set T defines the stages of the DP algorithm. Define
mdt as the minimum number of vaccine doses required for disease d ∈ D
through period t ∈ T and Mdt as the maximum number of vaccine doses
required for disease d ∈ D through period t ∈ T .

Define a state in the DP algorithm as the number of doses of a vaccine
that have been administered for each disease through period t ∈ T . For-
mally, a state in period t ∈ T is a δ-dimensional vector St = (St1, St2, . . . , Stδ),
where Std is the number of doses of a vaccine that have been administered
for disease d = 1, 2, . . . , δ, in periods 1, 2, . . . , t . Therefore, the state space
in period t ∈ T is �t = {St ∈ Zδ : mdt ≤ Std ≤ Mdt for all d ∈ D}, where Z
denotes the set of all integers. The decision in period t ∈ T is which vac-
cines to administer that immunize against the diseases requiring vaccination
in this period (i.e., the binary decision variables Xtv), and is represented
by the δ-dimensional binary vector Yt = (Yt1, Yt2, . . . , Ytδ), where Ytd = 1
implies Xtv = 1 for some vaccine v ∈ V that immunizes against disease
d ∈ D (i.e., Ivd = 1). The decision space in period t ∈ T is defined as
�t = {Yt ∈ Bδ : 0 ≤ Ytd ≤ Mdt − md(t−1) for all d ∈ D}, where B denotes
the binary set {0, 1}. These states and decisions define the DP algorithm
system dynamics: St = St−1+Yt . Because Yt ∈ �t is a binary vector, a state
St ∈ �t is accessible from state St−1 ∈ �t−1 only if St– St−1 is also a binary
vector.

Given that Yt = St– St−1, then a transition from state St−1 ∈ �t−1 to
state St ∈ �t requires that a dose of vaccine be administered in period
t ∈ T for each disease in the set Dt = {d ∈ D : Ytd = 1}. The sets
Vt = {v ∈ V : Ivd = 1 and d ∈ Dt} (i.e., the set of vaccines that immunize
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against any disease that requires vaccination in period t ∈ T ) and Dt define
a sub-instance of VFSLBP(O) for VFSREP(O).

For VFSLBP(O), each such sub-instance is a set-covering problem
instance, termed SCP(Yt), with base set Dt and the collection of subsets Vt

(see Ref. [27] for a formal definition of the set-covering problem). The spe-
cific set-covering problem instance for period t ∈ T and decision Yt ∈ 	t

is given by SCP(Yt)

Min
∑

v∈Vt

cvXtv

s.t.

∑

vÎVt

XtvIvd ≥ 1 for all d ∈ Dt ,

Xtv ∈ {0, 1} for all v ∈ Vt .

To characterize the cost of decision Yt ∈ �t , which is the cost of transition-
ing from state St−1 ∈ �t−1 in period (t − 1) ∈ T to state St ∈ �t in period
t ∈ T , define the one-period cost function Ct(St−1, Yt) as the cost of vacci-
nation in period t ∈ T given state St−1 ∈ �t−1 and decision Yt ∈ �t . Note,
however, that this one-period cost in period t ∈ T depends only on decision
Yt ∈ �t , and hence, the optimal value of SCP(Yt) = Ct(St−1, Yt) = Ct(Yt).
Therefore, the optimal one-period cost over all possible decisions in period
t ∈ T is given by Min

Yt∈	t
Ct(Yt).

For VFSREP(O), each sub-instance is termed IP(Yt). To describe IP(Yt),
the following definitions are needed. Let

DEt = DE ∪ Dt and DNEt = DNE ∪ Dt for any period t ∈ T
ZP

dt ∈ Z+ ∩ {0} be the number of extra doses of vaccine administered
for disease d ∈ DNE in period t ∈ T such that Ytd = 1

ZR
dt ∈ Z+∩{0} be the number of extra doses of vaccine administered for
disease d ∈ DNE in period t ∈ T such that Ytd = 0 (i.e., for disease d
∈ DNE\DNEt).

The specific sub-instance for VFSREP(O) for period t ∈ T and decision
Yt ∈ �t is given by IP(Yt)

Min
∑

d∈DNEt

ρdZP
dt +

∑

d∈DNE\DNEt

γdZR
dt

s.t.
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∑

v∈V
XtvIvd ≥ 1 for all d ∈ DEt ,

∑

v∈Vt

XtvIvd − ZP
dt = 1 for all d ∈ DNEt ,

∑

v∈Vt

XtvIvd − ZR
dt = 0 for all d ∈ DNE\DNEt ,

Xtv ∈ {0, 1} for all v ∈ Vt ,

ZP
dt , ZR

dt ∈ Z+ V{0} for all d ∈ DNE.

To characterize the cost of decision Yt ∈ �t , which is the cost of transition-
ing from state St−1 ∈ �t−1 in period (t − 1) ∈ T to state St ∈ �t in period
t ∈ T , define the one-period cost function Ct(St−1, Yt) as the amount of
extraimmunization in period t ∈ T given state St−1 ∈ �t−1 and decision
Yt ∈ �t . Note, however, that this one-period cost in period t ∈ T depends
only on decision Yt ∈ �t , and hence, the optimal value of IP(Yt) = Ct(St−1,
Yt) = Ct(Yt). Therefore, the optimal one-period value over all possible
decisions in period t ∈ T is given by Min

Yt∈�t
Ct(Yt).

For VFSLBP(O), define Zt(St) as the minimum cost of a vaccine formu-
lary that immunizes against all diseases through period t ∈ T subject to the
number of required doses at the end of time t ∈ T being equal to St ∈ �t .
Similarly, for VFSREP(O), define Zt(St) as the minimum weighted (as de-
fined by ρd and γd for disease d ∈ DNE) amount of extraimmunization of a
vaccine formulary that immunizes against all diseases through the period
t ∈ T subject to the number of required doses at the end of period t ∈ T
being equal to St ∈ �t . Therefore, the DP optimality equation is given by
the recurrence relation

Zt(St) = Min
Yt∈	t ,St−1∈�t−1:St=St−1+Yt

{Ct(Yt)+ Zt−1(St−1)}.

Furthermore, the optimal value of the vaccine formulary that satisfies a
given childhood immunization schedule is given by

z∗ = Min
Sτ ∈�τ

Zt(St),

where �τ is the state space for the final period τ ∈ T . The DP algorithm
for VFSLBP(O) and VFSREP(O) is now formally given.



Lim/Optimization in Medicine and Biology AU0563_C004 Final Proof Page 132 10.11.2007 03:10pm

132 Optimization in Medicine and Biology

4.3.1 Dynamic Programming Algorithm for VFSLBP(O)
and VFSREP(O)

Step 1 Initialize

a. Initial state, S0← 0 (the δ-dimensional zero vector)
b. Initial extraimmunization contribution, Z0(S0)← 0
c. Set md0, Md0← 0 for all d ∈ D
d. Initial stage, t ← 1

Step 2 Compute

Zt(St) = Min
Yt∈	t ,St−1∈�t−1:St=St−1+Yt

{Ct(Yt)+ Zt−1(St−1)}

for each state St ∈ �t .

Step 3 If t < τ , then t ← t + 1 and return to Step 2. Else, stop and return
z∗ = Min

Sτ ∈�τ
Zt(St).

The worst case complexity of the DP algorithm is exponential in the
cardinality of the disease set D [16,17]. This is not surprising, as the
DP algorithm solves VSFLBP(O) and VFSREP(O) to optimality. However,
the DP algorithm offers several advantages, both theoretically and com-
putationally. First, this algorithm is efficient in practice with the 2006
Recommended Childhood Immunization Schedule (see Section 4.4), as this
schedule yields a reasonable state/decision space, and the sub-instances in
each period t ∈ T are small. Second, the DP algorithm offers insight into
the theoretical structure of VFSLBP and VFSREP. For example, the fact that
the DP algorithm for VFSLBP(O) yields SCP instances in each period allows
one to exploit existing theory and algorithms for this problem. Third, the
structure of the DP algorithm is ideally suited to solve partial childhood
immunization schedules that arise when a child has already been par-
tially immunized and then reenters the healthcare system to complete the
immunization schedule (this problem is termed the schedule completion
problem). Fourth, the structure of the DP algorithm makes it easier to
impose restrictions that are schedule-specific into each sub-instance (see
Ref. [31] for some of the restrictions that are specific to the Recommended
Childhood Immunization Schedule). Last, the structure of the DP algorithm
is well suited for solving VFSLBP(O) or VFSREP(O) related problems that
include stochastic variations. For example, during a given time t ∈ T , a
parent/guardian may refuse a particular dose of vaccine if the number
of injections required is unreasonably high. Therefore, as each vaccine
is administered, the probability that a parent/guardian refuses another
injection increases (this problem is termed the balking problem).

Given the computational complexity of VFSLBP and VFSREP, it is useful
(even necessary) to design heuristics that do not guarantee optimality but
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execute in time that is polynomial in the size of the inputs. Two heuristics
for VFSLBP(O) and VFSREP(O) are now presented.

The first heuristic uses the solution from a linear program (LP) to con-
struct a feasible integer solution to VFSLBP(O) or VFSREP(O). This tech-
nique has been applied to several other well-known discrete optimization
problems [18]. Relaxing the binary constraint for VFSLBP(O) yields the LP
relaxation

Min
∑

t∈T

∑

v∈V
cvXtv

s.t.

∑

t∈T

∑

v∈V
PdjtXtvIvd ≥ 1 for all d ∈ D, j = 1, 2, . . ., nd

Xtv ≥ 0 for all t ∈ T , v ∈ V.

Similarly, relaxing the binary and integer constraints for VFSREP(O) yields
the LP relaxation

Min
∑

d∈DNE

⎡

⎣ρd

⎛

⎝
nd∑

j=1

ZP
dj

⎞

⎠+ γdZR
d

⎤

⎦

s.t.

∑

t∈T

∑

v∈V
PdjtXtvIvd ≥ 1 for all d ∈ DE, j = 1, 2, . . ., nd,

∑

t∈T

∑

v∈V
PdjtXtvIvd − ZP

dj = 1 for all d ∈ DNE, j = 1, 2, . . . , nd,

∑

t∈T

∑

v∈V
RdtXtvIvd − ZR

d = 0 for all d ∈ DNE,

0 ≤ Xtv ≤ 1 for all t ∈ T , v ∈ V,

ZP
dj ≥ 0 for all d ∈ DNE, j = 1, 2, . . . , nd,

ZR
d ≥ 0 for all d ∈ DNE.
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Let X ∗LP denote the optimal decision vector for the Xtv variables in the
respective LP relaxation. A simple heuristic would be to round each
fractional variable in the decision vector X ∗LP that is greater than some
threshold value 1/α. For example, a suitable choice is α = maxd∈D αd,
where αd = (�v∈VIvd)

(
max

j=1,2,...,nd
�t∈T Pdjt

)
(see Refs. [16,17].). However, if X ∗LP

contains several fractional variables, then this technique tends to round
too many variables to one, thereby yielding a poor solution. Instead
of rounding all variables greater than or equal to the 1/α threshold, it
seems reasonable to round only a few variables with fractional values
close to one, because these variables are more likely to equal one in the
optimal integer solution. The MAX Rounding heuristic limits the num-
ber of rounded variables by selecting the variables with large fractional
values.

To present the MAX Rounding heuristic, some additional notation is
required. Define D = {(d, j) : d ∈ D, j = 1, 2, . . ., nd} to be the set of all
diseases ordered by dose, where |D| = �δ

d=1nd. For all periods t ∈ T and
vaccines v ∈ V, define Ctv = {(d, j) ∈ D : Ivd = 1 and Pdjt = 1}, which
specifies the diseases and dose that vaccine v ∈ V immunizes against in
period t ∈ T . Therefore, Ctv ⊆ D for all periods t ∈ T and vaccines
v ∈ V. Furthermore, in the case when all diseases d ∈ D have mutually
exclusive time windows, at most one (d, j) ∈ D for all diseases d ∈ D is
contained in any set Ctv because, for a given disease d ∈ D and period
t ∈ T , Pdjt = 1 for at most one dose j = 1, 2, . . ., nd, and hence, each
set Ctv does not contain multiple doses for any disease d ∈ D. Lastly,
let ftv = X ∗LPtv

(0) if X ∗LPtv
≥ 1/α(< 1/α) for all periods t ∈ T and vac-

cines v ∈ V, which specifies the value of vaccine v ∈ V in period t ∈ T .
Therefore, the MAX Rounding heuristic limits the number of rounded vari-
ables by greedily selecting (at each iteration) the most valuable available
vaccine v ∈ V that immunizes against the most disease doses (not yet
covered) in period t ∈ T (i.e., rounds the variable X ∗LPtv

that maximizes
ftv · |Ctv|) until every disease dose (d, j) ∈ D is covered by some vac-
cine v ∈ V in period t ∈ T . The MAX Rounding heuristic is now formally
given.

4.3.2 MAX Rounding Heuristic for VFSLBP(O)
and VFSREP(O)

Step 1 Initialize

a. Solve the respective LP relaxation of VFSLBP(O) or VFSREP(O)
b. ftv ← X ∗LPtv

(0) for all t ∈ T , v ∈ V such that X ∗LPtv
≥ (<)1/α

c. Xtv ← 0 for all t ∈ T and v ∈ V
d. Ĉtv ← Ctv for all t ∈ T and v ∈ V
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Step 2 While C =⋃{tv:Xtv=1} Ctv �= D do

a. (t ′, v′) ← arg max
t∈T ,v∈V

ftv · |Ĉtv| (select the nonempty set Ĉtv with the

largest fractional value times the number of disease doses covered
by vaccine v ∈ V in period t ∈ T )

b. Xt′v′ ← 1 (administer vaccine v′ ∈ V in period t ′ ∈ T )
c. Ĉtv ← Ĉtv\Ĉt′v′ for all t ∈ T and v ∈ V (remove all the disease doses

covered by vaccine v′ ∈ V in period t′ ∈ T from all remaining sets)

Step 3 For all d ∈ DNE (for VFSREP(O) only)

a. For all j = 1,2,…,nd ZP
dj ←

∑

t∈T

∑

v∈V
PdjtXtvIvd − 1

b. ZR
d ←

∑

t∈T

∑

v∈V
RdtXtvIvd

Step 4 Compute and return �
t∈T

�
v∈V

cvXtv (for VFSLBP(O)) or �d∈DNE
[

ρd

(
nd
�
j=1

ZP
dj

)

+ γdZR
d

]

(for VFSREP(O))

The MAX Rounding heuristic executes in O(TLP +|D|τυ) time, where TLP

is the time required to solve the LP relaxation of VFSLBP(O). Furthermore, the
MAX Rounding heuristic returns a feasible solution, because every iteration
of the while loop (i.e., Step 2) administers a vaccine that satisfies at least one
dose requirement for some disease d ∈ D (i.e., every iteration covers at least
one (d, j) ∈ D). Moreover, MAX Rounding heuristic is an α-approximation
algorithm for VFSLBP(O) and VFSREP(O) (see Refs. [16,17]), which means
that the algorithm runs in polynomial time and returns a solution no worse
than α · z∗, where z∗ is the optimal value of VFSLBP(O) or VFSREP(O).

The second heuristic for VFSLBP(O) and VFSREP(O) uses an intuitive
greedy approach and does not require the solution of a linear program,
which (in theory) should be more efficient. The Greedy heuristic for
VFSLBP(O) iteratively selects the lowest cost available vaccine that imm-
unizes against the most disease doses, while the Greedy heuristic for
VFSREP(O) iteratively selects the vaccine that incurs the smallest penalty
for extraimmunization and immunizes against the most disease doses.
Specifically, the extraimmunization penalty for vaccine v ∈ V in time t ∈ T
is Wtv = ∑

{d∈D:Ivd=1}
wdt , where

wdt =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρd if d ∈ DNE, (d, j) ∈ Ctv

for some j = 1, 2, . . . , nd, and (d, j) ∈ C = ∪tv:Xtv=1Ctv

γd if d ∈ DNE, (d, j) /∈ Ctv for some j = 1, 2, . . . , nd

0 otherwise,
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because the penalty for extraimmunization is ρd if dose requirement j =
1, 2, . . ., nd for disease d ∈ DNE is satisfied by some vaccine in an earlier
iteration, γd if vaccine v ∈ V immunizes against disease d ∈ DNE but does
not satisfy some dose requirement in period t ∈ T , or zero for all diseases
d ∈ DNE such that vaccine v ∈ V does not provide immunization, (i.e.,
Ivd = 0) and for all diseases d ∈ DE. Using the same notation from above
for D = {(d, j) : d ∈ D, j = 1, 2, . . ., nd} and Ctv = {(d, j) ∈ D : Ivd = 1 and
Pdjt = 1} for all periods t ∈ T and vaccines v ∈ V, the Greedy heuristics are
now formally given.

4.3.3 Greedy Heuristic for VFSLBP(O)
Step 1 Initialize

a. Xtv ← 0 for all t ∈ T and v ∈ V
b. Ĉtv ← Ctv for all t ∈ T and v ∈ V

Step 2 While C = ⋃

{tv:Xtv=1}
Ctv �= D do

a. (t ′, v′) ← arg min
t∈T ,v∈V

cv/|Ĉtv| (select the nonempty set Ĉtv with the

smallest cost per disease doses covered by vaccine v ∈ V in period
t ∈ T )

b. Xt′v′ ← 1 (administer vaccine v′ ∈ V in period t ′ ∈ T )
c. Ĉtv ← Ĉtv\Ĉt′v′ for all t ∈ T and v ∈ V (remove all the disease

doses covered by vaccine v′ ∈ V in period t ′ ∈ T from all remaining
sets)

Step 3 Compute and return �t∈T�v∈VcvXtv

4.3.4 Greedy Heuristic for VFSREP(O)
Step 1 Initialize

a. Xtv ← 0 for all t ∈ T and v ∈ V
b. Ĉtv ← Ctv for all t ∈ T and v ∈ V

Step 2 While C = ⋃

{tv:Xtv=1}
Ctv �= D do

a. Compute Wtv for all t ∈ T and v ∈ V (compute extraimmunization
penalty for vaccine v ∈ V in period t ∈ T )

b. (t ′, v′) ← arg min
t∈T ,v∈V

Wtv/|Ĉtv| (select the nonempty set Ĉtv with the

smallest penalty per disease doses covered by vaccine v ∈ V in
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period t ∈ T . Break ties by selecting vaccine v ∈ V that immunizes
against the most diseases in period t ∈ T )

c. Xt′v′ ← 1 (administer vaccine v′ ∈ V in period t ′ ∈ T )
Ĉtv ← Ĉtv\Ĉt′v′ for all t ∈ T and v ∈ V (remove all the disease doses
covered by vaccine v′ ∈ V in period t ′ ∈ T from all remaining sets)

Step 3 For all d ∈ DNE

a. For all j = 1, 2, . . ., nd

ZP
dj ←

∑

t∈T

∑

v∈V
PdjtXtvIvd − 1

b. ZR
d ←

∑

t∈T

∑

v∈V
RdtXtvIvd

Step 4 Compute and return
∑

d∈DNE

(
ρd

(∑nd
j=1 ZP

dj

)
+ γdZR

d

)
.

Both Greedy heuristics execute in O(|D|τυ) time, and return a feasible solu-
tion, because each iteration of the while loop (i.e., Step 2) administers a
vaccine that satisfies at least one dose requirement for some disease d ∈ D
(i.e., every iteration covers at least one (d, j) ∈ D). Therefore, the Greedy
heuristics should be more efficient than the MAX Rounding heuristics.
Moreover, the authors show that the Greedy heuristic for VFSLBP(O) is an
Hβ-approximation algorithm, where β ≡ max

t∈T ,v∈V
|Ctv| and Hk ≡ �k

i=1
1
i , the

sum of the first k elements in the harmonic series [16].

4.4 Computational Comparison of Algorithms
and Heuristics

This section reports computational results comparing the MAX Rounding
and Greedy heuristics and the DP algorithm presented in Section 4.3 for
both VFSLBP(O) and VFSREP(O). For comparative purposes, computa-
tional results are also reported for an IP branch and bound (IP B&B)
algorithm. The MAX Rounding and Greedy heuristics and the DP and IP
B&B algorithms were executed on two sets of test problems to demonstrate
their computational effectiveness and limitations. The first test problem is
the 2006 Recommended Childhood Immunization Schedule. The sec-
ond set of test problems are randomly generated based on hypothetical
future childhood immunization schedules. The size of these randomly
generated childhood immunization schedules assumes that future Recom-
mended Childhood Immunization Schedules will expand to include more
diseases and periods, and hence, will require a larger number of both
monovalent and combination vaccines. These assumptions are reasonable,
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given the recent trends in expanding the schedule. For example, four
periods and three diseases have been added to the Recommended
Childhood Immunization Schedule since 1995, and there are currently
several vaccine products that are marketed and tested for use in children
[8,10,19].

For VFSLBP(O), the solution quality effectiveness measure θ is reported
for each heuristic, where θ = ZHeuristic/Z∗ and ZHeuristic is the objective func-
tion cost returned by the heuristic and Z∗ is the optimal objective function
cost (returned by the exact algorithms). The execution time (in CPU sec-
onds) is also reported for each heuristic and exact algorithm, which is the
efficiency-effectiveness measure. For VFSREP(O), the solution quality effec-
tiveness measure Z is the value of the objective function. Furthermore, for
all childhood immunization schedules, ρd = γd = 1 for all diseases d ∈ DNE,
and hence, Z specifies the number of extra vaccine doses administered. All
heuristics and exact algorithms were coded and executed in MATLABv7.0
on a 2.4 MHz Pentium IV with 1 GB of RAM including the IP B&B algorithm
(using default settings) from MATLAB’s optimization toolbox. The IP B&B
algorithm for VFSREP(O) used an open source mixed integer optimization
routine (see Ref. [32]).

The first test problem is the 2006 Recommended Childhood Immuniza-
tion Schedule displayed in Figure 4.1. Therefore, D = {1 = hepatitis B, 2 =
diphtheria–tetanus–pertussis, 3 = Haemophilus influenzae type b, 4 =
polio, 5 = measles–mumps–rubella, 6 = varicella, 7 = pneumococcus,
8 = influenza, 9 = hepatitis A} with dose vector n = (3, 5, 4, 4, 2, 1, 4, 1, 2),
because diphtheria, tetanus, and pertussis are considered one disease and
measles, mumps, and rubella are also considered one disease, and T =
{1, 2, . . ., 10}. The schedule parameters Pdjt for diseases d ∈ D, dose j =
1, 2, . . ., nd, and periods t ∈ T are all obtained from Figure 4.1. For exam-
ple, for disease d= 1 = hepatitis B and dose j = 2, Pdjt = 1(0) for periods
t = 2, 3(1, 4, 5, 6, 7, 8, 9, 10).

For VFSLBP(O), the vaccine set is V = {1 = {1}, 2 = {2}, 3 = {3}, 4 = {4},
5 = {5}, 6 = {6}, 7 = {7}, 8 = {8}, 9 = {9}, 10 = {2,3}, 11 = {1,3}, 12 = {1,2,4}}.
The parameters Ivd are indicated by the set V. For example, vaccine 1 is
the monovalent vaccine for disease 1 (hepatits B) and vaccine 12 is the
combination vaccine Pediarix® that immunizes against diseases 1 (hepa-
titis B), 2 (diphtheria–tetanus–pertussis), and 4 (polio). Three different
cost scenarios are evaluated. The first scenario only considers the act-
ual purchase price of the vaccines. In particular, the cost vector c =
(9.00, 12.75, 7.66, 10.42, 16.67, 52.25, 54.12, 9.71, 12.10, 24.62, 24.50, 38.34),
where cv, v = 1, 2, . . ., 12, is the federal contract purchase price (in U.S.
dollars) for vaccine v ∈ V [3]. The second scenario includes the purchase
price of the vaccine and a fixed injection cost of $10 per injection, and the
final scenario includes the purchase price, the fixed injection cost, and a
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Table 4.1 VFSLBP(O) Results for 2006 Recommended Childhood
Immunization Schedule

Scenario 1 Scenario 2 Scenario 3
Algorithm Z Time θ Z Time θ Z Time θ

MAX Rounding 499.05 0.13 1.00 736.77 0.13 1.02 796.77 0.13 1.02
Greedy 499.05 0.06 1.00 719.81 0.05 1.00 779.81 0.05 1.00
DP 499.05 0.32 719.81 0.30 779.81 0.31
IP B&B 499.05 0.91 719.81 0.92 779.81 0.92

preparation cost of $3 per injection. Table 4.1 reports the objective function
cost Z and execution time (in CPU seconds) for each heuristic and exact
algorithm and for each scenario. Table 4.1 also reports the solution quality
effectiveness measure θ for each heuristic.

Hall et al. [16] show that VFSLBP(O) is solvable in polynomial time when
all vaccines v ∈ V are monovalent vaccines, and hence, the results reported
in Table 4.1 for scenario 1 are not surprising, given that most vaccines v ∈ V
are monovalent. In fact, the combination vaccines are not competitively
priced when considering purchase price alone. The fixed costs considered
in scenarios 2 and 3 penalize the monovalent vaccines and make the com-
bination vaccines more economical. For example, the purchase prices for
monovalent vaccines 1, 2, and 4 sum to $32.17, which is less than the
$38.34 purchase price for the combination vaccine Pediarix (i.e., v = 12).
However, in scenario 2, the total cost of the combination vaccine Pediarix is
$48.34, whereas the total costs for monovalent vaccines 1, 2, and 4 sum to
$62.17. Observe the efficiency of the DP algorithm described in Section 4.3
compared to the IP B&B algorithm.

For VFSREP(O), two different sets of vaccines, V1 and V2, are evalu-
ated on two different sets of diseases that restrict extraimmunization, DNE1

and DNE2. The vaccine sets are V1 = {1 = {1}, 2 = {2}, 3 = {3}, 4 = {4},
5 = {5}, 6 = {6}, 7 = {7}, 8 = {8}, 9 = {9}, 10 = {2, 3}, 11 = {1, 3}, 12 =
{1, 2, 4}, 13 = {5, 6}} and V2={1={1}, 2={2, 3, 4}, 3={1, 9}, 4={4}, 5={5},
6 = {6}, 7 = {7}, 8 = {8}, 9 = {9}, 11 = {1, 3}, 12 = {1, 2, 4}, 13 = {5, 6}, 14 =
{1, 2, 3, 4}}, where V1 represents a set of pediatric vaccines currently lic-
ensed for use in the United States and V2 represents a set of pediatric
vaccine with fewer monovalent vaccines and more combination vaccines,
some of which are not yet licensed for use in the United States, but are
projected to be in the future. The parameters Ivd are indicated within the
sets V1 and V2, respectively. The disease sets are DNE1 = {1, 2, 3, 4} and
DNE2 = D = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Table 4.2 reports the solution quality
and execution time (in CPU seconds) for each heuristic and exact algo-
rithm and for each vaccine set and disease set combination.
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Table 4.2 VFSREP(O) Results for 2006 Recommended Childhood
Immunization Schedule

V1 and DNE1 V1 and DNE2 V2 and DNE1 V2 and DNE2

Algorithm Z Time Z Time Z Time Z Time

MAX Rounding 0 0.14 1 0.27 3 0.17 4 0.25
Greedy 0 0.09 0 0.11 1 0.09 1 0.11
DP 0 0.36 0 0.36 1 0.47 1 0.45
IP B&B 9.66 5.02 16.94 12.89

Hall et al. [17] show that VFSREP(O) is solvable in polynomial time when
all vaccines v ∈ V are monovalent vaccines or when there exists a corre-
sponding monovalent vaccine for every disease d ∈ D, and, hence, the re-
sults for the solution quality and execution time reported in Table 4.2 are not
surprising, given that most diseases have a corresponding monovalent vac-
cine (particularly in vaccine set V1). Furthermore, the MAX Rounding and
Greedy heuristics for VFSREP(O) were both more efficient than the exact
algorithms. In all cases, the Greedy heuristic returned the optimal solution.

Excluding the IP B&B algorithm for VFSREP(O), all heuristics and exact
algorithms for VFSLBP(O) and VFSREP(O) executed in less than a second.
However, as the next set of test problems will illustrate, this is unlikely to
occur for future Recommended Childhood Immunization Schedules, as the
schedule expands and more combination vaccines are licensed for use and
enter the market.

The second set of test problems for VFSLBP(O) considers hypothetical
future childhood immunization schedules. Eachheuristic andexact algorithm
wereexecutedon30 randomlygeneratedchildhood immunization schedules
with 15 periods, 75 vaccines, and 11 diseases. Therefore, each random
childhood immunization schedule reflects a gradual expansion in the sets D
(from9 to 11 diseases) and T (from10 to 15periods) and a significant increase
in the number of available vaccines, particularly, combination vaccines. In
each random childhood immunization schedule, 1 ≤ nd ≤ 5 for all disease
d ∈ D, 1 ≤ Val(v) ≤ 6 and cv ∼ U (10, 80) (uniformly distributed) for all
vaccines v ∈ V, and Pdjt = 1 for at most three periods t ∈ T for every disease
d ∈ D and dose j = 1, 2, . . ., nd. Table 4.3 reports the average μ and the
standard deviation σ for the execution time (in CPU seconds) and solution
quality θ averaged over the 30 random childhood immunization schedules.

The solutions returned by the MAX Rounding and Greedy heuristics
on average were within 7 percent of the optimal solution. Across all
30 randomly generated childhood immunization schedules, the optimal
solution was returned 15 times by at least one of these heuristics. The
exact algorithms required significantly more time to execute than the
heuristics (i.e., the least efficient heuristic MAX Rounding was seven times
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Table 4.3 VFSLBP(O) Results for Future Childhood
Immunization Schedule

Time θ

Algorithm μ σ μ σ

MAX Rounding 0.42 0.05 1.07 0.06
Greedy 0.24 0.03 1.06 0.07
DP 3.1 1.2
IP B&B 40.6 46.5

faster than the most efficient exact algorithm DP). Moreover, the IP B&B
algorithm, on average, required significantly more execution time than the
DP algorithm. Furthermore, the DP algorithm showed far less variability in
its execution time.

The second set of test problems for VFSREP(O) considers hypotheti-
cal near-term future childhood immunization schedules. Each heuristic and
exact algorithm were executed on 30 randomly generated childhood imm-
unization schedules with 15 periods, 30 vaccines, and 11 diseases. In each
random childhood immunization schedule, 1 ≤ nd ≤ 5 for all diseases
d ∈ D, 1 ≤ Val(v) ≤ 6 for all vaccines v ∈ V, and Pdjt = 1 for at most
three periods t ∈ T for every disease d ∈ D and dose j = 1, 2, . . ., nd. For
each randomly generated childhood immunization schedule, each heuris-
tic and exact algorithm was executed three times, where in execution 1, 2,
and 3, δNE = 4, 8, and 11, respectively. Table 4.4 reports the solution qual-
ity and execution time (in CPU seconds) averaged over the 30 random
childhood immunization schedules for each value of δNE. An additional
measure λ that indicates the number of childhood immunization schedules
that the respective heuristic or exact algorithm found the optimal solution
is also reported. The IP B&B algorithm found the optimal solution for λ
of the 30 random childhood immunization schedules, but exceeded the
default execution time limit (two hours) or default iteration limit (107) for
the remaining (30 − λ) random childhood immunization schedules. The

Table 4.4 VFSREP(O) Results for Future Childhood
Immunization Schedule

δNE = 4 δNE = 8 δNE = 11
Algorithm Z Time λ Z Time λ Z Time λ

MAX Rounding 0.70 0.80 25 7.53 0.83 4 16.77 0.85 0
Greedy 1.03 0.23 18 7.87 0.29 2 13.97 0.35 0
DP 0.43 1.74 30 4.77 1.80 30 10.33 1.81 30
IP B&B 0.43 518 30 4.48 1095 27 10.07 1767 27
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statistics reported in Table 4.4 are averaged over the λ random childhood
immunization schedules for which the IP B&B algorithms found the optimal
solution, which is why the average Z values for the IP B&B and DP algo-
rithms differ when δNE = 8 and 11.

The data reported in Table 4.4 shows that for VFSREP(O), the MAX
Rounding and Greedy heuristics found better solutions for δNE � δ. For the
smaller values of δNE, the MAX Rounding heuristic slightly outperformed the
Greedy heuristic, while the Greedy heuristic outperformed the MAX Round-
ing heuristic for δNE = δ. Across all values of δNE, the Greedy heuristic was
the most efficient compared with MAX Rounding and the DP and IP B&B
exact algorithms. The DP algorithm executed two to seven times slower
than the heuristics; however, the IP-MIN algorithm, on average, executed
approximately 300–1000 times slower than the DP algorithm. Furthermore,
the DP algorithm found the optimal solution for all 90 instances of VF-
SREP(O) reported in Table 4.4, with little sensitivity to the value of δNE.
Conversely, the IP B&B algorithm only found the optimal solution for 84
of the 90 instances of VFSREP(O) reported in Table 4.4, and the average
execution time for IP B&B algorithm more than tripled when δNE went from
four to eleven diseases.

The observed difference in execution time between the heuristics and
exact algorithms reported in Tables 4.3 and 4.4 could be problematic for
practical uses. For example, a Web page used to find a good vaccine for-
mulary for a given childhood immunization schedule would require an
algorithm to execute in real-time, because most Web users would termi-
nate a Web application that required several seconds or minutes to exe-
cute. Moreover, the difference in execution time between the heuristics
and exact algorithms will provide an efficient analysis of larger childhood
immunization schedules that may involve Monte Carlo simulation (see Ref.
[22]) or the balking problem (described in Section 4.3), where either of
these may require the solution of hundreds of thousands of VFSLBP(O) or
VFSREP(O) instances. Furthermore, the childhood immunization schedule
may need to be solved for each child, on a case-by-case basis, and hence,
efficient algorithms are needed to provide, in real-time, practical value for
the public health community. See Refs. [16,17] for more extensive compu-
tational results for both VFSLBP(O) and VFSREP(O).

4.5 Conclusion
This chapter presented two discrete optimization models that are used to
address the cost of immunizing a child and the issue of extraimmunization.
As more combination vaccines come to market and the Recommended
Childhood Immunization Schedule becomes more complex to include
more diseases and cover more periods, VFSLBP(O) and VFSREP(O) will
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capture the combinatorial explosion of alternatives for public health
policy-makers and administrators, vaccine manufacturers, pediatricians,
and parents/guardians by identifying vaccine formularies and schedules
that minimize the cost of fully immunizing a child and safely use com-
bination vaccines, which will help address safety concerns in pediatric
immunization, reduce costs, and reduce vaccine wastage associated with
extraimmunization.

In general, VFSLBP(O) and VFSREP(O) are NP-hard unless the vaccines,
schedule parameters, or disease set are significantly restricted. This chapter
presented a DP algorithm that solves VFSLBP(O) and VFSREP(O) to opti-
mality. In Section 4.4, this DP algorithm was compared computationally
to an IP B&B algorithm, and these results showed that the DP algorithm
was significantly more efficient (at least eight times faster). Furthermore, for
VFSREP(O), the execution time of the DP algorithm was insensitive to the
size of the set DNE (the average execution time remained nearly constant at
1.74 seconds when δNE = 4 to 1.81 seconds when δNE = 11), whereas the
execution time of IP B&B algorithm was sensitive to the size of the set DNE

(the average execution time tripled from 518 seconds when δNE = 4 to 1767
seconds when δNE = 11). However, for most of the randomly generated
childhood immunization schedules, both the DP and IP B&B algorithms
required at least twice as much time to execute when compared to the
execution time of the heuristics presented in Section 4.3. Moreover, the av-
erage execution time for each heuristic was less sensitive to increases in the
size of the childhood immunization schedule. These heuristics will allow
more efficient analysis of larger childhood immunization schedules and
practical analysis involving Monte Carlo simulation or finding an optimal
vaccine formulary for each child on a case-by-case basis, which will require
the solution of several unique VFSLBP(O) and VFSREP(O) instances.
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Abstract Resources to control the spread of human immunodeficiency
virus (HIV) are insufficient to meet all needs. To achieve the maximum
health benefit with limited resources, information about program cost-
effectiveness is needed. We present a model-based framework for evaluat-
ing the cost-effectiveness of HIV prevention and treatment programs, which
we illustrate by suggesting how programs in the Gates Foundation’s India
AIDS Initiative could be assessed. A framework of this type can help identify
the most cost-effective programs in a portfolio of HIV interventions, thus
guiding the allocation (and possible reallocation) of scarce funds. Addition-
ally, a model-based framework allows one to see how cost-effectiveness
estimates and policy conclusions may change for different values of uncer-
tain parameters, and helps identify areas where further data collection is
most critically needed.

5.1 Introduction
In 2004, approximately 5 million people became infected with HIV, bring-
ing the total number of people worldwide living with HIV/AIDS to an
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estimated 40 million [1]. Although the majority of cases thus far have
occurred in sub-Saharan Africa, HIV is spreading rapidly into new regions.
It has been projected that within the next five years, 50–75 million people in
Nigeria, Ethiopia, Russia, China, and India will acquire HIV infection, which
is almost twice the 30–35 million cases expected in sub-Saharan Africa [2].

The international community has committed significant resources,
knowledge, and leadership toward slowing the spread of HIV. Major efforts
have been funded by The Global Fund to Combat Malaria, Tuberculosis
and HIV [3], the United Kingdom Department of International Development
[4], the United States Agency for International Development [4,5], the World
Bank [4], and the Bill and Melinda Gates Foundation [6]. In 2004, some
US$6.1 billion was spent on HIV prevention and treatment worldwide; in
2005, this figure rose to $8.3 billion [7]. Despite these efforts, overall funding
for HIV/AIDS has fallen significantly short of the estimated need. In 2005,
total HIV/AIDS funding was $4 billion less than the estimated need [7].

Information about the cost-effectiveness of different HIV prevention
and treatment programs can help policy makers make the best use of
limited program funds. By assessing the health benefits achieved by a
given investment, cost-effectiveness analysis identifies the programs that
represent the most effective use of limited resources. This information can
be used to guide the allocation (and possible reallocation) of HIV funds,
thus maximizing the impact of limited resources.

This chapter presents a model-based framework, shown in Figure 5.1,
for evaluating the cost-effectiveness of HIV prevention and treatment
programs (Section 5.2). We describe some of the issues that are rele-
vant in designing a model to support such a cost-effectiveness analysis
(Section 5.3). We illustrate our ideas with a simple model framework to
show how programs in the Gates Foundation’s India AIDS Initiative [8]
could be assessed (Section 5.4). We explain how one could develop a tai-
lored model to evaluate specific interventions (Section 5.5). We conclude
with discussion (Section 5.6).

5.2 Model-Based Framework
Evaluation of the cost-effectiveness of interventions is paramount to under-
standing how best to use limited HIV prevention and treatment resources.
One program may be much more effective than another in changing HIV
risk behavior but also much more expensive. Cost-effectiveness analysis
(CEA) can help to determine the program that represents a more effi-
cient expenditure of resources [9]. The incremental cost-effectiveness of
a program is estimated as

CostsWith Program − CostsWithout Program

Health BenefitsWith Program − Health BenefitsWithout Program
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1. Develop an epidemic model that appropriately captures HIV transmission and 
progression in the population—in particular, in the target population and 
among those whom they may contact—and that captures the cost and health 
consequences of an intervention.  As appropriate, the model may also 
incorporate the spread of other diseases such as other sexually transmitted 
diseases or tuberculosis.

2. Use sensitivity analysis to help identify key elements needed in such a model 
and to identify the data for which the most accurate estimates are needed.

3. Collect necessary data, including data on
 (a) Risk groups and risk factors,
 (b) Demographic factors,
 (c) Baseline disease prevalence and incidence,
 (d) Baseline risk factors,
       (e) Effects of interventions, and
 (f) Direct and indirect costs of the intervention.

4. Calibrate the model so that its projections in the absence of any new 
interventions are broadly in keeping with known epidemic trends.

5. Apply the model to estimate the cost-effectiveness of the intervention. Include 
all costs and health consequences of the intervention, including those that 
accrue beyond the time horizon of the intervention.  Use sensitivity analysis to 
determine how cost-effectiveness estimates change for different values of 
uncertain parameters.

Figure 5.1 Framework for cost-effectiveness analysis of HIV interventions.

Health benefits are typically measured in quality-adjusted life years (QALYs)
experienced by individuals in the population, but could also be measured
in disability-adjusted life years (DALYs) experienced, life years experienced,
or HIV infections averted.

An HIV prevention or treatment program may change an individual’s
risk factors for acquiring or transmitting HIV. For example, a condom
promotion program may increase condom use; treatment of HIV-infected
individuals with antiretroviral drugs may reduce the infectivity of those
individuals; a program to treat sexually transmitted diseases (STDs) may
reduce the prevalence of such STDs, thereby reducing the chance of HIV
transmission during sexual contact [10]. Such programs can affect not only
an individual’s risk of acquiring or transmitting HIV infection but also the
spread of HIV in the target population and in the broader population as a
whole. Thus, an appropriate HIV epidemic model is needed to translate the
behavioral and biological changes due to an intervention into meaningful
epidemiological outcomes (e.g., QALYs gained or HIV infections averted).

Understanding the effectiveness of an intervention in preventing the
spread of HIV is, however, only half of the picture. CEA also requires an
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understanding of the costs incurred or saved as a result of the intervention.
These include not only the direct costs of the intervention (e.g., program
administration cost and cost per person reached) but also indirect costs
that occur due to changes in health status of targeted individuals as well as
others in the population (e.g., treatment for HIV among newly identified
individuals and treatment for STDs). A model of the HIV epidemic, with
costs for each health state, is needed to support accurate estimation of the
total cost of an intervention.

Finally, a model should incorporate the relationship between the level of
investment in an intervention and its effectiveness in changing risk factors
(e.g., increase in condom use, reduction in needle sharing). Many analy-
ses assume a linear relationship for these production functions (i.e., they
assume that an intervention’s effectiveness is proportional to its cost), but
other functional forms may more accurately capture this relationship (e.g.,
decreasing returns to scale) [11,12].

A variety of HIV epidemic models have been developed. Table 5.1
summarizes a representative sample of such models. These range from
very simple models that can be represented by a few equations to com-
plex simulation models that incorporate detailed demographic and risk
factors. Some of the models were designed primarily to project new HIV
cases; other models also allow one to evaluate the effects of prevention
programs.

5.3 Designing an Epidemic Model to Support
Cost-Effectiveness Analysis

In this section, we discuss issues relevant to designing an epidemic model
to support CEA of HIV prevention and treatment programs.

5.3.1 Model Scope
One consideration in model design is overall scope. A high-level model that
captures general epidemic trends might allow for CEA of broad categories
of interventions, without capturing specific details of disease transmission.
Such a model may be easy to create and implement, but may ignore criti-
cal components of disease transmission, such as the effect of different risk
groups. A lower-level model, on the other hand, might consider very spe-
cific details of disease transmission or progression (e.g., distinguishing cir-
cumcised versus noncircumcised males [13]), but will require more data.
A key factor when deciding the level of detail to include is the availability
of reliable data.
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5.3.2 Population Groups
Another choice is whether individuals or cohorts of people are considered.
When individuals are modeled, heterogeneity in risky behaviors and other
risk factors can be included [14,15]. However, as the number of individ-
uals increase, computational requirements increase dramatically, because
such a model must consider the interactions among all individuals. A more
tractable but less realistic approach is to model cohorts of individuals with
similar risk behaviors (e.g., frequent injection drug user [IDU], client of
commercial sex worker [CSW], etc.). This is typically done using a com-
partmental model. The choice of whether to model individuals or cohorts
should depend on the heterogeneity of the population of interest and avail-
able data.

If cohorts of individuals are modeled, risk groups must be defined in
enough detail so that the costs and effects of interventions can be captured,
but not in so much detail that reliable data cannot be collected for each
risk group. For example, to evaluate an HIV intervention in a country such
as Russia or India, it might be important to distinguish not only high-risk
populations (e.g., CSWs, IDUs) and low-risk populations (e.g., the general
population) but also bridge populations (e.g., clients of CSWs, sex partners
of IDUs) that provide a vector for transmission from high-risk groups to the
general population.

5.3.3 Risk Factors
Relevant risk factors—that is, factors that affect an individual’s risk of
acquiring or transmitting HIV infection—must also be identified. Risk fac-
tors may include, for example, frequency of sex acts or frequency of drug
injection, whether an individual is infected with an STD (other than HIV),
or whether an individual is receiving antiretroviral therapy. The definitions
of risk groups and risk factors, as well as other assumptions of the epidemic
model, help to determine the data that must be collected.

It may be necessary to include the transmission of STDs, tuberculosis
(TB), or other diseases if their spread is significantly affected by the inter-
vention. For example, an intervention that treats STDs as part of an HIV
education program is likely to reduce the prevalence and incidence of such
STDs, and thus may reduce HIV transmission.

5.3.4 Input Parameters
The parameters in a transmission model may be static or dynamic. A model
that does not allow parameters to change over time may require substan-
tially less data than a model that uses time-varying parameters, because it
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does not consider how a parameter value evolves over time. However, the
insights drawn from such a model may be limited because many behavioral
and epidemiological parameters do vary over time. In the implementation
of a model with constant parameters, it is reasonable to limit the time hori-
zon to a period over which few parameters might change. Although more
complex, a model with time-varying parameters may be able to capture
transmission patterns more accurately.

The transmission model may incorporate deterministic or stochastic
events. A stochastic model requires more data than a deterministic model,
as one must estimate the probability distribution of a parameter’s possi-
ble values. However, unlike a deterministic model, a stochastic model can
provide insight into the variability of health and economic outcomes.

5.3.5 Health and Economic Outcomes
A comprehensive CEA must measure, at the minimum, discounted life years
gained or HIV infections averted, as well as the net present value of all
incremental costs or cost savings that accrue from the intervention. Health
benefits and costs may accrue beyond the time horizon for which efficacy
data is available; these future costs and benefits should be estimated and
included. Total costs are typically estimated by summing the direct costs of
the intervention (e.g., cost of a condom distribution program), the indirect
cost for each group of individuals (e.g., annual healthcare cost for an HIV-
infected CSW), and any incremental costs that occur after the end of the time
horizon. The incremental cost of an intervention is the difference between
the total discounted cost for the intervention and the total discounted cost
for the base case. Incremental health benefits are measured analogously.
All costs and health benefits should be discounted to the present. Examples
of comprehensive CEAs of HIV prevention and treatment programs can be
found elsewhere [16–20].

5.3.6 Sensitivity Analysis
An important advantage of a model-based approach to CEA is that it allows
one to perform sensitivity analysis on model assumptions and parameter
values. Sensitivity analysis can be used to help guide model structure. For
example, results from a more detailed model (e.g., a model that distinguishes
ulcerative versus nonulcerative STDs) can be compared to results from a
simpler model (e.g., a model that does not distinguish these two types of
STDs) to determine whether the additional level of model detail is required
to obtain good cost-effectiveness estimates. Sensitivity analysis can show
how cost-effectiveness estimates change for different values of uncertain
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parameters. Additionally, sensitivity analysis can identify those variables
whose uncertainty has the greatest effect on the cost-effectiveness estimates,
and thus guide data-collection efforts. If the value of a parameter (over its
plausible range of values) has little effect on cost-effectiveness estimates,
then a readily obtained estimate will suffice; otherwise, the value for the
parameter should be carefully estimated, perhaps based on several sources.

5.3.7 Evaluating Multiple Interventions
Because data requirements for a detailed model are likely to be quite large,
it may be feasible to perform very detailed CEAs of selected interventions
only. To evaluate the effect of several independent interventions, results
from detailed CEAs of the individual interventions could be combined; for
example, by adding results of local interventions to estimate a regional
effect, or by adding results of regional interventions to estimate a nation-
wide effect. However, interventions are often not independent; for exam-
ple, a general education campaign may increase awareness of HIV and thus
increase the effectiveness of other HIV prevention programs. To estimate
the combined effect of interventions that are not independent, a high-level
model may be the only feasible choice.

5.4 Example Model: Evaluating the India AIDS
Initiative

We now illustrate our ideas with a simple model we developed to show
how one could assess the cost-effectiveness of programs in the India AIDS
Initiative, also known as the Avahan Project. As a preliminary, we briefly
describe the HIV epidemic in India and the efforts of the Avahan Project.

5.4.1 HIV in India
An estimated 5.7 million people in India are currently HIV-infected,
including almost 2 million women and 100,000 children [1,21]. HIV was
initially confined to specific high-risk groups in southern and northeast
India, but has now begun to spread to the general population. One-fifth of
new infections now occur among monogamous married women [22], and
almost 3 percent of new infections occur among newborns [23]. Although
HIV prevalence among adults aged 15–49 in India is less than 1 percent,
the potential for many new infections exists given India’s population of
1.1 billion people. It has been estimated that unless prevention efforts have
significant success, India may have as many as 20–25 million people living
with HIV within five years—more than any other country [2].
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The majority of HIV cases in India occur in six states: Tamil Nadu,
Maharashtra, Karnataka, Andhra Pradesh, Nagaland, and Manipur [24].
These states account for 70 percent of all HIV cases in India, but only 30
percent of the total population. Transmission via heterosexual contact is
the primary mode of HIV transmission in India (85 percent of cases),
and is most common in the southern states of Tamil Nadu, Maharashtra,
Karnataka, and Andhra Pradesh.

High-risk groups that contribute to spread of HIV in India include CSWs
and IDUs. An estimated two million CSWs live in India [25]. HIV prevalence
among CSWs varies significantly by region, from 11 percent in Kolkata to
over 50 percent in Pune and Mumbai [26]. With such high HIV prevalence
among CSWs, the low use of condoms is a serious concern.

Clients of CSWs—many of whom are married—provide the main trans-
mission route from high-risk groups to the general population. Truck drivers
are especially important in HIV transmission because they are highly mobile
and often visit many CSWs along the highways. They can spread HIV
to CSWs as well as to their regular and nonregular partners at home, thus
introducing HIV to small communities in rural India. India has an estimated
five million long-distance truck drivers, many of whom are sexually promis-
cuous. As few as 11 percent consistently use condoms with CSWs [21,27].

Coinfection with HIV and another STD is thought to increase the prob-
ability of transmission during sexual activity [10]. In a survey of the general
population in India, almost 5 percent reported having symptoms of STDs
in the past year [28]. Among groups at high risk for HIV, the prevalence of
STD symptoms was much higher; almost half of CSWs and nearly one-third
of their clients reported STD symptoms within the last year [28].

Injection drug use accounts for approximately 2.4 percent of HIV cases
in India [29]. Injection drug use fuels the spread of HIV in the northeastern
states of Nagaland and Manipur, where HIV prevalence among some groups
of drug injectors is 40 percent or more. In addition to transmission via drug
injection, IDUs can spread HIV to others via sexual contact. Up to 45 percent
of wives of IDUs are also infected [30].

HIV infection significantly increases the chance that an individual will
become infected with TB. The annual likelihood of developing active TB
is 50 times higher in HIV-infected individuals than in uninfected individu-
als [31]. In India, 60 percent of HIV-infected individuals eventually acquire
active TB [32]. Additionally, the presence of TB infection increases the pro-
gression of HIV in infected individuals. In many countries, and especially in
India, the spread of HIV has exacerbated the spread of TB and vice versa.
This is a serious problem in a country that already accounts for 20 percent
of all TB cases worldwide, and where TB is a leading cause of death [33]. In
2004, an estimated 1.8 million new TB cases occurred in India and 330,000
people died of TB [33,34].
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India faces a number of challenges in its fight against HIV/AIDS. Univer-
sal access to free or low-cost medical care does not exist. Many healthcare
centers have limited resources and are overburdened with patients seeking
basic medical treatment. Stigmatization and discrimination significantly hin-
der HIV prevention efforts [2,4], as does the low social status of women.

Perhaps, the most significant hindrance to an adequate HIV response
in India is the difficulty of treating a disease that affects less than 1 per-
cent of the adult population, in a country where other diseases dominate
and resources are scarce. Although the national response to HIV in India is
improving, current HIV treatment levels are inadequate. At the end of 2005,
only 7 percent of the estimated 770,000 people needing treatment received
antiretroviral treatment (only 7,000 people received free treatment through
the public sector) [1,35]. The Indian government intends to expand treat-
ment coverage to 188 centers, with the target of providing 100,000 people
with free treatment by 2007 [1,35].

5.4.2 Avahan Project
The Avahan Project, funded by the Bill and Melinda Gates Foundation, is
an ambitious five-year program (2004–2009) for HIV prevention in India [8].
The initiative supports a variety of programs that target high-risk groups,
including CSWs and their clients, with programs for STD control, condom
promotion, and education about HIV risk. By targeting high-risk popula-
tions, the project aims to reduce the spread of HIV into so-called bridge
populations and into the general population. Programs are to be imple-
mented in 100 high-prevalence districts in the most affected states, at 50–75
highway stops, and in other hotspots in low-prevalence states. District-level
interventions aim to reach 250,000 CSWs not yet reached by other interven-
tions, 4.5 million CSW clients, and 60,000 IDUs. Interventions at highway
stops aim to stop transmission from clients of CSWs to their partners, and
aim to reach 1.5 million truck drivers.

To help these initiatives succeed, the project aims to improve commu-
nication and cooperation among private, public, and government partners.
A community advocacy program will aim to reduce stigmatization of HIV,
and will include mass communication campaigns aimed at high-risk groups.
Effects of the programs will be measured through repeated surveillance of
HIV, STDs, and risk behaviors, and by surveys.

5.4.3 Framework for Cost-Effectiveness Analysis
of the Avahan Project

To maximize the impact of the $200 million expenditure, it is impor-
tant to accurately estimate the relative efficiency of each HIV prevention
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program in the Avahan Project. The foundation for such analysis should
include an appropriate model of HIV transmission and disease progres-
sion that can translate the changes in risk factors due to an intervention
(e.g., changes in number of sexual partners, or change in infectivity
due to drug therapy) into meaningful epidemiological outcomes (e.g.,
QALYs), and that can estimate all the costs that accrue from an interven-
tion. The model should be sophisticated enough to capture important
characteristics of the epidemic (e.g., key risk groups and risk behav-
iors), yet simple enough so that data requirements are not excessive.
The model should provide a broad representation of the epidemic but,
more importantly, should capture the effects of the interventions on the
epidemic.

A key factor to include in such a model is transmission from high-risk
groups (e.g., CSWs) to bridge groups (e.g., clients of CSWs) and from
bridge groups to the general population (e.g., wives of CSW clients).
Such a model should include sexual transmission of HIV and, if ap-
propriate, transmission via birth and via injection drug use. It may be
desirable to include the transmission of STDs, TB, or other diseases
if their spread is significantly affected by the intervention. The model
should also capture relevant changes in health status (e.g., deaths, changes
in HIV prevalence, changes in STD, or TB prevalence) and associated
costs.

Although a variety of models that capture the spread of HIV and other
STDs have been developed, none is readily applicable to evaluating pro-
grams in the Avahan Project. In the following section, we present an illus-
trative version of such a model.

5.4.4 Illustrative Model

5.4.4.1 Description

Figure 5.2 shows a schematic illustration of a simple model that could
provide a foundation for CEA of programs in the Avahan Project. Such a
model is not intended to exactly capture the growth of the epidemic,
but instead to approximate the primary modes of heterosexual HIV
transmission in India as a basis for evaluating the cost-effectiveness of
interventions. In the model, the population under consideration (adults
in India, and HIV-infected newborns) is divided into mutually exclusive,
collectively exhaustive compartments. The adult population is divided into
three groups: CSWs, clients of CSWs, and all other adults in the general
population. Each group is subdivided into HIV-infected and uninfected
subgroups. CSWs are assumed to be female and their clients are assumed
to be male.
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Figure 5.2 Schematic diagram of illustrative model.

A key feature of the model is the flow of the virus from high-risk groups
to bridge groups to the general population. The high-risk individuals—
CSWs—are the initial sources of the infection. They can infect the bridge
population—their clients. In turn, individuals in the bridge population
can infect CSWs and can infect their other partners, who are members
of the general population. At the end of the chain, females and males in
the general population can infect one another. Additionally, HIV-infected
females can give birth to HIV-infected children. Equations of the model
are shown in the Appendix.

Our illustrative model includes HIV transmission only via heterosex-
ual contact and from mothers to newborns. To model sexual transmission,
we considered number of sexual partners, frequency of sexual contact,
probability of condom use, and the chance that either partner has an
STD. Mother-to-child transmission depends on the birthrate, the chance
a woman is HIV-infected, and the chance of infection transmission to the
child.

The purpose of an epidemic model of this type is to create a baseline
projection that captures salient aspects of HIV spread so that the effects
of interventions can be measured. It may be reasonable to make vari-
ous simplifying assumptions in the development of such a model (e.g.,
as we have done, one might ignore geographic isolation, age differences,
or individual sexual behavior differences). However, the model should
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incorporate enough detail to demonstrate how the high-risk sexual behav-
ior of CSWs and their clients—and changes in their risk factors due to the
interventions—affect the overall HIV epidemic.

5.4.4.2 Data

The illustrative model requires the following epidemiological data: es-
timates of compartment sizes (number of CSWs, clients, etc.); baseline
HIV prevalence in each population group (compartment); factors relat-
ing to HIV transmission, including the number of sex acts, the chance of
transmission per unprotected sex act, as a function of whether an STD
is present, the probability that an STD is present, and the probability a
condom is used; and the death rate from HIV. On the basis of a review
of the literature and available databases, as well as interviews conducted
in India with HIV prevention and treatment experts, we estimated val-
ues for all model parameters (Table 5.2) to represent the situation in
Mumbai.

5.4.4.3 Effect of Interventions

Using such a model, the effect of a program can be assessed by adjusting
relevant model parameters as appropriate. For instance, to estimate the
cost-effectiveness of a program that increases condom use among CSWs
by 10 percent, one could increase by 10 percent the value of the parameter
that specifies the probability of condom use by CSWs. One could then use
the model to measure the resulting health outcomes and costs, and then
compare these to health outcomes and costs in the base case (which uses
the original parameter value for probability of condom use by CSWs) to
determine the incremental cost-effectiveness of the program.

For the illustrative model, we measured costs and benefits over a 10-year
time horizon. We considered three types of programs: a program aimed at
increasing condom use between CSWs and clients; a program aimed
at reducing STD prevalence among CSWs; and a program aimed at de-
creasing the number of sex acts between CSWs and clients. We assumed
that interventions take place and immediately affect behavior at the be-
ginning of the time horizon, but that direct intervention costs are incurred
annually. For health outcomes, we measured the (discounted) number of
HIV infections averted over the time horizon and (discounted) number of
QALYs gained.

Figure 5.3 shows how each program would reduce the prevalence of
HIV after five and ten years, as a function of its effectiveness. For example,
Figure 5.3 shows that with zero program effectiveness (or no prevention
programs), adult HIV prevalence in Mumbai would be almost 2.6 percent in
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Table 5.2 Data Used in Illustrative Model

Parameter Value Source

Population group sizes
Number of CSWs 50,000 [25,52]
Number of clients 325,000 [25,52]
Number of other female partners 3,990,000 [37]
Number of other male partners 3,570,000 [37]

Annual birth rate 22.01/1000 [37]
HIV prevalence

CSWs 60 percent [25,52]
Clients of CSWs 5 percent Estimated [25]
Other female 0.51 percent Estimated [29]
Other male 0.46 percent Estimated [29]

HIV transmission
Number of sex acts per month

CSW (with clients) 65 [53,54]
CSW (with other males) 9 [53]
Client (with other females) 6 Estimated
Other males (with other females) 8 Estimated

Probability of transmission per unprotected sex act
Female to male – No STD 0.000835 Estimated
Male to female – No STD 0.0025 Estimated
Female to male – STD 0.0025 Estimated
Male to female – STD 0.0075 Estimated

Probability of STD (assumed constant)
CSW 0.30 [28,53]
Client 0.15 [28,53]
Other female partner 0.02 [28]
Other male partner 0.02 [28]

Probability of condom use
CSW (with clients) 0.75 [28,53]
CSW (with other males) 0.20 [28,53]
Client (with other females) 0.20 [28,53]
Other males (with other females) 0.20 [28]

Probability of vertical transmission 0.30 [55]
HIV progression
Annual death rate from HIV 0.0833 [55]
Life expectancy of HIV+ child 3 years [56]
Life expectancy of HIV+ person at end of horizon 6 years Estimated
Life expectancy of HIV– person at end of horizon 25 years Estimated
Quality multipliers

HIV− 1.00 Estimated
HIV+ 0.84 Estimated

Costs (US$)
Cost per CSW reached 19.21 [57]
General annual per capita healthcare 27 [58]

costs for HIV−
General annual per capita healthcare 32 Estimated

costs for HIV+
Discount rate 3 percent [9]
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Figure 5.3 Example analyses using illustrative model: Impact of program effec-
tiveness on HIV prevalence among adults after five and ten years.
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ten years. If the condom promotion program were to reduce unprotected
CSW sex acts by 20 percent, HIV prevalence among adults in ten years
would be about 2.3 percent. Figure 5.3 shows that the condom promotion
program and the program aimed at decreasing CSW sex acts would likely
have a much greater impact on HIV prevalence than the STD prevention
and treatment program.

Figures 5.4 and 5.5 show example cost-effectiveness analyses performed
using the illustrative model. For each program, we considered different
annual costs per targeted individual (ranging from $5 to $50) and dif-
ferent levels of program effectiveness (expressed as a percentage change
from baseline). We then calculated iso-curves of constant cost per infection
averted (Figure 5.4) and cost per QALY gained (Figure 5.5).

The three curves in each panel of Figure 5.4 correspond to a cost-
effectiveness ratio of $500 per HIV infection averted, $1000 per HIV
infection averted, and $2000 per HIV infection averted, respectively. Thus,
for example, Figure 5.4 shows that the condom promotion program will
cost $500 per HIV infection averted if it costs $5 per CSW reached per year
and leads to a 6 percent decrease in the number of unprotected sex acts;
or if it costs $15 per CSW per year and leads to a 19 percent decrease in
the number of unprotected sex acts. Figure 5.4 shows that programs that
increase condom usage or reduce CSW sex acts could have a low cost
per HIV infection averted even with relatively minor changes in behavior.
However, an STD reduction program would have to be very inexpensive
and lead to very dramatic reductions in STDs among CSWs to cost $500
per HIV infection averted.

In Figure 5.5, the three lines in each panel show cost-effectiveness ratios
of $100 per QALY gained, $200 per QALY gained, and $400 per QALY
gained, respectively. Thus, for example, Figure 5.5 shows that if a condom
promotion program costs $20 per CSW reached and achieves a 10 per-
cent decrease in the number of unprotected sex acts, the program has an
incremental cost-effectiveness ratio of $100 per QALY gained. If the same
program achieves 5 percent decrease in the number of unprotected sex acts,
the program has a cost-effectiveness ratio of about $200 per QALY gained;
if the decrease is only 2 percent, the program will cost about $400 per QALY
gained. According to the World Health Organization, a health intervention
can be considered cost-effective if each DALY averted costs less than three
times the gross domestic product (GDP) per capita [36]. In our analysis,
we assumed that one QALY gained is equivalent to one DALY averted.
For India, per capita GDP is approximately $3300 [37]. Figure 5.5 shows
that each of the three programs would be highly cost-effective according
to WHO guidelines even if the programs induce only modest behavior
change.
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Figure 5.4 Example analyses using illustrative model: Cost per HIV infection
averted as a function of annual program cost and effectiveness.
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Figure 5.5 Example analyses using illustrative model: Cost per quality-adjusted
life year (QALY) gained as a function of annual program cost and effectiveness.



Lim/Optimization in Medicine and Biology AU0563_C005 Final Proof Page 167 10.11.2007 02:45pm

Optimal Spending on HIV Prevention and Treatment 167

5.5 Developing a Tailored Model
We have presented a very simple model to evaluate interventions in the
Avahan project. In this section, we discuss factors that might be included
in a more detailed model.

5.5.1 Homogeneous Sexual Behavior
Our illustrative model assumed that all individuals in a group have the same
average number of sex acts per unit time. However, not all individuals in
the groups we distinguished are the same; for example, some CSWs are
brothel-based, while others are not, and some CSWs may have more sexual
encounters than others. One way to capture this heterogeneity is to develop
a model with more compartments than we have included. For example,
one could include compartments for CSWs with many sexual encounters
and compartments for CSWs with fewer sexual encounters, as in the Asian
Epidemic Model [38].

5.5.2 Random Mixing
If a simple, high-level model is implemented, sexual contact between
CSWs and clients could be modeled as a random mixing process. In
reality, all CSWs do not mix randomly with all clients. This effect could
be partially captured by an epidemic model with more compartments
than we have shown; for example, one could subdivide CSW and client
compartments according to mixing patterns. Another approach is to use
models of social networks to capture mixing patterns and the resul-
tant spread of HIV [15,39]. Social network models can capture very
detailed mixing patterns, but have the disadvantage of being data- and
computation-intensive.

5.5.3 Transmission Risk Factors
A detailed model might consider how sexual transmission of HIV is affected
by the presence or absence of an STD, as in our illustrative model. Because
the chance of HIV transmission may be higher in the presence of an ulcer-
ative STD than in the presence of a nonulcerative STD, a further distinction
could be made between these categories of STDs.
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5.5.4 Injection Drug Use
Our illustrative model ignored HIV transmission via injection drug use.
In some parts of India, injection drug use is a significant contributor to the
epidemic. An intervention that reduces high-risk sexual behavior may affect
HIV incidence less in a region where injection drug use is a significant driver
of the epidemic. For interventions in regions with significant injection drug
use, it may be important to consider the effects of injection drug use on
the epidemic.

5.5.5 Disease Progression and Treatment
To accurately model the health benefit accruing from antiretroviral therapy,
a detailed model of HIV progression and the effects of treatment on disease
progression, along with estimates of quality-of-life multipliers for each
disease stage, are needed [17]. Incorporating disease progression, and
the associated changes in infectivity and quality of life, may be particu-
larly important when evaluating interventions that include treatment for
HIV. These effects can be captured by including model compartments for
individuals in different stages of HIV infection and with different treatment
status.

5.5.6 Nonconstant Population Group Sizes
To accurately capture population dynamics, deaths from HIV infection
should be included, as well as deaths from other causes, births, and changes
in the size of the overall population. Additionally, it may be appropriate to
incorporate changes in the sizes of risk groups that occur for other reasons.
For example, one goal of the Avahan Project is to reduce the demand for
commercial sex, which could reduce the total number of CSWs.

5.5.7 Spread of Other Diseases
A detailed model could allow for the presence of STDs (other than HIV) via
parameters that specify STD prevalence exogenously for each population
group. Because the spread of STDs is a dynamic process (similar to that for
HIV), an intervention that cures one individual’s STD may prevent an STD
infection in the individual’s partners. Thus, it may be desirable to include
the spread of STDs in the HIV epidemic model, particularly when evaluating
the cost-effectiveness of interventions that aim to treat and eliminate STDs.
Similarly, it may be desirable to include the effects of an intervention on
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the spread of TB. HIV-infected individuals in India have significant rates
of TB coinfection. HIV-infected individuals have an increased chance of
developing active TB, and thus can transmit TB to other people. Adding
other diseases to an evaluation may substantially complicate model deve-
lopment and will increase the requirements for input data, but may be
important in some cases.

5.5.8 Realism versus Tractability
We have discussed a number of features that could be included in an
epidemic model to more realistically model HIV transmission in India. In
developing such a model, a balance must be achieved between model
realism and data requirements. If the model is too simple, it may not prop-
erly capture the effects of interventions on health and costs. If the model is
too detailed, it may not be possible to collect reliable data, and the outputs
of the model may not be credible. As highlighted above, the key goal is
to develop a model that can evaluate the most important costs and health
benefits of an intervention, and thus provide an accurate assessment of
program cost-effectiveness.

5.6 Discussion
We have presented a model-based framework for evaluating the cost-
effectiveness of HIV prevention and treatment programs, which we
illustrated using the Gates Foundation’s India AIDS Initiative as an example.
A framework of this type can be used to develop accurate assess-
ments of the cost-effectiveness of HIV interventions, thus helping pol-
icy makers maximize the impact of limited HIV prevention and treat-
ment resources. For cost-effectiveness analysis of interventions in a
specific geographic region, one must consider local disease dynamics,
the behavioral and demographic factors of the population of interest, the
availability of reliable data, and the specific intervention that is being
evaluated.

A model-based approach has several important advantages. It allows
one to capture the effects of an intervention on disease transmission
and progression among targeted individuals, as well as among other
individuals in the population. It allows one to capture the direct and
indirect costs of an intervention that accrue over time. It allows one to
perform sensitivity analysis on model assumptions and key parameter
values.
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In addition to HIV, other infectious diseases pose a serious threat
to global health. Every year, two million people die from TB and an-
other eight million become sick from TB [3]. However, 95 percent of TB
deaths could be prevented with relatively inexpensive treatments. STDs are
another serious health problem. In 1999, 340 million people aged 15–49
were newly infected with a curable STD (chlamydia, gonorrhea, syphilis,
or trichomoniasis) [40]. Over 150 million of these infections occurred in
South and Southeast Asia. STDs can lead to frequent illness, infertility,
disability, or death. The model-based framework we suggest could be
applied to evaluate the cost-effectiveness of interventions targeting these
diseases.

Control of HIV and other infectious diseases is a critical global health
concern. Limited prevention and treatment resources must be spent in the
most effective manner. A model-based framework, such as the one pre-
sented in this chapter, can be used to assess the cost-effectiveness of such
interventions, and thus improve health outcomes.
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Appendix

Equations of Illustrative
Model

Let Xi(t) denote the number of individuals in compartment i at time t . The
model compartments are indexed as follows: CSW, HIV− (i = 1), CSW,
HIV+ (i = 2); Client, HIV− (i = 3); Client, HIV+ (i = 4); Other female,
HIV− (i = 5); Other female, HIV+ (i = 6); Other male, HIV− (i = 7); Other
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male, HIV+ (i = 8); Child, HIV+ (i = 9). The sizes of the larger popu-
lation groups (CSWs, Clients, Other female, and Other male) are assumed
to be constant. Let μi be the death rate from HIV of individuals in com-
partment i, and λi(t) be the rate at which individuals in (HIV uninfected)
compartment i become infected (i.e., the HIV sufficient contact rate) at
time t . Let ρ be the birthrate, and ν be the chance of HIV transmission
from a mother to her newborn. The model is specified by the following
differential equations:

dXi(t)

dt
= μi+1Xi+1(t)− λi(t)Xi(t) i = 1, 3, 5, 7

dXi(t)

dt
= −μiXi(t)+ λi−1(t)Xi−1(t) i = 2, 4, 6, 8

dXi(t)

dt
= ρν[X2(t)+ X6(t)] i = 9

We now describe how the sufficient contact rates λi(t) are calculated. For
i = 1, 3, 5, 7, and j = 2, 4, 6, 8, let αi be the transmission rate to an
individual in compartment i per unprotected sex act with an individual in
compartment j , let βij be the probability that a condom is used during sex
acts between individuals in compartments i and j , and let δij be the average
number of sex acts per unit time that an individual in compartment i has
with individuals in compartments j − 1 and j . Then the sufficient contact
rates can be expressed as

λi(t) = 1−
∏

j=2,4,6,8

[(

1− αi(1− βij)

[
Xj(t)

Xj−1(t)+ Xj(t)

])δij
]

i = 1, 3, 5, 7
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Resource allocation problems are ubiquitous in the optimization literature,
and perhaps no resource is more ethically and practically challenging to
allocate than the limited number of suitable solid organs for transplanta-
tion. The most frequently transplanted solid organs are kidney and liver, in
that order. Optimization models may consider the objectives of and deci-
sions made by various stakeholders in transplantation, such as individual
recipients (living donor livers) [1], or society in the form of the United Net-
work for Organ Sharing (UNOS) (deceased donor kidneys) [2]. Su et al.
demonstrated that individual autonomy can degrade the performance of
a societal optimization mechanism [3]. This chapter will focus on the case
of kidney paired donation, introducing both the medical background and
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Figure 6.1 A kidney paired donation.

mathematical tools used to find a societally optimal allocation of organs for
this type of transplant [4].

A kidney paired donation involves an exchange of living kidney donors
between two recipient/donor pairs [5,6], as illustrated in Figure 6.1. The
donor of each pair wants to give a kidney to the recipient of the pair,
but cannot do so because of blood or tissue incompatibility. Instead, the
donor of the first pair gives to the recipient of the second pair, and
the donor of the second pair gives to the recipient of the first pair. Because
neither donor will donate unless his own loved one can receive a kid-
ney, these exchanges can only occur if a reciprocally compatible pair
can be found. The donor operations are begun simultaneously to avoid
the possibility of a donor reneging after his own recipient has gotten a
kidney.

The UNOS is charged with coordinating transplantation activities in the
United States. Over 70,000 hopeful recipients are on the UNOS waiting list
for a kidney transplant [7]. Fewer than 11,000 kidneys became available
from deceased donors in 2006, and there are limited prospects for increas-
ing the level of deceased donation. However, over 6000 living donors gave
one of their kidneys to either a relative or an unrelated recipient in 2006.
Living donation is on the rise for many reasons, including the availabil-
ity of a minimally invasive donor operation with a faster recovery time.
However, about one-third of all recipient/donor pairings will be found to
be incompatible. Presently, most of these incompatible donors are simply
turned down and do not donate. UNOS has proposed a national kidney
paired donation registry that could enable many of these donors to donate
a kidney so that their loved one can receive one [8].

Every kidney paired donation constitutes a net benefit to the system
because two people donate who otherwise would not have given a kid-
ney. Further, if there are many recipient/donor pairs with various feasible
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Figure 6.2 A typical kidney paired donation graph.

paired donation arrangements among them then even greater benefit can
be achieved by using a graph-theoretic maximum matching algorithm to
find the optimal allocation, selecting which foursomes should proceed with
paired donation.

A graph consists of a set of nodes and a set of edges connecting them,
as in Figure 6.2. A graph model for kidney paired donation is as follows:
let each node on a graph represent an incompatible recipient/donor pair.
Each undirected edge on the graph represents a reciprocally compatible
foursome for paired donation, meaning that the donor of the first pair is
compatible with the recipient of the second pair, and vice versa. Index the
n nodes of the graph by i in {1, 2, . . . , n}, and let edge ij refer to the edge
connecting node i with node j .

A matching on a graph is any subset of the edges having the prop-
erty that no two edges in the matching are incident on the same node. In
paired donation terms, this means that in a matching, a single incompatible
recipient/donor pair (node) cannot be involved in more than one paired
donation (edge). A maximum matching, also called a maximum cardinality
matching, includes the largest possible number of edges. In fact, a more
nuanced model called maximum weighted matching, which maximizes the
sum of positive weights on the edges in the matching, is appropriate for
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determining the best collection of exchanges on a kidney paired donation
graph. Some papers on kidney paired donation refer to a match, meaning
a single edge on the graph that has been selected to be in the matching.
Also, the word “matching” is often used as a verb, to describe the process
of selecting a preferred matching.

Algorithms for optimal matching operate on a fixed graph of incom-
patible pairs. In reality, incompatible pairs present to transplant centers
sequentially. If each new arrival triggered a search for a paired donation
opportunity then the optimization would be trivial, amounting to rank-
ordering the pairs that are reciprocally compatible with the new one.
Deceased donor kidneys are allocated as they arrive based on a rank-
ordering of recipients. This is necessary because a kidney recovered from
a deceased donor cannot be stored, whereas living donation can be sched-
uled for any convenient time. Higher transplantation rates will be achieved
for paired donation if incompatible pairs accumulate in a registry before
the preferred matching is selected [4]. Figure 6.3 shows a projection of
the relationship between transplantation rates and the number of incom-
patible pairs in a registry. See Section 6.5 for more about how this data is
generated. The transplant community has recognized the need to accumu-
late incompatible pairs, but it is thought that participants will demand that
a matching be selected about every three months, even if the registries are
initially small.

Figure 6.3 Percent of incompatible pairs transplanted for various numbers of
incompatible pairs accumulated, using maximum weighted matching.



Lim/Optimization in Medicine and Biology AU0563_C006 Final Proof Page 181 10.11.2007 07:15pm

Optimization over Graphs for Kidney Paired Donation 181

Figure 6.4 A typical directed kidney paired donation graph for m-way donations.

Significant generalizations of the basic kidney paired donation arrange-
ment have been explored. Kidney donor exchanges involving more than
two incompatible pairs are important in theory [9] and practice [10]. If m
incompatible pairs are involved, the procedure is called an m-way paired
donation. Representing these larger exchanges requires a directed graph,
as in Figure 6.4, with directed edges where the donor at the source node
is compatible with the recipient at the target node. An opportunity for an
m-way paired donation corresponds to the presence of a cycle of length
m. A cycle of length m is a directed path that touches m nodes before
revisiting the first node on the path. More transplants would be possible
with two- and three-way paired donations than with only two-way [11].
Still, three-way paired donations introduce logistical difficulties in practice
and add algorithmic complexity in selecting a matching. Roth et al. have
shown that, asymptotically and with strong assumptions about compatibi-
lity, allowing three-way and four-way paired donations would achieve the
same number of transplants as allowing unrestricted m-way paired dona-
tions [12]. The development in this chapter is restricted to two-way paired
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donation, which is equivalent to matching in undirected graphs, unless
explicitly stated.

Other generalizations include domino paired donation, list paired dona-
tion, and voluntary compatible pair participation. Domino paired donation
begins with an altruistic, nondirected kidney donor, who offers to give a
kidney to any stranger in need. Instead of the anonymous donor giving to
the person at the top of the UNOS waiting list, the nondirected donor gives
to the recipient of an incompatible pair, and the donor of the incompatible
pair gives to the person at the top of the waiting list [13].

In list paired donation, the donor of an incompatible pair gives preemp-
tively to the person at the top of the waiting list, and in return the recipient
of the incompatible pair is moved to the top of the waiting list for the next
available deceased donor organ [14]. List paired donation is less desirable
than living paired donation because kidneys from living donors perform
better than kidneys from deceased donors, making the exchange somewhat
unfair. Also, list paired donation opportunities frequently involve giving a
non-O blood group kidney to the list in return for a type O kidney, but
blood group-O recipients already have long waiting times compared with
other subgroups, so list paired donation exacerbates that disparity. Match-
ing procedures are available which incorporate n-way paired, domino, and
wait list paired donations [15]. Zenios proposed a dynamic controller that
offers each incompatible pair either an immediate wait list paired donation
or registration for a later living paired donation [16].

Compatible recipient/donor pairs have already participated in some
paired donations. Voluntary participation by recipients who have compat-
ible donors would greatly increase the probability of transplantation for
incompatible pairs. Voluntary participation could also benefit the compati-
ble pairs by helping them find younger or more immunologically favorable
donors [17].

6.1 Finding Edges
In an operational kidney paired donation system, the incompatible recipi-
ent/donor pairs who are registered will be stored in a database that com-
prises the nodes of a graph. The first step in finding an optimal matching
is to draw the edges of the graph. The reciprocal compatibility of every
foursome, or every pair of nodes, must be checked in turn, so that in a
database containing n incompatible pairs there are [(n2 − n)/2] potential
edges to check.

If m-way donations with m = 2, 3, . . . , M are permitted then one
approach is to find every cycle of length m ≤ M in the graph. The result-
ing cycles may be referred to as m-edges. A cycle-finding algorithm cannot
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Table 6.1 Blood Group Incompatibilities

If the Donor of the Pair Has Blood GroupIf the Recipient
of the Pair
Has Blood Group O A B AB

O Compatible Incompatible Incompatible Incompatible
A Compatible Compatible Incompatible Incompatible
B Compatible Incompatible Compatible Incompatible
AB Compatible Compatible Compatible Compatible

in general be polynomial-time in n and M , because the output could be
on the order of ( n

M ). However, logistical difficulties in m-way donation
will usually require that M is a small constant that does not depend on n.
The degree of a node is the number of different edges incident on it, that
is, the number of different paired donation opportunities for that incom-
patible pair. Finding the edges in a paired donation graph does not solve
the optimal allocation problem, unless the graph is so sparse that all nodes
have degree zero or one. A procedure for finding two-way and three-way
edges is described in Kaplan [18].

An undirected edge or m-edge represents an opportunity for every
recipient on the edge to exchange to a compatible donor. There are two
major categories of incompatibilities: blood group incompatibility and tis-
sue incompatibility. The four blood groups are O, A, B, and AB, and their
respective compatibilities are shown in Table 6.1.

Tissue incompatibility means that a recipient has preformed antibodies
to some of the donor’s HLA (human leukocyte antigens), which will cause
the recipient to reject the kidney. Each person carries up to two HLA-A
antigens, two HLA-B antigens, and two HLA-DR antigens, but some of these
entries may be blank in which case the person has fewer than six total.
There are about 25 common HLA-A antigens, about 50 common HLA-B
antigens, and about 20 common HLA-DR antigens [19]. A recipient may
have preformed antibodies to any number of antigens that are different
from his own. A recipient with preformed antibodies is called sensitized to
those antigens. A donor can still donate to a recipient even if the donor’s
antigens are not identical to the recipient’s, provided that the recipient is
not sensitized to the donor’s antigens. A zero-mismatch transplant is one
in which the donor does not carry any antigens that are not also antigens
of the recipient. Opportunities for zero-mismatch transplants are fairly rare,
but when they do occur, the donated kidney will have a longer expected
graft survival time.

Some recipients are highly sensitized, meaning that they have preformed
antibodies to many common HLA types. A panel-reactive antibody (PRA)
test estimates what percentage of the population a particular recipient is
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sensitized to. For instance, a recipient with a PRA of 80 is predicted to
be tissue incompatible with approximately 80 percent of the population.
A better diagnostic than a PRA test is a screening that characterizes the
recipient’s antibodies, enabling a prediction of sensitivity to any particu-
lar donor’s HLA. Finally, before any transplant, there must be a physical
crossmatch test in which the compatibility of the donor and recipient are
verified. If the donor and recipient are crossmatch-positive, then the trans-
plant cannot proceed. If they are crossmatch-negative then the transplant
proceeds.

6.2 Designing the Objective
When the reciprocally compatible two-way edges among a set of incom-
patible pair nodes have been found, the next step is to define a preferred,
or optimal, matching on the resulting graph. A matching on the graph
represents a decision about which foursomes should proceed with paired
donation. The simplest objective would be to maximize the number of
transplants accomplished, but a more useful objective is one that reflects
the complexities of transplantation in general and paired donation in parti-
cular. For instance, prioritizing zero-mismatch transplant opportunities and
pediatric recipients would mimic current practice in allocation of deceased
donor kidneys [20].

It is tempting to believe that a simply stated utilitarian objective, say,
maximize number of years of life gained, could be appropriate. However,
because the benefit of each organ transplanted accrues only to the indi-
vidual who receives it, the system as a whole has the responsibility to
fairly apportion those benefits to different subgroups. It is well established
that organ allocation decisions must balance utility with equity [2,20]. For
instance, it would certainly be untenable to allocate all deceased donor
organs only to Caucasian recipients, even though Caucasian recipients do
have longer expected graft and patient survival times than other recipients.

