

Adaptive Business Intelligence

Zbigniew Michalewicz Martin Schmidt
Matthew Michalewicz Constantin Chiriac

Adaptive
Business
Intelligence

123

Authors

Zbigniew Michalewicz

School of Computer Science
University of Adelaide
Adelaide, SA 5005
Australia

zbyszek@cs.adelaide.edu.au
www.cs.adelaide.edu.au/~zbyszek

Martin Schmidt
Matthew Michalewicz
Constantin Chiriac

SolveIT Software Pty Ltd
P.O. Box 3161
Adelaide, SA 5000
Australia

martin.schmidt@SolveITSoftware.com
matthew.michalewicz@SolveITSoftware.com
constantin.chiriac@SolveITSoftware.com
www.SolveITSoftware.com

Library of Congress Control Number: 2006930103

ACM Computing Classification (1998): I.2.8, F.2.2, G.1.6, I.2.1, I.5.1, J.1, H.4

ISBN-10� 3-540-32928-5 Springer Berlin Heidelberg New York
ISBN-13� 978-3-540-32928-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilm or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permit-
ted only under the provisions of the German Copyright Law of September 9, 1965, in
its current version, and permission for use must always be obtained from Springer.
Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com
© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publi-
cation does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for gen-
eral use.

Cover Design: KünkelLopka, Heidelberg
Typesetting and Production: LE-TEX, Jelonek, Schmidt & Vöckler GbR, Leipzig

Printed on acid-free paper 45/3100 YL - 5 4 3 2 1 0

 To Adam, Ewa, and Arthur.
 Z. M.

 To Ana, my family and my friends:
 May Love, Knowledge and Good Luck guide your way!
 M. S.

 To my parents, children, and loving wife Luiza.
 M. M.

 To my parents and my wife Larisa.
 C. C.

Preface

“My name is Sherlock Holmes. It is my business to know what other
people do not know.”
The Adventure of the Blue Carbuncle

“What do you think of it, Watson?”
“A masterpiece. You have never risen to a greater height.”
The Adventure of the Bruce-Partington Plans

Since the computer age dawned on mankind, one of the most important areas in
information technology has been that of “decision support.” Today, this area is
more important than ever. Working in dynamic and ever-changing environments,
modern-day managers are responsible for an assortment of far-reaching decisions:
Should the company increase or decrease its workforce? Enter new markets?
Develop new products? Invest in research and development? The list goes on. But
despite the inherent complexity of these issues and the ever-increasing load of
information that business managers must deal with, all these decisions boil down
to two fundamental questions:

What is likely to happen in the future?
What is the best decision right now?

Whether we realize it or not, these two questions pervade our everyday lives –
both on a personal and professional level. When driving to work, for instance, we
have to make a traffic prediction before we can choose the quickest driving route.
At work, we need to predict the demand for our product before we can decide how
much to produce. And before investing in a foreign market, we need to predict
future exchange rates and economic variables. It seems that regardless of the deci-
sion being made or its complexity, we first need to make a prediction of what is
likely to happen in the future, and then make the best decision based on that pre-
diction. This fundamental process underpins the basic premise of Adaptive Busi-
ness Intelligence.

Simply put, Adaptive Business Intelligence is the discipline of combining predic-
tion, optimization, and adaptability into a system capable of answering these two
fundamental questions: What is likely to happen in the future? and What is the best
decision right now? To build such a system, we first need to understand the methods
and techniques that enable prediction, optimization, and adaptability. At first blush,
this subject matter is nothing new, as hundreds of books have already been written on
business intelligence, data mining and prediction methods, optimization techniques,

VIII Preface

and so forth. However, none of these books has explained how to combine these vari-
ous technologies into a software system that is capable of predicting, optimizing, and
adapting. This text is the first on the subject.

When we set out to write Adaptive Business Intelligence, we had three impor-
tant objectives in mind: First of all, we wanted to explain why the future of the
business intelligence industry lies in systems that can make decisions, rather than
tools that produce detailed reports. As most business managers now realize, there
is a world of difference between having good knowledge and detailed reports, and
making smart decisions. Michael Kahn, a technology reporter for Reuters in San
Francisco, makes a valid point in the January 16, 2006 story entitled “Business
intelligence software looks to future”:

“But analysts say applications that actually answer questions rather than just
present mounds of data is the key driver of a market set to grow 10 per cent in
2006 or about twice the rate of the business software industry in general.

‘Increasingly you are seeing applications being developed that will result in
some sort of action,’ said Brendan Barnacle, an analyst at Pacific Crest Equities.
‘It is a relatively small part now, but it is clearly where the future is. That is the
next stage of business intelligence.’”

We could not agree more.
Second, we wanted to explain the principles behind many prediction methods

and optimization techniques in simple terms, so that any business manager could
grasp them. Even though most business managers have a limited technology back-
ground, they should not be intimidated by terms such as “artificial neural net-
works,” “fuzzy logic,” “evolutionary algorithms,” “ant systems,” or “agent-based
modeling.” They should understand the strengths and weaknesses of these meth-
ods and techniques, their operating principles, and applicability. Armed with such
knowledge, business managers will be in a better position to control the applica-
tion of these methods and techniques in their respective organizations.

And, third, we wanted to underscore the enormous applicability of Adaptive
Business Intelligence to many real-world business problems, ranging from de-
mand forecasting and scheduling, to fraud detection and investment strategies.
From a high-level perspective, most of these business problems have similar char-
acteristics, and the application of Adaptive Business Intelligence can provide
significant benefits and savings.

To facilitate the discussion in this book, we have divided the chapters into three
parts that correspond to the three objectives listed above. In Part I, we present the
fundamental ideas behind Adaptive Business Intelligence, and explain the differ-
ent roles that prediction, optimization, and adaptability play in producing near-
optimal decisions. We also discuss the characteristics that many business prob-
lems have in common, and why these characteristics increase the complexity of
the problem-solving exercise. Furthermore, we introduce a particular distribution
problem that is used throughout the text as a running example. Given that the
prediction and optimization issues in this example are common to most business
problems, it should be relatively easy for the reader to extrapolate this example to
many other business domains.

 Preface IX

Because countless texts have already been written on the subject of database
technologies, data warehousing, online analytical processing, reporting, and the
like, we saw little point in rehashing the tools and techniques that are routinely
used to access, view, and manipulate organizational data. Instead, Part II of the
book discusses the various prediction methods and optimization techniques that
can be used to develop an Adaptive Business Intelligence system. The distribution
example is continued throughout these chapters, effectively highlighting the
strengths and weaknesses of each method and technique. Each chapter in Part II is
concluded by a Recommended Reading section that provides suggestions for read-
ers who want to learn more about particular methods or techniques.

Part III begins with a chapter on hybrid systems and adaptability, explaining
how to “combine” the various methods and techniques discussed in Part II, and
how the component of adaptability can be added to the final design. In the remain-
ing chapters of the book, we discuss the definitive solution to the distribution
problem that was used throughout the text, as well as the application of Adaptive
Business Intelligence to several other complex business problems.

Without a doubt, we believe that business managers of all levels would benefit
from this text. Anyone who makes operational and strategic decisions – whether
on the factory floor or in the boardroom – will find this book invaluable for under-
standing the science and technology behind better predictions and decisions. We
hope that readers will enjoy reading the book as much as we enjoyed writing it,
and that they will profit from it.

We would like to thank everyone who made this book possible, and who took the
time to share their thoughts and comments on the subject of Adaptive Business Intel-
ligence. In particular, we would like to express our gratitude to SolveIT Software’s
scientific advisory board, which includes Hussein Abbass, Valerio Aimale, Jürgen
Branke, Mike Brooks, Carlos Coello, Ernesto Costa, Kalyanmoy Deb, Gusz Eiben,
Fred Glover, Philip Hingston, Jong-Hwan Kim, Bob McKay, Marek Michalewicz,
Masoud Mohammadian, Pablo Moscato, Michael Rumsewicz, Marc Schoenauer,
Alice Smith, Russel Stonier, Lyndon While, Xin Yao, and Jacek Zurada. Our special
appreciation also goes to two anonymous reviewers who provided us with many
insights and useful suggestions, and to Ronan Nugent, who did a wonderful job of
editing this book and helping us make the entire project a success.

Lastly, we would like to thank the most famous fictional detective of all time,
Sherlock Holmes, for providing us with the entertaining quotes at the beginning of
each chapter. Mr. Holmes remains one of the most famous problem-solvers of all
time, and his methodology is based on prediction (“It is a capital mistake to theo-
rize before you have all the evidence”), optimization (“ I had best proceed on
my own lines, and then clear the whole matter up once and for all”), and adapta-
bility (“I have devised seven separate explanations But which of these is cor-
rect can only be determined by the fresh information, which we shall no doubt find
waiting for us”). Needless to say, his methodology bears a striking resemblance to
Adaptive Business Intelligence! Enjoy.

Adelaide, Australia Zbigniew Michalewicz, Martin Schmidt
October 2006 Matthew Michalewicz, Constantin Chiriac

Contents

Part I: Complex Business Problems

1 Introduction ... 3

2 Characteristics of Complex Business Problems..................................... 9
2.1 Number of Possible Solutions.. 10
2.2 Time-Changing Environment .. 12
2.3 Problem-Specific Constraints .. 13
2.4 Multi-objective Problems .. 14
2.5 Modeling the Problem ... 16
2.6 A Real-World Example ... 19

3 An Extended Example: Car Distribution .. 25
3.1 Basic Terminology.. 25
3.2 Off-lease Cars ... 27
3.3 The Problem ... 28
3.4 Transportation... 30
3.5 Volume Effect... 32
3.6 Price Depreciation and Inventory... 33
3.7 Dynamic Market Changes ... 33
3.8 The Solution ... 34

4 Adaptive Business Intelligence... 37
4.1 Data Mining.. 38
4.2 Prediction.. 41
4.3 Optimization ... 43
4.4 Adaptability .. 44
4.5 The Structure of an Adaptive Business Intelligence System.......... 45

Part II: Prediction and Optimization

5 Prediction Methods and Models .. 49
5.1 Data Preparation.. 51
5.2 Different Prediction Methods .. 56

5.2.1 Mathematical Methods .. 56
5.2.2 Distance Methods.. 62

XII Contents

5.2.3 Logic Methods .. 64
5.2.4 Modern Heuristic Methods .. 68
5.2.5 Additional Considerations ... 69

5.3 Evaluation of Models .. 69
5.4 Recommended Reading... 74

6 Modern Optimization Techniques... 75
6.1 Overview .. 75
6.2 Local Optimization Techniques ... 82
6.3 Stochastic Hill Climber ... 87
6.4 Simulated Annealing... 90
6.5 Tabu Search .. 96
6.6 Evolutionary Algorithms.. 101
6.7 Constraint Handling ... 108
6.8 Additional Issues.. 112
6.9 Recommended Reading.. 114

7 Fuzzy Logic ... 117
7.1 Overview ... 119
7.2 Fuzzifier .. 119
7.3 Inference System.. 123
7.4 Defuzzifier ... 127
7.5 Tuning the Membership Functions and Rule Base....................... 128
7.6 Recommended Reading.. 129

8 Artificial Neural Networks ... 131
8.1 Overview ... 132
8.2 Node Input and Output ... 134
8.3 Different Types of Networks .. 136

8.3.1 Feed-Forward Neural Networks...................................... 137
8.3.2 Recurrent Neural Networks .. 140

8.4 Learning Methods .. 142
8.4.1 Supervised Learning... 142
8.4.2 Unsupervised Learning... 146

8.5 Data Representation ... 147
8.6 Recommended Reading.. 148

9 Other Methods and Techniques.. 151
9.1 Genetic Programming... 151
9.2 Ant Systems and Swarm Intelligence.. 158
9.3 Agent-Based Modeling... 163
9.4 Co-evolution .. 169
9.5 Recommended Reading.. 173

 Contents XIII

Part III: Adaptive Business Intelligence

10 Hybrid Systems and Adaptability... 177
10.1 Hybrid Systems for Prediction.. 178
10.2 Hybrid Systems for Optimization ... 183
10.3 Adaptability ... 187

11 Car Distribution System ... 191
11.1 Overview ... 192
11.2 Graphical User Interface... 194

11.2.1 Constraint Handling ... 195
11.2.2 Reporting ... 201

11.3 Prediction Module.. 203
11.4 Optimization Module ... 206
11.5 Adaptability Module .. 208
11.6 Validation .. 211

12 Applying Adaptive Business Intelligence.. 215
12.1 Marketing Campaigns .. 215
12.2 Manufacturing.. 221
12.3 Investment Strategies ... 224
12.4 Emergency Response Services.. 228
12.5 Credit Card Fraud... 232

13 Conclusion... 239

Index ... 243

Part I:
Complex Business Problems

1 Introduction

“Like all Holmes’s reasoning, the thing seemed simplicity itself when
it was once explained.”
The Stock-Broker’s Clerk

“Before turning to … matter which present the greatest difficulties,
let the inquirer begin by mastering more elementary problems.”
A Study in Scarlet

“The answer to my problem is hidden in my data… but I cannot dig it up!” This
popular statement has been around for years as business managers gathered and
stored massive amounts of data in the belief that they contain some valuable in-
sight. But business managers eventually discovered that raw data are rarely of any
benefit, and that their real value depends on an organization’s ability to analyze
them. Hence, the need emerged for software systems capable of retrieving, sum-
marizing, and interpreting data for end-users.

This need fueled the emergence of hundreds of business intelligence companies
that specialized in providing software systems and services for extracting knowl-
edge from raw data. These software systems would analyze a company’s opera-
tional data and provide knowledge in the form of tables, graphs, pies, charts, and
other statistics. For example, a business intelligence report may state that 57% of
customers are between the ages of 40 and 50, or that product X sells much better in
Florida than in Georgia.1

Consequently, the general goal of most business intelligence systems was to:
(1) access data from a variety of different sources; (2) transform these data into
information, and then into knowledge; and (3) provide an easy-to-use graphical
interface to display this knowledge. In other words, a business intelligence system
was responsible for collecting and digesting data, and presenting knowledge in
a friendly way (thus enhancing the end-user’s ability to make good decisions). The
following diagram illustrates the processes that underpin a traditional business
intelligence system:

1 Note that business intelligence can be defined both as a “state” (a report that contains
knowledge) and a “process” (software responsible for converting data into knowledge).

4 1 Introduction

Although different texts have illustrated the relationship between data and
knowledge in different ways, the distinction between data, information, and
knowledge is quite clear:

Data are collected on a daily basis in the form of bits, numbers, symbols, and
“objects.”
Information is “organized data,” which are preprocessed, cleaned, arranged into
structures, and stripped of redundancy.
Knowledge is “integrated information,” which includes facts and relationships
that have been perceived, discovered, or learned.

Because knowledge is such an essential component of any decision-making
process (as the old saying goes, “Knowledge is power!”), many businesses have
viewed knowledge as the final objective. But it seems that knowledge is no longer
enough. A business may “know” a lot about its customers – it may have hundreds of
charts and graphs that organize its customers by age, preferences, geographical
location, and sales history – but management may still be unsure of what decision to
make! And here lies the difference between “decision support” and “decision mak-
ing”: all the knowledge in the world will not guarantee the right or best decision.

Moreover, recent research in psychology indicates that widely held beliefs can
actually hamper the decision-making process. For example, common beliefs like
“the more knowledge we have, the better our decisions will be,” or “we can dis-
tinguish between useful and irrelevant knowledge,” are not supported by empirical
evidence. Having more knowledge merely increases our confidence, but it does
not improve the accuracy of our decisions. Similarly, people supplied with “good”
and “bad” knowledge often have trouble distinguishing between the two, proving
that irrelevant knowledge decreases our decision-making effectiveness.

Today, most business managers realize that a gap exists between having the
right knowledge and making the right decision. Because this gap affects manage-
ment’s ability to answer fundamental business questions (such as “What should be
done to increase profits? Reduce costs? Or increase market share?”), the future of
business intelligence lies in systems that can provide answers and recommenda-
tions, rather than mounds of knowledge in the form of reports. The future of busi-
ness intelligence lies in systems that can make decisions! As a result, there is
a new trend emerging in the marketplace called Adaptive Business Intelligence.

 1 Introduction 5

In addition to performing the role of traditional business intelligence (transforming
data into knowledge), Adaptive Business Intelligence also includes the decision-
making process, which is based on prediction and optimization:

While business intelligence is often defined as “a broad category of application
programs and technologies for gathering, storing, analyzing, and providing access
to data,” the term Adaptive Business Intelligence can be defined as “the discipline
of using prediction and optimization techniques to build self-learning ‘decision-
ing’ systems” (as the above diagram shows). Adaptive Business Intelligence sys-
tems include elements of data mining, predictive modeling, forecasting, optimiza-
tion, and adaptability, and are used by business managers to make better decisions.

This relatively new approach to business intelligence is capable of recommending
the best course of action (based on past data), but it does so in a very special way: An
Adaptive Business Intelligence system incorporates prediction and optimization
modules to recommend near-optimal decisions, and an “adaptability module” for
improving future recommendations. Such systems can help business managers make
decisions that increase efficiency, productivity, and competitiveness. Furthermore,
the importance of adaptability cannot be overemphasized. After all, what is the point
of using a software system that produces sub par schedules, inaccurate demand fore-
casts, and inferior logistic plans, time after time? Would it not be wonderful to use
a software system that could adapt to changes in the marketplace? A software system
that could improve with time?

The concept of adaptability is certainly gaining popularity, and not just in the
software sector. Adaptability has already been introduced in everything from
automatic car transmissions (which adapt their gear-change patterns to a driver’s
driving style), to running shoes (which adapt their cushioning level to a runner’s
size and stride), to Internet search engines (which adapt their search results to
a user’s preferences and prior search history). These products are very appealing
for individual consumers, because, despite their mass production, they are capable
of adapting to the preferences of each unique owner after some period of time.

The growing popularity of adaptability is also underscored by a recent publica-
tion of the US Department of Defense. This lists 19 important research topics for
the next decade and many of them include the term “adaptive”: Adaptive Coordi-

6 1 Introduction

nated Control in the Multi-agent 3D Dynamic Battlefield, Control for Adaptive
and Cooperative Systems, Adaptive System Interoperability, Adaptive Materials
for Energy-Absorbing Structures, and Complex Adaptive Networks for Coopera-
tive Control.

For sure, adaptability is here to stay. It is a vital component of any intelligent
system, as it is hard to argue that a system is “intelligent” if it does not have the
capacity to adapt. Moreover, modern definitions of natural and artificial intelli-
gence include the term “adaptive.” For humans, the importance of adaptability is
obvious: our ability to adapt was a key element in the evolutionary process. In the
case of artificial intelligence, consider a chess program capable of beating the
world chess master: Should we call this program intelligent? Probably not. We can
attribute the program’s performance to its ability to evaluate the current board
situation against a multitude of possible “future boards” before selecting the best
move. However, because the program cannot learn or adapt to new rules, the pro-
gram will lose its effectiveness if the rules of the game are changed or modified.
Consequently, because the program is incapable of learning or adapting to new
rules, the program is not intelligent.

The same holds true for any expert system. No one questions the usefulness of
expert systems in some environments (which are usually well defined and static),
but expert systems that are incapable of learning and adapting should not be called
“intelligent”! Some expert knowledge was programmed in, that is all.

It is not surprising that the fundamental components of Adaptive Business Intelli-
gence are already emerging in other areas of business. For example, the Six Sigma
methodology is a great example of a well-structured, data-driven methodology for
eliminating defects, waste, and quality-control problems in many industries. This
methodology recommends the following sequence of steps:

Note that the above sequence is very close “in spirit” to part of the previous
diagram, as it describes (in more detail) the adaptability control loop. Clearly, we
have to “measure,” “analyze,” and “improve,” as we operate in a dynamic envi-
ronment, so the process of improvement is continuous. The SAS Institute proposes
another methodology, which is more oriented towards data mining activities. Their
methodology recommends the following sequence of steps:

Again, note that the above sequence is very close to another part of our dia-
gram, as it describes (in more detail) the transformation from data to knowledge. It
is not surprising that businesses are placing considerable emphasis on these areas,
because better decisions usually translate into better financial performance. And

 1 Introduction 7

better financial performance is what Adaptive Business Intelligence is all about.
Systems based on Adaptive Business Intelligence aim at solving real-world busi-
ness problems that have complex constraints, are set in time-changing environ-
ments, have several (possibly conflicting) objectives, and where the number of
possible solutions is too large to enumerate. Solving these problems requires
a system that incorporates modules for prediction, optimization, and adaptability.
In the following chapters of this book, we will discuss these modules in detail, and
see how they are combined to create an Adaptive Business Intelligence system.

2 Characteristics of Complex Business Problems

“See the foxhound with hanging ears and drooping tail as it lolls about
the kennels, and compare it with the same hound as, with gleaming
eyes and straining muscles, it runs upon a breast-high scent – such was
the change in Holmes since the morning.”
The Adventure of the Bruce-Partington Plans

“ ‘I had,’ said he, ‘come to an entirely erroneous conclusion which
shows, my dear Watson, how dangerous it always is to reason from in-
sufficient data.’ ”
The Adventure of the Speckled Band

The statement “complex business problems are difficult to solve” is so obvious
that it does not require any justification. A closer look at any real-world business
problem, whether in distribution, customer retention, or fraud detection, will bear
witness to this obvious truth. Most complex business problems share the following
characteristics, which is the reason they are so difficult to solve:

The number of possible solutions is so large that it precludes acomplete search for
the best answer. In other words, the number of possible distributions, routes, fraud
rules, or transportation plans is so large, that examining all the possibilities would
take many centuries of supercomputing time.
The problem exists in a time-changing environment. This means that yester-
day’s decision, however optimal, may be far from optimal today.
The problem is heavily constrained. For most problems, the final solution
should satisfy many restrictions imposed by internal regulations, capacities,
laws, and/or preferences. Sometimes finding even one feasible solution (i. e.,
a solution that satisfies all problem-specific constraints) is quite difficult.
There are many (possibly conflicting) objectives. For example, the goal of
many scheduling problems is to minimize both time and cost, but these two ob-
jectives work against each other (as a decrease in time usually results in an in-
crease in cost, and vice versa). To allow business managers to effectively con-
trol these tradeoffs, such problems may require an entire set of solutions (rather
than just a single solution).

Of course, the above list can be extended to include many other characteristics,
such as incomplete information (e. g., the necessary data were not recorded), noisy
data (e. g., the data contain rounded figures and estimates), and uncertainly (e. g.,

10 2 Characteristics of Complex Business Problems

the data are not reliable). However, the four primary characteristics listed above
are sufficient for our purposes, so let us discuss each of them in turn.

2.1 Number of Possible Solutions

Let us assume we want to find the best solution to a problem with 100 decision
variables. To keep this example simple, let us also assume that each of these deci-
sion variables is binary (i. e., each decision variable takes one of two possible
values, such as “yes” or “no”). Each possible combination of these 100 variables
produces some result, which we can evaluate and label with a “quality measure
score.” Assume, for example, that a sequence

 “yes” & “yes” & “no” & “no” & “no” & “yes” & “no” & … & “yes”

produces a quality measure score of 17.3, whereas the sequence

 “yes” & “no” & “no” & “yes” & “no” & “yes” & “no” & … & “no”

produces a quality measure score of 18.1. The higher the quality measure score,
the better the solution, hence the latter solution is better than the former. Our task
is to find the combination of values for the 100 variables that produces the highest
possible quality measure score. In other words, we would like to find a solution
that cannot be improved.

If we do not have any additional problem-specific knowledge, our approach
might be to evaluate all possible combinations. However, the number of possible
combinations is enormous. Although each variable can only take one of two values
(“yes” or “no”), the number of possible solutions grows at an exponential rate: there
are four combinations (2 × 2) for two variables, eight combinations (2 × 2 × 2) for
three variables, and so on. With 100 variables, there are 2 × 2 × … × 2 (100 times)
combinations – a number that corresponds to 1030. Evaluating all of these combina-
tions is simply impossible. Even if we had a computer that could test 1,000 combi-
nations per second, and we began using this computer one billion years ago, we
would have evaluated less than 1% of the possible solutions by today!

Let us consider another example, the famous traveling salesman problem. Con-
ceptually, the problem is very simple: traveling the shortest possible distance, the
salesman must visit every city in his territory (exactly once) and then return ho-
me.2 The diagram below represents a seven-city version of this problem:

2 Some closely related problems require slightly different criteria, such as finding a tour
of the cities that yields the minimum travel time, minimum fuel cost, or a number of
other possibilities, but the underlying principle is the same.

2.1 Number of Possible Solutions 11

With seven cities, the problem has 360 possible solutions,3 making it relatively
easy to solve. However, by adding a few more cities, this number also grows ex-
ponentially. To see the maddening growth of possible solutions, consider the fol-
lowing:

A 10-city problem has 181,440 possible solutions.
A 20-city problem has about 1016 possible solutions.
A 50-city problem has about 1062 possible solutions.

By way of comparison, our planet holds approximately 1021 liters of water, so
a 50-city problem has an unimaginably large number of solutions. The number of
possible solutions to a 100-city problem exceeds (by many orders of magnitude)
the estimated number of atoms in the whole Universe! It is so large that we cannot
even conceive of sets with that many elements. Note also, that most real-world
business problems are far more complex than this (in terms of possible solutions).
They are defined by a much larger number of variables, and these variables usu-
ally take on more values than just “yes” or “no.” In such cases, the number of
possible solutions is truly astronomical!

So, how can business managers find optimal solutions to such problems? Be-
cause the numbers of possible distributions, routes, fraud rules, or transportation
plans might be so large that to examine all possibilities (with even the fastest su-
percomputers) would take many centuries at the best, an exhaustive search that
relies on computing power is clearly not the answer. In the following chapters, we
will discuss a real-world business problem where the number of possible solutions
is much larger than the numbers presented here, and show how such problems can
be solved using an Adaptive Business Intelligence system.

3 We assume that the problem is symmetric (i.e., the distance between cities i and j is the
same as the distance between j and i). Note also, that solution 1 2 3 4 5 6 7 is the
same as solution 3 4 5 6 7 1 2, as both these solutions have a different starting city
but represent the same cycle.

12 2 Characteristics of Complex Business Problems

2.2 Time-Changing Environment

Business managers know that the marketplace is not static, and yet they take static
snapshots of the problems they are trying to solve. A snapshot is a good starting
point for analyzing and understanding a problem, but on its own, it paints a false
picture. Because real-world business problems are set in time-changing environ-
ments, it is important to address the time factor explicitly. To illustrate this point,
let us consider a real-world version of the traveling salesman problem with many
delivery trucks. If the problem is carefully analyzed and a set of delivery routes
found, the quality of these routes will be affected by many cyclical factors (such
as rush-hour and weekend traffic, weather and road conditions, and so forth), and
by random events (such as labor strikes or delivery truck accidents). Because the
problem is influenced by so many environmental factors, any solution to a static
snapshot of this problem might prove useless.

There are some additional issues related to time-changing environments that are
worth noting. For example, imagine that we are considering the implementation of
solution A or solution B:

Which of these two solutions would we select? Well, the question seems trivial:
Because solution B has a higher quality measure score, solution B is better than
solution A. Although this statement is true – solution B is better than solution A –
the answer might not be that straightforward. It may happen that solution A “sits”
on a relatively flat peak, whereas solution B “sits” on a very narrow peak:

2.3 Problem-Specific Constraints 13

We can interpret the above graph as follows: Solution B is better than solution
A (there is no doubt about that), but if we are forced to modify solution B for any
reason (because of equipment failure, bad weather, labor strike, etc.), then the
quality of solution B will deteriorate very quickly. Solution A, on the other hand,
is much more “stable” in the sense that it can tolerate changes and modifications
without a sharp drop in quality. Given that solution A is less risky than solution B,
should we still select the “better” solution B?

2.3 Problem-Specific Constraints

All real-world business problems have constraints of some sort, and if a particular
solution does not satisfy these constraints then we cannot consider this solution.
Scheduling problems serve as a good example of real-world constraints. For ex-
ample, consider the problem of scheduling airline crews for various flights. First,
we have to make a list of all the flights that require service, along with all the
requirements for these flights (such as skill levels, number of crewmembers, and
so forth). Next, we need a database of all available crewmembers, together with
their preferences and characteristics. Once we have all this information, we need
to find the “best” assignment of individual crewmembers to different flights – but
what does the “best” mean? Well, in this case it may mean the cost of implement-
ing the schedule, the flexibility of making changes/replacements, the degree to
which personnel preferences are satisfied, etc. Note, however, that the final sched-
ule must satisfy a few hard constraints, such as:

A crewmember cannot serve on two flights at the same time.
The crewmembers scheduled for a specific flight must satisfy some require-
ments (e. g., the captain must have clearance to operate that particular plane, the
number of stewardesses should correspond to the capacity of the plane).
Various laws and regulations, which might call for some minimum layover
time for crewmembers in between flights.

14 2 Characteristics of Complex Business Problems

These are examples of hard constraints, which a feasible solution cannot vio-
late. In addition to hard constraints, there are also many soft constraints. These
represent requirements that are not mandatory, but “nice to have,” such as:

Providing crewmembers with five consecutive rest days each month.
Not scheduling some crewmembers together on the same flight (for personal
reasons).
Minimizing layover time.

Similar considerations apply to the traveling salesman problem: constraints in-
clude capacity limits, delivery time windows, maximum driving time, etc. Some
of these constraints are hard (e. g., not transporting chemicals and food together on
the same truck), while others are soft (e. g., personnel preferences). But regardless
of whether we are routing trucks or scheduling crewmembers, it is necessary to
assert the relative importance of each soft constraint by assigning numeric weights
to it. When solving the problem, we can then use these weights to calculate a final
quality measure score for each possible solution. Without first doing this, it would
be extremely difficult to evaluate the various solutions.

2.4 Multi-objective Problems

It is quite unusual for any real-world business problem to have only one objective.
Consider, for example, what objectives are important for optimizing production?
The objectives may include the minimization of production time and the minimi-
zation of material waste. Note, however, that these objectives might “work”
against each other, as the minimization of production time may trigger an increase
in material waste, and vice versa. We can illustrate this tradeoff with the following
diagram:

2.4 Multi-objective Problems 15

Clearly, the shorter the production time, the greater the waste. The above curve
gives us the approximate relationship between these two objectives, and we can
estimate the amount of additional time required to reduce waste by a specific
amount. Let us consider solutions A and B: Which of them is better? Solution A is
faster, but the amount of material waste is higher, and vice versa. In problems with
multiple objectives, it is possible to find a solution that is best with respect to the
first objective, but not the second, and a different solution that is best with respect
to the second objective, but not the first. Multiple-objective (multi-objective)
problems pose the challenge of defining the quality of a solution in terms of sev-
eral (possibly conflicting) parameters.

So, which solution should we select? A or B? It is impossible to answer this
question without first agreeing on a common denominator for time and waste. For
example, we can translate both objectives into dollars by calculating that five
minutes of production time is worth $100, and each pound of material waste is
worth $180. We can then calculate the merits (expressed in dollars) of both solu-
tions, compare the numbers, and select the solution with the lowest dollar figure.
This approach can be used with a larger number of objectives, but it might be
tricky to find the common denominator for some of these objectives if they in-
clude criteria such as “workplace health and safety.”

The real-world version of the traveling salesman problem also has multiple ob-
jectives: Besides trying to minimize the total travel distance, we are also trying to
make as many “on time” deliveries as possible, balance the travel time among all
the delivery trucks, and so on. If we have a set of possible solutions to this multi-
ple-objective problem, then it might be convenient to classify these solutions into
dominated solutions and non-dominated solutions. A solution is dominated if
a feasible solution exists (i. e., a solution that satisfies all problem-specific con-
straints) that is (1) at least as good with respect to every objective, and (2) strictly
better with respect to at least one objective. The figure below illustrates the case:
Solution C is dominated because solution A is as good as solution C on the waste
dimension, and better on the time dimension:

16 2 Characteristics of Complex Business Problems

A solution that is not dominated by any other feasible solution is called a non-
dominated solution. Again, the following figure illustrates the case, where solu-
tions E, C, F, and G are dominated:

Solution E is dominated because A is better on all objectives; solution C is
dominated because D is better on all objectives; and solutions F and G are domi-
nated because B is better on all objectives. On the other hand, solutions A, D, B,
and H are non-dominated, because no solutions exist that are as good or better
than any of them on all objectives.

Of course, the non-dominated solutions are of interest to us. Ideally, any system
that deals with multiple-objective problems should return several diverse solutions
(preferably all non-dominated). Each of these solutions might be of interest to us,
but in most cases, we can only implement one solution. To decide between these
various non-dominated solutions, either human expertise is used to find common
denominators (e. g., to express time and waste in dollars) or some higher-level
knowledge.

For example, we may assess the relative importance of each objective by as-
signing numeric weights (in the same manner they were applied to soft constraints
in the previous section), or by imposing a ranking for all objectives and then se-
lecting solutions that follow this ranking. Another option would be to select the
most important objective and then convert the remaining objectives into con-
straints that must be satisfied. Very often, the selected approach is dependent on
the problem.

2.5 Modeling the Problem

The problem-solving process consists of two separate steps: (1) creating a model
of the problem, and (2) using that model to generate a solution:

2.5 Modeling the Problem 17

Because of this two-step process, we must realize that we are only finding a so-
lution to the model of a problem. If the model is accurate, then the solution will be
meaningful. But if the model has too many vague assumptions and approxima-
tions, the solution may be meaningless, or worse.

Consider the following example: Suppose a company has 80 warehouses and 5
distribution centers, and every possible route between each warehouse and distri-
bution center has a measurable transportation cost. The shape of this cost function
depends on a variety of factors, including the distance between the warehouse and
the distribution center, the quality of the road, the traffic density, the number of
required stops, the average speed limit, and so forth. The transportation model
between warehouse 22 and distribution center 4 might be:

In this model, the cost is zero when there is no delivery. If up to 10 items are deliv-
ered, then we incur a fixed cost of $250 and an additional cost of $50 per item ship-
ped (thus, the cost for shipping six items would be $250 + (6 × $50) = $550). How-
ever, if we transport 11 or more items (but not more than 20), we have to use two
trucks. In this case, the cost is $700 for 10 items, an additional $250 for the second
truck, and $50 per each additional item (of course, the real situation could be more
complex than this, with trucks having different capacities, timetables, etc.). Given
the above assumptions, we can construct a model of the entire problem where we
specify:

18 2 Characteristics of Complex Business Problems

All the problem variables. In this case, there are 400 variables (80 warehouses × 5
distribution centers), with each variable indicating the number of items to be sent
from any warehouse to any distribution center.
The constraints that define a feasible solution. These could be (1) no transport
from any warehouse can exceed the number of available items in that ware-
house, and (2) the total shipment to any distribution center must satisfy the de-
mand (i. e., the total shipment is at least equal to the number of ordered items).
The objective. In this particular example, we might be concerned with minimiz-
ing the total transportation cost.

If our model for transporting items between warehouse 22 and distribution cen-
ter 4 accurately describes the real-world situation, then we can construct similar
models for the other warehouses and distribution centers. But such precise models
may prove to be of limited utility. Why? For starters, the cost function in this particu-
lar model is discontinuous, and discontinuities present severe difficulties for tradi-
tional optimization techniques. Hence, the results that we would obtain from using
traditional (e. g., gradient-based4) techniques on these functions are likely to be quite
poor. And if we cannot derive a solution based on this model, the model – as perfect
as it may be – is useless for deciding what to do!

So what options do we have? Well, we can try to simplify the model so that
traditional optimization techniques produce better solutions, or we can keep the
model unchanged and use a non-traditional approach for finding a near-optimum
solution. Put a different way, the first approach uses an approximate model of
a problem, and then finds the precise solution for this approximate model:

and the second approach uses a precise model of the problem, and then finds an
approximate solution for this precise model:

The first approach is quite tempting. For example, we can approximate the
transportation model between warehouse 22 and distribution center 4 as follows:

4 Gradient is a rate of change with respect to distance of a variable quantity.

2.6 A Real-World Example 19

We can simplify the other models in a similar manner, and by making all the
models linear we can then use a linear programming method5 to find a precise
solution. However, this precise solution would be a solution for the simplified
model, and not for the real problem!

The second approach is to leave the precise model unchanged – with all its dis-
continuities and irregularities – and use a non-traditional method to find a near-
optimal solution. Of these two approaches, the latter one is often superior (i. e., an
approximate solution to a precise model is “better” than a precise solution to an
approximate model). To understand why, look at this situation in the following
way: An approximate model usually hides the “irregularities” of a problem, thus
allowing some traditional method (e. g., linear programming) to provide a precise
solution. However, by hiding the irregularities of a problem, we lose much of the
information needed to find the optimal solution! For example, in our simplified
model above, note that the difference in transportation cost between 20 and 21
items is now the same as the difference between 19 and 20 items (which is not the
case in the precise model). Consequently, the simplified model does not “see” the
thresholds that play a major role in identifying the optimal solution. Thus, the
“optimal” solution for an approximate model is usually more appropriate for the
wastebasket than for implementation!

2.6 A Real-World Example

Let us consider a real-world example to put these business problem characteristics
into context. This example is based on a “pollution control” research project that

5 Linear programming is a problem-solving method in which a linear function of a num-
ber of variables is subject to a number of constraints in the form of linear inequalities.

20 2 Characteristics of Complex Business Problems

was completed during the late 1990s by a team of scientists from Poland and the
United States. Today, we consider this project to be a forerunner of Adaptive
Business Intelligence.

The main purpose of the project was to reduce ecological damage in Poland
through better energy production and distribution. However, the problem was not
that straightforward: The proposed solution had to reduce ecological damage with-
out increasing aggregate operational costs of the power stations or failing to meet
consumer demand (i. e., reducing the country’s energy output in order to reduce
ecological damage was not an option). Since the country’s demand for electricity
had to be satisfied, there were numerous constraints for energy production in each
region. Although this problem is quite specific, it illustrates many characteristics
that are common to almost all real-world business problems (e. g., an enormous
number of possible solutions, many complex constraints, a time-changing envi-
ronment). The similarities between this problem and other complex business prob-
lems will become apparent in the following chapters.

To solve this challenging problem, an experimental Adaptive Business Intelli-
gence system was developed. The goal of the system was to reduce ecological
damage in Poland by optimizing the energy output (and consequent pollution
output) of 132 government-owned power stations. However, before we discuss the
system, let us briefly address the complexity of the problem.

First, because the system was tasked with optimizing the energy production of
132 power stations, the number of possible solutions was enormous. If an integer
between 1 and 10 represented the production level of each power station (i. e.,
1 = 10% production, 2 = 20% production, and so forth), the number of possible
solutions would be 10132 (10 possible solutions for one power station, 10 × 10
possible solutions for two power stations, 10 × 10 × 10 possible solutions for three
power stations, etc.). A supercomputer capable of evaluating 1,000 solutions per
second would require billions of years to examine less than 1% of the search
space! The fact that these power stations operated in a time-changing environment
only compounded the problem, as the search space of possible solutions changed
from one day to the next.

Second, the hard and soft constraints of this problem were far from trivial. Sin-
ce enough energy had to be produced to supply the entire country, it was neces-
sary to take into account the capacity and layout of the power grid in Poland. Also,
although the demand for energy was constantly in flux, it was not possible to
change the production levels of a particular power station too drastically. On top
of everything, the system had to “protect” certain areas of Poland from long expo-
sures to sulphur dioxide (SO2), as some areas of the country were significantly
more sensitive to SO2 pollution than other areas.

The first step in solving this problem lay in identifying the relevant problem
variables and all the relationships between them. This was accomplished by build-
ing a computational “grid model” of Poland’s land area and corresponding power
grid. Each square in the grid corresponded to 30 km × 30 km, which collectively
covered Poland’s approximate 900 km × 750 km land area. The locations of the
132 government-owned power stations were plotted along with their energy output
and emission levels, and then the pollution tolerances for each 30 km × 30 km

2.6 A Real-World Example 21

square were computed. It was also necessary to take into account the pollution
caused by private enterprises in Poland, as well as many foreign sources (mainly
from Germany and the Czech Republic). Because it was not possible to influence
these sources, they were defined as background concentrations. Hence, the result-
ing pollution concentrations in each square were the sum of both the primary and
background concentrations.

Because weather played a major role in determining how pollution affected the
environment in Poland (e. g., gusty winds could easily spread high levels of pollu-
tion to remote areas of the country), it was necessary to use sophisticated weather
forecasts for predicting the ecological damage that each 30 km × 30 km square
would sustain during the next 48 hours. Thus, by using data on the amount and
type of pollution emitted from each power station, along with a weather forecast
for the speed and direction of winds, a prediction model was developed to predict
how much pollution would be created, how it would be dispersed, and how much
damage it would cause in the affected squares.

To minimize the overall ecological damage in Poland (in light of the predic-
tions made by the prediction module), an evolutionary algorithm was developed to
find the optimal production level for each power station (evolutionary algorithms
are discussed in Sect. 6.6). Although it was not possible to decrease the overall
energy produced in Poland, it was possible to make local or regional adjustments
to take advantage of various weather conditions. Furthermore, the evolutionary
algorithm strived to continuously optimize the pollution in Poland on a daily basis.
When a new weather forecast became available (along with the corresponding
prediction for ecological damage), the system did not start the search from scratch;
instead, it incorporated this new knowledge and continued the optimization proc-
ess. Lastly, the system incorporated a module for adaptability, which compared
the predicted outcome with the actual outcome. If significant prediction errors
were discovered, the adaptability module would adapt the parameters of the pre-
diction module (more on this subject in Sect. 10.3). Hence, the system was able to
continuously improve its performance.

Using historical data for weather forecasts and emission levels, several experi-
ments were conducted using this new system. The optimization process was ap-
plied to this historical data, and then the optimized results were compared with the
actual, non-optimized results. From these experiments, the following conclusions
were drawn: The amount of energy produced was equal in both cases, the aggre-
gate operating costs were also equal, but the ecological damage in Poland was
15% to 18% less when the optimization process was applied. A “saving” of 15 to
18% in ecological damage is a tremendous result, especially when we consider
that human lives are at risk in this particular problem. The system also contained
numerous input screens, so that individual parameters could be modified to alter
regional pollution tolerances (in relation to cost and service).

The sample screen below shows the optimization results. Both the “before” and
“after” maps in this screen represent the country of Poland, which is divided into
a grid model of 30 km × 30 km squares (which we discussed earlier). The darker

22 2 Characteristics of Complex Business Problems

squares represent higher concentrations of pollution, and the white dots represent
the 132 power stations:6

The left-hand-side map shows the non-optimized results for ecological damage in
Poland, while the right-hand-side map shows the optimized results for the same time
period. Clearly, there are fewer dark squares on the right-hand-side (optimized) map.
This is reflected in the concentration and emission numbers shown at the bottom of

6 Some dots represent multiple power stations.

2.6 A Real-World Example 23

the screen. It is important to note that the system achieved these lower pollution
levels while maintaining the same power production output of approximately 23,849
megawatts per hour.7

The report below shows the potential pollution reduction that would have been
achieved in 1998:

The right-hand-side graph displays two levels of emitted toxic materials: The
Before Optimization column displays the average monthly emissions for the de-
fault energy production scheme; and the After Optimization column displays the
average monthly emissions for the optimized energy production scheme. The
difference between the non-optimized and optimized schemes is approximately
18% (267.46 – 218.45 = 49.01 / 267.48 = 18.32%), and this was accomplished
without increasing the aggregate operational cost of the power stations or decreas-
ing the amount of energy produced. By allowing the system some flexibility in
these constraints, further ecological savings could be realized.

7 The sten values in the sample screen represent a scientific estimate of a region's sensiti-
vity to pollution (mainly defined by the level of sulphur dioxide present).

24 2 Characteristics of Complex Business Problems

As indicated at the beginning of this section, similar “savings” can be realized
in other business domains, even if the particular problem is substantially different.
In Chap. 4, we will discuss the overall structure of an Adaptive Business Intelli-
gence system by outlining its key components. At that stage, it will be easy to see
the similarities between this “pollution control” research project, and the core
components of an Adaptive Business Intelligence system (prediction, optimiza-
tion, and adaptability).

3 An Extended Example: Car Distribution

“You must drop everything, Sherlock. Never mind your usual petty
puzzles of the police-court. It’s a vital international problem that you
have to solve.”
The Adventure of the Bruce-Partington Plans

“I have devised seven separate explanations, each of which would
cover the facts as far as we know them. But which of these is correct
can only be determined by the fresh information which we shall no
doubt find waiting for us.”
The Adventure of the Copper Beeches

Let us consider an extended example that most of us can relate to, which involves
used cars. Specifically, let us investigate what leasing companies do with the cars
that are returned at the end of a lease agreement (the so-called “off-lease” cars).
We will refer to this extended example in many of the following chapters, so it is
worthwhile to study this real-world business problem in detail.

3.1 Basic Terminology

However, before we discuss this example, let us first cover some basic terminol-
ogy:8

Database: A (historical) collection of data, which is the starting point for data
mining and model building. Databases are usually updated on a regular basis,
thereby increasing the number of stored cases. It is convenient to represent
a database as a table, or a collection of tables. We can visualize the necessary
data as a two-dimensional table; in this example, the table represents used cars
that were sold at auction. One dimension of the table represents the number of
cases (each case is a particular car), and the other dimension represents the
number of variables (the characteristics of each car):

8 Note, however, that we will not discuss the physical organization of data (which is
important from a performance perspective), but rather the data structures that support the
modeling of information.

26 3 An Extended Example: Car Distribution

V
IN

T

yp
e

M
ak

e
M

od
el

M

ile
s

Y
ea

r
C

ol
or

T

ra
ns

m
is

si
on

B

od
y/

D
oo

rs

D
am

ag
e

2
G
1
F
P
2
2
P
1
P
2
1
0
0
0
0
1

R
e
n
t
a
l

C
h
e
v
y

S
-
1
0

3
4
,
9
8
3

2
0
0
2

S
i
l
v
e
r

M
a
n
u
a
l

2
D

$
0

W
B
3
P
F
4
3
X
8
X
9
0
0
0
3
3
1

L
e
a
s
e

C
h
e
v
y

C
a
v
a
l
i
e
r

5
9
,
4
0
2

2
0
0
1

R
e
d

A
u
t
o
m
a
t
i
c

2
D

C
o
u
p
e

$
0

4
B
B
G
3
8
F
J
F
0
4
J
D
K
0
0
0

L
e
a
s
e

C
h
r
y
s
l
e
r

S
e
b
r
i
n
g

7
4
,
0
3
9

2
0
0
0

G
r
a
y

A
u
t
o
m
a
t
i
c

2
D

C
o
u
p
e

$
5
0
0

D
J
O
W
0
3
F
F
U
9
9
0
S
J
2
0
6

L
e
a
s
e

F
o
r
d

E
s
c
a
p
e

3
7
,
9
8
4

2
0
0
1

G
r
e
e
n

M
a
n
u
a
l

4
D

S
p
o
r
t

$
2
5
0

J
D
8
3
2
0
D
J
2
0
9
4
G
K
2
X
3

R
e
n
t
a
l

F
o
r
d

F
o
c
u
s

3
0
,
8
4
2

2
0
0
1

G
r
e
e
n

M
a
n
u
a
l

4
D

S
e
d
a
n

$
0

2
J
E
9
F
0
2
8
4
J
D
0
2
1
3
M
3

L
e
a
s
e

I
s
u
z
u

R
o
d
e
o

5
9
,
0
4
4

1
9
9
9

W
h
i
t
e

A
u
t
o
m
a
t
i
c

4
D

S
p
o
r
t

$
2
5
0

4
3
8
0
J
D
D
D
9
W
0
2
M
D
0
0
1

R
e
n
t
a
l

J
e
e
p

C
h
e
r
o
k
e
e

4
8
,
9
5
4

2
0
0
0

B
l
a
c
k

A
u
t
o
m
a
t
i
c

4
D

S
p
o
r
t

$
5
0
0

4
9
0
D
K
2
0
2
8
5
J
F
0
2
0
9
D

R
e
n
t
a
l

M
a
z
d
a

6
2
6

3
8
,
9
4
3

2
0
0
0

W
h
i
t
e

A
u
t
o
m
a
t
i
c

4
D

S
e
d
a
n

$
0

1
0
D
9
2
J
D
9
2
0
K
D
0
0
0
0
2

L
e
a
s
e

N
i
s
s
a
n

A
l
t
i
m
a

3
9
,
4
8
8

2
0
0
0

B
l
a
c
k

A
u
t
o
m
a
t
i
c

4
D

S
e
d
a
n

$
0

D
9
2
0
D
K
J
0
2
8
4
J
J
9
9
9
0

R
e
n
t
a
l

N
i
s
s
a
n

A
l
t
i
m
a

2
3
,
5
8
4

1
9
9
9

W
h
i
t
e

M
a
n
u
a
l

4
D

S
e
d
a
n

$
0

J
D
8
8
D
9
2
J
J
D
0
2
K
3
3
6
1

R
e
n
t
a
l

S
a
t
u
r
n

L

2
1
,
0
4
8

2
0
0
1

W
h
i
t
e

A
u
t
o
m
a
t
i
c

4
D

S
e
d
a
n

$
7
5
0

1
0
D
S
0
J
J
2
0
D
X
I
0
0
0
9
3

L
e
a
s
e

S
u
z
u
k
i

V
i
t
a
r
a

1
5
,
8
4
9

2
0
0
3

Y
e
l
l
o
w

A
u
t
o
m
a
t
i
c

2
D

S
p
o
r
t

$
0

2
1
K
D
0
2
K
D
0
D
J
9
2
0
M
2
7

L
e
a
s
e

B
M
W

Z
3

4
9
,
8
5
8

2
0
0
0

B
l
u
e

M
a
n
u
a
l

2
.
3

R
S
T
R

$
2
5
0

3
8
9
D
J
2
D
D
2
9
8
J
W
Q
0
8
2

L
e
a
s
e

F
o
r
d

E
x
p
l
o
r
e
r

4
2
,
8
9
3

2
0
0
2

G
r
e
e
n

A
u
t
o
m
a
t
i
c

X
L
T

4
W
D

$
0

1
0
8
D
J
2
0
4
8
F
J
J
2
0
0
4
3

R
e
n
t
a
l

F
o
r
d

M
u
s
t
a
n
g

2
0
,
3
8
4

2
0
0
2

R
e
d

M
a
n
u
a
l

G
T

$
0

D
J
C
8
2
0
0
2
0
0
9
D
D
2
J
0
4

R
e
n
t
a
l

M
e
r
c
u
r
y

F
r
o
n
t
i
e
r

2
7
,
8
4
9

2
0
0
1

S
i
l
v
e
r

A
u
t
o
m
a
t
i
c

S
E
-
V
6

C
r
e
w

$
5
0
0

8
3
0
D
M
M
3
0
2
9
X
M
W
0
0
9
2

L
e
a
s
e

H
o
n
d
a

A
c
c
o
r
d

2
6
,
8
4
9

2
0
0
2

Y
e
l
l
o
w

A
u
t
o
m
a
t
i
c

E
X

V
6

$
0

C
N
E
U
2
0
0
2
2
0
C
C
I
2
2
0
2

R
e
n
t
a
l

T
o
y
o
t
a

4
R
u
n
n
e
r

3
3
,
4
8
3

2
0
0
0

S
i
l
v
e
r

A
u
t
o
m
a
t
i
c

S
R
5

$
0

C
N
D
J
2
9
4
0
J
D
8
8
D
2
J
D
0

L
e
a
s
e

V
W

B
e
e
t
l
e

5
,
4
5
9

2
0
0
3

B
l
u
e

M
a
n
u
a
l

G
L
S

1
.
8
T

$
0

1
V
C
0
C
M
E
J
2
0
0
V
9
E
J
J
1

L
e
a
s
e

T
o
y
o
t
a

4
R
u
n
n
e
r

8
1
,
8
3
7

2
0
0
1

S
i
l
v
e
r

A
u
t
o
m
a
t
i
c

L
M
T
D

4
W
D

$
2
5
0

3.2 Off-lease Cars 27

Case: A data structure that represents a single occurrence of recorded phe-
nomenon (e. g., a sale, transaction). Referring to our database of sold cars, each
case provides a description of a car (VIN,9 make, model, mileage, etc.) together
with transaction details (sale price, date, location). Cases (also called records,
instances, and examples) correspond to the horizontal rows in database tables.
Variable: The smallest data unit in a case. Variables (also called attributes,
fields, features, dimensions, and characteristics) correspond to the vertical col-
umns in a table. For example, in our database of sold cars, there are many vari-
ables (e. g., “color,” “mileage”), and each variable takes its value from a prede-
fined set. For example, the variable “color” can take any of the following
values: “white,” “silver,” “beige,” etc. The variable “mileage” (marked in the
above table as “miles”) can take any integer as a value (e. g., 34,789).
Prediction method: A particular method that is used to build a prediction model
from a data set. For example, we can use the linear regression method to de-
velop a linear regression model (covered in Sect. 5.2.1).
Prediction model: The output of a prediction method. Different prediction
models have different characteristics, advantages, and disadvantages (e. g., re-
sponse time, precision, ease of updating the model).
Parameter: A number that defines the relative “merit” of a variable that is used in
a prediction model. Every model has a few parameters (sometimes called coeffi-
cients or weights). For example, a linear regression model for predicting the sale
price of a particular car at a particular location may be defined by a function:

 Sale Price = a + (b × Mileage) + (c × Year) + (d × Color) + …

 which provides the predicted price for a new case when supplied with the nu-
meric values of the other variables (“mileage,” “year,” “color,” etc.). The num-
bers a, b, c, d, … are the parameters of the model, and they define how much
“weight” the model gives to each variable (in this example, parameter a is
a constant). For example, if the parameters b and c are set to 0.6 and 0.2 in the
above function, then this means that the model will put three times more weight
on the variable “mileage” than on the variable “year” when predicting the sale
price. The parameters of a model require careful tuning during the training phase.

