

Workflow Management

Models, Methods, and Systems

Wil van der Aalst and Kees van Hee

The MIT Press Cambridge, Massachusetts London,
England

This translation © 2002 Massachusetts Institute of Technology

Originally published under the title Workflow Management:
Modellen, Metho-den en Systemen, 1997, by Academic Service.

All rights reserved. No part of this book may be reproduced in any
form by any electronic or mechanical means (including
photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

This book was set in Sabon on 3B2 by Asco Typesetters, Hong
Kong, and was printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Aalst, Wil van der.

Workflow management / Wil van der Aalst,
Kees van Hee. p. cm. — (Cooperative
information systems)

Includes bibliographical references and index.

ISBN 0-262-01189-1 (he. : alk. paper)

1. Management information systems. 2. Production
management.
3. Workflow. I. Hee, Kees Max van, 1946- II. Title.
III. Series.
T58.6.A17 2002
658.5'1—dc21 2001042602

Contents

Series Foreword vii
Acknowledgments xi
Introduction xiii

1 Organizing Workflows 1

2 Modeling Workflows 31

3 Management of Workflows 75

4 Analyzing Workflows 99

5 Functions and Architecture of Workflow Systems 145

6 Roadmap for Workflow System Development 211

7 Sagitta 2000 Case Study 243

Appendix A: Workflow Theory 267

Appendix B: Workflow Modeling Using UML 293

Solutions to Exercises 305

Glossary 345

Bibliography 359

Index 365

Series Foreword

The traditional view of information systems as tailor-made, cost-intensive
database applications is changing rapidly. The change is fueled partly by a
maturing software industry, which is making greater use of off-the-shelf
generic components and standard software solutions, and partly by the
onslaught of the information revolution. In turn, this change has resulted in a
new set of demands for information services that are homogeneous in their
presentation and interaction patterns, open in their software architecture,
and global in their scope. The demands have come mostly from application
domains such as e-commerce and banking, manufacturing (including the
software industry itself), training, education, and environmental management,
to mention just a few.

Future information systems will have to support smooth interaction with
a large variety of independent, multi-vendor data sources and legacy
applications running on heterogeneous platforms and distributed infor-
mation networks. Metadata will play a crucial role in describing the contents
of such data sources and in facilitating their integration.

As well, a greater variety of community-oriented interaction patterns will
have to be supported by next-generation information systems. Such
interactions may involve navigation, querying, and retrieval, and will have
to be combined with personalized notification, annotation, and profiling
mechanisms. Such interactions will also have to be intelligently interfaced
with application software, and will need to be dynamically integrated into
customized and highly connected cooperative environments. Morever the
massive investments in information resources, by governments and
businesses alike, call for specific measures that ensure security, privacy, and
accuracy of their contents.

viii Series Foreword

All these are challenges for the next generation of information systems.
We call such systems Cooperative Information Systems, and they are the
focus of this series.

In layman terms, cooperative information systems are servicing a di-
verse mix of demands characterized by content—community—commerce.
These demands are originating in current trends for off-the-shelf soft-
ware solutions such as enterprise resource planning and e-commerce
systems.

A major challenge in building cooperative information systems is to
develop technologies that permit continuous enhancement and evolution
of current massive investments in information resources and systems.
Such technologies must offer an appropriate infrastructure that supports
not only development, but also evolution of software.

Early research results on cooperative information systems are becom-
ing the core technology for community-oriented information portals or
gateways. An information gateway provides a "one-stop shopping" place
for a wide range of information resources and services, thereby creating a
loyal user community.

The research advances that will lead to cooperative information system
will not come from any single research area within the field of infor-
mation technology. Database and knowledge-based systems, distributed
systems, groupware, and graphical user interfaces have all matured as
technologies. While further enhancements for individual technologies are
desirable, the greatest leverage for technological advancement is expected
to come from their evolution into a seamless technology for building and
managing cooperative information systems.

The MIT Press Cooperative Information Systems series will cover this
area through textbooks and research editions intended for the researcher
and the professional who wishes to remain up-to-date on current devel-
opments and future trends.

The series will present three types of books:

• Textbooks or resource books intended for upper level undergraduate
or graduate level courses;
• Research monographs, which collect and summarize research results
and development experiences over a number of years; and
• Edited volumes, including collections of papers on a particular topic.

Series Foreword ix

Authors are invited to submit to the series editors book proposals
that include a table of contents and sample book chapters. All submis-
sions will be reviewed formally and authors will receive feedback on their
proposal.

John Mylopoulos jm@cs. tor
onto. edu Dept. of Computer
Science University of
Toronto Toronto, Ontario
Canada

Joachim W. Schmidt
j.iv.schmidt@tu-harburg.de
Software Systems Institute
Technische Universitat TUHH
Hamburg, Germany

Michael Papazoglou

M.P.Papazoglou@kub.nl

Tilburg University

INFOLAB

P.O. Box 90153

5000 LE Tilburg

The Netherlands

Acknowledgments

This book was prepared in close cooperation with the workflow
groups at Deloitte & Touche Bakkenist, the Faculty of Mathematics
and Computing Science, and the Faculty of Technology Management at
Eindhoven University of Technology. The authors would like to thank
all (former) members and students of these groups, in particular Twan
Hasten, Silvia de Cast, Ernst Kleiberg, Selma Limam, Michel van Osch,
Jaap Rigter, Eric Verbeek, Marc Voorhoeve, Laurens Vrijnsen, Gerd
Wagner, and Jaap van der Woude. We would also like to thank Michiel
Bos and Niels van Kiel for helping us preparing the English version of
our book and Monique Jansen for proofreading the final version.

Special thanks are also due to our co-authors, Andre Blommers and
Peter van der Toorn, each of whom contributed a chapter. Last but not
least, we would like to thank the Dutch Tax Authority for permission to
use the Sagitta 2000 project as a case study for this book.

December 2000
Wil van der Aalst
Kees van Hee

Introduction

This book is about the management of business processes. This is cer-
tainly not a new topic. Since the beginning of the Industrial Revolution, it
has been written about from every possible point of view—economic,
sociological, psychological, accountancy, mechanical engineering and
business administration. In this book, we examine the management of
business processes from the perspective of computing, or—to put it more
broadly—of information technology. The reason is that information
technology has made huge leaps forward in recent years, resulting in
the creation of completely new ways of organizing business processes.
The development of generic software packages for managing business
processes—so-called workflow management systems (WFMS)—is par-
ticularly important in this respect.

Until recently, the golden rule was: "First organize, then computerize."
This implied that processes were developed with the implicit assumption
that the business process would primarily be managed by people. Then
an organizational structure would be developed under which groups of
people, or departments, were allocated particular tasks. Only then did
people consider whether computers—or rather, information systems—
could partially support, or even take over, the work. This approach does
not sufficiently examine the opportunities offered by information sys-
tems. We have now reached a turning point: we first design business
processes in a more abstract way, without considering implementation,
and then we design the information systems and the organization hand in
hand. In fact, we decide whether each task in a process should be per-
formed by an information system or a person.

There are still some problems with this depiction. First, the notion that
we can organize business processes differently using information systems

xiv Introduction

is not new. People have long done this with business processes whose
primary task is the processing of information. During the 1970s, serious
efforts were made to completely computerize the management of business
processes using information systems. This proved impossible with the
technology then available. Even today, and for the foreseeable future,
there are and will remain many tasks in the business process which can
only be performed by people. In reaction to the reckless attempts of the
1970s, the role played by information technology has been somewhat
restricted.

Information systems are used to reduce people's workload, particularly
in offices. By analyzing thoroughly what people in offices do—by asking
why they do it—the following information processing functions have
been identified: text writing, drawing, calculating, filing, and communi-
cating information. These analyses have led to the development of the
following products: word processors, drawing systems, spreadsheet sys-
tems, database systems and electronic-mail systems. All these systems are
generic in nature: they are not limited to a specific business application—
as, say, accounting systems are—and so are widely used. Thanks to
widespread distribution, this software is of high quality and relatively
cheap. (In fact, accounting systems are widely usable, but not as exten-
sively as word processors.)

Partly because of this development, the impact made by information
technology has increased enormously, which in turn has led to many
more people studying the possibilities presented by it. And this has
resulted in the "BPR wave." BPR stands for business process redesign (or
business process re-engineering) and is a method, for improving the
effectiveness and efficiency of business processes. BPR is based upon the
notion that, if full use is made of information technology, business pro-
cesses could be entirely different than at present. It therefore is wise to
redesign the current processes completely, in the way described above.
How business processes are organized is thus no longer the sole prerog-
ative of the organizational or business expert: the information technolo-
gist now also has a major role to play. This is a good thing, because the
information technologist is a developer of processes par excellence. After
all, every algorithm defines a process. Until recently, however, the role of
the information technologist was limited to the processing of information

Introduction xv

in computer systems—whereas, in fact, the main task of many other
business processes is information processing.

In the past, it was the functional structure of an organization that
played the most important role in how it was organized. Now the busi-
ness processes are crucial. For this, a good frame of reference is required
so that processes can be defined and analyzed clearly. Definition is im-
portant when preparing a (re)design, and before deciding whether to
actually implement a new process it is very important to first establish
whether it will work properly. To do this, one must be able to analyze
the process defined. This can be done in a number of ways. For example,
formal methods can be used to identify processes' properties, or lack of
them. Another analysis method uses simulation techniques, sometimes
supported by computer animation. Supporting software tools are essen-
tial to this.

This book presents a reference framework for defining processes and
discusses analytical methods. In doing so, extensive use is made of Petri
nets, a formal concept that has been developing since the 1960s and that
made particularly significant leaps forward during the 1980s. Petri nets
are ideally suited for defining and analyzing complex processes. Another
useful property is that they make the definitions easy to understand for
non-experts. This eases communication between designers and users.
There also exist software tools which support the definition and analysis
of processes.

Once new business processes have been developed, they then have to
be implemented. The management and, in part, the execution of pro-
cesses are handled by people, with the help of information systems. As
already mentioned, during recent years a new class of generic software
has been evolving: workflow management systems. This software sup-
ports business processes by taking on their information logistics. In other
words, workflow management systems ensure that the right informa-
tion reaches the right person at the right time, or is submitted to the right
computer application at the right moment. A workflow management
system does not, therefore, actually perform any of the tasks in a process.
Herein lies both its strength—it is generic software and so can be used in
many situations—and its weakness: usually actual application software
is also needed.

xvi Introduction

The term "workflow" is used here as a synonym for "business pro-
cess." We shall, as far as possible, use the terminology developed by the
WorkFlow Management Coalition (WFMC). This is an organization
dedicated to developing standard terminology and standard interfaces
for workflow management systems components.

This book begins by describing the organization of workflows. This is
important in order to be able to understand the role which workflow
management systems can play and how they should be applied. The
terms that are required in order to be able to deal with processes are
introduced in an informal way, thus providing a basis for the rest of the
book. Then there follows a chapter about modeling workflows. This in-
cludes a simple introduction to Petri-net theory. The next chapter covers
the management of resources that contribute to business processes. These
resources may be people, but can also be machines or computer systems.
Techniques for analyzing processes are also considered. Then workflow
management systems are introduced, with both their functions and
architecture being covered. Then there follows a methodology for devel-
oping workflow applications. The final chapter is devoted to a case study
of an actual application.

As an appendix, we have included an alphabetical glossary containing
all the relevant terms used with their synonyms and short definitions. The
first time that an important term is used, it is printed in italics.

This book is intended for students in information technology, indus-
trial engineers, and for those who are professionally involved in imple-
menting BPR using WFMS.

1 _______

Organizing Workflows

1.1 Ontology for Workflow Management

The objective of this chapter is to develop a reference framework. This
framework has three functions in this book. First, it is used to define
the business-management context within which workflow management
systems operate. Second, it is used to model and analyze processes. And
third, it is used to describe the functionality and architecture of workflow
management systems. A reference framework is a system of straight-
forwardly defined terms that describe a particular field of knowledge. It
is also known as an ontology.

The ontology in which we are interested is that of processes. The terms
used are generic in nature and can be applied in virtually all working
situations. In practice, however, many have various synonyms which are
widely used; for the sake of clarity, we will try to use a single "preferred
term" as often as possible. This will be in line with the terminology used
by the Workflow Management Coalition. In this chapter, we first discuss
the role of work in society. Then we examine processes, followed by the
distribution of work. The relationship between the principal and the
contractor plays an important role in this. Specifically in electronic busi-
ness these relationships are extremely important. We then study organi-
zational structures and the management of processes. Finally, we look at
the role played by (computerized) information systems in the establish-
ment and management of business processes.

1.2 Work

People work to live—even though some become so involved that they
give the impression of living for their work. In fact, we work because we

2 Chapter 1

need products to maintain our lives (for example: food, clothing, a home,
a means of transport, not to mention entertainment). We do not produce
all the things that we need ourselves, because that is inefficient. It actually
would be impossible to manufacture all the products that we use during
our lives in a modern society, ourselves. We would have to learn so many
different and complex skills that they alone would take up our entire
lives. We would need many lifetimes just to make the tools needed to
produce the necessities of life. This is why we are instead organized into
specialized "business units," in which people produce a limited range of
products in a highly efficient way, with the help of machines. These
products are supplied to other people through a market mechanism and a
distribution structure in exchange for money, which enables the pro-
ducers to buy those products that they do not make themselves. With
production distributed in such a way, there is also created work that
would not exist if everybody was entirely self-sufficient in producing
all the products they need. For example, managing money—what the
banks do—and preparing advertising materials would not be necessary.

There have thus developed all kinds of services and products that do
not make a direct contribution to keeping us alive, but are necessary to
keep the organization operating. Despite this "burden," we are able to
produce so efficiently that we have a large amount of free time—thus
further stimulating the demand for entertainment. The leisure industry
therefore is also a flourishing one.

Modern society has become so complex that nobody can entirely sur-
vey it any longer, and many people do not know what role their work
plays in the overall scheme of things. This "alienation" is a major social
problem that falls outside the scope of this book. But even within large
companies there exists a high degree of work specialization, which results
in the "big picture" being lost and employees not always realizing why
they have to do the things they are told to do. Such alienation from work
has a negative effect upon productivity. This is why many companies are
organizing their work in such a way that their employees clearly under-
stand that they are working for a particular customer. Among the
objectives of such customer-oriented work is an increase in employees'
motivation, and hence their productivity. The fact that we have moved
from living in a supply-driven economy, in which the means of produc-

Organizing Workflows

Figure 1.1

Organizational paradigm shift

tion were scarce, to a demand-driven one in which it is the customers
who are scarce, has only served to reinforce this tendency. This shift of
focus from the means of production to the customer is also known as
"organizational paradigm shift" (see figure 1.1).

In order to make work "controllable" and to encourage communica-
tion between employees, workflow management systems have evolved.
These are a new class of information system. They make it possible to
build, in a straightforward way, a "bridge" between people's work and
computer applications.

1.3 Business Processes

There are many different types of work, such as baking bread, making a
bed, designing a house or collecting survey results to compile a statistic.
In all of these examples, we can see the one tangible "thing" that is pro-
duced or modified: the bread, the bed, the house, or the statistic. In this
book, we shall call such a "thing" a case. Other terms used are work,
job, product, service, or item. A case does not need be a specific object; it
can also be more abstract—like, say, a lawsuit or an insurance claim. A
building project or the assembly of a car in a factory are also examples of
cases.

Working on a case is discrete in nature. That is, every case has a be-
ginning and an end, and each can be distinguished from every other case.

Capacity
utilization

Customer
care

4 Chapter 1

Each case involves a process being performed. A process consists of a
number of tasks that need to be carried out and a set of conditions that
determine the order of the tasks. A process can also be called a proce-
dure. A task is a logical unit of work that is carried out as a single whole
by one resource. A resource is the generic name for a person, machine or
group of persons or machines that can perform specific tasks. This does
not always mean to say that the resource necessarily carries out the task
independently, but that it is responsible for it. We will examine this sub-
ject more closely in the next section.

As an example of a process, we shall examine how a (fictional) insur-
ance company deals with a claim. We can identify the following tasks:

1. recording the receipt of the claim;
2. establishing the type of claim (for example, fire, motor vehicle, travel,
professional);
3. checking the client's policy, to confirm that it does in principle cover
what has been claimed for;
4. checking the premium, to confirm that payments are up to date;
5. rejection, if task 3 or 4 has a negative result;
6. producing a rejection letter,
7. estimating the amount to be paid, based upon the claim details;
8. appointment of an assessor to research the circumstances of the dam
age and to establish its value;
9. consideration of emergency measures to limit further damage or re
lieve distress;

10. provision of emergency measures if approved as part of task 8;
11. establishment or revision of amount to be paid and offer to client;
12. recording of client's reaction: acceptance or objection;
13. assessment of objection and decision to revise (task 11) or to take
legal proceedings (task 14);
14. legal proceedings-,
15. payment of claim; and
16. closure of claim: filing.

Here we can see sixteen tasks that do not necessarily need to be per-
formed in the order shown. Two or more tasks that must be performed
in a strict order are called a sequence. For some cases, certain tasks do
not need to be carried out. One example is the appointment of an expert,
if the claim report is clear and the amount of the claim is below a par-

Organizing Workflows 5

ticular value, the involvement of an expert is not necessary. Other tasks
that do not always need to be performed are taking emergency measures,
assessing an objection, or taking legal proceedings. Sometimes, therefore, a
choice between two or more tasks can be made. This we call a selection.

There are also tasks that can be performed in parallel, for exam-
ple checking the policy and checking the premiums. These tasks must
both be completed before the "rejection" task can begin. This is called
synchronization.

This example of a process also includes iteration, or repetition—
namely, the repeated assessment of an objection or the revision of the
amount to be paid. In theory, this could go on forever. Figure 1.2 shows
the order of the tasks as a process diagram: an arrow from task A to task
B means that A must be done before B. We can also see that the diagram
contains more information than the list of tasks. For example, it shows
that a claim can only be closed once any emergency measures required
have been taken. Each task is indicated by a rectangle. If a task has more
than one successor task—that is, if it has more than one arrow leading
from it—then precisely one of these subsequent tasks must be chosen
during the task in question. If a task has more than one predecessor—
more than one arrow leading to it—then all of these must be completed
before that task can begin (synchronization). The circles indicate where
particular workflows meet or split. The gray circles have several precur-
sor tasks and only one subsequent task. They indicate that only one of
the preceding tasks needs to be performed in order to continue. The
black circles have one predecessor and several subsequent tasks. They
show that all the subsequent tasks must be performed. (The circles can be
regarded as "dummy" tasks.) Chapter 2 introduces a process notation
which makes it easier to express such properties.

To summarize, we can identify four different basic mechanisms in
process structures: sequence, selection, parallelization, and iteration. All
are very commonplace in practice, and in principle all processes can
be modeled using these four constructions. We shall consider them in
greater detail in chapter 2.

Some tasks can be performed by a computer without human interfer-
ence. Other tasks require human intelligence: a judgment or a decision.
For instance, a bank employee decides if a client's loan request will be
granted or not. Human workers need knowledge to execute tasks. This

6 Chapter 1

Figure 1.2

Insurance claim process

Organizing Workflows 7

knowledge is stored in their minds by experience, the so-called tacit
knowledge. Other forms of knowledge can be obtained by learning and
information retrieval, the so-called explicit knowledge. Knowledge man-
agement is concerned with the acquisition, enrichment, and distribution
of knowledge so that the right knowledge is at the right time with the
person who has to fulfill a task.

A task can also be defined as a process that cannot be subdivided any
further: an atomic process. There is a subjective element in this—what
one person regards as a single task may be a nonatomic one to another.
For an insurance company, for example, the compilation of an assessor's
report of damage to a car is a single task, whereas for the expert himself
it is a process comprising various tasks, such as checking the chassis, en-
gine, and bodywork. A task is therefore an atomic process for the person
defining or ordering it, but for the person carrying it out it is often a
nonatomic one.

A single process is carried out on each case. We call the performance of
a task by a resource an activity. Various cases may have the same pro-
cess, but each case may follow a different route through that process. In
the insurance company, for example, one claim may involve an objection
and another not. The route taken depends upon the specific character-
istics of the case—the case attributes. The number of processes in a
company is (generally) finite and far smaller than the number of cases to
be handled. As a result, a company can develop a routine for performing
processes and thus operate efficiently.

This is clearly seen in the clothing industry: it is much faster to make
one hundred skirts with the same pattern than one hundred skirts using
different patterns. Off-the-rack is cheaper than made-to-measure. What's
more, producing one thousand skirts of the same pattern is less expensive
than ten times making one hundred in that pattern. This is called the
economy of scale: the costs per case fall as the number of cases increases.
Companies therefore endeavor to keep the number of processes small
and to make the number of cases that each can perform as high as pos-
sible—at least, as long as they can earn something from each case. Profit,
after all, is the ultimate objective.

An insurance company wants to keep the number of claims as low
as possible—but this is generally a factor that it cannot control. It will
also try to keep the number of processes low. There is, however, a catch:

Figure 1.3

Combination of two processes into one

the processes must not become too complicated. It is better to have a few
more, but simpler, processes than a few which are overly complex. Re-
member that, in theory, it is possible to combine two or more processes
into one, as shown in figure 1.3. Processes A and B are joined to form a
single process, C.

Here one additional task has been added: deciding what type of case
we are dealing with and so choosing which of the processes to follow.
This is therefore a false economy. In order to reach an efficient process
structure, calculations need to be made which cannot generally be per-
formed without the aid of computer simulations.

The situation that we have just described is the most common: a small
number of processes with a lot of cases. There are, however, exceptions
to this rule. A tailor, for example, produces every suit made-to-measure;
one could therefore say that he must design and start up a new process
for each case. This also applies to an architect who has to design every
new house or office block from scratch. But we can also view this in a
different way: both the tailor and the architect will certainly use a stan-
dard approach, and thus a process which they always follow. The tailor
will start by taking the customer's measurements, then show him a
number of patterns and try to establish with him which best matches his
wishes, and then make changes to the pattern. Then the fabric is chosen
and the tailor starts drawing the pattern. There are also many other tasks

8 Chapter 1

Organizing Workflows 9

that can be identified as a part of each case. The same applies to the ar-
chitect. What we can see here is that there is indeed a process, but the
tasks performed are highly dependent upon the case. This is, therefore, a
yardstick for the complexity of a process: the degree to which the tasks
depend on the cases.

Although we shall deal primarily with situations in which many cases
pertain to a single process, there are many situations in which a new
process needs to be designed for each case. We call these "one of a kind"
processes. In these, the first stage in tackling the case is the design of its
specific process. Even here, there are frequently standard tasks from which
the process is compiled. In such cases, we say that every case has its own
project. The words "project" and "process" are here synonymous.

We have already seen that the work carried out on cases is of a discrete
nature: each has a single beginning and a single end. However, there
is also work of a continuous nature which does not clearly belong to
a single case. Take, for example, a doorman whose work consists of
assisting people to enter a building, or a policeman who has to guarantee
security in a district by patrolling it. In both examples a case can still—
with a little goodwill—be defined by identifying periods and regarding
door keeping or patrolling for a particular period as one case. The em-
ployee thus automatically receives a continual sequence of cases, one for
each period. Another way of regarding work of a continuous nature in
case terms is to regard the work as a whole as one case comprising a
continual repetition of tasks. In this book, we concentrate upon discrete
work—but in doing so we do not exclude continuous work. It can serve
as an extreme example with which the principles presented in the book
can be put to the test.

To conclude this section, we shall subdivide processes into three cate-
gories: primary, secondary, and tertiary:

• Primary processes are those that produce the company's products or
services. They therefore are known also as production processes. They
deal with cases for the customer. As a rule, they are the processes that
generate income for the company, and are clearly customer-oriented.
Sometimes the customer is not yet known, as when firms produce to
stock. Examples of primary processes are the purchase of raw materials
and components, the sale of products and services, design and engineer-
ing, and production and distribution.

Figure 1.4

Links between the three types of processes

• Secondary processes are those that support the primary ones. They
therefore are also known as support processes. One important group
of secondary processes concentrates upon maintaining the means of
production: the purchase and maintenance of machinery, vehicles, and
premises. A comparable group of processes is that involving personnel
management: recruitment and selection, training, work appraisal, pay
rolls, and dismissal. Financial administration is also a secondary process,
as is marketing.
• Tertiary processes are the managerial processes that direct and coordi
nate the primary and secondary processes. During these, the objectives
and preconditions within which the managers of the other processes must
operate are formulated, and the resources required to carry out the other
processes are allocated. The managerial processes also encompass the
maintenance of contacts with financiers and other stakeholders.

Figure 1.4 shows the relationships between the three types of processes.

The managerial processes have objectives and capital as their input,
and must deliver performance—often in the form of profit. Support
processes receive, from the managerial processes, the means to buy in
resources, and they dispose of resources which are no longer functioning.
The resources managed by the secondary processes are placed at the dis-
posal of the primary processes, which return them after use. As input, the
primary processes receive orders on the one hand and raw materials and
components on the other. As output, they deliver products and services.
They receive assignments and purchasing budgets from the managerial
processes. Support and primary processes report back to the managerial
processes and submit their income.

The secondary and tertiary processes are often continuous in nature,
although they may contain discrete subprocesses, whereas the primary
processes are usually case driven and thus have a discrete character.

10 Chapter 1

Organizing Workflows 11

1.4 Allocating and Accepting Work

Animals and machines work on orders, or assignments, given by people.
But most people's work is also assigned or outsourced to them by other
people: their principals. Exceptions are artists, scientists, and politicians,
who can—to some extent—decide for themselves what work they are
going to do.

There are two forms of principals: the boss and the customer. Ulti-
mately, assignments ordered by bosses are directly or indirectly related to
work for customers. The relationship is "direct" if the work carried out
results in a product or service for a customer, which may be unknown.
This mainly applies to the primary processes. The relationship is "indi-
rect" if the work involves maintaining or improving the production pro-
cess: the secondary and tertiary processes.

In most organizations there exists a hierarchy under which assign-
ments that people receive can (in part) be passed on to people further
down the hierarchy. A person who is assigned a task is a contractor, also
known as a resource. We mainly use the latter term because assignments
can be carried out by machines—in particular, computer
applications— as well as by people. Thus far we have discussed
principals and contractors as if they are individual people, but they can in
fact also be company departments or separate firms. We will therefore
use the term actor to describe principals and contractors in general. An
actor may play both roles—as a principal and a subcontractor (or
resource)—at the same time.

A contractor does not necessarily carry out the work itself, but may
redirect or subcontract it to third parties. But the contractor always
directs the work which it accepts.

In larger organizations, employees carrying out an assignment often do
not know for which customer the task is being performed. This is par-
ticularly the case when products are being produced to stock, because
during production the identity of the customer is still unknown. (And
sometimes there is eventually no customer at all for the product.)

As indicated before, a principal is either a customer or a boss. There is
also a wide variety among customers. For the Prison Service, criminals
(prisoners) are its customers; the Inland Revenue's customers are the
taxpayers, a hospital's customers are its patients. The role of a customer
is dependent upon the situation: the baker is the gardener's customer

12 Chapter 1

when the gardener looks after the baker's garden, but the gardener is the
baker's customer when he buys bread.

In large organizations, there is a marked tendency to accentuate the
role of the customer more clearly. The principle that "the customer is
always right" is winning ground over "working for the boss." Customer
awareness ensures that people are more conscious of who they are work-
ing for, which leads to a more careful approach to their work: after
all, if they deliver poor quality work, they will be unsure whether the
customer will order more. (For a prison "customer," this principle works
the other way around.)

For all work a principal and a contractor exist who have a—some-
times unwritten—contract with one another about the case to be per-
formed, the deadline for its completion, and the price to be paid. If the
contractor is a separate company, then a communications process will be
created between principal and contractor before the contract is entered
into, and communications between the two actors may continue to be
necessary during the performance of the task. When the relationship be-
tween the contractor and the principal is formalized, a communications
protocol can be observed. This can be very complex. Figure 1.5 shows an
example of a communications protocol.

Figure 1.5

Communications protocol

Organizing Workflows 13

In this example, we can see the successive steps in the relationship. The
principal first provides a specification of the work to be carried out. Then
the contractor produces a plan for performing the work and fixes a price.
This is the "quote" that it submits to the principal. The latter studies the
quote and orders the work in accordance with it. In practice, there can be
a lot of discussion between the parties in the meantime, with the principal
making supplementary demands—about the price, for example—and
the contractor explaining how it intends to carry out the work. In
many cases, the moment when the order is confirmed is not the same as
when it actually begins. If the work forms part of a larger project that the
principal is directing, then the work can only begin once other elements in
the project have been completed; the principal thus determines at what
point the work can start. The number of steps in a communications
protocol between a principal and a contractor therefore can vary from
case to case according to the specific characteristics and handling of each,
and so does not need to be fixed in advance.

An actor responsible for a process may assign or outsource a task as a
whole to a contractor or he may decompose it into a process, that is, a
network of tasks, each of which he assigns to a contractor. At their turn
these contractors may repeat this decomposition process. This decompo-
sition leads to a contract tree. Execution of a task for a particular case
requires the enactment of a communications protocol between principals
and contractors. Instead of decomposing a task into a process and out-
sourcing the subtasks of this process for all cases that pass the task, it is
also possible to do this for each case in a different way. Then the execu-
tion of a task for a particular case starts with a "design phase," in which
the network of tasks is created and in which the (subcontractors are
selected. Figure 1.6 shows an example of this. In this example, the task is
the transportation of a cargo from point A to point K. The principal P
subdivides this work into two tasks: transportation from point A to point
D, and transportation from point D to point K. Each of these tasks is
subcontracted to a different contractor, that is, contractors Q and R.
Each of the tasks is then subdivided again by these two: by principal/
contractor Q into transportation from A to C and then C to D, and
by principal/contractor R from D to J and then from J to K. This is
illustrated in figure 1.6. Note that both Q and R act as principal and
contractor.

Figure 1.6

Contract tree

This tree contains "nodes", which are shown in the example as rec-
tangles. "Branches" link two "nodes." The "nodes" show those actors
who are responsible for a part of the work. In this example, the actors
are identified by the tasks that they must perform. The "root" of the tree
(which we actually show at the top of the diagram) receives the assign-
ments directly from the principal. The "leaves" of the tree (that is, the
lowest of the "nodes") are the actors who actually carry out the tasks.
The other actors are both principals and contractors. An actor X is a
subcontractor of another actor Y if there is an arc from Y to X. An actor
is a principal if there is an arc leading from this actor to another actor.
Consider for example figure 1.6. Actor Q is a subcontractor of P and
a principal of S and T. Such decomposition and outsourcing processes
occur frequently inside organizations but also between different orga-
nizations. In electronic business we try to automate/computerize these
processes as much as possible. If we want to support business processes
by information systems, we need very detailed and precise descriptions of
these business processes. If we want to couple business processes of dif-
ferent organizations in an automatic/computerized way, this becomes
even more important.

1.5 Organizational Structures

A great deal of literature has been published about organizational struc-
tures, and any attempt to summarize it in a few paragraphs is doomed to
fail. Therefore we shall not try to do so. We shall, however, discuss those

14 Chapter 1

Organizing Workflows 15

properties of the three most important forms of organizational structure
that are relevant to workflow organization.

An organizational structure establishes how the work carried out by
the organization in question is divided up amongst its staff. In most cases
this does not mean the people themselves, but rather the roles or func-
tions that they fulfill. A single person can fulfill several roles during her
or his lifetime. Somebody can, for example, begin as an administrative
assistant and end up as head of accounts. People may also fulfill different
roles in time. It may be that the same person is both a driver and a mes-
senger, delivering messages when there is nobody to be driven. One im-
portant aspect of an organizational structure is the division of authorities
and responsibilities. If an executive has specific responsibilities, then he
also has to have particular authorities. These often involve the authority
to assign work to other members of staff—in other words, to outsource
work to others. Conversely, an executive is responsible for ensuring that
the work assigned to him by authorized colleagues actually is carried out.

The three most important forms of organizational structure—or
rather, coordination mechanisms—are:

1. the hierarchical organization;
2. the matrix organization; and
3. the network organization.

i

The hierarchical organization is the best known of these, and is charac-
terized by a "tree" structure. Such a structure is called an organizational
chart. We already have encountered tree structures in the previous sec-
tion in the form of contract trees. In an organizational chart, each node
which is not a "leaf" indicates an individual role or function. The
"leaves" of the tree usually represent groups of staff or departments. The
"branches" show authority relationships: the person at the start (top) of
the branch is authorized to order work from the person or department at
the end (bottom) of it.

There is also another definition of the organizational chart that closely
resembles ours but is, in fact, different. Under this definition, each "leaf"
shows a person and each node at a higher level represents a department.
The "root" node indicates the entire company, and every other node a
part of that above it. The people indicated in each leaf thus belong to the
department shown in the node immediately above them. Whereas the

Figure 1.7

Organizational chart

first definition shows the person who is responsible for all the people
below him in the tree for whom he represents the root, the second
regards each of these collections of staff as one department. The similar-
ity between organizational charts and contract trees is that both express
principal-contractor relationships as "branches." The difference is that in
an organizational chart this relationship is not linked to any specific
case, whereas this relationship is very relevant for a transaction tree. In
a strictly hierarchical organization, communication between two nodes
always passes through their closest common predecessor. Figure 1.7
shows an example of an organizational chart.

In this example, formal communication between the sales force and
the stores department must go through the head of sales, the managing
director and the head of production. The "management" or "board" is
often at the "root" of an organizational chart. Its "leaves" are the com-
pany's departments. One typical example of a hierarchical organization
is the army. In practice, there exists a lot of informal communication
between the various individual members of staff and departments, al-
lowing communication to be quicker than if it were to follow hierarchical
lines. Purely hierarchical organizations are virtually extinct now, since
this structure is too inflexible. In many firms it is too unwieldy to allow
the delegation of work only through fixed, hierarchical channels.

In designing a hierarchical organization, we are free to choose what
departments are created and what management layers exist above them.
In allocating staff into departments, we can select from three principles:

• The capacity group. Put people with the same skills together in the
same department. In principle, such people are interchangeable. The task

16 Chapter 1

Organizing Workflows 17

of the head of department is to keep its members "up-to-date"—through
training, for example—and to do his best to "sell" them to other business
units for whom they perform their work. Typical examples are typing
pools and pools of maintenance engineers.

• The functional department. This performs an interdependent group of
tasks, each often requiring the same skills. Responsibility for the work of
the department rests with its head. Typical examples are departments like
accounting, marketing, and maintenance.
• Process or production departments. In this case, the department is re
sponsible for a complete business process or for the manufacturing of a
product.

The first or second type of organization is often chosen for the secondary
processes. In the primary ones, the third form begins to gain importance.
Superseding the departments are the hierarchical management layers. In
choosing these, the following question plays an important role: is the
amount of coordination required between the departments large or
small? There should be as few layers as possible between departments
which need to coordinate to a great extent, so they should preferably
have a single manager.

A manager has a maximum span of control. In other words, he cannot
direct an unlimited number of subordinates. How large a particular
manager's span of control is depends to a great extent upon the nature of
the work and her own experience.

This is how the matrix organization came about. This form of organi-
zation is structured in accordance with two dimensions: the functional
and the hierarchical. The hierarchical part is the same as described above
and is usually based upon functional or capacity groups: people with the
same skills belong to the same group. The functional part is based upon
the tasks which have to be performed. (The terminology can be rather
confusing.) Each person thus has a hierarchical boss—the head of the
department to which he belongs—and a functional boss, who is re-
sponsible for the task to be carried out. The tasks—which in the context
of matrix organizations are usually called "projects"—are unique; in
other words, no fixed structure can be created based upon the tasks, so
the hierarchical (fixed) structure is based upon the skills of the people
concerned. The functional bosses are known as "project leaders."

Matrix organizations are found mostly in companies that operate on
a project basis, such as building contractors, installation firms, and soft-

18 Chapter 1

 Project-1 Project-2 Project-3

Supervisors Louise Anita John

Carpenters Pete Karl Geraldine

Masons Henry Tom Jerry

Painters Bert Simone Simone

Plasterers Charles Peter Paul

Figure 1.8

Staff allocation in a matrix organization

ware houses: in other words, in businesses that do not carry out serial
production but rather unique projects. The functional structure thus is
constantly subject to change. It is quite possible that person A is for a
while the leader of a project in which person B participates, and then
a little later B becomes the leader of a project involving A. Figure 1.8
shows an example of staff allocation in a matrix organization. The col-
umns show the functional allocation and the rows the hierarchical.

We can see how one person can take part in more than one project.
Naturally, one person may be involved only in one project at a time, but
it is equally possible for someone to work alternately on several proj-
ects during the same period. Often several people within one depart-
ment work on the same project. In the matrix, this would mean more
than one person being included in the same cell. For the sake of simplic-
ity, this is not shown in figure 1.8. A form of organization which strongly
resembles the matrix type occurs when processes are managed by a pro-
cess manager and cases by a case manager. The former is responsible for
the quality and efficiency of "her" process, whereas the latter ensures the
rapid and correct completion of "her" cases. This can lead to a conflict of
interests.

The last form of organization which we can identify is the net-
work organization. In this, autonomous actors collaborate to supply
products or services. To the customer, though, they appear to be one
organization—which is why the network organization is sometimes
called a virtual organization. The actors perform as principals and con-
tractors. The autonomy means that there exists no formal perma-
nent (employment) relationship, which means that an actor can choose
whether or not she wishes to carry out a particular task. The actors
required to perform each task therefore must be recruited individually on

Organizing Workflows 19

each occasion. This may be done through a protocol and a contract tree,
as discussed in the previous section. This can be a time-consuming busi-
ness, so "framework" contracts are often drawn up for regular assign-
ments. Such a contract determines that a party is available upon request
to perform a particular type of work. Just as in a matrix organization,
party A can be party B's principal for one type of work but its subcon-
tractor for another.

More and more network organizations are being created. There are
two main reasons for this. First, firms are trying to keep their perma-
nent workforce as small as possible instead making more extensive use of
temporary staff and subcontractors. This, together with the fact that
many people are now working part time, is known as the flexibilization
of labor. In this way firms can control their fixed costs. The use of co-
makers and outsourcers, which are examples of contractors, is very
common in the building and motor industries. The second reason is that
specialist companies, each with only a limited product range, can sup-
ply together an entire product. Examples are found in the construction
industry—in which a range of actors join forces to build a bridge—and
amongst consultancy firms, which package their individual knowledge to
offer an integrated product incorporating, say, financial, legal, fiscal, and
IT advice. A network organization is, to a certain degree, comparable
with a matrix organization. After all, the resources for each project are
assembled individually. The difference, however, is that in this case those
resources do not have the same employer.

1.6 Managing Processes

One established way of studying the management of processes is to dis-
tinguish between a management system and a managed system. The
word "system" here means all those people, machines, and computerized
information systems that carry out particular processes. A managed sys-
tem can even be further subdivided into a lower-level management sys-
tem and a managed system (see figure 1.9). The managed system at the
lowest level of this subdivision is an enactment system. At the highest
level, a system is always part of a managed system. A management sys-
tem can manage several systems, and in doing so, it ensures the ability of

Figure 1.9

Recursive management paradigm: The whole entity is a managed system

the managed systems to communicate with one another and with the
outside world—that is, the managed system at a higher level.

Between the management system and the managed system there oc-
curs an exchange of information. This enables the management system
to communicate objectives, preconditions, and decisions to the man-
aged system, and the managed system—conversely—reports back to
the management system. Based upon these reports, the management
system may revise the objectives, preconditions, and decisions. This
so-called planning and control cycle can be identified in every
organization.

Process management has long been divided into four levels. The dis-
tinction between these is based upon the frequency and scope of the
decisions to be made. By scope, we mean two things: the period of time
over which the decision has an influence, and its (potential) financial
impact. The four levels are as follows (see figure 1.10):

1. Real-time management. Decisions can be made very
frequently(intervals range from microseconds to hours). The period of
time during which the decision has an effect is very short, and the
financial consequences of a wrong decision are small.
2. Operational management. Decisions are made very regularly (from
hours to days) and their scope is limited. In other words, the influence of
the decision is no longer noticeable after a short period.
3. Tactical management. Decisions are made periodically (from days to
months), and their scope is limited.
4. Strategic management. Decisions are made only once, or no more
than every couple of years, and their scope is wide. The influence of a
strategic decision can remain noticeable for many years.

20 Chapter 1

Management
level

Time horizon Financial impact Type of decisions Supporting
methods

Real-time Seconds-hours Low Equipment control Control theory

Operational Hours-days Limited Resource
assignment

Combinatorial
optimization (e.g.,
scheduling)

Tactical Days-months High Resource capacity
planning and
budgeting

Stochastic models
(e.g., queueing
models)

Strategic Months-years Very high Process design and
resource types

Financial models,
multi-criteria
analysis

Figure 1.10

Four levels of process management

22 Chapter 1

Another distinction between these levels of management is the types of
decisions which are made. Real-time and operational management in-
volve only dynamic aspects, not the structure of the business processes.
Real-time management involves the control of machines and vehicles.
Operational management mostly concerns the allocation of resources to
cases and the routing of those cases. Typical examples of operational
management are production scheduling and the routing of trains.

Tactical management concerns: capacity planning and budgeting for
operational management. Capacity planning involves determining the
quantities of resources required per type of case. This means not only
human resources, but also the machines and raw materials used in per-
forming the case. Stocks management is a typical example, involving not
only the management of the raw-materials stocks themselves but also
that of reserve resources. Budgeting concerns the allocation of financial
means and the formulation of targets in financial terms.

Strategic management is concerned with the structural aspects of pro-
cesses and types of resources. One strategic question is whether the
company should carry out a particular process itself, or source it out.
Another question is how the processes should be structured and what
procedures should be followed.

Each management level, except for real-time management, also has the
task to take care of exceptions to rules that are made for the lower levels.
Tactical management may be involved if the resource allocation at the
operational level does not succeed.

Decision making is an important feature of (process) management. The
discipline of operations research (OR) searches for the best possible solu-
tions to decision problems using mathematical techniques. Artificial in-
telligence (AI) tries to develop computer systems that can imitate human
techniques for solving decision problems (heuristics). Organizational so-
ciology tackles such things as methods by which people can cooperate to
find a solution. Here, we shall confine ourselves to summarizing the four
phases that are always passed through when solving decision problems:

1. Definition involves establishing exactly what the problem is and, in
particular, within what scope a solution to it must be found. Drawing up
optimization criteria often forms part of this phase.
2. Creation involves formulating one or more solutions that fall within
the scope defined or satisfy an optimization criterion.

Organizing Workflows 23

3. Evaluation involves assessing different solutions, for instance
by multi-criteria analysis.
4. Selection involves selecting one solution that works in order to im-
plement it.
In principle, computer support is available for all these tasks, particularly
the second and third. This is sometimes possible using a simple spread-
sheet but usually requires mathematical techniques or simulation models.

1.7 Information Systems for Business Processes

The organization of work, both within and between companies, is be-
coming more and more complicated. This is why (computerized) infor-
mation systems have been developed that support the management of
processes and their coordination. We shall first offer a method of classi-
fying information systems. Then we shall outline how they have been
developed in the past and how they will probably be developed in the
near future.

Information systems can be categorized in many ways. The one we
have chosen to use here is based upon the role played by the system in
the processes. The list below is in ascending order of functionality:
the first type of system listed contains very little knowledge of the pro-
cesses and should only be used to support the people who actually do the
work, whereas the final one can manage processes without any human
intervention:

• Office information systems. These systems assist the staff responsible
for carrying out and managing processes with basic information
processing: writing, drawing, calculating, filing, and communication.
They
include word processors, drawing packages, spreadsheets, simple data
base management systems, and electronic mail. These systems do not
themselves contain any knowledge of the processes. Although the infor-
mation that they process may contain business knowledge, they them
selves cannot do anything with this.
• Transaction-processing systems. These systems, also called registra-
tional systems, register and communicate the relevant aspects of changes
in the circumstances of a process and record these changes. Transaction-
processing systems that specialize in communication between different
organizations are called interorganizational information systems. These
often use electronic data interchange (EDI) using standards for data ex-

24 Chapter 1

change like XML. The heart of such a system generally is a database
management system, but today a workflow management system also
becomes an essential component. The latter type of system does have
some knowledge of the processes, as proven—for example—by the fact
that it can independently interpret incoming transactions and thus deter-
mine where and how the input data should be stored.

• Knowledge-management systems. These systems take care of acquisi-
tion and distribution of knowledge to be used by knowledge workers,
either case workers or managers. The knowledge they handle is explicit
knowledge that can be represented in digital form. One of the simplest
forms of a knowledge-management system is a search engine coupled to
a document-management system. With such a system, a knowledge
worker is able to find relevant text fragments produced by himself or
others by means of keywords or free-text search. A more advanced
facility is a case-based reasoning system that searches through a database
of best-practice cases and finds cases with a high level of similarity to the
actual case. The solution presented by the cases found might be applica-
ble for the actual case as well. Managers are interested mostly in
aggregated data about the processing of cases or about the cases
themselves.
Here we often use data warehouses that are connected to tools for sta-
tistical analysis. A data warehouse is a database that stores aggregated
data in multidimensional cells, for instance the number of customers that
bought a typical kind of product in a specific time period and a geo
graphical region.
• Decision-support systems. These compute decisions through interac-
tion with people. There are two types of decision-support systems. The
first type is based upon mathematical models. Examples include budget-
ing and investment systems and production-planning systems. The sec-
ond type is based upon logical reasoning systems. They are also known
as expert systems. One example is a system for establishing the cause of a
defect in a machine. These systems are used at all levels of management
(operational, tactical, and strategic).
• Control systems. Also known as programmed decision-making sys-
tems, these systems calculate and implement decisions entirely auto-
matically, based upon the recorded state of a process. Examples are
automatic ordering, climate control, and invoicing systems.

An information system is often a combination of the four types de-
scribed above. From the viewpoint of efficiency, the control system ap-
pears to be the ideal because it requires no staff. In practice, the number
of applications in which such systems can be used turns out to be very
limited, and only well defined decision situations can be approached in
this way. Nevertheless, they do work for some operational management

Organizing Workflows 25

Figure 1.11

Decomposition of generic functionality

problems. The decision-support systems, which solve management prob-
lems through interaction with people, offer the most potential because
they combine human insight with the computer's calculating power. We
still have absolutely no idea how an information system should make a
decision about many problems at the strategic level. In practice, most
information systems are office-information and transaction-processing
systems.

We shall now examine the way in which we develop information sys-
tems. This will be done by means of a historical summary. The bound-
aries of the time periods given should not be regarded as clear-cut, but
that is not the most important point. The summary below highlights the
influence of workflow management systems. What the history shows is
that more and more generic tasks have been taken out of programs and
put into decomposed management systems. Figure 1.11 illustrates this
evolution.

1. 1965-1975: decompose applications. During this period, informa-
tion systems comprised decomposed applications, each with its own
databases and definitions. The applications ran directly on the operating
system and either had no user interface or one entirely of their own. Data
were stored between two runs of the application program, originally on
punch cards and paper tapes, and later on magnetic tape and in disk
memory. There was no exchange of data between different applications.
It thus was possible for a member of staff to have different names in the
payroll program and the personnel program. It was impossible to achieve
added value by combining different sources of data.
2. 1975-1985: database management—"take data management out of
the applications." This period is characterized by the rise of the database

26 Chapter 1

management system (DMBS). Originally these were hierarchical and
network databases, later relational ones. A database is a permanently
available, integrated collection of data files which can be used by many
applications. The use of databases has the advantages that data managed
by different applications can be combined, that data structures only need
to be defined once, that the organization of data can be handed over to
a database management system, and that the same data item only needs
to be stored once. A DBMS is a piece of generic software that can be used
to define and use databases: to add, view, revise, and delete data. The use
of database management systems has also radically changed the
system-development process: once the database has been defined,
different developers can work on designing applications on it at the same
time. To do this, methods were developed for establishing data
structures before the applications were defined. This is the data-oriented
approach to sys-tem development. This period thus can be characterized
as that during which the data organization was beginning to be extracted
from application programs.