In what follows, positive integer weights wij are assigned to the edge of
the graph connecting node i with node j . These weights are higher for the
higher priority organ exchanges, but the weights must be chosen carefully
because seemingly reasonable choices of weights may lead to very poor
matchings [21].

Some of the factors which UNOS proposes to consider in the objective
include pediatric recipients, prior live donor recipients, zero-mismatches,
travel requirements, waiting time, and the total number of transplants.
Required travel is still seen as a major impediment to a national kidney
paired donation registry [22]. If the two incompatible pairs in a paired
donation are being treated at different hospitals, the donor of each pair
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will usually travel to the opposite hospital, which may be expensive and
result in a difficult separation for the families involved. Other arrangements
are possible; recently a team from Johns Hopkins transported a kidney from
a live donor’s operation in San Francisco to a recipient in Baltimore. In any
of these arrangements, a shorter distance between the hospitals is better.

Each edge weight wij = ∑
k fijk . The fijk are positive integers denot-

ing the points awarded for the presence or prevalence of the kth paired
donation factor for edge ij . Let k = 0 denote the factor weighting for the
total number of transplants, and note that the fij0 should be the same for
all i, j because every transplant is equally valuable. As another example,
if k = 1 denotes the pediatric recipients factor weighting then fij1 should
be either 0, q, or 2q for some q > 0, according to whether nodes i and j
include zero, one, or two pediatric recipients. If k = 2 denotes the travel
requirements factor then fij2 should be largest (most preferred) when node
i and node j represent incompatible pairs who are both registered at the
same hospital.

The size of the fijk terms relative to each wij specifies a trade-off
between each of the factors being considered. In fact, the true kidney
paired donation problem has multiple objectives, and the weights pro-
posed here constitute a linear scalarization of the objective vector [23]. It
is not the role of optimization experts to set these fijk . The transplant com-
munity, including donors, recipients, and their advocates, administrators,
and physicians, should come to a consensus about the goals of a paired
donation matching system. However, maximum weighted matching is an
opaque algorithm, and thus it is a nontrivial task to translate a community’s
ethical judgments to numerical weightings. Transplant professionals have
turned to simulations to guide the choice of the fijk for various factors [8],
as will be discussed in Section 6.5.

As an alternative to simulation, a recent report offers an example of
how theoretical analysis might inform the transplant community’s weighting
choices [21]. Suppose that there are K important factors, and so k ranges
from 1 to K . The size of the fij0 terms expresses the value placed on the
total number of transplants performed. Because all fij0 are the same, call
this value f0. Let 2μ be the maximum number of transplants that could
be performed if no other factors were considered. It is not unreasonable
that the most preferred matching may contain fewer than 2μ transplants.
However, for arbitrary fijk , the preferred matching may in the worst case
have only μ transplants. Using some simple inequalities that maximum
matchings satisfy, it has been shown that at least a fraction f0/(maxi, j

∑
k fijk)

of the maximum number of transplants possible will be performed in the
maximum weighted matching. This gives a lower bound on the size of
the maximum weighted matching. Graphs achieving this lower bound may
easily be constructed. If the preferred matching must contain at least a
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fraction α of the maximum achievable transplants then f0 can be set equal
to α/(1− α)maxi, j

∑k=K
k=1 fijk .

Further, even if physicians demand that the absolute largest number of
transplants possible be performed, the other important factors need not
be ignored. It is possible to express preferences among the matchings
containing the largest number of transplants, using standard weighted
matching with an appropriate edge weighting scheme. For a graph con-
taining n incompatible recipient/donor pairs, if maxi,j

∑k=K
k=1 fijk = W then

f0 can be set at (W /2)(n − 1). Then the maximum weighted matching
contains 2μ transplants, and considering the other factors imposes no
penalty on the total number of transplants. The proofs of this and related
propositions exploit the property that the size of any matching is an
integer.

6.3 Solution Methods
Given an edge-weighted graph, a maximum weighted matching is a match-
ing that maximizes the sum of the weights of edges in a matching. A maxi-
mum weighted matching is not necessarily unique. Solution algorithms for
maximum weighted matching, sometimes referred to as maximum edge-
weight matching or just weighted matching, have been extensively studied
over the past half-century [24–26].

It is straightforward to write a maximum weighted matching problem
directly as an integer program. Let xij denote a decision variable which
takes value 1 if the edge connecting node i with node j is in the matching,
and value 0 if that edge is not in the matching. The weight of any matching
is Z =∑wijxij . The optimal matching problem can be formulated as given
by Equations 6.1 through 6.3:

Max Z =
∑

i<j

wijxij (6.1)

s.t.: for all j ,
∑

i<j

xij ≤ 1 (6.2)

xij in {0, 1} (xij are binary) (6.3)

To obtain a linear programming formulation of the maximum matching
problem, the integer constraint on the xij variables in Equation 6.3 must be
relaxed to obtain Equation 6.4:

0 ≤ xij ≤ 1 (6.4)
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Figure 6.5 A bipartite graph.

Unfortunately, the relaxed problem might have fractional variables at the
optimum, meaning that the solution does not correspond to a matching at
all. The relaxation in Equation 6.4 is permissible under certain conditions:
if the graph is bipartite, or if additional constraints given by Equation 6.5
are added.

A bipartite graph is one that can be partitioned into two classes, with
all the edges of the graph between the two classes and no edges connect-
ing members of the same class, as in Figure 6.5. Maximum edge-weight
matching on a bipartite graph is also known as the assignment problem.
Assignment problems can be solved with specialized algorithms, or by a
direct application of the linear program in Equations 6.1, 6.2, and 6.4. This
is because the basic feasible solutions to the linear program described by
Equations 6.1, 6.2, and 6.4 have all xij equal to 0 or 1. In a graph contain-
ing separate nodes for donors and recipients, with edges connecting each
donor to every compatible recipient, it would be an assignment problem
to decide which donors should give to which recipients.

In kidney paired donation, the donors are not willing to donate unless
their recipients can be transplanted, and the resulting graph is not bipartite,
as is obvious from Figure 6.2. A non-bipartite graph is exactly a graph
with odd-length cycles. Consider the L node subsets of odd cardinality,
S1, S2, . . . SL, in a non-bipartite graph, where the number of nodes in Sl is
2sl + 1. It is certainly true that no matching contains more than sl edges
which are incident only on the nodes of Sl , so the following constraints are
satisfied by any matching:

For all l in 1, 2, . . . , L,
∑

i, j∈Sl

xij ≤ sl (6.5)

Edmonds showed that when these additional constraints given by Equa-
tion 6.5 are included, the linear programming formulation has integral
basic feasible solutions that correspond to matchings. This formulation
yields a primal-dual algorithm for solving the weighted matching prob-
lem [27]. Lawler provided a more efficient implementation of Edmonds’
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algorithm [24]. Galil, Micali, and Gabow used specialized data structures to
further improve the algorithm’s running time [25]. An implementation of the
latter algorithm can be found in the graph theoretic C++ library LEDA [28].
A thorough exposition of the primal-dual algorithm for weighted match-
ing in general graphs, as well as a more complete discussion than that
summarized here, is contained in Papadimitriou [29].

One optimization method that will suffer combinatorial explosion as
paired donation registries grow larger is to exhaustively catalog the feasible
matchings to find the best one, as was proposed by Kim [30]. Although
there are at most a number of edges proportional to n2 on the graph,
the number of matchings on a graph may be exponential in the number
of nodes. There are estimated to be millions of different matchings on a
typical paired donation graph of 100 nodes [4]. The criteria for selecting
a preferred matching from a complete list of matchings in Ref. [30] could
instead be expressed using appropriate choices for factor weights fijk .

Heuristic approaches that have been suggested for allocating kidney
paired donation could have poor performance. The greedy algorithm
begins with an empty matching, and first adds the edge with the largest
weight to the matching, next adds the edge with the largest weight among
those that could be added to the matching, and so on, until no more edges
can be added. Variants of the greedy algorithm have been used in actual
paired donation programs [31]. In one operational paired donation pro-
gram, a greedy algorithm selected a matching with only two transplants,
where actually four were possible. A medical review committee manually
discovered the shortfall and decided to use the larger matching. In the
example of Figure 6.6, the optimal matching would have matched all the
recipients in the greedy matching and some other recipients also.

If up to M -way donations are permissible for M > 2 then the anal-
ogous optimization problem is necessarily an integer program. Let P be
the number of cycles of length m < M in the directed graph. Let xi for
i = 1, 2, . . . , P denote a decision variable which takes value 1, if the ith

a

b c

d

35

30 30

Figure 6.6 A largest-edge-first greedy algorithm would choose the dashed edge,
and transplant only b and c. The maximum weighted matching includes the solid
edges and transplants a, b, c, and d.
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m-edge will be used in the allocation, and value 0 if that edge is not used
in the allocation. Let wi have the obvious meaning: the value of an m-way
paired donation among the nodes of the ith m-edge. The weight of any
allocation is Z = ∑

wixi . Let I (j) denote the set of all m-edges incident
on the node j . Then the optimization problem for up to M -way paired
donation is

Max Z =
∑

i

wixi (6.6)

s.t.: for nodes j = 1, 2, . . . , n,
∑

i∈I( j)

xi ≤ 1 (6.7)

xi in {0, 1} (xi are binary) (6.8)

Constraint given by Equation 6.7, analogous to constraint given by Equa-
tion 6.2, ensures that only one edge incident on each node j is included in
the allocation.

Another allocation method is available which does not require finding all
cycles in the graph, provided that paired donations involving any number
of pairs are permissible. Roth used a modified top-trading-cycles algorithm
for this case, based on an ordered preference list for each incompatible
pair [9].

6.4 Current Status of Paired Donation
In 2006, 85 people received transplants through paired donation in the
United States, which falls far short of the projected one to two thou-
sand additional transplants per year. In the United States, the only paired
donation registries are those run by individual transplant centers or coali-
tions of transplant centers. Although UNOS proposed a nationwide registry,
that proposal was on hold because the legality of paired donation in the
United States had been questioned. The National Organ Transplantation
Act (NOTA) forbids receiving valuable consideration for donating an organ
[32]. However, the U.S. Department of Justice recently ruled that paired
donation does not constitute valuable consideration under NOTA. Also,
bills to the same effect passed both houses of Congress in 2007, although
in slightly different versions. The Canadian Council for Donation and
Transplantation has also drafted a proposal for a registry to allocate paired
donations in Canada. South Korea and the Netherlands already operate
nationwide kidney paired donation registries [33,34].
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6.5 Projecting the Impact of Kidney Paired Donation
United Network for Organ Sharing (UNOS) collects data about every
potential transplant recipient and every living and deceased donor, but
it does not collect data about incompatible donors who have come for-
ward for particular recipients. Consequently, simulation models are used to
generate nationwide projections of the impact of kidney paired donation.
The model presented here has been used extensively to answer clinical
questions concerning paired donation [35,36], and is based on a decision
tree model by Zenios et al. [37]. Table 6.2 details the probability assump-
tions that are made and the sources of the data. Simulating incompatible

Table 6.2 Data Sources Used in Simulations, Including Values
Where They Are Concise

Probability
(Percent) Source of Data

Race of recipients (Exclude other) UNOS waiting list additions 2003
Caucasians 52.6 percent
African-Americans 30.4 percent
Hispanics 17.0 percent

Blood group Allele combination
frequencies, by
race

Zenios et al. [37]

HLA-A,-B,-DR By race Leffell et al. [19]
Donor relationship UNOS live kidney donors, 2003

Parent 19.7 percent
Child 16.8 percent
Sibling 42.4 percent
Spouse 10.0 percent
Unrelated 11.2 percent

PRA range UNOS waiting list additions 2003
0–9 71.31 percent
9–80 18.66 percent
80–100 10.02 percent

Positive crossmatch Assumed from definition of
rate panel-reactive antibody (PRA)
PRA 0–9 5 percent (25

percent maternal)
PRA 10–80 45 percent (65

percent maternal)
PRA 80–100 90 percent (95

percent maternal)
Pediatric 3.07 percent UNOS waiting list additions 2003
Prior live donor 0.052 percent UNOS waiting list additions 2003
Transplant center Of 242 centers UNOS waiting list additions 2003
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pairs is made more difficult by two factors: (1) the blood group and HLA
are inherited traits although most people’s donors are blood relatives and
(2) the group of recipients with incompatible donors is biased in blood
group and sensitization levels.

First, a recipient and his social network, including two parents, a sib-
ling, a spouse, a friend, and two children are simulated. The race of the
recipient’s parents, sibling, and children is chosen according to the makeup
of the kidney recipient population, and the races of the recipient’s friend
and recipient’s spouse are the same as the recipient’s race with 90 per-
cent probability. The blood group allele combinations (like OO, AO, BB,
AB) and HLA profiles of the parents, friend, and spouse are drawn from
race-dependent population distributions. The blood group alleles and HLA
profiles of the recipient and his sibling are based on probabilistic inher-
itance from their parents, and likewise the blood group alleles and HLA
profiles of the recipient’s children are based on probabilistic inheritance
from the recipient and his spouse. Between two and four members of the
social network are chosen to be the recipient’s candidate donors, according
to the prevalence of each donor relation in the UNOS database of actual
living donors.

Next, the decision tree in Figure 6.6 classifies the recipient and donors
into one of these categories: the recipient either has at least one donor
who is compatible, has no viable donor, or has only an incompatible
donor or donors. Donors are either medically or psychologically unsuit-
able with probability 56.7 percent, except spouses who are unsuitable with
probability 25 percent because fewer spouses are unwilling to donate. The
PRA of each recipient is assigned in low, medium, and high categories.
According to the recipient’s PRA, a simulated crossmatch test determines
whether the recipient is sensitized to each candidate donor. Female reci-
pients are more likely to be crossmatch-positive with their spouses and
children due to sensitization during pregnancy.

If the recipient’s only medically eligible donor(s) is incompatible by
blood group or crossmatch then that recipient/donor pair is registered
as a node in the kidney paired donation graph. To estimate the number
of incompatible pairs who would present annually, new recipients and
families are generated in the upper oval of Figure 6.6, until the number of
simulated recipients with a compatible donor (dashed lower oval) equals
the number of actual recipients with a compatible donor in a recent year.
Assuming one candidate donor per recipient, about 4443 incompatible pairs
would be projected to present annually; assuming two, about 3584 pairs
annually; assuming four, about 2406.

Table 6.3 shows the blood groups of incompatible donor and recipient
pairs. It is instructive to compare the blood groups of donors and recipi-
ents. The shortage of blood group-O donors and surplus of blood group-O
recipients result in a low (less than 50 percent) projected match rate for
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Table 6.3 Projected Blood Groups of Incompatible Pairs (Percent)

If the Donor of the Pair Has Blood GroupIf the Recipient of the
Pair Has Blood Group O A B AB All Donors

O 20.39 27.89 11.20 1.57 61.06
A 6.48 10.44 4.93 2.45 24.31
B 2.94 4.97 2.94 2.04 12.88
AB 0.38 0.63 0.40 0.34 1.75
All recipients 30.20 43.93 19.48 6.40

incompatible donors, but voluntary compatible donation could resolve the
blood group imbalance. The numerical projections of paired donation’s
impact are very sensitive to the assumed recipient PRA levels, the assumed
number of donors per person, and the likelihood of finding a compatible
donor for highly sensitized recipients. Only the first of these elements is
known with a high degree of confidence.

Using a collection of databases of simulated incompatible pairs, clini-
cally important questions can be answered. For instance, placing restric-
tions on a recipient and donor’s willingness to accept a faraway match will
reduce the number of edges incident on that node, and simulations can
demonstrate the effect of travel restrictions on match rates [35]. As another
example, by repeated application of maximum weighted matching to the
same set of graphs, one may compare the match rates overall and for var-
ious subgroups as the fijk are varied [8]. The curse of dimensionality will
prevent a complete manual survey of fijk settings. For K = 8 (factors), and
only five trial settings for each factor, there will be about 400,000 candidates
matching objectives. Because there are a finite number of different match-
ings on any graph, there will be a finite number of meaningfully distinct
objective designs. However, the simulation method is useful for projecting
the effect of particular changes to the objective settings.

Kidney paired donation is poised to become a major part of the solution
to the organ shortage crisis. Although the concept of paired donation dates
to 1986 [6], recent progress towards a nationwide registry was spurred by
a number of simulation and optimization papers that quantitatively estab-
lished its potential to generate additional donations. Paired donation is an
excellent example of how optimization can have a major and immediate
impact on clinical medicine.
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Abstract This chapter is designed to introduce recent advances in opti-
mization of radiation therapy planning for cancer patients. Topics include
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Gamma Knife, conventional three-dimensional conformal radiotherapy
(3DCRT), intensity modulated radiation therapy (IMRT), tomotherapy, and
proton therapy. A short problem description, model formulation, and
solution techniques for each topic are presented.

7.1 Introduction
The National Cancer Institute estimates that approximately 1.4 million new
cancer cases are expected to be diagnosed in the United States in 2006 [5].
They also estimate that over 570,000 Americans are expected to die of can-
cer this year. Cancer is the second leading cause of death in the United
States, exceeded only by heart disease. Treatment options for cancer are
determined by type and stage of the cancer and include surgery, radia-
tion therapy, chemotherapy, immunotherapy, etc. Physicians often use a
combination of those treatments to obtain the best results.

Our application is based on radiation therapy. Thanks to the continu-
ous development of new treatment machines and technologies; it is now
possible to have much greater control over the treatment delivery than
was possible in the past. Researchers in the optimization community have
made significant contributions in improving the quality of such treatment
plans for cancer patients [4,7,16,15,27,29,30,33,44,48,51,57,58]. The com-
mon objective of radiotherapy planning is to achieve tumor control by
planning a significant total dose of radiation to the cancerous region to
sterilize the tumor without damaging the surrounding healthy tissues. One
of the major difficulties in treatment planning is due to the presence of
organs-at-risk (OARs). An OAR is a healthy organ located close to the tar-
get. The dose of radiation must be severely constrained to avoid reaching
an OAR because an overdose in the OAR may lead to medical compli-
cations. OAR is also termed sensitive structure or critical structure in the
literature. There are several survey articles that cover the essential elements
of the radiation treatment planning problem, see Refs. [20,35,45,48].

Our aim in this chapter is to introduce recent advances in optimiza-
tion models and solution techniques to improve the delivery of radiation
for cancer patients. Two types of radiation therapy are the most common
and include teletherapy (or external beam therapy) and brachytherapy.
Radiation is delivered from outside the body and directed at the patient’s
tumor location using special radiation delivery machines in teletherapy,
(see Figure 7.1). Different devices produce different types of radiation
and they include Cobalt-60 machines (such as Gamma Knife radiosurgery),
linear accelerators (such as intensity modulated radiation therapy), neutron
beam machines, orthovoltage x-ray machines, and proton beam machines.
In brachytherapy, radioactive substances are placed within the tumor region
in the form of wires, seeds, or rods. Types of brachytherapy are categorized
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Figure 7.1 An external beam therapy machine.

depending on how the radioactive sources are placed inside the body such
as interstitial brachytherapy, intracavitary brachytherapy, intraluminal radia-
tion therapy, and radioactively tagged molecules given intravenously. There
are two types of radiation treatment planning: forward planning and inverse
planning. In forward planning, treatment plans are typically generated by
a trial and error approach. Therefore, this process can be very tedious and
time consuming, and does not necessarily produce high-quality treatment
plans. On the other hand, there has been a significant move toward inverse
treatment planning. Such a move is due to significant advances in modern
technologies such as imaging technologies and computer control to aid
the delivery of radiation. The inverse treatment planning procedure allows
modeling highly complex treatment planning problems from brachytherapy
to external beam therapy. Inverse planning is also called computer-based
treatment planning.

In inverse treatment planning, an objective function is defined to mea-
sure the goodness (quality) of a treatment plan. Two types of objective
functions are often used: dose-based models and biological (radiobio-
logical) models. The biological model argues that optimization should
be based on the biological effects resulting from the underlying radiation
dose distributions. The treatment objective is usually to maximize the tumor
control probability (TCP) while keeping the normal tissue complication
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probability (NTCP) within acceptable levels. In the dose-based model,
achieving accurate radiation dose distributions on organs of interest is
the main concern. The treatment objective is to minimize the deviation
between the projected dose that the patient will receive and the prescribed
dosage that the physician provides. This is the main approach we will
describe in this chapter. The biological aspect is implicitly given in the
physician’s prescription.

7.2 Applications and Methods

7.2.1 Radiation Treatment Planning Procedure
When a patient comes in for a treatment, the doctor will choose what type
of radiation beam to use for the treatment. The choice of radiation will
depend on the type of cancer the patient has and how far into the body
the radiation should penetrate to reach the tumor volume.

The next step is to identify the three-dimensional (3D) shapes of org-
ans of interest in the patient’s body. The location and the volume of org-
ans are obtained by using (3D) imaging techniques such as computer
tomography (CT) or magnetic resonance imaging (MRI). Based on (3D)
images, a physician specifies the tumor region as gross tumor volume
(GTV), clinical target volume (CTV), planning target volume (PTV), and
OARs. GTV represents the volume of the known tumor. CTV represents the
volume of the suspected microscopic spread. PTV is the marginal volume
necessary to account for setup variations and organ and patient motion,
i.e., PTV = GTV + marginal volume around the GTV. Typically, PTV is
used in designing treatment plans and we call PTV a target in this chapter.
Organ geometries are the key input data for designing a treatment plan.

A radiation physicist and a dosimetrist meet to decide what kind of
radiation delivery machine to use and the number of treatments for the
patient. Optimization algorithms are crucial to determine how much and
where to deliver radiation in the patient’s body. For most types of cancer,
radiation therapy is administered five days each week for five–eight weeks.
Using small radiation doses daily rather than a few large doses helps protect
normal body tissues in the treatment area. Resting over the weekend will
allow some time for normal cells to recover from the radiation damage.

In optimization, the (3D) volume is represented by a grid of voxels.
There are several inputs required in optimization approaches in radia-
tion treatment planning. The first input describes the machine that delivers
radiation. The second and troublesome input is the dose distribution of a
particular treatment problem. A dose distribution consists of dose contribu-
tion to each voxel of the region of interest from a radiation source. It can
be expressed as a functional form or a set of data. However, a difficulty
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of using such distributions is either the functional form is highly nonlin-
ear [16] or the amount of data which specifies the dose distribution is too
large [30]. This problem needs to be overcome in a desirable automated
treatment planning tool. The third common input is the set of organ geo-
metries that are of interest to the treatment. Further common inputs are the
desired dose levels for each organ of interest. These are typically provided
by physicians. Other types of inputs can also be specified depending on
the treatment planning problems. However, a desirable treatment planning
system should be able to generate high-quality treatment plans with mini-
mum additional inputs and human guidance.

7.2.2 Use of Optimization Techniques
Two major goals in treatment planning optimization are speed and quality.
Solution quality of a treatment plan can be measured by uniformity, con-
formity, and avoidance [15,30,33]. Fast solution determination in a simple
manner is another essential part of a clinically useful treatment planning
procedure. Acceptable dose levels of these requirements are established by
various professional and advisory groups.

It is important for a treatment plan to have uniform dose distributions
on the target so that cold and hot spots can be minimized. A cold spot is
a portion of an organ that receives below its required radiation dose level.
On the other hand, a hot spot is a portion of an organ that receives more
than the desired dose level. The uniformity requirement ensures that radia-
tion delivered to the tumor volume will have a minimum number of hot
spots and cold spots on the target. This requirement can be enforced using
lower and upper bounds on the dose, or approximated using penalization.
The conformity requirement is used to achieve the target dose control while
minimizing the damage to OARs or healthy normal tissue. This is gener-
ally expressed as a ratio of cumulative dose on the target over total dose
prescribed for the entire treatment. This ratio can be used to control con-
formity in optimization models. As we mentioned earlier, a great difficulty
of producing radiation treatment plans is the proximity of the target to the
OARs. An avoidance requirement can be used to limit the dose delivered to
OARs. Finally, simplicity requirements state that a treatment plan should be
as simple as possible. Simple treatment plans typically reduce the treatment
time as well as implementation error. In this chapter, we introduce a few
optimization models and solution techniques that are practically useful for
radiation treatment modalities: Gamma Knife radiosurgery, conventional
three-dimensional conformal therapy (3DCRT) [30], intensity modulated
radiation therapy (IMRT) [3,22]. Many treatment planning models are
also developed for proton therapy [59] and tomotherapy [14,25]. A brief
overview of these new techniques are discussed at the end of this chapter.
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7.2.3 Gamma Knife Radiosurgery

7.2.3.1 Introduction

The Gamma Knife is a highly specialized treatment unit that provides an
advanced stereotactic approach to the treatment of tumor and vascular mal-
formations within the head [17]. The Gamma Knife delivers a single, high
dose of radiation emanating from 201 Cobalt-60 unit sources. All 201 beams
simultaneously intersect at the same location in space to form an approx-
imately spherical region that is typically termed a shot of radiation (see
Figure 7.2).

Gamma Knife radiosurgery begins by finding the location and the size of
the tumor. After administering local anesthesia, a stereotactic head frame
is fixed to the patient’s head using adjustable posts and fixation screws.
This frame establishes a coordinate frame within which the target location
is known precisely and serves to immobilize the patient’s head within an
attached focussing helmet during the treatment. An MRI or CT scan is used
to determine the position of the treatment volume in relation to the coor-
dinates determined by the head frame. Once the location and the volume
of the tumor are identified, the neurosurgeon, the radiation oncologist, and
the physicist work together to develop the patient’s treatment plan. Multi-
ple shots are often used in a treatment using a Gamma Knife due to the
irregularity and size of tumor shapes and the fact that the focussing helmets
are only available in four sizes (4, 8, 14, and 18 mm).

The plan aims to deliver a high dose of radiation to the intracranial
target volume with minimum damage to the surrounding normal tissue.

Figure 7.2 Radiation delivery: a collimator is positioned on patient’s head.
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The treatment goals can vary from one neurosurgeon to the next. But the
following requirements are typical for a treatment plan, although the level
of treatment and importance of each may vary.

1. A complete 50 percent isodose line coverage of the target volume.
This means that the complete tumor volume must receive at least
50 percent of the maximum dosage delivered to the target. This can
be thought of as a uniformity requirement.

2. Minimize the nontarget volume, which is covered by a shot or
the series of delivered shots. This requirement is clear and can be
thought of as a conformity requirement.

3. Limit the amount of dosage, which is delivered to organs at risk that
are close to the target. Such requirements can be thought of as an
avoidance requirement.

There are standard rules established by the Radiation Therapy Oncology
Group (RTOG) that recommend the acceptable uniformity and conformity
requirements. In addition to these requirements, it is also preferable to use
a small number of shots to limit the treatment times and thus increase the
number of patients that can be treated.

7.2.3.2 Optimization Model Formulation

Most commonly known optimization models include Mixed Integer Pro-
gramming (MIP) Model and Mixed Integer Nonlinear Programming (MINLP)
Model. MIP Models guarantee the global optimality, but they are not practi-
cally useful due to the long computation time. We discuss an MINLP Model
that has shown to be practically useful [15]. A variant of this approach has
been successfully implemented for planning treatments [47].

Suppose that the number of radiation shots for the treatment is given
a priori. Adding the goal of minimizing this number is typically straight-
forward in the optimization model. However, solving such models can be
extremely difficult.

Decision Variables: Consider a grid G of voxels. Let T denote the subset
of voxels that are within the target and N represents the subset of voxels
that are not in the target. Let Di,j ,k denote the amount of radiation dose
that a voxel (i, j , k) receives. In general, there are three types of decision
variables.

1. A set of discrete coordinates (xs , ys , zs): these are the target locations
for the (ellipsoidal) shots.

2. A discrete set of collimator sizes w: currently four different sizes of
focussing helmets are available (4, 8, 14, and 18 mm).
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3. Radiation exposure time ts,w : the amount of radiation to be delivered
for each shot centered at location (xs , ys , zs).

Constraints:

1. Uniformity – isodose line coverage: A treatment plan is normally
considered acceptable if a 100 · θ . percent isodose curve encom-
passes the tumor region. For example, 50 percent isodose curve is
a curve that encompasses all voxels that receive at least 50 percent
of the maximum radiation dose that is delivered to any voxels in
the target volume.

θ ≤ Di,j ,k ≤ 1, (i, j , k) ∈ T . (7.1)

2. Choosing shot sizes: The location of the shot center is chosen by
a continuous optimization process. Choosing the particular shot
width at each shot location is a discrete optimization problem that
is treated by approximating the step function

H (t) =
{

1 if t > 0
0 if t = 0

by a nonlinear function,

H (t) ≈ Hα(t) = 2 arctan(αt)

π

For increasing values of α, Hα becomes a closer approximation to
the step function H . This process is typically called smoothing.

An optimization model of Ref. [15] is described as follows:

Min
∑

(i,j ,k)∈N
Di,j ,k

s.t. Di,j ,k =
∑

(s,w)∈S×W
ts,wDw(S ,i,j ,k)

θ ≤ Di,j ,k ≤ 1, ∀(i, j , k) ∈ T

n =
∑

(s,w)∈{1,...,n}×W
Hα(ts,w)

ts,w ≥ 0. (7.2)
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7.2.3.3 Solution Techniques

The most critical problem for solving the optimization model Equation 7.2
is the large number of voxels that are needed when dealing with large
irregular tumors (both within and outside of the target). This makes the
optimization problem computationally intractable. One approach to over-
coming this problem is to remove a large number of the nontarget voxels
from the model. While this improves the computation time, this typically
weakens the conformity of the dose to the target. Ferris et al. [15] proposed
a sequential solution approach to speed up the time while maintaining
conformality. First, a coarse grid problem is solved as a nonlinear program-
ming (NLP) Model using a set of systematically reduced data points. Then
the finer grid NLP problem with full data points is solved using the starting
point that was obtained by the coarse grid model in the previous stage.
Typically, the solution from this finer grid model is very close to a good
local optimum for the MINLP. Using this solution, the full MINLP Model is
finally solved to determine the values of the three sets of decision variables
for this problem.

7.2.4 Three-Dimensional Conformal Radiation Therapy

7.2.4.1 Introduction

We learned from Section 7.2.3 that the Gamma Knife is specifically designed
for treating diseases in the human brain. 3DCRT adds much greater flexibil-
ity to radiation treatments that can treat various cancer patients in the brain,
breast, prostate, etc. One of the main strategies for minimizing morbidity
in 3DCRT is to reduce the dose delivered to normal tissues that are spa-
tially well separated from the tumor. This can be done by using multiple
beams from different angles. A single radiation beam leads to a higher dose
delivered to the tissues in front of the tumor than to the tumor itself. In con-
sequence, if one were to give a dose sufficient to control the tumor with a
reasonably high probability, the dose to the upstream tissues would likely
lead to unacceptable morbidity. A single beam would only be used for very
superficial tumors, where there is little upstream normal tissue to damage.
For deeper tumors, one uses multiple cross-firing beams delivered within
minutes of one another: all encompass the tumor, but successive beams
are directed toward the patient from different directions to traverse differ-
ent tissues outside the target volume. The delivery of cross-firing beams
is greatly facilitated by mounting the radiation-producing equipment on a
gantry: multileaf-collimator (MLC).

Several directed beams noticeably change the distribution of dose, as
is illustrated in Figure 7.3. As a result, dose outside the target volume can
often be quite tolerable even when dose levels within the target volume
are high enough to provide a substantial probability of tumor control.
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Figure 7.3 Effect of multiple beams: a hot spot is formed in the middle by five
beams.

The leaves of the MLC are computer controlled and can be moved to
the appropriate positions to create the desired beam shape. From each
beam angle, (3D) anatomical information is used to shape the beam of
radiation to match the shape of the tumor. Given a gantry angle, the view
of the tumor that the beam source can see through the MLC is called
the beam’s-eye-view (BEV) of the target (see Figure 7.4) [18]. This BEV
approach ensures adequate irradiation of the tumor while reducing the
dose to normal tissue.

Wedge Filters: A wedge (also called a wedge filter) is a tapered metallic
block with a thick side (the heel) and a thin edge (the toe) (see Figure 7.5).
This metallic wedge varies the intensity of the radiation in a linear fashion
from one side of the radiation field to the other. When the wedge is placed
in front of the aperture, less radiation is transmitted through the heel of the
wedge than through the toe. Figure 7.5b shows an external 45◦ wedge, so
named because it produces isodose lines that are oriented at approximately
45◦. The quality of the dose distribution can be improved by incorporating
a wedge filter into one or more of the treatment beams. Wedge filters are
particularly useful in compensating for a curved patient surface, which is
common in breast cancer treatments.

Two different wedge systems are used in clinical practice. In the first
system, four different wedges with angles 15◦, 30◦, 45◦, and 60◦ are avail-
able, and the therapist is responsible for selecting one of these wedges
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Figure 7.4 A beam’s-eye-view (BEV) is a two-dimensional (2D) shape of a tumor
viewed by the beam source at a fixed angle.

and inserting it with the correct orientation. In the second system, a single
60◦ wedge (the universal wedge) is permanently located on a motorized
mount located within the head of the treatment unit. This wedge can be
rotated to the desired orientation or removed altogether, as required by
the treatment plan.

Figure 7.5 Wedges.
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7.2.4.2 Optimization Model Formulation

Suppose that the data to the optimization models is given. Let D(i,j ,k),A be
the dose contribution to voxel (i, j , k) from a beam of weight 1 from angle
A, S be a collection of voxels on the sensitive structure(s), and N be a
collection of voxels on the normal tissue. When wedges are allowed in the
optimization, the data will be provided as D(i,j ,k),A,F that represents the dose
contribution to voxel (i, j , k) from a beam of weight 1 from angle A, using
wedge orientation F .

Beam Weight Optimization: The classical optimization problem in confor-
mal radiation therapy is to choose the weights (or intensity levels) to be deli-
vered from a given set of angles. Suppose wA represents the beam weight
delivered from angle A, D(i,j ,k) for the total dose deposited to voxel (i, j , k)
and λ represent the relative weighting factors in the objective function.
Given a set � = T ∪S ∪N , a general optimization model that determines
optimal radiation intensity is

Minw λt f (DT )+ λs f (DS)+ λn f (DN )

s.t. D� =
∑

A∈A D�,AwA,

l ≤ DT ≤ u,

0 ≤ wA, ∀A ∈ A. (7.3)

Hard upper and lower bound constraints are imposed on the target dose
so that, in the worst case, the resulting solution will satisfy the minimum
requirement for a treatment plan. Objective function f (D) can be defined
based on the planner’s preference, but a general function can be written as

f (D) = ‖D(·)− θ‖p, p ∈ {1, 2,∞}.

Note that θ is the desired dose level for an organ of interest. These prob-
lems can be cast as a quadratic programming (QP) problem ( p = 2), min-
imizing the Euclidean distance between the dose delivered to each voxel
and the prescribed dose [7,43,48,50]. Furthermore, linear programming (LP)
has also been extensively used to improve conventional treatment planning
techniques [2,27,38,45,48]. The strength of LP is its ability to control hot and
cold spots or integral dose on the organs using constraints, and the presence
of many state-of-the-art LP solvers. The LP Model replaces the Euclidean
norm objective function of a QP with a polyhedral one, for which standard
reformulations (see [30,34]) result in LP problems. While these techniques
still suffer from large amounts of data in D(i,j ,k),A, they are typically solved in
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acceptable time frames. These models tend to find optimal solutions more
quickly than the corresponding QP formulations.

Another technique to convert the quadratic (or more generally convex)
problem to a linear program is via a piecewise-linear approximation of
the objective (see Ref. [44]). For a quadratic function, a uniform spacing for
the breakpoints guarantees small approximation errors from the piecewise-
linear interpolant [26]. Because the piecewise-linear interpolant is convex,
standard techniques can be used to reformulate this as a linear program
[19,26].

Equivalent Uniform Dose (EUD) [8]: Recently, some of the medical physics
literature has been advocating the use of other forms of objective function
in place of the ones outlined above. A popular alternative to those given
above is that of generalized equivalent uniform dose (EUD). This is defined
on a per structure basis as

EUDa(D,�) =
⎛

⎝ 1

card (�)

∑

(i,j ,k)∈�
Da
(i,j ,k)

⎞

⎠

1/a

.

Note that EUD is a scaled version of the a-norm of the dose to the particular
structure, and hence is known to be a convex function for any a ≥ 1 and
concave for a ≤ 1. Thus the problem

Maxw EUDa(D,T )

s.t. D� =∑A∈A D�,AwA, � = T ∪ S ∪N ,

EUDb(D,S) ≤ φ,

EUDc(D,N ) ≤ u,

0 ≤ wA, ∀A ∈ A.

is a convex optimization problem provided a ≤ 1 and b, c ≥ 1. As such,
NLP algorithms will find global solutions to these problems.

Beam Angle Selection and Wedge Orientation Optimization: Optimization
also lends itself to solving the more complex problem of selecting which
angles and wedge orientations to use as well as their intensities. MIP is
a straightforward technique for these types of problems. We describe an
optimization model that simultaneously optimizes beam angles, wedge ori-
entations, and beam intensities. Wedges are placed in front of the collimator
to produce a gradient over the dose distribution and can be effective for
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reducing the radiation dose to organs at risk. This can be done by adding
an extra dimension F to the variable wA:

Minw,ψ λt f (DT )+ λs f (DS)+ λn f (DN )

s.t. D� =∑A∈A D�,A,F wA,F ,

wA,F ≤ M · ψA,

l ≤ DT ≤ u,
∑

a∈A
ψa ≤ K ,

ψA ∈ {0, 1}, ∀A ∈ A. (7.4)

The variable ψA is used to determine whether or not to use an angle A for
delivery. The choice of M plays a critical role in the speed of the optimiza-
tion; further advice on its choice is given in Ref. [30]. Note that the data
for this problem is considerably larger, increasing by a factor related to the
number of wedge orientations allowed.

7.2.4.2.1 Solution Techniques

Simulated annealing (SA) has been well accepted in the medical commu-
nity [39,55]. But the weakness of SA in the optimization point is its inability
to verify the optimality. On the other hand, it is possible to find a global
optimal solution for Equation 7.4. However, due to its slow convergence,
using the MIP Model has not been very useful for designing a treatment
plan in the hospital. Recently, Lim et al. [30] proposed an iterative solu-
tion approach that solves the MIP problem fast (within 20 minutes for two
clinical case examples presented). It is termed a three-phase approach.

Three-phase approach is a multiphase technique that ramps up to the
solution of the full problem via a sequence of models. Essentially, the mod-
els are solved in increasing order of difficulty, with the solution of one
model providing a good starting point for the next. The models differ from
each other in the selection of voxels included in the formulation, and in
the number of beam angles allowed.

If the most promising beam angles can be identified in advance, the
full problem can be solved with a small number of discrete variables. One
simple approach for removing unpromising beam angles is to remove from
consideration those that pass directly through any OAR [46]. A more elab-
orate approach [42] introduces a score function for each candidate angle,
based on the ability of that angle to deliver a high dose to the PTV without
exceeding the prescribed dose tolerance to OAR or to normal tissue located
along its path. Only beam angles with the best scores are included in the
model. We now describe the three-phase approach:
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1. Phase 1: Selection of Promising Beam Angles: The aim in this phase
is to construct a subset of beam angles A1 that are likely to appear
in the final solution of Equation 7.4. We solve a collection of r
MIPs, where each MIP is constructed from a reduced set of voxels
consisting of the voxels in the PTV, a randomly sampled 10 percent
of the OAR voxels (S), and the voxels in Rρ(T ); that is

�1 = {T ∪ S ∪Rρ(T )}.
We define A1 as the set of all angles A ∈ A for which wA > 0 for at
least one of these r -sampled problems.

2. Phase 2: Treatment Beam Angle Determination: In the next phase,
we select K or fewer treatment beam angles from A1. We solve
Equation 7.4 using A1 and a reduced set of voxels defined as
follows:

�2 = {T ∪ S ∪Rρ(T ) ∪N1}.
Note that |A1| is typically greater than or equal to K , so the binary
variables play a nontrivial role in this phase.

3. Phase 3: Final Approximation: In the final phase, we fix the K beam
angles (by fixing ψA1 = 1 for the angles selected in Phase 2 and
ψA = 0 otherwise) and solve the resulting simplified optimization
problem over the complete set of voxels. This final approximation
typically takes much less time to solve than the full-scale model,
because of both the smaller amount of data (due to fewer beam
angles) and the absence of binary variables.

Although there is no guarantee that this technique will produce the same
solution as the original full-scale model Equation 7.4, Lim et al. [30] have
found that the quality of its approximate solution is close to optimal based
on several numerical experiments.

7.2.5 Intensity Modulated Radiation Therapy

7.2.5.1 Introduction

A sophisticated form of treatment planning approach known as intensity
modulated radiation therapy (IMRT) allows a number of differently shaped
beams with different uniform radiation intensities to be delivered from each
direction, which allows a high degree of flexibility in delivering radiation
dose distribution from each beam angle [3,22]. In IMRT treatment planning,
two-dimensional (2D) beams are divided into several hundred or thousand
pencil beams to generate very precise dose distribution on the treatment
volume.
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Decision Variables: First, one needs to decide how many beam angles need
to be coordinated for the treatment (beam angle optimization). For each
beam angle, radiation is delivered using an MLC. In practice, an MLC is
designed so that one leaf can only move one direction with a discrete dis-
tance. Therefore, we divide an MLC as an M ×N grid of pixels. M is for the
number of leaves in an MLC (note that this number can vary from one man-
ufacturer to another), and N is for the number of discrete units that a leaf
can move. Second, radiation intensity maps (fluence maps) for such beam
angles need to be optimized to conform the (3D) radiation dose require-
ment to control the tumor (fluence map optimization). For a fixed beam
angle, the fluence map contains real numbers in a set of (2D) discrete coor-
dinates that are associated with the MLC. Because no machine can deliver
such a nonuniform real intensity map, the intensity maps are first approxi-
mated as multiples of a physically deliverable minimum discrete unit (this
number can be a fraction). For example, an approximated intensity map
for a 3×4 MLC may look as follows (we assume that the minimum discrete
value allowed is 0.5 in this case):

W =
⎛

⎜
⎝

0 0.5 2.0 1.5

0.5 2.5 3.5 2.0

0 1.0 2.0 1.5

⎞

⎟
⎠ = 0.5×

⎛

⎜
⎝

0 1 4 3

1 5 7 4

0 2 4 3

⎞

⎟
⎠ . (7.5)

Third, because we cannot deliver nonuniform radiation (see Equa-
tion 7.5) to the treatment volume with one open beam shape, an intensity
map is decomposed into several unique shape matrices such that each
matrix can contain zeros and uniform value. This is called beam segmen-
tation problem.

7.2.5.2 Optimization Model Formulation

7.2.5.2.1 Modeling Dose Deposition

Dose deposition models specify the amount of radiation deposited at points
in the irradiated region, relative to some known dose in a reference point
[53]. There are numerous methods of calculating dose deposition, and many
of them are highly complex, particularly in three dimensions. We describe
here a simple 2D model as developed in Ref. [21], simply to illustrate the
basics of the dose calculation process.

Assuming a finite number of angles a and sub-beams s, we wish to
calculate the dose contribution of sub-beam (a, s) to the dose point p. In
three dimensions, the dose points result from discretizing the irradiated
area into small cubes called voxels. In two dimensions, the dose points
may be visualized as squares. Because of scatter, dose point p may still
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receive radiation even if it is not directly in the field of sub-beam (a, s).
We let δ be the depth of the dose point along the path of sub-beam (a, s)
and let o be the off-axis distance (or distance from p to the sub-beam). If
we let x(a,s) be the amount of energy being propagated along sub-beam
(a, s) then dose point p receives

eηoeμδx(a,s)

units of radiation from sub-beam (a, s). Here η and μ are parameters that
vary with the beam’s energy and model the effects of scatter and attenu-
ation. This model assumes that as δ and o increase, the amount of dose
deposited in p decreases exponentially. We let d(p,a,s) = eηoeμδ be the rate
in gray per second (Gy/t) at which radiation along sub-beam s in angle a
is deposited into dose point p, where d(p,a,s) ≥ 0,∀(p, a, s). Then the total
amount of dose deposited in a particular p is

Dp =
∑

(a,s)

d(p,a,s)x(a,s).

We define the dose matrix A to be the collection of d(p,a,s) where the rows
of A are indexed by p and the columns are indexed by (a, s). It is important
to mention that this collection is patient specific. Because dose is directly
proportional to exposure time (fluency) we can alternately define x(a,s) to
be the fluence value for sub-beam (a, s). Then the linear transformation
x �→ Ax maps the fluency pattern x into the anatomy and determines the
amount of radiation deposited at every dose point in the anatomy [12].
The linearity is not just an assumption of the model—it is experimentally
validated that the dose is deposited linearly [21]. So-called phantoms are
used to test the nature of radiation deposition in the human body. Phantoms
are made from materials with the same radiation absorption properties as
human tissue [53].

7.2.5.2.2 Beam Angle and Fluence Map Optimization

Because the optimal set of beam angles are intimately related to the optimal
fluence map for each angle, these two problems must be dealt together
in the problem formulation. Let a denote an angle, a ∈ A, l denote the
leaf index of the collimator, l = 1, 2, . . . , m, and p represent the position
of the leaf, p = 1, 2, . . . , n. Then, formulating an optimization model for
optimizing both beam angles and the fluence maps is a simple extension
to Equation 7.4 that we discussed for the conventional 3DCRT and the
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model is given as

Minw,ψ λt f (DT )+ λs f (DS)+ λn f (DN )

s.t. D� =∑a∈A D�,a,l,pwa,l,p,

wa,l,p ≤ M · ψa,

l ≤ DT ≤ u,
∑

a∈A
ψa ≤ K ,

ψa ∈ {0, 1}, ∀a ∈ A.

See more details of this formulation and others in Refs. [29,32].

7.2.5.2.2.1 Solution Methods Solving this problem using any classical
optimization techniques may take too long for any clinicians to use for
their daily treatment planning. Lim et al. [32] propose a fast MIP solution
approach and an LP-based iterative method that exploits score functions.
However, due to the computational difficulties with large data in solving
the optimization problem, heuristic methods are often used in practice [28].

7.2.5.2.3 Beam Segmentation Optimization

Consider a matrix

W =
⎛

⎝
w1,1 w1,2 · · · w1,n

...
...

wm,1 wm,2 · · · wm,n

⎞

⎠ ,

where wi,j ∈ Z, for i = 1, . . . , m, j = 1, . . . , n. Our objective is to decom-
pose the matrix W into K binary matrices Sk such that

W =
K∑

k=1

μk · Sk , (7.6)

where

Sk =
[
sk
i,j

]
,

sk
i,j ∈ {0, 1},
i ∈ {1, 2, . . . , m},
j ∈ {1, 2, . . . , n},

μk ∈ Z,

k ∈ {1, 2, . . . , K }.
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Solving Equation 7.6 is quite easy in general. However, this problem
becomes extremely difficult to solve when we impose the following two
objectives and a physical constraint.

Objectives:

1. Minimize the value of K .

2. Minimize T = the sum of the matrix multipliers, i.e., T =
K∑

k=1

μk .

Consecutive One Constraint:
For each row of a binary matrix Sk , if there are more than one nonzero ele-
ments (1’s), their sequence must be consecutive, i.e., zeros are not allowed
to break the nonzero sequence. For example,

0 1 1 1 0

is a feasible sequence. But,

0 1 0 1 0

is not allowed because the sequence of ones is not continuous.
Note that there can be many more constraints to this problem depend-

ing on the machine that is used for radiation delivery. Some of the common
constraints are overlap elimination constraint, interleaf collision constraint,
and tongue-and-groove constraint. Details about these more elaborate con-
straints can be found in Refs. [1,23,24,54].

7.2.5.2.3.1 Solution Methods This is a combinatorial optimization
problem that is proven to be strongly NP-hard [10]. Optimization formu-
lations have been proposed including integer nonlinear program (INLP)
and integer programming (IP) [32]. IP Models are easier to solve than INLP
Models. IP Models with relatively small numbers of rows and columns can
be solved within a reasonable amount of time using a branch-and-bound
method [56]. However, as the matrix size increases (say, larger than 10) and
the maximum value of the matrix W increases, finding global solutions for
the IP Models can take too long for treatment planners to use. Therefore,
both researchers and planners use various heuristics. Engel [13] proposed
a heuristic that generates optimal T , but K is still not optimal. Lim et al.
[31] proposed a two-stage integer programming approach that improved
Engel’s K . Both methods claimed that solving problems with a matrix size
larger than 10× 10 takes less than a few seconds. A genetic algorithm has
also been used by other researchers [9].
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7.2.6 Other Radiation Therapy Devices

7.2.6.1 Tomotherapy

The recent development of IMRT on conventional LINACs provided a major
increment in radiation therapy dose delivery. A course of radiation treat-
ment often consists of up to 40 daily treatment fractions. For each fraction,
the patient must be repositioned. This repositioning has inherent uncer-
tainties that relate not only to setting the patient up to external reference
marks, usually laser alignment with marks positioned on the skin surface,
but also to the movement of internal organs from day-to-day. To address
the issues of highly conformal dose distributions as well as accounting for
patient setup and organ motion uncertainties, a new technology, known
as tomotherapy, has been developed. Theoretically, it provides better tar-
geting with a corresponding reduction in the dose to normal tissues. This
allows a higher dose to the tumor, which results in an increased probability
of tumor control [11,36].

Tomotherapy, which literally means slice therapy, is a term derived
from tomography. The first implementation of this concept was performed
by NOMOS Corporation [6] and was provided as an add-on accessory to
existing linear accelerators. The add-on feature consists of a set of MLCs that
provide a narrow fan beam shape [11] projecting a maximum width at the
patient of about 20 cm. The fan beam thickness can be either 0.8 or 1.6 cm
and each leaf projects a shadow of about 1 cm width on the patient. When
the leaves are in the beam, that portion of the beam is fully shielded except
for a minor (0.5 percent) transmission component. Either the leaf is open
or closed for that slice providing binary dose delivery, i.e., for that portion
of the beam, the beam is either on or off. The open beam components are
generally referred to as beamlets or pencil beams. Radiation delivery con-
sists of a machine that rotates around the patient while the beam is on and
the leaves rapidly move in and out depending on whether that beamlet is
aimed at the target or at normal tissues. After two simultaneous slices have
been delivered, the patient is translated by two slice thicknesses and the
next two slices are delivered until the total treatment volume is covered.
This is called serial tomotherapy.

7.2.6.1.1 Optimization Methods

Shepard et al. [49] introduced iterative approaches for optimizing dose in
tomotherapy. Olivera et al. [41] described optimization techniques for large-
scale helical tomotherapy. Helical tomotherapy is an integrated therapeutic
technique, which includes planning, delivery, and verification capabilities.
Helical tomotherapy allows for irradiation of a large number of targets and
region at risk (RAR) over broad regions of the body; a large-scale opti-
mization technique is necessary. Usually a tomotherapy treatment will have
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tens to hundreds of thousands of pencil beams for which intensity needs to
be optimized. Moreover, the number of voxels where the dose needs to be
computed is on the order of 1,000,000. The complexity and size of the opti-
mization is the price paid in tomotherapy to obtain coplanar deliveries that
are neither limited by the number of beam directions nor the degree of mod-
ulation used during delivery. They claim that a complex optimization plan
will not lead to a complex delivery, thanks to the simplicity and capabilities
of the tomotherapy concept. More recent publication on tomotherapy can
be found in Ref. [40].

7.2.6.2 Proton Therapy

7.2.6.2.1 Introduction

Heavy charged particles, such as protons, produce energy deposition pat-
terns in tissue which are superior to single beams of photons and elec-
trons for treatment of cancer. The dose distribution from a monoenergetic
beam of protons has an entrance region of slowly rising dose followed by a
sharp increase, called Bragg peak, near the end of range. By superimposing
beams of different energies, the Bragg peak can be spread to generate a
dose distribution, which provides moderate entrance dose, uniform high
dose within the target tissue, and almost zero dose beyond the target (see
Figure 7.6). Highly conformal dose distributions with low integral dose can

Figure 7.6 A comparison of the amount of radiation delivered with conventional
photon beam radiation therapy versus proton therapy. Conventional therapy is
distinguished by a relatively high entrance dose and an exit dose. By contrast,
proton therapy has a much lower entrance dose and no exit dose.
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be achieved with a small number of proton treatment fields convergent on
a target region [37].

7.2.6.2.2 Intensity Modulated Proton Therapy

Intensity modulated proton therapy (IMPT) is a technique for radiation
treatment of cancer, which allows one to deliver highly target-conformal
dose distributions. The use of IMPT may potentially result in better sparing
of the normal tissue, than is achievable with the proton passive scattering
or the intensity modulated therapy with photons. Unlike the passive scatter-
ing technique, IMPT does not require the use of patient-specific hardware,
such as field forming apertures and range compensators. Robust math-
ematical models and efficient solution techniques for optimizing proton
treatment planning parameters will make this precise treatment technique
more desirable for future cancer treatment [52].
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Abstract The intensity modulated radiation therapy (IMRT) treatment
planning problem consists of several subproblems, which are typically
solved sequentially. This chapter addresses the beam orientation optimiza-
tion (BOO) problem, and to some extent, the fluence map optimization
(FMO) problem. The BOO problem is the problem of selecting from which
beam orientations to deliver radiation to the patient. The goal of beam
orientation optimization is to select the best beams from which to deliver
the radiation so that the treatment plan can deliver the prescribed amount
of radiation dose to the target cells while simultaneously delivering a small
enough amount of radiation to the surrounding tissue so that nearby organs
will continue to function properly after radiation therapy. The solution to
the FMO problem, the problem of determining the amount of radiation
intensity (fluence) of each beamlet in each beam, is generally accepted
as the measure of the quality of a beam solution. However, due to the
cost of evaluating the FMO problem, a number of alternative approaches
have been taken to model and to solve the BOO problem. This chapter
summarizes many of the BOO methods presented in the literature.

8.1 Introduction
In intensity Modulated Radiation Therapy (IMRT), radiation is delivered to
the patient via external beams. Beam orientation optimization (BOO) in
IMRT is the problem of selecting from which beam orientations to irradiate
the patient, the goal of which is to increase the quality of a treatment plan
or decrease the time required to deliver the treatment plan. The quality
of a treatment plan is determined by its ability to deliver the prescibed
amount of radiation to the target structures—which typically consist of a
gross tumor volume (GTV) where disease is evident, and a planning tumor
volume (PTV), an area surrounding the GTV where microscopic cancer
spread is suspected—while simultaneously delivering an acceptably low
amount of radiation to the surrounding normal tissue, called critical struc-
tures or organs-at-risk (OARs). One may intuitively expect that the selection
of the beam orientations influences the quality of the treatment plan. One
may then also expect that it is possible for treatment plans using different



Lim/Optimization in Medicine and Biology AU0563_C008 Final Proof Page 225 10.11.2007 03:30pm

Beam Orientation Optimization Methods 225

numbers of beams to have the same quality, depending on which beams
are used in each plan. From a clinical perspective, it is desirable to min-
imize the time required to administer the treatment plan, and one way
of achieving faster delivery times is to decrease the number of beams in
the treatment plan. BOO thus serves to achieve two goals in IMRT: (1) to
improve the quality of the treatment plan or (2) to reduce the number of
beams required to deliver a high-quality treatment plan.

This chapter describes the BOO problem and approaches that have been
used to solve it, and is organized as follows. Section 8.2 describes the BOO
formulation; Section 8.3 discusses methods of solving the BOO problem;
and Section 8.4 summarizes the abilities of the methods presented.

8.2 BOO Model
To optimize the beam orientations, a quantitatve measure to assess the
quality of each vector of beam solutions, θ , must be obtained. Let this
measure be F(θ). Let B be the set of candidate beam orientations from
which radiation may be delivered. For a solution consisting of k beams,
the vector θ must lie in Bk = B × · · · × B.

Selecting an objective function such that the best solution is obtained at
the function’s minimum, a basic formulation of the BOO problem is then

Min F(θ)

s.t. θ ∈ Bk

The above formulation determines not only the beam orientations, but
the number of beams as well. Although it is common to choose k to be a
fixed value before solving the BOO problem, studies where k is a decision
variable can be found in Schreibman et al. [46], Söderstrom and Brahme
[51], and Stein et al. [52].

8.2.1 Beam Orientations
Several components of a linear accelerator, the machine used to deliver
the radiation, can be translated and rotated so that radiation beams may
originate from anywhere within a vast space around the patient. Despite
the availability of an immeasurable number of beam orientations, for most
cancer sites, typical IMRT treatment plans in practice use equi-spaced copla-
nar beams. Coplanar beams are those beams obtained from the rotation of
only the gantry of the linear accelerator. Figure 8.1 shows a linear accel-
erator with arrows indicating the movements available to its components;
the gantry rotation is highlighted. If all other components of the linear
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Figure 8.1 A linear accelerator and available movements; the gantry rotation is
highlighted.

accelerator are fixed, the rotation of the gantry sweeps out a set of coplanar
beams in a circular disc perpendicular to the couch. If the couch is also per-
mitted to rotate, the rotation of the gantry and the couch create a spherical
set of beams. The couch can also translate up, down, left, right, forward
and backward, and the head of the gantry can rotate independently, cre-
ating an even larger set of beams. Beams obtained from the movement of
more than just the gantry are known as non-coplanar beams.

The set of candidate beams B can be selected according to any user-
specified criteria. Although the linear accelerator is able to deliver a
continuous set of beam orientations from nearly any orientation in three-
dimensional (3D) space by rotating/translating the various components
indicated in Figure 8.1, it is common to only consider a discretized set of
beam orientations due to limitations in machine tolerances. Because many
degrees of freedom in a linear accelerator result in a very large set of avail-
able beam orientations, the size of the solution space Bk can be intractably
large despite discretization. It is therefore also common to further restrict the
set of candidate beams by considering only a subset of the discretized candi-
date beams. The most common restriction is to allow only coplanar beams.

8.2.2 Feasible Beam Space
Although there are many approaches to quantifying the quality of a beam
solution and formulating the objective function to the BOO Model presented
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in Section 8.2, the constraints implemented do not vary as widely. Aside
from the constraint that beam solutions be members of the candidate beam
set B, the only other common constraints placed upon the beam solu-
tions in the literature are constraints enforcing geometric considerations.
The geometric constraints typically considered involve the exclusion of
parallel-opposed beams (beams that are 180◦ apart) and a minimum sepa-
ration between angles in the beam solution.

The exclusion of parallel-opposed beams arises from the fact that the
radiation deposited in a patient by a beam does not stop simply because it
reaches the target structure; rather, it may continue on and deposit radiation
in cells on the other side of the target. If parallel-opposed beams are used,
it is clear that there is potential for the radiation delivered by the beams
to completely overlap, and possibly create a situation in which the tar-
gets or critical structures become overdosed. Instances of the exclusion of
parallel-opposed beams can be found explicitly in the methods presented
in Rowbottom et al. [44], or implicitly in Das et al. [11], where parallel-
opposed beams are avoided by selecting B in such a way that no beam
has its parallel-opposed beam also in B. Without having to restrict B, a
simple set of constraints to the BOO Model in Section 8.2 that exclude
parallel-opposed beams is

θh �= θj + 180, h = 1, . . . , k, j = 1, . . . , k, j �= h

θh �= θj − 180, h = 1, . . . , k, j = 1, . . . , k, j �= h.

Note that the above constraints assume that angles will be coplanar and
within the range [0, 360).

The other common geometric constraint is that a user-specified mini-
mum angle distance (δ) be observed (Das et al. [11], Rowbottom et al. [44]).
Within the BOO Model presented in Section 8.2, such a requirement for
coplanar angles could be expressed by the following set of constraints:

θh+1 − θh ≥ δ, h = 1, . . . , k − 1 (8.1)

(360− θk)− θ1 ≥ δ (8.2)

θ1 ≤ · · · ≤ θk (8.3)

where

� constraint in Equation 8.3 requires that the angles are sorted in non-
decreasing order, thus simplifying the other constraints;

� constraint in Equation 8.1 ensures that there are at least δ degrees
between adjacent angles;



Lim/Optimization in Medicine and Biology AU0563_C008 Final Proof Page 228 10.11.2007 03:30pm

228 Optimization in Medicine and Biology

� constraint in Equation 8.2 ensures that there are also δ degrees
between the first and last angles, which require special consider-
ation due to the cyclic nature of angles, that is, 0◦ = 360◦.

Note that the above constraints assume that the candidate beam set B
consists of angles in the range [0, 360). Also, the above constraints only
restrict the entry angles of the beams.

To incorporate both the entry and exit angles of the beams, the angle
separation constraint could be formulated using the angle separation scor-
ing mechanism S sep

θ described in Section 8.2.3.3 to obtain

S sep
θ ≥ δ′,

where δ′ is a user-specified value indicating the desired amount of angle
separation.

8.2.2.1 Beam Data Generation

For each beam orientation that is considered in B, lengthy calculations must
be made to determine the beam’s effect on the patient’s tissue and organs.
This includes determining in which structure each voxel lies, which voxels
are hit by which beamlets, and the amount of intensity of each beamlet
that is deposited in each voxel through which it passes.

Beamlet dose computation models used in IMRT rely heavily on
ray-tracing algorithms for voxel classification and determination of the radio-
logical path (Fox et al. [17]). Voxel classification (Siddon [49]) establishes
whether voxels are inside or outside the path of a radiation beam and
classifies voxel centers as inside or outside of segmented targets and criti-
cal structures. The radiological path is the effective distance traveled by a
beamlet when the effect of traveling through tissues of different densities
is considered. The exact radiological path of a beamlet through the patient
is required to correct for tissue heterogeneities in determining the dose
deposition coefficients (Siddon [48]).

Siddon’s ray-tracing algorithms (Siddon [48,49]) have been the standard
methods used for ray-tracing in radiotherapy since the 1980s. In Siddon’s
polygon and voxel ray-tracing algorithms for voxel classification (point-
in-polygon testing), structures are represented as 3D polygonal objects,
known as Siddon Prisms, and the signs of cross products of rays passing
through the polygons are used to determine whether a voxel lies inside or
outside a structure. Despite its overwhelming use, Siddon’s algorithm for
polygon ray-tracing is very costly because the number of voxels in a patient.
In 2005, Fox et al. [17] developed a novel approach to polygon ray-tracing
that circumvents the need for cross products by translating the polygon
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structure onto a coordinate system, replacing the need for a cross product
by the sign of the second coordinate of each voxel in the coordinate system.

In Siddon’s algorithm for determining radiological paths (Siddon [48]),
the radiological path must be determined for each voxel for every beamlet.
This involves computations for millions of beamlet–voxel combinations.
As reported by Jacobs et al. [24], a significant amount of computational
time is required for these repeated calculations. Fox et al. [17] combined
the incremental voxel ray-tracing algorithm presented by Jacobs et al. [24]
with a method of virtual stereographic projection to significantly reduce the
computational cost of obtaining radiological path lengths.

Using their polygon translation and incremental ray-tracing algorithms,
Fox et al. [17] achieved a 100–300 fold improvement in computation time
over Siddon’s point-in-polygon algorithm. Although these methods pro-
vide a significant reduction in computation time, the consideration of non-
coplanar beam orientations still poses difficulty in the BOO problem.

8.2.2.2 Time and Space Considerations

Because beam data calculations must be performed for each of millions of
beamlet–voxel combinations, beam data generation is a lengthy process,
requiring several minutes per beam using the algorithms described by Fox
et al. [17]. For methods requiring a priori knowledge of the beam data for
each beam in B, the computation time and hard drive space required to
store the beam data can render the consideration of a large number of
candidate beams impractical. This issue is typically addressed by simply
restricting the number of candidate beams in B to a manageable size (see
Lee et al. [29]).

8.2.3 Objective Function
The objective function F(θ) that measures the quality of beam vector θ

can be chosen to express a number of different criteria. For a given choice
of θ , a patient will be treated using an optimal treatment plan obtained
by solving the FMO problem—the problem of determining the optimal
beamlets intensities given by θ . There are essentially two classes of BOO
approaches: one that defines F to be the optimal solution value of the
FMO problem and other that defines F as an approximation thereof based
on intuition.

8.2.3.1 Fluence Map Optimization

In IMRT, each beam can be modeled as a collection of hundreds of small
beamlets, the fluences of which can be controlled individually. These
fluence values are known as a fluence map, and given a fixed set of beams,
the optimization of these fluences is known as fluence map optimization.
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Because the quality of a treatment plan can vary greatly depending on the
fluence maps, the optimal solution value of the FMO problem is gener-
ally accepted as a quantitative measure of the quality of the treatment plan.
Thus, the quality of a set of beams can be measured by the optimal solution
of the FMO problem performed with these beams.

In the FMO problem, the patient’s organs—both targets and critical
structures—are irradiated using a predetermined set of beam angles, θ ∈ Bk ,
where k is the number of beams in θ . Each beam is decomposed into a
rectangular grid of beamlets with m rows and n columns, yielding typically
100–400 beamlets per beam. The position and intensity of all beamlets in
a beam can be represented by a vector of values representing the beamlet
intensities, called bixels. The set of all bixels in beam θ is denoted by Bθ .
The core task in IMRT treatment planning, and clearly the FMO problem
in general, is finding radiation intensities for all beamlets.

Denote the total number of structures by S and say the targets are
indexed as s = 1, . . . , T and the critical structures are s = T + 1, . . . , S .
Each structure s is discretized into a finite number vs of volume cubes,
known as voxels. Typically, around 350,000 voxels are required to accu-
rately represent the targets and surrounding structures of a head-and-neck
cancer site.

Because a beamlet must pass through a certain amount of tissue to
reach a voxel, the dose received in a voxel from a beamlet may not be
the full delivered intensity. Denote Dijs as the dose received by voxel j
in structure s from beamlet i at unit intensity. The Dijs values are known
as dose deposition coefficients, which are obtained from the radiological
paths discussed in Section 8.2.2.1. Let xi denote the intensity of bixel i. The
dose zjs received by voxel j in structure s can be expressed by

zjs =
k∑

h=1

∑

i∈Bθh

Dijsxi , j = 1, . . . , vs , s = 1, . . . , S .

Say the objective function for the FMO problem given a vector of doses
z is F (z). A basic formulation of the FMO problem is then

Min F (z)

s.t. zjs =
k∑

h=1

∑

i∈Bθh

Dijsxi , j = 1, . . . , vs , s = 1, . . . , S

xi ≥ 0, i ∈ Bθh , h = 1, . . . , k.

In addition to the constraint that beamlet fluences be nonnegative, it is
also possible to incorporate other requirements into the FMO Model. Other
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constraints employed in the literature span a myriad of criteria, including
target dose homogeneity, tumor control probability (TCP) (Agren et al. [2],
Lind et al. [34]), normal tissue complication probability (NTCP) (Grigorov
et al. [20], Thomas et al. [53]), dose–volume histogram (DVH) constraints
(Hou et al. [23], Romeijn et al. [42]), equivalent uniform dose (EUD) (Chapet
et al. [8], Mavroidis et al. [36], Niemierko [37], Thomas et al. [53], Wu et al.
[57]), and more. It is also possible to include many of these criteria in the
FMO objective function.

As an alternative to the BOO Model given in Section 8.2, if the set of
beam orientations B is finite, the BOO and FMO problems can be for-
mulated together and solved simultaneously as a mixed-integer linear or
nonlinear program (D’Souza et al. [56], Ehrgott and Johnston [14], Ferris
et al. [16], Lee et al. [29,30], Lim et al. [33], Shepard et al. [47], Wang et al.
[55]). The FMO formulation can be combined with BOO in the following
model. Let yθ be a binary variable indicating whether or not beam θ ∈ B
is used. If beam θ is used in the treatment plan then all the beamlets in
θ , Bθ , are turned on, that is, they can have positive fluences up to some
predetermined maximum intensity M . The simultaneous BOO+ FMO MIP
Model is then

Min F (z)

s.t. zjs =
k∑

h=1

∑

i∈Bθk

Dijsxi , j = 1, . . . , vs , s = 1, . . . , S

xi ≤ Myθ , i ∈ Bθ , θ ∈ B
∑

θ∈B
yθ ≤ k

xi ≥ 0, i ∈ Bθ , θ ∈ B

yθ ∈ {0, 1}, θ ∈ B.

8.2.3.2 Beam’s-Eye-View Approaches

The concept of a beam’s-eye-view (BEV) has been popular in BOO studies.
A BEV is similar in concept to a bird’s-eye-view, where the object being
viewed is a patient as seen from a beam. The more of a target structure
that is seen by the beam, the better candidate the beam is to be used in the
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treatment plan. Whether or not a beamlet intersects a voxel in a particular
structure is contained within the beam data discussed in Section 8.2.2.1.
By using beam solutions that have favorable BEVs, that is, that have the
ability to irradiate a large amount of the target structures, a treatment plan
will intuitively be capable of delivering a high amount of dose to the target
structures while avoiding the critical structures. According to a study by
Vijayakumar et al. [54], the advantages of BEV include, among other things,
the availability of dose volume histogram profiles which may allow better
definition of normal tissue tolerance and higher tumor control probability.
Chen et al. [9], Cho et al. [10], Goitein et al. [18], Lu et al. [35], and Pugachev
and Xing [39–41] have all used BEV or extensions thereof to select beam
orientations.

8.2.3.2.1 Beam’s-Eye-View

For each beamlet–voxel combination, the dose deposition cofficient Dijs

represents the amount of dose deposited in voxel j in structure s by beamlet
i. In the BEV measure, it is only important to consider whether a beamlet
in a beam intersects a voxel, not whether the dose deposition coefficient
allows for a large amount of dose to be delivered. To this end, define
rijs as

rijs =
{

1 Dijs > ε,

0 otherwise,
(8.4)

where ε is a very small value. The beam’s-eye-view score of beam θ , SBEV
θ ,

is then simply the number of target voxels that can be reached by the
beamlets in θ :

SBEV
θ =

T∑

s=1

vs∑

j=1

min

⎧
⎨

⎩
1,
∑

i ∈ Bθ

rijs

⎫
⎬

⎭
.

The BOO objective function for the BEV approach is

F(θ) = −
k∑

h=1

SBEV
θh

.

8.2.3.2.2 Pseudo Beam’s-Eye-View

Pugachev and Xing [39–41] developed a BEV variation called pseudo
beam’s-eye-view (pBEV) that assigns a score to each beam that accounts
for the maximum intensity deliverable from the beam without exceeding
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the tolerances doses of the OARs. The score SpBEV
θ associated with beam θ

is given by

SpBEV
θ =

T∑

s=1

1

vs

vs∑

j=1

(
dθ js

Ps

)2

,

where
dθ js is a measure of the total dose delivered to voxel j in structure s by
beam θ

Ps is the prescribed radiation dose for the target s.

In Pugachev and Xing [39], the value dθ js is calculated by dθ js =
d0
θ js exp(−μ�θ js), where d0

i is the dose at zero depth delivered by the beam-
let in θ that intersects with voxel j in structure s, �θ js is the distance traveled
by the beamlet before reaching the voxel and μ is the attenuation coef-
ficient. The value dθ js is calculated according to the following procedure
(Pugachev and Xing [40]):

1. Determine the maximum beam intensity profile of beam θ as fol-
lows. For all beamlets i ∈ Bθ :
(a) Find the voxels crossed by beamlet i.
(b) Assign xi an intensity that could deliver a dose equal to or

higher than the prescription dose in every target voxel crossed.
(c) Calculate the minimum ratio by which xi must be reduced to

ensure that the tolerance dose for all critical structures and
normal tissue crossed by beamlet i is not exceeded.

(d) Reduce the value of xi according to the minimum ratio. This
value represents the maximum usable intensity of the beamlet.

2. Perform a forward dose calculation using the maximum beam inten-
sity profile to obtain dθ js .

The BOO objective function for the pBEV approach is

F(θ) = −
k∑

h=1

SpBEV
θh

.

8.2.3.2.3 Target-Eye-View

Cho et al. [10] used an extension to BEV called target-eye-view (TEV),
wherein the overlap of targets and critical structures in the BEV is accounted
for. A nonoverlapping area is called a miss. Any overlap is called a hit; more
specifically, a distal hit identifies a critical structure that lies behind a target
in the BEV, whereas a proximal hit identifies a critical structure in front of
the target. Marginal hits occur when the distance between a critical structure
and a target is less than the beam’s penumbra, the region at the edge of a
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Table 8.1 Collision and Criticality Scores
Implemented by Cho et al. [10] in Calculating
Target-Eye-View (TEV)

Type of Overlap Collision Score

Proximal hit 1.0
Marginal hit 0.8
Distal hit 0.7
Miss 0.0

Critical Structure Criticality Score
Chiasm 4
Optic nerve 4
Optic global 2
Cavernous sinus 1
Brainstem 1

Source: From Cho, B.C.J., Roa, H.W., Robinson, D., and
Murray, B., Int. J. Radiat. Oncol. Biol. Phys., 23, 153,
1992.

radiation beam over which the dose rate changes rapidly as a function of
distance from the beam axis (The Physics of Radiation Therapy [27]).

For every critical structure, the overlaps with every candidate beam are
tabulated in a matrix. The TEV score for a beam θ , STEV

θ , is determined
from these matrices. Each critical structure s is arbitrarily assigned a rel-
ative criticality score, cs , weighting the importance of sparing one critical
structure over another. Additionally, each type of overlap g is given a col-
lision score, gm. Table 8.1 displays the collision and criticality scores given
by Cho et al. [10].

The TEV score is calculated by combining the scores of every critical
structure for a particular beam orientation. Let G be the number of types
of overlaps and let yijs = {1, . . . , G} be the type of hit occurring from the
intersection of beamlet i and voxel j in structure s. Note that G must include
a type of hit representing no hit, and the collision score for the no-hit type
must be zero.

STEV
θ =

∑

i∈Bθ

S∑

s=T+1

vs∑

j=1

G∑

m=1

yijscsgm.

From the definition, it is clear that a high TEV score may suggest a
significant amount of overlap between a beam and the critical structures,
thus decreasing the potential benefit of that beam in a treatment plan.



Lim/Optimization in Medicine and Biology AU0563_C008 Final Proof Page 235 10.11.2007 03:30pm

Beam Orientation Optimization Methods 235

The BOO objective function for the TEV approach is

F(θ) =
k∑

h=1

STEV
θh

.

8.2.3.3 Geometric Considerations

In addition to each beam’s relation to the targets and critical structures, the
relationship of each beam with the other beams in the plan has also been
considered in the selection of beam orientations. One common geometric
consideration is that the beams should be spaced far apart from each other.

A large separation between the angles is intuitively desirable because
the motivation for delivering the radiation from several beam orientations
is that the targets, at the intersection of these radiation beams, will receive
a very high dose, whereas surrounding tissue will receive radiation from
some, but not all the beams. It is hoped that by receiving substantially less
radiation than the targets, the critical structures will receive a low enough
amount of dose that they will continue function after the treatment. If two
or more beams in a treatment plan are very close together, it is possible
that the cumulative dose received by an organ in their path will exceed
that organ’s dose tolerance, and the organ will fail. Thus, the concept of
maximum angle separation has been explored in the BOO literature to
force the beams of a treatment plan to be sufficiently far apart (Das et al.
[11], Das and Marks [12], Rowbottom et al. [44]).

A simple method of accounting for angle separation in the BOO Model
is to add a constraint requiring that a user-specified minimum angle distance
(δ) be observed (Das et al. [11], Rowbottom et al. [44]).

Alternatively, the angle separation can be maximized as part of the
optimization procedure (Das and Marks [12]). In this scenario, Das and
Marks [12] mathematically represented the angle separation between beams
in a beam vector, S sep

θ by the geometric mean of the sines of the angles
between beams:

S sep
θ =

⎛

⎝
k∏

j=1,j �=i

k∏

i=1

sin(αθi ,θj )

⎞

⎠

1
k(k−1)

,

where αθi ,θj is the angle between beams θi and θj . Note that this formulation
accounts for both entrance and exit beams, and therefore, no beams may
have more than 90◦ separation; in other words, αθi ,θj ≤ 90◦. By using the
geometric mean rather than the arithmetic mean, if any two beams are
equal, then S sep

θ = 0. With this scoring method, it is desirable to have as
large a value of S sep

θ as possible, thus achieving maximum angle separation.
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Because it is desirable to maximize the angle separation and the basic
BOO Model is formulated as a minimization, the BOO objective function
for this approach is

F(θ) = −
k∑

h=1

S sep
θh

.

Other forms of geometric considerations have also been considered.
Haas et al. [21] formulate the BOO problem in such a way that the objective
function reflects the need for the edges of the combined beams to conform
to the PTV. This value is measured as the intersection of area hit by the
beams minus the area of the PTV. Define r ′θ js as an indicator as to whether
a voxel j in structure s is hit by any beamlet in any beam in θ :

r ′θ js = min

⎧
⎨

⎩
1,

k∑

h=1

∑

i∈Bθh

rijs

⎫
⎬

⎭
.

The value Sarea
θ representing the area intersected by all the beams in θ less

the area of the PTV, which is denoted by structure index s′, is

Sarea
θ =

S∑

s=1

vs∑

j=1

r ′θ js − vs′ .

With this measure, it is desirable to have smaller values, indicating that
more of the PTV and less of the surrounding tissue is intersected.

The BOO objective function for this approach is

F(θ) =
k∑

h=1

Sarea
θh

.

8.2.3.4 Other Scoring Criteria

A wide variety of scoring criteria beyond just the previously described BEV
and geometric considerations have been considered. Several of these alter-
native scoring methods are discussed below.

8.2.3.4.1 Mean Organ-at-Risk Data

D’Souza et al. [56] incorporated a scoring mechanism named mean organ-
at-risk data (MOD) into their integer programming BOO formulation. To
obtain the MOD score value for a beam, an initial treatment plan is delivered
from the single unmodulated beam, which is shaped to the BEV of the
PTV. In this treatment plan, the prescribed dose to the PTV is 1.8 Gy. After
the beamlet intensities x for this treatment plan are obtained, the plan is
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normalized so that the mean dose in the PTV is 2.0 Gy, yielding a vector of
beamlet intensities x̂. For a beam θ , the MOD score SMOD

θ is the mean critical
structure dose obtained from the normalized single-beam treatment plan:

SMOD
θ =

∑

i∈Bθ

1
∑S

s=T+1 vs

S∑

s=T+1

vs∑

j=1

Dijsx̂i .

Clearly, a lower score indicates a beam with potentially low impact on
critical structures.

The BOO objective function for the MOD approach is

F(θ) =
k∑

h=1

SMOD
θh

.

8.2.3.4.2 Entropy

Söderstrom et al. [50] used the concepts of entropy and Fourier transforms
to gauge the effective of a beam by analyzing the optimal fluence maps to
determine the amount of beam structure and information.

From statistical mechanics, a high entropy value corresponds to a high
amount of disorder or a near-equilibrium state. Conversly, a low entropy
corresponds to a low amount of disorder, in other words, a high amount
of structure. To determine which beams are the most influential in creating
a dose distribution, the beams with the highest structure (lowest entropy)
are sought. Entropy for a beam θ is measured as

eθ = −
∑

i∈Bθ

xi log xi .

To make comparisons between beams easier so that a high value corre-
sponds to good beam directions, Sentropy

θ is used to score the beams:

Sentropy
θ = 1+ minγ∈B eγ − eθ

maxγ∈B eγ
.

Noting that it is desirable to have larger entropy values, the BOO objec-
tive function for the entropy approach is

F(θ) = −
k∑

h=1

Sentropy
θh

.

8.2.3.4.3 Fourier Transforms

In their scoring method based on Fourier transforms, Söderstrom et al.
[50] examined the frequency contain of the beams’ fluence maps to locate
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beams with large amounts of gross structure, which indicate beams in which
a near-uniform dose may be delivered. To obtain a measure of the gross
structure of a beam, the absolute value of the Fourier transform of the
beam’s fluence map is taken (F̄θ ). Because the low frequencies represent
gross structure in the frequency space, the low frequency part of the Fourier
spectra is integrated to measure the gross structure of a beam, SFourier

θ :

SFourier
θ =

∫ umax

0

∣
∣F̄θ (u)

∣
∣du,

where umax is a frequency corresponding to the smallest structure of inter-
est. Söderstrom et al. [50] choose the value for umax as half the width of a
collimator leaf or half the width of a voxel.

Because beams with large amount of gross structure are sought, the
BOO objective function for the Fourier transform approach is:

F(θ) = −
k∑

h=1

SFourier
θh

.

8.2.3.4.4 Path of Least Resistance

Gokhale et al. [19] proposed a scoring technique that evaluates beam orien-
tations according to the path of least resistance to radiation from the tumor
site to the patient surface. To determine the path of least resistance for all
beam angles, a fictitious radiation source is placed at the target structure
and the amount of radiation dose received at the surface of the patient
is calculated using radiation transport calculations. The higher the dose
received at the surface, the better the corresponding beam orientation. The
path of least resistance can also be obtained from the radiological paths
calculated while generating beam data as discussed in Section 8.2.2.1.

Letting Spath
θ denote the path length for a beam θ , the BOO objective

function for the path of least resistance approach is

F(θ) =
k∑

h=1

Spath
θh

.

8.2.3.4.5 Single- and Multi-Beam cost Functions

Oldham et al. [38] and Rowbottom et al. [44,45] used a single-beam cost
function to assess the value of a single beam, and then combined the single-
beam costs of the beams in a beam vector to obtain a multi-beam cost for
that beam solution. Due to the complexity of the cost functions, the reader
is referred to the original source for detailed information on the scoring
mechanism.



Lim/Optimization in Medicine and Biology AU0563_C008 Final Proof Page 239 10.11.2007 03:30pm

Beam Orientation Optimization Methods 239

Define S single
θ to be the value of the single-beam cost function for a single

beam θ . The BOO objective function for the single-beam cost function
approach is

F(θ) =
k∑

h=1

S single
θh

.

Define Smulti
θ to be the value of the multi-beam cost function for a beam

vector θ . The BOO objective function for the multi-beam cost function
approach is

F(θ) = Smulti
θ .

8.3 Optimization Methods
Although the FMO Model can be formulated in such a way that its objective
function is quadratic (Aleman et al. [3–5]) or even linear (Romeijn et al.
[42,43]) with linear constraints, the FMO problem is fundamentally non-
linear with respect to the beam vector used as input. This inherent non-
linearity arises from the fact that the physics of dose deposition change
with direction, that is, as a particular beam changes its angle, the effects of
the dose deposited in the patient can change drastically. For example, if a
beam solution contains a beam that passes near the spinal cord, the spinal
cord could receive a sufficiently low amount of dose such that it survives
the treatment. However, if that one beam is moved only a few degrees so
that it passes through, or even just too close, to the spinal cord, the spinal
cord could effectively be severed due to an excessive amount of radiation
received. Thus, two solution vectors very close to one another would yield
very different objective function values.

This nonlinearity is largely responsible for the emergence of so many
different scoring criteria for a beam solution. As with the numerous methods
of describing the quality of a beam solution, there have been numerous
approaches to solve the many BOO formulations that have been presented.