Because everything begins with data, these definitions are a prerequisite to our
discussions. The other relevant terms will be provided in the course of the text.

3.2 Off-lease Cars

When a lease agreement expires, the off-lease car is either returned to the leasing
company or purchased by the leasee. The leasing company does not worry about the
cars that are purchased, but the cars that are returned have to be sold at auction.

9 VIN is an acronym for “vehicle identification number,” which is a string of 17 digits and
letters that contains considerable information about a specific vehicle, (including coun-
try of origin, manufacturer, and model year).

28 3 An Extended Example: Car Distribution

Each returned car is different in its make, model, body style, trim, color, year, mile-
age, and damage level.

A leasing company maintains this information in an inventory database, as the one
displayed in the previous section. Because a car’s characteristics will strongly in-
fluence its sale price, leasing companies also keep careful track of this information.
The sales data are typically kept in a database that contains the VIN, ZIP code of
the auction site (there are hundreds of different auction sites in the United States),
date, and the sale price of each car:10

VIN ZIP Date Price
39WWK93309KJ33012 28262 2.11.2004 $12,035

UDJ2293M99DL0K220 30334 2.11.2004 $15,600

4D09WJD92JE93H990 30334 2.11.2004 $10,590

KD37D92JF83NF8822 90012 3.11.2004 $9,265

NKI2389DD974F2235 28262 3.11.2004 $13,450

K29DH38FHW02HD923 48243 3.11.2004 $13,955

MDK293HFDWH299305 90012 4.11.2004 $12,495

28DN39FNDJW2N0024 90012 4.11.2004 $11,925

29H93NFI3HJF93F04 48243 4.11.2004 $11,396

ND920ENF1NAD02834 48243 5.11.2004 $9,835

D39DJ39EHQ8HH9335 28262 5.11.2004 $8,965

02UFIMF03JF9SH935 90012 5.11.2004 $13,960

D932NF93HG9057362 48243 5.11.2004 $8,830

00F8EB3IDNB293758 48243 8.11.2004 $7,920

IE038THJ203TH0234 28262 8.11.2004 $19,250

39FH324MV092HGM39 48243 8.11.2004 $22,640

F92N9F389FH120458 90012 8.11.2004 $13,580

F9485JG03H25495J5 30334 9.11.2004 $16,970

08GN94HJH03J49327 30334 9.11.2004 $14,320

F04JH402KG4509G45 48243 9.11.2004 $9,110

Given all of this information, the question is: Where should leasing companies
send their off-lease cars to get the best price? This is a difficult question to answer,
especially when we consider that some leasing companies lease more than one mil-
lion cars each year. That is more than 3,000 cars per day – a truly staggering figure!

3.3 The Problem

Now, imagine that we are in charge of selling off-lease cars for a fictitious leasing
company. Let us assume that the company receives 3,000 off-lease cars each day
and does business with 50 designated auction sites. The following figure illus-
trates the case (for a particular day of operation):

10 We could easily obtain the characteristics of each car by merging it with the previous
table.

3.3 The Problem 29

The darker circles represent the locations of the returned cars; the larger the cir-
cle, the more cars were returned in that location (clearly, most of the cars were
returned on the east coast of the United States). Note that the sizes and locations of
the darker circles will vary from one day to the next, as different people and or-
ganizations will return their cars at different locations. The lighter circles of the
same size, on the other hand, represent the 50 auction sites that are available for
selling the returned off-lease cars. The locations of these auction sites are fixed.11

Our task is to distribute a daily load of 3,000 cars to these 50 auction sites. In
other words, we have to assign an auction site to each car. For example, the first
car may be located at a dealership in Northern California, and we have to make
a decision where to ship it. At first glance, this looks easy. We might be tempted
to take one car at a time, consult some report12 on what the average sale price for
that particular car is at each auction site (after adjusting for mileage, trim, damage
level, etc.), and then ship the car to the auction site with the highest average sale

11 Although the locations of the 50 auction sites are fixed, the company may, from time to
time, change the auctions it does business with by dropping some sites and adding new
ones (thereby changing the layout of the 50 lighter circles). This may happen if cars are
routinely damaged at some sites, auction fees go up, or some other reason. However,
these decisions raise several additional questions, such as: How do we evaluate the mo-
netary impact of dropping some sites and adding others? and, Can we increase profits
by replacing some auction sites with others? We will address these important questions
later in the text.

12 Many reports are available for estimating the auction price of cars, including Black
Book, Kelley Blue Book, the Manheim Market Report, and others.

30 3 An Extended Example: Car Distribution

price. Of course, we would also have to estimate the transportation cost (the lon-
ger the distance, the higher the cost) to each auction site, but these calculations are
quite manageable. Using this method, our decision for the first car can be visual-
ized in the following way:

The line represents our decision to ship the car from Northern California (larger
circle) to an auction site in Idaho (smaller circle). We would have to repeat this
decision process for each car, and, although tedious, it is definitely doable. To
minimize the amount of work involved, we can also write a simple program to do
this tedious work for us.

So, what is the problem? Well, simply put, the problem is that the above ap-
proach does not work very well. To see why, we have to delve a little deeper into
the problem.

3.4 Transportation

When we ship an entire truckload of cars from one place to another, we get
a cheaper rate per car than if we send only one car (or a few cars) at a time. This
occurs because the major component of the transportation cost is the truck, and it
is of lesser importance how many cars are actually on the truck. Hence, the rela-
tionship between the transportation cost (between two fixed locations) and the
number of transported cars may look something like this model (recall the discus-
sion on transportation cost models from the previous chapter):

 3.4 Transportation 31

Given the above model, the cost for sending a single car from one location to
another is $250, but the cost of sending two cars is “only” $300 (note that the cost
per car is then $150). Then there are $50 increments per car up to 10 cars (as we
can load all of them onto a single truck). Thus, shipping 10 cars would cost $700,
or just $70 per car. Note that the increments from one car to the next for the first
10 cars need not be linear. For example, the truck might have two levels and load-
ing a car onto the upper level might be slightly more expensive than loading a car
onto the lower level. For this reason, a straight line need not represent the “1 to 10
cars” part of the graph. Furthermore, if we want to transport 11 cars, then we will
experience a “jump” in cost: We will pay $700 for 10 cars on the first truck, plus
$250 for a single car on the second truck (for a total of $950).

Because most transportation companies have trucks of different shapes and
sizes (which can hold different amounts of cars), a more realistic transportation
cost model may look something like (again, we assume fixed locations for “to”
and “from”):

1 6 cars: $120 per car.
7 10 cars: $95 per car.
11 14 cars: $85 per car.
The cost of transporting more than 14 cars is calculated as follows: $85 per car
for multiples of 14 cars (such as 28, 42, 56, etc.), $120 per car for the remaining
1 6 cars, $95 per car for the remaining 7 10 cars, and $120 per car for the re-
maining 10 13 cars. Transporting 20 cars, for example, would cost $85 per car
for the first 14 cars and then $120 per car for the remaining 6 cars, for a total of
$1,910 (14 × $85 + 6 × $120).

In addition to transportation cost, we also have to deal with numerous other is-
sues, such as depreciation, auction calendars (auctions are not organized every

32 3 An Extended Example: Car Distribution

day), and risk (cars can fall down from trucks and get damaged, cars might get
stolen, etc.). We will discuss some of these later in this chapter.

3.5 Volume Effect

Although our goal is to ship each car to the auction site that offers the best price,
we might inadvertently trigger the “volume effect” by sending too many cars of
same color, make, and mileage to the same auction site. To understand the volume
effect, imagine an auction site that holds car auctions every second Wednesday at
10 am. Used-car buyers come to this auction site in the morning to inspect the
cars, choose the ones they want, and decide how much to bid. Now imagine what
would happen if we sent 45 white Ford Mustangs to this auction site: In all prob-
ability, these cars would sell for the minimum opening price. With 45 identical
cars for sale, most buyers would be reluctant to bid up the price. On the other
hand, imagine if we sent only one white Ford Mustang to this auction site: There
would be several interested buyers, and they would bid up the price of the car.
This volume effect is extremely important, as the higher the auction sale price, the
more money the company will make.

The volume effect for a particular car at a particular auction site might look
something like:

This graph illustrates the volume effect phenomenon: We get more money per
car by selling fewer similar cars. For example, the current average sale price for
a particular car at a particular auction site might be $10,400. We can get the same
price if we ship up to seven cars to this location. However, if we ship 30 similar
cars, then the average sale price per car will drop to $9,450. Note that the term
“similar” can mean more than just the same make/model or color. For example,

3.7 Dynamic Market Changes 33

many white compact cars of different makes and models would still compete for
the same buyers, thereby reducing the average sale price per car.

Consequently, we cannot consider one car at a time – we have to consider the
collective effect of all the cars. This means that for one car we have 50 possible
solutions (as we can ship this car to one of 50 auction sites), for two cars we have
2,500 possible solutions (50 × 50), for three cars we have 125,000 possible solu-
tions (50 × 50 × 50), etc. For 3,000 cars, we have approximately 503000 possible
solutions (50 multiplied by itself 3,000 times)! This is an overwhelming number
(larger than the estimated number of atoms in the Universe) and no supercomputer
can evaluate all the possible combinations in a billion human lifetimes. Neverthe-
less, we have to make a decision for all of these cars today!

3.6 Price Depreciation and Inventory

To further complicate matters, every auction site has a set day for selling cars
(e. g., every second Friday at 10 am). Because of this, if we ship 100 cars to an
auction site and the delivery arrives one or two days after the auction day, then the
cars will have to wait until the next sale day. This is bad for the leasing company,
because on top of other reasons (such as paying the auction sites to keep the cars
on their premises for up to two weeks), the cars will also lose value on a daily
basis. This phenomenon is called “price depreciation,” and it amounts to approxi-
mately $10 per day, per average car.

Also, we might already have 1,000 cars at a particular auction site, but only 250
of our cars are sold (on average) at each sale. Hence, it will take approximately four
auction sales to sell our current inventory. This means that if we ship an additional
100 cars to this particular auction, they would be sold some two months later. The-
refore, we have to take into account our current inventory at each auction site, as it
will affect the price depreciation on future shipments. Of course, our inventory
should also include cars that are in transit to the auction, and before we can make
any distribution decision, it would be necessary to check our inventory levels at all
50 auction sites. Otherwise, it would be next to impossible to make a smart decision
on where to ship today’s load of cars (this is especially important for large leasing
companies, which may have 50,000 or more cars sitting in inventory).

3.7 Dynamic Market Changes

Another issue that makes our job more difficult is the fluctuation in used car
prices. These fluctuations may be slow and subtle, or sudden and dramatic (as was
the case after the September 11th terrorist attacks), and they are often region spe-
cific (e. g., it is better to sell convertibles in sunny Florida during the wintertime
than in snowy Boston – something called the “seasonality effect”). These chang-
ing market conditions force us to stay on top of price changes at each auction site
– something that is very difficult to do. We also have to deal with next year’s

34 3 An Extended Example: Car Distribution

models entering the marketplace during the months of August and September, as
the older models will immediately drop in price when this happens (also part of
the “seasonality effect”). This is an important consideration when we approach
this time of year, as it might be better to ship cars nearby and sell them “in time,”
rather than sending them far away to fetch a better price. Additionally, new body
style models are introduced every few years, which cause an even bigger drop in
price for the older body styles.

And that is not all. Note that it takes some time to transport a car to a specific
auction site. The truck has to drive to the pick-up location, load the car, pick up
some additional cars (possibly somewhere close by), and then, finally, drive the
cars to the assigned auction site. This process can take two weeks (or longer for
shipments from the East Coast to the West Coast), and during this time the prices
might change at the auction site. Hence, we have to predict the sale price for each
car a couple of weeks ahead of time, and take into account seasonality and other
changes in the market. Again, let us illustrate this by an example.

Say we are considering several possible auction sites for a car located in Jack-
sonville, Florida. Specifically, we are considering sending the car to an auction
site in Georgia, Pennsylvania, or California. The price estimations for these three
auction sites are different, because we are interested in an estimated sale price for
5 days from today for the Georgia auction site, an estimated sale price for 10 days
from today for the Pennsylvania auction site, and an estimated sale price for 15
days from today for the California auction site. The differences in time are due to
the transportation distance. However, to estimate these prices, we have to take into
account factors such as the seasonality effect and price depreciation, and these
additional factors make our decision a bit tricky.

In making the decision of Georgia vs. Pennsylvania vs. California, we also have
to take into account transportation costs, the volume effect, and current inventories
(as discussed earlier). We also have to weigh the possibility of a better price in
California against higher transportation costs, higher price depreciation, higher
risk, etc. The decision is not an easy one.

3.8 The Solution

Without a doubt, this is not a trivial problem. In order to make a decision, we have
to consider the characteristics of each car, many different possible auction sites,
complex transportation costs, volume effects, countrywide inventory of cars (or
cars in transit to the auction), price depreciation, and market-driven changes in
price. At the end of the day, we do not know whether our decisions are “optimal”
– whether they maximize the potential profit for the company, or whether there is
a better solution – but we can visualize the overall distribution for a particular day
as follows:

3.8 The Solution 35

In the figure above, the lines represent the transportation connections between
the car locations and auction sites, and the thicknesses of these lines represent the
transported volume (the thicker the line, the more cars are shipped). Because the
problem is so complex, every leasing company has a dedicated team for assigning
off-lease cars to auctions sites. These teams face the formidable task of recom-
mending the best possible solution for each daily load of cars. A small mistake, an
inferior recommendation that results in a net loss of “only” $150 per car, may cost
the company hundreds of thousands of dollars in a single day!

On the other hand, if an Adaptive Business Intelligence system was used to im-
prove the daily distribution of cars to the tune of $200 per car (note here that this
corresponds to an increase of only 1.33% in the price of an average car), then the
increased annual profits might translate into hundreds of millions of dollars! Hen-
ce, to maximize the overall net profit, an Adaptive Business Intelligence system
must decide where to ship each car. As discussed earlier, the problem is extremely
complex, and the system would have to address the following issues:

Transportation. When a whole truckload of cars is shipped from one place to
another, the company is charged a cheaper rate. Therefore, it is important to
take into account the number of cars that are transported on each truck.
Risk factors. Cars can be damaged, stolen, or the transportation truck might be
involved in an accident. Longer trips also increase the probability of a delay.
Volume effect. If many cars of the same type are sent to the same auction site,
then the volume effect will kick in and an oversupply of a particular car will
decrease its price.

36 3 An Extended Example: Car Distribution

Size of the search space. The distribution of 3,000 cars to 50 auction sites gives
us 503000 possible solutions, which is much larger than the estimated number of
atoms in the Universe.
Price depreciation. Every auction site has a typical sale day (e. g., every Wed-
nesday at 10 am, or every second Thursday at 11 am). If some cars arrive one
day after the sale date, then they will sit at the auction site for one or two weeks
(until the next sale day), and the price depreciation is often around $10 per day,
per average car.
Recent history. When making a recommendation, all decisions made during the
past few weeks must be taken into account. Many of those cars may still be in
transit, and if they are going to the same auction site, then they might be sold
on the same day.
Inventory. It is important to monitor the inventory level of cars at all auction
sites, as each site has a particular throughput. If an auction can handle 250 cars
per sale day, and the current inventory is larger than 250, then additional time
must be added to the estimated sale date.
Dynamic market conditions. Market prices for cars change quite frequently,
sometimes slowly and sometimes very quickly. Leasing companies (like most
businesses) operate in a non-stationary environment that is influenced by many
external factors, such as: (1) seasonality (e. g., it is not easy to sell convertibles
in New York during the wintertime), (2) the arrival of new models (e. g., new
models enter the marketplace in August, influencing the price of older models),
and (3) weather (which influences the number of dealers present at an auction,
which in turn influences the sale price).
Business rules. It is essential to accommodate various business rules that can be
added or dropped at any time (e. g., “do not send any red cars to South-East
auctions”). This is important for analyzing what-if scenarios.

Let us conclude this chapter with an observation that we have already discussed
(in general terms) in Chap. 1: namely, that all the knowledge in the world will not
guarantee the right or best decision. Hence, even if we possessed “perfect knowl-
edge” and were capable of accurately predicting the price of any car at any auction
site for any day, we still would not know how to optimally distribute 3,000 cars on
any given day because of all the issues mentioned above. The number of possible
distributions is simply too large to be processed in any reasonable amount of time.
Hence, even though it is true that data mining can extract useful knowledge from
data, it is a myth that the extraction of such knowledge will make a business run
better! We may have perfect knowledge of all cars, prices, and locations, and still
our distribution decisions might be very bad!

4 Adaptive Business Intelligence

“By Jove, Mr. Holmes, I think you have hit it.”
The Adventure of the Lion’s Mane

“ ‘Elementary,’ said he.”
The Adventure of the Crooked Man

In Chap. 2, we discussed the characteristics of real-world business problems,
which included:

The number of possible solutions to the problem is so large that it prohibits any
systematic (complete) search for the best solution.
The problem exists in a time-changing environment, and therefore requires
a set of solutions (rather than a single solution).
The problem is so heavily constrained that finding even one feasible solution is
often difficult, let alone searching for the optimum solution (or set of solutions).
The problem includes many (possibly conflicting) objectives.

In the previous chapter, we gave an example of a real-world business problem
in the car leasing industry. There is no question that the number of possible solu-
tions to the car distribution problem is too large for any systematic search (we
indicated that the distribution of 3,000 cars to 50 auction sites gives us 503000 pos-
sible solutions). We may also want to impose many constraints. For example, we
may wish to restrict the maximum transportation distance (e. g., “cars should not
be shipped more than 1,000 miles from their original location”), exclude some
types of cars from some auction sites (e. g., “red cars should not be sent to auction
sites in Texas” or “cars with more than 100,000 miles should not be sent to auc-
tions in the South-East”), etc. Note also, that in our example:

The number of returned cars changes every day.
The locations where the cars are returned changes every day.
The prices at each auction site change over time.
The number of available auction sites may change over time.
The volume effect changes over time.
Transportation costs change over time, etc.

38 4 Adaptive Business Intelligence

Because all organizations operate in a time-changing environment, they are forced
to constantly adapt and adjust. Consequently, an Adaptive Business Intelligence
system must include three major components: (1) a component for making predic-
tions (in our case, sale price predictions), (2) a component for making near-optimal
decisions (in our case, the distribution of cars), and (3) a component for adapting the
prediction module to changes in the environment. To create such a system, the fol-
lowing four steps should be followed:13

The available data must be prepared and thoroughly analyzed (the data mining
stage).
A prediction model must be developed based on the data mining results.
An optimization module must be developed that uses the prediction model to
recommend the best solution.
An adaptability module must be developed that is responsible for adapting the
prediction module to the time-changing environment.

Let us discuss the details of these seemingly simple steps, as understanding
them will enable us to realize the powerful benefits of Adaptive Business Intelli-
gence!

4.1 Data Mining

Data typically reside in one or more databases, and we first have to understand the
structure of each database and its tables. To illustrate this further, let us use a table
from Chap. 3 that has basic data about cars and their sale prices:

13 Before you can solve a problem, you have to understand it. In software development,
this means gaining a complete understanding of the user requirements. Unfortunately,
this process can be quite tricky, because business managers understand business proces-
ses while software developers understand software development. To bridge this gap,
software developers should talk directly with business managers to understand the rele-
vant business process and user requirements. With a complete understanding of the
problem, software developers can then create a user requirements document that is veri-
fied by the business managers. Because software development is covered many speciali-
zed texts, we will instead focus on the conceptual issues involved in developing an
Adaptive Business Intelligence system.

4.1 Data Mining 39

VIN ZIP Date Price
39WWK93309KJ33012 28262 2.11.2004 $12,035

UDJ2293M99DL0K220 30334 2.11.2004 $15,600

4D09WJD92JE93H990 30334 2.11.2004 $10,590

KD37D92JF83NF8822 90012 3.11.2004 $9,265

NKI2389DD974F2235 28262 3.11.2004 $13,450

K29DH38FHW02HD923 48243 3.11.2004 $13,955

MDK293HFDWH299305 90012 4.11.2004 $12,495

28DN39FNDJW2N0024 90012 4.11.2004 $11,925

29H93NFI3HJF93F04 48243 4.11.2004 $11,396

ND920ENF1NAD02834 48243 5.11.2004 $9,835

D39DJ39EHQ8HH9335 28262 5.11.2004 $8,965

02UFIMF03JF9SH935 90012 5.11.2004 $13,960

D932NF93HG9057362 48243 5.11.2004 $8,830

00F8EB3IDNB293758 48243 8.11.2004 $7,920

IE038THJ203TH0234 28262 8.11.2004 $19,250

39FH324MV092HGM39 48243 8.11.2004 $22,640

F92N9F389FH120458 90012 8.11.2004 $13,580

F9485JG03H25495J5 30334 9.11.2004 $16,970

08GN94HJH03J49327 30334 9.11.2004 $14,320

F04JH402KG4509G45 48243 9.11.2004 $9,110

And another table that has more detailed data about each car:

40 4 Adaptive Business Intelligence

V
IN

T

yp
e

M
ak

e
M

od
el

M

ile
s

Y
ea

r
C

ol
or

T

ra
ns

m
is

si
on

B

od
y/

D
oo

rs

D
am

ag
e

2
G
1
F
P
2
2
P
1
P
2
1
0
0
0
0
1

R
e
n
t
a
l

C
h
e
v
y

S
-
1
0

3
4
,
9
8
3

2
0
0
2

S
i
l
v
e
r

M
a
n
u
a
l

2
D

$
0

W
B
3
P
F
4
3
X
8
X
9
0
0
0
3
3
1

L
e
a
s
e

C
h
e
v
y

C
a
v
a
l
i
e
r

5
9
,
4
0
2

2
0
0
1

R
e
d

A
u
t
o
m
a
t
i
c

2
D

C
o
u
p
e

$
0

4
B
B
G
3
8
F
J
F
0
4
J
D
K
0
0
0

L
e
a
s
e

C
h
r
y
s
l
e
r

S
e
b
r
i
n
g

7
4
,
0
3
9

2
0
0
0

G
r
a
y

A
u
t
o
m
a
t
i
c

2
D

C
o
u
p
e

$
5
0
0

D
J
O
W
0
3
F
F
U
9
9
0
S
J
2
0
6

L
e
a
s
e

F
o
r
d

E
s
c
a
p
e

3
7
,
9
8
4

2
0
0
1

G
r
e
e
n

M
a
n
u
a
l

4
D

S
p
o
r
t

$
2
5
0

J
D
8
3
2
0
D
J
2
0
9
4
G
K
2
X
3

R
e
n
t
a
l

F
o
r
d

F
o
c
u
s

3
0
,
8
4
2

2
0
0
1

G
r
e
e
n

M
a
n
u
a
l

4
D

S
e
d
a
n

$
0

2
J
E
9
F
0
2
8
4
J
D
0
2
1
3
M
3

L
e
a
s
e

I
s
u
z
u

R
o
d
e
o

5
9
,
0
4
4

1
9
9
9

W
h
i
t
e

A
u
t
o
m
a
t
i
c

4
D

S
p
o
r
t

$
2
5
0

4
3
8
0
J
D
D
D
9
W
0
2
M
D
0
0
1

R
e
n
t
a
l

J
e
e
p

C
h
e
r
o
k
e
e

4
8
,
9
5
4

2
0
0
0

B
l
a
c
k

A
u
t
o
m
a
t
i
c

4
D

S
p
o
r
t

$
5
0
0

4
9
0
D
K
2
0
2
8
5
J
F
0
2
0
9
D

R
e
n
t
a
l

M
a
z
d
a

6
2
6

3
8
,
9
4
3

2
0
0
0

W
h
i
t
e

A
u
t
o
m
a
t
i
c

4
D

S
e
d
a
n

$
0

1
0
D
9
2
J
D
9
2
0
K
D
0
0
0
0
2

L
e
a
s
e

N
i
s
s
a
n

A
l
t
i
m
a

3
9
,
4
8
8

2
0
0
0

B
l
a
c
k

A
u
t
o
m
a
t
i
c

4
D

S
e
d
a
n

$
0

D
9
2
0
D
K
J
0
2
8
4
J
J
9
9
9
0

R
e
n
t
a
l

N
i
s
s
a
n

A
l
t
i
m
a

2
3
,
5
8
4

1
9
9
9

W
h
i
t
e

M
a
n
u
a
l

4
D

S
e
d
a
n

$
0

J
D
8
8
D
9
2
J
J
D
0
2
K
3
3
6
1

R
e
n
t
a
l

S
a
t
u
r
n

L

2
1
,
0
4
8

2
0
0
1

W
h
i
t
e

A
u
t
o
m
a
t
i
c

4
D

S
e
d
a
n

$
7
5
0

1
0
D
S
0
J
J
2
0
D
X
I
0
0
0
9
3

L
e
a
s
e

S
u
z
u
k
i

V
i
t
a
r
a

1
5
,
8
4
9

2
0
0
3

Y
e
l
l
o
w

A
u
t
o
m
a
t
i
c

2
D

S
p
o
r
t

$
0

2
1
K
D
0
2
K
D
0
D
J
9
2
0
M
2
7

L
e
a
s
e

B
M
W

Z
3

4
9
,
8
5
8

2
0
0
0

B
l
u
e

M
a
n
u
a
l

2
.
3

R
S
T
R

$
2
5
0

3
8
9
D
J
2
D
D
2
9
8
J
W
Q
0
8
2

L
e
a
s
e

F
o
r
d

E
x
p
l
o
r
e
r

4
2
,
8
9
3

2
0
0
2

G
r
e
e
n

A
u
t
o
m
a
t
i
c

X
L
T

4
W
D

$
0

1
0
8
D
J
2
0
4
8
F
J
J
2
0
0
4
3

R
e
n
t
a
l

F
o
r
d

M
u
s
t
a
n
g

2
0
,
3
8
4

2
0
0
2

R
e
d

M
a
n
u
a
l

G
T

$
0

D
J
C
8
2
0
0
2
0
0
9
D
D
2
J
0
4

R
e
n
t
a
l

M
e
r
c
u
r
y

F
r
o
n
t
i
e
r

2
7
,
8
4
9

2
0
0
1

S
i
l
v
e
r

A
u
t
o
m
a
t
i
c

S
E
-
V
6

C
r
e
w

$
5
0
0

8
3
0
D
M
M
3
0
2
9
X
M
W
0
0
9
2

L
e
a
s
e

H
o
n
d
a

A
c
c
o
r
d

2
6
,
8
4
9

2
0
0
2

Y
e
l
l
o
w

A
u
t
o
m
a
t
i
c

E
X

V
6

$
0

C
N
E
U
2
0
0
2
2
0
C
C
I
2
2
0
2

R
e
n
t
a
l

T
o
y
o
t
a

4
R
u
n
n
e
r

3
3
,
4
8
3

2
0
0
0

S
i
l
v
e
r

A
u
t
o
m
a
t
i
c

S
R
5

$
0

C
N
D
J
2
9
4
0
J
D
8
8
D
2
J
D
0

L
e
a
s
e

V
W

B
e
e
t
l
e

5
,
4
5
9

2
0
0
3

B
l
u
e

M
a
n
u
a
l

G
L
S

1
.
8
T

$
0

1
V
C
0
C
M
E
J
2
0
0
V
9
E
J
J
1

L
e
a
s
e

T
o
y
o
t
a

4
R
u
n
n
e
r

8
1
,
8
3
7

2
0
0
1

S
i
l
v
e
r

A
u
t
o
m
a
t
i
c

L
M
T
D

4
W
D

$
2
5
0

 4.2 Prediction 41

Since we have explained what each column means in the previous chapter,14

we should already have a good understanding of the data. Next, we have to clean the
data. “Clean the data?” Yes, data can be “dirty”! This terminology refers to situations
that involve missing data, inconsistent data, incorrect data, etc. Manually entered
data usually has to be cleaned since humans make typing errors and often use differ-
ent words to describe the same thing (e. g., “Chevrolet” and “Chevy”). Cleaning the
data means identifying what data might be missing, what data might have been ma-
nually entered, what data might be inconsistent or incorrect, and so on (we will dis-
cuss the process of preparing and cleaning data in more detail in the next chapter).

In this small sample, there are no missing values or irregularities, so we do not
have to worry about dirty data. We can now proceed with the data mining activity,
which is an analytical process for finding relationships and patterns among vari-
ables (e. g., finding the relationship between “sale price,” “make,” “model,” and
“mileage”). Although knowledge discovery (e. g., text mining, discovery of asso-
ciation rules) is oftentimes an important goal of data mining, we are more inter-
ested in using the data mining results to build a model (or set of models) for pre-
dicting some response (e. g., the outcome of a loan application, the probability that
a credit card transaction is fraudulent). The reason for this is that predictions are
directly applicable to decision making, whereas knowledge discovery is closer to
decision support. In the car distribution example, we are interested in predicting the
sale price for particular off-lease cars at particular auction sites at particular dates
in the future. Therefore, we should focus our data mining efforts on finding the
relationships and patterns that exist among the various variables in the data set, and
then use this knowledge to develop an effective model for predicting the sale price.

4.2 Prediction

The basic function of a prediction module (which can made up of one or more
prediction models) is to produce an output based on some input:

To make the prediction module functional, it is necessary to “train” the various
underlying models using historical data. During this process, the prediction mod-
ule “learns” how to predict the output given the input (we explain this process in
detail in Chap. 5). As an example, imagine predicting what a particular
Honda Accord (with known features and known mileage) would sell for at a par-
ticular auction site in Northern California at a particular point in time (e. g., in two
weeks). In this case, the input would be the auction site in Northern California, the

14 In many data mining activities, understanding what the columns mean and how they are
related is not an easy task!

42 4 Adaptive Business Intelligence

car Honda Accord (with all specified features), and the estimated sale date (say,
May 21st, as today is May 7th). The output, on the other hand, is the predicted sale
price for this car. In the illustration below, the prediction module predicts a sale
price of $11,384:

But how does a prediction module “know” what the sale price of a particular
Honda Accord will be on a particular auction site at a particular point in time?
Well, the prediction module would have to “learn” to predict the sale price based
on the historical sales data for all Honda Accords at the auction site in Northern
California. For the sake of simplicity, let us assume we have the following Honda
Accord sales data from last week’s auction in Northern California:

Make / Model ZIP Date Price
KD37D92JF83NF8822 94102 8.11.2004 $9,265

MDK293HFDWH299305 94102 8.11.2004 $12,495

28DN39FNDJW2N0024 94102 8.11.2004 $11,925

29H93NFI3HJF93F04 94102 8.11.2004 $11,396

ND920ENF1NAD02834 94102 8.11.2004 $9,835

D39DJ39EHQ8HH9335 94102 8.11.2004 $8,965

02UFIMF03JF9SH935 94102 8.11.2004 $13,960

D932NF93HG9057362 94102 8.11.2004 $8,830

00F8EB3IDNB293758 94102 8.11.2004 $7,920

IE038THJ203TH0234 94102 8.11.2004 $19,250

 4.3 Optimization 43

Let us also assume that our (very basic) prediction module “predicts” the sale
price for each make/model at each auction site by looking at the average sale
prices for the previous week (hence, it does not take into account the actual mile-
age, color, or other variables). It is interesting to note, however, that creating even
a basic prediction module such as this presents many difficulties. For instance,
a separate prediction model is needed for each make, model, and location. Hence,
the prediction module might need to contain around 10,000 separate prediction
models (20 makes × 10 models × 50 locations). Furthermore, if our database con-
tains approximately three million cases (data collection spanning 30 months), then
each prediction model will have an average of 300 cases. The distribution of these
cases will be non-uniform. For example, we might have 2,800 cases per location
for some makes/models (e. g., Toyota Camry), but only one or two cases per loca-
tion for some other makes/models (e. g., Porsche 911)! Consequently, it would be
impossible to create a prediction model for some makes/models. Regardless of
these complications, let us assume for the moment that our basic prediction mod-
ule makes a prediction of $11,384 (for the Honda Accord being sent to an auction
site in Northern California). Of course, this “prediction” would not be very accu-
rate, but it serves as a good starting point for further discussion in Sect. 4.4 below.

4.3 Optimization

Next comes the development of an optimization module capable of recommending
the best answer. Note that the “best answer” is based on the prediction module’s
output. For example, to evaluate the merit of a particular distribution of cars, we
need to predict their sale prices. The relationship between the prediction and opti-
mization modules can be displayed as follows:

In the above diagram, the optimization module generates a distribution solution
that serves as input data for the prediction module. This input data provides
a destination assignment (i. e., auction site) for each car, which the prediction mod-
ule uses to generate the predicted sale prices. The optimization module then uses the
sum of all the predicted sale prices (i. e., the output data) to gauge the quality of the
input data: The higher the sum of the predicted car sale prices, the better the input

44 4 Adaptive Business Intelligence

data. To maximize the sum of all the predicted sale prices, the optimization module
tries many different input data combinations and then evaluates the output data (of
course, the optimization module must modify the output data for transportation
costs and other adjustments). Many different techniques can used to construct an
efficient optimization module, which we will discuss in Chap. 6.

4.4 Adaptability

Developing effective prediction and optimization modules is a great start, but by
themselves these modules are insufficient for today’s ever-changing environ-
ments. Because today’s accurate prediction might be inaccurate tomorrow, the
prediction module must be capable of “learning from” and “adapting to” changes
in the environment. The concept of adaptability has far-reaching consequences:
Imagine a system that would improve over time by learning from its own predic-
tion errors. Such a system would truly be adaptive!

The adaptability process can be illustrated as follows:

To detect errors between the predicted result and the actual result, an adaptabil-
ity module compares the predicted sale prices (i. e., recent input) with the actual
prices for each car (i. e., recent output). If errors exist, the adaptability module will
“tune” the prediction module to decrease the prediction error.

As an example of this process, let us return to the basic prediction module dis-
cussed in Sect. 4.2, which “learns” the average sale price for each make/model at
each auction site by looking at the sale prices for the previous week. If the adapta-
bility module updates the prediction module every week by using a rolling time
window, then the prediction module can adapt to changes in the sale prices. Alter-
natively, imagine that the prediction module has certain rules that can be ex-
pressed as follows:

if [Make = Honda] and [Model = Accord] and [Color = white] and
[40,000 < Mileage < 50,000] and [Year = 2000] and [Damage Level = $0],
then Sale Price = $11,384.

4.5 The Structure of an Adaptive Business Intelligence System 45

Each of these rules has a weight,15 and the weights of rules can be modified
(say, on a weekly basis) to tune the predictions in a changing environment. In
other words, the adaptability module can “adapt” to environmental changes by
updating these rules, with the update frequency depending on how fast the envi-
ronment changes. Of course, a really good adaptability module can make its own
decision on the update frequency by continuously measuring its own prediction
errors. Hence, a really good adaptability module can adapt its own speed of adap-
tation! It is important to note, however, that the adaptability module’s effective-
ness in updating the prediction module is influenced by the type of prediction
methods that were used to build the underlying models. In the following chapter,
we will discuss some of these methods in detail.

4.5 The Structure of an Adaptive Business
Intelligence System

The prediction, optimization, and adaptability modules are the core components of
an Adaptive Business Intelligence system. However, this does not mean that other
components are not important (e. g., an easy-to-use graphical user interface, a data-
base for storing information). Thus, the overall structure of an Adaptive Business
Intelligence system resembles the following diagram:

15 The “weight” of a rule is just a parameter that provides a relative measure of the rule’s
merit. Rules that are more important are assigned higher values (recall the definition for
parameter in Sect. 3.1).

46 4 Adaptive Business Intelligence

In Sect. 2.6, we discussed how prediction, optimization, and adaptability were
used in the “pollution control” research project in Poland. The prediction module
was responsible for predicting the ecological damage that each 30 km × 30 km
square would sustain during the next 48 hours; the optimization module (con-
sisting of an evolutionary algorithm) was responsible for recommending the ideal
energy production level for each power station; and the adaptability module was
responsible for tuning the system’s performance. Furthermore, there were a few
reporting and visualization modules incorporated into the system, which interfaced
with the databases. In Part III of this book, we will discuss a modern Adaptive
Business Intelligence system with all of these components.

Part II:
Prediction and Optimization

5 Prediction Methods and Models

“When you have eliminated the impossible, whatever remains, how-
ever improbable, must be the truth.”
The Sign of Four

“As to Holmes, I observed that he sat frequently for half an hour on
end, with knitted brows and an abstract air, but he swept the matter
away with a wave of his hand when I mentioned it. ‘Data! data! data!’
he cried impatiently. ‘I can’t make bricks without clay.’ ”
The Adventure of the Copper Beeches

Most “prediction problems” can be categorized as classification problems, regres-
sion problems, or time series problems. When placing a prediction problem into
one of these three categories, two major aspects have to be taken into account: the
expected output and time. Let us explain these two aspects further.

For some problems, there are only two possible expected outputs: “yes” or
“no,” “true” or “false,” “buy” or “sell,” etc. These are classic classification prob-
lems,1 because they assign new cases to a class. The best example would be classi-
fication of credit card transactions into two classes: “fraudulent” and “legitimate”
(this problem is discussed in more detail in Sect. 12.5). A classification problem
may have, however, more than two outputs – in fact, the number of possible
classes (i. e., expected outputs) might be quite significant (e. g., different types of
diseases). In these classification problems, time does not exist; the “future” is
understood as an arrival of a new (yet unknown) case, or it is included as a vari-
able of the case.

Similar comments are also applicable to regression problems. The general pur-
pose of (multiple) regression is to discover the relationship between several inde-
pendent (“predictor”) variables and a dependent (“criterion”) variable, with the
output being a concrete number. For example, we may want to predict salary lev-
els as a function of position, number of years at the position, number of supervised
employees, etc. A regression model will also tell us which variables are better
predictors than others, and we can easily identify “outliers.”2 Again, the issue of
time is either non-existent or included as a variable of the case.

1 A prediction model developed for a classification problem is often called a classifier.
2 An outlier is an observation that lies at an abnormal distance from the other values in

a random sample. For example, the annual salary level for 1,000 randomly selected peo-
ple might be in the range of $17,832 to $167,942, with the exception of one person, an
outlier, who earns $938,400 per year.

50 5 Prediction Methods and Models

In contrast to classification and regression problems, “time” is the main feature
of a time series problem, with each case containing many values measured over
some time period in the past. In other words, the time-dependencies among the
cases are so strong that the cases must be kept in a sequential time order. In time
series problems, the future is referenced explicitly: we would like to predict
a variable’s value in the future (tomorrow, next month, etc.). A classic example in
economics would be to predict next year’s Gross Domestic Product (GDP). Plenty
of historical data are available (released every quarter), and the prediction model
may include many additional economic indicators as variables (e. g., employment,
financial, survey, production, and sales indicators).

Despite the fact that prediction problems come in all shapes and sizes – varying
in the number of variables, types of data patterns, time horizons, and types of
expected output – only two types of prediction methods exist for addressing these
problems: quantitative and qualitative methods. The quantitative methods assume
that a sufficient amount of data exists about the past, that these data can be quanti-
fied in the form of numerical data, and that past patterns will continue into the
future. Conversely, qualitative methods are applied in situations where very little
quantitative data are available, but where sufficient qualitative knowledge exists.

Although quantitative methods vary from simple (and intuitive) methods based
on empirical experience to formal methods based on statistical principles, all these
methods require data! Fortunately, the amount of stored data are growing at
a rapid rate. This growth takes place on two dimensions: the number of cases
stored (e. g., new transactions) and the number of variables in each case (e. g., the
detail of each transaction). In general, the more data the better, as data mining can
produce better results when performed on large data sets, and the resulting predic-
tion models are more accurate.

In the car distribution example, there are several important elements of predic-
tion. For example, we would like to predict the sale prices for different cars at
different auction sites on different days. Because these predictions are based on
past cases, we should know all the variables (e. g., “make,” “model,” “body style,”
“mileage”) of the cars that were sold over the last, say, three years; and we should
also know the sale price, and the exact date and location. Having all this informa-
tion, we can then apply various prediction methods to develop a good prediction
model. Of course, as we discussed in Chap. 3, the prediction model should also
take into account the distribution of other cars as well, because of the volume
effect.

The process of building a prediction model usually consists of a few steps:

Data preparation. To avoid the situation of “garbage in, garbage out,” the rele-
vant data must be “prepared.” This step includes data transformation, normali-
zation, creation of derived attributes, variable selection, elimination of noisy
data, supplying missing values, and data cleaning. This stage is often aug-
mented by preliminary data analysis to identify the most relevant variables and
to determine the complexity of the underlying problem. The data preparation
step can be the most laborious, and many people believe that it constitutes 80%
of any data mining effort.

5.1 Data Preparation 51

Model building. This step includes a complete analysis of the data (i. e., the data
mining stage), the selection of the best prediction method on the basis of
(a) explaining the variability in question, and (b) producing consistent results,
and the development of one or more prediction models.
Deployment and evaluation. This step includes implementing the best predic-
tion model, and applying it to new data to generate predictions. However, be-
cause new data arrive on a continuous basis, it is essential to measure the pre-
diction model’s performance and tune it accordingly.

Let us examine each of these steps.

5.1 Data Preparation

Generally speaking, there are only two “types” of variables: numerical and nomi-
nal. Numerical variables are numbers (e. g., “34,982” for mileage), while nominal
variables take their values from a predefined set (e. g., “black,” “white,” or “red”
for color). Because the values of nominal variables are symbols (strings of charac-
ters), there is rarely any order between them, and mathematical comparisons and
operations do not make much sense (as it is difficult to add “50” to “blue,” or to
compare which is larger: “blue” or “green”). Hence, it makes sense to talk about
ordered nominal variables, where comparisons of the type “greater than,” “less
than,” and “equal to” have meaning.

An additional type of variable is binary (also called a Boolean or true/false
variable), as it only takes one of two possible values (e. g., “yes” or “no,” “true” or
“false”). We may also come across other types of variables (e. g., variables that
store free text as a value, or that contain a set of values). Most prediction methods
and models require that variables be either binary or numerical (or nominal with
numerical codes as values), thus allowing some order. So, what should we do with
truly nominal variables, such as color? Well, there are two possibilities: Either the
color of a car can be coded as a unique number, or it can be converted into several
binary (true/false) variables, with each variable representing a particular color. For
example, if the color of the car is white, then the variable can take on the value
“true” (or “1”); if the color of the car is not white, then the value would be “false”
(or “0”).

To properly prepare the data, it is important to first identify the variable “type”
(i. e., to know whether the values of a variable allow arithmetical operations or
logical comparisons, whether there is a natural order imposed among them, and
whether is it meaningful to define a distance between the values). For example,
“very light,” “light,” “medium,” “heavy,” and “very heavy” follow a natural order,
but the distance between them is not defined. Mileage values, on the other hand,
have a natural measure of distance: a car with 34,789 miles has 3,500 miles less
than a car with 38,289 miles. Because the goal of any prediction model is to pro-
duce an output (i. e., the prediction), it is important to note that the output is also
a variable. In the car distribution example, the predicted output is the sale price,
which is a single numerical variable.

52 5 Prediction Methods and Models

In the data preparation phase, some variables may also require “transforma-
tion.” For example, it is quite typical for “date of birth” to be recorded as a vari-
able, but many decisions (or queries to the system) may be based on the “age” of
an individual. A simple data transformation step would convert the variable “date
of birth” into the variable “age” by subtracting a person’s date of birth from the
current date. Returning to the car distribution example, the VIN is clearly the key
variable, because we can use it to identify any car. However, the VIN itself is not
useful for data mining activities (after all, the string of 17 characters looks random
and meaningless: e. g., JD8320DJ2094GK2X3), but by using a VIN decoder it can
be transformed into meaningful information about the make, model, year, and
trim-level of a car.

Although data transformation is an important step in the data preparation proc-
ess, variable selection and variable composition are even more important. Vari-
able composition – which is somewhat similar to data transformation – requires
problem-specific knowledge to create new variables. Because these new variables
(often called synthetic variables) present existing data in a “better” form, they may
have a greater impact on the results than the specific prediction model used to
produce these results. A trivial example is the creation of a new variable to record
the average miles driven per year, which corresponds to the ratio:

Mileage / (Current Year – Year + 1)

The denominator would tell us the number of years the car was in service, and
the entire ratio would tell us the average miles driven per year.

Variable selection on the other hand (also known as feature selection or attrib-
ute selection) is the process of selecting the most relevant variables. This process
should be performed carefully, because if meaningful variables are not selected
then everything else – from data transformation all the way to the final prediction
model – will be meaningless. Conversely, selecting irrelevant variables may dete-
riorate the accuracy of a prediction model (in other words, removing irrelevant
variables usually improves the performance of a prediction model). This may
seem straightforward: After all, there are a finite number of variable subsets, so
we can examine all of them and select the best one! Unfortunately, it is not quite
that simple. First, the number of possible subsets may be too large: For a database
with “only” 20 variables, there are over 1 million possible subsets. Second, to
evaluate each subset, we will need to build a prediction model and evaluate it by
measuring the prediction error (we will discuss this in detail in Sect. 5.3, along
with some other validation issues). So, what is the solution?

Although the best way to select the most relevant variables is still manual
(based on problem-specific knowledge), there are numerous automatic methods
that can be divided into several categories. For example, we can consider methods
that evaluate the relevance of a single variable versus methods that evaluate
a subset of variables. Another category of automatic methods is based on the tim-
ing of selection: Some methods select variables at the very beginning using char-
acteristics of the data, while other methods select relevant variables during the
model construction process.

5.1 Data Preparation 53

Let us consider a few (simple) examples of different automatic methods for
variable selection that we could apply to a problem. Say the prediction problem is
one of classification (e. g., “fraudulent” and “legitimate”) and we are trying to
evaluate the usefulness of particular variables (such as the time of transaction, or
the amount) for predicting the outcome. One of the most popular automatic meth-
ods we could use is based on “means and variances.” Using a simple statistical
test, the means of a variable are compared for the two classes to see whether the
difference is likely to be random or not. Small differences in means usually imply
irrelevant variables. This method evaluates the variables one by one, and does so
before the development of any prediction model. On the other hand, we could use
an automatic method where the variable selection process is an inherent part of the
prediction model. For example, when a decision tree is built (these are covered in
the next section), the relevant variables are selected, one by one, during the tree-
building process. Lastly, we could also use automatic methods that evaluate the
entire subset of variables. Many optimization techniques discussed in Chap. 6
would be appropriate for this type of approach, as the problem is really an optimi-
zation problem (i. e., finding the “optimal” subset of variables).

Because the variable selection step removes redundant and/or non-productive
variables, we can consider this step as part of the “data reduction” process, the
general goal of which is to delete nonessential data (as the data set may be too big
for some prediction models and/or the expected time for building a model might
be too long). As data are represented in a table, we can: (1) reduce some variables
(columns) in the table, (2) reduce some values present in the table, and/or (3) re-
duce some cases (rows) from the table. We have already discussed the removal of
some variables, which is equivalent to the task of variable selection, so let us
move on to reducing values.

It is often necessary to “discretize” a numeric attribute into a smaller number of
distinct categories (e. g., the variable “mileage” can be grouped into values of
“below 10,000 miles,” “between 10,000 and 19,999 miles,” “between 20,000 and
29,999 miles,” and so on, right up to “over 200,000 miles”). This looks natural,
but how can we be sure that such discretization is any good? Moreover, what is
a good way to discretize numeric variables into categories? As usual, there are
a few possibilities to consider. One approach would be to discretize an attribute by
rounding: The actual mileage of the car can be rounded off to the closest
1,000 miles, thus 23,772 miles would become 23,000 miles. Another possibility
would be to create some number of discrete categories (say, 20), and distribute all
values to these categories in such a way that the average distance of a value from
its category mean is the smallest. For example, the first category may contain
mileages from 0 to 11,209, the second category may contain mileages from 11,789
to 18,991, and so on. Some mathematical methods (such as k-means clustering)
can deliver near-optimal solutions for such distributions. However, this approach
might be a bit risky for time-changing data. In the case of off-lease cars, new cases
are coming in at regular intervals, so the optimal mileage distributions might
change quite frequently.

Finally, let us turn our attention to the last possibility of data reduction, which
is the reduction of cases from the table. Clearly, the number of cases is often the

54 5 Prediction Methods and Models

largest dimension of the data; it is not unusual to have hundreds of millions of
cases containing 20 to 30 variables each. This does not mean, however, that the
process of case reduction is easy. Just the opposite is true: very often, case reduc-
tion is the hardest type of data reduction to perform. The general approach for
handling case reduction is based on random sampling. Rather than using the whole
data set to build a prediction model, random samples are used instead. Two popu-
lar techniques for random sampling include:

Incremental sampling. Where the model is trained on increasingly larger ran-
dom subsets of cases, the trends are observed, and the process is stopped when
no significant progress is made.
Average sampling. Where several samples of the same size are drawn from the
data set, a prediction model is created for each sample, and the outputs of all
the models are combined by voting or averaging (more on this in Sect. 10.1).

While discussing data preparation, it is also worthwhile to mention some other
aspects of this phase. Some problems require data normalization (e. g., scaling some
values to a specific range, say, [0, 1]). For example, the age of a car (in number of
years) should be interpreted on a different scale than the mileage. In particular, two
cars of the same age, but which differ by five miles, can be considered quite similar
(assuming that the other variables are the same), whereas two cars of the same mile-
age, but which differ by five years, are quite different. Data normalization also al-
lows us to express some values as integers, categories, floating point numbers, la-
bels, etc. For instance, we can transform $400 in damage into “damage level” = 0.04,
or we can assign damage to 1 of 10 categories, such as category 1 for damage under
$500, category 2 for damage between $501 and $1,000, and so forth. As indicated
earlier, we can also transform the variable “color” into 20 binary variables, one for
each color: “white,” “silver,” “red,” “green,” “blue,” …, “black.”

Another important issue connected with data preparation is that of inaccurate or
missing values. Inaccurate values usually arise from typographical errors. Some of
these errors can be “discovered” by analyzing the outliers for each variable, but
some of them may be difficult to find. Furthermore, in almost any data set, some
values are not recorded. For example, the color might be unknown for some cars,
or the mileage might be missing. Sometimes missing values are treated as just
another variable value (e. g., “white,” “silver,” “red,” …, “black,” “unknown”).
Another possibility would be to ignore all cases with missing values, but in some
data sets we might lose over 90% of the cases by doing this! Yet another way of
approaching the problem of missing values is to replace them with the variable’s
mean value. This might be tempting, but it is very risky, as the data could become
biased. Instead, it is safer to observe a relationship between the variable in ques-
tion and some other variables, and then replace the missing value with an esti-
mated value. For example, we can estimate the mileage on the basis of other vari-
ables (such as “year” and “type”): a four-year-old off-lease car should have around
48,000 miles, because car leases typically allow for 12,000 miles per year.