3. 1985-1995: user-interface management—"take the user interface out
of the applications." It was during this period that the next bottleneck in
system development appeared. Because we were developing more and
more interactive software, a great deal of time was being spent develop-
ing user interfaces. Originally these were designed by the developers
screen by screen, field by field. Not only did this take up a lot of time,
but also each designer had her own style, which meant that every system
had to operate in a different way. There are now user-interface manage-
ment systems (UIMS) that solve both these problems: a user interface
can be defined rapidly and the designer is "invited" to do this in a standard
way. In recent years, a transition has taken place from character-based
user interfaces to graphics-based ones, and as a result the utilization of
user-interface management systems has increased. Today the functions
of user-interface management systems are integrated in other tools,
like database management systems, program environments, and web
browsers. During this period the user interfaces were extracted from the
application programs.
4. 1995-2005: workflow management—"take the business processes
out of the applications." Now that data management and user
interfacing have largely disappeared from applications themselves, it
seems that much of the software is devoted to business processes
(procedures) and the handling of cases. Therefore, it has become
attractive to isolate this component now and find a separate solution
for it. Not only can this accelerate the development of information
systems, but it also offers the added advantage that the business
processes become easier to maintain.

Organizing Workflows 27

Today, it occurs frequently that management wants to change an
administrative procedure, but this would have far-reaching
consequences for the software. As a result, the change is not carried
through. Workflow systems should solve such problems. A workflow
system manages the workflows and organizes the routing of case data
amongst the human resources and through application programs. Just as
databases are developed and used with the assistance of a database
management system, so workflow management systems (WFMS) can be
used to define and use workflow systems. This period can be
characterized as that during which the processes were extracted from the
applications.

To put workflow management in historical perspective, we should
mention some of the early work on workflow management. The idea to
have generic tools, or at least generic methods, for supporting business
processes emerged in the 1970s with pioneers such as Skip Ellis and
Michael Zisman. Zisman completed his Ph.D. thesis "Representation,
Specification, and Automation of Office Procedures" in 1997 (University
of Pennsylvania). In the 1970s, Ellis and others worked at Xerox PARC
on "Office Automation Systems." Ellis already used Petri-net-based
work-flow models (the so-called information control nets) in the late
1970s. One could wonder why it took such a long time before workflow
management systems became established as a standard component for
enterprise information systems. There are several reasons for this. First of
all, workflow management requires users linked to a computer
network. Only in the 1990s did workers become connected to the
network. Second, many information systems evolved from systems that
are unaware of business processes and the organization to systems that
are aware; therefore, workflow was never considered as a really new
piece of functionality. Finally, the rigid and inflexible character of the
early (and some of the contemporary) products scared away many
potential users.

A workflow management system can be compared with an operating
system: it controls the workflows between the various resources—people
or applications. It is confined to the logistics of case handling. In other
words, a change to the content of case data is implemented only by
people or application programs. A workflow management system has a
number of functions that can be used to define and graphically track
workflows, thus making both the progress of a case through a workflow
and the structure of the flow itself easy to revise. It therefore is not re-

28 Chapter 1

markable that workflow management systems have become the ideal tool
for achieving BPR.

In the above evolution, we can see that disentangling functions from
applications is the way to improve efficiency. By separating certain
functions, generic solutions (management systems) can be developed
for them. In this way information systems can be made
component-based, by first configuring the components and then
integrating them (a process also known as assembling). Configuration is
the setting of parameters, which may take all sorts of forms. The input of
a database scheme into a database management system and the definition
of a process scheme in a workflow management system are examples of
component configuration.

For integration of components we have the so-called middleware.
Some form of middleware just is a set of standards and language
features that create a communication structure at compile time.
Another form is a component that takes care of the communication needs
of other components.

Alongside these developments, we also increasingly observe companies
buying—for specific processes—standard software packages that
combine a large number of the functions defined above. For a specific
process, such generic software has to be configured; that is, parameters
must be set. The advantage of a standard software package is that there
are no development costs, but one drawback is that the system may not
meet all the wishes of its users. This disadvantage could, though, be
seen as a benefit, because it forces the organization to work in the
tried and trusted way embedded in the package. In fact, such a software
package contains a generic company model that can be adapted to a
specific business situation.

EXERCISES

Exercise 1.1

A workflow is defined as a network of tasks with rules that determine the
(partial) order in which the tasks should be performed.

(a) Which are these essential ordering principles?
(b) Show that iteration can be made by the other ordering principles.

Organizing Workflows 29

Exercise 1.2

In this chapter we have seen (figure 1.2) some notation to describe a
network of tasks. (This is not the notation we will use in the remainder of
the book.) A task is represented by a rectangle and it has one or more
direct predecessors and one or more direct successors. The rules are: all
predecessors should be ready before the task may be executed and
exactly one successor will be executed. Further there are two kinds of
connectors: open and closed circles with rules for passing signals.
Change these rules as follows: tasks have exactly one incoming and one
outgoing arc. Connectors may have one or more incoming and
outgoing arcs. Open circles pass the signal from only one incoming to
one outgoing arc exactly. Closed circles require from all incoming arcs a
signal and pass it to all outgoing arcs. Model the claim handling example
of figure 1.2 with these new rules. (It is allowed to connect circles to
each other.)

Exercise 1.3

The concept "task" has two meanings, depending on the point of view.
Give these two meanings and explain them.

Exercise 1.4

Give the three principles to assign employees to departments in a
hierarchical organization and give pros and cons for each choice.

2__________

Modeling Workflows

2.1 Workflow Concepts

The success of a workflow system stands or falls on the quality of the
workflows put into it. This book therefore devotes considerable attention
to the modeling and analysis of workflows. In this chapter, we shall limit
ourselves initially to the process itself. As a tool, we use Petri nets. With
their help, we can represent a process in a straightforward way. We can
also use them to analyze these processes. We shall go into this aspect
more extensively in chapter 4. Before any of this, we should first examine
some of the concepts introduced in chapter 1 in more detail.

2.1.1 The case

The primary objective of a workflow system is to deal with cases.
Examples of cases include an insurance claim, a mortgage application, a
tax return, an order, or a patient in a hospital. Similar cases belong to the
same case type. In principle, such cases are dealt with in the same way.

Each case has a unique identity. This makes it possible to refer to the
case in question. A case has a limited lifetime. Consider, for example, an
insurance claim. This case begins at the moment when the claim is
submitted and disappears from the workflow system at the point when
the processing of the claim has been completed. Between the appearance
and disappearance of a case, it always has a particular state. This state
consists of three elements: (1) the values of the relevant case attributes',
(2) the conditions that have been fulfilled; and (3) the content of the
case.

A range of variables can be associated with each case. These case
attributes are used to manage it. Thanks to them it is, for example,
possible to indicate that a task may—under certain conditions—be
omitted.

32 Chapter 2

When handling an insurance claim, we may use the case attribute

"estimated claim value." Based upon the value of this variable, the
workflow system can decide whether or not to activate the "send
assessor" task. Note that the value of a case attribute may change as the
case progresses.

We cannot use a case attribute to see how far a case has progressed. To
do this, we use conditions. These are used to determine which tasks have
been carried out, and which still remain to be performed. Examples of
conditions include "order accepted," "application refused," and "under
consideration." We can also regard a condition as a requirement that
must be met before a particular task may be carried out. Only once all
the conditions for a task within a particular case have been met can that
task be performed. For any given case, it is at all times clear which
conditions have been met and which not. We can also use the word
phase instead of condition. This, however, is confusing when several
conditions have been met: the case would be in more than one phase
simultaneously.

In general, the workflow system does not contain details about the
content of the case, only those of its attributes and conditions. The
con-tent is contained in documents, files, archives, and/or databases that
are not managed by the workflow management system.

2.1.2 The task

The term task already has been mentioned extensively. It refers to one of
the most important concepts in this book. By identifying tasks, it is
possible to structure workflows. A task is a logical unit of work. It is
indivisible and thus is always carried out in full. If anything goes
wrong during the performance of a task, then we must return to the
beginning of the entire task. In this respect, we refer to a rollback.
However, the indivisible nature of a task depends upon the context
within which it is defined. A task which is contracted out by a client to
a supplier is regarded as "atomic" (indivisible) by the former. This does
not have to be the case for the supplier, though: he may well split the
task set into smaller ones.

Typing a letter, assessing a valuation report, filing a complaint,
stamping a document, and checking personal data are all examples of
tasks. We can differentiate between manual, automatic and
semi-automatic tasks. A manual task is entirely performed by one or
more people, with-

Modeling Workflows 33

Figure 2.1

The relationship between the terms task, case, work item, and activity

out any use of an application: for example, carrying out a physical check.
By contrast, an automatic task is performed without any intervention by
people. This usually means that an application—a computer
program— can carry out the task entirely based upon previously
recorded data. Both a person and an application are involved in a
semi-automatic task. For example, the completion of a valuation report
by an insurance assessor supported by a specially developed program.

A task refers to a generic piece of work, and not to the performance of
an activity for one specific case. In order to avoid confusion between the
task itself and the performance of that task as part of a particular case,
we use the terms work item and activity. A work item is the combination
of a case and a task which is just about to be carried out. A work item is
created as soon as the state of a case allows it. We thus can regard a
work item as an actual piece of work which may be carried out. The term
activity refers to the actual performance of a work item. As soon as work
begins upon the work item, it becomes an activity. Note that, unlike a
task, both a work item and an activity are linked with a specific case.
Figure 2.1 shows this diagrammatically.

2.1.3 The process

The way in which a particular category of cases should be carried out is
described by the relevant process. This indicates which tasks need to be
carried out. It also shows the order in which this should be done. We can
also regard a process as a procedure for a particular case type. In general,
many different cases are handled using a single process. It therefore is
possible to enable a specific treatment based upon the attributes of a
certain case. For example, it may be that one task in the process is only

34 Chapter 2

performed on some of the cases. The order in which the tasks are
per-formed may also vary depending upon the properties of the case.
Conditions are used to decide which order is followed. In essence, a
process is therefore constructed from tasks and conditions.

It is possible to make use of previously defined processes as part of
another process. So, in addition to tasks and conditions, a process may also
consists of (zero or more) subprocesses. Each of the subprocesses again
consists of tasks, conditions, and possibly even further subprocesses. By
explicitly identifying and separately describing subprocesses, frequently
occurring ones can be used repeatedly. In this way, complex processes
can also be structured hierarchically. At the highest level of process
de-scription, we see a limited number of subprocesses. By examining one
or more of these we can, as it were, "zoom in" on particular sections of
the process.

The lifecycle of a case is defined by a process. Because each case has a
finite lifetime, with a clear beginning and end, it is important that the
process also conforms with this. So each process also has a beginning and
an end, which respectively mark the appearance and completion of a
case.

2.1.4 Routing

The lifecycle of a case is laid down in the process. In this respect, we refer
to the routing of the case. Routing along particular branches determines
which tasks need to be performed (and in which order). In routing cases,
we make use of four basic constructions:

• The simplest form of routing is the sequential execution of tasks. In
other words, they are carried out one after the other. There is usually
also a clear dependency between them. For example, the result of one
task is input to the next.
• If two tasks can be performed simultaneously, or in any order, then we
refer to parallel routing. In this case, there are two tasks which both need
to be performed without the result of one affecting the other. The two
tasks are initiated using an AND-split and later resynchronized using an
AND-join.
• We refer to selective routing when there is a choice between two or
more tasks. This choice may depend upon the specific properties of the
case, as recorded in the relevant case attributes. Such a choice between
alternatives is also known as an OR-split. The alternative paths are

Modeling Workflows 35

reunited using an OR-join. As well as selective routing, we also use the
terms alternative or conditional routing.

• In the ideal situation, a task is carried out no more than once per case.
Sometimes, however, it is necessary to perform a particular task several
times. Consider, for example, a task which needs to be repeated until the
result of the subsequent "check" task is satisfactory. We call this form of
routing iteration.

We shall return to these four forms of routing in more detail later.

2.1.5 Enactment

A work item assignment can only be carried out once the state of the case
in question allows it. But actual performance of such an assignment often
requires more than this alone. If it has to be carried out by a person, he
must first take the assignment from his "in tray" before an activity can
begin. In other words, the work item is worked on only once the
employee has taken the initiative. In such a case we refer to triggering:
the work item is triggered by a resource (in the example, an employee).
However, other forms of triggering are possible: an external event (for
example, the arrival of an EDI message) or reaching a particular time (for
example, the generation of a list of orders at six o'clock). We thus
distinguish between three types of triggers: (1) a resource initiative, (2) an
external event, and (3) a time signal. Work items which must always be
carried out immediately—without the intervention of external
stimuli— do not require a trigger.

The concepts summarized above are the central themes of this chapter.
We thus shall focus mainly upon the modeling of the processes which
underlie the workflows. In the next chapter, we shall turn our attention
to the allocation of work items, the arrangement of the organizational
structure, and specific staff skills. In chapter 4, we shall see how we can
analyze the workflows modeled.

2.2 Petri Nets

Unlike many other publications on workflow management, this book
takes a formal approach based upon an established formalism for the
modeling and analysis of processes—Petri nets. The use of such a formal
concept has a number of major advantages. In the first place, it forces

36 Chapter 2

precise definition. Ambiguities, uncertainties, and contradictions are thus
prevented, in contrast to many informal diagramming techniques. Sec-
ondly, the formalism can be used to argue about processes. It thus becomes
possible, for example, to establish certain patterns. This is closely linked
with the fact that a formalism often enables the use of a number of ana-
lytical techniques (those for analyzing performance, for instance, as well
as those for verifying logical properties). As we shall see later, it becomes
possible to check whether a case is successfully completed after a period
of time. There thus are various good reasons to opt for a formal method.
Before we depict the concepts listed earlier in this chapter within Petri
nets, it is important to know something about this technique. For the
sake of completeness, we shall go deeper into them than is strictly neces-
sary for the purposes of workflow management.

Petri nets were devised in 1962 by Carl Adam Petri as a tool for mod-
eling and analyzing processes. One of the strengths of this tool is the fact
that it enables processes to be described graphically. Later, we shall see
that we can use it to present workflow processes in an accessible way.
Despite the fact that Petri nets are graphical, they have a strong mathe-
matical basis. Unlike many other schematic techniques, they are entirely
formalized. Thanks to this formal basis, it is often possible to make
strong statements about the properties of the process being modeled.
There are also several analysis techniques and tools available which can
be applied to analyze a given Petri net.

Over the years, the model proposed by Carl Adam Petri has been
extended in many different ways. Thanks to these, it is possible to model
complex processes in an accessible way. Initially, however, we shall con-
fine ourselves to the classic Petri net as devised by Petri himself.

2.2.1 Classical Petri nets

A Petri net consists of places and transitions. We indicate a place using
a circle. A transition is shown as a rectangle. Figure 2.2 shows a sim-
ple Petri net, consisting of three places (claim, under Consideration, and
ready] and three transitions (record, pay, and send_letter). This network
models the process for dealing with an insurance claim. Arriving at the
place claim, it is first recorded, after which either a payment is made or a
letter sent explaining the reasons for rejection.

Figure 2.2

A classic Petri net

Places and transitions in a Petri net can be linked by means of a
directed arc. In figure 2.2, for example, the place claim and the transition
record are linked by an arrow pointing from the former to the latter.
There are two types of arcs: those that run from a place to a transition
and those that run from a transition to a place. Arcs from a place to a
place or a transition to a transition are not possible.

Based upon the arcs, we can determine the input places of a transition.
A place p is an input place for a transition t if—and only if—there
is a directed arc running from p to t. Similarly, we can determine the
output places of a transition. A place p is an output place for a transition
t if—and only if—there is a directed arc running from t to p. As it hap-
pens, in figure 2.2 each transition precisely has one input and one output
place.

Places may contain tokens. These are indicated using black dots. In
figure 2.2 the place claim contains three tokens. The structure of a Petri
net is fixed; however, the distribution of its tokens among the places can
change. The transition record can thus take tokens from the claim input
place and put them in under Consideration. We call this the firing of the
transition record. Because the firing of transitions is subject to strict rules,
we shall first introduce a number of terms.

The state of a Petri net is indicated by the distribution of tokens
amongst its places. We can describe the state illustrated in figure 2.2
using the vector (3,0,0). In other words, there are three tokens in claim,
none in under Consideration, and none in ready.

A transition may only fire if it is enabled. This occurs when there is at
least one token at each of its input places. The transitions are then, as
it were, "loaded": ready to fire. In figure 2.2, the transition record is
enabled. The other two are not.

Modeling Workflows 37

Figure 2.3

State before and after the transition "record" fires

A transition may fire from the moment it is enabled. As it fires, one
token is removed from each input place and one token added to each out-
put place. In other words, the moment it fires, a transition consumes tokens
from the input place and produces tokens for the output place. Figure 2.3
shows the effect of firing the transition record. Its result is that one token
is transferred from the place claim to the place under Consideration. We
can also describe the new situation using the vector (2,1,0).

Once record has fired, a situation arises in which three transitions are
enabled. The transition record can fire again because there is at least one
token in claim, and the transitions pay and send letter can fire because
there is a token in under Consideration. In this situation, it is not pos-
sible to tell which transition will fire first. If we assume—for the sake of
convenience—that it is the transition pay which fires, then the state
illustrated in figure 2.4 will be reached.

Note that the transition send_letter, which was enabled before firing,
is no longer enabled. The transition record is still enabled and will
therefore fire. Eventually, after a total of six firings, the Petri net will
reach the state (0,0,3). That is, a state with three tokens in the place
ready. In this state, no further firing is possible.

38 Chapter 2

Figure 2.5

The modified Petri net

Transitions are the active components in a Petri net. By firing a tran-
sition, the process being modeled shifts from one state to another. A
transition therefore often represents an event, an operation, a transfor-
mation, or a transportation. The places in a Petri net are passive, in the
sense that they cannot change the network's state. A place usually rep-
resents a medium, buffer, geographical location, (sub)state, phase, or
condition. Tokens often indicate objects. These can be physical ones, but
also objects representing information. In the network considered above,
each token represents an insurance claim.

In the Petri net shown in figure 2.2, it is possible for several cases to
be in progress simultaneously. If the transition record fires twice in
succession, then there will be at least two tokens in the place under_
consideration. If, for some reason, we wish to limit the number of cases
which can be under consideration at the same time to a maximum of one,
then we can modify the Petri net as shown in figure 2.5. The additional
place free ensures that the transition record is blocked as soon as a claim
goes under consideration.

Modeling Workflows 39

40 Chapter 2

red

yellow

green

Figure 2.6

A set of traffic lights illustrated on a Petri net

In the initial state depicted, record is enabled because there is at least
one token at each of the input places. Once transition record has fired,
the state is such that record is no longer enabled, but the other two
transitions are. Once one of these has fired, there is again a token in the
place free. Only at this point is record again enabled. By adding the place
free, the maximum number of cases that can be under consideration at
any time has indeed been limited to one. If we wish to limit the number
of cases in progress at any time to a maximum of n, then we can model
this simply by placing n tokens in the place free at the start.

Using Petri nets, we can also describe processes that are repetitive in
nature. Figure 2.6 shows how we can model the cyclical activity of a set
of traffic lights.

The traffic lights' three possible settings are illustrated by three places:
red, yellow, and green. The three possible light changes are shown by the
transitions rg, gy, and jr. Imagine now that we want to model the traffic
lights at the crossing of two one-way streets. In this case, we require two
sets of traffic lights that interact in such a way that one of the two is
always red. Obviously, the Petri net shown in figure 2.6 needs to be
duplicated. Each set of lights is modeled using three places and three
transitions. This, however, is not sufficient, because it does not exclude
unsafe situations. We therefore add an extra place x, which ensures that
one of the two sets of lights is always at red (see figure 2.7).

Modeling Workflows
41

redl

yellow 1

green 1

red2

yellow2

green2

Figure 2.7

Two sets of traffic lights

When both traffic lights are red, there is a token in the place x. As one
set of lights changes to green, the token is removed from x and so the
other set is blocked. Only when both sets of lights are again red is the
other able to change to green once. In chapter 4, we use an analytical
technique to show that the traffic lights do indeed operate safely.

2.2.2 High-level Petri nets

Because Petri nets are graphical, they are easily accessible and easy to use.
They also have a strong mathematical basis and there are many analyti-
cal techniques available for them. In chapter 4, we shall see that we can
use these techniques to analyze workflows. Despite this strength, the
classic Petri net has shortcomings in many practical situations. It becomes
too large and inaccessible, or it is not possible to model a particular
activity. This is why the classic Petri net has been extended in many ways.
Thanks to these extensions, it is possible to model complex situations in
a structured and accessible way. In this section we shall focus upon the
three most important extensions: (a) color extension, (b) time extension,
and (c) hierarchical extension. We call Petri nets extended with color,
time, and hierarchy high-level Petri nets. Because a complete description
of high-level Petri nets would go too far, we shall confine ourselves to
those aspects that are important in the context of workflow management.

(a) The color extension Tokens are used to model a whole range of
things. In one model they can represent insurance claims, in another the
state of traffic lights. However, in the classic Petri net it is impossible to

42 Chapter 2

distinguish between two tokens: two in the same place are by definition
indistinguishable. In general, this is an undesirable situation. In the case
of two insurance claims, for example, we want to incorporate the sepa-
rate characteristics of the two claims in the model. We want to include
such things as the nature of the claim, the policy number, the name of the
policyholder, and the assessed value of the claim. In order to enable
the coupling of an object's characteristics with the corresponding token,
the classic Petri net is extended using "color." This extension ensures that
each token is provided with a value or color. A token representing a
particular car will, for instance, have a value which makes it possible to
identify its make, registration number, year of manufacture, color, and
owner. We can notate a possible value for such a token as follows: [brand:
'BMW'; registration: fj 144 NFX'; year: '1995'; color: 'red'; owner:
'Johnson'].

Because each token has a value, we can distinguish different tokens
from one another. By "valuing" tokens, they are—as it were—given dif-
ferent colors.

A firing transition produces tokens that are based upon the values of
those consumed during firing. The value of a produced token therefore
may depend upon those of consumed ones. Unlike in the classic Petri net,
the number of tokens produced is also variable: the number of tokens
produced is determined by the values of those consumed.

To illustrate this, we shall use a process for dealing with technical
faults in a product department. Every time a fault occurs—for example, a
jammed machine—it is categorized by the department's mechanic. The
fault can often be put right as it is being categorized. If this is not the
case, then a repair takes place. After this has been done, a test is carried
out, with three possible results: (1) the fault has been solved; (2) a further
repair is required; or (3) the faulty component must be replaced. This
process is modeled in figure 2.8 using a Petri net.

A token in the place fault means that a fault has occurred which needs
to be dealt with. For each token in fault, the transition categorize will fire
precisely once. During each firing precisely one token will be produced,
in either the place solved or the place nr (needs repair). In contrast with
the classic Petri net, it is now possible for an output place not to receive a
token. During the execution of transition categorize, a choice is now
made based upon the information available. As a result of this choice, the

Figure 2.8

The process for dealing with faults

fault is either regarded as solved or a repair is carried out. The token in
the place fault has a value in which the relevant properties of the fault are
recorded (for example: the nature of the fault, the identity of the
non-functioning component, its location code, and fault history). If a
repair is required, then the transition repair will fire, bringing the token
to place nt, followed by the firing of transition test. The transition test
produces precisely one token, which appears in one of the three output
places. The relevant information about the fault is always retained in the
value of the token in question.

In a color-extended Petri net, we can set conditions for the values of
the tokens to be consumed. If this is the case, then a transition is only
enabled once there is a token at each of the input places and the pre-
conditions have been met. A transition's precondition is a logical re-
quirement connected with the values of the tokens to be consumed. In the
Petri net illustrated in figure 2.8, we could for example add the following
precondition to the transition categorize: "The value of the token to be
consumed from the place fault must contain a valid location code." The
consequence of this precondition is that faults without a valid location
code are not categorized; they remain in the place fault and are never
consumed by the transition categorize.

We can also use a precondition to "synchronize" tokens. By this we
mean that a transition only fires if a particular combination of tokens can
be consumed. We use the transition assemble, illustrated in figure 2.9, to
illustrate this.

Based upon a production order, the transition assemble takes a chassis,
an engine, and four wheels and produces a car. (This is the first example

Modeling Workflows 43

Figure 2.9

The transition "assemble

we have seen in which more than one arrow leads from an input point
to a transition. In this case, there must be at least four tokens in wheel
before assemble can be enabled. The number of incoming arrows thus
shows how many tokens there must be at the input point from which
they come. When a transition fires, the number of tokens consumed is
equal to the number of incoming arrows.) When the transition assemble
fires, tokens are not taken at random from the input places. For example,
the four wheels must be of the same type, the engine must fit the chassis,
the wheel diameter must suit the chassis and the engine power, and so
on. Tokens thus are only taken from the input places in certain combi-
nations. This is determined by means of a precondition.

The result of the color extension is that, in contrast to the classic Petri
net, the graphic representation no longer contains all the information.
For each transition, the following factors must be specified:

• Whether there is a precondition. If there is a precondition, then this
must be defined precisely.
• The number of tokens produced per output place during each firing.
This number may depend upon the values of the tokens consumed.
• The values of the tokens produced. This, too, may depend upon the
values of the tokens consumed.

Depending upon the objective for which the Petri net has been produced,
the transitions are specified by a piece of text, a few lines of pseudo-code,
a formal specification, or a subroutine in a programming language.

44 Chapter 2

Modeling Workflows 45

(b) The time extension Given a process modeled as a Petri net, we
often want to be able to make statements about its expected perfor-
mance. If we produce a model of the traffic lights at a road junction, then
we are probably also interested in the number of vehicles that this junc-
tion can handle per hour. If we model the production process in a car
factory, then we also want to know the expected completion time and the
capacity required. To be able to answer these questions, it is necessary to
include pertinent information about the timing of a process in the model.
However, the classic Petri net does not allow the modeling of "time."
Even with the color extension, it is still difficult to model the timing of a
process. Therefore, this classic Petri net is also extended with time.

Using this time extension, tokens receive a timestamp as well as a
value. This indicates the time from which the token is available. A token
with timestamp 14 thus is available for consumption by a transition
only from moment 14. A transition is enabled only at the moment when
each of the tokens to be consumed has a timestamp equal or prior to
the current time. In other words, the enabling time of a transition is the
earliest moment at which its input places contain sufficient available
tokens. Tokens are consumed on a FIFO (first-in, first-out) basis. The
token with the earliest timestamp thus is the first to be consumed. Fur-
thermore, it is the transition with the earliest enabling time that fires first.
If there is more than one transition with the same enabling time, a
non-deterministic choice in made. Moreover, the firing of one transition
may affect the enabling time of another.

If a transition fires and tokens are produced, then each of these is given
a timestamp equal to or later than the time of firing. The tokens produced
thus are given a delay that is determined by the firing transition. The
timestamp of a produced token is equal to the time of firing plus this de-
lay. The length of the delay may depend upon the value of the tokens
consumed. However, it is also possible that the delay has a fixed value
(for example, 0) or that the delay is decided at random. Firing itself is
instantaneous and takes no time.

To illustrate the time extension, we can use the example of the two sets
of traffic lights, which must not simultaneously be at green or yellow. At
moment 0 both sets are at red. As we can see in figure 2.10, the
time-stamps of the tokens in the places red1, x, and red2 are 0.

46 Chapter 2

green 1

green2

Figure 2.10

The two sets of traffic lights with time

The enabling time of the transition rg1 is also 0, the maximum of the
timestamps of the tokens in red1 and x. The enabling time of rg1 is
also 0. There hence exists a nondeterministic choice between rg1 and
rg1. Let us assume that rg1 fires. The transition rg1 consumes the two
tokens from the input places and produces one token for the place greenl
with a delay of 25 time units. In figure 2.10, each delay is shown as a
label linked to an arrow emerging from a transition. (If the delays were
dependent upon the values of the tokens consumed, this would no longer
be possible.) After the firing of rg1, there is a token in greenl with a
time stamp of 25, and gy1 is the only enabled transition. The transition
gy1 thus will fire at moment 25 and produce a token at yellow1 with a
timestamp equal to 25 + 5 = 30. At moment 30, the transition yr1 will
fire. During this firing, yr1 produces a token for redl with a delay of 30
and a token for x without delay. As a result of the firing, rg1 has an
enabling time of 60 and rg2 an enabling time of 30. Therefore transition
rg2 now fires. By adding time to the model, we thus have not only
specified the timing of the various phases, but also forced the traffic lights
to change to green alternately.

(c) The hierarchical extension Although we can already describe very
complex processes using the color and time extensions, usually the re-
sulting Petri net still will not provide a proper reflection of the process
being modeled. Because the modeling of such a process results in a single,
extensive network, any structure is lost. We do not observe the hierar-

red2

yello

Figure 2.11

The process "solve fault" contains one subprocess: "repair

chical structure in the process being modeled by the Petri net. The hier-
archical extension therefore ensures that it becomes possible to add
structure to the Petri net model.

In order to structure a Petri net hierarchically, we introduce a new
"building block": a double-bordered square. We call this element a pro-
cess. It represents a subnetwork comprising places, transitions, arcs, and
subprocesses. Because a process can be constructed from subprocesses
that in turn also can be constructed from (further) subprocesses, it is
possible to structure a complex process hierarchically. In order to
illustrate this, we shall refine the process modeled in figure 2.8. This re-
finement concerns the activity repair. We no longer wish to regard repair
as a single, indivisible action, but as a subprocess consisting of the fol-
lowing steps: (1) start, (2) trace, (3) change, and (4) end. Moreover, there
is never more than one fault under repair at a given point in time. To
model this refinement, we replace the transition repair with a subprocess
consisting of four transitions and four places—see figure 2.11.

In figure 2.11, we can see clearly that a process can take two forms:
(1) as a subprocess within a hierarchically superior process (the
double-bordered square), and (2) as the definition of the process (a
summary of

Modeling Workflows 47

48 Chapter 2

the elements from which the process is constructed). We find the meaning
of a process constructed from subprocesses by replacing each of those
subprocesses with the appropriate definition. The process solve fault
illustrated in figure 2.11 is thus in fact a Petri net consisting of six tran-
sitions and nine places.

By using (sub)processes, we can structure a Petri net hierarchically,
using either a top-down or a bottom-up approach. The top-down
approach begins at the highest level, with processes increasingly being
broken down into subprocesses until, at the lowest level, these consist
only of transitions and places. Repeated decomposition results in a hier-
archical description. The bottom-up approach works in the opposite
direction. It begins at the lowest level. First, the most elementary com-
ponents are described in detail. These elements (subprocesses) are then
combined into larger processes. Repeated composition eventually results
in a description of the entire process.

When modeling complex processes, a hierarchical method of descrip-
tion is often an absolute necessity. Only by dividing the main process into
ever-smaller subprocesses can we overcome its complexity. In this re-
spect, we refer to the divide-and-conquer strategy. However, the identi-
fication of subprocesses has yet another important advantage. It enables
us to reuse previously defined processes. If a particular subprocess recurs
several times, one definition used repeatedly will suffice. The reuse of
(sub)processes often makes it possible to model a complex process more
quickly.

In this section, we have studied the three most important types of
extensions: (a) the color extension, (b) the time extension, and (c) the
hierarchical extension. We call Petri nets which incorporate these
extensions high-level Petri nets. In the remainder of this book, we shall
use the high-level net to model and analyze processes in the context of
workflow management.

2.3 Mapping Workflow Concepts onto Petri Nets

The time has now come to illustrate the concepts described earlier—
the case, task, condition, process, trigger, and so on—using the Petri net
technique.

Modeling Workflows 49

2.3.1 The process

Using a process in a workflow management system, we can indicate in
which way a particular category of cases should be handled. The process
defines which tasks need to be carried out. As well as information about
the tasks to be performed, a process also contains information about con-
ditions. In this way, it defines the order in which the tasks need to be
carried out. It is also possible to use previously defined processes within
a larger process. Thus process may also consist of more than one
sub-process, as well as tasks and conditions. It therefore is obvious to
specify a process using a Petri net. This network should have one
"entrance" (a place without incoming arcs) and one "exit" (a place
without outcoming arcs). We show conditions as places and tasks as
transitions. This also is obvious, because transitions are the active
components in a Petri net, and places its passive components.

In order to specify a process using a Petri net, we shall examine a process
for handling complaints. An incoming complaint first is recorded. Then
the client who has complained and the department affected by the com-
plaint are contacted. The client is approached for more information. The
department is informed of the complaint and may be asked for its initial
reaction. These two tasks may be performed in parallel—that is, simul-
taneously or in any order. After this, the data are gathered and a decision
is taken. Depending upon the decision, either a compensation payment is
made or a letter is sent. Finally, the complaint is filed. Figure 2.12 shows
how we can illustrate the process just described using a Petri net.

Each of the tasks record, contact_client, contact_department, pay, and
file is modeled using a transition. The assessment of a complaint is
modeled using two transitions: positive and negative. The transition
positive corresponds with a positive decision; the transition negative
corresponds with a negative decision. (Later we shall see how this task
can also be modeled using just one transition.) The places start and end
correspond with the beginning and end of the process being modeled.
The other places correspond with conditions that are or are not met by
every case in progress. The conditions play two important roles: on the
one hand they ensure that the tasks proceed in the correct order, and on
the other hand that the state of the case can be established. The place c8,
for example, ensures that a complaint is filed only once it has been fully

Figure 2.12

The process "handle complaint" modeled as a Petri net

dealt with. It also corresponds with the state that exists between a com-
plaint being fully handled and its filing.

From the above, it should be more or less clear that a case is repre-
sented by one or more tokens. Cases thus are illustrated using tokens. In
figure 2.12, the token in the place start shows the presence of a case.
Once record has fired, there are two tokens—one at cl, one at c2—that
represent the same case. As a case is being handled, the number of its
tokens thus may fluctuate. The number of tokens that represent a par-
ticular case is equal to the number of its conditions that have been met.
Once there is a token in end, the case has been completed. In principle,
each process should fulfil two requirements: (1) it should at any time be
possible to reach—by performing a number of tasks—a state in which
there is a token in end; and (2) when there is a token in end, all the others
should have disappeared. These two requirements ensure that every case
that begins at the place start will eventually be completed properly. Note
that it is not possible to have a token in end while there remain tasks
still to be performed. The minimum requirements just mentioned, which
every process must meet, can be checked effectively using standard Petri
net tools.

The state of a case is not determined solely by the conditions that have
been met; to steer it, the case may have one or more attributes. For these,
it seems obvious to use the color extension. The value of a token contains
information about the attributes of the case in question. We shall go into
this in more detail later.

50 Chapter 2

Figure 2.13

Each case is illustrated using one or more tokens

Tokens that correspond with particular cases are kept strictly separate
(by the workflow management system). We can translate this into Petri
net modeling in two ways. Because tokens belonging to different cases
cannot influence one another, we can produce a separate copy of the
Petri net for each case. Each thus has its own process, as illustrated in
figure 2.12. However we can also use just one Petri net by making use of
the color extension. Thanks to this, we can provide each token with a
value from which it is possible to identify the case to which the token
refers. This is shown diagrammatically in figure 2.13.

The state of the Petri net illustrated here indicates that there are cur-
rently five cases in progress. Case 1 has almost been completed, whereas
case 5 is still at the start state. In order to ensure that the token belonging
to different cases do not get "mixed up," each transition is provided with
a precondition that states that only tokens from the same case may be
consumed at any one firing. If the transition collect in the situation
shown in figure 2.13 now fires, this precondition will ensure that the two
tokens for case 3 are consumed.

Figure 2.12 shows a nonhierarchical process. However it goes with-
out saying that a process may be constructed from subprocesses. To
illustrate this, we can for example combine the first four tasks (record,
contact_client, contact_department, and collect) into a single subprocess
called phasel. Figure 2.14 shows how the corresponding Petri net would
look, with two levels.

Modeling Workflows 51

Figure 2.14

The process "handle complaint" now contains the subprocess "phase 1

2.3.2 Routing

Tasks may be optional. That is, there may be tasks that only need to be
carried out for a number of cases. The order in which tasks are per-
formed may also vary from case to case. By routing a case along a num-
ber of tasks, we can determine which tasks need to be carried out (and in
what order). As indicated earlier, four basic constructions for routing are
recognized. For each of these, we shall show the corresponding Petri net
modeling.

(a) Sequential routing We refer to the sequential performance of tasks
when these have to be carried out one after another. If two tasks need to
be carried out sequentially, there usually is a clear interdependence be-
tween them. For example, the result of the first is required in order to
perform the second. In a Petri net, this form of routing is modeled by
linking the two tasks using a place. Figure 2.15 shows an example of
sequential routing.

52 Chapter 2

Figure 2.16

Parallel routing

The task that corresponds with the transition task2 is only performed
once the task corresponding with transition taskl has been completed.
This is enforced by place c2, which corresponds with the condition that
must apply before task2 can be carried out.

(b) Parallel routing If more than one task can be carried out at the
same time or in any order, then we refer to parallel routing. If we confine
ourselves to the situation with two tasks, taskl and task1, then there are
three possibilities: both tasks can be performed simultaneously; taskl can
be carried out first, then taskl; or task2 can be first, followed by task1.
Figure 2.16 illustrates how we can model this situation using a Petri net.
In order to enable the parallel execution of taskl and task2 in the case
corresponding with the token in c1, we begin with a so-called AND-split.
This is a task added so as to allow more than one task to be managed at
the same time. In figure 2.16, the transition t1 is the equivalent of an
AND-split. It fires when there is a token in cl, and produces one token in
each c2 and c3. Once condition c2 has been met for a particular case,
taskl can be carried out. Once condition c3 has been met, task2 can be
carried out. Firing tl thus enables the performance of two tasks. We also
say that task1 and task2 can be carried out in parallel. Only when
both

Modeling Workflows 53

Figure 2.15

Sequential routing

54 Chapter 2

have been performed can transition t2 fire. It is the equivalent of an
AND-join: a task added to synchronize two or more parallel flows. Only
when a particular case has fulfilled both condition c4 and condition c5
this task can be performed.

In figure 2.16, we have had to insert two tasks, t1 and t2, to model the
AND-split and the AND-join. We call such "artificial" additions man-
agement tasks, because they do not correspond with a recognizable piece
of work. Thanks to them, we can carry out task1 and task2 in parallel.
However, it is also possible for tasks such as tl and t2 to correspond
with an actual piece of work. In figure 2.12, for example, the task record
corresponds with an AND-split. The task collect corresponds with an
AND-join.

In a business process in which cases are carried out entirely manually
(without the aid of a workflow system), sequential routing is often the
rule due to, for example, physical limitations. For instance, the tasks in
a particular case must be carried out one after the other because the
accompanying document can only be in one place at a time. By intro-
ducing a workflow system, such limitations are largely eliminated. Tasks
that previously had to be carried out sequentially can now be done in
parallel. This can often achieve enormous time savings. Allowing parallel
routing thus is clearly of major significance in the success of a workflow
system.

(c) Selective routing A process lays down the routing for a specific
type of case. But there may be differences in routing between individual
cases. Consider, for example, a process for dealing with insurance claims.
Depending upon the specific circumstances of a claim, a particular route
will be selected. The task send_assessor, for example, is not carried out
for small claims. We refer to such cases as selective routing. This involves
a choice between two or more tasks. Figure 2.17 shows an example
modeled in terms of a Petri net.

Once a case fulfils condition c1, either t11 or t12 fires. If it is the for-
mer, then task1 is enabled. If it is the latter, then it is task2 that is en-
abled. Thus there is a choice between the two tasks. We call the network
consisting of transitions t11 and t12 and places c2 and c3 an OR-split.
Once one of the tasks has been performed, the OR-join ensures that a
token appears in c6. In this case, the OR-join is modeled using a network

Figure 2.18 Selective
routing (2)

consisting of two places (c4 and cS) and two transitions (t21 and £22). So
the OR-split selects one of the two alternative streams and the OR-join
brings them back together. In figure 2.17, we have explicitly modeled the
OR-split and the OR-join by adding two small networks. This is neces-
sary when we want to show the OR-split and OR-join as explicit man-
agement tasks. However, it is also possible to model them implicitly, as
shown in figure 2.18.

When a case fulfils condition c1, either task1 or task2 will be carried
out. So this is another example of selective routing. If we look at the way
in which the OR-join is modeled in the two previous figures, we notice
little difference. Obviously, therefore, an OR-join can be modeled using
several arrows leading into the same place. In the case of the OR-split,
though, there is a difference. In figure 2.17, a choice is made at the mo-
ment when there is a token in cl (that is, when a case fulfils condition
figure 2.18, the choice comes later. Which of the two branches is

Modeling Workflows 55

Figure 2.17
Selective routing (1)

56 Chapter 2

actually selected is decided only at the moment when either task1 or
task2 has to be carried out. This may appear to be only a subtle differ-
ence, but in fact the distinction between the OR-splits in figures 2.17 and
2.18 can be of crucial importance.

Let us assume, for example, that taskl corresponds with the processing
of a valuation report, and that task2 has to be carried out if that report is
not delivered within a given time. In this context, the model provided
using the construction in figure 2.18 is excellent. When the token is in c1,
two subsequent events are possible: either the report arrives and taskl is
carried out, or it is late and task2 is carried out. The decision about
which task to perform is delayed until either the report arrives or a fixed
period of time has elapsed. In figure 2.17, however, the decision must be
taken immediately. If t11, for example, fires, then it is no longer
possible to carry out task2. Later on, we shall show some larger
examples in which the moment the choice is made is of great
significance.

Thus far, we have (automatically) assumed that the choice between
two alternatives is nondeterministic. In other words, we have not ex-
plained how the choice between taskl and task2 is made, because—as
far the process is concerned—it does not matter which task is performed:
the selection is left to the environment of the workflow system. In most
cases, however, the decision is made best according to the specific prop-
erties of the case. Depending upon the values of the case attributes (that
is, the case's management parameters), we want to be able to choose be-
tween the alternatives. Figure 2.19 shows how we can model this situation.

Based upon the case attributes, transition t1 in figure 2.19 produces a
token for either c2 or c3 (but not for both). In this case, therefore, we
make use of color extension to enable a choice to be made in transition
t1. Using the attributes of the case in question, the decision rule in tl
determines which task should be performed. In doing so, we assume that
all the relevant attributes of this case are contained in the value of the
token in c1. In the case of parallel routing, however, there may be more
than one token assigned to the same case. Because the attributes concern
the entire case, these tokens must have identical values. In other words,
there must never be two tokens assigned to the same case but with dif-
ferent values. In order to enforce this, we must ensure that a change to a
case attribute caused by the performance of a task updates the value of
every token pertaining to that case.

Figure 2.19

Selective routing (3)

We thus can regard a case attribute as information that can be
inspected and revised by every task relevant to that case. In theory, the
broad nature of a case attribute can be modeled explicitly by linking each
transition with a common place. This place always contains one token
whose value corresponds with those of the case attributes. Because illus-
trating this common place makes the process diagrams confusing, for the
sake of convenience we shall omit it.

In figure 2.19, the number of tokens produced in each of the output
places of tl is variable (0 or 1). A choice is made based upon the value
(case attributes) of the token in c1 and the decision rule in t1. However,
we can also produce this choice by using two transitions containing the
appropriate preconditions. Recall that a precondition is based on the
colors of the tokens to be consumed and acts like a transition guard.
Figure 2.20 shows how this is possible.

The precondition in transition t11 corresponds with the requirements
that need to be met to justify the choice for task1. The precondition in
t12 determines when task2 should be selected. If the precondition in
t11 is the negation of the precondition in t12, then each token in cl will
result in a deterministic choice for either task1 and task2. In this case,
therefore, the OR-splits in figures 2.19 and 2.20 are equivalent.

Because constructions such as the AND-split, AND-join, OR-split and
OR-join occur frequently, we use a special notation to illustrate them.
This is shown in figure 2.21.

We represent an AND-split by using the symbol on the
output side. This indicates that a token must be produced for each of
the output places under all circumstances.

Modeling Workflows 57

Figure 2.20

Selective routing (4)

We represent an AND-join by using the symbol on the input side.
This indicates that the task being modeled can only take place once there
is a token at each of the input places. From figure 2.21, we can see that
both the AND-split and the AND-join correspond with a "normal tran-
sition" like those encountered in the classic Petri net.

We represent an OR-split by using the symbol on the output side.
This indicates that a token must be produced for precisely one of the
output places. As we saw earlier, we can model this in two ways. In the
rest of this chapter, we shall use only the first of these.

We represent an OR-join by using the symbol on the input side.

We can use the following technique to remember the difference be-
tween the AND and OR symbol. When, in principle, the arrows enter or
leave the same large triangle, it is an AND. Otherwise, it is an OR.

The symbol on the output side indicates a mixture of an AND-split
and an OR-split. In this case one or more tokens will be produced,
depending upon the value of the case attributes. Figure 2.21 shows two
ways of using this mixed form in a Petri net.

(d) Iterative routing The last form of routing is the repeated execution
of a particular task. Ideally, a task will be performed only once per case.
In certain situations, however, it is necessary to apply iterative routing.
For example, when a certain task needs to be repeated until the results of
a subsequent test prove positive. Figure 2.22 shows how we can model
iterative routing.

58 Chapter 2

Figure 2.21

Notation method for common constructions

Modeling Workflows
59

Figure 2.23

Iterative routing (2)

Taking the case corresponding with the token in c1, we see that task1
and task2 are performed successively. Once task2 has been completed,
OR-split t determines whether or not it needs to be performed once
again. Once task2 has been carried out one or more times, the case
moves on to task3. Task2 must be carried out at least once between
taskl and task3.

Figure 2.22 assumes that task2 must be performed at least once
("repeat ... until ..."). If this is not the case, the construction illustrated
in figure 2.23 applies ("while ... do ...").

Immediately upon completion of task1, OR-split t determines whether
or not task2 needs to be carried out. It now becomes possible for taskl to
be followed directly by task3.

In both examples, there exists an OR-split that makes its decision
based upon the current values of the case attributes. Note that the two
constructions illustrated correspond with the familiar "repeat ...
until ..." and "while . . . do ..." constructions that appear in many
programming languages.

Example Using the example described in the previous chapter, we can
now illustrate the concepts defined thus far. The example concerns an

60 Chapter 2

Figure 2.22
Iterative routing (1)

Modeling Workflows 61

insurance company's process for dealing with claims. Chapter 1 identifies
sixteen tasks in this process. In chapter 1 we did not yet introduce the
Petri net tool to model workflow processes. Therefore, we used an "ad
hoc" notation technique to illustrate the routing. Now, however, we can
show the process "properly," as shown in figure 2.24. But before looking
at that diagram, try to model the process yourself.

For the sake of convenience, the conditions which are used to route the
cases correctly are given "symbolic" names. In practice, however, sym-
bolic names are of no use. For example, we could more appropriately
call condition c7 accepted. Conditions c1 and c20 have a special role:
c1 represents the start of the process and c20 its end. Note that the "in-
formal" diagram in chapter 1 and figure 2.24 do closely resemble one
another. The major difference between the two is that the conditions are
explicitly named in figure 2.24. As a result, we can describe the state of a
case.

2.3.3 Enactment

A process is a collection of tasks, conditions, subprocesses, and their
relationships with one another. As we have seen, we can describe a pro-
cess using a Petri net. Conditions are depicted using places and tasks
using transitions. To simplify the representation of a process in terms of a
Petri net, we have defined a method of notating a number of typical
constructions. (See figure 2.21.)