8.3.1 Solving the BOO+ FMO Integer Program
Solving the BOO+FMO mixed integer program described in Section 8.2.3.1
poses a particularly difficult problem due to the complex model formulation.
The use of specialized cuts and column generation within branch-and-
bound schemes has been employed, as has the use of commercial solvers.
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8.3.1.1 Branch-and-Bound Techniques

Branch-and-bound is a common method of solving programming problems
involving integer variables. The branch-and-bound algorithm recursively
partitions the solution space into a relaxation of the original problem. More
specifically, for an integer program, the relaxation of the original problem
is the linearization of the binary variables. For the BOO+FMO Model pre-
sented in Section 8.2.3.1, this relaxation allows yθ , θ ∈ B, to be a real-valued
number in the interval [0,1]. This results in the following linear program (LP)
relaxation of the original MIP:

Min F (z)

s.t. zjs =
k∑

h=1

∑

i∈Bθk

Dijsxi , j = 1, . . . , vs , s = 1, . . . , S

xi ≤ Myθ , i ∈ Bθ , θ ∈ B
∑

θ∈B
yθ ≤ k

xi ≥ 0, i ∈ Bθ , θ ∈ B

0 ≤ yθ ≤ 1, θ ∈ B.

Because the above relaxation contains only linear constraints, it can
be easily solved. If the solution to the relaxed problem, (x̂, ŷ), where x̂
corresponds to the beamlet intensities of all beamlets in all beams in B and
ŷ indicates whether or not each beam in B is used, contains an integer-
valued ŷ then ŷ solves the original problem. Otherwise, ŷ contains at least
one fractional value, and the branching process occurs. For a fractional
variable ŷθ ′ , two new problems are created by fixing the value of ŷθ ′ to 0 in
one problem and to 1 in another problem. Each of these problems is solved,
and if there are any fractional values in the solutions, the branching process
is repeated. The process continues until an integer solution is found. As the
algorithm proceeds, branches can be eliminated from further exploration if
the relaxed solution does not improve on integer solutions obtained from
another branch. This is the bound step of the branch-and-cut algorithm.

Lee et al. [29] use a branch-and-bound algorithm to solve the
BOO+FMO mixed integer problem. In the branching process, Lee et al.
[29] elect to branch not on individual variables, but on sets of variables.
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Let ŷ be the solution to an LP relaxation at some node in the branch-
and-bound tree. The branching scheme partitions B into B1 ∪B2 such that∑

θ∈B1
ŷθ ≈∑θ∈B2

ŷθ . The sets B1 and B2 are also chosen so that the beams
in each set are roughly in the neighborhood of each other. From these two
sets, the LP problem is split into two new nodes, each containing one of
the following constraints:

∑

θ∈B1

yθ ≤
⌊

k

2

⌋ ∑

θ∈B2

yθ ≤
⌊

k

2

⌋

.

At each node of the branch-and-bound tree, an LP relaxation of the orig-
inal MIP must be solved. To keep this LP relaxation tractable, Lee et al. [29]
imposed a column generation technique, which generates an initial mas-
ter problem containing only about half of the original voxels. The voxels
included in the master problem are selected so as to maintain a realistic
representation of the original problem. Additional constraints and corre-
sponding voxels (columns) are added to the problem as the column gen-
eration method proceeds. Voxels that are not incorporated after a certain
number of iterations, are removed from the master problem to maintain a
reasonable size for the master problem.

Cutting plane techniques may also be applied to the original MIP to
remove fractional values from the solution space (Lee et al. [29]).

8.3.1.2 Commercial Solvers

CPLEX (ILOG, Inc., California) is a commercial software package, which
can solve many types of optimization problems efficiently. In the BOO
literature, CPLEX has been commonly used to solve the BOO+FMO mixed
integer programming formulation (D’Souza et al. [56], Ehrgott and Johnston
[14], Lee et al. [29], Wang et al. [55]).

Other commercial software systems have also been used. Ferris et al.
[16] used GAMS in addition to CPLEX, and Shepard et al. [47] use MATLAB
in conjunction with GAMS. Through GAMS, several commercial solvers may
be accessed, including OSL, CPLEX, CONOPT, and MINOS.

8.3.2 Metaheuristics
Owing to the nonlinearity of the BOO problem when formulated based
upon the optimal solution to the FMO problem, obtaining a globally
optimal solution can be problematic. Many global optimization techniques
have been applied to the BOO problem to search the solution without
becoming trapped in local optima. The most common of these algorithms,
simulated annealing and evolutionary/genetic algorithms, is discussed. In
addition, the response surface method presented by Aleman et al. [4,5]
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is also discussed because of its ability to include non-coplanar beam
solutions although circumventing storage issues associated with a large B.

8.3.2.1 Simulated Annealing

The simulated annealing algorithm (Kirkpatrick et al. [28]) is a stochas-
tic neighborhood search method which allows for the escape from local
optima. The simulated annealing algorithm is based on the Metropolis
algorithm, wherein a neighboring solution to the current iterate is gen-
erated according to some probability distribution, and if it is an improving
point, it becomes the current iterate. Otherwise, it becomes the current iter-
ate with probability exp{	F/T } (Boltzmann probability), where 	F is the
difference in objective function value between the current iterate and the
newly generated point and T is the temperature, a measure of the random-
ness of the algorithm. If T = 0 then only improving points are selected. If
T is very large then any move is accepted, which is essentially a random
search. By allowing the algorithm to move to points that do not improve
upon the best solution, the algorithm can avoid becoming trapped in a
local optimum.

The simulated annealing algorithm starts with an initial temperature T0

and performs a number of iterations of the Metropolis algorithm using T =
T0. Then, the temperature is decreased according to some cooling schedule
such that {Ti} → 0.

In selecting a neighboring point in the simulated annealing algorithm,
one or more beams in the current beam vector may be changed. Let Nh(θ)

be the neighborhood of a single beam at index h in θ , defined for some
neighborhood size δ as

Nh(θ) = {(θ1, . . . , θh−1, θ mod 360, θh+1, . . . , θk) ∈ Bk : θ ∈ [θh− δ, θh+ δ]}.
Say there is a set of indices H ⊆ {1, . . . , k} to be changed to obtain a
neighboring beam. A neighbor for beam θ then lies in the set ∪h∈H Nh(θ).

The simulated annealing algorithm is as follows:

� Initialization
– Choose an initial beam set θ (0) and calculate F0 = F(θ (0)).
– Set θ̂ = θ (0), F̂ = F0, i = 0.

� Iteration
1. Select H ⊆ {1, . . . , k}, generate θ ∈ ∪h∈H Nh(θ

(i)), and calculate
F = F(θ).

2. If F < F̂ , set F̂ = F , Fi+1 = F , θ (i+1) = θ and θ̂ = θ . Otherwise,
set Fi+1 = F and θ (i+1) = θ with probability exp{(Fi − F )/Ti}.

3. If stopping criteria are met, stop with solution θ̂ and objective
function value F̂ . Otherwise, set i← i + 1 and repeat step 1.
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Because of its ability to escape local optima, simulated annealing has
been a popular method of solving the BOO problem. Bortfeld and Schlegel
[7] used the fast simulated annealing algorithm described by Szu and Hart-
ley [6], which employs a Cauchy distribution in generating neighboring
points. Stein et al. [52], Rowbottom [44], and Djajaputra et al. [13] also used
a Cauchy distribution in generating neighboring solutions. Lu et al. [35]
randomly selected new points satisfying BEV and conventional wisdom
criteria, and Pugachev and Xing [41] randomly generate new points and
then vary them according to an exponential distribution. Each of the afore-
mentioned implemenations of the simulated annealing algorithm accept
improving solutions, and with the exception of Rowbottom et al. [44], who
accepted only improving solutions (essentially Ti = 0 for all i), all accept
nonimproving solutions with a Boltzmann probability.

Aleman et al. [3] used a geometric distribution in generating neighbor-
ing solutions, as well as employed a unique neighborhood structure based
on the parallel-opposed beams of the current iterate. This neighborhood
is called a flip neighborhood, and is defined for beam θh as the union
of the neighborhoods of θh and its parallel-opposed beam (180◦ away).
The parallel-opposed beam can be described by θ ′h = (θh + 180)mod 360,
and the size of its neighborhood, δF , may be different than that of the
neighborhood around θh, δ. Specifically, the flip neighborhood can be
defined as

N F
h (θ) = {(θ1, . . . , θh−1, θ mod 360, θh+1, . . . , θk)

∈ Bk : θ ∈ [θh − δ, θh + δ] ∪ [θ ′h − δF , θ ′h + δF ]}.

Aleman et al. [3] showed that the flip neighborhood can lead to improved
convergence times in the simulated annealing algorithm.

8.3.2.2 Evolutionary and Genetic Algorithms

Evolutionary/genetic algorithms have also been popular in the BOO litera-
ture. Ezzell [15], Haas et al. [21], Li et al. [31,32], and Schreibmann [46] have
all used evolutionary/genetic algorithms or variants thereof to solve the
BOO problem. These algorithms are popular due to their ability to search
for solutions in multiple areas of the solution space simultaneously.

8.3.2.2.1 Generic Evolutionary/Genetic Algorithms

Ezzell [15], Haas et al. [21], Li et al. [31], and Schreibmann [46] base the
optimization of the BOO problem on a genetic algorithm. The concept
behind genetic algorithms is evolution guided by natural selection. Each
solution, called an individual, is a member of a population, which is a
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collection of individuals. The fitness of each individual is based on the
objective function value it provides. In the genetic algorithm, individuals are
allowed to combine and reproduce new individuals through reproduction
and mutation mechanisms akin to those occurring in nature. Through these
mechanisms, current solutions are combined and perturbed to obtain new
solutions, providing the means of searching through the solution space.
To promote the survival of individuals with a high level of fitness, that is,
solutions with good objective function values, the fertility of an individual
depends on its fitness.

In the genetic algorithm implemented by Ezzell [15], an initial popu-
lation is first chosen. Each individual in the population corresponds to a
beam solution, and the beams in the solution are selected randomly from
B. Additionally, each beam in the solution is assigned a random weight-
ing value, which is then normalized so that the sum of the weights in a
particular beam solution is one.

In the reproduction scheme, crossover, mutation, and cloning mech-
anisms are considered. Firstly, when two individuals (parents) combine,
crossover involves selecting which elements of the child (the new indi-
vidual) will be taken from which of the parent individuals. If there is no
crossover, which may occur according to some probability measure, then
the child becomes a duplicate of the parent with superior fitness. Ezzell
[15] used a single-point crossover, meaning that one segment of the child
comes from one parent and the rest comes from the other parent. Sec-
ondly, mutation is the mechanism by which new genetic information is
introduced into the population. Mutation allows beams that do not exist
in any individual in the population to be explored in the solution space.
Mutations are implemented by incorporating a small probability that each
beam in a solution may be increased or decreased (mutation rate). Lastly,
when each new generation is created, the best individual in the population
is cloned so that it may continue to influence the search of the solution
space. A mutation may be applied to this individual; if so, then another
unaltered duplicate of the individual is also added to the population.

Additionally, operations for spontaneous generation and deletion are
included in method presented by Ezzell [15]. Spontaneous generation is
the insertion of completely new individuals into the population, although
the uniform deletion policy employed randomly selects individuals to be
removed from the population.

The methods presented by Haas et al. [21] and Schreibmann [46] differ
from the above method in that instead of optimizing a particular single
objective function, a multi-objective formulation of the BOO problem is
considered. Using the concept of Pareto optimality, nondominated solu-
tions are given higher fitness levels so that solutions near the Pareto efficient
frontier will prosper.
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8.3.2.2.2 Particle Swarm Algorithm

Li et al. [32] used a particle swarm algorithm, a variant of the evolutionary
algorithm, to solve the BOO problem. Similarly to evolutionary algorithms,
in the particle swarm algorithm, a population of solutions is used to explore
the solution space. Rather than refer to each solution in the population as
an individual, solutions in a population are called particles. Each particle
moves through the solution space according to its velocity, which consists
of both speed and direction. The velocity of a particle is determined by
its own flying experience and the flying experience of its neighbors, with
the goal of improving its position. As each particle retains a memory of its
best position ever visited, the movement of each particle is an aggregated
acceleration toward its best previously visited position and toward the best
individual of a neighborhood.

Li et al. [32] applied the particle swarm optimization method using a
global neighborhood and also using a local neighborhood.

8.3.2.3 Response Surface Method

Aleman et al. [4,5] used a response surface based approach to the BOO
problem to allow for the consideration of non-coplanar beam orientations.
The response surface method, first described by Jones [25] and Jones et al.
[26], identifies promising solutions based on the performance of previous
solutions. The function value and expected improvement over the current
best solution of a certain point are estimated based on the function behav-
ior learned from previously sampled points and their calculated objective
function values. The function values of points are related by correlation
functions that depend on each point’s distance from the previously sampled
points. From the correlation functions, the algorithm predicts the probabil-
ity that the best solution will improve at unexplored points in the solution
space. Using this probability, a promising solution is identified. For the
BOO problem, beam data only needs to be generated for these promising
solutions, thus saving both computation time and storage space.

8.3.3 Local Search Algorithms
Although it would seem that local search heuristics would be commonly
employed to obtain locally optimal solutions to the BOO problem, in fact,
very few studies using local search algorithms have been published. Aleman
et al. [3] developed a deterministic neighborhood search algorithm called
Add/Drop to identify locally optimal beam solutions.

The Add/Drop algorithm is essentially a deterministic version of the sim-
ulated annealing algorithm. As with their implementation of the simulated
annealing algorithm, Aleman et al. [3] employed a unique neighborhood
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structure based on parallel-opposed beam positions. In the Add/Drop algo-
rithm, each beam in an initial starting solution is replaced with the most
improving beam in its neighborhood according to the objective function.
Once each beam has been examined, the process repeats. The algorithm
continues until there can be no further improvement in any beam in the
beam solution. The resulting solution is locally optimal.

Using the same neighborhood definition as the simulated annealing
algorithm in Section 8.3.2.1, the Add/Drop algorithm is as follows:

� Initialization
– Choose an initial starting solution θ (0).
– Set θ∗ = θ (0) and i = 0.

� Iteration
1. Select h ∈ {1, . . . , k}, then generate θ̄ ∈ Nh(θ

(i)).
2. If F (θ̄) < F (θ∗), set θ∗ = θ (i+1) = θ̄ and set i← i + 1.
3. If all points in ∪k

h=1Nh(θ
(i)) have been sampled without improve-

ment, stop with θ∗ as a local minimum. Otherwise, repeat
step 1.

Aleman et al. [3] also employed the flip neighborhood structure N F
h (θ),

described in Section 8.3.2.1, in the Add/Drop algorithm and achieved results
indicating improved convergence times over the regular neighborhood
definition Nh(θ).

8.3.4 Greedy Algorithms
For many of the scoring methods to estimate the quality of a beam solution
described in Section 8.2.3, greedy algorithms are a fast and effective method
of selecting beam solutions. A greedy algorithm is an algorithm that follows
the problem-solving metaheuristic of making a locally optimal choice at
each opportunity with the hope of finding the global optimum. Although
greedy algorithms are not guaranteed to locate globally optimal solutions,
they can still provide good solutions.

The scoring methods, which assign value to individual beams rather than
to an entire beam solution, particularly benefit from greedy algorithms, as
the optimal solution can be found easily with a greedy algorithm. Consider
a scoring method that assigns a value Sθ to each θ ∈ B. The objective
function in the BOO Model presented in Section 8.2 would be

F(θ) = −
k∑

h=1

Sθh ,
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where the negative sum of scores is taken assuming the scoring method
assigns high scores to quality beams, whereas the BOO Model is formulated
as a minimization problem.

Given a fixed k, it is clear that the optimal solution to such an objec-
tive function can be found by simply selecting the k highest-scoring (or
lowest-scoring if a low score is desirable) beams, resulting in the smallest
obtainable value of F(θ). The scoring approaches whose globally optimal
solutions can be found in this manner are SBEV

θ , SpBEV
θ , STEV

θ , SMOD
θ , Sentropy

θ ,
and SFourier

θ .

8.3.5 Other Optimization Approaches
In addition to the previously described optimization techniques, there are
still other methods that have been employed in obtaining solutions to the
BOO problem. Acosta et al. [1] and Holder and Salter [22] used a method
based on the image compression technique called vector quantization.
Rowbottom et al. [45] used artificial neural networks, and Das and Marks
[12] used a quasi-Newton method to solve the BOO problem.

8.4 Conclusions
Just as there are numerous approaches to formulating and solving the FMO
problem, there are many varied techniques applied to the BOO problem.
Each of these methods has its own benefits and detriments.

The global optimization methods presented have the benefit of obtain-
ing globally optimal solutions, but depending on the problem formulation,
particularly in the case of a MIP formulation, may require extensive comput-
ing to reach the optimal solution. The metaheuristic approaches also have
the ability to obtain globally optimal solutions, but again, at the expense of
computation time. The local search and greedy algorithms, however, can
obtain a locally optimal solution quickly, but the solution will not neces-
sarily be globally optimal. For some of the scoring methods, the greedy
algorithm can obtain the globally optimal solution, however, the quality of
those objective functions compared to the other objective function options
is unknown.

The use of scoring methods can reduce the complexity of the BOO for-
mulation and save computation time, although it is widely believed that
the optimal FMO solution is the most suitable objective function and thus
provides the most accurate measure of a beam solution’s quality. However,
the optimal FMO solution can be difficult to obtain depending on the com-
plexity of the FMO Model. Even with an FMO Model that can be easily
solved, the time required to obtain the solution will likely still be more
than the time required to calculate the scoring methods discussed earlier.
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It is unclear whether any scoring methods can achieve the same quality of
beam solution as the optimal FMO solution for all patients. Likewise, it is
unknown whether the optimal FMO solution is required for a BOO Model
to obtain a treatment plan that meets minimum clinical requirements for all
patients.
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9.1 Introduction
An important method in cancer treatment is the use of high energetic radia-
tion. To kill tumor cells, the patient is exposed to radiation that is delivered
by a linear accelerator whose beam head can be rotated about the treat-
ment couch. Inevitably, the healthy tissue surrounding the tumor is also
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exposed to some radiation. So the problem arises to arrange the treatment
such that the tumor receives a sufficiently high uniform dose while the
damage to the normal tissue is as small as possible. The standard approach
to this problem is as follows. First the patient body is discretized into the
so-called voxels. The set of voxels is then partitioned into three sets: the
clinical target volume, the critical structures, and the remaining tissue. There
are certain dose constraints for each of these parts. Basically, the dose in
the target volume has to be sufficient to kill the cancerous cells and the
dose in the critical structures must not destroy the functionality of the cor-
responding organs. The determination of a combination of radiation fields
is usually done by inverse methods based on certain physical models of
how the radiation passes through a body. In the early 1990s, the method
of intensity modulated radiation therapy (IMRT) was developed to obtain
additional flexibility. Using a multileaf collimator (MLC) it is possible to
form homogeneous fields of different shapes. By superimposing some
homogeneous fields an intensity modulated field is delivered. An MLC con-
sists of two banks of metal leaves that block the radiation and can be shifted
to form irregularly shaped beams (Figure 9.1).

The most common approach in treatment planning is to divide the
optimization into two phases. At first step, a set of beam angles and corre-
sponding fluence matrices are determined. In a second step, a sequence of
leaf positions for the MLC for each of the angles is determined that yields
the desired fluence distribution. Very recently, there have been attempts to
combine both steps into one optimization routine [8,20].

In this chapter we concentrate on the second step, the shape matrix
decomposition problem. Suppose we have fixed the beam angles from
which the radiation is released, and for each of the beam angles we are

Figure 9.1 The leaf pairs of a multileaf collimator (MLC).
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given a fluence distribution that we want the patient to be exposed to.
After discretizing the beam into bixels, we can assume that the fluence
distribution is given as a nonnegative integer matrix A. Each row of the
matrix corresponds to a pair of leaves of the MLC.

There are two methods in IMRT using MLCs that differ essentially in
their technical realization, but the mathematical methods used to determine
optimal treatment plans are quite similar. In the step-and-shoot mode the
radiation is switched off whenever the leaves are moving, so the intensity
modulation is the result of superimposing a finite number of homogeneous
fields. In the dynamic mode the radiation is switched on during the whole
treatment and the modulation is achieved by moving the leaves with varying
speed. Clearly, in this setup the fluence at a particular point is proportional
to the amount of time in which the point is exposed to radiation, i.e.,
not blocked by one of the leaves. Here, we consider only the step-and-
shoot mode. Essentially, the most common approach to the dynamic mode
can be seen as an imitation of this case (see Ref. [14] and the references
therein).

9.2 Mathematical Model
The principle of the MLC in step-and-shoot mode is illustrated in Figure 9.2.
Our aim is to determine a sequence of leaf positions and corresponding
irradiation times such that the given fluence distribution is realized. Suppose
the given matrix has size m × n, i.e., we consider m leaf pairs, and for
each leaf there are n + 1 possible positions. Then the leaf positions can
be described by certain 0−1-matrices of size m × n called shape matrices,

Beam 1

Beam 3

Beam 2Fluence

Fluence

Fluence

Figure 9.2 Intensity modulation by superimposing three beams of different
shapes. In each step, the left figure shows a leaf position and in the right figure the
gray scale indicates the total fluence.
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where a 0-entry means the radiation is blocked and a 1-entry means that
the radiation goes through.

For example, the first leaf position in Figure 9.2 corresponds to the
shape matrix

⎛

⎜
⎜
⎝

0 1 1 0
1 1 1 0
1 1 0 0
0 1 1 1

⎞

⎟
⎟
⎠ .

Clearly, the superposition of differently shaped beams corresponds to posi-
tive linear combinations of shape matrices, where the coefficient of a shape
matrix measures how long the corresponding field is applied. So, any repre-
sentation of the given fluence matrix A as a positive integer linear combina-
tion of shape matrices is a feasible solution to our decomposition problem.
For instance

A =

⎛

⎜
⎜
⎝

1 3 3 0
0 2 4 1
1 1 4 4
3 3 1 0

⎞

⎟
⎟
⎠ = 2

⎛

⎜
⎜
⎝

0 1 1 0
0 0 1 0
0 0 1 1
1 1 0 0

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝

0 1 1 0
0 1 1 0
1 1 1 1
0 0 0 0

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝

1 0 0 0
0 1 1 1
0 0 1 1
1 1 1 0

⎞

⎟
⎟
⎠ . (9.1)

We denote the set of shape matrices by S, and consider decompositions
of the form A = ∑

S∈S uSS with uS ∈ N for all S ∈ S. There are two
quantities influencing the quality of a decomposition: the total irradiation
time (proportional to the sum of the coefficients) and the number of nec-
essary beams (the number of nonzero coefficients). Let S0 denote the set
of matrices with nonzero coefficient. We can now formulate two differ-
ent optimization problems, the decomposition time (DT) problem and the
decomposition cardinality (DC) problem

(DT) min

{
∑

S∈S
uS | A =

∑

S∈S
uSS , uS ∈ N

}

, (9.2)

(DC) min

⎧
⎨

⎩
|S0| | S0 ⊆ S, A =

∑

S∈S0

uSS , uS ∈ N

⎫
⎬

⎭
. (9.3)

Of course, one could also minimize some weighted sum of decomposition
time and decomposition cardinality, i.e., an objective function

∑

S∈S0

uS + α|S0|,
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where α is some positive constant. This objective function can be consid-
ered as total treatment time, where the parameter α depends on the used
MLC and measures the average setup time, i.e., the time needed to move
the leaves and check the setting. In a still more sophisticated model, one
can include the possibility that the setup time between two different leaf
positions depends on the amount of required leaf motion. Consequently,
the order in which the beams are delivered becomes relevant and the cor-
responding objective function is

∑

S∈S0

uS +
|S0|−1∑

i=1

μ(S (i), S (i+1)),

where S (1), S (2), . . . , S (|S0|) is an ordering of the set of used shape matrices
S0, and for two shape matrices S and S ′, μ(S , S ′) is proportional to the time
necessary to change the setup of the MLC from the beam corresponding to
S to the beam corresponding to S ′.

The optimal value of Equation 9.2 can be computed very efficiently
while the problem Equation 9.3 is computationally very hard (see Sec-
tion 9.4). So the most common approach is to first compute the minimal
DT, and then heuristically search for a decomposition that realizes this DT
and also has a small DC.

Our model is still quite flexible: certain properties of the used MLC
can be included in the definition of the shape matrices. From the design
of the MLC it is clear that any shape matrix must have the consecutive
ones property: in every row is a (possibly empty) interval of consecu-
tive 1-entries and the remaining entries are 0. In addition, in some of
the commercially available MLCs leaf overtravel is forbidden. That means,
the left leaf of row i and the right leaf of row i ± 1 must not over-
lap. In this case a shape matrix cannot contain two consecutive rows as
follows:

(
0 1 1 0 0 0 0
0 0 0 0 0 1 1

)

.

Also some MLCs have a minimum leaf distance. That means if a row is
not completely covered by either the right or the left leaf, a minimum
distance δ between the two leaves in this row is present. In other words,
the number of ones in a row is either 0 or at least δ. Another feature of
most of the MLCs is the tongue-and-groove design. To prevent radiation
from going through the gap between two adjacent leaves a design similar
to the one indicated in Figure 9.3 is used. The small overlap between
the regions that are covered by adjacent leaves causes underdosage effects
as illustrated in Figure 9.4. To prevent such underdosage effects one has
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Radiation

Figure 9.3 The tongue-and-groove design of the leaves of an MLC.

to require that ai, j ≤ ai±1, j implies that in each of the used beams, bixel
(i ± 1, j) is open whenever bixel (i, j) is open, or in terms of the shape
matrices:

ai, j ≤ ai−1, j ∧ si, j = 1 =⇒ si−1, j = 1,

ai, j ≥ ai−1, j ∧ si−1, j = 1 =⇒ si, j = 1

for i = 2, . . . , m and j = 1, . . . , n.

3

1

1

2

1

1

Leaf sequence with
tongue-and-groove underdosage

Leaf sequence without
tongue-and-groove underdosage

Figure 9.4 Two different realizations of the same fluence matrix. The numbers
next to the leaf positions indicate the irradiation times for the corresponding
beams. In the left version, the overlap between bixels (1, 1) and (2, 1) receives
no radiation at all.
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9.3 Decomposition Time Problem
Starting with Refs. [5,9] a number of different algorithms for the shape
matrix decomposition problem have been proposed [7,13,15,21,22], some
of them providing the optimal DT while others use heuristic methods
for both objectives DT and DC. In this section, we concentrate on the
DT-problem, and thus, without loss of generality, put all the nonzero
coefficients us to 1, but allow the same shape matrix S to occur several times
in the decomposition A =∑k

t=1 S (k). First, we consider the version without
additional constraints, i.e., the leaves in different rows move indepen-
dently, and we neglect the tongue-and-groove underdosage. Then we can
solve the decomposition problem for each row independently, and the
optimal DT for the whole matrix is just the maximum of the optimal DTs
of the single rows. All the algorithms that yield the exact optimum are
essentially based on (disguised versions of) the following characterization
of the minimal DT. For simplicity of notation, we add a 0-th and a (n+1)-th
column to the matrix A by setting

ai,0 = ai,n+1 = 0 for i = 1, 2, . . . , m.

We define the i-th row complexity of A to be

ci(A) =
n∑

j=1

max{0, ai, j − ai, j−1},

and the complexity of A, c(A) = max
1≤i≤m

ci(A).

THEOREM 1 [7]. The minimal DT for a matrix A equals c(A).

PROOF. Let b = (
b1 b2 · · · bn

)
denote the i-th row of the matrix A, i.e.,

bj = ai, j . First, we show that any representation of b as a sum of vectors
with the consecutive ones property contains at least ci(A) terms. Suppose
the vectors s(t) ∈ {0, 1}n (t = 1, 2, . . . , k) define a representation

b = s(1) + · · · + s(k),

where each vector s(t) has the consecutive ones property. For t = 1, 2, . . . , k
let b(t) = s(1) + · · · + s(t) be the sum of the first t terms and put

c(t) =
n∑

j=1

max{0, b(t)j − b(t)j−1}.
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Now let lt and rt denote the positions of the leaves corresponding to
s(t), i.e.,

s(t)j =
{

1 if lt < j < rt ,

0 otherwise.

For t > 1 we obtain

max{0, b(t−1)
j − b(t−1)

j−1 } = max{0, b(t)j − b(t)j−1} for j 	∈ {lt + 1, rt} (9.4)

max{0, b(t−1)
lt+1 − b(t−1)

lt
} =

{
max{0, b(t)lt+1 − b(t)lt

} − 1 if b(t)lt+1 > b(t)lt
,

max{0, b(t)lt+1 − b(t)lt
} otherwise.

(9.5)

max{0, b(t−1)
rt
− b(t−1)

rt−1 } =
⎧
⎨

⎩

max{0, b(t)rt
− b(t)rt−1} + 1 if b(t)rt

≥ b(t)rt−1,

max{0, b(t)rt
− b(t)rt−r } otherwise.

(9.6)

Consequently, c(t−1) ≥ c(t) − 1 with equality if and only if b(t)lt+1 > b(t)lt
and

b(t)rt
< b(t)rt−1. Summing up these inequalities for 2 ≤ t ≤ k and using c(1) = 1

and c(k) = ci(A), we obtain

1+ c(2) + · · · + c(k−1) ≥ c(2) + c(3) + · · · + c(k−1) + ci(A)− (k − 1),

or k ≥ ci(A). To show that there is a decomposition of the i-th row with
ci(A) terms we use induction on k := ci(A). If k = 0, then b = 0 and there
is nothing to prove. If k > 0, we put b0 = bn+1 = 0 and define

l = min{ j | 0 ≤ j ≤ n− 1, bj < bj+1},

r = min{ j > l | l < r ≤ n+ 1, bj < bj−1},

s(k)j =
{

1 if l < j < r

0 otherwise
( j = 1, . . . , n)

Then by Equations 9.4 through 9.6, for b′ := b − s(k), we have

n∑

j=1

max{0, b′j − b′j−1} =
n∑

j=1

max{0, bj − bj−1} − 1 = k − 1.
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By induction, there is a decomposition b′ = s(1) + · · · + s(k−1). Together
with s(k) this yields the required decomposition of b, and this concludes
the proof. �

From the proof we can immediately derive an algorithm for the con-
struction of a DT-optimal decomposition (see Algorithm 1). Of course the

Algorithm 1 (DT-optimal leaf sequence in the unconstrained case).
k := 0
while A 	= 0 do

k := k + 1
for i = 1, 2, . . . , m do

if ai, j = 0 for all j = 1, 2, . . . , n then li := n, ri := n+ 1
else

li := min{ j | 0 ≤ j ≤ n, ai, j < ai, j+1}
ri := min{ j | li < j ≤ n+ 1, ai, j−1 > ai, j}

for j = 1, . . . , n do
if li < j < ri then s(k)i, j := 1 else s(k)i, j := 0

A := A− S (k)

return S (1), . . . , S (k)

choice of the li and ri is not unique. In Ref. [5] this particular one is
called sweep technique, because the leaves always move from left to right.
As an example, consider the following decomposition of a matrix from
Ref. [22].

( 4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)

=
(

1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 0 0 0 0 0

)

+
(

1 1 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 0 0 0 0 0

)

+
(

1 1 0 0 0 0
0 1 0 0 0 0
0 1 1 1 1 1
1 1 1 0 0 0

)

+
(

1 1 0 0 0 0
0 1 1 1 0 0
0 0 0 0 1 1
1 1 1 1 1 0

)

+
(

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 1 1 1 1 0

)

+
(

0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 0 0 1
0 0 0 0 1 1

)

+
(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 1 1

)

+
(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 1 1

)

+
(

0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

)

+
(

0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

)

.

9.3.1 Interleaf Collision Constraint
The interleaf collision constraint (ICC) is present in many of the commer-
cially available MLCs and forbids an overlap of the left leaf in row i and



Lim/Optimization in Medicine and Biology AU0563_C009 Final Proof Page 262 9.11.2007 11:26am

262 Optimization in Medicine and Biology

the right leaf in row i ± 1. If li and ri denote the leaf positions in row i
(i = 1, . . . , m) this amounts to

(ICC) li < ri−1 and ri > li−1 (i = 2, . . . , m)

9.3.1.1 Linear Programming Approach

An important conclusion from the following algorithm is that we can always
construct a DT-optimal decomposition with unidirectional leaf movement.
That means the leaves move only from left to right, or in other words, if l (t)i

and r (t)i denote the leaf positions in row i corresponding to the t-th shape
matrix, then l (t)i ≤ l (t+1)

i and r (t)i ≤ r (t+1)
i for all i and t . Such a decomposition

A = ∑k
t=1 S (t) is completely determined once we know for each i and j ,

how often the leaves in row i are at position j , i.e., we have to know the
numbers

γ L
i, j =

∣
∣
∣
{
t | l (t)i = j − 1

}∣
∣
∣ , γ R

i, j =
∣
∣
∣
{
t | r (t)i = j

}∣
∣
∣ . (9.7)

The numbers γ L
i, j and γ R

i, j can be translated back into the shape matrices via

s(t)i, j = 1 ⇐⇒
j∑

j′=1

γ R
i, j′ < t ≤

j∑

j′=1

γ L
i, j′ (t = 1, . . . , k). (9.8)

This definition makes sense for any nonnegative γ L
i, j and γ R

i, j . Now we
formulate additional requirements for these values.

LEMMA 1. The matrices defined by Equation 9.8 sum up to A if and only if

γ L
i, j − γ R

i, j = ai, j − ai, j−1 (i = 1, . . . , m; j = 1, . . . , n+ 1). (9.9)

PROOF. “⇒”: By hypothesis and Equation 9.8 we have

ai, j =
j∑

j′=1

γ L
i, j −

j∑

j′=1

γ R
i, j .

For j = 1 we obtain

ai, 1 − ai,0 = ai, 1 = γ L
i, 1 − γ R

i, 1.
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And for j > 1,

ai, j − ai, j−1 =
⎛

⎝
j∑

j′=1

γ L
i, j −

j∑

j′=1

γ R
i, j

⎞

⎠−
⎛

⎝
j−1∑

j′=1

γ L
i, j −

j−1∑

j′=1

γ R
i, j

⎞

⎠ = γ L
i, j − γ R

i, j .

“⇐”: Assume that Equation 9.9 is true and let B = (bi, j) be the sum of
the matrices defined by Equation 9.8. Then

bi, j =
j∑

j′=1

γ L
i, j −

j∑

j′=1

γ R
i, j =

j∑

j′=1

(ai, j′ − ai, j′−1) = ai, j − ai,0 = ai, j . �

The next lemma formulates the ICC in terms of the γ L
i, j and γ R

i, j .

LEMMA 2. If γ L
i, j and γ R

i, j encode a decomposition (not necessarily unidi-

rectional) A =∑k
t=1 S (t) with ICC as in Equation 9.7 then

j∑

j′=1

γ L
i−1, j′ ≥

j∑

j′=1

γ R
i, j′ (i = 2, . . . , m; j = 1, . . . , n+ 1), (9.10)

j∑

j′=1

γ L
i, j′ ≥

j∑

j′=1

γ R
i−1, j′ (i = 2, . . . , m; j = 1, . . . , n+ 1). (9.11)

PROOF. We have

j∑

j′=1

γ L
i−1, j′ =

∣
∣
∣
{
t : l (t)i−1 < j

}∣
∣
∣ ,

j∑

j′=1

γ R
i, j′ =

∣
∣
∣
{
t : r (t)i ≤ j

}∣
∣
∣ .

The ICC implies
{
t : r (t)i ≤ j

}
⊆
{
t : l (t)i−1 < j

}
, and this gives Equation 9.10.

The statement in Equation 9.11 is proved similarly. �

Of course, the DT equals the sum of all γ L
i, j (or equivalently all γ R

i, j)
along any row:

k =
n+1∑

j=1

γ L
i, j =

n+1∑

j=1

γ R
i, j (i = 1, . . . , m) (9.12)

We can formulate the DT-problem with ICC as a linear program.
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THEOREM 2. The DT-problem with ICC is equivalent to

min
{
k | Equations 9.9 through 9.12, γ L

i, j , γ
R
i, j ∈ N

}
. (9.13)

PROOF. The above argument shows that every decomposition with unidi-
rectional leaf movement gives rise to a feasible solution of Equation 9.13.
Conversely, from every feasible solution of Equation 9.13 we obtain a (uni-
directional) decomposition with k shape matrices (defined according to
Equation 9.8). We show that the unidirectional leaf movement is no restric-
tion: every decomposition A =∑k

t=1 S (t) with ICC yields a feasible solution
of Equation 9.13 with objective value k. Define γ L

i, j and γ R
i, j by Equation 9.7.

It is clear that Equation 9.12 holds. By Lemma 2 we have Equations 9.10
and 9.11. From

ai, j =
∣
∣
∣
{
t | l (t)i < j < r (t)i

}∣
∣
∣ and ai, j−1 =

∣
∣
∣
{
t | l (t)i < j − 1 < r (t)i

}∣
∣
∣ ,

it follows that

ai, j − ai, j−1 =
∣
∣
∣
{
t | l (t)i = j − 1, r (t)i > j

}∣
∣
∣−

∣
∣
∣
{
t | l (t)i < j − 1, r (t)i = j

}∣
∣
∣

=
∣
∣
∣
{
t | l (t)i = j − 1, r (t)i ≥ j

}∣
∣
∣−

∣
∣
∣
{
t | l (t)i ≤ j − 1, r (t)i = j

}∣
∣
∣

= γ L
i, j − γ R

i, j .

So Equation 9.9 holds and this concludes the proof. �

Note that this also shows how an arbitrary leaf sequence can be transformed
to an unidirectional one with the same DT: define the γ L

i, j and γ R
i, j according

to Equation 9.7 and the new shape matrices with Equation 9.8. Obviously,
the values

γ̃ L
i, j = max{0, ai, j − ai, j−1}, γ̃ R

i, j = max{0, ai, j−1 − ai, j}
satisfy the conditions given in Equation 9.9 and these conditions imply
γ L

i, j ≥ γ̃ L
i, j and γ R

i, j ≥ γ̃ R
i, j for all pairs (i, j). The γ̃ L

i, j and γ̃ R
i, j correspond to

the sweep solution for the unconstrained case coming from Algorithm 1.
Because

γ L
i, j − γ R

i, j = γ̃ L
i, j − γ̃ R

i, j = ai, j − ai, j−1,

we can represent γ L
i, j and γ R

i, j with a single nonnegative variable wi, j via

γ L
i, j = γ̃ L

i, j + wi, j , γ R
i, j = γ̃ R

i, j + wi, j .
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With

Ti =
n+1∑

j=1

γ̃ L
i, j =

n+1∑

j=1

γ̃ R
i, j (i = 1, . . . , m)

the constraints given by Equations 9.10 through 9.12 become

j∑

j′=1

γ̃ L
i−1, j′ +

j∑

j′=1

wi−1, j′ ≥
j∑

j′=1

γ̃ R
i, j′ +

j∑

j′=1

wi, j′

(i = 2, . . . , m; j = 1, . . . , n+ 1), (9.14)

j∑

j′=1

γ̃ L
i, j′ +

j∑

j′=1

wi, j′ ≥
j∑

j′=1

γ̃ R
i−1, j′ +

j∑

j′=1

wi−1, j′

(i = 2, . . . , m; j = 1, . . . , n+ 1), (9.15)

k = Ti +
n+1∑

j=1

wi, j (i = 1, . . . , m), (9.16)

wi, j ≥ 0, wi, j ∈ Z (i = 1, . . . , m; j = 1, . . . , n+ 1). (9.17)

Observe that Equations 9.14 and 9.15 with j = n+ 1 yield

Ti−1 +
n+1∑

j=1

wi−1, j

Equations 9.14≥ Ti +
n+1∑

j=1

wi, j

Equations 9.15≥ Ti−1 +
n+1∑

j=1

wi−1, j .

Consequently, we have equality and thus Equation 9.16 follows
from Equations 9.14 and 9.15. This simplifies the problem, because now
we just have to minimize

∑n+1
j=1 wi, j for any row i, and the problem

becomes, e.g.,

min

⎧
⎨

⎩

n+1∑

j=1

w1, j | Equations 9.14, 9.15, and 9.17

⎫
⎬

⎭
. (9.18)

For a feasible solution W = (wi, j) we denote the maximal index of a shape
matrix having the left (right) leaf in row i to the left of column j by I (i)L ( j)
(I (i)R ( j)). In other words,
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I (i)L ( j) := max{t | l (t)i < j} =
j∑

j′=1

γ̃ L
i, j′ +

j∑

j′=1

wi, j′

I (i)R ( j) := max{t | r (t)i ≤ j} =
j∑

j′=1

γ̃ R
i, j′ +

j∑

j′=1

wi, j′

for i = 1, . . . , m, j = 1, . . . , n + 1. In addition we put I (i)L (0) = I (i)R (0) = 0 for
i = 1, . . . , m. For the shape matrices S (1), . . . , S (k) in the corresponding
decomposition we have

s(t)i, j = 1 ⇐⇒ I (i)R ( j) < t ≤ I (i)L ( j),

hence for a feasible solution,

I (i)L ( j)− I (i)R ( j) = ai, j .

Observe that the I (i)L ( j) and I (i)R ( j) are exactly the terms that occur in the
constraints given by Equations 9.14 and 9.15. So these constraints can be
rewritten as

I (i−1)
L ( j) ≥ I (i)R ( j), I (i)L ( j) ≥ I (i−1)

R ( j) (9.19)

for i = 2, . . . , m, j = 1, . . . , n + 1. For convenience, we formulate the
algorithm for the solution of Equation 9.18 in terms of the I (i)L ( j) and I (i)R ( j).
Clearly, knowing these values is equivalent to knowing the wi, j , and min-
imizing

∑n+1
j=1 wi, j is the same as minimizing I (i)L (n + 1). The idea is to

determine the values in column j depending on the values in column j−1.
We start with the lower bounds

I (i)L ( j) := I (i)L ( j − 1)+ γ̃ L
i, j , I (i)R ( j) := I (i)R ( j − 1)+ γ̃ R

i, j ,

and then we run through the rows and eliminate violations by increasing
the relevant values as little as possible. Note that by increasing the values
in row i − 1 we might create a new violation between row i − 1 and row
i − 2. The recursive call of the function Update takes care of this.
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Algorithm 2 (DT-optimal leaf sequence with ICC).
for i = 1, . . . , m do I (i)L (0) := 0; I (i)R (0) := 0
for j = 1, . . . , n+ 1 do

for i = 1, . . . , m do
I (i)L ( j) := I (i)L ( j − 1)+ γ̃ L

i, j

I (i)R ( j) := I (i)R ( j − 1)+ γ̃ R
i, j

for i = 2, . . . , m do
if I (i)L ( j) < I (i−1)

R ( j) then
I (i)L ( j) := I (i−1)

R ( j); I (i)R ( j) := I (i)L ( j)− ai, j

if I (i)R ( j) > I (i−1)
L ( j) then Update(i − 1)

Function Update(k)
I (k)L ( j) := I (k+1)

R ( j); I (k)R ( j) := I (k)L (j)− ai, j

if
(
k ≥ 2 and I (k)R ( j) > I (k−1)

L ( j)
)

then Update(k − 1)

THEOREM 3. Algorithm 2 solves the DT-problem with ICC in time O(m2n).

PROOF. It is easy to see that after termination of the algorithm I (i)L ( j) −
I (i)R ( j) = ai, j for i = 1, . . . , m and j = 1, . . . , n. So, we indeed obtain a
decomposition of matrix S . Also Equation 9.19 and hence Equations 9.14
and 9.15 hold, and the result corresponds to a feasible solution W = (wi, j)

of Equation 9.18. Let Ŵ = (ŵi, j) be an optimal solution corresponding to
Î ( i)
L ( j) and Î ( i)

R ( j).

Claim. At any time I (i)L ( j) ≤ Î (i)L ( j) and I (i)R ( j) ≤ Î (i)R ( j).
We prove this claim by induction on j . For j = 1, the initialization in

the first inner loop gives I (i)L (1) = ai,1 and I (i)R (1) = 0. The conditions for
changing these values in the second inner loop are never satisfied, so our
claim follows from

Î (i)L (1) = γ̃ L
i, j + ŵi,1 ≥ γ̃ L

i, j , Î (i)R (1) = γ̃ R
i, j + ŵi,1 ≥ γ̃ R

i, j = 0.

For j > 1, with induction the initialization in the first inner loop yields

I (i)L ( j) = I (i)L ( j − 1)+ γ̃ L
i, j ≤ Î (i)L ( j − 1)+ γ̃ L

i, j ≤ Î (i)L ( j − 1)

+γ̃ L
i, j + ŵi, j = Î (i)L ( j),

I (i)R ( j) = I (i)R ( j − 1)+ γ̃ R
i, j ≤ Î (i)R ( j − 1)+ γ̃ R

i, j ≤ Î (i)R ( j − 1)

+γ̃ R
i, j + ŵi, j = Î (i)R ( j).
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Now suppose our claim is false and consider the step of the algorithm
where we get I (i)L ( j) > Î (i)L ( j) or I (i)R ( j) > Î (i)R ( j) for the first time.

Case 1. The first condition for changing I (i)L (j) is satisfied. Then for the
values after the update we obtain

I (i)L ( j) := I (i−1)
R ( j) ≤ Î (i−1)

R ( j)
ICC≤ Î (i)L ( j),

I (i)R ( j) := I (i)L ( j)− ai, j ≤ Î (i)L ( j)− ai, j = Î (i)R ( j),

contradicting the assumption.

Case 2. We are in the function Update (k). Then

I (i)L ( j) := I (i+1)
R ( j) ≤ Î (i+1)

R ( j)
ICC≤ Î (i)L ( j),

I (i)R ( j) := I (i)L ( j)− ai, j ≤ Î (i)L ( j)− ai, j = Î (i)R ( j),

contradicting the assumption.

This proves the claim, and from I (i)L (n+ 1) ≤ Î (i)L (n+ 1) and the optimality
of Ŵ the optimality of W follows. Now let’s consider the complexity. There
are m− 1 passes through the second inner for-loop, and in the worst case
each of these calls the function Update which calls itself at most m times.
So, the complexity of the second inner loop is O(m2), and because we have
to run n+ 1 times through the outer loop, the total complexity of O(m2n)
follows. �

Variants of this algorithm were presented in Refs. [2,15]. The proof given
here is a mixture of these two references. The algorithm can also be adapted
very easily to ensure minimum distances δ0 and δ1 between opposite leaves
in the same row and in adjacent rows, respectively, if this is possible at
all [15].

9.3.1.2 Network Flow Approach

A first network flow algorithm for DT-problem without ICC was proposed
in Ref. [1]. Here we present a network flow formulation from Ref. [4], which
also includes the ICC. The set of shape matrices is identified with the set
of paths from D to D′ in the layered directed graph (digraph) G = (V , E),
constructed as follows. The vertices in the i-th layer correspond to the
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possible pairs (li , ri) (1 ≤ i ≤ m), and two additional vertices D and D′ are
added:

V = {(i, l, r) : i = 1, . . . , m; l = 1, . . . , n; r = l + 1, . . . , n+ 1} ∪ {D, D′}.

Between two vertices (i, l, r) and (i+1, l ′, r ′) is an arc if the corresponding
leaf positions are consistent with the ICC, i.e., if l ′ ≤ r − 1 and r ′ ≥ l + 1.
In addition, E contains all arcs from D to the first layer, all arcs from the
last layer m to D′, and the arc (D′, D), so

E = E+(D) ∪ E−(D′) ∪
m−1⋃

i=1

E(i) ∪ {(D′, D)}, where

E+(D) = {(D, (1, l, r)) : (1, l, r) ∈ V },

E−(D′) = {((m, l, r), D′) : (m, l, r) ∈ V },

E(i) = {((i, l, r), (i + 1, l ′, r ′)) : l ′ ≤ r − 1, r ′ ≥ l + 1}.

There is a bijection between the possible leaf positions and the cycles in
G. This is illustrated in Figure 9.5 which shows two cycles in G for m = 4,
n = 2, corresponding to the shape matrices

⎛

⎜
⎜
⎝

1 0
0 1
1 1
1 0

⎞

⎟
⎟
⎠ (straight lines) and

⎛

⎜
⎜
⎝

0 1
1 1
1 0
0 1

⎞

⎟
⎟
⎠ (dashed lines).

301
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302

402

202

102

303

403

203

103

312

412

212

112

313

413

213

113

323

423

223

123

D

D�

Figure 9.5 The vertices of G for m = 4, n = 2, and two cycles.
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With a shape matrix S , given by (l1, r1), (l2, r2), . . . , (lm, rm), we associate a
unit flow on the cycle

D, (1, l1, r1), (2, l2, r2), . . . , (m, lm, rm), D′, D.

Then any positive combination of shape matrices defines a circulation φ :
E → R+ on G. For instance,

3

⎛

⎜
⎜
⎝

1 0
0 1
1 1
1 0

⎞

⎟
⎟
⎠+ 2

⎛

⎜
⎜
⎝

0 1
1 1
1 0
0 1

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

3 2
2 5
5 3
3 2

⎞

⎟
⎟
⎠ ,

corresponds to 3 units of flow on (D, (1, 0, 2), (2, 1, 3), (3, 0, 3), (4, 0, 2), D′),
2 units of flow on (D, (1, 1, 3), (2, 0, 3), (3, 0, 2), (4, 1, 3), D′), and 5 units of
flow on (D′, D). The amount of radiation that is released at bixel (i, j) equals
the sum of the flows going through the vertices (i, l, r)with l < j < r , hence
the conditions that must be satisfied by the circulation to correspond to a
decomposition of A are

j−1∑

l=1

n+1∑

r=j+1

r−1∑

l′=1

n∑

r ′=max{l,l′}−1

φ((i, l, r), (i + 1, l ′, r ′)) = ai, j , (9.20)

for 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n, and

j−1∑

l=1

n+1∑

r=j+1

φ((m, l, r), D′) = am,j , (9.21)

for 1 ≤ j ≤ n. Because all of the flow must go through the arc (D′, D),
the DT of the decomposition corresponding to φ equals φ(D′, D). Thus the
DT-problem can be solved by finding a circulation satisfying conditions
given by Equations 9.20 and 9.21 and having minimal cost with respect to
the cost function α : E → R+,

α(e) =
{

1 if e = (D, D′),
0 otherwise.

The graph G can be expanded to a graph Ĝ = (V̂ , Ê) so that, instead
of the constraints given by Equations 9.20 and 9.21, the structure of Ĝ
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together with a capacity function on Ê forces the circulation to represent a
decomposition of A.

V̂ = {(i, l, r)1, (i, l, r)2 | 1 ≤ i ≤ m, 0 ≤ l < r ≤ n+ 1}

∪ {(i, j) | 1 ≤ i ≤ m, 0 ≤ j ≤ n} ∪ {D, D′}.

The arc set of Ĝ is Ê = Êold ∪ Ê1 ∪ Ê2, where

Êold = {((i, l, r)2, (i + 1, l ′, r ′)1) : ((i, l, r), (i + 1, l ′, r ′)) ∈ E}

∪ {(D, (1, l, r)1) : (1, l, r)1 ∈ V̂ } ∪ {((m, l, r)2, D′) :

(m, l, r)2 ∈ V̂ } ∪ {(D′, D)},

Ê1 = {((i, l, r)1, (i, l)) : (i, l, r)1 ∈ V̂ } ∪ {((i, r − 1), (i, l, r)2) :

(i, l, r)2 ∈ V̂ },

Ê2 = {((i, j − 1), (i, j)) : i = 1, . . . , m; j = 1, . . .n}.
Now a shape matrix with parameters li , ri (i = 1, . . . , m) corresponds to the
cycle

D,(1, l1, r1)1, (1, l1), (1, l1 + 1), . . . , (1, r1 − 1), (1, l1, r1)2,

(2, l2, r2)1, (2, l2), (2, l2 + 1), . . . , (2, r2 − 1), (2, l2, r2)2,

. . .

(m, lm, rm), (m, lm), (m, lm + 1), . . . , (m, rm − 1), (m, lm, rm)2, D′, D

Figure 9.6 shows the cycles in Ĝ corresponding to the cycles in Figure 9.5.
Now the flow on the arc ((i, j − 1), (i, j)) equals the amount of radiation
released at bixel (i, j) in the corresponding decomposition. Introducing
lower and upper capacities u and u on the arcs of Ĝ by

u(e) =
{

0 if e ∈ Êold ∪ Ê1,
ai, j if e = ((i, j − 1), (i, j)) ∈ Ê2,

(9.22)

u(e) =
{∞ if e ∈ Êold ∪ Ê1,

ai, j if e = ((i, j − 1), (i, j)) ∈ Ê2,
(9.23)
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1011 1021 1031 1121 1131 1231

1012 1022 1032 1122 1132 1232

10 11 12

2011 2021 2031 2121 2131 2231

2012 2022 2032 2122 2132 2232

20 21 22

3011 3021 3031 3121 3131 3231

3012 3022 3032 3122 3132 3232

30 31 32

4011 4021 4031 4121 4131 4231

4012 4022 4032 4122 4132 4232

40 41 42

D

D�

Figure 9.6 The vertices of Ĝ for m = 4, n = 2, and two cycles.

we make sure that the fluence matrix A is realized. Now to obtain another
reformulation of the DT-problem we just have to require that the flow
on the arc ((i, l, r)1, (i, l)) equals the flow on the arc ((i, r − 1), (i, l, r)2),
because both of these correspond to the total amount of radiation that is
released while li = l and ri = r .

THEOREM 4 [4]. The DT-minimization problem is equivalent to the network
flow problem

Min φ(D′, D)

s.t. φ a circulation in Ĝ = (V̂ , Ê) with lower and upper capacities u and u,
defined by Equations 9.22 and 9.23, and satisfying, for all (i, l, r)1,2 ∈ V̂ ,

φ((i, l, r)1, (i, l)) = φ((i, r − 1), (i, l, r)2). (9.24)

This formulation is quite close to a pure Min-Cost-Network-Flow prob-
lem. But the standard algorithms for this type of problem have to be
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adjusted to include the side constraint given by Equation 9.24. Doing this
one obtains a polynomial time algorithm for the DT-problem with ICC (see
Refs. [4,17]).

9.3.1.3 Duality Approach

Here we present another approach from Ref. [13] to the ICC, because it
yields a nice characterization of the minimal DT, which can be modified to
deal with the tongue-and-groove effect and also allows to derive a heuristic
for the DC-problem in the next section. We only consider the problem
without a minimum separation constraint, i.e., with δ0 = δ1 = 0 (introduced
in the end of Section 9.3.1.1). Let the DT-ICC-graph G = (V, E) be a digraph
with vertex set V and arc set E defined as follows:

V = {D, D′} ∪ {(i, j) | 1 ≤ i ≤ m, 0 ≤ j ≤ n+ 1}

E = {(D, (i, 0)) | 1 ≤ i ≤ m} ∪ {((i, n+ 1), D′) | 1 ≤ i ≤ m}

∪ {((i, j), (i, j + 1)) | 1 ≤ i ≤ m, 0 ≤ j ≤ n}

∪ {((i, j), (i + 1, j)) | 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n− 1}

∪ {((i, j), (i − 1, j)) | 2 ≤ i ≤ m, 1 ≤ j ≤ n− 1}.

We define a weight function w : E → Z by (recall that ai,0 = ai,n+1 = 0 for
all i)

w(D, (i, 0)) = w((i, n+ 1), D′) = 0 (i = 1, . . . , m)

w((i, j − 1), (i, j)) = max{0, ai, j − ai, j−1} (i = 1, . . . , m; j = 1, . . . , n+ 1)

w((i, j), (i + 1, j)) = −ai, j (i = 1, . . . , m− 1; j = 1, . . . , n− 1)

w((i, j), (i − 1, j)) = −ai, j (i = 2, . . . , m; j = 1, . . . , n− 1).

Figure 9.7 shows the digraph G for the matrix

A =

⎛

⎜
⎜
⎝

4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

⎞

⎟
⎟
⎠ .
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Figure 9.7 The DT-ICC-graph with arc weights corresponding to matrix A.

As usual, the weight w(P) of a path P is just the sum of the weights of the
arcs contained in P . Now we can formulate the theoretical result underlying
the next decomposition algorithm.

THEOREM 5. The minimal DT of a decomposition of A satisfying the ICC
equals the maximal weight of a path from D to D′ in G.

In analogy with the unconstrained case we denote this maximal weight
by c(A).

SKETCH OF PROOF. For the proof of this theorem we need to dualize the
DT-problem (Equation 9.2). The LP–dual is

Max

⎧
⎨

⎩

m∑

i=1

n∑

j=1

ai, j yi, j |
m∑

i=1

n∑

j=1

si, j yi, j ≤ 1 for all S ∈ S
⎫
⎬

⎭
. (9.25)

The basic idea of the proof is to associate with every (D, D′)-path P a
dual feasible solution y(P) with objective value equal to the weight of P .
By duality, this gives the lower bound for DT. In a second step, we will
determine a shape matrix S that the maximal weight of a path with respect
to A′ := A−S is strictly less than the maximal weight with respect to A, i.e.,
c(A′) < c(A). The value of y(P)i, j depends on how the path P passes through
the vertex (i, j).

y(P)i, j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if (i, j − 1), (i, j), (i, j + 1) ∈ P and ai, j−1 ≤ ai, j > ai, j+1,

−1 if (i, j − 1), (i, j), (i, j + 1) ∈ P and ai, j−1 > ai, j ≤ ai, j+1,

−1 if (i, j − 1), (i, j), (i ± 1, j) ∈ P and ai, j < ai, j−1,

−1 if (i ± 1, j), (i, j), (i, j + 1) ∈ P and ai, j+1 ≥ ai, j ,

−1 if (i ∓ 1, j), (i, j), (i ± 1, j) ∈ P ,

0 otherwise.
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Figure 9.8 Illustration of the dual solution y(P). The labels of the arcs indicate
the relation of ai, j to its neighbors on P.

Figure 9.8 illustrates this definition by showing the nonzero values of y(P)i, j

depending on the two neighbors of (i, j) in P . The following two lemmas
establish the lower bound part of the theorem.

LEMMA 3. For every (D, D′)-path P, y(P) is a feasible solution for the problem
given in Equation 9.25.

LEMMA 4. For every (D, D′)-path P, we have

m∑

i=1

n∑

j=1

y(P)i, j ai, j = w(P).

To construct a shape matrix reducing the maximal path weight we con-
sider the following quantities

α1(i, j) := max{w(P) | P is a path from D to (i, j)},

α2(i, j) := max{w(P) | P is a path from (i, j) to D},

α(i, j) := α1(i, j)+ α2(i, j).

In Figure 9.9 we show the necessary information to determine the shape
matrix. Observe that c(A) = max(i, j) α(i, j). We define a 0−1-matrix by

si, j = 1 ⇐⇒ α(i, j) = c(A), α1(i, j) = ai, j and ai, j > 0. (9.26)
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5 8 8555

4
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2

2

Figure 9.9 The values for α1 and α (in parentheses) corresponding to the weights
in Figure 9.7.

LEMMA 5. The matrix defined by Equation 9.26 is a shape matrix satisfying
the ICC.

LEMMA 6. For the shape matrix defined by Equation 9.26, the matrix A′ =
A− S is still nonnegative and we have c(A′) = c(A)− 1.

Iterating this construction, we obtain a decomposition of A into c(A)
shape matrices and this concludes the proof. �

As a consequence of the proof we obtain Algorithm 3. Note that this
algorithm yields unidirectional decompositions, i.e., the leaves move only
from left to right.

Algorithm 3 (DT-optimal decomposition based on the DT-ICC-graph).
Determine the values of α1 and α
while A 	= 0 do

Determine S according to Equation 9.26
A := A− S
Update α1 and α

9.3.2 Tongue-and-Groove Constraint
Recall that to prevent underdosage effects due to the tongue-and-groove
design of the leaves we have to require

ai, j ≤ ai−1, j ∧ si, j = 1 =⇒ si−1, j = 1, (9.27)

ai, j ≥ ai−1, j ∧ si−1, j = 1 =⇒ si, j = 1, (9.28)
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for i = 2, . . . , m and j = 1, . . . , n. We call these the tongue-and-groove
constraints (TGC). Here, we construct a decomposition with unidirectional
leaf movement satisfying the TGC. Recall from Section 9.3.1.1 that such
a decomposition is uniquely determined by the numbers I (i)L ( j), I (i)R ( j)
(i = 1, . . . , m, j = 1, . . . , n + 1). The following lemmas characterize dec-
ompositions satisfying TGC (respectively ICC and TGC) in terms of the
I (i)R ( j) and I (i)L ( j).

LEMMA 7. The TGC are satisfied if and only if for i = 2, . . . , m, j = 1, . . . , n,

(a) ai, j = 0 or ai−1,j = 0, or

(b) I (i−1)
R ( j) ≤ I (i)R ( j) ≤ I (i)L ( j) ≤ I (i−1)

L ( j), or

(c) I (i)R ( j) ≤ I (i−1)
R ( j) ≤ I (i−1)

L ( j) ≤ I (i)L ( j).

PROOF. Assume the TGC are satisfied and min{ai, j , ai−1, j} > 0. For the t-th
shape matrix S (t) = (s(t)i, j ) we have

s(t)i, j = 1 ⇐⇒ I (i)R ( j) < t ≤ I (i)L ( j) (i = 1, . . . , m; j = 1, . . . , n).

From this, we derive that ai, j ≤ ai−1, j and Equation 9.27 imply condition
(b), while ai, j ≥ ai−1, j and Equation 9.28 imply condition (c). Conversely,
assume ai, j ≤ ai−1, j and s(t)i, j = 1. It follows that condition (b) is true, and

consequently s(t)i−1, j = 1. Similarly, from ai, j ≥ ai−1, j and s(t)i−1, j = 1 it follows

that s(t)i, j = 1. �

LEMMA 8. The ICC and TGC are satisfied if and only if for i = 2, . . . , m,
j = 1, . . . , n,

(a) I (i−1)
R ( j) ≤ I (i)R ( j) ≤ I (i)L ( j) ≤ I (i−1)

L ( j), or

(b) I (i)R ( j) ≤ I (i−1)
R ( j) ≤ I (i−1)

L ( j) ≤ I (i)L ( j).

PROOF. If min{ai, j , ai−1,j} > 0 the proof is the same as for Lemma 7. If
ai, j = 0 we have I (i)L ( j) = I (i)R ( j) and the ICC is equivalent to I (i)R ( j) ≤
I (i−1)
L ( j) and I (i)L ( j) ≥ I (i−1)

R ( j), so condition (a) follows. Similarly, condition
(b) follows from ai−1, j = 0. �

Algorithm 4 can be used to obtain leaf sequences satisfying TGC and ICC.
The basic idea is similar to the one in Algorithm 2. We construct the I (i)L ( j)
and I (i)R ( j) columnwise. In column j we start with the lower bounds I (i)L ( j) :=
I (i)L ( j − 1)+ max{0, ai, j −ai, j−1}, I (i)R ( j) := I (i)R ( j − 1)+ max{0, ai, j−1−ai, j },
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Algorithm 4 (DT-optimal leaf sequence with TGC and ICC).
for i = 1, . . . , m do I (i)L (0) := 0; I (i)R (0) := 0
for j = 1, . . . , n+ 1 do

for i = 1, . . . , m do
I (i)L ( j) := I (i)L ( j − 1)+max{0, ai, j − ai, j−1}
I (i)R ( j) := I (i)R ( j − 1)+max{0, ai, j−1 − ai, j}

for i = 2, . . . , m do
if ai, j ≤ ai−1, j then

if I (i)R ( j) < I (i−1)
R ( j − 1) then

� := I (i−1)
R ( j)− I (i)R ( j)

I (i)R ( j) := I (i)R ( j)+�; I (i)L ( j) := I (i)L ( j)+�
if I (i)L ( j) > I (i−1)

L ( j) then Update (i − 1)
else //the case ai, j > ai−1, j

if I (i)L ( j) < I (i−1)
L ( j) do

� := I (i−1)
L ( j)− I (i)L ( j)

I (i)R ( j) := I (i)R ( j)+�; I (i)L ( j) := I (i)L ( j)+�
if I (i)R ( j) > I (i−1)

R ( j) then Update (i − 1)

Function Update (k)
if ak,j ≤ ak+1, j then
� := I (k+1)

R ( j)− I (k)R ( j)
I (k)R ( j) := I (k)R ( j)+�; I (k)L ( j) := I (k)L ( j)+�

else //the case ak, j > ak+1, j

� := I (k+1)
L ( j)− I (k)L ( j)

I (k)R ( j) := I (k)R ( j)+�; I (k)L ( j) := I (k)L ( j)+�
if k ≥ 2, ak, j ≤ ak−1, j and I (k)L ( j) > I (k−1)

L ( j) then Update (k − 1)
if k ≥ 2, ak, j > ak−1, j and I (k)R ( j) > I (k−1)

R ( j) then Update (k − 1)

and eliminate the violations of Lemma 8. If ai, j ≤ ai−1, j , condition (a) in
Lemma 8 must be satisfied. This can be violated if I (i)R ( j) < I (i−1)

R ( j − 1)
or I (i)L ( j) > I (i−1)

L ( j). In the first case, we increase I (i)L ( j) and I (i)R ( j) by the
minimum amount such that the condition holds, and in the second case we
increase I (i−1)

L ( j) and I (i−1)
R ( j). In this second case, there might be a new

violation between row i−1 and row i−2. The recursive call of the function
Update (k) takes care of this. If there is no ICC, we just have to add the
condition min{ai, j , ai−1, j} > 0 to the conditions for changing the values
I (i)L ( j) and I (i)R ( j). Let Algorithm 4′ denote the result of this modification.

THEOREM 6 [16]. Algorithm 4 yields DT-optimal decompositions with ICC
and TGC under the additional condition of unidirectional leaf movement in
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time O(m2n). Algorithm 4 ′ yields DT-optimal decompositions with TGC and
without ICC under the additional condition of unidirectional leaf movement
in time O(m2n).

The proof of this theorem is essentially the same as the proof of Theorem
3. For the problem with ICC and TGC, the condition on the unidirectional
leaf movement can be dropped: using the duality based Algorithm 3 with
a modified weight function yields a decomposition with unidirectional leaf
movement that is optimal among all decompositions with ICC and TGC [12].

9.4 Decomposition Cardinality Problem
In this section, we consider the DC-problem (Equation 9.3). In the first
subsection, we show that this problem is very hard, and in the second, we
give heuristic approaches.

9.4.1 Computational Complexity of the DC-Problem
The fact that the DC-problem is NP-hard already for a single-row matrix
was proved first by Burkart [6] who gave a reduction from 2-partition. A
similar idea was used in Ref. [2] to reduce 3-partition showing the strong
NP-hardness, i.e., the nonexistence of a pseudopolynomial algorithm unless
P = NP.

THEOREM 7 [2]. The problem Equation 9.3 is strongly NP-hard, even for
matrices with a single row.

PROOF. The decision version of the single-row DC-problem is as follows:

Instance: A vector a = (a1, . . . , an) with ai ∈ N, K ∈ N

Question: Does a decomposition of a into at most K shape matrices
exist?

Note that a shape matrix in this case is nothing else than a row vector
with the consecutive ones property. We use reduction from the problem
3-partition, which is well known to be strongly NP-hard [10].

Instance: B, Q ∈ N, b1, b2, . . . , b3Q ∈ N with
∑3Q

j=1 bj = QB and B
4 < bj <

B
2 for all j

Question: Does a partitioning of {b1, . . . , b3Q} into triples T1, . . . , TQ such
that

∑
b∈Tq

b = B for all q = 1, . . . , Q exist?
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We define an instance of the DC-problem as follows.

n = 4Q,

aj =
{∑j

k=1 bk for j = 1, . . . , 3Q,

(4Q − j + 1)B for j = 3Q + 1, . . . , 4Q,

K = 3Q.

Now it is not difficult to see that the instance of 3-partition has answer YES
if and only if the instance of the DC-problem has answer YES. �

We want to mention that this reduction proves even more, namely that
it is already hard to find an approximate solution of the DC-problem. To
be precise, the DC-problem is APX-hard even for single-row matrices with
entries polynomially bounded in n. That means there is some ε > 0 such
that, unless P = NP, there is no polynomial algorithm that decides whether
the necessary number of shape matrices is K or at least (1+ ε)K . This was
shown in Ref. [3] using a result on the APX-hardness of 3-partition from
Ref. [19].

The strong NP-hardness of 3-partition means that the problem remains
NP-hard even if the input numbers are bounded by some constant. But
in the reduction to the DC-problem, we produce a vector with very large
entries, because we have to sum up all the numbers from the 3-partition
instance. So, we can still hope for an efficient algorithm if we bound the
entries of the matrix by some constant L, i.e., we require ai, j ≤ L for
all (i, j). Observe that for the case L = 1 any optimal solution to the
DT-problem is also optimal for the DC-problem. And indeed, there is
a result in this direction: for constant L, the DC-problem without ICC
and TGC can be solved in time O(mn2L+2) [11]. In Ref. [18], the algo-
rithm was extended to find the exact minimum of the DC without the
restriction that the DT has to be minimal. But these pseudopolynomial
algorithms are of very limited practical value, not only because of the L
in the exponent but also because the constant in the O-notation grows
very fast with L. So, it is natural to require heuristic approaches to the
DC-problem.

9.4.2 Heuristics for the DC-Problem
Most of the algorithms in the literature look for a decomposition with min-
imum DC among all decompositions with minimum DT. So the problem
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(which we also call DC-problem in the following) is

(DC′) min

⎧
⎨

⎩
|S0| | S0 ⊆ S, A =

∑

S∈S0

uSS , uS ∈ N,
∑

S∈S0

uS is minimal.

⎫
⎬

⎭
.

Note that in general it is not possible to minimize both quantities simulta-
neously, as can be seen by the following example (from Ref. [14]):

(
2 6 3
4 5 6

)

= 3

(
0 1 1
1 1 1

)

+
(

1 1 0
1 1 1

)

+
(

1 1 0
0 1 1

)

+
(

0 1 0
0 1 0

)

.

This is a decomposition with DT = 6, which cannot be achieved with three
shape matrices. But allowing DT = 7, three shape matrices are sufficient:

(
2 6 3
4 5 6

)

= 4

(
0 1 0
1 1 1

)

+ 2

(
1 1 1
0 0 1

)

+
(

0 0 1
0 1 0

)

.

So the problem (DC′) is really different from Equation 9.3. As before, let
c(A) denote the minimal DT for matrix A. A very natural greedy strategy is
to look for a shape matrix S that can be extracted with a large coefficient u,
such that c(A− uS) = c(A)− u, i.e., uS can be extended to a DT-optimal
decomposition.

9.4.2.1 Unconstrained Case

The following greedy heuristic for the unconstrained case was proposed in
Ref. [7]. We are looking for a pair (u, S) of a positive integer u and a shape
matrix S , such that A−uS is still nonnegative, c(A−uS) = c(A)−u and u is
maximal under these conditions. Let umax be this maximal possible value.
Using the notation introduced before Theorem 1, c(A− uS) = c(A)− u is
equivalent to

ci(A− uS) ≤ c(A)− u (i = 1, . . . , m).

Define the complexity gap of row i to be gi(A) := c(A)− ci(A). As before,
we describe the shape matrix by the parameters li and ri (i = 1, . . . , m).

LEMMA 9. There is a pair (u, S)with u = umax and, for all i, either li = ri−1
or (ai,li < ai,li+1 and ai,ri−1 > ai,ri ).
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We put di, j = ai, j − ai, j−1 for i = 1, . . . , m, j = 1, . . . , n, and define

vi(l, r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gi(A) if l = r − 1,

gi(A)+min{di,l+1,−di,r } if l < r − 1 and gi(A) ≤
|di,l+1 + di,r |,(

di,l+1 − di,r + gi(A)
)
/2 if l ≤ r and gi(A) > |di,l+1 + di,r |.

LEMMA 10. ci(A− uS) ≤ c(A)− u if and only if u ≤ vi(li , ri).

For convenience, we denote the set of pairs (l, r) to which we restrict
our search in row i by Ii , that is we put

Ii := {(l, r) : 0 ≤ l ≤ r − 1 ≤ n and either l = r − 1 or (di,l+1 > 0 and di,r < 0)}.

Clearly the nonnegativity of A − uS is equivalent to u ≤ wi(li , ri) for all i,
where

wi(l, r) =
⎧
⎨

⎩

∞ if l = r − 1,

min
l<j<r

ai, j if l < r − 1.

Now we put, for 1 ≤ i ≤ m and (l, r) ∈ Ii , ûi(l, r) = min{vi(l, r), wi(l, r)},
and for i = 1, . . . , m,

ũi = max
(l,r)∈Ii

ûi(l, r).

Then

umax = min
1≤i≤m

ũi .

To construct a shape matrix S such that, for u = umax, A − uS is non-
negative and c(A − uS) = c(A) − u, we just have to find, for every
i ∈ [m], a pair (li , ri) ∈ Ii with ûi(li , ri) ≥ umax. A trivial way of
doing this is to take a pair (li , ri) where the maximum in the defi-
nition of ũi is attained, i.e., with ûi(li , ri) = ũi . These (li , ri) can be
computed simultaneously with the calculation of umax and this method
yields mn + n − 1 as an upper bound for the DC of the decomposition.
But there are better constructions for S after the determination of umax.
We put

q(A) = ∣∣{(i, j) ∈ [m] × [n] : di, j 	= 0}∣∣ ,
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and choose a shape matrix S so that q(A− uS) is minimized. To make this
precise, for 1 ≤ i ≤ m and (l, r) ∈ Ii , we put

pi(l, r) =

⎧
⎪⎨

⎪⎩

2 if di,l+1 = −di,r = umax,

1 if di,l+1 = umax 	= −di,r or di,l+1 	= umax = −di,r ,

0 if l = r + 1 or di,l+1 	= umax and − di,r 	= umax.

Now, for (li , ri) we choose among the pairs (l, r) ∈ Ii with ûi(l, r) ≥ umax

one with maximal value of pi(l, r), and if there are several of these we
choose one with maximal value of r − l. As an example, we obtain the
following decomposition:

⎛

⎜
⎜
⎝

4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

⎞

⎟
⎟
⎠ = 4

⎛

⎜
⎜
⎝

1 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
1 0 0 0 0 0

⎞

⎟
⎟
⎠+ 2

⎛

⎜
⎜
⎝

0 0 0 0 1 1
0 0 0 1 0 0
1 1 1 0 0 0
0 1 1 1 1 0

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝

0 0 0 1 1 1
1 1 1 1 0 0
0 0 0 1 1 0
1 1 1 0 0 0

⎞

⎟
⎟
⎠

+

⎛

⎜
⎜
⎝

0 0 0 0 1 1
1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 1

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝

0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 1 1

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝

0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1

⎞

⎟
⎟
⎠ .

9.4.2.2 Interleaf Collision Constraint

Using the min–max characterization of the minimal DT from Theorem 5, we
can use the same strategy as for the unconstrained case: denoting by c(A)
the maximal weight with respect to A of a (D, D′)-path in the DT-ICC-graph,
we are looking for a pair (u, S) with maximal u such that A − uS is non-
negative and c(A−uS) = c(A)−u. If this is the case, we call the pair (u, S)
admissible. An additional difficulty comes from the fact that the influence
of the extraction of uS on the weight of a path through a vertex (i, j) does
not depend only on the i-th row of S so the determination of the values

ûi(l, r) := max{u | ∃ shape matrix S with li = l, ri = r such that

A− uS is nonnegative and c(A− uS) = c(A)− u}

becomes much harder. But suppose these values, or at least some upper
bounds u0(i, l, r) for them, are given. Then for given u, every shape matrix
S , such that (u, S) is admissible, corresponds to a path

D, (1, l1, r1), (2, l2, r2), . . . , (m, lm, rm), D′



Lim/Optimization in Medicine and Biology AU0563_C009 Final Proof Page 284 9.11.2007 11:26am

284 Optimization in Medicine and Biology

in the digraph defined in the beginning of Section 9.3.1.2 and illustrated
in Figure 9.5, such that u0(i, li , ri) ≥ u for i = 1, . . . , m. We put

û = max{u : There is a path D, (1, l1, r1), . . . , (m, lm, rm), D′

with u0(i, li , ri) ≥ u for i = 1, . . . , m}.

Clearly, û is an upper bound for the coefficient u in an admissible pair
(u, S). The backtracking described in Algorithm 5 constructs an admissible
pair (u, S) with maximal u. Starting with u = û, the algorithm searches for a
shape matrix S such that (u, S) is admissible, and if this is not possible, the
value is decreased by one. The shape matrix is build up row by row, and
the stopping criterion in row i is that after extracting the current candidates
for the first i rows with coefficient u leads to a path P with all its vertices
in the first i rows and w(P) > c(A) − u. The maximal weight of such a
path is denoted by MaxWeight(i). Iterating Algorithm 5 with A′ = A− uS
we obtain a decomposition of A.

Algorithm 5 (Greedy step in the heuristic for the DC-problem with ICC).
Function Construct Shape Matrix
u := û
finished := false
l0 := 0; r0 := n+ 1
while not finished do
Complete Shape Matrix(1)
if not finished then u := u − 1

Function Complete Shape Matrix(i)
for (li , ri) with 0 ≤ li ≤ ri−1 − 1, max{li , li−1} + 1 ≤ ri ≤ n+ 1

and u0(i, li , ri) ≥ u do
if MaxWeight(i) ≤ c(A)− u then

if i < m then Complete Shape Matrix(i + 1) else finished := true

The performance of this backtracking depends very much on the quality
of the bounds u0(i, l, r). In Ref. [12] some bounds that work quite well in
practice are described. A drawback of this method is that we have almost no
control of the running time. Experiments with randomly generated matrices
show that the algorithm is fast for the vast majority of matrices but there
are some examples where it is extremely slow.
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10.1 Introduction
Radiation therapy is used with over half of cancer patients. It is used as an
adjuvant after surgery, either alone or combined with systemic therapies
to increase cure rates for many tumor sites. It is also employed as the pri-
mary agent of local control to render patients disease free at the primary
tumor site and associated lymph node basin while preserving function in
surrounding organs. The words optimization and radiotherapy have long
been intertwined. A citation search reveals the terms optimization or opti-
mal, linked with radiation or radiotherapy1 in publications dating to 1959.2

A number of publications provide overviews of this field.3–6

Much of the early work concerned the optimal division of a course
of radiation into individual sessions, called fractions, using patterns that
could be generalized to wide populations. The work employed models
of the differential response of tumor and normal tissues to the number
of sessions into which the total prescribed dose is divided and the spac-
ing of these sessions over time. It was recognized early that response and
risk depended on irradiated volume and tumor volume, number of frac-
tions and over time of the treatment course.7 Volume ranges over a con-
tinuum between approximately 100 and 103 cm3; the number of fractions
ranges over integer values between roughly 3 and 40, and the overall treat-
ment time is expressed in days in the range 3–60. The development of
improved fractionation schedules based on predictive formulae remains an
active area of research, whose findings might ultimately change the pre-
scribed rules for radiation administration.8–10 (see also Section 10.5). For
now, treatment is arranged so that a cumulative plan distributing doses
across various tissues can be decomposed into separate additive sessions,
whose tissue dose levels all fall within their allowed ranges in each session
and cumulatively.

This chapter concentrates on a different problem that is characteristic of
dose optimization in radiotherapy. The problem is to optimize the spatial
distribution of radiation dose in the individual patient. The optimization is
performed over some function, which maps delivery parameter values to
the patient’s dose distribution. Radiation-absorbed dose, like temperature,
is a quantity that can be defined at each point in the body. A treatment is
evaluated by the distribution of dose values that it produces.

The concept of radiation dose is different from the familiar notion of
drug dose, which refers to how much is given to the patient by some route,
and how much is not to be taken up at some point. A precise description of
the radiation dose distribution at every point in the body can be made from
a specified delivery scheme. The basic planning challenge is to produce
a distribution of dose values across all points of the body that meet the
competing goals of safety in healthy tissue and eradication of disease in
target. The radiation may arise from surgically implanted sources, in what
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Box 10.1   Schematic of the external beam planning problem.
Anatomic contours are displayed on a planar slice through the body, along 
with two beams from a larger set.  Beams penetrate through the body in the 
directions shown by solid arrows (→). Beam borders, depicted by solid lines 
(–) diverge slightly outwards with distance. Use of multiple beams allows 
combined dose on the target tumor while distributing dose to surrounding 
tissues.  A beam may be divided into smaller component units (illustrated by 
dotted lines), typically projected as a regularly spaced grid along the beam 
front. An intensity map at each beam angle determines how radiation is 
divided across components or beamlets of each grid. 

Target

Cord Left kidneyRight kidney

Bowel

Beam 2
Beam 1 Intensity map at

one beam 

Liver

is known as brachytherapy. Still, most is external beam therapy where
radiation is generated from an accelerator that can be positioned around the
patient at any angle (see Box 10.1). Beam angles, energy levels, time-on,
and shape across the face of the beam then become the decision variables
subject to planner control.

The remainder of this chapter focuses on those issues in external beam
therapy planning. Still, other layers of complexity enter into consideration
(see Box 10.2). These include treatment costs, and the risk that imprecision
in realizing the expected dose distribution will produce a catastrophic fail-
ure (e.g., severing of the spinal cord function). The expected distribution is
typically developed under a framework that is designed to limit treatment
costs or session time and avoid catastrophic failure. The framework may
limit the number of beams or their placement, or add safety margins to the
boundaries of critical structures.

10.2 Treatment Planning of Dose Distributions
As already noted, radiation dose has a physical meaning that is analogous
to tissue concentration in pharmacology, or temperature in engineering.
Dose, in units of gray (1 Gy = 1 J/kg) denotes the energy per unit mass
taken up in ionization within an infinitesimally small volume about a point.
This ionization can produce chemical and ultimately biological effects.
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Treatment parameters

Expected distribution
of doses within the

body

Costs – planning,
delivery

Rates of cure and
complication

Profits or loss,
workplace stress

Unpredicted
catastrophic injury

Degree of uncertainty
in dose delivery

Box 10.2    Sketch of the treatment planning problem.
Shaded boxes indicate distinct endpoints considered for the individual. The 
central problem—dose formation—is shown in hatch. Unfilled boxes 
exhibit relations most reliably demonstrated in a population. The relative 
degrees of certainty in the relations are suggested by arrow widths. 

A characteristic of radiation therapy is that the dose distribution can be
fairly accurately determined for the individual patient from a given treat-
ment scheme. The basic template is cast by the choice of beam angles,
beam shape, and beam energy. An appealing property of radiotherapy is
that the dose distribution can be refined, spatially and potentially over
a rapid timescale, by manipulating the intensity profiles of the radiation
beams. In cooking, one alters the temperature distribution by exchanging
heat sources usually once or twice (fire vs electric; pot vs pan), reorienting
food position a few times (flipping, stirring), choosing cooking time, and
in a final refinement tuning the strengths in individual heating elements.

In analogy, the energy source in radiotherapy treatment is the incoming
beam. Treatment design (refer to Box 10.1) entails the selection of beam
energy from a limited number of choices, posing the source relative to the
body at a limited number of positions, selecting intensity (on also known
as fluence) at each position which will be proportional to time-on, and in a
final refinement, varying intensity across different parts of the source. Either
the intensity of an entire beam is uniformly changed or in a modern app-
roach, the beam can be divided into smaller elements each transmitting a
different intensity, a technique known as intensity-modulated radiotherapy.