The final aspect of data preparation is connected with time-dependent data. Be-
cause all orders, deliveries, and transactions have some sort of a time stamp, most
real-world business problems have some time-dependent relationships within their

5.1 Data Preparation 55

data sets. Even some relatively “stable” data sets, such as bank customers, change
over time. Of course, these types of changes happen at a much slower rate than
changes in the stock market, but they do happen. Thus, this additional dimension
of time – additional to cases and variables – plays a significant role in most pre-
diction models. This time factor necessitates updates of the prediction model at
regular intervals. This can be done online, when new data arrive, or offline, by
analyzing the new data and modifying the prediction model. We will return to this
issue later, in Sect. 10.3, when we discuss the process of updating a prediction
model.

Time dependencies should be recognized and dealt with during the data prepa-
ration phase. Usually, time series models assume that the values for some vari-
ables are recorded at fixed intervals. For example, we can record the US Gross
Domestic Product at the end of each quarter, the Dow Jones Industrial Average at
the end of each business day, the temperature at some location every four hours
(i. e., six readings a day), and so on. However, if we look at the car distribution ex-
ample, our time series is far less regular. Although the price prediction is for
a particular make/model, there are many subcategories within each make/model
category (because of different mileage, color, trim, etc.). Hence, if we find several
exact cases from the past, they will not have regular time intervals: For example,
a blue Toyota Corolla with 33,000 miles was sold on April 13th, two more were
sold in early May, and another was sold in late August – but we have to make
prediction for this exact car for mid-October. Because of these interval irregulari-
ties, we should relax the precision of some input variables. For instance, color
need not be exactly the same (and for some makes/models, color is not a major
influencer of price anyway). On top of everything, we are not predicting the value
of a variable for the “next” time unit. If we ship a car from California to an auction
site in Arizona, we might be interested in a price prediction for next week (as the
shipping time would be several days). On the other hand, if we ship the same car
to an auction site in New York, then we might be interested in a price prediction
for three weeks from today! Needless to say, the volume effect should also be
taken into account, as other distribution decisions may influence the actual price
of the car!

Another important issue related to time-dependency is the “time horizon” of the
historical data. Simply put, we have to make a decision on how far back to look. It
seems natural that we should pay more attention to recent data, as “old” data may
have lost their significance. For example, using pre-September 11th, 2001 data to
predict air traffic for 2002 would not yield good results.

Some people also consider a preliminary (exploratory) analysis to be a part of the
data preparation phase, while others consider it a separate stage of the data mining
process. In either case, such an analysis is extremely helpful for gaining an under-
standing of the data. Preliminary data analysis usually includes graphing data for
visual inspection (e. g., we can graph the prices for a particular make/model with
respect to mileage), and computing some simple statistics such as averages, mini-
mums, maximums, means, standard deviations, and percentiles for each data set
(e. g., the prices of a particular make/model at a particular auction site). We can also
use “decomposition analysis” to detect trends, seasonality, cycles, and to identify

56 5 Prediction Methods and Models

outliers. Anyway, the main purpose of such an analysis is not to immediately select
a prediction model, but rather to get a “feel” for data. This stage is vital, as it can
suggest the appropriate prediction method.

5.2 Different Prediction Methods

After the data are prepared, we can begin our search for the right prediction
method. The goal is to build a prediction model that will predict the “outcome” of
a new case. This outcome might be the price of a used car sent to auction, the
classification of a loan application, the assignment of a new customer to the ap-
propriate cluster, and so on. Many prediction methods have been developed over
the years that differ from one another in the representation of a solution (e. g.,
decision tree versus a set of rules), as well as some other differences (e. g.,
whether they are capable of “explaining” the prediction, the ease with which a so-
lution can be edited). We can group these different prediction methods into a few
broad categories:

Mathematical (e. g., linear regression, statistical methods).
Distance (e. g., instance-based learning, clustering).
Logic (e. g., decision tables, decision trees, classification rules).
Modern heuristic (e. g., neural networks, evolutionary algorithms, fuzzy logic).

The first three categories are covered in this chapter, but the last category,
modern heuristic methods, is covered in later chapters. These heuristic methods
include fuzzy systems (Chap. 7), neural networks (Chap. 8), genetic programming
(Chap. 9), and agent-based systems (Chap. 9). One can argue, of course, that neu-
ral networks can be placed in the category of mathematical models, whereas fuzzy
systems and genetic programming are in the category of logic models (as they
represent classification rules and decision trees, respectively). However, these
techniques are of growing importance for building prediction models, and so we
have moved them into separate chapters to discuss them in greater depth.

5.2.1 Mathematical Methods

As discussed earlier in this chapter, there are three types of prediction problems:
classification, regression, and time series. Classification problems have been the
focus of data mining research for the last few decades, and some prediction methods
(e. g., distance and logic) were developed explicitly for classification problems. For
the time being, however, let us focus on regression and time series problems.

The major difference between regression and time series problems is that the
former assumes that the expected output exhibits some explanatory relationship
with some other variables. For example, someone’s (predicted) salary might be
a function of education, experience, industry, and location. In such cases, an ex-
planatory method would be used to find the relationship between these variables

5.2 Different Prediction Methods 57

and make a prediction. The goal of time series models, on the other hand, is not to
discover or explain the relationships between variables; their goal is purely one of
prediction. Neural networks (Chap. 8) are a good example of this: We may not un-
derstand the connection weights, the importance of particular variables or their
relationship, and yet the neural network model might be producing quite accurate
predictions …

Probably the most popular explanatory method is linear regression . If the pre-
dicted outcome is numeric and all the variables in the prediction model are nu-
meric, then linear regression is the classic choice.3 In this method, we build a lin-
ear expression that uses the values of different variables to produce a predicted
value for a “new” variable (i. e., a variable not used in the model). To illustrate
this prediction method in more detail, let us consider linear regression for predict-
ing the auction price of a car. In this case, the “new” variable would be the pre-
dicted sale price. Note that many variables are not numeric, so we have to address
this issue first. It is clear that the non-numeric variables “make,” “model,” and
“location” are of key importance, as they determine the basic price range (which is
further influenced by the mileage, year, trim, etc.). By building a separate regres-
sion model for each make/model at each location, we can eliminate these three
non-numeric variables.

Next, we should convert the remaining non-numeric variables into numeric
variables. For example, we can take a list of the available colors, sort them from
white to black according to some standard order (e. g., how they appear on
a spectrum), and assign consecutive natural numbers. Assuming we have 30 dif-
ferent colors, white would be 1 and black would be 30. Similar assignments can be
made for other non-numeric variables. Note that the variables “mileage,” “year,”
and “damage level” are already numeric, so there is no need to covert these.

Because a linear regression model must answer (i. e., produce a value for) ques-
tions such as: “What’s the price of a Toyota (“make”) Camry (“model”) at auction
site Jacksonville, Florida (“location”)?”4 we need to develop a function:

 Sale Price = a + (b × Mileage) + (c × Year) + (d × Color) + …

that provides the predicted price for a new case (i. e., a used Toyota Camry) when
supplied with the numeric values of the other variables (“mileage,” “year,” “co-
lor,” etc.). The main challenge here is to find the values for parameters a, b, c, d,
etc. that give the prediction model the best possible performance (i. e., that mini-
mize the predictive error). Since we have all the historic data from three million
cases, we can extract all cases where “location” = Jacksonville, “make” = Toyota,
and “model” = Camry. This subset of cases (say we identified 150 such cases)
would constitute the data set available for training the prediction model (some of

3 Note also that in some situations we would like to predict only one of two values (“yes”
or “no,” “fraudulent” or “legitimate,” “buy” or “sell,” etc.). This type of regression is
called logistic regression, and a similar methodology is applied (e.g., transformation of
variables, building a linear model).

4 Note that the Jacksonville location would contain many prediction models (for all dis-
tinct pairs of make/model).

58 5 Prediction Methods and Models

these cases would also be used for validation and testing; see Sect. 5.3 for more
details on this).

To minimize the error on the training set, there are several standard procedures
for determining the parameter values. Once these parameters are determined, the
prediction model (for all Toyota Camry cars sold at the Jacksonville auction) is
ready. For every new case (again, by new case we mean a used Toyota Camry),
we can determine the sale price for the Jacksonville location by inserting the ap-
propriate values for “mileage,” “year,” “color,” etc. into the sale price function.

Note, however, that the training process might not be that simple (this is true
for any prediction model, not just linear regression). First of all, some values
might be missing (e. g., the mileage was not recorded). In such cases we can:

Remove the case from consideration and contact the appropriate auction site to
recover the mileage value. Once this value is recovered, we can insert the case
back into the system for processing. Although this would cause a delay in proc-
essing the car, it might prevent us from making a serious prediction error.
Estimate the mileage on the basis of other variables. For example, if the car was
“leased,” it might be reasonable to assume that the average mileage allowance is
12,000 miles per year. Thus, a three-year-old car is likely to have 36,000 miles.

Second, because the prediction model has to provide more than just tomorrow’s
price (as it takes some time to transport the car to Jacksonville, and so we need
a predicted price for next week and/or three weeks from today), the training proc-
ess might be much more complex. The reason for this increased complexity is
hidden in the fact that the prediction model’s accuracy must be assessed for both
shorter and longer time periods. Hence, the process of searching for the best pre-
diction model is more difficult, as it is harder to compare and select the better of
two models where one provides better short-term predictions while the other pro-
vides better longer-term predictions. This is a typical multi-objective optimization
problem (as discussed in Sect. 2.4).

Third, from time to time the linear regression model would process a “rare” car,
such as a Dodge Viper or Acura NSX. Note that we assumed a linear regression
model for each make/model at each location. This assumption is fine, but the his-
torical data set may only contain 100 Dodge Viper cars with zero occurrences at
some locations! How can we build a model for a location where the data set is
empty? Well, as usual, there are several ways of dealing with this problem. One
way would be to estimate the price on the basis of (1) prices of the same
make/model at nearby locations, and (2) prices of similar models at the same loca-
tion. This approach would require some additional, problem-specific knowledge.
Another possibility would be to use an approach based on agent modeling
(Chap. 9), which can be used as a data mining technique for “data-less” problems!

The above example serves to underline the simple fact that the devil is in the de-
tail. This is true for any prediction method, because developing a prediction model
for a real-world problem usually involves the resolution of many issues ranging
from incomplete information to insufficient data. Something else to consider is that
regression might be far more complicated than our simple example. Note that the
prediction model above has one powerful disadvantage: it is linear! Real-world

5.2 Different Prediction Methods 59

data often display nonlinear dependencies that we would like to capture (recall the
nonlinear transportation model in Sect. 2.5). Of course, a linear regression model
would find the best possible line, but the line may not fit very well.

One approach to this problem is to replace the line with a curve, which can be
done by transforming the variables (by multiplying some of them together, squar-
ing or cubing them, or taking their square root). After completing these transfor-
mations, we can then determine the new parameters (i. e., a, b, c, d, etc.) of the
prediction model (although this new model is more complex and we are now talk-
ing about nonlinear regression). It is possible to experiment with a wide variety of
transformations, and if they do not provide a meaningful contribution to the pre-
diction model, then their parameters will stay close to zero. The difficulty, how-
ever, is that the number of possible transformations might be too prohibitive (i. e.,
the number of possible parameters to explore might be too high, and any training
would be infeasible). Moreover, with complex transformations we should guard
against overfitting,5 as the use of complex transformations guarantees high preci-
sion on the training set that may not carry over to new predictions.

Now let us turn our attention to time series problems. As mentioned earlier, the
only purpose of a time series model is to predict future values; the relationships
between the variables are of no interest. The problem might be expressed as fol-
lows:

 Given v[1], v[2], , v[t], predict the values of v[t+1], v[t+2], …, v[t+k]

where t is the present time interval, t–1 is the previous time interval, t+1 is the
next time interval, and so on. If we are only predicting the next interval (t+1), then
a time series model is concerned with a function F such that:

 v[t+1] = F(v[1], v[2], , v[t])

Note that the above function may include some other variables, and not just the
values of variable v from earlier time intervals. In such cases, we talk about com-
posite forecasting models, which consist of past time series values, past variables,
and past errors.

Many statistical time series models have been proposed during the last few dec-
ades, including exponential smoothing models, autoregressive/integrated/moving
average models, transfer function models, state space models, and others. Each
model is based on some assumptions, and involves a few (at least one) parameters
that must be tuned on the basis of historical data.

Now let us consider the category of prediction methods that are collectively
known as “exponential smoothing.” These methods generalize the moving average
method, where the mean of past k cases is used as a prediction. All exponential
smoothing methods assign weights to past cases in such a way that recent cases are
given more weight than the older cases (as the more recent cases usually provide
better future direction than the less recent ones). Hence, it is reasonable to develop
a weighting scheme that assigns smaller weights to older cases. Such a weighting

5 Overfitting occurs when a model tunes itself during the training stage to such an extent
that all predictions on the training data set are perfect.

60 5 Prediction Methods and Models

scheme also requires at least one parameter a. For example, a prediction for the
time t+1 is calculated as:

 Prediction (t+1) = (a × Actual(t)) + ((1–a) × Prediction(t))

which simply means that the prediction for the next (future) case is calculated as
a total of two values: the actual last case (Actual(t)) with parameter a and the last
prediction (Prediction(t) with the weight 1–a). Note that parameter a provides the
significance of the last case in making the prediction; in particular, if a = 1, then
the prediction would always report the last actual value as a new prediction. It is
easy to generalize this method to include more past cases:

Prediction (t+1) = (a × Actual(t)) + (a × (1–a) × Actual(t–1))
+ (a × (1–a)2 × Actual(t–2)) + (a × (1–a)3 × Actual(t–3)) +
+ (a × (1–a)t-1 × Actual(1)) + ((1–a)t × Prediction(1))

so Prediction(t+1) represents a weighted moving average of all past observations.
Note again, that different values of parameter a would result in a different distri-
bution of weights. Also, it was assumed that the prediction horizon was just one
period away (t+1). For longer-term predictions, it is often assumed that the func-
tion is flat:

 Prediction (t+1) = Prediction (t+2) = Prediction (t+3) =

as exponential smoothing works best for data that have no trend or seasonality.
However, since some form of trend or seasonality exists in most data sets, decom-
position methods can be used to identify the separate components of the underly-
ing trend-cycle and seasonal factors. The trend-cycle (which is sometimes sepa-
rated into trend and cyclical components) represents long-term changes in the time
series values, whereas seasonal factors relate to periodic fluctuations of constant
length caused by phenomena such as temperature, rainfall, holidays, etc.

Although there are several approaches to decomposing a time series problem
into separate components, the basic concept is based on experience: First the
trend-cycle is removed, then the seasonal components are addressed. Any remain-
ing error is attributed to randomness; thus:

 Data = trend-cycle + seasonality factors + error

Note that the relationship between the data and trend-cycle, seasonality factors,
and error need not be linear (additive, as above); in general, decomposition meth-
ods search for a function D that would “explain” a data point at any time t:

 Data (t) = D (trend-cycle(t), seasonality factors(t), error(t))

The figure below illustrates what such a decomposition of data might look like
for the car distribution example:

5.2 Different Prediction Methods 61

First of all, note that the “Car Price” (Data) corresponds to the left y-axis, while
the “Trend”, “Seasonality” and “Error” correspond to the right y-axis, and the x-axis
represents the month. In general, the “Trend” is a continued decrease of the “Car
Price,” while “Seasonality” can have a negative effect or no effect at all. The “Error”
can be positive or negative. Let us take June (month “6” in the figure above) as an
example: The “Car Price” is $4,045, the “Trend” during June is a decrease of $152,
the “Seasonality” effect is $0, and the “Error” is $35. If we add up all these numbers
then we get a “Car Price” of $3,928 for the beginning of July.

Going back to exponential smoothing, the relationship between the past and fu-
ture is linear, but this might not be appropriate for many real-world applications of
time series. Linear models cannot capture some features that commonly occur in
actual data, such as asymmetric cycles (which are data patterns in which the pe-
riod of repeating cycles is not fixed, and the average number of data on the up-
cycle is different than the average number of data on the down-cycle) and occa-
sional outliers. Although linear methods often deal with nonlinear time series by
logarithmic or power transformations of data, these techniques do not account for
asymmetric cycles and outliers.

Some nonlinear methods assume that asymmetric cycles are caused by distinct
underlying phases of the time series, and that a transition period (either smooth or
abrupt) exists between these phases. The individual phases are usually given
a linear functional form, and the transition period (if smooth) is modeled as an
exponential or logarithmic function. Some other methods are used to deal with time
series that display variable variance of residuals (error values). In these methods,

62 5 Prediction Methods and Models

the variance of error values is modeled as a quadratic function of past variance
values and past error values.

Although all these linear and nonlinear methods are capable of characterizing
the variables found in actual data, they also assume that the underlying process of
data generation is constant. This assumption is often invalid for actual time series
data, as changing environmental conditions may cause the underlying data gener-
ating process to change. For all prediction methods, human judgment is required
to first select an appropriate method, and then set the appropriate parameter values
for the model’s parameters. In the event that the underlying data generating proc-
ess changes, the time series data must be revaluated and the parameter values re-
adjusted (in extreme cases, a new model might be required). We will address the
issue of adaptability in Sect. 10.3, as well as a few other subsections in Part II of
this book.

5.2.2 Distance Methods

Another method for building prediction models is based on the concept of “dis-
tance between cases.” Any two cases in a data set can be compared for similarity,
and this similarity measure (called “distance”) is assigned some value: the more
similar the cases, the smaller the value. Using a distance measure within a data set
would allow us to compare a new case with the most “similar” existing case. The
outcome of the most similar case (e. g., the loan was repaid, the transaction was
fraudulent) would be the prediction for the new case. Going back to our example
of the Toyota Camry at the Jacksonville auction site, we may search our database
of three million cases for the most similar Toyota Camry sold in Jacksonville and
use its sale price as our prediction. Ideally, the existing case would be recent and
have the same mileage, color, trim, etc. as the new case. Hence, instead of build-
ing a function where the variable values (magnified by some weights) determine
the outcome, we just keep the past cases.

The essential aspect of this approach is creating a similarity measure between
cases, because the probability of finding an identical case is very low. Hence, we
have to base our decisions on similarities, which is far from trivial: For instance, is
a silver Toyota Camry with 33,000 miles “more similar” to a white Toyota Camry
with 34,100 miles, or to a silver Toyota Camry with 36,000 miles? Or, is the dif-
ference in “similarity” between “silver” and “white” the same as between “red”
and “yellow”? To answer such questions, it is necessary to define some distance
between cases (again, the shorter the distance, the greater the similarity).

One of the most popular distance-based prediction methods is k nearest neigh-
bor, where k nearest neighbors (i. e., k most similar cases) of a new case are de-
termined. Clearly, if k = 1 (i. e., we find only one neighbor), the outcome of this
single neighbor is the prediction for the new case. If k > 1, then a voting mecha-
nism is used (classification problems) or the average value of the k answers is
calculated (regression problems).

Note, however, that the most important step of the k nearest neighbor method is
calculating the distance between cases – this is crucial for getting high-quality

5.2 Different Prediction Methods 63

results. There are many ways of defining a distance function, but experimentation
is often the best way. In any case, careful data preparation is always the first step
(it is likely that the data will be normalized to equalize the scale for computing
distances and/or some weighting will be applied where different variables get
different weights). Note that calculating the distance is trivial when there is only
one numeric variable, (e. g., 5.7 – 3.8 = 1.9). With several numerical variables,
a Euclidean distance6 can be used, provided that the variables are normalized and
of equal importance (otherwise a weighting must be applied).

The largest problem, however, is with nominal variables. Given our earlier
question of whether “the difference in similarity between ‘silver’ and ‘white’ is
the same as between ‘red’ and ‘yellow’?” we can assume that different colors are
just different (resulting in a distance of 1), or we can introduce a more sophisti-
cated matrix that would assign a numeric measure for each color (e. g., so that the
difference between “light blue” and “dark blue” is smaller than the difference
between “blue” and “red”). These are the two standard approaches for evaluating
differences between the values of nominal variables.

Another issue to consider is that of missing values. A standard approach is to as-
sume that the distance between an existing value and a missing value is as large as
possible. Hence, for nominal values, the distance is assigned a normalized value
of 1 (all distances are between 0 and 1), and for numeric variables the distance is
assigned the largest possible normalized value between 0 and 1. For example, if an
existing value is 0.27 and the other value is missing, then the distance is 0.73; if the
existing value is 0.73 and the other value is missing, then the distance is also 0.73.

Yet another issue is the number of stored cases. A distance-based method might
be too time consuming for large data sets, because the whole data set must be
searched to evaluate each new case. With larger values of parameter k, the compu-
tation time increases significantly. For efficiency reasons, it would be beneficial to
reduce the number of stored cases. By selecting a subset of “representative cases,”
the process of finding the closest neighbor (or neighbors) might be more efficient.
And to make the representative cases as “representative” as possible (i. e., as good
as possible), a new set of representative cases can be selected from the current
representative cases and all misclassified cases that produced a prediction error
larger than some threshold. In other words, the current representative and misclas-
sified cases could constitute an input for some reclassification method (e. g., deci-
sion trees), which would be responsible for creating a better set of representative
cases.

Also, some clustering methods can be used to group the cases into meaningful
categories. A new case would then be assigned to an existing category and the
predicted value would be drawn from the cases present in that category (again,
by voting for classification, or averaging for regression). Note that it is not nec-
essary to store all the cases per category; again, we can select some representa-
tive cases instead. A few clustering techniques might be considered for this task

6 Euclidean distance is defined as the length of a line segment between two points in an
n-dimensional space. In particular, the distance d between two points (x1, y1) and (x2, y2) in
a 2-dimensional space is determined by the following function: d2 = (x1 – x2)

2 + (y1 – y2)
2.

64 5 Prediction Methods and Models

(e. g., k-means algorithm, incremental clustering, or statistical clustering based on
a mixture model), which we will discuss later in the text.

5.2.3 Logic Methods

A decision table (also known as a lookup table) is the simplest logic-based method
for prediction, and there are many such tables published for estimating the price of
a used car sold at auction (e. g., Black Book, Kelley Blue Book, Manheim Market
Report). In these tables, we can locate the appropriate make/model/year/body
style, get a basic price, and adjust this price for additional variables such as mile-
age, color, trim, damage level, etc. However, not all variables are included (e. g.,
for some makes/models, color might not be included).

The most widely used logic method, on the other hand, is the decision tree. Be-
cause the structure of a decision tree is relatively easy to follow and understand
(especially for smaller trees), its popularity is widespread. To make a prediction
for a new case, the root of a tree is examined, a test is performed,7 and, depending
on the result of the test, the case moves down the appropriate branch. The process
continues until a terminal node (also known as a “leaf”) is reached, and the value
of this terminal node is the predicted outcome.

Although decision trees are used for all types of predictions problems, they are
especially popular for classification problems. If the test involves a nominal vari-
able, the number of branches corresponds to the number of possible values that
variable can take (i. e., there is one branch for each possible value). If the test
involves a numeric variable, there are usually two branches, as the test determines
whether the value is “greater than” or “less than” (possibly also “equal to” for
integer numbers) some predefined fixed value.8 In the case of missing values, an
additional branch is assigned or some other heuristic is used (e. g., selection of the
most popular branch or selection of a few branches).

We can easily picture a decision tree for used car prices. At the root of the tree
a decision is made on “make”: if there are 30 different makes, then the root node
would have 30 branches. On the second level of the tree, a decision is made on
“model,” then the third level provides branches for “location.” Further down, we
may have nodes that test a new case for “body style” and “mileage” and refer it to
the appropriate branch. For example, a test on “mileage” might involve the selec-
tion of an appropriate category (e. g., “0 to 9,999 miles,” “10,000 to 19,999
miles,” and so on). The following illustrates the branch of a simplified decision
tree:

7 By “test” we mean that a node compares a value of a variable with some constant. Ho-
wever, it is possible to include more sophisticated tests, where more variables and/or ad-
ditional functions are involved.

8 It is also possible to have a decision tree with more than two branches for a numeric
variable, where a range of values is assigned to each branch.

5.2 Different Prediction Methods 65

Naturally, there are better and more sophisticated ways to use decision trees for
numeric prediction. It might not be practical to represent every value (or range of
values) as a separate branch in a decision tree, as the size of the tree might be too
large. Instead of keeping a single, numeric value at each terminal node (as illus-
trated above), it might be easier to keep a model (e. g., a linear regression model)
that predicts a value for all cases that reach this terminal node. Such a tree could
be used to answer our question from Sect. 5.2.1: “What’s the price of a Toyota
(“make”) Camry (“model”) at auction site Jacksonville (“location”)?” The vari-
ables “make,” “model,” and “location” are used for building the tree (and later for
branch determination when processing a new case), whereas mileage, year, color,
etc. are used as variables in the linear regression model at each terminal node, as
illustrated below:

66 5 Prediction Methods and Models

As before, the predicted sale price might be adjusted further to take into ac-
count the time factor, as it would take some time to transport the car to Jackson-
ville. Note that the number of parameters (a, b, c, d, etc.) and their values might be
different at each terminal node.

To achieve better prediction accuracy, it might be worthwhile to build a linear
regression model for each node of the tree (rather than just for the terminal
nodes).9 Note, however, that the root node would now have a function that in-
volves all the variables:10

Sale Price = a + (b × Make) + (c × Model) + (d × Location)
+ (e × Mileage) + (f × Year) + (g × Color) + …

For second-level nodes, the linear function will not include the variable
“make,” because the appropriate branch of the decision tree has already been se-
lected. Thus, the linear function would be:

Sale Price = a + (b × Model) + (c × Location) + (d × Mileage)
+ (e × Year) + (f × Color) + …

For third-level nodes (where the decision for make and model has already been
made), the function would be:

Sale Price = a + (b × Location) + (c × Mileage) + (d × Year)
+ (e × Color) + …

and so on. (Note, however, that the parameters a, b, c, etc. are different in all these
functions.) In our earlier diagram, the terminal node was placed on the fourth level
with a linear function of:

Sale Price = a + (b × Mileage) + (c × Year) + (d × Color) + …

9 Experimental evidence shows that prediction accuracy can be increased by combining
several prediction models together (we will discuss this in Sect. 10.1).

10 This approach usually involves nominal attributes as well (e.g., make, model, location)
as all the variables are represented on different levels of the decision tree. Such nominal
variables are transformed into binary variables and treated as numeric.

5.2 Different Prediction Methods 67

To compensate for the differences between “adjacent” linear models at the
fourth level, some averaging (also called smoothing) can be applied when process-
ing a new case. Instead of using the predicted value from the terminal node, the
predicted value can be “filtered” back up the tree and averaged at each node by
combining the predicted value from a lower level with the predicted value from
the current level. This usually improves the accuracy of predictions.

Another logic method is based on decision rules, which are “similar” to deci-
sion trees: after all, a decision tree can be interpreted as a collection of rules. For
example, the single branch of the decision tree displayed earlier can be converted
into the following rule:

if Make = Toyota & Model = Camry & Location = Jacksonville
& Body Style = LE & 10,000 ≤ Mileage ≤ 19,999 & Year = 2003,
then Sale Price = $17,350

The “if” parts of a rule (e. g., “model” = Camry) are combined logically to-
gether by the “and” (&) operator, and all the tests must be true if the rule is “to
fire” (i. e., for the conclusion of the rule to be applied: Price = $17,350). Note that
there must be several decision rules in the system (the above rule represents
a single branch of a tree) and we can interpret this collection of rules as connected
through the “or” operator: if one rule applies to a new case, its conclusion is taken
as the predicted outcome. If two (or more) rules fire, then we can combine the
conclusions of these rules to determine the final predicted outcome. The other (in
some sense, opposite) problem can arise if no rules fire for a new case! As usual,
some standard remedies exist, such as the creation of a default rule that will al-
ways fire

if 0 ≤ Mileage ≤ 999,999, then Sale Price = $15,000

which is the overall average price of a used car. Of course, one can question the
usefulness of such a rule …

These two simple cases, when two or more rules fire or no rules fire, illustrate the
point that rules can be difficult to deal with. The reason is that each rule represents
a separate “piece” of knowledge and all the rules together operate as one system
(often called a rule-based system). Thus, it is essential to understand the conse-
quences of adding or dropping a rule in the system. This is important in many prac-
tical situations, where experts add their own rules (from experience) to the data-
generated rules. Although dropping and adding rules in a rule-based system is not a
trivial task, it is much easier to drop or add a rule than to modify an entire decision
tree by cutting or adding some new branches. Hence, each method has its own ad-
vantages and disadvantages.

As mentioned earlier, classification problems have been the focus of data min-
ing research for the last few decades, and the creation of decision rules11 has been
the most popular approach for addressing these problems. Several aspects of gen-
erating rules from data have been investigated, including:

11 A decision rule for a classification problem is often called a classification rule.

68 5 Prediction Methods and Models

Association rules, which describe some regularity present in the data and can
“predict” any variable (rather than just the class). For example, an associate
rule may state that

if Make = Porsche & Model = Carrera,
then Location in {Jacksonville, Tampa, Los Angeles, San Francisco,
San Diego}

as Porsche Carreras are sold only at auction sites in Florida and California.

Rules with exception, which extend a rule with exceptions, may refer to asso-
ciation rules, e. g.,

if Make = Porsche & Model = Carrera, then Location in {Jacksonville,
Tampa, Los Angeles, San Francisco, San Diego}, except if Year ≤ 1997,
then Location in {Austin, Houston, Dallas}

which states that older Porsche Carreras (produced in 1997 or earlier) are sent
to auction sites in Texas; or to a classification rule, e. g.,

if Make = Toyota & Model = Camry & Location = Jacksonville
& Body Style = LE & 10,000 ≤ Mileage ≤ 19,999 & Year = 2003,
then Sale Price = $17,350, except if Color = Red, then Sale Price = $18,450

as red was a rare (but popular) color for Toyota Camry cars in 2003 and that in-
creases the price.

Rule-based systems, which consist of a collection of rules and an inference sys-
tem,12 are quite popular, because each rule specifies a small piece of knowledge
and people are good at handling small pieces of knowledge! Separate rules can be
discovered from data mining activities or interviewing experts, and instead of
specifying the overall model only the decision rules and inference system are
needed. Note that the rule-based system will try to behave like an expert, perform-
ing some reasoning on the basis of the knowledge present in the system.

5.2.4 Modern Heuristic Methods

As indicated earlier, a few prediction methods fall into the category of “modern
heuristics”; these include fuzzy systems, neural networks, genetic programming,
and agent-based systems. These methods originated in different research commu-
nities, and their “mechanics” are very different to classic methods such as statis-
tics and machine learning. Because these prediction methods are of growing im-
portance, we will discuss them in detail in Chaps. 7–9.

12 An inference system is responsible for putting the decision rules in the appropriate order
and combining the outcomes of the rules that fired. It may also contain strategies and
controls that are typically used by experts.

5.3 Evaluation of Models 69

5.2.5 Additional Considerations

Many other considerations must be taken into account when selecting the “best”
prediction method for an Adaptive Business Intelligence system. Although the
prediction error is quite possibly the most important measure, it only provides one
dimension of a model’s quality. For real-world business problems, many other
factors must be considered, such as:

Response time. This is an essential consideration, as any Adaptive Business
Intelligence system would have a defined response time. Fraud detection sys-
tems, for example, process millions of transactions per second, so the frequency
of predictions (i. e., classifications of “fraudulent” or “legitimate”) is very high.
Other prediction methods, on the other hand, might be used on a weekly basis
(e. g., inventory management) and so the response time is not that critical.
Editing. Some prediction models are difficult to edit (e. g., neural networks),
while others (e. g., rule-based systems) are easy. The ability to edit a model is
an important consideration, as it might be necessary to add the knowledge of
experts to the final model.
Prediction justification. This is an often-overlooked aspect of evaluating the
usefulness of a prediction model. For some applications (e. g., credit scoring) it
is very important to justify the prediction; in some cases, this might even be re-
quired by law (e. g., justification for rejecting a loan application).
Model compactness. A prediction model should not be exceedingly large and
complex, as that would make it difficult for humans to understand; also, it might
take a longer amount of time to make predictions. According to the principle of
“Ockham’s Razor,” a more compact prediction model is preferable over a
sprawling prediction model assuming they both do an equally good job of pre-
dicting.
Tolerance for noise. All prediction methods require some approach for han-
dling missing values (e. g., the mileage of an off-lease car has not been re-
corded), but some methods do a better job of handling missing values than oth-
ers. Also, some values might be present, but noisy (i. e., imprecise) – like
stating that the color of a car is “dark” …

Because of these many factors, it may be difficult to select “the best” prediction
method for the problem at hand. Different prediction methods have different prop-
erties, and so some of them may perform better or worse when trained on different
data sets. Hence, it might be worthwhile to use a few methods to build a few mod-
els, and then use all the models to reach a consensus. We will explore this hybrid
systems approach to prediction in Sect. 10.1.

5.3 Evaluation of Models

Although it is possible to use a variety of different prediction methods to build
a variety of different prediction models, the key issue is which method should be

70 5 Prediction Methods and Models

applied to a particular problem. To answer this question, it is necessary to evaluate
and compare different models. Because the comparisons have to be unbiased, the
evaluation methodology should be fair and just. At first blush, this may seem easy.
After all, after we complete and train a few models, we can test them on the data
and measure the prediction error. The best model would then be selected for im-
plementation.

Unfortunately, it is not that simple.
First of all, the amount of available data might not be that large. Even in the car

distribution example, if we take into account all the different makes and models
sold at all the different auction sites, our “large” data set of three million cases is
actually quite small. With 20 makes that each have 10 models, sold at 50 different
locations, we are talking about 10,000 variables. Our data set of three million
cases suddenly turns into just a few hundred cases for each make/model at each
location. Also, because some makes/models are common while others are rare, the
rare makes/models will only have a few cases per location sold at irregular inter-
vals during the past three years.

Secondly, the performance of a prediction model on the training data might be
very different from the performance of the same model on an independent set of
data. This might be due to overfitting, which is a common phenomenon. In short,
a model tunes itself during the training stage to such an extent that all predictions
on the training data set are perfect! However, the point is to develop a prediction
model that performs well on new data! Overfitting is a serious problem, as most
prediction methods are capable of generating 100% accurate predictions on the
training data set.

Thirdly, prediction models that provide different outcomes require different
techniques for error measurement. For instance, a prediction model may indicate
whether a new case belongs to class A or B, or, if we have a larger number of
classes, the probability that a new case belongs to each class. Alternately, a predic-
tion model may predict a number (e. g., sale price) or a sequence of numbers (e. g.,
sale price and sale date). In each of these examples, we have to carefully consider
what we are predicting (i. e., what the outcome of the prediction model is), and
apply the appropriate error measurement technique.

Finally, we have to take into account the cost of a potential error. When classify-
ing cases into two categories (“yes” or “no,” “fraudulent” or “legitimate,” etc.),
there are two types of errors: (a) false-positive, where the outcome is incorrectly
predicted as “yes,” when in fact it is “no,” and (b) false-negative, where the outcome
is incorrectly predicted as “no,” when in fact it is “yes” (this issue is discussed in
more detail in Sect. 12.5). Clearly, the cost of these errors is very different. By clas-
sifying a legitimate transaction as fraudulent (false-positive), there is a small cost to
check the transaction. On the other hand, classifying a fraudulent transaction as
legitimate (false-negative) usually carries a much higher cost, especially if the
transaction is significant (e. g., approving a fraudulent transaction for $5,000).13

Because different models may generate a different number of false-positives and
false-negatives on test data, the costs of these two types of errors must be taken into

13 A more detailed example of fraud detection is provided in Sect. 12.5.

5.3 Evaluation of Models 71

account. Although many error measurement techniques exist (e. g., mean-squared
error, mean absolute error, relative squared error, relative absolute error), it is much
harder to measure the consequences of an error. For example, the error in a price
prediction of a used car for a particular location might only be $150 (approximately
1% of the car’s value), but this error may influence the distribution decision, which
in turn influences the transportation decision and distributions of other cars (be-
cause of the volume effect)!

Because we are interested in the future performance of a prediction model –
i. e., performance on new data, not performance on the training data – we cannot
take a model’s performance (or error rate) on the training data (i. e., old data) as
a foolproof indicator of its performance on new data. The reason for this is very
simple: The most “reliable” prediction model would be a simple lookup table
where all the previous cases are stored. Such a model will score exceptionally well
on old cases … Unfortunately, this score will tell us very little about the model’s
performance on new data! Most prediction models can be overtrained in the sense
that they would behave in a similar way to a lookup table. Hence, a model’s per-
formance on the training data set will always be better than the model’s true per-
formance …

To predict a model’s performance on new data, we need another data set (usu-
ally called a test set) that did not participate in the building, training, and tuning of
the model. This is important: we need fresh data to evaluate the performance of
a prediction model. The most popular way of doing this (when there is enough
data) is to randomly divide the original data set (i. e., available cases) into a train-
ing set and testing set. The prediction method then uses the training set to select
variables, compose additional variables, calculate ratios, parameters, etc., but it
does not have access to the test set. Once the prediction model is created on the
basis of the training data set, it can be fairly evaluated for performance on the test
data set.

In many cases, the process of building a prediction model consists of two
phases: (1) constructing a model, and (2) tuning the parameters of the model. For
this reason, it is also convenient to further split the training data set into two sub-
sets: the primary training set and a validation set – the former for building the
model, the latter for tuning its parameters. So, altogether, it is convenient to have
three independent data sets (the third one being the test data set, which is used to
evaluate the model’s performance). Each of these three data sets should be se-
lected independently, and each of them plays an important, independent role:

The training data set is used for building a prediction model.
The validation data set is used for tuning the parameters of the model (i. e., for
optimizing the performance of the model).14

The test data set is used to evaluate the performance of the model.

If we had plenty of data for training, plenty of data for validation, and plenty of
data for evaluation, then the result should be a better model. However, if there is

14 If several prediction models were constructed from the training data set, then the valida-
tion data set is sometimes used for selecting the best model.

72 5 Prediction Methods and Models

only a limited amount of data, then what can be done to maximize them? Note
again that the general idea is to split the data: some data (usually two thirds) are
used for training (this includes validation), and some (usually one third) for testing.

The first issue to consider here is whether each subset is a “representative”
sample of the entire set. For example, it may happen that the training data set has
no “yellow” cars, while the test data set contains many yellow cars. If a category
is missing in the training set, then the prediction model might have serious diffi-
culties in predicting the “right” value for this category (as the “learning” process is
based on data). Moreover, the evaluation of the prediction model would be biased,
as all (or most) cases of the category in question (e. g., “yellow” cars) would ap-
pear only in the test data set!

Clearly, it would be beneficial to “guarantee” that the distribution of cases is
uniform across all data sets. One way of approaching this problem is through stra-
tification: the algorithm that splits the data into training and testing subsets ensures
that the sampling is done in such a way that each category is properly represented.
The other approach is repeating the training and testing phases with different da-
ta sets, and then averaging the performance of the prediction model from all the
iterations. A popular statistical technique, called cross-validation, is often used in
connection with the latter approach. In this technique, we divide the data set into
some number (say k) of disjoined subsets (called folds). Then k – 1 folds are used
for training and one for testing, and we can repeat this process k times, each time
with a different group of folds selected for training and a different fold for testing.
If k = 3 (i. e., the data set is partitioned into three subsets), then the technique is
called three-fold cross-validation. It is quite common to use k = 10 (10-fold cross-
validation),15 as 10 is a reasonable number of folds to get a good estimate of the
prediction error.16

One extreme (and, in many cases, useful) application of the cross-validation
technique is when the number of folds equals the number of cases in the data set
(this approach is called the leave-one-out approach). In a database with three mil-
lion cases, there would be three million folds. Hence, we would repeat the follow-
ing process three million times: A prediction model is built on a training data set of
2,999,999 cases, and the error estimate is made on the remaining single case. Then
the average of all errors will give us the error estimate for the prediction model. In
this technique, the greatest possible amounts of data are used for training, and,
because the approach is deterministic, there is no need to repeat the process. How-
ever, the computational overhead might be too large for large data sets.

The final model evaluation technique we will mention is the bootstrap, which
has a reputation for being one of the best techniques when the data set is very
small. In the bootstrap technique, a collection of cases is selected as the training

15 10-fold cross-validation is often used with stratification. Stratified 10-fold cross-validation
is generally held as a standard evaluation technique in cases where the amount of data are
limited.

16 This estimation, however, need not be perfect, as different fold selections may give differ-
ent error estimates. Thus, it is a standard procedure to repeat the cross-validation process
10 times, which results in building and testing a prediction model 100 times altogether.

5.3 Evaluation of Models 73

set with repetition. Further, the number of cases in the training set is the same as
the total number of cases available. By doing this, some cases will be selected
more than once, while some cases will not be selected al all! It is relatively easy
for a mathematician to calculate the probability of a case not being selected for the
training set by dividing the constant e by 1, which equals to 0.36787944117 ≈
0.368. This means that approximately 36.8% cases will not be selected, and 63.2%
of cases will be selected (once or more than once).17 If we apply the bootstrap
technique to our data set of three million used-car cases, then approximately
1,896,362 cases would be selected (once or more than once) for the training data
set, whereas the remaining 1,103,638 cases would constitute the test data set. As
with cross-validation, the bootstrap procedure is usually repeated several times
with different samples.

For a moment, let us return to the issue of time dependencies in the data set. As
mentioned earlier, most real-world business problems have some time-dependent
relationships within their data sets: Transactions, orders, deliveries, sales – all of
these have a time stamp. And because these data sets will inevitably change, the
problem lies in not knowing how they will change! Also, some data sets change
very quickly (e. g., the closing prices of all stocks in the S&P 500 index), while
others change very slowly (e. g., the average income in a particular region). As
a matter of fact, some changes are so slow that we consider the data set to be sta-
ble, even though small changes are constantly taking place. In any case, it is im-
portant to select the appropriate sampling technique when dividing the original
data into training and testing sets. It is also essential to organize the cases in such
a way that all the training cases have an earlier timestamp than the testing cases.
This is done so that the predictions go from “past” to “future.” In other words, we
should identify a particular point of time, and take all relevant preceding cases for
the training set and all relevant subsequent cases for the testing set. Note also, that
the time dependencies among cases might be so strong that we should treat the
data set as a time series, where all cases are kept in a sequential time order.

The inevitable changes that occur in a data set – from which we are supposed to
create a prediction model – have powerful consequences. If the changes are slight,
then the sampling and evaluation techniques discussed in this section would work.
However, if the changes are significant (like after a major stock market crash or
natural disaster), then it might necessary to build a new model altogether. Also, as
we saw in Sect. 5.2, different prediction methods produce different models of
varying complexity. For this reason, it might be safer to select a simpler model
that has a higher degree of generality (allowing for better adaptation to small
changes that occur in the data set). Another approach (which we will discuss in
Sect. 10.3) would be to use an adaptability module to adjust the various parame-
ters of the model.

17 Because 63.2% of the cases (on average) will be selected for the training set, the method
is also called the 0.632 bootstrap.

74 5 Prediction Methods and Models

5.4 Recommended Reading

In this chapter, we gave a general overview of many different types of prediction
problems (e. g., classification, regression, time series), methods (quantitative or
qualitative), and processes (data preparation, data mining, model building, de-
ployment and evaluation). Because the ultimate goal of any prediction model is to
predict the “outcome” of a new case, we also discussed a variety of prediction
models based on mathematics, distance, and logic. Our discussion on prediction
methods will continue in Chaps. 7–9, where we will present several modern pre-
diction methods, including artificial neural networks, fuzzy logic, and agent-based
modeling. Lastly, in Chap. 10 we will discuss the concept of using several predic-
tion models together, along with the role of the adaptability module.

There are a variety of texts available that discuss data mining techniques. The
book Predictive Data Mining by Sholom M. Weiss and Nitin Indurkhya (Morgan
Kaufmann, San Francisco, 1998) provides an excellent high-level discussion on
most of the topics presented in this chapter (e. g., preparation of data, data reduc-
tion, types of solutions), with an additional discussion on data mining and statisti-
cal methods, and several case studies.

A slightly more technical introductory text to data mining techniques is Data
Mining: Practical Machine Learning Tools and Techniques by Ian H. Witten and
Eibe Frank (Morgan Kaufmann, San Francisco, 2000). The book presents many
algorithms for extracting and validating various models (e. g., decision trees, rules,
linear models) from data. The book also provides Java data mining tools that the
authors made available through their website.

More advanced texts include Machine Learning and Data Mining: Methods
and Applications edited by Ryszard S. Michalski, Ivan Bratko, and Miroslav Ku-
bat (Wiley, Chichester, 1998). This volume provides a detailed treatment of many
specific topics (e. g., multi-strategy approach, inductive logic programming) as
well as discussions on data mining applications in pattern recognition, design,
engineering, control systems, medicine, and biology.

Further, there are texts available like Data Mining and Knowledge Discovery
with Evolutionary Algorithms by Alex A. Freitas (Springer, Berlin, 2002), which
discusses the integration of some optimization and data mining techniques.

As one of the main tasks of data mining is “prediction,” it is worthwhile to
check some classic texts on forecasting. One of the books we recommend is Fore-
casting: Methods and Applications by Spyros Makridakis, Steven C. Wheelwright,
and Rob J. Hyndman (Wiley, Chichester, 1998). The book presents a statistical
approach to forecasting: from basic forecasting tools, through time series decom-
position and particular methods (e. g., exponential smoothing, regression), to
judgmental forecasting.

6 Modern Optimization Techniques

“I have frequently gained my first real insight into the character of par-
ents by studying their children.”
The Adventure of the Copper Beeches

“The nature of his tactics suggested his identity to me, and this physi-
cal peculiarity – he was badly bitten in a saloon-fight in Adelaide in
’89 – confirmed my suspicion.”
The Disappearance of Lady Frances Carfax

Whether in banking, manufacturing, or retail, there is scarcely an industry where
the term “optimization” does not apply. This is due to the fact that every industry
strives for excellence (as there are continual pressures to reduce cost and increase
efficiency) and so over the years many optimization techniques have emerged to
help managers find better solutions to their business problems. The field of opera-
tions research, in particular, developed many techniques to address the complexity
of scheduling people, machines, and materials. We often refer to these optimiza-
tion techniques as “classic” techniques, with the best examples being linear pro-
gramming, branch and bound, dynamic programming, and network flow pro-
gramming.

During the last decade, however, we have witnessed the emergence of a new
class of optimization techniques that people have termed “modern heuristics.”
These modern techniques include (among others) simulated annealing, tabu
search, and evolutionary algorithms, and they are the main focus of this chapter.

6.1 Overview

Irrespective of the optimization technique used, three things always need to be speci-
fied: (1) the representation of the solution, (2) the objective, and (3) the evaluation
function. Let us consider each of these in turn.

The representation of a solution will determine the search space and its size.
This is an important point, because the size of the search space (i. e., the number
of possible solutions to the problem) is not determined by the problem, but by its
representation. Consequently, choosing the right search space is of paramount
importance. If we do not select the correct domain to begin with, we might actu-
ally preclude ourselves from ever finding the right solution!

76 6 Modern Optimization Techniques

Once we have defined the search space, we need to decide what we are looking
for. What is the objective of our problem? This is a mathematical statement of the
task to be achieved. It is not a function, but an expression. For example, suppose
we wanted to discover a good solution to a traveling salesman problem . The ob-
jective would be to minimize the total distance of the route while satisfying the
problem constraints. After the objective has been clearly defined, the next thing to
do is create an evaluation function that allows us to compare the quality of differ-
ent solutions. Some evaluation functions produce a ranking for various solutions
(called ordinal evaluation functions), while others are numeric and provide a rank-
ing and a quality measure score as well.

In the traveling salesman problem, a numeric evaluation function might map
each solution to a distance. By comparing the distance of various possible solu-
tions, we can easily tell if one solution is better than another and by how much.
However, it might be computationally expensive to calculate the exact distance of
each particular solution. In such cases, it might only be necessary to know ap-
proximately how good or bad a solution is, or if it compares favorably or unfa-
vorably with some other solution. Such an ordinal evaluation function might
evaluate two possible solutions and merely give us an indication as to which solu-
tion is favored.

Because the evaluation function is not provided with a problem, how should we
go about choosing the correct evaluation function? Oftentimes, the objective can
suggest a particular evaluation function. In the traveling salesman problem, for
instance, we considered using distance as the evaluation function. This corre-
sponds to the objective of minimizing the total distance of the route. Hence, the
objective naturally suggests an evaluation function for finding the best solution.
When designing the evaluation function, it is also important to keep in mind that
most of the solutions we are interested in will be in a small subset of the search
space (because we are only interested in feasible solutions – i. e., solutions that
satisfy the problem-specific constraints).

Once all of these steps are complete, we can begin searching for a solution. Note,
however, that the optimization technique18 does not know what problem we are
trying to solve! All it “knows” is the representation of the solution and the evalua-
tion function. If our evaluation function does not correspond to the objective, then
we will be searching for the right answer to the wrong problem!

In any search space, the goal is to find a solution that is feasible and better than
any other solution present in the entire search space. The solution that satisfies
these two conditions is called a global optimum. Because finding a global opti-
mum is extremely difficult, a much easier approach is to find the best solution in
a subset of the search space.19 If we can concentrate on a region of the search
space that is “near” some particular solution, we can describe this as looking at the
neighborhood of that solution. Graphically, let us consider some abstract search
space with a single solution s:

18 Optimization technique and search technique are considered synonymous. The search
for the best feasible solution is both an optimization problem and a search problem.

19 This observation forms the fundamental basis of many optimization techniques.

 6.1 Overview 77

Our intuition might tell us that solution s is in a neighborhood of the search
space where all solutions are very similar to one another. Consequently, we can
use a “neighborhood” or “local” optimization technique to find the best solution in
this neighborhood. The sequence of solutions that these techniques generate while
searching for the best possible solution relies on local information at each step of
the way.

Local optimization techniques present an interesting trade-off between the size
of the neighborhood and the efficiency of the search. If the size of the neighbor-
hood is relatively small, then the algorithm may be able to search the entire
neighborhood quickly. Only a few potential solutions may have to be evaluated
before a decision is made on which new solution should be considered next. How-
ever, such a small neighborhood increases the chance of becoming trapped in
a local optimum! This suggests using large neighborhoods, as a larger range of
visibility makes it easier for the algorithm to decide where to search next. In par-
ticular, if the visibility were unrestricted (i. e., the size of the neighborhood were
the same as the size of the whole search space), then eventually we would find the
best series of steps to take. However, the number of evaluations might become
overwhelming and impossible to compute.

All optimization techniques (whether local optimization techniques, ant sys-
tems, or evolutionary algorithms) generate new solutions from existing solutions.
The main difference between these different techniques lies in how these new
solutions are generated. Because we can only sample a small fraction of the search
space (otherwise the computation time would be billions of years!), we should be
economical in the process of generating and evaluating new solutions.

78 6 Modern Optimization Techniques

To put some of these concepts into context, let us return to the car distribution
example and assume that we want to distribute 3,000 cars to 50 auction sites.
Clearly, many possibilities exist for representing a “solution.” For example, we
can assign an index number from 1 to 50 for each auction site, and a solution can
be a vector of 3,000 numbers: the first number represents the destination of the
first car, the second number represents the destination of the second car, and so
forth:

The above vector represents a solution where the first car is shipped to auction
site 23, the second car is shipped to auction site 41, the third car is shipped to auc-
tion site 5, and so on, with the last two cars being shipped to auction sites 19 and 41
respectively. Of course, the auction numbers should not be assigned randomly.
When we discuss some optimization techniques in the following sections, the ad-
vantages of assigning “close” numbers to “close” auctions will become clear.

Note, however, that representing a solution in this way has a couple of disad-
vantages. First of all, this representation implies an enormous search space that is
too time consuming to search. We have 50 possible destinations for each car, so
the number of possible distributions for 3,000 cars is 50 × 50 × 50 × × 50 (i. e.,
50 multiplied by itself 3,000 times!). The size of this search space can be reduced
significantly by using a different representation.

The second disadvantage of this representation is that it makes some constraint
handling difficult. Recall that the car distribution problem includes many soft and
hard constraints, such as inventory level limits, exclusion conditions (e. g., “the
total transportation distance for each car must not exceed 700 miles”), and so
forth. If the above vector of auction indices were used to represent the solution,
then many randomly generated solutions would be infeasible. We could reject
these infeasible solutions, lower their quality measure score, or attempt to “repair”
them by replacing some values in the vector with new ones. For example, if the
auction site for the second car is 41 and it corresponds to Jacksonville, Florida
(which is more than 700 miles from the current location of the car), then we could
try to replace auction 41 with some other auction site that is closer to the location
of the car. Note also that most new solutions would be infeasible with this repre-
sentation, making the search process less efficient. In this particular case, other
representations exist that can make constraint handling easier.