A process is designed to deal with a particular category of cases, and so
may handle many individual cases. A task is not specific to a particular
case. However, when a case is being carried out by a process, tasks are
performed for that specific case. In order to avoid confusion between a
task as such and its performance on a specific case, we have introduced
the terms work item and activity. A work item is the combination of a
case and a task which is ready to be carried out. The term activity refers
to the actual performance of a work item. At the point when a work item
is actually being worked on, it is transformed into an activity. Note that,
unlike a task, both a work item and an activity are linked to a specific
case. The distinction between (1) a task, (2) a work item, and (3) an
activity becomes clear as soon as we translate them into Petri net terms.
A task corresponds with one or more transitions, a work item with a
transition being enabled, and an activity with the firing of a transition.

62 Chapter 2

Figure 2.24

The process for dealing with insurance claims

Figure 2.25

An example with various forms of triggering

Transitions in a Petri net are "eager." In other words, they fire as soon
as they are enabled. As we have just established, the enabling of a tran-
sition corresponds with a work item. For an assignment to be carried out,
however, more is often required than simply the relevant case having the
right state. If it is to be carried out by a person, she must first take it from
her "in tray" before an activity begins. In other words, the work item is
only carried out once the employee has taken the initiative. This is why
we recognized the existence of triggering. Certain work items can only be
transformed into an activity once they have been triggered.

We differentiate between three types of triggers: (1) a resource initia-
tive (such as an employee taking a work item from her in tray); (2) an
external event (such as the arrival of an EDI message); and (3) a time
signal (such as the generation of a list of orders at six o'clock). Work
items that must always be carried out immediately, without the inter-
vention of a resource, do not need a trigger. We can illustrate in a Petri
net which form of triggering applies. Tasks triggered by a resource are
shown using a wide, downward-facing arrow. Those triggered by an ex-
ternal event have an envelope symbol. And those that are time dependent
have a clock symbol. Figure 2.25 shows an example of a process con-
taining "triggering information."

Task2 and task4 are handled by a resource. Task3 is time-dependent,
and taskl requires an external trigger (for example, an EDI message).
The only automatic task is task5.

The notion of triggering is of major importance. It is not the work-
flow system that is in charge, but the environment. The system cannot
force a client to return a form; it cannot even force an employee to per-

Modeling Workflows 63

64 Chapter 2

form a work item at a particular time. It is easy to model the triggering
mechanism in Petri net terms. To each transition belonging to a task
requiring a trigger an extra input place is added. A token in such an extra
input place represents the trigger. So a token appears in that extra input
place when the trigger is recorded by the workflow system.

The triggering mechanism also shows that the timing of an OR-split
choice is crucial. In figure 2.25, the timing of the nondeterministic choice
between task2 and task3 is as late as possible. Once condition c2 has
been met there are two possibilities. The first is that an employee begins
the work item corresponding with task2 before the moment specified for
the performance of task3 is reached. Alternatively, no employee takes the
initiative to carry out task2 before that moment. In the first case task2
fires, in the second task3 fires. A choice between the two alternatives thus
is delayed until the moment when the first trigger is received. Because it is
not known in advance which one will be activated, the implicit OR-split
in the form of place c2 cannot be replaced by an explicit OR-split in the
form of one or two additional transitions. So the OR-split comes in two
forms: implicit and explicit. Figure 2.26 shows these diagrammatically.

Like the firing of a transition, an activity—that is, the actual perfor-
mance of a task for a specific case—is an atomic unit. It thus is always
carried out in full. However, a fault may occur during the performance of
the task related to the activity. For example, it may make use of a re-
source (such as an employee) which interrupts it for some reason or
another. An employee may notice, say, that certain data required to carry
out the task are missing. Or the activity may use an application (such as a
program for calculating interest charges) that crashes while performing

Implicit OR-split Explicit OR-split

Figure 2.26

There is an essential difference between the implicit and explicit OR-split

Modeling Workflows 65

the task. Moreover a failure in the workflow system itself—perhaps due
to a system error—during an activity cannot be ruled out.

In all such cases, a so-called rollback is required. This involves return-
ing the workflow system to its state prior to the start of the activity.
Following the rollback, the activity can be restarted. Only when the
activity has been successfully completed does a so-called commit occur
and all changes made become definitive. As far as the process is con-
cerned, a rollback is very simple: the case attributes and all valid con-
ditions are returned to their original values. For the application (which
has been cut off in the middle of performing a task), a rollback can be
more complicated.

2.3.4 Example: Travel agency

Let us consider an example where triggers play an important role. To
organize a trip, a travel agency executes several tasks. First the customer
is registered. Then an employee searches for opportunities which are
communicated to the customer. Then the customer will be contacted to
find out whether she or he is still interested in the trip of this agency and
whether more alternatives are desired. There are three possibilities: (1)
the customer is not interested at all, (2) the customer would like to see
more alternatives, and (3) the customer selects an opportunity. If the
customer selects a trip, the trip is booked. In parallel, one or two types of
insurance are prepared if they are desired. A customer can take insurance
for trip cancellation or/and for baggage loss. Note that a customer can
decide not to take any insurance, just trip cancellation insurance, just
Baggage loss insurance, or both types of insurance. Two weeks before the
start date of the trip the documents are sent to the customer. A trip can
be cancelled at any time after completing the booking process (including
the insurance) and before the start date. Note that customers who are not
insured for trip cancellation can cancel the trip (but will get no refund).

Based on this informal description, we create the corresponding pro-
cess using the constructs introduced in this chapter. Figure 2.27 shows
the result.

The process, like any workflow process in this book, has a source place
which serves as the start condition (i.e., case creation) and a sink place
which serves as the end condition (i.e., case completion). First, the tasks

Figure 2.27

The travel agency

register, search, communicate, and contact_cust are executed sequen-
tially. Task contact_cust is an OR-split with three possible outcomes: (1)
the customer is not interested at all, that is, a token is put into end, (2)
the customer would like to see more alternatives, that is, a token is put
into c2, and (3) the customer selects an opportunity, that is, a token is
put into c15 to initiate the booking. Tasks AND_split and AND_join
have just been added for routing purposes. These routing tasks enable the
parallel execution of the booking and insurance tasks. The task book
corresponds to the actual booking of the trip. Tasks insurancel and
insurance2 correspond to handling both types of insurance. Since both
types of insurance are optional, there is a bypass for each of these tasks.
The OR-split insurancel ? allows for a bypass of task insurancel by put-
ting a token in c11. After handling the booking and optional insurances
the AND-join puts a token in c13. The remainder of the process is, from
the viewpoint of triggers, very interesting. Note that all tasks executed
before this point are either tasks that require a resource trigger or auto-
matic tasks added for routing purposes only. The downward-facing
arrows denote the resource triggers. If the case is in c13, then the normal
flow of execution is to first execute task send_documents and then exe-
cute start_trip. Note that task send_documents requires both a resource

66 Chapter 2

Modeling Workflows 67

trigger and a time trigger. These two triggers indicate that two weeks
before the beginning of the trip a worker sends the documents to the
customer. Task start_trip has been added for routing purposes and
requires a time trigger. Without task startjtrip, that is, putting the token
in end after sending the documents, it would have been impossible to
cancel the trip after sending the documents. Task cancel is an explicit
OR-join and requires both a resource trigger and an external trigger.
This task is only executed if it is triggered by the customer. Task cancel
can only be executed when the case is in c13 or c14, that is, after han-
dling the booking and insurance related tasks and before the trip starts.

Using the travel agency example, we point out two guidelines for
modeling. The first guideline concerns the use of OR-joins. OR-join tasks
should be avoided as much as possible. In most situations it is possible to
use places/conditions instead of explicitly modeling OR-join tasks. If an
OR-join task has two or more input conditions and these conditions are
not input for any other task, then these conditions can be fused together
because, from a semantical point of view, they are identical. As a result
the number of elements in the diagram is reduced and there is no need to
use an OR-join. For example, place c2 in figure 2.27 can be split into two
conditions; one condition for new cases and one condition for cases that
require more work. Such a split would introduce the need for an OR-join
task search. The resulting diagram only becomes more complex without
changing the actual behavior. Therefore we prefer the solution with one
condition c2 with two incoming arcs. Only in rare situations are OR-join
tasks needed to obtain the desired behavior. Consider for example figure
2.27. Task cancel is an OR-join. It is not possible to remove this OR-join
by fusing the input conditions c13 and c14. Conditions c13 and c14
correspond to different states, that is, in c13 send_documents is enabled
and in c14 start_trip is enabled. The second guideline for modeling con-
cerns the use of triggers for the first task in the process. In figure 2.27
we could have added an external trigger to task register. This trigger
would correspond to the request of the customer. Another interpretation
is that the request of the customer corresponds to the creation of the
initial token in condition start. This interpretation is used in figure 2.27.
Therefore the external trigger was not added to task register. In this book
we prefer to use this interpretation. However the interpretation that the

68 Chapter 2

first task requires an external trigger to initiate the process is also
allowed.

And finally ... In this chapter, we have introduced a process-modeling
technique for the specification of workflows. It is based upon the theory
of Petri nets and has a number of advantages. First, the technique is
graphical and easy to apply. As we have seen using several examples,
workflow concepts can be illustrated elegantly using Petri nets. Second, it
is a technique with a good formal foundation: the meaning of each pro-
cess is precisely defined. As a result, we have for example discovered that
two types of OR-split exist. Another important advantage over many
other process-modeling techniques is the fact that (interim) states are
explicitly indicated. This enables us to differentiate between an implicit
and an explicit OR-split. Explicit states also make it conceptually easier
to cancel cases. Cancellation can be achieved simply by removing all the
tokens belonging to that case. An explicit notion of states is also essential
when transferring a case from one workflow system to another. Finally—
because Petri nets have a formal basis—various analytical methods are
possible.

EXERCISES

Exercises Classical Petri Nets

Exercise 2.1 German traffic light

There are some differences between traffic lights in different countries.
The traffic lights described in this chapter are Dutch traffic lights. The
traffic lights in Germany have an extra phase in their cycle. German
traffic lights do not turn suddenly from red to green, but rather give an
additional yellow light just before turning to green.

(a) Identify the possible states and model the transition system. A tran
sition system lists all possible states and state transitions.
(b) Provide a Petri net that is able to behave like a German traffic light.
There should be three places indicating the state of each light and all state
transitions of the transition system should be supported.
(c) Give a Petri net that exactly behaves like a German traffic light. Make
sure that the Petri net does not allow state transitions that are not
possible.

Modeling Workflows 69

Figure 2.28
Project X

Exercise 2.2 Project X

A secret project by the government (let's call it Project X) will be exe-
cuted by one person and consists of 6 tasks: A, B, C, D, E, and F. Figure
2.28 specifies the order in which the tasks need to be executed (prece-
dence graph, cf. PERT/CPM). A possible execution trace is for example
ABDCEF.

(a) Model the project in terms of a classical Petri net.
(b) How does one model so that E is optional?
(c) How does one model so that D and E should be executed consecu
tively, that is, B and C are not allowed between D and E?

Exercise 2.3 Railnet

A circular rail network consists of four tracks. Each track is in one of the
following three states:

• Busy, that is, there is a train on the track.
• Claimed, that is, a train has successfully requested access to the
track.
• Free, that is, neither busy nor claimed.

There are two trains driving on the circular track. The track where a
train resides is busy. To move to the next track a train first claims the
next track. Only free tracks can be claimed. Busy tracks are released
the moment the train moves to another track. One can abstract from
the identity of trains only the state of the rail network is considered.

(a) Model the dynamic behavior of the rail network in terms of a Petri
net.
(b) Is it easy to model the situation with 10 tracks (160 states)?

70 Chapter 2

Exercise 2.4 Binary counter

The following (binary) counter is to be modeled as a Petri net. The
marking of a place represents a binary value (1 or 0). The combination of
the markings of these places represents the natural number that is dis-
played by the counter. For example, the binary number 101, that is, 5,
marks two places corresponding to a "1" (i.e., the places 22 and 2°) and
one place corresponding to a "0" (i.e., the place 21). Make a model of a
counter able to count from 0 to 7.

Exercises High-Level Petri Nets

Exercise 2.5 Driving school

A driving school is trying to set up an information system to track the
progress of the students' training and the deployment of instructors. As a
starting point for a formal process model the following description can
be used.

New students register with the driving school. A registered student
takes one or more driving lessons followed by an examination. Each
driving lesson has a beginning and an end. Instructors give driving les-
sons. The driving school has five instructors. Each driving lesson is fol-
lowed by either another lesson or an examination. The examination has
a beginning and an end and is supervised by a driving examiner. In total
there are ten driving examiners. For the outcome of an examination there
are three possibilities:

1. The student passes and leaves the driving school.
2. The student fails and takes additional lessons in order to try again.
3. The student fails and gives up.

(a) Model the driving school in terms of a classical Petri net.
(b) Use a colored Petri net to model that one takes ten lessons before
taking the exam and people will drop out if they fail three times.
(c) Add time to model that a lesson takes one hour and an exam thirty
minutes.

Exercise 2.6 Bicycle factory

A factory produces bicycles (just one type). The Bill Of Materials (BOM)
is given in figure 2.29.

Figure 2.29

Bicycle factory

Suppliers deliver the raw materials. First the frame and two pedals are
assembled. This takes twenty minutes and is done by a machine of type
B. The other two assembly steps are defined in a similar fashion (see fig-
ure 2.29). Finally, the end product is delivered after three assembly steps.
The factory has three machines of type A, and seven machines of type B.
Each of the machines has a capacity 1, that is, a machine is either free or
busy.

(a) Model the factory in terms of a Petri net. Make sure to model the
states of the machines (busy/free) explicitly and abstract from time.
(b) Add time to model the temporal behavior. What is the maximal
throughput per hour?

Workflow Process Definitions

0

Exercise 2.7 Insurance company

Insurance company X processes claims that result from traffic accidents
with cars where customers of X are involved in. Therefore, it uses the
following procedure for the processing of the insurance claims.

Modeling Workflows 71

72 Chapter 2

Every claim, reported by a customer, is registered by an employee of
department CD (where CD is Car Damages). After the registration of the
claim, the insurance claim is classified by a claim handler of rank A or B
within CD. There are two categories: simple and complex claims. For
simple claims two tasks need to be executed: check insurance and phone
garage. These tasks are independent of each other. The complex claims
require three tasks to be executed: check insurance, check damage his-
tory, and phone garage. These tasks need to be executed sequentially in
the order specified. Both for the simple and complex claims, the tasks are
done by employees of department CD. After executing the two respec-
tively three tasks a decision is made. This decision is made by a claim
handler of rank A and has two possible outcomes: OK (positive) or NOK
(negative). If the decision is positive, then insurance company X will pay.
An employee of the finance department handles the payment. In any
event, the insurance company sends a letter to the customer who sent the
claim. An employee of the department CD writes this letter.

Model the workflow by making a process definition in terms of a Petri
net using the techniques introduced in this chapter.

Exercise 2.8 Complaints handling

Each year travel agency Y has to process a lot of complaints (about
10,000). There is a special department for the processing of complaints
(department C). There is also an internal department called logistics (de-
partment L) which takes care of the registration of incoming complaints
and the archiving of processed complaints. The following procedure is
used to handle these complaints.

An employee of department L first registers every incoming complaint.
After registration a form is sent to the customer with questions about the
nature of the complaint. This is done by an employee of department C.
There are two possibilities: the customer returns the form within two
weeks or he does not. If the form is returned, it is processed automati-
cally resulting in a report that can be used for the actual processing of the
complaint. If the form is not returned on time, a time-out occurs resulting
in an empty report. Note that this does not necessarily mean that the
complaint is discarded. After registration, that is, in parallel with the
form handling, the preparation for the actual processing is started.

Modeling Workflows 73

First, the complaint is evaluated by a complaint manager of depart-
ment C. Evaluation shows that either further processing is needed or it is
not. Note that this decision does not depend on the form handling. If no
further processing is required and the form is handled, the complaint is
archived. If further processing is required, an employee of the complaints
department executes the task "process complaint" (this is the actual
processing where certain actions are proposed if needed). For the actual
processing of the complaint, the report resulting from the form handling
is used. Note that the report can be empty. The result of task "process
complaint" is checked by a complaint manager. If the result is not OK,
task "process complaint" is executed again. This is repeated until the re-
sult is acceptable. If the result is accepted, an employee of the department
C executes the proposed actions. After this the processed complaint is
archived by an employee of department L.

Give the process, that is, model the workflow by making a process
definition in terms of a Petri net.

Exercise 2.9 Let's have a party

A group of students wants to set up an agency to organize parties. The
customer should indicate the amount of money to be spent, the number
of persons the party is meant for, and the area in which the party is to be
given. With that information, the agency looks for a suitable location
and takes care of the rest.

Locations are indoors or outdoors. If the location is indoors, a room is
to be hired. In case of an outdoor location, however, a party tent and a
terrain have to be arranged, possibly along with a permit for making
noise (music). There are two sorts of music: live or CDs. The choice be-
tween these alternatives is not made by the customer, but by the agency
itself: live music is preferred, but expensive, so most parties will have to
do with CDs. CDs are also chosen if there is not enough time left to ask
a band. If CDs are chosen, a sound system has to be arranged. In case
of live music, however, things are more complicated. First, a band is
selected. Then this band is sent a letter inviting it to play on this party. If
the band does not react within a week, a new band is selected and the
procedure is repeated. If they do react, there are again two possibilities:
they are interested or not interested. In the latter case, a new band is

74

 C
ha

pt
er

 2

se
le

ct
ed

 a
nd

 t
he

 p
ro

ce
du

re
 i

s
re

pe
at

ed
. I

n
th

e
fi

rs
t

ca
se

, h
ow

ev
er

, t
he

ba

nd
 is

 n
ot

 h
ire

d
im

m
ed

ia
te

ly
. F

irs
t t

he
 a

ge
nc

y
sh

ou
ld

 s
ee

 a
nd

 h
ea

r
th

e
ba

nd
 t

o
se

e
if

 t
he

y
ar

e
go

od
 e

no
ug

h.
 B

ec
au

se
 t

he
 s

tu
de

nt
s

on
ly

 t
ak

e
th

e
be

st
, a

bo
ut

 th
ir

ty
 p

er
ce

nt
 o

f
th

e
ba

nd
s

is
 c

on
si

de
re

d
go

od
 e

no
ug

h.

Fo
r

th
e

ot
he

r
se

ve
nt

y
pe

rc
en

t,
a

ne
w

 b
an

d
is

 s
el

ec
te

d,
 a

nd
 s

o
on

. I
f

th
e

st
ud

en
ts

 c
an

no
t

fi
nd

 a
 b

an
d

qu
ic

kl
y

en
ou

gh
, t

he
y

sw
itc

h
to

 C
D

s.

O
f

co
ur

se
,

th
e

ba
nd

s
th

at
 h

av
e

be
en

 h
ir

ed
 b

ef
or

e
do

 n
ot

 h
av

e
to

 b
e

ev
al

ua
te

d
fir

st
. T

he
y'

re
 h

ire
d

im
m

ed
ia

te
ly

. A
fte

r
ta

ki
ng

 c
ar

e
of

 th
e

lo
ca

-
tio

n
an

d
th

e
m

us
ic

, t
he

y
al

so
 ta

ke
 c

ar
e

of
 f

oo
d

an
d

dr
in

ks
. I

n
ca

se
 o

f
a

ba
nd

, t
he

y
or

de
r

ex
tr

a
fo

od
 a

nd
 d

ri
nk

s
fo

r
th

e
m

us
ic

ia
ns

. T
o

m
ak

e
su

re
 e

ve
ry

th
in

g
is

 f
in

e,
 th

e
st

ud
en

ts
 ta

ke
 a

 lo
ok

 a
t t

he
 p

ar
ty

 w
he

n
it

is

be
in

g
he

ld
. A

fte
r t

ha
t,

a
bi

ll
is

 s
en

t t
o

th
e

cu
st

om
er

.

(a
)

M
od

el
 th

e
w

or
kf

lo
w

 b
y

m
ak

in
g

a
pr

oc
es

s
de

fi
ni

tio
n

in
 te

rm
s

of
 a

Pe

tri
 n

et
 u

si
ng

 th
e

te
ch

ni
qu

es
 in

tro
du

ce
d

in
 th

is
 c

ha
pt

er
. A

ss
ig

n
tri

gg
er

s
to

 ta
sk

s
w

he
ne

ve
r a

pp
ro

pr
ia

te
.

(b
)

A
na

ly
ze

 th
e

pr
oc

es
s

an
d

in
ve

st
ig

at
e

po
ss

ib
le

 im
pr

ov
em

en
ts

.

3 ______________

Management of Workflows

3.1 Resource Management Concepts

Using the definition of a process, we can indicate which tasks need to be
performed for a particular category of case. We can also show the order
in which they must be carried out. However, the process definition does
not indicate who should do it. But the way in which the work items are
allocated to resources (people and/or machines) is very important to the
efficiency and effectiveness of the workflow. In this chapter, we shall
concentrate upon the management of resources and the link between a
process definition and the resources available. We shall also pay atten-
tion to improving workflows.

3.1.1 The resource

A workflow system focuses upon supporting a business process. In this
process, work is carried out by means of production, also called re-
sources. In an administrative environment, the term resource primarily
refers to office staff. However, a doctor, a printer, a doorman, and an
assembly robot are all examples of resources. The basic characteristic of
a resource is that it is able to carry out particular tasks. We also assume
that each resource is uniquely identifiable and has a certain capacity. In
this chapter, we shall confine ourselves to resources with a capacity of
one. In other words, each resource may be working on no more than one

activity at any given time. This does not, however, have to be the case in
practice.

3.1.2 Resource classification

In general, a resource is permitted to carry out a limited number of tasks.
In a bank, for example, a teller is not allowed to grant a mortgage. A task

76 Chapter 3

usually can be performed only by a limited number of resources. Because
it is impracticable to indicate which resources are able to carry out each
task, we classify them using resource classes. A resource class is a group
of resources. For example, the resource class Counter_Staff may consist
of the people Annie, Hank, Mandy, Jack, and Tom. A resource may
belong to more than one class. So Annie, say, could be a member of
both the Counter_Staff and the Travel_Agent categories. In general, we
differentiate between two forms of resource classification: (1) that based
upon functional properties and (2) that based upon position within the
organization.

A functionally based resource class is known as a role. It is also
referred to as a function or qualification. A role is a group of resources,
each of which has a number of specific skills. Such resource classes as
Counter_Staff, Travel_Agent, Assessor, C_Executive, Administrator,
Printer, Hospital'_Bed, and]unior_Doctor are examples of roles. By
linking a task to the correct role, one can ensure that the resource carry-
ing out the task is sufficiently qualified (and authorized).

Resources can also be classified according to their place in the orga-
nization. Under this definition fall such resource classes as Sales_
Department, Purchasing_Department, Team_2, and Atlanta_Branch. A
resource class based upon organizational rather than functional charac-
teristics also is called an organizational unit. This form of classification
can be used to ensure that a task is carried out at the right place in the
organization.

Figure 3.1 shows a resource classification diagrammatically. In total,
there are eight resource classes. Of these, the resource classes Atlanta,
Denver, Purchasing_Department, and Sales_Department are examples of
organizational units. So the resource Jack works at the Atlanta branch in
the Sales^Department. The remaining resource classes are based upon
functional characteristics. The resource class Secretary, for example,
contains all those resources which are qualified to act as a secretary. As
we can see in figure 3.1, resource classes may overlap. It is even possible
for one resource class to be a subset of another, larger one. The resource
class Salesperson, for example, is contained entirely within the resource
class Office_Staff. We can use a classification similar to the one shown in
figure 3.1 to link a particular task to the appropriate resource(s). Say we
need a salesperson based in Denver. In this case, only one resource

Figure 3.1

Resource classification

qualifies: Frank. If we need a secretary in the Sales_Department, two
resources are possible: Mary and Carl.

As already indicated, in most cases a resource classification consists of
two parts. We call that part containing the functional structure the role
model and that containing the organizational units the organization
chart. Note that the term organization chart usually has a broader
meaning, referring to the hierarchical structure of the organization.

3.1.3 Allocating activities to resources

In order to ensure that each activity is performed by a suitable resource,
we provide each task in the process definition with an allocation princi-
ple (see figure 3.2). This specifies which preconditions the resource must
meet. In most cases, the allocation specifies both a role and an organiza-
tional unit. The resource then must belong to the intersection of these
two resource classes. However it is also possible to define a much more
complex allocation. From figure 3.1, for example, we could specify the
resource classes Office_Staff and Atlanta, but exclude Salesperson. The
task with this allocation rule therefore may be carried out only by an
office worker in Atlanta who is not a salesperson. The allocation may
also depend upon the attributes of the case for which the task must be

Management of Workflows 77

78 Chapter 3

process definition

case

resource classification

Figure 3.2

Allocation principles link the process definition with the resource classification

carried out. Depending upon these attributes we can, for example, select
the organizational unit. To assess an insurance claim, for instance, we
would select the nearest branch of the company. In such a case, we
should use the customer's address as a case attribute. When the Internal
Revenue Service deals with a tax return, the allocation may depend upon
the name of the person making the return. A particular assessment team
is selected based upon the name. In this case, it is of course the person's
name that acts as a case attribute.

By making careful use of the case attributes, we can also ensure that
an activity is performed by a specific resource. But the opposite is also
possible. In a bank, for example, it may be that one member of staff is
not allowed to perform two successive tasks on the same case. We call
this separation of function. This term is taken from accountancy. Here, it
is important that certain tasks not be carried out by the same person in
order to prevent fraud. The financial settlement of a travel-expenses
claim, for example, should not be done by the person who authorized
the journey. The objective of separation of function is to combat abuse.
Because each case is dealt with by several people, it becomes more dif-
ficult to commit fraud. If a number of successive tasks do need to be
carried out by, or under the authority of, a single employee, then that
person is referred to as a case manager. Because she is largely responsible
for a case, she is naturally more involved in it. The appointment of a
manager for each case can result in a better service to the customer and
more rapid completion because of greater familiarity with the work.

By providing a task with an allocation principle, we specify the pre-
conditions that the resource must meet. In most cases, there is more than

allocation

Management of Workflows 79

one resource that may carry out the activity associated with a particular

work item.

At the heart of a workflow system is the workflow engine. This ensures
the actual enactment of a specified workflow. One of its core tasks is to
allocate work items to resources. In doing so, it must take into account
the resource classes specified, as well as such things as separation of
function and case management. In many cases, the workflow engine
nevertheless is able to choose between a number of resources when allo-
cating work. It then has to decide which resource will carry out the
activity. We shall return to this later.

3.2 Resource Management in More Detail

The allocation of resources to activities is not a simple issue. As we have
seen, such concepts as the task, the case, the work item, the activity, the
case attributes, the resource, the resource class, the role, the organiza-
tional unit, and allocation are all closely connected with one another. For
the sake of clarity, we therefore make use of a simple data model which
summarizes the concepts and their mutual relationships. Figure 3.3
shows an entity relationship (ER) diagram. Broadly speaking, this dia-
gram consists of two types of elements: entity types and relationship
types. The former is indicated using a rectangle and represents a group of
entities. For example, the entity type task contains all the tasks that form
part of a process. Relationship types are illustrated using a diamond.
This represents a group of relationships. So the relationship type
belongs_to, for example, contains a collection of relationships between
resources and resource classes. If there exists a relationship between re-
source r and a resource class c, then this means that r belongs to c.

The relationship type of between task and work item indicates to
which task a work item relates. Each work item has a relationship with
precisely one task and each task may have an arbitrary number of work
items (say N) associated to it. This is shown using the symbols 1 and N.
These therefore refer to the cardinality of the relationship of. We can
also say that there exists a 1-on-N relationship. In other words, each
work item relates to precisely one case. It may be possible for more than
one work item to have a relationship with the same case. This may, for
example, result from parallel routing.

Figure 3.3

Using an ER diagram, we can illustrate the links between various entities

An entity of the entity type activity relates to the actual performance of
a work item. So, like a work item, an activity relates to a single case and
a single task. Moreover, zero or one resources are also attached to each
activity. The relationship type belongs_to is an example of an M-to-N
relationship, which specifies that a resource may belong to several
resource classes and a resource class may contain several resources. A
role and an organizational unit are examples of resource classes. Hence
the entity types role and organizational unit are associated with the entity
type resource class through a so-called ISA relationship type. This indi-
cates that roles and organizational units are special cases of resource
classes.

In the ER diagram, we differentiate between a specific case and a case
type. The latter corresponds with a process: it is the category of cases that

80 Chapter 3

Management of Workflows 81

can be dealt with by that process. The ER diagram also indicates that
there exists a one-on-one relationship between the case type and the
process. We also differentiate between case attributes and specific case
attributes associated with a specific case. The former refers to a logical
name that expresses a particular property, the latter to the value of an
attribute in a specific case that is in progress. The entity type allocation
determines which conditions the relationship type by between the entity
types activity and resource must fulfill.

As noted earlier, the preconditions formulated in the allocation policy
can become highly complex. After all, an allocation relates tasks, resource
classes, case attributes, and resources to each other. Each task has one or
more allocations. And an allocation may depend upon one or more
case attributes. In most cases, an allocation will point to the intersection
of a role and an organizational unit. In special cases, though, a specific
resource may be excluded (separation of function) or selected (case
manager).

The ER diagram can only provide an impression of the static aspects
of resource management. We can regard such a diagram as a "snapshot"
of resource management at a particular moment, that is, the diagram
only describes the structure of all possible states. Its dynamic aspects are
not shown in figure 3.3. To illustrate these, we must look at the process
shown in figure 3.4.

The process handle complaint consists of eight tasks, of which three are
automatically handled (they do not involve intervention by a resource).
Moreover there are four resource classes. Two of these are based upon
functional characteristics: Employee and Assessor. Alongside these two
roles there are two further resource classes based upon organizational
characteristics: Complaints and Finance. These correspond with two of
the company departments. Figure 3.4 also shows diagrammatically the
allocation for each task. The task contact_dient is linked with the role
Employee and the organizational unit Complaints. This means that an
employee in the complaints department is needed to approach the client.
A resource from the intersection of the resource classes Employee and
Complaints also is required for the tasks contact_department and
send_letter. For the task pay, an employee from the financial
department is needed. The task assess is carried out by a resource from
the intersection of the resource classes Assessor and Complaints. In
figure 3.5, these

82 Chapter 3

Figure 3.4

The process "handle complaint" and the resource classes involved in it

Resource class Resources

Employee John

 Jim

 Liz

 Jack

 Mandy

 Carl

Assessor Mandy

 Carl

Complaints John

 Jim

 Mandy

 Carl

Finances Liz

 Jack

Task Role Organizational
unit

record
contact_client
contact_dept.
collect assess
pay
send_letter
file

Employee
Employee

Assessor
Employee
Employee

Complaints
Complaints

Complaints
Finances
Complaints

Figure 3.5

A summary of the composition of each resource class and those required for each case

Figure 3.6

In the state illustrated, there are six complaints in progress

allocations are shown again, but in table form. The composition of each
resource class is also given.

In figure 3.5 we see, for example, that Mandy belongs to the resource
classes Employee, Assessor, and Complaints. She thus can carry out any
task except pay. Liz and Jack, on the other hand, can only carry out the
task pay.

Figure 3.6 shows the states of six cases. Case 1 has been assessed pos-
itively, resulting in a work item (pay). (In other words, the task pay is
enabled for case 1.) For case 2, the activity assess is being performed.
Based upon the states shown in figure 3.6, we can establish the relevant
work items and activities. These are shown in the table in figure 3.7.
However the opposite is not possible. Based upon the table in figure 3.7,
we cannot directly work out the state of each case. For example, it is
impossible to tell directly from the table that there is a token in the place
corresponding to condition c3.

There is a total of four work items. Each corresponds with the poten-
tial performance of a task for a particular case. Note that in the situation
depicted in figure 3.6 there are two work items for case 5. This is because
of parallel routing, which enables the tasks contact_client and contact_
department simultaneously. There are three activities. Each of these cor-
responds with the actual performance of a task for a particular case. The
first corresponds with the performance of the task assess for case 2 by
resource Mandy. The second is carried out by Jim: the task contact_

Management of Workflows 83

84 Chapter 3

Work items

Case Task

Case 1 pay

Case 3 assess

Case5 contact_client

Case5 contact_dept.

Activities

Case Task Resource

Case 2 assess Mandy

Case 4 contact_dept. Jim

Case6 record -

Figure 3.7

The work items and activities for the state illustrated in figure 3.6

department for case 4. The last is the task record for case 6. As shown in
figure 3.5, no resource is required for this.

Each of the work items shown in figure 3.7 can, in principle, be
transformed into an activity. The first (task pay for case 1) requires a
resource from the intersection of the resource classes Employee and
Finances. Both Liz and Jack thus qualify. The second (task assess for
case 3) can only be carried out by a resource from the intersection of
Assessor and Complaints. Since Mandy is already busy assessing case 2,
Carl is the only resource able to perform this work item immediately.
The other two work items require a resource from the intersection of
Employee and Complaints.

3.2.1 Allocation principles

The objective of a workflow system is to complete work items as quickly
as possible. After all, a hold up affecting work items can result in the case
as a whole taking longer. In order to transform work items into activities,
two decisions always need to be made:

• In what order are the work items transformed into activities? If there
exists an excess of work items at particular times, we cannot transform
each into an activity immediately. There may, after all, be more work
items than there are resources available. If this is the case, then a choice
must be made as to the order in which the work items are selected.
• By which resource are the activities carried out? Because not all
resources are the same, it may matter to which resource a particular
work item is allocated. A specialist resource, for example, can carry out
certain tasks more quickly. It may also be sensible to keep a flexible
resource—one that is a member of a large number of resource classes—
free for as long as possible.

Management of Workflows 85

It goes without saying that these two decisions are closely interrelated.
The order can be important when selecting a resource. Conversely the
choice of a resource can affect the order in which work items are trans-
formed into activities.

Many different heuristics can be applied to select a particular order. In
particular, we can borrow the various queueing disciplines for produc-
tion management that are used in factories. The routing of a case through
several resources exhibits many similarities with the routing of a product
through machines in a production department. Some common queueing
disciplines are as follows:

• First-Iny First-Out (FIFO). If work items are dealt with in the order in
which they are created, we refer to a FIFO discipline. Rather than the
time when the work item was generated, we can also use the moment
when the case as a whole was created. FIFO queueing is a simple and
robust allocation rule and is the most widely used in practice.
• Last-In, First-Out (LIFO). LIFO is the opposite of FIFO. In this ar
rangement, the work items created most recently are dealt with first. In
certain cases, this (unfair) allocation rule can lead to a higher average
level of service.
• Shortest Processing Time (SPT). We can sometimes estimate in ad
vance, using the attributes of a case, how much time is required to per
form an activity. A distinction can often be made between easy and
difficult cases, and between simple and time-consuming tasks. By select
ing first those work items that take the least time, it is often possible to
reduce the average flow time of cases. It is also possible, however, to
imagine situations in which it is actually better to give time-consuming
tasks priority over simplest ones. We then refer to a Longest Processing
Time (LPT) queueing discipline.
• Shortest Rest-Processing Time (SRPT). If we have some insight into
the time required to carry out particular activities for a given case, and
into the routing of that case, then we can estimate its remaining total net
processing time. By always prioritizing the case with the
shortest
remaining processing time, the quantity of work in progress (WIP) is
generally minimized. If, conversely, we select the case with the longest
remaining processing time, then we refer to a Longest Rest-Processing
Time (LRPT) queueing discipline.
• Earliest Due Date (EDD). An activity is always carried out in the
context of a case. This was initiated at a certain time, and should pref
erably also be completed by a set time (the "due date"). The EDD
queueing discipline determines the order based upon the case's deadline.

86 Chapter 3

So a case that must be finished today takes priority over one that needs to
be ready in a week. The tasks still to be carried out may also be taken
into account when deciding the order.

Note that the information required by each queueing discipline can vary
widely. FIFO needs virtually no information. SRPT, though, requires in-
formation about the expected processing times and the routing. There
also exist very advanced queueing disciplines that take into account the
work in progress, the expected supply of work, and the availability of
resources. These disciplines are characterized by their use of the current
state of the workflow or of forecasts of its future state.

When considering queueing disciplines, we thus far have assumed that
the order is determined by the individual characteristics of a case. How-
ever it is also possible for it to be decided for a batch of cases. For a given
batch, it is sometimes possible to improve the order using certain criteria.

In what order work items are transformed into activities is closely
associated with the selection of the resource. If a work item could be
carried out by more than one resource, then the following considerations
come into play:

• Let a resource practice its specialty. A resource can often perform
a large number of tasks. Usually, though, there are some in which it
specializes. A tax inspector, for example, may be qualified to assess a
whole range of tax returns but at the same time be specialized in those
submitted by building contractors. It therefore is preferable to let this
resource practice his specialty.
• As far as possible, let a resource do similar tasks in succession. Both
people and machines require so-called set-up times. By this we mean the
(additional) time required to begin performing a new task. The set-up
time may, for example, be spent opening an application or getting used
to a new task. By carrying out similar tasks one after the other, the set-up
times can be cut down. Furthermore in the case of work of a repetitive
nature, people can reduce their average processing time by using routine.
• Strive for the greatest possible flexibility for the near future. If we have
a choice between two resources of equal value to perform a work item, it
is wise to select the one that can carry fewer work items of other types. In
other words, save the "generalists" until last. In the situation shown in
figure 3.7, for example, it would not be sensible to allocate Carl to one of
the work items for case 5. If we were to do so, all the resources from the
resource class Assessor would be busy and case 3 could not proceed any
further. By keeping the "generalists" free, flexibility for the near future is
guaranteed.

Management of Workflows 87

So when allocating work items to resources, choices must continually be
made. There are two ways in which this can be done:

• The workflow engine matches work items and resources. Within pre
set conditions, the workflow engine can choose which resource performs
each work item. The resource itself thus is unable to choose. As soon as
it has finished performing one activity, it is given a new work item. We
refer to this as push-driven: the engine "pushes" work items onto
resources.
• The resources themselves match work items and resources. In this
scenario, it is the resources that take the initiative. Each has studied the
work items that it is able to carry out. It then chooses one. We call this
pull-driven: the resources "pull out" work items and all "eat" from the
same basket of work items.

Usually an approach somewhere between push and pull-driven is taken.
One common method is the pull principle supplemented by an ordering
of the work items by the workflow engine. A resource thus sees an
ordered list of the work items that it can carry out. This is supplied by the
workflow engine, which sorts the work items according to such princi-
ples as FIFO, LIFO, SPT, or EDD. The resources preferably take the first
work item on the list. They may, however—and for whatever reason—
choose another. The advantage of this mixed approach is that the work-
flow engine is given an advisory role while the (human) resources still
retain the freedom to decide what work they do.

3.3 Improving Workflows

A workflow system enables an organization to use and manage struc-
tured business processes. One important property of workflow systems is
that, by comparison with classic information systems, it becomes easier
to change business processes. Exchanging or combining tasks, or rear-
ranging resource classes, are easy modifications. It therefore is interesting
to examine how we can improve the workflows that are being managed
by the system. Improvements influence performance criteria such as
completion times, utilization of capacity, level of service, and flexibility.

3.3.1 Bottlenecks in the workflow

When should the process, resource classification, or resource manage-
ment be changed? If a workflow is not working properly, we can often

88 Chapter 3

observe all types of symptoms. These can be compared with the functions
of our body. Symptoms like headaches, diarrhea, nausea, or coughing
indicate problems. In a workflow, there also are typical symptoms that
betray the presence of a bottleneck that is obstructing its proper opera-
tion. Some typical symptoms are listed below:

• Number of cases in progress (too) large. If there are many cases in
progress, this can indicate a problem. This large number can be caused
by major fluctuations in the supply of cases or by a lack of flexibility in
the resources. However, it may also be that the process contains too
many steps that need to be passed through sequentially.
• Completion time (too) long compared with actual processing time.
The actual processing time of a case sometimes forms only a small part of
the total time it is in progress. If this is the case, there may be a whole
range of possibilities for reducing the completion time.
• Level of service (too) low. A workflow's level of service is the degree to
which the organization is able to complete cases within a certain dead
line. If the completion time fluctuates widely, then there is low level of
service. It is not possible to guarantee a particular completion time. A
low level of service also exists when there are many "no sales" occurring.
(By this, we mean the inability to take on potential cases due to the long
waiting times.) When the client knows that it will take a long time to
complete a case (say, a loan application), it will approach another com
pany. A low level of service can indicate a lack of flexibility, a poorly
designed process or a structural lack of capacity.

These three symptoms point to possible bottlenecks. To identify them we
need benchmark values for these measures, for instance from comparable
processes. Usually, it is not sensible to combat the symptoms using only
emergency measures. It is important to tackle their causes.

To alert us to problems and to measure the performance of a particular
workflow, we use performance indicators. These express the perfor-
mance of a particular aspect of the workflow. In general, we distinguish
between two groups of performance indicators:

• External performance indicators (case-oriented). The external perfor
mance indicators focus upon those aspects that are important to the
environment of the workflow. For example, indicators of the average
completion time and reliability of the completion time. Note that these
indicators can be subdivided according to the specific properties of the
case.

Management of Workflows 89

• Internal performance indicators (resource-oriented). The internal per-
formance indicators show what efforts are required to achieve the
external performance (for example, the level of resource utilization, the
number of cases per resource, the number of cases in progress, the num-
ber of rollbacks, and the rate of turnover). The latter is a measure of the
speed at which cases proceed through the workflow system. It is calcu-
lated by dividing the length of a period (for example, a month) by the
average completion time, or by dividing the average number of cases
which come in during a period by the average number of cases in
progress.

A poor external performance costs a lot of money. Consider, say, a bank:
a long completion time for mortgage applications causes a loss of many
clients. However, a good external performance can require a high degree
of internal effort. Achieving a rapid completion time can, for example,
require extra overtime or the allocation of additional resources. The
objective of every organization is to minimize its total costs. As shown in
figure 3.8, careful weighing of the costs of a poor external performance
(no-sale costs) versus those of internal effort is required.

Nevertheless it is in many cases possible to improve the external per-
formance of a workflow without allocating additional resources. Such an
improvement can be achieved by restructuring the workflow or using a
better allocation strategy.

Dollars

Ideal level of
service

Figure 3.8

Weighing external performance versus internal effort

Total costs

Costs of
poor external
performance

Costs of internal
performance

Level of service

90 Chapter 3

33.2 Business Process Re-engineering

Before focusing upon improving workflows, we shall consider the rela-
tionship between business process re-engineering (BPR) and workflow
management. We can define BPR as the fundamental reconsideration
of business processes. Its objective is to bring about entirely new busi-
ness processes which enable drastic improvements to costs, quality, and
service. In order to achieve this objective, radical changes are often nec-
essary. For many administrative processes, the rise of workflow man-
agement systems is an "essential enabler" for BPR efforts. After all, the
use of a workflow management system makes it easy to adapt processes.

The introduction of a workflow system makes it possible to work in a
completely different way. Conversely, some BPR efforts result in the
purchase of a workflow management system. Workflow management
and BPR are natural partners. It is therefore important for work-process
designers to be aware of the latest developments in BPR.

In their book Re-engineering the Corporation, Michael Hammer and
James Champy write that BPR is characterized by four key words: fun-
damental, radical, dramatic, and process. The keyword fundamental
indicates that, when revitalizing a business process, it is of great impor-
tance always to ask the elementary questions: why are we doing this, and
why are we doing it like this? Radical means that the re-engineering must
represent a complete break from the current way of working. BPR is not
an improvement of the existing processes, but their replacement by
completely new ones. The third keyword also refers to the fact that BPR
must not effect merely marginal or superficial changes, but that these
must be dramatic in terms of costs, service, and quality. But of all the
keywords, process is perhaps the most important. In order to achieve a
dramatic improvement, it is necessary to focus upon the business process.
This means that the organization must be subordinated to the primary
business process. To operate in a genuinely process-oriented way, one
must abstract oneself from other aspects, such as people, functions, jobs,
teams, and departments.

Process-oriented thinking is crucial in the use of workflow manage-
ment systems. One of the great dangers threatening the successful intro-
duction of a workflow system lies in simply computerizing existing
(manual) practices. Supporting old processes with a workflow system
will only deliver a limited amount of improvement. Dramatic improve-

Management of Workflows 91

ments are only possible if the old processes are separated from and
replaced by new ones. One common error when introducing a workflow
system is the unnecessary sequencing of tasks. The fact that a physical
document can only be in one place at a time led to sequential routing in
many old style processes. However, computerization of the document
and the use of a workflow system enable parallel routing in many cases.
It is important to structure the new process in such a way that parallel
routing also becomes possible (see chapter 6).

3.3.3 Guidelines for (re)designing workflows

Inspired by many experiences in BPR, we are able to propose a number
of rules of thumb (i.e., best practices) for the design or redesign of
workflows. These relate to process design, resource classification, and the
allocation of activities to tasks:

1. First establish the objective of the process. When designing a new
workflow or changing an existing one, it is crucial to consider the role
played by the process in the greater scheme of things. Why do we need
the workflow at all? By reflecting upon this fundamental question, it is
possible to define the new workflow without misleading presuppositions.
2. Ignore the existence of resources when defining a process. The pro-
cess definition is independent of the potential offered by people and
machines. If the allocation of work to resources is already being consid-
ered when drawing up the process definition, one runs the risk that
the resulting process will not be the best one possible. First list which
tasks are required and in what order they should be carried out. Only
then link the tasks to resources. In other words, do not allow yourself
to be distracted by the traditional structure of the organization when
designing a process. In all, we recognize four phases in the (re)design of a
workflow: (1) What?, (2) Why?, (3) How?, and (4) Whom?. Figure 3.9
shows these phases diagrammatically.

During the first phase we select the process that needs to be redesigned.
During the second we consider the objective of the process: what is its
output, in terms of product delivered, and do we need this? During the
third we determine the structure of the process. Only during the last
phase do we focus upon allocating work to resources.

3. As far as possible, make one person responsible for the processing of a
case (case manager). Processes supported by a workflow system can be
quite complicated. For the client, it therefore is often very difficult to
gauge the progress of a particular case. This is why it is sensible to ap-
point a manager for each case. He or she acts as a sort of buffer between

92 Chapter 3

Select the
workflow that has
to be (re)designed.

First establish the
objective of the
workflow to be
(re)designed.

Then establish the
steps that must be
carried out, and in
what order.

Finally, establish
the allocation of
work to resources.

Figure 3.9

The four phases through which the (re)design of a workflow passes

the complicated process and the client. In doing so, it is important that
the case manager behaves towards the client as if he or she is responsible
for the entire process. This provides the client with a single point of
contact, and the case manager feels more involved in the work. Note that
the case manager is only responsible for the case itself. Other resources
can be used to actually carry out the activities associated with the case.

4. Check the need for each task. Tasks are sometimes added for the sake
of security: for example, monitoring tasks. Such tasks often are used as a
stopgap to conceal a problem in one of the previous tasks. For the same
reason, iterations should always be examined critically. In short, elimi-
nate those tasks that add no value.
5. Consider the scope of tasks. A task is a logical unit of work. By
combining separate tasks into one composite task, set-up times can be
reduced. The involvement of the people performing them
is also increased. However tasks should not be too large. Because a
task always has to be performable in one go, without
interruptions, "bite-size chunks" are desirable. Large tasks can also
inhibit flexibility and make an advanced allocation of work impossible.