Modulation of intensities can be accomplished by varying the exposure
of each beam element, typically by moving thin blocking leaves in and out
of the beam for varying lengths of time.11 An alternative is to fabricate atten-
uating solids that project to different depths along the face of the beam.12

As a first approximation, the exposure time or path attenuation of a beam
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element determines its intensity. However, the leaves or attenuators intro-
duce perturbations into the intended intensity maps due to effects such
as scatter, beam divergence, beam leakage, and nonuniformities in mate-
rial, and choices may be limited by considerations of delivery time. These
second-order effects force design choices that yield trade-offs in plan cost
and quality.13 The sequence of leaf positions (or attenuator geometry) that
is taken to transmit a desired profile of intensities represents another layer
of input that determines the final dose distribution.14

10.2.1 Treatment Planning Decisions
The decisions to be made in planning can be divided into those that set the
dose constraints and goals, and those that determine the delivery of radia-
tion, given the dose specifications. The dose specifications largely emerge
from the medical environment, although sociological, economical, statisti-
cal, and mathematical forces shape their statements. Typically, the number
of allowed beam positions is modest and only one or two beam energies
are available, with acceptable choices in these areas made by human judg-
ment. Once beam energy and placement choices are made, the planning
problem devolves into the selection of intensities and the provision of a
method to realize their delivery. When beams are divided into hundreds
of smaller elements this intensity assignment problem is too large to be
handled without automated assistance.

Other decisions that enter into planning, and which are susceptible to
varying degrees of optimization, include the choice of dose constraints and
the identification of anatomical compartments on which the constraints
are to be placed. A statistical problem is to derive an accurate geometric
distribution of the target given snapshots of its position, orientation and if
deformable, its shape, over time.15 In current 3D practice, a target identified
on an image series considered to be instantaneously acquired is expanded
to form a planning target volume that acknowledges motion over the
several minutes needed to deliver treatment each session.16 A problem in
combinatorial geometry is to determine a minimum volume region that
envelopes the shifting target with specified probability.17,18 These problems
are the subject of theoretic and empiric research under the rubric of 4D
radiotherapy.19

10.2.2 Planning Outputs
The dose at each point in the body is determined by the treatment scheme
that is setup. Each person’s anatomy presents its own geometry, and as
is too well known, there are secular and stochastic changes in one’s own
body over time (e.g., breathing). For the most part, work has concerned
optimization over a fixed space, but improvements in radiologic technology
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have sparked interest in optimizing delivery over a space that can vary
over time.

Exhibiting the dose distribution is itself a problem that is not straightfor-
ward. Physics-based simulations are typically employed after each iteration
of planning to predict the dose distribution that would result from given
parameter choices. Points are chosen along a fine grid in the structures of
interest, and the dose at each point is estimated.20

Dose reports examined by the physician are graphical or tabular sum-
maries of the dose distribution over discrete point sets into which structures
of interest are resolved. Values for sample points are used to determine 2D
curves of constant dose, called isodose lines (analogous to isotherm plots
on weather charts). They are viewed superimposed over anatomy as a vis-
ual check on safety and efficacy. Small areas of over- or under-dose may
be missed by this review, and estimates of the volume distribution of dose
are almost impossible to make. Consequently, dose–volume histograms are
generated to display the cumulative distribution of dose over any structure
volume of interest (see Box 10.1).21

10.3 Treatment Optimization Modeling
Optimization in radiation therapy, as applied to intensity modulation,
is often taken to mean the process of generating a computer-based
assignment of intensity/fluence values for the beam elements, together
with supplying a method for their delivery that in combination yield an
acceptable plan. The planning process has been termed inverse plan
optimization.22

Given the complexity of the joint planning and delivery problem, it is
convenient if inexact to first consider separately one problem of produc-
ing an intensity map and the other of supplying a process for its delivery,
and then to consider how the two problems interact.23 This section will
review the constraints and objectives that enter into intensity map genera-
tion, and the next section will explore solution methods. The problem of
intensity map delivery will be discussed in Section 10.5.

10.3.1 Assumptions
An important simplification for those posed with optimizing treatment plans
is that dose at any point can be taken as a linear combination of the intensi-
ties of the rays impinging on the patient. The method of intensity-modulated
radiotherapy divides a beam into a panel of small unit elements, each of
which is considered to carry a separate intensity value, and whose linear
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combination determines the dose distribution.24 Strictly, the actual intensity
need not be constant across a small beam element mainly because the
tongue and groove construction of the metal leaves that slide into and out
of the field to differentially block beam elements can lead to non uniform
effects along the boundary lines, as can mismatch between the leaf cut and
the divergence line of the abutting beam ray.25,26 An accepted if imperfect
approach is to consider the intensity across an element to be constant given
certain leaf setup constraints taken to attenuate the boundary effects.

A much more difficult question is how dose affects treatment outcomes.27

Although effects of dose on outcome are certainly nonlinear, they are
also widely uncertain. Even the form of the relation is unknown other
than an assumed monotonicity: increase in dose at a point should not
decrease the observed effect. The relations of dose to outcome that give
rise to constraints need not be linear; the number of intensity arguments
and dose constraints may be too large to admit exact linear methods,
and the effects on different tissues of how administered dose is divided
over time are nonuniform and nonlinear. The complexity of optimization
is further clouded when delivery effects are considered. Intensity perturba-
tions at the leaf edge degrades delivery of the produced intensity map,
and delivery conditions may argue to limit the complexity of the pro-
duced intensity maps, measured as local or global fluctuations in intensity
values. These limits may be described by nonlinear conditions on intensity
variation.28

Nonlinear parameterized formulae of complication or cure probabilities
have been proposed. In particular, one may seek to optimize constructed
biologic functions of tumor control probability (TCP) and normal tissue
complication probability (NTCP), both nonlinear.29,30 At present, however,
they have not been shown to provide better measures of the safety or effi-
cacy profile than those given by standard dose or dose–volume indicators.

These uncertainties have led physicians to standardize prescription
directives, the constraints and objectives of the problem, by a compact
set of dose limits. However expressed, radiation problems demand tight
satisfaction of stated constraints and their solutions should have small
optimization gaps. Violations of about 3 percent in strict absolute dose
limits match allowed errors in dose reporting, forming one kind of accep-
tance criterion. Violations in constrained volume are less established, but
a 3 percent tolerance can be taken to match the stated dose tolerance.
Constraint violations are readily detected using dose–volume histograms
or visual inspection of isodose lines, but optimization shortfalls are hidden.
Optimization shortfalls of about 3 percent could produce effects detectable
in populations of a size that can be accrued in clinical trials, amounting to
about a 5 percent difference in the end point.
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10.3.2 Optimization Model Overview
The classic optimization problem in radiotherapy is to produce beams
along with their intensity maps given a specification of dose constraints
and objectives. A beam in intensity-modulated therapy is defined by its
energy, the orientation of its central ray, and its size and shape. For conve-
nience, size and shape are usually derived from the projection of the target
along with some specified margin onto the beam face (also termed beam
front), a plane normal to the central ray.

Mathematical optimization in daily practice has been largely reserved for
the intensity map generation of each beam. The choice of beam energy and
placement is made through the experience of the planner. Beam energy is
selected from one of the limited number of choices (two, for e.g.) the
machinery makes available. Beam orientations are set in some fashion
accepted by the planner so as to spread out the entrance directions of
a manageable number of beams, allowing adjustments to limit projections
over sensitive structures.

The remaining task, too large to manually handle, is to generate the
intensity profiles of the selected beams. That problem can be stated (see
Box 10.3) by considering a set of beams individually labeled j ∈ B, each
one of which in turn is divided into a finer panel of beam elements (also
known as beamlets or pencil beams), distinguished by labels k ∈ U (j).
Then dose at any point i can be viewed as the output of decision variables
xjk , the beamlet intensity for beam j , beamlet k. The expression of dose di

at point i as a linear combination of beamlet intensities becomes

di =
∑

j∈B

∑

k∈U ( j)

aijkxjk

where aijk is the dose delivered at i per unit intensity in beamlet k of
beam j .

10.3.3 Dose Coefficients
Because the solution must meet dose limits over a sample of points, and
verified using a different sampling than that used in the optimization, the
model introduces the problem of stochastic sampling. An open question is
whether geometric or algebraic features can be used to direct the sampling.
The need to satisfy a strict limit (e.g., ±5 percent) on dose homogeneity
within tumor suggests a dense sampling within that structure. On the other
hand, estimates of the volume distribution of dose may potentially make
use of the gradual, roughly log linear fall of dose with distance to create
spatially nonuniform sampling schemes. These may preferentially sample
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Dose is expressed as a linear combination of the component units of the beam: 

(1.1)  di = Σaijkxjk

where di is the dose to point i, xjk is the intensity contributed by component k
within the grid panel U(j) that divides beam j of the treatment set B, and aijk is the
dose contribution to point i from a unit intensity in component k of beam j. 

Upper and lower bounds on dose within any collection of points s representing
organ or target structures take the form:

A dose–volume limit is of the form:

(1.3) |I| ≥ f|s|, where i ∈I ⊂s ⇔ di ≤ d T

where I is the set of points in s whose dose does not exceed the threshold value
d T, |I| is the count of I, and |s|, and f the fraction of elements in s that must not
exceed the threshold dose bound d T. 

It is possible to present condition (1.3) in a mixed integer linear form through
relations (1.4–5):

A relative dose bound of H on the ratio of the minimum to maximum dose levels in
tumor can be expressed through:

(1.6)  m ≤ di  ≤ M for i ∈T, where T is the set of points in tumor. 

(1.7)  m/M ≥ H,  

Box 10.3   Formulation of the independent intensity map planning problem.
Relations (1.1)–(1.2) describe dose bounds that are linear in the selected intensities.
The addition of dose volume limits (1.3) introduces combinatorial conditions. 
Relations (1.4)–(1.5) convert the combinatorial conditions into conditions on binary 
variables. Relations (1.6)–(1.7) complete a set of clinical conditions that can be
combined with a linear objective such as maximizing minimum tumor dose m to
obtain a mixed-integer linear programming formulation.

j∈B,k∈U( j )

(1.2)  di ≤ di ≤ di   i ∈s

(1.4)  di – di (di – d T ) ≤ dT, di  ∈ {0,1}

i

(1.5)  Σ di ≤ (1– f)|s|

over regions where small variations in position are associated with dose
differences that straddle critical values for constraint violations.

The matrix of coefficients aijk is very large and because it is difficult
to force sparseness into the coefficient matrix, it slows down most com-
putational methods. Although each beam unit, whose intensity is to be
assigned traverses through only a tiny slab of the entire body, it generates
dose beyond the borders of the slab, through effects, such as radiation
scatter and leakage through the blocking leaves defining the slab. Although
the effect at a distance may be only 1–3 percent of the dose along the
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central ray of the beamlet, the sum total of these distance effects from all
hundreds of beamlets cannot be neglected. How these effects should be
handled in the optimization, by iterative corrections or by introducing a
constant leakage factor forms its own research question.

10.3.4 Dose and Homogeneity Constraints
The most widely employed constraints consist of absolute dose limits that
are bounds on the maximum or minimum doses received in a structure,
relative doses limits that restrict ratios of dose values (typically the maxi-
mum to minimum dose within the target or global maximum dose to target
minimum), and dose–volume limits that restrict the volume distribution
of dose. A dose–volume limit is a constraint on the fractional volume of
a structure that can exceed (or fall below) a stated dose level, equiva-
lent to a limit on a rank percentile distribution. Such constraints are use-
ful because redundancies in the body mean that normal tissue failure or
complication may be avoided if a sufficient fraction of organ volume is
protected.

It is possible to pose dose limits in absolute terms or relative to some
derived value, such as minimum or maximum dose. Typically, one finds
dose or dose volume limits on healthy tissues are given as upper bounds to
make treatment acceptable. Lower bounds are placed on targets of varying
tumor cell concentration to make treatment worthwhile.

A homogeneity bound is also often placed over the relative values of
the maximum and minimum doses in tumor (and sometimes over the maxi-
mum dose in the whole body). A homogeneity limit acts to align the costs
of treatment with its benefits, and serves also to constrain the potential
deviations of the dose distribution from historical experience.

Box 10.3 collects all these constraint forms assuming the linear rela-
tionship between beamlet intensity and dose. All constraints are linear
if dose–volume considerations (1.3) are discounted, but become mixed-
integer linear when binary variables are introduced to model dose–volume
conditions as in (1.4)–(1.5).

10.3.5 Scale of Models
The scale of the planning problem is very large. Isodose lines are con-
structed from dose values determined on a fine spacing of points, e.g., every
at 0.5× 0.5× 0.5 cm3 intervals over volumes that are roughly 10× 10× 10,
or about 10,000 points in total. Not all these points are used to produce
dose–volume histograms against which satisfaction of dose volume limits
are verified, but even a quarter sampling of 2500 points yields a substan-
tial sized constraint set. Intensities are assigned to beam components that
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spatially divide the beam into smaller units. Intensities assignments are to
be distributed among seven or so beams, arrayed on a planar grid placed
over each beam front, with grid spacing at 0.5 × 0.5 cm2 intervals. If each
beam measures 10× 10 cm2, the number of intensity arguments is roughly
400 per beam × 9 beams, or about 3600.

Forms in Box 10.3 require one decision variable for each beamlet inten-
sity, one constraint for each tissue point, and two for target points. There
are also binary variables for each dose–volume constrained point. Thus,
the scale of the optimization to be solved easily ranges to thousands of
decision variables and tens of thousands of constraints.

10.3.5.1 Feasibility Problems and Objectives

The planning task can be posed either as a feasibility task, such as meeting
the set of bounds,31,32 or as an optimization exercise by introducing one
(or more) criterion functions.33,34 Feasibility approaches begin by specifying
absolute lower (and sometimes upper) limits on tumor dose at any point
(variables m and M in Box 10.3). Then, the planning task is to come as close
as possible for finding beamlet intensities that together satisfy both tumor
and normal tissue limits. Often, requirements are classified as requirements
that must be met vs others (including the minimum tumor dose) that can be
viewed only as targets. Then some form of goal programming or weighted
penalty function of under-satisfied goals drives the search for best beamlet
intensities xjk .

Where an explicit criterion function is to be maximized, a common
objective is maximizing the minimum tumor dose. Common alternatives
are to maximize the dose at some central point in tumor or the average
tumor dose, given a tight homogeneity level. By raising the smallest dose
received in some region of tumor, these objectives serve to diminish the
likelihood that a clonogenic cell will survive, and lead to disease recurrence.
The same principle can be found in cooking a hamburger to avoid cold
regions in any of its volume. It has been estimated that each 1 percent
point increase in dose is associated with a 1.5 percent increase in tumor
control for tumors controlled about 50 percent of the time, a quantity called
the γ50.35

Each of these criterion functions, and indeed the goal programming
form of infeasibility minimization, is easily expressed in terms of a linear
objective function and added constraints. Thus, in the presence of only
absolute or relative dose limits on points and tumor dose homogenity, the
optimization problem can be modeled as a large linear program. When
dose–volume limits are introduced, the problem becomes a mixed-integer
linear program. Penalty function objectives, typically second order, make
the models nonlinear.36
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10.3.5.2 Modeling Dose–Volume Constraints

It is clear that dose–volume constraints pose interesting challenges in
obtaining a tractable model for approximate optimization of treatment
planning problems. In addition to the mixed-integer approach of Box 10.3,
several other schemes have been employed to enforce the required effect,
albeit approximately.

Box 10.4 illustrates the distinction between dose–volume limits, and a
variant known as Conditional Value at Risk (CVaR), which is a concept
derived from portfolio analysis. Both formats consider a specific percentile
of the dose distribution. Dose–volume requires that percentile not to exceed
the threshold dose. It can be considered a limit on the minimum of doses
at or above the threshold. CVaR, on the other hand, constrains the average
(or total) dose for points receiving the threshold or more.

The CVaR approximation is foreign to clinicians who have devel-
oped the protocols that produce dose–volume constraints—especially
because it focuses on the higher dose points that have been planned for

D
en

si
ty

Dose

Dose–volume limits a percentile
(e.g., 60th percentile <= 70 Gy,

min of the upper tail)

CVaR limits the average
of the upper tail (can be

constrained by LP)

Box 10.4   Dose–volume constraints.
These difficult-to-model constraint forms are combinatorial if represented exactly,
as in Box 10.3, but admit a related CVaR form that can be modeled linearly. 

Linear constraints to implement CVaR are as follows:

di –f ≤ wi

CVaR = f + [(1– f )|S |]–1 Σwi

where f  is an auxiliary variable reflecting the 100�f th percentile of the doses for
i ∈S of a dose–volume tissue and auxiliary variables wi compute any excess dose of 
point i over f

b b

i ∈S
i ∈S

wi ≥ 0 i ∈S
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sacrifice. Still, it has a significant computational advantage because it can
be modeled with auxiliary variables and linear constraints as shown in
Box 10.4.

Another approximate approach is derived from tissue geometry. Given
coordinates of each target and protected tissue point, the distance from any
protected point to the nearest target point can be computed in advance of
the optimization.37 Then the fraction (1− f ) of tissue points allowed higher
than the threshold may be taken as those closest to points in the target. With
those sacrificed tissue points preselected, (linear) maximum dose limits can
be set to an upper limit d̄ on the high-dose points, and threshold dT for
the rest. The intuition is that points in the target will receive higher does
than any others, so that normal tissue points nearest to them are the ones
most likely to be sacrificed.

10.4 Introducing Optimization of Orientations
A necessary preliminary step to treatment planning is to decide on a set of
beam orientations. Not all orientations are available. Even when restricted
to a common plane, the time needed to setup each new angle limits the
number of orientations that can be realistically taken for each individual.
Current practice is to preselect five–nine angles based on clinical experi-
ence with similar cases. An ideal would be to imbed angle selection into
formulations like those of Box 10.3. Although this can be done in princi-
ple, the added computational burden to an already large-scale optimization
tends to leave the model almost intractable. Nevertheless, models for simul-
taneous optimization of beam orientations and beam intensities have been
suggested.38,39

Another promising class of approaches falling between these two
extremes is to apply heuristics based on earlier experience and details of
the case at hand to choose angles to use earlier or along with optimizing
corresponding beamlet intensities.40–42 Among proposed solution methods
for such models are simulated annealing,43 genetic algorithms,44 particle
swarm optimization,45 and mixed-integer programming.46

10.4.1 Optimization Approaches
Although generally following the paradigm of Box 10.3, there are many
variations in actual optimization approaches and even formulation strate-
gies employed. Each has advantages in validity and convenience of use,
but mathematical limits of the tools employed also introduce drawbacks.
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10.4.1.1 Mixed-Integer Linear Programming

Mixed-integer linear programming approaches like those outlined above
are exact formulations for maximizing one of the linear measures of tumor
dose or minimizing goal shortfall when dose constraints are limited to spe-
cific points and dose–volume restrictions, and the dose at every point is
a linear function of the beam weights.47–49 In practice, however, the MIP
search would normally be terminated with some provable bound on the
remaining gap between the best known solution and the best possible. Lin-
ear programming relaxations often yield bounds within 5 percent in many
cases. But in some, especially when the threshold dose dT� upper limit
d̄, the gaps can be large. When the LP relaxation is close to meeting the
MIP constraints, good feasible solutions can be obtained by forcing into the
protected set those points found with the lowest doses in the LP-relaxation
solution. A lower bound to the MIP can be found by adding to the pro-
tected the minimum number of points required, constraining their doses
to the lower threshold level dT , and the solving to optimality the resulting
LP. Intermediate approaches that iteratively assemble the protected set by
adding to it some number of points with lowest received doses in the LP
relaxation of the previous step can also be entertained.

10.4.1.2 Linear Programming

Linear programming formulations under similar constraint and objective
function assumptions can deal with many of the issues in treatment plan-
ning optimization. Still, their use is limited because tolerance rules such as
dose–volume limits do not reduce to linear constraints on specific points.
Still, success has been reported by researchers using the CVaR measure
of dose–volume discussed above, which can be modeled with linear pro-
gramming at the cost of deviating from accepted treatment planning clinical
standards.50

10.4.1.3 Conjugate Gradient Nonlinear Approaches

Conjugate gradient techniques, which are widely used in commercial and
research systems, accept more general functions of the beam weights,51

but do not guarantee optimal results for objectives or constraints that
are not convex, including dose–volume limits.52,53 Furthermore, the intro-
duction of dose–volume and other constraints into an unconstrained
optimization format to maximize a single optimization function using
gradient or Newton’s methods means that the correct weighting fac-
tors for summing the constraints and objective to yield the optimiza-
tion function must be chosen.54 Finding the correct and nonintuitive
weighting factors put additional demands on the planner’s time, and can
lead to improved solutions being missed. It begs the question of how
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the correct weights are to be found because the problem of optimizing
an objective subject to constraints is equivalent to maximizing a cor-
rectly weighted sum of the constraint and objective functions in the first
place; it is the solution of the optimization problem that gives the correct
weights.55

10.4.1.4 Metaheuristics Including Simulated Annealing

Simulated annealing and related metaheuristics are iterative randomized
searches that have formed the basis of some commercial treatment plan-
ning algorithms.56 Being unconstrained in their natural form, they have
been extended to the problem of maximization of an objective function
subject to constraints.57 Simulated annealing algorithms have no natural
criterion for termination, which can lead to inconsistent results, and their
implementation may demand the assignment of penalty weights, rais-
ing the challenges seen with conjugate gradient methods. Comparative
testing against mixed-integer programming has shown simulated anneal-
ing sometimes returns a minimum tumor dose that is as much as 12 Gy
short of the highest value that could be delivered under the constraints.47

Furthermore, plans obtained can fail to satisfy target dose homogeneity
requirements because of the difficulty of enforcing hard constraints in the
model.

10.4.1.5 Direct Inverse Methods

Although all approaches of this section may be termed inverse methods
because they begin with planning requirements and seek beam and inten-
sity parameters to satisfy them, there is a more direct alternative that begins
with a fully specified dose distribution. Intensity options are then sought to
minimize the variation from the given ideal. The approach’s obvious draw-
back is that the best possible dose distributions are not known ahead of
time. Still, the method has been successful in constructing plans that place
high isodose lines tightly around irregularly shaped volumes. The method
breaks down when treatment tolerance depends on the volumes of critical
organs such as lung or kidney that receive low dose (e.g., dT = 20 Gy). It
can return a plan, which is inferior in terms of both tumor control and risk
of normal tissue injury than that given by manual planning.58

10.4.1.6 Biologic Function Formulations

Biologic function-based formulations based on treatment and complica-
tion probabilities mentioned above can also be employed to represent
the dose optimization challenges. Still, the methods have not proved their
ability to produce a clinically acceptable plan by themselves, and more
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standard criteria, such as a homogeneity limit, are used as an alternative.59

Mathematical optimization of biologic functions remains incomplete, and
surrogate functions are sometimes introduced to facilitate the generation
of solutions.60 Nevertheless, the solutions may fail to be optimal because
the underlying functions and their valid surrogates are nonconvex, and can
possess multiple local minima which are not enumerated.61

10.5 Intensity Map Delivery
Devices like the multileaf collimators (MLC) affect beamlet-by-beamlet vari-
ation by changing the beam aperture in a number of segments. As illustrated
in Box 10.5, most implementations choose the leaf set up conditions con-
vert continuous intensity values to whole number multiples, and search for
a sequence of leaf positions which will deliver these values. The choice
of leaf positions that can be assumed in delivery may be constrained by
conditions designed to limit edge effects or other perturbations. More than
one set of leaf positions may be feasible, and the problem is to find some
set that optimizes one or more desired delivery properties. These include
the number of times that the beam is turned off to reposition at least one
leaf, or reducing the total beam time.13,14,62

Box 10.5 also details several of the dependencies that make aperture
effects somewhat different than the sum of open beamlets. Some beamlet
combinations cannot be formed by leafs on two sides, leaf collisions need
to be avoided, boundary effects multiply the effect of beamlets according
to their positions within the aperture, and closed beamlets still have some
leaked radiation. Column generation techniques are natural to transform
the Box 10.3 optimization over beamlets to one over apertures generated
to address MLC limitations.

When MLC limitations are not considered directly in the planning opti-
mization, e.g., by column generation, a post-optimization process is needed
to convert computed beamlet intensities into segments. Relatively quick
heuristics are known for this process and some aim to add conditions
that limit the degradation of the selected intensity map by the delivery
process.13,14,62 These heuristics may aim to limit the total monitor units or
number of times at least one leaf is moved that is needed to realize the
delivery. Still, they can only approximately incorporate all the four con-
siderations of Box 10.5, and neglect the effect of delivery on intensity
optimization. Methods that integrate in some fashion intensity optimiza-
tion with delivery have recently been considered.26,47,63,64 These methods
include optimization over preformed apertures rather than free intensity
maps,47,65 column generation to represent the segments at each iteration63,64

and iterative optimization with correction for aperture perturbation at each
step.26
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10.6 Four-Dimensional and Fractionated Planning
Most treatment planning optimization methods choose a plan once for the
entire course of the optimization. Clinical practice, however, is to implement
plans in a series of 25–50 daily fractions. Thus, fluence times for the desired
segments of the chosen overall plan must actually be optimized over 3D and
4D. More recently, techniques have evolved to account for target motion
during a session by tailoring delivery to a particular phase of the respiratory
cycle.66 In theory, matched delivery over more than one phase is possible.
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Effectiveness of the treatment can be threatened if per-fraction limits
are ignored in implementing a chosen overall plan. For example, a mini-
mum dose of 2 Gy per-fraction may be required for sufficient impact on
the target, but not more that 1.8–2 Gy may be allowed on healthy tissues.
This raises the problem of maintaining overall and per-fraction dose limits
in each structure when the treatment course is decomposed into fractions
and phases within fractions.67

Recent advances in imaging provide updated images during the
sequence of fractions and demand an adaptive reoptimization over
the course of treatment.68 In principle, adaptive reoptimization poses
the challenge of accounting for both overall dose delivered and the dose
per-fraction under the original and revised tissue geometry.67

A final challenge is tissue movement during a single fraction. For
example, lungs deform from any fixed image as the patient breathes.
Leaves can be made to track in real time, but this presents the problem of
finding an optimal trajectory within each session to delivery the desired
intensity map without unnecessarily lengthening session time.69 As with all
4D issues, concepts remain the same as overall plan optimization, but the
scale of the model tends to explode.

10.7 Conclusion
Radiation therapy planning touches on many modern topics in optimiza-
tion: large-scale theory, sensitivity analysis, multiobjective optimization,
combinatorial geometry, fractional set constraints, stochastic optimization,
and discrete choice optimization. It presents practical issues of display
of sensitivities across a multidimensional space, solution time limits, and
bounds on shortfalls from optimality or constraint violations.70 A particular
feature of the problem is that the multiple problem expressions, derived
from individual anatomic configurations are readily generated and in prin-
ciple do not encode proprietary or identifiable data. This opens a wide
field for testing optimization solutions for many classes of problems that
transcend medicine or biology. The signature of the radiation planning
problem is that its study enhances the sciences of the both optimiza-
tion and medicine, and provides practical benefits and testable ideas to
both fields.
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Abstract Many recent advances in biology, medicine, and health care are
due to computational efforts that rely on new mathematical results. These
mathematical tools lie in discrete mathematics, statistics and probability,
and optimization, and when combined with savvy computational tools and
an understanding of cellular biology, they are capable of remarkable res-
ults. One of the most significant areas of growth is in the field of systems
biology, where we are using detailed biological information to construct
models that describe larger entities. This chapter is designed to be an intro-
duction to systems biology for individuals in operations research (OR) and
mathematical programming who already know the supporting mathematics
but are unaware of current research in this field.

11.1 Introduction
The field of systems biology represents a new, exciting collaboration
between biology, mathematics, and computer science. In broad collabora-
tions such as this, it is usually not the case that a single discipline benefits
to the exclusion of the others, but rather each discipline is rewarded from
the inventions of the interaction. Classic examples of similar interactions
involved mathematics and physics, which led to the invention of Cal-
culus, and the interaction between agronomists and statisticians that led
to advances in experimental design, analysis of small sample sizes, and
the development of analysis of variance. Many have argued that current
problems in cellular biology are playing a similar role in mathematics and
computer science today. In particular, the nexus of high-throughput data
generation in biology, and increasingly sophisticated mathematical and
computational tools makes systems biology an exciting and innovative
field of study.

Broadly speaking, biologists want to answer overarching questions rel-
ated to how organisms work. The complexity of life and the difficulties
inherent to experimental science have traditionally led biologists to adopt
a reductionist approach, working for example in a single species to find
and characterize single causative factors. Subsequent research then finds
factors that interact with the first factors, and so on. The reductionist app-
roach has shed light on many individual components of an organism,
but for all our work, we only know a small percentage of how organ-
isms work.

The painstaking progress of the reductionist approach is now being
accelerated, however, by new high-throughput technologies. The most
reductionist level of an organism is its DNA sequence, and it is almost
inconceivable that the structure of deoxyribonucleic acid (DNA) was
discovered approximately 50 years ago, and that less than 20 years ago
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researchers labored to hand-sequence genes a few hundred bases at a
time. Now our goal is to produce affordable, personal sequences of the
three billion bases of an individual human genome in a matter of days or
weeks, rather than the years it took to complete the first human genome
sequence.

Although completing the human genome represented a pinnacle of
achievement, it did not provide all the information needed to holistically
model life’s processes. To build a functional model of an organism, we
need to know which proteins are actually made, at what times, in response
to what environmental cues, and how these proteins interact either physi-
cally with other proteins or in metabolic pathways to create a static trait or
dynamic response. Being able to characterize these higher levels of com-
plexity is crucial: if anything, our reductionist studies have taught us that
the whole is more than the sum of the parts.

Advances in technology similar to those seen in the sequencing arena
are now also expanding our understanding of these higher-order ques-
tions. The current difficulty is how best to deal with the embarrassment
of riches in biological information. On the whole, most biologists have
not been trained in model building, data management, and computational
skills. Experts in operations research (OR), however, are trained exactly
in these fields and are well positioned to accelerate this exciting area of
research. What OR professionals lack is an understanding of the underlying
biology and how it transforms into familiar research topics. This tutorial is
intended to fill this educational gap.

In the end, our goal is to have quantitative, predictive models, which
describe systems from cells to entire organisms. In pursuing this goal, it
is important to remember that our interest is not solely focused on under-
standing Homo sapiens. Although it is true that much of our research on the
bacterium E. coli, the single-celled eukaryotic yeast S. cerevisiae, and the
millimeter-sized roundworm C. elegans and fly D. melanogaster is under-
taken using these as surrogates; our interest also extends to a myriad of
other organisms that provide food, fiber, fuel, pharmaceuticals, etc. It now
appears that collaborations between biology, mathematics, and computer
science in the field of systems biology are the way by which progress
towards this goal will be made.

11.2 General Background
This chapter discusses the three levels of whole-cell modeling based on
interactions between genes, proteins, and metabolites. A thorough discus-
sion of each whole-cell model exceeds the capability of this introductory
chapter; so our goal in each section is to focus on key aspects of the
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underlying biology and the network representation, and then provide a
summary of some of the insights this representation has provided.

To operate in modern biological terms, we need to understand the basic
premises that support the research. This section is divided into two sub-
sections: one that explains the guiding principle that dictates the related
biological research, called the central dogma of molecular biology, and
another that defines the fundamental terms of the network analysis used
by systems biologists.

11.2.1 Basic Biological Definitions
The central dogma, elaborated by Francis Crick soon after his codiscovery
of the structure of DNA, states that biological information flows from DNA
to messenger ribonucleic acid (mRNA) to proteins. The DNA molecule that
serves as the main repository of biological information is a pair of direc-
tional polymers whose monomers are denoted A, T, G, and C. Each of
these monomers has a conserved portion that forms the backbone of the
polymer and the variable portion that makes it an A, T, G, or C. The DNA
double helix is comprised of two polymers that are oriented in opposite di-
rections and held together by interactions between the variable parts of the
monomers, A–T pairs, and G–C pairs, see Figure 11.1a. A DNA sequence

ATGCGAATTCGTGGCTAGCATGATCAGATCAGATCAGTAGCA
TACGCTTAAGCACCGATCGTACTAGTCTAGTCTAGTCATCGT

(a)

ATGCGAATTCGTGGCTAGCATGATCAGATCAGATCAGTAGCA
TACGCTTAAGCA AGTCATCGT

(b)

(c) (d)

CGATCGTACTAGTCTAGTC
CUAGCAUGAUCAGAUC

CUAGCAUGAUCAGA...

Methionine−isoluecine−arginine

Glucose

Hexokinase

Glucose-6-phosphate

C T

Figure 11.1 The central dogma of molecular biology. (a) DNA, (b) mRNA being
made from a DNA template (transcription), (c) protein synthesis specification by
mRNA (translation), (d) the enzyme hexokinase acts on the metabolite glucose in
the metabolic pathway that breaks down glucose for energy production.
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is usually represented by the list of letters (ATGC) read directionally along
one strand, the complementary strand being implied. Each of the 46 chro-
mosomes inside a human cell is a double helix with about 107–108 base
pairs, and a gene is a known stretch of hundreds or thousands of bases of
the double helix with a defined function, usually encoding a protein.

The DNA is used as a template to make an mRNA polymer by a process
called transcription. The monomers of mRNA have a conserved portion
that forms the backbone of the polymer, although slightly different from
the corresponding DNA monomers, and four variable portions denoted A,
U, G, and C. Construction of an mRNA molecule involves partial unwinding
of the DNA molecule and then the exposed ATGC bases of the DNA dictate
the sequence of the mRNA through interactions similar to those described
above, except that where there is an A in the DNA, there will be a U in
the mRNA, see Figure 11.1b. The mRNA molecule is also directional and is
represented by a string of AUGC.

The mRNA intermediate of a gene is used as a template to make proteins
through a process called translation. During translation, cellular machinery
reads an mRNA three monomers at a time from a defined starting posi-
tion, see Figure 11.1c. Each triplet determines one of the 20 amino acid
monomers found in a protein or a message to stop protein synthesis.
Although proteins are represented by their primary sequence using an
alphabet of 20 letters, protein function is ultimately determined by the
protein’s three-dimensional structure, which may not be predictable based
on the primary sequence alone.

Proteins are both the structural and functional workhorses of a cell
that convert information stored in the DNA (the genotype) to the visible
characteristics of the cell or organism (the phenotype). In this chapter, we
focus on the protein’s functional aspects as enzymes that take molecules
and convert these to the products needed for cellular functions. These
molecules are called metabolites, and Figure 11.1d gives an example of
how metabolites and enzymes are organized into metabolic pathway.

Exceptions to the central dogma exist, but these subtleties and variations
cannot be addressed in this presentation. Detailed descriptions of all the
biological processes and exceptions can, however, be found in any current
biology or genetics textbook. Despite these exceptions, the Central Dogma
does appropriately model most of the information flow within a living sys-
tem, so we will operate on the simplified Central Dogma throughout.

11.2.2 Basic Network and Mathematical Definitions
Networks are used in systems biology to model the relationships between
cellular entities. Networks are familiar to those in OR, and this section
specifies the common notation used throughout. In cases where terms vary
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between the two disciplines, we mention both terms but use those that are
common to the field of systems biology. This convention helps those in OR
understand the language of systems biology.

A network is a directed graph (V , E), where the elements of V are
called nodes or vertices and the elements of E ⊆ V × V are called arcs
or links. In network analysis, the direction of an arc is important, and we
distinguish between (v1, v2) and (v2, v1). If we are instead referring to the
graph (V , E) then direction is not important and there is no distinction
between (v1, v2) and (v2, v1). In this case, the elements of E are called
edges. We assume throughout that |V | = N and |E | = M . The nodes
v1 and v2 are adjacent if (v1, v2) ∈ E , and we further say that v1 is incident
to the edge (not arc) (v1, v2).

If E = V×V then (V , E) is complete in the sense that it contains as many
arcs or edges as possible. Such graphs are defined by the size of V and
are called complete and denoted KN . We say that (V ′, E ′) is a subnetwork
or subgraph of (V , E) if V ′ ⊆ V , E ′ ⊆ E , and E ′ ⊆ V ′ × V ′. A clique of a
network or graph is a complete subnetwork or subgraph.

A network’s structure is often referred to as the topology of the network,
which is a bit awkward for mathematicians. A graph’s topology is often
described by the adjacency matrix A = [aij ], where aij = 1, if nodes i and j
are adjacent and zero otherwise. For networks aij = 1 if (vi , vj) ∈ E , and
aij = −1 if (vj , vi) ∈ E . In a graph, the neighborhood of a node is N (vi) =
{vj : (vi , vj) ∈ E} and the degree of the node is deg(vi) = |N (vi)|. This
concept naturally extends to a network where we discuss out-degree and
in-degree. Much of the analysis considered by systems biologists is based
on how well a graph is connected, and for this reason, the deg(vi) is often
called the connectivity of node i. Instead of deg(vi), we denote the deg(vi)

as ki , and for graphs we have

deg(vi) = ki =
∑

j

aij .

For an understood probability distribution, we let P(x) be the probability
of observing x. We use the typical �O notation and write f (x) = O(g(x))
if there is a λ such that f (x) ≤ λg(x). The vector of ones is denoted by
e, where length is decided by the context of its use. Other notation is
introduced as needed. All terms dealing with optimization agree with those
defined in the Mathematical Programming Glossary [Greenberg, 2006].

11.3 Gene-Regulatory Networks
Complex organisms exhibit dramatic differences in cellular phenotypes
(characteristics). Examples of these differences are fixed differences
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between cell types (e.g., brain cells and liver cells) or temporarily induced
differences due to environmental stimuli (e.g., increased production of
melanin by skin cells after UV exposure). In general, all the cells in an
organism have the same DNA, so the cause of these phenotypic differences
is the variation in the amount and types of proteins present in the cell.
Gene expression is the general term for this conversion of the information
in the inert DNA into the functional proteins, and tight control over gene
expression is what allows for different cellular phenotypes.

The majority of the control over gene expression occurs at the level
of initiation of transcription (the making of the mRNA intermediate). One
of the primary tools used to understand a cell, therefore, is characterization of
what is called the transcriptome, the set of all genes expressed under defined
conditions. Biologists can detect the levels of different mRNA molecules with
precision, and new microarray technology even allows for the simultaneous
measurementof the levelsof allmRNAs inacell.Aswill be seen later, presence
of an mRNA does not always imply the presence of a functional protein,
but mRNA production is a necessary first step and the correlation between
mRNA and protein levels is strong enough to make mRNA quantitation a
meaningful first measure for most gene expression studies.

Initiation of transcription for a gene is dependent on two factors.
Production of mRNA requires a large group of proteins that unwind
the DNA and facilitate the polymerization of the mRNA, and these pro-
teins must bind to the DNA of the gene at locations called regulatory
regions. Because multiple genes may have similar regulatory regions, coor-
dinate gene expression can occur when the proteins in a cell increase the
expression of all these target genes simultaneously. Coordinate repression
of genes may also occur when binding of a protein to regulatory regions
prevents transcription. Coordinate regulation allows groups of genes to
be acted on as a unit, which is important given that many cellular actions
require multiple types of proteins.

11.3.1 Network Clustering
Genetic interactions are frequently represented as networks, where the
nodes correspond to genes, and a (possibly directed) link is introduced
between genes A and B if the presence or absence of gene A’s encoded
protein enhances or suppresses the expression of gene B, or vice versa. The
local properties of a gene-regulatory network are measured by how closely
they resemble a clique [Watts and Strogatz, 1998]. The clustering coefficient
ci of a node, defined as

ci = 2

ki(ki − 1)

∑

j ,l

aijailajl , (11.1)
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measures the degree to which the neighborhood of a node resembles a
complete subgraph built from triangles, and is the ratio of the actual number
of triangles to possible triangles, for which node i is a member. The average
clustering coefficient 〈C 〉 = (1/N )∑i ci provides information on the global
distribution of links. A value of 〈C 〉 close to unity indicates a high level of
modularity, or cohesiveness of triangles, in the network, while a value close
to zero indicates a lack of modularity. It is customary to test the significance
of a particular 〈C 〉-value by comparing it to a random-network model with
the same number of nodes and edges [Albert and Barabási, 2002]. Typical
random graphs have an average clustering coefficient of 〈Crand〉 = 2M/N 2.

Assuming that a network has a nonzero 〈C 〉, we further investigate the
network’s large-scale modularity structure by studying the average cluster-
ing as function of degree k [Dorogovtsev et al., 2002],

C (k) =
∑
{i:ki=k} ci

∑
{i:ki=k} 1

. (11.2)

If the network shows a hierarchical modularity [Ravasz et al., 2002], the
clustering C (k) ∼ 1/k. In this case, nodes with few neighbors tend to have
network-neighborhoods with high clustering, while the highly connected
nodes act as bridges tying the network together.

11.3.2 Network Motifs
It has long been argued that biological systems are functionally mod-
ular [Hartwell et al., 1999], and understanding how this modularity is
reflected in biological network is a primary goal. Given this modular-
ity, additional questions arise, for example, what network modules, or
partitions, carry functional information, and how does the functional mod-
ularity depend on the environmental conditions and the dynamic states
of a gene-regulatory network? An interesting possibility was suggested
in [Milo et al., 2004, Milo et al., 2002, Shen-Orr et al., 2002], introducing
the idea of network “motifs” as the functional building blocks of a gene-
regulatory network. They suggest that these networks contain particular
sub-graphs, many with easily identifiable functions such as feed-forward
loops, at a significantly higher frequency than should be expected by
chance alone. The enrichment of biological networks with functional
motifs is seen as a result of the evolutionary processes shaping the sys-
tem [Milo et al., 2002]. However, the recent results in [Vazquez et al., 2004]
indicate that caution is needed to determine if a motif is overexpressed.
By designing random networks that matched the experimental results, they
found that certain subgraphs occur at higher frequencies than in random
networks without this restriction.
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11.4 Protein-Interaction Networks
As stated above, the majority of the structural and functional macro-
molecules in a cell are proteins, and the presence of these proteins is
tightly regulated by the cell mainly through initiation of transcription.
Even after translation of an mRNA into a protein, however, the protein
may not be functional. The activity of many proteins is influenced by
modifications such as the addition of chemical groups by other proteins,
binding of cofactors (which may include other proteins), or cleavage
by other proteins, to name a few. These mechanisms allow for rapid
cellular responses by relying on quick modifications of existing proteins
rather than de novo production. Another advantage is that modification
allows for coordination and amplification of a signal if a single protein
can interact with many other proteins. The protein-interaction network
(PIN) thus forms another level of biological organization that influences
the cell.

The data needed to characterize the PIN includes determination of the
set of proteins present in a cell (the proteome), the state or location of
those proteins if variable, and how these proteins interact. High-throughput
methods to provide these data are developing, albeit more slowly than
methods used to identify mRNA levels. This disparity is due to the lack
of means to artificially increase the amount of any particular protein in a
sample. The technique of polymerase chain reaction allows biologists to
harness the natural process of DNA replication to make millions of copies
of any known DNA or mRNA molecule in a biological sample, but no
comparable technology exists for proteins.

When working with biological samples, specfic proteins can be detected
using either antibodies or techniques that separate proteins based on bio-
chemical properties and then calculate a molecular weight and compare
that to a database of known protein weights. These techniques can some-
times reveal whether or not a protein has a phosphate group attached, for
example, or whether it is in a particular subcellular location. Interactions
between proteins can be determined (1) by assays that use antibodies to
pull proteins out of cellular extracts and look for proteins that are asso-
ciated with the protein removed, (2) by assays that use synthetic hybrid
proteins that produce a visible result if two proteins physically interact,
or (3) by in vitro or in vivo experimentation with cells or organisms that
have had specific genes mutated. Bioinformatics provides another method
whereby protein function may be inferred by comparing the sequence of a
protein to genes with known function. There are functional regions of pro-
teins, called domains, that occur in many different proteins, which can be
detected in the DNA or protein sequence. If a protein contains a sequence
similar to a known functional domain, the protein is also assumed to
have that functionality.



Lim/Optimization in Medicine and Biology AU0563_C011 Final Proof Page 320 10.11.2007 04:40pm

320 Optimization in Medicine and Biology

In constructing a graph to represent the PIN, the individual proteins are
the nodes, and the existence of an interaction between a pair of proteins
corresponds to an edge between the nodes. As seen above, there are many
ways in which proteins may physically interact. Relations between proteins
may also be established by examining mRNA profiles, for example. If the
mRNA profiles of two proteins have a high correlation, we assume the cor-
responding proteins are related and include the edge even if there is not
a physical interaction. Each of these techniques provides different infor-
mation, and combinations thereof are thus important for a more complete
characterization of the proteome and the protein–protein interactions that
occur.

11.4.1 Connectivity Distribution
Analyzing systems as disparate as the World Wide Web and a PIN has re-
vealed surprising similarities in their structural organization. One simple
characterization is the average number of nearest neighbors, or average
degree. In a PIN, this corresponds to an average protein’s number of inter-
action partners.

The average degree is simply 〈k〉 = (1/N )∑ij aij . However, this mea-
sure does not provide detailed insight into the structure of a network. To
gain further insight into the structure of a PIN, we study the connectivity, or
degree, distribution P(k), which is the number of nodes of degree k. From
this measure, we determine the variation in connectivities on the network.
Such distributions were studied by Erdös and Rényi [Bollobás, 2001], who
showed that random graphs lead to a Poisson distribution. However,
for many real networks, P(k) does not have a Poisson-type behavior as
predicted by the Erdös–Rényi random graph model. Instead, P(k) fre-
quently adheres to a heavy-tailed distribution often modeled as a power-
law P(k) ∼ k−α [Albert and Barabási, 2002]. This is the case for the PIN
of the yeast S. cerevisiae, the nematode C. elegans, and the fruit fly
D. melanogaster in Figure 11.2 (see also Table 11.1).

It is interesting to note that if the connectivity distribution had been
single peaked, such as Poisson or Gaussian, the notion of a typical node,
as described by the average degree 〈k〉, would have been valid. However,
this is not the case for a heavy-tailed PIN. In these networks, the majority
of the nodes only have a few interaction partners while they coexist with
nodes that participate in hundreds of interactions. Consequently, there is no
typical node. Such networks are typically called scale-free, and nodes with
a large number of interactions are called hubs. Hub proteins often have
biological properties that are significantly different from non-hub proteins.

One of the most popular network models to capture the hetero-
geneity of the connectivity distribution was proposed by Barabási and
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Figure 11.2 Connectivity distribution P(k) for the protein-interaction networks
of (a) the yeast S. cerevisiae, (b) the nematode C. elegans, and (c) the fly
D. melanogaster (From BioGrid 2006, version 2.0.2.0, http://www.thebiogrid.
org/).

Albert [Barabási and Albert, 1999]. It is similar to the network model by
Price [Price, 1965] (see [Newman, 2003b] for a detailed discussion). These
models are based on the notion that in a growing network new nodes
are not connected with uniform probability to already existing nodes.
Instead, new nodes have a higher chance of connecting to those with
many neighbors than to nodes with few. This is often called the “rich
get richer” effect or preferential attachment. If the chance of connecting
to an already existing node i is linearly proportional to the degree, the
resulting connectivity distribution is a power-law with an exponent of
3 [Albert and Barabási, 2002, Newman, 2003b].

Table 11.1 Properties of Three Whole-Organism Protein-Interaction
Networks

Organism Nodes 〈k〉 S 〈C〉 〈Crand〉 ρ

S. cerevisiae 5298 19.04 5294 0.154 0.0036 −0.040
C. elegans 2774 3.14 2551 0.020 0.0011 −0.159
D. melanogaster 7490 6.67 7372 0.030 0.00089 −0.039

Source: From BioGrid 2006, version 2.0.2.0, http://www.thebiogrid.org/
Note: For each network, we have indicated size, average node connectivity 〈k〉, size
of the giant component S , average clustering 〈C 〉, average clustering for a compa-
rable Erdös–Rényi random network 〈C rand〉, and assortativity ρ, which is defined
momentarily
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11.4.2 Network Assortativity
In many real networks, properties of adjacent nodes are correlated. In par-
ticular, it is often the case that the connectivities of neighboring nodes
are correlated, making P(ki , kj) 	= P(ki)P(kj). Several methods have been
developed [Maslov and Sneppen, 2002, Newman, 2002, Newman, 2003a,
Pastor-Satorras et al., 2001] to measure these connectivity correlations, and
we highlight two such methods.

The first method of [Pastor-Satorras et al., 2001] measures connectivity
correlations by calculating the average nearest-neighbor degree:

knn,i = 1

ki

∑

j

kjaij . (11.3)

Consequently, knn,i measures the affinity with which a node i connects to
other nodes of either high or low degrees. In Figure 11.3, we have plotted
knn(k), which is defined by

knn(k) =
∑
{i:ki=k} knn,i
∑
{i:ki=k} 1

. (11.4)

So, knn(k) is the average neighborhood degree for nodes with connectivity
k, If knn(k) is an increasing function of k, the network shows an assor-
tative mixing and high-degree nodes preferentially tend to be connected
to other high-degree nodes. For the opposite situation, where knn(k) is
a decreasing function of k (as in Figure 11.3b), low-degree nodes tend
to be connected to high-degree nodes, and the network is disassorta-
tive. This is typically the case for computer networks, where a limited
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Figure 11.3 Average nearest-neighbor connectivity knn(k) for the protein-
interaction networks of (a) S. cerevisiae (b) C. elegans, and (c) D. melanogaster
[BioGrid, 2006].
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number of servers are connected to a large number of individual com-
puters [Pastor-Satorras et al., 2001].

The second method of measuring degree–degree correlations collapses
the distribution P(k) into a single value called the assortativity of the
graph [Newman, 2002]. This index is a Pearson correlation in nearest-
neighbor degrees, defined as

ρ = M
∑

i jiki −
[

1
2

∑
i(ji + ki)

]2

1
2M

∑
i(j

2
i + k2

i )−
[

1
2

∑
i(ji + ki)

]2 , (11.5)

where the sums are over edges, and the numbers ji and ki are the connec-
tivities of the two nodes connected by edge i. The distribution knn(k) and
the assortativity index ρ are related as follows. If knn(k) is uniform, then
ρ = 0. However, if knn(k) is increasing or decreasing then ρ is positive
or negative, respectively. The magnitude of ρ indicates the strength of the
correlation. It is straightforward to develop similar expressions for directed
networks [Newman, 2003a].

The last column of Table 11.1 shows the assortativity ρ for three whole-
organism PINs. As expected, the trends displayed in Figure 11.3 agree with
the assortativity correlations calculated from Equation 11.5. In particular,
panels (a) and (c) show no clear increasing or decreasing trend in knn(k),
which agrees with the calculated assortativity values close to zero. Taken
together, these two methods offer detailed insights into the connectivity
correlations of a network.

11.4.3 Community Finding
The network properties just discussed are based on characteristics of indi-
vidual nodes, such as clustering, average degree, and connectivity. As stated
previously, a long-standing hypothesis is that biological systems are mod-
ular, meaning that they consist of separable functional units. The idea of a
community is different from the previous properties because it considers
the entire network. By carefully analyzing a network, we identify modules
as collections of nodes that are tightly connected when compared to the
full network. These modules are often biologically significant. For instance,
because proteins that exist in a cell as a complex are commonly members of
the same functional class, we expect a tightly connected region to indicate
a single functional class [Pereira-Leal et al., 2004, Poyatos and Hurst., 2004,
Schwikowski B. and Fields, 2000, Wuchty et al., 2003].

Several methods are currently available to detect community struc-
tures. Many of these were developed by sociologists, who have long
been interested in community analysis. Unfortunately, these methods
typically were designed for small networks and are not tractable on
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networks consisting of several thousands of nodes. Many of these methods
are related to a measure called betweenness-centrality (BC), which is
related to shortest paths [Brandes, 2001, Freeman, 1977, Newman, 2001,
Wasserman and Faust, 1994].

The study of shortest paths on networks is the source of the term small-
world [Watts and Strogatz, 1998]. The length of the average shortest path,
�, between two nodes can be calculated using a breadth-first search, which
has complexity O(NM ). In a random network, such as that of the Erdös–
Rényi model, the average shortest distance scales with the network size
as � ∼ ln(N ) [Bollobás, 2001]. The betweenness-centrality of an edge or
node is the fraction of shortest paths that pass through the node or edge
(see [Newman, 2001] for a detailed discussion).

A typical algorithm based on BC is to recursively remove the edge
with the largest BC value, followed by recalculating the BC values for the
remaining network. The complexity of such an algorithm is O(N 3). Approx-
imations where the BC values are only calculated for the initial network are
much faster, but the gain in computational run-time reduces accuracy.

There are alternatives to the BC approach, and we discuss two such
methods. These techniques have the advantage of rapidly identifying com-
munities on large networks with high accuracy. The first method is due
to Newman [Newman, 2004] and is described as agglomerative hierarchical
clustering. Let Q be the following measure of network modularity for any
node partition

Q =
∑

i

⎡

⎣eii −
⎛

⎝
∑

j

eij

⎞

⎠

2⎤

⎦ , (11.6)

where eij is the fraction of edges in the network connecting nodes from
module i to those of module j . This measures the number of intercom-
munity links relative to that of a random occurrence. A value near zero
suggests that there is little information in the chosen partition, whereas a
value greater than 0.3 indicates significant modularity [Newman, 2004].

Newman suggests optimizing Q heuristically by starting with N commu-
nities (one for each node) and joining the two that render the highest value
of Q, which may increase or decrease the current value. When all nodes
have been joined into a single module, the algorithm is finished and the
optimal value of Q indicates a collection of communities. This approach is
O(N 2) and has been successfully applied to systems with more than 50, 000
nodes. Furthermore, it is possible to generalize this community detection
algorithm to incorporate varying link-strengths.

The second alternative to the BC method is called k-clique percola-
tion [Palla et al., 2005]. Unlike the method just described, this technique
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does not require that each node belong to a unique community. For many
networks this is favorable. For example, a protein may have multiple func-
tions and naturally belong to many communities.

This method is based on the observation that a community often decom-
poses into nearly complete subgraphs that share nodes. Consequently, this
method is based on the k-clique. A network module is defined as the union
of all k-cliques (for a fixed k) that share k− 1 nodes, and thus are adjacent
on the network. An alternative description is that of a rolling k-clique, only
moving one node at the time.

A further benefit of k-clique percolation is that it allows a higher-level
representation of a network. We may collapse the graph so that each com-
munity is a node, and two communities are connected if they have a
nonempty intersection. This makes it possible to introduce a scalable map
of the network that represents the communities at different levels of mag-
nification, with the first level, highest magnification, corresponding to the
actual nodes, the second level to communities, the third level to commu-
nities of communities, etc.

11.4.4 Biology and Topology
So far we have discussed topological properties of PINs without empha-
sizing the connection between network representations and biological
information. The first indication that a PIN might carry biological infor-
mation arose from questions of robustness [Albert et al., 2000], which
demonstrated that networks with heavy-tailed connectivity distributions
were robust against random failures yet fragile when an attack occurred at
a highly connected node.

Molecular biology techniques allow for the experimental disruption of
single genes, and examination of the phenotypes of these modified organ-
isms can reveal whether the disrupted gene is essential for survival of the
organism under a set of defined conditions. In fact, a large-scale experimen-
tal study in S. cerevisiae shows that only 18.7 percent of the total number
of genes are essential on disruption or removal [Giaever et al., 2002],
while a study on E. coli found 13.7 percent of the genes are essen-
tial [Gerdes et al., 2003]. Motivated by these experimental observations
of network fragility, Barabási and coworkers investigated the possibility
of correlations between a protein’s connectivity and phenotypic essen-
tiality, discovering an increased likelihood for highly connected proteins
to be essential [Jeong et al., 2001]. In other words, a protein that has a
large number of interaction partners is more likely to be involved in
an essential cellular function, often called the centrality-lethality rule.
Although recently debated, the centrality-lethality result is considered
robust [Batada et al., 2006].
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A recent study suggests that this increased lethality of highly connected
proteins can be explained by a simple mechanism [He and Zhang, 2006].
The idea is to support the centrality-lethality rule by assuming essential
nodes and links are randomly distributed on the network. The function of
an essential link is carried out by the interaction of the incident proteins,
and both nodes are essential. This model generates the centrality-lethality
rule through the simple fact that it is more likely for a hub to be part of an
essential link than a low-degree node. By choosing the essential link and
node fractions appropriately, it is possible to fit the observed centrality-
lethality rule within experimental error bars [He and Zhang, 2006].

Because highly connected proteins occupy a special role in the network,
it is interesting to ask whether hub proteins evolve at a different pace from
proteins with only a few interaction partners. The rationale for this question
is that change to hub proteins might be constrained due to their interac-
tions. Although initial results were contradictory [Coulomb et al., 2005], a
recent more decisive study [Batada et al., 2006] showed these results could
be explained by subtle biases in the methods used to generate the PINs.
After accounting for the equal density of active domains in hub and non-
hub proteins, it was shown that there are not significant differences in mean
rate of protein evolution. The hub proteins of S. cerevisiae did, however,
contain a higher number of phosphorylation sites than non-hub proteins
and showed a marked trend of being encoded by mRNA’s with short half-
lives. Taken together, this indicates that highly connected proteins are sub-
ject to much tighter control, being part of a dynamic, short-lived protein
complex [Batada et al., 2006].

We have focused on static aspects of a PIN, but proteins are con-
stantly produced and degraded and many interactions occur in specific
cellular locations, such as the cellular membrane. A more realistic depic-
tion would address the temporal and spatial aspects of the situation.
Whole-organism protein-expression arrays are currently unavailable, and
the chosen substitute has been mRNA expression arrays. The recent ana-
lysis in [Han et al., 2004] indicates that highly connected nodes in the
S. cerevisiae PIN can be either date-hubs, binding to their partners at
different times or locations, or party-hubs interacting with most of their
neighbors simultaneously. Including temporal aspects such as this allows
us to investigate information flow because the temporal activation of pro-
tein transcription is reflective of evolved regulatory mechanisms that ensure
proper cellular responses to external stimuli.

11.5 Metabolic Networks
Life depends on the ability to import molecules from the environment and
convert these to the needed metabolites. These conversions are carried out
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byenzymes that catalyze (facilitate) specific conversionsof startingmolecules
(reactants) into products. There may be several intermediary steps from intial
reactants to the ultimate product, each carried out by a different enzyme, and
the set of all these component reactants, products, reactions, and enzymes
form a metabolic pathway. Metabolic pathways can be classified as either
anabolic pathways that construct needed molecules or catabolic pathways
that break down molecules to provide necessary reactants.

The different reactions and catalyzing enzymes vary tremendously. As
seen in the previous section, the enzymes may or may not be active depend-
ing on the presence of cofactors, modification state, etc. Another difference
between enzymes is in their rates of catalysis, which may vary over orders
of magnitude. Variation in these reaction rates affects the overall rate of
flow (flux) of metabolites in a particular pathway.

From the reactant perspective, a particular type of molecule may par-
ticipate in only one reaction or be used in several different reactions. A
reaction may require one or more reactants, and the ratios (stoichiometry)
of those reactants may vary. Finally, while for the most part metabolic path-
ways can be assumed to be one-way, there are cases of reversible reactions
in a cell and cyclic reaction pathways that take a reactant through a series
of intermediates but end up regenerating the initial reactant.

A cell’s metabolism is the sum of all the reactions it carries out. It is
important to recognize that while a cell has the potential to carry out many
reactions, the actual reactions that are being carried out at any one time
depend heavily on the cell’s environment. For example, differential gene
regulation in a bacterial cell will lead to different enzymes being present
under aerobic (oxygen present) vs anaerobic (oxygen absent) conditions
or when glucose or lactose are present as the main carbon source.

11.5.1 Metabolic Network Structure
To represent a cell’s metabolism with a network, we need to assign mean-
ing to the nodes and links. The network abstraction is not unique, and
Figure 11.4 depicts several representations of a simple metabolic network.
The three reactions of the metabolism are found in Figure 11.4a. In the first
reaction A + B→ C + D, we say that A and B are reactants and C and D
are products. The most common representation of this metabolism is repre-
sented in Figure 11.4c, where metabolites are nodes that are connected with
an undirected link if they participate as reactant and product in a reaction.
Note that a link does not represent a single reaction, as two metabolites
may appear in multiple reactions. An example is shown in Figure 11.4a,
where metabolites A and D co-occur in reactions R1 and R3, and the edge
or arc between A and D corresponds to both reactions. Furthermore, one
reaction appears as multiple edges or arcs (see Figure 11.4).
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Figure 11.4 Cellular metabolism can be represented as a network. (a) A simplied
metabolic reaction set. Network description of this reaction set: (b) connecting
all metabolites in a single reaction with undirected links; (c) substrates are only
connected to products with undirected links; (d) same as (c) with directed links.

An alternative representation that is particularly important for the dis-
cussions that follow is a bipartite network in which the nodes represent
either metabolites or reactions. Allowing the set of reactions to be R and
the set of metabolites to be M , we are interested in the bipartite network
(R, M , E), where (i, r) ∈ E if metabolite i is a reactant of reaction r and
(r , i) ∈ E if metabolite i is a product of reaction r . A depiction is seen in
Figure 11.9.

Different network representations have different statistical properties.
Using the bacterial metabolism in E. coli as an example, Figure 11.5 shows
the differences in the connectivity distribution, P(k), for the three net-
work representations detailed in Figure 11.4. Note that P(k) is heavy
tailed in Figure 11.5; however, the result is not as simple when using a
bipartite network representation. In this case, it is possible to distinguish
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Figure 11.5 Connectivity distributions P(k) of E. coli metabolism using the three
metabolic network representations in Figure 11.4. (a) corresponds to panel (b); (b)
to panel (c); (c) to panel (d).

metabolites and enzymes. For the metabolites, the connectivity distribu-
tion is still heavy tailed, although the enzyme distribution is exponential.
This is not surprising, as cofactors, such as ATP or NADP may partic-
ipate in hundreds of reactions while an enzyme has a limited number
of active domains. To further contrast and compare biases of differ-
ent network representations, Table 11.2 shows the average clustering
coefficient 〈C 〉 and the assortativity index ρ for three organisms using
the representations in Figure 11.4b and c. The clustering and assorta-
tivity corresponding to Figure 11.4b is significantly higher than that of
Figure 11.4c because it introduces a fully connected subgraph for each
reaction.

Table 11.2 Average Clustering and Assortativity for Three
Organismal Metabolic Networks Using the Network Representations
Described in Panels Given by Figure 11.4b and c—Network Model
Indicated with a Subscript

Organism N Mb Mc 〈C〉b 〈C〉c ρb ρc

H. pylori 489 4058 1920 0.72 0.28 −0.285 −0.261
E. coli 540 3753 1867 0.66 0.20 −0.251 −0.217
S. cerevisiae 1064 6941 4031 0.67 0.23 −0.182 −0.150
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11.5.2 Weighted Metabolic Networks
The majority of network studies have focused on topological properties
and not on the rate of metabolic activity, which can vary significantly from
reaction to reaction. This important function is not captured by topological
approaches, and to develop an understanding of how the structure of a
metabolic network affects metabolic activity; it is necessary to include this
information in the network description. We require a meaningful understand-
ing to consider the intensity (strength) between metabolites, the direction
(when applicable), and the temporal aspects of the interactions. Although
not much is known about the temporal aspects of metabolic activity, recent
results [Blank et al., 2005, Cannizzaro et al., 2004, Canonaco et al., 2001,
Emmerling et al., 2002, Fischer and Sauer, 2003, Fischer and Sauer, 2005,
Gombert et al., 2001, Sauer et al., 1999] have provided information about
the relative intensities of the interactions in single-cell metabolism, which
we incorporate by considering weighted links. A natural, although not
unique, measurement of interaction strength is the amount of substrate
being converted to a product per unit time, the flux of the reaction.

A linear optimization approach, called flux-balance analysis (FBA), ena-
bles us to calculate the flux rate for each reaction in a whole-cell metabolic
network. The FBA method assumes that the concentration of all metabo-
lites that are not subject to transport across the cell membrane is in a steady
state. Let [Ai] be the concentration of metabolite i and Sir be the stoichio-
metric coefficient of metabolite i in reaction r . For example, if reaction r
is 3A1 + 2A2 → 2A3, then S1r = −3, S2r = −2, and S3r = 2. If metabolite
i does not appear in reaction r , we assume that Sir = 0. Allowing νr be the
flux of reaction r , we have that the steady-state assumption requires

d[Ai]
dt
=
∑

r

Sirνr = 0. (11.7)

Any flux values satisfying this equation correspond to a stoichiometri-
cally allowed state of the cell. To select flux values that are biologi-
cally relevant, we optimize for cellular growth. Experiments support this
hypothesis in several conditions, but there are other meaningful objec-
tives. See [Bonarius et al., 1997, Kauffman et al., 2003] for a more detailed
discussion of FBA.

The recent advances in whole-genome annotation have made it possible
to generate high-fidelity whole-cell metabolic networks. Metabolic models
of the bacteria H. pylori and E. coli, as well as the eukaryote S. cerevisiae,
have been used to predict essential genes [Edwards and Palsson, 2000,
Schilling et al., 2002, Duarte et al., 2004, Papp et al., 2004], genetic inte-
ractions [Segre et al., 2005], and possible minimal microbial genomes
[Burgard et al., 2001, Pal et al., 2006]. The fluxes from FBA measure each
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Figure 11.6 Distribution of metabolic reaction flux values (edge weights) from
FBA analysis for the metabolic network of the budding yeast S. cerevisiae in (a)
aerobic, glucose-limited and (b) aerobic, acetate-limited conditions.

reaction’s relative activity. In particular, the work of [Almaas et al., 2004]
demonstrates that similar to the degree distribution, the flux distribution
of E. coli displays a strong overall inhomogeneity: reactions with fluxes
spanning several orders of magnitude coexist in the same environment.
The flux distribution for S. cerevisiae in Figure 11.6 is heavy tailed, indicat-
ing that P(ν) ∝ ν−α. The flux exponent is predicted to be α = 1.5 by FBA
methods. In a recent experiment, the strength of the various fluxes of the
central metabolism of E. coli was measured using nuclear magnetic res-
onance (NMR) methods [Emmerling et al., 2002], revealing the power-law
flux dependence P(ν) ∝ ν−1. This power-law behavior indicates that the
vast majority of reactions with small fluxes coexist with the few reactions
that have large fluxes.

The FBA approach allows us to analyze a metabolism as a weighted
network because each reaction is assigned a flux value. These values are
node weights in the bipartite representation (R, M, E). Unfortunately, the
identity of a reaction in the other network models is opaque because each
reaction is a subgraph corresponding to the metabolites of the reaction. To
translate the node weights νr of the bipartite representation to link weights
of another representation, we let

wij =
∣
∣
∣
∣
∣

∑

r

Sirνr +
∑

r

Sjrνr

∣
∣
∣
∣
∣
,
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Figure 11.7 Distribution of node strength values for S. cerevisiae metabolism in
(a) aerobic, glucose-limited, and (b) aerobic, acetate-limited conditions.

which is the aggregate rate at which metabolite i transforms into metabolite
j . Generally, negative edge weights are possible and simply mean that
metabolite j transforms into metabolite i.

Several measures have been introduced to study weighted networks in
the context of airline transportation and the relationship between coau-
thors. One of these is called the strength, si , of a node i, defined as
si =∑j wijaij , which is simply a weighted node degree [Barrat et al., 2004].
Figure 11.7 shows that the distribution of node strengths, P(s), for the
E. coli metabolism with glucose as the single carbon source is

〈s(k)〉 ∝ kβ . (11.8)

For networks without correlations between the node connectivity and
link-weights, the weights wij are independent of i and j , and we can
represent the link-weights with their average value: wij =〈w〉, making
β = 1 [Barrat et al., 2004].

We continue by generalizing the clustering coefficient to weighted net-
works. Because ci indicates the local density of triangles, a similar definition
with link-weights should determine if large or small weights are likely to
be found in clusters. One possible definition from [Barrat et al., 2004] is

ca,i = 1

si(ki − 1)

∑

j ,l

1

2
(wij + wil)aijailajl , (11.9)
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where si is the node strength. The average weighted clustering is 〈Ca〉 =
(1/N )

∑
i ca,i . If no correlations exist between weights and topology, Equa-

tion 11.9 is equal to that of the unweighted clustering (see Equation 11.1).
We identify two possible scenarios. If 〈Ca〉> 〈C 〉, large weights are predom-
inantly distributed in local clusters, whereas if 〈Ca〉< 〈C 〉, triangles consist
of low-weight links.

Other possible definitions of a weighted clustering coefficient have been
proposed [Holme et al., 2007, Onnela et al., 2005, Zhang and Horvath,
2005]. The weighted clustering coefficient expression given by Equation
11.9 only includes two weights of any triangle through node i. The fol-
lowing definition from [Onnela et al., 2005] extends this so that all three
weights are considered

cb,i = 2

(maxij{wij})ki(ki − 1)

∑

j ,l

(
wijwilwjl

)1/3
aijailajl (11.10)

Notice that this is a geometric mean instead of an algebraic mean, given
by Equation 11.9. The average weighted clustering is 〈Cb〉 = (1/N )∑i cb,i .
Related analysis from finance has shown that Equations 11.9 and 11.10 can
lead to significantly different interpretations [Onnela et al., 2005].

11.5.3 Fluxes and Metabolic Network Structure
The flux distributions of a metabolic network rely on the network topology.
Some of this dependence is understood by studying the correlation between
wij and ki and kj . The metabolic fluxes in E. coli scale as

〈wij〉 =

∑

{i,j :kikj=k}
wij

∑

{i:kikj=k}
1
∝ (kikj)

θ , (11.11)

where θ ≈ 0.5 for metabolic fluxes in glucose-limited conditions in S. cere-
visiae (Figure 11.8a) and E. coli [Macdonald et al., 2005]. However, other
values for θ are possible, as demonstrated in Figure 11.8b, where we find
θ ≈ 0.7 for acetate-limited conditions. In the case of no correlations bet-
ween the connectivity ki and kj , we have from [Barrat et al., 2004] that the
exponent θ in Equation 11.11 is related to β (Equation 11.8) in the scaling
of node strength as β = 1+ θ .

We further investigate how the flux values depend on the network
topology at the single metabolite level. There are two flux structures of
interest. A homogeneous local organization implies that all reactions pro-
ducing (consuming) a given metabolite have comparable flux values. On
the other hand, a more delocalized, or hot backbone, is expected if the
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Figure 11.8 Correlation between (normalized) edge weights and local connec-
tivity for metabolic fluxes in S. cerevisiae in (a) glucose-limited and (b) acetate-
limited conditions, as well as (c) betweenness-centrality for the Barabasi–Albert
Model [Macdonald et al., 2005]. The dashed lines serve as guides to the eye.

local flux organization is heterogeneous. To distinguish between these
two scenarios, we define the following measure [Barthelemy et al., 2003,
Almaas et al., 2004] for each metabolite produced or consumed by k reac-
tions, define Y (k, i) by

Y (k, i) =
k∑

r=1

⎛

⎜
⎜
⎜
⎝

Sirνr

k∑

l=1
Silνl

⎞

⎟
⎟
⎟
⎠

2

. (11.12)

If all reactions producing (consuming) metabolite i have comparable val-
ues, Y (k, i) scales as 1/k. However, if a single reaction’s activity dominates
Equation 11.12, we expect that Y (k, i) ∼ 1. For the two cases, where the
E. coli metabolic performance is optimized with glucose and succinate as
the only available carbon sources, we find that separately calculating Y (k, i)
for the in- and out-degrees follows the power-law Y (k, i) ∼ k−0.27. We inter-
pret this as intermediate behavior between the two cases described above.
However, the exponent of −0.27 indicates that the large-scale inhomogene-
ity observed in the overall flux distribution is increasingly valid at the level
of the individual metabolites.

The local flux inhomogeneity suggests that we can identify a single
reaction dominating the production or consumption of most metabo-
lites. A simple algorithm is capable of extracting the subnetwork solely
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consisting of these dominate reactions, called the high-flux backbone
(HFB) [Almaas et al., 2004]. The algorithm has two steps

1. For each metabolite, discard all incoming and outgoing links except
the two dominating mass production.

2. From this set of reactions, keep only those reactions that appear as
both maximal producer and maximal consumer.

The resulting HFB is specific to the particular choice of environmental con-
ditions. Interestingly, the HFB mostly consists of reactions linked together,
forming a giant component with a star-like topology that includes almost
all metabolites produced in a specific growth environment. Only a few
pathways are disconnected: although these pathways are members of the
HFB, their end-products serve only as the second most important source for
some other HFB metabolite. Connected reactions in the HFB largely agree
with the traditional, biochemistry-based partitioning of cellular metabolism.
For example, in E. coli all metabolites of the citric acid cycle are recovered,
as well as most of the other important pathways, such as those being invol-
ved in histidine-, murein-, and purine-biosynthesis. Although the detailed
nature of the HFB depends on the particular growth conditions, the HFB
captures the reactions that dominate the activity of the metabolism for this
condition. As such, it offers a complementary approach to the analyses
in [Papin et al., 2004, Schilling et al., 2000, Schuster and Hilgetag, 1994].

Our final discussion about metabolic networks focuses on identifying
the reactions that are used in varying environments, and we explore how
the fluxes depend on environmental changes. Referring to Figure 11.9, we
let νR be the collection of uptake fluxes that provide nutrients (resources,
inputs, etc.) to the cell. We also let rC be the reactions that occur within
the cell (output reactions are not considered). For each νR , we let r∗C (νR)

be the point-to-set map whose image is a collection of reactions that can

Reactions Metabolites

Input

Cell

Output

Growth

Figure 11.9 A simple bipartite representation of cellular metabolism.
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have a positive flux while the cell achieves optimal growth with the input
fluxes fixed at νR . The metabolic core is

⋂

νR≥0

r∗C (νR),

which defines the reactions that are allowed to be active in any environment
when the cell achieves optimal growth.

A stochastic procedure to calculate the metabolic core is to uniformly
sample the set of input fluxes and use FBA to optimize growth for each
sample. If a reaction’s flux is positive, we know that this flux is in r∗C (νR)

for the sample. Taking the intersection of these sets over the sampled
inputs yields a subset of the metabolic core. The computational results
in [Almaas et al., 2005] sampled 30, 000 input fluxes between 0 and 20 (20
is large enough to guarantee that a nutrient is available if needed, and
hence, setting the intake fluxes to 20 assumes the cell is in an environment
with unlimited resources). The metabolic core contained 138 of the 381
metabolic reactions in H. pylori (36.2 percent), 90 of 758 in E. coli (11.9
percent), and 33 of 1,172 in S. cerevisiae (2.8 percent).

The metabolic core is partitioned into two types of reactions. The first
type consists of those that are essential for biomass formation under all
environmental conditions (81 of 90 reactions in E. coli), whereas the second
type of reaction is required only to assure optimal metabolic performance.
In case of the inactivation of the second type, alternative suboptimal
pathways can be used to ensure cellular survival. The metabolic core of
S. cerevisiae, however, only contains reactions predicted by FBA to be
indispensable for biomass formation under all growth conditions.

The analysis in [Almaas et al., 2005] further suggests that optimal
metabolic flows adjust to environmental changes through two distinct
mechanisms. The more common mechanism is flux plasticity, involving
changes in the fluxes of already active reactions when the organism is
shifted from one growth condition to another. For example, changing from
glucose- to succinate-rich media alters the flux of 264 E. coli reactions by
more than 20 percent. The reactions in the metabolic core always adapt to
changing environmental conditions through flux plasticity. Less commonly,
environmental changes induce structural plasticity, resulting in changes to
the metabolism’s active wiring diagram, turning on previously zero-flux
reactions, and inhibiting previously active pathways. For example, when
shifting E. coli cells from glucose- to succinate-rich media, eleven previ-
ously active reactions are turned off completely, while nine previously
inactive reactions are turned on.

A similar selection of metabolic reactions was suggested by [Burgard
et al., 2001]. Their minimal reaction contains the metabolic core as well
as all the reactions necessary for the sustained growth on any chosen
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substrate. A different definition of a minimal reaction set was proposed
by [Reedi and Palsson, 2004], which consists of the 201 reactions that are
always active in E. coli for all 136 aerobic and anaerobic single carbon
source minimal environments capable of sustaining optimal growth.

A reasonable speculation is that the reactions in the metabolic core
play an important role in the maintenance of crucial metabolic functions
because they are active under all environmental conditions. Consequently,
the absence of individual core-reactions may lead to significant metabolic
disruptions. This hypothesis is strengthened through cross-correlation with
gene deletion data [Gerdes et al., 2003]: 74.7 percent of those E. coli enzy-
mes that catalyze core metabolic reactions (i.e., core enzymes) are essential,
compared with a 19.6 percent lethality fraction characterizing the noncore
enzymes. A similar pattern of elevated essentiality is also observed when
analyzing deletion data for S. cerevisiae [Giaever et al., 2002], in which
essential enzymes catalyze 84 percent of the core-reactions, whereas the
conditionally active enzymes have an average essentiality of only 15.6 per-
cent [Almaas et al., 2005]. The likelihood that the cores contain such a large
concentration of essential enzymes by chance is minuscule, with p-values
of 3.3e−23 and 9.0e−13 for E. coli and yeast, respectively.

Metabolic core enzymes also stand apart from the conditionally active
ones when comparing their evolutionary conservation. In comparing the set
of DNA sequences of core enzymes from E. coli with the DNA sequences for
these same enzymes in a reference set of 32 bacteria, the average amount
of sequence conservation is 71.1 percent (P < 1e−6). Similar comparisons
using the set of noncore enzymes show a sequence conservation of only
47.7 percent. Despite taking into account correlations between essentiality
and evolutionary conservation, one would expect the core enzymes to have
a conservation level of only 63.4 percent [Almaas et al., 2005], thus showing
that selection acts against excessive tinkering with these enzymes.

These results indicate that an organism depends largely on the conti-
nuous activity of the metabolic core, regardless of the environmental con-
ditions. The conditionally active metabolic reactions represent the different
ways in which a cell is capable of adjusting to utilize substrates from its
environment. From a practical perspective, the core enzymes essential for
biomass formation, both for optimal and suboptimal growth, may prove
effective antibiotic targets given the cell’s need to maintain the activity of
these enzymes in all conditions.

11.6 Systems Biology and Operations Research
One of the primary research fields in OR is network optimization, including
modeling, algorithms, and analysis. The variety of problems that can be
modeled via a network is staggering, and numerous OR experts have spent



Lim/Optimization in Medicine and Biology AU0563_C011 Final Proof Page 338 10.11.2007 04:40pm

338 Optimization in Medicine and Biology

their careers analyzing such problems. As the previous sections demon-
strate, a cell’s processes can be modeled with networks that highlight
the interactions within a cell. This is a powerful new tool for biologists,
and the experts in OR are well positioned to help advance this important
science.

The goal of this section is to highlight a few of the places where systems
biology and OR overlap. This is not meant to be an exhaustive exposi-
tion, which is not possible in the confines of this chapter. We encourage
interested readers to look at the cited articles to begin a more thorough
investigation. No matter what the particular expertise, there is likely an
important and novel application in biology.

To begin, we consider the linear program that identifies the metabolic
fluxes of a cell in a steady state. A simplistic but powerful depiction of
the associated network is illustrated in Figure 11.9. This is a bipartite net-
work where reactions on the left are linked to metabolites on the right.
For example, if r is the reaction A1 + 2A2→ A3 + 3A4, then (A1, r), (A2, r),
(r , A3), and (r , A4) are arcs. The cell’s inputs (resources) are modeled as
reactions that transport metabolites through the cellular membrane into
the cell. Similarly, the cell’s outputs (products) are reactions that transport
metabolites out of the cell. We let C , R, and P be matrices of the form
[Sir ], where the columns are, respectively, indexed by reactions within the
cell, reactions that add resources to the cell, and reactions that terminate
in products, except growth. Growth is defined as the collection of metabo-
lites that need to pass through the cell to achieve a unit of growth, and we
let G be the column vector that expresses this relationship. As an exam-
ple, suppose the metabolites used to model the cell are A1, A2, . . . , A10.
Then a unit of growth being defined as 2A3 + A7 + 3A8 is the same as
G being (0, 0, 2, 0, 0, 0, 1, 3, 0, 0)T . We point out that the matrix [C |R|P |G]
is similar to the biadjacency matrix, the difference being that the nonzero
components are the signed stoichiometric coefficients of the associated
reaction.

Although the terms used to describe this network are new to OR, the
model is not. The fluxes of the reactions control the flows across the arcs,
and hence the amount of metabolites in the cell. Although researchers
often discuss a metabolic flow, the fluxes are not traditional flow variables
because they are associated with nodes instead of edges. In particular, a
positive flux can indicate that several arcs have positive flow. We let νC ,
νR , νP , and νG be the respective flux vectors for the reactions within the
cell, the reactions that provide resources, the reactions that make products
other than growth, and the amount of growth. The steady-state assumption
in Equation 11.7 guarantees the conservation of metabolic flux throughout
the network. This assumption essentially balances the metabolites in the
cell so that they do not accrue.
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Experimental results have shown that maximizing growth is a biologically
relevant objective [Bonarius et al., 1997, Kauffman et al., 2003], and the
linear program that achieves this is

Max{z : CνC + RνR + PνP + GνG = 0,

0 ≤ νR ≤ u, 0 ≤ νP , 0 ≤ νC ≤ U }, (11.13)

where u limits the cell’s inputs and U bounds the flux values (each bound is
the maximum rate the corresponding reaction). This linear program allows
us to give a mathematical definition to a few of the terms of the previous
section. Let P(u) be the feasible region of Equation 11.13 and make the
notational convention that P(∞) means the input flows are unrestricted.
We also assume the ν = (νT

C , νT
R , νT

C , νT
G )

T . With this notation, reaction j ∈ C
is essential (or necessary) if

{ν ∈ P(∞) : νj = 0, νG = 1} = ∅. (11.14)

So, if reaction j is turned off then it is impossible to achieve a unit of growth
no matter what resources are given to the cell.

Identifying the essential reactions can be accomplished by sequentially
investigating the feasibility of Equation 11.14 for each j ∈ C , which is
possible by optimizing the zero function over the associated constraints.
However, this tedious calculation has a more elegant solution. The question
of partitioning the reactions into those that are necessary and those that are
not is actually the problem of identifying the implied equalities in

CνC + RνR + PνP = −G, 0 ≤ νC ≤ U , 0 ≤ νR , 0 ≤ νP . (11.15)

The implied equalities of this system further indicate the inputs and outputs
of the cell that are necessary for growth as well as those reactions that
operate at their maximum rate. Identifying implied equalities has a long and
important history in OR, and we point readers to refer [Greenberg, 1996]
and the associated bibliography. We highlight two methods, one theoretical
and one more practical.