Clearly, many other representations are possible; for instance, we can create
a linked-list structure of 50 nodes, where each node represents an auction site and
has a list of cars “assigned” to this auction. With this representation, it would be
much easier to handle certain constraints (e. g., inventory constraints, as the length
of each node implies the number of cars assigned to that particular auction):

 6.1 Overview 79

The above vector represents a solution that would send cars 2,340, 902, 1,198,
87, and 2,949 to auction 1, car 781 to auction 2, and so on, with cars 1,007, 1,459,
and 2,541 going to auction 50. By using this type of representation, the size of the
search space can be significantly reduced by imposing some inventory limits (e. g.,
each auction site should have at least 20, but no more than 100 cars). Additionally,
if some auction sites do not admit cars of a particular type (e. g., high mileage
cars), then it would be much easier to check (or enforce) such constraints.

Another possibility is based on indirect representation and some preprocessing.
Here we would sort all the available auction sites by distance from a particular
car, i. e., auction 1 would be the closest (distance-wise), auction 2 would be the
second closest, and so forth. Although this representation looks very similar to our
first representation, the interpretation is very different:

This vector represents a solution that ships the first car to the closest auction
site, the second car to the third-closest auction site, etc. Note that the same num-
bers in the above representation (e. g., number 1) correspond to different auction
sites! Again, there are several advantages of using this representation. First, the
vector:

represents a solution where each car is sent to the closest auction site. If we be-
lieve that transportation costs play a major role in the decision-making process,
then the above solution may represent a reasonable “first draft.” Second, the num-
bers are meaningful in the sense that they correspond to distances. If for some
reason auction 5 is not available (e. g., because of inventory limits), then we can
direct the car to auction 6, thereby increasing the transportation distance only
slightly. The third advantage is that preprocessing can help us handle many con-
straints. For example, if a car is red and auction 13 does not admit red cars, then

80 6 Modern Optimization Techniques

we can eliminate 13 from the list of available auction sites for this car. Also, if we
limit the transportation distance for any car, all we have to do is truncate the auc-
tion list to eliminate those sites that exceed the threshold. By doing this, many
constraints (e. g., exclusions based on mileage, color, distance) can be handled
during the preprocessing stage!20

Note again, that the representation of a solution will define the search space and
its size, and that we can define a neighborhood for any solution in any representa-
tion. If we assume a solution is represented by a vector of 3,000 numbers, with each
number corresponding to an auction site, then for a solution:

we may define its neighborhood as a collection of all solutions that are identical
except for one auction site being different by one (e. g., 23 can be replaced by
either 22 or 24). Hence, the following solution:

is a neighbor of the original solution. Note that the size of the neighborhood is
6,000 solutions, as there are two possible replacements for each auction (23 can be
replaced by 22 or 24; 41 can be replaced by 40 or 42; etc.).21

Of course, there are many other possibilities.22 For example, if an auction site
were allowed to differ by five (rather than just one), then the neighborhood would
be much larger. Each auction site would define 10 possible neighbors (e. g., auc-
tion 23 could be replaced by any of the following auctions: 18, 19, 20, 21, 22, 24,
25, 26, 27, 28), so the size of the neighborhood would be 30,000. Alternatively,
we can stick to the requirement that an auction site can only differ by one, but
relax the restriction on the number of auction sites that can differ! In such a sce-
nario, if any auction site can differ by one (or stay as it was), the size of such
a neighborhood would be 3 × 3 × 3 × … × 3 (3,000 multiplications!) Of course, if
we allow bigger changes (e. g., replacing auction 5 with auction 19), then the size
of this huge neighborhood would grow even further!

20 Using this representation, we have to build a list of all feasible auctions for each car.
Although this preprocessing might be computationally expensive, we do it only once, at
the beginning of the search. The general rule of thumb is that preprocessing is useful:
the more sweat during exercise, the less blood during combat! Also, we will return to the
subject of constraint handling in Sect. 6.6.

21 For some vectors, however, the neighborhood size is slightly less than 6,000 (e.g., auc-
tion sites 1 and 50 can only be replaced by 2 and 49 respectively).

22 The typical methods for defining neighborhoods are either based on distance or on some
transformation operator.

 6.1 Overview 81

The linked-list representation offers another possibility. For a solution:

we can define a neighbor as a new solution derived by changing the destination of
one car. For example, if we move car 902 from the first auction site to the second,
then we would get the following neighboring solution:

In this scenario, the size of the neighborhood is much smaller than in the previ-
ous example: there are 49 “other” auctions available for each car, so the number of
neighbors is only 147,000 (i. e., 49 × 3,000). Again, we can change the size of the
neighborhood by allowing some other transformations. For example, if we define
a neighbor as a solution obtained by swapping the assignment of two cars (e. g.,
swapping the assignment of cars 87 and 1,007), then the number of possible
neighbors would be less than 4,498,500 (i. e., 3,000 × 2,999/2), as swapping the
assignment of some cars (e. g., cars 2,340 and 87) does not lead to a new solution.

During different stages of different optimization techniques, it is necessary to
compare two different solutions and determine the better one. Hence, we must be
able to evaluate any solution and assign a quality measure score to it. If the quality
measure score is 123.76 for one solution and 119.92 for another, then we would
like to assume that the former solution is better. In the car distribution example, it
is necessary to build an evaluation procedure that returns a quality measure score
for any solution. However, this task is not trivial; for example, how can we evalu-
ate a solution:

82 6 Modern Optimization Techniques

that assigns the first car to auction 23, the second car to the auction 41, and so on?
Clearly, several things must be considered: the predicted sale prices of these cars at
the auction sites (taking into account the time delay caused by transportation),
transportation costs, “penalties” for violation of various constraints (e. g., a red car
is shipped to an auction that does not admit red cars), and so forth. Quite often, there
would be many trade-offs to consider (e. g., by sending a red car to a particular auc-
tion site we would violate a constraint, but on the other hand we would save a lot on
the transportation cost …), which should be reflected in the evaluation function.

6.2 Local Optimization Techniques

The evaluation function defines a quality measure score landscape (also known as
a response surface or fitness landscape) that is much like a topography of hills and
valleys. Within this three-dimensional landscape, the problem of finding a solution
with the highest quality measure score is similar to searching for a peak in a foggy
mountain range. Because our visibility is limited, we can only make local deci-
sions about where to go next. If we always walk uphill, we will eventually reach
a peak, but this peak might not be the highest peak in the mountain range; it might
just be a “local” optimum. We may have to walk downhill for some period of time
to find a path that will eventually lead us to the highest peak (i. e., the “global”
optimum).

The quality measure score landscape for a two-variable function is illustrated
below. The graph displays the quality measure score for every pair of values for
the first and second variable, which allows us to visualize the mountain ranges,
highest peaks, local optima, etc.:

6.2 Local Optimization Techniques 83

Keeping this illustration in mind, let us examine a basic local optimization proce-
dure called hill climbing,23 and its connection with the “neighborhood” concept.
Like all local optimization techniques, hill climbing uses iterative improvement.
The technique is applied to a single solution (i. e., the current solution) in the
search space. During each iteration, a new solution is selected from the neighbor-
hood of the current solution. If that new solution has a better quality measure
score, then the new solution becomes the current solution. Otherwise, some other
neighbor is selected and tested against the current solution. The techniques termi-
nates if no further improvements are possible, or when the allotted time runs out.

A simple flowchart of a hill-climbing sequence is given below:

Note that this flowchart expresses only the general principle of hill climbing
without any termination conditions. We have to start with some (possibly ran-
domly generated) solution s, evaluate it, and then generate a new solution x from

23 The term hill climbing implies a maximization problem, but the equivalent descent
method is easily envisioned for minimization problems. For convenience, the term will
be used to describe both methods without any implied loss of generality.

84 6 Modern Optimization Techniques

a neighborhood of s. If the new solution x is better than s, then we take an uphill
step (i. e., we accept this new solution as the current solution, and try to improve it
further by generating yet another new solution from the neighborhood of the cur-
rent one). On the other hand, if the new solution x is not better than s, we generate
another new solution and we repeat this process several times until either (1) the
whole neighborhood has been searched, or (2) we have exceeded the threshold of
allowed attempts (which is missing from the flowchart). At this stage, we can exit
the loop and report the current solution as the best solution, or we can store the
current solution in “memory” and restart the whole process, hoping that the next
hill-climbing iteration (which starts from a new solution) may produce a better
overall solution (a process called iterated hill-climbing).

It is clear that such hill-climbing techniques can only provide locally optimum
values that depend on the starting solution. Moreover, there is no general proce-
dure for measuring the relative error with respect to the global optimum because it
remains unknown. Given the problem of converging on locally optimal solutions,
we often have to start the hill-climbing algorithm from a large variety of different
solutions. The hope is that at least some of these initial locations have a path that
leads to the global optimum. We might choose the initial solutions at random, or
we might base them on some grid, regular pattern, or other available information
(perhaps using the search results from somebody else’s effort to solve the same
problem).

The success or failure of a single iteration (i. e., one complete climb) of the hill-
climbing algorithm is determined completely by the initial solution. For problems
with many local optima, it is often very difficult to find the global optimum. Con-
sequently, hill-climbing techniques have several weaknesses:

They usually terminate at solutions that are only locally optimal.
There is no information as to how much the discovered local optimum deviates
from the global optimum, or perhaps even from other local optima.
The optimum that is obtained depends on the initial configuration.
In general, it is not possible to provide an upper bound for the computation
time.

On the other hand, there is a tempting advantage to using hill-climbing tech-
niques: they are very easy to apply! All that is needed is the representation, the
evaluation function, and a measure that defines the neighborhood around a given
solution.

Effective optimization techniques provide a mechanism for balancing two ap-
parently conflicting objectives at the same time: exploiting the best solutions
found so far, and exploring the search space. Hill-climbing techniques exploit the
best available solution for possible improvement, but they neglect exploring
a large portion of the search space. In contrast, a random search (where various
solutions are sampled from the entire search space with equal probability) ex-
plores the search space thoroughly, but foregoes exploiting promising regions of
the space. Each search space is different, and even identical spaces can appear
very different under different representations and evaluation functions. As a result,

6.2 Local Optimization Techniques 85

there is no way to choose a single optimization technique that performs well in
every case (more on this topic in Sect. 10.2).

Let us illustrate the hill-climbing technique on the car distribution example. Say
we would like to implement an iterative hill-climbing algorithm that would gener-
ate a car distribution recommendation. Using the first representation (i. e., where a
vector of 3,000 values provides indices of auction sites from 1 to 50) and defining
a “neighbor” as a solution that differs (at most) by 1 on any position, the hill-
climbing algorithm would work as follows.

First, the algorithm would generate a starting solution. This solution might be
generated randomly (i. e., for each entry, a random number from 1 to 50 is pro-
duced) or we can accept some heuristic-based solution (e. g., an initial solution
that assigns each car to the nearest auction site). Either way, let us assume that the
initial solution is:

The algorithm then evaluates this solution and assigns a quality measure score
to it. For this example, let us assume that the above solution generates a quality
measure score of 171.49. Now we are ready to do some “hill-climbing”! The algo-
rithm generates a neighbor solution by generating some random locations in the
vector (any number of locations from 1 to 3,000) and then changing the selected
indices in these locations by one (increment or decrement). Assume that the gen-
erated solution is (i. e., the selected first, second, …, and 3,000th location was in-
creased or decreased by one.):

Next, the evaluation of this solution is needed. If the evaluation produces a
quality measure score higher than the original solution (e. g., 176.18), then the
algorithm will accept this new solution as the current solution and continue. Note
that this new solution (with a higher quality measure score) has its own new
neighborhood, and the subsequent new solution is drawn from this new neighbor-
hood. Any acceptance of a new solution means that the algorithm found a better
solution and made a step uphill. However, it may happen that the quality measure
score of the new solution is lower than the current solutions (e. g., 169.83). In such
a case, the algorithm will discard this solution (we are not interested in inferior
solutions) and generate another solution from the neighborhood of the current
solution. Say the next solution is:

86 6 Modern Optimization Techniques

Again, if there is an improvement in the quality measure score, then the algo-
rithm will accept this solution and continue. If not, the algorithm will generate
another solution from the original neighborhood …

Note also that a hill-climbing algorithm can (a) accept the first solution found
that is better than the current one (as presented above), or (b) accept the best solu-
tion found in the whole neighborhood. These two possibilities represent two ex-
tremes, with plenty of “in between” possibilities (e. g., we can accept the best
solution found from 100 generated solutions in the neighborhood).

The question is, how long should the hill-climbing algorithm generate random
solutions before giving up? Well, we usually have a counter responsible for count-
ing the algorithm’s attempts to improve the current solution. Each time the algo-
rithm finds an improvement the counter is reset to zero. However, if the hill-
climbing algorithm experiences a long sequence of unsuccessful attempts, we stop
the search upon exceeding a predefined threshold. In this particular example, what
should the threshold be? The answer depends on a few factors, with the size of the
neighborhood being the most important. It is difficult to claim that we have found
the “local optimum” if we did not search the whole neighborhood, but the size of
the neighborhood might be too large to evaluate all the neighbors! This problem
can be resolved by defining a neighborhood differently. For example, if a neighbor
differs from the current solution by only 1 on one location, then we will have up to
6,000 neighbors for each current solution and can evaluate all of them before giv-
ing up.

In summary, if it is feasible (time wise) to search the whole neighborhood be-
fore arriving at the local optimum, then we do not need a counter for controlling
the number of unsuccessful attempts because all the solutions in the neighborhood
will be searched. However, if it is not feasible to search the whole neighborhood,
we have to settle for a counter and quit our search after some number of unsuc-
cessful attempts. In our case, let us assume we quit the search after 100,000 un-
successful attempts.

Returning to our example, say we arrive at the following solution after many it-
erations and improvements, and all attempts to improve it have failed:

Note the significant number of improvements the algorithm went through: the
original assignment for car 2,999 (second to last position in the vector) changed
from auction 19 to auction 45, and all changes were made by adding or subtracting
1. Anyway, in all likelihood we have arrived at the local optimum, and this solu-
tion is the outcome of our hill-climbing exercise. The quality measure score is
345.67 and we are confident about the solution’s quality. After all, 100,000
neighboring solutions failed to produce any improvement!

However, we are not sure if this is the best solution. If we started our hill-
climbing exercise from a different solution (which might be located in a very

6.3 Stochastic Hill Climber 87

“different area” of the search space), we might finish with a local optimum solu-
tion that looks like:

and has a quality measure score of 1,457.81 (which is much better than the solu-
tion we discovered earlier!).

Recall our earlier discussion on the “hills and valleys” in a quality measure
score landscape. Clearly, there are many hills (local optimum solutions) and the
hill-climbing algorithm will produce a solution that represents one of these hills.
However, the problem is that we do not know whether there are other (possibly
much higher) hills somewhere else! And the size of the neighborhood corresponds
to our “visibility” during the search: the larger the neighborhood, the better the
visibility, and the better chances of discovering the highest peak! However, it
might not be feasible to search the whole neighborhood if it is too large …

So, what should we do? We can restart out hill-climbing algorithm several
times, each time from a different (possibly random) location, and hope that one of
these runs will provide us with the global optimum solution (which may or may
not happen).

6.3 Stochastic Hill Climber

Getting stuck in local optima is a serious problem. It is one of the main deficien-
cies of numerical optimization applications, as almost every solution to a real-
world problem in factory scheduling, demand planning, land management, and so
forth is at best only locally optimal.

So what can we do about it? How can we design an optimization technique that
has a chance to escape local optima, to balance exploration and exploitation, and
to make the search independent from the initial configuration? There are a few
possibilities, and we will discuss some of them in this chapter, but keep in mind
that the proper choice is always dependent on the problem. One option, as we
discussed earlier, is to execute a large number of initial configurations for the
chosen technique. Moreover, it is often possible to use the results of previous
attempts to improve the initial configuration for the next attempt. We have already
seen one possibility of this in the previous section, where we discussed a proce-
dure called the “iterated hill climber.” After reaching a local optimum, the search
is restarted from a different starting solution. Although we can apply this strategy
to other algorithms, let us discuss some other possibilities of escaping local optima
within a single run of an algorithm. One way of accomplishing this is by modify-
ing the criteria for accepting new solutions that correspond to a negative change in
the quality measure score. That is, we might want to accept an inferior solution
from the local neighborhood in the hope that it will eventually lead us to some-
thing better.

88 6 Modern Optimization Techniques

To turn an ordinary hill climber into such an algorithm, a few modifications are
required. First, let us recall the detailed structure of a hill climber:

Note again that the inner loop always returns the local optimum. The only way
for this technique to “escape” local optima is by starting a new search (outer loop)
from a new (random) location. After some maximum number of attempts, the best
overall solution is the final outcome of the algorithm.

By modifying this procedure so that acceptance of a new solution is dependent
upon some probability – which is based on the difference between the quality
measure score for these two solutions – we obtain a new technique called the sto-
chastic hill climber:

6.3 Stochastic Hill Climber 89

The slight (but significant) difference between an ordinary and stochastic hill
climber lies in a single box inserted in the flowchart that replaces the condition
box. During the execution of the hill climber’s internal loop (where the hill-
climbing searches for a better solution in the neighborhood of the current one),
only a superior solution is accepted as a new current solution. On the other hand,
the same internal loop in the stochastic hill climber procedure may accept an infe-
rior solution as a new current solution. This feature does not appear in local opti-
mization techniques. This insertion represents a probabilistic decision on the ac-
ceptance of a new solution (as opposed to a deterministic decision in classic hill
climbers), and is done to escape local optima …

Let us discuss this feature carefully. A new solution x is accepted with some
probability P, which means that the rule of moving from the current solution to
a new neighbor is probabilistic. Consequently, it is possible for the newly accepted
solution x to be inferior to the current solution s, and it is also possible that a supe-
rior solution will not be accepted! This probability of acceptance depends on the
quality measure score difference between these two solutions, as well as on the
value of an additional parameter T (which remains constant during the execution
of the algorithm).

90 6 Modern Optimization Techniques

Rather than providing a mathematical function for calculating the values of
probability P (which is based on a constant value of parameter T), we will instead
explain how this function works. In general terms, the probability function is con-
structed in a such way that:

If the new solution x has the same quality measure score as the current solution
s, then the probability of acceptance is 50% (it does not matter which one is
chosen, because each is of equal quality).
If the new solution x is superior, then the probability of acceptance is greater
than 50%. Moreover, the probability of acceptance grows together with the
(negative) difference between these two quality measure scores.
If the new solution x is inferior, then the probability of acceptance is smaller
than 50%. Moreover, the probability of acceptance shrinks together with the
(positive) difference between these two quality measure scores.

The probability of accepting a new solution x also depends on the value of pa-
rameter T, and the general principle is as follows:

If the new solution x is superior, then the probability of acceptance is closer to
50% for high values of parameter T, or closer to 100% for low values of pa-
rameter T.
If the new solution x is inferior, then the probability of acceptance is closer to
50% for high values of parameter T, or closer to 0% for low values of parame-
ter T.

This is interesting, because it means that a superior solution x would have
a probability of acceptance of at least 50% (regardless of the value of parameter T).
Likewise, an inferior solution would have a probability of acceptance of at most
50% (varying between 0% for low values of T and 50% for high values of T). The
general conclusion is clear: The lower the value of T, the more the algorithm be-
haves like a classic hill climber that rejects inferior solutions and accepts superior
ones. On the other hand, if the value of T is very high, then the algorithm resembles
a random search, because the probability of accepting inferior or superior solutions
is close to 50%. Thus, we have to find a value for parameter T that is neither too
low nor too high for a particular problem.

The stochastic hill climber technique is also a forerunner to another optimiza-
tion technique called simulated annealing, which is covered in the next section.

6.4 Simulated Annealing

The simulated annealing technique (also known as Monte Carlo annealing, statis-
tical cooling, probabilistic hill-climbing, stochastic relaxation, and the probabilis-
tic exchange algorithm) is based on an analogy taken from thermodynamics. To
grow a crystal, we begin by turning the raw material into a molten state through
heating. Then we reduce the temperature of this crystal melt until the crystal struc-
ture is frozen. However, if the cooling process is done too quickly, then the results

6.4 Simulated Annealing 91

are detrimental. In particular, some irregularities are locked into the crystal struc-
ture and the trapped energy level is much higher than in a perfectly structured
crystal.24 The analogy between the physical system and an optimization problem is
evident; the basic “equivalent” concepts are listed below:

State – feasible solution
Energy – evaluation function
Ground state – optimal solution
Rapid quenching – local search
Temperature – control parameter T
Careful annealing – simulated annealing

Simulated annealing is similar to a stochastic hill climber in that it may accept
an inferior solution as a new current solution, and the acceptance decision is based
on the value of parameter T. However, unlike the stochastic hill climber (which
has a fixed value for parameter T), simulated annealing changes the value of pa-
rameter T (commonly referred to as temperature) during the run. Simulated an-
nealing starts with high values of parameter T – making the process similar to a
random search – and then gradually decreases this value during the run. The value
of parameter T is quite small toward the end of the run, so the final stages of simu-
lated annealing resemble an ordinary hill climber. Another difference between the
stochastic hill climber and simulated annealing is that the latter always accepts
superior solutions. Recall from the previous section that the stochastic hill climber
used some probability for accepting both inferior and superior solutions, which is
not the case in simulated annealing.

The following flowchart represents a simulated annealing algorithm:

24 A similar problem occurs in metallurgy when heating and cooling metals.

92 6 Modern Optimization Techniques

The internal loop (represented by the thin line) generates a new solution in the
neighborhood of the current solution, accepts superior solutions, accepts or de-
clines inferior solutions (according to probability P, which depends on the quality

6.4 Simulated Annealing 93

measure score difference between two solutions and the current value of parame-
ter T), and repeats this process some (relatively large) number of times. When this
iterative cycle is complete, the system drops the temperature a bit (outer loop,
represented by the thick line) and then switches back to the internal loop, repeat-
ing the process of creating, evaluating, and possibly accepting the neighboring
solutions. If the temperature is low enough (i. e., when it reaches the freezing
point), the algorithm stops.

As this flowchart illustrates, simulated annealing applies a modified version of
the stochastic hill climber where the value of parameter T is gradually decreased
during a run. As mentioned earlier, the behavior of the algorithm resembles
a random search at higher temperatures (i. e., at the beginning of the run) and
a classic hill climber at lower temperatures (i. e., toward the end of the run). We
can parody this process with a drunken explorer searching for the highest peak on
a quality measure score landscape. Initially, the explorer does not care whether he
goes up or down, and this directional indifference corresponds to the early stages
of simulated annealing when the temperature is high and the probability of accept-
ing or rejecting an inferior solution is close to 50%. However, the explorer would
sober up over time, and this corresponds to dropping the temperature and making
more “reasonable” decisions on where to go next. Toward the end of the search,
the explorer is completely sober and always walking uphill ...

Let us take a closer look at simulated annealing by applying it to the car distri-
bution example. Any implementation of simulated annealing would require us to
answer some general questions that are necessary for any optimization technique
(i. e., What is the representation? How are neighbors defined? What is the evalua-
tion function? And so on), and we will assume that the answers to these questions
are the same as for the hill climber example discussed in Sect. 6.1.25 There are,
however, some questions that are specific to simulated annealing, such as:

How to determine the initial value of parameter T?
How to determine the number of iterations (i. e., how to define the “is k large
enough?” statement in the flowchart)?
How to “cool” the system (i. e., how to define the “decrease the temperature T”
statement in the flowchart)?
When to stop (i. e., how to define the “is the temperature T low enough?”
statement in the flowchart)?

The first question deals with the temperature parameter, which must be set be-
fore starting the algorithm. Should we start with T = 100, T = 500, or something
else? Well, let us think about that. At the beginning of the simulated annealing

25 The same representation is used (i.e., where a vector of 3,000 values provides indices of
auction sites from 1 to 60). The definition of the neighborhood remains the same: a new
solution x is a neighbor of current solution s if it differs (at most) by 1 on any position.
The initial solution might be generated randomly (i.e., for each entry, a random number
from the range of 1 to 60 is produced), or we can use some heuristic-based solution
(e.g., an initial solution that assigns each car to the nearest auction site). The evaluation
function also remains the same.

94 6 Modern Optimization Techniques

run, we would like to make almost random decisions for accepting or rejecting
inferior solutions (remember that superior decisions are always accepted). That
means that the answer to “T = ?” depends on the “average difference” in quality
measure scores between two randomly generated solutions from the same
neighborhood. This is important, as the probability of accepting a new solution is
based on this difference and the value of the parameter T. The initial temperature
should be high enough to generate probabilities of acceptance close to 100% for
inferior (new) solutions that have an average difference in the quality measure
score. In our case, say we generated 1,000 random pairs of solutions plus their
neighbors, evaluated them, and then discovered that the average difference in the
quality measure score is 5.05. Based on this information, we should start with an
initial temperature of T = 100, because at this temperature the probability of ac-
cepting an inferior solution (worse than the current solution by 5.05) is over 95%
(whereas for temperature T = 50, this probability would only be around 90%).26

Note that the next two questions (“‘How to determine the number of itera-
tions?” and “How to cool the system?”) are really about the number of tempera-
ture levels and the number of iterations performed at each level. Assuming limited
computing resources (which is usually the case), these questions represent a typi-
cal trade-off present in most implementations of simulated annealing: Is it better to
make more temperature levels or to search each level more thoroughly? Unfortu-
nately, there are no easy answers here as these issues are problem dependent. In
the car distribution example, we can decide on 10,000 attempts per temperature
level, with a cooling scheme that multiplies the current value of parameter T by
0.95 every time the temperature drops …

The final question (“When to stop?”) can be answered as follows: Think about
a freezing temperature for which it would be almost impossible to accept any infe-
rior solution. For instance, if the temperature is T = 0.001, then a new solution that
is inferior to the current solution by just 0.01 would have a probability of less than
0.005% of being accepted. Using these numbers, there would be 225 different
temperature levels: T = 100 at the first iteration, T = 95 at the second (100 × 0.95),
T = 90.25 at the third (95 × 0.95), and so forth, until iteration 225, where the tem-
perature value drops for the last time to 0.001. This happens for T = 0.001023; the
next drop, from T = 0.001023 to T = 0.000972 (0.001023 × 0.95), would trigger the
termination condition. In total, the simulated annealing algorithm would generate
and evaluate 2,250,000 solutions, as 10,000 solutions are generated and evaluated
at each temperature level.

Implementing the rest of our simulated annealing algorithm is straightforward.
Note that the algorithm would start with some initial solution s, such as:

26 These numbers are derived from standard functions used in simulated annealing for
calculating such probabilities.

6.4 Simulated Annealing 95

The solution is evaluated and draws a quality measure score of 171.49, and then
a new solution x is generated from its neighborhood:

If the new solution x is better than solution s, then it is selected as the new cur-
rent solution. If solution x is worse, it still might be selected: everything depends
on the difference in the quality measure score between the current solution s and
the new solution x, as well as the current value of parameter T. Since the tempera-
ture is relatively high at the beginning of the run, the probability of accepting an
inferior solution would be also high. For instance, if solution x generated a quality
measure score of 166.44, then the probability of acceptance would be around 95%
(recall that parameter T = 100 at this stage, and solution x is worse than solution s
by 5.05, which is the exact “average difference” in quality measure scores com-
puted earlier in this section).

This process continues for 10,000 iterations, with the algorithm generating,
evaluating, and accepting or rejecting a neighboring solution at each iteration.
Because the temperature stays very high (T = 100) during these 10,000 iterations,
the probability of accepting inferior solutions is also very high. Thus, this phase of
the search resembles a random search.

Assume that after 10,000 iterations the current solution is:

which evaluates to 176.78. Then we drop the temperature a bit (from 100 to 95)
and repeat the sequence of 10,000 iterations. However, we start with the current
solution (above) and a temperature of T = 95. Although the probability of accept-
ing an inferior solution is not as high as before (because the value of parameter T
is lower), it is still relatively high. Assume that 10,000 iterations later we arrive at:

which evaluates to 184.95. Then we repeat the process again: we drop the tem-
perature (this time from 95 to 90.25) and continue for another 10,000 iterations.
The probability of accepting an inferior solution is lower than at the previous
temperature level, but still relatively high.

After a while, we arrive at the final temperature level, where the value of pa-
rameter T = 0.001023. Accepting an inferior solution is very unlikely at this low
temperature, and the algorithm (for its final 10,000 iterations) acts like a classic
hill climber. It would not be surprising to get a very good solution, say:

96 6 Modern Optimization Techniques

which evaluates to 1,444.87. Clearly, during the 2,250,000 total iterations at dif-
ferent temperature levels, the algorithm climbed and escaped from many “local”
hills. Finally, during the hill-climbing stage at the end of the run, it made the final
climb hoping to arrive at the global optimum!

6.5 Tabu Search

The main idea behind tabu search is very simple: “memory” forces the search to
explore new areas of the search space to escape from local optima. We can memo-
rize some recently examined solutions and these become “tabu” (forbidden) when
selecting the next solution. Note that tabu search is deterministic (as opposed to
simulated annealing, which is probabilistic), but it is possible to add some prob-
abilistic elements to it.

The following flowchart outlines the basic steps of tabu search (without a ter-
mination condition):

6.5 Tabu Search 97

So, what is so special about tabu search? Well, there are a few interesting fea-
tures that require a more detailed description. Most of the boxes in the above
flowchart are self-explanatory, and after discussing hill climbers and simulated
annealing, we now know how to define a neighbor and select and evaluate a solu-
tion (or several solutions) from a neighborhood. What remains unclear is the
“memory” component of tabu search. The best way to explain this concept is by
returning to the car distribution example, using the same representation, neighbor
definition, initial solution, and evaluation function as before.27

Let us begin by tracing some steps of the tabu search algorithm, starting with
our usual initial solution s:

From the neighborhood of solution s, we generate several solutions (solutions
x, y, z, etc.) and select the best one 28 (say it was solution x):

Now let us introduce the special feature of tabu search: memory. In order to dif-
ferentiate between older and more recent changes in the solution vector, we need
to remember the index of variables that were changed, as well as the “time” when
these changes were made. In the case of the car distribution problem, we need to
keep a time stamp for each position in the solution vector that provides informa-
tion on the recency of the change. Because memory is the key feature of tabu
search, let us illustrate this concept by continuing our example.

Vector M (of length 3,000) will serve as our memory. This vector is initially set
to all 0s, and at any stage of the search if the i-th position of this vector has a value j,
it means that j is the number of the most recent iteration when the i-th position of the
solution vector was changed.29 Hence, our memory vector (after selecting solution x
at the first iteration, which replaces s as a current solution) is:

27 The same representation is used (i.e., where a vector of 3,000 values provides indices of
auction sites from 1 to 60). The definition of the neighborhood remains the same: a new
solution x is a neighbor of current solution s if it differs (at most) by 1 on any position.
The initial solution might be generated randomly (i.e., for each entry, a random number
from the range of 1 to 60 is produced), or we can use some heuristic-based solution
(e.g., an initial solution that assigns each car to the nearest auction site). The evaluation
function also remains the same.

28 Note that current solution s and new solution x differ in several positions. Later, choo-
sing the “best” solution is influenced by memory (this is discussed later in this section).

29 Of course, j = 0 implies that the i-th position of the solution vector has never been
changed. Only for j > 0 does the value of j indicate the iteration number.

98 6 Modern Optimization Techniques

Note that the entries in the solution vector that did not change have correspond-
ing values of 0 in this memory vector. Continuing our example, assume that a new
solution vector selected in the second iteration is:

In that case, the memory vector would have the following values:

as the last change of the first position happened in the first iteration, the last
change of the second position happened in the second iteration, the last change of
the third position happened in the first iteration, and so on. Note that the second-
to-last position has not changed yet (this is indicated by the value 0 in the memory
vector).

The general idea behind memory is that if some positions in the solution vector
have changed, then the algorithm should leave these positions alone for some
number of future iterations (i. e., they would be tabu for some number of itera-
tions). This forces the algorithm to explore other parts of the search space, and
after the required number of iterations has elapsed, these positions would become
available again.

It might also be useful to alter the definition of memory in such a way that the
information stored in memory is erased after some number of iterations. Assuming
that the information can stay in memory for 50 iterations, then if the i-th position
of vector M has a value j, a new interpretation of it can be that the i-th position of
the solution vector was changed 50 – j iterations ago. Under this interpretation,
vector M might have the following values after several iterations:

The numbers in this memory vector provide the following information.

Position 1 is not available for the next 9 iterations.
Position 2 is not available for the next 17 iterations.
Position 3 is not available for the next 50 iterations (i. e., this position in the
solution vector was just changed).
Position 2,999 is available.
Position 3,000 is not available for the next 34 iterations.

6.5 Tabu Search 99

In other words, the most recent change took place in the third position, and all
non-zero positions in the memory vector are considered tabu.

It might be interesting to point out that the main difference between these two
interpretations of memory is simply a matter of implementation. The latter ap-
proach interprets the values as the number of iterations for which a given position
is not available, while the former interpretation simply stores the iteration number
of the most recent change at a particular position. In the above example, if the
difference between the iteration counter and the i-th memory value is greater than
50 (our memory horizon), it should be forgotten. Hence, this interpretation only
requires updating a single position in the memory per iteration, and increasing the
iteration counter. In either case, tabu search utilizes the memory vector to force
the search to explore new areas of the search space in an effort to escape from
local optima. The recent changes that were made in the solution vector are tabu for
the next iteration (i. e., entries with corresponding non-zero values in the memory
vector).

Suppose that at some stage of the tabu search process, the quality measure
score of the current solution s is 189.03 and the best available neighbor is solution
y, with a quality measure score of 187.77. Note that this value represents a de-
crease in quality between the current and new solution. Note also that the avail-
able neighborhood is much smaller than the entire neighborhood, as many posi-
tions in the solution vector are tabu (i. e., their corresponding values in the
memory vector are non-zero). On the other hand, imagine that a tabu neighbor,
solution q, yields a quality measure score of 197.83. Assume further that the score
of 197.83 is the best score from the beginning of the search, but because solution
q is tabu we must ignore it!

Upon reflection, this policy might be too restrictive. It might happen that one of
the tabu neighbors of current solution s produces a quality measure score that is
much better than that of any previous solution. Perhaps we should make the search
more flexible, and bend the rules somewhat if we find an outstanding solution. In
normal circumstances, the tabu search should evaluate the entire neighborhood,
and select a non-tabu solution as the next current solution, whether or not this non-
tabu solution has a better quality measure score than the current solution. But in
circumstances that are not “normal” – i. e., an outstanding tabu solution is found in
the neighborhood – the superior solution should be selected as the next current
solution.

Of course, other possibilities exist for increasing the flexibility of the search. For
example, we could change the previous deterministic selection procedure into
a probabilistic method, where better solutions have an increased chance of being
selected. In addition, we could change the memory horizon during the search: some-
times it might be worthwhile to remember “more,” and at other times to remember
“less” (e. g., when the algorithm climbs a promising hill in the search space).

Another option is even more interesting: The memory structure discussed so far
can be labeled as recency-based memory, because it only records the last few
iterations. This structure might be extended by a frequency-based memory, which
operates over a much longer time horizon h (by time horizon, we mean the num-
ber of past iterations taken into account) and measures the frequency of change at

100 6 Modern Optimization Techniques

each position. For example, an additional vector H may serve as a long-term me-
mory. This vector is initially set to all 0s, and at any stage of the search the value j
at the i-th position of this vector is interpreted as “during the last h iterations of the
algorithm, the i-th entry of the solution vector was changed j number of times.”
Usually, the value of time horizon h (i. e., the number of past iterations we con-
sider) is quite large, at least in comparison with the horizon of the recency-based
memory. Thus after many iterations with h = 50,000, the long-term memory H
might have the following values:

These frequencies (the total of which should equal 50,000) show the distribu-
tion of changes at each position of the solution vector during the last 50,000 itera-
tions. The principles of tabu search indicate that this type of memory might be
useful for diversifying the search. For example, the frequency-based memory
provides information on changes in the solution vector that have been infrequent,
and we can diversify the search by exploring these positions.

The use of long-term memory in tabu search is usually restricted to special cir-
cumstances. For example, we might encounter a situation where all non-tabu
neighbors produce inferior quality measure scores. Thus, to make a meaningful
decision about which direction to explore next, it might be worthwhile to consult
the long-term memory. There are many possibilities for incorporating this informa-
tion into the decision-making process, but the most typical approach makes the
most frequent changes less attractive by penalizing the quality measure score. As
an example, assume that the quality measure score of current solution s is 235.33,
all non-tabu neighbors produce inferior values (230.11, 233.45, 231.47, etc.), and
none of the tabu neighbors provides a value greater than 237.77 (the highest value
found so far), so we cannot apply the aspiration criterion. This is a typical situation
for consulting the frequency-based memory. The evaluation function used in such
circumstances (for a new solution x) is the original evaluation function minus some
penalty. This penalty, on the other hand, is calculated as a product of some parame-
ter (say it is 0.1) and the total of all entries in the memory vector that correspond to
changed entries of the solution vector. Let us illustrate this by an example.

Assume that neighbor solution x (with a quality measure score of 230.11) differs
from current solution s in several positions (position 7, 65, 298, etc.). By referring
to the memory vector H and adding together all the values in these positions, we
arrive at a total of 304, which is multiplied by the penalty parameter 0.1 to produce
a penalty of 30.4. After repeating this procedure for all the other neighbors under
consideration, let us assume that neighbor solution y (with a quality measure score
of 233.45) generated a penalty of 36.1, and that neighbor solution z (with a quality
measure score of 231.47) generated a penalty of 30.9. From this it is clear that we
should select neighbor solution z, because it has the highest final quality measure
score:

6.6 Evolutionary Algorithms 101

Neighbor solution x has a final evaluation of 199.71 (230.11 – 30.4).
Neighbor solution y has a final evaluation of 197.35 (233.45 – 36.1).
Neighbor solution z has a final evaluation of 200.57 (231.47 – 30.9).

Although the above example of using frequency values to create a penalty meas-
ure diversifies the search, we can also consider some other options.

Over the years, tabu search has become increasingly complex as different sci-
entists have modified the classic technique by incorporating additional rules. We
have already seen one such rule, called aspiration by objective, which overrides
the tabu search when a neighbor yields a solution that is the best found so far. We
can also use an additional rule, called aspiration by default, to select a neighbor
that is the “oldest” of all those considered. It might also be a good idea to memo-
rize not only the recent neighbors, but also whether or not these neighbors gener-
ated any improvement. This information can be incorporated into search decisions
(called aspiration by search direction). We can also apply the concept of “influ-
ence,” which measures the degree of change of a solution, either in terms of dis-
tance between the current and new solution, or the change in the solution’s feasi-
bility if we are dealing with a constrained problem. A neighbor has larger
influence if a “larger” step was made from the current solution to the new, and this
information can be incorporated into the search (so-called aspiration by influ-
ence). Of course, there are many possible ways of implementing memory struc-
tures, aspiration criteria, etc.

6.6 Evolutionary Algorithms

In the previous sections of this chapter, we discussed the hill climber, stochastic hill
climber, simulated annealing, and tabu search. All of these optimization techniques
represent the approach of processing a single solution (i. e., holding on to the best
solution found so far and trying to improve it). This is intuitively sound, remarkably
simple, and often quite efficient. The only decision to make during the execution of
the algorithm is whether to “accept” or “reject” a newly generated neighbor solu-
tion. To make this decision, we can use many different rules. For example, hill clim-
bers use deterministic rules: if an examined neighbor solution is superior, then pro-
ceed to that neighbor and continue searching from there; otherwise, continue
searching in the current neighborhood. Simulated annealing uses probabilistic rules:
if a neighbor solution is superior, accept this as the new current solution; otherwise,
either probabilistically accept this new inferior solution anyway or continue to
search in the current neighborhood. Tabu search uses the history of the search: take
the best available neighbor, which need not be better than the current solution, but
which is not listed in memory as a restricted or “tabu” neighbor.

102 6 Modern Optimization Techniques

Rather than processing a single solution, evolutionary algorithms30 process
a “population ” of competing solutions. In other words, evolutionary algorithms
simulate the evolutionary process of competition and natural selection, where the
solutions in the population fight for room in future generations. Additionally, new
solutions are generated by means of genetically inspired operators (e. g., mutation
or crossover) in a manner similar to natural evolution.

So, how do evolutionary algorithms work? Suppose, as before, that we are
searching for the best solution to a difficult problem. Instead of generating an
initial solution (as we did for other methods), we start with a population of initial
solutions31 (perhaps generated by random samples from the search space). The
evaluation function then determines the quality measure score of each initial solu-
tion. Superior solutions, as determined by the evaluation function, are favored to
become “parent” solutions for the next generation of “offspring” solutions. As
before, new solutions can be generated probabilistically in the neighborhood of
old solutions. However, evolutionary algorithms provide an additional twist: we
can also examine the neighborhoods of pairs of solutions. That is, we can use
more than one parent solution to generate a new offspring solution. One way to do
this is by taking different “parts” of two parent solutions and then putting them
together to form an offspring solution. For example, we might:

Take the first half of one parent together with the second half of another.
Take the “middle” segment from one parent and implant it as the new “middle”
segment of the second parent.
Take the numbers present in the solution vector of both parents and create some
(possibly weighted) average of numbers for the offspring solution.32

With each generation, the individual solutions compete against themselves (or
also against their parents) for inclusion in the next generation of solutions. After
many generations (i. e., iterations), we can often observe a succession of improve-
ments in the quality of solutions and convergence toward the neighborhood of a near-
optimum solution.

30 There are many terms related to evolutionary algorithms. The most popular are: genetic
algorithms, evolutionary programming, and evolution strategies. In this book, we use
just one term, “evolutionary algorithms” without going into deeper details on similarities
and differences between these techniques. Many people use the term “genetic algo-
rithms” in the same manner as we use “evolutionary algorithms,” because the term “ge-
netic algorithms” is better known than “evolutionary algorithms” in the business com-
munity. Also, in Sect. 9.1, we will discuss a special class of evolutionary algorithms
called genetic programming.

31 In evolutionary algorithms, these solutions are called chromosomes (to emphasize a link
with genetics).

32 While designing such recombination operators, it is sometimes difficult to escape the
temptation of “improving nature”… For example, should we consider more than two
parents to generate offspring? In evolutionary algorithms, this is relatively easy: we can
build an offspring solution by taking the first segment of the first parent, merge it with
the second segment of the second parent, and extend it with the third segment of the
third parent.

6.6 Evolutionary Algorithms 103

The following flowchart outlines the basic steps of an evolution algorithm:

This flowchart is very simple to follow: First, we generate some number of (pos-
sibly random) solutions. Since the population size is one of the parameters of the
evolutionary algorithms, let us say we created 100 solutions as members of popula-
tion A. At the same time, we set our generation counter t to zero. At this stage we
will be entering an “evolutionary loop” that is repeated many times, and the process
will terminate when t is “large enough” (many other termination conditions are
possible, such as lack of progress after some number of generations). During this
evolutionary loop, a few activities are performed. First of all, all the solutions in
population A are evaluated, as we would like to know which solutions are superior
and which are inferior. Second, a subset of parent solutions is selected from the
population, favoring superior solutions. Third, the selected parent solutions produce

104 6 Modern Optimization Techniques

offspring solutions by means of some variation operators; quite often terms like
crossover or mutation are used. Fourth, a new population is selected (usually of the
same size as the original population) from the existing parent and offspring solu-
tions. And lastly, the generation counter t is increased and the loop is repeated.

Without a doubt, this is an appealing approach for solving complex problems!
Why should we labor to solve a problem by calculating difficult mathematical
expressions or developing complicated computer programs to create approximate
models of a problem, when we can discover near-optimum solutions using models
of much greater fidelity. However, it is appropriate to ask some important ques-
tions: How much work does it take to implement these concepts into an algo-
rithm? Is this cost effective? And can we solve real problems using evolutionary
algorithms? Well, let us explore these issues by continuing the car distribution ex-
ample.

Say we started from an initial population A, which consists of 100 randomly
generated solutions (the first 10 are displayed below). We have created our “uni-
verse,” set our generation counter t to zero, and are ready to enter the evolutionary
loop:

6.6 Evolutionary Algorithms 105

We begin the evolutionary loop by evaluating all the initial solutions and iden-
tifying the parent solutions. From the 100 solutions present in the population, say
we select 80 parents. One of the more popular parent selection strategies is called
tournament selection, where we select two random solutions from our population,
compare their quality measure scores, and select the better one as a parent. We
repeat this process 80 times (i. e., until we select 80 parents). For example, say we
selected:

and:

for tournament competition. If the first solution has a quality measure score of
168.34 and the other 172.41, then the latter solution is the “winner” and is placed
in a temporary population of parents. Note, however, one interesting twist: As we
select pairs of random solutions, it is quite possible that some (relatively strong)
solution is selected more than once for a tournament, and it wins such a tourna-
ment more than once. In that case, this solution would be represented in the popu-
lation of parents several times (e. g., the population of parents may contain several
identical solutions). This is a desired side effect, as we would like to promote good
“genetic traits” during the evolutionary process. If a solution is capable of winning
several tournaments, then the chances are that its quality measure score is above
average, and that it will also produce “above average” offspring solutions.

Now we are ready for the most important step of the evolutionary loop: the
creation of offspring solutions. As mentioned earlier in this section, we can con-
sider several possibilities here. For example, we can use a mutation operator,
which would change some positions in a parent solution to produce an offspring
solution. For example, a parent:

can be “mutated” to produce the following offspring solution:

Mutation occurred in the first position of the solution (where the value 17 was
replaced by a randomly generated value of 43), and on the second-to-last position
(where the value 19 was replaced by a randomly generated value of 3). When it
comes to the process of mutation, we have some flexibility. For example:

106 6 Modern Optimization Techniques

The probability of mutation may be very low (e. g., 1%). This would mean that
on average 1% of the positions in the parent solution would be changed to pro-
duce a new offspring solution. As there are 3,000 positions in the solution vec-
tor, on average 30 positions would receive new values. Of course, the probabil-
ity of mutation (whether it be 1%, 0.1% or 10%) is a parameter of the algorithm
that we are responsible for adjusting.
Regardless of whether the probability of mutation is 0.1% or 10%, we also have
to decide “how” to mutate. One possibility is to replace a selected position by
a random value from the range from 1 to 50 (as there are 50 auction sites to
choose from). However, we may also consider some “intelligent” mutations. If
we have auction sites sorted by growing distance from each car (so that close
numbers correspond to close auction sites in a geographical sense), then the
mutation operator might be allowed to “slightly” modify a position. In particu-
lar, the value 17 from the first position of the solution would be allowed to
change into 15, 16, 18, or 19, but not any other number.
We might also have to consider more than one mutation operator. One mutation
operator, for example, would be responsible for “small” changes, and the other
for “big” changes (to introduce some additional diversity into our search). The-
refore, even if the auction sites are sorted in some meaningful way, we may still
allow random changes of values in the solution vector.

As indicated earlier, we can explore some other operators for creating off-
spring. For example, we can use a crossover operator, which produces two off-
spring solutions by mixing some positions from two parent solutions. For ex-
ample, the parents:

are cut after the 1,357th position, and two offspring are generated by putting to-
gether the first part of the first parent (i. e., all 1,357 initial entries) with the second
part of the second parent (i. e., the remaining 3,000 – 1,357 = 1,643 entries) for the
first offspring, and by gluing together the first part of the second parent (the initial
1,357 entries) with the second part of the first parent (1,643 last entries) for the
second offspring:

6.6 Evolutionary Algorithms 107

Of course, it is possible to have more than one cutting point. In particular, we
may consider a crossover where we cut after every position, and a random deci-
sion is made whether we should use a value from the first or second parent. For
example, the pair of parents we discussed earlier may produce the following off-
spring (i. e., where all positions in the offspring are selected randomly from the
first or second parent):

The role of the crossover operator is straightforward: it might be that at some
stage of the search process, some solutions contain individual decisions of high
quality (e. g., sending the first car to auction 43). Crossover can speed up the
search process, as these quality building blocks can be mixed together to create
a solution with a larger number of quality components.

Anyway, after applying several variation operators (possibly different types of
mutations and crossovers), a set of 200 offspring solutions is created for the car
distribution example. Now we are ready for the final step in the evolutionary loop:
creation of the next generation (we also increase our generation counter t at this
stage, so it takes on a value of 1). As the population size is 100, our task is to cre-
ate a new population of 100 solutions out of 80 selected parents and 200 created
offspring. Again, there are many ways to accomplish this task. For example, we
can:

Apply a tournament selection process to all 280 solutions (80 parents and 200
offspring).
Exclude the parents and build a new generation from the offspring only.
Design a tournament selection where more than two individuals compete to be
selected.
Rank all the solutions by their quality measure score and then allocate the prob-
abilities of selection accordingly.

In most implementations, however, we use the elitist strategy, which selects
the best solutions from one generation to the next. The cycle is then complete.
We arrive at t = 1 generation with a new population of 100 solutions. We then
repeat the evolutionary loop by evaluating these 100 solutions, selecting the par-
ents, applying crossover and mutation operators to create offspring, selecting the
next generation, and so on, until generation counter t hits a threshold (e. g.,
100,000). At this stage, we expect to have many quality solutions in our final
population, and the best solution is selected as the final solution.

108 6 Modern Optimization Techniques

6.7 Constraint Handling

As we discussed in Chap. 3, the car distribution problem has many problem-
specific constraints: inventory levels, transportation costs, volume effect, and so
on. Hence, the application of modern optimization techniques probably will not be
so straightforward (where we just evaluate new solutions and decide which ones to
keep or discard). For instance, suppose that we want to introduce some hard con-
straints on the distribution of cars (e. g., “red cars should not be sent to auction
sites in Texas” or “cars with more than 100,000 miles should not be sent to South-
East auction sites”). But how can we find feasible solutions to the car distribution
problem when such hard constraints are imposed? Well, there are generally three
ways to influence the search toward feasible solutions: through the evaluation
function, the representation of the solution, and the operators (and, of course,
through some combination of the three). These three approaches are independent
of the optimization technique used.

As indicated earlier, selecting the representation of a solution is a major design
decision. Some representations will make handling constraints easier, while others
will make it harder. First, let us summarize the constraints present in the car distri-
bution problem:

Transportation distance limit.
Acceptable transportation routes.
Inventory level limits.
Exclusions based on car mileage.
Exclusions based on car color.
Specified auction dates.

Additional issues to take into account that are related more to the evaluation
function include:

Transportation costs.
Volume effect.
Reduction of “stragglers” (i. e., cars that stand many days at the original loca-
tion without being moved to an auction).

Many constraint-handling methods have been proposed over the last few dec-
ades, but the simplest approach is the death penalty, where solutions that violate
a constraint are immediately removed from further consideration. However, in
many cases, the death penalty approach does not work very well. For instance, in
highly constrained problems, the system generates a new solution, checks its fea-
sibility, and then discards it because it is not feasible. And if 99% of the system’s
effort is wasted on generating and removing infeasible solutions, then 99% of the
system’s effort is unproductive! Moreover, the first feasible solution found (re-
gardless of quality) can drive the whole system to converge, and the final result
might be a solution of poor quality.

Therefore, some leniency might be warranted toward infeasible solutions, as the
death penalty might be too much medicine. What about some less drastic penalties?

6.7 Constraint Handling 109

Indeed, one of the most popular group of methods is based on various penalty func-
tions. The idea is that if a potential solution (whether in evolutionary algorithms,
simulated annealing, or tabu search) violates some problem-specific constraint, then
the solution is “penalized” by making its quality measure score smaller (i. e., less
attractive). In other words, the quality measure score of a solution consists of two
parts: the output of the evaluation function and a penalty score for violating con-
straints.

For example, if a particular solution (which recommends to ship the first car to
auction 23, the second car to auction 12, and so forth):

violates a constraint that limits the transportation distance to 800 miles (e. g., the
distance between the location of the second car and auction 12 is 915 miles), we
should penalize it. Let us assume that the quality measure score of this solution is
564.34, which is based on the predicted sale prices of these cars after taking into
account depreciation and transportation costs, auction fees, and the volume effect.
However, since the second car exceeds the transportation distance limit of 800
miles, we should make this score less attractive. One way of setting such penalties
is to assign a penalty weight for each violated constraint.