Management of Workflows 93

6. Strive for the simplest possible process. Complex process definitions
lead to unmanageable processes. This is why it is important that a pro
cess not be unnecessarily complex. Processes can often be simplified by
adding more "intelligence" to the tasks. If it is impossible to avoid a
complex process, then it is essential to establish a clear hierarchical
structure. When breaking down a process, it is important to ensure
that tasks with a close relationship form part of the same subprocess. In
addition, it is sensible to allow as few causal links as possible between
different subprocesses. Ideally, each subprocess will have one entrance
and one exit. However, the most critical consideration is that the process
be understood by the people carrying out the work. If this is not the case,
the result can be a difficult-to-manage process.
7. Carefully weigh a generic process versus several versions of the same
process. Do not define a separate process for each type of case. Try to
create a generic process that distinguishes between the various types of
cases by using selective routing. Do not, though, attempt to handle two
completely different types of cases in a single process. If a process begins
with an OR-split which sends the case into a number of alternative sub-
processes, then it is probably a good idea to use a number of separate
subprocesses. Each of these will then correspond with a version of the
same process.
8. Carefully weigh specialization versus generalization. The division of a
generic task into two or more alternative tasks may have either a positive
or a negative effect. One advantage can be that the tasks become better
suited to the specific qualities of a resource. There can be drawbacks to
specialization, though. It often detracts from the flexibility and accessi-
bility of the process. It also can lead to monotonous work, which reduces
motivation. Rather than specialization, the term triage is often used. This
is the classification of cases in order to enable selective processing.
9. As far possible, try to achieve parallel processing of tasks. Always
Consider whether tasks can be performed in parallel. If two tasks can be
carried out independently of one another, then it is very important that
the process allows for their parallel execution. The unnecessary intro-
duction of sequential order relationships results in longer completion
times and the inefficient use of resources.
10. Investigate the new opportunities opened up by recent developments
in networking and (distributed) databases. The elimination of physical
barriers resulting from such developments as the computerization of
documents often makes possible entirely new process structures. Tasks
that previously had to be performed in sequence can be carried out in
parallel following the introduction of, say, a workflow package.

94 Chapter 3

11. Treat geographically scattered resources as if they are centralized.
The introduction of a workflow system lowers the physical barriers be
tween the various sections of an organization. It makes it easier for two
organizational units to exchange work. If team A is struggling with a
flood of work, but team B is operating below capacity, it is logical to
transfer work from A to B. It is even better to treat geographically scat
tered resources as if they are centralized. This enables resources to be
allocated to those places where most of the work is waiting.
12. Allow a resource to practice its specialty. As mentioned earlier, it is
important to make use of a resource's specific qualities.
13. As far as possible, allow a resource to perform similar tasks in suc-
cession. By performing similar tasks one after the other, set-up times can
be reduced and the benefits of routine working can be exploited.
14. Try to achieve as much flexibility as possible for the near future.
When allocating work to resources, it is sensible to retain as much flexi-
bility for the near future as possible.
15. Allow a resource to work as much as possible on the same case. If
an employee performs a number of successive tasks for a specific case, the
total processing time is usually shorter than if different employees carry
out those tasks. Less time is taken because the member of staff does not
have to "get used" to each new case.

Based upon the guidelines listed above, workflows can be designed that
result in the efficient and effective processing of cases. A number of these
guidelines highlight the fact that a balance needs to be struck between
two or more alternatives. In many cases, which should be chosen can
only be decided following a thorough analysis. Such an analysis is usu-
ally of quantitative aspects, with the emphasis being placed upon such
performance indicators as average completion time, level of service, and
utilization of capacity. There are various analytical techniques available
for establishing these performance indicators using a modeled workflow.
A number of these are addressed in the next chapter.

EXERCISES

Exercise 3.1 Insurance company

Consider the insurance company described in exercise 2.7.

(a) Make a resource classification with relations between roles (qualifi-
cations) and groups (organizational units).
(b) Assign a role and a group to each task in the process model.

Management of Workflows 95

Exercise 3.2 Complaints handling

Consider the complaints handling process described in exercise 2.8.

fa) Make a resource classification with relations between roles (qualifi-
cations) and groups (organizational units), (b) Assign a role and a group
to each task in the process model.

Exercise 3.3 Employment Office

Agency "Job Shop'' accepts requests for new employees by companies all
over the country. Requests can be sent by e-mail, by mail, or by phone to
one of the agencies in Eindhoven and Leeuwarden. Handling these
requests is a job for someone in the department of business relations
(BR). For the Eindhoven agency this job is done by Johan in Leeuwarden
Sietse, who is responsible for BR. The first thing being done is sending an
acknowledgement back to indicate that the request has been received.
Then "Job Shop" has several options: they always look in their database
to find suitable people, but they can also place an advertisement in some
of the greater papers in the country to ask for people, as well. Placing an
ad is a job for those in public relations (PR): Jaap and Anke in Eindhoven,
Rinske in Leeuwarden. The manager decides whether or not this option
should be used. Being a manager is a job fulfilled by Ahmed (Eindhoven)
and Dion (Leeuwarden).

The actual searching in the database is done by someone in recruit-
ment. All candidates for the job get a marking that will be used later.

People who react to the ad can do this by phone, by completing a form
(found at Internet), or by dropping off a letter with their data at the
office. Someone from recruitment processes the data in the form/letter by
adding it to the database and by marking candidates for the job. If
someone uses the phone, a member from recruitment will interview this
person to get his/her data for the database. Again, a marking is placed if
the person fits the requirements for the job.

The Eindhoven recruitment team is formed by Annelies, Manja, and
the people of both PR and BR. In Leeuwarden, Anja, Hakan, Rinske
(also PR), and Sietse (also BR) take care of new people.

After some time, the deadline for a job expires and a candidate has
to be chosen from the ones marked in the database. Reactions to the ad,
if placed, will not be processed anymore from then on. One by one, the
candidates will be called by someone in the recruitment team until

96 Chapter 3

someone has been found. In this call, she gets an invitation to come to the
office to discuss the possible new job. Of course people may refuse to
come. However, if someone agrees to come to the office, an appointment
is made and she gets an interview with one of the employees (recruit-
ment) of "Job Shop." Immediately after this interview an evaluation is
made and the candidate is told whether or not she will be chosen. If no
candidate can be found, or when no one is suitable for the job, a letter is
sent to the company.

Once someone has been chosen, she gets a letter with all the data
needed to prepare for the new job. This letter is composed by someone
from recruitment. Also a letter is sent by BR to the company for which
the new employee has been found. In this, all relevant data concerning
the new employee is listed. Of course, the database will have to be
updated in order to reflect the new status of this person. This is done
after sending the letters, by the same person from recruitment who sent
the letter.

Maintenance of the database in both agencies is done by Mahroud, the
IT specialist.

(a) Make a resource classification with relations between roles (qualifi-
cations) and groups (organizational units).
(b) Construct a process model of the process sketched above.

Exercise 3.4 Have a nice flight with CRASH

We will look at the preparation of a flight plan for the aircraft of the
company "CRASH" (Cheap and Reliable Aerial Shipments). This com-
pany transports freight for customers from place Y to place Z.

Each customer sends a form describing the freight and the wishes she
has about it. Upon receipt of such a form, a secretary makes a copy of it.
The original is taken to a loadmaster, who, with his knowledge of the
capacity of all the company's aircraft, will decide which aircraft will be
used. The copy is sent to the navigator. The navigator, responsible for
setting out the flight plan, takes a flight plan paper and fills in the date,
her data (name and employee number) and the client number. Then the
navigator has to check the following things in sequence before planning
the flight:

• What freight will be taken and, more important, where does it have to
be delivered? Together with the loadmaster this will be discussed. The

Management of Workflows 97

type of aircraft and its payload will influence the flight path: perhaps
some extra stops are needed to refuel.

• What are the weather conditions? For this the navigator goes to the
north side of the company's building to meet with someone in meteorol-
ogy. Together they will discuss the weather for that day and that person
will put the information on a map.
• There might be some exceptions: some areas have to be avoided be
cause of military exercises, etc. At the south side of the building, the
directors have their room. They know all about those exceptions and will
tell the navigator what she needs to know. The same map is used to draw
the areas for which exceptions hold.

Once the navigator has gathered these three pieces of information, she
can start planning the flight in her room at the west side. For this she uses
a special form, not the form she already has filled out in part. The reason
for this is that she wants to be able to make corrections without spoiling
the official flight plan. After that, she takes the flight plan to the directors.
One of them will check this flight plan with other, already approved
flight plans. This will ensure that collisions with other aircraft because of
incorrect flight plans will be prevented. Also some mistakes the navigator
might have made, however small the chances of that are, will be spotted
then.

If the flight plan turns out to be unsafe, the navigator returns to her
room to do the planning again and come up with an improved flight
plan. This will be followed by another check with the directors, just as
often as it takes to make the flight plan safe. Then both the navigator and
the director will sign the flight plan, after it has been put on the official
form by a secretary specially trained to do so.

Since the fuel has to be paid for by the company itself, a courier then
has to take the flight plan to one of the company's logistics people (in
another building two miles from where the navigator has her room). This
person has to sign the flight plan to approve the use of fuel. Of course, he
can refuse to sign. In that case, the refusal will be made clear to the navi-
gator and a letter will be sent to the customer. In this letter, the company
will send its excuses and explain why no acceptable flight plan could be
produced. Of course, "CRASH" hopes to be of better service in the future.

However, if the person in logistics approves, a courier takes the flight
plan back. Then the captain of the aircraft has to sign it. This is because
she will be responsible for the aircraft every second of the flight. Again,

98 Chapter 3

the flight plan can be refused, with the same consequences as before.
If the flight plan is accepted (by signature), the flight plan will be stored
in the computer by one of the directors.

After a successful delivery (despite the company's name, most deliv-
eries are!), the customer will also be sent a letter, accompanied by a bill.
However, sometimes a crash does occur. Then an apologizing letter is
sent to the customer. All letters to customers are composed and sent by a
secretary.

Once a flight plan has been "released" for signing by logistics and the
plane's captain, the navigator is available for planning another flight.

About the organization: most navigators are captains as well. There-
fore all captains and navigators are united in the AIR division. (They say
that AIR stands for "Aces with Incredible Reputations"; being humble is
not their strength). Extra captains hired from KLM (Kaptains Looking
for Money, an agency that "has" freelance pilots/captains) are also part
of AIR, albeit temporarily. Ground support by the loadmasters, directors
and meteorology people is covered by the SUPPORT division: SUPPort
Of Reliable Transport. The logistics and secretary departments are part
of CRASH, but since they couldn't come up with a good name, they
don't have a group of their own. The couriers are hired from an agency
close to the company.

(a) Construct a resource classification of CRASH, distinguishing roles
and groups, using the techniques of the book.
(b) Construct a process model of the process sketched above. Define
roles, and assign triggers and roles to tasks whenever appropriate.
(c) Analyze the process and investigate possible improvements.

4 ___________

Analyzing Workflows

4.1 Analysis Techniques

The introduction or modification of a business process can have
far-reaching consequences. Because a process definition is the blueprint
of such a process, it is vitally important that it contains no serious errors.
The process should also be designed in such a way that the completion
times of and capacity required for cases are kept as small as possible.
For example, if two tasks can be carried out in parallel, it in general is
sensible to ensure that the process allows this. After all, by "parallelizing"
tasks, completion times usually can be reduced. Because the process def-
inition is so important, it is useful to analyze it thoroughly prior to its
enactment. In doing so, we differentiate between the analysis of (1) the
qualitative aspects and (2) the quantitative aspects of workflows. The
former mainly concern the logical correctness of the defined process, that
is, the absence of anomalies such as "deadlocks" (when a case is
"blocked" and no longer proceeds through the process) and "livelocks"
(when a case becomes "stuck" in a never-ending loop). The quantitative
aspects mainly concern the performance of the defined process. An anal-
ysis of the quantitative aspects focuses upon establishing the performance
indicators, such as average completion time, level of service, and utiliza-
tion of capacity.

In this chapter, we shall highlight a number of analysis techniques
which can be extremely useful in the context of workflow management
(see figure 4.1). We first introduce a simple technique designed to illus-
trate all the states attainable in a case. We then turn our attention to the
errors that can be made when drawing up the definition of a process. We
will show that, based upon the structure of the underlying Petri net, we

Figure 4.1

Analysis techniques can be applied to examine workflows both qualitatively and
quantitatively

can decide whether a process definition is correct. In the second part of
this chapter, we concentrate upon the analysis of quantitative aspects.
Using a number of examples, we show how to improve the performance
of existing processes. Finally, we study the subject of capacity planning.

4.2 Reachability Analysis

As we learned in chapter 2, we can define a process in terms of a Petri
net. Figure 4.2 shows such a network.

A Petri net and its initial state determines which states are reachable
and in what order they can be reached. (As we saw in chapter 2, the state
of a Petri net corresponds with the distribution of tokens over places.)
We therefore use a Petri net to specify the possible behavior of a modeled
process. One way to illustrate the behavior is to draw up a so-called
reachability graph.

This is a directed graph consisting of nodes and directed arrows. Each
node represents an reachable state and each arrow a possible change of
state. To illustrate this, we can examine the Petri net shown in figure 4.2.
The possible states of this network are indicated using "triplets" (a, b, c\
with a representing the number of tokens in the place claim, b the number
in under Consideration, and c the number in ready. We therefore show

100 Chapter 4

Analyzing Workflows 101

Figure 4.2

A classic Petri net

(0,0,3)

Figure 4.3

The reachability graph for the Petri net shown in figure 4.2

the initial state illustrated as (3,0,0). The reachability graph derived from
this initial state is shown in figure 4.3.

Using this graph, we can deduce that there is a total of ten attainable
states. Each node represents one of these. But not each reachable state
actually has to occur. The state (1,2,0), for example, is reached only if the
transition record fires for a second time when the state is (2,1,0). The
number of arrows leading from a node indicates how many subsequent
possible states there are. If there is more than one outgoing arrow, then
the next state is not predetermined. We refer to this situation as a
non-deterministic choice. If a node has no arrows leading from it, then it
corresponds with an end state. This is a state in which no transition is
enabled. The reachability graph in figure 4.3 shows that the Petri net
beginning with the state (3,0,0) always results in the end state (0,0,3)
after six firings.

102 Chapter 4

green 1

Figure 4.4

Two sets of traffic lights

We are paying considerable attention to the reachability graph because
it embodies the behavior of the process being modeled. By drawing up
the reachability graph for a number of cases, we can gain an insight into
the operation of the Petri net tool. The fact that, given a diagram like
figure 4.2 (that is, a Petri net and its initial state), we can compile a
reachability graph, shows that Petri nets are an unambiguous and precise
means of description. Because the operation of a Petri net is completely
formalized, it therefore is also possible for a computer to construct the
reachability graph.

As we saw in chapter 2, we can use Petri nets to describe processes
with a repetitive nature. We used the network shown in figure 4.4 to
model the traffic lights at the junction of two one-way streets. The two
sets of lights operate in such a way that one is always at red.

When both sets of lights are red, there is a token in the place x. As
soon as one of the lights changes to green, the token disappears from x
and the other set of lights is blocked. Only when both sets have returned
to red is the other light able to change to green. Using the reachability
graph shown in figure 4.5, we can study whether the traffic lights do
indeed operate in a safe way.

Each possible state in this case is represented by a septet. The figures
show the number of tokens in red1, green1, yellow1, red2, green2,
yellow2, and x, respectively. An inspection of the reachability graph
shows that the traffic lights do indeed operate safely: in every possible
state at least one of the sets of lights is red. However we can see that it

Figure 4.6

The two traffic lights now change to green alternately

is also possible that the first set always changes to green, while the second
set remains constantly at red. We can avoid this by ensuring that each set
of lights changes to green in turn. Figure 4.6 shows how this can be
modeled.

It is easy to work out that the reachability graph associated with figure
4.6 has a total of six states. Just as we can verify the correct operation of
traffic lights using the reachability graph, we can use it to determine the
correctness of a workflow. Before we go further into checking correct-
ness, we shall look at a number of typical errors that can occur when
defining a process.

4.3 Structural Analysis

Before the introduction of advanced information
systems—such as workflow systems—business processes generally
had a simple structure.

Analyzing Workflows 103

Figure 4.5

The reachability graph for the Petri net shown in figure 4.4

Figure 4.7

An example of an incorrect process

This was mainly due to the fact that a paper document was linked with
each case and could physically only be in one place at any one time. The
document acted as a sort of token which ensured that tasks were carried
out sequentially. As a result of the many developments in information
technology, however, it is now possible to arrange processes completely
differently. By using databases and networks, information can be shared.
Because different people can work on the same case at the same time, it is
no longer necessary for tasks to be performed sequentially. Thanks to the
"parallelization" of the business process, enormous reductions in com-
pletion times can be achieved. In the environment in which a workflow
system operates, it therefore is often attractive to carry out tasks in par-
allel, as far as possible. But the use of sequential, parallel, selective, and
iterative routing in the same process can make it very difficult to assess
the correctness of the defined process. We can illustrate this using the
simple example in figure 4.7.

At first sight, this appears to be a sensible process definition, with two
checks being carried out in parallel following the acceptance of a claim.
Based upon these checks, either a rejection letter is sent or a payment is
made. However, owing to an incorrect combination of parallel and se-
lective routing, errors have crept into this process definition. If check_
policy places a token in c5 and check_claim a token in c6, pay will fire.
This is the only scenario in which the case is completed correctly. If
check_policy places a token in c3 and check_claim a token in c4, then
send_letter will fire twice. The consequence is that two tokens appear in
end. If check_policy places a token in c3 and check_claim a token in

104 Chapter 4

Analyzing Workflows 105

task4 task5

start taskl task2 task3 end

Situation A

start taskl

task2

Situation B

start taskl task2 task3 end

Situation C

start taskl task2

Situation D

task3 end

Figure 4.8 Four flawed situations

106 Chapter 4

then send_letter will only fire once, but one token will remain in c6.
The same happens if check_policy places a token in c5 and check_claim
a token in c4.

Figure 4.8 illustrates four situations that, as in the previous example,
can result in incorrect processes. Using this figure, we can highlight a
number of common errors that occur during the definition of a process:

1. Tasks without input and/or output conditions. When a task has no
input conditions, it is unclear when it may be performed. When a task
has no output conditions, it does not contribute to the successful com
pletion of a case and so it can be dropped. Situation A in figure 4.8 con
tains one task without input conditions (task4) and one without output
conditions (task5}.
2. Dead tasks: tasks that can never be carried out. It is obvious that a
process definition containing "dead" tasks is undesirable. In situation B,
task2 can never be performed; the same applies to task3 in situation D.
3. Deadlock: jamming a case before the condition "end" is reached. If
task1 in situation B places a token in one of the two uppermost places,
then the case will wait "ad infinitum" for task1. Only if taskl delivers a
token directly to the place end will this deadlock be avoided. In situation
D a token can be "jammed" waiting for task5.
4. Livelock: trapping a case in an endless cycle. In situation C, every
case will remain "ad infinitum" in the cycle consisting of task2 and
task3. There thus exists iterative routing without an opportunity to
escape.
5. Activities still take place after the condition "end" is reached. A good
process definition has a clear beginning (the condition start) and end (the
condition end). Once the condition end is reached, no more tasks should
be carried out. In situation C, task2 and task3 will be fired after the
condition end is reached. In this way, an infinite number of tokens will
reach the place end. This is clearly an undesirable situation.
6. Tokens remain in the process definition after the case has been com
pleted. Once a token appears in the place end, all other references to the
case must have disappeared. In situation D, if the case is completed as a
result of the firing of task1, there will remain a token in one of the places
before task3.

The above shows that, without any knowledge of the actual content of
the process being defined, we can identify a number of typical errors in a
given process definition. These are connected with the routing of cases. In
order to computerize the check for these errors, we need a precise notion
of correctness.

Figure 4.9

A process has one entrance and one exit

4,3.1 Soundness

In the remainder of this book, we use the following minimum require-
ment that every process must meet:

A process contains no unnecessary tasks and every case submitted to the
process must be completed in full and with no references to it (that is,
case tokens) remaining in the process.

We call a process that fulfills this minimum requirement sound. We
shall formulate the soundness property of a process precisely using figure
4.9.

A workflow process defined in terms of a Petri net has a single input
place start and a single output place end. Such a Petri net only makes
sense if each transition (task) or place (condition) lies on a directed path
from start to end. In other words, there should be no "loose" tasks and
conditions. Thanks to this requirement, each task (or condition) can be
reached from the place start by following a number of arrows, and the
place end is always reachable from each task (or condition) by following
a number of arrows. A transition that is not on a path from start to end
does not contribute to the successful completion of the process or can be
activated at any time. In this section, we only consider Petri nets satisfy-
ing this requirement. These Petri nets are called workflow nets (WF-nets).

A workflow net satisfies some syntactical requirements. However, it is
still possible to have workflow nets that have anomalies such as potential
deadlocks and the inability to terminate. Therefore we define a workflow
net to be sound if, and only if, it fulfills the following three requirements:

1. For each token put in the place start, one (and only one) token even-
tually appears in the place end;

Analyzing Workflows 107

108 Chapter 4

2. When the token appears in the place end, all the other places are
empty; and
3. For each transition (task), it is possible to move from the initial state
to a state in which that transition is enabled.

The first requirement means that every case will be completed success-
fully over a period of time. The second requirement means that once the
case is completed, no references to it will remain in the process. If we
combine the first two requirements, we come to the conclusion that—
based upon the state illustrated in figure 4.9—there exists only one final
state: that is, one with precisely one token in the place end. The last
requirement excludes "dead tasks"; that is, each task can—in principle—
be carried out.

The definition of soundness assumes a notion of fairness, that is, if a
task can potentially be executed, then it is not possible to postpone its
execution indefinitely. Consider for example iterative routing. Although,
in principle, it is possible to repeat a part of the process infinitely often,
we assume that iteration does not necessarily violate the soundness
requirement. Similarly, we assume that two tasks cannot "starve" a third
task indefinitely. If we would not make this assumption, any process with
selective or iterative routing would not be sound.

How can we establish whether a given process corresponds to a sound
workflow net? To do this, we must first check whether the Petri net rep-
resenting the process is a workflow net. This can be checked by examin-
ing the structure of the process. Checking whether the process is sound is
more involved. We can check the three soundness requirements using a
reachability graph starting with the initial state in which there is only one
token in the place start. To check the last requirement, we examine
whether there is for each task a state transition in the reachability graph
which corresponds to the firing of that task. The first two requirements
are checked by confirming that the reachability graph has only one final
state, and that this is one in which there is precisely one token in end. The
requirements for correctness just formulated therefore can be checked
entirely automatically by inspecting the reachability graph.

There are, however, two drawbacks attached to this approach. First, the
construction of the reachability graph for large-scale processes can take
up a lot of computer time. It therefore is almost impossible to perform
this analysis without a computer. Second, the reachability graph provides

Analyzing Workflows 109

little support in repairing a nonsound process definition. Note that the
reachability graph is infinite if tokens can accumulate in a place. It is
possible to use variants of the reachability graph, such as the so-called
coverability graph, which allows for the detection of such unbounded
behavior (see appendix). Nevertheless, these "brute force" approaches
can be quite time consuming and do not provide good diagnostics.

Fortunately, there are techniques available for Petri nets that do not
suffer from these drawbacks. We do not have the space here to discuss
these techniques in depth. However, we shall outline two alternative
methods of determining whether or not a process is sound. The first
method is based on advanced computer support; the second one can be
used manually.

4.3.2 Method with computer support

The first method to determine soundness translates the soundness prop-
erty to two well-known properties which have been investigated for dec-
ades. In order to analyze a process defined in terms of a Petri net, we add
an additional transition to the network: t*. This has end as its input point
and start as its output point. The net without transition t* is called the
workflow net; the net with this transition is called the short-circuited net.
With this addition, the soundness of the workflow net corresponds with
two well-known properties: liveness and boundedness of the
short-circuited net. A Petri net is live when it is possible to reach—for
each transition t and from every state reachable from the initial one—a
state in which transition t is enabled. In a live Petri net, therefore, it
remains possible to fire every transition an arbitrary number of times. A
Petri net is bounded when there is an upper limit to the number of
tokens in each place. In other words, it is not possible for the number
of tokens in a place to rise without limit if the process is started in the
initial state. The traffic lights modeled in figures 4.4 and 4.6 are live and
bounded.

Liveness and boundedness are properties which have been researched
extensively during the past thirty years. As a result, efficient algorithms
and tools are available to analyze them. A process is sound if its Petri net,
with the additional transition t*, is live and bounded. The correctness of
a defined process thus can be verified by using standard tools. For a
number of important subcategories—including the so-called free-choice
Petri nets—liveness and boundedness of a network can be established in

110 Chapter 4

polynomial time. Thanks to the many results achieved in the field of
Petri-net theory, the soundness of a process can hence be determined
efficiently. When a process is not sound, diagnostics can be generated
that indicate why this is the case.

The above is merely an illustration of the many analysis possibilities
offered by the Petri net representation of a given process. For more
information, we refer to the appendix of this book and the very extensive
literature about Petri nets.

4.3.3 Method without computer support

The translation of soundness to liveness and boundnedness allows for the
application of efficient analysis techniques. Unfortunately, the translation
is not very intuitive and requires computer support to be relevant.
Therefore we propose an alternative method which is easy to apply
without computer support or deep theoretical knowledge. We add one
requirement to "good" workflow nets in addition to soundness: we will
require that the workflow nets are also safe, which means that the
number of tokens in each place will never be larger than one. (This
means that they are bounded by value one.) It is often easy to check if a
net is safe by inspection of the net structure. The method is based on an
important property that is very easy to understand in an intuitive way:

If we have two sound and safe workflow nets V and W and we have a
task t in V which has precisely one input and one output place, then we
may replace task t in V by W and then the resulting workflow net is
sound and safe again.

In figure 4.10 this replacement is illustrated.

This property is intuitively clear because a sound workflow net
behaves like a transition: it consumes one token from its input place and,
after a while, it produces one token in its output place. The environment
therefore will not discover the replacement of t by W. The safety of the
nets is required in order to avoid the situation that in W two or more
tokens will be active at the same time, which may violate the soundness
of W.

This replacement property is proved in the appendix. Here we focus on
the application of this property. The main idea is as follows:

Suppose we have some set of sound and safe workflow nets, called
"building blocks," to start with. If it is possible to derive the workflow

Analyzing Workflows 111

process V

Replace transition t
by -workflow net W

process V

Figure 4.10

If a transition is replaced by a sound workflow net, then the resulting workflow
net is also sound (assuming safeness)

net under consideration by a sequence of substitutions of nets from this
set of building blocks, then we have proved that our net is sound and
save as well.

To illustrate this method we start with a small set of nets for which the
soundness and safety is obvious. See figure 4.11. The workflow nets
correspond to the typical constructs introduced in chapter 2. There are of
course other sets of building blocks possible but this set is already quite
powerful.

First we show how we can apply the method. Consider the workflow
net shown in figure 4.12.

For this net we can find the derivation presented in the subsequent
figures. The method starts with the basic building block shown in figure
4.13.

In the first step, the AND construct is applied to put task b in parallel
with task a. The resulting workflow net is shown in figure 4.14. Note
that we simply applied the AND construct shown in figure 4.11 with
x = a and y = b.

end start

start

112 Chapter 4

1. Basic building block

2. Sequence construct

3. Implicit OR-split
construct

4. Explicit OR-split
construct

5. Explicit OR-join
construct

6. Iteration construct

Figure 4.11

Sound and safe nets

Figure 4.12

A safe and sound process

Figure 4.13

Apply the AND construct to a (Step 1)

Figure 4.14

Apply the explicit OR-split construct to a (Step 2)

Figure 4.15

Apply the sequence construct to a (Step 3)

Analyzing Workflows 113

Figure 4.17

Apply the implicit OR-split construct to b (Step 5)

In the second step, the explicit OR-split construct is applied to a, that
is, the explicit OR-split "pattern" shown in figure 4.11 is applied with
x = a and y = c. The resulting workflow net is shown in figure 4.15.

In the third step, we apply the sequence construct: task a is followed by
task d.

Then the sequence construct is applied to b.

In the fifth step an implicit OR-split construct is applied to b with the
addition of task f as result.

Then the iteration construct is applied to task e. As a result, task g is
added to the workflow net.

Finally the sequence construct is applied to task e. The resulting
workflow net shown in figure 4.20 is exactly the process we wanted to
construct. Since we just applied the design patterns shown in figure 4.11,
this workflow net is guaranteed to be safe and sound.

As we can see there can be more than one derivation for a particular
net. In the example we could have interchanged steps 3 and 4. Not all
sound and safe nets have a derivation as is shown in the example pre-
sented in figure 4.21.

The reason that we cannot find a derivation here is that two paths that
originated at one AND-split should come together in the same AND-join

114 Chapter 4

Figure 4.16

Apply the sequence construct to b (Step 4)

Figure 4.18

Apply the iteration construct to e (Step 6)

Figure 4.19

Apply the sequence constrcut to e (Step 7)

Figure 4.20

The complete process

Analyzing Workflows 115

116 Chapter 4

Figure 4.21

A process that cannot be constructed using the standard constructs shown in figure
4.11

Figure 4.22

The loop construct

due to the replacement rules presented in figure 4.11. This is not the case
in figure 4.21. This example shows that in case we cannot find a deriva-
tion for a particular workflow net, it is not allowed to conclude that the
net is not sound and safe: the workflow net shown in figure 4.21 is both
safe and sound but it is not possible to construct this net using the stan-
dard design patterns shown in figure 4.11.

Note that it is always permissible to add a sound and safe net to our
collection of building blocks, so also the net shown in figure 4.21. A
particular extension of our replacement rules is a rather trivial one: every
place (excluding source and sink places) may be replaced by a place and
a task for which this place is the input as well as the output place. In
figure 4.22 this transformation is represented.

Suppose that we have found a derivation for a net and that we have to
modify the net during a design process. If the modifications are only

end start

a

Analyzing Workflows 117

Table 4.1

Each Step in a Derivation

step set of tasks selected task used block new task

1 a a AND b

2 a,b a explicit c

 OR-split

3 a,b,c a sequence d

4 a,b,c,d b sequence e

5 a,b,c,d,e b implicit f

 OR-split

6 a,b,c,d,e,f e iteration g

7 a,b,c,d,e,f,g e sequence h

replacements of tasks by sound and safe building blocks, everything is
fine. But suppose that we have to do another modification: is it necessary
to find a new derivation from scratch? The answer is no. We may always
go back in the derivation and take another sequence of steps from there
after which we continue with the rest of the former sequence. To clarify
this we note that in each replacement rule treated so far, we replaced one
transition by two other ones with exactly one input and one output place
(constructs shown in figure 4.11). In each case the number of transitions
with one input and one output increased exactly with one. If we identify
the replaced transition with one of the new transitions (with one input
and one output) then we have to give the other one a new, unique name.
So we can characterize each step in a derivation by a triplet: the selected
task, the used building block, and the name of the new task. In the deri-
vation shown in figures 4.13 through 4.20, all tasks have a name. In the
table 4.1 we represent this derivation in tabular form.

It is easy to verify that the result of this derivation is the net with tasks
{a,b,c,d,e, f,g,h} shown in figure 4.20. Note that we do not mention
tasks just added for routing purposes, that is, AND-split, AND-join, and
OR-split are omitted.

Suppose that we want to extend the workflow nets shown in figure
4.20 with one additional task x to obtain the workflow net shown in
figure 4.23.

Note that task x is added by introducing an implicit OR-split. As
was argued before we can use the former derivation and simply add a

Figure 4.23

An alternative process with one additional task x

step between 2 and 3 (step 2.5). After this modification we can con-
tinue the derivation as before which results in the net with tasks
{a, b, c, d, e, f,g, h,x} shown in figure 4.23. Table 4.2 shows this deriva-
tion. Using this simple technique we can construct a large set of sound
and safe workflow nets.

4.4 Performance Analysis

As well as the correctness of a defined workflow, we are also interested in
its performance. By this, we mean such quantitative aspects as comple-
tion times of cases, the number of cases which can be processed per time
unit, the utilization of staff, and the percentage of cases that can be
completed within a preset, standard time. To gain insight into the per-
formance of a defined workflow, various analysis techniques can be used.
The three techniques most commonly used in this respect are as follows:

1. Markovian analysis. Based upon a given workflow, it is possible to
generate a Markov chain automatically. This can be used to analyze
particular aspects of a workflow. Such a chain contains the possible
states of a case and the probability of transitions between them. In fact,
the Markov chain is a reachability graph with the probability of tran-
sitions added to it. These probabilities are determined based upon mea-
sured or expected properties of a case type. Various properties can be
established using a Markov chain, for example, what are the chances of a
case taking a particular route through a process. By expanding Markov
chains with cost and time aspects, a range of performance indicators can
be generated. The disadvantage of this approach is that not every aspect

118 Chapter 4

Analyzing Workflows 119

Table 4.2

Each Step in a Derivation (with 2.5)

step set of tasks selected task used block new task

1 a a AND b

2 a,b a explicit c

 OR-split

2.5 a,b,c a implicit X

 OR-split

3 a,b,c,x a sequence d
4 a,b,c,d,x b sequence e

5 a,b,c,d,e,x b implicit f

 OR-split

6 a,b,c,d,e,f,x e iteration g

7 a,b,c,d,e,f,g,x e sequence h

can be incorporated into the analysis. Markov-chain analysis can also be
very time-consuming (if not intractable).

2. Queueing theory. Queueing theory is intended for the analysis of
systems in which the emphasis is placed upon such performance indica
tors as waiting times, completion times, and utilization of capacity. It
therefore is quite a logical way to analyze workflows. In a workflow,
there may be queues of cases waiting for resources that cannot process a
particular inflow of cases immediately. If we are interested in the forma
tion of a single queue for a number of resources of equal value, then we
can confine ourselves to a system consisting of one queue. There are
many results available for the analysis of a single queue, which are in
general simply to apply. If we wish to evaluate the entire workflow, then
we need to consider a network of queues. For queueing networks, some
questions can be answered by mathematical methods. Unfortunately,
many of the assumptions used in queueing theory are not valid for
workflow processes. For example, in the presence of parallel routing, it is
often impossible to apply the results obtained from queueing theory.
3. Simulation. Simulation is a very flexible analysis technique. It almost
always is possible to analyze a workflow using it. In fact, simulation boils
down to the following of a path in the reachability graph. In doing so,
particular choices are made based upon various probability distributions.
Because simulation is nothing more than the repeated execution of a
process with the aid of a computer, it is a technique that is accessible to
people without a mathematical background. Simulation therefore results
in a better insight into the operation of the process being modeled. Be
cause most simulation tools offer an animation option, the workflow can

Figure 4.24

Situation 1

be tracked graphically. Moreover simulation can be used to answer a
wide range of questions. It is also easy to extend a simulation model with
a new aspect (for example, faults). However, the establishment and
analysis of a model for a detailed simulation can be a time-consuming
affair. Moreover, the careful processing of simulation results requires
thorough statistical knowledge.

In this book, simulation is the main analysis technique. The reason for
confining ourselves just to one analysis technique is that simulation usu-
ally is the only tool supported by the workflow management system. And
when we examine the analysis techniques used in BPR, we again see that
simulation usually is the only tool available for carrying out quantitative
analyses. To illustrate the use of an analysis technique like simulation, we
use the process definition shown in figure 4.24.

As figure 4.24 shows, the process consists of two tasks to be performed
sequentially. The average number of new cases that arrive at the process
per hour is 24. The average time between two successive arrivals there-
fore is 2.5 minutes. The average time required to carry out both taskl
and task2 is 4 minutes each. For each task, 2 resources are devoted
exclusively to completing the work item associated with it. These there-
fore are highly inflexible resources, which can work on only one task.
Based upon the figures just given, we can calculate that the average level
of resource utilization, that is, the number of arrivals per time unit
divided by the number that can be served per time unit, is 80 percent: on
average, a resource spends 80 percent of its time working on a task for a
particular case. The resource is idle for the remaining 20 percent of the
time.

120 Chapter 4

Analyzing Workflows 121

Figure 4.25

Situation 2

We can now ask ourselves what the average completion time for a case
is. In order to determine this, we need to know more about the arrival
pattern of new cases and the processing time. For the sake of conve-
nience, we shall assume that the interarrival times are distributed in a
negative exponential way. On this hypothesis, it can be determined using
either simulation or queueing theory that the average completion time is
approximately 22.2 minutes. In other words, it takes an average of 22.2
minutes for a case to move from place c1 to place c3. But of these 22.2
minutes, an average of only 8 minutes is spent on actually working on
the case. The remaining 14.2 minutes are waiting time. In this case,
therefore, the average waiting time is actually longer than the processing
time. In fact, this is actually the case in many real-life situations. Con-
sider, for example, the time spent on waiting to see a doctor. In many
administrative processes, things can be even worse: actual processing
times are only a small fraction of the total completion time.

As indicated in one of the guidelines for developing workflows, it is
sensible—where possible—to perform tasks in parallel. Figure 4.25
shows the process that could be used if it were possible to carry out the
two tasks for each case simultaneously. In this situation, the average level
of resource utilization remains 80 percent—after all, the supply of cases
and the average processing time have not changed. However, the average
completion time can be significantly reduced in this way. Using simula-
tion, we can show that the average completion time is now approxi-

an average of 24 cases
arrive per hour

2 resources, an average
processing time of 4 minutes

c23 c21 task1

c1 c3 task2 c22 c24

2 resources, an average
processing time of 4 minutes

122 Chapter 4

Figure 4.26

Situation 3

mately 15 minutes. By performing tasks in parallel, we can in this in-
stance achieve a considerable reduction in completion time with the same
resources.

It can sometimes be useful to combine two tasks into one larger task.
Figure 4.26 shows a process in which task1 and task2 have been fused
into a single taskl2. The average processing time for this new task is 7
minutes. We therefore have assumed that it takes 1 minute less to per-
form the combined task than to carry out the two original tasks. This
reduction is explained by the elimination of set-up time. As a result of the
shorter processing time, the average level of resource-capacity utilization
has fallen to 70 percent. Moreover, the completion time has dropped
dramatically, to an average of 9.5 minutes. So for each case there is now
an average waiting time of 2.5 minutes. Compared with the original
average waiting time of 14.2 minutes, we thus observe a considerable
improvement, which is primarily attributable to increased resource flexi-
bility. The new task!2 can be performed by each of the 4 resources. In
contrast to the previous situation, each of the resources is busy as long as
there is a case to be carried out.

To illustrate the positive influence of resource flexibilization, consider
the original process shown in figure 4.27. In this process the two tasks
again have to be carried out sequentially. However in this case the
resources are not linked to a specific task: each can perform both task1
and task2. As a result, the average completion time is only 14.0 minutes.
Compared with the original situation, the average waiting time has fallen
from 14.2 to 6 minutes.

Thus far we have assumed that the cases are indistinguishable from
one another. In other words, we do not know whether the processing of
a particular case will take little or much time. Figure 4.28, though, shows

an average of 24 cases
arrive per hour

4 resources, an average
processing time of 7 minutes

task 12 c3 Cl

Figure 4.28
Situation 5

a situation in which we can differentiate between "easy" and "hard"
cases. Performing task1 for an easy case takes an average of 2.66
minutes, whereas for a hard case it takes an average of 8 minutes. On
average, 25 percent of the cases are classified as hard, 75 percent as easy.
In figure 4.28, we have tried to make use of this information. A special
resource has been assigned to perform task1 for hard cases. Besides, there
is also a special resource to perform task1 for easy cases. The idea is that
the total average completion time can be reduced by separating the two
flows. This is the principle also known as triage. In this case, however, it
has disastrous results: the average completion time rises to no less than
31.1 minutes. So there is considerable worsening of the situation.

There are instances when triage can have a beneficial effect, though.
Consider, for example, the "baskets only" checkout in a supermarket.
(Triage is a term which existed long before the rise of BPR and WFM. It

Analyzing Workflows 123

Figure 4.27
Situation 4

124 Chapter 4

is also used to describe the selection and prioritization of war or disaster
casualties according to the nature and seriousness of their injuries.) There
are two circumstances in which triage can be useful: (1) when the allo-
cation of specialized resources reduces the average processing time, and
(2) when small clients no longer have to wait for large ones to be pro-
cessed, which reduces the overall average waiting time. The reason that
triage has a negative effect in figure 4.28 is that the flexibility of the
resources is reduced. For example, only one resource can perform task1
for an easy case. This example shows that thorough quantitative analysis
is often required to reach a well-considered workflow design.

The introduction of triage in a supermarket (the "baskets only"
checkout) usually shortens the overall completion time because those
clients with only a few items do not have to wait behind those with a lot
of items. In fact, triage operates in this case as a prioritization rule. In
general, we find that triage leads to short completion times when easy
cases are actually handled earlier than hard ones. If this is not the case,
longer completion times will result. However, we can also apply a pri-
oritization rule without using triage (in other words, without introducing
a special queue). Figure 4.29 shows a situation in which for each task the
easy cases (those with an average processing time of 2.66 minutes) are
given priority over the hard ones (those with an average processing time
of 8 minutes). With the aid of simulation, we can show that this results in
an average completion time of approximately 14 minutes. So prioritiza-
tion rules can also deliver considerable savings in completion time. Figure
4.30 lists all the situations again in summary.

Figure 4.29

Situation 6

Analyzing Workflows 125

The above shows that we can use an analysis technique like simulation
to support the design of a workflow. Depending upon the workflow's
design, we have seen the average waiting time for a case vary from 2.5
minutes (situation 3) to more than 23 minutes (situation 5). Which
design is preferable depends upon the circumstances. There are, however,
three guidelines that apply in most situations.

1. When possible, perform tasks in parallel. The implementation of
parallel processing generally results in short completion times.
2. Strive for high resource flexibility. Ensure that resources can perform
as many tasks as possible. The use of flexible resources results in higher
levels of resource utilization and shorter completion times.
3. When possible, handle cases in order of processing time. In general, it
is sensible to give cases that have a short processing time priority over
those with a longer one. This can be done using triage or prioritization
rules.

These guidelines illustrate the fact that there are considerable similarities
between the structure and management of logistical and production
systems. In fact, a workflow system is a logistical management system.
It therefore is important that, when designing workflows, one bears in
mind the principles, methods, and techniques which have been developed
for structuring and managing logistical and production systems.

4.5 Capacity Planning

Thus far we always have assumed that the number of resources in each
resource class is fixed. In practice, of course, this is not the case.
Employees may fall ill, go on vacation, or leave the company. The

Situation Description Average
completion
time

Average
processing
time

Average
waiting time

Situation 1
Situation 2
Situation 3
Situation 4
Situation 5
Situation 6

Sequential
Parallel
Composition
Flexibilization
Triage
Prioritization

22.2

15
9.5
14.0
31.1
14.0

8.0
4
7.0
8.0
8.0
8.0

14.2
11
2.5
6.0
23.1
6.0

Figure 4.30

A summary of the performances in the six situations described

Figure 4.31

The process "handle complaint," showing the average processing time per task

number of staff may also vary according to seasonal factors. Consider,
for example, travel insurance sales, which are clearly subject to seasonal
influences. This needs to be taken into account when establishing staff
allocation. In certain industries we also observe that the supply of new
cases follows a clear pattern each week. So the capacity plan is always
based upon a particular capacity requirement. The plan shows what
resources, and of which type, are needed for each period. Capacity
planning may be both short term and long term. In the short term, such
factors as sick leave, small fluctuations in the supply of work, days off,
overtime, and the hiring of temporary staff play an important role. In the
longer term, demand forecasts, seasonal influence, machinery purchases,
and staff recruitment policy enter the picture.

If we have a forecast of the supply of new cases, it is easy to estimate
the capacity requirement. To illustrate this, we shall use a variant on the
process handle complaint introduced in the previous chapter. Figure 4.31
shows the average processing time for each task.

It is assumed that the time taken to perform those tasks that require no
resources is negligible. For the others, the average processing time in
minutes is shown. For example, the task assess takes an average of
20 minutes. In general, 63% of the cases have been assessed positively at
the end of this task, and 27% negatively. In the remaining 10% of cases
a further assessment is required. Note that task assess may be executed
an arbitrary number of times. The average number of times that asses is
executed per complaint is 1.111 (see section 4.5.1). Eventually 70% are
assessed positively, and 30% negatively. If we assume that 50 new cases

126 Chapter 4

Analyzing Workflows 127

Task Average
number per
day

Average
processing time

Average
number of
minutes

record
contact_client
contact_dept.
collect

pay

file

50
50
50
50
56
35
15
50

0
10
15
0

20
10
25
0

0
500
750
0
1111

Figure 4.32

The capacity required per task

arrive each day, then we can calculate the capacity requirement for each
task. Figure 4.32 shows that assess requires the most capacity.

A case is assessed an average of 1.111 times, because 10% of them
require a second assessment. From an input of 50 cases, therefore, an
average of approximately 56 assessments is required. The capacity
requirement per task is easy to calculate in this case. In more extensive
processes with a large number of iterations, this can be rather more
complicated. Fortunately, based upon the process definition it is possible
to automatically generate a Markov chain to calculate the capacity
requirement for each task.

Based upon the capacity requirement per task, we can calculate the
capacity requirement of each resource class. After all, we know from
which resource class a required resource will come. As mentioned in the
previous chapter, there are four resource classes in this case: Employee,
Assessor, Complaints, and Finances. A resource belongs either to Com-
plaints or to Finances, but not to both. Each resource that belongs to the
resource class Assessor is automatically a member of the resource class
Employee. The task pay is the only one requiring a resource from the
resource class Finances. The other tasks always require a resource from
the resource class Complaints. Moreover, the task assess is the only one
that requires a resource from the resource class Assessor. Based upon this
information, figure 4.33 shows the capacity requirement per resource
class.

Figure 4.33 also shows the number of resources required at two par-
ticular levels of capacity utilization. When this is 80%, the complaints

assess

send_letter
350
375
0

128 Chapter 4

Resource
class

Average
number of
minutes

Number of
resources at
80% of capacity

Number of
resources at
60% of capacity

Employee
Assessor
Complaints
Finances

1975
1111
2736
350

5.14
2.90
7.13
0.91

6.86
3.86
9.50
1.22

Figure 4.33

The capacity requirement per resource class

department requires 8 people. Of these, at least 3 must be assessors.
Because resource classes overlap, we must interpret the figures in figure
4.33 carefully. For example, every resource in the resource class Assessor
also belongs to the resource class Employee. However, the figures in the
row for the category Employee only refer to those employees who do not
work as assessors. If we compare the numbers in figure 4.33 with the
resources specified in the previous chapter, we see that the complaints
department is understaffed for an inflow of 50 cases per day. On the
other hand, the finance department has excess capacity.

4.5.1 Method to calculate capacity requirement

For figure 4.31 it is straightforward to calculate the capacity require-
ments listed in figures 4.32 and 4.33. For complex workflow processes
this may be more involved. Therefore we provide more concrete guide-
lines. To determine the capacity required it is important to know the
average number of times each task is executed. In figure 4.31 the tasks
record, contact_client, contact_department, collect, and file are executed
precisely one time. Task pay is executed 0.7 times, task send_letter is
executed 0.3 times, and task assess is executed 1.111 times on average.
How to calculate the average number of times each task is executed? One
way is to construct a Markov chain that is isomorphic with the reach-
ability graph and add the appropriate cost functions. The drawback of
this approach is that the construction of such a Markov chain requires
computer support and may be time-consuming. There is also a more
pragmatic approach based on the design patterns described in figure
4.11. These patterns can be used to construct safe and sound workflow
nets. However, as figure 4.34 shows, the patterns can also be used to
determine the average number of times each task is executed.

Analyzing Workflows 129

Figure 4.34

The number of times each task executed relative to the number of times task x is
executed in the original situation

130 Chapter 4

Compared to figure 4.11, the design patterns in figure 4.34 have been
extended with numbers. Assume that task x is executed N times in the
original situation, that is, before applying the pattern. If the sequence
construct is used, then both x and y are executed N times in the new
situation. If one of the three OR constructs is applied, then x is executed
aN times and y is executed (1 — a)N times (on average). Note that a is
the probability that x is executed in the new situation. If the AND con-
struct is used, then both x and y are executed N times in the new situa-
tion. The iteration construct is a bit more involved. Let a be the
probability that after processing x a new iteration is needed. Using cal-
culus one can calculate that in the new situation x is executed N/(1 — a)
times and y is executed aN(l — a) times. To understand these figures
consider the iteration construct in figure 4.34. Let v be the expected
number of times x is executed for one case starting in place p. Then the
following equation should hold: v = 1 + av, since it happens once
and with probability a we return to place p. Solving this equation gives
v = 1/(1 — a). Task y is executed v — 1= a(l — a) times. Therefore, if
place p is marked N times, x is executed N/(l — a) times and y is exe-
cuted aN(l — a) times.