The theoretical method relies on the concept of the optimal partition,
which is a central topic in the study of interior-point algorithms. Consider
the standard form linear program

Min{cT x : Ax = b, x ≥ 0}, (11.16)

where A ∈ R
m×n and we assume that there is a strictly positive feasible

element (Slater’s condition). Throughout the late 1980s and 1990s, interior-
point algorithms were studied with regards to this problem, with the most
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important contribution being that these algorithms solve the problem in
polynomial time. Fairly early in these investigations, it was realized that the
solution produced by the most popular interior-point algorithms (called
path-following interior-point algorithms) differed from the solution pro-
duced by the venerable simplex algorithm. The difference is that interior-
point algorithms terminate in the strict interior of the optimal set instead
of at an optimal vertex. If there is a single solution, there is no difference,
but in the presence of degeneracy, the solutions are different. In particular,
the solution rendered by a path following interior algorithm induces the
optimal partition. Let x∗ be the theoretical optimal solution produced by a
path-following interior-point algorithm and define

B = {i : x∗i > 0} and N = {i : x∗i = 0}.

Clearly (B, N ) is a two set partition of {1, 2, . . . , n}, but this partition
uniquely defines the optimal set,

P∗ = {x : Ax = b, x ≥ 0, xN = 0},

where the set subscript indicates the subvector indexed by the elements of
the set. This means that a component of x∗ is zero if and only if it is required
to be zero to achieve optimality. A component being positive indicates that
it can be positive in an optimal solution, but some optimal solutions may
have a zero at this component.

The conditions identifying the optimal partition of the linear program
in Equation 11.16 are

Ax = b, AT y + s = c, x ≥ 0, s ≥ 0, xT s = 0, x + s > 0. (11.17)

As any person in OR recognizes, these are the KKT (or Lagrange) condi-
tions of optimality with the added condition that x + s > 0. Any (x, y, s)
satisfying these conditions is called a strictly complementary solution to
the linear program, and such solutions have been known to exist since
1956 [Goldman and Tucker, 1956]. Until the advent of interior-point algo-
rithms, strictly complementary solutions held theoretical value only. If
(x, y, s) satisfies all but the last condition, i.e., xi + si = 0 for some i, then
the solution is degenerate. Any pair (xi , si) such that xi + si = 0 is called a
degenerate pair and the extent of degeneracy refers to the maximum num-
ber of possible degenerate pairs. Degeneracy is a topic that is mistakingly
ignored in many first courses in linear programing, a pedagogical mistake
that propagates misguided analysis [Jansen et al., 1997]. Understanding
degeneracy provides for robust and sound analysis that appropriately exp-
lains the problem, and as we shall see momentarily, metabolic networks
are highly degenerate.
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A linear program that identifies the essential reactions is

Min {0T νC + 0T νR + 0T νP :

CνC + RνR + PνP = −G, 0 ≤ νC ≤ U , 0 ≤ νR , 0 ≤ νP}. (11.18)

Adapting Equation 11.17 to this problem, we see that we want to solve

CνC + RνR + PνP = −G (νC , νR , νP) ≥ 0, νC ≤ U ,

CT y + s1 − ρ = 0, s1 ≥ 0, ρ ≥ 0,

ST y + s2 = 0, s2 ≥ 0,

PT y + s3 = 0, s3 ≥ 0,

νT
C s1 + νT

R s2 + νT
P s3 = 0,

ρT (U − νC ) = 0,

(νC , νR , νP)+ (s1, s2, s3) > 0,

p + (U − νC ) > 0.

In theory, solving Equation 11.18 with a path-following interior-point algo-
rithm should return a solution that satisfies this system. However, numerical
instabilities often lead to the failure of the last two conditions, i.e., path-
following interior-point algorithms regularly return a degenerate solution
instead of the strictly complementary solution they theoretically should. As
an example, we solved the linear program that maximizes growth for the
metabolic network of yeast with two popular interior solvers, CPLEX’s bar-
rier method (with crossover turned off) and PCx. Table 11.3 indicates the
difference between theory and practice that appears especially wide in this
metabolic network. We point out that this problem does not address the
linear program in Equation 11.18 but instead solves Equation 11.13 over
P(20e). From a biological perspective 20 provides sufficient resources to
achieve growth, so this problem is an adequate surrogate. What is impor-
tant to observe from Table 11.3 is that even if variables greater 10−16 are
declared positive, the metabolic network is at least 33 percent degenerate
(the true extent of degeneracy would be the maximum number of degen-
erate pairs). Remember that these algorithms should theoretically provide
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Table 11.3 CPLEX’s Barrier Method (with Crossover
Turned Off) and PCx Were Used to Maximize the Flow
into the Growth Node over P(20e)

Tolerance for Zero

10−8 10−16

CPLEX 552/1382 (40 percent) 376/1382 (27 percent)
PCx 606/1382 (44 percent) 457/1382 (33 percent)

Note: Although the solution should be strictly complementary,
both solvers terminated with highly degenerate solutions.

a solution that is void of degeneracy, which highlights the fact that this
problem has interesting and difficult numeric properties.

As the numerical results show, the theoretical value of an interior-point
algorithm can be undermined by numerical instabilities. So, we offer a
recent alternative that was born out of the necessity for researchers to over-
come the same problem when investigating the optimal design of radio-
therapy treatments [Ehrgott et al., 2005]. The goal of this technique is to
force variables to be positive by decreasing the largest values of a solution.
When this is done iteratively, the result is called the balanced solution. To
define this solution, we let sort(x) be the function that sorts the elements
of x and lists them in descending order. The balanced solution is defined
as the unique solution to

lexminsort ≡ lexmin{sort(x) : Ax = b, x ≥ 0},

where lexmin is the lexicographic minimum. It is easy to show that if λe
is feasible and A and b are both positive, then the solution to this prob-
lem is λe, which means that this technique correctly identified that each
component of x can be positive in a feasible solution.

Adapting this idea to the metabolic network, we have

lexminsort ≡ lexmin{sort(νC , νR , νP) :

CνC + RνR + PνP = −G, U ≥ νC ≥ 0, νR ≥ 0, νP ≥ 0}.

This technique identifying the implied equalities is new and has not been
thoroughly tested. An interesting direction for future research is to com-
pare the speed and results of this method to those in [Almaas et al., 2005,
Burgard et al., 2001, Reedi and Palsson, 2004]. We mention that there are
interpretive advantages in this approach. For example, suppose that the
largest value of this calculation is νi = l. If i ∈ C , this indicates that reaction
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i must have flux l to achieve a unit of growth. Similar interpretations cor-
respond to the cases of i being in R and P .

There are only a few mathematical results regarding the calculation of
lexminsort. One of these is that the solution is unique, and we let x∗ be
this solution. Similar to the definition of B and N , we let β = {i : x∗i > 0}
and η = {i : x∗i = 0}. A desirable property would be for B = β and
N = η, however, there are examples for which this is not the case. This
means that x∗ does not generally identify the optimal partition. Preliminary
numerical studies have shown that it is often the case that x∗ does induce
the optimal partition, and the authors suggest that it is likely for metabolic
networks. The insight comes from the fact that this method smooths out
the flux values by reducing the maximum flux, which in turn should cause
other fluxes to increase.

There are several questions left to be answered about the linear pro-
gram in FBA. As mentioned earlier, the constraints of this problem require
that the fluxes adhere to a steady-state assumption. However, a cell’s
state is dynamic rather than static. A major research direction is to use
this technique to understand how the fluxes change as the cell’s environ-
ment changes. The environment is currently modeled through the cell’s
inputs, and asking how the the fluxes change is a question in classical
sensitivity analysis. Because the solutions are significantly degenerate, a
more appropriate question is how do B and N change with regard to
the upper bound vector u. This question was studied for general linear
programs in [Adler and Monteiro, 1992, Holder, 2004, Holder et al., 2001,
Monteiro and Mehrotra, 1996, Roos et al., 1997], but the special properties
that exist in FBA are completely open. An alternative would be the mod-
ern interpretation of robust optimization, which provides complementary
information to classic sensitivity analysis.

The steady-state assumption prohibits metabolite accumulation. A more
realistic model would allow metabolites to accrue and then have different
reactions process these metabolites. However, we do not know what objec-
tive, if any, would eliminate the extra metabolites. One simple experiment
would be to replace the constraints with

CνC + RνR + PνP + GνG ≥ 0, 0 ≤ νC ≤ U , 0 ≤ νR ≤ u, 0 ≤ νP ,

which relaxes the steady-state assumption and allows metabolites to accu-
mulate. Maximizing growth with this set of constraints will likely show that
some metabolites remain in the cell. This is not realistic, so a secondary (or
tertiary, etc.) objective is likely governing the elimination of metabolites.
This recasts FBA into the realm of multiple objective programming, which
is likely more appropriate. This is an untapped research venue.

Another area where the degeneracy in FBA has been ignored is that
of calculating the HFB. This calculation depends on an optimal solution
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from FBA, but the high level of degeneracy implies that the dimension of
the primal or the dual solution spaces is significant. Categorizing the
source of degeneracy as primal or dual for each pair would add insight
to the problem. Moreover, it would be interesting to know the variability
of the HFB is over the optimal set, see [Wiback et al., 2004] for related
work.

Outside of FBA, we have from earlier sections that community identifi-
cation is important. The algorithms used to identify communities need to
be efficient due to the size of most biological networks. Mathematical pro-
grammers are trained in algorithm design and analysis, and these skills are
needed. As previously mentioned, the BC measure used for many social
networks is O(N 3). This polynomial bound is typically considered favor-
able, but the cubic growth is realized in implementation, making this attack
less attractive on large networks. The alternative based on Equation 11.6 is
O(N 2). These are both significantly better than clique finding, which is a
classic NP-complete problem.

The recent suggestion of k-clique percolation [Palla et al., 2005] was
published without complexity analysis, which is understandable as the
first step is to locate a k-clique, and hence, the algorithm is NP-complete.
However, k is typically smaller than the size of the maximum clique, and
identifying a small clique is generally considered simple. This begs the
question, What is the complexity of identifying a community from a known
k-clique? A simple argument shows that the algorithm in Table 11.4 locates a
community in O(�kN 2), where � = max{deg(v) : v ∈ V }. Because � ≤ N ,
we generally have the possibility of O(N k+2), which is polynomial for fixed
k but is worse than both of the other algorithms because k ≥ 2. The numer-
ical computations in [Palla et al., 2005] do not indicate that this bound is
achieved in practice, and an interesting direction for future research would
be to explain the difference between the theoretical complexity and the
practical efficiency.

The traditional clustering techniques of k-means and k-medians can
also be used to identify communities. Both of these problems are tradi-
tional facility location problems in OR and their application to biological

Table 11.4 An Algorithm to Calculate a Community from a Known
k-Clique

1. Let C be the nodes of an initial k-clique.
2. Set C′ = ∅.
3. For each v ∈ C:

a For each v′ ∈ N(v)\C:
i If |N(v′) ∪N(v) ∪ C| ≥ k − 2, add nodes N(v′) ∪N(v) ∪ C to C′.

4. If C′ 	= ∅, let C = C ∪ C′ and go to 2.
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networks deserves attention. Although facility location is related to com-
munity finding, it is inherently different. This is because facility location is
concerned with locating positions that optimize some quality of an assign-
ment to these positions. So these problems have the two goals of grouping
entities and assigning a representative to each group, which is often (but
not necessarily) a member of the group. The community idea equates well
to grouping, but how the representative part leads to biological informa-
tion is unknown. We discuss the recent results of [Holder et al., 2006] to
foreshadow some future applications of the k-median problem in systems
biology.

The k-median problem is one of the four primary questions in discrete
location theory (the others being the k-means problem, the uncapacitated
facility location problem, and the quadratic assignment problem). Initial in-
vestigations into the problem were undertaken by Hakimi [Hakimi, 1965],
and this work spawned a substantial literature [Reese, 2006]. Hakimi’s origi-
nal intent was to locate positions from the continium of a network or graph,
i.e., facilities were allowed to be positioned on an edge or vertex. This is a
graph restriction of the classic Weber problem. Assuming that positions on
the graph were related by a metric, Hakimi proved two significant results:
(1) there is always an optimal facility location for which the facilities are
located at vertices and (2) the problem of optimally locating facilities is
NP-hard in N and k. An often overlooked and misunderstood property is
that the problem is polynomial for a fixed k, making it fixed-parameter
tractable.

The discrete k-median problem is concerned with selecting k positions
on a graph from a discrete set P on (V , E). The positions in P can be located
on any edge or vertex and it is assumed that V ⊆ P. Each pair of positions
is related by a nonnegative similarity score d(p, p′), which need not be a
metric, and each node is assigned a weight β(v). The discrete k-median
problem is

Min

⎧
⎨

⎩

∑

p∈P

∑

v∈Vp

d(p, v)β(v) : P ⊆ (V , E), |P| = k

⎫
⎬

⎭
,

where

Vp′ = {v ∈ V : d(v, p′) ≤ d(v, p) for p ∈ P}. (11.19)

Any collection of k positions solving this problem are called medians. The
nearest-neighbor condition in Equation 11.19 assigns the vertices of the
graph to the medians, but unfortunately, this definition does not uniquely
define Vp′ because some nodes may be equally similar to multiple medians.
However, the assumption that |P| ≤ |N| allows us to list the elements of P,
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and subsequently to decide ties by assigning the vertex to the position with
the least index. A result in [Holder et al., 2006] similar to Hakimi’s original
work shows that there is always a solution of vertices.

With regards to community location, it makes sense that P = V . How-
ever, although the similarity measure d and the node weight β are natural
in many OR applications, their interpretation in a biological framework is
not clear. Indeed, the communities are defined in terms of these graph
characteristics, and it is likely that they can be tailored to different biologi-
cal situations, yielding a flexible model. In the discussions that follow, we
assume that P = V , d(p, p′) = ‖p − p′‖2 and β(v) = 1. The use of the
Euclidean norm implies the network is coordinitized in some meaningful
way, which is awkward for biological networks. However, it is a place to
start.

The main result of [Holder et al., 2006] shows that the discrete k-median
problem is identical to a well-studied problem in data compression that op-
timally designs a vector quantizer. A full discussion of vector quantization
is not warranted due to space limitation, and we direct interested readers
to refer [Gersho and Gray, 1992]. The importance of the relationship is that
it allows us to cast the graph theory problem in a way that is amenable to
the efficient algorithms designed to work on the vector quantization prob-
lem. The most preeminent and significant of these techniques is the dis-
crete Lloyd algorithm in Table 11.5. This algorithm is not an exact solution
procedure because it converges to a local optimal solution. The pertinent
complexity results from [Holder et al., 2006] are

� The discrete k-median problem is O(N k+2).
� The discrete Lloyd algorithm is O(Nk).

The first result shows that the worst-case complexity of the discrete
k-median problem is no worse than that of the k-clique percolations.
When k � N , the second result shows that the discrete Lloyd algorithm is
theoretically faster than the other community-finding techniques.

Table 11.5 The Discrete Lloyd Algorithm for P = V

1. Select an initial collection of k nodes, M.
2. Calculate the nearest neighbors Vv as in Equation 11.19 for each v ∈ M.
3. Calculate the centroid of Vv for each v ∈ M with each node weighted with

β(v).
4. Project each centroid onto its nearest neighbor in V forming a new collection

of k nodes denoted by M′.
5. If M = M′, stop. Otherwise, replace M with M′ and go to 2.
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Using the discrete k-median problem to locate communities within a
biological network is promising. The questions are numerous and include

� What similarity measure and node weight are meaningful?
� Can a solution to the discrete k-median problem be found as

efficiently as communities can be found with k-clique percolation
in practice?

� Does the discrete Lloyd algorithm outperform other community-
finding algorithms in practice?

� How do we initialize the discrete Lloyd algorithm so that it locates
a global solution instead of a local solution?

We close by mentioning that although we have focused on the linear
optimization problem associated with FBA and the community-finding
algorithms that identify biological structures, these are but two of the
many problems in systems biology that make use of standard OR tech-
niques. The purpose of this section was to show that the problems
are plentiful, important, and natural, and we encourage the involve-
ment of the OR community. Please contact the authors if we can be of
assistance.
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Abstract The genome of an organism not only serves as its blueprint
that holds the key for diagnosing and curing diseases but also plays a
pivotal role in obtaining a holistic view of its ancestry. Recent years have
witnessed a large number of innovations in this field, as exemplified
by the Human Genome Project. This chapter provides an overview of
popular algorithms used in genome analysis and in particular explores two
important and deeply interconnected problems: phylogenetic analysis and
multiple sequence alignment. We also describe our novel graph–theoretical
approach that encompasses a wide variety of genome sequence analysis
problems within a single model.

12.1 Introduction
Genomics encompasses the study of genome in human and other organ-
isms. The rate of innovation in this field has been breathtaking over the
last decade, especially with the completion of Human Genome Project. The
purpose of this chapter is to review some well-known algorithms that facil-
itate genome analysis. The material is presented in a way that is interesting
to both the specialists working in this area and others. Thus, this review
includes a brief sketch of the algorithms to facilitate a deeper understand-
ing of the concepts involved. The list of problems related to genomics is
very extensive; hence the scope of this chapter is restricted to the following
two related important problems: (1) phylogenetic analysis, and (2) multiple
sequence alignment. Readers interested in algorithms used in other fields
of computational biology are recommended to refer to reviews by Abbas
and Holmes (2004) and Blazewicz et al. (2005).

Genome refers to the complete DNA sequence contained in the cell.
DNA sequence consists of the four nucleotides adenine(A), thymine(T),
cytosine(C), and guanine(G). Associated with each DNA strand (sequence)
is a complimentary DNA strand of the same length. The strands are
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complementary in that each nucleotide in one strand uniquely defines an
associated nucleotide in the other: A and T are always paired, and C and
G are always paired. Each pairing is referred to as a base pair, and bound
complementary strands make up a DNA molecule. Typically, the num-
ber of base pairs in a DNA molecule is between thousands and billions,
depending on the complexity of a given organism. For e.g., A bacterium
contains about 600,000 base pairs, whereas human and mouse have some
three billion base pairs. Among humans, 99.9 percent base pairs are same
between any two unrelated persons. But that leaves millions of single-letter
differences, which provide genetic variation between people.

Understanding the DNA sequence is extremely important. It is consid-
ered as the blueprint for an organism’s structure and function. The sequence
order underlies all of life’s diversity, even dictating whether an organism
is human or another species such as yeast or a fruit fly. It helps in under-
standing the evolution of mankind, identifying genetic diseases, and creat-
ing new approaches for treating and controlling those diseases. To achieve
these goals, the research in genome analysis has rapidly progressed over
the last decade.

The rest of this chapter is organized as follows. Section 12.2 discusses
techniques used to infer the evolutionary history of species and Section
12.3 presents multiple sequence alignment problem and recent advances.
In Section 12.4, we describe our research effort for advancing genomics
analysis through the design of a novel graph–theoretical approach for rep-
resenting a wide variety of genomic sequence analysis problems within a
single model. We summarize our theoretical findings, and present compu-
tational models based on two integer programming formulations. Finally,
Section 12.5 summarizes the interdependence and the pivotal role played
by the above mentioned two problems in computational biology.

12.2 Phylogenetic Analysis
Phylogenetic analysis is a major aspect of genome research. It refers to the
study of evolutionary relationships of a group of organisms. These hierar-
chical relationships among organisms arising through evolution are usually
represented by a phylogenetic tree (Figure 12.1). The idea of using trees
to represent evolution dates back to Darwin. Both rooted and unrooted
tree representation have been used in practice [Durbin et al., 1998]. The
branches of tree represent the time of divergence and the root represents
the ancestral sequence (Figure 12.2).

The study of phylogenies and processes of evolution by the analysis of
DNA or amino acid sequence data is called molecular phylogenetics. In this
study, we will focus on methods that use DNA sequence data. There are
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Ancestor

Mammals Lizards Snakes Crocodiles Birds

Time

Figure 12.1 An example of evolutionary tree.

two processes involved in inferring both rooted and unrooted trees. First
estimates the branching structure or topology of the tree. Second estimates
the branch lengths for a given tree. Currently, there are wide varieties of
methods available to conduct this analysis [Nei, 1996] [Felsenstein, 1988]
[Whelan et al., 2001] [Delsuc et al., 2005]. These available approaches can
be classified into three broad groups: (1) distance methods; (2) parsimony
methods; and (3) maximum likelihood methods. Below, we will discuss
each of them in detail.

12.2.1 Methods Based on Pairwise Distance
In distance methods, an evolutionary distance dij is computed between
each pair i, j of sequences, and a phylogenetic tree is constructed

Internal node

Branch

Leaf

Root

Figure 12.2 Tree terminology.
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from these pairwise distances. There are many different ways of defin-
ing pairwise evolutionary distance used for this purpose. Most of the
approaches estimate the number of nucleotides substitutions per site, but
other measures have also been used [Tajima and Nei, 1984] [Tajima and
Takezaki, 1994]. The most popular one is Jukes–Cantor distance (1969)
which defines dij as − 3

4 log(1− 4f
3 ), where f is the fraction of sites where

nucleotides differ in the pairwise alignment.
There are a large number of distance methods for constructing evolu-

tionary trees [Waterman, 1995]. In this chapter, we discuss methods based
on cluster analysis and neighbor joining.

12.2.1.1 Cluster Analysis: UPGMA

The conceptually simplest and most known distance method is UPGMA
(Unweighted Pair Group Method using Arithmetic averages) developed
by Sokal and Michener (1958). Given a matrix of pairwise distances
between each pair of sequences, it starts with assigning each sequence
to its own cluster. The distances between the clusters are defined as
dij = 1

|Ci |Cj |
∑

p∈ Ci ,q∈ Cj
d(p, q) where Ci and Cj denote sequences in clus-

ters i and j , respectively. At each stage in the process, the least distant pair
of clusters are merged to create a new cluster. This process continues until
only one cluster is left. Given n sequences, the general schema of UPGMA
is shown in Algorithm 1.

The time and space complexity of UPGMA is O(n2), because there are
n − 1 iterations of complexity O(n). A number of approaches have been
developed which are motivated by UPGMA. Li (1981) developed a similar

Algorithm 1 UPGMA

1: INPUT: Distance matrix dij , 1 ≤ i, j ≤ n
2: for i = 1 to n do
3: Define singleton cluster Ci comprising of sequence i
4: Place cluster Ci as a tree leaf at height zero
5: end for
6: repeat
7: Determine two clusters i, j such that dij is minimal.
8: Merge these two clusters to form a new cluster k having distance from

other clusters defined as the weighted average of the comprised two
clusters. If Ck is the union of two clusters Ci and Cj , and if Cl is any

other cluster, then dkl = dil |Ci |+djl |Cj |
|Ci |+|Cj |

9: Define a node k at height
dij
2 with daughter nodes i and j

10: until just a single cluster remains
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approach which also makes corrections for unequal rates of evolution
among lineages. Klotz and Blanken (1981) presented a method where a
present-day sequence serves as an ancestor to determine the tree regard-
less of the rates of evolution of the sequences involved.

12.2.1.2 Neighbor Joining

Neighbor joining (NJ) is another very popular algorithm based on pairwise
distances [Saitou and Nei, 1987]. This approach yields an unrooted tree and
overcomes the assumption of UPGMA method that the same rate of evolu-
tion applies to each branch.

Given a matrix of pairwise distances between each pair of sequences
dij , it first defines modified distance matrix d̄ij . This matrix is calculated
by subtracting average distances to all other sequences from the dij and
thus compensating for long edges. In each stage, the two nearest nodes
(minimal d̄ij) of the tree are chosen and defined as neighbors in the tree.
This is done recursively until all of the nodes are paired together. Given n
sequences, the general schema of NJ is shown in Algorithm 2.

Neighbor joining has an execution time of O(n2), like UPGMA. It has
given extremely good results in practice and is computationally efficient
[Saitou and Nei, 1987] [Takahashi and Nei, 2000]. Many practitioners have
developed algorithms based on this approach. Gascuel (1997) improved
the NJ approach by using a simple first-order model of the variances
and covariances of evolutionary distance estimates. Bruno et al. (2000)

Algorithm 2 Neighbor Joining

1: INPUT: Distance matrix dij , 1 ≤ i, j ≤ n
2: for i = 1 to n do
3: Assign sequence i to the set of leaf nodes of the tree (T )
4: end for
5: Set list of active nodes (L) = T
6: repeat
7: Calculate modified distance matrix d̄ij = dij − (ri + rj), where ri =

1
|L|−2

∑
k∈L dik

8: Find the pair i, j in L having minimal value of d̄ij

9: Define a new node u and set duk = 1
2 (dik + djk − dij), for all k in L

10: Add u to T joining nodes i, j with edges of length given by: diu =
1
2 (dij + ri − rj),
dju = dij − diu

11: Remove i and j from L and add u
12: until Only two nodes remain in L
13: Connect remaining two nodes i and j by a branch of length dij
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developed a weighted NJ using a likelihood-based approach. Goeffon
et al. (2005) investigated a local search algorithm under the Maximum
Parsimony criterion by introducing a new subtree swapping neighborhood
with an effective array-based tree representation.

12.2.2 Parsimony Methods
In science, notion of parsimony refers to the preference of simpler hypothe-
ses over complicated ones. In the parsimony approach for tree building,
the goal is to identify the phylogeny that requires the fewest necessary
changes to explain the differences among the observed sequences. Of
the existing numerical approaches for reconstructing ancestral relationships
directly from sequence data, this approach is the most popular one. Unlike
distance-based methods which build tree, it evaluates all possible trees and
gives each a score based on the number of evolutionary changes that are
needed to explain the observed sequences. The most parsimonious tree
is the one that requires the fewest evolutionary changes for all sequences
to derive from a common ancestor [Swofford and Olsen, 1990]. As an exa-
mple, consider the trees in Figures 12.3 and 12.4. The tree in Figure 12.3
requires only one evolutionary change (marked by the �) compare to the
tree in Figure 12.4 which requires two changes. Thus, Figure 12.3 is the
more parsimonious tree.

There are two distinct components in parsimony methods: given a
labeled tree, determine the score; determine global minimum score by
evaluating all possible trees, as discussed below.

12.2.2.1 Score Computation

Given a set of nucleotide sequences, parsimony methods treat each site
(position) independently. The algorithm evaluates the score at each

CCC

CCC

CCC CCC

CGC

CGC CGC

Figure 12.3 Parsimony tree 1.
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CCC

CCC

CCC

CCC CCCCGC CGC

Figure 12.4 Parsimony tree 2.

position and then sums them up over all the positions. As an example,
suppose we have the following three aligned nucleotide sequences.

CCC

GGC

CGC

Then, for a given tree topology, we would calculate the minimal num-
ber of changes required at each of the three sites and then sum them
up. Here, we investigate a traditional parsimony algorithm developed by
Fitch (1971), where number of substitutions required is taken as score.
For a particular topology, this approach starts by placing nucleotides at
the leaves and traverse toward the root of the tree. At each node, the
nucleotides common to all of the descendant nodes are placed. If this set
is empty then the union set is placed at this node. This continues until root
of the tree is reached. The number of union sets equal the number of
substitutions required. The general schema for every position is shown in
Algorithm 3.

Figure 12.5 shows the set Rk obtained by above algorithm. The compu-
tation is done for the first site of the three sequences shown above. The
minimal score given by the algorithm is 1.

There are a wide variety of approaches developed by modifying Fitch’s
algorithm [Swofford and Maddison, 1987]. Sankoff and Cedergren (1983)
presented a generalized parsimony method which does not just count the
number of substitutions, but assigns a weighted cost for each substitution.

Ronquist (1998) improved the computational time by including strate-
gies for rapid evaluation of tree lengths and increase the exhaustiveness of
branch swapping while searching topologies.
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Algorithm 3 Parsimony: Score Computation

1: Each leaf l is labeled with set Rl having observed nucleotide at that
position.

2: Score S = 0
3: for all Internal node k with children i and j having labels Ri and Rj

do
4: Rk = Ri

⋂
Rj

5: if Rk = ∅ then
6: Rk = Ri

⋃
Rj

7: S = S + 1
8: end if
9: end for

10: Minimal score = S

12.2.2.2 Search of Possible Tree Topologies

The number of possible tree topologies dramatically increases with the
number of sequences. Consequently, in practice, usually only a subset
of them are examined using efficient search strategies. The most com-
monly used is branch and bound methods to select branching patterns
[Purdom et al., 2000]. For large-scale problems, heuristic methods are typi-
cally used [Swofford and Olsen, 1990]. These exact and heuristic tree search
strategies are implemented in various softwares like PHYLIP (Phylogeny
Inference Package) and MEGA (Molecular Evolutionary Genetic Analysis)
[Felsenstein, 1989] [Kumar et al., 1994].

C

C CG

{C,G}

Figure 12.5 The sets Rk for the first site of given three sequences.
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12.2.3 Maximum Likelihood Methods
The method of maximum likelihood (ML) is one of the most popular statis-
tical tool used in practice. In molecular phylogenetics, maximum likelihood
methods find the tree that has the highest probability of generating obs-
erved sequences, given an explicit model of evolution. The method was
first introduced by Felsenstein (1981). We discuss herein both the evolution
models and the calculation of tree likelihood.

12.2.3.1 Model of Evolution

A model of evolution refers to various events like mutation, that changes
one sequence to the another over a period. It is required to determine the
probability of a sequence S2 arising from an ancestral sequence S1 over a
period t . Various sophisticated models of evolution have been suggested,
but simple models like Jukes–Cantor are preferred in ML methods.

Jukes and Cantor (1969) model assumes that all nucleotides (A, C , T , G)
undergo mutation with equal probability, and change to all of the other
three possible nucleotides with same probability. If the mutation rate is 3α
per unit time per site, the mutation matrix Pij (probability that nucleotide
i changes to j in unit time), takes the form

⎛

⎜
⎜
⎝

1− 3α α α α

α 1− 3α α α

α α 1− 3α α

α α α 1− 3α

⎞

⎟
⎟
⎠

Above matrix is integrated to evaluate mutation rates over time t and
then used to calculate P(nt2|nt1, t), defined as the probability of nucleotide
nt1 being substituted by nt2 over time t .

Various other evolution models like Kimura Model have also been men-
tioned in literature [Kimura, 1980] [Bos and Posada, 2005].

12.2.3.2 Likelihood of a Tree

Likelihood of tree is calculated as the probability of observing a set of
sequences given the tree.

L(tree) = Probability[sequences|tree]
We begin with the simple case of two sequences S1 and S2 of length

n having a common ancestor “a” as shown in Figure 12.6. It is ass-
umed that all different sites (positions) evolve independently, and thus
the total likelihood is calculated as the product of likelihood of all sites
[Clote and Backofen, 2000]. Here, the likelihood of each site is obtained
using substitution probabilities based on evolution model.
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a

t1

t2

S2

S1

Figure 12.6 A simple tree.

Given qa = equilibrium distribution of nucleotide a, the likelihood for
simple tree in Figure 12.6 is calculated as L(tree)=P(S1, S2)= ∏n

i=1P(S
1
i , S2

i )

where P(S1
i , S2

i ) =
∑

a qaP(S1
i |a)P(S2

i |a). To generalize this approach for m
sequences, it is assumed that diverged sequences evolve independently
after diverging. Hence, likelihood for every node in tree depends only on
its immediate ancestral node and a recursive procedure is used to evaluate
likelihood of the tree. The conditional likelihood Lk,a is defined as the like-
lihood of the subtree rooted at node k, given that nucleotide at node k is a.
The general schema for every site is shown in Algorithm 4. The likelihood
is then maximized over all possible tree topologies and branch lengths.

12.2.3.3 Recent Improvements

ML approach has received great attention due to the existence of powerful
statistical tools. It has been made more sophisticated using advance tree

Algorithm 4 Likelihood: Computation at Given Site

1: for all leaf l do
2: if leaf has nucleotide a at that site then
3: Ll,a = 1
4: else
5: Ll,a = 0
6: end if
7: end for
8: for all Internal node k with children i and j do
9: Define the conditional likelihood Lk,a =∑b,c[P(b|a)Li,b][P(c|a)Lj ,c]

10: end for
11: Likelihood at given site =∑a qaLroot ,a
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search algorithms, sequence evolution models, and statistical approaches.
Yang (1993) have extended it to the case where the rate of nucleo-
tide substitutions differ over sites. Huelsenbeck (1997) incorporated the
improvements in substitution models [Huelsenbeck and Crandall, 1997].
Piontkivska (2004) evaluated the use of various substitution models in
ML approach and inferred that simple models are comparable in both
efficiency and reliability with complex models.

Enormously large number of possible tree topologies especially, while
working with large number of sequences, makes this approach compu-
tationally intensive [Takahashi and Nei, 2000]. It has been proved that
reconstructing the ML tree is NP-hard even for certain approximations
[Chor and Tuller, 2005]. To reduce computational time, Guindon and
Gascuel (2003) developed a simple hill-climbing algorithm based on
the maximum likelihood principle that adjusts tree topology and branch
lengths simultaneously. Recently, parallel computation is being used to
address huge computational requirement. Stamatakis et al. (2005) have
used OpenMP-parallelization for symmetric multiprocessing machines and
Keane et al. (2005) developed distributed platform for phylogeny recon-
struction by maximum likelihood.

12.3 Multiple Sequence Alignment
Multiple sequence alignment (MSA) is arguably among the most studied
and difficult problems in computational biology. It has been a vital tool
because it compactly represents conserved or variable features among the
family members. Alignment also allows character-based analysis compared
to distance-based analysis and thus helps to elucidate evolutionary rela-
tionships better. Consequently, it plays a pivotal role in a wide range of
sequence analysis problems like identifying conserved motifs among given
sequences; predicting secondary and tertiary structure of protein sequen-
ces; and molecular phylogenetic analysis. It is also used for sequence com-
parison to find similarity of a new sequence with preexisting ones. This
helps in gathering information about function and structure of new found
sequences from the existing ones in databases like GenBank in United
States and EMBL in Europe.

The MSA problem can be stated formally as follows. Let
∑

be the

alphabet and let
∑̂ = ∑⋃{−}, where “−” is a symbol to represent gaps

in sequences. For DNA sequences, alphabet
∑̂ = {A, T, C, G,−}.

An alignment for N sequences S1, . . . , SN is given by a set Ŝ ={Ŝ1, . . . , ŜN }
over the alphabet

∑̂
which satisfy the following two properties: (1) the

strings in Ŝ are of the same length, and (2) Si can be obtained from Ŝi by
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C C C

CC G G G G

GGC C C C

C

CCC

C

—

——

—

Figure 12.7 Two possible alignments for given three sequences.

removing the gaps. Thus, an alignment in which each string Ŝi has length
K can be interpreted as an alignment matrix of N rows and K columns
where row i corresponds to sequence Si . Alphabets that are placed into the
same column of alignment matrix are said to be aligned with each other.

Figure 12.7 shows two possible alignments for given three sequences:
S1 = CCC, S2 = CGGC, and S3 = CGC.

For two sequences, optimal MSA is easily obtained using dynamic pro-
gramming (Needleman–Wunsch algorithm). Unfortunately, the problem
becomes much harder for more than two sequences, and optimal solution
can be found only for a limited number of sequences of moderate length
(approximately 100) [Bonizzoni and Vedova, 2001]. Researchers have tried
to solve it by generalizing dynamic programming approach to a multi-
dimensional space. However, this approach has huge time and memory
requirements and thus cannot be used in practice even for small problems
of five sequences of length 100 each. This algorithm has been improved by
identifying the portion of hyperspace which does not contribute to the solu-
tion and exclude it from the computation [Carrillo and Lipman, 1988]. But,
even this approach of Carrillo and Lipman implemented in MSA program,
can only align up to ten sequences [Lipman et al., 1989]. Although, Gupta
et al. (1995) improved the space and time usage of this approach, it cannot
align large data sets. To reduce the huge time and memory expenses, wide
variety of heuristic approaches for multiple sequence alignment have been
developed [Notredame, 2002].

There are two components of finding MSA: (1) searching over all the
possible multiple alignments, and (2) scoring each of them to find the best
one.

The problem becomes more complex for remotely related homologous
sequences, i.e., sequences which are not derived from a common ancestor
[Gotoh, 1999]. Numerous approaches have been proposed, but the quest
for an approach which is accurate and fast continues. It must be remem-
bered that even the choice of sequences and calculating the score of align-
ment is a nontrivial task and is an active research field in itself.

12.3.1 Scoring Alignment
There is no unanimous way of characterizing an alignment as the correct
one and the strategy depends on biological context. Different alignments
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are possible and we never know for sure which alignment is correct. Thus,
one scores every alignment according to an appropriate objective function
and alignments with the higher scores are deemed to be better. A typical
alignment scoring scheme consists of the following steps.

12.3.1.1 Independent Columns

The score of alignment is calculated in terms of columns of alignments. The
individual columns are assumed to be independent and thus the total score
of an alignment is a simple summation over column scores. Thus, score for
an alignment score(A) =∑j score(Aj), where Aj is column j of the multiple
alignment A. Now, score for every column j is calculated as sum-of-pairs
(SP) function using the scoring matrices described below. The SP score
for column Aj is obtained as score(Aj) = ∑k<l score(Ak

j , Al
j) where Ak

j and
Al

j are nucleotides in column j of alignment corresponding to sequences
k and l, respectively. If gap costs are linear, score(nucleotide, −) and
score(−, nucleotide) will be the insertion cost. But, this approach would
not differentiate between opening a gap and its extension. So, affine gap
penalties are often used where gap opening and extension penalty are
treated as two different parameters. The correct value of both of these
parameters is a major concern because their values can be set only empir-
ically [Vingron and Waterman, 1994]. Also most schemes used in practice
score columns as weighted sum of pairwise substitutions instead of just
addition as described before. The weights are decided in accordance
with the amount of independent information each sequence possesses
[Altschul et al., 1989].

Both the assumption of treating every column independent and using
SP score for column has limitations. The problem increases as number of
sequences increases.

12.3.1.2 Scoring Matrices

Any alignment can be obtained by performing three evolution operations:
insertion, deletion, and substitution. It is assumed that all the different
operations occur independently and thus, the complete score is evaluated
as the sum of scores from every operation. Insertion and deletion scores
are calculated as either linear or affine gap penalty. Substitutions scores
are stored as substitution score matrix, which contains score for every pair
of nucleotides. Thus, these scores S(A, B) can be treated as the score of
aligning nucleotide A with B.

These substitution score matrices can be obtained in various ways.
One could adopt an ad hoc approach of setting up a score matrix which
produces good alignments for a given set of sequences. The second
approach would be more fundamental and look into physical and chemical
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properties of nucleotides. If two nucleotides are similar in their properties,
they would be more likely to be substituted by one another. The third
and the most prominent one is a statistical approach where maximum
likelihood principle is used in conjunction with probabilistic models of
evolution [Altschul, 1991].

12.3.2 Alignment Approaches
The number of different approaches for MSA problem has steadily increased
over the last decade and thus being exhaustive will not be possible. In this
chapter, we will emphasize on the most widely used class of algorithms
and the new emerging and most promising approaches.

1. Progressive alignment algorithms: most widely used type of algo-
rithm based on using pairwise alignment information of input
sequences. It assumes that input sequences are phylogeneti-
cally related, and uses these relationships to guide the alignment
[Chenna et al., 2003].

2. Graph-based algorithms: a new trend where graph-based models
are used to approach this problem.

3. Iterative alignment algorithms: typically, an alignment is produced
and is then refined through series of iterations until no more im-
provement can be made.

12.3.3 Progressive Algorithms
Progressive alignment constitutes one of the most simplest and effective
ways for multiple alignment. This strategy was introduced by various
researchers like Waterman and Perlwitz (1984). Among all the progressive
algorithms, ClustalW is the most famous one. It is a noniterative, determin-
istic algorithm that attempts to optimize the weighted SP with affine gap
penalties [Thompson et al., 1994].

The typical progressive algorithm schema is as follows:

� Compute distance between all pairs of given sequences by aligning
them. The distances represent divergence of each pair of sequences.
These distances could be calculated by fast approximation methods
or the slower but more precise methods like complete dynamic
programming. Because for given N sequences, N (N−1)

2 pairwise
scores have to be calculated and the scores are used just for con-
struction of a guide tree and not the alignment itself, it is desirable
to use approximation methods like k tuple matches.
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� Find a guide tree from the distance matrix. This is typically achieved
using clustering algorithms discussed in construction of an evolu-
tionary tree. Once again, because the aim is to get the alignment
and not the tree itself, approximation methods are used to construct
the evolution trees.

� Align sequences progressively according to the branching order in
the guide tree. The basic idea is to start from the leaves of the
guide tree toward its root and to use series of pairwise alignments to
align larger and larger groups of sequences. Some algorithms have
only single growing alignment to which every remaining sequence
is aligned whereas other approaches align subgroup of sequences
and then merge the alignments.

There are three main shortcomings of the progressive algorithms.

� There does not exist an undisputable best way of ordering the given
sequences.

� Once a sequence has been aligned, that alignment will not be mod-
ified even if it conflicts with sequences added later in the process.
Hence, the order in which sequences are added becomes very cru-
cial, and because there is no undisputable best way to order the
sequences, this approach returns suboptimal solutions.

� For a given set of n sequences,
(n

2

)
pairwise alignments are gener-

ated; but while computing the final multiple alignment, most of these
algorithms use fewer than n pairwise alignments. Thus, the resulting
multiple alignment agrees with only a small amount of information
available in the data.

Therefore, there is a growing need for an algorithm to align extremely
divergent sequences whose pairwise alignments are likely to be incor-
rect. To address all these issues, some techniques have been developed;
although they are innovative, it is understandable that they have their own
assumptions and drawbacks.

12.3.4 Graph-Based Algorithms
Over the last few years, the field of genomics has undergone evolu-
tionary changes with a rapid increase in new solution strategies. The
use of graph-based models is easily seen as one of the most emerg-
ing and far-reaching trend. Just and Vedova (2004) use relation bet-
ween facility location problem and sequence alignment to prove the
NP-hardness of MSA. In this section, we review the most prominent
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integer programming (IP) approaches for finding multiple sequence
alignment.

12.3.4.1 Maximum-Weight Trace

Kececioglu et al. (2000) use a solution of the maximum trace problem to
construct alignment. The algorithm starts with calculating all pairwise align-
ments and using them to find a trace. To achieve this, given n sequences,
an input alignment graph G = (V , E) is constructed. It is an n-partite graph
whose vertex set V represents the characters of given sequences and edge
set E represents the pairs of characters matched in the pairwise alignments.
The subset of matching in E realized by an alignment is called a trace.

Alignment graph G = (V , E) is extended to a mixed graph G ′ = (V , E , A)
by adding arc set A which connects character of every sequence to the
next character in the same sequence. The objective of the algorithm is
to find maximum weight trace by finding cycles termed as critical mixed
cycles in graph G ′ such that they satisfy sequence alignment properties
[Reinert et al., 1997].

The IP model for this problem is formulated as

Max
∑

e∈E

wexe (12.1)

s.t.
∑

e∈P∩E

xe = |E ∩ P | − 1∀ critical mixed cycles P in G ′

xe ∈ {0, 1} for all e ∈ E (12.2)

An implementation of a branch-and-cut algorithm is used to solve the
above problem. Various valid inequalities for the polytope are added as
cuts, some of which are facet-defining. The algorithm is capable of giving
an exact solution under the SP objective function with linear gap costs.
Kececioglu et al. have made a significant contribution by introducing a
polyhedral approach capable of obtaining exact solutions for a subclass of
MSA. However, this methodology has its own drawbacks like not being able
to capture the order of insertions and deletions between two matchings and
affine gap costs. Recently, Althaus et al. (2006) have proposed a general
model using this approach in which arbitrary gap costs are allowed.

12.3.4.2 Minimum-Spanning Tree and Traveling Salesman Problem

Shyu et al. (2004) explore the use of minimum spanning trees to determine
the order of sequences [Shyu et al., 2004]. The idea of the approach is to
preserve the most informative distances among the set of given sequences.
The criterion used is meaningful and capable of working better than the
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traditional criteria like those in SP. The algorithm itself is very efficient for
practical usage, and can be easily implemented. However, it fails to address
the issue of using all the information in pairwise alignments, because it only
uses the score and not the pairwise alignments themselves. Moreover, this
approach has all the drawbacks of the progressive strategy.

A similar approach has also been developed by Korostensky and Gonnet
(1999) using traveling salesman problem (TSP). In this technique, a circular
sum measure is used instead of SP score. The cities in TSP correspond to the
sequences and the scores of pairwise alignment are taken as the distances.
The problem is to find the longest tour where each sequence is visited
exactly once [Korostensky and Gonnet, 2000].

12.3.4.3 Eulerian Path Approach

Zhang and Waterman (2003) proposed a new approach motivated by the
Eulerian method for fragment assembly in DNA sequencing. In their work,
a consensus sequence is found and later pairwise alignments are obtained
between each input sequence and consensus sequence. Finally, MSA is
obtained according to these pairwise alignments. The most significant
advantage of this method is linear time and memory cost for finding the
consensus sequence. And, if the consensus sequence is the closest one to
all given sequences, good quality alignment can be obtained in a reason-
able amount of time. Once again, this approach suffers from the prominent
drawback of the progressive strategy and issues in graph formation while
finding the consensus sequence.

12.3.5 Iterative Algorithms
The main shortcoming of the progressive strategy is the failure to remove
errors in the alignment, which are introduced early. The iterative algorithms
are developed precisely to overcome this flaw. They are based on the
idea of reconsidering and realigning previously aligned sequences with the
goal of improving the overall alignment score. Each modification step is an
iteration to improve the quality of the alignment.

These available approaches can be classified into two broad categories:
probabilistic iterative algorithms and deterministic iterative algorithms. We
will briefly discuss them below.

12.3.5.1 Probabilistic Algorithms

We will discuss both the traditional probabilistic optimization appro-
aches like genetic algorithm and relatively recent approaches based on
Bayesian idea.
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12.3.5.1.1 Simulated Annealing and Genetic Algorithm

Simulated annealing (SA) and genetic algorithm (GA) are very popular
stochastic methods for solving complex optimization problems. Although
they are often viewed as separate and competing paradigms, both of them
are iterative algorithms which search for new solutions near to already
known good solutions. The fundamental difference between SA and GA is
that SA performs a local move only on one solution to create a new solution
whereas GA also creates solutions by combining information from two dif-
ferent solutions. Performance comparison between SA and GA varies with
the problem and representation used.

The algorithms start with an initial alignment and alignment score is
taken to be the objective function [Notredame and Higgins, 1996]. Various
operations like mutation, insertion, and substitution constitute the local
move which are used to get new solution from existing ones. Flexibility
in scoring systems and ability to correct for errors introduced during early
phase make these approaches desirable [Kim et al., 1994].

12.3.5.1.2 Hidden Markov Model and Gibbs Sampler

Hidden Markov Model (HMM) and Gibbs Sampler are relatively recent
approaches which views MSA in a statistical context. Both of them use
the central Bayesian idea of simultaneously maximizing the data and
the model. Gibbs Sampler finds motifs using local alignment techniques
[Lawrence et al., 1993]. It is essentially similar to HMM with no insert and
delete states.

HMM is a statistical model based on Markov process, which has gained
importance in various fields, related to pattern recognition. It determines
the hidden parameters of the system based on the observable parameters
of the model. For MSA, HMM consists of three types of states: match
states, insert states, and delete states [Krogh et al., 1994]. Each state has
its own emission probability of nucleotides and transition probability to
other states. The standard expectation-maximization (EM) algorithm or gra-
dient descent algorithms are used to train the model and evaluate the
parameters.

Although HMM has been successfully used in other areas, it faces
a lot of challenges. There need to be some minimum number of seq-
uences (approximately 50) required to train the model and HMM can
be easily trapped in local optima like other hill-climbing approaches
[Hughey and Krogh, 1996].

12.3.5.2 Deterministic Algorithms

A deterministic iterative algorithm starts with an initial alignment and
then attempts to improve it. This helps in overcoming the drawback
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of progressive alignment strategy where partial alignments are frozen
[Barton and Sternberg, 1987]. Typical schema is as follows:

� Given N sequences S1, S2, . . . , SN , find alignment A.
� Remove sequence S1 from alignment A and realign it to the profile

of other aligned sequences S2, . . . , SN to get new alignment A′.
� Calculate the score of the new alignment A′ and if better, replace A

by A′.
� Remove sequence S2 from A′ and realign it. Continue this procedure

for S3, . . . , SN .
� Repeat the realignment steps until alignment score converges or

number of iterations reaches the user specified limit.

Many iteration strategies which enable very accurate alignments have
been developed [Wallace et al., 2005]. The aim is to reduce the greedy
nature of the algorithm and avoid getting trapped in a local optima. One
approach is to remove and realign every sequence to the rest in each iter-
ation. Then, the alignment with the best score is taken to be the input for
the next iteration. The other famous approach is to randomly split set of
sequences into two sets, which are then realigned.

Some researchers have incorporated the iterative strategy in progressive
alignment procedure itself. For instance, a double iteration loop has been
used to make the alignment, guide tree, and sequence weights mutually
consistent [Gotoh, 1996]. Recently, Chakrabarti et al. (2006) have developed
an approach which provides a fast and accurate method for refining existing
block-based alignments.

12.4 Novel Graph–Theoretical-Based Genomic
Models

In this section, we present our research effort of a novel graph–theoretical
approach for representing a wide variety of genomic sequence analysis
problems within a single model [Lee et al., 2006]. The model allows incorp-
oration of the operations—insertion, deletion, and substitution, and various
parameters, such as relative distances and weights. Conceptually, we refer
the problem as the minimum weight common mutated sequence (MWCMS)
problem. The MWCMS model has many applications, including multiple
sequence alignment problem, the phylogenetic analysis, the DNA sequenc-
ing problem, and sequence comparison problem, which encompass a core
set of very difficult problems in computational biology. Thus, the model
presented in this section lays out a mathematical modeling framework that
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allows one to investigate theoretical and computational issues, and to forge
new advances for these distinct, but related problems.

DNA sequencing refers to determining the exact order of nucleotide
sequences in a segment of DNA. This was the greatest technical challenge in
the Human Genome Project. Achieving this goal has helped reveal the esti-
mated 30,000 human genes that are the basic physical and functional units
of heredity. The resulting DNA sequence maps are being used by scientists
to explore human biology and other complex phenomena.

The structure of a DNA strand (sequence) is determined by exper-
imentation. Typically, short sequences are determined to be in the
strand, and the identified short sequences are then connected to form
a long sequence. Recent advances attempting to identify DNA strand
structure involve sequencing by hybridization [Bains and Smith, 1988]
[Idury and Waterman, 1995]. Sequencing by hybridization is the process
where every possible sequence of length n (4n possibilities) is compared
to a full DNA strand. Practical values for n are 8–12. Each short string either
binds or does not bind to the full strand. Biologists can thus determine exa-
ctly which short strings are contained in the DNA strand and which are not.

However, the experiment does not identify the exact location of each
short string in the full strand. Hence, an important issue involves how these
short strings are connected together to form the complete strand. This prob-
lem can be viewed as a shortest common superstring problem and has been
studied extensively [Maier and Storer, 1977] [Garey and Johnson, 1979]
[Gallant et al., 1980]. Unfortunately, errors may arise during sequencing
experiments. Three types of errors are deletions (a letter appears in an
input string that should not be in the final sequence), insertions (a letter is
missing from an input string), and substitutions (a letter in an input string
should be substituted with another letter). The MWCMS problem can be
used to model and solve this shortest common superstring problem while
addressing the issue of possible errors.

Sequence comparison is one of the most crucial problems faced by
researchers in the area of bioinformatics. The sequence patterns are con-
served during evolution. Given a new sequence, it will be of interest to
understand how much similarity it has with preexisting sequences. Signifi-
cant similarity between two sequences implies similarities in their structure
or function. There are many DNA databases containing DNA sequences
and their function. The major ones are GenBank in the United States and
the EMBL data library in Europe. If one finds a new sequence similar to
existing ones in these databases, one can transfer information about the
function and structure [Waterman, 1995]. Hence, an algorithm for sequence
comparison which is efficient for large number of sequences will play a
pivotal role in rapid sequence analysis. The MWCMS problem can be used
to address this issue.
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12.4.1 Definitions
Our motivation for first defining the problem arose from the desire to help
quantify the concept of best representative sequence in the evolutionary
distance problem. The evolutionary distance problem involves finding
the DNA sequence of the most likely ancestor associated with a given set
of DNA sequences from distinct but similar organisms. In other words,
find the DNA strand that best represents a possible ancestor, if each of
the organisms evolved from the same ancestor. Changes that contribute
to differences between the given sequences and the ancestor are referred
to as insertions, deletions, and substitutions. These operations account
for both evolutionary mutations and experimental errors in sequenc-
ing. Mathematically, given two sequences S and B, let ord(S , B) be an
ordered collection of insertions, deletions, and substitutions to convert
sequence S to B. (For any two sequences S and B, there are an infinite
number of collections ord(S , B).) Let w(ord(S , B)) be the weight of the
conversion from S to B, where the weight is the sum of an expression
involving values η, δ and ψ ∈ �+ which represent the weights associ-
ated with a single insertion, deletion, and substitution, respectively. Let
ord∗(S , B) be such that w(ord∗(S , B)) ≤ w(ord(S , B)) for all ord(S , B).
Define d(S , B) = w(ord∗(S , B)). Formally, MWCMS can be stated as

Problem MWCMS: Given positive weights η, δ and ψ corresponding to a
single insertion, deletion, and substitution, respectively, a positive threshold
κ , and finite sequences S1, . . . , Sm from a finite alphabet, does there exist a
sequence B such that

∑m
i=1 d(Si , B) ≤ κ?

We have defined the MWCMS problem—which incorporates the notions
of insertion, deletion, and substitution—to help quantify the concept of best
representative sequence in the evolutionary distance problem. We now
make precise the operations of insertion, deletion, and substitution. Let
S = {s1, . . . , sn} be a finite sequence of letters from a finite alphabet.

1. An insertion of an element x in position i of the sequence S is
characterized by the addition of x between elements si and si+1. An
insertion carries an associated penalty cost of η.

2. A deletion of an element in position i of S amounts to deleting si

from the sequence S . The penalty for deletion is represented by δ.
3. A substitution of an element in position i of S amounts to replacing

si with another letter from the alphabet. The penalty for substitution
is represented by ψ .

We remark that a penalty cost for an operation could, more generally,
depend on the position where the operation is performed or the element
to be inserted/deleted/substituted.
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Let S1 = {s11, . . . , s1m} and S2 = {s21, . . . , s2n} be two finite sequences of
letters from a finite alphabet �. We say that the relative distance between
elements s1i and s2j is k if |i − j| = k. We define a k-restrictive bipar-
tite graph as a graph Gk = (V1, V2, Ek) such that the nodes in V1 and
V2 correspond respectively to each of the elements from the first and
the second sequences. We assume the nodes in Vi are ordered in the
same order as they appear in the sequence Si . There is an edge bet-
ween nodes u ∈ V1 and v ∈ V2 if u and v are identical (i.e., same letter
of the alphabet �) and if the relative distance between these two ele-
ments is less than or equal to k. The problem of identifying the greatest
similarity between these two sequences can then be approached as the
problem of finding a maximum cardinality matching between the asso-
ciated node sets, subject to restrictions on which matchings are allowed.
In particular, one must take into consideration the ordering of nodes
so as to preserve the relative occurrence of the elements in the match-
ing. In addition, matchings that have edge crossings must be prevented.
When k = max{|S1|, |S2|} − 1, we denote the graph by G = (V1, V2, E),
and the problem is equivalent to the well-studied longest common sub-
sequence (LCS) problem for two sequences, which is polynomial-time
solvable [Garey and Johnson, 1979].

12.4.2 Construction of a Conflict Graph from Paths
of Multiple Sequences

Let Si , i = 1, . . . , m, be a collection of finite sequences, each of length n,
over a common alphabet �. Let Gk = (V1, . . .Vm, E1, E2, . . . , Em−1) be the
k-restrictive multilayer graph in which each element in Si forms a distinct
node in Vi . Assume the nodes in Vi are ordered in the same order as they
appear in the sequence Si . Ei denotes the set of edges between nodes in Vi

and Vi+1. There is an edge between nodes u ∈ Vi and v ∈ Vi+1 if and only
if u and v are the same letter in the alphabet �, and the relative distance
between them is less than or equal to k. The multiple sequence comparison
problem involves finding the LCS within the sequences Si , i = 1, . . . , m.
We call a path P = p1, p2, . . . , pm a complete path in Gk if pi ∈ Vi and
pipi+1 ∈ Ei . Two complete paths are said to be parallel if their node sets
are disjoint and the edges do not cross. Hence, a set of parallel complete
paths in Gk corresponds to a feasible solution to LCS on the collection
of sequences Si , i = 1, . . . , m. We say that two complete paths P1, P2

cross if they are not parallel. We remark that the LCS problem with the
number of sequences bounded, is polynomial-time solvable using dynamic
programming [Garey and Johnson, 1979]. In general, the problem remains
NP-complete.
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We can incorporate insertions by generating new paths which include
inserted nodes on various layers. The weight for such a new path will be
affected by the total number of insertions in the path. In particular, if L
is a common subsequence for Si and |Si| = n for all i = 1, . . . , m, then
the total number of unmatched elements remaining will be m(n − |L|).
These elements can be deleted completely, or for a given unmatched ele-
ment, one can increase the size of L by 1 by appropriately inserting this
element into various sequences. By doing so, the number of unmatched
elements decreases. Let l be the number of insertions needed to generate a
new complete path. Then the number of unmatched elements will decrease
by m− l. If we assume that at the end of the sequencing process all unmat-
ched elements will be deleted, then the penalty for generating this new
complete path will be given by lη − (m− l)δ.

We next define the concept of conflict graph relative to complete paths
in Gk .

DEFINITION 1. Let P = {P1, . . . , Ps} be a finite collection of complete paths
in Gk. The conflict graph CP = (VP , EP) associated with P is constructed
as follows:

� VP = {P1, . . . , Ps}.
� There is an edge between two nodes Pi and Pj in VP if and only if

Pi and Pj cross each other.

This definition applies to any multilayer graph in general. Note that any
stable set of nodes in CP corresponds to a set of parallel complete paths for
Gk , and thereby to a feasible solution to LCS on the collection of sequences
Si , i = 1, . . . , m.

We remark that when m = 2, the resulting conflict graph is weakly
triangulated, and thus is perfect. For m > 2, the conflict graph can contain
an antihole of size 6. However, these complete paths can be viewed as
continuous functions on the interval 0–1, thus by construction, CP is perfect
[Golumbic et al., 1983].

12.4.3 Complexity Theory
Recall that the notation ord(S , B), w(ord(S , B)), ord∗(S , B), and the formal
definition of problem MWCMS were given in Section 12.4.1. As an opti-
mization problem, MWCMS can be stated as follows. Given a set of input
sequences, problem MWCMS seeks to mutate every input sequence to the
same a priori unknown sequence using the operations of insertion, dele-
tion, and substitution; weights are assigned for each operation, and the
total weight associated with all mutations is to be minimized. Levenshtein
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first considered a special case of this problem by changing a single input
sequence to another sequence using insertions, deletions, and substitutions
[Levenshtein, 1966]. Our study involves changing multiple input sequences
to arrive at an a priori unknown common sequence.

Given positive weights η, δ, and ψ corresponding, respectively to inser-
tions, deletions, and substitutions and any two sequences S and B, clearly
any ord∗(S , B) will never contain more than |B| insertions or substitutions.
Proving that MWCMS is in NP is not obvious. While one can transform
MWCMS to special applications (as described in beginning of Section 12.4)
to conclude that it is in NP, here we prove it directly for the general case.
One needs to be able to evaluate d(S , B) in polynomial time for any two
sequences S and B. We next construct a graph that can be used to estab-
lish the existence of a polynomial-time algorithm for obtaining d(S , B). The
constructs and arguments used here typify those used to establish many of
the results presented in this paper. It is noteworthy that the notions of both
conflict graph and perfect graph come into play.

Let � be a finite alphabet, and define �-cross to be a directed bipartite
graph consisting of |�| vertices in each bipartition such that each vertex in
the bipartition represents a distinct element in �. There is an arc between
two vertices if the vertices correspond to the same element in �, and the
geometric layout is rigidly constructed so that every arc crosses every other
arc. This graph will be used as a supernode for insertion and substitution
operations in our model. Figure 12.8 shows an example for �-cross when
� = {A, C, G, T}.

We now construct a 3-layer supergraph, GL, using the sequences S
and B along with the �-cross graphs. Layers 1 and 2 consist of exactly
|B|(|S| + 1) + |S| �-crosses. The first |B| �-crosses represent potential

T
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C

A

A

C

G

T

Figure 12.8 An example of
∑

-cross when
∑ = {A, C, G, T}.
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insertions before the first letter in S . The next �-cross represents either
the first letter of S or a substitution of this letter. The next |B| �-crosses
represent potential insertions between the first and second letters of S . And
this is followed by a �-cross representing either the second letter of S or a
substitution of this letter. This continues for each letter in S with the final
|B| �-crosses representing up to |B| insertions after the last letter in S . Each
�-cross is called either an insertion supernode or a substitution supernode,
according to what it represents. The weight of all of the arcs in an inser-
tion supernode is η. An arc in a substitution supernode has weight −δ if
the arc represents the original letter in the sequences, or ψ − δ if the arc
represents a substitution of the original letter. Layer 3 consists of the ver-
tices represented by B. A vertex in layer 2 is connected to a vertex in layer
3 if they have the same letter. The weight of every arc between layers 2
and 3 is M ≤ −(η + δ + ψ). A sample of a 3-layer supergraph is given in
Figure 12.9. The bold arcs are used to denote the original letters in S (the
weight of these arcs is −δ). For simplicity, we omit the first two insertion
supernodes before the first letter G. The first supernode thus represents
the letter G from the original sequence which allows for substitution. The
second and third supernodes correspond to insertion supernodes, and the
fourth supernode corresponds to the letter C and allows substitution as
well. There are two more insertion supernodes which are omitted from the
graph.

The main step in proving d(S , B) to be polynomial-time solvable for
any sequences S and B involves the use of the conflict graph as defined
in Definition 1. We state some preliminary theoretical results below. Detail
proofs can be found in Lee et al. (2006).

LEMMA 1. The following statements are equivalent:

(i) There exists a conversion from S to B using no more than a total of
|B| insertions or substitutions.

(ii) There exists a set of noncrossing complete paths in the associated
3-layer supergraph GL of size |B|.

(iii) There exists a node packing of size |B| in the associated conflict
graph C.

LEMMA 2. Calculating d(S , B) for any sequences S and B can be accom-
plished in polynomial time.

The 3-layer supergraph can be generalized to multilayer when mul-
tiple sequences are considered. Clearly, such multilayer supergraphs are
much too large for practical purposes, yet polynomiality is preserved in the
construction, and it is therefore sufficient. We can now arrive at the result
that MWCMS is in NP .
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Figure 12.9 An example of the 3-layer supergraph for converting the sequence
S = GC to B = TC. Bold arcs are used to denote the original letters in S (the weight
of these arcs is −δ). For simplicity, we omit the first two insertion supernodes
before the first letter G. The first supernode in this figure thus represents the letter
G from the original sequence which allows for substitution. The second and third
supernodes correspond to insertions, and the fourth supernode corresponds to the
letter C and allows substitution as well. There are two more insertion supernodes
which are omitted from the graph.
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THEOREM 1. MWCMS is in NP .

To prove that MWCMS is polynomial-time solvable when the number
of input sequences is bounded by a positive constant, the following lemma
is crucial, though trivial.

LEMMA 3. Given η, δ, ψ ∈ �+, an optimal solution B to any MWCMS
problem has the following properties. B has no substitutions from letters
other than the original letters in an Si, and B will never have an element
which is inserted in every sequence (in the same location). Therefore, there
are at most

∑m
i=1 |Si| insertions in any sequence.

In addition, we also require the construction of a (directed) 2m-layer
supergraph, Gm

L , similar to the 3-layer supergraph, GL.
Given sequences S1, . . . , Sm, generate a 2m-layer (directed) graph Gm

L =
(V , E) as follows. Layers 2i − 1 and 2i consist of (

∑m
j=1 |Sj |)(|Si| + 1)+ |Si|

copies of �-crosses for i = 1, . . . , m, constructed in exactly the same man-
ner as layers 1 and 2 of the 3-layer supergraph using the input sequence Si .
The first

∑m
j=1 |Sj | �-crosses represent the possibility that

∑m
j=1 |Sj | differ-

ent letters can be inserted before the first element in Si . The next �-cross
corresponds to either the first letter in Si or a substitution of this letter.
This is repeated |Si| times (for each letter in Si), and the final

∑m
j=1 |Sj |

�-crosses represent insertions after the final letter in Si . Thus, the first∑m
j=1 |Sj | �-crosses represent the insertion supernodes, followed by one

�-cross representing a letter in Si or a substitution supernode, and so forth.
An arc exists from a vertex in layer 2i to a vertex in layer 2i+1 if the vertices
correspond to the same letter. Observe that Gm

L is an acyclic directed graph
which is polynomial in the size of the input sequences. Assign every arc bet-
ween layers 2i and 2i+1 a weight of 0. There are three different weights for
arcs between layers 2i−1 and 2i each corresponding to an insertion, dele-
tion, or substitution. The assignment of weights on such arcs is analogous
to the assignment in GL: a weight of η is assigned to every arc contained in
an insertion supernode; and an arc in a substitution supernode is assigned
a weight of −δ if it corresponds to the original letter, or ψ − δ, otherwise.

Figure 12.10 shows a sample graph for two sequences: S1 = GC and
S2 = TG. Observe that at most two insertions are needed in an optimal
solution; thus we can reduce the number of �-crosses as insertion super-
nodes from

∑2
i=1 |Si| = 4 to 2. For simplicity, in the graph shown in Figure

12.10, we have not included the two insertion supernodes before the first
letter nor those after the last letter of each sequence. Thus, in the figure,
the first �-cross represents the substitution supernode associated with the
first letter in S1. The second and third �-crosses represent two insertion
supernodes. And the last �-cross represents the substitution supernode
associated with the second letter in S1. For simplicity, we include only arcs
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Figure 12.10 A sample graph Gm
L of MWCMS with S1 = GC to S2 = TG where∑ = {A, C, G, T}.

connecting vertices associated to the element G between layers 2 and 3.
The arcs for other vertices follow similarly.

A conflict graph C associated with Gm
L can be generated by finding all

complete paths (paths from layer 1 to layer 2m) in Gm
L . These complete
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paths correspond to the set of vertices in C, as in Definition 1. If we assign
a weight to each vertex equal to the weight of the associated complete
path, then the following result can be established.

THEOREM 2. Every node packing in C represents a candidate solution to
MWCMS if and only if at most

∑m
i=1 |Si| letters can be inserted between any

two original letters. Furthermore, the weight of the node packing is equal to
the weight of the MWCMS−∑m

i=1 |Si|δ.
The supergraph Gm

L and its associated conflict graph are fundamental
to our proof of the following theorem on polynomial-time solvability of a
restricted version of problem MWCMS.

THEOREM 3. Problem MWCMS restricted to instances for which the number
of sequences is bounded by a positive constant is polynomial-time solvable.

12.4.4 Special Cases of MWCMS
MWCMS encompasses a very broad class of problems. In computational
biology as discussed in this chapter, first and foremost, it represents a model
for phylogenetic analysis. MWCMS as defined is the most likely ancestor
problem, and the concept of 3-layer supergraph as described in Section
12.4.3 describes the evolutionary distance problem. An optimal solution to
a multiple sequence alignment instance can be found using the solution
of the MWCMS problem obtained on the 2m-layer supergraph, Gm

L . The
alignment is the character matrix obtained by placing together the given
sequences incorporating the insertions into the solution of the MWCMS
problem. Furthermore, DNA sequencing can be viewed as the shortest
common superstring problem, although sequence comparison of a given
sequence B to a collection of N sequences S1, . . . , SN is the MWCMS prob-
lem itself.

Broader than the computational biology applications, special cases of
MWCMS include shortest common supersequences (SCSQ), LCS, and short-
est common superstring (SCST); these problems are of interest in their own
right as combinatorial optimization problems and for their role in complex-
ity theory.

12.4.5 Computational Models: Integer Programming
Formulation

The construction of the multilayer supergraphs described in our theo-
retical study lays the foundation and provides direction for compu-
tational models and solution strategies that we will explore in future
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research. Although the theoretical results obtained are polynomial time in
nature, they present computational challenges. In many cases, calculating
the worst-case scenario is not trivial. Furthermore, the polynomial-time
result of a node-packing problem for a perfect graph by Grötschel et al.
Grötschel et al. [1984] Grötschel et al. [1988] is existential in nature, and
relies on the polynomial-time nature of the ellipsoid algorithm. The pro-
cess itself involves solving an IP relaxation multiple times. In our case, the
variables of the IP generated are the complete paths in the multilayer super-
graph, Gm

L . Formally, the integer program corresponding to our conflict
graph can be stated as follows:

Let xp be the binary variable denoting the use or nonuse of the complete
path p with weight wp. Then the corresponding node-packing problem is

Min
∑

wpxp

s.t. xp + xq ≤ 1 if complete paths p and q cross

xp ∈ {0, 1} for all complete paths p in Gm
L . (MIP1)

We call the inequality xp + xq ≤ 1 an adjacency constraint. A natural
approach to improve the solution time to (MIP1) is to decrease the size
of the graph Gm

L and thus the number of variables. Reductions in the size
of Gm

L can be accomplished for SCST, LCS, and SCSQ problems. Among
these three problems, the graph Gm

L is smallest for LCS. In LCS, all insertion
and substitution supernodes can be eliminated.

Our theoretical results thus far rely on the creation of all complete paths.
Clearly, the typical number of complete paths will be in the order of nm,
where n = max |Si|. In this case, an instance with three sequences and 300
letters in each sequence generates more than one million variables. Hence,
an exact formulation with all complete paths is impractical in general. A
simultaneous column and row generation approach within a parallel imple-
mentation may lead to computational advances related to this formulation.

An alternative formulation can be obtained by examining Gm
L from a

network perspective using arcs (instead of complete paths) in Gm
L as vari-

ables. Namely, let xi,j denote the use or nonuse of arc (i, j) in the final
sequence with ci,j the cost of the arc in Gm

L . The network formulation can
be stated as

Min
∑

(i,j)∈E

ci,jxi,j

s.t.
∑

i:(i,j)∈E

xi,j =
∑

k:(j ,k)∈E

xj ,k for all j ∈ V in layers 2, . . . , 2m− 1



Lim/Optimization in Medicine and Biology AU0563_C012 Final Proof Page 386 9.11.2007 04:33pm

386 Optimization in Medicine and Biology

xi,j + xk,l ≤ 1 for all crossing arcs (i, j) and (k, l) ∈ E

xi,j ∈ {0, 1} for all (i, j) ∈ E (MIP2)

The first set of constraints ensures flow in equals flow out in all vertices
contained in sequences 2, . . . , m − 1 (complete paths). The second set of
constraints ensures that no two arcs cross each other. This model grows
linearly in the number of sequences. This alternative integer programming
formulation is still large, but is manageable for even fairly large instances.

Utilizing a collection of DNA sequences (each with 40,000 base pairs in
length) from a bacteria, and a collection of short sequences associated with
genes found in breast cancer patients, computational tests of our graph–
theoretical models are underway. We seek to develop computational strate-
gies to provide reasonable running times for evolutionary distance problem
instances derived from these data. In an initial test, when three sequences
each with 100 letters are used, the initial linear program requires more than
10,000 seconds to solve when tight constraints are employed (in this case,
each adjacency constraint is replaced by a maximal clique constraint). Our
ongoing computational effort will focus on developing and investigating
solution techniques for practical problem instances, including those based
on the above two IP formulations, as well as development of fast heuristic
procedures.

In Lee et al. (2006), we outline a simple yet practical heuristic based
on (MIP2) that we developed for solving the multiple sequence alignment
problem; and we report on preliminary tests of the algorithm using different
sets of sequence data. Motivation for the heuristic is derived from the desire
to reduce computational time through various strategies for reducing the
number of variables in (MIP2).

12.5 Summary
Multiple sequence alignment and phylogenetic analysis are deeply inter-
connected problems in computational biology. A good multiple alignment
is crucial for reliable reconstruction of the phylogenetic tree
[Phillips et al., 2000]. On the other hand, most of the multiple alignment
methods require a phylogenetic tree as the guide tree for progressive
iteration.

Thus, the evolutionary tree construction might be biased by the
guide tree used for obtaining the alignment. To avoid this pitfall, vari-
ous algorithms have been developed which simultaneously find align-
ment and phylogenetic relationship among given sequences. Sankoff
and Cedergren (1983) developed a parsimony-based algorithm using a
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character-substitution model of gaps. The algorithm is guaranteed to find
evolutionary tree and alignment which minimizes tree-based parsimony
cost. Hein (1989) also developed a parsimony-type algorithm but uses an
affine gap cost which is more realistic than the character-substitution gap
model. This algorithm is also faster than Sankoff and Cedergreen’s approach
but makes simplifying assumptions in choosing ancestral sequences.

Like parsimony methods for finding a phylogenetic tree, both of the
above approaches require search over all possible trees to find the global
optimum. This makes these algorithms computationally very intensive.
Hence, there has been a strong focus on developing an efficient algo-
rithm that considers both alignment and tree. Vingron and Haeseler (1997)
have developed an approach based on three-way alignment of pre-aligned
groups of sequences. It also allows change in the alignment made early
in the course of computation. Many softwares, like MEGA, are trying to
develop an efficient integrated computing environment that allows both
sequence alignment and evolutionary analysis [Kumar et al., 2004].

We address this issue of simultaneously finding alignment and phylo-
genetic relationships by presenting a novel graph–theoretical approach.
Indeed, our model can be easily tailored to find theoretically provable
optimum solutions to a wide range of crucial sequence analysis prob-
lems. These sequence analysis problems are proven to be NP-hard, and
thus understandably present computational challenges. To strike a balance
between time and quality-of-solution, a variety of parameters are provided.
Ongoing research efforts explore development of efficient computational
models and solution strategies in a massive parallel environment.
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Abstract There is a direct correlation between the cost and efficiency
of hybridization experiments and the quality of the probes used in the
experiments. Many factors must be considered in designing and selecting
probes for use in experiments and these factors are generally dictated by the
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primary goals of the experiment. In this chapter, we focus on computational
methods for the design and selection of probes. We consider properties of
probes such as the melting temperature, specificity, existence of secondary
structures, and probe length. We also discuss various algorithms and soft-
ware packages that have been developed to aid in the design and selection
of probes.

13.1 Introduction
The discovery of the structure of DNA in the 1950s is attributed to James
Watson, Francis Crick, Maurice Wilkins, and Rosalind Franklin. Watson,
Crick, and Wilkins were awarded the 1962 Nobel Prize for Physiology or
Medicine for their work. Rosalind Franklin had died in 1958. Not long after
their results were made public, it was shown that the two strands of the
double helix could be separated by the appropriate application of heat or
solvent [24]. The reconstitution to double-stranded molecules is referred
to as renaturation or hybridization and was first described by Marmur and
Doty [17]. These discoveries and the property of sequence complementar-
ity, which we will discuss shortly, form the basis of the methods used to
analyze DNA and RNA [24].

DNA is a long polymer of nucleotides. Each nucleotide consists of
a 5-carbon sugar, one phosphate group, and a nitrogen containing base
attached to the sugar. The nucleotides are symbolized by four letters iden-
tifying their bases adenine (A) and guanine (G) (Figure 13.1), and cyto-
sine (C) and thymine (T) (Figure 13.3).

When nucleotides are chained together by a phosphodiester bond, they
form a DNA strand. The ends of the DNA strand are numbered by the
carbon atom position where the next nucleotide can be attached. The 5′

end contains a phosphate group. The 3′ position of the nucleotide at the
3′ end is free for appending to the next nucleotide. DNA sequences are
always read from the 5′ end to the 3′ end [3].

Adenine (A) Guanine (G)

NH2
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NN

N
C

C
CH
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H2N
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Figure 13.1 The purine bases are adenine and guanine.
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Figure 13.2 Complementary DNA strands.

The DNA molecule consists of two complementary strands, with ade-
nine opposite thymine, and cytosine opposite guanine (Figure 13.2). One
strand goes in direction from 5′ to 3′ while the other goes from 3′ to 5′ [3].
This pairing is referred to as Watson–Crick base pairing.

RNA differs from DNA in that it is almost always single stranded, and
consists of the bases adenine, cytosine, guanine, and uracil. That is, the base
thymine is replaced by uracil (U). Uracil is complementary to adenine [12].

Biologists can use hybridization to determine whether a specific DNA
fragment is present in a DNA solution. They often use oligonucleotide
probes. Oligonucleotide probes are short pieces of single-stranded DNA

Cytosine (C) Thymine (C) Uracil (U)
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Figure 13.3 The pyrimidine bases are cytosine, thymine, and uracil.
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that have a known sequence that is complementary to the DNA fragment
in question. The probes have either a fluorescent or radioactive tag with
fluorescent tags being more common [12]. In general, the biologist would
apply the appropriate amount of heat or solvent to separate the strands
of the unknown DNA, then put the DNA in contact with the probes and
allow them to reconstitute. By observing whether a known probe hybridizes
to the unknown DNA fragment, a biologist can determine the presence or
absence of the complementary sequence. RNA can also be probed to see
if a gene is on or off [12]. In 1979, synthetic oligonucleotide probes were
introduced for use as hybridization probes [24]. Throughout this chapter, the
term probe will be used to refer to nucleic acids of known sequence, and
the term target will refer to the unknown sequence or set of sequences.

Microarrays allow for large-scale gene expression measurements. A
microarray consists of a surface such as a glass slide or membrane that is
spotted with DNA fragments or oligonucleotides to form an array
(Figure 13.4). The value of microarrays lies in the fact that because there
can be many thousand DNA molecules per array, the expression of many
thousands of genes can be measured simultaneously. There are a number
of microarray platforms that have been developed. Two commonly used
platforms are oligonucleotide and cDNA [30].

Figure 13.4 Microarray.
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Once a microarray is created, a solution containing a labeled target
nucleic acid sample is brought into contact with the substrate. Probes
on the array hybridize to the target if there is a segment of the target
sample that is Watson–Crick complementary to the probe. After some time,
the substrate is washed to remove unbound and weakly bound target
oligonucleotides from the sample. The microarray is scanned after the
remaining target molecules have been stained with a fluorophore. The
expression levels are then measured based upon detection of the fluo-
rescent signal [10,30].

The focus of this chapter is on computational approaches for the optimal
design and selection of probes.

13.1.1 Applications
There are many applications in biology that involve the use of probes. Here
we discuss a few of those applications. One such application is sequencing
by hybridization (SBH).

In 1987, Drmanac and Crkvenjakov applied for a patent for a method
they had developed as an alternative approach for DNA sequencing. The
method involved the use of hybridization data from a probe set containing
overlapping probes to reconstruct complex DNA sequences. The method is
referred to as SBH [24]. In this procedure, microarrays are created in which
each cell contains a distinct known probe. The array is then brought into
contact with a solution containing many copies of the target DNA that is to
be sequenced. Each of the copies will have been tagged with a fluorescent
or radioactive marker. As described in Section 13.1, probes on the array
hybridize to the target if there is a segment of the target that is Watson–
Crick complementary to the probe. After all of the DNA copies that have
not hybridized are washed off the array, the subset of probes that hybridize
to the target, called the spectrum of the sequence, is identified by observing
which cells of the array are tagged. The spectrum is then used to reconstruct
the DNA sequence by a combinatorial sequencing algorithm [5,8,9].

The first SBH design required chips that contained all 4k strings of length
k. The problem was reduced to finding a Eulerian path on a directed graph.
Since then, several new approaches have been proposed.

In another application, diagnostic probes can be designed to detect
bacterial infections. Given DNA sequences from a group of closely related
pathogenic bacteria, the idea is to find a string that is a substring of each
of the bacterial sequences without being a substring of the host’s DNA
sequence. Probes are designed to hybridize to these substring (target)
sequences. The probes can then be used to detect the presence of at least
one of the bacterial species [15].
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Rash and Gusfield addressed the string barcoding problem in Ref. [25].
They developed a method to find a probe set of minimal cardinality for use
in the detection of viral-size pathogens. We discuss the Rash and Gusfield
paper in Section 13.2.5.1.

Antisense oligonucleotides are short synthetic oligonucleotides that
are designed to hybridize to RNA. Once they bind to the target RNA,
these oligonucleotides prevent expression of the encoded protein prod-
uct. There are complicated challenges involved in the process; however,
antisense oligonucleotides do show promise as therapeutic agents for the
treatment of human diseases [32].

Sung and Lee cite an example in Ref. [31] in which DNA microarrays can
be used to help identify the presence of alternate forms of, or an irregular
expression in, a gene that results in resistance to chemotherapy.

These are just a few of the applications that involve the use of probes.
It is clear that the optimal design and selection of probes serves a valuable
function in many diverse areas.

13.2 Probe Design and Selection
In designing probes for use in experiments, it is necessary to consider
many issues in addition to the Watson–Crick base pairing. For instance, it is
important to design probes that will hybridize under the same conditions
as the target sample. Probe length, as well as the composition and order
of the bases in the sequence, is also an important factor to consider. The
objective of the experiment in which the probes are to be used is of primary
importance in determining the probe design and selection strategy. In all
cases, good quality probes have the following three properties: specificity,
sensitivity, and homogeneity [30,31,33].

13.2.1 Specificity
Specific probes are unique to each gene in the genome. They will return
a weak signal when their Watson–Crick complement is not present in the
sample. Specificity minimizes cross-hybridization of probes to other targets.
If probes are not sufficiently specific, false positive results are more likely to
occur due to nonspecific cross-hybridization. A false positive result occurs
when probes are expected not to bind with a clone but the signal intensity
is high. Oligonucleotide microarrays are not as prone to cross-hybridization
of one probe to multiple targets as cDNA microarrays are [30,31].

In Ref. [31], Sung and Lee discuss the application of filters in their Find-
Probe algorithm to select the best probes. To determine if a probe is specific
enough, they check the Hamming distance between a probe and every
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subsequence in the genome. They define the Hamming distance of two
strings s and t to be the number of positions where the characters at cor-
responding positions of the two strings differ. To be accepted as a valid
candidate probe, the Hamming distance must be greater than a given con-
stant. A naive approach would require a scan through the entire length-n
genome for every length-m probe to determine the Hamming distance.
Such an approach would take O(mn2) time. Sung and Lee instead employ
the Pigeonhole Principle to reduce running time [31].

As mentioned, specificity minimizes cross-hybridization. Probes con-
taining low-complexity sequences, i.e., repetitive sequences, should be
avoided because they are likely to cross-hybridize to other targets. Sev-
eral software programs have been developed for the design of probes.
RepeatMasker is a software that detects repeat sequences of all types. It
accepts as input a DNA or RNA sequence and returns the sequence with
repeats replaced by N’s. If designing oligonucleotide probes for use on
a microarray, one would avoid selecting probes in regions masked with
N’s [30].

A homology search algorithm identifies sequences in a selected database
that match part or all of a specific sequence referred to as the query
sequence. BLAST (Basic Local Alignment Search Tool) is commonly used to
search for similarities, but many other programs are also available. To use
BLAST to check potential probes, you would input the probe’s sequence as
the query sequence and then select a database containing other target genes
that you do not want to bind to the probe for comparison. The output pro-
duced by BLAST includes a hit list that tells the user if the input sequence is
similar to a sequence contained in the selected database. The hit list has a
bit score column that gives the statistical significance of the alignment. The
higher the bit score is, the more similar are the two sequences. In most
cases, the bit score is twice the length of the longest perfect alignment.
If several probes are being compared for use in a microarray, preference
is generally given to probes with lower bit scores. BLAST also has a low-
complexity filter [30].