Now we have to design a penalty function for this type of constraint violation.
For example, we can assign 10 penalty points for every 100 miles in excess of the
transportation distance limit. In our case, the excess is 115 miles, so the penalty
weight would be 11.5. Thus, due to this single violation, the quality measure score
of this solution would be reduced to 552.84 (564.34 – 11.5). But that is not all!
There are a variety of other constraints, such as excluding some cars from various
auction sites (these exclusions are based on the mileage and/or color of the car). It
may happen, that the above solution contains a few violations of this type. For
example, it has assigned the first car (which is red) to auction 23, which has
a constraint against red cars … Again, we would have to assign a penalty weight
for this violation, and let us assume that we subtract an additional 7 points. We
need to deal with all the constraints in a similar fashion, and only after all the
penalties have been totaled can we calculate the final quality measure score.

This penalty approach is relatively straightforward and easy to implement. How-
ever, it has many disadvantages. First of all, it is tricky to assign meaningful penalty
weights, as it might be difficult to weigh the relative penalty of violating different
constraints: in the above example, the color violation is equivalent (in penalty
points) to a transportation distance violation of 70 miles – which may or may not be
accurate. It is even harder to tune all these penalty weights to the original evaluation
function: If the solutions are evaluated in the range from 0 to 100, then the above
penalty weights would clearly be too high. And if the penalty weights are too high,
then the effect is similar to that of the death penalty, as heavily penalized solutions
would not stand much chance of survival. However, if the penalty weights are too
low, then the final solution may violate too many constraints …

110 6 Modern Optimization Techniques

These issues can be addressed in a number of ways, one of which is to design
dynamic penalties that change (usually increase) with each iteration. The purpose
of dynamic penalties is to allow early solutions to sample a variety of points in the
search space without paying too much attention to feasibility (as the penalty
weights are low). Then, as the penalty weights gradually increase, greater empha-
sis is placed on feasible solutions.33 The drawback of this approach is that we have
to specify the penalty weight changes in advance, and, again, this can be quite
tricky. Another approach deals with this difficulty in the following way: For popu-
lation-based techniques, we can assume some “healthy” ratio between the number
of feasible and infeasible solutions in the population, and during the run of the
algorithm we maintain this ratio by increasing or decreasing the penalty weights.
Thus, there is no need to specify the penalty weight changes in advance; the sys-
tem adapts these weights by itself. Again, the drawback lies in having to define
what the “healthy” ratio is for a particular problem.

Another way of dealing with constraints is based on the idea of repair algo-
rithms. Let us take the same solution as before, with the same constraint violations
of transportation distance, color, and so forth:

Instead of penalizing this solution, we may try to “repair” it. As before, the dis-
tance between the location of the second car and auction 12 is 915 miles, while the
transportation distance limit is 800 miles. Because auction 12 is not appropriate
for this car, we can try to repair this single position by using some other auction.
Here we may have to consider several possibilities on “how to repair”? We can
select auctions at random and check if they satisfy this constraint, or we may con-
sider auctions in some predefined order (e. g., based on proximity). Either way, we
can repair the solution by replacing auction 12 with auction 47:

We can handle the other constraint violations in the same way: If a constraint is
violated, we can search for a suitable replacement. However, this process is not so
straightforward. Complex constraints can involve many variables, and so repairing
one segment of the solution might trigger a constraint violation in some other
segment. In complicated cases such as these, we should use a problem-dependent
repair algorithm.

33 Note the similarity of this approach to simulated annealing: the algorithm initially al-
lows up and down movements, but, with time, it begins to favor moves that lead to supe-
rior solutions.

6.7 Constraint Handling 111

There is an additional (very interesting) twist present in the use of repair algo-
rithms. When a solution is repaired, the repair might be temporary (i. e., the solu-
tion is changed only for the purpose of evaluation, as it is much easier to evaluate
a feasible solution than an infeasible one). The original (infeasible) solution stays
in the population for further processing. This is called the Baldwin effect, where
solutions are evaluated on the basis of their potential, rather than their current
state.

The other approach would be to make the repair permanent (i. e., the solution is
changed permanently), which is called Lamarckian evolution. This would be
equivalent to improving our genes so that they are passed onto our offspring. Both
of these approaches – Baldwin effect and Lamarckian evolution – have their ad-
vantages and disadvantages. Many practitioners apply them in some ratio (e. g.,
only 10% of repairs are done on a permanent basis, so that the process is 10%
Lamarckian and 90% Baldwinian) and claim that a mixture produces better results
than a pure Baldwinian or Lamarckian approach.

Yet another approach for constraint handling is based on decoders. The idea is
that data present in a solution vector are interpreted (i. e., decoded) in such a way
that they correspond to a feasible solution. This would require indirect representa-
tion of solutions and some preprocessing. In the case of distributing cars, this
means sorting all the available auction sites by their distance from each car’s cur-
rent location (as discussed at the beginning of this chapter). For the first car (say it
is located at a dealership in Kansas) auction 1 would be the closest (distance-
wise), auction 2 would be the second closest, and so forth. The representation of
a solution may look something like:

The above vector indicates that the first car should be sent to the closest auction
site, the second car should be sent to the third-closest auction, and so on. Using the
decoder approach, we can maintain a sorted list of available (i. e., feasible) auc-
tions for each car. By doing so, many constraints (e. g., exclusions based on dis-
tance, mileage, or color) can be taken care of during the preprocessing stage. For
example, if auction 13 is too far for a given car, then we can exclude auction 13
from the sorted list of available auctions for this car. We can extend this “exclu-
sion” idea even further, by adding other constraints: if a car is red and auction 17
(which is within 800 miles radius from the current location of the car) does not
admit red cars, then, again, we can exclude auction 17 from the sorted list of
available auctions for this car. Thus, there is no need to penalize or repair infeasi-
ble solutions.

These three main approaches – penalties, repairs, and decoders – do not constitute
the complete list of constraint-handling methods. Sometimes it is worthwhile to
develop a specialized operator that only creates feasible solutions from existing
feasible solutions. For example, such an operator would process all the cars in
a sequential manner, from 1 to 3,000, sending each car to an auction site that satisfies

112 6 Modern Optimization Techniques

all constraints. Then, having a set of such feasible solutions, we can use a problem-
specific operator to transform these feasible solutions into new feasible solutions.
This way, again, there is no need to penalize or repair any infeasible solutions, as the
operator only generates feasible solutions.

6.8 Additional Issues

In this chapter we explained the basic ideas behind several modern optimization
techniques: The idea of traveling “up” in hill climbers, the idea of traveling almost
randomly at first and gradually switching to uphill moves in simulated annealing,
the idea of remembering our previous decisions in tabu search, and the idea of
“breeding” the best possible solution in evolutionary algorithms. However, real-
world problems are usually very complex, and many additional issues have to be
taken into account when applying these techniques.

One potential issue in applying modern optimization techniques to real world
problems is that of multiple objectives (as discussed in Sect. 2.4). For example,
apart from maximizing the net profit from the sale of all cars, a business manager
may want to minimize transportation cost as the second objective. On top of that,
he may also want to balance the distribution of cars among all the auction sites,
which would constitute the third objective.

As we discussed in Chap. 2, non-dominated solutions are of interest to us (i. e.,
solutions that cannot be improved according to one objective without being worse
with respect to the remaining objectives). Ideally, a system that deals with multi-
objective problems should return several diverse non-dominated solutions, as each
of these solutions might be of interest. The concept of diversity is important, be-
cause many non-dominated solutions might be very similar to one another. For
example, both solutions:

and:

might be non-dominant, but there is little point in returning both of them to a busi-
ness manager, as they are almost identical. The simple fact that a business manager
selects the final solution for implementation has two implications: (1) the number
of returned solutions should not be too large, and (2) the returned solutions should
be diverse. At this stage, human expertise is required to express different objectives
on the same scale (e. g., net profit and balanced distribution) or to include addi-
tional higher-level information (e. g., strategic agreements made with certain auc-
tion sites). As indicated earlier, a business manager may assert the relative impor-

6.8 Additional Issues 113

tance of each objective – perhaps by assigning numeric weights or imposing
a ranking – and then select subsets of solutions that follow this ordering. Another
option would be to select the most important objective and then convert the re-
maining objectives into constraints, using them as thresholds to be satisfied.

Also, referring back to the figure discussed in Sect. 2.2, it is prudent to point
out that some solutions carry more risk than others:

For instance, we may consider two quality distribution solutions A and B,
where solution B is slightly better than solution A. Although solution B might
provide a $15 higher net profit per car than solution A, it might also carry more
risk. For example, solution B might require transporting some cars for 2,000 miles
(assuming there is no limit on the transportation distance), whereas the longest
transportation distance imposed by solution A is only 550 miles. Now, is this
additional risk (the longer distance, the higher probability that something can go
wrong, e. g., accident, delay, truck failure) worth an additional $15 per car? By
receiving a set of diverse non-dominated solutions, a business manager can make
the final decision.

Lastly, most real-world problems also present another serious difficulty: they
are set in a dynamic environment. This is the case in the car distribution example,
as the problem contains several time components. Note that yesterday’s distribu-
tion (and the distributions made during the past few days) will influence today’s
distribution. The reason is that auction sales are usually held twice a month, and
all cars shipped during some time interval to a particular auction site would be
sold together, on the same day. Because of this, it is necessary to include a mem-
ory buffer, where we record all recent decisions (like we did in tabu search). Re-
cent decisions would influence the quality measure score of solutions that are
processed today.

114 6 Modern Optimization Techniques

Because consumer preferences are also constantly changing (and makes, mod-
els, colors, etc. that are popular one year might be unpopular the next),34 it is nec-
essary to monitor these trends and update the prediction module on a regular basis.
Other changes may include modifying the set of auctions sites by entering into
new agreements and letting old ones expire, or by having some internal policy for
using different auction sites at different times. Thus, the problem can easily
change from one day to the next. Similarly, business managers want to insert or
delete new rules (e. g., “red cars should not be sent to auction sites in Texas” or
“cars with more than 100,000 miles should not be sent to auction sites in the
South-East”), and such changes mean that today’s distribution problem might be
quite different from yesterday’s distribution problem!

6.9 Recommended Reading

In this chapter we gave some background information on search spaces, different
solution representations, basic hill-climbing algorithms, as well as a few modern
optimization techniques that fall into the category of modern heuristics, such as
simulated annealing, tabu search, and evolutionary algorithms. We also touched
upon some additional issues related to searching for the optimum solution, which
include constraint handling, solution robustness, multi-objective optimization, and
dynamic environments. Lastly, despite the different terminology used for different
techniques (e. g., crossover and mutation operators for evolutionary algorithms, or
temperature for simulated annealing), it is important to remember that the tech-
niques themselves are in fact very similar from a high-level perspective. They
process one or more current solutions, generate one or more new solutions, evalu-
ate the solutions found so far, and then make decisions on where to search next.

There are many texts available on modern optimization techniques. The book
Local Search in Combinatorial Optimization, edited by Emile Aarts and Jan Karel
Lenstra (Wiley, Chichester, 1997) provides many examples of local search based
on the traveling salesman and vehicle routing problem, machine scheduling, VLSI
layout synthesis, and code design. The book also includes additional chapters on
simulated annealing, tabu search, evolutionary algorithms, and artificial neural
networks.

A detailed treatment of simulated annealing is provided in Simulated Anneal-
ing: Theory and Applications, a book by P.J.M. van Laarhoven and Emile Aarts
(D. Reidel, Dordrecht, 1987).

Tabu Search by Fred Glover and Manuel Laguna (Kluwer, Norwell, 1997) pro-
vides a good all-around introduction to tabu search, while Introduction to Evolu-
tionary Computing by Gusz (A.E.) Eiben and Jim Smith (Springer, Berlin, 2003)
provides an excellent introduction to evolutionary algorithms.

34 For example, the rise in crude oil prices in 2004–2005 led to a sharp drop in consumer
demand for sports utility vehicles (SUVs) and other heavy cars.

6.9 Recommended Reading 115

The book How to Solve It: Modern Heuristics by Zbigniew Michalewicz and
David Fogel (Springer, 2nd edition, 2004) provides a general overview of evolution-
ary algorithms, simulated annealing, tabu search, and hill climbers, as well as a few
additional issues like handling constraints, setting the parameters of a method, and
dealing with time-changing environments.

Also available are many books that present various heuristic methods and their
applications; see, for example, Modern Heuristic Methods for Combinatorial
Problems, edited by Colin Reeves (Wiley, Chichester, 1993) or Meta-heuristics:
Theory and Applications, edited by Ibrahim H. Osman and James P. Kelly (Klu-
wer, Norwell, 1996).

7 Fuzzy Logic

“Crime is common. Logic is rare.”
The Adventure of the Copper Beeches

“ ‘Is there any point to which you would wish to draw my attention?’
‘To the curious incident of the dog in the night-time.’
‘The dog did nothing in the night-time.’
‘That was the curious incident,’ remarked Sherlock Holmes.”
Silver Blaze

For many millennia, humans have tried to describe the world using models
based on mathematics and logic, but only during the last few decades has it become
possible to construct computer models of the real world. Computers are based on a
binary language of zero’s (“0”s) and one’s (“1”s). This is an abstraction created by
computer scientists to describe what is going on inside a computer chip, with “0”
equating to “power off” and “1” equating to “power on.” Every single transistor
inside a computer chip is like a tap, and an electric current runs through the transis-
tor like water through a tap. It looks very much like the following:

No water = no power = “0”:

Water running = power = “1”:

118 7 Fuzzy Logic

The water represents the electric current (i. e., electrons) running through the
transistor inside a computer chip. All the “0”s and “1”s inside a chip are used to
perform logical calculations according to Boolean logic, which treats 0 as “false”
and 1 as “true.” So in other words, “0” = false = no power and “1” = true = power.
The principles behind Boolean logic are not limited to computers, as this type of
reasoning dates back to the ancient Greeks, especially the Greek philosopher
Aristotle.

Nevertheless, the following tap can also be used to illustrate a fundamental
problem with Boolean logic:

Is the water running in this tap? According to Boolean Logic the water must ei-
ther be running or not, but in the above situation the water is only running to some
degree. If we had to make a binary (true or false) decision then we might say that the
water is running, and inside the transistor this would translate to a “1” = true. But
now imagine the following situation:

Again, we can ask ourselves if the water is running or not, and try to make an-
other binary decision. However, we can continue to make this situation more diffi-
cult by continuing to reduce the amount of water flowing out of the tap. These
illustrations expose the fundamental problem with Boolean logic: Everything must
be either true or false, all or nothing. Boolean logic cannot deal with something
that is true to some degree. To deal with this problem, a relatively new type of
logic has emerged, called fuzzy logic. Because it treats everything as a degree to
which something is true, it can be used to create extremely powerful prediction
and classification models. Let us take a closer look at how fuzzy logic works, and
how it can be applied in an Adaptive Business Intelligence system.

 7.2 Fuzzifier 119

7.1 Overview

Let us begin with one of the most common fuzzy logic systems, called the Mam-
dani Fuzzy System. It looks like the following:

Each component in this flowchart has a separate function:

The fuzzifier takes the crisp input numbers and converts them into a fuzzy input
set by using input membership functions (explained below) to calculate the de-
gree of something being true.35

The inference system takes the fuzzy input set from the fuzzifier, and applies
a rule base and then the output membership functions to create a fuzzy output set.
The defuzzifier takes the fuzzy output set from the inference system and con-
verts it into a crisp output number (i. e., the prediction).

To gain a better understanding of how fuzzy logic extends Boolean logic, let us
take a closer look at each component.

7.2 Fuzzifier

In order for fuzzy logic to work, input membership functions are used by the fuzzi-
fier to turn the crisp input numbers into a fuzzy input set. There are many types of
membership functions, and a few of them are shown below to provide an idea of
what they may look like.

35 Note that the degree of something being true is not the same as the probability of some-
thing being true.

120 7 Fuzzy Logic

Below is an example of a Gaussian membership function:

Below is an example of a Bell membership function:

Below is an example of a triangular membership function:

 7.2 Fuzzifier 121

The last figure shows something interesting: Membership functions do not have
to be symmetrical and can have all kinds of forms. Nevertheless, simple member-
ship functions are often preferred over complex ones because business managers
and experts have an easier time understanding them.

We can see from the above illustrations that membership functions always re-
turn a membership degree between 0 and 1, where 0 equates to “zero degree of
membership” and 1 equates to “full degree of membership.”

Let us look at an example using triangular membership functions. Imagine
a man who is 5 feet 11 inches tall (about 1.8 meters). Somebody might say, “He is
tall.” Boolean logic would attach the value “true” or “false” to this statement, but
fuzzy logic would try to evaluate to what degree the statement is true! Imagine the
following triangular membership function that defines “tall”:

This membership function takes the height of a man and defines to what degree
he is tall. If a man is shorter than 5 feet then his degree of being tall is 0; and if he
is taller than 6 feet 6 inches, then his degree of being tall would be 1. If his height
falls somewhere between 5 feet and 6 feet 6 inches feet, then his degree of being
tall is somewhere in the range from 0 to 1. According to the membership function
above, a man who is 5 feet 11 inches is tall to a degree of 0.6.

122 7 Fuzzy Logic

Imagine now that we also have membership functions defining “short” and
“average”:

This figure illustrates an important point: Just because a man is “tall” to a certain
degree, does not mean that he is not also “short” and “average” to some other de-
grees. In other words, the membership functions can overlap. A man who has
a height of 5 feet 11 inches would be “short” to degree 0, average to a “degree” 0.2
and “tall” to a degree 0.6. The numbers do not have to add up to 1 because “short,”
“average,” and “tall” are completely different linguistic values (some other exam-
ples of linguistic values would be “red,” “heavy,” “very fast,” “close,” “far,”
“warm,” “cold,” etc.).

In the car distribution example, we might have the following input membership
function for “mileage,” where the x-axis indicates the mileage:

7.3 Inference System 123

And the following for “damage level,” where the x-axis indicates the damage
level:

These two input membership functions36 refer to the variables “mileage”
(which is found by reading the odometer) and “damage level” (which could be
estimated on a scale from 0 to 10 by an auto mechanic). To create the fuzzy input
set, the fuzzifier takes the crisp input number in the range of 0 to 10 for “damage
level,” along with the actual value for “mileage,” and then applies the membership
functions to calculate the membership degrees. For example, a car with “mile-
age” = 80,000 and “damage level” = 4 would be low mileage to a degree of 0.4,
etc. Hence, the fuzzifier has transformed the crisp input numbers (80,000 miles
and damage level 4) into a few linguistic values and degrees of membership:

“High mileage” to a degree of 0.6.
“Low mileage” to a degree of 0.4.
“Heavy damage” to a degree of 0.25.
“Light damage” to a degree of 0.75.

These membership degrees constitute the fuzzy input set, which is used by the
inference system to generate a fuzzy output set.

7.3 Inference System

The inference system is the heart of fuzzy logic and it contains knowledge in the
form of rules and output membership functions. If we require extremely precise
predictions, then we will probably end up with many rules; if we do not require
such extreme precision, then our rule base will probably contain fewer and more

36 Although these two input membership functions look identical (because we have used
straightforward membership functions to simplify the illustrations), this does not have to
be the case, and some membership functions might be quite complex. Furthermore, there
are usually more than two linguistic values defined for a variable (not just “high” and
“low” for mileage or “heavy” and “light” for damage level).

124 7 Fuzzy Logic

general rules. Although more rules usually mean more precise predictions, the rule
base can become too large (and, consequently, difficult for business managers and
experts to comprehend). Hence, there needs to be a balance between generality
and precision for any real-world business problem.

In the case of the car distribution example, we could build a rule base in one of
two ways. The first way would be to ask a human expert to define all the rules that
affect the sale price of a car. This manually built rule base might serve as a good
starting point for further tuning (as the initial rules might be somewhat inaccu-
rate), but a major drawback of this approach is the amount of time and effort it
requires. For example, consider the countless membership functions that would
need be to handcrafted and fine-tuned so that the predicted sale price is acceptably
close to the actual sale price.

The second way is to carry out a data mining exercise on the available data.
There might be a few reasons for using this approach rather than querying an expert:
For instance, a human expert may not be available for questioning, or the available
expert might be unable to define all the rules (as many decisions might be based on
“intuition”). Another reason could be that we want the rule base to be “unguided”
and free of human assumptions that might be flawed. For example, a thorough ana-
lysis of the data might lead to discovery of very effective rules based on “trim” and
“color” – a combination that a human expert might not have considered. Sometimes
human intuition is an effective guide, but at other times, it can lead us astray.

For the sake of simplicity, let us build a very simple rule base for estimating the
sale price of a particular car at a particular auction site:

 Rule 1: If damage level is heavy and mileage is high, then sale price is bad
 Rule 2: If damage level is light and mileage is low, then sale price is good

These two rules refer to the variables “damage level,” “mileage,” and “sale pri-
ce.” Of course, the linguistic values for the variables “mileage” (i. e., “high,” and
“low”) and “damage level” (i. e., “heavy” and “light”) were already defined by
some triangular input membership function (see Sect. 7.2). Now we also have to
create a simple output membership function for “sale price,” with two linguistic
values “good” and “bad,” where the x-axis indicates the sale price:

7.3 Inference System 125

With a fuzzifier capable of generating fuzzy input sets, and an inference system
consisting of a rule base (with two simple rules) and an output membership func-
tion, we can now create a fuzzy output set. By continuing our example of a car
with “mileage” = 80,000 and “damage level” = 4, let us take a look at what the
fuzzy output set would look like.

First of all, let us visualize the fuzzification process. As we have already dis-
cussed, the crisp input number “mileage” = 80,000 is transformed by the fuzzifier
to calculate a membership degree of 0.6 for the mileage being “high” (illustrated
in the top-middle graph below) and a membership degree of 0.4 for the mileage
being “low” (illustrated in the middle-middle graph below). Similarly, the crisp
input number “damage level” = 4 is transformed by the fuzzifier to calculate
a membership degree of 0.25 for the damage level being “heavy (illustrated in the
top-left graph below) and a membership degree of 0.75 for the damage level being
“light” (illustrated in middle-left graph). These linguistic and membership values
make up the fuzzy input set:

if damage level is heavy and mileage is high then sale price is bad

if damage level is light and mileage is low then sale price is good

fuzzy output set

126 7 Fuzzy Logic

The inference system then takes this fuzzy input set and applies a fuzzy and,
which can be performed in a number of different ways. Two frequently used
methods are to take the minimum input membership degree, or to multiply the
input membership degrees together.37 In the above example, the inference system
used the minimum input membership degree for fuzzy and. Therefore, the degree
of sale price being “bad” is set to 0.25 in the output membership function (illus-
trated in the top-right graph).38 The inference system then repeats the above proc-
ess for the second rule, but damage level is now “light” and mileage is “low.”
Since the input membership degree of mileage being “low” is lowest with 0.4
(while the degree of damage being “light” is 0.75), the inference system sets the
degree of sale price being “good” to 0.4 in the output membership function (illus-
trated in the middle-right graph).

After all rules are processed sequentially, the next step is to combine the results
of the output membership functions into one fuzzy output set for “sale price.” This
is accomplished by overlapping the gray areas illustrated in the top-right graph
and middle-right graph above. The result of the inference system is a fuzzy output
set illustrated by the gray area in the following illustration (this is an enlargement
of the bottom-right graph above):

The question now is what to do with this gray area (i. e., fuzzy output set).
Processing this fuzzy output set is the responsibility of the defuzzifier.

37 Fuzzy and is an extension to the logical and in Boolean logic. If we denote false by 0
and true by 1, then using a fuzzy minimum for logical and would give the following re-
sults: false (=0) and false (=0) � false (=0), true (=1) and false (=0) � false (=0), false
(=0) and true (=1) � false (=0), and true (=1) and true (=1) � true (=1). Hence, in the
extreme (with “0”s and “1”s), fuzzy logic is reduced to Boolean logic.

38 0.25 is equal to the degree of the damage level being “heavy,” since that degree is the
lowest of the two input membership degrees in the if part of the first fuzzy rule.

 7.4 Defuzzifier 127

7.4 Defuzzifier

The defuzzifier takes the fuzzy output set from the inference system and converts
it into a crisp output number. A defuzzifier can operate in a number of different
ways, and one of the most common is the center of mass defuzzifier. It works in
the following way: Imagine that the gray area (i. e., fuzzy output set) is a piece of
wood that we have to balance on one finger:

The place where the finger touches the gray area is the center of mass. This de-
fuzzifier calculates this exact spot, which results in the following defuzzification:

128 7 Fuzzy Logic

This illustration shows that the center of mass is 12,000 and so the defuzzifier
would return a predicted sale price of $12,000 (i. e., crisp output number) for
every car with “damage level” = 4 and “mileage” = 80,000.

7.5 Tuning the Membership Functions and Rule Base

Regardless of the methods used to construct the membership functions and rule
base (e. g., through human expertise or data mining exercise), we need to tune
them to get the best possible performance (e. g., in the car distribution example,
this means minimizing the prediction error of the predicted sale price). Through
the process of tuning, we can modify a few components of the fuzzy system. For
instance:

The output membership functions can be modified, while keeping the input
membership functions static. For example, if we use triangular output member-
ship functions, then we can adjust the triangles to get better predictions. This
would make sense if we knew that the input membership functions were more
or less perfect, or if the input membership functions are “given” (e. g., if they
correlate to industry standards that we should follow).
The input membership functions can be modified, while keeping the output
membership functions static. This would make sense if we knew that the output
is relatively static (e. g., when we have to make a binary classification).
Both the input and output membership functions can be modified. This is the
most general way to tune the rule base, and is typically the preferred choice.
We would choose this form of tuning for the car distribution example, as both
the input (e. g., car characteristics, such as new body styles or trim) and output
(e. g., range of sale prices) can change over time.

If tuning the membership functions does not adequately reduce the prediction
error, then we should consider making larger adjustments. For instance, we can
add or delete some linguistic values in the existing rules, such as adding “and
color is dark” to the if part of the rule if damage level is heavy and mileage is
high, then sale price is bad. If we add a linguistic value to a rule, then the rule
would become more specific; and if we remove such a value from an existing rule
(e. g., dropping “damage level is heavy”), then the rule would become more gen-
eral. If the prediction error is still unacceptable, then we should consider adding or
deleting entire rules. After some rules are added or deleted, we can then perform
the above steps to fine-tune the entire rule base.

The above steps for tuning the membership functions and rule base are pre-
sented in order of increasing “severity,” beginning with relatively small tweaks of
the membership functions to modifying entire rules. The level of tuning used de-
pends on the size of the average prediction error, with larger errors typically re-
quiring larger adjustments.

Note that the tuning process should be repeated in regular intervals (the fre-
quency of which is always problem-dependent and can vary from a few hours to

7.6 Recommended Reading 129

a few months), as the fuzzy logic implementation should adapt to changes in the
environment (i. e., changes in the economy, makes/models, price ranges, etc.).
This is the role of the adaptability module, which we will discuss in Sect. 10.3.

7.6 Recommended Reading

In this chapter, we discussed the various components of fuzzy logic: namely, the
fuzzifier, inference system, and defuzzifier. Finally, we looked at how an adapta-
bility module can be used to adapt an implementation of fuzzy logic.

Thinking in fuzzy logic terms is a very interesting experience: for example,
when the traffic is slow, we should realize that “slow” is a linguistic value that has
a degree of membership. Hence, the traffic is “slow” to a certain degree. When we
are late for a meeting, “late” is not binary (even though our boss might tell us
otherwise!); it is a linguistic value with a membership function. Hence, we are
“late” to a certain degree. Finally, when we weigh ourselves and ask: “Am I too
heavy?” We might realize that we are “heavy” to a certain degree between 0 and
1, as defined by some membership function in our head.

Many things in the real world are “true” to a certain degree. Someone can even
be guilty of a crime to a certain degree and the judge might reduce the sentence.
However, is everything a question of something being true to a certain degree?
No, not everything is a question of degree. Some things in life are purely “true” or
“false.” For example, the statement “I won a million dollars in the lottery” is either
true or false, because you cannot win a million dollars in the lottery to a certain
degree (e. g., 0.0911). Nevertheless, the next time you ask your son if he broke the
neighbor’s window and he looks down at the floor and says “a little bit,” just re-
member that he might actually be telling the truth. Then all you have to do is fig-
ure out what membership function to use for “a little bit.”

For an easy introduction to fuzzy logic, we recommend Fuzzy Thinking by Bart
Kosko (Hyperion, 1994). The book is a bestseller in the United States and it offers
a philosophical perspective on fuzzy logic with hardly any functions. It introduces
the concepts, origins, and reasoning behind fuzzy logic in an easy-to-grasp visual
manner. This is a very easy book for beginners.

A more mathematical treatment of fuzzy logic can be found in the books Neu-
ral Networks and Fuzzy Systems by Bart Kosko (Prentice-Hall, Upper Saddle
River, NJ, 1992) and Adaptive Fuzzy Systems and Control by Li-Xin Wang (Pren-
tice-Hall, Upper Saddle River, NJ, 1994). Both books are written from an engi-
neering point of view and do a great job of presenting all the aspects of fuzzy
logic.

The book Computational Intelligence PC Tools by Russ Eberhart, Pat Simpson,
and Roy Dobbins (Morgan Kaufmann, San Francisco, 1996) also provides an
excellent introduction to fuzzy logic, neural networks and evolutionary algo-
rithms. The concepts are presented through different examples and then general-
ized. The book also contains a very nice description of the different parts of fuzzy
logic, along with an explanation of how they function.

8 Artificial Neural Networks

“What one man can invent another can discover.”
The Adventure of the Dancing Men

“Sherlock Holmes had pushed away his untasted breakfast and lit the
unsavoury pipe which was the companion of his deepest meditations.”
The Valley of Fear

If you spend a significant amount of time trying to solve various business prob-
lems by “racking your brain,” then you will inevitably come across the idea of
“automating” your thinking process. The idea would be to simulate your brain
functions on a computer so that it can solve problems for you. However, brains do
not function in the same way as digital computers. First of all, biological process-
ing is inherently and massively parallel in nature, while traditional computing is
sequential (i. e., each step in an algorithm is processed “one at a time” until the
termination condition is reached). Second, although conceptual similarities exist
between the neurons in living brains and logic gates in computers, the firing rates
of biological neurons are much slower than computer logic gates: milliseconds for
neurons versus nanoseconds for computers. And, third, the response of a biologi-
cal neuron is somewhat erratic and noisy (with misfirings or no firings at all),
while a computer logic gate has very controlled “noise.” Because of all these fun-
damental differences, we can conclude that different types of input-output devices
can tackle different problems with different efficiency.

For example, because computers are excellent for quickly calculating arithme-
tic results, it is better to use a calculator rather then pen and paper for dividing
412.14823 by 519.442. By contrast, computers are not good at generalizing or
handling conditions that fall outside the prescribed domain of possibilities. If one
of your friends shaves his beard, you will probably still recognize him; but a com-
puter would have considerably more trouble if it relies on a sequence of “if-then”
rules that correspond to the identification of specific features of a person’s face.

Does it have to be this way? Is this a fundamental restriction of computer proc-
essing? Or is it possible for computers to function more like biological neural
networks? After all, a neural network is an input-output device. Hence, it should
be possible to create models of how neural networks perform their input-output
behavior and then capture this behavior in a computer. The resulting artificial
neural network might yield some of the processing capabilities of living brains,
while still providing the computational speed that can be attained in a computer
chip. In this chapter, we will take a closer look at different artificial neural net-
works, and see how they fit into the context of Adaptive Business Intelligence.

132 8 Artificial Neural Networks

8.1 Overview

Living brains consist of a large number of different neurons,39 and there are ap-
proximately 1014 neurons in a human brain. The following illustration is an ex-
ample of a biological neuron:

A neuron’s behavior is relatively simple: The incoming chemical activity feeds
into the soma (the body) via the dendrites, and if the chemical activity overcomes
a certain threshold, then the neuron sends an electrical spike down the axon. This
spike triggers the “firing” of (chemical) neuro-transmitters at the synapses. Be-
cause the neuro-transmitters lie in close proximity to other neurons, the discharge
creates a chemical reaction in the next set of neurons. The result of this relatively
simple chemical-electrical behavior is responsible for the amazing achievements
of the human race.

39 Although the brain has thousands of different types of neurons, most of them behave in
fundamentally the same way.

 8.1 Overview 133

The above illustration is just one example of a neuron, and below are some
other examples:

All these neurons are interconnected in a very complex manner. On average,
each neuron in the human brain connects to 10,000 other neurons. Hence, the
human brain is a complicated network of neurons with roughly 1018 connections,40

and science has trouble explaining how the brain learns and performs its magnifi-
cent work. However, if you are reading this text, then your biological neural net-
work is functioning properly and we can proceed with our discussion on artificial
neural networks.

40 Interestingly enough, recent research has shown that more neurons do not make us
smarter. In other words, just because somebody has a big brain does not mean that
he/she can process information more effectively. People with smaller brains can be
smarter than people with bigger brains — size does not matter too much in this case.

134 8 Artificial Neural Networks

8.2 Node Input and Output

As mentioned earlier, neurons accumulate chemical input and create electrical
output. In order to model a neuron in a computer the first step (most often) is to
calculate a weighted sum of the input activity (i. e., the activity coming from other
nodes):

This figure illustrates two nodes at the bottom (small ellipses) containing the
values 5.40 and 2.73, respectively. The node at the top (big ellipse) calculates the
weighted sum by multiplying the values of the input nodes with the associated
connection weights (which are parameters that represent the strengths of the con-
nections between nodes). Each arrow indicates the direction of the connection
between two nodes, and the weights are floating-point numbers that assign a sig-
nificance factor to each connection. Weights can be positive (exhibitory) or nega-
tive (inhibitory), which loosely resembles biological neurons and their connec-
tions.

Once the weighted sum is calculated, a node has to decide whether it should
send an output signal. A squashing function41 is often used to make this determi-
nation:

41 A squashing function calculates the output of a node by taking the weighted sum as
input.

8.2 Node Input and Output 135

This figure shows the sign and sigmoid squashing functions. The horizontal
axis illustrates the weighted sum of the input, while the vertical axis illustrates the
output. As shown, the sign function generates an output when a specific threshold
is crossed (0 in the above illustration). In other words, there is no output when the
weighted sum is 0 or less, and there is an output (of strength 1) when the weighted
sum is greater than 0. On the other hand, the sigmoid function is smoother than the
discontinuous sign function, and the output value slowly rises toward the maxi-
mum output. In this example, the output values of the sigmoid function are:

0 for inputs less than 3,
0.5 for an input of 0, and
1 for inputs of 3 or more.

The sigmoid function is typically preferred over the sign function because it
can be differentiated,42 and some learning methods require differentiability (we
will discuss learning methods in Sect. 8.4). Nevertheless, the sign and sigmoid
functions are just two examples of how nodes can generate output; the following
figure illustrates another type of output generation, where the nodes can create
a spike instead of a plateau:

42 In layman terms, a “differentiable” function is relatively smooth.

136 8 Artificial Neural Networks

This figure illustrates the pulse and Gaussian squashing functions. Again, the
horizontal axis illustrates the weighted sum of the input, and the vertical axis illus-
trates the generated output. The pulse function has a distinct area where it spikes
(from 2 to +2 in the above illustration) to full strength of 1, and outside of this
area the output is 0. The Gaussian also has a spike, but it is much smoother than
the pulse function. In comparing these different squashing functions, the sign and
pulse functions are conceptually very simple, returning either 0 (no output) or 1
(full strength), but are discontinuous and non-differentiable (which may exclude
some learning methods). The sigmoid and Gaussian functions, on the other hand,
are more complex, but they provide continuous output values.

8.3 Different Types of Networks

Fundamentally, there are two different types of artificial neural networks:

Feed-forward neural network. This type of neural network has no recurrent
connections between nodes (i. e., artificial neurons), and so the activity flows in
one direction (i. e., the activity is fed forward step-by-step from the input nodes
toward the output nodes). This type of neural network is most often used for
function approximation and classification.

8.3 Different Types of Networks 137

Recurrent neural network. This type of neural network consists of a set of in-
terconnected nodes, where the activity circles around in the neural network un-
til it (maybe) settles down. This resembles a living brain in some ways (but is
much simpler), and is typically used when data come in a stream (e. g., for spo-
ken language processing, credit card fraud detection,43 time series predictions).

Let us explore these two types in more detail.

8.3.1 Feed-Forward Neural Networks

The following figure illustrates a typical feed-forward neural network, which does
not have any recurrent connections between nodes:

In this figure, there are three layers of nodes: The lowest layer is called the in-
put layer, as these nodes accept the input values; the middle layer is called the
hidden layer, as all the activity there remains hidden; and the top layer is called
the output layer, as the activity that traversed the network finally arrives here.

Many different neural network architectures are possible, and the numbers of
nodes in the input and output layers are usually determined by the problem at
hand. However, the number of hidden layers and the connectivity between nodes
and neighboring layers are design decisions that may vary from one implementa-
tion to the next. Thus, the number of possible architectures for any given problem
is quite large. The illustration above depicts a “fully connected” neural network, as
every node on a lower layer is connected with every node on the next level (but
this need not be the case). Each of these connections also has its own weight.
A feed-forward neural network that is fully connected and has assigned weights
for all the connections “works” in the following manner:

43 Most often, a considerable amount of authorized activity occurs before a card is lost or
stolen and the fraudulent activity begins. The transition from authorized to unauthorized
use needs to be detected in the stream of transactions.

138 8 Artificial Neural Networks

1. The input values are fed directly into the nodes at the input layer.
2. The hidden nodes perform their calculations by summing up the weighted input

received from the input layer nodes, and by applying their input-output squash-
ing function to determine their output values.

3. Each output node determines its final output value by calculating the weighted
sum using the values from the hidden nodes.44

Let us illustrate how a feed-forward neural network could be applied to the car
distribution problem. If we use two variables as input (e. g. “mileage” and “year”),
then our neural network could look like:

In the above example, the two hidden nodes (marked with double circles) use
the sigmoid squashing function.45 Rather than using a squashing function, the
output node calculates its own weighted sum (using the black leftmost input unit
with constant value 1.0 to calculate the threshold for the output node). The out-
put of the above neural network can also be described mathematically as a weigh-
ted sum:

Output= (33,000 × (1.0))
+ (10,000 × Sigmoid (0.00004 × Mileage + 0.001 × Year))
+ (18,000 × Sigmoid (0.2 × Year))

44 Note that the “output” from the hidden nodes is the “input” to the output nodes.
45 The exact function is: Sigmoid (x) = 1 / (1 + exp(–x)).

8.3 Different Types of Networks 139

For this particular neural network, the following table shows the output values
for different inputs of “mileage” and “year”:

Mileage Year Output
5000 1 17602.17

50000 1 14293.97
50000 5 11027.74

Not surprisingly, the predicted output (i. e., sale price) decreases as the mileage
and year increase. Determining the various weights (such as 0.00004 between the
“mileage” input node and the hidden node) occurs during the training process,
which we will discuss in Sect. 8.4. Note also that no connection exists between the
“mileage” input node and the rightmost hidden node. Here we can assume that
there is a connection between these two nodes, but the assigned weight is 0.

Although this neural network has only a single hidden layer, more often than
not additional hidden layers are used to improve the precision of the predicted
output (in much the same way that more rules in fuzzy logic usually mean more
precise predictions – as discussed in Sect. 7.3). The exact number of hidden lay-
ers, connections, and hidden nodes – as well as the input-output function of the
nodes – is dependent on the problem at hand. This is why creating a successful
neural network is still a “black art” and requires a considerable amount of experi-
ence …

When discussing various types of neural networks, it is convenient to illustrate
the structure by showing how the different layers are connected. For example, the
feed-forward neural network discussed earlier would have the following structure:

The bottom arrow indicates that the input values are fed into the nodes in the
input layer. The middle arrow indicates that the activity is processed through the
hidden layer toward the output layer. Once the nodes in the output layer have

140 8 Artificial Neural Networks

calculated their final output values, these values are (most often) used for predic-
tion or classification.

While feed-forward neural networks are fast, precise, and able to generalize
well, they are hard to understand because the learned features are “hidden” in the
weights. For this reason neural networks are often referred to as “black boxes,”
because they do a great job of making predictions but nobody knows exactly how
these predictions are made. Furthermore, because feed-forward neural networks
can only process the entire input, one input at a time, they have no history/memory
of earlier inputs, outputs, or processes. Recurrent neural networks, however, are
able to overcome this limitation.

8.3.2 Recurrent Neural Networks

Recurrent neural networks have recurrent links between nodes, which means that
the activity can “circle around.” While this can create a situation where the activ-
ity never “settles down,” it also opens the door for the concept of memory. This
section illustrates a couple of recurrent neural network structures and explains
how they operate.

The following figure illustrates the Elman recurrent neural network:

The Elman recurrent neural network operates in the following manner:

1. The input values are fed into the input layer.
2. The hidden layer calculates its activity using the input layer and the internal

context layer, which serves as an internal memory that “remembers” the old
hidden layer values.

8.3 Different Types of Networks 141

3. The output values from the hidden layer are then copied into the context layer.46

The asterisk (“*”) next to the gray arrow indicates that the output values of the
hidden layer are copied to the context layer, thereby overriding the old values.

4. The output layer calculates its final output values using the activity of the hid-
den layer.

The Elman neural network has memory, since the most recent output values of
the hidden layer are available for further processing when the next set of input
values are presented. Nevertheless, this only creates memory of the output values
from the hidden layer, and not the final output values from the output layer.

The following figure illustrates another possible structure of a recurrent neural
network, called the Jordan recurrent neural network:

The Jordan recurrent neural network operates as follows:

1. The input values are fed into the input layer.
2. The hidden layer calculates its activity using the input and context layers.
3. The output layer calculates its final output values using the activity of the hid-

den layer.
4. The context layer calculates its new values by using the new final output val-

ues47 and the old final output values multiplied by the decay rate .

Since the context layer is updated using the current final output values plus
the “decayed” final output values, the hidden layer effectively contains all the

46 Hence, the context layer is exactly the same size as the hidden layer (i.e., the number of
nodes in the two layers is identical).

47 The decay rate is between 0 and 1.

142 8 Artificial Neural Networks

former (decayed) final output values. Such an internal decaying memory is very
useful for detecting patterns in streams of data.

Many other structures of recurrent neural networks can be created using one or
more context layers. The memory in these neural networks is based on the decay
of information using a decay rate. This decay of information allows recurrent
neural networks to correlate two or more patterns that are separated in time (i. e.,
detect and predict output based on a stream of input data). Using the well-known
back-propagation learning method, the training of such recurrent neural networks
is quite fast (learning methods are discussed in the next section).

Lastly, rather than using context layers for memory, it is possible to use hidden
nodes with recurrent connections that have their own adjustable weights. How-
ever, because the hidden nodes and recurrent connections can be arranged in al-
most an infinite number of ways, little is known about how to effectively structure
or train such recurrent neural networks.

8.4 Learning Methods

A large number of different training methods have been developed to train, adjust,
and update neural network models. Generally speaking, all of these methods fall
into two major categories:

Supervised learning. If we have data with both the input and output values
(e. g., the characteristics of different cars and their actual sale prices), then we
can apply supervised learning methods to train (i. e., adjust) the neural network.
Unsupervised learning. If we have data without the output values (e. g., the
characteristics of different cars that have not yet been sold), then we can apply
unsupervised learning methods for clustering and data analysis.

In the remaining parts of this section, we will discuss both types of methods in
more detail.

8.4.1 Supervised Learning

Supervised learning is typically used when the available data contain both the
input and output values. As an example, recall that the input values for the car
distribution example included VIN, make, model, body style, etc., and the output
value was the sale price. Given all the data we possess about a particular car, plus
the auction site location and the date of sale, we can build a neural network model
for predicting the sale price. Let us assume for a moment that the actual sale price
was $11,020 for a particular car at a particular auction site on a particular date, but
our neural network model predicted that it would be $7,825. Obviously, our model
made a significant prediction error, and so it needs to be adjusted/trained. This is
most often done using the quadratic error function, i. e., the least mean square
error (LMS error), such that:

 8.4 Learning Methods 143

LMS error = 0.5 × (actual sale price – predicted sale price)2

 = 0.5 × (7,825 – 11,020)2

 = 5,104,012

The point of using the LMS error function is to slightly update the weights so
that the predicted sale price would be closer to the actual sale price. Although the
LMS error function is most commonly used to update the weights,48 the most
well-known method for training a feed-forward neural network is back-propa-
gation. This learning method corrects the error at each layer by adjusting the
weights, starting at the output layer and moving back toward the input layer.49 The
training process is typically repeated many times, until the LMS error is suffi-
ciently low and the neural network has learned how to predict the sale price of all
cars at all auction sites on all possible dates.

Let us illustrate this back-propagation method with a simple example. In
Sect. 8.3, we illustrated the use of a neural network model for predicting the sale
price of a particular make/model at a particular auction site. The feed-forward
neural network accepted two variables as input, “mileage” and “year,” and six
weights were assigned to the different connections between nodes:

The three weights between the input nodes and hidden nodes were 0.00004,
0.001, and 0.2.
The three weights between the hidden nodes and the output node: 33,000,

10,000, and 18,000.

The question is: How did we determine these weights?
Assume that at some earlier stage of the training process (i. e., during the back-

propagation process), the neural network had the following connections and
weights:

48 To apply the LMS error function, we have to calculate the “gradient” by differentiating
the squashing function of the nodes. See suggested reading section for more details.

49 The prediction of the sale price moves from input to output, while the error propagates
in the reverse direction.

144 8 Artificial Neural Networks

Assume further that for an input (say, “mileage” = 50,000 and “year” = 5) the
model predicted a sale price of:

$7,825 = (31,500 × (1.0))
+ (11,300 × Sigmoid (0.000065 × Mileage + 0.0015 × Year))
+ (17,500 × Sigmoid (0.2 × Year))

and the actual sale price turns out to be $11,020. Thus, the LMS error is:

5,104,012= 0.5 × (actual sale price – predicted sale price)2

= 0.5 × (7,825 – 11,020)2

We now have to update the weights between the output node and the hidden
nodes. The output node does not use a squashing function, so the update rule is
quite simple:

 weightnew = weightold + α × error × input

where is the learning rate (larger values of α would result in larger adjustments of
weights; in this example we assume α= 0.001). So, the new weights for the con-
nections between the output node and the hidden nodes are:

31,500 + 0.001 × error × input = 31,500 + 0.001 × 5,104,012 × (1) = 36,603
11,300 + 0.001 × error × input = 11,300 + 0.001 × 5,104,012 ×

Sigmoid (0.000065 × mileage + 0.0015 × Year) = 6,386
17,500 + 0.001 × error × input = 17,500 + 0.001 × 5,104,012 ×

Sigmoid (0.2 × Year) = 13,769

 8.4 Learning Methods 145

To update the weights of the hidden nodes, we use the same rule:

 weightnew = weightold + α × error × input

However, the “error” is calculated differently, as the hidden nodes include
squashing functions. Without going into the function details for error calculation,
say the new values for these weights are:

0.000065 + 0.001 × error × input = 0.000089
0.0015 + 0.001 × error × input = 0.0008
0.2 + 0.001 × error × input = 0.27

So, after a single iteration (e. g., after making adjustment for a single piece of
data, where “mileage” = 50,000 and “year” = 5), the model was updated to:

Several issues need to be addressed to make the training process work
smoothly. First of all, we need to address the structure of the neural network. The
fundamental question is: What kind of structure is optimal for a given problem?
Although there are many methods and heuristics that try to construct the neural
network layers and connections, no efficient way of selecting the optimal structure
is known. Furthermore, because the training process is usually very slow (espe-
cially when multiple hidden layers are used), complicated learning methods have
been invented to speed up the process.

Despite these difficulties, neural networks can make excellent predictions once
they are properly trained, and can be easily retrained if additional data become
available later. Neural networks also interpolate very well, especially if they do
not contain too many nodes (which leads to over-learning, where the neural net-
work simply memorizes the data). Lastly, if enough training data are available,
neural networks can efficiently handle noise. In the car distribution example, it
might happen that the actual sale price was incorrectly recorded and the resulting
prediction error would constitute noise in the data.

146 8 Artificial Neural Networks

8.4.2 Unsupervised Learning

Unsupervised learning is used in situations where only the input values are avail-
able (i. e., when there is no output value associated with the input values). As
mentioned earlier, an example of this would be the characteristics of different cars
that have not yet been sold. Assuming that no output values exist, we cannot pre-
dict the sale prices for these cars, but we can cluster the input values using unsu-
pervised learning.

Imagine that the input values are distributed in the following manner:

Each data point can represent a car with certain variables (e. g. “color” and
“mileage”). These data points form data clusters that display some degree of simi-
larity, and the circles represent the cluster centers. Unsupervised learning can
identify these cluster centers, which represent the “typical” values of the data
clusters. Knowing the typical values makes it easier for us to spot atypical values
(i. e., outliers) and make statements like “Most Toyota Camry cars are white with
mileage in the range of 60,000 to 72,000, while most BMW 528i cars are silver
with mileage in the range of 45,000 to 58,000.” Such statements are very useful,
as they can help us categorize new data points as either “typical” or “atypical.”

The most well-known method for unsupervised learning is the Kohonen self-
organized mapping method, where the data clusters are formed in such a way that
they relate to each other in an organized manner. This method can be used to
quickly identify the typical patterns within large data sets. Each “typical pattern” is
(in simple terms) the average of the data points in a data cluster. Initially, the typical
patterns are randomly distributed, but over several iterations of the learning process
they end up in the center of the data clusters. “Typical patterns” are very useful for
identifying typical car purchasing behavior, typical credit usage, typical health
risks, etc. The Kohonen method resembles the well-known k-means clustering, but

8.5 Data Representation 147

neural networks based on the Kohonen method learn differently. Moreover, they are
inspired by biological evidence regarding how humans categorize data.

In general, unsupervised learning is used in many diverse areas, such as fraud
detection, medical classifications, and categorization of consumer behavior. Since
unsupervised learning identifies clusters of typical input value, it can also be used
for signal compression of images and other electronic signals.

8.5 Data Representation

Neural networks are sometimes referred to as universal approximators, because of
their efficiency in learning from data with an unknown underlying distribution.
However, in order to construct an efficient neural network, some data representa-
tion issues need to be resolved first.

To start with, the typical input to a neural network is a vector of numeric values
(such as –5.3425 or +7.935) and the output is another vector of numeric values.
Note that the input does not include nominal values50 like “Chevrolet,” “yellow,”
“dog,” “cat,” etc. Simply assigning a numeric value to each nominal value would
be disastrous, because neural networks cluster values that are numerically close
together. If we randomly assigned numerical values to nominal values in the car
distribution example, then we could have the following situation: “Chevrolet” = 1,
“Accord” = 2, “Porsche” = 3, and so forth. Using only one numeric input, it would
be very difficult for a neural network to separate these different car makes,51 and,
consequently, to accurately predict their sale prices. If we instead translated the
cars into a Boolean-like vector using three inputs (where 1 is true and 0 is false)
then we could express a “Chevrolet” as “1, 0, 0”, “Accord” as “0, 1, 0,” and “Por-
sche” as “0, 0, 1.” Such a Boolean translation would make it significantly easier to
train a neural network to predict sale prices, because different hidden nodes could
fire more easily for different car makes.

Another issue is that of high input dimensionality (i. e., an extremely large
number of inputs to the neural network). If we wanted to train a neural network to
recognize faces, for example, we might assume that the task would be easy. After
all, a high-quality camera has millions of pixels, and each pixel could be repre-
sented with three integers: one describing the intensity of red, another for blue,
and the third for green. But millions of inputs require millions of connection
weights, and each weight requires training data to correctly distinguish different
examples. This results in the need for an extremely large number of training pic-
tures, which is not feasible in practice since the training process would take too
long. For this reason, a special form of “compression” is often applied to reduce
the input dimensionality (the high-quality pictures are compressed by reducing the

50 Nominal values are values without ordering or distance between them; see Chap. 5.
51 Recall that the hidden nodes use a squashing function that makes it inherently difficult

to separate nominal values.