Note that the workflow net shown in figure 4.31 cannot be con-
structed using the design patterns shown in figure 4.34. The standard
iteration construct cannot be used to make the loop involving c5 and
assess. However a similar iteration construct can be added to the list of
constructs shown in figure 4.34. If a is the probability that assess is exe-
cuted again, then the total number of times assess is executed equals

If the average number of new cases per time unit and the average
number each task is executed are known, then the average number of
times a given task is executed can be calculated by taking the product
of these two figures. If the average processing time and corresponding
resource class of each task are known, it is straightforward to derive the
total number of capacity per time unit per role (assuming a utilization of
100%).

4.5.2 Some basic queueing theory to take variability into account

Because there are always fluctuations in the supply of cases and the
processing times, it is not always possible to make full use of the capacity

Analyzing Workflows 131

available. It therefore is not sensible to assume that the resources will be
utilized to their full capacity. To illustrate this, let us examine a process
consisting of one task. During each time unit, λ new cases arrive that
need to be processed by one resource. This resource is able to complete µ
cases per time unit. The utilized capacity, ρ, of this resource is therefore:

p = λ/µ

If we assume that processing times and case interarrival times are dis-
tributed in a negative exponential way, the average number of cases in
progress is L, where:

L = ρ/(1 - ρ)

The average waiting time, W—that is, the completion time minus the
processing time—is:

W = L/µ = ρ/(µ - λ)

The average system time, S—that is, the total completion time (waiting
time and processing time)—is:

S= W+1/µ = 1/(µ-λ)

Say an average of 8 new cases arrive per hour, and that an average of 10
cases can be processed per hour. The capacity utilization is therefore
80% (ρ = 8/10 = 0.8). On average, there are 4 cases in progress (L = 4)
and the average waiting time is 24 minutes (W = 0.4 hours). With a
capacity utilization of 80 percent, the average completion time is thus 30
(24 + 6) minutes. At a capacity utilization of 95 percent and an average
processing time of 6 minutes, the average completion time would rise to
no less than 2 hours. This small example shows that when the arrival
process is irregular, it is not at all sensible to seek a capacity utilization of
more than 80 percent.

Figure 4.35 shows the impact of utilization on the average number of
cases in progress. The impact resulting from the duplication of utilization
from 0.25 to 0.50 (+0.66 cases) is much smaller than the impact from
the small increase from 0.98 to 0.99 (+50 cases).

The situation just described corresponds with the M/M/1 queue. The
first M shows that the interarrival times are distributed in a negative
exponential way. The second M shows that the processing times are also
distributed in this way. The number 1 indicates that there is only one

132 Chapter 4

Utilization (p) Average
number in
progress (L)

Utilization (p) Average
number in
progress (L)

Utilization (p) Average
number in
progress (L)

0.10
0.25
0.50
0.75

0.11
0.33
1.00
3.00

0.80
0.85
0.90
0.95

4.00
5.66
9.00
19.00

0.98
0.99
0.999
0.9999

49
99
999
9999

Figure 4.35

The average number of cases in progress given a utilization ratio

resource. To show just how sensitive the waiting times are to the vari-
ability of the processing times, we can consider the M/G/1 queue. In this
the processing times are distributed randomly (G = general). The only
things we know are that the average processing time is 1/µ and that the
standard deviation is a. Based upon these two parameters, we can define
the coefficient of variation, C:

C = µλ

The coefficient of variation is a measure of relative deviation from the
average. The higher C is, the wider the spread of processing times will be.
In the M/G/1 queue, capacity utilization is also equal to ρ = λ/µ. How-
ever, the average number of cases in progress (L) now depends upon the
coefficient of variation:

L = ρ+(ρ2/(2(1 -ρ)))(1 + C2)

(This is known as the Pollaczek-Khinchin formula.) The average waiting
time, W, also strongly depends upon the value of C:

W = (ρ/(2µ(1 -ρ)))(1 + C2)

These formulae show that large variations in processing times can
result in long completion times. Conversely, regular processing times will
deliver shorter completion times. To illustrate this, let us assume a situa-
tion in which an average of 8 new cases arrive per hour, and the pro-
cessing time for each is precisely 6 minutes. In this case, the coefficient of
variation C is 0. By applying the formulae, we discover that the average
waiting time is only 12 minutes. The completion times therefore depend
strongly upon the variation in processing times. Note that in case of
negative exponentially distributed processing times, C equals 1 and the
Pollaczek-Khinchin formula reduces to the formula given earlier.

Analyzing Workflows 133

We have just made use of a number of simple formulae from the
queueing theory, part of the discipline of operations research (OR).
There are many results from the queueing theory that can be applied
directly in the context of workflow management. As well as the M/M/1
and M/G/1 queues discussed earlier, M/M/n queues (ones containing
several identical resources) are also easy to analyze. For M/G/n queues
and G/G/n queues, there exist formulae for approximating the average
waiting time. One result that is applicable to every queue (regardless
of interarrival pattern, distribution of processing times and number of
resources) is Little's formula:

This establishes a link between the number of cases in progress, L, the
intensity of the interarrival process, λ, and the average system time, S. If
the average completion time for a case is 5 days (S = 5), and an average
of 25 new cases arrive per day (λ — 25), then the average number of
cases in progress is 125 (L = 125).

Given an expected supply of cases and a number of assumptions about
their processing, we can use simulation and/or the queueing theory to
determine the capacity requirement during a particular period. Based
upon these capacity requirements, a capacity plan can be drawn up.
When preparing a capacity plan, fluctuations in case supply, temporary
loss of resources, and other problems should also be taken into account.
The same applies to the desired level of service. To guarantee short
completion times, it is sometimes necessary to substantially increase the
number of resources.

There is a clear link between capacity planning in a workflow environ-
ment and in a production environment. Many concepts used in manu-
facturing resources planning (MRP-II) systems can be directly transferred
into workflow management systems. Rather than the bill of material
(BOM), however, it is now the process definition which is the starting
point.

EXERCISES

Exercise 4.1 Optimize data usage

Consider the sequential process modeled in terms of a role/route diagram
in figure 4.36.

Figure 4.36

Process

There are nine tasks and the employees are divided into three resource
classes (roles): X, Y, and Z. Each task needs to be executed by someone
with the appropriate role.

(a) Model the process definition in terms of a Petri net.
(b) Is the role/route diagram appropriate for the specification of work
flow processes?

For the execution of the workflow process the following nine data
elements are relevant: D1,D2,... ,D9. The relationships between data
elements and tasks are given in the CRUD matrix shown in figure 4.37.

Assume that only the data elements and their usage are relevant for the
ordering of tasks. The sequential process shown in the role/route dia-
gram is far from optimal, that is, task 4 can be executed directly after
task 1; there is no need to wait for task 2 and task 3.

134 Chapter 4

Analyzing Workflows 135

 D1 D2 D3 D4 D5 D6 D7 D8 D9

Taskl C C

Task2
 R

 C

Task3
 R C

Task4 R
 C

Task5 R R
 C

Task6
 R R R C

Task7 R U
 R

 R

Task8
 R C

Task9 R R
 R C

(C=Create, R=Read, U=Update, D=Delete)

Figure 4.38
E-mail

(c) Improve the process by making it more parallel.
(d) Is it a good idea to combine tasks? If so, which tasks are proper
candidates?

Exercise 4.2 Invariants

Consider the Petri nets shown in figure 4.38, figure 4.39, figure 4.40, and
figure 4.41.

Answer for each Petri net the following questions (see appendix A):

(a) What are the place invariants (maximum 5)? What do they show?
(b) What are the transition invariants (maximum 5)? What do they
show?

Figure 4.37
CRUD matrix

136 Chapter 4

(ii)

Figure 4.39

Network

(iii)

Figure 4.40

Network

Figure 4.41

Supply chain

Analyzing Workflows 137

138 Chapter 4

(c) Is the net bounded?
(d) Is the net live?
(e) Is the net free-choice?
(f) What are the S-components?

Exercise 4.3 Verification process definition

Consider the process definition shown in figure 4.42.

(a) Check, by constructing the reachability graph, the correctness.
(b) Estimate the number of states when condition c6 is removed.
(c) Prove by place invariants that the two sub-procedures (t2... t6 and
t1.. . t12) are not active at the same time (mutual exclusion).
(d) Prove that there is a linear dependency between start and ready (give
conservation laws in terms of place invariants).

Exercise 4.4 Search for errors

Consider the process definitions shown in figures 4.43, 4.44 and 4.45.
Answer for each process definition the following questions:

(a) Is the process definition correct?
(b) If not, show the error (reachability graph and/or place invariants).

Exercise 4.5 Performance analysis I

Consider the process in figure 4.46.

(a) Determine the following performance indicators:

• Occupation rate (utilization) for each resource,
• Average WIP (work in progress),
• Average flow time (throughput time), and
• Average waiting time for each task.

Task 2 is a check task. The management thinks about a selective execu-
tion of this task where only 25% of the cases are checked. The average
service time of this new task is 6 minutes.

(b) Determine the performance indicators again:

• Occupation rate (utilization) for each resource,
• Average WIP (work in progress),
• Average flow time (throughput time), and
• Average waiting time for each task.

Figure 4.42

Network

Analyzing Workflows 139

Figure 4.44

Complaint handling (2)

Exercise 4.6 Performance analysis

Consider the process in figure 4.47.

(a) Determine the following performance indicators:

• Occupation rate (utilization) for each resource,
• Average WIP (work in progress),
• Average flow time (throughput time), and
• Average waiting time for each task.

The two resources working on task 1 join forces and work together on
both easy and difficult cases. As a result the average time to handle task 1
for one case is two minutes (i.e., a total of 4 minutes of capacity).

140 Chapter 4

Figure 4.43

Complaint handling (1)

Figure 4.46

Process (1)

(b) Determine the performance indicators again:

• Occupation rate (utilization) for each resource,
• Average WIP (work in progress),
• Average flow time (throughput time), and
• Average waiting time for each task.

Exercise 4.7 Performance analysis III

Consider a process in which ct1 and ct2 are checks (see figure 4.48). If

they are positive, task bt (e.g., pay damage) is executed. If one of them is

negative, bt is skipped. The two check tasks are independent of each

other.

Analyzing Workflows 141

Figure 4.45

Complaint handling (3)

Figure 4.48

Process (3)

(a) Determine the following performance indicators:

• Occupation rate (utilization) for each resource,
• Average WIP (work in progress),
• Average flow time (throughput time), and
• Average waiting time for each task.

Give at least two alternatives, that is, improved workflow definitions.

(b) For each alternative answer the following questions:

• Why is it better?
• What is the utilization of resources?
• What is the maximal throughput?

142 Chapter 4

Figure 4.47
Process (2)

Analyzing Workflows 143

Client workflow

Server workflow

Coupled workflows

Figure 4.49

Workflows

Figure 4.50

Client/server

Server side

Client side

Client Side

14
4

 C

ha
pt

er
 4

Ex
er

ci
se

 4
.8

E-
bu

sin
es

s
In

 e
le

ct
ro

ni
c

bu
si

ne
ss

 w
or

kf
lo

w
s

of
 d

iff
er

en
t o

rg
an

iz
at

io
ns

 a
re

 c
ou

pl
ed

.
O

ne
 o

f
th

em
 p

la
ys

 t
he

 r
ol

e
of

 c
lie

nt
 a

nd
 t

he
 o

th
er

 o
f

se
rv

er
.

Th
es

e
w

or
kf

lo
w

s a
re

 sh
ow

n
in

 fi
gu

re
 4

.4
9.

(a
)

G
iv

e
de

riv
at

io
ns

 fo
r t

he
 c

lie
nt

 a
nd

 th
e

se
rv

er
.

(b
)

U
se

 th
es

e
de

riv
at

io
ns

 to
 o

bt
ai

n
th

e
de

riv
at

io
n

of
 th

e
co

up
le

d
w

or
k

flo
w

s.
(H

er
ew

ith
 w

e
ha

ve
 p

ro
ve

n
th

at
 th

is
 c

ou
pl

in
g

is
 so

un
d

an
d

sa
fe

)

In
 fi

gu
re

 4
.5

0
w

e
se

e
ag

ai
n

th
e

co
up

lin
g

be
tw

ee
n

tw
o

pr
oc

es
se

s:
a

cl
ie

nt

pr
oc

es
s

an
d

a
se

rv
er

 p
ro

ce
ss

. D
ur

in
g

th
e

co
ur

se
 o

f
th

e
se

rv
er

 p
ro

ce
ss

th

er
e

is
 s

om
e

ex
ch

an
ge

 o
f i

nf
or

m
at

io
n

be
tw

ee
n

th
e

se
rv

er
 a

nd
 th

e
cl

ie
nt

:
af

te
r t

as
k

d
ha

s
be

en
 d

on
e,

 a
 m

es
sa

ge
 is

 s
en

t f
ro

m
 t

to
 q

 a
nd

 la
te

r,
w

he
n

ta
sk

 c
 is

 d
on

e
a

m
es

sa
ge

 is
 se

nt
 fr

om
 r

to
 v

.

(c)
 I

s t
he

re
 a

 d
er

iv
at

io
n

w
ith

 b
ui

ld
in

g
bl

oc
ks

 re
pl

ac
em

en
t p

os
si

bl
e?

(d

)
Is

 it
 a

 so
un

d
an

d
sa

fe
 w

or
kf

lo
w

?
G

iv
e

ar
gu

m
en

ts
.

5 _____________________

Functions and Architecture of Workflow
Systems

5.1 Role of Workflow Management Systems

Extensive attention has been paid in the previous chapters to model-
ing and improving business processes. Techniques were presented for
describing these in a structured way, for analyzing them, and for
improving them. Clearly these techniques are the key to achieving drastic
improvements in the efficiency and effectiveness of the organization and
its work performance. One obvious question is how we can realize the
desired business process using information technology. In doing so, we
must not lose sight of the benefits of a process-oriented approach. The
information system must be structured in such a way that it can respond
to possible future changes. In practice, this means that information
systems must meet a number of requirements:

• Information systems must be set up in such a way that the structure of
the business processes is clearly reflected in them. This makes the process
recognizable to the user and reduces the chances of errors occurring both
during the development of the system and during the execution of the
process.
• There should be an integrated approach, which also encompasses non
computerized tasks. Today's business processes now frequently extend far
beyond what traditionally has been recorded in an information system.
• Information systems must be set up in such a way that the structure of
the business processes can be modified easily. This enables organizations
to respond flexibly to their changing environment and to restructure their
business processes accordingly.
• It is important that the performance of a business process can be
tracked properly so that any problems can be discovered at an early stage.
Interventions should also be straightforward and possible at the
moment

146 Chapter 5

when something goes wrong. To this end, the performance of the busi-
ness process should be easy to measure, and it should be possible to
refine that performance.

• The allocation of work to people is a point of particular interest. Good
workload management is crucial to achieving effective and efficient busi-
ness processes.

5.1.1 How information systems are traditionally structured

Traditionally, process management has not been separated from the
application software in information systems. In other words, the process
management has been hidden inside the information system. Because
very little attention has been paid to process structure within the frame-
work of traditional systems, it often has been difficult to actually recog-
nize the business process. Even worse, the process contained in the
system is often incorrect or incomplete.

5.1.2 Separation of management and execution

One important step towards achieving information systems that do fulfill
the requirements listed above was their splitting into one subsystem
that deals with the management of the business process (the "logistical
system" or "management system") and one that supports the execution
of tasks in a specific business process (the "application"; see figure 5.1).
The management system deals with the logistical completion of cases,
without actually performing tasks itself. It ensures that no steps are
skipped, that they are carried out in the correct order, that tasks can be

Figure 5.1

The separation between logistics and execution

 Functions and Architecture of Workflow Systems 147

performed in parallel where possible, that the correct applications are
called in to support a task, and so on. It also makes sure that staff are

assigned, considers their absence, supports the separation of functions

and authorization levels, and so on.
Apart from the structure of the business process, the management

system actually has no application-specific characteristics. To
differentiate between management and execution, in this book we use the
principle that management may only consult the case attributes in order
to wake routing decisions. We regard changing the case attributes as part
of execution rather than management.

It is the task of the management system to bring the work (i.e., the
work items) to the right person or application at the right time so that the
tasks for a specific case can be carried out. The logistical management
system interacts with the user, reacts to signals from its environment (for
example, an incoming EDI message), or executes automatic or
time-driven tasks. (In principle, a time-driven task also waits for a signal
from the environment.) Once a supporting application for a particular
step in the process has been defined, the management system starts this
in the correct way. An application supports the user in performing the
task. Management and applications communicate using case attributes.
When an application is started, these can be passed on. When it closes
again, any updated case attributes are passed back to the management
level.

5.1.3 Advantages

Separating management from applications has a number of important
advantages:

• I t enables us to achieve uniform management functionality and to iso-
late this from the rest of the system. (Traditionally this functionality was
spread throughout the information system.) This makes it possible to
reuse the same functionality in more than one task.

• Applications no longer require any management functionality, and
hence are simpler and completely independent of their context or place in

the business process. This makes it possible to rearrange the business

process at a later stage.

• The management layer makes it possible to integrate wide-ranging
applications. In this way, it is even possible to integrate new applications
with legacy systems.

148 Chapter 5

• At the management level, the business process is identifiable and the
state of a particular case within it is easy to establish. The process there-
fore is more tracable. Because it is clear at the management level which
tasks have to be carried out, it is easy to determine who should be doing
what for a particular case. The process execution is more manageable,
with progress and bottlenecks more easy to check.

5.1.4 Workflow management software

Given that the process management functionality should, in principle,
be widely applicable rather than intended for a specific application, it
becomes attractive to use generic software: workflow management
systems. These can interpret and apply the process structure and work
allocation rules.

There is a large number of standard workflow management systems
currently on the market. These vary widely in the functionality they
offer. In this chapter, we shall try to indicate—in general terms—the
functionality that one should or could expect from a workflow manage-
ment system. In addition, we shall examine the technical aspects that are
important in selecting and introducing such a system.

5.2 A Reference Model

As we saw in chapter 1, workflow management systems enable the
"extraction" of process management from the application software. To a
certain extent, we can compare such systems with a database manage-
ment system. After all, database management systems make it possible to
extract data management from the application software. Both types of
systems support a piece of generic functionality. Because—unlike data-
base management systems—workflow management systems have only
been available for a short time, in many respects it is unclear which
components are part of the systems' basic functionality. The technology
is still young and not yet fully formed.

Moreover workflow management has many "faces." Workflow man-
agement systems may be implemented in order to achieve flexbility, sys-
tem integration, process optimalization, organizational change, improved
maintainability, evolutionary development, and so on. All this means
that confusion may easily arise as to what actually can be expected from

Figure 5.2

The Workflow Management Coalition's reference model (© WFMC)

the functionality of a workflow management system. This danger was
recognized at an early stage by the Workflow Management Coalition
(WFMC)—an organization whose role includes standardizing workflow
management terminology and defining standards for the exchange of
data between workflow management systems and applications. In 1996,
the WFMC had already two hundred members (including many suppliers
of workflow management products).

One of the many principles used by the WFMC is the so-called work-
flow reference model. This is a general description of the architecture of a
workflow management system, in which the main components and the
associated interfaces are summarized. Figure 5.2 illustrates the workflow
reference model.

The model shows that the heart of a workflow system is the so-called
workflow enactment service. This part of the system pumps—as it
were—the cases through the organization. The enactment service ensures
that the right activities are carried out in the right order and by the right
people. In order to achieve this, use is made of process definitions and
resource classifications produced by the so-called process definition tools.
As well as illustrating the process and the organization, these tools fre-

Functions and Architecture of Workflow Systems 149

150 Chapter 5

quently offer facilities for analysis techniques such as simulation. Work
items are offered to the employees through workflow client applications.
By selecting a work item, an employee can begin performing a specific
task for a specific case. When carrying out a task it may be necessary to
start an application. All the application software that can be started from
the workflow system is known as invoked applications in the reference
model. Workflow tracking, case control, and staff management are sup-
ported by the so-called administration and monitoring tools.

Five interfaces are also shown in figure 5.2. The WFMC is striving to
standardize these. In creating an information system based upon a
workflow management system, Interface 3 and Interface 4 are of partic-
ular significance. The former is associated with the control of applica-
tions from the workflow system, the latter with the exchange of cases (or
parts of cases) between autonomous workflow systems. The other inter-
faces are mainly used by the workflow management system itself.

Figure 5.2 provides only a rough impression of the functionality of a
workflow management system. We therefore shall further refine the def-
inition of each component.

5.2.1 Workflow enactment service

The so-called workflow enactment service is the heart of a workflow
system. This component creates new cases, generates work items based
upon the process description, matches resources and work items, sup-
ports the performance of activities, and enables the recording of particu-
lar aspects of the workflow. For technical reasons, the enactment service
may consist of several workflow engines. Their use can, for example,
improve the scalability of the entire system. In an enactment service with
more than one workflow engine, the work is distributed amongst them.
This distribution may be based upon the characteristics of the case, the
task, and/or the resource. In general, the user will not notice when a
workflow system is using more than one engine.

Workflow engine A workflow engine provides those facilities which are
required for the logistical completion of cases. In certain cases, several
workflow engines operate alongside one another. Each then handles a
portion of the cases and/or processes. The duties of a workflow engine
include:

Functions and Architecture of Workflow Systems 151

• creating new cases and removing completed ones;
• routing cases, using the interpretation of the appropriate process
definition;
• managing case attributes;
• submitting work items to the correct resources (employees), based
upon resource classification;
• managing and handling triggers;
• starting up application software during the execution of an activity;
• recording historical data;
• providing a summary of the workflow; and
• monitoring the consistency of the workflow.

The workflow engines are therefore the "core" of the workflow system,
without which it would not operate.

5.2.2 Process definition tools

A workflow engine is based upon one or more workflow definitions. In
chapters 2 and 3, we saw that the definition of a workflow is divided into
two important parts: the process definition (chapter 2) and the resource
classification (chapter 3). In the workflow reference model, the tools for
constructing these are known as process definition tools. As well as tools
for illustrating workflows, it is often also possible to make use of analysis
tools. In chapter 4, we showed which analysis techniques are applicable
in the context of workflow management. In principle, we thus can dif-
ferentiate between three types of tools: (1) process definition tools, (2)
resource classification tools, and (3) analysis tools. In a number of work-
flow management systems, these three tools are integrated into a single
workflow definition and analysis tool. Please note that the term "process
definition tools" used by the WFMC is slightly confusing, since it entails
not only the tools for modeling process definitions, but also resource
classification tools and analysis tools.

The process definition tool A process is specified using the process
definition tool. Chapter 2 examined processes defined in terms of a Petri
net. In many workflow management systems, however, processes are
formulated in a different way. Nevertheless in most cases it is easy to map
the used routing constructs onto Petri net elements. The expressive power
of these alternative methods of modeling is typically weaker because

152 Chapter 5

certain routing structures are excluded. For example, many workflow
management systems abstract from the explicit modeling of states, and
this does not allow for forms of routing such as the implicit OR-split to
be modeled. The basic functionality of the process definition tool consists
of the following elements:

• the ability to establish process definitions (name, description, date
version, components, and so on);
• the ability to model sequential, parallel, selective, and iterative routing
by means of such graphic components as the AND-split, AND-join,
OR-split and OR-join;
• version management support (after all, there may be several versions of
the same process);
• the definition of case attributes used in the process;
• task specification; and
• the checking of the (syntactical) correctness of a process definition and
the tracing of any omissions or inconsistencies.

A number of characteristics need to be established for each task within a
process. These determine the conditions under which that task may be
carried out, and what operations should be performed. The following is
established for each task:

• the name and description of the task;
• task information—in other words, any instructions and supporting
information for the employee performing the task;
• the requirements with respect to the resource carrying out the task (for
example, a specification of its role and organizational unit, or informa-
tion about the separation of functions);
• the task's routing characteristics (AND-split, AND-join,
OR-split, OR-join);
• the specification of any triggers required;
• instructions for the workflow engine (for example, priorities, case
management, and resource management);
• the applications that may be started, plus the conditions and order in
which this should be done;
• a specification of the case attributes that are used and adjusted by the
application; and
• decision rules that determine the subsequent tasks based upon the case
attributes, when there is an OR-split or mixed OR/AND-split.

Functions and Architecture of Workflow Systems 153

The process established using the process definition tool is the crux of the
workflow.

The resource classification tool As well as defining the process, the
resources needed to carry out the workflow must be classified so that
the tasks can be decoupled from specific employees. Most workflow
management systems provide a resource classification tool in which the
relationship between the various resource classes can be shown graphi-
cally. In doing so, the following items are established:

• a list of the resource classes, often subdivided into roles (based upon
qualifications, functions, and skills) and organizational units (based upon
arrangement into teams, branches, and/or departments);
• any specific characteristics of a resource class; and
• the relationship between the various resource classes (for example, a
hierarchy of roles or organizational units).

The analysis tool Before a workflow that has been defined can go
"into production," it is useful first to analyze it. Such analysis can
encompass checking the semantic correctness of a process definition as
well as performing a simulation in order to gain insight into the expected
completion times for cases. In general we can state that the current gen-
eration of workflow management systems only offers limited analysis
possibilities. In most systems it is therefore possible to define workflows
that could have disastrous consequences if actually put into effect. How-
ever, as described in chapter 4, it is possible to apply advanced analysis
techniques. Future workflow management systems therefore will offer
more and more analysis possibilities.

5.2.3 Workflow client applications

Those employees who are only involved in the actual execution of a
process will never use the process definition tools. The only contact they
have with the workflow system is through the workflow client applica-
tions. Each employee has a worklist (also known as in-tray or in-basket)
which forms part of the workflow client applications. The workflow
engine uses this worklist to show which work items need to be carried
out. By selecting a work item, an employee can begin performing a task
for a specific case. In principle, therefore, every employee has a personal

154 Chapter 5

worklist which shows all the work to be performed by him, or by his
group. The worklist therefore forms the ultimate link between the work
and the employee.

As shown in chapter 3, the allocation of work may be push or
pull-driven. It is the former when the workflow engine allocates work
items to individual employees. It is the latter when work items are
allocated to groups of staff. This may result in a work item appearing in
several worklists. The basic functionality that should be offered by a
worklist handler encompasses the following:

• the presentation of the work items that may be performed by an
employee;
• the provision of relevant properties of a work item, such as case and
task information;
• the ability to sort and select, based upon these properties;
• the provision of state information pertaining to the state of the work
flow engine;
• the starting of a task for a specific case when a work item is selected; and
• the ability to report the completion of an activity (i.e., a selected work
item).

In addition, the worklist handler may allow for locking or passing on a
work item. It must also be able to deal with system faults. Figure 5.3
shows a worklist handler of the COSA workflow management system.

Most workflow management systems offer a so-called standard
work-list handler. In some cases, though, it is necessary to create a
customized worklist handler for a specific environment.

The standard worklist handler The standard worklist handler offers
the functionality just described. Because it is not customized to suit a
specific business situation, the functions available are generic. In many
cases, however, it is possible to use parameters for the standard worklist
handler. It may, for example, be possible to influence the layout and
content of the window. Some standard worklist handlers have
facilities for showing the (logistical) state of a case graphically.

The integrated worklist handler The only way in which a typical
end user can access the workflow system is through the worklist
handler. When such a system is supporting the work of, say, one
hundred members

Figure 5.3

An example of a worklist handler (COSA, © Software-Ley)

of staff, the presentation of this component deserves particular attention.
This may justify developing a customized worklist handler adapted to
the specific business situation rather than using the standard one. This
specific worklist handler would contain supporting facilities alongside
the standard functionality described above. This is why it is referred to
as an integrated worklist handler. It may, for example, use background
data to provide additional support. Security and quality assurance
considerations may also prompt the development of an integrated
worklist handler. The same applies to the need for batch or chained
processing of work items.

Batch processing is when an employee is able to perform a number of
work items of the same type (in other words, repeat the same task)
without switching back to the worklist handler. This enables her to carry
out a particular task in routine several times in succession. Chained
processing is when an employee is able to perform a number of successive

Functions and Architecture of Workflow Systems 155

156 Chapter 5

tasks for a specific case. In this way, she does not have to get used to a
new case repeatedly. Batch and chained processing avoid continually and
unnecessarily switching between the worklist handler and the applica-
tions. This can provide considerable returns in terms of efficiency.

5.2.4 Invoked applications

The performance of a task may result in the starting up of one or
more applications. These do not form part of the workflow management
system because they are associated with the actual performance of work,
not to its logistical management. Such applications do belong to the
workflow system, though. This, after all, encompasses the applications,
configuration files, workflow management system, database, and so on.
Applications are started by the workflow engine in order to perform a
specific task. In doing so, information about the case may be submitted.
The application may, for example, make use of a particular case-attribute
value. The case's identification is frequently used to find the appropriate
information in the database. Conversely, the application may change the
case-attribute values. These modified attributes are often used to decide
the routing of the case. In general, a clear distinction is drawn between
interactive and fully automatic applications.

Interactive application An interactive application is always
initiated as a result of the selection of a work item from the worklist
handler. It may be a standard office tool such as a word processor or a
spreadsheet, or a program developed especially for the business process
(for example, an electronic form which needs to be completed).

Fully automatic application A fully automatic application requires no
interaction with the user. It thus may be a part of a task that can be
performed without a user intervening. One example could be a program
which performs a complicated calculation (such as establishing the
amount of an installment payment).

5.2.5 Other workflow enactment services

A workflow system may contain several workflow engines. These come
under the same management and use the same workflow definitions.
Such engines are said to belong to the same workflow domain. However

Functions and Architecture of Workflow Systems 157

it is also possible to link several autonomous workflow systems with one
another. In this way, cases (or parts of cases) can be transferred from one
system to another. This means that the workflow enactment services of
each system are linked. We refer to this as workflow interoperability. In
the future, more and more workflow systems are expected to be linked.
These may be in different branches of the same company or those of
separate firms.

5.2.6 Administration and monitoring tools

The workflow enactment service ensures the processing of cases based
upon workflow definitions. The supervision and operational manage-
ment of these flows (including the resources) are done using administra-
tion and monitoring tools. These can be divided into those used for
operational management of the workflows and those used for recording
and reporting. In many workflow management systems they are inte-
grated into a single tool.

The operational management tool Operational management covers all
operations pertaining to the management of the workflow. So it is not
possible to use the operational management tool to change the structure
of a business process. We can subdivide the information related to oper-
ational management into that which is case related and that which is not
(i.e., resource or system related). The operational management tool
functions for resource-related information include:

• addition or removal of staff; and
• input/revision of an employee's details (name, address,
telephone
number, role, organizational unit, authorization, and availability).

Additional operational management tool functions are:

• implementation of new workflow definitions; and
• reconfiguration of the workflow system (setting of technical system
parameters).

Note that an employee's individual details fall under operational man-
agement. The adjustment of employee availability information as a result
of a revised schedule, holiday, or sick leave is one example of
resource-related operational management. Functions for performing
case-related operational management are also required:

158 Chapter 5

• inspection of the logistical state of a case; and
• manipulation of the logistical state of a case due to problems and
exceptional circumstances.

The operational management tool thus is also used to provide ad hoc
solutions to problems resulting from system faults and bottlenecks in the
process.

The recording and reporting tool Many aspects can be recorded and
stored during the performance of a workflow. These are historical data
which may be useful for management. For example, the following inter-
esting performance indicators may be distilled from the data:

• average completion time for a case;
• average waiting time and processing time (possibly subdivided per
task);
• percentage of cases completed within a fixed standard period; and
• average level of resource capacity utilization.

Note that in many situations not only the averages but also the variances
of these performance indicators are of prime importance.

Information about the properties of completed workflows is crucial to
management. Prompt warnings about bottlenecks and overcapacity can
lead to the process being revised. The raw data is supplied by the work-
flow enactment service. It is then administered by the recording and
reporting tool. This can, for example, decide at information should be
stored. It also frequently offers reporting facilities. Some workflow man-
agement systems use predefined reports that are produced at regular
intervals. Others offer an integrated report generator. This enables the
user to define reports based upon the information recorded. And yet
others deliberately do not provide reporting facilities. In this way, the
recorded data can be found with the use of a standard database man-
agement system or a generic report generator. Often a huge amount of
data needs to be translated in order to produce the information that is of
interest to management. Clearly there is a link here with data mining,
data warehousing, and OLAP (on-line analytical processing).

Figure 5.4 shows the relationship between the tools described. In fact,
this illustrates a more detailed version of the workflow reference model
given in figure 5.2. It does not, though, state that the analysis tool and

Figure 5.4

The various components of a workflow system

the recording and reporting tool often make use of one another's infor-
mation. For example, historical data can be used in analyzing a work-
flow (through, say, simulation). Analytical results can also be used in
dedicated searches for useful management information.

5.2.7 Roles of people involved

Figure 5.4 clearly shows that a workflow system is constructed from
many components that are used by a wide range of people. In theory,
there are four types of users:

• The Workflow Designer. The workflow designer uses the process def-
inition tools (in other words, the process definition tool, the resource
classification tool, and the analysis tools). This designer works on the
structure of the workflow.

Functions and Architecture of Workflow Systems 159

160 Chapter 5

• The Administrator. The administrator uses the operational manage
ment tool. His typical activities include adding employees, issuing and
withdrawing authorizations, implementing new processes, monitoring
workflows, and solving problems and bottlenecks.
• The Process Analyst. The process analyst uses the recording and
reporting tool to inform the management about the performance of the
workflows. By aggregating detailed data into performance indicators, it
is possible to provide insight into the operation of the business processes
that are supported by the workflow management system.
• The Employee. The execution of work is carried out by employees. In
this book, they are also referred to as resources. Such resources are the
scarce means of production which need to be employed in the best way
possible.

As well as the four types of users, other people are often involved in the
structuring, management, and performance of the workflows. The users
of the workflow management system are usually led by a manager. New
and/or revised workflows often require new or updated applications.
Information requirements may also be changed by the introduction of a
new process. This is why database designers/programmers and applica-
tion designers/programmers are also involved in the (re) structuring of a
workflow. Figure 5.5 shows the various types of people involved in
workflow design, implementation, and enactment.

It goes without saying that, in practice, the distinction between people
and roles is not always as clear-cut as shown in figure 5.5. The process

Figure 5.5

The users of a workflow management system

Functions and Architecture of Workflow Systems 161

analyst may also be a manager, an employee also an Administrator—and
there may be several types of administrators. In chapter 6, we shall
examine in more detail the various types of people involved in imple-
menting and managing workflow systems.

5.3 Storage and Exchange of Data

A workflow system consists of a large number of components. For the
whole system to operate properly, these components must exchange
information with one another. Furthermore it is important that different
sorts of data are stored. Using figure 5.4 we shall show which data is
administered within the workflow system. We shall then examine the
links between the various components.

5.3.1 Data in a workflow system

Figure 5.4 shows which data is of significance to the workflow system. In
most cases the workflow management system and the applications make
use of the same database system. The workflow system thus "contracts
out" data administration to a database management system. The fol-
lowing data sets are involved:

1. Process definitions. The definitions of processes and tasks. The name,
description, routing, tasks, and conditions of each process are recorded.
For each task, its name, description, decision rules, content, and alloca-
tion rules are recorded.
2. Resource classifications. The structuring of the various types
of
resources. As well as a list of resource classes (roles or organizational
units), the relationships between them are recorded.
3. Analysis data. The results of any analyses carried out. In the case of
simulations, for example, subrun results. (A simulation also sometimes
makes use of historical data.)
4. Operational management data. The data that are important to the
administrator of the workflow system. For example, information about
the technical configuration of the system (system parameters),
information about staff, and case-related data.
5. Historical data. The data that are stored in order to be able to retrace
the progress of an individual case, trace the cause of a problem, or assess
the performance of the business process.

162 Chapter 5

6. Application data. The data that can be accessed by an application but
not by the workflow management system. There are two types of appli-
cation data: case data and master data. Case data are directly related to
individual cases; master data are not. The latter includes general infor-
mation about customers and suppliers.
7. Internal data. All the data that are maintained by the workflow
management system but are not directly related to the workflow as such.
For example, information about worklists that are active, the state of
each engine, and network addresses. Unlike the operational management
data, the internal data are technical in nature and therefore are only
accessed by the enactment service.
8. Logistical management data. The state of each workflow is em-
bedded in the logistical management data, which encompass information
about case states (including case attributes), the state of each resource,
and the triggers available. It is preferable that these are accessible only
by the workflow engine. However, it is for technical reasons sometimes
unavoidable that these are also consulted, and even revised, by external
applications.

5.3.2 Interfacing problems

A workflow system consists of a large number of components. Some
of these are the workflow management system tools themselves, while
others are the applications used when carrying out the actual tasks. In
order for these components to work together, they must exchange infor-
mation. Agreements have therefore been reached within the WFMC
about the standardization of interfaces between the various components.
As shown in figure 5.6, the WFMC recognizes five such interfaces.

The objective of interface standardization is threefold. First, generally
accepted standards will improve the exchange of data between (parts of)
workflow management systems. Second, it will become possible to create
links between different manufacturers' enactment servers in a simple way.
Finally, the standards will enable the development of applications that
are entirely independent of the chosen workflow management system.

A number of interfaces are currently achieved using files or databases.
For example, in figure 5.4, we have assumed that Interface 1 and Inter-
face 5 are realized using a database. Within the WFMC, however, it is
assumed that every interface will be achieved using a so-called applica-
tion programming interface (API). In the context of workflow manage-
ment, the term WAPI (workflow application programming interface) is

Functions and Architecture of Workflow Systems 163

164 Chapter 5

also used. An API is a group of services that are offered to a client via a
server. These services can best be compared with procedure calls in a
conventional programming language. The word client can refer to an
application. An operating system such as UNIX is an example of a
server. We can consider the copying of a file as a service offered by UNIX
via an API (cp). In the specific case of workflows (WAPI), the workflow
enactment service acts as the server and the tools and applications as
clients. To provide an impression of the WAPIs recognized by the
WFMC, we shall briefly describe the content of each interface:

1. Interface 1 (process definition tools). Interface 1 provides the
link
between the tools designed for creating and modifying the workflow
definitions (process definition tools) and the workflow enactment service.
This WAPI contains functions for opening and closing a connection
(connect/disconnect), obtaining a summary of the workflow definitions
(process definitions and resource classifications), and opening, creating,
and saving a process definition.
2. Interface 2 (workflow client applications). The second interface is
dedicated to communication between the worklist handler and the
enactment service. The WAPI that enables this supports, among others,
the following functions: opening and closing of a connection, production
of case and work item state summaries, generation of new cases, and the
beginning, interruption, and completion of activities.
3. Interface 3 (invoked applications). An application is opened from the
workflow management system through Interface 3. Figure 5.6 suggests
that every application is opened directly from the workflow enactment
service, but this is not always the case. An interactive application such as
a word processor will generally be opened from the worklist handler.
4. Interface 4 (other workflow enactment services). Interface 4 enables
the exchange of work between several autonomous workflow systems
(for example, case transfers and the outsourcing of work items). This
WAPI thus facilitates workflow interoperability.
5. Interface 5 (administration and monitoring tools). Interface 5 is con
cerned with the link between administration and monitoring tools and
the workflow enactment service. It is subdivided into two parts: work
flow system management functions and workflow tracking functions.
The former could include the addition of an employee, the permission
of authorization, and the execution of a process definition. To track
a workflow, the enactment service records a wide variety of events in
a logfile. Specific questions about this historical data can be posed via
Interface 5. These could cover waiting times, completion times, process
ing times, routing, and staff utilization.

Figure 5.7

Potential problems around Interface 3

The WFMC is still working on standardizing the WAPIs. For example,
little progress has been made thus far in agreeing on standards for Inter-
faces 3 and 5. Nevertheless the discussion about the five interfaces pro-
vides a good impression of the functionality desired of a workflow
management system.

For those involved in the introduction of a workflow management
system, Interface 3 is of particular importance. Interface 4 only becomes
significant when one wishes to link more than one workflow system.
Interface 2 enters the picture when the standard worklist handler is no
longer adequate and an integrated application needs to be developed.
Interface 5 becomes significant when one wishes to compile management
information from the events recorded by the enactment service. In prac-
tice, Interfaces 3 and 4 appear to cause most problems. We therefore
shall consider their potential difficulties in more detail.

Figure 5.7 shows diagrammatically how an application can be started
(Interface 3). This may be done by an engine and/or from a worklist
handler. An application is called to perform a task. Say the engine begins
the performance of a task and so starts up an application. This applica-
tion probably will modify application data in the database. If the work-
flow engine does not become accessible following the execution of the
application due to a system error, then the engine and the application
will be "out of synch." Once the system has been corrected, the engine
will have no choice but to rollback the task. After all, it has no way of

Functions and Architecture of Workflow Systems 165

166 Chapter 5

knowing that the application has completed the task successfully, and
any changes in the case attributes have not been passed on. This results in
the logistical data (case state) and application data no longer matching.
Disastrous consequences may follow. Consider, for example, a payment
by a bank: if the application has made the payment but the workflow
management system is not aware of this because of a fault, then the same
payment may be made again.

Similar problems may occur when an application is opened from the
worklist handler. Assume that an error in the worklist handler occurs
while the application is running. Again the workflow system and the
application become "out of synch." The fact that the engine, database,
worklist handler, and application can all operate on different systems
only makes these problems worse. In a client/server environment, for
example, the worklist handler and part of the applications run locally
(client), but the rest operates centrally (server). To solve such problems
effectively, it is vital that the engine, the database, the worklist handler,
and the application all regard a task (or a part of a task) as a common
logical unit of work (LUW). This means that the so-called ACID prop-
erties (atomicity, consistency, isolation, and durability) apply:

• Atomicity. A task either is completed successfully in full (commit) or
restarts from the very beginning (rollback).
• Consistency. The result of an activity (in other words, the performance
of a task) leads to a consistent state.
• Isolation. If several tasks are carried out simultaneously, the result is
the same as if they had been carried out entirely separately. In other
words, tasks performed at the same time should not influence one
another. This property is also referred to as "serializability."
• Durability. Once a task is successfully completed, the result must be
saved. A task therefore must be completed with a commit that ensures
that the result cannot be lost.

Within classic transaction processing environments like those we en-
counter in the financial world, we frequently have to "pass the ACID
test." In practice, though, with the current generation of workflow
management systems, it appears not to be easy to address the ACID
properties in full. This aspect therefore deserves to be taken fully into
account at an early stage.

We encounter similar problems when linking two or more workflow
systems (Interface 4). In addition, in most workflow management systems

Functions and Architecture of Workflow Systems 167

it is not always entirely clear what the state of a case is. In terms of Petri
nets, the state of a case corresponds with the distribution of tokens
amongst places (conditions) and the values of case attributes. The trans-
fer of a case between two workflow systems based upon Petri nets
therefore is equivalent to transferring tokens and case attributes. In many
other workflow systems the situation is not so simple, because they often
abstract from the state of a case at the conceptual level. (The places are
omitted from the definition of the process.) In such cases, complicated
"translation" work is required to transfer a case from one system to an-
other. Note that, in addition to transferring cases, the outsourcing of
work items and the generation of new cases in a different system also fall
within the scope of workflow interoperability.

5.3.3 Interoperability standards

The presentation in this chapter is based on the reference model of the
WFMC. This model was chosen as a starting point since it provides a
nice introduction to workflow technology. Many authors have criticized
the reference model as being too naive or emphasizing the wrong issues.
In this chapter we will not compare the reference model to alternative
architectures: These more technical discussions are outside the scope of
this book. However, we will point out recent efforts to resolve the inter-
operability problems identified in this chapter.

In the last couple of years several interoperability standards, that is,
specifications for the exchanging information between workflow prod-
ucts, have been proposed. We can classify these interoperability specifi-
cations into two categories: specifications for workflow modeling and
workflow description (i.e., design-time) and specifications for run-time
interoperability.

The first category corresponds to Interface 1 of the reference model of
the WFMC. The WFMC's process definition language (WPDL) falls into
this category. Another example is PIF (process interchange format). PIF
is an interchange format designed to help automatically exchange process
descriptions among a wide variety of process tools such as process
modelers, workflow systems, process repositories, etc. These tools can
interoperate by translating their native process description format to PIF,
and vice versa. In this way, process descriptions can be exchanged auto-
matically without using different translators for each pair of systems. If a
translation to or from PIF cannot be achieved automatically, human

168 Chapter 5

efforts are needed. The PIF format did not gain sufficient momentum to
become an industry standard. However, many of the ideas have been
adopted by a new initiative: the process specification language (PSL).
PSL is promoted by NIST (U.S. National Institute of Standards and
Technology) and has a scope which is much broader than the WPDL of
the WFMC. There are several even more general standards emphasizing
different aspects, that is, the standardization efforts in the context of
UML (statechart diagrams, sequence diagrams, collaboration diagrams,
and activity diagrams), the ISO standard for (high-level) Petri nets (ISO/
IEC JTC1/SC7/WG11), and the well-known IDEF0 standard (also sup-
ported by NIST). These standardization efforts are relevant but clearly
provide no solution for today's design-time interoperability problems.
This is a result of the absence of a common conceptual or formal core
model, as was mentioned before.

The second category of interoperability specifications is concerned
with run-time interoperability. This category corresponds to Interface 2,
Interface 3, and Interface 4, with a focus on Interface 4. The focal point is
on the support of exchanging process enactment information at run-time.
Clearly, Interface 4 is of the utmost significance when exchanging enact-
ment information between systems of different vendors. The most notable
initiatives with respect to run-time interoperability are the Interoperability
Specification of the WFMC, SWAP, WF-XML, and OMG's jointFlow.
Already in 1996, the WFMC released the Interoperability Abstract
Specification (WFMC-TC-1012). This was followed by the so-called
Interoperability Internet e-mail MIME Binding (WFMC-TC-1018).
Recently (May 2000), the WFMC released the so-called Interoperability
Wf-XML Binding (WFMC-TC-1023). The latter describes a realization
of the Interoperability Abstract Specification using XML and is based on
SWAP. SWAP (Simple Workflow Access Protocol) is an Internet-based
standard and supported by multiple workflow vendors. SWAP heavily
uses the HTTP protocol and can be used to control and monitor work-
flow processes. OMG's jointFlow is an initiative based on the CORBA
architecture and also uses the Interoperability Abstract Specification of
the WFMC as a starting point. The jointFlow standard is formed by a set
of IDL specifications. The standards concerned with run-time interoper-
ability are very relevant for the realization of workflow systems. In the
context of electronic commerce, these standards will become even more

Figure 5.8

A summary of the technical components

important. Unfortunately, the standards are at a rather technical level
and do not really deal with issues at a business level. It is possible to
connect systems of different vendors using for example Wf-XML. How-
ever, this does not imply that the process is executed as intended.

5.4 Required Technical Infrastructure

In achieving a functional workflow system, it is not sufficient simply to
purchase a workflow management system. As shown in figure 5.8, this is
only one of the components required.