Wang and Seed [34] developed a program called OligoPicker for the
selection of oligonucleotide probes for protein coding sequences. In their
selection scheme, they make the rejection of contiguous sequence identity
the primary filter, the reason being that they hypothesize that contiguous
base pairing is the single most-important determinant of cross-hybridization.
They use a hash table to quickly find repetitive sequence stretches of
10–20 m in length. They also screen probes based upon their BLAST scores
to reduce the likelihood of cross-hybridization due to global similarity. In
cases where sequences cannot be represented by a single unique probe,
probes are selected from regions that cross-hybridize to the smallest number
of other sequences in the sample universe [34].
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13.2.2 Sensitivity
Sensitive oligonucleotide probes return a strong signal when the Watson–
Crick complementary target is present in the sample. Probes that form sec-
ondary structures, i.e., probes that are self-complementary and can fold
back on themselves (Figure 13.5) or dimerize with neighboring identi-
cal probes, adversely affect sensitivity [30,31]. In fact, secondary structural
motifs in probes of length 20 m can reduce the hybridization signal up to
50-fold [14].

A DNA sequence that is identical to its reverse complement sequence,
such as TGCA, is referred to as a palindrome. Dan Gusfield describes
algorithms to identify palindromes in sequences in Ref. [8].

Secondary structure in both the probe and the target sequence can sig-
nificantly impair hybridization affinity [14]. Because the target sequence is
often unknown, detection of target secondary structure can be considerably
more challenging. A measure that is commonly used to predict the stability
of secondary structure in probes is Gibbs free energy [20].

Gibbs free energy describes the energy available to do work within a
system. It satisfies the equation G = H −TS , where H denotes enthalpy, T
denotes temperature in degrees Kelvin, and S denotes entropy. Enthalpy
is defined to be the sum of the internal energy plus the product of the
pressure and volume, and entropy is a measure of disorder or randomness.
Both enthalpy and entropy are state functions. For any process at constant
pressure and temperature, the change in free energy is given by �G =
�H − T�S [3]. The nearest-neighbor model is one method that is used
to calculate free energy. The method is considered to be computationally
feasible while still being sufficiently accurate.

Sung and Lee [31] give preference to probes with the highest free energy
in their FindProbe algorithm to ensure that the probes have minimal sec-
ondary structure. Their sensitivity filter eliminates probes determined to
have secondary structure. This determination is made in a single pass of
each probe where they check each length-x 3′ end of the probe to ensure
that there are no more than y consecutive complementaries with the 5′ end
of the probe [31].
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Figure 13.5 Probe TTTAGTCCATGTCCTAGGACTTTC could fold back on itself.
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A program called mfold is available to predict secondary structure of
DNA and RNA molecules from their sequence. It calculates thermodynamic
properties using the base-stacking model. Mfold accepts as input a DNA
or RNA sequence and returns, among other information, the free energy
calculations and drawings of folded input molecules [30].

Li and Stormo [16] developed a program called ProbeSelect to design
and select optimal DNA probes for gene expression arrays. Their approach
works in two major steps. The first step consists of finding, for each gene,
a set of candidate probes that will maximize the minimum number of mis-
matches to every other gene in the genome. The second step involves
selection based upon free energy. Optimal probes are selected so that they
have free energy for the intended target in an acceptable range, and a
maximum difference in free energy for every other mismatched target [16].

In 2006, Pozhitkov et al. [23] published results of experiments on
eukaryotic target sequences in which they compared current approaches
to predicting fluorescent signal intensities to actual intensities. Their results
did not support the use of thermodynamic properties to accurately predict
signal intensitiy values of duplexes with rRNAs on oligonucleotide DNA
microarrays. On the basis of their results, they recommended that thermo-
dynamic criteria not be used for the design of oligonucleotide probes for
species identification. They suggested instead that each probe be empiri-
cally verified to provide the best signal intensities [23].

13.2.3 Homogeneity
Isothermal or homogenous probes are selected so that they have melting
temperatures that are close to the experiment temperature. This enables
more uniform performance amongst all of the probes [31]. The melting
temperature, denoted Tm, is the temperature at which half the strands are
in the double-helical state and half are in the random-coil state [28]. The
salt concentration of the solution and the base composition of the DNA
both affect the melting temperature. DNA with many G–C pairs (high GC
content) has a higher melting temperature than DNA with more A–T pairs.
G–C pairs have three hydrogen bonds while A–T pairs have two hydrogen
bonds [20,21].

For self-complementary oligonucleotide duplexes, Tm is predicted using
the nearest-neighbor model as reported by SantaLucia in Refs. [28,29] by
the equation

Tm = �H o

�So + R log CT

where CT is the total oligonucleotide strand concentration and R is the molar
gas constant (1.987 cal/kmol). For non-self-complementary molecules, CT

is replaced by CT
4 [28,29].
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In Ref. [31], Sung and Lee calculate the melting temperature of each
probe p using a formula that is based on nearest-neighbor parameters but
has a slight variation:

Tm(p) = �H (p)

�S(p)+ R log (CT)
− 273.15+ 16.6 log (Na+)

where Na+ is the salt concentration of the solution. CT is replaced by CT
4

when the oligonucleotides are not self-complementary. �H (p) and �S(p)
represent the enthalpy and entropy for the helix formation of p, respec-
tively. They then calculate the optimal hybridization temperature Th of
p by

Th(p) = Tm(p)− 25− 0.62(CF)

where CF is the formamide concentration of the solution. Finally, Sung and
Lee require that the content of any single base do not exceed 50 percent [31].

Wang and Seed [34] require that the melting temperature of all probes
fall within a given narrow range. They calculate the median melting tem-
perature using the formula

Median = 64.0+ 41
gcCount

oligoLength
− 600

oligoLength

where gcCount is the number of Gs and Cs in the probe and the molar
sodium content is 0.1 M. Probe candidates are discarded if their melting
temperature is not within 5oC of the median [34].

In Ref. [30], it is noted that for determining the melting temperature and
the stability of a nucleic acid duplex, the base-stacking model, which bases
calculations on each base pair, supersedes the use of base composition.
The base-stacking model does implicitly include base composition (GC
content), but it is more complex because it also considers the order of the
bases in the sequence.

13.2.4 Probe Length
To distinguish between perfectly matched duplexes and single- or two-
base mismatches, short oligonucleotide probes are considered to be most
suitable. If short probes are used, it is, however, common to use several
different probes corresponding to a single gene to enhance the reliability
of the hybridization signal [33].

Long probes tend to have more reliable hybridization properties, but
the greater length increases the chance of nonspecific cross-hybridization.
Probes of length 50–60 show an improved specificity and sensitivity when
compared to shorter probes; however, they may not reliably distinguish
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single-base mismatches. In short, the intended application must be
considered when determining the best probe length [33].

Chou et al. [2] have studied the effect of varying probe length and the
number of probes per gene on microarray analysis. Their results suggest
that probes of length approximately 150 m are optimal for accurate microar-
ray measurement of gene expression. They also found that both short or
long probes worked well if either multiple probes were used for each gene,
or the probes were selected via validation by experimental hybridization [2].

13.2.5 Probe Selection Problems
In this section, we discuss several specific probe selection problems.

13.2.5.1 Oligonucleotide Fingerprinting

Oligonucleotide fingerprinting is a method for identification of cDNA or
genomic DNA sequences where a vector of numeric values is assigned to
the sequence according to hybridization signals obtained by hybridizing to
a set of short oligonucleotide probes [11]. In this section, we discuss several
papers whose focus is on the selection of probe sets for this application.

In Ref. [1], Borneman et al. discuss an application of microarrays in
which a single probe is applied to a DNA microarray containing a large
sample of rDNA sequences from the population being studied. This is quite
different from the procedure discussed in Section 13.1.1 where a microarray
contains a large number of probes. One use of this method is in the anal-
ysis of microbial communities where multiple experiments are performed
using a single probe for each experiment. Clearly, the number of experi-
ments and, as a result, the cost, are directly related to the number of probes
used [1].

The probe selection problem involves the selection of a set S of probes
of length l, which will be used to analyze a population C of m unknown
clones. In the problem addressed by Borneman et al. in Ref. [1], the
clones are approximately of length 1500 and the probes are of length
6–10.

A probe p is said to distinguish a pair of clones c and d if p is a substring
of exactly one of c or d. The goal is to select a minimal cardinality set of
probes such that each distinct pair of clones in C is distinguished by at least
one probe in S [1].

In a hybridization experiment, the fluorescence response is linear with
respect to the number of occurrences of the probe in a clone up to a certain
value R. Because of this, there are different versions of the distinguishability
criteria [1]. Borneman et al. consider two cases, R = 1 and R = 4, referred to
as binary and nonbinary distinguishability, respectively. For example, say
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c = ATTACATT and d = CAATTAGGT. If R = 1, then GGT distinguishes c
and d, but because ATT appears at least once in both c and d, it does not.
If, however, R = 4, ATT does distinguish between c and d.

For a given set S of m probes, the S-fingerprint of a clone c, which is
denoted fingerprintS(c), is a vector of length m which contains one entry
for each probe p. Each entry denotes the minimum of the value R and
the number of occurrences of the probe p in c. Note that if R = 1, the
fingerprint will just be a binary vector with a one in position i if probe pi

is a substring of clone c, and a zero otherwise.
A set of probes S is said to distinguish two clones c and d if fingerprintS

(c) �= fingerprintS(d). We denote by �S ⊆ C2 the set of pairs of clones that
are distinguished by the set S , and so |�S | denotes the number of distinct
pairs of clones distinguished by the probe set S [1].

As noted above, the rDNA sequences of the population being studied
are unknown. Therefore choosing probes to distinguish pairs of clones can
be a problem. To overcome this problem, a subset C ′ of rDNA clones is
randomly selected from the population. A probe set is then found for the
subset C ′ and used to analyze the population [1].

In Ref. [1,18], two variations of the probe selection problem are consid-
ered. They are referred to as the Maximum Distinguishing Probe Set (MDPS)
and the Minimum Cost Probe Set (MCPS) problems and are defined as fol-
lows.

Maximum Distinguishing Probe Set (MDPS)

Instance: A set C = {c1, c2, . . . , cm} of clones, a set P = {p1, p2, . . . , pn} of
probes, and an integer k.

Solution: A subset S ⊆ P , with |S| = k.

Measure: |�S |, to be maximized [1].

Minimum Cost Probe Set (MCPS)

Instance: A set C = {c1, c2, . . . , cm} of clones and set P = {p1, p2, . . . , pn} of
probes.

Solution: A subset S ⊆ P such that �S = C2.

Measure: |S|, to be minimized [1].

Both problems MDPS and MCPS are NP-hard when the length of probes is
unbounded [1]. MCPS is a special case of the Set Cover Problem.

In Ref. [1], Borneman et al. applied a simulated annealing algorithm
to the MDPS problem and a Lagrangian relaxation algorithm to the MCPS
problem. Both methods produced successful results.

Meneses et al. [18] addressed the MDPS and MCPS problems using a
method called the Asynchronous Teams method or A-Team method. The
A-Team method was proposed by Souza and Talukdar [4]. An A-Team
is comprised of several different heuristic algorithms, called agents, that
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Figure 13.6 A-Team configuration.

communicate with each other by means of shared memories. The shared
memories store solutions generated by agents. Each agent can make its own
decisions about inputs, scheduling, and resource allocation. Figure 13.6
illustrates a generic A-Team configuration.

Meneses et al. designed agents (i.e., algorithms) for the MDPS and MCPS
problems. In Ref. [1], the probe sets only contained probes of a fixed length.
The algorithms designed by Meneses et al. were able to construct solutions
with probes of mixed length as well as fixed lengths. They tested their
approach using both real and simulated data. Their results showed that
their method was able to obtain results that were comparable to those
found by Borneman et al. but in a small fraction of the time.

In 2005, Fu et al. developed an improved probe selection method [6].
They found that probe sets selected with the currently used method were
theoretically optimal; however, in actual biological experiments probes
often did not hybridize in a consistent and predictable manner. They refer-
red to these probes as unreliable.

Two common errors in hybridization experiments are false negatives,
where probes are expected to bind with a clone but the signal intensity
is low; and false positives, where probes are expected not to bind with
a clone but the signal intensity is high. The occurrence of both types of
errors may be related to the location of the probe target sites. The basic
idea of the approach of Fu et al. [6] lies in the hypothesis that the reliability
of the probe is related to its location in the clone. Their method used a
probabilistic model to identify unreliable probes and eliminate them. Their
results showed that application of this method significantly decreased the
number of unreliable probes; in fact, 90.9 percent of unreliable probes can
be eliminated [6].
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Herwig et al. [11] proposed the design of probe sets for simultaneous
identification of sequences by oligonucleotide fingerprinting based upon
maximization of Shannon entropy. Given a set of M sequences, s1, . . . , sM ,
and a single probe p, the set of sequences is partitioned into two sub-
sets, those that match the probe sequence or its reverse complement, and
those that do not. In information theory, the concept of entropy is directly
related to the measure of the amount of information contained in a signal.
In Ref. [11], the amount of information of a probe with respect to a set of
sequences is measured by

−I =
N∑

i=1

pi log2 pi

where pi is the proportion of sequences in subset i, and N is the number
of subsets. Note that the entropy is maximized when the subsets are of
equal size. Probe sets are constructed by successively selecting probes that
partition sets of training sequences into subsets that are as equal in size as
possible. Herwig et al. also consider the G–C content and complexity of
the probes. They developed a simulation pipeline to assess the quality of
the probe sets and determined that their method produced probe sets that
were superior to those chosen according to maximum frequency or by a
random process [11].

In Ref. [25], Rash and Gusfield considered the string barcoding prob-
lem and its application in selecting probes for hybridization experiments
used to identify viral-size pathogens. The barcode they refer to is equiv-
alent to a binary oligonucleotide fingerprint. The problem they consider
is as follows. Given a set S of m strings, S = s1, . . . , sm, find a set of
substrings P = p1, . . . , pn of minimum cardinality such that every pair of
strings in S has at least one substring in P that distinguishes the pair. Once
P is found, a binary fingerprint or barcode, as described at the begin-
ning of this section, is associated with each string in S . For a given string
si ∈ S , the set of strings from P that are substrings of si is called the signa-
ture of si . Both the barcode and the signature should be unique for each
string [25].

In their approach to the string barcoding problem, Rash and Gusfield
construct and solve an integer linear program (ILP) that contains one bi-
nary variable for each substring and one inequality for each pair of strings
in S . Let i = 1, . . . , q denote the pairs of the set S . The variable vj is in-
cluded in each equation where pj distinguishes a given string pair. For
example, the equation for the pair s1, s2 ∈ S where p1, . . . , pk is the set
of substrings that distinguish s1 and s2 and v1, . . . , vk is the corresponding
set of variables representing the substrings is given by v1 + v2 + . . . vk ≥ 1.
Assume we have N candidate substrings and let Ti denote the set of indices
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of substrings in P that distinguish the pair i. We then have the following
integer program.

Min
N∑

j=1

vj

s.t.
∑

j∈Ti

vj ≥ 1 for all i

vj ∈ {0, 1} for all j

Rash and Gusfield use suffix trees [8] to construct the initial set of can-
didate substrings. By using suffix trees instead of enumerating all possible
distinct substrings, they begin with a much smaller set of substrings, i.e.,
considerably fewer variables in the ILP. They further reduce the number
of variables by filtering out substrings that do not satisfy the valid length
requirements [25].

Rash and Gusfield also addressed problems that may occur if the virus
mutates in nature after a signature is developed and the mutated version
must still be identified. To do so, they added two sets of constraints. In the
first set of constraints, instead of requiring that each pair of strings in S be
distinguished by at least one substring in P , they require a minimum of r
substrings for each pair. That is,

∑

j∈Ti

vj ≥ r for all i.

They found a value of r = 5 to be sufficient to ensure with high confidence
that a signature would remain valid under reasonably high mutation rates
and short generation times.

The second set of constraints enforced a minimum edit distance between
pairs of strings. So, for each pair of substrings pi and pj that are not the
minimum edit distance apart, only one of the strings is allowed to be in the
solution set. To enforce this requirement, the constraint

pi + pj ≤ 1

is added for each such pair. They determined that edit distances as small
as two or four resulted in added confidence that mutations in nature not
invalidate the signatures. They solved the resulting ILP using CPLEX. Viral
sequences from Genbank were used to test their approach. Their approach
finds provable optimum in many cases, and in even more cases it can get
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provably close to optimum. Their implementation was able to handle data
sets containing 150–300 strings per set [25].

13.2.5.2 Nonunique Probe Selection Problem

If the target genes in a microarray experiment are closely related, it can be
very difficult to find unique probes. In these cases, the use of nonunique
probes that bind to more than one target may be necessary.

In Ref. [13], Klau et al. consider the selection of nonunique probes for
use in experiments to detect the presence or absence of viruses or bacteria
in a biological sample. They begin with a zero-one target-probe incidence
matrix H = [hij ] where hij = 1 if probe j hybridizes to target i, and hij = 0
otherwise. The goal is to find a probe set of minimum size such that every
target is covered by at least cmin probes and every target pair is distinguished
by at least hmin probes. They find an initial solution using a heuristic al-
gorithm. They then construct an ILP and use CPLEX to solve the ILP, thus
further reducing the size of the probe set. In the description of an ILP that
they refer to as the slave ILP, they propose a branch-and-cut approach in
which constraints are added to enforce group separation in addition to pair-
wise separation. The results presented in the paper are, however, strictly
for pairwise separation. Finally, they evaluate their results using decoding
software [13].

Meneses et al. [19] developed a heuristic algorithm for the nonunique
probe selection problem addressed in Ref. [13]. The algorithm begins with
the target-probe incidence matrix described above and selects a minimum-
sized probe set that satisfies the ILP formulation used by Klau et al.

Min
n∑

j=1

xj

s.t.
n∑

j=1

hijxj ≥ cmin for all i ∈ M [Coverage]

n∑

j=1

|hij − hkj |xj ≥ hmin for all (i, k) ∈ P [Hamming distance]

xj ∈ {0, 1} j = 1, . . . , n,

where |hij−hkj | in the Hamming distance constraints stands for the absolute
value of the difference between the real numbers hij and hkj . Note that
hij and hkj are constants. This definition of Hamming distance is different
from the Hamming distance used in the Sung and Lee paper discussed in
Section 13.2.1.



Lim/Optimization in Medicine and Biology AU0563_C013 Final Proof Page 411 10.11.2007 03:40pm

Computational Methods for Probe Design and Selection 411

The algorithm in Ref. [19] constructs feasible solutions to the ILP in two
phases, a construction phase and a reduction phase. The construction phase
ensures that a feasible solution is constructed, if possible, and the reduction
phase reduces the size of the solution while maintaining feasibility [19].

In the construction phase, the set cover constraint is first satisfied for
each target by adding probes until every target is covered by at least cmin

probes. The algorithm next focuses on satisfying the minimum Hamming
distance constraint. Probes are ordered by the number of target pairs sep-
arated by each probe and are then selected from this list until the number
of target pairs failing to satisfy the minimum Hamming distance constraint
reduces to a value input by the user. The algorithm then moves to a specific
search for probes to separate the target pairs. Only pairwise separation of
targets is considered. In the reduction phase, the probe set is reduced by
selecting two probes at a time to be deleted. If the solution can remain
feasible by adding zero or one probe to replace the two, the solution is
updated, otherwise it remains the same.

Gasieniec et al. address probe selection in microarray design in Ref. [7].
In their approach, they first search for unique probes for an input set of
target sequences. If it is not possible to find a unique probe for a given
sequence, they search for a small collection of probes that together uniquely
identify the sequence. They start by first using a filtering process on the
whole genome to narrow down the list of candidate probes. The filtering
process checks for GC content, content of single bases, length of contiguous
regions of a single nucleotide, homogeneity, sensitivity, and specificity.
Randomization is used to speed up the process. They developed a software
implementation of their method called RandPS.

13.3 Software
There are several software packages available for the design and selection
of hybridization probes. In previous sections we discussed the following
programs: Sung and Lee’s FindProbe; Wang and Seed’s OligoPicker; Li and
Stormo’s ProbeSelect; and Gasieniec et al.’s RandPS. We now consider a
few more probe design and selection programs.

Primer3 is software that generates both oligonucleotide probes and
primer probes according to parameters entered by the user such as melt-
ing temperature, length, and GC content [27]. It is available in both an
online version and a downloadable version. The online version can only
work with one sequence at a time and will not do batch processing. The
downloadable version does, however, allow for batch processing. Primer3
was developed at Whitehead Institute and Howard Hughes Medical Insti-
tute. The main authors of the current version are Steve Rozen and Helen
Skaletsky.
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Rimour et al. [26] developed a very different method for the design
of microarray probes. In their approach, a probe is composed of two
noncontiguous subsequences of the target sequence. The two sequences
are joined by a small linker composed of randomly chosen bases. Their
method is implemented in software called GoArrays.

OligoWiz 2.0 [35] is another tool developed for the design of microarray
probes, but it sets itself apart from the other design tools. In addition to the
usual design parameters considered such as melting temperature and GC
content, their method allows for integration of sequence annotation, such
as exon/intron structure and untranslated regions (UTRs).

Eric Nordberg designed YODA (Yet another Oligonucleotide Design
Application) to design micorarray probes [22]. Rather than rely on the use
of BLAST for sequence similarity searches, as do many software packages,
YODA incorporates a custom sequence similarity search. It also allows for
multiple design goals such as single-genome, multiple-genome, pathogen-
host, and species or strain-identification.

13.4 Closing Remarks
We have defined and discussed various properties of probes that can be cal-
culated by computational methods given the probe sequence. We have also
considered several different algorithms and software packages that have
been developed for the optimal design and selection of probes. Although
there are limitations to what can be accomplished at the computational
level, the value of computational methods in molecular biology cannot be
overstated. It is clear that the partnership between the biological and com-
putational sciences will pave the way for future research and discoveries.
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Abstract Specializing a general framework of logical analysis of data for
efficiently handling large-scale genomic data, we develop in this chapter
a probe design method for selecting short oligo probes for genotyping
applications. Extensively tested on genomic sequences obtained from the
National Center of Biotechnology Information (NCBI) in various monospe-
cific and polyspecific in silico experiments, the proposed probe design
method was able to select a small number of oligo probes of length 7 or 8
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nucleotides that perfectly classified all unseen testing sequences. These
results demonstrate the efficacy of the proposed probe design method and
illustrate the usefulness and potential a well-designed optimization-based
probe selection method has in genotyping applications.

14.1 Introduction
Between November 1, 2002 and July 31, 2003, severe acute respiratory syn-
drome (SARS) virus infected 8096 people and proved fatal to 774 world-
wide.∗ The avian influenza (AI) virus subtype H5N1 alone infected 152
people worldwide between 2003 and November 2006, and 154 died of the
disease.† Luckily, none of the outbreaks of SARS and AI infections at the
beginning of the new millennium brought about the worst-case scenario.
Alarmingly, influenza experts seem to agree that another pandemic may be
imminent [34] and, as of this writing, a fearful AI H5N1 virus continues to
spread in part of Asia.

A microarray or a DNA chip is a small glass or silica surface bearing
DNA probes. Probes are single-stranded reverse transcribed mRNAs, each
located at a specific spot of the chip for hybridization with its Watson–
Crick complementary sequence in a target to form the double helix [25,28].
Microarrays currently use two forms of probes, namely, oligonucleotide
(shortly, oligo) and cDNA, and have prevalently been used in the analysis
of gene expression levels, which measures the amount of gene expression
in a cell by observing hybridization of mRNA to different probes, each
targeting a specific gene. With the ability to identify a specific target in a
biological sample, microarrays are also well suited for detecting biological
agents for genetic and chronic disease [7,10,15,17]. Furthermore, as viral
pathogens can be detected at the molecular and genomic level much before
the onset of physical symptoms in a patient, the microarray technology can
be used for an early detection of patients infected with viral pathogens
[26,31,32,35].

The success of microarrays depends on the quality of probes that are
tethered on the chip. Having an optimized set of probes is beneficial for
two obvious reasons. One, the background hybridization is minimized,
hence true gene expression levels can be more accurately determined [16].
The other, as the number of oligos needed per gene is minimized, the
cost of each microarray is minimized or the number of genes on each

∗ From http://www.who.int/csr/sars/country/table2004_04_21/en/index.html, accessed on
December 11 2006.

† From http://www.who.int/csr/disease/avian_influenza/country/cases_table_2006_01_25/en/
index.html, accessed on December 11, 2006.
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chip is increased, yielding oligo fingerprinting, a much faster and more
cost-efficient technique [2,16]. Short probes consisting of 15–25 nucleotides
(nt), usually, are used in genotyping applications [28]. Having short opti-
mal probes means a high genotyping accuracy in terms of both sensitivity
and specificity [16,26], hence can play a key role in genotyping applications.
For example, in a pandemic, an effective method for selecting short optimal
probes may be used in the mass production of a cost-efficient device for
screening for the disease in suspected or susceptible hosts. Reverse gene-
tics would be the most rapid means by which to produce an antigenically
matched vaccine in a pandemic [34]. An effective probe selection method-
ology can identify conserved regions of a viral family, hence may prove
useful in the preparation of a vaccine via reverse genetics. Furthermore,
the methodology can promote the availability of affordable home testing
kits for accurate and confidential diagnosis of genetic and infectious dis-
ease and allow advanced and adequate medical treatment planning for
patients.

A well-studied problem in machine learning and data mining deals with
the discovery of a classification rule for different types of data. The probe
design, say, for genotyping applications, can be roughly stated as selecting
oligo probes for detecting a specific disease-agent in genomic sequences,
hence falls into the realm of classical classification. Thus far, this inter-
esting problem at the intersection of molecular biology and optimization
has received relatively little attention from the optimization community,
and systematic oligo design methods proposed so far are based on a
simple greedy procedure [11], the set covering (SC)–based classification
methodology [2,23], support vector machines [15], a genetic algorithm
[7,14], and mixed integer and linear programming (MILP) [12], briefly
summarizing.

From the perspective of numerical optimization, genomic data presents
an unprecedented challenge for supervised learning approaches for a
number of reasons. To name a few, first, genomic data is long sequence
over the nucleic acid alphabet � = {A,C,G,T}. Second, for example, the
complexity of viral flora, owing to constantly evolving viral serotypes,
requires a supervised learning theory to be trained on a large col-
lection of target and nontarget samples. That is, a typical training set
contains a large number of large-scale samples. Furthermore, a super-
vised learning framework usually requires a systematic pairing or dif-
ferencing between each target and nontarget samples during the course
of training a decision rule [2,3,12,23]. Owing to these and the nature
of general data analysis and classification [19], a supervised learning
approach to classification of genomic data without specialized features
for efficiently handling large-scale data is confronted by a formidable
challenge.
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On the basis of a general framework of logical analysis of data (LAD)
from Ref. [24], we develop in this chapter a probe design method for
selecting short oligo probes of length l nt, where l ∈ [6,10]. To list some
advantages of selecting oligo probes by the proposed method, first, the
method selects probes via sequential solution of a small number of com-
pact SC instances, which offers a great advantage from computational
point of view. To be more specific, consider classification of two types
of data and suppose that a training set is comprised of m+ target and
m− nontarget sequences. The size of the SC training instances solved
by the proposed method is minimum of m+ and m− orders of magni-
tude smaller than optimization learning models used in Refs. [2,12,23], for
instance. Second, the method uses the sequence information only and
selects probes via optimization based on principles of probability and
statistics. That is, the probability of an l−mer (oligo of length l) appearing
in a single sequence by chance is (0.25)l . Unless statistically significant,
an l−mer appearing in multiple samples of one type and none or only
a few of the sequences of the other type by chance is extremely small.
Third, the proposed method does not rely on any extra tool, such as
BLASTn [1], a local sequence alignment search tool that is commonly
used for probe selection [26,32,33], or the existence of preselected repre-
sentative probes [26]. This makes the method truly stand-alone and free
of problems that may possibly be caused by limitations associated with
external factors. As mentioned earlier, the proposed probe design selects
optimal probes via sequential solution of SC instances. Although SC is
NP−complete [8], its wide practical applications have invited an array of
efficient (meta-)heuristic solution procedures to be developed. Therefore,
last, the proposed method is readily implementable for efficient selection
of oligo probes.

This chapter is organized as follows. In Section 14.2, we specialize a
LAD Framework from Ref. [24] for efficiently analyzing genomic sequences
and develop an effective method for selecting short oligo probes. In
Section 14.3, we test the proposed probe design algorithm in various
in silico genotyping experiments using viral genomic sequences and re-
port superb experimental results. To summarize, in all monospecific and
polyspecific genotyping experiments on classification of viral pathogens
using genomic sequences obtained from the National Center of Biotech-
nology Information (NCBI) Web site, the proposed probe design method
selected a small number of probes of length 7 or 8 nt that perfectly classified
all unseen testing sequences. Classifying the noisy human papillomavirus
(HPV) sequences from the Los Alamos Laboratory by high and low risk
types, the proposed probe design method selected optimal probes in a
few CPU seconds that classified the testing sequences with 90.6 percent
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accuracy. For comparison, Refs. [7,22] experimented with the same HPV
dataset and reported the classification accuracy of 85.6 percent and 81.1
percent, respectively. These in silico results demonstrate efficacy and ef-
ficiency of the proposed oligo design method and further illustrate the
usefulness and potential of a well-designed optimization-based probe de-
sign method in the forthcoming era of biotechnology. Finally, Section 14.4
concludes the chapter with a few remarks.

Before proceeding, we refer interested readers to refer [25,28,31] for
background in microarray analysis and its usage in the diagnosis of infec-
tious disease. Furthermore, as classification of more than two types of data
can be accomplished by sequential classification of two types of data (see
Refs. [6,29,30] and Section 14.3 below), we present the material below in
the context of the classification of + and − types of data for convenience
and without loss of generality.

14.2 Proposed Probe Selection Method
The backbone of the proposed procedure is LAD. LAD is a relatively new
supervised learning methodology that is based on Boolean logic, combi-
natorics, and optimization. A typical implementation of LAD analyzes data
on hand via four sequential stages of data binarization, support feature sel-
ection, pattern generation, and classification rule formation. As a Boolean
logic-based, LAD first converts all nonbinary data into equivalent binary
observations. A + (−) ‘pattern’ in LAD is defined as a conjunction of one
or more binary attributes or their negations that distinguishes one or more
+ (−) type observations from all − (+) observations. The number of att-
ributes used in a pattern is called the degree of the pattern. As seen from
the definition, patterns hold the structural information hidden in data. After
patterns are generated, they are aggregated into a partially-defined Boolean
discriminant function/rule to generalize the discovered knowledge to clas-
sify new observations.

Referring readers to Refs. [3,9,24] for more background in LAD, we
design a LAD-based method below for efficiently handling and analyzing
large-scale genomic data and selecting optimal oligo probes for genotyping
applications.

14.2.1 Data Binarization
Let there be m+ and m− sample observations of type + (target) and −
(nontarget), respectively. For • ∈ {+,−}, let us use •̄ to denote the
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complementary element of • with respect to the set {+,−}. Let S• denote
the index set of m• sample sequences for • ∈ {+,−}.

A DNA sequence is a sequence of nucleic acids A, C, G, and T, and
the training sequences need to be converted into Boolean sequences of
0 and 1 before LAD can be applied. Toward this end, we first choose an
integer value for l, usually l ∈ [6, 10] (see Section 14.3), generate all 4l

possible l−mers over the four nucleic acid letters and then number them
consecutively from 1 to 4l by a mapping scheme. Next, each l−mer is
selected in turn and every training sample is fingerprinted with the oligo
for its presence or absence. That is, with oligo j , we scan each sequence
pi , i ∈ S+∪S−, from the beginning of the sequence and shifting to the right
by a base and stamp

pij =
{

1, if oligo j is present in sequence i; and

0, otherwise.

After this, the oligos that appear in all or none of the training sequences
can be deleted from further consideration. We re-number the surviving
l−mers consecutively from 1 to n and replace the original training seq-
uences described in the nucleic acid alphabets by their Boolean represen-
tations. Let N = {1, . . . , n}.

14.2.2 Pattern Generation
The data is now described by n attributes aj ∈ {0, 1}, j ∈ N . For observa-
tion pi , i ∈ S•, •∈ {+,−}, let pij denote the binary value the jth attribute
takes in this observation. Let lj denote the literal of binary attribute aj . Then,
lj =aj (lj =aj) instructs to take (negate) the value of aj in all sequences.
A term t is a conjunction of literals. Given a term t , let Nt ⊆ N denote
the index of literals included in the term. Then, we have t = ∧j∈Nt

lj . A •
pattern is a term that satisfies t(pi) := ∏

lj=aj ,
j∈Nt

pij
∏

lj=āj ,
j∈Nt

p̄ij = 1 for at least

one pi , i ∈ S•, and t( pk) = 0 for all pk , k ∈ S •̄. Note here that Nt of a • pat-
tern identifies probes that collectively distinguish one or more • sequences
from the sequences of the other type.

To aid in presentation, let us temporarily introduce n additional features
an+j , j ∈ N , and use an+j to negate aj . Let N ′ = {1, . . . , 2n} and let us
introduce a binary decision variable xj for aj , j ∈ N ′, to determine whether
to include lj in a pattern. Ref. [24] formulated a compact MILP Model below
with respect to a reference sample pi , i ∈ S•, • ∈ {+,−}:
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(MILP-2.i•)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

z2.i = Minx,y,d

∑

l∈S•\{i}
yl

s.t.
∑

j∈Ji

xj = d

∑

j∈Ji

pljxj + yl ≥ d, l ∈ S• \ {i}
∑

j∈Ji

pljxj ≤ d − 1, l ∈ S•

1 ≤ d ≤ n
x ∈ {0, 1}n
0 ≤ y ≤ n,

where Ji := {j ∈ N ′ : pij = 1} for pi , i ∈ S•. Consider the following.

LEMMA 1. Let (x, y, d) denote a feasible solution of (MILP-2.i•). Let Nt =
{j ∈ Ji : xj = 1}. Then,

P :=
∧

j∈Ji ,xj=1

aj

forms a • pattern.

PROOF. First, via the first constraint of (MILP-2.i•) and the definition of Ji ,
we trivially have

P(pi) =
∏

j∈Nt

pij = 1

for the reference observation pi , i ∈ S•. Next, the second set of hard con-
straints yields that at least one of plj = 0 for j ∈ Nt for each pl , l ∈ S •̄. This
gives

P(pl) =
∏

j∈Nt

plj = 0

for all pl , l ∈ S •̄, and completes the proof. �

Lemma 1 shows that any feasible solution of (MILP-2.i•) can be used to
form a • pattern. Now, note that if yl = 0 for l ∈ S• \ {i} in the solution,
then the • pattern P formed also distinguishes pl from the •̄ observations.
Therefore, with the objective of minimizing the sum of yl ’s, the MILP Model
can be understood as a way to generate a • pattern that distinguishes (more
or less) a maximum number of • observations from the •̄ observations.
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As easily seen, the number of 1’s in the (optimal) solution determines the
degree of the pattern generated.

As demonstrated in Ref. [24], this model efficiently generates patterns
of all degree with equal ease, provided that the number of training sam-
ples used is moderate and that n is not a big number. Genomic data is
large scale in nature, however. Furthermore, owing to constantly evolving
viral serotypes, the complexity of viral flora is high and this requires large
numbers of target and nontarget viral samples to be used for selecting opti-
mal genotyping probes. Adding to these, the difficulties associated with
numerical solution of MILP in general, we see that (MILP-2.i•) presents no
practical way of selecting genotyping probes.

With the need to develop a more efficient pattern generation scheme,
we select a reference sequence pi , i ∈ S•, • ∈ {+,−}, and set

a(i,k)j =
{

1, if pij 	= pkj ; and

0, otherwise,
(14.1)

for k ∈ S •̄ and j ∈ N . Next, we set

a(i,l)j =
{

1, if pij = plj ; and

0, otherwise,

for l ∈ S• and j ∈ N . Now, consider the SC Model

(SC•i )

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Minx,y

∑

j∈N

cjxj +
∑

l∈S•\{i}
yl

s.t.
∑

j∈N

a(i,l)j xj + yl ≥ 1, l ∈ S• \{i}
∑

j∈N

a(i,k)j xj ≥ 1, k ∈ S •̄

xj ∈ {0, 1}, j ∈ N
yl ∈ {0, 1}, l ∈ S• \{i},

where cj (j ∈ N ) are positive real numbers (refer to Remark 4 below.)

THEOREM 1. Let (x, y) denote a feasible solution of (SC•i ). Then,

P :=
∧

xl=1,
p•il=1

al

∧

xl=1,
p•il=0

āl
(14.2)

forms a • LAD pattern.
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PROOF. To show the result, we need to show that the conjunction of liter-
als formed via Equation 14.2 distinguishes at least one • observation from
all •̄ observations. Toward the end, recall that pik = 1(0) indicates the pres-
ence (absence) and the absence (presence) of probe k in the reference
sequence selected pi , i ∈ S•, and in pk , k ∈ S •̄, respectively. With the cover
(x, y) of (SC•i ) on hand, let us subdivide the index set Nt = {j ∈ N : xj = 1}
into two subsets N 1

t := {j ∈ Nt : pij = 1} and N 0
t := {j ∈ Nt : pij = 0}.

Observe now that

P(pi) =
∏

l∈N 1
t

pil

∏

l∈N 0
t

p̄il = 1

for pi , i ∈ S•, hence P(pi) = 1 for at least one • observation.
Note in Equation 14.1 that a(i,k)j = 1 if pij 	= pkj for k ∈ S •̄. That is,

a(i,k)j = 1 implies that exactly one of pij and pkj equals 1 for pi and pk ,
k ∈ S •̄. The cover (x, y) of (SC•i ) by definition satisfies all constraints of
(SC•i ), and the hard constraints of the problem in the second set of cover
inequalities require that at least one xl in the cover is set to 1 among l ∈ N
with a(i,k)l = 1 for all k ∈ S •̄. This in turn implies that at least one pkl for
l ∈ N 1

t or p̄kl for l ∈ N 0
t equals 0 for all pk , k ∈ S •̄ and yields

P(pk) =
∏

l∈N 1
t

pkl

∏

l∈N 0
t

p̄kl = 0

for all pk , k ∈ S •̄, hence P(pk) for all •̄ observations. �

Note that P generated on the solution (x, y) of (SC•i ) via Equation 14.2
also satisfies P(pl) = 1 for all l ∈ S• \ {i} with yl = 0. The following result
is immediate.

LEMMA 2. With a feasible solution (x, y) of (SC •i ), let Nt = {j ∈ N : xj = 1}.
Then, yl = 0 for l ∈ S• \ {i} if and only if plk = pik for all k ∈ Nt.

As (MILP-2.i•), (SC•i ) is also formulated in reference to pi for some i ∈ S•

and finds a cover that distinguishes most • observations from the •̄ observa-
tions. Therefore, although not identical, (SC•i ) can be seen as an SC version
of (MILP-2.i•). Although smaller than the MILP Model by only one con-
straint and one integer variable, (SC•i ) has a much simpler structure and is
defined only in terms of 0–1 variables. In addition, owing to having a wide
range of practical applications, SC has invited the development of an array
of efficient (meta-)heuristic solution procedures ([5] and references therein)
and any of these can be used for solving (SC•i ) (refer to Remark 1 below.)
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From the computational point of view, therefore, (SC•i ) is much preferred
over its MILP counterpart.

Note that (SC•i ) is defined by m++m−−1 cover inequalities and n+m•−1
binary variables. Also, recall that n is large for genomic sequences and the
analysis of viral sequences requires large numbers of target and nontarget
sequences, that is, m+ and m− are also large numbers. To develop a more
compact SC-based probe selection model, we select a reference sequence
pi , i ∈ S•, • ∈ {+,−}, and set the values of a(i,k)j for k ∈ S •̄ and j ∈ N via
Equation 14.1. Consider the following SC Model:

(SC-pg•i )

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Minx

∑

j∈N

cjxj

s.t.
∑

j∈N

a(i,k)j xj ≥ 1, k = 1, . . . , m•̄

xj ∈ {0, 1}, j ∈ N .

where cj ’s are positive reals (again, refer to Remark 4 below.)

THEOREM 2. Let x denote a feasible solution of (SC-pg•i ). Then, P generated
on x via Equation 14.2 forms a • LAD pattern.

PROOF. Same as the proof for Theorem 1. �

We immediately have the following result that can be used for efficiently
identifying the • observations that are also distinguished from the •̄ obser-
vations by the pattern generated on the solution of (SC-pg•i ).

LEMMA 3. With a feasible solution x of (SC-pg•i ), generate a • pattern P
via Equation 14.2. Then, P distinguishes every • sequence pl , l ∈ S•, with
plk = pik for all k ∈ Nt from the •̄ observations, where Nt = {j ∈ N : xj = 1}.

Note that (SC-pg•i ) can be considered as a relaxation of (SC•i ): to see
this, project (SC•i ) onto the space of x. Generally speaking, therefore, a
feasible solution of (SC•i ) has more xj ’s set to 1 in it than in a feasible
solution of (SC•i ) formulated on the same data, hence tends to generate
a higher degree pattern that generally explains a difference between the
target and nontarget sequences. As more • observations are distinguished
from the •̄ observations at a time by a solution of (SC•i ), it is formulated
and solved for a less number of times for generating a set of • patterns
that collectively distinguish all • observations from the •̄ data in a dataset
under analysis (refer to the oligo selection procedure detailed below). On
the other hand, (SC-pg•i ) generates per solution a lower degree pattern that
explains the specific difference between the reference • observation and
the •̄ sequences and, hence, is formulated and solved for a more number of
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times for generating a set of • patterns. Overall, the two models select about
the same number of probes. However, as (SC-pg•i ) is much smaller in size,
hence is more efficiently solved, and because a high specificity is desired in
genotyping applications, we prefer (SC-pg•i ) for selecting genotyping oligo
probes.

Using (SC-pg•i ), we design one simple oligo probe selection procedure
below, where P• denotes the set of • patterns generated so far.

procedure SC-pg
begin

for • ∈ {+,−} do
set P• = ∅ and S ← S•.
while S 	= ∅ do

- randomly choose pi , i ∈ S , and formulate (SC-pg•i ).
- solve (SC-pg•i ).
- generate a • pattern P via (14.2).
- set P• ← P• ∪ {P}.
- set S ← S\{i}\{j ∈ S , j 	= i : pjk = pik ,∀k ∈ Nt}.

end while
end for

end

The following is immediate.

THEOREM 3. procedure SC-pg terminates finitely.

A few remarks are due now.

Remark 1. Simply put, the number of 1’s in the covers generated via pro-
cedure SC-pg determines the number of probes to be used for a specific
genotyping purpose. In other words, the quality of an SC solution determines
the cost of genotyping applications.

SC is a well-known NP−complete problem [8]. Owing to having a wide
range of practical applications (despite its simple structure), SC has invited
an array of (meta-heuristic solution procedures to be developed for its effi-
cient heuristic solution [5] and references therein) and any of these can be
used for solving (SC-pg•i ). In fact, the genotyping accuracy is not affected at
all as long as the covers found are near-optimal and good enough (see results
in the following section) and this was the rationale behind our developing
SC-based probe selection models in this chapter: recall that probe selection
is a large-scale combinatorial optimization problem in nature.

Furthermore, the efficiency of SC heuristic solution procedures allows
one to apply procedure SC-pg or the similar directly to the binarized data
to generate patterns without going through the feature selection phase. This
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is another benefit the SC-based pattern generation offers over its MILP coun-
terparts from Ref. [24] or the standard term-enumeration-based procedure
for generating patterns in the LAD literature [3].

Remark 2. If constraint j in (SC-pg•i ) has all zero coefficients, the SC
instance is infeasible. This case arises when the reference sequence pi, i ∈ S•

and the sequence pj , j ∈ S •̄ have identical 0–1 fingerprints, which is a
contradiction. Supervised learning methodologies, including LAD, presume
for the existence of a classification function that each unique sequence in
the training set belongs to exactly one of the two classes. When this holds,
contradiction-free 0–1 clones of the original data can always be obtained
by using oligos of longer length for data binarization.

Remark 3. If desired, the hybridization affinity of probes can be ensured
in a number of ways, including the following. First, during data binariza-
tion, one can remove from further consideration each l−mer with the GC
content less than a prescribed level or with the melting temperature cal-
culated via, for example, the formula found in Ref. [33] that falls outside a
certain prescribed range from the median melting temperature of all l−mers
generated. Next, the proposed LAD-based method can be applied to select an
optimal set of probes on the surviving l−mers that are compatible in terms
of their hybridization behavior.

Remark 4. (SC-pg•i ) is a general-purpose model and can be specialized
to select a minimal set of optimal oligo probes by any quantifiable probe
selection criterion. For example, one may use the longest common factors
from Ref. [23] or the OVL scores from Ref. [11] for cj values in (SG-pg•i ) to
select probes by the (dis-)similarity preference. One may use, for example, the
Shannon entropy scores from Ref. [11] for cj ’s and incorporate the complexity
of oligos in probe selection.

14.2.3 Classification Rules
Denote by P+1 , . . . , P+n+ and P−1 , . . . , P−n− the positive and negative patterns,
respectively, generated via procedure SC-pg. In classifying unseen + (tar-
get) and − (nontarget) sequences, we use three decision rules. First, in
polyspecific genotyping applications (see, for example, Experiment 4 in
Section 14.3.2), we form the standard LAD classification rule [3]

� :=
n+∑

i=1

ω+i
|S+|P

+
i −

n−∑

i=1

ω−i
|S−|P

−
i , (14.3)
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where ω•i denotes the number of • training sequences covered by P•i and
assign class + (−) to new sequence p if �(p) > 0 (�(p) < 0). We fail to
classify sequence p if �(p) = 0.

For the monospecific genotyping, we use a strict classification rule.
Specifically, for classification of two viral (sub-)types (see, for example,
Experiment 1 in Section 14.3.2), we form a decision rule by

�+ =
n+∑

i=1

P+i and �− :=
n−∑

i=1

P−i (14.4)

and assign p to class • if �•( p) > 0 while �•̄( p) = 0. When �•( p) > 0
and �•̄( p) > 0 or when �•( p) = 0 and �•̄( p) = 0, we fail in classifying
the sequence.

For the monospecific classification of more than two viral (sub-)types
k = 1, . . . , m (see, for example, Experiment 7 in Section 14.3.2), we use
the decision rule

�k =
nk∑

i=1

Pk
i , (14.5)

where Pk
1 , . . . , Pk

nk
are the probe(s) selected to for virus (sub-)type k, and

assign p to class k if �k(p) > 0 while �i(p) = 0 for all i = 1, . . . , m, i 	= k.
When �(p) > 0 for more than two virus types or �k = 0 for all k, then we
fail to assign a class to sequence p.

14.3 In Silico Experiments
In this section, we extensively test the proposed probe design for classifica-
tion of viral disease-agents in in silico setting. To make these experiments
as realistic as possible, we design each of these experiments based on
information from the literature and the official Website of the World Health
Organization (WHO) and use viral genomic sequences obtained from the
NCBI and HPV sequences from the Los Alamos National Laboratory. To be
more specific about the data used, we obtained the HPV data from the Los
Alamos National Laboratory site for illustrative and comparative purposes.
The data corresponds to the 72 high and low risk HPV sequences that
are used in Refs. [7,22]. Although some of these manually classified virus
sequences contain classification errors [7], we used the data with its clas-
sification from [22] to allow a comparison among our result and results
reported in [7,22]. For the experiments on genotyping viral pathogens,
we used genomic sequences of SARS virus, influenza virus classified by
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Table 14.1 Viral Sequences Used in Experiments

Length
Viral Sequence Number Min. Avg. ± 1 Std. Dev. Max.

Human papillomavirus (HPV)
- High risk HPV 18 449 7365 ± 1730 7989
- Low risk HPV 54 455 7198 ± 1683 8027
SARS coronavirus 105 29350 29692 ± 91 29765
Coronavirus 39 9203 29013 ± 3569 31526
Other virus
- Human respiratory

syncytial virus 10 13933 15091 ± 386 15226
- Human adenovirus 32 34125 35215 ± 618 36015
- Human parainfluenza virus 4 15646 15652 ± 3 15654
- Human rhinovirus (A, B) 8 7102 7157 ± 36 7212
- Influenza virus (A, B, C) 53 838 1701 ± 527 2368
Influenza virus

hemagglutinin (H) subtype
- H1 137 1698 1749 ± 24 1778
- H3 660 1695 1735 ± 21 1768
- H5 148 1677 1721 ± 25 1779
- H7 77 1659 1690 ± 27 1792
- H9 93 1683 1704 ± 26 1742
- H else (2, 4, 6, 8, 11, 65 1689 1742 ± 29 1773

12, 13, 16)
Influenza virus

neuraminidase (N) subtype
- N1 218 1344 1410 ± 39 1463
- N2 1050 1341 1434 ± 28 1467
- N3 44 1326 1411 ± 29 1460
- N else (4, 5, 6, 7, 8, 9) 64 1341 1434 ± 25 1467

their hemagglutinin (H) and neuraminidase (N) types (influenza viruses
are typed according to their H and N surface glycoproteins), coronavirus
and other viral agents of disease with SARS-like symptoms. In Table 14.1,
we provide the number and the length (the minimum, average ±1 standard
deviation and maximum length) of each type of the genomic data used in
our experiments.

In analyzing data in an experiment, we first decided on a length of
oligos to use by calculating the smallest integer value l such that 4l became
larger than or equal to the average of the lengths of target and nontarget
sequences of the experiment. Then, 4l candidate oligos were generated
to fingerprint and binarize the data. If the length of oligos turned out to
be not long enough during the pattern generation stage (see Remark 2),
the data binarization stage was repeated with the value of l incremented
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by 1 and this process was repeated until the binary representations of the
data became contradiction free. Next, procedure SC-pg was applied to
generate patterns, hence probes. In applying procedure SC-pg in these in
silico experiments, we did not consider any oligo picking criterion that is
nontheoretical in nature (refer to Remark 4) and selected a minimal set of
oligo probes with using cj = 1 for all j ∈ N . For solving the unicost (SC-
pg•i )’s generated, we used for ease of implementation the textbook heuristic
procedure [21] that selects one variable at a time by the rule

k← argmax
{
j ∈ N , xj = 0 :

∣
∣Ij ∩Mu

∣
∣
}

,

where Ij denotes the index of rows k with a(i,k)j = 1 and Mu denotes the
set of rows that are not yet covered by the partial cover x on hand.

In each of the experiments in this section, to fairly assess the classifi-
cation capabilities of oligo probes selected by the proposed probe design
procedure, we

1. Randomly selected 90 percent of the target and of the nontarget
data to form a training set of sequences

2. Binarized the training data
3. Selected optimal oligo probes on the training data via procedure

SC-pg
4. Formed a classification rule given by one of (Equations 14.3 through

14.5) with the selected oligo probes
5. Used the classification rule to (sub-)type each of the reserved testing

sequences, comprised of the remaining 10 percent of the target and
the nontarget sequences

6. Repeated steps above 20 times to obtain the average testing perfor-
mance and other relevant information of the experiment

The computational platform used for experiments was an Intel 2.66 GHz
Pentium Linux PC with 512 Mb of memory.

14.3.1 A Comparative Experiment:
Classification of High and Low Risk HPV

Infection with HPV is the main cause of cervical cancer, the second most
common cancer in women worldwide [4,20]. There are more than 80 iden-
tified types of HPV and the genital HPV types are subdivided into high and
low risk types: low risk HPV types are responsible for most common sexu-
ally transmitted viral infections, whereas high risk HPV types are a crucial
etiological factor for the development of cervical cancer [18].
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We applied the proposed probed design method on the 72 HPV seq-
uences downloaded from the Los Alamos National Laboratory with their
classification found in Table 3 of Ref. [22]. The selected probes were used
to form a decision rule by Equation 14.3 and tested for their classification
capability.

Results from this polyspecific probe selection experiment are provided
in Table 14.2. The target (+) and the nontarget (−) virus types of the exper-
iments are specified in the first column of Table 14.2 and other tables of this
section. Then, the tables provide two bits of information on the candidate
oligos, namely, the length l and the average and the standard deviation of
the number of features generated and used in the 20 runs of each exper-
iment for data binarization and for pattern generation: recall that we skip
the feature selection stage of LAD (see Remark 1). Provided next in the
tables is the information on the number of probes selected in the format
“the average ±1 standard deviation” and information on the LAD patterns
generated. Finally, the testing performance of the probes selected is pro-
vided in the format “the average ±1 standard deviation” of the percentage
of the correct classifications of the unseen sequences.

Briefly summarizing, the proposed probe design method selected
probes on the HPV data in a few CPU seconds that tested 90.6 per-
cent accurate in classifying unseen HPV samples. For comparison, the
same HPV dataset was used in Refs. [7,22] for the classification of HPV
by high and low risk types. In brief, the probe design methods given
in Refs. [7,22] required several CPU hours of computation and selected
probes that obtained 85.6 percent and 81.1 percent correct classification
rates, respectively.

Before moving on, we note that the sequences belonging to the target
and the nontarget groups in this experiment all have different HPV sub-
types (see Table 3 in Ref. [22].) The combination of all target and nontarget
sequences being different from one another and the presence of noise in
the data (the classification errors) gave rise to selecting a relatively large
number of polyspecific probes in this experiment.

14.3.2 Experiments on Genotyping Viral Pathogens
The proposed probe design method was extensively tested on genomic
viral sequences from NCBI for selecting monospecific and polyspecific
probes for screening for SARS and AI in a number of different binary and
multicategory experimental setting and performed superbly on all counts.
We summarize the results from some of these experiments in this section.

Before proceeding, we briefly illustrate the benefit of probe selection
via (SC-pg•i ) from the computational point of view with Experiment 5
below. For the purpose, let us first recall that that probe selection is a
combinatorial optimization problem. Therefore, for the selection of oligo
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probes for differentiating lethal AI virus H5 and H9 from the other AI virus
H subtypes in Experiment 5, a supervised learning method based on a com-
plete pairwise differencing of the target and nontarget training sequences
[2,3,12,23] would require solving one or more combinatorial optimization
problems with between (148+ 93)× (137+ 660+ 77+ 65) = 226, 299 and
137 × 660 × 148 × 77 × 93 × 65 ≈ 6.23 × 1012 rows (refer to Table 14.1
above for the numbers of the target and nontarget viral sequences) and
with at least 39, 056 0–1 decision variables (see Table 14.7 for the average
number of l−mers generated in this experiment). For Experiment 5, we
note in comparison that the largest (SC-pg•i ) instance generated and solved
by procedure SC-pg had max{148+ 93, 137+ 660+ 77+ 65} = 939 rows
and 39, 056 columns.

Experiment 1. SARS virus vs coronavirus
SARS virus is phylogenetically most closely related to group 2 coron-

avirus [27]. Hundred and Five SARS sequences and thirty nine coronavirus
samples were used to select one monospecific probe for screening for SARS.
Used in a classification rule (Equation 14.4), the SARS probe and one probe
selected for coronavirus together perfectly classified all testing sequences
(see Table 14.3).

Experiment 2. SARS virus vs influenza virus
This experiment simulates a SARS pandemic, where suspected patients

with SARS-like symptoms are screened for the disease. We used the 105
SARS virus sequences and 108 samples of other influenza virus types (the
other virus in Table 14.1) in this experiment and selected polyspecific
probes. Used in a classification rule (Equation 14.3), these probes collec-
tively gave the perfect classification of all testing sequences (see Table 14.4).

Experiment 3. Classification of pathogenic AI virus H7 and other influenza
virus H subtypes

AI virus H7N7 is highly pathogenic with the capacity to pass from
human-to-human, and this raised concerns for a possible viral reassortment

Table 14.3 Monospecific Classification of SARS Virus and Coronavirus,
a Phylogenetically Closest Sibling of SARS

l−mers Used Probes Selected Testing
Experiment 1 l Numbera Numbera Patterns Generated Accuracyab

SARS virus (+)
8 57745.3 ± 306.1

1 ± 0 Degree 1
100 ± 0−−−−−−− −−−−−−−−−−−−−

Coronavirus (−) 1 ± 0 Degree 1

a In format average ± standard deviation.
b Percentage of correct classifications of testing/unseen data.
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Table 14.4 Classification of SARS Virus and Influenza Virus That Cause
Disease with SARS-Like Symptoms

l−mers Used Probes Selected Testing
Experiment 2 l Numbera Numbera Patterns Generated Accuracyab

SARS virus (+)
8 64141.5 ± 36.5

1 ± 0 Degree 1
100 ± 0−−−−−−−− −−−−−−−−−−−−−−

Influenza virus (−) 10.1 ± 0.8 Degree 1 only

a In format average ± standard deviation.
b Percentage of correct classifications of testing/unseen data.

with human influenza H1N1 and H3N2 strains during a large outbreak of
H7N7 infection in the Netherlands in 2003 [13,34].

On the basis of information from Ref. [13], we replicated the classifica-
tion of H7 and other influenza virus H subtypes in this experiment by using
77 H7 sequences and 1103 other H subtype samples. Polyspecific probes
were selected and tested in a classification rule Equation 14.3 to give the
perfect classification rate (see Table 14.5).

Experiment 4. Classification of pathogenic AI virus H5 and H7 and other
influenza virus H subtypes

H5 and H7 have an ominous capacity to pass from human-to-human
(http://www.who.int, [34]). This experiment, using 225 H5 and H7 viral
samples and 955 other H subtype sequences, selected polyspecific probes
for detecting the two pathogenic H subtypes of the AI virus from the other
influenza virus H subtypes and vice versa. A classification rule was formed
by Equation 14.3 for testing the selected probes, and we obtained the per-
fect testing result (see Table 14.6).

Experiment 5. Classification of lethal AI virus H5 and H9 and other
influenza virus H subtypes

Table 14.5 Classification of Highly Pathogenic H7 AI Virus (with Capacity to
Pass from Human-to-Human) and Other H Subtypes of Influenza Virus

l−mers Used Probes Selected Testing
Experiment 3 l Numbera Numbera Patterns Generated Accuracyab

H7 (+)
7 14724.2 ± 30.9

1 ± 0 Degree 1
100 ± 0−−−−−−−− −−−−−−−−−−−−−−

Other H strains (−) 7 ± 1 Degree 1 only

a In format average ± standard deviation.
b Percentage of correct classifications of testing/unseen data.
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Table 14.6 Classification of Highly Pathogenic H5 and H7 AI Virus
and Other H Subtypes of Influenza Virus

l−mers Used Probes Selected Testing
Experiment 4 l Numbera Numbera Patterns Generated Accuracyab

H5 and H7 (+)
8 39164.4 ± 333

15.7 ± 1.5 Degree 1 only
100 ± 0−−−−−−−−− −−−−−−−−−−−−−−

Other H strains (−) 27.6 ± 1.2 Degree 1 only

a In format average ± standard deviation.
b Percentage of correct classifications of testing/unseen data.

AI virus H5 and H9 subtypes cause a most fatal form of the disease [13],
and they were separated from the other H subtypes of influenza virus in
this experiment. 241 H5 and H9 target sequences and 1010 other H subtype
sequences were used to select polyspecific probes for detecting AI virus H5
and H9 subtypes from the rest. In a classification rule Equation 14.3, the
selected probes collectively classified all testing sequences correctly (see
Table 14.7).

Experiment 6. Monospecific Classification of SARS, human influenza H1,
human influenza H3, AI virus H5, and AI virus H7

This multicategory classification experiment selects monospecific probes
for distinguishing one from another a few notorious viral pathogens. We
used 103 SARS virus, 137 human influenza virus H1, 660 human influenza
virus H3, 148 lethal AI virus H5, and 77 pathogenic AI virus H7 sequences
and selected monospecific probes for each virus type in sequential binary
classification of one type against the rest. The selected probes were tested
in a classification rule (Equation 14.5) to classify the testing sequences p
by a strict decision rule of “assign class i to p only if one or more probes
selected for virus type i is found in p while none of the probes selected
for the other types are not” and gave the perfect classification result. (See
Table 14.8. Note that only a small number of monospecific probes were
selected, as in Experiment 1).

Table 14.7 Classification of Fatal H5 and H9 AI Virus and Other H Subtypes
of Influenza Virus

l−mers Used Probes Selected Testing
Experiment 5 l Numbera Numbera Patterns Generated Accuracyab

H5 and H9 (+)
8 39056 ± 398.3

6.7 ± 0.5 Degree 1 only
100 ± 0−−−−−−−−− −−−−−−−−−−−−−−

Other H strains (−) 21.6 ± 1.3 Degree 1 only

a In format average ± standard deviation.
b Percentage of correct classifications of testing/unseen data.
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Table 14.8 Monospecific Classification of SARS Virus and H1, H3, H5, and
H7 Subtypes of Influenza Virus

l−mers Used Probes Selected Testing
Experiment 6 l Numbera Numbera Patterns Generated Accuracyab

SARS virus

8 45259 ± 527

1 ± 0 Degree 1

100 ± 0

−−−−−−−− −−−−−−−−−−−−−−
H1 1 ± 0 Degree 1

−−−−−−−− −−−−−−−−−−−−−−
H3 2.9 ± 0.3 Degree 1 only

−−−−−−−− −−−−−−−−−−−−−−
H5 3 ± 0 Degree 1 only

−−−−−−−− −−−−−−−−−−−−−−
H7 1 ± 0 Degree 1

a In format average ± standard deviation.
b Percentage of correct classifications of testing/unseen data.

Experiment 7. Monospecific Classification of N1, N2, and N3 influenza
virus

The statement “monospecific neuraminidase (NA) subtype probes were
insufficiently diverse to allow confident NA subtype assignment” from
Ref. [26] motivated us to design this experiment on multicategory and
monospecific classification of influenza virus by N subtypes. We used the
three influenza virus N subtypes with 30 or more samples in Table 14.1
and selected monospecific probes for their classification. Tested in a clas-
sification rule (Equation 14.5), the selected probes performed perfectly in
classifying all testing sequences. (See Table 14.9. Note again that only a
small number of monospecific probes were selected and proved needed in
this experiment, as in the other two monospecific genotyping experiments,
Experiments 1 and 6).

Table 14.9 Monospecific Classification of N1, N2, and N3 Subtypes
of Influenza Virus

l−mers Used Probes Selected Testing
Experiment 7 l Numbera Numbera Patterns Generated Accuracyab

N1

7 13151 ± 39.3

3 ± 0 Degree 1

100 ± 0
−−−−−−−− −−−−−−−−−−−−−−

N2 3.7 ± 0.5 Degree 1 only
−−−−−−−− −−−−−−−−−−−−−−

N3 1 ± 0 Degree 1

a In format average ± standard deviation.
b Percentage of correct classifications of testing/unseen data.
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14.4 Concluding Remarks
The problem of probe design for hybridization-based experiments is an
interesting problem lying at the intersection of molecular biology and opti-
mization but has received relatively little attention from the OR community.
In this chapter, we specialized a general LAD Framework from Ref. [24]
for efficiently handling large-scale genomic data and developed a probe
design method for selecting short oligo probes for genotyping applications.
Extensively tested on genomic sequences obtained from the NCBI and the
Los Alamos National Laboratory in various monospecific and polyspecific
in silico experiments, the proposed probe design method was able to select
a small number of oligo probes of length 7 or 8 nucleotides that per-
formed superbly in classifying unseen testing sequences. These in silico
results demonstrate the efficacy of the proposed oligo design method.
Experimental results further illustrate a huge potential that a well-designed
optimization-based probe design method has in hybridization-based geno-
typing applications.

Collaborative research activities are planned to realize the in silico per-
formance of the proposed probe design method on microarrays and in real
hybridization experiments. Also, we plan to investigate the possibility of
exploiting frequently used oligo selection criteria [11,14,16,23] within the
proposed probe design framework to further improve its effectiveness in
terms of the number of probes needed.
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Abstract A new dihedral angle measure is presented in this chapter for
protein secondary structure modeling and prediction. This new angle mea-
sure is simpler than the Ramachandran plots because it has only one degree
of freedom and varies between 0 and π/2. The origin of this new dihedral
angle measure was precipitated by a Steiner tree analysis of the twist angles
within the individual amino acid structures. The Steiner tree structure of the
amino acids revealed certain regular twist angles for the planes of atoms
as defined by the Steiner tree topology. This regularity carried over into
the analysis of dipeptide structures when it was shown that a planar char-
acterization of the {N, Cα, C} set of atoms unique for each residue would
synthesize the angular measure of the φ,ψ angles of the Ramachandran
plots, but with one degree of freedom less. Numerous experimental results
with this new angle measure are presented to characterize the α-helix and
β-sheet structures of proteins.

15.1 Introduction
Characterization of how proteins fold in space is one of the most difficult
and challenging computational problems. Given the amino acid sequence,
the primary structure, it is very important to know how the secondary
structures evolve. The α- and β-sheet secondary structures, which emerge
in the folding process, are the fundamental building blocks that propagate
the tertiary structure. Finally, it is the tertiary structure which is the crucial
conformation of interest in the protein folding problem.

15.1.1 Motivation
The motivation for this chapter is to generate new methodological concepts
and tools for the analysis of the secondary structure in proteins so that these
new methodologies can assist one in the tertiary structure identification for
the protein folding problem. The approach based on the geometry and
three-dimensional (3-D) topology of protein structures will be followed.

15.1.2 Outline
In Section 15.2, we present a review of the protein folding problem, the
secondary structure prediction aspects, the literature, and the Ramachandran
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plots, which posit the fundamental dihedral angle conformation character-
istics. In Section 15.3, we present the Steiner problem and how it relates
to proteins and secondary structure prediction through the potential en-
ergy function. In Section 15.4, we demonstrate alanine dipeptide results of
our Steiner tree analysis along with their minimum energy configurations.
In Section 15.5, we describe the new virtual angle approach and dipep-
tide and pentapeptide experimental results. Section 15.6 rounds out the
chapter.

15.2 Problem Background
The protein folding problem remains one of the most important and
unsolved problems in the biological sciences. It also remains one of the
most important computational challenges from a combinatorial optimiza-
tion perspective. Developing a computer program to generate the 3-D
structure of a protein from its amino acid sequence remains an important
computational and biological objective. It is suggested that Steiner minimal
trees (SMTs) may play an important part in the development of such a
computer program.

15.2.1 Protein Folding Problem
Proteins have definite shape and structure and are not just random,
unordered blobs in space. Given that there are up to 20 different amino
acids that can occur along the peptide backbone with hundreds to thou-
sands of amino acids along the backbone chain of the protein, there are
an exponential number of ways that the protein can fold up in space.
Thus, the complexity of the protein folding problem as a combinatorial
optimization problem is well known. We briefly present the literature and
then focus on how the protein folding problem may be modeled through
Steiner trees.

The protein folding problem may be conceptualized from the way bio-
logists and chemists normally view the fundamental structure of a protein.
There are basically four classification schemes: (1) primary; (2) secondary;
(3) tertiary; and (4) quarternary, see Ref. [5]. Brandon and Tooze [5] provide
a good overview of the folding problem and they postulate that there are
a set of rules that govern the way a protein folds up in space.

The primary structure refers to the linear sequence of amino acids in
the chain. Secondary refers to the helices and sheets in which the acids
form from the primary sequence of amino acids along the backbone chain.
Tertiary refers to the complete 3-D structure of the protein and quarternary
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refers to the spatial relationships between the different polypeptides or
subunits of the overall globular protein. It is theorized that the 3-D structure
is largely determined by the primary composition level of the amino acids,
as argued in Ref. [40]. We shall largely focus on this primary and secondary
level and examine what Steiner minimal trees offer here. Some of the key
3-D rules are felt to be contained in this primary structure. A theoretical
topological and geometric approach is followed rather than an empirical
one approach for determining the 3-D structure, because the formalism of
Steiner minimal trees allows one to do so.

15.2.2 Secondary Structure Prediction
The sequence of dihedral angles along the backbone structure of a pro-
tein generally determines the rough structure of the folded protein. The
sequence of angle pairs (φ,ψ) set up the melody for the folding of the
protein [32]. Figure 15.1 illustrates the (φ,ψ) dihedral angles of interest
along the backbone of a folded protein, where the carbon and nitrogen
atoms are as indicated along with the amino acid residues Ri also known
as side chains. In addition, we have indicated the peptide planes (dotted
lines) and the (φ,ψ) dihedral angles of central interest for the planes of
this tripeptide structure.

Figure 15.1 Peptide backbone dihedral angles with planes.
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Figure 15.2 Morphological tree of structure and secondary structure prediction
methods.

15.2.3 Literature Review
The literature relevant to secondary structure prediction is examined in
Figure 15.2. Although prediction of secondary structure by itself will
not necessarily illuminate tertiary structure, it still remains a viable area
of research. There appear to be two major divisions in the research of
secondary structure prediction methods: theoretical and empirical [15].

Theoretical methods make use of the physical and chemical properties
of the amino acids themselves to predict structure [3] as well as energy
minimization methods, while the empirical methods utilize the known
sequences and properties of the structures to predict the likelihood of
secondary structure.

There have been three major categories of publications on empirical
methods of secondary structure prediction: (1) statistical methods, (2) se-
quence similarity methods, and (3) neural networks. All have had varied
levels of, success, but no one single approach has clearly dominated the
others.

Probably the simplest and most easily utilized methods are the statistical
methods spearheaded by Chou and Fasman [7] and Garnier et al. [18].
Their approach is based on the probability of the individual amino acid
residues being found in specific secondary structures (α-helix, β-sheets, or
β-turns) compared to the overall probability in which they appear in protein
sequence conformations. Their accuracy is reputed to be between 57 and
70 percent.

Homologous (sequence similarity) methods such as those embodied in
the works of Levin et al. [27] and Reimer and Fueller [34] have an accuracy
of about 65 percent.
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Figure 15.3 Ramachandran plots.

Neural network models such as those mentioned in Refs. [6,22] have
an accuracy of around 72 percent and appear to be a bit more
accurate than the former methods, yet no one method seems to dominate,
and hybrid methods appear to be a wise choice. Many software tools have
recently become available for secondary structure prediction
(see http://us.expasy.org/tools/ and http://cmgm.stanford.edu/WWW/
www-predict.html).

15.2.4 Ramachandran Plots
Given that the bond lengths, bond angles, and side chain conformations
are relatively rigid, it is the dihedrahl angles of the backbone structure that
represent the key elements in determining the ultimate 3-D structure of
the protein [32]. Ramachandran plots (Figure 15.3) describe the basic rela-
tionship between the (φ,ψ) dihedral angles and the backbone planes and
their possible feasible conformations. Only three possible angular confor-
mations occur as is indicated in the figure on the left and this is due to the
sterically allowed (φ,ψ) dihedral angles [40]. We would like to simplify the
identity and range of possible dihedral angle measures so that instead of
two angles, we only need one angle measure.
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15.3 Mathematical Models
Combinatorial optimization mathematical models and their networks will be
utilized as they provide a close analog to the geometry of folded networks
of proteins and they also allow one to quantitatively assess the potential
energy characteristics of proteins. In particular, Steiner tree networks will
be the tool for analysis.

15.3.1 Steiner Trees
Steiner trees represent the shortest possible network in Ed to connect a
given set of terminals V = {v1, v2, . . . , vN } where possible additional points
called Steiner points from a set S = {s1, s2, . . . , sM } may be used to further
reduce the Euclidean distance connecting the given points V . The problem
is difficult (in fact it is NP-Hard) because one knows neither how many
Steiner points to employ nor their location in space. The focus of the chapter
is on 3-D Euclidean space E3.

15.3.2 Definitions
There are certain elemental definitions concerning Steiner trees that are
important in E3 and higher dimensions. They are the following:

• M ≤ N − 2, ∀Ed [19],
• Angles subtended at each Steiner point are equal to 2π/3, ∀Ed [19],

and
• The ratio in the plane of dimension two ρ2(V ) = √3/2 is attained

for equilateral triangles, ladders, and lattice configurations, see
Ref. [13,14].

15.3.3 Notation
The following is a list of useful notation and definitions:

M = Number of Steiner vertices from point set S
N = Number of given terminal vertices from the set V
FST = Full Steiner tree with the maximum number of Steiner points

M = N − 2
MST = Minimum spanning tree with the number of Steiner points

M = 0
ρ3(V ) = Steiner ratio of a given terminal vertex set V , i.e., ρ3(V ) =

SMT /MST in E3

To demonstrate this angle importance, let us take four terminals in space
that are denoted as {Vi , Vj , Vk , V�} that are from an equilateral tetrahedron
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Vk

Vl

Vi

Vj

Tkl

Tij

Figure 15.4 SMT solution for N = 4.

with cartesian coordinates (xi , yi , zi), (xj , yj , zj), (xk , yk , zk), (x�, y�, z�), res-
pectively:

Vi : 1. 1. 1.; Vj : 1. − 1. − 1.;
Vk : −1. 1. − 1.; Vl : −1. − 1. 1.

The larger nodes in the diagrams which follow (see Figures 15.4 through
15.6) represent the terminal vertices while the smaller nodes represent
either equilateral points or Steiner points.

Our objective is to find the maximum distance between the equilateral
vertices of the edge pairs or, in essence, find the orientation of circles,
called “Melzak circles” [31], through the equilateral reflection points that are
furthest apart. The following optimization problem involving the equilateral
reflection points corresponding to our given terminals Tij − Tk� with the
Melzak circles along with the constraints ensuring the equilateral edges
eij , ek� are satisfied is presented:

Figure 15.5 Maxwell’s theorem, given V (left) SMT ≡ MEC (right).
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Figure 15.6 Cube with steiner plane (above) Melzak circles (below).

Max � = ‖Tij − Tk�‖
s.t.[(

xij − xi

)2 + (yij − yi

)2 + (zij − zi

)2
] 1

2 = eij

[(
xij − xj

)2 + (yij − yj

)2 + (zij − zj

)2
] 1

2 = eij

[(
xk� − xk

)2 + (yk� − yk

)2 + (zk� − zk

)2
] 1

2 = ek�

[(
xk� − x�

)2 + (yk� − y�
)2 + (zk� − z�

)2
] 1

2 = ek�

where Tij = (xij , yij , zij) and Tk� = (xk�, yk�, zk�).
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This is a non trivial optimization problem that can be classified as NP-
Hard. The importance of the problem in relation in all that follows is
captured in Figure 15.4. In Figure 15.4, the Melzak circles represent those
link pairs of given terminals with equilateral vertices Tij and Tk�. The twist
angles between the planes defined by the Melzak circles are crucial to the
SMT topology. For the N = 4 regular tetrahedron case, the twist angles
between the planes are π/2. These twist angles define the Steiner tree
topology for this given terminals. When one has terminals of N = 4 that
deviate from the regular tetrahedron, then the twist angles also change and,
in general, are very difficult to compute.

Therefore, as will be shown, the planes of the points (atoms) in the
Steiner tree structure are an important part of the solution process for the
Steiner tree topology.

15.3.4 Potential Energy Functions
It is important to know the minimum energy of a protein because it cor-
relates strongly with the conformational structure [2]. In protein modeling,
one potential energy objective function often used to measure the mini-
mum energy configuration (MEC) is the following, where Kbi , Kθi , Aij , Bij , ε
are adjustable weights; see Ref. [8]. This potential-energy objective func-
tion is based on the theoretical molecular mechanical force field model
used to model most molecular structures; see Ref. [26]. It is interesting to
observe that the objective function is the sum of nonlinear terms with little
interaction between the terms.

Etot =
∑

i

Kbi (bi − b0)
2 bond lengths [Ebs]

+
∑

i

Kθi (θi − θ0)2 bond angles [Eab]

+
∑

i

Kτi (cos(3τi − γ0)) torsion angles [Etor ]

+
∑

i

∑

j

Aijd
−6
ij + Bijd

−12
ij van der Walls [E14vdW ]

+
∑

i

∑

j

ViVj/εdij electrostatic interactions [E14e]

where
Ebs is the sum of energies arising from bond stretching or compression
beyond the optimum bond length, and bi , b0 are the actual equilibrium
bond lengths
Eab is the sum of energies for angles that are distorted from their
optimum values, and θi , θ0 are the equilibrium bond angles
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Etor is the sum of the torsional energies that arise from rotations about
each respective dihedral angle, and τi , γ0 are the torsion angles
E14vdW is the sum of energies due to van der Walls interactions and
E14e is the electrostatic interaction

15.3.5 Steiner Trees and Minimum Energy Configurations
In this section, we address the crucial link between Steiner trees and MECs
and how this linkage can be beneficial to predicting protein structure. Also,
we argue that the geometric properties of Steiner trees can be used to
approximate the potential energy function.

The relationship between SMTs and MECs is described by Maxwell’s
theorem; see Ref. [19] for proof. Let F1, F2, F3, F4 be unit forces acting at fixed
terminals {V1, V2, V3, V4}, respectively. If one designs a network linking these
terminals with Steiner points {s1, s2} that can be moved into position, then
one seeks to find the location of the Steiner points and the network where
these forces will be in equilibrium. Figure 15.5 illustrates the MEC.

THEOREM 1. If one draws unit vectors from a Steiner tree in the direction
of each of the lines incident to V1, V2, . . . , VN , and letting Fi denote the sum
of the unit vectors at Vi, then in mechanical terms, Fi is the external force
needed at Vi to hold the tree in equilibrium. The length of the tree SMT has
the simple formula

SMT =
N∑

i=1

ViFi

If the forces at the vertices are not all uniform, then the SMT acts as only
a lower bound. This was discussed in some detail in our previous paper, see
Ref. [39]. Notice that in Maxwell’s theorem the function is separable in the
force components. Thus, the FST can be decomposed into its FST compo-
nents. One way to construct a FST is to identify its FST components. Thus,
if we can subdivide the overall terminal point set into its FST components,
then we can compute the overall SMT by constructing the SMT for its FST
components.

As a simple example of what is to follow, let us examine a unit cube in
3-D space and generate its SMT (see Figure 15.6). Following that, we give
a somewhat detailed examination of the Steiner structure of the amino acid
serine.

Figure 15.6 illustrates the Steiner tree for N = 8 terminals of a unit
cube. The N − 2 Steiner points (smaller circles) lie within the cube and
form a plane as indicated. The figure on the right illustrates two of the
Melzak circles associated with this planar structure. Because the two Melzak
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circles lie in the same plane, their dihedral angle is 0◦. We are generally
interested in the planes generated by the Steiner trees and the dihedral
angles between them.

15.3.6 Serine
Serine (Ser) is an amino acid with an uncharged polar side chain. Ser has 14
atoms. It is not essential for the human diet but is important in metabolism.
Serine was first obtained from silk protein, which we will examine in more
detail in later sections of the chapter. The average occurrence of Ser in
proteins is ≈6.8 percent [40]. Figure 15.7 shows first the chemical structure
of serine and then the optimal Steiner tree structure of Ser.

The bottom of Figure 15.7 illustrates the optimal Steiner structure of Ser
again from two different viewpoints. The planes that can be defined for Ser
from the Steiner structure are as follows:

T1 :={O3, O2, Cα, H1}; P1 := {O2, Cα, H1}
T2 :={Cα, C2, N1, H3}; P2 := {Cα, C2, N1}
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Figure 15.7 Serine Steiner topologies and optimal structure.

P3 :={O1, C2, H7}; P4 := {C2, O1, H2}
P5 :={N1, H5, H6}; P6 := {Cα, C2, H3}

Here is the MAPLE output for the twist angles along with the approxi-
mation matrix:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

P 1 2 3 4 5 6

1 [0.0] [89.95] [59.94] [60.0] [60.03] [60.0]
2 [0.0] [60.0] [60.0] [59.94] [59.94]
3 [0.0] [60.0] [60.0] [60.0]
4 [0.0] [90.0] [90.02]
5 [0.0] [0.0]
6 [0.0]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

P 1 2 3 4 5 6

1 − π/2 π/3 π/3 π/3 π/3
2 − π/3 π/3 π/3 π/3
3 − π/3 π/3 π/3
4 − π/2 π/2
5 0
6 −

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
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15.4 Alanine Dipeptide Results
Previous papers have focused on the analysis of single individual amino
acids in proteins with Steiner trees such as in the analysis of serine in
the previous section of this chapter. Another recent paper expounds on
the torsional energy relationship between Steiner trees, planes generated
by the Steiner trees, and folding and misfolding of protein structures, see
Ref. [37].

We wish to look at dipeptides and pentapeptides with Steiner trees
and examine the regularity properties of the dihedral angles of the planes
generated by the Steiner trees.

We first examine the simplest and most well-known dipeptide, Ala-Ala,
which consists of two alanine amino acids connected by a peptide bond.
There are a total of 23 atoms as seen in the following schematic diagram [35].

Given the alanine dipeptide (Figure 15.8), we perturb a pair of tor-
sion angles (ψ1,φ2), each of which can be defined by four consecu-
tive heavy atoms along the peptide backbone such as N1a-Caa-C2a-N1b
and C2a-N1b-Cab-C2b, respectively (see Figure 15.10). Table 15.1 shows
the Steiner values for nine different alanine dipeptide conformations.
The results of the SMT program represent the best upper bounds on the
Steiner ratio that have been found in a reasonable amount of computing
time. Figure 15.9 indicates the ρ values for the angular variations listed
in Table 15.1. Note that the (−180◦,−60◦) conformation has the highest
Steiner ratio of 0.997588.

The SMT ρ value for the Swiss-PdbViewer energy minimization
[20] configuration is optimal. To test if the inverse relationship bet-
ween Steiner ratio and potential energy can be extended from sin-
gle amino acid to dipeptide, we also compute energy values of those

Figure 15.8 Alanine dipeptide structure.
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Table 15.1 Energy Minimization
and ρ Values

(ψ − 1, φ − 2) Steiner ρ Value

−180 −180 .995803
−180 −60 .997588
−180 60 .995749
−60 −180 .995950
−60 −60 .995750
−60 60 .995901

60 −180 .995618
60 −60 .995778
60 60 .995811

conformations using the Swiss-PdbViewer energy calculation module [20].
The results (not displayed here) apparently show the inverse relation-
ship. For instance, the total energy of the (−180◦,−60◦) conformation is
480 kJ/mol (ρ= 0.997588) although two other non-minimal conformations
(−60◦,−180◦) and (60◦, 60◦) have much higher energy values of 510 kJ/mol
(ρ= 0.995950) and 613 kJ/mol (ρ = 0.995811), respectively.

Figure 15.9 indicates the ρ values for the Ramachandran angular varia-
tions listed in Table 15.1.

Figure 15.10 presents the minimum energy conformation of alanine
dipeptide with its torsion angles of (−180◦,−60◦). From its Steiner tree
topology, we have three Steiner planes such that P1 = {Caa, Cba, N1a};
P2 = {Caa, O1a, Cab, N1b} and P3 = {Cab, C2b, Cbb} The volume of the
tetrahedron P2 is essentially zero as one can see that all four atoms are on
the same plane. The twist angles among these three Steiner planes are
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Figure 15.9 Graph of SMT ρ function.
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Figure 15.10 Alanine dipeptide minimum energy configuration.

given in the matrix T below. What is remarkable is that all the angles for
the minimal conformation are essentially 60◦.