148 8 Artificial Neural Networks

resolution, applying retina preprocessing,52 or using a Fourier transformation53).
This compression significantly reduces the number of inputs to the neural net-
work, which in turn reduces the number of connection weights, which in turn
makes it more feasible to train the neural network within a reasonable time limit.

To summarize, we must keep the following things in mind about the input for
a neural network:

The input consists of numeric values.
Numeric values that are “close” may be considered to “belong together.”
The input dimensionality must be reduced to a manageable size.

In addition to these input issues, the output also requires some special consid-
eration – especially for classification tasks. In the facial recognition example, the
output consists of a numeric value. Using a single node, we could assign specific
output values to specific faces, but this would create immense difficulties for
a neural network. Numerically close values would be regarded as “similar faces,”
making it difficult to correctly identify different faces. We can solve this problem
by using a Boolean output vector translation (i. e., using a separate output node for
each face). Once we let all the nodes complete their calculations, we could then
select the node (and hence the face) that has the largest output value in a “winner-
takes-all” fashion. Although this approach works well for a limited number of
faces,54 consideration has to be given to unknown faces.

8.6 Recommended Reading

In this chapter, we looked at the structure of artificial neural networks, how they
are trained, and some possible applications. The relatively simple (but inherently
parallel and distributed) computations that take place in neural networks are cap-
able of impressive and robust performance. Tasks that are difficult for other tech-
niques can sometimes be surprisingly easy for neural networks. Examples include
the recognition of handwritten characters and numbers, faces, natural language,
product defects, and fraudulent transactions.

Although artificial neural networks excel in many areas, they also inherit an
undesirable characteristic of biological neural networks: they are black boxes.
Artificial neural networks often perform very well, but we do not fully understand
how or why. Although this is usually acceptable given the superior performance of
a neural network, it can be a serious obstacle in some cases (where the reasoning
behind a prediction or classification is required). New types of neural networks
have been invented to partly or fully circumvent the black box issue, and can be

52 Retina preprocessing reduces the effective resolution to the neural network by averaging
the values of neighboring pixels.

53 A Fourier transformation creates waveforms from a picture that are used as inputs into
the neural network.

54 This approach also works very well for the recognition of handwritten characters and
numbers.

8.6 Recommended Reading 149

more readily understood by humans. Among these are support vector machines,
radial basis function neural networks, and neuro-fuzzy networks.55

The book Introduction to the Theory of Neural Computation by John Hertz,
Anders Krogh, and Richard G. Palmer (Addison-Wesley, Redwood City, CA,
1991) gives a good description of the different types of artificial neural networks.
Although it can be challenging at times for those who are less technical, it leaves
hardly any stones unturned and is highly recommended by the authors.

For a very inspiring book that deals with the relationship between biological
and artificial neural networks we recommend The Computational Brain by
Patricia S. Churchland and Terrence J. Sejnowski (MIT Press, Cambridge, MA,
1992). This great book describes many biological findings and explains them in
algorithmic form. The book is easy to understand for most people who are new to
the subject of biological-artificial neural networks. It explains much of the waste
complexity of real biological brains and neurons, and the parallels with artificial
neural networks.

The book The Elements of Statistical Learning by Trevor Hastie, Robert Tib-
shirani, and Jerome Friedman (Springer, New York, 2001) provides a solid mathe-
matical explanation of the many different aspects of learning systems. The termi-
nology and approach is statistical in nature, but with an emphasis on concepts
rather than (too much) mathematics. It describes the many aspects of data, neural
networks, support vector machines, supervised learning, unsupervised learning,
and how to combine different prediction and classification systems. This is an
excellent treatment of the entire subject of learning systems, but it is not recom-
mended for readers who are not mathematically inclined.

55 We have only presented the most common artificial neural networks, and many other
structures (not mentioned in this chapter) are also possible.

9 Other Methods and Techniques

“Mediocrity knows nothing higher than itself; but talent instantly rec-
ognizes genius.”
The Valley of Fear

“… the quick inference, the subtle trap, the clever forecast of coming
events, the triumphant vindication of bold theories – are these not the
pride and the justification of our life’s work?”
The Valley of Fear

Thus far, we have discussed a variety of prediction methods and optimization
techniques that have ranged from decision trees and hill climbers, to neural net-
works and evolutionary algorithms. We will now conclude Part II of this book
with a review of some additional methods and techniques that can be applied to
prediction and optimization problems. We moved these methods and techniques
into a later chapter because they generate solutions that are considerably more
complex than the static vectors discussed in Chap. 6. Furthermore, some of these
methods (such as agent-based modeling) use an evaluation function that measures
the “behavior” of a solution to determine its quality measure score. As a result, we
can use some of these methods to observe an emergent behavior that would be
difficult (if not impossible) to predict using other (more traditional) methods. This
emergent behavior is one of the themes of this chapter …

9.1 Genetic Programming

Many real-world business problems require the discovery of some mathematical
function. For example, we may have a data set with cases that contain both input
and output values, and we would like to discover a function that can be used for
predicting the output for future cases. Note that the formulation of this problem is
quite different. We are not searching for a solution that is a vector of numbers, but
rather for a solution that is a function.

Let us consider the following example: Say we have a collection of sales data
for a particular product over some period of time, and we would like to discover
a function that describes the relationship between sales volume, price, and market-
ing expenditure. In other words, we would like to discover a function F:

 Volume = F (Price, Marketing)

152 9 Other Methods and Techniques

Of course, the above example is simplified (e. g., the marketing expenditure has
a delayed effect on sales volume), but it will suffice for illustrating how genetic
programming works. The typical approach to solving this problem is based on
assuming the general structure of the function F and then directing our effort to
tuning some parameters. For example, we can assume that the relationship be-
tween sales volume and the other two variables has the following structure:

 Volume = (a × (Marketing / Price)) + (b × (Marketing)) + c

where a, b, and c are (unknown) parameters. This function states that the sales
volume increases as the marketing expenditure increases and/or the product price
decreases. The only issue then is to find parameters a, b, and c that minimize the
prediction error for the historical data. And here we have many possibilities: we
can use simulated annealing or evolutionary algorithms to find the optimal vector
of these three numbers a, b, and c. However, the main weakness of this approach
is that we first have to make an educated guess about the general form of the func-
tion. If our guess is correct (i. e., close to the real function), then tuning the pa-
rameters will be quite straightforward. On the other hand, if our guess is incorrect,
then we will spend our time tuning the parameters of the “wrong” function … For
example, it might be that the function we are searching for is:

Volume = (12.3 × (Marketing 2 / Price 2)) + (3.7 × (Marketing 2 / Price))
 + (2.9 × (Marketing / Price 2)) + (21.8 × (Marketing / Price))
 + (8.7 × (Marketing 2)) + (3.3 × Marketing) + 1346

Again, finding all the parameters (12.3, 3.7, etc.) is easy once we know the
general form of the function. However, even in this very simple example, we can
consider an almost countless number of possible functions! By using genetic pro-
gramming, we do not have to make assumptions on what the correct function
might look like. Genetic programming allows us to search the space of possible
functions for one that fits the problem at hand – in particular, we may search for
the best function that calculates the sales volume on the basis of the marketing
expenditure and product price … How can we do that? Well, let us have a look.

First of all, genetic programming is a special type of evolutionary algorithm,
and so many of the same concepts apply: There is a population of individual solu-
tions (i. e., functions) that compete for a place in future generations and for the
placement of their offspring solutions. The process of evolution is simulated and
the best function emerges after some number of generations.

As we discussed in Chap. 6, we must follow some steps when applying the evo-
lutionary approach to a specific problem. In particular, we have to design the
“structure” of an individual solution, select an evaluation function that measures
the quality of each solution, and decide upon the parameters (e. g., population size,
probabilities of various crossover and mutation operators). Similarly, we must
follow some steps when applying genetic programming, which are:

9.1 Genetic Programming 153

1. Selecting the set of terminals. These are all the variables, parameters, etc. that
correspond to the inputs of the function. In our example, the set of terminals
consists of the marketing expenditure and the product price, as well as a set of
real numbers (e. g., 17.4).

2. Selecting the set of primitive functions. These are usually standard arithmetic
operations like addition or subtraction, standard mathematical functions like log
or square root, or domain-specific functions. In our example, the set of standard
arithmetic operations (addition, subtraction, division, and multiplication), ex-
tended by the square root function, would be sufficient.

3. Selecting the evaluation function. This is the key decision that ties the genetic
program to the problem at hand. The evaluation function evaluates how well
a particular function solves the problem. In our case, the evaluation function
has to estimate how well the developed function describes the relationship be-
tween sales volume, marketing expenditure, and product price (the smaller the
error on historical data, the better the fit). Of course, the error is measured on
many data points and is often expressed as a total of absolute errors on all data
points.

4. Selecting the parameters of the genetic program. These would include the
population size, number of generations, probabilities of various operators, and
possibly some other parameters (e. g., parameters that influence the selective
pressure of the algorithm: the higher the selective pressure, the smaller the
chances that weaker individuals will be selected for reproduction).

Let us take a closer look at some individual solutions that can emerge during
a simulated evolutionary run of a genetic program. Assume that at some gener-
ation (say, generation 215), one of the solutions in the population (of 500 individ-
ual solutions) is:

Volume = ((Marketing × 21.8 × Marketing) / (Price × Price))
 – (3.7 × Marketing × Price) + (2.9 × (sqrt(Marketing)) / Price) + 1192

To facilitate the discussion of crossover and mutation operators, we can repre-
sent this individual solution as a tree. A particular solution can be represented by
many different trees. For example, we can view the above solution as a sum of
two parts:56

 ((Marketing × 21.8 × Marketing) / (Price × Price)) – (3.7 × Marketing × Price)

and:

(2.9 × (sqrt(Marketing)) / Price) + 1192

Thus, the root of the tree (the uppermost node) represents addition (+), and the
first part of the solution is a subtraction between two subparts:

56 We can also view the above solution as a subtraction of two parts: (Marketing × 21.8 ×
Marketing) / (Price × Price)) and (3.7 × Marketing × Price) + (2.9 × (sqrt(Marketing))
/ Price) + 1192. In this interpretation, the root of the tree (the uppermost node) would
represent subtraction (–).

154 9 Other Methods and Techniques

(Marketing × 21.8 × Marketing) / (Price × Price)

and:

(3.7 × Marketing × Price)

This is represented by the appropriate node (–) in the left sub-tree. This process
then continues further: the first subpart is a division, where the enumerator is:

(Marketing × 21.8 × Marketing)

and the denominator is:

(Price × Price)

Hence, the next node down the tree represents division (/). The correspondence
between the original solution and the tree below should now be straightforward:

The above individual solution, which emerged in generation 215, will probably
be modified further in subsequent generations. For example, assume a mutation
operator was applied at the node with a bold outline (this node represents the divi-
sion operator “/”). In further generations, a randomly generated sub-tree may re-
place this part of the tree with the final result being:

9.1 Genetic Programming 155

This individual solution corresponds to the following function:

Volume = 13.1 + (sqrt(Marketing)/ 1.7) – (3.7 × Marketing × Price)
 + (2.9 × (sqrt(Marketing))/ Price) + 1192

Similarly, individuals may undergo the crossover operator, where a sub-tree
from one individual solution is swapped with a sub-tree from another solution. In
other words, the crossover operator creates two offspring solutions by exchanging
two sub-trees from two different parent solutions. For example, if the first parent
is:

156 9 Other Methods and Techniques

representing the function Volume = ((Marketing × 21.8 × Marketing) / (Price ×
Price)) – (3.7 × Marketing × Price), and the second parent is:

representing the function Volume = 13.1 + Marketing + (3.7 × Marketing × Price)
+ 1192 + ((2.9 × Price) / Price), then the first offspring is:57

57 Note that the node with a bold outline marks the cutting points for the crossover in both
parents. As for the mutation operator, these cutting points represent the “starting point”
of the sub-tree that is cut off and replaced by a sub-tree from the other parent.

9.1 Genetic Programming 157

The other offspring is created by “the other” swap (i. e., where the “gray” sub-
tree of the first parent is replaced by the “gray” sub-tree of the second parent).
Anyhow, the first offspring represents the following function:

 Volume = ((21.8 × Marketing × Marketing)+ 1192 + (2.9 × Price) / Price)

There are many issues to deal with when experimenting with genetic program-
ming. First of all, there is a tendency to get progressively more complex structures
(trees), so the functions might be quite complex and difficult to interpret. The very
simple function above, which emerged as an offspring solution after the crossover
operator was applied, is an exception, rather than a rule. Second, there might be
parts that are meaningless in the current function (like the division Price / Price
above). Furthermore, most applications of genetic programming require relatively
large population sizes.58

Recall that the evaluation function is responsible for measuring how well a par-
ticular solution solves the problem. In our case, the evaluation function has to
estimate how well the developed function describes the relationship between sales
volume, marketing expenditure, and product price (the smaller the error on the
historical data, the better the fit). Thus, it should be relatively easy to determine
the relative merit of all the individual solutions in the population. Again, as with
other types of evolutionary algorithms, the quality measure score is used in the
selection process of parents, and the mutation and crossover operators are with
some probability. All the other mechanisms of evolutionary algorithms apply here
as well. Thus, the genetic program generates subsequent iterations of individual
solutions (in our case, a function for sales volume) by creating and evaluating an

58 There are also some ways of introducing problem-specific knowledge into a genetic
program, making the evolutionary process more efficient. However, this topic is beyond
the scope of this book.

158 9 Other Methods and Techniques

initial population of individual solutions, selecting parents, applying the mutation
and crossover operators, selecting a new population from the existing parent and
offspring solutions, evaluating all the solutions in the new population, and con-
tinuing this process for some pre-specified number of generations.

There are many possible applications of genetic programming. For the car dis-
tribution problem, one of the possibilities is to develop a genetic program for price
prediction. After all, the predicted price of a car is a function of some variables
(“make,” “model,” “body style,” etc.), the auction site, and the estimated time of
sale. Furthermore, it should be relatively easy to evaluate the precision of the
functions that emerge during the simulated evolutionary process, as we have his-
toric data at our disposal. Thus, genetic programming can be an important compo-
nent of an Adaptive Business Intelligence system for some problem domains.

9.2 Ant Systems and Swarm Intelligence

Ant systems (also known as ant colony optimization) were inspired by colonies of
real ants, which deposit a chemical substance (pheromone) on the ground. This
substance influences the “behavior” of individual ants, as the greater the amount
of pheromone deposited on a particular path, the larger the probability that an
individual ant will select that path. Artificial ants behave in a similar way. In
a nutshell, the ant colony optimization technique is a multi-agent system, where
low-level interactions between artificial ants results in a complex behavior of the
entire ant colony.

Ant systems are another population-based technique, much like evolutionary
algorithms. In evolutionary algorithms, the parent solutions are modified through
some operators (e. g., mutations, crossovers) to create offspring solutions; in ant
systems, however, the pheromone levels influence the creation of new solutions.
The general idea behind ant systems is provided in the following flowchart:

9.2 Ant Systems and Swarm Intelligence 159

Most of the action boxes are self-explanatory: We create a population of ants,
initialize each ant (i. e., set its various parameters), and then set a cycle counter to
repeat the process several times. Now, in the loop above there is a central action
box where each ant is responsible for building a solution. The process of building
the solution is usually influenced by two factors: (a) problem-specific knowledge,
and (b) decisions made during the previous cycles (these decisions are summa-
rized by the current pheromone levels). Once the new solutions are ready, we can
evaluate them, update the trail levels (thus summarizing the “popularity” of the
various decisions made by the ants), increase the cycle counter, and then repeat
the process. Through this loop, the updated trail levels would influence the future
decisions of the ants, and better decisions made in previous cycles would be rein-
forced in future cycles!

So, what is an ant? In simple terms, an ant is a computer “agent” responsible
for making decisions in the process of building new solutions, and each ant may
have some parameters that influence its decisions. For example, it is typical for an
ant to have parameters for controlling the relative importance of the pheromone
trail versus problem-specific knowledge when a new solution is being built. In the
car distribution example, these parameters may represent a trade-off between visi-
bility, which states that closer auction sites should be chosen with a higher prob-
ability, and trail intensity, which states that if a particular auction site enjoys a lot

160 9 Other Methods and Techniques

of “traffic” for a particular car, then it must be a profitable path to follow. It is also
common for each ant to have a memory structure that records earlier decisions.
This data structure (sometimes called a tabu list) is useful in avoiding the con-
struction of infeasible solutions.

As in Chap. 6, let us illustrate the concept of ant systems by using the car dis-
tribution example. As before, let us assume that the same representation is used
(i. e., a vector of 3,000 values provides indices of auction sites 1 to 50). During the
first stage of the algorithm, we initialize our ant colony (say there are 100 ants in
our implementation). Each ant would be responsible for building a solution in
each cycle of the loop. A solution, as discussed earlier, is a vector of 3,000 integer
numbers, so an ant would generate a sequence of 3,000 integers. How can this be
done?

As mentioned earlier, ants possess problem-specific knowledge. In our case, we
can provide a list of available auction sites for each car (if there are no restrictions,
then all 50 auction sites might be available), along with the distances between
each car and auction site. Because no pheromone deposits exist at the beginning of
the algorithm, problem-specific knowledge is the only factor ants take into ac-
count when building new solutions. To illustrate this process, let us assume that
we have constructed an “attractiveness vector” for each car. This vector provides
us with problem-specific knowledge (based on distances) of all the auction sites.
For the first car in our solution vector, the attractiveness vector might look like:

This attractiveness vector is only applicable to the first car, and the length of
the vector is 50 (as there are 50 auction sites). If some auction sites are unavailable
(for example, due to distance limitation), then the corresponding values would be
zero. To arrive at these values, an intuitive heuristic to use might be “closer auc-
tion sites are more attractive.” Let us assume that the distance between the first car
and the first auction site is 1,037 miles, the distance between the first car and the
second auction site is 211 miles, the distance between the first car and the third
auction site is 409 miles, and so on. Now we have to convert these distances into
measures of “attractiveness.” Because attractiveness is inversely proportionate to
distance, we can take the inverse of the distance to measure the attractiveness of
an auction site. Hence, the attractiveness of the first auction site is
1/1,037 = 0.000964, and the attractiveness of the second and third auction sites are
1/211 = 0.004739 and 1/409 = 0.002445, respectively. Similar vectors must be
constructed for the second car, third car, etc. Note that this preprocessing would
define the attractiveness vectors (with each vector containing 50 values) for all
3,000 cars, making life much easier for our ants …

Another preprocessing activity is connected with the initial distribution of
pheromone. Since the ants have not yet started, the pheromone levels would be
zero (or close to zero). The data structures used for recording of pheromone levels
are similar to those used for recording the attractiveness values. For each car, we

0.000964 0.004739 0.001065 0.001197 0.003897

9.2 Ant Systems and Swarm Intelligence 161

maintain a vector of pheromone levels for each auction site. Initially, all these
vectors might be identical and contain very small values (close to zero), as there is
no ant activity at this stage. The pheromone vector for the first car may be:

This pheromone vector can be interpreted in the following manner: The phero-
mone level for the connection between the first car and the first auction site is
0.000001; the pheromone level for the connection between the first car and the
second auction site is 0.000001; and so forth. Later, we will see how these values
change (as opposed to the values in the probability vectors), and how they influ-
ence the ants’ decisions. They are of no importance at this stage, but that will
change very soon.

Now, each ant has access to this preprocessed information, and at each cycle of
the loop, an ant would create a new solution that consists of 3,000 decisions. All
these decisions are based on the attractiveness values and the pheromone levels.
Hence, the final issue to consider is the relative importance of these two measures.
Several simple methods can be used to emphasize the importance of one measure
against the other (e. g., by adding a small constant, raising a value to some power),
but we will not discuss these in detail. It is sufficient to say that each pair of values
(attractiveness and pheromone) is converted into a probability (this would require
normalization, such that the total of all these probabilities – i. e., for all auction
sites – would be 1). Therefore, after such normalization, the probability vector for
the first car might be:

Clearly, this probability vector is of great assistance: For the first car, the prob-
ability of selecting the first auction site is 0.006035; the probability of selecting
the second auction site is 0.029668; and so on. It is relatively straightforward to
select the auction sites according to this (or any other) probability distribution.
Say, the first ant “selected” auction 23 as the destination for the first car, auction
12 for the second car, etc. and the solution vector built by the first ant is:

All auctions sites were selected in accordance with a distribution probability
that favors closer auction sites with higher levels of pheromone. However, be-
cause this is the first cycle of the algorithm, the pheromone levels for influencing
the ants’ decisions are close to zero.

0.000001 0.000001 0.000001 0.000001 0.000001

0.006035 0.029668 0.006667 0.011975 0.038979

23 12 5 19 41

162 9 Other Methods and Techniques

This process is repeated 100 times (because there are 100 ants in our implemen-
tation), with each ant making an independent decision on the auction site for each
car. These decisions are based on selection probabilities, which are calculated on
the basis of attractiveness (related to the distance between the car and auction site)
and pheromone levels (related to the popularity of an auction site). At this stage,
each ant has built its own solution, and we have a population of 100 solutions. The
evaluation process is the same as for any other technique discussed in this chapter,
with each solution receiving a quality measure score.

Now it is time to update the pheromone levels. Let us consider a particular va-
lue p, which represents the pheromone level for some car and some auction site.
At the end of the cycle, when all the ants have built their solutions, there are two
independent processes for updating the value p: evaporation (which decreases the
value of p) and accumulation (which increases the value of p). The first process is
responsible for reducing the pheromone values of less popular auctions, and the
second process is responsible for increasing the pheromone values of more popu-
lar auctions.

We can easily implement the evaporation process by multiplying the original
value p by a number smaller than 1 (e. g., assume that this number – known also as
the evaporation rate – is equal to 0.9). This means that if, at the beginning of
some cycle, p = 0.087945, then, after evaporation, p = 0.079151 (0.9 × 0.087945).
The accumulation process, on the other hand, is a bit more complex. We have to
measure the “popularity” of each auction site (for a given car) across all 100 ants.
Moreover, better ants (i. e., ants that found better solutions) should be able to exert
greater influence in this popularity contest. This can be done in the following way:
Assume that each ant has some amount of pheromone, which is proportionate to
the quality of the solution built. For example, we can award each ant 0.01 phero-
mone units per unit of the quality measure score. Thus, two ants that build two
different solutions that evaluate to 176.23 and 191.07 would get 1.7623 and
1.9107 units of pheromone, respectively, for allocation to each auction site. If
these two ants created the following solutions:

then the first ant would increase the pheromone level by 1.7623 for the first car
and auction 13; by 1.7623 for the second car and auction 29; by 1.7623 for the
third car and auction 36; etc. Similarly, the second ant would increase the phero-
mone level by 1.9107 for the first car and auction 41; by 1.9107 for the second car
and auction 29; by 1.9107 for the third car and auction 36; and so on. Because
both ants selected auction 36 for the third car, the increment of pheromone levels
would be quite significant (1.7623 + 1.9107). Some auction sites would be se-
lected several times (getting significant increments in pheromone levels), while
others might not be selected at all. The latter ones would experience evaporation,
so their chances of being selected in future cycles would be smaller. The updating

9.3 Agent-Based Modeling 163

of pheromone levels is an essential part of the ant system, as better solutions influ-
ence the probability of selecting the more promising parts of a solution in future
cycles.59 After many cycles, some ants should build a near-optimum solution to
our problem.

This distribution and updating of pheromone levels is a “communication” proc-
ess that is essential for the convergence of the ant system: the ants in the popula-
tion become more and more similar in their behavior, as they swarm toward the
optimum solution. Other related techniques also use this “swarming” phenome-
non. For example, particle swarm optimization applies some variation operators
(like mutation and crossover in evolutionary algorithms) to a population of agents,
but without any selection process, as all agents are in constant motion and they
“live” forever. In particle swarm optimization, the concept of “generation” is
replaced with that of “iteration.” Within a multi-dimensional matrix, each individ-
ual agent has a location and velocity that is updated according to the relationship
between the agent’s parameters and some other global parameters (e. g., the loca-
tion of the best individual solution found so far). The search is biased toward bet-
ter regions of the matrix, with the result being a sort of “flocking” (i. e., swarming)
toward superior solutions. As in ant systems, the agents exchange information
through some global medium that collects information on the locations and veloci-
ties of the particles, processes this information (e. g., selects the best particles in
the current iteration, or selects the best locations found so far), and disseminates
this information to other particles, influencing their subsequent direction and ve-
locity.

In general, there are more and more applications of the “social insect metaphor”
for solving problems. These approaches are often called swarm intelligence sys-
tems. As with ant systems and particle swarm optimization, swarm intelligence
systems assume the presence of a number of simple agents (e. g., ants, bees,
wasps, termites) with direct or indirect interactions/communications that influence
their future behavior. There are many possible applications of swarm intelligence
for problems in distribution, communication networks, robotics, etc. In all these
cases, the underlying principle is the same: Each insect is an “independent indi-
vidual” performing some “individual activities” (often specialized activities);
however, all these activities seem very well organized, without any outside organ-
izer (or supervisor). This “self-organized behavior” is the essence of systems
based on swarm intelligence.

9.3 Agent-Based Modeling

During the past decade, there has been growing interest in agent-based modeling.
Agent-based models are “behavior-based” computer programs that try to simulate
complex phenomena through virtual “agents.” The behavior of these agents is
determined by programmable rules that reflect the constraints and conditions of
a real-world system. Because agent-based modeling has its roots in the Monte

59 This process is similar to the “selection pressure” in evolutionary algorithms.

164 9 Other Methods and Techniques

Carlo method, which now has a 60-year history, let us take a step back in time and
discuss this classic method before moving on to agent-based modeling.

The idea behind the Monte Carlo method is to use statistical sampling to ap-
proximate a solution for some quantitative problem. The term “Monte Carlo me-
thod” is quite general and the method has universal applicability to a variety of
problems in economics, environmental sciences, nuclear physics, chemistry, logis-
tics, etc. Another popular term synonymous with the Monte Carlo method is
Monte Carlo simulation. In general, the word simulation is defined as the imitative
representation of the functioning of one system or process by means of the func-
tioning of another (e. g., a computer simulation of an industrial process). Simula-
tions are useful when other types of analysis are too difficult (e. g., they require
solving thousands of differential equations). Many models include variables that
have a known range of values, but an uncertain value for any particular time. This
is true for the vast majority of economics problems (e. g., interest rates, currency
exchange values, stock prices), logistics (e. g., inventory levels), etc. In such cases,
the Monte Carlo simulation might be of assistance. The idea behind the Monte
Carlo simulation is quite simple: By sampling the values of a model’s variables
from their (predefined) probability distributions, many scenarios are generated and
the outcome is calculated.

The best way to explain this concept is through a simple example that involves
just one variable. Say that we would like to calculate (with some precision) the
number .60 Because it is not straightforward to calculate the exact length of the
circumference of a circle, we can approach this problem from a different angle.
We know that the area A of a circle is expressed by:

 A = r2

where r represents half of the diameter of the circle:

60 is defined as the ratio between the circumference of a circle and its diameter, and its
approximate value is 3.14159.

9.3 Agent-Based Modeling 165

We can use a Monte Carlo simulation to approximate the area A. Let us circum-
scribe this circle with a square:

The area S of this square is:

(2 × r) × (2 × r) = 4 × r2

and the ratio between the area of the circle and the area of the square is:

A / S = (× r2) / (4 × r2) = / 4

Now we are ready for the simulation. Imagine throwing darts at a square target
with a circle inside (as in the above figure). Each dart lands somewhere inside the
square: the coordinates of a throw are x and y – the horizontal and vertical coordi-
nates, respectively. If the center of the circle is positioned at point (0, 0), then the x
and y coordinates can take any values from –r to r. We can simulate a “throw” by
generating two random numbers from this range (one for x and the other for y),
and then calculate how many throws landed inside the circle. A throw is inside the
circle if the distance between the center of the circle (0, 0) and the position of the
dart (x, y) is within the radius r:

 x2 + y2 r2

Say we simulated 10,000 throws, and the result of the simulation was that 7,854
darts landed inside the circle, while the remaining 2,146 darts landed inside the
square, but outside the circle. This completes the simulation and we are ready to
estimate the value of . As the number 0.7854 (7,854/10,000) approximates the
ratio A / S, and:

A / S = / 4

then is simply 4 × 0.7854 = 3.1416 (a pretty good approximation of 3.14159
after 10,000 throws). Clearly, the larger the number of throws, the better the ap-
proximation. Now that we know how the Monte Carlo simulation works, can we
use it for something more useful?

Let us consider the casino environment for a moment (from which the method
derives its name), and say we are holding an Ace and 6 in a game of Blackjack,
with the dealer holding a Queen. To maximize our chances of winning the hand,
should we “hit” or “stand”? Well, we can try to solve this problem by hand, but

166 9 Other Methods and Techniques

the number of possibilities might be too large (recall that the Ace can count as 1 or
as 10, and if we hit and get a 2 then we will need to make another decision). This
problem is an ideal candidate for the Monte Carlo simulation. We can generate
millions of distributions of cards for a “shoe” (say we play six decks of cards, so
we can consider random permutations of 6 × 52 = 312 cards), implement the dea-
ler’s rules (e. g., hit on 16 or below, stay on 17 or higher), implement our own
strategy, and then calculate the number of wins and losses. After running such
a simulation, we will find that when holding an Ace and 6 against a dealer’s 10,
we should hit! We may also discover some other “rules,” such as “always splitting
two 8’s,” “doubling on 11 when the dealer’s hand is lower than 10,” and so forth.

In the car distribution problem, we can use the Monte Carlo method for esti-
mating transportation risks. To do this, we can begin by estimating the transporta-
tion time between two locations as a function of weather (e. g., bad weather usu-
ally slows down a transport). We can then create a lookup table for the
transportation time between two particular locations, which might look something
like:

Weather
Condition

Time
(in hours)

Fair 36

Very hot 40

Windy 38

Rain 44

Snow 48

Ice 56

If we can estimate the weather conditions in a specific region (e. g., 10% chan-
ce of ice, 30% chance of snow, and 60% chance of having a fair day), then we can
simulate many scenarios for how this will affect the transportation times. This is
similar to generating various permutations of a shoe of cards, with the main differ-
ence being that the probability of each card arriving at a particular location in the
shoe is the same – with weather, different weather patterns occur with higher or
lower probabilities (at different seasons), so we should generate weather patterns
that follow the same probability distributions. We can estimate the total transpor-
tation time for each of these scenarios, and then use the average in our decision-
making process. This average transportation time is quite important, as many
auction sites run their auctions once a fortnight, and if a car misses the auction it
would sit on a lot (and depreciate) for two weeks waiting for the next auction.

Of course, the above example explains only the general idea of applying the
Monte Carlo method for estimating transportation risks. In actuality, we would
need to be more precise and have answers for many additional questions, such as:
What does “very hot” or “windy” mean? Is it possible to have “rain” and “very
hot” at the same time? If so, how would that affect the transportation time? Also,

9.3 Agent-Based Modeling 167

if the trip takes a few days, then there might be several “fair” days and several
“rain” days, and so we would have to take an average of both categories.

Let us now transition from the Monte Carlo method to agent-based modeling
with the following general remark: In Chap. 5 we discussed a variety of prediction
methods that assume some amount of historic data are available. We can look at
agent-based modeling as a special prediction method where no data are available!
For example, the problem might be to minimize evacuation time from a confer-
ence room by finding the optimal arrangement of tables and chairs for 500 people.
Clearly, we cannot dream of getting such data! We cannot load the room with 500
people, set the room on fire, measure the time needed to evacuate the room, chan-
ge the arrangements of tables and chairs, load the room with 500 (preferably dif-
ferent) people, set the room on fire again, and continue this process for a few itera-
tions to collect sufficient data! In situations like these, agent-based modeling is far
more appropriate.

Now, the connection between the Monte Carlo method and agent-based model-
ing is that both methods generate many possible scenarios according to some
probabilistic distributions of variables (e. g., windy weather conditions) or by
using agents that follow some probabilistic rules. To continue our example from
the previous paragraph of minimizing the evacuation time, psychological tests
may indicate that in a fire emergency 17% of people run in random directions,
38% of people run in a straight line to the closest exit without paying attention to
other people, 9% of people stand still and scream, etc. Additionally, the way peo-
ple interact with one another during a fire emergency is also important (e. g., when
two or more people collide, they might fall down and stay immobile for a few
seconds). Now, by generating 500 agents whose behavior follows the above rules
and interactions, and placing them together in a room that is set on fire, we can run
many diverse simulations and observe the emergent behavior of the population.

The general idea behind agent-based modeling is that the simulations are based
on local interactions between the agents of a population. Furthermore, each agent
may represent some object, whether it is a person in a crowd, a car in traffic, or an
animal in an ecosystem. The entire model includes an environment in which the
interactions occur. Agents may also have differing capabilities, and their behavior
is based on probabilistic rules that determine their actions. The interaction of the
agents (with the environment and one another) may result in an emergent behavior
that may be impossible to predict (due to all the complexities of the interactions).
Even a simple set of rules for each agent may result in a very complex system.

Some of the above points should sound familiar. Indeed, we have already loo-
ked at two particular instances of agent-based systems: ant colonies and particle
swarms. In these systems, the local interactions of agents within a population may
result in an emergent behavior of the entire population. The model – whether an
ant colony or particle swarm – includes an environment in which interactions
between the agents occur. Note, however, that these two examples constitute
a simple case where all the agents are uniform. In general, this does not need to be
the case: agents can represent a variety of complex (and different) objects, and the
interactions among the agents can be quite complex (there may be rules for col-
lecting and consuming food, trading resources, etc.).

168 9 Other Methods and Techniques

Let us illustrate the main characteristics of an agent-based modeling by using
a classic example. Consider two species of birds (A and B) that fly around follow-
ing three very simple rules:

Rule 1: If another bird of the same species is close by, then fly toward the other bird.
Rule 2: If another bird of the other species is close by, then fly away from the other

bird.
Rule 3: Keep minimum distance between any two birds.

Note that such a model is extremely simple. There are only two species of birds
(with 10 birds in each species) moving at the same speed, and their direction is set
randomly at the beginning. The figure below illustrates the initial stage:

However, the interaction between these simple birds produces an emergent be-
havior that is complex, organized, and very life-like. After a while, we can ob
serve a flocking phenomenon where birds of the same species fly together:

 9.4 Co-evolution 169

To define the behavior of these birds, we can add additional rules to the model.
For example, we can modify their speed in some encounters, introduce obstacles
in the environment, or create “sub-species” (which have slightly different rules).
We can also make the environment more complex and then observe their behav-
ior. One of the properties of this behavior is unpredictability over moderate time
periods. For example, although the birds of one species might be flying primarily
from left to right at one moment, it is impossible to predict which direction they
might be moving at a later time.

In general, an agent can have many behavioral rules and internal states, some of
which might be fixed, while others may change. An agent can process many sen-
sory inputs, change its behavior according to these inputs, take into account the
interactions with other agents, and make decisions based on the available informa-
tion. Agents can also operate in an artificial environment, which might be a build-
ing, a city, a communication network, or a landscape that changes over time.61

And, yet, as the above example shows, each agent is very simple in comparison
with the complex behavior that eventually emerges.

So, how can we use agent-based modeling as a component of an Adaptive
Business Intelligence system? Well, there are a few possibilities. In the car distri-
bution example, we can develop an agent-based model to simulate the effect of
a new make/model introduced by a competitor. Changes in new car demand would
affect the resale value of off-lease cars, so the agent-based model could be used to
enhance the effectiveness of the prediction module. Agent-based modeling can
also be used to simulate a variety of other scenarios, such as the effect of higher
gasoline prices on the sale price of used cars, or the impact of weather on the
number of buyers that attend an auction sale.

Beyond the car distribution example, agent-based modeling is very appropriate
for studying a variety of human social phenomena, including the propagation of
diseases, trade habits, group formation (as illustrated by the above simple example
of birds flocking), evacuation patterns, and migration.

9.4 Co-evolution

Throughout this book, we have emphasized the importance of the evaluation func-
tion, which serves as a link between the algorithm and the problem at hand.
A thorough understanding of the evaluation function allows us to create the cor-
rect combination of representation, search operators, and selection criteria. There
are problems, however, where we have no idea how to create a good evaluation
function. Some of these involve discovering optimal strategies. For example: What
would be the best investment strategy? Best marketing strategy? etc.

The problem with finding the “best strategy” in business resembles the problem
of finding the best strategy in a game. Games are easier to model, as there are
clear rules for what moves can and cannot be made, and the objective (e. g., the

61 Because of this diversity, there is no general agreement on what an “agent” is, or what
key features an agent should have.

170 9 Other Methods and Techniques

criterion for winning and losing) is defined. Moreover, in many games there is
only a single opponent and the moves are made “in turn.” Real-world situations
(e. g., the development of a marketing strategy) are much more complex. The rules
are unclear (to say the least), there are many competitors (opponents), and the
decisions (moves) are irregular. And yet, some powerful similarities exist between
these two environments (a game versus the real world). In both cases, we have to
devise a strategy for our possible moves, our opponents’ countermoves, and the
decision criteria for choosing one move over another. Furthermore, the process of
learning is also based on trial and error in both cases.

To answer the question “how can we learn the best strategy?” let us refer to
some co-evolutionary processes that exist in the natural environment. Most ani-
mals constantly face the crucial problem of survival. Many of their defensive and
offensive survival strategies are genetically hardwired as instinctual behaviors.
But how did these strategies emerge? Some species use coloration to blend into
their background; their strategy is simply to be not noticed. Other species have
developed a strategy based on “safety in numbers.” Other species have learned to
seek out high elevations and position themselves in a ring looking outwards, thus
providing the earliest possible sighting of a potential predator. These complex
strategies emerged over many generations of trial and error …

These examples illustrate the process of co-evolution, which is not the case of one
individual against its environment, but rather individuals against other individuals,
each competing for resources in an environment that poses its own hostile conditions
but does not care which individuals win or lose in the struggle for existence. Com-
peting individuals use random variation and selection to seek out superior survival
strategies that will give them an edge over their opposition. Each innovation from
one side may lead to an innovation from another, which is similar to an “arms race”
of inventions.

For some problems, it is possible to develop a strategy by modeling co-
evolutionary processes in the following way: There are several populations of
solutions, where each population represents a “player” in the “game.” For a two-
person game, there are two competing populations. For some real-world cases, the
number of populations would correspond to the number of competitors, with each
of them seeking the best possible strategy. The key question is: how do we evalu-
ate a strategy? The answer lies in running a strategy against the strategies of other
“players,” carefully evaluating the outcome of each “game.” Better strategies are
then selected, modified (with mutation and crossover operators – as described in
Chap. 6), and, after some number of generations, the best strategy would emerge.
This strategy would enjoy the property of robustness, as it would score well
against the best opponent strategy!

Let us illustrate some co-evolutionary concepts by continuing the car distribution
example. In the used car marketplace, many competing leasing companies face very
similar problems. In particular, they face the problem of finding the best distribution
of their off-lease cars. Of course, the distribution strategies of other leasing compa-
nies are not well known, and the decision process is complicated by the fact that used

 9.4 Co-evolution 171

cars from many leasing companies are sold “together” at the same auction sites.62

And because we do not know the distribution decisions made by other leasing com-
panies, we cannot accurately measure the volume effect (see Sect. 3.5). For instance,
say we decide to send 20 identical cars to a particular auction, and one of our com-
petitors sends 40 similar cars to the same auction site (e. g., 20 white Toyota Camry
cars and 40 white Mitsubishi Galant cars). The result may bias the volume effect and
our sale price prediction would not be accurate.

As an example, say we are concerned with the distribution strategies of two
very large competitors. We know the number of cars they lease each year (this is
usually public information), and how these cars break down into different
makes/models. Using this information, we can construct a “similarity matrix” that
would provide us with information on which makes/models (“our” makes/models
and “their” makes/models) should be clustered into one category for calculating
the volume effect. If we grouped all the cars into 20 distinct categories (e. g.,
2-door compact, 4-door compact, mid-sized), we can model a competitor’s strat-
egy in the following way: Each auction site they send cars to can be modeled as
a vector of 20 numbers (expressed as a percentage). This vector can represent
a particular auction site X:

The interpretation of this vector is that auction site X receives 4.3% of the cars
from the first category, zero cars from the second category, 5.9% of the cars from
the third category, etc. Since we know the total volume of cars in each category
(e. g., a competitor would sell altogether 580 cars from the first category), we can
easily convert these percentages into numbers (e. g., auction site X would receive
25 cars – 4.3% of 580 – from the first category). Thus, when we estimate the pre-
dicted sale price of a car, we can also count the number of additional cars in each
category to calculate the volume effect.

Of course, the above vector of numbers represents just one hypothetical distri-
bution of cars by this competitor, but we can use it as a starting point. Now we can
model the overall situation using three separate populations of solutions. The first
population represents a detailed distribution of the cars owned by our company.
Note that we use the same representation of a solution as we did in Chap. 6: each
individual solution in this population is a vector of auction site numbers, and the
length of each vector corresponds to the number of processed cars. For example,
the vector:

62 This is not always the case. Closed auctions sell cars that belong to only one leasing
company or automaker.

172 9 Other Methods and Techniques

indicates that the first car should be sent to auction site 11, the second car to the
auction site 15, etc., with the last car going to auction site 17. In other words,
a single individual solution represents a complete, detailed distribution of all cars.

The two other populations, however, represent the distribution strategies of our
two competitors. Individual solutions in these populations are very different to the
individuals in the first population, as they have much shorter vectors of only 20
values each (corresponding to the 20 different categories). The total number of
vectors corresponds to the total number of auctions sites. For example, an indivi-
dual solution might be:

indicating the percentage of cars in each category (column) to be sent to a particu-
lar auction site (row). For example, 2.9% of cars from the second category are sent
to auction site 3. The total of all percentages in one column (i. e., for one category)
is 100%.

The co-evolutionary process of running these three evolutionary algorithms –
each processing its own population – now becomes quite meaningful. Note that
the connector between these three evolutionary processes is the evaluation func-
tion: To evaluate any individual in one population, we need to know the proposed
distribution of cars in the other two other populations. Consider the following
individual solution from “our” population:

To evaluate this individual solution, we take the best individuals from the sec-
ond and third populations, as these individuals represent the best current strategies
of our competitors. The combined distribution of cars from all three sources (i. e.,
our cars plus those of our two competitors) would allow us to measure the volume
effect more precisely, thus we can better estimate the quality of our proposed
distribution. The same can be done for each individual solution of each competi-
tor: because we know our best distribution (at the moment) and the best distribu-
tion of the other competitor, we can precisely evaluate the quality of the first com-

9.5 Recommended Reading 173

petitor’s proposed distribution. In other words, we take into account the best dis-
tributions made by our competitors in evaluating our own distribution strategy.

Once we define the evaluation function (which serves as the main connector be-
tween three separate evolutionary processes), we are ready to start the co-
evolutionary process. The initialization is simple, as the individual solutions in all
three populations can be randomly generated. Once all the initial solutions for all
three populations are evaluated, the other steps of the evolutionary algorithms are
executed separately in each population: selection of parent solutions, application of
crossover and mutation operators, replacement of some (inferior) individual solu-
tions by newly generated offspring, and so on. The new populations are evaluated
again at each generation, and the co-evolutionary process is responsible for finding
superior distribution strategies for all three populations. This means that our distri-
bution strategies become better over time, against the superior strategies of our com-
petitors! Thus, the co-evolutionary process may give us the best solution for our
distribution, as well as an insight into the likely behavior of our competitors!

Note also that we have some flexibility in the way we evaluate our solutions
(i. e., distributions). It need not be the case that “our” distribution is combined
with the best distributions of our competitors (at the particular generation of evo-
lutionary process). To gain more robustness for our solution (after all, we cannot
be certain that our competitors would select the best distributions), we can com-
bine our solution with several – possibly randomly selected – solutions of our
competitors and average the quality measure score. This way our distribution
strategy that would emerge at the end of the co-evolutionary process would be
scored against a variety of different strategies of our opponents!

9.5 Recommended Reading

In this chapter we explained a variety of additional prediction methods and opti-
mization techniques, beginning with genetic programming, a special type of evo-
lutionary algorithm where each individual solution is a function (i. e., a set of
instructions) rather than a vector of numbers. We then looked at ant systems, whe-
re each artificial “ant” can be considered an intelligent agent that uses some com-
munication medium (i. e., the pheromone trail) to leave messages for the other
agents. This was followed by swarm intelligence systems, which assume the pres-
ence of a number of simple agents (e. g., ants, bees, wasps, termites) with direct or
indirect interactions/communications. Next we provided an overview of the well-
known Monte Carlo method and compared it with the relatively new agent-based
modeling method, which can be used to model complex, dynamic, and open appli-
cations. And finally, we concluded the chapter with a section on co-evolutionary
methods, explaining how they could be used to discover optimal “strategies.”
Some of these methods and techniques are inherently adaptive, and they allow the
model or algorithm to change as the environment changes. As a result, these in-
herent characteristics can facilitate the construction of an Adaptive Business Intel-
ligence system.

174 9 Other Methods and Techniques

An excellent overview of genetic programming and related topics is given in
the book Genetic Programming: An Introduction: On the Automatic Evolution of
Computer Programs and Its Applications by Wolfgang Banzhaf, Peter Nordin,
Robert E. Keller, and Frank D. Francone (Morgan Kaufmann, San Francisco,
1997). The text begins with a basic introduction and then progresses into more
advanced topics.

Ant Colony Optimization by Marco Dorigo and Thomas Stützle (MIT Press,
Cambridge, MA, 2004) provides a great introduction to ant system heuristics
(from real to artificial ants), and it also contains some chapters on theory, as well
as a few applications.

An earlier book, Swarm Intelligence: From Natural to Artificial Systems by
Eric Bonabeau, Marco Dorigo, and Guy Theraulaz (Oxford University Press, New
York, 1999) discusses the social insect metaphor for solving many problems in
optimization, communication networks, and robotics. Another book, Swarm Intel-
ligence, by James Kennedy and Russell C. Eberhart (Morgan Kaufmann, San
Francisco, 2001), talks about similar issues from the perspective of particle swarm
optimization.

A recent book, Introductory Econometrics: Using Monte Carlo Simulation with
Microsoft Excel, by Humberto Barreto and Frank Howland (Cambridge University
Press, 2006) provides a clear undergraduate introduction to data analysis and
Monte Carlo simulations.

The book Growing Artificial Societies by Joshua M. Epstein and Robert Axtell
(MIT Press, Cambridge, MA, 1996) explains concepts behind the construction of
artificial society models: agents, environment, and rules. The book introduces an
artificial “sugarscape” model with more and more “advanced” agents, who live,
trade, and die in their world, experience sex, culture, conflicts, and diseases …

The Evolution of Cooperation by Robert Axelrod (Basic Books, New York,
1984) was an early book describing co-evolutionary systems for game playing
(iterated prisoner dilemma), and it examines the emergence of cooperation.

Part III:
Adaptive Business Intelligence

10 Hybrid Systems and Adaptability

“He was wrapped in some sort of dark ulster or blanket, which left
only his face exposed, but that face was enough to give a man a sleep-
less night.”
The Sign of Four

“Quite so! You have not observed! And yet you have seen. This is just
my point.”
A Scandal in Bohemia

In Part II of this book, we presented a variety of prediction methods and optimiza-
tion techniques that can be viewed as being “hardware tools,” in that each of them
has different characteristics, strengths and weaknesses, and applications. Let us
illustrate this point with the following analogy: Imagine that we have a hammer –
which is a very handy tool for solving problems that involve nails – but we come
across a problem that involves screws. What should we do? Well, if the hammer is
our only tool then we might be tempted to “hammer” the screws. This, of course,
is the wrong approach. A much better approach would be to find a better tool
(e. g., a screwdriver) for solving the problem at hand.

The point of this analogy is that the right technique (i. e., tool) should be se-
lected for the right problem. Unfortunately, many technology companies special-
ize in a single technique (e. g., evolutionary algorithms), and they apply this
same technique to each and every problem they encounter. This is similar to
having a hammer as the only tool and seeing all problems as nails. This approach
is clearly wrong, as the technique should be selected for the problem at hand, not
the other way around!

In general, there are several limitations of using a single prediction method or op-
timization technique. First, and most obvious, is the fact that it may perform superbly
on some problem types and abysmally on others. Second, even if we limit ourselves
to a single problem, remember that each problem type includes billions of possible
“problem instances.” In the car distribution example, we have to deal with a different
instance of the same problem every day, as different cars have to be distributed. It is
very important to understand the distinction between a problem (such as the car dis-
tribution example) and a particular instance of the problem (e. g., a particular input of
cars to be distributed). It is often the case that different techniques are better or worse
for different instances of the same problem. Although it would be great to claim that
a particular technique is the best for a given problem, it is usually impossible to guar-
antee that this “best” technique would give the best results on each instance of the
problem. Lastly, since the problem variables (e. g., weather, interest rates, consumer

178 10 Hybrid Systems and Adaptability

behavior) change over time, a single technique that performs well in the beginning
may deteriorate over time.

In this chapter, we will discuss how the limitations of the single-technique ap-
proach can be overcome by packaging several techniques together into a hybrid
system (i. e., a team of techniques). Specifically, we will look at hybrid systems for
prediction and optimization, and then conclude the chapter with a discussion on
the adaptability module.

10.1 Hybrid Systems for Prediction

Most companies and government organizations make decisions that are based on
predictions of the future. These predictions may involve future demand, effects of
a marketing campaign, competitor actions, and so forth. As a simple example,
imagine that we need a temperature prediction for an outdoor marketing event our
company is planning. To predict the temperature, we could look at the last few
days of temperature measurements and make a linear extrapolation, visit a weather
website to obtain a forecast, watch the evening weather report, and so on. There
are many ways to make a prediction, so the question is: Which method should we
use to predict the temperature?

One possibility would be to use a forecast from our favorite weather channel.
However, no prediction is perfect, and so we might get an inaccurate temperature
prediction. Another possibility would be to calculate the average predicted tem-
perature from many different sources, thereby minimizing the impact of any sig-
nificant errors made by a single source. However, some sources may be biased
(e. g., several channels may always predict toward the monthly average tempera-
ture). Hence, taking a simple average of all the predictions is sometimes not the
best approach.

The safest way to make consistently good predictions is based on the concept
of hybrid systems. Because response time, justification, model compactness, etc.
are also important considerations (besides the prediction error, as discussed in
Sect. 5.2.5), it may be difficult to select “the best” prediction method for the
problem at hand (whether it be a prediction for temperature or something else).
Different prediction methods have different properties, and so some of them may
perform better or worse when trained on different data sets. Hence, instead of
using a single prediction method to build a single model, it might be worthwhile
to use a few methods to build a few models, and then use all the models to reach
a consensus. This consensus might be achieved through voting or averaging, with
the final prediction being the one with the largest number of votes (for classifica-
tion problems) or some weighted average (for regression/time series problems).
After all, this is commonly done within most organizations, where several people
in a team express their opinions on “what may happen,” and then the boss makes
the final decision (i. e., the final prediction).

The general idea is presented in the following diagram:

10.1 Hybrid Systems for Prediction 179

This diagram illustrates four models that produce a “prediction” for each new
case (either indicating a class for classification problems, or generating a number
for regression/time series problems). These four predictions are then sent to
a voting/averaging system that produces the final prediction. The arrows illustrate
the weights for each prediction model, as the voting/averaging system learns (dur-
ing the training session) that some models are more accurate than others and gives
more weight to their output. Besides being simple and elegant, this approach has
an intuitive advantage over a single prediction model: after all, “two heads are
better than one”!

There are two primary ways of implementing this multi-model approach. The
first way is to use models of the same type (e. g., linear regression, decision, tree,
neural network). These models are then trained on different data sets, thereby
ensuring that each prediction model is unique. The two most well-known tech-
niques for this approach are called bagging and boosting:

Bagging. Several prediction models of the same type are used together, and
some voting (or averaging) is applied. The final prediction is either a weighted
combination of predictions (for time series problems), or the prediction with the
largest number of votes (for classification problems). Experimental evidence
indicates that several prediction models built from one data set perform better
than any single model built from the same data set.
Boosting. This technique creates models through an iterative process that ap-
plies higher weights to the cases that are the most difficult to predict. Repetition
of this process will produce a sequence of prediction models, where each new
model focuses on the cases that were not accurately predicted in the previous
model. This iterative process is the main difference between bagging (where all
the models are developed separately) and boosting (where each new model is
influenced by the performance of the previous model). This technique allows us
to cover many “hard” cases, and develop many models. As with bagging, sev-
eral prediction models of the same type are used together.