The successful introduction of a workflow system requires a suitable
technical infrastructure. Most operate within a client/server environment.
Such an environment typically consists of a central server operating in
Windows NT/2000 or UNIX and a number of clients using MS-DOS/
Windows 3.1, OS/2 or Windows 95/98/2000. As we have already seen
in figure 5.7, the workflow engine operates on the server side. The
worklist handler, and hence the user interface, operates on the client side.
The applications may operate on either side. The database of manage-
ment and application data is administered by the server. Without be-
coming mired in a technical explanation, we shall briefly consider the
main components:

1. Hardware. The server is usually a powerful microcomputer, or a mini
or mainframe computer. Reduced instruction set computers (RISCs) are
often used. Clients are generally choosing complex instruction set com-

Functions and Architecture of Workflow Systems 169

170 Chapter 5

puters (CISCs): for example, personal computers (PCs) based upon Intel
80x86 processors. The server is linked to the clients using coax,
(un)shielded twisted pair or fiber-optic cable. Bridges, routers, hubs, and/
or gateways are also required when building large networks.

2. Operating system. The operating system of the server should allow
for multiple users and multitasking. One obvious choice is UNIX; other
possibilities are OS/2, Windows NT/2000, or Linux. Mainframes are
seldom used for workflow management. Operating systems like VMS,
MVS, and AS400 are also rarely supported by the current generation of
workflow management systems. The client's operating system is usually
Windows 95/98/2000. However, it could also use UNIX, OS/2, or Linux.
One characteristic of modern operating systems is that they support user
interfacing.
3. Network software. The network plays a crucial role in the operation
of a workflow system. It links the clients with the server. Common
choices of network technology are the Ethernet and the Token Ring pro
tocol. The communications software uses such a protocol to exchange
messages. TCP/IP (Transmission Control Protocol/Internet Protocol) is
currently the most widely-used standard in client/server environments.
Other possibilities are NetWare, SNA, OSI, and AppleTalk.
4. Database management system. Many information systems are con
structed around a database system. In a workflow system, too, the data
base plays a major role. Usually the applications and the workflow
management system use the same database system. This means that the
workflow management system must be able to make use of a database
management system that has already been chosen. Most workflow man
agement systems therefore support the most common relational database
management systems such as Oracle, Sybase, and SQLServer. Using
ODBC (open database connectivity) it is, in theory, even possible to
make the workflow management system independent of the underlying
database management system. However, the selection of an incompatible
combination can result in poor performance by the entire workflow
system.
5. Applications. The applications support the performance of tasks.
They may be either standard software packages, such as a word pro
cessor or a spreadsheet, or customized software written in a script
language, a third-generation language (such as C++ or Java), or a fourth-
generation one (like Powerbuilder or Oracle Designer/2000). Various
mechanisms are conceivable for starting up an application. Firstly, a
command line can be used (in other words, it is started directly from the
operating system). The case attributes can be exchanged through a WAPI
or the database. The drawback to this is that a new program must be

Functions and Architecture of Workflow Systems 171

started for each activity. It therefore is sometimes better to start the
application only once. In such a case, the application is not closed when
an activity is completed. So starting it a second, third, or fourth time is
no longer necessary. In Windows, for example, DDE (Dynamic Data
Exchange) is used to achieve this.

6. Workflow management system. The workflow management system
has to deal with each of the components listed above. It must be able to
exchange information with the applications and the database system.
Moreover, it must be able to cope efficiently with the available processing
and network capacity.

The above shows that technical as well as functional aspects need to be
taken into account when selecting a workflow management system. Such
a system uses the hardware, operating system, network software, data-
base management system, and applications already in place. It therefore
is vital that the chosen workflow management system suits those com-
ponents. A poor combination can result in an unreliable system with long
response time and a low processing speed.

5.5 Current Generation of Workflow Products

Today, many workflow management systems are available. Figure 5.9
lists some of them. This list is just a snapshot: It is far from complete
and the support for some of the products listed has been discontinued.
The number of suppliers offering workflow management software is esti-
mated at two hundred—which indicates that such systems are expected
to play a major role in the near future. Besides the specialized workflow
management systems, most ERP-systems such as SAP, Baan, and JD
Edwards have a workflow engine incorporated. In most cases these
workflow engines cannot be used as standalone workflow management
systems.

The information in this chapter is based upon the situation in early
2000. Due to the rapid pace of developments in the workflow market,
this picture is likely to change completely within a few years. The rest of
this book is, however, less time-dependent and will therefore remain
current for many years to come.

Despite the large number of suppliers, some of which are listed in
figure 5.9, the number of workflow systems actually in production is

172 Chapter 5

Action Technologies Inc.
Computron

Ley GmbH

CSE

Universal Systems Inc.
BancTec-Plexus

PowerCerv

IBM

Delrina

Empirica

TIBCO/InConcert

Promatis

JetForm Corporation

UES Inc.
I. Levy & Associates

Wang

SNS Systems

Optika Imaging Systems Inc.
Cap Gemini Innovation

SAPAG

Staffware

TeamWARE

Ultimus

Verve Inc.
ViewStar

FileNet Corp.
Cap Gemini Innovation

Delphi Consulting Group

Optical Image Technology Inc.
Siemens Nixdorf IS -AG

IA Corporation

Figure 5.9

A number of workflow management systems and their suppliers

relatively limited. There are several reasons for this. First, the technology
is quite new, so systems developers often are insufficiently aware of the
possibilities offered by a workflow management system. Also many
workflow management systems still are not fully developed, resulting
in limited functionality and unsatisfactory reliability. And it is currently
not easy to opt for a specific workflow management system. The large
number of systems available and the high degree of uncertainty about the
future make the choice even more difficult. Finally, despite the efforts of
the WFMC, standards with respect of functionality and system linking
are lacking. For example, many workflow management systems use an
ad hoc drawing technique to specify processes. One of the drawbacks of
this is that it is difficult to exchange process descriptions between differ-

Functions and Architecture of Workflow Systems 173

ent suppliers' systems. (A conceptual standard based upon Petri nets
would make a significant contribution in this respect.) Despite these
obstacles, the importance of workflow management will only increase in
the future.

In order to gain an impression of the current generation of workflow
management systems, we shall briefly examine three products: Staffware®
(Staffware Plc), COSA® (Ley GmbH), and ActionWorkflow® (Action
Technologies Inc.). Staffware is one of the leading workflow products
with an estimated market share of twenty-five percent. Therefore it serves
as a nice illustration of the capabilities of today's workflow management
systems. The latter two products have been chosen because they repre-
sent extremes in the broad spectrum of workflow management systems.
COSA is a robust product with extensive possibilities for managing
complex business processes. It also closely shadows the process modeling
technique used in this book. ActionWorkflow represents an entirely dif-
ferent approach, in which the emphasis is placed upon coordinating the
parties involved rather than managing the process. Staffware will be dis-
cussed in some detail. The other two are discussed only briefly. We will
also present some tools for workflow analysis and BPR and mention
some criteria for selecting a workflow management system.

5.5.1 Staffware

Staffware® is one of the most widespread workflow management systems
in the world. In 1998, it was estimated by Gartner Group that Staffware
has twenty-five percent of the global market. Staffware Pic, the company
that develops and distributes Staffware, is headquartered in Maidenhead,
U.K. In this section we describe the current version of Staffware:
Staff-ware 2000. Staffware 2000, the successor of Staffware 97, was
launched at the end of 1999.

Staffware consists of the following components:

1. Graphical Workflow Definer (GWD). The GWD is the process defi
nition tool of Staffware. It does not support any form of analysis.
2. Graphical Form Designer (GFD). The GFD is used to define the in
terface that is presented to the end-user or, in case of an automatic task,
the interface that is presented to the external application.
3. Work Queue Manager (WQM). The WQM is the client tool of
Staffware which is used to offer work to end-users.

174 Chapter 5

4. Staffware Server (SS). The server component of Staffware takes care
of the run-time enactment of the workflow.
5. Staffware Administration Managers (SAM). The SAM consists of a
set of tools to support the workflow administrators. The following tools
are included: user manager, backup manager, table manager, case man
ager, list manager, network manager, and sysinfo.
6. Audit Trail (AT). The AT facility is used to monitor the execution of
individual cases.

The Staffware components can be mapped onto the reference model of
the WFMC quite easily: GWD and GFD correspond to the process defi-
nition tools (Interface 1), WQM corresponds to the workflow client
applications (Interface 2), SAM and AT correspond to the administration
and monitoring tools (Interface 5), and SS provides the workflow enact-
ment service of Staffware.

Figure 5.10 shows a screenshot of the GWD. The modeling language
used is specific for Staffware. The tasks are called steps. There are several
kinds of steps: automatic steps (offered to an application instead of
an end-user), normal steps (executed by an end-user), and event steps
(triggered by some external event). The semantics of a step are OR-join/
AND-split; that is, a step becomes enabled if one of the preceding steps is
completed and the completion of step will trigger all subsequent steps.
Since the OR-join/AND-split semantics is fixed, two additional building
blocks are needed: the wait step and the condition. The wait step can be
used to synchronize flows and has AND-join/AND-split semantics. To
model choices, that is, OR-splits, the condition building block can be
used. Staffware only allows for binary choices, that is, just two possible
outcomes (e.g., YES and NO). Staffware processes always start with a
start step that is denoted by a symbol representing a traffic light. Termi-
nation in Staffware is implicit; it is possible to start multiple parallel
threads that end concurrently. Therefore there is no need to have one
sink node representing the completion of a case. The end of a thread is
denoted by a stop symbol. Conditions are modeled by diamond-shaped
symbols. Wait steps are modeled by symbols in the shape of a sand timer.
The basic semantics of a step, a condition, and a wait are shown in figure
5.11.

The translation shown in figure 5.11 does not consider two additional
features available for steps. First of all, it is possible to withdraw steps.

Functions and Architecture of Workflow Systems 175

Figure 5.10

The graphical Workflow Definer (GWD): The design tool of Staffware

Figure 5.11

The semantics of some of the Staffware constructs (left) expressed in Petri nets
(right)

176 Chapter 5

Second, it is possible to model a time-out, that is, a step triggering other
steps if it is not executed within a given time period.

Figure 5.12 shows the process of handling insurance claims used in
chapter 2 modeled with the Staffware GWD. Figures 5.11 and 5.12 show
that the modeling language used by Staffware is quite similar to the
technique used throughout this book: concepts such as AND/OR-split/
join play an important role in both types of models. Nevertheless there
are some subtle, but relevant, differences. One of the core differences is
the fact that the notion of states, that is, a concept similar to places, is not
supported by Staffware. As a result, some models may appear to be more
straightforward in Staffware (e.g., a simple sequential process). However,
other models become larger as a result of the binary choice and the need
to introduce wait steps for synchronization purposes. In fact, several con-
structs that can be modeled in terms of Petri nets cannot be modeled in
Staffware, such as implicit choices, milestones, and other non-free-choice
constructs. The only way to support these constructs is to encode the
functionality in an external application or accept different semantics.

Staffware does not offer a tool for organizational modeling. Instead
Staffware uses the concept of the work queue. A work queue can be
compared to a resource class. Every queue is associated with a group of
users. A user can be a member of many work queues and a work queue
can be associated with many users. Each user sees the work queues for
which she is a member of the associated group. Work items can be put
into one or more work queues. If a work item is put into a work queue,
one of the associated members has to execute the work item. When a
user wants to process a work item, she selects it from its queue. While the
user is processing the work item, the work item remains locked for all
other members of the group. After processing, the user can either release
the item (i.e., tell the system the work item is done), or put it back into
the queue.

Figure 5.13 shows the WQM of Staffware. This tool is used to offer the
work to end-users. On the lefthand side the work queues are shown.
Note that each user has one personal work queue and several group
queues. Figure 5.13 shows four group queues. On the righthand side
some of the work items are shown. By selecting a specific queue, the user
can see all work items corresponding to this queue. In figure 5.13 there
are three work times corresponding to the work queue IC CD Employee.

Figure 5.12

A Staffware process for handling insurance claims

Figure 5.13

The Work Queue Manager (WQM) of Staffware

Figure 5.14

The Audit Trail and the User Manager (one of the Staffware Administration
Managers tools)

Figure 5.14 shows some other tools offered by Staffware 2000. The
Audit Trail tool (top right) shows a trace of all occurrences for a given
case or process. The User Manager (bottom) is used to maintain a list of
end-users, privileges, queue membership, etc. The User Manager is just
one of the Staffware Administration Managers (SAM) tools.

This concludes our introduction to Staffware 2000. It nicely illustrates
the features of the current generation of workflow management systems.
The description of the two other workflow management systems (COSA
and ActionWorkflow) will be less elaborate.

Functions and Architecture of Workflow Systems 179

Figure 5.15

A COSA process definition produced with CONE

5.5.2 COSA

COSA® (COmputerunterstiitze SAchbearbeitung) is produced by
Software-Ley GmbH. It is a workflow management system based upon
Petri nets. COSA can be described as a traditional workflow manage-
ment system that closely follows the WFMC reference model. It is also
characterized by very extensive functionality and a somewhat dated user
interface. The figures shown in this section exhibit COSA 1.4. The user
interface of COSA 2.0 and the recently released COSA 3.0 looks quite
different but—in essence—offers the same functionality. COSA
consists of the following components:

1. COSA Network Editor (CONE). CONE is a process definition tool
for defining and revising processes. As shown in figure 5.15, Petri nets
are used to illustrate processes.
2. COSA User Editor (COUE). COUE is a resource classification tool
for defining roles and organizational units. Figure 5.16 shows how
resource classes can be structured hierarchically.
3. COSA MemoBox (COMB). COMB is a standard worklist handler
for offering and starting work items (see figure 5.3). Every employee is
provided with her own worklist handler.
4. COSA Networkstate Displayer (COND). COND is a graphic tool
for presenting the state of a case. Because an employee can see the state
of a case, she is aware of the business process.

180 Chapter 5

Figure 5.16

A subdivision into roles produced by COUE

5. COSA Runtime Server (CORS). The COSA Runtime Server is a
workflow enactment service which consists of one or more engines.
6. COSA Simulator (COSI). COSA offers a primitive tool for simulating
business processes. There is also a link available between COSA and
the analysis tool ExSpect.
7. COSA Administrator (COAD). COAD is used to manage the work
flows. COSA does not offer a recording and reporting tool. However
standard reporting tools (such as Management Information Systems,
OLAP, and Extraction tools) can read and process the information
required from the COSA database.

COSA's architecture can easily be mapped onto the WFMC reference
model (see figure 5.2). CONE, COUE, and COSI form the process defi-
nition tools (Interface 1). COMB and COAD respectively correspond
with the workflow client applications (Interface 2) and the administra-
tion and monitoring tools (Interface 5). COND can be regarded as sup-
plementing COMB.

COSA supports many technical platforms, including UNIX, Windows
NT/2000, and OS/2 on the server side and OS/2, Windows NT/2000,
Windows 3.1, Windows 95/98/2000, and UNIX on the client side. The
following database management systems are supported: Oracle, Infomix,
Sybase, Ingres, and DB2. It is also possible to communicate with running
workflows via the Internet using COSA Portal; that is, it is possible to
access the memobox functionality via a web browser.

Functions and Architecture of Workflow Systems 181

Figure 5.17

A Business Process Map with one primary and four secondary workflows

5.5.3 Action Workflow

Action Workflow® is produced by Action Technologies Inc., and focuses
upon supporting processes in which communication between people
and/or parties plays a major role. In this sense, ActionWorkflow is very
different from more traditional workflow management systems like
COSA and Staffware. Unlike COSA and Staffware, which concentrate
upon the process, ActionWorkflow centers on coordination.
Action-Workflow uses so-called Business Process Maps (BPM). These are
constructed from a number of workflows (see figure 5.17). Each
workflow corresponds with a transaction that passes through the
following stages: (1) preparation, (2) negotiation, (3) performance, and
(4) completion. Transitions between these stages take place using
so-called speech acts (communication between the people/parties
involved in the transaction). Workflows can be linked with one another
to illustrate the connections between the transactions. In this way,
refinements and various types of routing can be shown. In the BPM
illustrated in figure 5.17, workflows D and E are carried out in parallel.
Workflow C is performed after workflow B.

182 Chapter 5

Figure 5.18

A Business Process Map (BPM) constructed using ActionWorkflow 2.0

In this section we discuss the functionality of ActionWorkflow 3.0.
This is not the current workflow product of Action Technologies Inc. The
focus of Action Technologies Inc. shifted from pure workflow manage-
ment to complete business solutions. However, their latest product, called
ActionWorks Metro (a so-called "e-process application platform"),
includes the functionality of ActionWorkflow 3.0.

ActionWorkflow 3.0, also known as the ActionWorkflow Enterprise
Series, consists of the following components:

1. ActionWorkflow Process Builder. The Process Builder is used to illus-
trate workflows, with the aid of Business Process Maps. There are two
versions: an Analyst Edition for the process designer and a Developer
Edition for the actual realization.

Functions and Architecture of Workflow Systems 183

184 Chapter 5

2. ActionWorkflow Process Manager. The Process Manager is at the
heart of ActionWorkflow. It is both a workflow engine and a tool for
managing the workflow. In addition it offers advanced possibilities for
analyzing workflows which are in progress.
3. Action DocRoute. DocRoute is based upon the Process Manager and
offers the ability to integrate document management and imaging appli
cations seamlessly.
4. Action Metro. Action Metro offers the opportunity to create work
flow systems which make use of the Internet. Web browsers such as
Netscape Navigator and Microsoft Internet Explorer hence can be used
as worklist handlers.

We can also illustrate the ActionWorkflow components using the
WFMC reference model. ActionWorkflow Process Builder is the only
process definition tool (Interface 1). ActionWorkflow Process Manager
corresponds with the workflow enactment service, the administration
and monitoring tools (Interface 5) and part of the workflow client appli-
cations (Interface 2). Action DocRoute is difficult to place in the reference
model. Action Metro can be treated as an alternative to Interface 2; a
Web browser acts as the Workflow Client Application.

ActionWorkflow is only available for a limited range of platforms.
ActionWorkflow 3.0 is only available for Windows NT/2000 on the
server side. The Process Builder also operates under Windows 95/98/2000.
Through the use of the Internet, the client software is suitable for almost
every system. Data management makes use of Microsoft SQLServer.

The above shows that COSA (or Staffware) and ActionWorkflow are
two very different workflow management systems. COSA is traditional
and thorough, enabling the support of most routine production processes
within administrative organizations. ActionWorkflow differs in many
respects from standard workflow management systems, and appears to
be best suited to supporting processes in which coordination is crucial.

5.5.4 Analysis tools

As was pointed out in the previous chapter, there are several techniques
for analyzing workflow systems. Unfortunately contemporary workflow
management systems hardly support any form of analysis. In chapter 4
we differentiated between qualitative analysis (concerned with the logical
correctness) and quantitative analysis (concerned with the performance

Functions and Architecture of Workflow Systems 185

and capacity requirements). Only a few workflow tools focus on quali-
tative analysis. Most of the workflow management systems have only
trivial correctness checks, such as: is the workflow graph connected?
More advanced checks like the absence of deadlocks, guaranteed termi-
nation, and proper termination are not supported. A few research tools
have been developed to tackle the problem of qualitative analysis. Most
notable are Woflan (SMIS/I&T, Eindhoven University of Technology,
The Netherlands) and FlowMake (DSTC Pty Ltd, The University of
Queensland, Australia). Both tools are capable of analyzing properties
similar to the soundness property defined in chapter 4. Many of the
workflow management systems available today support some export
facility to simulation tools. This export facility is used to analyze the
quantitative aspects of a workflow process. An example is the link be-
tween Staffware and Stuctware/BusinessSpecs (IvyTeam, Zug, Switzer-
land). Another example is the link between COSA and ExSpect (Deloitte
& Touche Bakkenist, The Netherlands).

To illustrate the functionality of these analysis tools we briefly describe
two products: Woflan and ExSpect.

Woflan Woflan (WOrkFLow Analyzer) is a tool that analyzes work-
flow process definitions specified in terms of Petri nets. It has been
designed to verify process definitions that are downloaded from a work-
flow management system such as Staffware and COSA. As indicated in
chapter 4, there is a clear need for such a verification tool. Today's
workflow management systems do not verify the correctness of workflow
process definitions. Therefore errors made at design time such as dead-
locks and livelocks may remain undetected. This means that an errone-
ous workflow may go into production, thus causing dramatic problems
for the organization. To avoid these costly problems, it is important to
verify the correctness of a workflow process definition before it becomes
operational.

The development of the tool Woflan started at the end of 1996, and
the first version was released in 1997. Basically, Woflan takes a work-
flow process definition imported from some workflow product, translates
it into a Petri net, and tells whether or not the net is a sound workflow
net. Furthermore using some standard Petri-net analysis techniques as
well as those tailored to workflow nets, the tool provides diagnostic

186 Chapter 5

information about the net in case it is not a sound workflow net. Version
2.0 of Woflan has an import facility for COSA, Staffware, METEOR,
and Protos. Figure 5.19 shows a screenshot of Woflan. A trial version of
Woflan can be downloaded from http://www.tm.tue.nl/it/woflan.

ExSpect ExSpect (Executable Simulation Tool) is a full-fledged simula-
tion tool based on Petri nets. The development of ExSpect started in
1988 at Eindhoven University of Technology as a research prototype. In
the mid-1990s the development moved to the Dutch consultancy com-
pany Bakkenist. At the moment ExSpect is supported by Deloitte & Touche
Bakkenist, The Netherlands. The application of ExSpect is not limited to
workflow analysis. ExSpect can also be used to simulate production
processes, transportation networks, software components, embedded
systems, etc. In fact, ExSpect can be used to prototype simple systems
and can interact with run-time systems via the Microsoft COM standard.
However, for this book, the link between ExSpect and several workflow
products is most relevant. ExSpect can download workflow processes
from workflow management systems such as COSA and BPR tools such
as Protos. Figure 5.20 shows a screenshot of ExSpect. The screenshot
shows that ExSpect supports graphical animation of the workflow pro-
cesses. In addition ExSpect calculates confidence intervals for all kinds of
metrics (flow time, utilization, etc.). It is also possible to modify auto-
matically-created simulation models of the workflow to support man-
agement games. A trial version of ExSpect can be downloaded from
http://www.exspect.com.

5.5.5 BPR tools

In chapter 3 it was shown that there is a close relationship between
Business Process Re-engineering (BPR) and workflow management.
Therefore there are also links between tools to support BPR efforts and
workflow management systems. Some of the tools supporting BPR efforts
focus exclusively on simulation. ExSpect is an example of such a tool.
Other tools focus on the modeling of business processes without any real
support for analysis. Examples of tools that focus exclusively on model-
ing are Protos (Pallas Athena BV, Plasmolen, The Netherlands) and ARIS
(IDS Scheer AG, Saarbrucken, Germany). Some tools offer both simu-
lation and extensive modeling capabilities tailored towards business

Functions and Architecture of Workflow Systems 187

188 Chapter 5

Functions and Architecture of Workflow Systems 189

processes, such as BusinessSpecs (IvyTeam, Zug, Switzerland), Income
(Promatis AG, Karlsbad, Germany), and Meta Workflow Analyzer (Meta
Software, Cambridge, MA., U.S.A.). To illustrate the functionality of
these tools we briefly introduce Protos.

Protos Protos is a tool that can be used to model and document busi-
ness processes. The tool is easy to use and is particularly useful for
modeling workflow processes, that is, case-driven processes. Although
Protos is not based on Petri nets it can support the diagramming tech-
nique used in this book. Protos supports the graphical modeling of pro-
cesses, documents, applications, roles, groups, and teams. The analysis
capabilities of Protos are limited: only very basic static dependencies
can be analyzed (e.g., a role/route analysis comparable to the swim lanes
in UML). Protos has excellent reporting facilities. It is possible to auto-
matically generate RTF documents and HTML pages with hyperlinks.
Protos supports an export facility to the simulation tool ExSpect. There
also are interfaces with workflow management systems such as COSA
(Ley GmbH), Corsa (BCT), and FLOWer (Pallas Athena). Figure 5.21
shows a screenshot of Protos. For more information we refer to http://
www.pallas-athena.com.

5.5.6 Selecting a workflow management system

Selecting a workflow management system is not an easy matter. There
are many aspects that need to be borne in mind. The selection process
begins with the listing of the requirements that the system must meet.
Based upon these, a shortlist is then compiled. When doing so, consider-
ation is given to characteristics which are easy to check, such as the
reliability of the supplier and whether the desired operating system and
database management system are supported. The shortlist should prefer-
ably contain about five systems.

Each package on the shortlist is then subjected to closer scrutiny. One
way to gain a good impression of a workflow management system
quickly is to work through a sample process chosen in advance. Most
suppliers are prepared to cooperate with a potential purchaser in doing
this. It is very important that the sample process is representative of the
relevant business processes. For example, one should ensure that all the

Figure 5.21

A Protos model of the complaints handling process

desired routing constructs are included. The sample process can be used to
test both functional and performance requirements.

Figure 5.22 illustrates a possible sample process that, for the sake of
convenience, we shall call P. Process P can be used to check functional
requirements. All forms of routing are included, and a range of different
triggers is used. The process is rather small for studying the performance
of a workflow management system. However, if we produce a process in
which P recurs four times as a subprocess, then we create something with
far greater scope. By comparing the performance of the system when
the four subprocesses run in parallel (linked by an AND-split and an
AND-join) with that when there is selective routing between them (the
four subprocesses are linked using an OR-split and an OR-join), one

190 Chapter 5

Functions and Architecture of Workflow Systems 191

Figure 5.22

Sample process for evaluating a workflow management system

192 Chapter 5

can gain a good insight into the speed of the workflow engine. In both
cases the full process consists of ninety tasks. This is sufficient for most
applications.

Once the workflow management systems on the shortlist have been put
on trial in this way, it usually becomes clear which package is the best
choice.

5.6 Adaptive Workflow

5.6.1 Workflow management and CSCW

At the moment, there are more than two hundred workflow products
commercially available, and many organizations are introducing work-
flow technology to support their business processes. It is widely recog-
nized that workflow management systems should provide flexibility.
However today's workflow management systems have problems dealing
with changes. New technology, new laws, and new market requirements
may lead to (structural) modifications of the workflow process definition
at hand. In addition, ad hoc changes may be necessary because of
exceptions. The inability to deal with various changes limits the applica-
tion of today's workflow management systems.

Figure 5.23 shows the different fields of support for collaborative work.
We distinguish between unstructured, information centric approaches
(computer-supported, cooperative work or CSCW) and structured, pro-
cess-centric ones (production workflow). Existing tools are typically in
one of the two extremes of the spectrum: groupware products such as
Lotus Notes and Exchange are typical CSCW tools, not providing much
process support, whereas commercially available (production) WFMSs
such as Staffware, COSA, and MQ Series are not able to cope with
unstructuredness.

Linking production workflow management systems to groupware
products does not really solve the problem, as the process logic then is
still handled by the same inflexible workflow engine. To bridge the gap
between CSCW and production workflow, several research groups arc
working on the problems associated with adaptive workflow. Adaptive
workflow aims at providing process support like normal workflow sys-
tems do, but in such a way that the system is able to deal with certain
changes. These changes may range from ad hoc changes such as changing

Figure 5.23

The collaborative work spectrum

the order of two tasks for an individual case (often called exceptions)
to the redesign of a workflow process as the result of a business process
redesign (BPR) project.

Typical issues related to adaptive workflow are:

• Correctness. What kind of changes are allowed and is the resulting
workflow process definition correct with respect to the criteria specified?
We distinguish syntactic correctness (e.g., are there any unconnected
nodes in the graph?) and semantic correctness (e.g., can existing cases in
the system be finished in a proper way?).
• Dynamic change. What is done with running instances (cases) of a
workflow of which the definition has been changed? The term dynamic
change refers to the problems that occur when running cases have to
migrate from one process definition to another.
• Management information. How to provide a manager with aggregated
information about the actual state of the workflow processes?

Taking these issues into account, a classification of the types of changes is
presented.

5.6.2 Classification of change

This section deals with the different kinds of change and their con-
sequences. Some of the perspectives relevant for change are:

Functions and Architecture of Workflow Systems 193

194 Chapter 5

• process perspective, that is, tasks are added or deleted or their ordering
is changed,
• resource perspective, that is, resources are classified in a different way
or new classes are introduced,
• control perspective, that is, changing the way resources are allocated to
processes and tasks,
• task perspective, that is, upgrading or downgrading tasks, and
• system perspective, that is, changes to the infrastructure or the config-
uration of the engines in the enactment service.

For workflow management systems, the process perspective is dominant.
Therefore we focus on the process perspective when classifying the dif-
ferent types of workflow change.

First of all, we can classify change based on the scope or impact of the
change. Using this criterion, two kinds of change are identified:

• Individual (ad hoc) changes. Ad hoc adaptation of the workflow pro-
cess: a single case (or a limited set of cases) is affected. A good example is
that of a hospital: if someone enters the hospital with a cardiac arrest, the
doctor is not going to ask him for his ID, although the workflow process
may prescribe this. Within the class of ad hoc changes it is possible to
distinguish between entry time changes (changes that occur when a case
is not yet in the system) and on-the-fly changes (while in the system, the
process definition for a case changes).
• Structural (evolutionary) changes. Evolution of the workflow process:
all new cases benefit from the adaptation. A structural change is typically
the result of a BPR effort. An example of such a change is the change of a
four-year curriculum at a university to a five-year one.

There are three different ways in which a workflow can be changed:

• the process definition is extended (e.g., by adding new tasks to cover
process extensions),
• tasks are replaced by other tasks (e.g., a task is refined into a sub-
process), and
• tasks in the process are reordered (e.g., two sequential tasks are put in
parallel).

If a change occurs, it may affect running cases. Handling existing cases in
the system when a process definition changes poses potential problems.
Dealing with existing cases is only relevant in the case of a structural
change because individual changes will always be (similar to) exceptions
and as such will be dealt with by the one who initiated the change

Functions and Architecture of Workflow Systems 195

explicitly. For structural changes there are three alternatives: (a) restart:
running cases are rolled back and restarted at the beginning of the new
process, (b) proceed: changes do not affect running cases by allowing for
multiple versions of the process, and (c) transfer: a case is transferred to
the new process. The term dynamic change is used to refer to the latter
policy.

5.6.3 InConcert

Currently many researchers are working on problems related to adaptive
workflow. Few commercial systems provide support for adaptive work-
flow. The problems related to dynamic change are difficult to tackle and
not addressed by any of today's systems. Only for individual change
there are some systems available. These systems are ad hoc workflow
systems. In this section we describe one of these systems.

InConcert (TIBCO Software Inc.) is a workflow management system
designed to develop flexible workflows. The tool has two unique fea-
tures. First of all, the system supports "workflow design by discovery."
This feature allows for the creation of templates based on the actual
execution of workflow tasks for a given case. Second, InConcert supports
a notion of class hierarchies that enables one InConcert object to inherit
functionality of another InConcert object; in other words, the attributes
of a parent workflow process definition can be inherited by child work-
flow process definitions.

Using the InConcert client software it is possible to bring into play the
following tools:

1. Process Designer. The Process Designer is the tool used to design
workflow process definitions. This tool can also be used to modify
workflow process definitions on the fly.
2. Task User Interface Designer. The Task User Interface Designer is
used to design the graphical interface presented to users when executing
tasks.
3. Work Group Manager. The Work Group Manager is used to define
new work groups and to monitor the workload of groups.
4. Process Manager. The Process Manager is used to start and manage
cases (workflow instances).
5. Document Organizer. The Document Organizer is used to organize
and create InConcert documents.

196 Chapter 5

6. Task Organizer. The Task Organizer is used to display and execute
work items.

Figure 5.24 shows the Process Designer of InConcert. The modeling lan-
guage used by InConcert corresponds to a subclass of Petri nets: Acyclic
Marked Graphs (AMG). This is the class of Petri nets without any cycles,
and each place can have neither multiple input transitions nor multiple
output transitions. InConcert does not provide any explicit OR-splits and
OR-joins. Every task is considered to be an AND-split and an AND-join.
To enable conditional routing each task has a Boolean condition asso-
ciated to it: the so-called perform condition. The perform condition can
be used to skip tasks. The workflow design shown in figure 5.24 shows
the process of handling insurance claims. The task pay has a perform
condition indicating that it should only be executed if the outcome of
task decide was positive. The check tasks in figure 5.24 also have a per-
form condition: either the two parallel checks (top) or the three sequen-
tial checks (bottom) are executed.

The fact that InConcert does not allow for OR-splits, OR-joins, and
iteration simplifies the modeling process. Workflow designers cannot
make workflow models that deadlock or never end: The workflow pro-
cess definition is guaranteed to be sound (cf. chapter 4). This makes
InConcert a system where end-users can design or modify process defi-
nitions. Unlike production workflow management systems, InConcert
associates a unique process definition to each individual case (i.e., work-
flow instance). There are several ways to create a new workflow instance:

1. Instantiate an existing workflow process definition: a copy is made of
the process definition, and the first task is enabled without changing the
workflow.
2. Instantiate a customized version of an existing workflow process def
inition: a copy is made of the process definition and is changed to allow
for ad hoc routing.
3. Instantiate an ad hoc workflow process by specifying a sequence of
tasks and users.
4. Instantiate a so-called "free routing process," that is, an empty ad hoc
workflow process. There is no explicit workflow process definition: the
workflow is created on the fly.

Instantiating an existing workflow process definition corresponds to the
way cases are handled in traditional production workflow systems. The

Functions and Architecture of Workflow Systems 197

198 Chapter 5

only difference is that the case does not refer to a common workflow
process definition but to a private copy of the definition. By creating a
copy and the possibility to change that copy, either at creation time or on
the fly, the workflow process definition serves as a template. Instead of
creating a copy of such a template, it is also possible to create an ad hoc
process from scratch. The fact that each workflow instance has its own
workflow process definition allows for on-the-fly changes. In principle, it
is possible to modify the routing of a case at any point in time. This way
ad hoc changes are supported completely. In addition, InConcert sup-
ports "workflow design by discovery." The routing of any completed
workflow instance can be used to create a new template. This way actual
workflow executions can be used to create workflow process definitions.
Figure 5.25 shows a screenshot of InConcert while changing the process
definition of a running instance.

InConcert also supports a class concept. There are three types of
classes: process classes, task classes, and document classes. These classes
are grouped into a class hierarchy and a child class inherits the attributes
of its parent class. The class Job is the parent class of any process defi-
nition. By defining a child class Activity_based_costing_processes, all
standard attributes are inherited and new costs attributes can be added.
Any process definition of this new class is equipped with these new
attributes. Similarly it is possible to define task and document classes.
The class concept encourages reuse and a uniform way of realizing
workflow support.

5.7 Workflow Management Trends

At present there are many suppliers of workflow management systems.
The products they market are still developing at a rapid pace. It is a trait
seen with all generic software: the manufacturers are, as it were, in a
race. Each one tries to incorporate its competitors' successful functions
into a new version of its own product as soon as possible, as well as
devise some new features of its own as unique selling points. Thanks
to these developments, we can see the packages converging with one
another—although there are still differences. It is clear that the func-
tionality desired by the WFMC is still far from being achieved. Nor is
there enough practical experience as yet for us to know precisely what

Functions and Architecture of Workflow Systems 199

200 Chapter 5

functionality workflow management systems will eventually encompass.
It therefore is interesting to summarize their future potential.

As we shall see, workflow management systems have many application
possibilities. But this also represents a threat, since the manufacturers
of other generic software components—such as database management
systems and logistical/ERP packages—will also incorporate workflow
management functionality into their own products, eliminating the justi-
fication for the existence of separate workflow management systems.

We shall examine the future prospects for workflow management
systems, in terms of opportunities and threats, in terms of seven areas of
functionality:

1. modeling;
2. analysis;
3. planning;
4. transaction management;
5. interoperability;
6. Internet/Intranet; and
7. logistical management.

Because specific software for each of the above is also available, we shall
consider threats alongside opportunities (i.e., application possibilities).

5.7.1 Modeling

One of the most important functions of a workflow management system
is the modeling of workflows. This ability means that such a system can
be regarded as a repository for metabusiness data: an organization's
structural information, such as its processes and organizational diagram.
Such tools have been given the name orgware (from
"organization-ware"). However, there are specific repositories in which
much more of an organization's data can be recorded: for example, all
kinds of performance indicators of business processes, a corporate data
model of the organization (a "data dictionary" of all the databases which
it uses), and a roadmap of its information systems.

The advantage of such repositories is that they offer good query
opportunities through which all the connections relevant to the manage-
ment of the organization can be analyzed. They are often developed using
a database management system and/or an OLAP tool (on-line analytical

Functions and Architecture of Workflow Systems 201

processing). One essential difference between these is that OLAP tools
enable hierarchical structures to be searched through recursively (known
as "downdrilling"), which is not possible in SQL (the query language
used in relational database management systems). It therefore is obvious
that workflow management systems will acquire more repository func-
tions in the future, or improved interfacing with such tools.

Another important aspect is the expressive power of the modeling
function in the current generation of workflow management systems.
Many of the existing systems do not have a good process model. This
means that certain common constructions in business processes are not
handled well. This problem will certainly be solved, and one can expect
that eventually all workflow management systems will model their pro-
cesses in a way concomitant with the Petri-net theory.

One final aspect of modeling is that today's workflow management
systems are mainly suited to standard processes. In other words, the pro-
cess definition tool describes a number of business processes, by which
many cases are performed. Because the number of cases is in general rel-
atively large compared with the number of processes, we refer to this as
production workflow. In the future, however, we should also expect
systems which offer functionality for so-called one-of-a-kind processes
(ad hoc workflow), with a separate process defined for each case.

An additional complication is that processes may change while a case
is being processed. One encounters examples of this in the transport
industry (when decisions to change route are made on the road) and in
healthcare (when the appropriate treatment can only be decided after the
diagnosis phase). In present-day workflow management systems, this can
be partially overcome by defining a process with very generic tasks—but
this is only really shifting the problem. The use of generic tasks results in
much of the management having to be done within the applications.
Solving the problem will mean further integrating the process definition
functionality with the workflow engine.

5.7.2 Analysis

New business processes are analyzed in order to establish whether they
will perform well in both the quantitative (completion times, resource
utilization, and so on) and qualitative sense (are they correct, i.e., sound,
and workable for the people in the organization?). When existing pro-

202 Chapter 5

cesses are improved, analysis of the modified processes is also desirable
before the changes are put into effect. To perform analyses, we can use
simulation and several formal verification techniques. Further expansion
of these abilities is an obvious future development. For simulation, this
means that it will be made easier to use historical data from the workflow
management system to test modified business processes, and more
opportunities for "games" will appear. In other words, people who play
a part in the processes seek out weaknesses in the workflow management
system using a business simulation game. This function can also be used
to train new staff. Several existing workflow management systems already
offer some game facilities, but there is much scope for improvement—for
example, supporting rollback capabilities.

There are many simulation tools on the market, and it is not unthink-
able that these will develop in the direction of workflow management
systems. After all, it is not such a great leap from simulating workflows
to coordinating real ones. It therefore is possible that some simulation
tools may evolve into workflow engines. As well as simulation, there are
also the formal analysis methods, which still leave a lot to be desired.
Those available have mainly been developed for Petri nets and are not
geared to specific business-process structures. It is likely that several cor-
rectness tests, like the ones offered by Woflan, will be incorporated into
the process definition tools in the future. These will "rap the designer's
knuckles" if he makes an error, without him having to understand the
theory underlying the tests.

5.7.3 Planning

The current generation of workflow management systems sometimes
offers only a limited ability to allocate resources to tasks and to decide
the order in which tasks using the same resources should be carried out.
(This type of planning is known as scheduling.) Existing systems pay
virtually no attention to the timetabling problems that occur when
organizing human resources. And owing to increasing labor flexibility
and organizations' lengthening hours of business, this problem is be-
coming more and more significant. Functionality is required which is at
present not sufficiently supported by workflow management systems.

Better planning support may be offered by the application of modern
operations research and artificial intelligence methods in the preparation

Functions and Architecture of Workflow Systems 203

of rosters and schedules. Such methods as simulated annealing, taboo
search, and constraint satisfaction have proven themselves in practice in
recent years. Alongside these operational planning problems there are
also tactical ones that pertain to decisions about how much of the
capacity of particular resources (not just human ones) will be required
during the period being planned for. Although a workflow management
system does in fact contain all the relevant information needed to solve
such problems, none yet actually offers the facility to do so. Also at issue
is whether the producers of these systems should develop such function-
ality themselves, or whether it would be better for them to try to integrate
propriety planning software into their programs.

5.7.4 Transaction management

Thus far most workflow management systems have confined themselves
to work processes within a single organization. In doing so, they assume
that the (human) resources are employed exclusively by that organization
and can be allocated at will by the resource management (the boss or the
workflow management system). Consequently it is assumed that all the
human resources have the same client software and that all information
exchange with them occurs in a uniform way. If we wish to apply work-
flow management systems to coordinate business processes in virtual
companies or network organizations, then various problems arise that
cannot be tackled by the current systems. Note that workflow manage-
ment systems are very relevant for supporting e-business transaction
processing. However they need additional functionality to support
inter-organizational processes.

As described in chapter 1 using an example from the transport indus-
try, finding a suitable resource will require a communications process. In
doing so, a transaction tree is passed through until an actor is found who
is willing to perform as a resource. An additional complication is that we
can no longer assume that all the resources are able to interpret the same
information. Messaging standards and conversion software like those
commonly used in the EDI world therefore will become vital in inter-
company workflow. XML offers a very promising standard for this. The
communications process between the parties involved will not only cover
the time within which the task can be completed, but also the amount of
money associated with it. So workflow management systems will also

204 Chapter 5

have to provide functionality for the financial settlement of the work
performed by resources.

One interesting complication of workflow management within net-
work organizations is that the term "task" changes. It is not an atomic
piece of work for everybody. What is a task for the principal is a process
definition for the contractor. This is why it is so good that we use hier-
archical Petri nets, because they can model such situations with ease. If
the transaction trees (see chapter 1) for finding suitable actors to perform
the case become very high, and each actor will only offer an upward
commitment (a confirmation of order to its contractor) once it has
obtained such a commitment from its subcontractors, then acceptance of
an order at the highest level can become an extremely time-consuming
business. This forms a "natural threshold" for the effectiveness of net-
work organizations. In some situations, they will be practicable only if
the communications process can be made largely automatic. As well as
messaging standards, comprehensive agreements between the actors are
also required to achieve this. Moreover, the additional functions for
workflow management systems in network organizations also will bear
fruit for hierarchical ones. After all, they provide an opportunity for
controlled decentralization and so empower employees.

5.7.5 Interoperability

One of the interesting properties of a workflow management system is
that human resources and computer applications are treated in a uniform
way. The system organizes all the work that needs to be carried out on a
case. In other words, it deals with the scheduling of resources and ensures
that they have the correct information when they begin performing the
task. In short, the workflow management system provides the logistical
management of the work, and so closely resembles a computer operating
system. After all, the operating system also performs tasks for the various
user transactions and batch jobs. The difference is that a workflow
management system also controls the work of human resources that are
outside the computer system.

A workflow management system thus can be regarded as a kind of
operating system for an organization. In theory, it could also be used to
link various computer applications, since the order of tasks is described

Functions and Architecture of Workflow Systems 205

by the work process as some kind of flow chart. Such a system therefore
could perform the control flow of a large information system, with the
application programs carrying out its data transformations. However,
although possible in principle, the current generation of workflow man-
agement systems is not yet suited to this type of usage. First, the existing
standard application programming interfaces (APIs) are too limited. Sec-
ond, the workflow management system would have to be able to func-
tion as a kind of software bus between various applications—a role for
which its performance is still quite inadequate. It also would have to be
possible to monitor protocols between communicating applications and
to support data conversion between them. Moreover, there is often no
functionality for rolling back transactions and coping with hardware
failures. If these restrictions could be overcome, a workflow management
system would become an ideal tool for bridging interoperability problems.

5.7.6 Internet/Intranet

A limited number of workflow management systems allow the use of a
web browser such as Netscape Navigator or Microsoft Internet Explorer
as a workflow client application (Interface 2). In such cases, a
system-specific worklist handler is not used; instead the browser acts as
the worklist handler. This makes it possible for us to access the
workflow system through the Internet, also known as the World
Wide Web (WWW). This has a number of significant advantages. First,
one is no longer confined to a particular workplace. If the workflow
management system is linked to the WWW, then in principle it is
possible to perform work anywhere. Even from Australia, for example,
there is no problem accessing a workflow system in Europe.

Another important advantage is the fact that one can employ widely
accepted standards such as HTTP (HyperText Transfer Protocol),
HTML (HyperText Markup Language), XML (eXtendible Markup
Language), and CGI (Common Gateway Interface). As a result, there is
no dependence upon exchange protocols specifically developed for a par-
ticular workflow management system. The use of XML/HTML pages is
sufficient. The combination of workflow and the World Wide Web opens
up new application opportunities: e-business. Many services offered on
the Web can be supported by a workflow management system. Consider

206 Chapter 5

for example the processing of orders, complaints, applications, and so on.
Interestingly, these applications blur the distinction between customer
and employee: both access the workflow system in the same way. How-
ever there are also some problems associated with the use of the World
Wide Web as a workflow client application. First, its speed may leave
much to be desired; it often takes some time before a task can be opened
or closed. Nor is the security perfect. Confidential information is difficult
to protect. These problems can be solved to a large extent by using an
Intranet. This has the same structure as the World Wide Web, but is
limited in extent. Consequently a company can "shield" its network from
the outside world and speeds are not limited by the "traffic jams" on the
World Wide Web. Nevertheless it remains possible to use the standards
and products mentioned above.

One problem that cannot be solved by an Intranet is the ponderous use
of applications. Interactive applications such as word processors can only
be started up through additional facilities, and data-intensive applica-
tions result in high loading of the network. New development environ-
ments (such as Java and CORBA) can only partially solve these
problems. It therefore remains unclear what perspectives the World Wide
Web can offer the future generation of workflow management systems.

5.7.7 Logistical management

One of the most successful categories of generic applications is that of
logistical management systems, also known as ERP Systems (enterprise
resource planning systems). Some of these packages have evolved from
financial software and developed further through the extension of the
stock-administration functionality. They enable the support of a large
number of business functions in production (e.g., the automotive indus-
try), distribution, transportation, discrete manufacturing, banking, in-
surance, and government. One of their most important functions is the
calculation of materials requirements, based upon the planned lead-time
of a product. Conversely the materials requirements are used to generate,
a detailed schedule. The basis for this is a products component list, also
known as the "bill of material" (BOM). If a product must be ready on a
certain date and it is known how long it takes to put together its largest
subassemblies and finish the product (for example, paint), then one can

Functions and Architecture of Workflow Systems 207

calculate when the subassemblies must be ready. If they are also made in
house, a similar schedule can be drawn up for the subassemblies. If they
are purchased externally, a delivery deadline can be set.

The current generation of logistical management software does not use
the term "business process" as generically and flexibly as today's work-
flow management systems do. Naturally their vendors follow develop-
ments in workflow management systems closely and are likely to
incorporate some of the workflow functions in new generations of their
products. Whether, given the structure of their products (legacy), they are
able to do this effectively is difficult to foresee. Certainly such products
have many other very interesting functions—particularly for production
companies—and could probably compensate effectively for rather weak
workflow support.

This threat again has an opportunity as its "flip side": it is quite pos-
sible to incorporate a number of functions from logistics packages into
workflow management systems. The bill of material is of particular
interest. Workflow management systems are always based upon a pro-
cess made up of a number of tasks. The precise content of these tasks is
entirely ignored, as is the information required to carry them out.
Drawing up a bill of material for each type of case showing what infor-
mation is required to complete it would in theory enable one to deduce
what the tasks are. We can illustrate the use of such a list using the
insurance claim example from chapter 1. The case can be closed when
the level of payment is known and when the policyholder has agreed to a
settlement (which may be zero). The amount therefore is required, and
for this the value of the claim must be established, as well as whether it
meets the policy conditions. (And so we can go on.) In this way, one can
deduce the process from the information needs and have the format of
the data required for each task immediately at hand. By beginning with a
bill of material, the process designer can start her work at a higher level.
This list can also be useful for the workflow engine, by enabling it to
gather the information it requires in advance and to submit this to the
resource at the appropriate moment.