For the (−180◦,−60◦) conformation, T1 =
⎡

⎢
⎣

−− π/3 π/3
−− π/3
−−

⎤

⎥
⎦

The following are samples of twist angles for other non-minimal conforma-
tions. These angles become irregular subject to the backbone torsion angle
variations.

For the (−60◦,−180◦) conformation, T2 =

⎡

⎢
⎢
⎣

−− π/2 π/3
−− π/3
−−

⎤

⎥
⎥
⎦

For the (60◦, 60◦) conformation, T3 =

⎡

⎢
⎢
⎣

−− π/3 π/3
−− π/2
−−

⎤

⎥
⎥
⎦

We note that carbon and nitrogen atoms of the peptide backbone act
as Steiner points as in single amino acid topology and the regularity of
twist angles between Steiner planes determined by those points is strongly
related to the local stability of protein chain in terms of potential energy.
Aforementioned, the backbone torsion angles of dipeptide or protein in
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general are also determined by positions of consecutive carbon and nitro-
gen atoms along the backbone. Therefore, we can use Steiner planes in-
stead of the backbone torsion angles in characterizing protein local struc-
tures. In addition, the Steiner ρ value can be a surrogate for measuring
energy in the protein structure.

15.5 General Dipeptide Results
In the preceding section, the Steiner structure of the alanine dipeptide
defined several planes involving the carbon and nitrogen atoms of the
peptide backbone. These planes generated by the Steiner tree topology
maintain certain angular relationships within the secondary structure much
as in the Ramachandran plot, see Figure 15.3.

15.5.1 Virtual Plane
Motivated by this insight, we postulate that the position of Steiner points
in the backbone is strongly related to the regularity of secondary struc-
tures energetically stabilized by hydrogen bonds. To clarify this hypothesis,
we introduce a new virtual plane defined by the initial carbon and nitro-
gen atoms of each amino acid structure along the backbone. This plane is
related to the conformations of amino acids of native proteins much as we
have shown for the SMT protein structures in the previous section. We then
measured the dihedral angle of two consecutive virtual planes (called the
virtual plane angle) along the backbone. This single plane angle represen-
tation encompasses the traditional torsion angles of amino acids along the
backbone (see Figure 15.11).

We chose a reference data set of 100 protein structures from the Protein
Data Bank (PDB) and then statistically investigated the regularity of virtual

Figure 15.11 Peptide virtual dihedral angles.
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plane angles depending on the type of secondary structures. We restricted
the focus to α-helices (β-strands) with more than 11 (6) residue long. The
first and last residues were excluded from the test to isolate terminal mobil-
ity. Consequently, we got about 3000 (500) samples of virtual plane angles
for helices (strands). Figure 15.12 shows the histograms of virtual plane
angles for helices and strands, respectively. Roughly speaking, most helical
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Figure 15.12 Statistical histograms of α-helix (above) and β-sheet structures
(below).
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conformations have large virtual plane angles (i.e., a virtual plane is almost
perpendicular to the next), whereas β-strands obviously form like straight
lines by taking small virtual plane angles.

Next, we modeled a 3-D standard dipeptide structure using group theory
in the left of Figure 15.13 and then calculated the virtual plane angles ana-
lytically when various torsion angles were applied. We chose 60 (90) pairs

f1

f2

y1

y2

R1

Ca

Ca
C

C
N

N

R2

f

y

180

180

0

0
�180

�180

b

a

Figure 15.13 Illustration of a 3-D dipeptide model and the Ramachandran plot
(above). In the above figure, a 3-D peptide model is developed. Hydrogen and
oxygen atoms are not displayed here. There are four torsion angles to be assigned.
In the figure on the below, two clusters corresponding to α-helices and β-strands
are chosen from the Ramachandran plot and torsion angles are sampled from there,
respectively. This contour plot is adopted from [23].
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of φ and ψ angles from the region of Ramachandran plot corresponding to
α-helices (β-strands) as shown in right of Figure 15.13. Consequently, we
generated 3600 (8100) different dipeptide conformations and virtual plane
angles for α-helices (β-strands).

Figure 15.14 displays the histograms of virtual plane angles from analytic
data. It is observed that angular regularity of the analytic dipeptide model
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Figure 15.14 Analytical histograms of α-helix (above) and β-sheet structures
(below)- histograms of the virtual plane angles are computed analytically. α-Helices
(β-strands) are highly populated in the range of 70◦−90◦ (0◦−20◦) as was observed
from the statistical data in Figure 15.12.
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has good agreement with statistical data even though there is small vari-
ation between statistical and analytical histograms. These errors come
from the different population of torsion angles between statistical data
and analytical data. The native proteins might have their unique torsion
angle preferences depending on the types of secondary structures. How-
ever, the Ramachandran plot provides no detailed information about the
relative population of a particular torsion angle within the same category
of secondary structure, e.g., the α-helix. This limitation yields a practical
assumption that the population of each sampled conformation is uniform
in our 3-D model.

The concept of virtual plane angles proposed here enables the Steiner tree
topology to describe the protein secondary structures, as well as side chain
conformations of each amino acid. Furthermore, this single parameterization
based on the protein topology encourages us to develop a computationally
efficient folding prediction by searching only N dimensional conformational
space for an N residue-long protein instead of using the traditional 2N
dimensional conformational space associated with φ and ψ angles.

15.5.2 Ala-Gly Silk βββ-Structure
Silk is a protein produced in the posterior silk glands of the larva of the
cultivated silk worm Bombyx mori for the construction of cocoons. It also
occurs in the webs of a number of various spiders [40]. The silk fibers are
comprised of a protein called fibroin which is a theoretical model of the
protein.

The protein is constructed from layers of antiparallel β-pleated sheets,
which run parallel to the fiber axis [40]. Although each chain is com-
prised of multiple repeats of the sequence (Gly-Ser-Gly-Ala-Gly-Ala)n,
the protein is often approximated by a repeating units of (Gly-Ala)n. We
would like to understand the alignment and the twist angles of the Steiner
planes in these two acids as perhaps a key to the protein structure of
fibroin.

15.5.2.1 Experiments for Individual Acids

The two protein structures of fibroin that we will examine are from a paper
by Fossey et al. [17]. Although further Steiner structure details appear in
Ref. [36], we are most interested in the virtual angle measurements which
are reflected in Figure 15.15. In fact, the Silk2 structure has a lower energy
value than the Silk1 structure.

The N1, Cα, and C2 atoms of each amino acid for the silk structures are
identified in Table 15.2 for five of the amino acids in each silk structure.
Notice that in the two tables in Table 15.2, Silk1 has more variability, i.e., a



Lim/Optimization in Medicine and Biology AU0563_C015 Final Proof Page 460 12.11.2007 12:37pm

460 Optimization in Medicine and Biology

Figure 15.15 Silk1 structure (above) silk2 structure (below).

larger range in the twist angles values, than the Silk2 structure. Because they
are both β-sheet structures, their twist angles are much closer to zero than in
the α-helix structures. Thus, the variability of the virtual angle measures in
the comparison matrix becomes a valuable measure of structural stability.

Table 15.2 Comparison of Twist Angles for Silk1 (Left) Silk2 (Right)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[0.0] [0.0] [6.382] [3.969] [10.64]
[0.0] [6.118] [3.969] [10.48]

[0.0] [3.032] [4.364]
[0.0] [7.069]

[0.0]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[0.0] [4.727] [6.382] [4.364] [4.364]
[0.0] [3.533] [1.812] [3.032]

[0.0] [5.316] [1.812]
[0.0] [4.657]

[0.0]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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15.5.3 Pentapeptide Results
In a final set of experiments, a set of pentapeptide proteins will be exam-
ined. In these experiments, the properties of the planes of the acids will
be utilized to get a measure useful for characterizing the overall secondary
structure. As argued earlier, the N1, Cα, and C2 atoms of each amino acid
create a virtual plane and we wish to examine the twist angles of the planes
of these atoms for each acid. The reason for selecting these three atoms
is that they are essentially Steiner points of the acids and they will form a
force plane unique to each acid. This is a simpler way to capture the infor-
mation in the Ramachandran plots (see Figure 15.13) because it involves
only one degree of freedom rather than two degrees of freedom.

Why is this an equivalent representation of the backbone folding struc-
ture of the peptide? Each of the three atoms is part of the amide plane of
each acid. The three atoms are the minimum number of atoms needed to
define a plane in space and the three atoms together provide more infor-
mation about the protein structure than simply Cα by itself. The pairs of
adjacent twist angles of these planes along the peptide should reveal the
underlying pattern of conformation angles for the protein.

15.5.3.1 Leu-Ser-Phe-Ala-Ala (N = 71 Atoms) ρ = 0.995210

Let us examine an α-helix structure with a different amino acids sequence
from the silk structures. A native structure of Leu-Ser-Phe-Ala-Ala is cho-
sen from the enzyme citrate synthase (PDB ID: 1CTS), residues 260− 264,
which form a part of buried helix. To test the regularity of twist angles
between virtual planes, we first modeled a 3-D standard pentapeptide
structure with the same sequence above and then perturbed the backbone
torsion angles ψ1 through φ5 by an increment of 30◦ degrees. Neither φ1

nor ψ5 can be defined in this case.
Energy values of each conformation were computed to find the low-

est energy conformation among the sampled structures. Torsion angles for
the native structure are compared to those of the sampled lowest energy
conformation in Table 15.3. If the number of sampled conformations is
increased by decreasing the size of increment, it is expected to find out
much closer structures to the native one. In Figure 15.16, we illustrate the

Table 15.3 Torsion Angle Comparison between the Native
and the Sampled Structures

ψ1 φ2 ψ2 φ3 ψ3 φ4 ψ4 φ5

Native −29.5 −78.9 −35.3 −70.1 −44.5 −62.9 −28.3 −81.6
Sampled −30.0 −90.0 −30.0 −60.0 −30.0 −60.0 −30.0 −90.0
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Figure 15.16 SMT of the sampled pentapeptide structure.

pentapeptide structure as well as the twist angle matrix. Notice that the con-
secutive planes involving the atoms of all five amino acids are very regular
with twist angles of P1, P2, P3, P4, and P5, respectively. The range of twist
angles indicates that the sampled structure forms an α-helix. The Steiner ρ
value is 0.99521.

Other helical segments from the same protein were also tested. The
predicted conformations (not displayed here) show good agreement with
the native structures and the regular twist angles indicate that they are part
of a helix structure. Consequently, twist angles between consecutive vir-
tual planes defined here enable us to characterize secondary structures in
proteins faster than the conventional backbone torsion angle representa-
tion. In addition, the Steiner ratio calculation becomes a powerful tool to
check the stability of local secondary structures instead of measuring their
energy value. Further, these two topology-based tools can be utilized in
developing a faster protein folding prediction algorithm.

15.6 Summary and Conclusions
We have presented a new dihedral angle measure relevant to the predic-
tion of secondary structure in proteins. We have tested the angular measure
for a subset of α-helix and β-structures from the PDB as well as individual
dipeptide and pentapeptide structures. The new virtual angle measure is
viewed as complimentary and simpler than the (φ,ψ) dihedral angle mea-
sure of the Ramachandran plots because it uses one degree of freedom less.
Future work includes testing the methodology for identifying secondary and
tertiary structure in a protein folding algorithm.
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Abstract Recombinant viruses based on the vaccine strain of measles
virus have potent and selective activity against a wide range of tumors.
Successful tumor therapy with these viruses (virotherapy) depends on
efficient infection of tumor cells by the virus. Infected cells express viral
proteins that allow them to fuse with neighboring cells to form syncy-
tia. Infection halts tumor cell replication and the syncytia ultimately die.
Moreover, infected cells may produce new virus particles that proceed to
infect additional tumor cells. The outcome of virotherapy depends on the

467
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dynamic interactions between the uninfected tumor cells, infected cells,
and the virus population. We present a model of tumor and virus interac-
tions based on the phenomenologically established interactions between
the three populations. Other similar models proposed in the literature are
also discussed. The model parameters are obtained by fitting the model
to experimental data. We discuss equilibrium states and explore by sim-
ulations the impact of various initial conditions and perturbations of the
system in an attempt to achieve tumor eradication. We show that the total
dose of virus administered and the rate at which the tumor grows play
determining roles on the outcome. If tumor growth can be slowed, the
minimal dose of virus needed for curative therapy can be reduced sub-
stantially. An interesting prediction of the model is that virotherapy is more
effective on larger tumors when deceleration of growth occurs.

16.1 Introduction
The majority of hematopoietic neoplasms remain incurable with currently
available therapies. For example, multiple myeloma (MM) has a median
survival of three–four years despite the availability of high-dose therapy
with stem cell transplantation and the introduction of novel agents, such
as thalidomide and bortezomib [1]. Thus, there is an urgent need for
novel therapeutic modalities for these disorders. Over the last few years,
engineered viruses (both DNA and RNA based) have been introduced
as potential cancer therapeutic agents [2,3]. Several trials have been per-
formed with replication-selective adenoviruses in head and neck cancer [4]
and metastatic colon carcinoma [5,6] while Newcastle disease virus has
been given to patients with various tumor types [7]. The use of viruses for
tumor therapy introduces several new concepts in the field of therapeutics
because an underlying premise of tumor therapy is that the infected tumor
cells become factories that generate new virus particles that infect more
tumor cells in a series of waves [2]. This introduces the concept of popula-
tion dynamics and the outcome of such therapy depends in a complex way
on the interactions between the population of virus and tumor cells [8–12].

Our work has centered on the use of engineered viruses, derived from
the Edmonston vaccine strain of measles virus (MV-Edm). The vaccine
strain was chosen as a therapeutic platform because of anecdotal reports
of resolution of Burkitt’s lymphoma in patients who acquired wild-type
measles virus infection. Moreover, the vaccine has been given to more than
a billion people with an excellent safety record. MV-Edm and derivative
viruses obtained by virus engineering have potent and selective oncolytic
activity against a wide variety of human tumors, including non-Hodgkin
lymphoma [13], MM [14], ovarian carcinoma [15], glioma [16], and breast
carcinoma [17] although they leave normal tissues unharmed.
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MV infection starts when the viral hemagglutinin (H) protein binds to
its receptor on target cells. The H protein displayed by wild-type measles
virus preferentially binds to CD150 (also known as SLAM) [18] whereas
the H protein of MV-Edm preferentially interacts with CD46 [18]. Most
tumor cells over-express CD46 [19,20] and this is thought to be one of
the mechanisms behind the selective tropism of these viruses for tumor
cells. Binding of the H protein with its cognate receptor induces conforma-
tional changes in the fusion (F) protein which in turn triggers membrane
fusion between the virus particle and the target cell. The functional sep-
aration of target cell binding (via H) and fusion (via F) in MV also facili-
tated retargeting of the virus to specific tumors by modification of the viral
H protein [21–24]. Protein engineering has also led to complete ablation of
H binding to the known viral receptors (CD46 and CD150w) so that fully
retargeted viruses that only infect tumor cells of interest have been gener-
ated [25–27]. In addition, MV vectors have been modified to allow noninva-
sive monitoring of viral gene expression by the secretion of the biologically
inert soluble peptides CEA (MV-CEA) and human chorionic gonadotrophin
(hCG, MV-hCG) [28]. More recently, MV-Edm has been modified to ind-
uce expression of the thyroidal sodium iodide symporter (NIS, MV-NIS)
in infected cells to enable noninvasive imaging of the biodistribution and
replication of the virus in vivo [29,30].

Although MV-based vectors have potent oncolytic activity, some tumors
are not eliminated in vivo. Studies using MV-CEA show that although the
virus efficiently infects and propagates in these tumors, the latter may persist
[15,29,31]. This highlights the dynamic interplay between viral replication,
tumor cell growth, and the death rate of infected tumor cells [8–12,32,33].
In this respect, MV-NIS has an advantage over the parent virus because
it can be combined with beta particle emitting isotopes such as iodine
(131) (131-I). The electrons emitted during isotope decay have a macro-
scopic path length and can destroy uninfected tumor cells with a significant
bystander effect [29,34,35].

Measles virus can control tumor growth by at least two mechanisms.
Infected cells express the viral H and F proteins and can interact with
neighboring cells with the result that the cells fuse together. Spread of
cell-to-cell fusion leads to the formation of syncytia that ultimately die,
usually after a few days [14,15]. In addition, once the infected cells die, they
may release free virus particles that can infect surrounding cells. Moreover,
infected cells stop replicating and do not contribute to further tumor growth.

The success of tumor virotherapy depends on infection of tumor cells
that serve as sites for virus amplification. Once the virus is released from
infected cells, the new particles can infect additional tumor cells. Thus, the
virus propagates through the tumor in a series of waves [2]. The interactions
between the tumor and virus populations are complex and understanding
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their dynamics requires mathematical modeling. There has already been
considerable work on modeling these interactions [8–11,32,33,36].

In the following, we describe our model of tumor and virus interactions
that take into consideration both virus production and spread of the inf-
ection between cells. We utilize the model to evaluate various therapeutic
scenarios and to test whether curative therapy is possible with virus alone
or virus in combination with other agents. Patients with advanced hemato-
logical cancer are usually immunosuppressed and hence the smallest dose
of virus as well as timing of therapy may be critical for an optimal response.
It seems logical to try and determine the smallest possible dose of virus that
can be associated with a cure, given that this will probably be associated
with the lowest risk of complications. In the following, we address several
critical questions pertaining to tumor therapy including

1. Is the initial tumor burden important for the outcome of therapy?
2. Is cure possible with a therapeutically achievable dose of virus?
3. Can therapy be optimized such that the dose of virus is minimized?
4. Does dose scheduling play an important role on the outcome of

therapy?

We are aware of the importance of the immune response to measles
virus and its potential adverse consequences on the outcome of therapy.
This is a current focus of our research efforts. The model we have devel-
oped is fitted to data obtained for the growth of myeloma tumor xenografts
implanted in immunocompromised mice and treated with a recombinant
measles virus. Given that these mice do not have an immune response we
will not consider the immune system further.

16.2 Mathematical Model of Virotherapy
Modeling the effects of any therapy on tumor growth requires a model for
the growth of the untreated tumor. Usually, untreated tumor growth is reli-
ably described by the Gompertz function [37–40], yet for some tumors the
more general Bertalanffy–Richards (or generalized logistic) model is req-
uired to describe data adequately [12,41]. We use the Bertalanffy–Richards
model given by

y′ = (g/ε)y[1− (y/K )ε], ε > 0, y(0) = y0, (16.1)

where
y(t) is the size of the tumor cell population
r = g/ε > 0 is the effective growth rate constant
K > 0 is the carrying capacity
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We note that in the limit ε→ 0 the Bertalanffy–Richards and Gompertz
models are equivalent [42,43]. The solution of Equation 16.1 can be written
in an explicit form [42–44]

y(t) = y0[ f ε + (1− f ε)e−gt ]−1/ε, (16.2)

where

f = y0/K .

To model the effects of virotherapy we have to consider the dynamics
of at least three interacting populations [9,12]:

� y(t) – uninfected tumor cells,
� x(t) – virus-infected tumor cells, and
� v(t) – free infectious virus particles.

A graphical representation of the model is given in Figure 16.1.
As noted in the Introduction, the infection spreads in tumor cells either

by a productive encounter of one free virus particle with one uninfected
cell, or by an encounter of an infected cell (expressing the viral F and H
proteins) with an uninfected cell. In the latter case, two cells fuse to form a
syncytium that continues to spread acquiring new surrounding cells. Thus,
the rate at which the population of uninfected cells is depleted is given by
the sum κy(t)v(t) + ρy(t)x(t), where κ > 0 and ρ ≥ 0 are corresponding
rate constants.

Uninfected cells are assumed to be proliferating according to the
Bertalanffy–Richards model. Infected cells most probably do not proliferate

Figure 16.1 Schematic diagram of the proposed model for virotherapy. Here y
denotes the populations of uninfected cells. Proliferation of these cells is described
by an effective proliferation rate r, carrying capacity K , and parameter ε which
characterizes the shape of the sigmoidal growth curve. Populations of infected cells
and virus are denoted by x and v, respectively. Indicated rates of first and second
order are explained in the text. Solid line arrows signify population influx or deple-
tion, while dotted lines indicate that corresponding rates depend on population x.
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[45], but are assumed to be dying at the effective rate δx(t) (Figure 16.1).
The rate constant δ may include the rate constant of apoptotic death
(a > 0) and possibly a very small rate constant for proliferation (p), so that
δ = a− p ≥ 0.

The population of free virus particles can grow when infected cells
(including syncytia) release virions that have replicated within the cell. Thus
the rate of free virus replication can be modeled by αx where α ≥ 0 is the
corresponding rate constant. Finally, the rate of free virus elimination is
modeled by the sum κy(t)v(t) + ωv(t) (Figure 16.1). The first term in the
sum corresponds to the rate at which virus particles enter uninfected cells.
Note that we assume that one virus particle infects one cell. These particles
are incapable of infecting further cells and are no longer part of the free
virus population. The term ωv(t), ω ≥ 0, represents a rate of elimination
of free virus particles by other causes including nonspecific binding and
generation of defective interfering particles.

With these assumptions about rates, the virotherapy model can be rep-
resented by the following system of differential equations:

y′ = ry[1− (y + x)ε/K ε] − (κyv + ρyx), y(0) = y0,

x ′ = κyv − δx, x(0) = 0,

v′ = αx − (κyv + ωv), v(0) = v0. (16.3)

The tumor is assumed to have grown to size y0 when a single dose of
virus v0 is injected at time t = 0. The term (y + x)ε/K ε ensures that the
tumor cannot grow beyond carrying capacity K . The mathematical proof
of this property of system (Equation 16.3) is analogous to the proof given
in Appendix A of Ref. [12].

The rate term ρyx, which describes one possible way of infection,
does not appear in the equation for x ′ because no new infected cell was
generated in that encounter. Rather, an uninfected cell became fused with
an infected cell, or with an already formed syncytium. Therefore, the
population x(t) is assumed to consist of single infected cells and syncytia.
Experimental evidence suggests that infection is mostly due to such fusion
with infected cells, rather than by free virus infection, which suggests
that κ� ρ (see Refs. [15,29] and Section 16.4). Although the rate constant
κ in Equation 16.3 may be small compared to ρ, it still should not be
completely negligible. Namely, if κ = 0, the model (Equation 16.3) breaks
down because x(t) may become negative. Thus we have to assume κ > 0,
or reduce the model to the following:

y ′ = ry[1− (y + x)ε/K ε] − ρyx, y(0) = y0 > 0,

x ′ = −δx, x(0) = x0 > 0. (16.4)
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In this simplified model, it is assumed that there is an initial, fast free virus
infection. This yields a number x0 of infected cells which then infect other
cells by fusion. This model did not fit the existing data (Section 16.4) and
will not be considered further.

The proposed model given by Equation 16.3 is different from some
previous models of virotherapy based on population dynamics [8–12,32,46].
Wodarz [9] has proposed and discussed a model in which ρ = 0, ε = 1
and the κyv term in the equation for v′ is absent:

y ′ = ry[1− ( y + x)/K ] − dy − κyv,

x ′ = κyv − δx,

v′ = αx − ωv.

Here the term dy models the death rate of uninfected cells. In our model
(Equation 16.3) this term is not included because it is redundant. Formally
one can write

ry[1− (x + y)ε/K ε] − dy = r̃ [1− (x + y)ε/K̃ ε],

where r̃ = r − d, and K̃ ε = (r − d)K ε/r .
In a previous attempt to model the dynamics of infected and uninfected

tumor cells, Wodarz [8,46] included the infection term βyx, but neglected
the dynamics of the free virus population. He considered the following
model equations:

y ′ = ry[1− (x + y)/K ] − dy − βxy,

x ′ = βxy + sx[1− (x + y)/K ] − δx.
(16.5)

Here it is assumed that both populations proliferate, although infected cells
are not likely to proliferate [45]. The term βxy in Equation 16.5 implicitly
models the spread of virus and it is conceptually different from our term
ρxy representing the specific rate of infection via formation of syncytia.

Following Wodarz [9], in our previous model [12] we have not included
the ρxy term. Also not included was the κyv term in the equation for v′.
However, this term could be important, because in its absence the free
virus particle count is not conserved. The models described in [10,11,32,33]
are more complex (and probably more realistic) spatiotemporal models;
however, they do not include the term analogous to κyv in the equation
for the virus population.

Population dynamics models, such as Equation 16.3, are generally
realistic when a population consists of many individuals. The goal of ther-
apy is to reduce the total number of tumor cells, given by u(t) = x(t)+y(t),
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to zero. However, due to the uniqueness of solutions, this goal can never
be achieved in ordinary differential equations models of the type described
here. We consider the tumor effectively eradicated if u(t) < 1 is achieved at
some finite time smaller or equal to the maximal lifetime of a mouse taken
to be 1000 days. Also, if the tumor burden is below a detectable amount
by 1000 days, the therapy is deemed successful. A tumor consisting of less
than 106 cells (or approximately 1 mm3) is considered to be undetectable.
The model may not be realistic when the number of tumor cells (or virus
particles) is very small, so in some ways the lowest limit of one cell (or
virus particle) is artificial. Yet, it can be used to estimate when the ultimate
goal of virotherapy is achieved, i.e., when the tumor cell population is
eliminated and there is no more free virus present.

16.3 Analysis of Equilibria
The stable states of system (Equation 16.3) which are approached as t →∞
represent the outcome of therapy if the tumor burden x(t) + y(t) has not
been reduced to a level below one cell at some finite time. Simulations sug-
gest that for physiologically relevant parameters, all such states are equi-
libria. We therefore begin by characterizing the fixed points of the model
and analyzing their stability.

In most parameter regimes, there are three equilibrium points of sys-
tem (Equation 16.3). The desired outcome of therapy corresponds to the
equilibrium point at the origin:

y1 = 0, x1 = 0, v1 = 0. (16.6)

This is an unstable point for biologically relevant parameters. The Jacobian
of the system for this point has the eigenvalues

λ1 = r > 0, λ2 = −δ < 0, λ3 = −ω.

The unstable manifold of this equilibrium is the y-axis. This instability is a
consequence of the assumptions made in the model: In the absence of the
virus, the number of infected cells x will remain at 0, solutions will remain
on the y-axis and grow according to the Bertalanffy–Richards model.

In the absence of therapy, or if therapy fails, the tumor eventually grows
to its maximal size. This is represented by the equilibrium point

y2 = K , x2 = 0, v2 = 0. (16.7)
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The Jacobian of the system for this point has eigenvalues

λ1 = −rε/K < 0, λ2,3 = −p ±√p2 − q (16.8)

where

p = δ + κK + ω1, q = (α − δ)κK − δω.

All eigenvalues are real for biologically relevant parameters. In case q < 0
all eigenvalues are negative and the equilibrium is stable. When q > 0 it
follows from Equation 16.8 that λ2 > 0 and the equilibrium is unstable. In
the unlikely case that q = 0 it follows λ2 = 0 and stability is determined by
higher-order terms.

Partial success of therapy is represented by the equilibrium point:

y3 = δω

(α − δ)κ , x3 = 1

c

[

1−
(

x3 + y3

K

)ε]

, v3 = α − δ
ω

x3, (16.9)

where

c = κ(α − δ)
rω

+ ρ
r

.

As discussed in the previous section x(t) + y(t) ≤ K . Therefore, at this
equilibrium point y3 < K , since y3 = K corresponds to the equilibrium
point of complete therapy failure.

For biologically relevant parameters, nonnegative values of y3 and v3

are obtained only for α > δ. In this case c > 0, and it is easy to show that
Equation 16.9 has a unique solution for x3. Indeed, let us denote by ψ(ξ)
the function

ψ(ξ) = [(ξ + y3)/K ]ε + cξ − 1.

This is a continuous function on the interval [0, K − y3] andψ(0)= (y3/K )ε −
1 < 0, while ψ(K − y3) = c(K − y3) > 0. Therefore, ψ(ξ) has zero within
this interval, i.e., there exists at least one x3 ∈ [0, K − y3] which solves the
nonlinear Equation 16.9. Furthermore, this solution is unique, because if
we assume two different solutions ξ1 and ξ2, then ψ(ξ1) − ψ(ξ2) = 0 and,
therefore,

[(ξ1 + y3)/K ]ε − [(ξ2 + y3)/K ]ε = −c(ξ1 − ξ2).
Both ξ1 > ξ2 and ξ1 < ξ2 lead to a contradiction and, therefore, ξ1 = ξ2.
Thus, the equilibrium in Equation 16.9 is uniquely defined for all biolog-
ically relevant parameters. The only exception are the cases ω = 0 and
α = δ, when Equation 16.9 does not exist, and only Equations 16.6 and 16.7
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are relevant. The significance of equilibrium in Equation 16.9 is that it offers
a permanent reduction of tumor burden if therapy fails to eliminate tumor
cells at some finite time.

Finding the eigenvalues of the Jacobian at the equilibrium point
(y3, x3, v3) leads to solving a cubic equation. The Routh–Hurwitz crite-
rion [47] for the solutions indicates that for some combinations of model
parameters all the solutions can have negative real parts and, therefore, the
equilibrium point can be stable. However, because equation for x3 cannot
be analytically solved, the conclusion about stability has to be reached by
numerical calculations for the specific parameter values.

In the next section, it is shown that experimental data for myeloma
tumor size in mice under virotherapy with MV-NIS are consistent with α =
ω = 0. This implies that approximately no free virus is being produced
in vivo and the therapeutic effect of virotherapy is only due to cell-to-cell
fusion and syncytium formation. Also, this singular model implies that the
free virus is not decreased due to elimination or inactivation. In this case,
the equilibrium corresponding to successful therapy (Equation 16.6) and
that corresponding to therapy failure (Equation 16.7) remains unchanged
in location and stability.

In addition to the equilibria (Equations 16.6 and 16.7) discussed above,
there is now a line of fixed points given by

L = {(y, x, v) : y3 = x3 = 0, and v = v̄ is arbitrary}. (16.10)

These equilibria represent the situation when the tumor is eradicated, but
there is a residual virus population v̄. The size of this residual population
depends on initial conditions. The Jacobian at each fixed point (Equation
16.10) has the eigenvalues

λ1 = 0, λ2 = −δ < 0, λ3 = r − κ v̄. (16.11)

The eigenvalue λ1 corresponds to an eigenvector parallel with L, and the
stability of points on L is determined by the sign of λ2 and λ3. Therefore,
all points satisfying

v̄ <
r

κ

are stable, and those satisfying the opposite inequality are unstable. As
shown in Figure 16.2, the point (0, 0, r/κ) lies on a separatrix between the
basin of attraction of the line, and the basin of attraction of the equilib-
rium (K , 0, 0) representing therapy failure. We note that the line given by
Equation 16.10 is invariant for any parameter values, however in the case
that α and ω are small and positive which still might be consistent with our
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Figure 16.2 Top: The projection onto the v−y plane of a collection of orbits
in the singular case α = ω = 0. Initial values v(0) range between 155 and 305,
y(0) = 9, and x(0) = 0.The orbit singled out by the heavy line lies on the separatrix
between two basins of attraction. Points to the left are attracted to the equilibrium
(K , 0, 0) (therapeutic failure), and points to the right are attracted to the line of
fixed points L (successful therapy). Other parameters are chosen as r = 0.206,
ρ = 0.2145, K = 2139, ε = 1.649, κ = 0.001, δ = 0.5115. Bottom: The same
simulation with α = ω = 0.001. As discussed in Section 16.5, the line L is no longer
attracting.
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data (see next section), L is no longer attracting. We discuss this further in
Section 16.5.

16.4 Model Validation and Parameter Estimation
The proposed model given by Equation 16.3 was validated by least square
fits to available experimental data obtained for MM induced in SCID mice
[29]. These data include the tumor growth curve without treatment, and
the growth curve when virotherapy is introduced on day 15. Tumor size
was measured as volume (in mm3), while our model considers population
of cells. In the following we will assume that 1 mm3 corresponds to 106

cells and we will consider cell and virion populations y, x, v as expressed
in units of 106.

The model was validated and parameters estimated by using the
weighted nonlinear least squares method. Weighting factors were chosen as
1/σ 2

i , where σi is the experimentally determined standard deviation for the
ith data point. Technically, least squares fitting was conveniently performed
in MLAB (Maryland, http://www.civilized.com, Civilized Software Inc.,
Bethesda, Maryland), but in cases where the minimum was difficult to find,
we used our minimizer [48] in conjunction with a custom made ODE solver.

In the case of untreated tumor the fitting was relatively simple, as the
analytic form of the solution is known (see Equation 16.2). A good fit was
obtained with the exponent ε ≈ 1.65 rather than ε ≈ 0, which would imply
that growth follows the Gompertz function (see Figure 16.3 for parame-
ter estimates). By using model selection criteria we have shown that the
generalized model with ε ≈ 1.65 more adequately fits the growth data for
untreated tumor then both the Gompertz and the logistic model (ε = 1) [12].

In the case of virotherapy, we fitted u(t) = x(t)+y(t) to data. The tumor
size at the beginning of therapy, y0, was obtained from the best fit growth
curve for the untreated tumor. The values of parameters r , K , ε are those
obtained by fitting to the untreated tumor (Figure 16.3, also see Ref. [12]).
The initial viral dose v0 was known from the experiment. The best fit was
obtained when the lower limit for the allowed values of parameters α and
ω was set to zero (Figure 16.3) and the fit resulted in zero values. In terms
of underlying biology, one cannot completely exclude production of free
virus and its elimination. However, some in vivo experiments ( [28,31])
suggest that the free virus population is not detectable, so one can infer
that α is very small.

The results of our fitting suggest that the existing six data points are
insufficient to determine all five model parameters; specifically α and
ω appear to be the most undetermined. Thus, for example, when we
chose the lower limits α = 0.9 day−1, ω = 0.3 day−1 in the range of
allowable parameter values, the minimization yielded those lower limits.
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Figure 16.3 Weighted least squares fitting of the model (Equation 16.3) to growth
data for multiple myeloma (MM) in SCID mice [29]. Error bars with circles denote
data for untreated tumor and with squares for tumor under virotherapy. Untreated
tumor data were fitted [12] using the generalized logistic model (Equation 16.2)
resulting in r = 0.2062134 day−1, K = 2139.258, ε = 1.648773. The values of
parameters obtained by fitting to virotherapy data are given in Table 16.1, fits a
and c. For these fits we assumed that the tumor size at the start of virotherapy on
day 15 was given by the model curve for the untreated tumor, i.e., y0 = 126.237.
The virus dose was v0 = 2.

The corresponding best fit curve passes through error bars of data points
and can possibly be considered consistent with data, although χ2 is larger
(see Table 16.1). We have chosen a lower limit for ω of 0.3 day−1, because
some in vitro experiments suggest that approximately one-third of virus
particles are inactivated per day [49]. A lower limit for α was chosen at
0.9 day−1 because if α > 0.9 day−1 and ω = 0.3 day−1 the best fit curve

Table 16.1 Values of Model Rate Constants (in per day) Obtained
by Fitting to Virotherapy Data (see Figure 16.3). The Last Column
Presents the Obtained χ2

Fit κ δ α ω ρ χ2

a 0.0009590090 0.5115017 0 0 0.2145849 1.01547
b 0.0009592272 0.5140769 0.001 0.0001 0.2153509 1.01657
c 0.0005911312 1.1189519 0.9 0.3 0.141120 1.84888
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no longer passes trough the error bars, and we can consider those fits
inconsistent with data.

When the values for α and ω are changed, the fits suggest that other
parameters do not change dramatically (see Table 16.1). Thus, if we do
the fitting with α and ω limited from below to some acceptable values, we
can obtain the values of other parameters. For the sake of exploring this
model by numerical simulations, we chose the values for α and ω as (a) the
limiting case when they are zero, (b) small but not zero (suggested by in
vivo experiments [28,31]) and low χ 2v), and (c) as large as the data allows
(see discussion above).

Although based on the existing experimental data we cannot determine
model parameters accurately, model given by Equation 16.3 is validated.
This is not the case for the simplified model given by Equation 16.4 which
yielded completely unacceptable fits.

16.5 Simulations
As discussed in Section 16.3, equilibria are important for the virotherapy
outcome. However, because significant therapeutic effects have to be
achieved in a finite period (1000 days for the mice considered above), it is
necessary to investigate the predictions of model Equation 16.3 by numeri-
cal simulations. Therefore, in the following we discuss results of numerical
simulations chosen to demonstrate significant implications for the effects
of virotherapy. Throughout this section we will use the parameters given
in Table 16.1, and all quantities will be measured in the units discussed
in the previous section. We will start with a discussion of the singular and
singularly perturbed models corresponding to fits a and b, respectively, in
Table 16.1.

Figure 16.4 shows the time profile for the total tumor burden u, as well
as the populations of infected cells, and the virus (x and v, respectively).
As was shown in Figure 16.2, if the initial dose of virus is too low, the
system rapidly approaches the equilibrium (K , 0, 0) corresponding to ther-
apeutic failure. This is illustrated in Figure 16.4a with an initial virus dose of
v(0) = 10. There is a sharp initial increase in the number of infected tumor
cells x(t) followed by a decrease in the total tumor size u(t) = y(t)+ x(t).
However, as the viral load and the number of infected cells decrease, the
tumor rebounds, increasing to the level of carrying capacity.

With an initial virus dose of v(0) = 226, the tumor drops below the
clinically detectable level u = 1 at t = 6.54, and is still undetectable at
t = 1000 where u(1000) = 0.88 (see Figure 16.4b). Here v(0) ≈ 226 is the
minimum level of initial virus needed for successful therapy. In particular,
if v(0) = 225 then u(1000) > 1.

Note that therapy can be successful even if the initial condition
(y(0), 0, v(0)) is in the basin of attraction of the equilibrium (K , 0, 0),
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Figure 16.4 (a) Prediction of model Equation 16.3 with an initial virus dose of
v(0) = 10. Parameter values for r, K , and ε are the same as in Figure 16.3, and
(y(0), x(0)) = (126.237, 0)). The remaining parameters (κ , δ, α, ω, ρ) are from the
fit a of Table 16.1. (b) A higher dose of initial virus leads to therapeutic success
(see text). Note the difference in scales between panels (a) and (b).

as long as the tumor load remains undetectable up to time t = 1000. In
fact, if continued, the orbit shown in Figure 16.4b approaches (K , 0, 0)
as t → ∞. If the initial dose of virus is increased further to v(0) = 236,
virotherapy is not only successful, but the initial point is in the basin of
attraction of the line L. In this case, the tumor is decreasing at time t = 1000
and keeps decreasing if the simulation is continued (see Figure 16.5).

Figure 16.6 illustrates the effect of administering the virus in several
doses, rather than at once. Figure 16.6a shows the effect of ten doses of
virus, such that each dose corresponds to vdose = 10. The doses are adminis-
tered every 25 days, so that the total viral load does not increase over time.
Each individual dose temporarily reduces the tumor size but the dosing
schedule does not lead to long-term tumor eradication.

Similarly, Figure 16.6b shows the effect of ten doses of vdose = 29 units
of virus each, scheduled every 25 days. In this case, the tumor is undetec-
table when t = 1000 (u(1000) < 1). The number of doses and the period
between them does not determine whether therapy will ultimately be suc-
cessful or not. In general, for a fixed initial tumor size y(0), the viral load
must reach a certain minimal value for the therapy to be a success. This is
analogous to the results in Figures 16.9 and 16.10 where we show which
initial conditions lead to a successful therapy and which do not (we discuss
these figures in detail below).
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Figure 16.5 With an initial virus dose of v(0) = 236 the tumor size drops below
the clinically detectable level u = 1 at t = 6.50, and is still decreasing at t = 1000,
when u(1000) = 0.01. Conversely, if v(0) = 235, the tumor is undetectable but
increasing at t = 1000. Parameter values are the same as in Figure 16.4.
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Figure 16.6 (a) The effect of administering ten doses of vdose = 10 units of virus
every 25 days. (b) The effect of administering ten doses of vdose = 29 units of
virus every 25 days. Parameter values are the same as Figure 16.4.



Lim/Optimization in Medicine and Biology AU0563_C016 Final Proof Page 483 9.11.2007 04:38pm

Optimization of Tumor Virotherapy with Recombinant Measles Viruses 483

200 300 400 500 600 700 800 900 1000
0

1

2
u

 =
 x

 +
 y

0

1

2

x

0 100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000

0

5

10

15

v

t

Figure 16.7 Decreasing the growth rate r has a large effect on the success of
therapy. If r is decreased by two orders of magnitude compared to Figure 16.4 the
dose of virus sufficient for successful therapy is reduced to v(0) = 12.

The growth rate r has a large effect on the outcome of therapy. Tumor
growth can be slowed down by the use of inhibitors of DNA synthesis
so that r can be significantly reduced. As an example, in Figure 16.7 we
consider r equal to 1 percent of the fit a value and find that v(0) = 12
is sufficient for the tumor to be undetectable at t = 1000 (u(1000) < 1).
Thus, as the rate of tumor cell replication is slowed down, the total dose of
virus necessary to control the tumor decreases. However, with the smaller
virus load it takes much longer for the tumor to shrink in size, specifically,
u(687.08) = 1.

In Figure 16.8 we consider the effect of small, but nonzero virus produc-
tion (α 
= 0) and elimination (ω 
= 0) using the parameter values from fit b
in Table 16.1. Compared to the simulation results in Figure 16.4b, it is some-
what more difficult to achieve successful therapy requiring v(0) = 235.0
with u(1000) = 0.92 and u = 1 when t = 6.48. Other qualitative behavior
regarding multiple doses and decreasing r are also the same for the par-
ameters in fit b, as in fit a. On the other hand, increasing α relative to ω
and hence increasing the viral load can lead to a successful result. This is
because the relatively large rate of virus production ultimately leads to a



Lim/Optimization in Medicine and Biology AU0563_C016 Final Proof Page 484 9.11.2007 04:38pm

484 Optimization in Medicine and Biology

0

0.5

1

u
 =

 x
 +

 y

0

0.5

1

x

0 100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000

150

200

250

v

t

Figure 16.8 The behavior of the singularly perturbed system (α �= 0 and ω �= 0)
is similar to that of the singular system. Compare with Figure 16.4b. Parameters
are chosen according to fit b in Table 16.1.

large viral load; this is analogous to the large initial viral load v(0) when
using parameters from fit a. We can therefore conclude that the behavior of
the singularly perturbed model is very similar to that of the singular model.

In Figure 16.9, we examine the effect of the initial tumor size on the final
outcome of virotherapy. The shades of gray indicate the final tumor size
u(1000) as a function of the initial conditions (y(0), 0, v(0)). Of particular
note is that it is sometimes preferable to allow the tumor to grow to a larger
size before administering the virus. For example, for a fixed viral load of
v(0) = 210, if the initial tumor size is y(0) = 1600, then therapy fails. On
the other hand, if the tumor is larger with y(0) = 1900, then not only is
the tumor undetectable at t = 1000, but it is essentially eliminated with
u(1000) = O(10−6). A potential explanation for this may be that a higher
tumor burden at the time of virus administration increases the number of
cells that are infected, leading to a higher population of tumor cells that can
fuse with surrounding cells (ρ) and produce additional virus particles (α).

In Figure 16.9, we also observe an island of initial conditions where
virus therapy is unsuccessful, which is surrounded by initial conditions that
lead to success, u(1000) < 1. We do not currently have an explanation for
why this isolated region exists.

In Figure 16.10, we again consider the state of the system at t = 1000
but with the tumor growth rate r reduced by a factor of 10. As noted
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Figure 16.9 The total tumor size u = y + x at t = 1000 as a function of the
initial viral load v(0) and the initial tumor size y(0) using the parameters from
fit a. The black region corresponds to initial conditions that lead to unsuccessful
therapy such that u(1000) has reached the level of the carrying capacity.The white
region corresponds to very successful therapy such that the tumor is almost eradi-
cated with u(1000) = O(10−6). The dashed curve identifies when the tumor is
undetectable with u(1000) = 1.

Figure 16.10 Same as Figure 16.9 but with the tumor growth rate r reduced by
a factor of 10 (r = 0.02062134).
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in Figure 16.7 when r is reduced, a lower initial dose of virus is needed
to achieve successful therapy; the curve where u(1000) = 1 has shifted to
much lower values of v(0). In addition, the sharp upper boundary between
u(1000) = O(103) (black) and O(10−6) (white) that exists in Figure 16.9
has shifted upward to higher values of u, much larger than the level of
saturation, and does not appear in the figure.

On the basis of Equation 16.3, one would expect that as the ability of
infected cells to fuse with uninfected tumor cells (ρ) increases, the tumor
burden u(1000) and y(1000) should decrease. Therefore, the results in
Figure 16.11 appear counterintuitive. The increase in u(1000), though, is not
of great significance for the therapy if ρ > 0.2, where 0.2 is approximately
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Figure 16.11 The size of the tumor at t = 1000 as a function of the cell fusion
rate ρ. Other parameters are those of fit b with (a) α = 0.9 and (b) α = 0.6.
In each figure there is a value of ρ such that the number of infected tumor cells
x(1000) is maximal. For further increases in ρ, x(1000) decreases. However, in
(a), the total tumor size u(1000) and the uninfected tumor size y(1000) are still
increasing, while in (b) they are slightly decreasing.
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the value for ρ obtained by fitting (see Table 16.1). We found that the
equilibrium value x3 (see Equation 16.9) slightly decreases with ρ while, of
course, y3 is constant. However at the time t = 1000, we are still very far
from the equilibrium and the behavior is as shown in Figure 16.11. Other-
wise, when α is much smaller than 0.6 and ρ sufficiently large so that the
tumor burden achieves a minimum before growing to the level of carrying
capacity, this minimal tumor burden indeed decreases with ρ. However, the
effect is quite insignificant for ρ smaller than 1.5. It is unlikely that values
of ρ higher than 1.5 are realistic.

Finally, in Figure 16.12 we show that Equation 16.3 support damped
oscillatory behavior. Figure 16.12a shows strongly damped oscillations for
parameter values similar to those of fit b. Only a single maximum of u
is visible given the scale but the corresponding numerical data clearly
exhibit very small amplitude oscillations. Figure 16.12b shows more dra-
matic oscillations but for parameter values away from those given in
Table 16.1.

0 50 100 150 200

0 50 100 150 200

0 50 100 150 200

0

200

400

600

u
 =

x
 +

 y

u
 =

x
 +

 y

(a)

0

0.5

1

x

0

1

2

v

t

0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000

0

50

100

150

(b)

0

5

10

x

0

5

10

v

t

Figure 16.12 (a) Strongly damped oscillations using fit b parameters with α = 0.6
and ω = 0.07. (b) Weakly damped oscillations using κ = 0.01, ρ = 0.1, δ = 0.1,
α = 0.5, and ω = 0.3.
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16.6 Conclusion
The availability of novel therapeutic agents such as replicating viruses for
cancer therapy introduces a new paradigm in the therapy of these diseases.
Therapeutic success depends on the highly specific interaction between
the oncolytic virus and the tumor cell population with the dynamic con-
siderations determining the outcome. We have presented a model to try
and understand different aspects of the effect of therapy with attenuated
measles viruses on tumor growth. In particular, we are able to provide
partial answers to the questions posed in Section 16.1.

1. The initial tumor burden is important, but not crucial for the out-
come of therapy. Contrary to intuition, a larger initial tumor burden
may facilitate therapy under certain conditions, perhaps by increas-
ing the efficiency of virus–tumor cell interactions. The result is a
higher pool of infected tumor cells that proceed to generate new
virus particles and fuse surrounding tumor cells stopping their repli-
cation and ultimately leading to their death.

2. It is not possible to cure the experimentally tested tumor xenografts
with a therapeutically achievable dose of virus. Our analysis sug-
gests that 226 million virus particles must be injected for the virus
alone to eradicate the tumor. This is not possible in a mouse unless
the virus can be concentrated significantly without loss of titer.
However, if tumor growth can be slowed, the virus requirements
decrease significantly and are achievable with current technology.
Such an approach may offer also an additional margin of safety
because the total dose of virus that will need to be injected is small
and hence the risk of adverse effects will be expected to decrease.

3. If optimal virus therapy is defined as the smallest effective dose
of virus that can operationally control the tumor for the lifetime
of the animal, then combining virotherapy with strategies to slow
tumor growth can significantly reduce the demands on the virus
load needed for cure.

4. Dose scheduling does not seem to play an important role on the
outcome of therapy. The main determinant of the therapeutic out-
come is the total dose of virus that can be administered.
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Abstract Microbial resistance to antimicrobial agents has evolved to
alarming proportions. To avert potentially catastrophic consequences for
public health, a concerted effort is necessary. It should include, among
other elements, the development of methods that can optimize the clinical
use of existing agents and accelerate the development of new ones. For
both tasks, the design of effective dosing regimens that suppress the emer-
gence and proliferation of resistant microbial populations is crucial. In this
chapter, we provide a comprehensive presentation of our recent theoretical
and experimental work on a mathematical modeling framework that can
be used to optimize the design of such dosing regimens. Suggestions for
future work are made.

17.1 Antimicrobial Resistance and the Need
to Optimize Dosing Regimens

Microbial resistance to antimicrobial agents (antimicrobial resistance) has
reached alarming proportions. Repeated warnings are recently heard from
concerned scientists about bacterial wars, new plagues, worldwide calami-
ties, new apocalypses, and the risk of returning to the pre-antibiotics era
(Cohen, 1992; Neu, 1992; Gold and Moellering, 1996; Levy, 1998; Drlica,
2001; Landman et al., 2002; Varaldo, 2002; Levy and Marshall, 2004; Morens
et al., 2004). The enormity of the problem has not escaped the atten-
tion of popular press (Di Justo, 2005; Comarow, 2006; Silberman, 2007).
According to the U.S. Food and Drug Administration (FDA) “addressing
the issue of antimicrobial resistance is one of the most urgent priorities in
the fields of public health today” (Food and Drug Administration, 2006).
To avert potentially catastrophic consequences of antimicrobial resistance,
a concerted effort on many fronts is necessary. It should include, among
other elements, the development of methods that can optimize the clinical
use of existing agents, and accelerate the development of new agents. For
both tasks, tools guiding the design of dosing regimens that suppress the
emergence or proliferation of resistant microbial populations can make a
significant impact. Such design tools should maximize the killing effect of
agents (or combinations of agents) on heterogeneous microbial populations
(composed of microbial subpopulations of varying susceptibility/resistance
to the agents) while avoiding toxicity problems for host organisms. The
importance of dosing regimen design for clinical use has been emphasized
repeatedly (Bonhoeffer et al., 1997; Lipsitch and Levin, 1997; Lipsitch et al.,
2000; Chait et al., 2007). Beyond the obvious therapeutic benefits that better
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design of clinicaldosing regimens would have for existing antimicrobial
agents, by prolonging their efficacy through maintenance of their micro-
bial killing effectiveness, better dosing regimen design would also make
the development of new agents more attractive, by promising a longer
effective period of use for a developed agent. This promise could help
make antimicrobial agent development more attractive for potential deve-
lopers, hopefully contributing to a welcome reversal of the dire down-
ward trend of newly FDA approved antimicrobial agents over the last two
decades (Spellberg et al., 2004). Furthermore, tools for dosing regimen
design would help to directly accelerate the antimicrobial agent develop-
ment process. Indeed, when developing new agents, emphasis is tradition-
ally placed on discovering new agent candidates. As crucial as this step may
be, a long (multiyear) development period ensues, until an agent is fully
developed (Drusano et al., 2006). During that period of development, it is
common that only a few dosing regimens are empirically tested, because
of the very large number of experiments required for exhaustive testing
(Sidebar 1). This practice limits our ability to realize the clinical potential
of agents, either through premature abandonment of promising candidates
or through inadvertent pursuit of dead ends. The critical role of selecting
the right dosing regimen was dramatically exemplified in the case of dap-
tomycin, for which selection of the right dosing regimen alone was the key
differentiating factor between abandoning development in early 1980s and
eventually securing FDA approval in 2003 (Sidebar 2).

Sidebar 1: Example of dosing regimen testing

To evaluate six daily doses (e.g., 0.5, 1, 2, 4, 6, and 8 g), four dosing frequencies
(e.g., every 6, 8, 12, or 24 hours), four intravenous dosing administrations (e.g.,
intermittent infusion of 0.5, 1, and 2 hours and continuous infusion over 24
hours), and 3 durations of treatment (e.g., 5, 10, and 14 days) would require
investigation of 288 (6×4×4×3) regimens for a single candidate. Reduction by,
for example, an order of magnitude would have obvious implications.

Sidebar 2: Importance of dosing regimens: The daptomycin case

Daptomycin (Cubicin®, Cubist Pharmaceuticals) (UCSF, 2006) was initially
under development in the 1970s with an 8 hour dosing interval. Its development
was abandoned in the early 1980s due to an intolerable adverse effect (muscle
toxicity). However, after understanding its exposure-related killing properties
and toxicity, redevelopment began in the 1990s, to finally reach FDA approval
for clinical use in 2003. The key factor for FDA approval was use of a once-daily
and weight-based dosing regimen. This discovery was deemed so nonobvious
and important as to be awarded a patent (Oleson et al., 2005).
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The preceding discussion should make clear the value of methods that
can guide the design of effective dosing regimens for combating antimicro-
bial resistance. In this chapter, we provide a comprehensive presentation
of a recent mathematical modeling framework (Nikolaou and Tam, 2006;
Nikolaou et al., 2007) that can be used to optimize the design of such dosing
regimens. Experimental in vitro validation on Pseudomonas aeruginosa, an
important bacterial pathogen (Sidebar 3) is presented. However, we want
to emphasize at the outset that the proposed modeling approach could be
extrapolated to a variety of antimicrobial agents (e.g., antibacterials, anti-
fungals, and antivirals) with different mechanisms of action, as well as to
other pathogens (e.g., HIV, tuberculosis, anthrax, and avian influenza) with
different biological characteristics (Gumbo et al., 2004; Tam et al., 2005a).
In addition, the proposed mathematical framework could also be extended
for use in cancer chemotherapy, by accounting for heterogeneities of can-
cerous cell populations (Dua et al., 2005).

In the rest of this chapter we provide a background for our work, present
our findings, and conclude with suggestions for further development.

Sidebar 3: Pseudomonas aeruginosa

P. aeruginosa is associated with serious nosocomial infections such as pneumo-
nia and sepsis. It exploits multiple mechanisms of resistance to various antimi-
crobial agents (such as efflux pumps, β-lactamases production, porin channel
deletion, multifunctional group transferases, and target site mutation) (Livermore,
2002). Some of the mechanisms of resistance are highly specific to one agent,
whereas others affect a broad spectrum of antimicrobial agents, and confer dif-
ferent levels of resistance. Resistance to first-line agents (such as β-lactams and
fluoroquinolones) has been reported and is becoming more prevalent (Landman
et al., 2002; Neuhauser et al., 2003). There are very few agents in the advanced
stage of development designed to target multidrug-resistant Gram-negative bac-
teria, and none is expected to be available for clinical use in the next decade.
Therefore, the need to develop antimicrobial agents against P. aeruginosa is
imperative (Talbot et al., 2006).

17.2 Background

17.2.1 Pharmacodynamic Indices and Their Limitations
Because the complex pharmacodynamic interaction between an antimicro-
bial agent and a microbial population defies detailed first-principles model-
ing, surrogate pharmacodynamic indices, such as the minimum inhibitory
concentration (MIC) (Figure 17.1), are used to guide empirical testing of
dosing regimens (e.g., Andes and Craig, 1998; Louie et al., 1998; Nicolau
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Figure 17.1 Two hypothetical killing profiles of microbial population size
resulting in the same value at 24 hours after exposure to an antimicrobial agent
at time-invariant concentration (Tam et al., 2005c). The corresponding microbial
populations would be very different in each case (slow decline [diamonds] versus
rapid decline followed by regrowth [squares]).

et al., 2000; Louie et al., 2001; Tam et al., 2002; Dandekar et al., 2003; Andes
et al., 2004; Maglio et al., 2004; Miyazaki et al., 2004). This can be problem-
atic. For example, according to the standard definition of MIC and related
surrogate pharmacodynamic indices, the two populations in Figure 17.1
would correspond to the same MIC (there is no visible growth at exactly
24 hours) although they are otherwise clearly different. The second popula-
tion could well grow beyond 24 hours whereas the first would probably not.

Along the same lines, a dosing regimen maintaining agent concentra-
tion above MIC would not necessarily guarantee eventual eradication of the
entire population, as argued in Figure 17.2. This is because inhibition of
population growth at 24 hours leaves the possibility that a small resistant
subpopulation of no appreciable size during the first 24 hours may well
grow later. MIC lumps all dynamic information of a time-kill experiment
into a single point. Consequently, methods that make use of all available
(dynamic) information from time-kill experiments would be preferable.
This realization, in turn, raises the question: How is such dynamic informa-
tion captured and used? We address this question in the next section.

17.2.2 Dynamic Models of Pharmacodynamic Activity
and Their Limitations for Microbial Populations
of Nonuniform Susceptibility/Resistance

In an effort to use the dynamic information that pharmacodynamic indices
leave out, dynamic models have been formulated for homogeneous
microbial populations (i.e., of uniform susceptibility or resistance) based
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Figure 17.2 Selection of resistant P. aeruginosa population by garenoxacin in
an in vitro hollow-fiber infection model (Figure 17.10). A population of approxi-
mately 108 CFU/mL bacteria was investigated (Tam et al., 2005a). In the absence
of selective pressure by garenoxacin (C(t) = 0, top), the fraction of the resistant
subpopulation remained low and relatively constant over time. In contrast, expo-
sure to a fluctuating garenoxacin concentration C(t) (bottom) as in Figure 17.4
selectively amplified the resistant subpopulation (MIC of the resistant subpopula-
tion ≥ 3 × MIC of the entire population) and led to population regrowth, despite
the fact that garenoxacin concentration C(t) remained well above MIC during the
entire period of the experiment.

on conservation principles and bacteria-agent Hill-like (Hill, 1910) kinetics
(Wagner, 1968; Jusko, 1971; Giraldo et al., 2002) (Sidebar 4). When applied
to heterogeneous microbial populations (i.e., of nonuniform susceptibility
or resistance), such models lump subpopulations into two distinct classes:
resistant and susceptible (Lipsitch and Levin, 1997; Mouton et al., 1997;
Jumbe et al., 2003; Gumbo et al., 2004; Meagher et al., 2004; Campion
et al., 2005; Tam et al., 2005a). Although conceptually appealing, when
such models are calibrated using standard short-term data (e.g., over
24 hours [Andes and Craig, 1998; Nicolau et al., 2000; Dandekar et al.,
2003; Miyazaki et al., 2004]), they may easily fail to predict the emergence
of resistance—manifested as eventual population regrowth (Oliver et al.,
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Sidebar 4: Basic model of effect of antimicrobial agent on homogeneous
microbial population

dN(t)
dt
= G[

Population size
︷︸︸︷
N(t) ]

︸ ︷︷ ︸
Physiological net growth rate

− K[
Agent concentration

︷ ︸︸ ︷
C(t), N(t)]

︸ ︷︷ ︸
Kill rate due to antimicrobial agent

(17.1)

Example: (Hill and Michaelis–Menten dynamics)

G[N(t)] = Kg

(
1− N(t)

Nmax

)
N(t) ≈ KgN(t) if N(t)� Nmax

K[C(t), N(t)] = KkC(t)H} Hill factor

C(t)H + CH
50︸ ︷︷ ︸

Kill rate constant, r

N(t)

The population is eradicated if and only if r > Kg.
If C is time-invariant, eradication corresponds to the

straight line ln N(t)
N(0) =

(
Kg − r(C)

)
t .

2004)—as shown in Figure 17.3 (top). By lumping subpopulations of varied
resistance into two distinct subpopulations (resistant and susceptible), this
modeling approach essentially produces two asymptotes for the depen-
dence of population size on time corresponding to short and long time,
respectively. As Figure 17.3 (top) shows, the two asymptotes estimated by
fitting 24 hour data produce overly optimistic results beyond 24 hours. For
similar reasons, dynamic modeling approaches that have focused on the
early time course (<60 minutes) of antimicrobial agent exposure (Regoes
et al., 2004) are equally problematic.

17.3 New Approach to Modeling the Effect
of Antimicrobial Agents on Heterogeneous
Microbial Populations

To capture the decline–regrowth behavior of a heterogeneous micro-
bial population, Nikolaou and Tam (2006) developed a corresponding
mathematical modeling approach (excerpted in Sidebar 5) for heteroge-
neous microbial populations exposed to time-invariant antimicrobial agent
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Figure 17.3 In vitro effect of the antibiotic meropenem on Pseudomonas aerug-
inosa ATCC 27853 (Tam et al., 2005b). A standard (two-subpopulation) dynamic
model (top) built from 24 hour data (dots) fails to predict population regrowth
beyond 24 hours (squares). By contrast, a model based on the approach devel-
oped by Nikolaou and Tam (2006) (bottom) successfully predicts regrowth using
the same 24 hour data, thus suggesting that much higher antibiotic concentration
is needed for eradication of the entire population.

concentrations. Dispensing with the need to rely on the asymptotic time
behavior of two distinct subpopulations, this approach considers a distribu-
tion of resistance over a microbial population and employs the cumulants
of that distribution. Figure 17.3 (bottom) demonstrates that this approach
can successfully make use of standard 24-hour time-kill data to predict
regrowth beyond 24 hours and estimate the agent concentration needed
to eradicate the entire microbial population (Nikolaou and Tam, 2006).

Using the approach mentioned above, we can now address the follow-
ing question, which is the main focus of this work: Given time-kill data
over 24 hours at a number of time-invariant agent concentrations, what
is an effective (preferably optimal) dosing regimen (daily dose and dos-
ing interval) for time-varying agent concentration corresponding to real-
istic pharmacokinetics (Figure 17.4)? Optimal here refers to the smallest
daily dose and corresponding dosing interval that can completely eradi-
cate a microbial population. For lack of quantitative aids to answering the
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Sidebar 5: Modeling the effect of antimicrobial agents
on heterogeneous microbial populations

dN(t)
dt
= [Kg − μ(t)]N(t),

dμ(t)
dt
= −σ(t)2,

{
dκn(t)

dt
= −κn+1(t)

}

n≥1

(
κ1 ≡ μ, κ2 ≡ σ 2

) (17.2)

N(t) : microbial population size at time t
Kg : growth rate constant
μ(t), σ 2(t) : average and variance of kill rate constant over entire microbial
population
κn(t): n-order cumulant (Weisstein, 2005) of kill rate constant
For a distribution f (ri , t) of the kill rate constant r (Sidebar 4) cumulants are
defined as

κn(t)=̂∂
n�(s, t)
∂sn where �(s, t)=̂ ln [M(s, t)], M(s, t)=̂∑

i
esri f (ri , t)

Simplifying assumptions (Nikolaou and Tam, 2006) yield

ln
[

N(t)
N(0)

]

≈

⎛

⎜
⎜
⎝Kg −μ(0)+ σ(0)

2

A︸ ︷︷ ︸
−b

⎞

⎟
⎟
⎠ t + σ(0)

2

A2
︸ ︷︷ ︸

R/A

(
e−At − 1

)

=̂ (Kg − b
)

t + R
A

(
e−At − 1

)
,

(17.3)

μ(t) ≈ μ(0)− σ(0)
2

A︸ ︷︷ ︸
b

+ σ(0)
2

A︸ ︷︷ ︸
R

e−At=̂b+ Re−At , (17.4)

σ(t)2 ≈ σ(0)2e−At (17.5)

preceding question, it is common practice for antimicrobial killing action
to be classified into two distinct categories: peak-concentration- or time-of-
exposure-dependent (Vogelman and Craig, 1986; Craig, 1998) as shown in
Figure 17.5. However, it has been widely observed that some recent antimi-
crobials (e.g., quinolones) do not clearly fall in either category. Therefore,
a more quantitative answer to the preceding question is needed, as dis-
cussed next.
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Figure 17.4 Example of a clinically relevant dosing regimen. Periodic injection
of agent every T time units and its subsequent elimination result in a jump-decay
periodic pattern (C(t) = Cmax2−t/t1/2 = Cmaxe−t/τ , 0 ≤ t < T ; C(t + T) = C(t))
according to typical pharmacokinetics in humans.

17.3.1 Homogeneous Microbial Population
under Pharmacokinetically Realistic
Antimicrobial Concentration

Assume now that the antimicrobial agent concentration does not remain
time-invariant but fluctuates periodically due to periodic injection of agent
every T time units and its subsequent elimination, as shown in Figure 17.4.
The kill rate constant r(C (t)) will obviously fluctuate with the same period
T . Under these conditions, it can be shown (Nikolaou et al., 2007) that
the total population N (t) exhibits a periodic pattern with period T , and
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Figure 17.5 Concentration-dependent (upper) and time-dependent (lower)
killing activity of antimicrobial agents. In the concentration-dependent case, killing
activity depends on the concentration of the antimicrobial agent used, and suggests
dosing regimens that achieve high concentrations at injection points. In the time-
dependent case, killing activity quickly reaches a plateau as agent concentration
increases, indicating that dosing regimens need to maintain a certain agent con-
centration most of the time. Increasing agent concentration will increase toxicity
without appreciably increasing killing activity.
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Figure 17.6 Eradication (left) or regrowth (right) of a microbial population in an
environment of antimicrobial agent concentration following Sidebar 6.

the values of log(N (nT )), n = 0, 1, 2, . . . , lie on a straight line, akin to
the case corresponding to time-invariant agent concentration (Sidebar 4) as
summarized in Sidebar 6. In other words, the points N (nT )

N (0) appear as if they
were generated by a system under time-invariant agent concentration D, a
fact that significantly simplifies the ensuing analysis (Figure 17.6).

Therefore, according to Sidebar 6, D
Kg
> 1 implies eradication of the

entire microbial population, whereas D
Kg
< 1 implies eventual proliferation

of the population, except for the case where eradication can occur during
the first dosing interval. The latter case can occur if the minimum of ln N (t),
0 ≤ t ≤ T , is at or below 0.

Sidebar 6: Model of effect of antimicrobial agent on heterogeneous
microbial population

A homogeneous population is subjected to periodically fluctuating
antimicrobial agent concentration, i.e., C(t) = C (t + T). Then, it can be shown
(Nikolaou et al., 2007) that

ln
N(t)
N(0)

= Kgt −
[[

t
T

]]

DT −
∫ t−[[ t

T
]]

T

0
r(C(η))dη

where
[[ t

T

]]
is the integer part of the real number t

T , and D=̂ 1
T

∫ T
0 r(C(η))dη

is the time-averaged kill rate constant.
At times t = nT, n = 0, 1, 2, . . . , the total population satisfies the equation

ln N(nT)
N0
= (Kg −D)nT, n = 0, 1, 2, . . .
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We can now ask: “For what dosing regimens is the condition D
Kg
> 1

satisfied?” We first provide a qualitative approximate answer, followed by
a quantitative answer.

Qualitatively, the value of D
Kg

, to first-order approximation, can be shown

to be

D

Kg
≈ 1+ r ′(Ccr)

Kg
(Cavg − Ccr) = 1+ r ′(Ccr)

Kg
Ccr

(
AUC/T

Ccr
− 1

)

where the area under the concentration (AUC) curve is defined as
AUC =̂ ∫ T

0 C (t)dt . The above approximation of D
Kg

indicates that to design

a dosing regimen resulting in eradication of a microbial population,
the average concentration of the agent, Cavg =̂ 1

T

∫ T
0 C (η)dη, must be above

the critical concentration Ccr, defined as the concentration at which the kill
rate constant r(Ccr) is equal to the growth rate constant Kg. It follows that the
effectiveness of an agent is approximately related to the well-known phar-
macokinetic/pharmacodynamic parameter AUC/MIC ≈ AUC/Ccr. However,
it should be stressed that the dependence of an agent’s effectiveness on
AUC/MIC is only approximate. A more accurate index would have to
be used to account for strong effects of higher-order derivatives in the
above series expansion of D

Kg
. This motivates the quantitative results pre-

sented next.
From a quantitative viewpoint, let the agent concentration follow the

realistic pharmacokinetic pattern C (t) = Cmaxe−kt , 0 ≤ t < T (Figure 17.4)
where k = ln 2

t1/2
is the agent elimination rate constant (reciprocally propor-

tional to the half-time t1/2) and T is the dosing interval; and let the kill rate
constant follow the Michaelis–Menten/Hill kinetics in Sidebar 4. Then it can
be shown (Nikolaou et al., 2007) that the value of D

Kg
can be influenced

by selecting two dimensionless variables associated with the dose and dos-
ing interval of a dosing regimen, namely the scaled average concentration
z =̂ Cavg

Ccr
(or, equivalently, y =̂ Cavg

C50
) and the scaled dosing interval x =̂ kT ,

where Cavg is proportional to the administered dose (mass of agent over 24
hour period). The functional dependence of D

Kg
on x, z depends on two

pharmacodynamic parameters: H and
Kk
Kg

.

Thus, if the values of H and
Kk
Kg
= 1 +

(
C50
Ccr

)H
have been estimated

from experimental time-kill data, one can visualize the agent effectiveness,
i.e., value of D

Kg
in comparison to 1, as a function of the two variables that

characterize a dosing regimen, namely z =̂ Cavg
Ccr

and x =̂ kT (Sidebar 7).
Figure 17.7 shows a small library of such patterns for different values of
H and

Kk
Kg

, along with associated plots of the scaled kill rate constant r(C )
Kk
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Sidebar 7: Killing effect as function of z=̂Cavg
Ccr

and x=̂kT for different

values of H and
Kk
Kg

Let C(t) = Cmaxe−kt , 0 ≤ t < T, C(t) = C(t + T), and r(C) = Kk
CH

CH+CH
50

. Then

D
Kg
= Kk

Kg
1

Hx ln
Kk
Kg
− 1+

(
exxz
ex−1

)H

Kk
Kg
− 1+

(
xz

ex−1

)H

= (1+ χH
50

) 1
Hx ln

1+
( exxy

ex−1

)H

1+
( xy
ex−1

)H

where
χH

50=̂
(

C50
Ccr

)H = Kk
Kg
− 1,

z=̂Cavg
Ccr
= Daily dose [mg]

24 [hours] clearance [L/hour]

/

Ccr,

y=̂Cavg
C50
= Daily dose [mg]

24 [hours] clearance [L/hour]

/

C50,

x=̂kT = T
t1/2

ln 2

as a function of C
Ccr

. A careful examination of these patterns for D
Kg

(lines

corresponding to D
Kg
= 1) reveals qualitatively different behaviors for dif-

ferent values of H and
Kk
Kg

, suggesting different designs for optimal dosing

regimens. For example, for H = 1 and
Kk
Kg
= 5, it is clear that the shorter

the dosing interval T (Figure 17.4), the lower the dose that can be used.
Consequently, the optimal dosing regimen would be continuous infusion.
This is due to the dependence of the kill rate constant r on C : A relative
increase in C is associated with a lower relative increase in r . Therefore,
for a periodically fluctuating profile of C around an average value Cavg a lot
more killing power r would be lost while C (t) < Cavg than would be gained
while C (t) > Cavg. By contrast, H = 4 and

Kk
Kg
= 5 in Figure 17.7 indicates

that there is an optimal value (around kT = 5) for the dosing interval T at
the cutoff point D

Kg
= 1, corresponding to the minimum dose Cavg/Ccr ≈ 1.

This is due to the presence of an inflection point in the curve corresponding
to the dependence of the kill rate constant r on C : Around the inflection
point, a relative increase in C is associated with a lower relative increase
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Figure 17.7 A library of behaviors of D
Kg

as a function of kT and
Cavg
Ccr

. The optimal

dosing regimen corresponds to the smallest possible value of Cavg that results in
eradication of a microbial population, namely D

Kg
>1. The dependence of optimal

Cavg on Kk
Kg

and H is qualitatively different for different values of Kk
Kg

and H.
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Figure 17.7 (Continued)
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Figure 17.7 (Continued)
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Figure 17.7 (Continued)
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Figure 17.7 (Continued)

in r . However, a relative decline in C is also associated with a lower relative
decline in r . Therefore, in balance, for a periodically fluctuating profile of C
around the optimal average value Cavg, a lot less killing power r is lost while
C (t) < Cavg than is gained while C (t) > Cavg. Although Figure 17.7 may be
sensitive to experimental errors in the estimates of H and

Kk
Kg

, it establishes a

continuum for the model of action of antimicrobial agents, at the two ends
of which are the two well-known categories, namely peak-concentration-
or time-of-exposure-dependent, established by Vogelman and Craig (1986).
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17.3.2 Heterogeneous Microbial Population
under Pharmacokinetically Realistic
Antimicrobial Concentration

The results of the preceding sections are now going to be used here to
develop a method for designing optimal dosing regimens for heteroge-
neous microbial populations (i.e., of nonuniform susceptibility or resis-
tance). From a theoretical viewpoint, it would be interesting to develop an
equation for ln N (t)

N (0) analogous to that in Sidebar 6. However, the following
reasoning makes this requirement unnecessary.

To design an optimal dosing regimen, it is required to find the min-
imum of the time-averaged agent concentration Cavg and corresponding
dosing interval T that will eradicate a microbial population entirely. To
accomplish this, it is necessary and sufficient to eradicate the most-resistant
subpopulation of the microbial population, by finding the minimum of the
time-averaged agent concentration Cavg and corresponding dosing inter-
val T for that subpopulation. According to the analysis in Section 17.3.1,
eradication of the most-resistant subpopulation means that D

Kg
> 1 for that

subpopulation, as suggested in Figure 17.7. Hence, the dependence of
D
Kg

on dosing regimens (namely Cavg and T ) for that subpopulation must

be estimated from experimental data. Now, the analysis in Section 17.3.1
indicates that standard time-kill experiments can be used for that purpose.
Indeed, for a heterogeneous population subjected to a number of time-
invariant agent concentrations C , Equation 17.4 in Sidebar 5 indicates that
the population-average kill rate constant will eventually reach a value b
for each time-invariant agent concentration C . This C -dependent kill rate
constant, b, corresponds to the most-resistant subpopulation, which will
eventually dominate the entire population, and which is homogeneous,
as suggested by Equation 17.5 when t → ∞. Therefore, it is reasonable
to assume that the functional dependence of b on C follows the kinetics
discussed in Sidebar 4, namely

b(C ) = Kb
CHb

CHb + C
Hb
50b

Similarly, it can be argued (Nikolaou and Tam, 2006) that it is reasonable
to postulate that

R(C ) = Kk
CH

CH + CH
50

− Kb
CHb

CHb + C
Hb
50b



Lim/Optimization in Medicine and Biology AU0563_C017 Final Proof Page 512 7.11.2007 12:26pm

512 Optimization in Medicine and Biology

and

A(C ) = KA
CHA

CHA + CHA
50A

Therefore, if experimental data is available from time-kill studies (measure-
ments of population size at various sampling points in time, for a number
of time-invariant concentrations C ), then the parameters involved in the
above expressions for b(C ), R(C ), and A(C ) can be estimated. Then, using
the identified expression for b(C ) in place of r(C ) in the analysis of Side-
bar 7, one can construct a surface showing the dependence of D

Kg
on Cavg

and T , as in Figure 17.7.

17.3.3 Experimental Verification
We discuss an example of our approach (Nikolaou and Tam, 2006; Nikolaou
et al., 2007) where effective dosing regimens (dose and dosing intervals)

0 µg/mL

0.50 µg/mL

1.0 µg/mL

2.0 µg/mL

4.0 µg/mL

8.0 µg/mL
16 µg/mL

32 µg/mL

64 µg/mL

24Time (hours)

0

2

4

6

8

12
8

4210 C (µg/mL)

Log N (t )
(CFU/mL)

Figure 17.8 Time-kill studies of levofloxacin against P. aeruginosa ATCC 27853
(MIC = 2 μg/mL). For C = 32 × MIC = 64 μg/mL there are no points beyond
1 hour, because all bacteria appear to have been eradicated beyond that point in
time. Fit of the experimental data shown is done using Equation 17.3 in Sidebar 5,
with dependence of b(C), R(C), and A(C) as discussed above in the text.
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are characterized for levofloxacin against P. aeruginosa. Time-kill data
is collected over 24 hours at various time-invariant concentrations of
levofloxacin, and curve-fit using the approach discussed in Section 17.3.2,
as shown in Figure 17.8.

Subsequent to that, the equations of Sidebar 7 are used to construct the
D/Kg surface as a function of dosing regimen, namely daily dose and dosing
interval for given pharmacokinetics (Figure 17.9). According to Figure 17.9,
daily doses of 750 and 3000 mg daily are predicted to be ineffective and
completely effective, respectively.

This was verified experimentally in a hollow-fiber in vitro infection
model (Figure 17.10), as shown in Figure 17.11.

Dosing regimens predicted to be effective (corresponding to values of
the index D/Kg greater than 1) or ineffective (D/Kg < 1) were compared
to published data regarding the threshold quinolone exposure necessary
to suppress resistance development of P. aeruginosa in a murine thigh
infection model (Jumbe et al., 2003). Despite the differences between the
two modeling approaches, the estimates of the levofloxacin exposure nec-
essary for resistance suppression were consistent (approximately 2900 mg

Figure 17.9 Model prediction of bactericidal effect of levofloxacin on P. aerug-
inosa for dosing regimens as in Figure 17.4 (t1/2 = 6 hours, T = 24 hours). Dos-
ing regimens (combinations of daily dose and dosing interval) associated with
resistance suppression correspond to D/Kg > 1 where D=̂ 1

T

∫ T
0 r(C(t))dt is the

average kill rate over T . Periodic agent injection every T = 24 hours requires
above 2200 mg of levofloxacin for complete eradication of the entire bacterial
population. This prediction was verified both in a hollow-fiber in vitro model
(Figure 17.10) and in a murine thigh in vivo model (Jumbe et al., 2003) and is
significantly higher than the standard dosing recommended for levofloxacin.
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Figure 17.10 In vitro hollow-fiber infection model (Bilello et al., 1994) is a cell
culture system in which a microbial population is exposed to fluctuating antimi-
crobial concentration, simulating human elimination and repeated dosing over a
few days, corresponding to a clinical course of treatment. The system has been
used by our group to investigate the preclinical potential of antimicrobial agents
under development (Tam et al., 2005a; Nikolaou et al., 2007).

daily [total AUC/MIC = 157, free AUC/MIC = 110] demonstrated previously
in the murine thigh infection model versus 2200 mg daily predicted by
our model). The closeness of our mathematical model predictions to the
murine thigh infection model data exemplifies the usefulness of the pro-
posed approach as a tool offering guidance to optimal design of dosing
regimens.

17.4 Summary and Future Work
This chapter presents a mathematical modeling framework to design
optimal dosing regimens of antimicrobial agents for complete eradication
of microbial populations comprising subpopulations of varying degrees of
susceptibility/resistance. Preliminary experimental verification of the pro-
posed framework was presented. Further work is needed to identify the
limits of the mathematical modeling framework for various combinations
of microbial populations and antimicrobial agents, identify its sensitivity
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Figure 17.11 Prospective validation of the mathematical model in the hollow-
fiber infection model for placebo (a), levofloxacin 750 mg (b), levofloxacin
3000 mg (c) given every 24 hours. Data presented as mean and standard devia-
tion of duplicate samples.

to available data, develop experimental protocols for collection of better
experimental data, and potentially extend the framework to other related
cases such as cancer chemotherapy.
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Abstract Mixed-integer programming theory provides a mechanism
for optimizing decisions that take place in complex systems, including
those encountered in biology and medicine. This chapter is intended for
researchers and practitioners wanting an introduction to the field of mixed-
integer programming. We begin by discussing basic mixed-integer program-
ming formulation principles and tricks, especially with regards to the use
of binary variables to form logical statements. We then discuss two core
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techniques, branch-and-bound and cutting plane algorithms, used to solve
mixed-integer programs. We illustrate the use of mixed-integer program-
ming in the context of several medical applications, and close with a fea-
tured study on intensity modulated radiation therapy planning.

A.1 Introduction
This chapter describes the use of mixed-integer programming in optimizing
complex systems, such as those arising in biology, medicine, transportation,
telecommunications, sports, and national security. Consider, for instance,
an emergency that results in 100 injuries. A triage center is established to
administer first aid and assign victims to one of three nearby hospitals,
each of which is capable of handling a limited number of patients. Each
hospital may have varying equipment and staff levels, and each will be
located at a different distance from the emergency. The optimization prob-
lem that arises is to assign patients to hospitals in a way that maximizes the
effectiveness of care that can be given to the victims, while obeying physi-
cal capacity restrictions imposed by the hospitals. Experts often attempt to
solve these problems based on intuition and experience, but the resulting
solution is almost invariably suboptimal due to the inherent complexities
of such problems. In applications of critical importance, there is sufficient
motivation to turn to mathematical techniques that can provably obtain a
best solution.

Mixed-integer programming is a subset of the broader field of mathe-
matical programming. Mathematical programming formulations include a
set of variables, which represent actions that can be taken in the system
being modeled. One then attempts to optimize (either in the minimization
or maximization sense) a function of these variables, which maps each
possible set of decisions into a single score that assesses the quality of the
solution. These scores are often in units of currency representing total cost
incurred or revenue gained etc. The limitations of the system are included
as a set of constraints, which are usually stated by restricting functions of
the decision variables to be equal to, not more than, or not less than, a
certain numerical value. Another type of constraint can simply restrict the
set of values to which a variable might be assigned.

Several applications involve decisions that are discrete (e.g., to which
hospital an emergency patient should be assigned), while some other
decisions are continuous in nature (e.g., determining the dosage of fluids
to be administered to a patient). On the surface, the ability to enumerate
all possible values that a discrete decision can take seems appealing; how-
ever, in most applications, the discrete variables are interrelated, requiring
an enumeration of all combinations of values that the entire set of discrete
variables can take.
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What are the implications of complete enumeration techniques onpro-
cessing time? Suppose that there exist n variables, each of which can take
on a value of zero or one. Furthermore, suppose that each configuration
of these variables can be evaluated (tested for feasibility to the problem
constraints and scored) using n computer operations. Because there are
two choices for each variable, there are 2n configurations. Even if we are
using a computer capable of processing 10 trillion operations per second
(or 10 teraflops, and at the time of this writing, only 58 of the world’s top
500 supercomputers are capable of such a feat), if n = 50, the computer
will take 1.5 hours to finish enumerating all possibilities. One might be
tempted to simply let the computer run all night if need be for important
problems, and although this is indeed valid for the case in which n = 50,
the computational growth rate for these problems is astounding: for n = 60,
the computer will require 80 days to terminate, and for n = 70, the com-
puter will require 262 years. Another question regards the evolution of
computing speed, noting that faster computers are constantly emerging.
If the program must be finished within two hours, the current 10 teraflop
machine will permit the solution of problems with n = 50. If a quantum
leap is discovered that results in the invention of 10,000 teraflop machine,
this fictional computer would only be able to handle problems with n = 60
within two hours. Computer speedups, however impressive, are simply no
match for exponential enumeration problems.