180 10 Hybrid Systems and Adaptability

Recall from Sect. 5.3 that the bootstrap technique selects cases for the training
data set with repetition. Moreover, the bootstrap technique uses the entire data set
for training. This is also what happens in the early stages of the bagging tech-
nique: the size of the training data set is the same as the original size of the data
set, and the sampling is performed with repetition.1

To illustrate the bagging technique, suppose we have selected several training
data sets of the same size and decided to apply a neural network. For each training
data set, we will get a different neural network model. Once we have created these
different neural network models, we can use them together by taking an average of
their predictions (if they are predicting numbers) or by counting the number of
votes they produce (if they are voting for a class in a classification problem). Note
that the number of neural network models is unlimited – as a matter of fact, the
more “voters” the better! Because each “voter” has the same “power” – it is a pure
democracy where every model influences the final outcome with the same weight.

Ideally, an effective prediction module consists of several complementary mod-
els that cover the vast majority of all possible cases. While bagging assumes that
the “appropriate” type of prediction model has been selected, boosting addresses
this issue directly by seeking models that complement each other. Unlike bagging,
where each model is developed independently from one another, boosting takes
advantage of pre-existing models. This makes it easier to find a model that “ad-
dresses” cases the earlier models did not handle well. This is usually accomplished
by assigning weights to cases, so that the misclassification of a case with a high
weight would have a more serious consequence than the misclassification of a case
with low weight. Thus, each new prediction model would “concentrate” on the
cases with higher weights (i. e., the cases that were the most difficult to predict).

Keeping this in mind, the iterative process of boosting can be explained as fol-
lows: The first prediction model is built on the original data set, where all cases
have the same weight. Then the weights are modified: the cases that were “easy”
(i. e., those that the model classified correctly, or where the numerical prediction
was accurate) would have their weights decreased; and the “hard” cases (i. e.,
those that the model misclassified or where the numerical prediction was inaccu-
rate) would have their weights increased. Then the second prediction model is
built using the original data set, but the cases now have modified weights so the
new model would concentrate on the more difficult cases. Note that the weights
are adjusted at the end of each iteration, so that each subsequent iteration produces
a prediction model that “concentrates” on the harder cases.

Although there are many similarities between bagging and boosting – as both
techniques require prediction models of the same type, and both techniques use
voting or averaging – bagging creates a democracy of “equal” voters, while boost-
ing uses weights to influence the model’s performance. This is a major point of
differentiation between the two techniques, and one that is particularly relevant to
our discussion on adaptability in Sect. 10.3.

1 This is not surprising, as bagging stands for bootstrap aggregating.

10.1 Hybrid Systems for Prediction 181

The second way of implementing the multi-model approach is to use different
types of models. A well-known technique for this is stacking, where one predic-
tion model uses the outputs (i. e., predictions) of several other models to come up
with the final prediction. The best example of stacking is where the outputs from
several prediction models constitute the input to a neural network model, which
then produces the final prediction. Note that this final prediction is not the result
of a vote or weighted average (as is the case in bagging and boosting), but rather
of a “higher-level” prediction model that takes the outcome of the “lower-level”
prediction models as inputs! Therefore, this higher-level prediction model makes
the final prediction, on the basis of the preliminary, lower-level prediction models.

In the car distribution example, the different prediction models would try to
predict the sale prices of the off-lease cars that need to be sold at auction. Each of
the different models could be based on a different prediction method, such as
linear regression, decision trees, fuzzy logic, etc. The “high-level” prediction mo-
del (e. g., a neural network) would take all of these predicted sale prices and pro-
duce the final prediction. Such a hybrid system based on stacking can be illus-
trated by the figure below, where four different prediction models independently
predict the sale prices for cars sold at auction at some point in the future. These
predictions, plus the original input data about the cars, are then fed into the neural
network model for final processing:

When implementing the stacking technique, there are several issues to consider.
These include:

Selecting the most appropriate prediction methods.
Dividing the training data set into subsets for the lower-level prediction models
and the main, higher-level prediction model.
Performing cross-validation for the lower-level prediction models.

182 10 Hybrid Systems and Adaptability

In addition to stacking, another popular technique for combining different pre-
diction models is gating. In this method, a quick, upfront decision is made on
which individual is most appropriate to process the input data and produce the
final prediction. The major benefit of the gating technique is the speed of process-
ing, as only the selected model is used to process a given input and the remaining
models remain inactive.

The figure below shows a rule base that acts as a gate:

Based on the rules in the rule base, a decision tree, fuzzy logic system, linear
regression model, or decision table is used to make the final prediction. Such se-
lective processing speeds up the total classification/prediction time, which is im-
portant in time-critical applications. Consider a credit card fraud detection system
that has to decide whether a transaction is fraudulent or not within a fraction of
a second. Since large banks have tens of thousands of almost simultaneous trans-
actions, the system has to produce a prediction almost instantly. In such situations,
a gating method would be very appropriate.

In practice, the performance of a hybrid system is usually superior to any single
technique that is used. Furthermore, the use of hybrid systems has become more
attractive with the advent of affordable multi-processor servers, as the prediction
models can be run in parallel using different processors. This would provide all
the benefits of a hybrid system (including improved prediction accuracy) at virtu-
ally no extra computation time (as all the prediction models would perform their
calculations in parallel).

10.2 Hybrid Systems for Optimization 183

10.2 Hybrid Systems for Optimization

For a moment, let us consider a problem that requires an optimal decision each
day. This problem could involve the daily scheduling of tasks, distribution of
assets, management of inventory, creation of transportation plans, etc. Note that
different instances of this problem have to be solved every day, as a transportation
plan for Monday might be very different from a transportation plan for Tuesday,
due to different demands, availability of trucks and drivers, weather conditions,
and so on.

The car distribution example is such a problem, as every day presents a new
challenge. On Monday, for example, most of the 3,000 off-lease cars might be
Ford Taurus models that are white, gray, and black because a large government
organization returned these cars at the end of its fleet lease. Moreover, most of
these cars were returned to two primary locations: Arlington, Virginia, and At-
lanta, Georgia. The following day, however, the set of 3,000 off-lease cars may
look very different, as many individual consumers may return different
makes/models to various locations across the country. For this reason, each daily
instance of the car distribution problem might different, because the distribution of
makes/models and their location might be different from one day to the next. On
top of this, the problem is set in a non-stationary environment, where things in the
marketplace may change on a daily basis (e. g., a car manufacturer might offer
regional incentives for certain makes/models, which will influence the wholesale
price of these makes/models in some regions of the country).

The question is: Which optimization technique should be used to provide the
best distribution of cars on a particular day? Is there any single technique that can
provide us with the best recommendation across all possible instances? Or, rather,
is one technique better for some instances, whereas another technique is better for
other instances?

To answer this question, let us consider the following experiment: Say we
have seven particular instances of the car distribution problem (i. e., we have seven
sets of approximately 3,000 off-lease cars over seven consecutive days). As-
sume also that we have at our disposal seven different optimization techniques
that were discussed in previous chapters. Each technique takes an input of 3,000
cars and produces the best possible distribution of these cars to the various auction
sites. We can then measure the performance of each technique for each parti-
cular day by evaluating the “net profit gain” for each recommended distribution.2

2 “Net profit gain” is calculated as difference in profit between the optimized solution and
the standard solution that is based on expert rules developed by business managers over
the years. Thus, if a technique provides a net profit gain of $100 on a particular day, it
means that the recommended solution provides an average gain of $100 per car with
respect to the standard solution (thus the total gain is of the order of 3,000 × $100 =
$300,000).

184 10 Hybrid Systems and Adaptability

Assume further that the following table summarizes the results of these seven dif-
ferent optimization techniques3 over seven consecutive days:4

AS ES EP GA SA SI TS

Day 1 $99 $129 $131 $139 $102 $110 $122

Day 2 $97 $89 $103 $91 $95 $91 $92

Day 3 $119 $104 $97 $101 $108 $93 $105

Day 4 $112 $94 $104 $109 $113 $129 $120

Day 5 $120 $126 $116 $119 $109 $110 $101

Day 6 $90 $101 $98 $102 $96 $95 $108

Day 7 $96 $102 $106 $105 $113 $92 $101

Average $105 $106 $108 $109 $105 $103 $107

This table illustrates some very interesting points. First of all, it is obvious that
no single technique had the best performance every day. As discussed earlier, each
day is different and a different technique may provide the best solution for the
given instance of the problem. For example, on Day 1, genetic algorithms pro-
duced the highest net profit gain of $139 per car, while on Day 6 it was tabu
search with a net profit gain of $108 per car. Furthermore, if we had access to
a fortune-teller and knew that on average the genetic algorithm would perform the
best in the coming week, then we could use only that technique and achieve an
average gain of $109 per car (the last row of the table shows the average net profit
gain for each technique). However, by applying all the techniques in parallel,
a hybrid system for optimization would generate an average gain of almost $120
per car (the average of the best results over seven days), which is approximately
10% better than using the single best-performing technique! And in the case of
distributing 3,000 off-lease cars, this 10% extra improvement corresponds to an
additional gain of $33,000 per day …

As with hybrid systems for prediction, we can run several optimization tech-
niques in parallel and then select the best result. Thus, different optimization tech-
niques can compete with one another and the best result is implemented. We can
also “enhance” this competition by controlling the execution time allowed for
each optimization technique, so that the technique with the best progress rate (i. e.,
improvement over the best solution found so far) gets more execution cycles.

3 The following abbreviations are used: AS, ant systems; ES, evolution strategies; EP, evolu-
tionary programming; GA, genetic algorithms; SA, simulated annealing; SI, swarm intelli-
gence; TS, tabu search. Note that genetic algorithms, evolution strategies, and evolutionary
programming are particular instances of evolutionary algorithms; see Footnote 38.

4 The results presented in this table are based on a real experiment. However, we have
changed the numbers slightly, as well as the order of presented algorithms. Note that
each of the seven algorithms is a winner on exactly one of the seven consecutive days.
This was done on purpose to: (1) point out the potential of hybrid systems, and (2) to
avoid an unproductive discussion on “which technique is really the best?”

10.2 Hybrid Systems for Optimization 185

Hybrid systems for optimization also offer some additional possibilities. For
example, by introducing mechanisms for exchanging information, the different
optimization techniques can cooperate with one another to identify the best solu-
tion in the shortest possible time. Hence, the final gains are often much higher
than by simply running all the techniques in parallel or sequentially.

The above figure illustrates how two optimization algorithms could cooperate
with each other. The graph illustrates a quality measure score landscape (as dis-
cussed in Sect. 6.2) where the goal is to search for the highest peak (located in the
left side of the landscape). The thick arrow illustrates how one technique (e. g.,
simulated annealing) searches up the hill to the right. Meanwhile another tech-
nique (e. g., genetic algorithms) also searches for the highest peak to the left. If the
genetic algorithm finds a better solution in some other promising area of the
search space then the appropriate “information” is passed to the competing tech-
nique (i. e., simulated annealing), which may “jump” to the new area to continue
its search.

Of course, such information exchange can occur among any number of differ-
ent optimization techniques, and herein lies the fundamental strength of coopera-
tion: Due to this exchange of search information, more optimization techniques
can explore the most promising areas of the search space. Consequently, such
hybrid systems for optimization allow both competition and cooperation at the
same time: competition, in that each technique tries to be “the best” by finding the
best solution; and cooperation, in that all the techniques cooperate by exchanging
their search information. Such hybrid systems for optimization often outperform
any single optimization technique (especially when the set of problem instances is
quite diverse) and, if properly implemented, this guarantees that the hybrid system
never performs worse than any single technique.

Although the adaptability module (discussed in the next section) is responsible
for adapting the prediction module in an Adaptive Business Intelligence system,
the optimization module can also contain its own features of adaptability. Consider
the fact that most optimization techniques have several parameters. For example:

186 10 Hybrid Systems and Adaptability

In genetic algorithms, the parameters include population size, probability of
operators (crossover and mutation), and selection and replacement pressures.
In simulated annealing, the parameters include the size of the neighborhood and
the speed of the cooling scheme.
In ant systems, the parameters include the number of ants, and the balance
between attractiveness and pheromone levels.

Typically, an optimization technique is selected for the problem at hand, and
then its parameters are tuned by experimenting with a variety of instances of the
same problem. The question is: How can we tune the parameters of the algorithm
to get the best performance across a wide gamut of various instances? One option
might be to adapt the parameter values during the optimization run (and not in
between runs). For instance, at some stages of the optimization process a small
population of solutions may perform better, whereas at some other stages a larger
population may do well. Thus, changing the population size parameter during the
run might be beneficial, as a better solution could be found in a shorter time.

How can we use parameters that change values over time? Well, the methods
for changing the parameter values can usually be classified into one of three cate-
gories:

Deterministic parameter control uses deterministic rules to change the value of
a strategy parameter (i. e., a parameter that controls how the search is made).
This rule modifies the strategy parameter deterministically without using any
feedback from the search. A time-varying schedule is often used, where a rule
is applied when a set number of iterations have elapsed since the last time the
rule was activated.
Adaptive parameter control uses feedback from the search to determine the
direction and/or magnitude of change in a strategy parameter value. In general,
new values are assigned on the basis of the current state of the search.
Self-adaptive parameter control uses “evolution” to determine the values for
strategy parameters. The parameters are encoded into the data structure of the
individual solutions and undergo variation (mutation and crossover). The “bet-
ter” values of these encoded parameters lead to “better” solutions, which in turn
are more likely to survive and produce offspring solutions, and hence propagate
these “better” parameter values.

In summary, there are many ways to adapt the parameters of any single tech-
nique. In the case of using multiple techniques within the optimization module
(i. e., the hybrid system approach), some additional parameters may undergo adap-
tation during the run. These parameters include:

Parameters for controlling the type of information that is exchanged between
the techniques. (For example: Should the optimization techniques exchange
complete solutions or only partial solutions?)
Parameters for controlling the frequency of the information exchange.

 10.3 Adaptability 187

Parameters for controlling the transmission of the information. (For example:
Should the information be transmitted “across the board” to all techniques, or to
only a few techniques? In the latter case, which ones?)
Parameters for controlling how the information sent from one technique to
another is used. (For example: Should the existing solution be replaced or re-
combined with an existing solution?)
Parameters for controlling the execution time allocated to each technique dur-
ing the run.

While all these issues can be parameterized and adapted during a run, most hy-
brid systems for optimization use both adaptive and static settings: Adaptive set-
tings for the technique parameters (e. g., population size, probability of operators)
and static settings for the hybrid system parameters (e. g., type and frequency of
information exchange, the way a new solution is transferred and used by another
optimization technique, run time, etc.).

10.3 Adaptability

New data are constantly entering the information systems of almost all organiza-
tions. In the car distribution example, these data would take the form of new cases
containing the sale price, make, model, body style, etc. for each car sold at auc-
tion. Note that the prediction module (consisting of one or more models) has al-
ready predicted the sale price for these cars, and now we are getting back the ac-
tual sale prices! These data will tell us the error rate of our prediction module,
and whether or not the underlying prediction model requires some adjustment.
Because it is inevitable that some adjustments will be required over time (after all,
the marketplace is constantly changing), we can do one of two things:

Repeat the process of updating the prediction module at regular intervals. For
example, we might update the parameters of the underlying prediction model
(or models) every three to six months. However, the process of analyzing new
data and updating the parameters accordingly might be expensive, so there is an
incentive to repeat the process at longer intervals (e. g., once a year, instead of
every quarter). This approach often causes a problematic tradeoff, as shorter in-
tervals would be better from a prediction standpoint, but worse from a cost
standpoint.
Develop an adaptability module that is responsible for updating the parameters
of the prediction model to fit new data. By automating this process, new data
can be fed in quite frequently (i. e., at the end of each business day). If a new
pattern emerges, an updated model can capture it almost immediately.

188 10 Hybrid Systems and Adaptability

Clearly, there are several powerful advantages of the latter approach (i. e., de-
veloping an adaptability module):

There is no time delay connected with building and implementing new models
inside in the prediction module.
The process is automatic.
The frequency of updates can be much higher.
There is a good chance of discovering a new, emerging pattern almost immedi-
ately.

Probably the most important consideration here is that the optimization module
relies on accurate predictions. Consequently, if the predictions are inaccurate, then
the optimization process may do more harm than good! For example, say the op-
timization module makes a recommendation of sending a car to an auction site
thousands of miles away (e. g., from New York to California) because the pre-
dicted profit on this car (after deducting transportation costs, depreciation, etc.) is
highest in California. However, if the actual sale price turns out to be considerably
less than the predicted price, then the total loss might be hundreds of dollars (be-
sides receiving a poor price for the car, additional costs were incurred for transpor-
tation and depreciation). Who is to blame? A poor prediction module …

Given the importance of keeping the prediction module current, developing an
adaptability module that can automatically update the model’s parameters is
clearly the preferred approach. In the case of a prediction module that is based on
multiple prediction models, it is usually feasible to update both the parameters of
the individual models and the voting/averaging system. However, let us first dis-
cuss a prediction module that is based on a single model.

For example, in Sect. 5.2.1 we covered exponential smoothing methods (which
generalize the moving average method, where the mean of past k observations is
used as a prediction). Note that all exponential smoothing methods assign weights
to past observations in such a way that recent observations are given more weight
than older observations. They also require at least one parameter a, which plays an
important role. A prediction for the time interval t+1 is calculated as:

 Prediction (t+1) = (a × Actual (t)) + ((1–a) × Prediction (t))

which simply means that the prediction for the next (future) case is calculated as
a total of two values: the last actual case (Actual(t)) with weight a, and the last pre-
diction (Prediction(t)) with weight 1–a. The performance of a prediction model
based on this method depends on the selection of the parameter a, as the prediction
would always be the last actual value if a = 1. Because different values of a may be
required at different times, it might be reasonable to develop an adaptability module
that would be responsible for adjusting this parameter. In other words, the adapta-
bility module would systematically change the values of parameter a from interval
to interval to allow for changes in the data. The fixed parameter a would be replaced
by a(t) and the adaptability module would assign a new value for a(t) at every inter-
val t (e. g., using a function that is based on the most recent prediction errors).

In this particular case, developing an adaptability module that systematically
changes the values of parameter a has the following benefits: (1) it is automatic,

so the administrative overhead connected with frequent adjustments is reduced,
(2) even if the performance is slightly inferior to the “optimal” fixed value for
parameter a it reduces the risk of serious errors, and (3) there is no need to specify
the initial value of parameter a – even if it takes a few intervals for a(t) to catch up
with the changes in the data, it will eventually do so.

Let us consider another example that is based on a single prediction model, but
this time for a classification problem. The adaptability module could observe and
record the performance of the prediction model over time. As cases of incorrect
classification are determined, the adaptability module would store them (along
with the correct response) for eventual processing. Once a critical mass of incor-
rect classifications has been saved, the adaptability module would “clone” and
modify the prediction model so that it does a better job of handling these incor-
rectly classified cases. The adaptability module would then test the prediction
model offline to ensure that it provides an advantage over the existing model.
Once the adaptability module has adequately tested and verified the performance
of the new model, it would be deployed (effectively replacing the existing model).

Regardless of whether we use exponential smoothing or some other prediction
method (like fuzzy logic), we can develop an adaptability module that uses an
optimization technique to search for best parameter values. The objective of the
optimization technique would be to search for the parameter values that minimize
the prediction error. After making an update, the adaptability module can measure
the prediction error by comparing the predicted sale price of recently sold cars to
the actual sale price. If we get better predictions, then our update was good; other-
wise, the adaptability module should undo the changes.

For a prediction module that is based on a single prediction model, the devel-
opment of an adaptability module that changes the parameters of the model usu-
ally works well in most cases. However, it is important to point out that very large
changes in the marketplace might require an overhaul of the underlying prediction
model, as any tuning of the model would probably be insufficient. The need for
such massive adaptation often shows up in a sudden and significant increase in the
prediction error, which cannot be reduced by simply updating the parameters.
However, this is quite rare, as most changes are gradual. Furthermore, in practice
the adaptability module would have a threshold that defines what prediction error
is acceptable.5

In the case of a prediction module that is based on many models (i. e., a hybrid
system), the adaptability module could:

Update each individual prediction model.
Update the voting/averaging system.
Update both the individual models and the voting/averaging system.

Adapting each individual prediction model typically involves updating its pa-
rameters, while keeping the overall structure unchanged. As an example, imagine
updating a neural network. As discussed in Chap. 8, a neural network consists of

5 If the prediction error exceeds this threshold, then the adaptability module would indi-
cate that an overhaul of the prediction model is required.

 10.3 Adaptability 189

190 10 Hybrid Systems and Adaptability

input nodes, hidden nodes, output nodes, and connection weights in between them.
In order to update a neural network, an adaptability module could simply add new
data to the training set and then update the weights, without changing the overall
structure of the network (i. e., without adding or removing any nodes). If consider-
able data are available in short time intervals and the Adaptive Business Intelli-
gence system operates in a dynamic environment, then the training data set is
often like a sliding window (e. g., we would discard the old data, and only use the
most recent data to update the neural network).

Another possibility is to update the voting/averaging system, while leaving the
individual prediction models unchanged. This is usually straightforward, as it
requires rewarding (i. e., increasing the weights) of the more accurate models,
while punishing (i. e., decreasing the weights) of the less accurate models. In other
words, we pay more attention to the models that produce the most accurate predic-
tions for the given period of time. For example, consider a hybrid system based on
the bagging technique, where each individual prediction model has a weight asso-
ciated with it (i. e., each prediction model is weighted more or less heavily). These
weights can be updated on the basis of new (recent) data, just like the weights of
a neural network with no hidden layer.

The third possibility is to update both the individual models and the vot-
ing/averaging system, i. e., update the whole hybrid system. Usually this is done in
two stages. Once the individual prediction models are updated, the weights that
the hybrid system has assigned to the various prediction models are then modified
on the basis of recent data. Of course, it is always possible to rebuild the entire
hybrid system, but this is beyond the scope of the adaptability module.

Clearly, many possibilities exist for developing an adaptability module for an
Adaptive Business Intelligence system. However, many decisions on the adapta-
bility (e. g., what and when to adapt) are problem specific, and can be determined
only after transactional data files are carefully examined.

11 Car Distribution System

“We’re not jealous of you at Scotland Yard. No, sir, we are very proud
of you, and if you come down tomorrow, there’s not a man, from the
oldest inspector to the youngest constable, who wouldn’t be glad to
shake you by the hand.”
The Adventure of the Six Napoleons

“When you follow two separate chains of thought, Watson, you will
find some point of intersection which should approximate the truth.”
The Disappearance of Lady Frances Carfax

The car distribution example, introduced in Chap. 3, is a real business problem
that many leasing companies struggle with on a daily basis. To address this prob-
lem, the authors of this book designed and developed an Adaptive Business Intel-
ligence system for optimizing the distribution of off-lease cars. In this chapter we
discuss this system’s core functionality, and take a closer look at how it was inte-
grated into a particular company’s computing environment.

To begin our discussion, recall from Sect. 4.5 that the overall structure of an
Adaptive Business Intelligence system resembles the following diagram:

192 11 Car Distribution System

This diagram illustrates that the graphical user interface (which is what the end-
user would see) is “in charge” of the remaining modules. The graphical user inter-
face is also responsible for input/output data handling, which typically means
either integrating or interfacing with existing data systems.6 The input data are
then processed via an internal database, and then passed on to the prediction and
optimization modules.

In the case of the Adaptive Business Intelligence system for distributing cars:

The graphical user interface is the user-facing screen that controls the import
and export of data, as well as the functionality of other modules.
The prediction module consists of several different models to generate the most
accurate price prediction for each car.
The optimization module consists of several competing and cooperating tech-
niques that adapt during the optimization process (and possibly between opti-
mization runs) to find the best distribution of cars.
The adaptability module uses the actual car sale prices to update the prediction
module, thereby keeping the entire system “in tune” with the time-changing
environment.

In the following sections of this chapter, we will take a closer look at each of
these components.

11.1 Overview

The Adaptive Business Intelligence system described in this chapter was designed
to run with minimal human supervision. Consequently, the system receives the
inventory of cars to be distributed from the company’s Inventory Management
System, generates a recommended distribution of cars, and then provides this solu-
tion to the Car Transportation System. The optimization process takes approxi-
mately 90 minutes, with additional time needed for loading all the required input
files.

6 Integration refers to a direct-programmed access from one system to another, while inter-
facing refers to a data exchange via an agreed data structure between two separate systems.

Each morning, the Adaptive Business Intelligence system automatically down-
loads the input files from the server and processes them. The input files contain
data about:

The cars that need to be distributed that day.
The current, up-to-date inventory levels of all cars already at auction.
The cars that have been sold recently. This information is used by the adapta-
bility module to tune the prediction module.

The optimization process starts automatically once the input files have been
loaded. By the start of the business day, the process is complete and the recom-
mended distribution is ready for review. However, the final solution is imple-
mented only after a business manager checks the results and (possibly) makes
some small adjustments. Less than 1% of the cars from the recommended distribu-
tion are changed manually, and these changes are last-minute decisions based on
new information (e. g., an upcoming snowstorm has blocked some major high-
ways). The final output file is then sent to the system that manages the transporta-
tion of the cars to the auction sites.

Because this Adaptive Business Intelligence system was designed to run with
as little human intervention as possible, all of its functions can be executed auto-
matically. The user specifies when the loading of input files should start, whether
or not the optimization process should begin automatically, and if the generation
of output files should be done with or without human intervention. These features
allow the system to start processing files early in the morning, so that the recom-
mended distribution is ready at the start of the business day (which is important
for the efficiency of the overall business process).

 11.1 Overview 193

194 11 Car Distribution System

11.2 Graphical User Interface

One of the functions of the graphical user interface is to allow business managers
to “visualize” a particular distribution solution. In the sample screen below, there
is a map of the United States with icons for each distribution center and each auc-
tion site, and four performance graphs on the left-hand side of the screen. The
“car” icons represent distribution centers, where cars are collected, cleaned, and
conditioned for eventual sale at an auction site.7 The “hammer” icons represent
auction sites, and the lines between the distribution centers and auction sites rep-
resent the volume of cars transported between these points (the thicker the line, the
more cars are transported):

7 Only the largest leasing companies have such distribution centers. For leasing compa-
nies that do have them, an off-lease car is dropped off at a dealership, then shipped to
the closest distribution center for cleaning and conditioning, and then the Adaptive Busi-
ness Intelligence system ships the car to the best auction site. For leasing companies that
do not have them, the car is cleaned and conditioned at the dealership, and the Adaptive
Business Intelligence system ships the car to the best auction site directly from the deal-
ership.

195

The four graphs on the left-hand side of the screen display the optimization ob-
jectives during the run:

Average Transportation Cost. The system calculates the total transportation
cost, and the graph displays the average cost per car.
Average Volume Effect. The system calculates the total amount of lost revenue
due to sending too many similar cars to the same auction sites, and the graph
displays the average value lost per car.
Average Sale Price. The system calculates the expected sale price for all the
cars, and the graph displays the average value per car.
Average (Net Sale Price) Lift. This corresponds to the average “profit im-
provement” per car. The system calculates this as the difference between the
predicted average net sale price (i. e., sale price after subtracting all auction
fees, transportation costs, etc.) for the optimized solution, and the predicted net
sale price for the standard solution (which is based on expert rules that were
developed by business managers over the years).

In the sample screen above, the average transportation cost per car (first graph)
has steadily decreased during the optimization run, while the average volume
effect per car (second graph) has increased. The Adaptive Business Intelligence
system has chosen a solution with a higher average volume effect, because it was
more than offset by a lower average transportation cost and higher average sale
price per car. This in turn has resulted in a higher average (net sale price) lift per
car (fourth graph).

Once the optimization process is complete, the Adaptive Business Intelligence
system generates an output file with the recommended distribution of cars. How-
ever, as mentioned earlier, sometimes a business manager modifies this distribu-
tion before the final output file is generated. To assist the business manager in this
task, the graphical user interface provides an easy way to find specific cars or to
select cars on the basis of distribution center location, make/model, year, color,
etc. Furthermore, it is easy to “undo” any changes, as the system “remembers” the
recommended distribution and can easily revert to it.

11.2.1 Constraint Handling

Another important function of the graphical user interface is to provide business
managers with the ability to modify, add, or delete various constraints (i. e., busi-
ness rules). Constraints that are applied to all the auction sites are regarded as
global constraints. An example of this is the “maximal transportation distance
constraint” (which limits the transportation distance of all cars), as shown in the
following configuration sample screen:

11.2 Graphical User Interface

196 11 Car Distribution System

There is also a large set of local, auction-specific constraints, such as:

Mileage constraint, which defines the upper and lower mileage of cars that can
be shipped to specific auction sites. An example of this constraint would be:
“Only ship cars that have between 30,000 and 70,000 miles to auction site
ADESA Atlanta.”
Model year constraint, which specifies a range of model years that can be sent
to specific auction sites. For example, we could specify that a particular auction
site only accepts cars built between 1997 and 2002.
Make/model exclusion constraint, which specifies certain makes/models that
are to be excluded from specific auction sites.
Color exclusion constraint, which specifies certain colors that are to be ex-
cluded from specific auction sites.
Inventory constraint, which specifies a desired inventory level at each auction
site. For example, a business manager can specific an inventory level between
600 and 800 cars at a particular auction site at any particular time.

197

The sample screen below shows the local constraints for the “ADESA Boston”
auction site:

Each auction site may have a different set of constraints, expressing its own lo-
cal set of business rules. For the ADESA Boston auction, the constraints express
the following business rules:

“Send only cars with 25,000 to 50,000 miles.”
“Send only 2001, 2002, or 2003 year models.”
“Do not send any Honda or Toyota Camry cars.”
“Do not send any yellow or black cars.”
“Keep the inventory between 300 and 400 cars.”

11.2 Graphical User Interface

198 11 Car Distribution System

We should be careful in specifying these business rules, because it is possible to
specify such a collection of rules (constraints) for which there is no feasible solu-
tion! As an example, imagine a yellow car arriving at a distribution center that has
only two auction sites within a 300-mile radius. Now, if a global constraint limits
the maximum transportation distance to 300 miles, and the local constraints for
these two auction sites are such that neither accepts yellow cars, then the Adaptive
Business Intelligence system has to violate at least one of these constraints to dis-
tribute this yellow car. This situation raises an interesting question, namely: How
does the system deal with a situation where a car cannot be sent to any auction site
without violating a constraint?

Except for the inventory constraint, all the constraints described above are
“hard” constraints. If the Adaptive Business Intelligence system has to break a hard
constraint, then it would send the car to the closest auction site and mark this rec-
ommendation as “violating a constraint.” The inventory constraint, on the other
hand, is a “soft” constraint. A penalty is assigned to solutions that violate a soft
constraint, making them less competitive than other solutions. However, a solution
that violates a soft constraint (and has a penalty) may be chosen over a solution that
does not violate any soft constraints if its overall quality measure score is higher.
For instance, let us assume that a specific auction site has a maximum inventory
constraint of 500 cars. The system may generate a solution where this auction
would accumulate an inventory of 510 cars. This solution would be penalized for
having an extra inventory of 10 cars, but the price difference and transportation
savings may overcome the cost of having 10 additional cars at this auction.

The penalty for violating a “soft” constraint grows exponentially for any auc-
tion site, and instances where the constraint is violated in a significant way are
extremely rare. However, if the Adaptive Business Intelligence system has to
process a very large number of cars on a single day, then the inventory constraint
might be violated at almost every auction site. In such cases, the exponential pen-
alty function would make these violations uniform. As an example, imagine a case
where all the auction sites have a maximum inventory constraint of 300 cars, but
the current number of cars to be distributed would inevitably increase the inven-
tory to an average of 400 cars per auction. Under such circumstances, we could
expect that the penalty for violating this “soft” constraint would be evenly distri-
buted across all auctions (so that they have the same degree of violation).

As discussed earlier, constraints allow business managers to express various
business rules (e. g., “do not send any red cars to Florida”), and the configuration
screen serves as a communication link between a business manager and the Adap-
tive Business Intelligence system. Using the configuration screen, a business man-
ager can investigate various “what-if” scenarios, such as “what would be the distri-
bution of cars if I set the maximum transportation limit to 500 miles?” Note also that
approximately 200 auction sites are present in the system, but only 50 of them are
“active.” A business manager can activate or deactivate any auction site, thus ex-
ploring various “what-if” scenarios such as “what would be the implication (e. g., in
terms of the average lift) if the system uses 60 auction sites rather than 50?”

Different “what-if scenarios can also be investigated for different transportation
cost options available from different suppliers. The Adaptive Business Intelligence

199

system calculates the transportation cost from any distribution center to any auc-
tion site for any number of cars, and there are two factors that influence this cost:
(1) the distance between a distribution center and an auction site, and (2) the num-
ber of cars being shipped. The sample screen below shows the transportation cost
functions for the ADESA Boston auction:

In this sample screen, the transportation cost function is defined for shipping
cars to the ADESA Boston auction from five different locations.8 The first two

8 The transportation cost may be defined in terms of how much it would cost to transport
a car (or group of cars) from a particular ZIP code, city, state, or region to the auction
site. Another way to define the transportation cost would be through the mileage (i. e.,
the distance from the distribution center to the auction site).

11.2 Graphical User Interface

200 11 Car Distribution System

locations are defined by the cities: Boston, MA and Somerville, MA. The third
location is defined by a region containing the states Georgia, South Carolina, and
North Carolina. And the fourth and fifth locations are defined by the states Florida
and Washington, respectively. According to the definitions given above, it would
cost $250 to send a truck to Boston, MA, plus an additional $25 for each car that
is picked up. If we wanted to pick up 6 cars, then the transportation cost would be
$400 ($250 + $25 × 6 = $400).9

Note also that row no. 9 in the sample screen above defines the transportation
cost between the ADESA Boston auction and the state of Washington. Because of
the long distance (approximately 3000 miles), it would cost $2,500 to send a truck
to Washington, plus an additional $60 for each car that is picked up. Although the
cost of shipping one car would be $2,560, the cost of shipping 14 cars would be
$3,340 ($2,500 + $60 × 14 = $3,340), or about $239 per car (which is 10 times
less!). As the following graph illustrates, the more cars transported from the same
location, the smaller the transportation cost per car (in this particular case, cars
that are transported from Boston, MA to the ADESA Boston auction):

In this graph, the average transportation cost per car decreases from $275 for one
car to just $47 for 14 cars. The graph also illustrates that the average transportation
cost increases to about $62 when we need to transport 15 cars (because an addi-
tional truck is needed for the extra car). After the 15th car, the average transporta-
tion cost goes down again, with smaller spikes when additional trucks are needed.

9 If we wanted to transport more than 6 cars, then the cost would be $400 for the first
6 cars ($250 plus $150 for 6 cars), plus $30 for each additional car. Hence, to transport
8 cars, the cost would be $400 for the first 6 cars, plus $60 for 2 additional cars, for a to-
tal of $460. Another price break occurs at the 11th car, and the incremental cost changes
to $35 per car.

201

Besides the various transportation cost functions, the Adaptive Business Intelli-
gence system also uses the inventory levels for each auction site to calculate sev-
eral important parameters that are required for the optimization process. One of
these parameters is the volume effect, which is based on how many similar ma-
kes/models (or cars of the same color) are present at a specific auction site. An-
other important parameter is the anticipated sale date. If we have 1,200 cars at
a particular auction site (or in transit), and we know that about 500 are sold at each
weekly auction session, then we can assume that a car shipped today will be sold
in the third auction session. Therefore, we need to adjust the predicted sale price to
take into account the depreciation and seasonality effect for these three weeks.
Once the distribution solution has been approved, the auction inventory is updated
with the new cars that have been assigned to each auction. Lastly, the cars that
have been recently sold at these auction sites are removed from the inventory.10

11.2.2 Reporting

The graphical user interface also provides a set of reports that can be used to ana-
lyze a particular solution, or the efficiency of the Adaptive Business Intelligence
system over some period of time. There are reports on the configuration settings,
distribution of cars with different groupings, and auction inventory prognoses. The
sample report below shows the distribution of cars grouped by auction site:

10 The data about sold cars are also used to tune the prediction module (which is explained
later in this chapter).

11.2 Graphical User Interface

202 11 Car Distribution System

This sample screen shows all the cars that are to be distributed on the 11th of
May, 2005, specifying the distribution center, recommended auction site, pre-
dicted sale price, transportation cost, and other data.

The projected auction inventory report below shows the inventory at each auc-
tion, the number of cars being sent to each auction, the projected number of cars at
each auction, and whether or not the inventory constraints are violated:

The graphical user interface is capable of generating many other reports, and
can be customized to provide business managers with the exact knowledge they
need.

203

11.3 Prediction Module

Although many data sources report the auction sale prices of cars, each of these
sources has some inherent advantages and disadvantages. For instance, the Black
Book data provides “regional” sale prices, and each region usually contains sev-
eral states and more than a dozen auction sites. Consequently, the actual sale price
in certain states and auction sites is likely to differ from the average regional sale
price. As an example of this, consider a car rental company that periodically
dumps large numbers of rental cars at one specific auction site. Because of the
volume effect, the sale price for some cars at this auction would be substantially
different from the Black Book regional sale price.

Another important data source is the Manheim Market Report, as it tells us the
sale prices of all cars sold at the auction sites owned by Manheim. Although these
data are quite detailed (unlike the Black Book data), it would be quite difficult to
make accurate predictions using only these data. For example, imagine that we
want to sell a blue 2004 Toyota Camry with 23,000 miles at a specific auction site,
but the closest matches in the most recent Manheim Market Report are:

A blue 2004 Toyota Camry with 30,000 miles that sold for $9,500.
A white 2004 Toyota Camry with 22,000 miles that sold for $9,000.

It looks like blue Toyota Camry cars sell for a premium at this auction site, and
we should get more than $9,500 because our car has fewer miles. However, how
much more can we expect to get? Also, what if the blue Toyota that sold for
$9,500 had some fancy wheels that increased the price by $800, and the color
really had very little to do with the sale price?

In addition to these external data sources, the sales data collected by the leasing
company are also very important. Even though these data are usually quite sparse
(e. g., the historical records for some makes/models might be limited to only a few
cases), it can be analyzed to see if the sale prices of the company’s off-lease cars
deviate from the sale prices that are published by the external data sources. Such
deviations may happen if a leasing company handles many ex-rental cars, which
sell for substantially less than identical off-lease cars that were not used as rentals.
Also, some deviations can be more prominent at certain auction sites than others.

On their own, each of these sources is somewhat limited, but together they pro-
vide an excellent data set for building and training various prediction models.
During the data mining and model construction process, the goal is to identify the
most important variables that influence the price of the car. If we start with the
general data (such as the Black Book), we will discover that the most important
factors influencing the car price are model year, make, and model. Consequently,
the general data provide a convenient starting point, because it covers all the vari-
ables and regions. The auction-specific data (such as the Manheim Market Report)
are then ideal for tuning the various prediction models, and the company’s sales
data are useful for detecting price deviations for certain cars at certain auction
sites.

11.3 Prediction Module

204 11 Car Distribution System

The resulting prediction module used in this Adaptive Business Intelligence
system is based on decision trees (see Sect. 5.2.3), and generates sale price predic-
tions in the following sequence of steps:

1. Base price. The prediction module generates a predicted “base price” for a car
based on its make, model, body style, and year.

2. ZIP-based make/model adjustment. Some makes/models may sell for a pre-
mium or discount in certain regions, so the prediction module adjusts the base
price for specific makes/models in specific regions (e. g., Chevrolet Corvettes
might sell for a $300 premium in Florida and California, and a $600 discount in
Montana and Idaho).

3. Car group/color adjustment. Some car groups/colors may sell for a premium or
discount irrespective of the region, so the prediction module adjusts the base
price for specific car groups and colors (e. g., yellow Chevrolet Corvettes might
sell for a $500 premium, while a green one sells for a $1,000 discount).

4. Mileage adjustment. The prediction module adjusts the base price for mileage
and model-year-age. The “model-year-age” is the age of a car according to its
model year (i. e., when the 2005 Chevrolet Corvette became available in Au-
gust 2004, the model-year-age of the 2004 Chevrolet Corvette became 1).

5. Depreciation adjustment. The prediction module adjusts the base price for daily
depreciation, which is calculated from the day a car was returned to the pre-
dicted sale day. The daily depreciation rate is higher in the summer months
preceding the introduction of new models. Consequently, the depreciation rate
starts increasing from June, reaches its highest value in August, and then de-
creases to lower than average values for October, November, and December.

6. Seasonality adjustment. Some makes/models may sell for a premium or dis-
count in certain regions at different times of the year, so the prediction module
adjusts the base price for specific makes/models during certain seasons (e. g.,
convertible Chevrolet Corvettes may sell for a $1,800 discount in the northern
states during the wintertime).

7. UVC adjustment. The Universal Car Code (UVC) component provides a more
detailed car specification than the VIN. In the cases where the UVC is avail-
able, the prediction module adjusts the base price for additional options (e. g.,
the UVC might reveal that a specific Chevrolet Corvette is equipped with an
upgraded suspension package).

As discussed in Sect. 5.2.3, there is no need to build a decision tree with every
variable present at some level and a single, numeric value at each terminal node.
Instead, the decision tree determines a car’s “base price” by its make, model, body
style, and year, and then a linear model makes the abovementioned adjustments to
the base price to come up with the final predicted sale price. Hence, to predict the
price of a 2005 (“year”) Toyota (“make”) Camry (“model”) 4-door sedan (“body
style”), the prediction module first finds the appropriate terminal node in the deci-
sion tree:

205

and then the linear model makes the necessary adjustments. It is quite possible that
the base price is $18,500, but after making all adjustments the final predicted sale
price is only $17,250. Note that the values for the different adjustments (e. g.,
mileage adjustment) might be different at each terminal node.

For an average load of cars, the prediction module follows the above steps to
predict the final sale prices. However, if a company receives a large number of
cars within one or more categories on a particular day, then the predicted sale
prices are adjusted further to compensate for the volume effect. This additional
adjustment is based on four factors:

Inventory. A large inventory at any particular auction site would negatively
affect the sale price of all cars sold at that particular auction.
Group. Sending too many cars of the same group to a particular auction site
would negatively affect the sale price of all cars within that particular group.
For example, if we send an average number of 2002 Toyota Camry cars to an
auction site but an excessive number of 2002 Honda Accord cars, then we can
expect that the excess supply of Honda Accord cars would negatively affect the
sale price of Toyota Camry cars. An excessive number of 2001 or 2003 Honda
Accord cars would also negatively affect the sale price of 2002 Toyota Camry
cars, but the effect would be less than that of having too many 2002 Honda Ac-
cord cars.

11.3 Prediction Module

206 11 Car Distribution System

Make/model. Sending too many cars of the same make/model to a particular
auction site would negatively affect the sale price of these cars. For example,
we would drive down the price of Chevrolet Corvettes by sending several
truckloads to an auction site that already has plenty of Chevrolet Corvettes in
inventory.
Color. Sending too many cars of the same color (within a car group or
make/model category) to a particular auction site would negatively affect the
sale price of these cars. For example, sending an excessive amount of white
mid-size cars to a particular auction site would drive down the sale price of all
white mid-size cars, irrespective of make, model, or year.

The prediction module contains numerous parameters (different values for
various adjustments at different terminal nodes), which are automatically updated
by the adaptability module (discussed in Sect. 11.5) to capture changing trends in
the used car marketplace.

11.4 Optimization Module

As we discussed in Sect. 4.3, the optimization module generates a possible solu-
tion that serves as input data for the prediction module. This input data provide
a destination assignment (i. e., auction site) for each car, which the prediction
module uses to generate the predicted sale prices. The optimization module then
uses the sum of all the predicted sale prices (i. e., the output data) to gauge the
quality of the input data: The higher the sum of the predicted sale prices, the better
the distribution solution. Hence, there is a strong relationship between the predic-
tion and optimization modules.

In this Adaptive Business Intelligence system for distributing cars, the optimi-
zation module employs several different techniques (i. e., the hybrid system ap-
proach discussed in Sect. 10.2) that use different solution representations. For
instance, the evolutionary algorithms represent a solution based on indirect repre-
sentation and some preprocessing (see Sect. 6.1), where all the available auction
sites are sorted by distance from a particular car. In other words, auction 1 is the
closest (distance-wise), auction 2 is the second closest, and so forth. Hence, each
solution is represented by a vector of auction site indices (relative to a particular
car), and the length of the vector is equal to the number of cars to be distributed:

This vector represents a solution where the first car is shipped to the third clos-
est auction site (for this particular car), the second car is shipped to the fourth
closest auction site (for this particular car), the third car is shipped also to the
fourth closest auction site (note, however, that the second and third car are most

207

likely shipped to different auction sites, as the fourth closest auction sites for the
second and third car need not be the same), and so on, with the last two cars being
shipped to the closest auction sites. In this particular implementation of evolution-
ary algorithms, the optimization module applies the elitist strategy, which forces
the best solution from one generation to the next, as well as various mutation and
crossover operators that were discovered after many experiments.

Furthermore, to make sure that only feasible solutions are generated (in terms
of hard constraints), the mutation operator in the evolutionary algorithm is limited
to using vector values that do not violate any constraints. For example, if the first
car can only be sent to five auction sites, then the value for this position in the
vector would be limited to those five auction sites. If the mutation operator de-
cides to change this position in the vector to a value outside of these five auction
sites, then the mutation will skip this position and leave its value unchanged. Such
simple rules guarantee that infeasible solutions will not be created from feasible
parents. As for the crossover operator, it cannot produce an infeasible solution
from a feasible parent solution, because if the vector values in both parent solu-
tions represent feasible auction sites for each car then the offspring solution will
also have feasible vector values. Of course, both the mutation and crossover op-
erators can create offspring solutions that violate an inventory constraint, but this
constraint is considered to be soft and can be addressed by using penalties.

As we discussed in Sect. 10.2, each day brings a different “instance” of the
same car distribution problem, as changes occur in the number and type of cars to
be distributed. For this reason, the optimization module is based on the hybrid
system approach, and the module itself contains a few features of adaptability. For
instance, because the effectiveness of the mutation and crossover operators used
within the evolutionary algorithm vary as the problem instance varies, the optimi-
zation module can adapt the execution frequency of these operators. To accom-
plish this, the optimization module records the outcome of each operator and
counts its “effectiveness” rate. The optimization module then increases the execu-
tion frequency of the more effective operators, and decreases the execution fre-
quency of the less effective ones. This approach provides the optimization module
with some adaptability to better handle different problem instances.

In any real-world implementation of an Adaptive Business Intelligence system,
while implementing the optimization module, we have also to consider two addi-
tional issues:

“Run-time” performance.
Finding a solution that is close to the global optimum, rather than an inferior
local optimum.

From a software point of view, the issue of run-time performance is related to
the fact that the various techniques inside the optimization module are exploring
a vast number of possible solutions to avoid being guided to a local optimum. In
light of this, a very common approach to increasing run-time performance is to pair
up a global optimization technique with a hill climber that takes over when there is
no longer any significant improvement in the quality measure score. Hence, the
evolutionary algorithm might generate 3,000 initial solutions that correspond to the

11.4 Optimization Module

208 11 Car Distribution System

total number of cars being processed on a particular day. These 3,000 individual
solutions are evaluated, the parents are selected, crossover and mutation operators
are applied, the next generation of solutions is created, and so on. This process is
repeated until the improvement in the quality measure score of the best solutions in
subsequent generations becomes stagnant, at which point the hill climber is applied
to find the best individual solution within the neighborhood of the best solutions
found thus far.

From a hardware point of view, a distributed computing environment can de-
crease the run-time of the optimization module. By spreading the different tech-
niques or evaluations over many processors, the optimization module can gain an
almost linear speedup of execution. Note that many population-based optimization
techniques (discussed in Chap. 6) are especially well suited for parallelization, as
each solution in the population can be assigned to a dedicated processor. Also, to
maximize the run-time performance of this type of implementation, the optimiza-
tion module can control the amount of run time allocated to each technique.

The second issue – that of finding a solution that is close to the global opti-
mum, rather than a local optimum – may arise if a large number of hard con-
straints are used. In such cases, the global optimum may be surrounded by a wall
of infeasible solutions, which may prevent an optimization technique from explor-
ing that area of the search space. The hybrid systems approach overcomes this
problem, because even though the evolutionary algorithm (in this particular im-
plementation) cannot process infeasible solutions, there are several other tech-
niques running in parallel that can. By sharing this information during the search
(i. e., cooperating), the evolutionary algorithm can “jump” over this wall of infea-
sible solutions if it gets information from another technique that higher-quality
solutions exist on the other side.

In summary, the optimization module used in this Adaptive Business Intelli-
gence system can produce a solution that is close to the global optimum in a rea-
sonable running time. By using certain features of adaptability, the optimization
module can also handle a wide variety of different instances of the car distribution
problem. Lastly, the usage of several optimization techniques together generates
a solution that is better than the result of any single technique.

11.5 Adaptability Module

Besides making regular (daily) recommendations on where to ship cars, the Adap-
tive Business Intelligence system also provides a detailed sale price prediction for
each car. These sale price predictions are recorded in the system’s database, along
with the actual sale prices when the cars are eventually sold at auction. These
actual sale prices constitute the recent output, and the auction sites, dates, and
detailed information about each car constitute the recent input. Thus, for each car,
the Adaptive Business Intelligence system can compare the predicted sale price
with the actual sale price. Such comparisons are very useful for detecting pricing
trends in the used car marketplace.

209

For example, a new report that shows gray-colored cars to be involved in more
accidents than other colors in the Midwest (because gray cars “blur” with the road
during hot weather) may cause the price of used gray colors to fall in this region of
the United States. If this happened, the system would need to identify the trend,
and then adapt the parameters of the prediction module so that fewer gray cars are
shipped to the auction sites located in Midwest states. To accomplish this, the
adaptability module would take the recent output and input, and adapt the parame-
ters of the prediction module to decrease the prediction error. In other words, the
adaptability module would “update” the prediction module so it makes better
predictions in light of the changes that have occurred in the environment.

Recall from Sect. 11.3 that the prediction module generates a predicted base
price for each car, which is based on its make, model, body style, and year. The
prediction module then “adjusts” this base price to come up with the final pre-
dicted sale price for each car. Let us illustrate this process with an example: Say
the prediction module predicts that the base price for a 2005 Toyota Camry 4-door
sedan is $18,500. Because the system considers shipping this car to an auction site
in Florida, the following adjustments are made: ZIP-based make/model adjustment
($320 premium on this type of car), car group/color adjustment ($120 premium on
silver cars), mileage adjustment ($750 penalty for exceeding the average mileage),
depreciation adjustment ($280 penalty for depreciation, as the car will probably be
sold in 3 weeks' time), and so forth.

The adaptation is done on the basis of actual car prices obtained at the auction
sites and is done in two stages. First, the value of the base price is adapted. For
each make, model, body style, and year (i. e., for each branch leading to the termi-
nal node of the decision tree), the adaptability module determines a new value for
the base price. The applied technique is similar to exponential smoothing
(Sect. 5.2.1), as it assigns weights to past cases to distinguish between recent and
older cases. Hence, a prediction for the time t+1 is calculated as:11

 Base price (t+1) = (α × Recent (t)) + ((1 α) × Base price (t))

so the prediction for the next (future) case is calculated as a total of two values:
the recent cases (Recent (t)) with parameter α, and the last prediction of the base
price (Base price(t) with the weight 1 α). Note that parameter α assigns the sig-
nificance of the recent cases in making the prediction. If α is close to 1, then the
older cases would be ignored to a large extent. If α is close to 0, then the most
recent cases would be ignored to a large extent. This is important, as the value of
the parameter α depends on the number of cars sold in the appropriate category
(e. g., the number of 2004 Toyota Camry 4-door cars): the smaller the number of
sold cars, the smaller the value of α. The adaptability module updates the base
price every three months.

11 Note that recent cases provide us with sale prices, so additional transformations (based
on the current values of appropriate adjustments) are necessary to estimate their base
prices.

11.5 Adaptability Module

210 11 Car Distribution System

The adaptability module updates the other adjustments in a similar way. For
example, to tune the value of the ZIP-based make/model adjustment (for a particu-
lar category of a car) in the linear model:

Sale price = Base price + ZIP-based make/model adjustment
+ Car group/color adjustment + Mileage adjustment + …

the adaptability module compares the national sales records with ZIP-specific
sales records. To tune the car group/color adjustment, the adaptability module
compares national sales records of a particular car with the sales records of a spe-
cific color of the same car, and so on.