We now have seen seven groups of functions that will be of importance
to the workflow management systems of the future. Some already are
being incorporated into the latest generation of systems. It is unlikely,

Figure 5.26

Process "handle complaint"

though, that manufacturers will incorporate all this functionality. This
would not be sensible, because they would never be able to remain up to
date in every one of these fields. A better solution is for the architecture
of their systems to be left sufficiently open so that it is easy to integrate
other manufacturers' software packages—with specific functions from
the range described—into them. But for this a great deal of standardiza-
tion is required.

EXERCISES

Exercise 5.1

Describe the reference model of the WfMC; that is, provide a graphical
model of the components and interfaces. Describe each component in
detail. Also discuss the functionality of each of the five interfaces.

Exercise 5.2

Answer the following short questions:

(a) What are the ACID properties?
(b) Which interface typically causes technical problems?
(c) What are the four roles of people involved in the design and deploy
ment of a workflow management system?
(d) Name some examples of workflow interoperability standards focus
ing on run-time aspects.
(e) Characterize the following workflow management systems: Staff-
ware, COSA, and ActionWorkflow.

208 Chapter 5

Fu
nc

tio
ns

 a
nd

 A
rc

hi
te

ct
ur

e
of

 W
or

kf
lo

w
 S

ys
te

m
s

 2

09

(f)
 W

ha
t i

s
th

e
fu

nc
ti

on
al

it
y

of
 a

na
ly

si
s

to
ol

s
su

ch
 a

s
W

of
la

n
an

d
Ex

Sp
ec

t?

(g
)

N
am

e
so

m
e

B
PR

 to
ol

s.

Ex
er

ci
se

 5
.3

M
od

el
 th

e
pr

oc
es

s
sh

ow
n

in
 fi

gu
re

 5
.2

6
us

in
g

th
e

m
od

el
in

g
la

ng
ua

ge
s

su
pp

or
te

d
by

 S
ta

ff
w

ar
e

an
d

C
O

SA
.

Ex
er

ci
se

 5
.4

M
od

el
 th

e
tr

av
el

in
g

ag
en

cy
 d

es
cr

ib
ed

 in
 c

ha
pt

er
 2

 u
si

ng
 th

e
m

od
el

in
g

la
ng

ua
ge

s
su

pp
or

te
d

by
 S

ta
ff

w
ar

e
an

d
C

O
SA

.

6 ________________

Roadmap for Workflow System
Development

6.1 Development Methods

The previous chapters have set out what workflows are, how you can
model them, and the ways in which workflow management systems can
play a part in the realization and management of business processes.
Using these elements, we can develop specific systems to support work-
flows in organizations.

In this chapter, we describe a specific development method or a
"roadmap" for developing workflow systems based upon workflow
management software. A roadmap is a plan for developing systems, so it
describes a sequence of phases and per phase the activities to be carried
out and the deliverables. It tells us what to do but not bow we should do
it. Therefore a roadmap is used in combination with specific methods for
each activity. For process modeling we have introduced these methods in
the foregoing chapters. We call this method IPSD, standing for inter-
active, process-oriented system development.

6.1.1 Why a specific method for WFM?

Of course, various proven development methods already exist that can
also be used to build workflow support systems. Why, then, should a
specific method be needed for developing workflow systems?

The existing methods for the development of information systems
place a strong emphasis upon defining data structures and the way in
which the application is presented to its users (the user interface). Orga-
nizational change and the (re)design of processes receive limited attention
in these methods. The development of a new generation of workflow
systems usually goes hand in hand with a radical reorganization of the

212 Chapter 6

business processes. Moreover the opportunities which workflow man-
agement software provides for organizing and managing flows have
far-reaching consequences for the relationships within an organization,
and for the ways in which people collaborate. A method for developing a
workflow system therefore should focus upon the business process and
embrace both the organization and the technology.

The way in which the development process is carried out should cor-
respond with this by involving the "users" as much as possible in the
design of processes and systems. The development process should pref-
erably be an evolutionary one. This means that the system's functionality
is improved, through the continuous assessment and revision of sample
applications or prototypes, until it proves satisfactory. By using modern
software instruments such as CASE tools and software generators, rough
prototypes can be produced based upon broad specifications. These then
can be continuously readjusted with the help of user experiences. Con-
figurable software, such as that for workflow management, also allows
for this type of prototyping.

The fact that we are talking here about a new method does not mean,
though, that we wish to completely "reinvent the wheel" from scratch. As
a basis we use established ideas such as business process re-engineering
(BPR) and rapid application development (RAD). The integration of
RAD techniques within the BPR cycle provides an excellent context for
the development of workflow systems, in which the development of work
processes and support systems is completely integrated. An evolutionary
approach supported by modern tools to enable prototyping and experi-
mentation is an essential element in this development effort.

6.1.2 Business process re-engineering

Following several decades of computerization, many organizations have
come to the conclusion that more is required to achieve actual im-
provements. Many information technology systems are still based upon
methods of working that date from the age of the quill pen. A radical
approach is therefore required to obtain a greater yield from IT.

BPR can, in short, be described as an effort to achieve the most effec-
tive and efficient possible business-process structure, without taking the
existing "old processes" as a starting point. Information and communi-

Figure 6.1 BPR
lifecycle

cations technology are the most important "enablers" in achieving this
(see also chapter 3 for a more detailed definition of BPR).

BPR follows a more or less fixed cycle: the so-called BPR lifecycle. This
is illustrated diagrammatically in figure 6.1. The cycle starts with an ini-
tiative, mostly coming from the senior management.

The BPR lifecycle has a number of phases.

1. The lifecycle starts with the diagnosis phase. This begins with an
analysis of the current situation, and in particular of the problems caused
by the existing way of working. Using this, objectives can be set by which
the success of the improvements can be measured. The existing processes
are analyzed and a diagnosis, as it were, is made of where problems arise
or have arisen. Among other things, this shows us where the existing
working methods are not producing the desired result.
2. Once the diagnosis has been made, the redesign phase follows. The
new design developed during this starts with a "blank sheet of paper." In
other words, the existing ways of working are not used as a basis. Instead
an entirely new description of the process is produced—independent of
such limitations as organizational structure and available resources, and
determined solely by input and output.
3. The redesign phase is followed by a reconstruction phase. During this,
a new system of process definitions, IT systems, and organization struc-
ture is created to support the processes previously identified.
4. During the operational phase the performance of the processes is
measured and assessed using predefined performance criteria. Through
these, potential bottlenecks can quickly be identified. These may well
justify the launch of a new re-engineering cycle, quite possibly involving
modifications of a less radical nature than during the original one.

Roadmap for Workflow System Development 213

214 Chapter 6

The above provides a general overview of the activities involved in
a BPR project. The crucial activities are those during the redesign and
reconstruction phases. In 6.2 we encounter the same phases and there we
will discuss the activities in more detail.

6.1.3 Rapid application development

Rapid application development is a method for developing systems
which is characterized by a cyclical development process, close collabo-
ration with users, and the use of modern rapid-development tools. Its
main objectives are speed, cost reduction, and quality improvement,
thanks to a high degree of user participation. In this book, we shall base
our approach upon the rapid application development (RAD) method
introduced by James Martin in 1991.

In general terms, the phasing used in RAD corresponds with the
approaches used in more traditional methods. The difference lies not so
much in the sequencing of activities but in the way in which they are
carried out during each phase. Before we examine RAD's phases and
methodology, let us first look at a number of terms and techniques that
are crucial to it.

RAD is based upon a cyclical, or iterative, development process. In
other words, the analysis, design, and construction phases are passed
through repeatedly, in small steps which succeed one another rapidly.
Each cycle results in a tangible end product which is used as the basis for
starting the next. Newly acquired insights thus can make an immediate
contribution through design updates, so benefiting quality and accept-
ability. Prototyping is an important instrument in establishing efficient
and effective communication with users. The specifications of (a part of)
a system, or of individual components, are assessed using the prototypes
developed. This places less demand upon the imagination than would the
assessment of paper specifications. We refer to evolutionary development
when such a method results in the prototype development, through
gradual improvement, into the final application. The specifications and
the system "evolve" simultaneously into the operational system.

A system often is too large to be assessed in its entirety by the user, and
its development and enactment at a single stroke entail too many risks.
Therefore, it can be useful to develop and implement the system in a
number of separate stages or "increments." We call this incremental de-

Roadmap for Workflow System Development 215

velopment. Each stage of development ends with the delivery and enact-
ment of a new version of the system that is an improvement/expansion of
the previous one. Evolutionary and incremental development are different
strategies, but ones that can be combined very effectively. This, however,
is not the same as phased delivery and enactment, which is based upon a
single overall design for the system as a whole being followed by the
phased construction, delivery, and enactment of modules of the complete
application. This is only possible when the sections being implemented
are not directly dependent—at least for the time being—upon other parts
of the system that are to be delivered later on.

Such techniques as evolutionary development and prototyping can
only be applied successfully when a very close working relationship can
be established between developers and users. We call this joint develop-
ment, because of the close collaboration and the subsequent collective
responsibility for the result. Organizing such cooperation is an art in
itself. Most information technologists are used to the "parliamentary"
model, under which the users may only submit amendments to the
developers' proposals (the draft final report). In joint development,
interactive workshops play a major role. In principle, all the participants
have an equal say during these joint sessions. Brainstorming, decision
making, selection, and elaboration are fostered using special tech-
niques. Because all those involved are present and play an active part,
the communication gap is bridged and well-founded decisions can be
made. Specification, prototyping, and testing all take place during these
workshops.

The RAD approach consists of four directly successive phases: require-
ments planning, user design, construction and delivery. Figure 6.2 illus-
trates the relationship between these.

During the requirements planning phase, the intended results of the
project are defined. Guidelines for the functionality of the system are set,
as are the requirements to be met by the products delivered. Based upon
the results to be achieved, the subsequent development route is planned.

During the user design phase, the system's functionality is blueprinted.
Its specifications are drawn up interactively at joint application design
(JAD) workshops. The users provide the input, which is recorded by the
designers—in the form of specifications—in a CASE tool. Prototypes
are created with the aid of a program generator. The users then can test
the

Figure 6.2

The phases of RAD

specifications directly against the prototypes. In traditional development
methods, the design phase is clearly distinct from the construction phase.
In RAD, this is not the case: the software to a large extent can be gen-
erated from the specifications laid down in the CASE tool.

During the construction phase, the generated software is perfected and
elements which could not be produced automatically are made "by
hand." Validation of the design by the users continues during this phase.
During the delivery phase, the acceptance test is carried out and the system
is then prepared for production. This involves such things as installation,
any conversion that is necessary, and user training. For more extensive
applications, a limited number of parallel design and construction paths
may be taken, bearing project management in mind.

In order to integrate the system's individual components with one
another, a technical architecture for their relationship is designed during
a separate architecture phase, prior to the start of the user-design phase.

Once construction is complete, the operation of the separate compo-
nents is tested during the integration phase. This is a preparatory test—
mainly devoted to the technical compatibility between the separate
components—carried out prior to the system being handed over to the
user for an acceptance test and enactment.

216 Chapter 6

Figure 6.3

Lifecycle

6.2 The "IPSD" Method

IPSD stands for interactive, process-oriented system development. The
design of efficient business processes and the development of information
systems to support them are combined in an interactive approach by
which complete workflow systems can be developed interactively in a
BPR context. Moreover this model is also applicable in situations where
no workflow system is being developed and so no workflow management
software is used. In our discussion, however, we shall assume a situation
in which workflows do exist, as described in this book.

If we project the RAD phases onto the BPR lifecycle, then the IPSD
lifecycle of a workflow system is generated. This is illustrated
diagram-matically in figure 6.3. Note that here the phases given in
figure 6.2 (RAD) are superimposed onto those given in figure 6.1
(BPR).

In the rest of the chapter, we shall refine this lifecycle further. Ulti-
mately we shall identify the following phases:

1. preparation;
2. diagnosis;
3. process redesign;
4. requirements;

Roadmap for Workflow System Development 217

218 Chapter 6

5. architecture;
6. component design;
7. construction;
8. integration;
9. delivery;

10. enactment; and
11. monitor and improve.

A project conducted according to the IPSD method will pass through
these eleven phases.

In the following sections we shall examine in more detail the activities
carried out during the various phases. In doing so, we shall assume the
complete redesign of a process and the development and enactment of a
new information system supported by workflow management software
in conjunction with "traditional" data-processing applications. In section
6.2.13, we shall turn our attention to situations in which workflow
management software is integrated with existing (legacy) systems.

6.2.1 Basic principles

The IPSD method focuses upon the development of the best business
processes possible. Good interaction between information technologists
and users contributes to their quality and their acceptance within the
organization. It also ensures that their development proceeds quickly and
efficiently. Based upon these preconditions, we derive a number of basic
principles that are essential to the successful application of the method:

1. The focus is on the business process. Throughout the entire develop-
ment cycle, efforts concentrate upon achieving the best possible process
structure. Amongst other things, this means that a solid process design is
created at an early stage—with opportunities for improvement to it con-
tinually being sought as development continues.
2. By definition, radical change will occur that has consequences for the
entire organization—or, at least, for parts of it. Success is only guaran-
teed if (senior) management supports the project and conveys this
commitment unequivocally to the organization.
3. As far as possible, decisions are taken within the development team.
This results in the progress of the project being disturbed as little as
possible. The managers responsible therefore must either be part of the
team or delegate their responsibility.

Roadmap for Workflow System Development 219

4. The developers and (representatives of) the user organization work
as a team to improve processes and develop the information systems.
Together they are responsible for the result. All the participants respect
one another's expertise, and the input by each is treated equally.
5. When planning and organizing the development path, the emphasis is
placed upon (project) targets and not so much upon performing (or
assigning) activities.
6. The system's specifications are not defined and "frozen" in advance,
but evolve during development. The specifications are laid down in the
workflow system and a CASE tool, and tested with the aid of prototypes
and (practical) simulations.
7. Errors are permissible during development. Because of the iterative
nature of the approach, the system's functionality is continually tested.
Whenever an error is made, it can be corrected during a later iteration.
8. Experience shows that no system is ever perfect the first time. Rather
than devoting too much time to seeking out (technically) perfect solu-
tions, it is better to achieve a tangible result that is considered "good
enough" within a short time.
9. At the end of each phase the overall planning is updated according to
the latest information.

6.2.2 Preparation

To prepare the project, a project team is established. The scope and
composition of this team may vary during the course of the project, but
initially it is desirable to begin with a "core" group of people who will
remain involved until completion. In addition to a project manager, this
team consists of representatives from those organizational units involved.
These include people from the "user organization" and the IT depart-
ment, as well as experts in the field of business-process analysis and
modeling. The person appointed as project manager should be someone
with sufficient authority within the organization. This may be someone
from senior management, although there may be arguments against such
an appointment (such as time pressure, availability, and lack of required
knowledge and skills). Because a good line manager does not necessarily
make a good project manager, and internal (IT) project managers may
not have sufficient seniority, it is quite common to recruit a project
manager externally.

Given the importance of the project and its consequences for the
organization as a whole, the precise purpose of the re-engineering project

220 Chapter 6

must be made clear—preferably by the organization's highest level of
management. It also must be absolutely clear that the management
stands squarely behind the project manager and his or her work.

At the beginning of the project, the project manager draws up a project
plan. This describes the approach to be taken and contains a rough
timetable. The objective of the project must be clearly stated in the plan,
and there should be a visible relationship between the approach chosen
and the achievement of the objective. In other words, it must be abso-
lutely clear how each activity will contribute to the project objective. At
this stage, the project timetable is still very approximate; it only will be
fixed definitively during the diagnosis phase. The project plan will be
issued to all those in the organization who are involved in the project.

Activities

• Appointing the (core) project team;
• drafting the project plan;
• obtaining approval for the project; and
• communication of the mission statement, approach and timetable.

Deliverables

• Overall project plan

6.2.3 Diagnosis

A project should begin with an analysis of the existing situation. Under-
standing the existing strategy of the organization is an important first
step. Diagnosis has three groups of activities: analysis, scoping, and
visioning. They are interwoven and therefore we consider them as one
phase. Analysis is concerned with the existing situation and understand-
ing the reasons for change. Scoping is the clear identification of which
parts of the organization, processes, and systems should be considered in
the project and which should not. Also a timetable for the project and a
rough budget should be determined. Visioning is focused on the possible
directions for improvement.

The analysis starts with looking for the reasons for change. Change
means transformation or re-engineering of the business processes, the
organization, and the supporting information systems. Often there exist
some bottlenecks in the performance of the existing processes or sup-

Roadmap for Workflow System Development 221

porting information systems. These bottlenecks can be of a quantitative
nature, which means that the processes have too little capacity to deliver
enough products or services to fulfil the customer's demand. It also is
possible that the bottlenecks are of a qualitative nature, which means
that the products or services that are generated by the processes do not
fulfil the customer's needs. Of course both causes may occur simulta-
neously. It is also possible that the production process is too expensive.
Yet another possibility is that there are no bottlenecks but that they are
expected in the near future if nothing is done. All these reasons are
symptoms of some "illness." When analyzing a process, particular
attention has to be paid to the following aspects:

• unnecessary sequential and bureaucratic activities;
• the formation of "island computerization";
• the need for excessive forms and approvals;
• paper usage and redundant stipulations; and
• policy guidelines and rules (either formal or informal) that are not
being observed or do not appear to work.

In case an organization is in good shape, there can still be a need for
change if there are some good opportunities to extend the business or to
improve quality or efficiency by introducing some new technology.

A clear understanding of the reasons for the project as well as the
existing strategy and the critical success factors (CSFs) of the organiza-
tion are essential for a re-engineering project. Which factors determine its
success or failure? A clear understanding of the value of the various
processes—in other words, the extent to which they contribute to the
organization's performance—is important when choosing which of them
should be re-engineered. This requires knowledge of the organization, of
the market, and of the competition. After all, what is the point of
streamlining the administration procedure for processing orders and
invoicing within a commercial firm if that company is losing orders as
a result of inefficient inventory management and a poor distribution
structure?

Analysis of the reasons for change will result in the formulation of
objectives to be met. First this will be done in qualitative terms, such as
"the clients should be served better" or "the production cost should be
diminished."

222 Chapter 6

In order to be able to translate the objectives into concrete targets the
next step is the formulation and definition of key performance indicators
(KPIs). They should be measurable and they should express all relevant
aspects of the performance of the processes and information systems. For
example, the objective that the clients should be served better could be
expressed by two performance indicators: the time it takes to fulfil a
customer's order and the quality of the product or service expressed by a
rating by the customers. The relationship between the CSFs and the KPIs
is that the KPIs are quantifiable and that they express the CSFs. There
might be more KPIs to express one CSF and there might be KPIs that are
only indirectly related to a CSF.

The final step of the analysis phase is the null measurement: the deter-
mination of the KPIs in the existing situation. This is extremely impor-
tant because it is the only way to see later if the project caused real
improvements. The null measurement will also be used in the redesign
phase where the new processes will be modeled and analyzed to see if the
targeted improvements will be realized. The null measurement might be
laborious because the existing administration does not have the required
data or it is not easy to obtain from existing information systems. It is
always possible to use sampling techniques to obtain at least some esti-
mates of the KPIs, for example by tracing a sample of customer orders
through the processes and systems. In fact, this sample can be used later
as use cases to test models and systems so they can be reused. Use cases,
also referred to as business cases, should cover the most important types
of cases, including the exceptions and errors that occur in practice.

During the analysis it becomes clear which parts of the organization,
processes, and information systems have to be transformed in order to
meet the objectives. So the scoping of the project is going hand in hand
with the analysis. Often there are very good reasons to limit the scope of
a project, although this could imply that relevant parts are left out. This
means that we might not find the best solution, but this may counter-
balance the risk that the project becomes unmanageable or that the con-
tinuity of the existing operations is at risk. Finally time and money limits
are often given in advance and they require scope limits.

The analysis process often has the side effect that ideas for better
solutions are generated. Here the vision for the "to be" situation is born.

Roadmap for Workflow System Development 223

Visioning starts with an artist's view of the "to be" situation. Once the
processes that need re-engineering have been identified, the next question
to be answered is how the best result can be achieved by applying infor-
mation and communications technology. Modern technologies such as
imaging, workgroup automation, workflow management, and expert
and decision support systems offer opportunities for structuring the pro-
cesses within an organization in an entirely different way. It is also often
useful to look beyond the boundaries of the organization itself. The use
of the internet infrastructure with technologies such as Web technology,
electronic data interchange with XML, e-mail, and smart cards can result
in dramatic improvements. Research into the opportunities that they
offer for process re-engineering requires knowledge of these technologies
and an insight into their applicability. Consideration needs to be given to
such things as the extent to which such technology can be incorporated
into the existing infrastructure.

The development of a vision of the re-engineering of business process
requires a multidisciplinary team comprising representatives of the
organization's management and IT experts. Moreover it is clear that a
high degree of commitment on the part of senior management is an
important precondition. In order to achieve the radical change intended,
"wild" and controversial ideas must get a chance.

The null measurement is done by the project team and it often requires
desk research. Most of the other activities are done during joint work-
shops with representatives of the relevant organizational units and if
possible with management.

Activities

Analysis

• Analyze the reasons for change, the strategy, and the critical success
factors;
• objectives to be met after transformation, formulated in a qualitative
way;
• definition of key performance indicators to be able to quantify the
objectives and to measure the intended improvements; and
• null measurement: determination of the performance indicators in the
existing situation.

224 Chapter 6

Scoping

• Identification of parts of the organization, processes, and systems that
should remain unchanged and which fall in the scope of the project; and
• determination of boundary conditions on time frame and money to be
spend.

Visioning

• Artist view of the new organization, processes, and systems;
• specification of the targets to be realized in the project, that is, the
quantification of the objectives in terms of the key performance indica
tors; and
• generation of ideas and guidelines for redesign.

Deliverables

• Document describing the reasons for change, objectives, and the KPIs;
• a set of use cases;
• the null measurement;
• a list of processes, parts of the organization, and information systems
to be re-engineered;
• boundary conditions on time and money; and
• artist's view of the new situation, ideas for improvement;
• specification of the targets in terms of KPIs.

6.2.4 Process redesign

The redesign phase starts with the modeling of the existing processes.
This has two reasons: it is a way to understand the existing processes
better, and it gives us the opportunity to calibrate the model of the
existing situation with the null measurement. In this way we are able
to estimate parameters of the processes that will not be affected by the
redesign. They will be used in the models for the redesigned processes. It
is also a check: if the bottlenecks and the KPIs computed by the model
differ too much from the values in the null measurement there is some-
thing wrong: either the null measurement is wrong or the model is
wrong, which means that we don't understand the existing situation
properly. We advocate the use of Petri-net modeling. Simulation tools
can assist us in the computation of KPIs, although sometimes analytical
methods are available.

Since the targets of the re-engineering project have been formulated
and the existing situation is assessed, the next step in the project can

Roadmap for Workflow System Development 225

be taken: the new process can be designed. At this point, the project
broadens. The project team is expanded to include end users with a
detailed knowledge of the existing work processes and the requirements
attached to them. Intensive involvement by these users will prepare the
way for the acceptance of the forthcoming changes and enable risks to be
identified at an early stage. Moreover expertise in the field of workflow
management software configuration is also brought into the project
team.

The redesign phase continues with a series of joint workshops to
establish the basis for the redesign. Representatives of the organizational
units involved in the project participate in these, together with the
organization's management. Usually, two or three such workshops are
sufficient to deal with all relevant topics. Using the improvement princi-
ples of chapter 3, various alternative scenarios for the organization of
the business process are designed and assessed. These scenarios are not
(minor) variations on a single process model, but variations that differ
fundamentally from one another in the approach they take. Examples
include centralized versus decentralized control, far-reaching forms of
outsourcing, use of EDI, internet applications, and so on. At this stage,
the description of the alternative process models will be at an abstract
level.

To make an assessment of the alternatives as efficient as possible, some
kind of visualization or prototyping is desirable. For this we make use of
specific tools for modeling business processes. Those based upon
Petri-net modeling are naturally preferable, but other tools could also be
used. Many workflow management systems include a modeling tool
which supports a simple form of animation. Given the degree of
abstraction in the process model, tools that use some form of animation
are the most suitable. At this stage a set of characteristic cases is
designed. They should represent the most important types of cases,
including errors and exceptions. These cases are called use cases and will
also be used in the next phases.

Based upon the discussion and arguments put forward during the
workshop(s), one of the alternatives is selected. This choice then is
modeled in as much detail as possible during the next stage. Such devel-
opment is done using the principle of iteration. An initial proposal is
designed by an expert in the field of process modeling, preferably using a

226 Chapter 6

tool which supports Petri-net modeling. This model is iteratively im-
proved and refined during a series of workshops where uses cases are
used for manual testing. There exist tools to support verification of the
correctness of the process. The KPIs of the new processes that express the
logistical performance, such as throughput or waiting times and resource
utilization, can be computed by means of simulation. They are compared
to the targets and the simulations of the model of the existing situation.
It is also possible to determine how sensitive the designed process is to
internal disruption (for example, staff sickness).

Simulation shows only the logistical KPIs of the new processes, not the
functional ones. The functional KPIs may be determined by means of life
experiments, or games with the help of a workflow management system.
In this case the process model is implemented into the workflow man-
agement system, and the participants in the game play out the practical
situation that would apply following the enactment of the new process.
Such an approach requires a great deal of preparation and, due to its
structure, is often limited in how far it can simulate all the possible
exceptions and bulk-processing effects. It is, however, a particularly good
instrument for involving users in development and for encouraging sup-
port for future changes. For these reasons, it can be a very effective
complement to the use of simulation.

The result is a new process model that forms the basis for further
development and enactment. As the model is improved, all sorts of
requirements and preconditions pertaining to data-processing systems
are generated. As far as possible, these are recorded. They will be used
during a later phase, when the systems which have to support the process
are being designed and built.

The redesign of processes will usually have far-reaching consequences
for the structure of the organization. The traditional boundaries between
departments and business units may shift or disappear. Responsibilities
change and decision making is relocated.

During the redesign phase, attention therefore also must be paid to the
consequences for the organizational structure and human resource man-
agement (HRM). Issues to be addressed in this respect are:

• the redefinition of tasks and functions;
• self-managing teams and the associated management skills;

Roadmap for Workflow System Development 227

• appraisal systems;
• salary structures; and
• education and training.

These aspects are recorded in an organizational model and in a descrip-
tion of the measures that would be required to achieve this model.

Activities

• Modeling and calibration of the existing situation;
• development of alternatives for the new business process;
• analysis of the selected alternative: determination of correctness prop-
erties and logistical KPIs (by simulation);
• analysis of functional KPIs by means of gaming workshops using a
workflow management system (optional); and
• description of the consequences for the organization.

Deliverables

• Calibrated model of existing processes;
• set of use cases;
• models for the preferred new processes;
• test results of simulations and gaming;
• requirements for data-processing applications; and
• organizational model.

6.2.5 Requirements

The core of the new workflow system—the newly designed business
process—now has largely been established. Now the data-processing
systems which have to support the process can be designed and con-
structed. Before we can do this we have to establish carefully what func-
tionality the data-processing systems have to encompass in order to be
able to plan and to budget the subsequent phases. We again achieve this
in a series of (two or three) workshops. These cover the following topics:

• The data model of the systems. We distinguish case data and
noncase data. The case data is best modeled as a dossier that is filled
during the process. The noncase data can be divided into support data
and management information. Support data is data that is used in
the case handling processes such as addresses, rates, and instructions.
Management information concerns the quality and the efficiency of case
handling.

225 Chapter 6

• Interaction between process steps and data-processing applications.
The starting point is the process model: each task requires some data and
produces some data for the dossier. The relationship with the process
developed during the previous phase is established in a matrix of process
steps and the system functions they use.
• Supplementary data processing functions for such matters as (applica-
tion) management and data exchange with others.
• Requirements to be made of the systems in terms of speed, processing
capacity, flexibility, and so on.
• The development and enactment strategy, and the schedule. It
is
established whether all the functionality can be achieved and introduced
at a single stroke, or whether an incremental development strategy needs
to be adopted.
• Risks and risk management strategy.

The results from the process redesign phase, in particular, and those from
these workshops provide a good foundation for further development.
Certainly not all the details are yet known, but the picture now available
of the process and systems to be developed, and of the requirements that
they must meet, is clear. Given the subjects addressed during this phase,
the project team at this stage is expanded to include one or more experi-
enced developers who will be involved in the actual establishment of the
new system during the design and construction phases.

Based upon the requirements workshops, the overall project plan
drawn up during the preparatory phase can be further developed.

The project plan incorporates all the topics raised during the require-
ments-planning workshops, including a detailed schedule for the subse-
quent course of action.

Activities

• Preparation and staging of requirements workshops;
• development of risk-management measures;
• development of the project schedule and budget; and
• drawing up of a detailed project plan.

Deliverables

• Rough data model (entities and relationships);
• rough functional model of the applications to be developed;
• matrix of functions for each process (step); and
• detailed project plan for the subsequent course of action.

Roadmap for Workflow System Development 229

6.2.6 Architecture

Before we begin the actual development of the systems themselves, a
number of largely technical choices now need to be made. A workflow
system is a complex one, which by its nature and structure is distributed.
A good architecture is necessary in order that the system's various com-
ponents work as well as possible with one another. This "architecture"
describes the various components in the system, and indicates the way in
which they communicate with one another (interface descriptions). In
this respect, we distinguish between the functional architecture and the
technical architecture. The former subdivides the system into a number
of functionally interdependent components. This functional structuring
enables different teams to work on different components in parallel. The
technical architecture subdivides the system into software and/or hard-
ware components. This structure to a large extent is dictated by existing
technology and the shape of database management systems, operating
systems, and so on. The functional and technical architecture are often
closely linked with one another. A complete description of the architec-
ture therefore consists of descriptions of both the functional and the
technical architecture, and illustrates the relationship between them. The
following are examples of matters addressed in the description of the
architecture:

• technical infrastructure (hardware, networks, OS, and communication
protocols);
• workflow management software;
• development tools;
• interface descriptions (workflow management system versus compo
nents, components versus one another, and components versus data
bases); and
• standard graphical user interface.

In this way, a kind of "framework" is defined within which the various
elements in the workflow system fit. Figure 6.4 shows diagrammatically
how the description of the architecture can assist in relating the different
elements to one another.

The best results are achieved when the architecture is based upon
(open) industry standards. This provides the greatest likelihood that the
tools used (WFMS, DBMS, and development tools) will provide the

Figure 6.4

Integration framework

support required and ensures continuity for the future. In particular,
the interface descriptions mentioned earlier include the way in which the
workflow management software communicates with data-processing
applications, as well as how the data-processing applications communi-
cate with one another (see chapter 5). By translating the architecture into
a set of development guidelines, it becomes possible to integrate more or
less independently developed components without too many problems.
These guidelines cover the programming of interfaces between the various
components, as well as the design of the system—in particular, its sub-
division into separately usable modules or objects.

The architecture phase is predominantly technical in nature. During
this phase, therefore, staff need to be called in with an in-depth technical
knowledge of the integration aspects of workflow management systems
containing database management systems and application software in a
distributed environment. It may well be that specific software routines
need to be developed during this phase in order to enable the integration
of the architecture's various components.

During the architecture phase, it is recommended that several compo-
nents be developed as prototypes in order that the architecture selected—
and in particular its interfaces and integration—can be tested in practice

230 Chapter 6

Roadmap for Workflow System Development 231

for feasibility and, where necessary, refined. This prototype can also act
as a reference model during further development.

Activities

• Description of the functional architecture;
• description of the technical architecture;
• illustration of the functional and technical architecture;
• establishment and description of standards and guidelines; and
• development and testing of prototypes.

Deliverables

• Description of architecture;
• prototype; and
• standards and requirements for components.

6.2.7 Component design

During this phase, the specifications of the data-processing components
are developed iteratively, using prototyping. The processes specified dur-
ing the redesign phase are—insofar as this has not already been done—
implemented in a workflow management system. The result is a working
prototype of the process management. The fastest way to achieve this is if
there exists an automatic link between the modeling tool used during the
redesign phase and the workflow management system.

The data-processing components are largely created using CASE tools
and generators, and can therefore be adjusted quickly and easily. Based
upon the models defined during the requirements phase, and with the aid
of software generators, prototypes of the new components are produced
by the developers involved in the project. Integrated with the process
model implemented in the workflow management system, these proto-
types are submitted to the users for assessment during so-called proto-
typing workshops. They are refined in a series of cycles (usually three)
until they fulfill the users' needs. Workflow management (in the WFMS)
and data-processing components are fully tested and, where necessary,
adjusted.

Several series of workshops are planned, each session covering a range
of functionality limited enough to enable its thorough review and assess-
ment by the users. The time required to prepare and adjust the proto-
types also needs to be taken into account. During the initial workshops,

232 Chapter 6

the main emphasis is placed upon the data model and the general stan-
dards for the user interface. The number of workshops held depends
upon the overall size of the system. When scheduling the preparatory
activities and workshops, a completed part of the process must always be
selected: one that consists of several process steps which form a logical
whole. This is necessary in order for a representative rendering to be
given of the workflow in practice. The workshops must be thoroughly
prepared, with attention paid to such matters as a clear division of roles
and a simulation structure based upon case studies.

Thanks to this method of prototyping, it is not only the correctness of
the data-processing component and process-definition specifications that
are tested, but also the practical feasibility of the process.

At the end of the design phase, the users in the team give their formal
approval to the functionality. This encompasses all the specifications al-
ready implemented in the workflow management system and the CASE
tool (represented by prototypes), as well as a list of further refinements
and/or links with other components. The latter is realized during the next
phase: construction.

Activities

• Harmonization of the data model and the user interface;
• design/generation/harmonization of the functionality of the
data-
processing component and workflow definitions using prototyping and
simulations of use cases; and
• establishment of specifications for specific links with office systems
and/or other components.

Deliverables

• Standard for the user interface;
• specification of the workflow within the workflow management system;
• specification of the data-processing components in a CASE tool;
• final system prototype(s) and list of components to be completed; and
• description of links which still need to be made with office systems and/
or other components.

6.2.8 Construction

A large part of the system has already been created (in an evolutionary
way) during the system design phase. Specific functionality, which can be
created using generators or which requires additional programming, is
added during the construction phase. Examples of this include complex

Roadmap for Workflow System Development 233

checks, batch processing, and data exchange with other (external) \
systems.

The remaining parts of the system are thus constructed in a traditional
way, based upon unambiguous specifications.

Finally, various aspects of the system are optimized for use in the
operational environment. These include:

• the specific integration of the workflow management system with data-
processing and general office applications (word processors, spread
sheets, e-mail, and so on);
• extension and optimization for large-scale use;
• performance optimization;
• management-information functions (insofar as these are not
incorporated as standard);
• technical-management functions; and
• conversion software.

Although the construction phase mainly involves technical aspects, the
users should continue to be involved. Especially when testing and
assessing the results, active user input remains highly desirable. The users
concerned are also closely involved in preparing for the acceptance test
and enactment.

Activities

• Integration and optimization of the workflow management system;
• setting up of the test environment;
• completion of the system documentation;
• system test; and
• preparation of the integration and acceptance test.

Deliverables

• Components ready for the integration test;
• system documentation;
• integration and acceptance-test plan (including use cases); and
• conversion software.

6.2.9 Integration

By definition, a workflow system consists of several components. The
process management implemented within the workflow management
software is an independently operating unit with its own dynamics and
management environment, and in many cases its own hardware envi-

234 Chapter 6

ronment. This generally also applies to the data-processing components.
The separate components communicate via interfaces. The blueprint for
these components and their interrelationship is produced during the
architecture phase. Especially in larger applications, program develop-
ment will be carried out in more or less independent subprojects. A
certain amount of autonomy for these is important to hasten their com-
pletion. The degree to which the components work properly with one
another therefore is strongly dependent upon the quality and detail of the
architecture defined. The integration test is the moment when the sepa-
rate components are checked for their full mutual compatibility.

This test focuses primarily upon the operation of the functions in (tech-
nical) combination with one another, and in particular upon the inter-
action between the various components. Here the use cases, designed in
the redesign phase, are reused. This set is extended and forms the basis
for test scripts.

The most wide-ranging activity is to establish whether the functions
created work properly and provide predictable results under all circum-
stances. The emphasis is placed upon the points of contact between the
different components: the interfaces. In addition, such matters as security
and authorization, performance (peak loads, long-term loads), and re-
covery are tested. Naturally any faults or errors which come to light
during testing should be rectified as soon as possible.

In order to assess the behavior of the components properly, it is vital
that the integration test be carried out on a hardware and software infra-
structure that is identical to the final production environment, or as close
to it as possible. This will prevent unwelcome surprises and unexpected
setbacks when the production systems themselves are established.

In fact, the integration test is the first step in the acceptance of the
system, with the main emphasis being placed upon technical compatibil-
ity and robustness. During this phase, information technologists and
users work closely together with the objective of delivering a properly
operating system that can be subjected to a (functional) acceptance test
by the users alone.

Activities

• Test conversion;
• performance of integration test;

Roadmap for Workflow System Development 235

• rectification of faults; and
• production of test report.

Deliverables

• Environment and software prepared for acceptance test;
• test scripts (for future regression tests); and
• test report.

6.2.10 Delivery

The workflow system is now so far advanced that it can be formally
handed over to the users. The objective of the acceptance test is to es-
tablish whether the system operates in accordance with the specifications
and fulfills all the requirements made of it to support the day-to-day
business process in the best way possible. This includes the condition that
the user organization must, as far as possible, be able to perform the
acceptance test on the workflow system independently.

For this reason, the developers involved in the project remain in the
background at this stage, only providing support when absolutely
necessary—for example, because one or more components are not func-
tioning as they should.

An acceptance test addresses the following matters:

• functionality (user interfaces, input, internal processing, output);
• everyday use of the system by means of use cases chosen in the redesign
phase;
• (day-to-day) management; and
• the system documentation supplied.

The vast majority of the functionality and general management functions
of the workflow systems already have been tested by the users during
earlier phases. Such testing is an integral part of the development process,
with the users always remaining closely involved in the creation and
ongoing assessment of prototypes. The backbone of the system already
has been thoroughly checked during the integration test. The acceptance
test therefore should concentrate mainly upon the day-to-day use and
management of the workflow system, as well as the technical and user
documentation supplied with it.

The best approach in such a situation is a systematic one in which a
process is tracked step by step using predefined use cases. For each stage

236 Chapter 6

in the process, a test script is written describing the operations that the
user should carry out and the expected results of the test. In this way,
everyday use is simulated as closely as possible and the operation of the
process can be assessed.

In addition to the functional acceptance described above, a technical
acceptance test must be performed by the future managers of the system.
During this, checks are made as to whether the software produced meets
the standards and general quality norms set for the project.

Activities

• Performance of the acceptance test using scenarios;
• rectification of faults; and
• production of an acceptance-test report.

Deliverables

• Environment and software ready for use and management;
• formal acceptance by the user organization;
• formal acceptance by the management organization; and
• acceptance-test report.

6.2.12 Enactment

The restructuring of entire business processes and the enactment of
new technology have consequences for the way in which people work
(together). Traditional hierarchical relationships change or disappear,
and responsibilities shift. This places demands not only upon the pro-
cesses and the information systems, but also upon the people who work
with them. Requirements with respect to knowledge and skills change in
both the technical and social fields.

The enactment of a workflow system in an organization therefore is at
least as important as its design and construction. Do staff know what to
expect, and are they well prepared for their new tasks? Do they possess
the necessary knowledge and skills? Are there enough tools available?
And have all the necessary agreements been reached?

Enactment requires thorough preparation and explicit interest in the
project. Preferably a special team should be set up within the project
organization to deal with both its preparation and subsequent super-
vision. This implies that a considerable part of the project budget must
be allocated to enactment activities.

Roadmap for Workflow System Development 237

The activities of the enactment team to some extent "shadow" the
other phases of the IPSD approach. As early as the redesign phase, it
should concern itself with analyzing the project's implications for the
organization and its human resource management aspects. As the project
progresses, attention is paid to everything required to prepare for success-
ful enactment. This includes providing information about the project and
its results (in particular, the changes that the organization should expect),
as well as preparing training materials, providing courses, and continuing
to monitor the organization once the system has been implemented.

The enactment team preferably should consist of staff who know the
organization well and have good contacts. In order to carry out the
activities described above, it should contain people who are able to per-
form the following functions:

• communications expert;
• technical copywriter;
• organizational expert;
• infrastructure expert;
• trainer; and
• process supervisor.

Ideally, such a team will comprise representatives from both the user
organization and the IT organization, plus executive staff and—possibly
—outside experts.

Activities

• Communication about the progress of the project;
• communication about forthcoming changes;
• description of the organizational structure;
• preparation of case descriptions;
• preparation of manuals;
• preparation of training materials;
• provision of training;
• planning and enactment of the technical infrastructure;
• preparation and supervision of conversion; and
• supervision of the change process.

Deliverables

• Enactment plan;
• communications plan;

23 8 Chapter 6

• conversion plan;
• organizational model;
• case descriptions;
• manuals;
• information and training materials; and
• infrastructure.

6.2.12 Monitor and improve

Once the workflow system has been successfully implemented, attention
turns to whether the intended improvements are actually being achieved
and sustained. This requires the permanent monitoring of the processes
using the predefined performance criteria. These are the so-called key
performance indicators (KPIs) established during the diagnosis phase.
The workflow management system can be of assistance in measuring and
assessing a number of these. Because it records a great deal of informa-
tion about the process and individual cases, it is easy to gain an overview
of the behavior and performance of the process in practice. These indi-
cators are mainly "hard" ones such as system usage, processing times,
workloads, supplies of work, and productivity. In addition research can
be carried out into such matters as level of service, customer satisfaction,
and quality. This can be regarded as an ongoing continuation of the
diagnosis phase with the objective of identifying potential improvements.
It may prompt adjustments to the processes and systems linked to it—
not radical changes as in BPR, but usually minor improvements to the
processes.

We call this approach continuous process improvement (CPI). Because
the changes are not so large, the frequency with which they can be imple-
mented is much higher. Figure 6.5 illustrates the relative positioning of
CPI and BPR.

The use of workflow management software has clear advantages in
this respect. Because the process definitions are established in terms of
parameters, adjusting the process requires relatively little effort and so
makes decisions to do so easier to take. Consequently a virtually contin-
uous process of measurement, redesign, and enactment develops. The
IPSD approach also can be used as the guiding principle in CPI, provid-
ing the activities are more limited in scope and performed in quick sue-

Figure 6.5 BPR
versus CPI

cession. Sometimes activities can be "skipped," and there is no need to
seek a clear delineation between phases. But the lists of activities and
products used in the IPSD method do make a good checklist for planning
and implementing such projects.

6.2.13 Integrating WFMS with legacy systems

The above description of the IPSD method assumes that entirely new
information systems will be developed alongside the new processes. In
many cases, however, existing systems must (also) be integrated with
workflow management software to create a workflow system. In fact,
this provides a very good opportunity for giving old, hard-to-maintain
"legacy" systems a new lease on life.

In general terms, the IPSD method is well suited to such situations.
However, some specific problems do arise, which need to be addressed.

When integrating an existing system, one needs to maintain established
components rather than to create new ones. Instead of generating proto-
types, intensive upgrading of existing (and often old) software needs to
be carried out. The development environment in which these programs
were constructed does not lend itself very well to the type of prototyping
that we use in the IPSD method. As a result the design and construction
phases, in particular, should be structured in a somewhat different way.
The existing components may, in fact, act as the initial prototype, but

Roadmap for Workflow System Development 239

240 Chapter 6

good interaction in which prototypes rapidly succeed one another is not
possible. Nevertheless some form or other of evolutionary development
can often be used. If the adaptations to the user interface are limited, then
rather old-fashioned software is no great obstacle. If the modifications
are more far-reaching in nature, one may decide to install a more modern
programming environment for the interface part. Rebuilding parts of the
system from scratch often proves cheaper than making extensive changes
to existing software—especially when long-term maintenance is included
in the calculation.

Another aspect of working with existing systems is the elimination of
old workflow aspects from legacy applications. Many older programs
contain functionality that supports some kind of workflow. It is well
worth removing such functionality as far as possible from the legacy
applications and implementing it in the workflow management system.
This reduces the amount of effort required to maintain the legacy system,
and enables one to take immediate advantage of the flexibility offered by
the workflow management system. Which parts of the existing system are
to be removed and how the workflow management system and the legacy
application communicate with one another need to be carefully estab-
lished during the architecture phase.

A more serious problem is the "mismatch" between the process steps
and the system architecture of the existing applications. The modularity
of these programs does not correspond with the steps in the newly
designed process, which complicates interaction between the workflow
management system and the data-processing applications. Separate pro-
cess steps are defined in the process. Although each of these relates to
different functions, they are all implemented through a single,
wide-reaching COBOL program. In such cases, it is virtually impossible
to call up functionality from the existing applications in the workflow
management system, even when that functionality does exist. Figure 6.6
illustrates this situation diagrammatically.

The solution to this problem needs to be sought in the way in which
existing code can be "rewrapped"—preferably in smaller units that
enable supported interaction between process steps and the functionality
in the legacy system. This technique is called object wrapping. By defining
straightforward interfaces, the development of standards for distributed

Figure 6.6

Modularity of legacy applications

environments and object architectures such as DCE and CORE A con-
tributes to the reuse of existing software. Consideration of the use of
products based upon such standards forms part of the architecture phase.
The existing system's code can then—in a separate step between the
architecture and design phases—be restructured and rewrapped in such a
way that flexible reuse of that existing code becomes possible.

Enterprise application integration (EAI) has emerged as the latest
information management trend. EAI identifies and links user workflow
and application functions through sophisticated message queuing and
Web-based technologies. EAI tools identify, capture, integrate, and
deliver data and system functionality to users under a series of
cross-functional, multi-platform interfaces. Message queuing technologies
from various vendors have matured to the point where they can support
the integration of these functions without major retooling of complex
legacy environments.

Roadmap for Workflow System Development 241

242 Chapter 6

EXERCISES

Exercise 6.1

(a) Give two good reasons for involvement of (potential) users in
the
activities of the IPSD lifecycle.
(b) Give the three criteria for selection of users to become part of the
redesign team.

Exercise 6.2

Use cases play an important role in the ISPD lifecycle. Indicate where
they are used and why they are important.

Exercise 6.3

Requirements and Architecture are two separated phases in the ISPD
lifecycle. They could be integrated into one phase, normally also called
"architecture." In that case both the functional and technical aspects are
considered in one phase. Give advantages and give also disadvantages of
having them separated.

7 ____________

Sagitta 2000 Case Study

7.1 Background Information

The concepts introduced in this book can only be "brought to life" when
they are illustrated using an actual case study. The development of the
Sagitta 2000 declaration-processing system of the Dutch Customs Service,
part of the Dutch Tax Authority, provides an excellent opportunity for
doing this. The design of the new system began in early 1995, and it has
now reached the beginning of the construction phase. One of the funda-
mental principles in the development of Sagitta 2000 always has been
that—throughout the design and construction procedure—the manage-
ment of the Customs Service's complex administrative business processes,
which the system will handle, be kept separate from the applications that
support them. For this reason a great deal of attention was paid to the
explicit modeling of the process structure during the design of Sagitta
2000. In doing so, it always was envisioned that the business processes
should eventually be incorporated into a separate layer of management.
This chapter begins with a short description of the task of the customs
organization and the particular role of declaration processing in this.
This makes it clear what issues the Customs Service faces and what major
developments have occurred to result in the need for an overhaul of the
business processes in declaration procedures. We shall also examine the
way in which the business processes are described in Sagitta 2000, and
the management ideas underlying these descriptions. We shall then dis-
cuss the description of a part of the Customs Service's business process.
Within the Sagitta 2000 project, intensive research into how the manage-
ment concept should be achieved technically was carried out alongside
the design phase. This also makes it possible to examine the enactment of

244 Chapter 7

the process diagrams in a workflow management system, and the tech-
nical problems which arise when integrating a workflow management
system with the application software. We end the chapter with a review
of some of the experiences gained thus far from the project and some
ideas for the future.