Therefore, a more efficient technique is required to solve problems
containing discrete variables. Mixed-integer programming techniques do
not explicitly examine every possible combination of discrete solutions,
but instead examine a subset of possible solutions, and use optimization
theory to prove that no other solution can be better than the best one
found. This type of technique is referred to as implicit enumeration.

This chapter is not a thorough review of integer programming litera-
ture, but is intended for technical researchers who may or may not have
any familiarity with linear programming, but who are looking for an entry-
level introduction to modeling and solution via integer and mixed-integer
programming. The text by Wolsey [18] provides an accessible account of
fundamental integer programming methods and theory, while the updated
classical work of Nemhauser and Wolsey [11] discusses integer program-
ming and combinatorial theory in detail.

We discuss the general form of mixed-integer programming problems
in Section A.2, and provide general tips for formulating problems as mixed-
integer programs (MIPs). A brief discussion of the branch-and-bound
implicit enumeration technique for solving mixed-integer programs, as is
relevant to practitioners, is given in Section A.3. Next, Section A.4 provides
an example of MIPs in a real radiation therapy application, illustrating the
material presented in the earlier two sections. Finally, we conclude this
chapter in Section A.5.



Lim/Optimization in Medicine and Biology AU0563_A001 Final Proof Page 524 10.11.2007 04:35pm

524 Optimization in Medicine and Biology

A.2 Modeling Principles
We begin this section by discussing the general form of linear and mixed-
integer programming problems in Section A.2.1. We then give common
steps and principles behind modeling problems of this form in Section A.2.2,
and suggest a few common ways that mixed-integer variables can be used
to model complex conditions arising in real-world scenarios.

A.2.1 General Form
First, we present the general form of a linear programming problem. Linear
programming problems (usually called linear programs, and abbreviated as
LPs) contain a set of decision variables, which are the unknown quantities
or decisions that are to be optimized. In the context of linear and mixed-
integer programming problems, the function that assesses the quality of
the solution, called the objective function, should be a linear function
of the decision variables. An LP will either minimize or maximize the value
of the objective function. Finally, the decisions that must be made are sub-
ject to certain requirements and restrictions of a system. We enforce these
restrictions by including a set of constraints in the model. Each constraint
requires that a linear function of the decision variables is either equal to,
not less than, or not more than, a scalar value. A common condition simply
states that each decision variable must be nonnegative. In fact, all linear
programming problems can be transformed into an equivalent minimiza-
tion problem with nonnegative variables and equality constraints [1].

Thus, suppose we denote x1, . . . , xn to be our set of decision variables.
Linear programming problems take on the form:

Min or Max c1x1 + c2x2 + · · · + cnxn (A.1a)

s.t. a11x1 + a12x2 + · · · + a1nxn (≤, =, or ≥) b1 (A.1b)

a21x1 + a22x2 + · · · + a2nxn (≤, =, or ≥) b2 (A.1c)

· · ·

am1x1 + am2x2 + · · · + amnxn (≤, =, or ≥) bm (A.1d)

xj ≥ 0 ∀j = 1, . . . , n. (A.1e)

Values cj , ∀j = 1, . . . , n, are referred to as objective coefficients, and
are often associated with the costs associated with their corresponding
decisions in minimization problems, or the revenue generated from the
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corresponding decisions in maximization problems. The values b1, . . . , bm

are the right-hand-side values of the constraints, and often represent
amounts of available resources (especially for ≤ constraints) or require-
ments (especially for ≥ constraints). The aij -values thus typically denote
how much of resource/requirement i is consumed/satisfied by decision j .

Note that nonlinear terms are not allowed in the model, prohibiting
for instance the multiplication of two decision variables, the maximum of
several variables, or the absolute value of a variable. (These conditions are
often desired, but must be achieved by different techniques.) Also, any
inequalities present in the model are never strict.

Problems of the form of Equation A.1 are called linear programs because
the objective function and LPs constraint functions are all linear. Integer
programs (IPs) are stated in an identical fashion, except that all decision
variables are constrained to take on integer values. (Hence, integer pro-
grams are sometimes called integer linear programs.) An MIP is an LP with
the added restriction that some, but not necessarily all, of the variables must
be integer-valued. Several studies also replace the term integer with 0–1 or
binary when variables are restricted to take on either 0 or 1 values. For the
purposes of this chapter, we focus on MIPs, with IPs being modeled and
solved as a special case of MIPs.

A solution that satisfies all constraints is called a feasible solution. Fea-
sible solutions that achieve the best objective function value (according
to whether one is minimizing or maximizing) are called optimal solutions.
Sometimes no solution exists to an MIP, and the MIP itself is called infea-
sible. On the other hand, some feasible MIPs have no optimal solution,
because it is possible to achieve infinitely good objective function values
with feasible solutions. Such problems are called unbounded.

A.2.2 Modeling Mixed-Integer Programming Problems
The modeling of complex systems using MIPs is often more of an art than a
science. Typically, a three-step looped process is used to model MIPs. The
first step involves defining a set of decision variables that represent choices
that must be optimized in the system. The second step usually involves
the statement of constraints in the model, with the third step requiring the
statement of an objective function (although the last two steps can be done
in either order).

It is very common, though, to recognize during model construction that
the initial set of decision variables defined for the model is inadequate.
Often, decision variables that seem to be the implied consequences of
other actions must also be defined. The addition of new variables after an
unsuccessful attempt at formulating constraints and objectives is the “loop”
in the process.



Lim/Optimization in Medicine and Biology AU0563_A001 Final Proof Page 526 10.11.2007 04:35pm

526 Optimization in Medicine and Biology

The correct definition of decision variables can be especially compli-
cated in modeling with integer variables. If one is allowed to use binary
variables in a formulation, it is possible to represent yes-or-no decisions,
enforce if–then statements, and even permit some sorts of nonlinearity in
the model (which can be transformed to an equivalent mixed-integer LP).

To illustrate the modeling process, we consider the following three
example systems.

EXAMPLE 1. An outbreak of an infectious disease has been observed in a
set N of locations. There exist a set M of teams capable of investigating
these outbreaks. Team i ∈ M can conclude its investigation of the outbreak
in location j ∈ N in tij hours. Each team can either investigate zero, one,
or two outbreaks. If a team investigates two outbreaks, they must travel
from one location to the next. The travel time from location j1 ∈ N to
location j2 ∈ N is dj1j2 . Once all outbreaks have been investigated, a dis-
ease control center can take action to combat the outbreak. The goal is to
minimize the amount of time necessary to complete the investigation of all
locations. �

EXAMPLE 2. A medical practice is attempting to acquire a certain drug
from a set M of suppliers. The practice wishes to have a stock of dt units
of this drug in month t , for t = 1, . . . , t . Purchasing one unit of the drug
from supplier i ∈ M during period t ∈ {1, . . . , t} costs cit dollars. However,
to purchase drugs from supplier i ∈ M , at any period, the practice must
purchase a minimum of �i units of the drug during that period. Fortunately,
the practice has room for h units of inventory, and so at most h units of
the drug can be stored from one period to the next. If the practice finds
itself with too many units of the drug, it can simply throw away the extra
supply. The goal is to minimize the cost required to purchase the drugs for
time periods 1, . . . , t . �

EXAMPLE 3. A nurse is assigned a set N of patients. For each patient
i ∈ N , the nurse must spend pi minutes examining the patient. The nurse
must then wait somewhere between �i and ui minutes before checking up
on the patient, which requires qi minutes. The nurse, of course, cannot be
in two places at the same time, although we will assume for simplicity that
the travel time to walk from one patient’s room to another is zero. The
objective is to minimize the total amount of time required to tend to all
patients. For instance, suppose that N contains three patients:

� Patient 1’s first visit lasts p1 = 5 minutes. The patient will then be
checked on between �1 = 30 and u1 = 45 minutes later, after which
the nurse will spend q1 = 5 more minutes of care on the second
visit.
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� Patient 2 needs p2 = 10 minutes of initial care, has an inter-care gap
of �2 = 25 and u2 = 35 minutes, and requires q2 = 5 minutes of
further care.

� Patient 3 needs p3 = 10 minutes of initial care, has an inter-care gap
of �3 = 30 and u3 = 35 minutes, and requires q3 = 10 minutes of
further care.

One solution would start treatment on patients 1, 2, and 3 in this order. The
nurse’s schedule would then be optimized according to the first column of
Table A.1 and the total treatment time would be 65 minutes. However, if the
patients are treated in the opposite order, the total treatment time becomes
only 60 minutes, as shown in the second column of Table A.1. Indeed, the
timing involved in this problem is quite difficult to optimize by hand. �

Attempting to formulate any of these problems as an LP is problematic.
With continuous variables, the first example will likely end up assigning
part of a team to one location, and part of a team to another location.
The second example will not be able to represent the minimum purchase
aspect of the problem. The example will not necessarily be able to keep
the nurse from splitting attention simultaneously among multiple patients.
Before attempting to formulate these problems, let us discuss a few common
tips and tricks in modeling with integer variables.

1. Integrality of quantities. In staffing and purchasing decisions, it is
often impossible to take fractional actions. One cannot hire, for
instance, 6.5 new staff members, or purchase 1.3 hospital beds.
The most obvious use of integer variables thus arises in requesting
integer amounts of quantities that can only be ordered in integer
amounts. In general, the optimal solution of an integer program
need not be a rounded-off version of an optimal solution to an LP.

Table A.1 Two Schedules for the Nurse
Scheduling Problem

Patients Ordered 1, 2, 3 Patients Ordered 3, 2, 1

Time 0−5: Patient 1 Time 0−10: Patient 3
Time 5−15: Patient 2 Time 10−20: Patient 2
Time 15−25: Patient 3 Time 20−25: Patient 1
Time 25−35: Idle Time 25−40: Idle
Time 35−40: Patient 1 Time 40−50: Patient 3
Time 40−45: Patient 2 Time 50−55: Patient 2
Time 45−55: Idle Time 55−60: Patient 1
Time 55−65: Patient 3
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2. If–then statements. Consider two continuous (i.e., possibly frac-
tional) variables, x and y, defined so that 0 ≤ x ≤ 10 and 0 ≤
y ≤ 10. Suppose we wish to make a statement that if x > 4, then
y ≤ 6. (If x ≤ 4, then we do not wish to further constrain y.) On
the surface, because no integer quantities are requested, it does
not appear that integer variables will be necessary. However, the
general form of LPs as given in Equations A.1a through A.1e does
not permit if–then statements like the one above. Instead, if–then
statements can be enforced with the aid of a binary variable, z . We
wish to make z = 1 if x > 4 (note that we make no claims on z if
x ≤ 4). This can be accomplished by adding the constraint

x ≤ 4+ 6z , (A.2)

because the event that x > 4 implies that z = 1. (Even if z = 1,
the largest value for x is 10, which now makes a constraint of the
form x ≤ 10 unnecessary.) If z = 1, then we must also require that
y ≤ 6. This is achieved by reducing the upper bound of 10 on y to
6 if z is equal to 1 as follows:

y ≤ 10− 4z , (A.3)

where once again, the bound constraint y ≤ 10 may now be omit-
ted. In general, suppose we wish to make the following statement:
if q1x1 + · · · + qnxn > Q, then r1x1 + · · · + rnxn ≤ R. We would
include the following conditions in our model:

q1x1 + · · · + qnxn ≤ Q +M ′z , (A.4)

r1x1 + · · · + rnxn ≤ M ′′ − (M ′′ − R)z , (A.5)

z binary, (A.6)

where M ′ and M ′′ are sufficiently large constants. These values
should be just large enough to not add unintentional restrictions
to the model. For instance, we are not attempting to place any hard
restriction on the quantity q1x1 + · · · + qnxn (written conveniently
as q�x in vector form). If z = 1, the upper bound on q�x is
Q+M ′, and hence M ′ must be large enough so that even if constr-
aint given by Equation A.4 is removed from the model, q�x would
still never be more than Q+M ′. Likewise, if z = 0, we must choose
a value M ′′ large enough in Equation A.5 such that r�x could never
be more than M ′′ even without the restriction (Equation A.5). It is
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worth noting that assigning arbitrarily large values for M ′ and M ′′ is
not recommended, for reasons that will become more apparent in
Section A.3.

3. Enforce at least k-out-of-p restrictions. This situation is similar to if–
then constraints in the way we model such restrictions. For a simple
example, suppose we have nonnegative variables x1, . . . , xn, and
wish to require that at least three of these variables take on values
of 5 or more. Then we can define variables z1, . . . , zn, such that if
zj = 1, then xj ≥ 5, ∀j = 1, . . . , n. This simple if–then constraint
can easily be modeled by employing the following constraints:

xj ≥ 5zj ∀j = 1, . . . , n. (A.7)

Clearly, if zj = 1, then xj ≥ 5. If zj = 0, it is still possible for xj ≥ 5,
but no such restrictions are enforced. We need to guarantee that
three variables take on values of 5 or more, and so we add the
following k-out-of-p constraint:

z1 + · · · + zn = 3. (A.8)

Again, this constraint does not state that exactly three variables will
be at least 5, but rather that at least three variables are guaranteed
to be at least 5. This same trick can be used to enforce the condition
that at least k-out-of-p sets of constraints are satisfied, and so on,
often by using M -values as introduced in the section on if–then
constraints.

4. Nonlinear product terms. In some circumstances, nonlinear terms
can be transformed into linear terms by the use of linear constraints.
First, note that if xj is a binary variable, then xj = xq

j for any positive
constant q. After that substitution is made, suppose that we have
a nonlinear term of the form x1 · x2 · · · xk · y, where x1, . . . , xk are
binary variables and 0 ≤ y ≤ u is another variable, either continu-
ous or integer. That is, all but perhaps one of the terms is a binary
variable. First, replace the nonlinear term with a single continuous
variable, w. Using the if–then concept expressed above, note that
if xj equals zero for any j ∈ {1, . . . , k}, then w equals zero as well.
Also, note that w can never be more than the upper bound, u, on
the y-variable. Hence, we obtain the constraints

w ≤ uxj ∀j = 1, . . . , k. (A.9)

Of course, to guarantee that w equals zero in case any xj -variable
equals to zero, we must also state a nonnegativity constraint

w ≥ 0. (A.10)
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Now, suppose that all x1 = · · · = xk = 1. In this case, we need to
add constraints that enforce the condition that w = y. Regardless
of the x-variable values, w cannot be more than y, and so we state
the constraint

w ≤ y. (A.11)

However, to get the constraint w ≥ y if x1 = · · · = xk = 1, we
include the constraint

w ≥ u(x1 + · · · + xk − k)+ y. (A.12)

If each x-variable equals to 1, then Equation A.12 states that w ≥ y,
which along with Equation A.11 guarantees that w = y. On the
other hand, if at least one xj = 0, j ∈ {1, . . . , k}, then the term
u(x1+· · ·+xk − k) is not more than −u, and the right-hand side of
Equation A.12 is not positive; hence, Equation A.12 allows w to take
on the correct value of zero (as would be enforced by Equations A.9
and A.10). As a final note, observe that even if y is an integer vari-
able, we need not insist that w is an integer variable as well, because
Equations A.9 through A.12 guarantee that w = x1 · · · xk · y, which
must be an integer given integer x- and y-values.

Let us now briefly continue the examples introduced earlier in this sec-
tion in the light of the modeling tricks introduced above.

EXAMPLE 1, continued. Define binary decision variables xij , which equal
one if team i ∈ M investigates an outbreak at location j ∈ N , and zero
otherwise. Proceeding with this initial set of variables, we would then
attempt to formulate the constraints of the problem. In fact, the only restric-
tions encountered thus far is the fact that each location must be investigated
by exactly one team, the fact that each team can investigate no more than
two locations, and the fact that each x-variable must be binary. These con-
straints are, respectively, given by

∑

i∈M

xij = 1 ∀j ∈ N , (A.13)

∑

j∈N

xij ≤ 2 ∀i ∈ M , (A.14)

xij binary ∀i ∈ M , j ∈ N . (A.15)
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Finally, we would attempt to formulate the objective function. Note that the
amount of time required for team i ∈ M to complete their investigations is
the amount of time required to perform the investigations,

∑
j∈N tijxij , plus

the travel time between location sites. This travel time can be represented
by

∑
all j1 �=j2∈N dj1j2xij1xij2 , noting that inter-location travel time is required

only if a team is required to visit both sites. The objective function has the
following form:

Min maximumi∈M

⎧
⎨

⎩

∑

j∈N

tijxij +
∑

all j1 �=j2∈N

dj1j2xij1xij2

⎫
⎬

⎭
.

This function is nonlinear for two reasons. One, the investigation comple-
tion time is a nonlinear function due to the multiplication of x-variables.
Two, the quantity being minimized is the maximum of the teams’ investi-
gation completion times.

At this point, we must add additional variables to the problem. Replace
each nonlinear term xij1xij2 with a new variable wij1j2 , and add linearization
constraints

wij1j2 ≤ x1 similar to Equation A.9, (A.16a)

wij1j2 ≥ 0 similar to Equation A.10, (A.16b)

wij1j2 ≤ x2 similar to Equation A.11, treating x2 as “y”, (A.16c)

wij1j2 ≥ x1 + x2 − 1 similar to Equation A.12. (A.16d)

The objective function now becomes

Min maximumi∈M

⎧
⎨

⎩

∑

j∈N

tijxij +
∑

all j1 �=j2∈N

dj1j2wij1j2

⎫
⎬

⎭
.

To remove the “minimax” structure of this objective function, we rely
on a common trick for linear programming. First, we add a variable θ

that represents the maximum completion time. We would then minimize θ ,
subject to the conditions that θ must be at least as large as the completion
time for team 1, θ must be at least as large as the completion time for team
2, and so on, for each team. These constraints are

θ ≥
∑

j∈N

tijxij +
∑

all j1 �=j2∈N

dj1j2wij1j2 ∀i ∈ M . (A.17)



Lim/Optimization in Medicine and Biology AU0563_A001 Final Proof Page 532 10.11.2007 04:35pm

532 Optimization in Medicine and Biology

Of course, the question arises as to why θ will be equal to the maximum
of the teams’ completion times, because Equation A.17 merely enforces the
condition that θ is at least as large as the maximum of these times. The
answer is that the objective function will minimize θ and so θ will take on
the smallest possible value permitted by Equation A.17, which will indeed
be the maximum of completion times.

The overall model is then given by

Min θ

s.t. Constraints given by Equations A.13 through A.17.

EXAMPLE 2, continued. An initial attempt at modeling this problem would
define decision variables xit , ∀i ∈ M , t = 1, . . . , t , equal to the amount of
drugs purchased from supplier i in period t . It is also necessary in gen-
eral to define variables gi , ∀i ∈ M , which denote how many units of
drugs are thrown away after period i (because we purchased too many
from a supplier due to minimum purchase limits, and perhaps also due
to inventory limits). However, we must ensure that the number of drugs
purchased from supplier i ∈ M at any period is either zero or at least �i .
Hence, let us define binary decision variables zit , which equal one if we
purchase any supplies from supplier i ∈ M at period t ∈ {1, . . . , t}, and zero
otherwise.

However, stating the demand and inventory constraints is awkward
(though possible) without another set of variables. Note that we must
require

∑
i∈M xi1 − g1 ≥ d1 to satisfy period 1 demand. In period 2, we

have that the inventory plus the amount of drugs ordered in period 2, minus
whatever is thrown away after period 2, must be at least d2. This condi-
tion is stated as

((∑
i∈M xi1 − g1

)− d1

)+∑i∈M xi2 − g2 ≥ d2. For period 3,
this constraint becomes

(((∑
i∈M xi1 − g1

)− d1

)+ (∑i∈M xi2 − g2

)− d2

) +∑
i∈M xi3 − g3 ≥ d3. and so on. It is evident that the expression quickly

becomes quite large as the period t increases.
Instead, we can define inventory variables yt , for t = 1, . . . , t , which

represent the amount of drug inventory remaining after period t . From this
point, it is easier to establish flow balance constraints, which state that the
amount of drugs coming into the practice at each period (inventory from
the previous period plus the amount purchased from suppliers during the
current period) equals the drugs that leave the practice at the current period
(those demanded by patients, plus those put into inventory after the period,
plus those thrown away). These balance constraints are given as

yt−1 +
∑

i∈M

xit = dt + yt + gt ∀t = 1, . . . , t , (A.18)
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where y0 is defined to be zero. The minimum purchase quantity constraints
are given as

xit ≥ �izit ∀i ∈ M , t = 1, . . . , t , (A.19)

xit ≤ Mitzit ∀i ∈ M , t = 1, . . . , t , (A.20)

where Mit is a sufficiently large constant, ∀i, t . If zit = 1, then �i ≤ xit ≤
Mit , while if zit = 0, then xit = 0. A possible value for Mit would be the
maximum of �i and the remaining demands

∑t
u=t du. Finally, we require

constraints that state bounds on the x-, g-, and z-variables.

xit ≥ 0 and zit binary ∀i ∈ M , t = 1, . . . , t , (A.21)

0 ≤ yt ≤ h and gt ≥ 0 ∀t = 1, . . . , t . (A.22)

The overall formulation can now be stated as

Min
∑

i∈M

t∑

t=1

citxit (A.23)

s.t. Constraints given by Equations A.18 through A.22.

EXAMPLE 3, continued. There exist several methods of modeling and solv-
ing this problem. One technique defines a continuous variable fi to be the
first time that the nurse sees patient i ∈ N , and si to be the second time
that the nurse sees patient i ∈ N . These variable definitions allow us to
state the minimum and maximum gaps between the first and second visits
by the nurse:

si − (fi + pi) ≥ �i ∀i ∈ N , (A.24)

si − (fi + pi) ≤ ui ∀i ∈ N . (A.25)

However, we must now enforce the restriction that the nurse does not
tend to two or more patients at the same time. We must ensure that for
each pair of nurse visits (first visits to different patients, first and second
visits to different patients, and second visits to different patients), one visit
starts before the other begins, or vice versa. (The two visits to the same
patient are disjoint due to Equation A.24.)

Define binary variables z11
ij to equal one if the first visit to patient i ∈ M

occurs before the first visit to patient j ∈ M , and zero otherwise. Also,
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define z12
ij if the first visit to patient i ∈ M occurs before the second visit to

patient j ∈ M , and zero otherwise. Similarly, z21
ij relates the second visit of

patient i ∈ M to the first visit of patient j ∈ M , and z22
ij relates the second

visit of patient i ∈ M to the second visit of patient j ∈ M . The following
constraints relate the z-variables to the f - and s-variables.

fj − (fi + pi) ≥ −M 11
ij (1− z11

ij ) ∀i, j ∈ N , i �= j , (A.26)

sj − (fi + pi) ≥ −M 12
ij (1− z12

ij ) ∀i, j ∈ N , i �= j , (A.27)

fj − (si + qi) ≥ −M 21
ij (1− z21

ij ) ∀i, j ∈ N , i �= j , (A.28)

sj − (si + qi) ≥ −M 22
ij (1− z22

ij ) ∀i, j ∈ N , i �= j , (A.29)

where the M -values once again are sufficiently large constants. For instance,
Equation A.26 states that if z11

ij = 1, then fj ≥ fi + pi , meaning that the nurse
finishes the visit to patient i before the visit to patient j occurs. We now
need to state constraints ensuring that one visit finishes before the next one
starts, or vice versa.

z11
ij + z11

ji = 1 ∀i, j ∈ N , i < j , (A.30)

z22
ij + z22

ji = 1 ∀i, j ∈ N , i < j , (A.31)

z12
ij + z21

ji = 1 ∀i, j ∈ N . (A.32)

Constraints given by Equations A.30 and A.31, respectively, ensure that no
pair of first visits and no pair of second visits overlap. Constraint given by
Equation A.32 ensures that no pair of first/second visits overlaps. (In fact,
the number of z-variables in the model can now be halved by substituting
out z-variables according to Equations A.30 through A.32. However, we
retain these variables here for ease of exposition.)

Finally, we again have a minimax objective in which the time of the
final patient visit must be minimized. Again, we define θ to be the time of
the final patient visit, which must equal si + qi , for some i ∈ N . The final
model is then given as

Min θ (A.33)

s.t. Constraints given by Equations A.24 through A.32
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θ ≥ si + qi ∀i ∈ N , (A.34)

si , fi ≥ 0 ∀i ∈ N , (A.35)

z11
ij , z12

ij , z21
ij , z22

ij binary ∀i, j ∈ N , i �= j . (A.36)

This problem is in fact adapted from a study on radar pulse interleaving,
which contains similar challenges to this nurse scheduling problem. See
Refs. [4,6,16] for a more thorough examination of interleaving applications
and integer programming techniques.

A.3 MIP Solution Techniques
Often, there are alternative ways of modeling optimization problems as
MIPs. There sometimes exist trade-offs in these different modeling
approaches. Some models may be smaller (in terms of the number of con-
straints and variables required), but may be more difficult to solve than
larger models. In fact, the difference can be significant and can make a
difference in whether or not MIPs can be solved quickly enough to be
practically useful. (For instance, the situation described in Example 1 men-
tioned in the previous section must be solved before the outbreak spreads.)

Improving the efficiency of solving MIP Models requires an understand-
ing of how MIP solvers work. Premium MIP solvers, such as CPLEX (ILOG,
Inc.), Xpress-MP (Dash Optimization), SYMPHONY and CBC (COIN-OR
project), and Solver (Frontline Systems, Inc.), employ a combination of
branch-and-bound and cutting-plane techniques. Although a review of
how to use these software packages is well beyond the scope of this tuto-
rial, it is important to understand the basics of MIP solution algorithms to
understand the key principles in MIP modeling.

For the rest of this section, assume that we are solving a minimization
MIP. (Maximization MIPs are solved in much the same fashion.) To help
illustrate the branch-and-bound process, we consider the following exam-
ple MIP (actually a pure IP because all variables are integers).

Min 4x1 + 6x2 (A.37a)

s.t. 2x1 + 2x2 ≥ 5 (A.37b)

x1 − x2 ≤ 1 (A.37c)

x1, x2 ≥ 0 and integer. (A.37d)
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The first concept that we discuss in solving MIPs is that of relaxations.
A relaxation of an MIP is a problem such that any solution to the MIP
corresponds to a feasible solution to the relaxed problem, and each solution
to the MIP has an objective function value greater than or equal to that of the
corresponding solution to the relaxed problem. The most commonly used
relaxation for MIPs is its LP relaxation, which is identical to the MIP with the
exception that variable integrality restrictions are eliminated. Clearly, any
integer-feasible solution to the MIP is also a solution to its LP relaxation,
with matching objective function values.

Envision a bag containing several orange and blue marbles. Each marble
represents a solution to the LP relaxation, but only the orange marbles also
represent solutions to the MIP. Each marble has a weight, corresponding
to its objective function value. The task in linear programming is to find
the lightest marble. The task in solving an MIP is to find the lightest orange
marble.

When describing the branch-and-bound algorithm for MIPs, it is help-
ful to know how LPs are solved. See Refs. [1,8,15,17] for an explanation
of linear programming theory and methodology. For the purposes of this
chapter, we simply note that LPs can be solved quickly (in time bounded
by a polynomial of the problem’s input size). Graphically, Figure A.1 illus-
trates the feasible region (set of all feasible solutions) to the LP relaxation of

10

2x  +  2y
 
>= 5

x  −  y<= 1
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y
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x

Figure A.1 Feasible region of the LP relaxation.
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formulation Equation A.37. Note that the gradient of the objective function
is (4,6) (taken from the coefficients of Equation A.37a). This means that
the objective function is increasing in this direction, and hence we wish to
follow the direction (−4,−6) as far as possible in the feasible region. Put
another way, think of (−4,−6) as the direction of gravity, and place a peb-
ble in the feasible region. The point to which the pebble falls, (1.75, 0.75),
is the optimal solution to the LP relaxation and has an objective function
value of 11.5.

Returning to the bag of marbles analogy, solving the LP relaxation has
yielded a blue marble (fractional, not integer, solution) with a weight of
11.5. This implies that all orange marbles have a weight of 11.5 or more,
because weight of the lightest marble in the bag was 11.5. (In general,
we cannot claim that the optimal solution to the LP is unique, and so we
allow for the possibility that MIP solutions exist with an identical objective
function to the optimal LP solution.) The important result is that a lower
bound on the optimal MIP solution is obtained from the LP relaxation. No
solution to the MIP (Equation A.37) can be found with an objective function
value of less than 11.5.

Of course, the solution (1.75, 0.75) is not a feasible solution to Equa-
tion A.37. In fact, all feasible solutions have the trait that either x1 ≤ 1 or
x1 ≥ 2. In fact, we can split the problem (Equation A.37) into two subprob-
lems: one in which x1 ≤ 1 (called region 1) and one in which x1 ≥ 2 (called
region 2). All solutions to the original MIP are contained in exactly one of
these two new subproblems. This process is called branching, and we could
have also branched on x2 instead, by requiring that either x2 ≤ 0 or x2 ≥ 1.
Conceptually, branching is equivalent to taking our bag of marbles and
splitting it into two bags. All blue marbles corresponding to solutions in
which 1 < x1 < 2 are thrown away (importantly, this includes the lightest
marble that we previously found). No orange marbles are thrown away;
they either belong to the x1 ≤ 1 bag or the x1 ≥ 2 bag. Now, we will
search for the lightest orange marble in each bag, compare them, and take
the lightest of the two.

The feasible regions of the two new subproblems are depicted in
Figure A.2. When x1 ≤ 1, the optimal solution is (1,1.5) with objective
function value of 13. When x1 ≥ 2, the optimal solution is (2,1) with objec-
tive function value of 14. In the x1 ≤ 1 region, the lower bound is 13. In the
x1 ≤ 2 region, though, the best solution happens to be an integer solution.
That is, the lightest marble in this bag out of all marbles happens to be
orange, and so it is obviously also the lightest orange marble. Therefore,
the best integer solution in the x1 ≥ 2 region has an objective function
value of 14; there is no need to further search that region. This region is
said to be fathomed by integrality. We store the solution (2,1) and call it
our incumbent solution. If no better solution is found, it will become our
optimal solution.
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Figure A.2 Feasible regions of the subproblems.

At this point, there is one active region (or active node in the context of
branch-and-bound trees, which we will describe shortly), which is region 1.
An active region is one that has not been branched on, and that must still
be explored, because there is a possibility that it contains a solution better
than the incumbent solution. The initial region is not active, because we
have branched on it. Region 2 is not active because we have found the
best integer solution in that region. Region 1, however, is still active and
must be explored. The lower bound over this region is 13. The optimal
solution must have an objective function value somewhere between 13
and 14. We recursively divide region 1, in which x1 ≤ 1. Because the
optimal solution in this region was (1,1.5), we branch by creating two new
subproblems: one in which both x1 ≤ 1 and x2 ≤ 1 (called region 3), and
one in which both x1 ≤ 1 and x2 ≥ 2 (called region 4). Once again, all
integer solutions in region 1 are contained in either region 3 or region 4.

However, note that region 3 is empty, because the stipulation that both
x1 and x2 are no more than 1 makes it impossible to satisfy Equation A.37b.
There are therefore no integer solutions in this region either, and so we stop
searching region 3. This region is said to be fathomed by infeasibility. The
optimal solution to region 4’s linear relaxation is (0.5,2), with objective
function value of 14. We still have not found the best integer solution over
region 4, but we know that the best integer solution (if one even exists)
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Figure A.3 Branch-and-Bound tree.

has an objective function value of 14 or more. However, our incumbent
solution has an objective function value of 14. We have not found the best
integer solution in region 4, but we do know that the best solution in region
4 will not improve the incumbent solution we have found. Thus, we are
not interested in any integer-feasible solution in region 4, and we stop
searching that region. (An alternative optimal integer solution can exist in
that region, but we are not seeking to find all optimal solutions, just one.)
Region 4 is said to be fathomed by bound.

Figure A.3 depicts a tree representation of this search process, which
is called the branch-and-bound tree. Each node of the tree represents a
feasible region. Now, there are no more regions to be examined (no more
active nodes) and the algorithm terminates with the incumbent solution,
(2,1), as an optimal solution.

A formal description of the branch-and-bound algorithm for minimiza-
tion problems is given as follows:

Step 0. Set the incumbent objective v = ∞ (assuming that no initial fea-
sible integer solution is available). Set the active node count k = 1 and
denote the original problem as an active node. Go to Step 1.

Step 1. If k = 0, then stop: the incumbent solution is an optimal solution.
(If there is no incumbent, i.e., v = ∞, then the original problem has no
integer solution.) Else, if k ≥ 1, go to Step 2.

Step 2. Choose any active node, and call it the current node. Solve the LP
relaxation of the current node, and make it inactive. If there is no feasible
solution, then go to Step 3. If the solution to the current node has objective
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value z∗ ≥ v, then go to Step 4. Else, if the solution is all integer (and
z∗ < v), then go to Step 5. Otherwise, go to Step 6.

Step 3. Fathom by infeasibility. Decrease k by 1 and return to Step 1.

Step 4. Fathom by bound. Decrease k by 1 and return to Step 1.

Step 5. Fathom by integrality. Replace the incumbent solution with the
solution to the current node. Set v = z∗, decrease k by 1, and return to
Step 1.

Step 6. Branch on the current node. Select any variable that is fractional in
the LP solution to the current node. Denote this variable as xs and denote
its value in the optimal solution as f . Create two new active nodes: one
by adding the constraint xs ≤ � f � to the current node, and the other by
adding xs ≥  f � to the current node. Add 1 to k (two new active nodes,
minus one due to branching on the current node) and return to Step 1.

Note that in Step 0, we could run a heuristic procedure to quickly
obtain a good-quality solution to the MIP with no guarantees on its
optimality. This solution would then become our initial incumbent solution,
and could possibly help conserve branch-and-bound memory requirements
by increasing the rate at which active nodes are fathomed in Step 4. In
Step 2, we may have several choices of active nodes on which to branch
and in Step 6, we may have several choices on which variable to perform
the branching operation. There has been much empirical research designed
to establish good general rules to make these choices, and these rules are
implemented in commercial solvers. However, for specific types of formu-
lations, one can often improve the efficiency of the branch-and-bound algo-
rithm by experimenting with node selection and variable branching rules.

The best-case scenario in solving a problem by branch-and-bound is
that the original node yields an optimal LP solution that happens to be inte-
ger, and the algorithm terminates immediately. Indeed, in Equation A.37, if
we simply add the constraint x1 + x2 ≥ 3 and solve the LP relaxation, we
would obtain the optimal solution (2, 1) immediately. This also underscores
the importance of making the M -values introduced in the previous section
as small as possible. The smaller these M -values are, the fewer fractional
solutions exist in the linear programming relaxation. Paying close attention
to these M -values often results in significant improvements in the compu-
tational efficiency of MIP algorithms.

Thus, a classical way to reduce the presence of fractional solutions is
to find valid inequalities, which do not cut off any integer solutions, but
do cut off some fractional solutions. In terms of marbles, these inequali-
ties remove some blue marbles from the bag, but never orange marbles,
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and do so without branching into multiple bags. A cutting plane is a valid
inequality that removes the optimal LP relaxation solution from the fea-
sible region. In theory, MIPs can be solved without branching either by
including enough valid inequalities before solving the LP relaxation, so
that the LP relaxation provides an integer solution, or by looping between
solving the LP relaxation, adding a cutting plane, and re-solving the LP
relaxation, until the LP relaxation yields an integer solution. By themselves,
these approaches are typically intractable and may suffer from numerical
instability problems. However, the most effective implementations often use
a combination of valid inequalities added a priori to the model, after which
branch-and-bound is executed, with cutting planes periodically added to
the nodes of the branch-and-bound tree. This approach is called branch-
and-cut.

Valid inequality and cutting plane approaches can either be automatic
or problem specific. Classical automatic approaches are summarized by
Nemhauser and Wolsey [11], who provide a technical explanation to these
approaches. More relevant to the material in this chapter are problem-
specific valid inequality generation techniques. For instance, in Example 2
in the previous section, suppose that the demand of drugs in periods 1 and
2 is 100 units. Suppose that the minimum order quantity from each supplier
is 150 units. If drugs become less expensive as time goes on, then the LP
relaxation may try to place only two-thirds of a minimum order in each
period, so that only 100 drugs (instead of the full complement of 150) are
purchased in each period. Anticipating this class of fractional solutions, we
note that at least one order must be placed in period 1 (because no orders
result in unsatisfied demand). This valid inequality is stated as

∑

i∈M

zi1 ≥ 1. (A.38)

The addition of such inequalities to the MIP formulation often aid its perfor-
mance, although occasionally they make little difference, or even worsen
the performance of the branch-and-bound solver. Negative impacts usually
occur when the inclusion of extra valid inequalities makes the formula-
tion larger without sufficiently reducing its feasible region. Determining
the valid inequalities that are computationally beneficial is usually a matter
of trial-and-error.

A.4 Example Radiation Therapy Application
In this section, we describe an application of mixed-integer programming
in Intensity Modulated Radiation Therapy (IMRT) planning. The underlying
mechanism of radiotherapy is to radiate tumor tissues with high energy
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beams, which kill cancer cells. However, high energy radiation also kills
healthy tissues through which it passes, possibly resulting in serious degra-
dation in the patient’s quality of life. IMRT is a technique designed to help
solve this dilemma. IMRT delivers small amounts of doses from multiple
beam angles, which intersect at tumor tissues. As a result, the tumor tissue
receives enough radiation to kill the cancer cells, but the healthy tissues
are spared. The IMRT planning problem is usually solved in three interde-
pendent phases.

� Beam angle optimization (BAO): Selection of the beam angles to
use

� Fluence map optimization (FMO): Determination of intensity profile
to deliver from each beam angle

� Leaf sequencing: Realization of the intensity profiles under the
capabilities of available machinery

Planning problems in IMRT have been investigated by several resear-
chers [2,3,12]. The BAO problem can be formulated as an MIP Model [9,10].
The FMO problem can be formulated as a large-scale LP Model [14] or
a Nonlinear Programming Model [13]. The leaf sequencing problem can
be formulated as an MIP Model as we describe in this section. However,
because the problem size of real-world IMRT instances is very large and
these problems are inherently complex, heuristic procedures are typically
used to solve real instances in a reasonable amount of time [5]. The reader is
referred to Ref. [7] for a recent book chapter about mixed-integer program-
ming applications in IMRT. In this section, we focus on the leaf sequencing
problem and derive an MIP formulation for solving it optimally.

A.4.1 Leaf Sequencing Problem
We are given an m × n matrix B that consists of integers called beamlets.
Matrix B represents an intensity profile that needs to be delivered from a
given beam angle. We need to find an optimal way of decomposing this
matrix into a set of uniform-intensity shapes that the available machinery
can deliver.

Figure A.4 represents a small example fluence map. One way to decom-
pose this map into deliverable shapes is given in Figure A.5. Define

9
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1

Figure A.4 Fluence map example.
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Figure A.5 Leaf sequence 1.

beam-on time as the amount of time required to deliver the doses pre-
scribed by a set of deliverable shapes. In this problem, we measure the
beam-on time as the sum of doses. The solution represented in Figure A.5
results in four shapes and a total beam-on time of 9+ 4+ 6+ 1 = 20 time
units. Assuming that the machine requires 15 time units to switch from one
shape to another, where time units are relative to one unit of beam-on
time, the total time required by the configuration represented in Figure A.5
is 15× 4+ 20 = 80 time units.

An alternative decomposition is given in Figure A.6, resulting in only
three shapes and a total beam-on time of only 9 time units. The total time for
this decomposition is only 15× 3+ 9 = 54 time units. This simple example
illustrates that the total time required to deliver an intensity profile for a
given beam varies significantly depending on the leaf sequence employed.
Because multiple beam angles are used in IMRT, the total time a patient
has to spend receiving treatment, and thus the total exposure to dangerous
unintentional radiation during treatment, can be reduced significantly by
finding an optimal leaf sequence for each beam.

Next, we develop an MIP Model to solve a special version of the leaf
sequencing problem in which all shapes used must be rectangular. Let K
be the set of all rectangular shapes that can be used. Define real variables
xk that denote the amount of time the rectangle k ∈ K is in use. Let the
parameter Iijk = 1 if the rectangle k ∈ K covers the bixel located at coordi-
nates (i, j) and 0 otherwise. Because the required dose to each bixel must
be delivered exactly, we have the following constraint:

∑

k∈K

Iijkxk = bij ∀i = 1, . . . , m, j = 1, . . . , n. (A.39)
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Figure A.6 Leaf sequence 2.
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Because a component of the total time is proportional to the number of
rectangles used, we need to define binary variables yk that denote whether
the rectangle k ∈ K is in use. By definition, if xk > 0 then yk = 1. Using
the modeling tricks introduced in Section A.2.2, we enforce the following
constraint:

xk ≤ Mkyk ∀k ∈ K , (A.40)

where Mk is a sufficiently large number. Because we want Mk to be as
small as possible without imposing an artificial restriction on xk , a good
choice for Mk is the minimum value covered by the rectangle k ∈ K . In
mathematical terms, this can be written as Mk = minij{bij |Iijk = 1}.

Now we can write the objective function as minimization of total treat-
ment time. Assuming switching from one rectangle to another requires a
multiple of A times a unit of beam-on time, the total treatment time is the
sum of setup time for the rectangles and beam-on time. The overall model
is then given by

Min A
∑

k∈K

yk +
∑

k∈K

xk (A.41a)

s.t. Constraints given by Equations A.39 and A.40

xk ≥ 0 and yk binary ∀k ∈ K . (A.41b)

The model given above can be improved by adding valid inequalities.
An idea in deriving valid inequalities is to examine each bixel (i�, j�), 1 ≤
i� ≤ m, 1 ≤ j� ≤ n, and determine whether or not a rectangle whose upper-
left-hand corner is located at (i�, j�) must exist in any optimal solution. We
say that such a rectangle starts at that bixel. The main observation is that if
the required intensity of a bixel is strictly greater than that of its neighbor
to the left (i.e., if bi�j� > bi�,(j�−1)), then any rectangle that starts to the left
of (i�, j�) cannot deliver enough dose to (i�, j�) itself. (We treat bi0 = 0
for all i.) The reason is that any rectangle that starts to the left of (i�, j�)
and covers it also covers the left-neighbor bixel. Because the left-neighbor
bixel cannot be overdosed and because its required intensity is strictly less
than that of (i�, j�), the intensity of any such rectangle cannot be large
enough to cover (i�, j�) by itself. Therefore a rectangle that starts in the
same column as (i�, j�) and covers this bixel must exist in the solution to
Equation A.41.

A slight extension of the same idea is based on comparing the intensity
requirement of (i�, j�) with the intensity requirements of the adjacent bixels
on the left and above it. If the intensity requirement of (i�, j�) is strictly



Lim/Optimization in Medicine and Biology AU0563_A001 Final Proof Page 545 10.11.2007 04:35pm

Appendix A: Tutorial Guide to Mixed-Integer Programming Models 545

8

3

1

1

5

10

8

8

7

8

12

2

7

8

9

0

Figure A.7 Start index example.

greater than the sum of the intensity requirements of these two neighbors,
then a rectangle must start at (i�, j�). More formally

bi�j� > b(i�−1)j� + bi�(j�−1) ⇒ a rectangle must start at (i�, j�), (A.42)

where b0j = 0, 1 ≤ j ≤ n.
Figure A.7 illustrates this idea. Because b2,2 > b1,2+ b2,1 we can con-

clude that a rectangle must start at (2,2). Note that a special case that
is always satisfied by Equation A.42 occurs at the upper-left bixel (1,1),
assuming b11 > 0.

We can preprocess the data before formulating the MIP Model and
determine all coordinates satisfying Equation A.42. Let S be the set of all
such coordinates, and define STij as the set of rectangles that start at (i, j),
for all (i, j) ∈ S. Then we can add the following valid inequalities for each
(i, j) ∈ S to model given by Equation A.41:

∑

k∈STij

yk ≥ 1 ∀(i, j) ∈ S. (A.43)

A.5 Conclusion
In this chapter, we discussed basic formulation and modeling principles
of mixed-integer programming, fundamental MIP solution algorithms, and
the use of MIPs for solving several types of problems. The ability to model
different types of conditions such as integrality requirements, logical expres-
sions (e.g., if–then and either–or relationships), and certain nonlinear
expressions (e.g., minimum, maximum, absolute value, and some product
terms), makes mixed-integer programming a very flexible technique for
solving optimization problems. Several commercial and open source soft-
ware systems for MIP are readily available. Most MIP solvers can be used
as a black box, allowing the user to focus on modeling instead of solution
algorithm development. However, experienced users can also interact with
the solver using general-purpose programming languages such as C, C++,
Java, C#, and Visual Basic. This flexibility allows users to guide the solution
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algorithm to exploit special structures of the problem on hand, resulting in
more efficient solver performance.

Even though MIP Models are designed to find a provably optimal solu-
tion, it is possible to stop execution once a good enough solution is found.
In other words, it is possible to use MIP-based algorithms as heuristics in
computationally difficult problems. However, there is an important distinc-
tion between problem-specific heuristics and MIP-based algorithms: unlike
the former, MIP-based algorithms are capable of measuring the quality of
the solution found with respect to the (unknown) optimal solution. These
features make mixed-integer programming a suitable technique for solv-
ing difficult optimization problems, including the problems in healthcare
applications.
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A
Active path analysis and model scope, in

ID, 73–78
Active trail, definition of, 71
Acute coronary syndrome (ACS), 87, 96,

99–101, 103, 107–108, 110
Acute ischemic cardiovascular pathology,

101
Acute myocardial infarction (AMI), 70, 87,

103
Add and drop algorithm, in BOO model,

245–246
Advisory Committee on Immunization

Practices (ACIP), 118, 125
Aging, diagnosis of, 5
AIDS prevention and treatment, see HIV

prevention and treatment
Alanine dipeptide, 441

minimum energy configuration, 454
Ramachandran angular variations, 453
SMT ρ function, graph, 453
SMT ρ value, 452
Steiner ratio, 452
Steiner values for conformations, 452
structure, 452
Swiss-PdbViewer energy calculation

module, 453
torsion angles, 452

Algorithm for DT-optimal leaf sequence
with ICC, 267, 276
with TGC and ICC, 278
unconstrained case, 261
without ICC, 268

Algorithms
classes of, 369
expectation-maximization (EM)

algorithm, 373
Fitch, 362

genetic algorithms, 373
graph-based algorithms, 369
interior-point, 339
iterative alignment, 369
Needleman–Wunsch algorithm, 367
neighbor joining (NJ), 360
progressive alignment, 369

α- and β-sheets, secondary structures, 440
American Academy of Family Physicians

(AAFP), 118, 125
Amino acid sequence, 357
Anderson–May model, 152
Angiogenic microvascular networks,

fingerprinting, 5, 47–48, 53
Antimicrobial agent, 495, 499, 510

effect on heterogeneous microbial
populations, 499–502

Antimicrobial resistance, 494, 496
Antisense oligonucleotides, 400
Anxiety, 73
Aortic dissection (AD), 70–71, 73–77, 79,

87, 102
influence diagram (ID)

for network of, 74–75
with observed clinical criteria, 75
with possibility of esophageal

perforation detection by CT, 77
with symptoms outside of clinical

decision rule, 76
Aortography, 73
Artificial intelligence, 5–6
Artificial neural networks (ANN), 31
Asian Epidemic model, 153, 166
Atherosclerois, discriminant analysis of

biomarkers for prediction of, 5,
46–47, 53

Avahan Project, India, see India AIDS
Initiative

549
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AVERT model, 152
Avian influenza (AI), 416

B
Bacterial cell, gene regulation in, 327
Basic local alignment search tool, 401
Bayesian inference, and classification, 7–8
Bayesian networks, 63, 68
Bayes optimal rule, 31
Beam angle optimization (BAO), 542
Beam Orientation Optimization (BOO)

model, 225–239
beam orientations in, 225–226
BOO + FMO integer program, 239–241
feasible beam space, 226–229

beam data generation, 228–229
time and space considerations, 229

greedy algorithms, 246–247
local search algorithms, 245–246
metaheuristics, 241–245

evolutionary and genetic algorithms,
243

generic evolutionary and genetic
algorithms, 243–244

particle swarm algorithm, 245
response surface based approach,

245
simulated annealing algorithm,

242–243
objective function, 229–239

beam’s-eye-view (BEV) approach,
231–235

entropy, 237
fluence map optimization, 229–231
Fourier transforms, 237–238
geometric considerations, 235–236
mean organ-at-risk data (MOD),

236–237
path of least resistance, 238
pseudo beam’s-eye-view (pBEV),

232–233
single- and multi-beam cost

functions, 238–239
target-eye-view (TEV), 233–235

optimization methods, 239–247
Beam Orientation Optimization (BOO)

problem, 224–225, 229, 236, 241,
243–245, 247; see also Beam
Orientation Optimization (BOO)
model

Beam’s-eye-view (BEV) approach, in BOO
model, 231–235

Betweenness-centrality (BC), 324
Biased classifier, argument for, 109–110

Biliary colic, 73
Bill and Melinda Gates Foundation, 149,

158, 172
Biological and medical applications

MIP-based multigroup classification
models, 40–50

erythemato-squamous diseases
diagnosis, 41–42

heart disease diagnosis, 42
identification of tumor shape and

volume in treatment of sarcoma,
45–46

native and angiogenic microvascular
networks fingerprinting, 47–48

pattern recognition in satellite
images for determining types of
soil, 49–50

predicting aberrant CpG island
methylation in human cancer,
42–44

protein localization sites prediction,
48–49

ultrasonic-assisted cell disruption for
drug delivery, 45

Biological networks, discrete k-median
problem to locate communities
within, 347

Biologic function formulations, treatment
and complication probabilities,
301–302

Biomarkers, discriminant analysis for
prediction of atherosclerosis, 5,
46–47

BLAST, see Basic local alignment search
tool

BMIP, see MIP model for binary attributes
(BMIP)

BOO + FMO MIP model, 231, 239–247
branch-and-bound techniques, 240–241
commercial software systems, 241

Boundary effect attenuation, 293
Brachytherapy, 198–199, 289
Branch-and-bound techniques, 50,

240–241, 535–536, 539–540
Branch-and-cut algorithm, advantages in

implementation of, 371
Breast carcinoma, 468
Burkitt’s lymphoma, 468
Bystander effect, 469

C
Canadian Council for Donation and

Transplantation, 189
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Cancer patients
radiation therapy applications and

methods, 200–218
gamma knife radiosurgery, 202–205
intensity modulated radiation

therapy, 211–215
optimization planning, 197–218
optimization techniques use, 201
proton therapy, 217–218
radiation treatment planning

procedure, 200–201
three-dimensional conformal

radiation therapy, 205–211
tomotherapy, 216–217

treatment options for, 198
Cancer treatments, 253–254
Cardiac ischemia, 67, 73
Case-based reasoning, 70–71
Causal graphs and reasoning, 70
CD46, 469
CD150, 469
C. elegans, 320
Cell, biological organization influence, 319
Cell-to-cell fusion, 469
Centers for Disease Control and Prevention

(CDC), 118
Chemotherapy, 198
Chest pain, 63, 67, 70–71, 96, 101
Chlamydia, 170
Classification; see also Mathematical

programming-based classification
models; MIP-based multigroup
classification models

Bayes optimal rule, 31
Bayesian inference and, 7–8
concept and application, 5
discriminant analysis in, 5–6
discriminant functions, 8–10
matrix, 7
pattern recognition in, 5–6
rules, 6–7
statistical pattern classification, 5–6, 10
supervised learning, training and

cross-validation, 6–7
terminologies related to, 5–10

Classification and regression trees (CART),
52

Classify any number of distinct groups, in
predictive model, 4

Clinical cost-effectiveness analysis
for diagnosing pulmonary embolism,

82–89
influence diagrams in, 63–90

active path analysis and model
scope, 73–78

computational burden and model
scope, 69–73

computational complexity, 68–69
problem scope determination, 78–79
structure characteristics, 67–68

of venous thromboembolic disease,
79–82

Clinical decisions, non-Bayesian
classification for, 96–110

k-clique percolation, 325
Clonogenic cell, 297
CMH model, 153
Cobalt-60 machines, 198
Cognitive science, 5
Combination vaccines, 120–122, 138–139
Combinatorial optimization, 441
Combinatorial optimization mathematical

models, proteins, 445
cube with steiner plane, 447
E3 and higher dimensions, 445
Maxwell’s theorem, 446, 449
Melzak circles, 446–449
NP-Hard, 445
potential-energy objective function, 448
Serine (Ser), 450–451
SMTs and MECs, relationship, 449
SMT solution, 446
Steiner trees, 445
twist angles, 448

Commercial sex worker (CSW), 154–155,
157–168

Community from known k-clique,
algorithm to calculate, 344

Complexity theory, 378
Compression ultrasound (CUS) testing, 81,

85–86
Computational models, for integer

programming formulation,
384–386

Computed tomographic angiogram (CTA),
81, 85–87

Computed tomographic (CT) scan, 73, 200,
202

Computer-based treatment planning, 199
Conditional independence, definition of, 71
Conditional probability table (CPT), 68–69,

71, 74
Conditional Value at Risk (CVaR), 298
Conjugate gradient nonlinear approaches,

300–301
Constraints to limit rate of misclassification,

in predictive model, 4
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Cost-effectiveness analysis (CEA); see also
Clinical cost-effectiveness
analysis

epidemic model to support, 149–156
health and economic outcomes, 155
in India, 156–166
model scope, 151–153
multiple interventions evaluation,

156
parameters in, 154–155
population groups, 154
risk factors, 154
sensitivity analysis, 155–156

of HIV prevention and treatment,
149–156

Cost-effectiveness strategies
for pulmonary embolism diagnosis,

82–89
extended D-dimer model results,

86–89
model and results, 82–86

CpG island aberrant methylation,
prediction in human cancer, 5,
32, 42–44

Cross-validation, 6–7
Cutset conditioning, 70
Cutting-plane techniques, 535–536, 541
CVaR approximation, 298

D
DAG, see Directed acyclic graph
DAMIP model, 50
Data binarization, 419–420
D-dimer assay

conditional probabilities for, 82–83
and venous thromboembolic disease,

79–82
D-dimer model results, for pulmonary

embolism diagnosis, 86–89
Decomposition cardinality (DC), 256, 257,

279–284
computational complexity of, 256, 257,

279, 281
heuristics for, 280–281
min–max characterization of, 283
NP-hardness of, 279, 280
unconstrained case, 281

Decomposition cardinality (DC) with ICC
heuristics for, greedy step in, 284

Decomposition time (DT), 256, 257,
259–279

Deoxyribonucleic acid (DNA)
microarrays, 405

molecule, 357
repository of biological information, 314
sequencing

Eulerian method for fragment
assembly in, 372

maps, 375
structure of, 312, 396

Deterministic iterative algorithm, 373–374
Diabetes, diagnosis of, 5
Digraph

path in, 283–284
vertices of, 269, 272

Diphtheria, 119–121, 138
Directed acyclic graph, 31
Direct inverse methods, for dose

distribution, 301
Disability-adjusted life years (DALYs), 150,

166
Discrete support vector machine predictive

models, 32–40
mixed integer programming

formulations, 34–36
modeling of reserved-judgment region

for general groups, 32–33
validation of model and computational

efffort, 40
Discriminant analysis

in classification, 5–6
of functional perfusion data, 47–48

Diseases, diagnosing and curing using
genomes, 356

D. melanogaster, 320
Dose–volume constraints, modeling of,

298–299
Dose–volume histogram (DVH) constraints,

231
Drug delivery, ultrasonic-assisted cell

disruption for, 45
DTaP-HBV-IPV combination vaccine, 121
DTaP vaccine, 120
DT-optimal decomposition, 261, 262, 276,

278, 279, 281
DT-optimal leaf sequence, unconstrained

case, 261, 264
DT-problem with ICC, linear program,

263, 264
Duality approach, ICC, 273
DVT (deep venous thrombosis), 79–81,

83–85, 88
Dynamic programming algorithm, 137–142

for VFSREP and VFSLBP model,
132–134
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E

E. coli metabolism, connectivity
distributions P(k) of, 329

Edmonston vaccine strain of measles virus
(MV-Edm), 468

Electrocardiogram (ECG), 64, 84
ELISA D-dimer test, in venous

thromboembolic disease, 81–83
Engineered viruses, as potential cancer

therapeutic agents, 468
Entropy, in BOO model, 237
Equivalent uniform dose (EUD), 231
Erdös–Rényi random graph model, 320,

324
Erythemato-squamous diseases diagnosis,

5, 41–42
Eulerian path approach

for fragment assembly in DNA
sequencing, 372

Evolutionary and genetic algorithms, in
BOO model, 243

Expectation-maximization (EM) algorithm,
373

External beam therapy, 289
Extraimmunization, 121–122, 125, 127–128,

131, 135–136

F

Feasible beam space, in BOO model,
226–229

beam data generation, 228–229
time and space considerations, 229

FindProbe algorithm, 402
Fingerprinting, angiogenic microvascular

networks, 5, 47–48, 53
Fisher’s linear discriminant function, 9,

14–16, 19–20, 24–25, 40
Fitch’s algorithm, 362
Fluence distribution, 254, 255
Fluence map optimization (FMO), 542

in BOO model, 229–231
problem, 224, 229–231, 241, 247

Flux-balance analysis (FBA), 330
Formalized decision making, and quality

metrics, 62–63
Fourier transforms, in BOO model,

237–238
Fusion (F) protein, 469

G
Gallstone-related pain, 73
Gamma knife radiosurgery

for cancer patients, 198, 201–205
MINLP models, 203
MIP models, 203
optimization model formulation,

203–204
solution techniques, 205

Gastro-esophageal reflux, 73
Gene expression arrays, 403
Generalized support vector machine

(GSVM), 31
General single function classification

(GSFC) model, 40
Gene-regulatory networks, 316

functional building blocks of, 318
properties of, 317

Generic evolutionary and genetic
algorithms, in BOO model,
243–244

Genetic algorithms, stochastic methods for
solving complex optimization
problems, 373

Genome research, phylogenetic analysis
for, 357

Genome, sequence analysis, 356, 374
Genotyping viral pathogens, experiments

on, 430
Gibbs free energy, 402
Gibbs Sampler, 373
Glioma, 468
Global Fund to Combat Malaria,

Tuberculosis and HIV, 149
GMFC (general multiple function

classification—minimizing the
number of misclassifications),
24–25

Gonorrhea, 170
Gradient descent algorithms, 373
Graph-based algorithms, 369

Eulerian path approach, 372
minimum-spanning tree and

traveling salesman problem,
371–372

for solving maximum-weight trace
problem, 371

Greedy algorithms, in BOO model,
246–247

Greedy rounding heuristic, 137–142
for VFSLBP, 136
for VFSREP model, 136–137
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GSFC (general single function
classification—minimizing the
number of misclassifications),
23–25

H
Haemophilus influenzae type b, 119, 121,

138
Heartburn, 73
Heart disease

classes of, 6
diagnosis, 5, 42–43

Hemagglutinin (H) protein, 469
Hepatitis A, 119, 138
Hepatitis B, 119, 121, 138
Heterogeneous types of attributes as input,

in predictive model, 4
Heteroscedastic model, 9
Heuristic procedure, in MIP solution

techniques, 540
Heuristic tree search strategies, 363
Hidden Markov Model (HMM), 373
High-dimensional data transformation, in

predictive model, 4
HIV epidemic

in India, 156–158
models, 152–153

HIV prevention and treatment, 148–168
cost-effectiveness analysis, 149–150

epidemic model to support, 151–156
funding for, 149
in India, 156–166
model-based framework, 149–151
models for CEA

Avahan project in India, 156–166
development of need based model,

166–168
disease progression and treatment,

168
epidemic model, 151–156
homogeneous sexual behavior in,

167
illustrative model for, 159–167,

174–175
injection drug use, 168
nonconstant population group size,

168
random mixing process in, 167
realism versus tractability, 168
spread of other diseases, 169
transmission risk factors in, 167

resources, 148–149
HLA-A antigens, 183

HLA-B antigens, 183
HLA-DR antigens, 183
Homoscedastic model, 9
HPV sequences, 427
Human cancer, CpG island aberrant

methylation, 5, 32, 42–44
Human chorionic gonadotrophin (hCG,

MV-hCG), 469
Human immunodeficiency virus (HIV)

prevention and treatment,
see HIV prevention and
treatment

Human lung carcinoma, cell motility and
morphology data discriminant
analysis in, 5, 44–45

Human papillomavirus (HPV), 418
Hybrid model, 13–15, 51

I
ICC, see Interleaf collision constraint
Immunotherapy, 198
Incremental cost-effectiveness ratio (ICER),

64–65
Incremental ray-tracing algorithms, 229
Incumbent solution, 537
India AIDS initiative

cost-effectiveness analysis, 158–166,
168–170

condom promotion program, 164,
166

data for, 161–162
illustrative model for, 159–167,

174–175
interventions effects, 161, 163–166
program to reduce CSW sex act,

161, 163–166
STD prevention and treatment

program, 163–166
evaluation of, 156–166

Infectious disease, diagnosis of, 419
Influence diagrams (IDs)

for aortic dissection (AD) network,
74–76

Bayesian networks and, 68, 96
in clinical cost-effectiveness analysis,

63–65
computational complexity in, 68–69
determining problem scope in medical

decision problems, 78–79
directed acyclic graph of, 84
implications for clinical decision

problems, 65–79
legend and icons for, 66
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model scope and
active path analysis, 73–78
computational burden, 69–73

structural characteristics of, 67–68
Influenza, 119, 138
Influenza virus, monospecific classification

of, 435
Injection drug user (IDU), 154, 157
Integer linear program (ILP), 408
Integer nonlinear program (INLP) models,

215
Integer programming formulations, 357
Integer programming (IP) models, 215

for VFSLBP, 126–127
for VFSREP model, 127–128

Intensity map delivery, 302–303
Intensity map generation

mathematical optimization in, 294
for radiation therapy, 292

Intensity modulated proton therapy
(IMPT), 218

Intensity modulated radiation therapy
(IMRT), 254

BOO model for, 224–248
for cancer patients, 198, 201, 211–216
optimization model formulation,

212–215
beam angle and fluence map

optimization, 213–214
beam segmentation optimization,

214–215
dose deposition models, 212–213
solution methods, 214–215

planning, 541–545
beam angle optimization (BAO), 542
fluence map optimization (FMO),

542
leaf sequencing problem, 542–545

Intensity-modulated radiotherapy, 290
method of, 292

Interior-point algorithms, 339
Interleaf collision constraint (ICC), 261–64,

267–269, 273, 276–280, 284
Interstitial brachytherapy, 199
Intracavitary brachytherapy, 199
Intraluminal radiation therapy, 199
Inverse treatment planning, 199
Ischemic heart disease

appication of SVM, 102–111
asymmetric cost regularization, 103
data labeling, 103
decision function accuracy

assessment, 106
descriptive statistics of data set, 102
feature selection impact, 107

features identified after
preprocessing of data, 104

kernel selection, 103–105
optimal penalties, 107
parameter values, 105–106
performance, 107
preprocessing and incomplete data,

103
principal components analysis

(PCA), 106–107
scaling of data, 103

Isodose lines, visual inspection of, 293
Iterative alignment algorithms, 369

for improving quality of alignment, 372
probabilistic optimization approaches,

372
simulated annealing and genetic

algorithm, 373
iwgAIDS model, 152

J
Jukes and Cantor model, 364
Jukes–Cantor distance, 359

K
Kidney paired donation

bipartite graph, 187
blood group incompatibilities, 183, 192
current status of, 189
designing objective, 154–156
domino paired donation, 182
finding edges for, 182–184
graph model, 179, 181
heuristic and greedy algorithm, 188
impact of, 190–192
list paired donation, 182
optimization over graphs for, 177–192
probability assumptions and data

sources, 190
solution methods, 186–189
voluntary compatible pair participation,

182

L
Landsat Multi-Spectral Scanner (MSS)

image, 49
Leaf sequencing problem, 542–545
Likelihood of tree, method for calculating,

364–365
LINDO optimization software, 14
Linear accelerators, 198
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Linear discriminant function (LDF), 9,
14–16, 19–20, 24–25, 40

Linear programming approach, 262
Linear programming classification models,

11–20, 51
multigroup classification, 17–20, 51
two-group classification, 11–17, 51

Linear programming formulations, 300
Linear program with equilibrium

constraints (LPEC), 26
Lloyd algorithm, 346
Local search algorithms, in BOO model,

245–246
Logical analysis of data (LAD)

classification rule for, 426–427
general framework of, 418
implementation of, 419

LP models, see Linear programming
classification models

LP relaxation, 300

M
Machine learning, 5–6
Macular degeneracy, diagnosis of, 5
Magnetic resonance imaging (MRI), 200,

202
Mathematical model

linear programming approach, 262
minimal DT for a matrix, 259–260
optimal treatment, 255–258

Mathematical programming-based
classification models; see also
MIP-based multigroup
classification models

linear programming classification
models, 11–20, 51

multigroup classification, 17–20, 51
two-group classification, 11–17, 51

mixed integer programming
classification models, 20–25, 51

multigroup classification, 23–25, 51
two-group classification, 20–23, 51

nonlinear programming classification
models, 25–28, 51

for statistical pattern classification,
10–31

support vector machine, 29–31, 51
Maximum Distinguishing Probe Set

(MDPS), 406
Maximum likelihood methods, 364
MAX rounding heuristic

for VFSLBP, 134–136
for VFSREP model, 134–136

McGeoch’s method for signal sequence
recognition, 49

Mean organ-at-risk data (MOD), in BOO
model, 236–237

Measles, 119
Medical decisions; see also Clinical

cost-effectiveness analysis
cost-effectiveness analysis for, 62–89

Medical treatment planning, 417
Metabolic networks, 326–327, 340
Metabolic network structure, 327–329
Metaheuristics, for treatment planning

algorithms, 301
Metaheuristics in BOO model, 241–245

evolutionary and genetic algorithms,
243

generic evolutionary and genetic
algorithms, 243–244

particle swarm algorithm, 245
response surface based approach, 245
simulated annealing algorithm, 242–243

Microbial genomes, 330
Microvascular networks, fingerprinting of,

53
Minimal DT for a matrix, 259–261
Minimizing maximum deviation (MMD),

11–12, 14, 25, 51
Minimizing sum of deviations (MSD),

11–16, 22–23, 25, 51
Minimizing sum of interior distances

(MSID), 11–12, 14, 51
Minimizing the number of

misclassifications (MM) model,
19–21

Minimum Cost Probe Set (MCPS), 406
Minimum energy configurations (MEC), 449
Minimum inhibitory concentration (MIC),

496, 497
Minimum spanning trees, uses in

determining order of sequences,
371–372

Minimum weight common mutated
sequence (MWCMS) problem
and special cases of, 374, 384

MIP-based multigroup classification
models, 31–32; see also
Mathematical
programming-based classification
models

advances in, 50
applications to medicine and biology,

31–50
discrete support vector machine

predictive models, 32–40
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mixed integer programming
formulations, 34–36

modeling of reserved-judgment
region for general groups, 32–33

model variations, 36–40
validation of model and

computational efffort, 40
model variations, 36–40
progress and challenges, 50–51
results on real-world biological and

medical applications, 40–50
erythemato-squamous diseases

diagnosis, 41–42
heart disease diagnosis, 42
identification of tumor shape and

volume in treatment of sarcoma,
45–46

native and angiogenic microvascular
networks fingerprinting, 47–48

pattern recognition in satellite
images for determining types of
soil, 49–50

predicting aberrant CpG island
methylation in human cancer,
42–44

protein localization sites prediction,
48–49

ultrasonic-assisted cell disruption for
drug delivery, 45

MIP3G Model, 25
MIP model for binary attributes (BMIP), 17,

21
MIP models, see Mixed-integer

programming (MIP)
Mixed integer and linear programming

(MILP), 300, 417
Mixed Integer Nonlinear Programming

(MINLP), 203, 205
Mixed-integer programming (MIP)

classification models, 15–16, 20–25,
34–36, 51, 203, 214

multigroup classification, 23–25, 51
two-group classification, 20–23, 51

models and solution technique
general form of, 524–525
tutorial guide, 522–546

problem modeling process, 525–535
radiation therapy application, 541–545
solution techniques, 535–541

branch-and-bound techniques,
535–536, 539–540

cutting-plane techniques, 535–536,
541

heuristic procedure, 540

incumbent solution, 537
relaxations, 536
valid inequalities, 540

MM–LPEC (minimizing the number of
misclassifications – linear
program with equilibrium
constraints), 26

Model of evolution, 364
Molecular evolutionary genetic analysis

(MEGA), 363
Molecular phylogenetics, 357, 364; see also

Amino acid sequence
Monte Carlo simulation, 121, 142–143
Morphological tree of structure and

secondary structure prediction,
443

Motility and morphology, in human lung
carcinoma, 5

mRNA
monomers of, 315
proteins for producing, 317
protein synthesis specification by, 314
techniques for measuring levels of, 317
translation process for making protein,

315
Multigroup classification

in LP classification models, 17–20, 51
in MIP classification models, 23–25, 51

Multileaf collimator (MLC), 302
feature of, 257
interleaf collision constraint (ICC), 261
leaf pairs of, 254, 255
principle of, 255
tongue-and-groove design, 257, 258

Multiple myeloma (MM), 468
Multiple sequence alignment (MSA),

366–367
Multisurface method tree algorithm

(MSMT), 15, 18
Mumps, 119
Muscle strains, 73
MV vectors, 469
MWCMS model, 374
Myocardial infarction (MI), 70–71
Myocardial ischemia, 101, 110

N
National Cancer Institute, United States, 198
National Center of Biotechnology

Information (NCBI), 415
National Immunization Program (NIP), 118
National Immunization Survey, 118
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National Organ Transplantation Act
(NOTA), 189

Native microvascular networks
fingerprinting, 5, 47–48

Nearest-neighbor models, 16, 52
Needleman–Wunsch algorithm, 367
Neighbor joining (NJ) algorithms, 360–361
Network flow approach, 268–273
Network structure

graph topology, 316
node connectivities in, 322

Neural network models, 444
Neuraminidase (NA), 435
Neutron beam machines, 198
Newcastle disease virus, 468
Non-Bayesian classification; see also

Support vector machines (SVMs)
for clinical decisions, 96–111

Non-Hodgkin lymphoma, 468
Nonlinear programming (NLP)

classification models, 25–28, 51,
205

Nonunique probe selection problem,
410–411

Normal tissue complication probability
(NTCP), 231, 293

Novel graph–theoretical-based genomic
models, 374–375

NP-hard misclassification minimization
problem, 28

NP-hardness of MSA, 370
Nucleotide sequences, 361

O
Oligo fingerprinting, 417

method for identification, of cDNA or
genomic DNA sequences, 405

Oligonucleotide microarrays, 400
OpenMP-parallelization method, for

symmetric multiprocessing
machines, 366

Optimization, algorithm for, 259
Optimization techniques, for cancer

patients, 201
Optimize dosing regimens, 494; see also

Antimicrobial resistance
daptomycin, 495

Organs-at-risk (OARs), 198, 200–201, 210,
224, 233

Orthovoltage x-ray machines, 198
Ovarian carcinoma, 468

P
Panel-reactive antibody (PRA) test, 183–184
Parametric misclassification minimization

(PMM) procedure, 27–28
Parsimony-based algorithm, 386
Parsimony methods

components in, 361
for phylogenetic analysis, 358

Particle swarm algorithm, in BOO model,
245

Path of least resistance, in BOO model, 238
Pattern recognition

analysis of functional perfusion data,
47–48

in classification, 5–6
Pearson correlation, 323
Pediarix�, 138
Pediatric vaccine formularies

models for optimization, 122–128
motivation, 118–122
VFSLBP model, 123–128

computational comparison of
algorithms and heuristics,
137–142

dynamic programming algorithm for,
132–134

greedy rounding heuristic for,
136–137

MAX rounding heuristic for, 134–136
VFSREP model, 123–128

computational comparison of
algorithms and heuristics,
137–142

dynamic programming algorithm for,
132–134

greedy rounding heuristic for,
136–137

MAX rounding heuristic for, 134–136
Penalty function objectives, 297
Peptide, backbone dihedral angles with

planes, 442
Peptides CEA (MV-CEA), 469
Peptide, Steiner trees study

dipeptide
Ala-Gly silk β-structure, 459–460

twist angles, 460
3-D dipeptide model and

Ramachandran plot, 457
N dimensional conformational

space, 459
virtual dihedral angles, 455
virtual plane, 455–459
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angles for helices and strands,
456

pentapeptide, 461–462
SMT of sampled structure, 462
torsion angle, 461

Pertussis, 119–121, 138
Pharmacokinetically realistic antimicrobial

concentration; see also
Antimicrobial agent

experimental verification, 512–514
heterogeneous microbial population,

511–512
homogeneous microbial population,

502–510
Photon beam radiation therapy, 217
Phylogenetic analysis, 356
Phylogenetic analysis, for genome

research, 357
Phylogeny Inference Package (PHYLIP),

363
Pleurisy, 73
Pneumococcus, 119, 138
Pneumonia, 73
Poisson-type behavior, of PIN, 320
Polio, 119, 121, 138
Polymerase chain reaction, 319
Polynomial-time algorithm, 379
Posterior distribution, 7–8
Progressive alignment algorithms, 369

shortcomings of, 370
Protein Data Bank (PDB), 455
Protein engineering, 469
Protein folding problems, 441

Ramachandran plots, 444
secondary structure

prediction, empirical methods, 443
proteins, tools for analysis, 440

secondary structure prediction, 442
Sequence of angle pairs (φ,ψ), 442
Sequence of dihedral angles, 442
Steiner problem, 441
Steiner tree analysis, 441
tertiary structure, in protein folding

problem, 440
theoretical methods, 443

Protein-interaction networks (PIN),
319–321

Protein localization sites, prediction of, 5,
48–49

Proteins
coding sequences, 401
functional aspects of, 315
regulation of, 319
sequence conformations, 443

Proton beam machines, 198
Proton therapy, for cancer patients, 198,

201, 217–218
Pseudo beam’s-eye-view (pBEV), objective

function, 232–233
Pseudomonas aeruginosa, 496
Pulmonary embolisms (PEs) diagnosis, 73,

79–81, 83–84, 86–89, 96, 100, 102
classification system, 81
cost-effectiveness strategies, 82–89

extended D-dimer model results,
86–89

model and results, 82–86
Pulmonary mass, 73

Q
Qualitative and quantitative measurements,

6–7
Quality-adjusted life years (QALYs), 62–65,

150, 159, 161, 166
Quality metrics, and formalized decision

making, 62–63

R
Radiation, 253, 254
Radiation therapy

applications and methods, 200–218
beam orientations, 299
characteristic and dose optimization in,

288, 290
degrees of optimization, 291
dose

coefficients, 294–295
distribution and treatment of, 289
distribution at each point in body,

291
homogeneity constraints, 295–296
limits over sample of points, 294
specifications, 291
volume distribution of, 295

gamma knife radiosurgery, 202–205
intensity map generation for, 292
intensity modulated radiation therapy,

211–215, 224–248
mixed-integer programming (MIP)

application to, 541–545
optimization problem in, 294
optimization techniques use, 201
planning optimization for cancer

patients, 197–218
proton therapy, 217–218
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radiation treatment planning procedure,
200–201

three-dimensional conformal radiation
therapy, 205–211

tomotherapy, 216–217
treatment of cancer therapy, 288
treatment optimization modeling for,

292
Radiation Therapy Oncology Group

(RTOG), 203
Radiation treatment planning procedure,

for cancer patients, 200–201
Radiotherapy treatments

energy source in, 290
optimal design of, 342
planning decision for, 291

RAGNU software package, 14
Random-network model, 318
Relaxations, in MIP solution techniques,

536
Replication-selective adenoviruses, 468
Reserved-judgment region for general

groups modeling, 32–33
Restriction Landmark Genome Scanning

(RLGS), 43–44
Reverse genetics, 417
Robust linear programming (RLP) model,

15, 28, 51
Rubella, 119

S
Sarcoma, identification of tumor shape and

volume in treatment of, 5, 45–46
SARS virus, 432
S. cerevisiae, 320
Sequencing by hybridization (SBH), 399
Serine

chemical structure, 450
Steiner topologies and optimal

structure, 451
Set covering (SC)–based classification

methodology, 417
Severe acute respiratory syndrome (SARS),

416
monospecific classification of, 434

Sexually transmitted diseases (STDs),
treatment program for, 150–151,
154–155, 158–169

Shannon entropy maximization, 408
Shape beam superposition, 255, 256
Shape matrix

decomposition, 254, 259, 264, 266, 267,
270, 271, 276, 277, 282, 283

minimal DT of, 274
digraph for, 273–274
flow on, 268–270
linear combination of, 256
necessary information to determine,

275–276
parameter, 271
set of, 256, 257, 279, 280, 281, 283

Shortest common supersequences (SCSQ),
384

Shortest common superstring (SCST), 384
Siddon’s ray-tracing algorithms, 228–229
SimulAIDS model, 153
Simulated annealing algorithms, 301

in BOO model, 242–243
Simulated annealing (SA), 210

stochastic methods for solving complex
optimization problems, 373

for treatment planning algorithms, 301
Single-and multi-beam cost functions,

objective function, 238–239
Single-cell metabolism, interactions in, 330
Smith’s quadratic discriminant function

(QDF), 14–16, 20, 24–25
Software packages, for designing and

selection of hybridization probes,
411–412

Soil types, satellite images in classification
of, 5, 49–50

Statistical pattern classification,
mathematical programming
methods for, 5–6, 10–31

STDSIM model, 153
Steiner minimal trees (SMTs), 441, 442
Steiner ratio, 462
Steiner tree, 449

dihedral angles of planes study, 452
important in E3 and higher dimensions,

445
and minimum energy configurations,

449
network in Ed, 449
planes generated by, 455
protein folding problem, 441
structure of Ser, 450
torsional energy relationship, 452

Step-and-shoot mode, 255
Successive linearization algorithm (SLA), 28
Successive multistage classification

capability, in predictive model, 4
Supervised learning, 6–7
Support vector machines (SVMs), 29–31,

34, 39–41, 51, 53, 96–99
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application to ischemic heart disease,
102–111

asymmetric cost regularization, 103
data labeling, 103
decision function accuracy

assessment, 106
descriptive statistics of data set, 102
feature selection impact, 107
features identified after

preprocessing of data, 104
kernel selection, 103–105
optimal penalties, 107
parameter values, 105–106
performance, 107
preprocessing and incomplete data,

103
principal components analysis

(PCA), 106–107
scaling of data, 103

asymmetric cost for high risk clinical
decisions, 99–100

clinical background, 101–103
Synthetic hybrid proteins, 319
Syphilis, 170
Systems biology, use of networks in, 315

T
Target dose homogeneity, 231
Target-eye-view (TEV), objective function,

233–235
Teletherapy, 198
Tetanus, 119–121, 138
TGC, see Tongue-and-Groove Constraint
Three-dimensional conformal radiation

therapy (3DCRT)
beam angle selection and wedge

orientation optimization, 209–210
beam weight optimization, 208–209
for cancer patients, 198, 201, 205–211
equivalent uniform dose (EUD), 209
optimization model formulation,

208–211
solution techniques, 210–211
wedge filters, 206–207

Tomotherapy
for cancer patients, 198, 201, 216–217
optimization methods, 216–217

Tongue-and-groove constraint, 276, 277
design, 257, 258, 276
effect, 273
underdosage, 258, 259

Translation process, for protein, 315

Traveling salesman problem (TSP),
371–372

Treatment planning optimization methods,
303

Tree topologies, search of possible, 363
Trichomoniasis, 169
Tuberculosis, 154, 157, 159, 168–169
Tumor control probability (TCP), 231

biologic functions of, 293
Tumor metastasis, diagnosis of, 5
Tumor shape and volume, in treatment of

sarcoma, 5, 45–46
Tumor virotherapy, 469, 470

mathematical model of, 470–474
Bertalanffy–Richards model, 470–471
equations for, 472–473
free virus particle count, 473
Gompertz models, 471
rate of free virus elimination, 472
tumor cell population, 474

model validation and parameter
estimation, 478–480

best fit curve, 479–480
Gompertz and logistic model, 478
Gompertz function, 478
weighted nonlinear least squares

method, 478
simulations, to investigate the

predictions, 480–488
conditions lead to successful

therapy, 481
damped oscillatory behavior, 487
initial conditions, virus therapy

unsuccessful, 484
initial tumor size, 484
initial virus dose, 480
lower initial dose of virus, 486
rate of virus production, 483
time profile for total tumor burden,

480
total tumor size, 480
tumor burden, 486
tumor load, 481
use of inhibitors of DNA synthesis,

483
values of model rate constants, 479
virus in several doses, 481

stable states of system, 474–478
eigenvalues of Jacobian, 475, 476
equilibrium points of system,

474–475
partial success of therapy, 475
residual virus population, 476
Routh–Hurwitz criterion, 476
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Two-group classification
in LP classification models, 11–17, 51
in MIP classification models, 20–23, 51

U
Ultrasonic-assisted cell disruption for drug

delivery, 45
UNAIDS model, 152
United Kingdom Department of

International Development, 149
United Network for Organ Sharing

(UNOS), 177–178, 184, 189–190
United States Agency for International

Development, 149
United States Recommended Childhood

Immunization Schedule, 117–121,
124, 132, 137–140

Unstable angina, 102
Untranslated regions (UTR), 412
Unweighted pair group method using

arithmetic averages (UPGMA),
359

V
Vaccine formulary selection with limited

budget problem model, see
VFSLBP model

Vaccine formulary selection with restricted
extraimmunization problem
model, see VFSREP model

Validation of model and computational
efffort, in discrete support
vector machine predictive
models, 40

Valid inequalities, in MIP solution
techniques, 540

Varicella, 119, 138
Vector quantization, 346
Venous thromboembolic (VTE) disease

clinical background and epidemiology,
79–80

and D-dimer assay, 79–82
diagnosis and treatment of, 80–81
ELISA D-dimer test, 81–83

Ventilation and perfusion (V/Q) scan, 81

VFSLBP model, 123–128
computational comparison of

algorithms and heuristics,
137–142

dynamic programming algorithm for,
129, 132–134

greedy rounding heuristic for, 136
integer programming model for,

126–127
MAX rounding heuristic for, 134–136

VFSREP model, 123–128
computational comparison of

algorithms and heuristics,
137–142

dynamic programming algorithm for,
129, 132–134

greedy rounding heuristic for, 136–137
integer programming model for,

127–128
MAX rounding heuristic for, 134–136

VIDAS ELISA D-dimer assay and VQ scans,
81–83

Viral genomic sequences, 427
Virotherapy, dynamic interactions of cells,

468
Virus

AI H5N1, 416
avian influenza, 416
coronavirus, 432
human papillomavirus, 418
severe acute respiratory syndrome, 416

von Heijne’s method for signal sequence
recognition, 49

von Heijne’s Signal Peptidase II consensus
sequence score, 49

Voxel ray-tracing algorithms, 228–229

W
Watson–Crick base pairing, 400
Weighted metabolic networks, 330–333
Wells’ scoring rule, 82, 86
Whole-cell modeling, levels of, 313
Whole-organism protein-expression arrays,

326
WHO model, 152
Wolfe dual problem, 29–30

World Bank, 149