As with the updates to the base price, a new value of an adjustment is based on
its current value and the recent cases. For example

ZIP-based make/model adjustment (t+1) = (β × Recent (t))
+ ((1 β) × ZIP-based make/model adjustment (t))

so the prediction for the next (future) case is calculated as a total of two values:
the recent cases (Recent(t)) with parameter β, and the last prediction of the ZIP-
based make/model adjustment (ZIP-based make/model adjustment(t) with the
weight 1 β). As for parameter α, parameter β assigns the significance of the re-
cent cases in making the prediction. Again, the value of parameter β depends on
the number of cars sold in a category: the smaller the number of cars sold, the
smaller the value of β. The adaptability module updates each adjustment at differ-
ent intervals, which usually range from one to six months. Although the adaptabil-
ity module determines the values of parameters α, β, etc. on the basis of a lookup
table in this particular implementation, it is also possible for the adaptability mod-
ule to adapt these values.

As we indicated in Sect. 3.5, we might inadvertently trigger the “volume effect”
by sending too many similar cars to the same auction site. In such cases, the sale
price determined by the prediction module is adjusted further to compensate for
the volume effect. This additional adjustment is very different from the previous
ones, and is based on four factors: inventory, group, make/model, and color. Here
the prediction module has to take into account the distribution of all cars before
making any adjustments. Thus, the sale price of each car is adjusted further to
reflect the number of similar cars sold at each auction site. Recall the volume
effect illustration from Sect. 3.5:

The shape of the curve in this figure is defined by the parameters p and q,
which define the decay rate of the price as a function of the number of cars sold.
These parameters are adjusted on a quarterly basis, which means that the shape of
the volume effect curve changes every three months. As with the other adjust-
ments, the updates for parameters p and q are based on their current values and the
recent cases.

In summary, this particular implementation of the adaptability module required
a significant effort in identifying and adapting all the relevant parameters. This is
not surprising, given that the functionality of the adaptability module depends on
the availability and the amount of new data, the frequency of their arrival, and
many other problem-specific details (e. g., the importance of mileage, color, and
volume effect in making adjustments).

11.6 Validation

The Adaptive Business Intelligence system discussed in this chapter was designed
and developed by the authors of this book to help leasing companies make near-
optimal decisions on the distribution of off-lease cars. As discussed earlier, the car
distribution problem is extremely complex and the system addresses the issues of
transportation, volume effect, price depreciation, inventory levels, risk factors, and
dynamic market changes.

When used in a high-volume production setting – where thousands of cars are
returned each day – the Adaptive Business Intelligence system can generate a net
profit lift of hundreds of millions of dollars per year. There are a few ways of
validating this lift. One way is to divide the daily load of cars into two equal sets
with an almost identical division of makes/models. One set would be distributed
using the “old” method, whereas the other set would be distributed using the

 11.6 Validation 211

212 11 Car Distribution System

Adaptive Business Intelligence system, and then the results can be compared when
all the cars are sold. Another way would be to use the old method on selected days
of the week (e. g., Mondays, Wednesdays, and Fridays) and the Adaptive Business
Intelligence system on the remaining days (e. g., Tuesdays and Thursdays). Again,
the results can be compared later, when all the cars are sold.

Another way to estimate the lift (in cases where a company may not want to use
two methods simultaneously) is to use the Adaptive Business Intelligence system
for one year and then compare the average sale prices with those of the previous
year (which were distributed using the old method). The comparison should use
a trusted pricing source as a benchmark. For example, if we have data about the
cars sold by a company in 2003 (before the implementation of an Adaptive Busi-
ness Intelligence system), we can select a set of cars that have the same mix of
makes/models, year, trim, etc. and compare the average sale price of these cars
with the average Black Book sale price. A chart depicting this comparison is pre-
sented below:

In this example, the average Black Book sale price for a particular mix of
makes/models, year, trim, etc. in 2003 was $9,587 per car, and the company sold
these cars for an average of $9,620 per car, or 0.344% higher than the Black Book
sale price. The next step would be to compare the sale prices in 2004 (when the
Adaptive Business Intelligence system replaced the old method of distributing
cars) against the Black Book sale prices for that year. In this example, the average
Black Book sale price was $9,259 per car in 2004, and the average actual sale
price obtained by the system was $9,724. If the cars had been distributed using the
old method in 2004, then the company would have attained similar results to those
attained in the previous year (i. e., a 0.344% improvement over the Black Book
benchmark, or an average of $9,291 per car). We can attribute an increase in aver-
age sale price to the Adaptive Business Intelligence system of $9,724 minus
$9,291, or $433 per car.

 11.6 Validation 213

In Sect. 5.3, we covered the difficulties in validating various prediction models
on historic data. In particular, we discussed splitting the available data set into
a training set (for building a prediction model), validation set (for tuning the pa-
rameters of the model), and test set (for evaluating the performance of the model).
In this section, we discussed how the whole system could be validated using real-
time data. There is an enormous difference between these two validations, the
most important being that real-time data can only be processed once (e. g., if a car
is sold at auction X, we will never know what price the car would have fetched at
auction Y). Consequently, different validation techniques are necessary.

12 Applying Adaptive Business Intelligence

“I knew not what wild beast we were about to hunt down in the dark
jungle of criminal London, but I was well assured, from the bearing of
this master huntsman, that the adventure was a most grave one.”
The Adventure of the Empty House

“There’s money in this case, Watson, if there is nothing else.”
A Scandal in Bohemia

The car distribution example that we have used throughout this book has served
its purpose in underscoring the importance of Adaptive Business Intelligence.
Without a doubt, software systems that can make decisions and adapt to changes
in the marketplace are the future of the business intelligence industry! As dis-
cussed in Chap. 2, many real-world business problems have similar characteristics
to the car distribution problem: an enormous number of possible solutions, many
complex constraints, and a time-changing environment. Therefore, we will discuss
several other business problems in this chapter – ranging from production-line
optimization to fraud detection – and look at possible solutions from the viewpoint
of Adaptive Business Intelligence.

12.1 Marketing Campaigns

Many large corporations spend millions of dollars each year to advertise their
products and services on different television channels. However, rather than buy-
ing airtime directly from the media stations, most of these companies use special-
ized advertising firms to handle their marketing campaigns. These campaigns have
to achieve several objectives, the most important of which is to reach the target
market while complying with predefined business rules and limitations.12 Because
advertising firms first purchase airtime from media stations and then later allocate
this time to different brands (clients), they face a major optimization problem:
How to allocate the purchased airtime among the various brands? This optimiza-
tion task (of allocating purchased airtime among different brands) has two objec-
tives: The first is to maximize the number of target rating points for the primary
target, and the second is to maximize the audience reach.

12 Examples of such rules and limitations may include budget constraints, or restrictions on
the use of advertisements within certain time intervals.

216 12 Applying Adaptive Business Intelligence

Before delving into this problem, let us first define what target rating points
and audience reach mean in the context of “reaching the target audience”:

The target rating points is the percentage of the target audience that is watching
a specific program at a specific point in time. Let us say that the primary target
audience is “22- to 29-year-old males,” which consists of 607,500 people.13 If the
advertisement broadcast during Program A is viewed by 12,000 of these people,
then Program A receives 2 Target Rating Points (12,000 / 607,500 = 2%).
Audience reach is the percentage of the target audience that will see the adver-
tisement at least once. For example, if the advertisement is aired during Pro-
gram A twice, then the total number of target rating points will be 4. However,
it does not mean that the advertisement will be seen by 4% of the target audi-
ence, as it is very likely that some people will see the advertisement twice. If
the target audience is 607,500 people and Program A is watched by 12,000 of
these people, then 5,000 people might see the advertisement twice, 7,000 might
see the first broadcast but not the second, and the remaining 7,000 might miss
the first broadcast but catch the second. In this case, the percentage of the target
audience that will see the advertisement at least once is 3.13% (5,000 + 7,000 +
7,000 = 19,000 / 607,500), so the audience reach14 is 3.13.

The target rating points for each program are obtained by researching the popu-
larity of different programs among various consumer groups. The target rating
points are readily available for programs that aired in the past. However, because
the task of allocating airtime is performed before the programs are aired, it is nec-
essary to predict what their target rating points will be. This is the responsibility of
the prediction module of the Adaptive Business Intelligence system.

The prediction module needs to take into consideration all the factors that in-
fluence the target rating points for different programs. Seasonality is a significant
factor (among others), because the number of target rating points generated by
a program during Christmas week might be very different from the number of
points generated during a regular week in September. To identify the impact that
factors such as seasonality have on different programs, it is necessary to analyze
the available data (i. e., conduct some data mining activity). During this process,
the programs are classified into groups that have similar characteristics, and the
appropriate adjustments are calculated for each day of the year. Additional things
to consider during the data mining process include program trends (e. g., certain
programs steadily gain or lose popularity over time) and the calendar of events

13 The audience is the number of people that can see the advertisement. For example, if an
advertisement is aired on five paid channels, and those channels have 4,500,000 subscri-
bed households with an average of 2.7 people per household, then the audience is
12,150,000 people (4,500,000 × 2.7). If the target audience is “22- to 29-year-old males”
and they constitute 5% of the total audience, then the size of the target audience is
= 607,500 people (12,150,000 × 5%).

14 Many marketing and advertising theories state that an advertisement needs to be viewed
by the target audience several times to be effective.

217

(e. g., Super Bowl Sunday, election day). In such cases, the predicted target rating
points will require further adjustment.

Note that predicting the target rating points is a typical time series problem (see
Sect. 5.2.1). The problem might be expressed as follows:

 Given v[1], v[2], , v[t], predict the value of v[t+1]

where v is the target rating points and t is the time of the most recent market re-
search data. Note also that because other variables are available (e. g., calendar of
events) beside the target rating points from earlier time intervals, we are talking
about a composite forecasting model, which consists of past time series values,
past variables, and past errors.

As with the other applications of Adaptive Business Intelligence, an adaptabil-
ity module is required to make the system capable of learning and recognizing
new trends in the marketplace. This module is responsible for adapting the pa-
rameters of the prediction module. Each day brings a new set of program ratings
for recently aired shows, and these ratings need to be taken into account when
making future predictions. Thus, the adaptability module adjusts the appropriate
coefficients in the model to accommodate the new data, so that future predictions
are more accurate.

Before we turn our attention to the optimization process, note that each day
many programs are broadcast on a multitude of different channels. If there are
a few dozen brands to be advertised during different programs on different chan-
nels, then the number of possible advertising schedules can be extremely large.
A typical scenario might involve 5,000 time slots to be filled by advertisements of
50 brands (so each brand would require 100 advertisement slots on average). In
this case, there are more than 10200 ways to allocate the 100 slots of just the first
brand! This number is already much larger than the estimated number of atoms in
the Universe, so for 50 brands the number of possible allocations is truly over-
whelming!

To find the best allocation of airtime for the different brands, the optimization
module takes into account the predicted target rating points for each program, as
well as various brand-specific constraints. The most important of these is the bud-
get constraint, which is the advertising campaign budget that should not be ex-
ceeded for each brand. Another important constraint is that some (competing)
brands should not be aired too closely (e. g., broadcasting an advertisement from
Coca Cola followed by one from Pepsi Cola on the same channel). Some compa-
nies might impose additional requirements that would become constraints for their
particular brands. For example, they might require that a portion of their adver-
tisement campaign be aired on certain weekdays and weekends, or during prime
time.

Before the optimization process can begin, the optimization module loads sev-
eral input data files, which are summarized in the following configuration screens.
The first configuration screen (presented in the sample screen below) provides
information on purchased slots:

12.1 Marketing Campaigns

218 12 Applying Adaptive Business Intelligence

For each channel on the left-hand side of this screen, it is possible to define the
available programs and their corresponding target rating points. The screen dis-
plays the number of purchased slots and their cost for the PBS channel. The target
rating points are defined for each program and each target group. For example, the
program running on 8 June from 8:30 am to 9:00 am (highlighted) costs $12,500
per 15-second time slot, and fetches 1.5 target rating points for 15- to 21-year-old
males, 3.5 target rating points for 22- to 29-year-old males, and so on. These target
rating points for each target group are generated by the prediction module.

The second configuration screen (presented below) summarizes the information
related to different brands:

219

The total budget, primary target group, and the length of airtime (15 seconds
only, 30 seconds only, or both) are defined for each brand. In this particular ex-
ample, Honda has a total budget of $140,000, uses both 15- and 30-second time
slots, and the primary target group is 22- to 29-year-old males.

Finally, we are ready to optimize. A solution to this marketing problem might
be represented as a multi-dimensional table where the first dimension represents
possible channels, the second dimension represents the available programs, and
the third dimension represents all the days of the month. Many different optimiza-
tion techniques can be applied to this problem (e. g., evolutionary algorithms,
simulated annealing, tabu search), and some of the problem-specific constraints
might be best dealt with by using a decoder (a sort-of repair algorithm, which
would “repair” the current solution to make it feasible). Furthermore, a hill clim-
ber can be used to improve the current solution by searching its neighborhood.

The sample screen below displays a possible solution:

12.1 Marketing Campaigns

220 12 Applying Adaptive Business Intelligence

In this sample screen, there are four tabs corresponding to the four different
channels (which represent the first dimension of the solution). The table in the
middle of the screen shows the allocation of airtime to the different brands, and
the rows and columns in this table represent the second and third dimensions of
the solution. In this particular example, it is recommended to broadcast BellSouth
and Audi advertisements on 10 June from 20:30 to 21:30. In total, 45 seconds of
advertisement time should be allocated for that time period at a cost of $12,500
per 15 seconds. The BellSouth advertisement has 2.9 target rating points for 30- to
45-year-old females, while the Audi advertisement has 3.7 target rating points for
22- to 29-year-old females.

The four graphs in the lower part of the screen show the progress of the optimi-
zation objectives during the optimization run. The current value of each graph is
displayed in the corresponding window:

The Target Rating Points window shows the total number of target rating
points accumulated for all brands. Maximizing this number is an important ob-
jective of the optimization module.
The Audience Reach window shows what percentage of the target audience is
reached by the marketing campaign. As discussed earlier, this is another impor-
tant objective of the optimization process, and a value of 85.4% is achieved in
this particular example.
The Budget Violation window shows if the current allocation exceeds the al-
lowed budget (and by how much, in thousands of dollars). Another objective of
the optimization module is to minimize this number, which the system can view
as a soft constraint.
The Total Penalty window shows the “general level” of constraint violation.
This number includes the budget violation penalties plus penalties for violating
other brand-specific constraints.

These four graphs show the optimization module in action, allowing the busi-
ness manager to observe the progress made during the run (increases in target
rating points, increases in audience reach, etc.).

Using an Adaptive Business Intelligence system to optimize marketing cam-
paigns can result in better predictions and better allocations of television airtime.
Such benefits translate into a reduction in marketing spend, as the same objectives
can be achieved with a smaller budget. Companies that do not outsource their
marketing campaigns could also use Adaptive Business Intelligence to decide
what airtime to buy from what media stations, which is another (related) predic-
tion and optimization problem.

12.2 Manufacturing

The optimization of production lines is a very challenging manufacturing problem,
which involves elements of demand forecasting, scheduling of labor, and sequenc-
ing of production orders. Although the production process at many manufacturing
companies might be conceptually straightforward, it contains many details that
make scheduling quite complex. For example, an iron foundry that operates sev-
eral furnaces and production lines has to schedule many independent processes,
such as the preparation of cores and molds, pouring the molds, finishing the cast-
ings, and so forth. Furthermore, there are relationships between the “base-grades”
and metal grades, as well as transition times for changing the melting process (on
a furnace) from one iron base-grade to another. Because of these complexities, the
efficient coordination of the overall operation can be quite difficult.

Using the iron foundry as an example, many production constraints have to be
taken into account during the scheduling process. Some of these constraints repre-

 12.2 Manufacturing 221

222 12 Applying Adaptive Business Intelligence

sent physical limitations (e. g., melting time, the capacity of each furnace), while
others may represent operational/business rules. The set of constraints and busi-
ness rules may include:

1. Production lines that only operate on particular days of the week (e. g., from
Monday morning to Thursday evening).

2. Products that may only be produced during the day or night shift.
3. Production deadlines that have to be satisfied.15

4. Earliest “start date” for each order (e. g., cores and molds need to be prepared
before the order can be produced).

5. Products that cannot be produced in parallel (e. g., some products are very simi-
lar in appearance, which makes it difficult to separate them at the end of a pro-
duction run).

6. Production limits, such as furnace tons per hour, furnace min/max tons per
hour, molds per hour per production line, etc.

7. Some additional business rules can also include the avoidance of overproduc-
tion (for some orders it might be necessary to overproduce), the avoidance of
deviating from production-line recommendations for processing “heavy” jobs,
and so on.

In the application of Adaptive Business Intelligence to this problem, the predic-
tion module is responsible for accurately forecasting the production orders.
A prediction module based on several models of the same type (e. g., neural net-
works) can be used,16 with the final prediction being a weighted average of the
individual models. As with the other business problems we discussed, each day
brings a new set of data that needs to be taken into account for making future
predictions. Again, the adaptability module is responsible for adapting the parame-
ters (weights) of the prediction module.

While the prediction module works on forecasting new orders, the optimization
module is responsible for optimizing the interplay between the furnaces and pro-
duction lines. After all, this interplay represents the core scheduling issue. The
primary objective is to optimize – in terms of the utilization of furnaces and
throughput of production lines – the distribution of production orders over some
period of time. Because the furnaces and production lines work together in the
production process, the maximization of furnace utilization and production-line
throughput have to be considered jointly. Secondary objectives might include the
maximization of yield, or the minimization of labor costs, electricity costs, storage
costs, the fettling process, etc.

The approach for handling constraints can be based on decoders, which separate
between objectives and constraints. Using this approach, the optimization module
can use the constraints to “guide” the optimization process toward feasible solu-
tions of high quality. This constraint-handling approach also allows for easy and
“at will” modification of the constraints to fit the current situation. Furthermore, to

15 Although the production deadline is often viewed as the objective, this is in fact a con-
straint that should not be violated.

16 In other words, a bagging technique is used (as discussed in Sect. 10.1).

generate valid scheduling solutions right from the start of the run, the optimization
module can use a combination of evolutionary algorithms and simulated annealing
(plus a decoder responsible for generating near-feasible solutions). Although the
scheduling solution will increase in quality as the optimization run progresses, a
business manager can stop the run at any given moment and use the best available
solution rather than wait to the end. This allows for very flexible usage and pro-
vides a business manager with ultimate control over the optimization process.

The sample screen below shows a scheduling solution for a particular week:

 12.2 Manufacturing 223

224 12 Applying Adaptive Business Intelligence

Each bar represents a production order, and in the lower part of the screen we
can view the details of each order. Separate screens illustrate the different furnaces
and iron base-grades. Obviously, each base-grade is aligned with the production
orders that require that base-grade (to produce a particular product).

Although there are many advantages of this graphical user interface, the most
important is that it allows a business manager to carry out numerous “what-if”
scenarios, including:

Examining the effect of moving a production order forward or backward in
time, or from one production line to another.
Splitting a production order into smaller pieces and examining the effect of
such a modification.
Examining the effect of constraining certain orders so they cannot run in parallel.
Visually examining what effect changes to the production calendar, furnaces,
and production lines would have.

The final output of the Adaptive Business Intelligence system is an ordered list
of production orders to be processed each day on each production line. The sched-
ule may contain both confirmed and forecasted orders, as determined by the pre-
diction module, scheduled in such a way that they maximize the utilization and
throughput of the production lines. Some additional reports can be used to display
various utilization ratios, throughputs, and other key performance indicators in
graphical and/or numerical form. Such reporting would allow a business manager
to evaluate the performance of the production schedules.

12.3 Investment Strategies

Most fund managers who oversee large pools of money (such as pension funds,
mutual funds, hedge funds, etc.) use a stock ranking system based on fundamental
analysis to decide what to buy. They execute their orders over a two- to three-day
period, depending on the size of the order and the liquidity of the stock. Although
the overall objective is to maximize profit, there are usually many business rules
that must be taken into account when making buy/sell decisions. In addition to
various risk factors that have to be considered, there are also maximum and mini-
mum limits to the amount that can be invested in any one sector or country, the
turnover for any particular period, etc.

In this setting, an Adaptive Business Intelligence system could provide a com-
plementary technical trading rule component to the fundamental analysis, thereby
helping to determine whether there are technical “trade signals” for buying or sell-
ing specific stocks. As with the other Adaptive Business Intelligence systems dis-
cussed in this chapter, the general goal is to develop a dynamic and adaptive system
that can consider changing market conditions (rather than just a static environment).
Thus, in this particular problem, the system must continuously adapt the short- to
mid-term trading rules to changes in the market.

225

Using past stock market data, a prediction module based on fuzzy trading rules
can be used. For each linguistic variable (e. g., price change, volume change, single
moving average buy signal, single moving average sell signal, plus many additional
trend, volume, and momentum indicators) we can define seven fuzzy logic mem-
bership functions: Extremely Low, Very Low, Low, Medium, High, Very High, and
Extremely High. The prediction module automatically calculates these membership
functions, which are adaptive in the sense that each membership function covers the
same number of input data (thus the shape of each membership function changes
slightly at the arrival of new data).

The fuzzy rule base consists of a variable number of trading rules, which are
optimized by the optimization module. For example, one of the initial solutions
(i. e., a rule base, which is a member of the initial population of solutions) might
be:

If Single Moving Average Buy Signal is Extremely Low, then rating = 0.7.
If Volume Change is Medium and Single Moving Average Buy Signal is Ex-
tremely Low, then rating = 0.9.
If Price Change is High and Volume Change is Very High, then rating = 0.4.
If Price Change is High and Single Moving Average Buy Signal is Very Low,
then rating = 0.6.
If Price Change is Extremely High and Volume Change is Very High, then
rating = 0.3.
If Price Change is Medium and Volume Change is Extremely High and Single
Moving Average Buy Signal is Medium and Single Moving Average Buy Signal
is Medium, then rating = 0.5.

A population of such rule bases17 undergoes an evolutionary process (as dis-
cussed in Chap. 6). During each generation, all the solutions (rule bases) are eva-
luated on the basis of some historical time window (e. g., the last 3 years). In the
search for optimal trading rules, various evaluation functions are used (such as
excess return or risk-adjusted return), whereas transaction costs and market impact
serve as constraints. Once each rule base is evaluated, the standard steps of the
evolutionary algorithm are executed (e. g., crossover, mutation). After some num-
ber of generations, the best rule base in the population might be:

If Volume Change is Medium and Single Moving Average Buy Signal is Ex-
tremely Low, then rating = 0.9.
If Single Moving Average Buy Signal is Extremely Low, then rating = 0.6.
If Price Change is High, then rating = 0.2.
If Price Change is High and Volume Change is High, then rating = 0.4.
If Single Moving Average Buy Signal is Low and Single Moving Average Buy
Signal is Medium, then rating = 0.3.
If Volume Change is High, then rating = 0.3.

17 Note that each rule base may have a different number of rules, and each individual rule
may have a different number of conditions.

12.3 Investment Strategies

226 12 Applying Adaptive Business Intelligence

The resulting rule base is then used by the prediction module to create a technical
ranking, which is the final output of the system. Each end of the technical ranking
list represents the stocks with the strongest buy and sell signals, and this list can be
used in conjunction with fundamental analysis to make buy/sell decisions. To gen-
erate a ranking from the rule base, the stocks are rated according to the rules of the
best rule base. Note that each individual rule assigns a rating for all the stocks that
satisfy the “if” part of the rule. For example, the rule

 If Price Change is High, then rating = 0.2.

would assign a rating of 0.2 to all stocks for which Price Change is High. The
defuzzifier (see Sect. 7.4) then assigns the final rating to each stock by creating
a weighted average of all the recommended ratings for each stock (the weights
correspond to the “degree” to which the “if” part of the rule is satisfied), divided
by the total of all weights. Finally, these rating numbers are used to create a tech-
nical ranking of all the stocks.

For this particular problem, the optimization module is responsible for evolving
the “optimal” set of technical trading rules (i. e., rule base). One way of speeding up
the optimization process is to initialize the population with some classic trading
rules, which might be based on time series forecasting, price/volume momentum,
etc. Although the actual trading rules that are evolved would be very different, these
initial rules allow the optimization module to begin with “something” (i. e., a set of
previously tested rules) rather than “nothing” (i. e., completely in the dark).

Lastly, the adaptability module is responsible for taking into account new in-
formation and continuously re-evaluating the rules. The time-window of informa-
tion is actively managed so that outdated information is discarded and critical
information is retained (new regimes are registered, yet repeated past regimes are
also recognized). The adaptability module might also be extended with the ability
to generate and test new market indicators to see what kind of impact they would
have on the existing trading rules. These indicators can be introduced into the rule
bases during the optimization process.

The outcome of the combined fundamental analysis and the technical buy/sell
recommendations made by the Adaptive Business Intelligence system are reported
in a series of profit/loss screens. For example, the sample screen below shows the
profit/loss result for a particular time period:

227

In this report, the columns of the table display the:

Remaining budget: The cash not used for buying stocks.
Total amount: The total of the Portfolio Value and Remaining Budget.
Sell/buy: The amount sold or bought on a particular date.
Open “short” position: The amount used to open a short position.
Close “short” position: The profit or loss realized on the closing of a short
position.
Realized profit: The total net profit realized on a particular day (including
transaction costs).
Compounded realized profit: The cumulative net profit since the inception of
the fund.

The Transaction Details table on the lower part of the screen shows what was
sold/bought/shorted on the selected date (highlighted on the upper part of the
screen).

Several additional reports, such as the following sample screen, are used to
summarize the profit and loss result for particular stocks:

12.3 Investment Strategies

228 12 Applying Adaptive Business Intelligence

In this screen, the upper part of the table contains information about each stock,
such as the country, sector, number of shares owned, price paid per share, amount
bought or sold, and total profit. The lower part of the table shows the detailed
transaction history for the highlighted stock in the upper part of the table.

In summary, it is important to highlight that such an Adaptive Business Intelli-
gence system is not based on a fixed set of technical trading rules. Rather, the
adaptability module updates these rules as new information becomes available. As
mentioned earlier, the output of the Adaptive Business Intelligence system is
a technical ranking of stocks, with each end of the list representing the stocks with
the strongest buy and sell signals. When used in conjunction with fundamental
analysis, such an investment optimization system could provide fund managers
with an edge in performance.

12.4 Emergency Response Services

The emergency response service in any major city has a number of ambulance and
police cars that respond to calls. The problem faced by these organizations is “where
should these cars be located so that the response time is minimized?” The ambu-
lances usually stay and wait for a call, while police cars patrol some predefined zone.

229

An Adaptive Business Intelligence system can be applied to this problem, as predic-
tion, optimization, and adaptability are all required components.

The prediction module for this problem is based on three sets of historical data:

1. The frequencies and types of emergencies and their locations.
2. The calendar (weekdays, weekends, national and local holidays, etc.).
3. Weather conditions.

By analyzing these data sets for a specific city, we might discover that more
emergencies occur on weekdays than weekends, or that more cases occur in resi-
dential areas during the weekends. Also, by taking into account weather condi-
tions, we might also discover that more traffic accidents occur during periods of
rain, snow, and ice. This knowledge is used to develop a prediction module cap-
able of identifying the places (and frequencies) where emergencies are most likely
to occur.

To make the prediction task easier, we can divide the city into a number of
zones, with the size and the shape of each zone depending on the geographical
topology and some constraints. One constraint, for instance, might be that the
travel time between any two internal points of a zone cannot exceed 15 minutes.
Thus, the zones would be smaller in urban areas and larger in rural areas (espe-
cially in the presence of highways intersecting the zones). It is also possible to
have different zones for different days of the week, time of the day (e. g., during
peak hours), and weather conditions.

For this type of problem, the prediction module can be based on two models:

1. The first model is responsible for predicting the total number of emergencies
during any block of time.

2. The second model is responsible for predicting the distribution of these emer-
gencies across the different zones.

For example, a prediction model based on artificial neural networks could esti-
mate the total number of emergencies (together with their type) for Friday morn-
ing between 6 am and noon on a rainy day, and a second model based on expert
rules could predict where these emergencies will occur (i. e., in which zone). By
combining the weighted “recommendations” of the individual rules in the second
model (which are normalized to match the average number of emergencies pre-
dicted by the neural network model), the rule base would act as a voting system.
The final output of the prediction module is the predicted number of emergencies
in each zone during a six-hour block.

Note, however, that whatever the output of the prediction module, we must
usually satisfy a “maximum response time” constraint: For example, the distribu-
tion of emergency response cars should be such that any accident can be reached
within 15 minutes. Also note that each day brings a new set of cases, and some
rules may gain or lose accuracy over time. Consequently, the adaptability module
must accommodate the new data by adjusting the weights of the individual rules.

The optimization module for this problem is responsible for recommending the
best locations for the emergency response cars. This recommendation is made on
the basis of the number of available cars, their current positions, and the output of

12.4 Emergency Response Services

230 12 Applying Adaptive Business Intelligence

the prediction module (i. e., the number and distribution of the predicted emergen-
cies). We could use a vector of integers for the solution representation, with each
integer representing a zone for a specific car (i. e., the first number represents the
zone for the first car, the second number represents the zone for the second car,
and so forth). As an example, the vector:

represents a solution where the first ambulance is assigned to zone 32, the second
ambulance is assigned to zone 14, and so on, with the last two ambulances as-
signed to zones 91 and 57, respectively. A similar vector may represent the as-
signment of police cars. By using evolutionary algorithms (discussed in Chap. 6),
the optimization module can evolve solutions that find better and better locations
for the emergency cars. To evaluate a solution vector, the evaluation function must
take into account the average response time, maximum response time, etc.

The sample screen below shows the current location of several emergency cars.
The table in the lower part of the screen contains the status and recommended
zone of each car:

231

In this screen, police car N217 is changing locations from zone 4 to zone 5.
Once this car arrives at zone 5, its status will change to “Patrolling.” Police car
N028 is servicing a call. Once the call is serviced, the system will recommend the
best zone for patrolling.

Another important task for the system is to recommend the minimum number
of ambulances and police cars needed to meet some service level criteria. The user
specifies the desired response time for different types of emergencies, and the
system finds the minimum number of cars that should be kept on duty to achieve
this criteria. In the sample screen below, the system recommends the minimum
number of cars for a specific day:

12.4 Emergency Response Services

232 12 Applying Adaptive Business Intelligence

In this report, the maximum number of police cars required for any six-hour pe-
riod is 39, while the maximum number of ambulances is 30 (the 6 pm–midnight
time block requires 39 police cars, and the midnight–6 am time block requires 30
ambulances).

Note that this location optimization problem is set in a dynamic environment,
where different types of changes occur at different rates. Some of the more pre-
dictable and “regular” changes might occur on an hourly or weekly basis (e. g.,
changes in traffic patterns due to rush hour or holidays), while the less predictable
changes might include adverse weather conditions or roadwork. Some changes
might also be the result of the current operation: For example, a few cars servicing
a particular incident may leave some other zones of the city exposed. Furthermore,
as a city grows – with some areas growing faster than others – the distribution and
frequency of emergencies will inevitably change.

By recommending the best locations for emergency response cars and keeping
their number to a minimum, an Adaptive Business Intelligence system may pro-
vide significant savings over the current operation. Dynamically reassigning emer-
gency cars in time-changing environments is an additional benefit.

12.5 Credit Card Fraud

The purpose of fraud detection systems is to evaluate and classify financial trans-
actions. In the case of credit and debit cards, a system has to check thousands of

233

transactions per second and flag those that are potentially fraudulent. Note that
a set of tested transactions can be divided into four groups:

1. True-positives. Transactions that were fraudulent and which the system cor-
rectly classified as fraudulent.

2. False-positives. Transactions that were legitimate, but which the system incor-
rectly classified as fraudulent.

3. True-negatives. Transactions that were legitimate and which the system cor-
rectly classified as legitimate.

4. False-negatives. Transactions that were fraudulent, but which the system incor-
rectly classified as legitimate.

In other words, a transaction that is classified as fraudulent is called positive,
while a transaction that is classified as legitimate is negative. If the classification
is correct then the transaction will be true (i. e., correctly classified), and if the
classification is incorrect then the transaction will be false (i. e., incorrectly classi-
fied). The table below summarizes these classification results:

Tested Transactions

Fraudulent
(Positive)

Legitimate
(Negative)

Fraudulent True-positive False-negative

Legitimate False-positive True-negative

The efficiency of a fraud detection system can be measured by the number of
correct classifications. Clearly, a bank would like to minimize the number of false-
positives and false-negatives (incorrect classifications); however, these two meas-
ures very often work against each other. For instance, we can reduce the number
of false-negatives by making a system more “suspicious” (i. e., thereby flagging
more transactions as fraudulent); but flagging a larger number of transactions
would increase the number of false-positives (as many of these transactions would
be legitimate). What is more, any change in these two measures might have sig-
nificant consequences for a bank.

To illustrate this point, let us consider the following example: A bank uses
a fraud detection system that flags “suspicious” transactions, and, later, a subset of
these transactions is classified as fraudulent. Now the bank can drastically reduce
fraud by flagging all suspicious transactions (i. e., reducing the number of false-
negatives), but this is not feasible for two reasons:

1. A battalion of fraud prevention officers would be needed to review all the
flagged transactions.

2. The bank would annoy its customers by blocking many legitimate transactions
(i. e., increasing the number of false-positives, as not all suspicious transactions
turn out to be fraudulent).

12.5 Credit Card Fraud

234 12 Applying Adaptive Business Intelligence

Hence, the “suspicion threshold” cannot be set too high. However, although
there will be fewer transactions to review and less upset customers when the
threshold is lowered, this might result in an increased number of false-negatives
(which will increase the financial losses of the bank). This problem is com-
pounded by the fact that many new fraud patterns emerge each year, and a bank
might not recognize them until the fraud has already occurred. This problem of
minimizing the number of credit and debit card transactions to review, while
maximizing the number of fraudulent transactions detected (in an ever-changing
environment), is ideally suited for an Adaptive Business Intelligence system.

Clearly, the heart of the system is a prediction module that assigns a “suspicion
score” to each transaction. For this complex classification task, it might be prudent
to build and train several prediction models and then combine them together into
one module (as discussed in Sect. 10.1). Let us take a closer look at the possible
design of such a prediction module.

In order to make a decision, the prediction module can use several models that
are based on different prediction methods. Each model assigns a suspicion score in
the range of 0 to 1: the higher the score, the greater the probability that the transac-
tion is fraudulent. Once each of the models produces a score for the transaction, the
prediction module then combines the scores. Each model has a weight that repre-
sents the importance of its prediction, and the sum of all the weights equals 1; there-
fore, the combined suspicion score is also in the range of 0 to 1. The final decision
of “fraudulent” versus “legitimate” is based on whether the weighted score is higher
than the “suspicion threshold” parameter in the system.

The diagram below provides an example of the prediction process, which is
based on four models and a voting system (averaging of scores):

In this example, the four models have weights equal to 0.3, 0.2, 0.15, and 0.35,
respectively. The individual scores are combined to come up with the final suspi-
cion score, which is a weighted average.

235

Now, the prediction module may have different suspicion thresholds that define
how a transaction should be processed. For example, the thresholds may be:

Not greater than 0.6 – grant authorization.
Greater than 0.6, but not greater than 0.9 – grant authorization, but flag the
transaction for later review by a fraud prevention officer.
Greater than 0.9 – deny authorization and call customer.

The sample screen below shows a list of all suspicious transactions (i. e., trans-
actions with the final score greater than 0.6)18 that have been assigned to a fraud
prevention officer for review. The suspicious transactions are sorted by decreasing
final score:

To measure the effectiveness of the prediction module over some period of
time, the system can compute several performance ratios based on the measures
discussed earlier in this section:

18 The screen shows only decimal digits, so the score 0.982 is displayed as 982.

12.5 Credit Card Fraud

236 12 Applying Adaptive Business Intelligence

True-positive ratio: Correctly classified fraudulent transactions / total number
of fraudulent transactions.
True-negative ratio: Correctly classified legitimate transactions / total number
of legitimate transactions.
False-positive ratio: Incorrectly classified legitimate transactions / total number
of legitimate transactions.
False-negative ratio: Incorrectly classified fraudulent transactions / total num-
ber of fraudulent transactions

The sample report below displays these ratios (together with absolute numbers)
for the first quarter of the year:

This report indicates that the true-positive ratio for January was 45.02%, which
means that during the month of January the system correctly classified 45.02% of
the fraudulent transactions (2,375 fraudulent transactions were correctly classified
from a total number of 5,276). During the same time period, the false-positive
ratio was 0.43%, which means that the system incorrectly classified 0.43% of the
legitimate transactions during the month of January (10,088 legitimate transac-
tions were incorrectly classified from a total number of 2,363,893).

As mentioned earlier, it might be desirable to use several prediction methods
for the problem of detecting fraudulent transactions. One of the more popular
prediction methods used for this type of problem is based on rules, which are
defined and maintained for classifying new transactions. Some other widely used
methods for fraud detection include artificial neural networks, fuzzy logic, and
decision trees – all of which have their own advantages and disadvantages. As
a case in point, a considerable deficiency of artificial neural networks is their in-
ability to provide a logical explanation for why a transaction was classified as
fraudulent. However, models based on artificial neural networks are computation-
ally very fast, and so the prediction is made in a fraction of a second.

237

Because the models used for detecting fraudulent transactions are trained and
tested on historical data, the performance of these prediction models depends on
the quality and quantity of available data. As an example, a prediction model that
is based on credit card transaction data will detect fraud by looking at the amount,
frequency, and location of the transactions. If we also had additional cardholder
data, such as recent changes of address, age, etc., then we could improve the mo-
del’s performance.

To allow the prediction module to learn and recognize new fraud patterns as
they occur, an adaptability module is required. For example, the rule-base might
be modified at regular intervals (i. e., adjustment of weights for individual rules,
dropping existing rules, adding new rules), so that the number of false-positives
and false-negatives is reduced. The adaptability module is also responsible for
continuously adjusting the weights of the individual prediction models, thereby
ensuring that the more useful (i. e., precise) models exert more influence on the
final prediction. In our earlier example, these weights were equal to 0.3, 0.2, 0.15,
and 0.35, respectively.

For the problem of detecting fraudulent transactions, the optimization module is
responsible for recommending the best suspicion thresholds. Recall that the pre-
diction module has different thresholds for the final suspicion score, which define
various courses of action:

If the score is not greater than – grant authorization.
If the score is greater than , but not greater than – grant authorization, but
flag the transaction for later review by a fraud prevention officer.
If the score is greater than – deny authorization and call customer.

Now, what are the “best” suspicion thresholds? Well, this is not so straightfor-
ward, as many issues should be taken into account. It is important to minimize
losses (thus minimizing the number of false-negatives), but it is also very impor-
tant to take into account customer satisfaction (thus minimizing the number of
false-positives). As we indicated in Sect. 2.4, it is quite unusual for any real-world
business problem to have only one objective. This is precisely the case here, and
so fraud detection can be viewed as a multi-objective optimization problem. Hen-
ce, the optimization module should find the optimal values of and (assuming
two thresholds in the decision making process) to minimize false-negatives and
false-positives.

The task of the optimization module is to identify a set of non-dominated solu-
tions,19 like A, B, and C below:

19 For a discussion on non-dominated solutions, see Sect. 2.4.

12.5 Credit Card Fraud

238 12 Applying Adaptive Business Intelligence

Each of these solutions produces some percentage of false-positives and false-
negatives for threshold values α and β. Solution A produces the lowest number of
false-negatives (45.32% versus 47.98% and 52.23% for solutions B and C, respec-
tively), whereas solution C produces the lowest number of false-positives (1.03%
versus 1.68% and 1.49% for solutions A and B, respectively). Based upon man-
agement’s priorities for customer satisfaction and loss prevention, the imple-
mented solution will determine the thresholds for α and β.

Using an Adaptive Business Intelligence system for fraud detection may pro-
duce significant savings over a static rule-based system. These savings can be
attributed to the system’s ability to recommend the best suspicion thresholds for
flagging transactions, as well as its capacity to adapt to the ever-changing envi-
ronment.

13 Conclusions

“ ‘Come, Watson, come!’, he cried. ‘The game is afoot. Not a word!
Into your clothes and come!’ ”
The Adventure of the Abbey Grange

“ ‘You wish to employ me as a consulting detective?’
‘Not that only. I want your opinion as a judicious man – as a man of
the world. I want to know what I ought to do next.’ ”
The Yellow Face

During the past few decades, organizations have strived to improve their decision-
making capability by collecting and storing more data. The need to convert this
raw data into useable knowledge has fueled the growth of the business intelligence
industry, which provides software tools for retrieving, summarizing, and interpret-
ing data for end users. Most of these business intelligence systems can: (a) access
data from a variety of sources, (b) facilitate the transformation of data into knowl-
edge, and (c) display this knowledge through a variety of graphical reports. But is
this enough?

Although the major goal of business intelligence is to help managers make
faster and smarter decisions, organizations now realize that a vast gulf exists be-
tween having the “right knowledge” and making the “right decision.” To answer
questions such as “What should be done to increase profits? reduce costs? and
increase market share?” business managers need more than graphs, charts, and
numerical reports. They need systems that can predict the future and recommend
the best course of action. For this reason, the future of the business intelligence
industry lies in systems that can predict, optimize, and adapt – put another way,
the future of the industry lies in Adaptive Business Intelligence.

The following diagram (copied from Chap. 1) illustrates this concept:

240 13 Conclusions

The power and appeal of Adaptive Business Intelligence systems reside in their
ability to answer the two fundamental questions behind all business decisions:
What is likely to happen in the future? and What is the best decision right now?
Without a doubt, organizations that can accurately answer these questions on
a consistent basis will have a competitive advantage over those that cannot. By
combining prediction (What is likely to happen in the future?) and optimization
(What is the decision right now?) into one system, business managers can reach
new heights in their decision-making efficiency.

In addition to prediction and optimization, the concept of adaptability is also
central to Adaptive Business Intelligence. As we discussed in Chap. 1, adaptability
has already been introduced into many consumer products, such as car transmis-
sions, television sets, and running shoes. Because these mass-produced products
can adapt to the preferences of each unique owner, they are rapidly gaining popu-
larity with consumers around the world. The logical extension of this trend is
adaptive software: imagine a mass-produced software system that can adapt to the
daily operation of any organization!

Note that the whole concept of Adaptive Business Intelligence also mimics the
human brain, which constantly makes a variety of predictions (e. g., “the price of
technology-related stocks will go up” or “there will be less traffic on the roads
today”), decisions (e. g., “I will buy 10,000 shares of XYZ technology company”
or “I will do my shopping today”), and later modifications (e. g., “I bought too
many shares of XYZ technology” or “I should have done my shopping in the
morning, rather than the afternoon”). Thus, Adaptive Business Intelligence ad-
dresses the core issue of Artificial Intelligence, which is how to make computers
more useful and intelligent.

In this book, we discussed the prediction, optimization, and adaptability mod-
ules in detail, and illustrated how they can be integrated to create an Adaptive
Business Intelligence system. Besides explaining the working principles behind
Adaptive Business Intelligence, this book can also serve as a “high-level” guide
for solving specific business problems. To that end, Part II covered a variety of
prediction methods and modern optimization techniques (e. g., evolutionary algo-
rithms, simulated annealing, tabu search, ant systems), and Part III explained how
to combine these methods and techniques into an Adaptive Business Intelligence

 13 Conclusions 241

system. In addition to the real-world distribution example used throughout the
text, Chap. 12 also provided some additional problem domains to which Adaptive
Business Intelligence can be applied.

Although the functionality of Adaptive Business Intelligence systems will
evolve over time, the goal of these systems will remain the same: solving real-
world business problems that have complex constraints, multiple (possibly con-
flicting) objectives, an enormous number of possible solutions, and which are set
in a time-changing environment. Consequently, these systems will always depend
on modules for prediction, optimization, and adaptability.

So, what can we expect to see during the next decade?
First of all, the knowledge underpinning Adaptive Business Intelligence will

become “standard.” Business managers, IT practitioners, and students will need to
understand the methods and techniques used to create Adaptive Business Intelli-
gence systems. Many universities will institute courses on Adaptive Business
Intelligence, covering topics such as data mining, prediction methods, optimiza-
tion techniques, and modern heuristics. Until now, these topics were usually
taught in separate courses, often across different departments and schools (e. g.,
operations research, computer science, engineering, applied mathematics, statis-
tics).

Furthermore, we will see a continuation of topic-specific research related to
Adaptive Business Intelligence. For example, most of the research in machine
learning has been focused on using historical data to build prediction models.
Once the model is built and evaluated, the goal is accomplished. However, be-
cause new data arrive at regular intervals, building and evaluating a model is just
the first step in Adaptive Business Intelligence. Because these models need to be
updated regularly (something that the adaptability module is responsible for), we
expect to see more emphasis on this updating process in machine learning re-
search. The frequency of updating the prediction module is also a very important
research subject in Adaptive Business Intelligence. These frequencies can vary
from seconds (e. g., in currency trading systems), to hours (e. g., pollution control
system), to days (e. g., car distribution system), to weeks and months (e. g., fraud
detection systems). Different update frequencies require different techniques and
methodologies; thus, systems based on Adaptive Business Intelligence would
include the research results from control theory, statistics, operations research,
machine learning, and modern heuristic methods, to name a few. Recall also that
different prediction models (e. g., decision trees or neural networks) require differ-
ent methodologies for implementing adaptability.

We also expect that major advances will continue to be made in modern opti-
mization techniques. Some of these advances already include new techniques
based on the paradigm of adaptive memory and the concept of variable neighbor-
hoods. In the years to come, more and more research papers will be published on
constrained and multi-objective optimization problems, and on optimization prob-
lems set in dynamic environments. This is essential, as most (if not all) real-world
business problems are constrained, multi-objective, and set in a time-changing
environment.

242 13 Conclusions

Without any doubt, the next decade will bring many advances in Adaptive
Business Intelligence and its related disciplines. These advances will be reported
(in detail) in future proceedings of international conferences on Adaptive Business
Intelligence. And in the words of Sherlock Holmes:

“If you care to smoke a cigar in our rooms, Colonel, I shall be happy to give
you any other details which might interest you.”

We could not have said it better ourselves.

Index

A

ABI applications 215
car distribution 25, 191

dynamic market changes 33
inventory 33
price depreciation 33
transportation 31
vehicle identification number

(VIN) 27
volume effect 32

credit card fraud 232
emergency response services 228
investment strategies 224
manufacturing 221
marketing campaigns 215
pollution control 19

ABI system 45, 177
adaptability 5, 44, 187

module 38, 208
Adaptive Business Intelligence

(ABI) 4, 37, 238
agent-based modeling 163
ant system, ant colony optimization

(ACO) 158, 184
artificial neural network (ANN) 131

back-propagation learning 142,
143

connection weight 57, 134, 190
data representation 147
feed-forward 137
input dimensionality 147
layer 137
learning methods (supervised,

unsupervised) 142
node 134

threshold 138
recurrent 140

sigmoid squashing function 138
squashing function 134, 135, 136

B

back-propagation learning see
artificial neural network

Boolean logic 118
bootstrap technique 72, 73, 180
business intelligence 3

C

car distribution see ABI
applications

classification 49, 56, 67
co-evolution 169
connection weight see artificial

neural network
constraint, constraint handling 13,

78, 108, 195
hard 13, 14, 20, 78, 108, 198, 207
soft 14, 16, 20, 198, 221

credit card fraud see ABI
applications

crossover see evolutionary
algorithm

cross-validation 72

D

data 3
discretization 53
preparation 50, 51
reduction 53
time-dependent 54, 57

data mining 6, 25, 36, 38, 50, 55
database 25
data–information–knowledge 4

244 Index

decision table 56, 64
decision tree 56, 64
decisioning system 5
defuzzifier 119, 127
distance methods 56, 62
dynamic market changes see car

distribution

E

emergency response services see
ABI applications

error
false negative 70, 233
false positive 70, 233
least mean square (LMS) 142
measurement techniques 70
prediction 21, 41, 52, 58, 62, 68,

69, 124, 139, 142, 148
rate 71, 187

Euclidean distance 63
evaluation function 76
evolution strategy (ES) 102, 184
evolutionary algorithm (EA) 101

crossover 106
mutation 105
offspring 102
parent 102
population 102
tournament selection 105

evolutionary programming (EP)
102, 184

exponential smoothing 59, 74, 188,
209

F

false negative see error
false positive see error
forecasting model 59, 217
fuzzifier 119
fuzzy logic 117
fuzzy system 56, 119

crisp input and output numbers
119

degree of membership 121, 122
inference system 119, 123
membership function 119, 121

G

games 169
genetic algorithm (GA) 102, 184
genetic programming (GP) 56, 151
global optimum 76
graphical user interface (GUI) 194

H

hard constraint see constraint
hill climbing 83

iterated 84
stochastic 87

hybrid systems 177
for optimization 183
for prediction 178

I

inference system see fuzzy system
inventory see car distribution
investment strategies see ABI

applications

K

k nearest neighbor 62

L

layer see artificial neural network
learning methods see artificial

neural network
least mean square (LMS) error

see error
linear model 61
linear programming 19, 75
linear regression 27, 57, 65
linked-list representation 78
local optimization 77, 82
logic methods 64
lookup table 64

M

machine learning 68, 74, 241
Mamdani fuzzy system 119

 Index 245

manufacturing see ABI
applications

marketing campaigns see ABI
applications

membership function see fuzzy
system

memory vector see tabu search
modeling the problem 16
modern heuristics 56, 68, 75
Monte Carlo method, simulation

164
multi-objective problems 14
mutation see evolutionary

algorithm

N

neighbor, neighborhood 62, 76, 77,
80, 81, 83, 92

neural network
artificial (ANN) see artificial

neural network
biological 131, 132

neuron 131, 134
node see artificial neural network
nonlinearity 59, 61

O

objective 14, 75
offspring see evolutionary

algorithm
optimization 5, 18

classic 75
modern 75
module 38, 206

optimization technique, search
technique 76

optimum
(global, local) 82

outlier 49
overfitting 59

P

parent see evolutionary algorithm
pollution control see ABI

applications

population see evolutionary
algorithm

prediction 5, 41, 49, 177, 203
error 21, 41, 52, 58, 63, 69, 70,

128, 142, 145, 152
evaluation 51, 69
methods 27, 56
model 27, 51, 56, 69, 117, 131,

151
module 41, 204
problems 49
testing 72
training 72, 143
validation 72, 211

price depreciation see car
distribution

Q

quality measure score 12, 76
landscape 82, 185
valleys 82

R

reporting 202
representation of the solution 75,

78, 79, 80
rule base 123, 128
rule-based system 67

S

sampling 54
search space 11, 75, 76, 77
sigmoid function see artificial

neural network
simulated annealing 90

temperature 91, 93
Six Sigma 6
soft constraints see constraint
squashing function see artificial

neural network
swarm intelligence (SI) 158

T

tabu search 96
memory vector 97

246 Index

threshold
for constraints 113
in hill climbing 86
of a node see node
suspicion 235

time
dependency 54, 73
horizon 55, 99
series 49, 55

time-changing environment 12, 20,
37, 192

tournament selection see
evolutionary algorithm (EA)

transportation see car distribution
traveling salesman problem 10, 76

V

validation see prediction
variable

binary or Boolean 10, 51
nominal 51

non-numeric 57
numerical 51

vehicle identification number (VIN)
see car distribution

volume effect see car distribution
voting 178, 179

W

weight
connection see artificial neural

network
of a model 234, 237
of a rule 45, 224, 228, 236
of a variable 25, 64
of an objective 16, 114
of past cases 60, 181, 189, 209
penalty for constraints 14, 108,

109
prediction model 179
update 141, 143, 187

	cover-image-large
	front-matter
	front-matter_001
	fulltext_001
	fulltext_002
	fulltext_003
	fulltext_004
	front-matter_002
	fulltext_005
	fulltext_006
	fulltext_007
	fulltext_008
	fulltext_009
	front-matter_003
	fulltext_010
	fulltext_011
	fulltext_012
	fulltext_013
	back-matter