7.2 Customs Service Business Process

The Dutch Customs Service performs a number of tasks that are closely
linked with flows of goods into and out of the Netherlands. These include
the levying and collecting of the Dutch and European taxes and duties
that must be paid when importing goods into the European Union. The
Customs Service also ensures that no goods enter the country that would
endanger the health and safety of society in general. In performing all
these tasks, it is vital that the Customs Service be able to track the flow of
goods and carry out selective checks. This is done mainly using customs
declarations that must be submitted to the Customs Service by the various
parties involved in flows of goods. The Customs Service's business pro-
cesses focus primarily upon the processing of these declarations.

Why redesign the business processes?

The internal processing of declarations by the Customs Service has long
been heavily concentrated upon just one of the many types of declara-
tions submitted. The Customs Service's current information systems also
are configured mainly to deal with one particular type of declaration.
Two significant developments are now changing this traditional picture.
On the one hand, the Customs Service is attempting to base its tracking
of and checks on the flow of goods, as well as the processing of declara-
tions, more emphatically upon its opinion of the parties involved in those
flows. On the other hand, a new law (the Community Customs Code, or
CCC) has come into effect that, more than ever before, requires a clear
system for the way in which declarations relate to one another (the
"tracking of goods") and how they can be made. These two develop-
ments prompted the redesign of the business process within the Sagitta
2000 project, with the objective of creating a uniform procedure that can
be used to deal with every type of declaration.

Sagitta 2000 Case Study 245

Why separate management and application?

The handling of customs declarations is a process that involves a huge
amount of data. Controlling and managing such large quantities of
information requires great attention to detail. By consciously separating
business-process management in Sagitta 2000 from the supporting appli-
cations, the following is achieved:

• An opportunity is created for improved control of the business pro
cesses (management and monitoring). By making this explicit, it becomes
possible to define the way in which process control should be structured.
Consider, for example authorization; work allocation and workload
management; separation of functions; and progress monitoring. More
over it becomes possible to perform both process management and pro
cess monitoring using a workflow management system.
• A guarantee that a number of formal steps that must be taken in the
business process do indeed take place in accordance with the law. It is
also desirable that, on the one hand, these steps can be taken in a uni
form way throughout the country and, on the other, that the various
organizational units are free to structure the process as they wish within
the legal framework.
• The ability to adapt the business process to new organizational wishes
and changes in the law more easily than was possible so far (all this, of
course, without incurring higher maintenance costs).

Petri nets for the design of business processes

As mentioned above, the Sagitta 2000 project involved a redesign of the
business processes for processing customs declarations. At the start of the
project, however, it was not yet clear how the separation of management
and application would be achieved, nor how the redesign of the business
processes would be structured. Eventually it was decided to use Petri nets
to establish the business processes. This enabled a number of important
characteristics of declaration processing to be modeled in an appropriate
way:

• The Customs Service's business processes consist of a large number of
individual tasks or steps. In other words, the task is either considered to
be carried out at a single stroke or not at all. Some tasks are performed
by a customs officer, possibly with the support of a system, whereas
others are fully computerized.
• There is no fixed procedure for the processing of every type of customs
declaration. Each declaration must be routed along the correct route

246 Chapter 7

through the process according to its individual content (its case attrib-
utes). Sometimes a choice between alternative options of processing
needs to be made, after which the process returns to a common path.

• Because many tasks are initiated by events in the Customs Service's
environment, it is difficult to predict in advance which will be performed.
This means that the correct step to be taken can only be determined once
a particular event has occurred. This aspect can be modeled properly
only if the "pending" states in which the process may be held, while
awaiting a particular event, can be modeled explicitly.
• The steps in the business process may be activated by various types of
triggers. It therefore is necessary to differentiate between these when
modeling.
• "Parallelization" is possible in declaration processing. In other words,
two or more subprocesses may be performed independently of one
another, with subsequent synchronization as the process returns to a
common path.

Sagitta 2000 methodology

Sagitta 2000 uses Petri nets very similar to those described earlier in this
book. There are, however, a few minor differences in the symbols used in
the Sagitta 2000 methodology. Moreover the number of "nesting" levels
is limited to two, and no use is made of preconditions. The task (called
the "process task" in the Sagitta 2000 project) is at the heart of the
system, and is shown by a rectangle. "The principle of unity of time,
place and operation" applies to each task. The states in which a case can
be held between the various tasks are illustrated in Sagitta 2000 by an
inverted triangle. However, the meaning of this is no different to that of
the conditions (places) which we saw earlier in this book. Sagitta 2000
also differentiates between different types of triggering: an incoming
message ("envelope" symbol), a fixed moment in time ("clock" symbol),
automatic ("cogs" symbol), or user activation. In fact, six types of triggers
have been identified. An example of a Petri net used in Sagitta 2000 is
shown in figure 7.1.

Relationship with application software

As mentioned earlier, the process tasks within the business process may
be supported by application software. In other words, once a task is
activated, an application that performs it—or assists the user in per-
forming it—must be started. Such a task-supporting application is called

Sagitta 2000 Case Study 247

248 Chapter 7

an application task. Most Sagitta process tasks have an application task,
but some are entirely manual and so have no associated application task.

The management layer, which we are creating with a workflow man-
agement system, tells the application layer which application must work
on which case. The application then works on the case regarding the
content and—once its task is completed—informs the management
layer of the (possibly) adjusted values of the case attributes, so that
management can decide which follow-up states the case should proceed
to, and possibly what subsequent tasks can begin. This principle is
illustrated in figure 7.2.

A task, possibly together with an application task, is regarded as one
"logical unit of work" (LUW), which is either carried out in full
("commit") or not carried out at all ("rollback"). If a task is interrupted
halfway through, the case state must be "rolled back" to that which
existed at the moment when the task was begun.

Figure 7.2

Communication between management and application

Sagitta 2000 Case Study 249

7.3 Working Methods

The Sagitta 2000 business processes always focus upon processing one
kind of case. The project therefore began by determining the different
types of cases which could be identified under the heading "declaration
processing." Then business processes were designed for each of these case
types. A business process is a sequence of steps (process tasks) designed
to process a case of one particular type. Each step must add value to the
sequence and carry out a necessary operation affecting the case attributes.
The criteria for designing a business process are always strictly applied.
In other words, if it is established, when performing a task on one case,
that—due to the content of that case—operations need to be carried
out on another case of the same or different type, then these operations
are never modeled as part of this task. Such situations are modeled by
generating triggers from the processing of other cases; they lead to the
activation of other process tasks that deal with the related cases. The
relationship between two business processes thus is never shown by cre-
ating common conditions (i.e., places) or process tasks for them. If there
is interdependency between different cases, then these are made through
the application level. In this way, the execution of an application for one
particular case may lead to the generation of a number of triggers for
other cases. These triggers are not generated by the workflow manage-
ment system, because knowledge of the content of the declarations is
required to determine the relationships between cases.

7.3.1 Iterative design

The design of a business process is done iteratively. In other words, it is
not possible to design a process at a single stroke. The initial, rudimen-
tary process design is gradually refined through close interaction between
customs experts and designers. The customs experts, whose background
is purely in Customs Service techniques, appear to be highly capable of
considering their business processes in Petri-net terms. The initial, rudi-
mentary process design is produced following an analysis of the current
procedure and customs law. A brainstorming session also is held to
establish what events occur in the lifecycle of a case. The new customs
law, the Community Customs Code (CCC), provided a very good start-
ing point. The CCC explicitly states what procedures are available for

250 Chapter 7

processing declarations, and what major "states" and "operations" can
be identified in the lifecycle of a declaration.

7.3.2 What is a task?

Within the business processes, the task is the smallest unit of work. The
most important criterion for decomposing a task is that there must exist
unity of time, place, and operation. During the design of the processes,
however, this principle does not always provide sufficient grounding. In
fact, it acts as a sort of basic condition that subsequently allows several
design decisions to be made. The criterion does not act as an imperative,
in the sense that a collection of operations and system functions must be
clustered into a single task when there exists at least one procedure in
which the unity of time, place, and operation would apply to that col-
lection. In such a situation, it is quite legitimate to split this task into two
tasks to be carried out immediately after one another.

Proper consideration also requires other criteria to be taken into
account:

• Recognizability of the task. To the organization, a task must be rec-
ognizable and involve a useful cluster of operations and system functions.
A task therefore has a clear function and objective, and ultimately is also
the unit of work allocated to the members of staff. The latter (in order to
separate functions, for example) might be a motive for splitting a task
into subtasks to be performed by different members of staff.
• Sensible interim states. All the interim states (conditions) in the busi-
ness process should be given (reasonably) sensible names. If this proves
impossible or very difficult, then it may perhaps indicate that a state has
been defined that is not recognizable by, or important to, the users.
• An acceptable ((commit work" for each of the process tasks. The
splitting of process tasks and the introduction of an interim state result in
the creation of a separate "commit work" for each task. On the one
hand, this leads to flexibility for the user; on the other, in the operational
situation, it is no longer possible to roll back the first task once the
second has begun.

7.3.3 Dealing with complexity

The Customs Service's processes are too complicated to be shown in a
single, flattened Petri net. A process description containing too many
process tasks, conditions, and interconnecting paths—with a different set
of requirements attached to each path—is no longer recognizable and

Sagitta 2000 Case Study 251

comprehensible to analysts or customs experts. Moreover, the chance
of modeling errors occurring in such a complex model is very high. In
Sagitta 2000, decomposition has been used to overcome the complexity
of the process. Given that too many levels of decomposition are also
difficult to manage, the final design has only two such levels. In addition,
"routing tasks" have been introduced. These are tasks in which various
subprocesses come together, all the decision rules are evaluated at the
same time, and the subsequent route is determined.

7.4 Example: A Customs Service Business Process

Various business processes are distinguishable within Sagitta 2000, each
with totally different characteristics. Because of their close relationship
with the physical flow of goods, some are highly time-critical. These
include, for example, the processing of (standard) declarations. Given
that a declaration needs to be made for every shipment, there is an
enormous number of cases. On the other hand, some processes are not
time-critical and involve far fewer cases, each of which may be very wide
in scope. These include, for example, the processing of monthly declara-
tions in which major declaring companies justify an entire month.

What the various types of processes in the declaration processing pro-
cedure have in common is that they are highly structured but complex.
Given the fact that the Customs Service must constantly respond dynami-
cally to events in its environment—which cannot always be predicted in
advance—it is vital to include conditions in the process structure. Below
we describe an example from customs practice concerning the processing
of a standard declaration. First the main process diagram is presented,
which shows the overall structure of the process. Then we show a
sub-process containing a process description at the lowest level of
decomposition: the process tasks.

Main process

The main declaration process is shown in figure 7.3. This is a generic
process suitable for dealing with every type of declaration and declara-
tion procedure. The declarations are routed correctly through the process
using decision rules. Figure 7.3 does not show the most recent version of
the process. Sagitta 2000 is an ongoing process and the declaration pro-
cess is still subject to minor revisions.

252 Chapter 7

Sagitta 2000 Case Study 253

Several subprocesses can be identified within the main process:

• Submission of a declaration. The processing of the declaration begins
with the submission and intake of a declaration form. This takes place
before—or at the latest at—the moment when the goods become avail
able for a physical check. The declaration form also contains all the data
that determines how the declaration will proceed through the process.
These characteristics are recorded as case attributes and play a very
important role in the routing of the case through the process. The sub-
process is suitable for both electronic and written declarations, as well as
for both the initial version and new versions.
• Acceptance of the declaration. The declaration acceptance subprocess
begins once the declaration has been submitted. This is a very explicit
procedure, owing to the legal significance of the acceptance of a customs
declaration in the CCC. The subprocess waits until the goods are
physically present, after which Sagitta 2000 allocates the "accept" state.
Even once the declaration has been accepted, its correction and
cancellation by the declaring party is still possible. These are examples of
events outside the Customs Service to which it must respond.
• Pre-release check. The checking process takes place in parallel with the
acceptance process and is in theory conditional. Only when it is decided
that a (physical) inspection must take place is the check subprocess acti-
vated. The thoroughness of the check is determined using the selection
profiles contained in the "declaration submission" subprocess. Using the
decision rules, the declaration is routed either to or around the "pre
release check" subprocess.
• Release of the goods. The release of the goods can take place once the
declaration has been accepted and any check has taken place. PT008 is
the fully automatic task which releases goods. Release itself indicates to
the declaring party that it is free to remove the goods covered by the
declaration.
• Suspension of verification. The suspension of verification may be
regarded as a state within Sagitta 2000 under which the goods can, in
principle, be released but in which the check has not been or cannot be
completed. In theory, suspension of verification occurs independently of
the release of the goods. It therefore is modeled in parallel to the release
task. Once verification has been completed and the goods released, the
process ends. This is done by carrying out task PT047.

A case—that is, a declaration—eventually ends up in one of the con-
ditions Declaration not accepted, Not received/recorded, or End of
processing period.

254 Chapter 7

Submission of a declaration

Figure 7.4 shows the content of the "submission of a declaration"
sub-process. Again note that this is not the most recent version of the
process: Sagitta is an ongoing project. We can see how a number of
conditions from the highest level of the procedure are repeated. These
make the link with the rest of the process at the higher level.

The subprocess is designed to check declarations (PTOOO and PT001)
and new versions of the declaration (PT039 and PT040) regarding their
content, and—if they are in order—to record them (PT007).
Declarations can be submitted either electronically (PT001, PT040a,
and PT040b) or in writing (PTOOO, PT039a, and PT039b). The contents
of tasks PT039a and PT039b are the same: in both cases, it means the
correction of a written declaration. PT039a is performed when the
goods to which the declaration pertains are not yet available (in other
words, when there is still a token in Waiting for TGO); otherwise,
PT039b is performed. Sometimes checks are required that the system
cannot carry out automatically. It may be necessary, for example, to
involve one of the Customs Service's external contacts in checking the
declaration before it can be accepted by the system. Another example
of a check that the system cannot perform is assessing whether the issue
of a permit in a simplified procedure is permissible. In figure 7.3,
PT002a corresponds with the assessment of a new declaration. This task
determines whether the simplified procedure is permissible. PT002b and
PT002c correspond with a similar assessment of a corrected declaration.

It has been decided to introduce six separate process tasks for the
intake of new electronic and written declarations and subsequent ver-
sions of declarations. On the one hand, this is because the process tasks
for declarations submitted in writing have a different trigger from those
submitted electronically. On the other hand, in the business process we
wish to explicitly differentiate between new declarations, new versions of
accepted declarations and new versions of yet-to-be accepted declarations.

For many declarations, it is not necessary to carry out the additional,
nonautomatic checks between the conditions "external organizations to
be informed" and "acceptance possible" (these process tasks are not
shown in the illustration). For these declarations, therefore, process tasks
PTOOO, PT001, PT039a, PT039b, PT040a, and PT040b can be directly
followed by PT007. Therefore these pairs of process tasks
(PTOOO-PT007, PT001-PT007, PT039a-PT007, PT039b-PT007,
PT040a-

Figure 7.4

Example of the submission of a declaration

Sagitta 2000 Case Study 255

256 Chapter 7

PT007, and PT040b-PT007) each could have been incorporated into a
single task (with the PT007 part as an optional subtask). Here, therefore,
a modeling decision has clearly been made, with the principle of unity of
time, place, and operation on the one hand, and the mapping of func-
tionality onto a single task (that of PT007) on the other, being weighed
against one another. Moreover the chosen solution has the advantage
that all declarations pass through PT007 and from there are routed as
appropriate. PT007 therefore acts as a routing task that increases the
readability of the business process.

Figures 7.3 and 7.4 show only a part of the entire process. The decla-
ration process contains more than fifty individual tasks. (In total, Sagitta
2000 will support more than two hundred tasks.) For each of these, its
precise behavior is determined by a decision rule. Figure 7.5 shows the
decision rules for a number of tasks.

7.5 Enactment of the Workflows in a Workflow Management
System

Ultimately it is intended that the Sagitta 2000 business processes are
incorporated into a workflow management system. Although there do
exist other technical solutions in which the control of the business pro-
cess is neatly separated from the application, it is the policy of the Dutch
Tax Authority to implement standard software whenever possible. For
this reason, a provisional workflow management product was selected
at an early stage so as to test whether incorporation of the Sagitta
2000 business processes could be possible. This workflow product must
not only provide the functionality required to deal with the Customs
Service's complex business processes, but it also must meet the
technical-infrastructure requirements set by the Tax Authority and be a
solid and robust enough solution to cope with the large number of
declarations and the high standards required by the Customs Service in
terms of integrity and timing.

7.5.1 Selection of a workflow management system

In selecting a provisional workflow product, the main question addressed
was whether it would allow enactment of the Customs Service's business
processes. Particular study was made of the workflow management sys-
tem's ability to meet, amongst others, the following requirements:

Figure 7.5

Decision rules for PTOOO, PT002a, and PT007

• it must be possible to explicitly model states from the business pro-
cesses in the workflow management system;
• all forms of routing must be supported;
• various forms of triggering must be supported;
• it must be possible to specify a hierarchy in the business process;
• it must be possible to extract a case from the workflow management
system and load it into another workflow management system (export/
import functionality); and
• there must be sufficient support for case attributes and decision rules.

Sagitta 2000 Case Study 257

258 Chapter 7

In addition, a short survey was carried out into the requirements that the
product must meet in respect to work allocation and workload manage-
ment, so that these aspects could be taken into account during selection.
Matters covered included work allocation rules, separation of function
and authorization requirements, opportunities for chained and batched
processing, and so on.

The aspects listed are best tested by running through part of the busi-
ness process and allocation rules, together with an expert of the product
being evaluated. This will rapidly make it clear whether that product
provides a good solution for the explicit modeling of states, the various
forms of triggering, the desired method of allocation, the complexity of
the decision rules, and so on. In many of the workflow products, it
turned out to be necessary to translate the Sagitta 2000 Petri nets into
that product's own language before the processes could be introduced.
During this translation it was not always possible to find a suitable
solution in the product language for all the constructions used in the
process.

In 1998, the COSA product (see chapter 5) was selected as the work-
flow management system for Sagitta. The decision to select COSA as the
standard workflow product for the Dutch Tax Authority was a result of
a European-wide tender. COSA is used in several pilot projects within
the Dutch Tax Authority. However, for Sagitta 2000, COSA is not used
at this point in time (July 2000). A pilot is conducted using custom-made
software and focusing on a small fragment of the whole process (involv-
ing about ten tasks).

7.5.2 Distribution aspects

Sagitta 2000 is a distributed system; its workstations are, after all, spread
amongst dozens of customs posts. The system consists of a central hub
and a number of local elements. The hub coordinates the entire system,
and is also the place where many noninteractive tasks are performed.
The interactive tasks are carried out locally by customs officers. Staff
allocation is arranged locally, at each customs post. The
management-application and central-local separation results in the
four-part structure shown in figure 7.6.

A mainframe environment is used centrally. The environment is client/
server-based locally. In 1998, the COSA workflow management system

Figure 7.6

Division between central and local and between management and application

was selected for local management. At this point in time, it is not clear
whether COSA will actually be used for the local system. For the central
hub things are even more complicated, because there are no workflow
management systems available for the mainframe computer used by the
Tax Authority. In addition, high performance and reliability standards
are set for the central hub. It is not (yet) clear how central management
will be performed. The Tax Authority is experimenting with a number of
prototype management systems (e.g., the flowcontrol system). These
prototype systems are based upon Petri nets and the modeling technique
presented in this book.

The starting point for Sagitta 2000's distributed management is the
principle that a case (customs declaration) always is in one place only at
any given time. The case therefore is either at the central hub or a local
post, and cannot be worked upon simultaneously at two places. It is
sometimes necessary to transfer a case from one place to another—that
is, from one local post to another or from the central hub to a local post.
Conceptually, we can compare the transfer of a case with the removal of
all the tokens belonging to a declaration from one process diagram and
their placing in another. When transferring cases, the state definition
is also crucial. Workflow management systems not based upon Petri nets

Sagitta 2000 Case Study 259

260 Chapter 7

often abstract from the state and therefore prove inadequate in this
respect.

7.5.3 Mapping of the process onto the WFMS

Although the workflow management system that has been selected
(COSA) does support the Petri-net technique, even in this product it is not
possible to transfer the processes one on one. Since the selected system
does not accept all the constructions which are allowed in a high-level
Petri net, it is necessary to devise standard solutions that do not detract
from the desired functionality. All these solutions have been laid down
in an enactment manual. This is followed strictly during enactment, so
the differences between the high-level Petri nets and the language used by
the selected workflow system are always resolved in a consistent way.
Some examples of the agreements included in the enactment manual
are:

• the way in which case attributes must be dealt with, and the names
given to these attributes;
• the way in which decision rules are established;
• the way in which automatic processes are established;
• the way in which time-based triggering is dealt with;
• inspection of a condition by a task, or the enactment of iteration
(examination of a case and its return to the same condition);
• the creation of a case as a result of a message from outside; and
• the enactment of triggering between two processes.

Figure 7.7 shows a small part of one of the Sagitta 2000 process defini-
tions. For enactment in COSA, the decision rules are translated into
conditions for the arcs between transitions and places. As fhe illustration
shows, these conditions can become extremely complex.

As required by the IPSD methodology described in the previous chap-
ter, interactive workshops have played a major role in the validation of
the business processes. These workshops have stimulated and supported
customs experts in carefully testing the specified business processes during
simulations of the process using the workflow management system.

Please note that figure 7.7 has just been added for illustration pur-
poses. COSA was selected as a workflow system in 1998. However at
this point in time it is not clear whether COSA will actually be used as

Figure 7.7

Part of the process definition in COSA

the basis for Sagitta. The first production version of Sagitta, supporting
only a small part of the total process, will use custom-made software.

7.6 Some Experiences Thus Far

Although opportunities to put workflow-management ideas into practice
in various sections of the Dutch Tax Authority have previously been
sought, Sagitta 2000 is the first project that has actually succeeded
in separating application and logistics (management) in its design. To
achieve this, extensive investigation into the (types of) building blocks
from which the system is constructed and into methods for modeling and
specifying business processes has been carried out. Eventually a method-
ology based upon Petri nets was chosen. Some aspects of methodology
and architecture have been tested in a so-called feasibility project. During

Sagitta 2000 Case Study 261

262 Chapter 7

this pilot project, the business processes were incorporated into the
selected workflow management system.

The most important experiences thus far are as follows:

• Petri nets are a suitable way of specifying Customs Service procedures.
No situations arose in which Petri nets were incapable of modeling the
desired procedure.
• Petri nets also are, in principle, very well understood by the Customs
Service's customs experts. The explicit representation of a case's state
contributes to a better understanding of the workflow being modeled.
• It is vitally important for a team of process architects (information
technologists) and customs experts to work together.
• A formal way of describing the business processes and incorporating
them into a workflow management system enables them to be carried
out. In Sagitta 2000, workshops have been used to test the business pro
cess by (other) customs experts. By calling up a standard application for
each task that shows the user a textual description of the task rather than
the actual application task itself, it is not necessary for the application
tasks to have been constructed before the business process is tested.
• Thus far little attention has been paid to the functional requirements
concerning work allocation and workload management. A survey has
been conducted into these aspects. Initial experiences show that the user
organization still finds it difficult to appreciate the opportunities created
by workflow management. Consideration is given to the formulation of
an initial version of the requirements, in which minimal use is made of
workflow management's opportunities. Further research into the oppor
tunities and new potential offered by workflow management is now
under way. This research is addressing the following aspects:

(1) user authorization for tasks: user's competences,
separation of
functions;
(2) workload management: efficient distribution of work among the
available users; and
(3) ensuring that the process progresses, and warnings when stagnation
occurs.
• At present, most "headaches" are being caused by technological prob-
lems. The introduction of workflow management within an environment
that sets very high standards for its technical infrastructure requires a
great deal of attention to be paid to technology. The Customs Service
demands the round-the-clock availability of certain subprocesses, a very
high level of robustness, and complete integrity of the system and its
associated databases. These high standards make it hard to introduce
workflow technology.

Sagitta 2000 Case Study 263

Conclusion

With Sagitta 2000, a good start has been made in improving the way in
which systems can be created and workflow management can be inte-
grated into a new information system. However, the battle is far from
over: on both the technical and organizational fronts, there are still
plenty of obstacles to be overcome. Nevertheless there is a great deal of
confidence that this will be done, and expectations within the user orga-
nization are high. Quite apart from the workflow management aspect,
Sagitta 2000 has already proven very fruitful in thoroughly reconsidering
and explicitly defining the Customs Service's business processes. The new
process tackles the inefficiencies and inconsistencies of the existing ones,
and fulfils the latest requirements made by the Customs Service to its
business processes (CCC and the Client Concept).

EXERCISES

Exercise 7.1 Traveling at Somewhere University

Apply the modeling technique described in this book to the workflow
process of the following travel agency.

Some time ago the board of Somewhere University (SU) decided to
open a travel agency at the campus. The new agency is supposed to
organize both business and private trips for employees of SU. However
the service is not as the board expected. The most important complaint is
that both the organization of a trip and the financial settlement take too
long. Therefore the board has started an investigation. Interviews with
several people involved have provided the following process description.
(To avoid confusion between employees of SU who want to book a trip
and employees who are involved in the organization of the trip, in the
remainder, the former are called clients.)

The whole process starts when someone drops in at the travel agency
to book a trip. An employee of the agency registers all the relevant
information of the client. The agency maintains a separate file for each
trip. An important issue is whether the client wants to book a private
trip, a business trip, or a combination of both. Approximately twenty
percent of all the trips organized by the agency is private.

Private trips are easy. The agency has one employee dedicated to the
organization of private trips. As soon as the wishes of a client are regis-
tered, she can start with the organization of the trip.

264 Chapter 7

Business trips are more complicated. The agency has two employees
for the organization of business trips (although one of them works only
three days a week). For each trip, there is always a single employee
responsible who also carries out as many tasks as possible for this trip. In
this way the service to clients should be guaranteed. For business trips a
client needs a travel permit. Usually clients that are familiar with the
process have already filled out a permit. Clients who arrive without a
permit are given a blank permit that they can fill out later, after which
they must return the permit to the agency. Travel permits are always
checked before any other action is taken. If a permit is not filled out
properly, it is returned to the client with the request to provide the miss-
ing information and send the permit back as soon as possible. In case a
permit is not returned in time, the travel agency can no longer guarantee
a timely organization of the trip. In the rare occasion that this happens, a
notification is sent to the client and the file is closed. If a travel permit is
okay, it is filed and the actual organization of the trip can start. First,
however, a copy of the file is sent to the finance department of SU,
because this department is responsible for the financial aspects of the trip.

An employee of the finance department of SU checks whether the client
is allowed to make business trips paid by SU. The results of this check are
sent to the travel agency in an internal memo. If the result is negative for
the client, which is hardly ever the case because clients usually know
when they are permitted to make business trips, the finance department
does not make any payments. If the result is positive, the finance depart-
ment makes an advance payment on the bank account of the client. It
also pays any registration fees that might need to be paid in case of
conference visits. Finally it pays those flights of the trip that are made
for business purposes. However, these payments only can be made after
the finance department has received detailed pricing information from
the travel agency. After all the necessary payments have been made, the
finance department is no longer involved in the preparations of the trip.
However, after the client returns, the finance department handles the
client's declaration (see below).

To prepare a trip (private or business), the travel agency always starts
with flight arrangements. If a trip involves one or more flights, the re-
sponsible employee of the travel agency starts by preparing a flight
schedule that includes departure and arrival times of all flights as well as

Sagitta 2000 Case Study 265

pricing information. Then the client is called to approve the schedule. If
the client does not approve the schedule, a new proposal is prepared and
the client is contacted again. When a client approves the schedule,
arrangements must be made to pay the flight(s). In case the trip is private,
an appointment is made with the client to pay cash or by credit card. In
case the trip is (partly) business, the travel agency has to wait for the
memo of the finance department that states whether or not the client is
allowed to make business trips for SU. If the memo is negative, the em-
ployee of the travel agency responsible for the trip calls the client to ex-
plain the problem. If the client still wants to make the trip, he or she has
to pay all the costs and an appointment is made to pay for the flights.
Often the client decides to cancel the trip, in which case the file is closed.
If the memo is positive, the travel agency determines the costs of business
flights and, if applicable, the costs of private flights. Relevant information
on business flights is sent to the finance department, which handles the
actual payment. In case of private flights, the client is contacted to make
an appointment to arrange the payment.

The internal memo that the travel agency receives from the finance
department is also used to determine whether a request must be sent to
the in-house bank office (which is situated at the campus close to the
travel agency) to prepare cash and travel cheques for the client. Such
a request is always made when a business trip is allowed. (In case of
private trips, the client has to take care of acquiring cash and cheques
herself.)

The task of the bank in the process is very straightforward. Upon
receipt of a request, a bank employee prepares cash and travel cheques
and sends them to the travel agency. If a client returns cash and/or
cheques after the trip, information about the exact amount that is used
by the client is sent to the finance department. The finance department
needs this information to process the client's declaration. In case a client
does not return cash or cheques in time, the amount supposedly spent by
the client is fixed to the value of the cash and cheques handed out to the
client before the trip.

After flight arrangements have been made and any private flights have
been paid, the responsible employee of the travel agency books hotels
and makes reservations for local transportation (train, car, etc.). She also
prints vouchers for any hotels that are booked. When cash and cheques

266 Chapter 7

have been received from the bank and all flight tickets have been received
from the central office of the travel agency in Somewhere Else where they
are printed, the employee puts all the documents together in a handy
folder for the client. The agency has to make sure that everything is ready
at least three working days before the trip starts because, then, the client
picks up the documents. At that point, the involvement of the agency
with the trip is finished. In case of a private trip, this also means that the
process is complete. In case of a business trip, however, the declaration of
the client still needs to be processed.

As mentioned, the finance department takes care of processing decla-
rations. When it has received a client's declaration and the necessary
information of the bank, an employee of the finance department pro-
cesses the declaration and calculates the balance. The result must be
approved by the director of the finance department. In case of mistakes,
the employee must make the necessary corrections. After the declaration
has been approved by the director, the balance is settled with the next
salary payment of the client. In addition, the total cost of the trip is
deducted from the travel budget of the faculty or other unit where the
client is employed. If a client does not hand in his or her declaration in
time (within a month after completion of the trip), the finance depart-
ment assumes that the total cost of the trip equals the sum of the advance
payment and the value of the cash and cheques given to the client.

The board of SU thinks that the main reason the above process takes
so long is that the coordination between the three departments involved
is poor. It believes that a workflow system might provide a solution. As a
starting point, it would like to receive a report covering the following
subjects.

(a) A resource classification of all the resources involved in the current
process, distinguishing roles, and groups.
(b) A process model of the current situation, including information
about roles, groups, and triggers.
(c) An analysis of the resource classification and the process model, using
the guidelines for process (re)design discussed in earlier chapters.
(d) An improved resource classification/process model, based on the
results of the analysis.

Appendix A: Workflow Theory

This book offers concrete techniques and guidelines for designing com-
plex workflow processes. Although the need for a theoretical foundation
was emphasized, formal definitions and notations have been avoided as
much as possible to improve the readability. This appendix introduces
the theoretical basis for the modeling technique used throughout this
book.

Today's situation with respect to workflow management software is
comparable to the situation as regards to database management software
in the early 1970s. In the beginning of the '70s most of the pioneers in the
field of database management systems (DBMSs) were using their own
ad hoc concepts. This situation of disorder and lack of consensus resulted
in an incomprehensive set of DBMSs. However, emerging standards such
as the relational data model and the entity-relationship model led to a
common formal basis for many DBMSs. As a result the use of these
DBMSs boosted. There are many similarities between today's workflow
management systems (WFMSs) and the DBMSs of the early '70s. Despite
the efforts of the Workflow Management Coalition, a real conceptual
standard is missing. As a result many organizations are reluctant to use
existing workflow management software.

The relational data model and the entity-relationship model served as
a catalyst for the use and functionality of DBMSs. Comparable models
are missing for WFMSs. A WFMS addresses many perspectives and it
is Utopian to assume that a straightforward model comparable to the
relational data model or the entity-relationship model can capture all
relevant aspects. However for the most dominant perspective, that is,
the process (control-flow) perspective, there seems to be consensus on the
main concepts. In our opinion Petri nets constitute a good basis for

268 Appendix A

the standardization of this perspective. Inspired by practical experiences,
we have come to realize that many of the features of Petri-net formalism
are useful in the context of workflow management.

In chapter 2 of this book we motivated the use of Petri nets as a design
language. In our opinion, Petri nets constitute a good starting point for a
workflow theory. In this appendix we focus on the roots of such a
theory. First, we introduce the Petri-net formalism. Then we formalize
the notion of correctness used in chapter 4 (i.e., soundness). Finally we
demonstrate that Petri-net theory can aid in finding structural charac-
terizations (i.e., design patterns) of correctness and efficient analysis
techniques.

A.1 Petri Nets

This section introduces the basic Petri-net terminology and notations.
Readers familiar with Petri nets can skip this section.1

The classical Petri net is a directed bipartite graph with two node types
called places and transitions. The nodes are connected via directed arcs.
Connections between two nodes of the same type are not allowed. Places
are represented by circles and transitions by rectangles.

DEFINITION 1 (Petri net). A Petri net is a triple (P, T, F):

• P is a finite set of places;
• T is a finite set of transitions (P ∩ T = 0); and
• F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation).

A place p is called an input place of a transition t iff (if and only if) there
exists a directed arc from p to t. Place p is called an output place of
transition t iff there exists a directed arc from t to p. We use •t to denote
the set of input places for a transition t. The notations t•, •p and p• have
similar meanings, that is, p• is the set of transitions sharing p as an input
place. Note that we do not consider multiple arcs from one node to
another. In the context of workflow procedures it makes no sense to have
other weights because places correspond to conditions.

At any time a place contains zero or more tokens, drawn as black dots.
State M, often referred to as marking, is the distribution of tokens over

1. Note that states are represented by weighted sums and note the definition of
(elementary) (conflict-free) paths.

Workflow Theory 269

places, that is, M ∈ P → IN. We will represent a state as follows: 1p1
+ 2p2 + 1p3 + 0p4 is the state with one token in place p1, two tokens in
p2, one token in p3 and no tokens in p4. We can also represent this
state as follows: p1 + 2p2 +p3. To compare states we define a partial
ordering. For any two states M1 and M2, M1 ≤ M2 iff for all p ∈ P:
M1(p) ≤ M2(p), where M(p) denotes the number of tokens in place p in
state M.

The number of tokens may change during the execution of the net.
Transitions are the active components in a Petri net: they change the state
of the net according to the following firing rule:

(1) A transition t is said to be enabled iff each input place p of t contains
at least one token.
(2) An enabled transition may fire. If transition t fires, then t consumes
one token from each input place p of t and produces one token for each
output place p of t.

Given a Petri net (P, T, F) and a state M1, we have the following
notations:

• M1 → M2: transition t is enabled in state M1 and firing t in M1 results

*

in state M2
• M1 → M2: there is a transition t such that M1 → M2

t

• M1 → Mn: the firing sequence σ = t1t2t3 • • • tn-1 leads from state M1 to
state Mn via a (possibly empty) set of intermediate states M2,... ,Mn-1,

tl t2 t n - 1

i.e., M1→ M2→ • • • →Mn

A state Mn is called reachable from M1 (notation M1 → Mn) iff there is

t

a firing sequence σ such that M1 → Mn. Note that the empty firing

6

sequence is also allowed, i.e., M1 → M1.

*

We use (PN, M) to denote a Petri net PN with an initial state M. A

state M' is a reachable state of (PN, M) iff M → M'.
*

Let us define some standard properties for Petri nets. First we define
properties related to the dynamics of a Petri net, and then we give some
structural properties.

DEFINITION 2 (Live). A Petri net (PN,M) is live iff for every reachable
state M' and every transition t there is a state M" reachable from M' that
enables t.

A Petri net is structurally live if there exists an initial state such that the
net is live.

6

*

270 Appendix A

DEFINITION 3 (Bounded, Safe). A Petri net (PN,M) is bounded iff for
each place there is a natural number n such that for every reachable state
the number of tokens in p is less than n. The net is safe iff for each place
the maximum number of tokens does not exceed 1.

A Petri net is structurally bounded if the net is bounded for any
initially state.

DEFINITION 4 (Well-formed). A Petri net PN is well-formed iff there is a
state M such that (PN, M) is live and bounded.

Paths connect nodes by a sequence of arcs.

DEFINITION 5 (Path, Elementary, Conflict-free). Let PN be a Petri net.
A path C from a node n1 to a node nk is a sequence (n1,n2, • • • , nk) such that
(ni, ni+1) ∈ F for 1 <i < k - 1. C is elementary iff, for any two nodes
ni and nj on C, i ≠ j => ni ≠ nj. C is conflict-free iff, for any place nj on C
and any transition ni on C, j ≠ i - 1 => nj ∉ •ni.

For convenience, we introduce the alphabet operator a on paths. If

C = (n1,n2, • • • , nk), then α(C) = {n1,n2, • • • , nk}.

DEFINITION 6 (Strongly connected). A Petri net is strongly connected iff,
for every pair of nodes (i.e., places and transitions) x and y, there is a
path leading from x to y.

DEFINITION 7 (Free choice). A Petri net is a free choice Petri net iff, for
every two transitions t1 and t2, •t1 ∩ •t2 ≠ Φ implies •t1 = •t2.

DEFINITION 8 (State machine). A Petri net is a state machine iff each
transition has exactly one input and one output place.

DEFINITION 9 (S-component). A subnet PNS = (PS,TS,FS) is called an
S-component of a Petri net PN = (P, T, F) if PS c P, TS c T, FS c F, PNS

is strongly connected, PNS is a state machine, and for every q ∈ PS
and

t∈T:(q,t)∈F=> (q, t) ∈ FS and (t, q) ∈ F => (t, q) ∈ FS.

DEFINITION 10 (S-coverable). A Petri net is S-coverable iff for any node
there exists an S-component that contains this node.

See references [9, 15] for a more elaborate introduction to these stan-
dard notations. The notion of S-coverability is related to the notions of
place and transition invariants [9, 14, 15]. A place invariant assigns a
weight to each place such that no transition can change the "weighted
token sum." The weighted token sum is defined as the sum of all tokens

Workflow Theory 271

multiplied by the weights of the corresponding places; that is, function w
is a place invariant if for any state M1 and any transition t such that

M1 → M2: ∑ w(M1(p)) = ∑ w(M2(p)). Note that place invariants are

p∈P p∈P

structural, that is, they do not depend on the initial state. Place invariants
correspond to conservation laws. A place invariant is semipositive if it
does not assign negative weights to transitions. Positive place invariants
assign a positive weight to each place. Note that each S-component cor-
responds to a semipositive place invariant. Moreover, if the Petri net is
S-coverable, then there is a positive invariant. Transition invariants are
the dual of place invariants. A transition assigns a weight to each
transition such that if every transition fires the specified number of times,
the initial state is restored. Negative weights correspond to "backward
firing." A Petri net that is live and S-coverable (or bounded) has a
positive transition invariant.

A.2 WF-Nets

Workflow management has many perspectives. The process (i.e.
control-flow) perspective is the most prominent one, because the core of
any workflow system is formed by the processes it supports. In the
control-flow dimension building blocks such as the AND-split,
AND-join, OR-split, and OR-join are used to model sequential,
conditional, parallel, and iterative routing. Clearly a Petri net can be
used to specify the routing of cases. Tasks are modeled by transitions
and causal dependencies are modeled by places and arcs. In fact, a
place corresponds to a condition that can be used as pre- and/or
post-condition for tasks. An AND-split corresponds to a transition with
two or more output places, and an AND-join corresponds to a
transition with two or more input places. OR-splits/OR-joins correspond
to places with multiple outgoing/ incoming arcs. Moreover in [1] it is
shown that the Petri net approach also allows for useful routing
constructs absent in many WFMSs.

A Petri net that models the control-flow dimension of a workflow is
called a workflow net (WF-net). It should be noted that a WF-net speci-
fies the dynamic behavior of a single case in isolation.

DEFINITION 11 (WF-net). A Petri net PN = (P,T,F) is a WF-net
(Workflow net) if and only if:

t

(i) There is one source place i ∈ P such that •i = Φ;
(ii) there is one sink place o ∈ P such that o• = Φ; and
(iii) every node x ∈ P ∪ T is on a path from i to o.

A WF-net has one input place (i) and one output place (o) because any
case handled by the procedure represented by the WF-net is created when
it enters the WFMS and is deleted once it is completely handled by the
WFMS; in other words, the WF-net specifies the lifecycle of a case. The
third requirement in definition 11 has been added to avoid "dangling
tasks and/or conditions," that is, tasks and conditions that do not con-
tribute to the processing of cases.

Given the definition of a WF-net it is easy to derive the following
properties.

PROPOSITION 1 (Properties of WF-nets). Let PN = (P, T, F) be a Petri net.

• If PN is a WF-net with source place i, then for any place p∈P: •p ≠ Φ
or p = i, i.e., i is the only source place;
• If PN is a WF-net with sink place o, then for any place p∈P: p• ≠ Φ
or p = o, i.e., o is the only sink place;
• If PN is a WF-net and we add a transition t* to PN which connects
sink place o with source place i (i.e., •t* = {o} and t*• = {i}), then the
resulting Petri net is strongly connected;
• If PN has a source place i and a sink place o and adding a transition t*
which connects sink place o with source place i yields a strongly
connected net, then every node x ∈ P ∪ T is on a path from i to o in
PN and PN is a WF-net.

Figure A.1 shows a WF-net that models the processing of complaints.
First the complaint is registered (task register), then in parallel a ques-
tionnaire is sent to the complainant (task send_questionnaire) and the
complaint is evaluated (task evaluate). If the complainant returns the
questionnaire within two weeks, the task process _questionnaire is exe-
cuted. If the questionnaire is not returned within two weeks, the result of
the questionnaire is discarded (task time_out). Based on the result of the
evaluation, the complaint is processed or not. The actual processing of
the complaint (task process_complaint) is delayed until condition c5 is
satisfied, that is, the questionnaire is processed or a time-out has occurred.
The processing of the complaint is checked via task check_processing.

Workflow Theory 273

274 Appendix A

Finally task archive is executed. Note that sequential, conditional, paral-
lel, and iterative routing are present in this example.

The WF-net shown in figure A.1 clearly illustrates that we focus on the
control-flow dimension. We abstract from resources, applications, and
technical platforms. Moreover we also abstract from case attributes and
triggers. Case attributes are used to resolve choices (OR-split); in other
words, the choice between processingjrequired and no_processing is
(partially) based on case attributes set during the execution of task eval-
uate. The choice between processing_OK and processing_NOK is
resolved by testing case attributes set by check_processing. In the WF-net
we abstract from case attributes by introducing nondeterministic choices
in the Petri net. If we don't abstract from this information, we would
have to model the (unknown) behavior of the applications used in each
of the tasks and analysis would become intractable. In figure A.1 we have
indicated that time_out and process_questionnaire require triggers. The
clock symbol denotes a time trigger and the envelope symbol denotes an
external trigger. Task time_out requires a time trigger ("two weeks have
passed") and process_questionnaire requires a message trigger ("the
questionnaire has been returned"). A trigger can be seen as an additional
condition that needs to be satisfied. In the remainder of this chapter we
abstract from these trigger conditions. We assume that the environment
behaves fairly; that is, the liveness of a transition is not hindered by the
continuous absence of a specific trigger. As a result, every trigger condi-
tion will be satisfied eventually.

A.3 Soundness

In this section we summarize some of the basic results for WF-nets
presented in [2]. The remainder of this chapter will build on these
results.

The three requirements stated in definition 11 can be verified statically;
in other words, they only relate to the structure of the Petri net. However
there is another requirement that should be satisfied:

For any case, the procedure will terminate eventually and the moment
the procedure terminates there is a token in place o and all the other
places are empty.

Workflow Theory 275

Moreover there should be no dead tasks; it should be possible to execute
an arbitrary task by following the appropriate route through the WF-net.
These two additional requirements correspond to the so-called soundness
property.

DEFINITION 12 (Sound). A procedure modeled by a WF-net PN =
(P, T, F) is sound if and only if:

(i) For every state M reachable from state i, there exists a firing sequence
leading from state M to state o. Formally:2

Note that the soundness property relates to the dynamics of a WF-net.
The first requirement in definition 12 states that starting from the initial
state (state i),2 it is always possible to reach the state with one token in
place o (state o). If we assume a strong notion of fairness, then the first
requirement implies that eventually state o is reached. Strong fairness
means in every infinite firing sequence, each transition fires infinitely
often. The fairness assumption is reasonable in the context of workflow
management: all choices are made (implicitly or explicitly) by applica-
tions, humans, or external actors. Clearly they should not introduce an
infinite loop. Note that the traditional notions of fairness (i.e., weaker
forms of fairness with just local conditions, e.g., if a transition is enabled
infinitely often, it will fire eventually) are not sufficient. See [3, 13] for
more details. The second requirement states that the moment a token is
put in place o, all the other places should be empty. Sometimes the term
proper termination is used to describe the first two requirements [12].
The last requirement states that there are no dead transitions (tasks) in
the initial state i.

Figure A.2 shows a WF-net that is not sound. There are several defi-
ciencies. If time_out_1 and processing_2 fire or time_out_2 and

2. Note that there is an overloading of notation: the symbol i is used to denote
both the place i and the state i with only one token in place i (see section 1).

(ii) State o is the only state reachable from state i with at least one token
in place o. Formally:

(iii) There are no dead transitions in (PN,i). Formally:

Figure A.2

Another WF-net for the processing of complaints

processing_1 fire, the WF-net will not terminate properly because a token
gets stuck in c4 or c5. If time_out_1 and time_out_2 fire, then the task
processing_NOK will be executed twice and because of the presence of
two tokens in o the moment of termination is not clear.

Given a WF-net PN = (P, T, F), we want to decide whether PN is
sound. In [2] we have shown that soundness corresponds to liveness and
boundedness. To link soundness to liveness and boundedness, we define
an extended net PN = (P, T, F). PN is the Petri net obtained by adding
an extra transition t* which connects o and i. The extended Petri net
PN = (P, T, F) is defined as follows: P = P, T = T ∪ {t*}, and F = F
∪ {<o,t*>, <t*,i>)}. In the remainder we will call such an extended net the
short-circuited net of PN. The short-circuited net allows for the formu-
lation of the following theorem.

THEOREM 1. A WF-net PN is sound if and only if (PN,i) is live and
bounded.

PROOF. See [2].

This theorem shows that standard Petri-net-based analysis techniques
can be used to verify soundness.

276 Appendix A

Workflow Theory 277

A.4 Structural Characterization of Soundness

Theorem 1 gives a useful characterization of the quality of a workflow
process definition. However, there are a number of problems:

• For a complex WF-net it may be intractable to decide soundness. (For
arbitrary WF-nets liveness and boundedness are decidable but also
EXPSPACE-hard, cf. Cheng, Esparza, and Palsberg [7].);
• Soundness is a minimal requirement. Readability and maintainability
issues are not addressed by theorem 1; and
• Theorem 1 does not show how a non-sound WF-net should be modi
fied; that is, it does not identify constructs that invalidate the soundness
property.

These problems stem from the fact that the definition of soundness
relates to the dynamics of a WF-net while the workflow designer is con-
cerned with the static structure of the WF-net. Therefore it is interesting
to investigate structural characterizations of sound WF-nets. For this
purpose we introduce three interesting subclasses of WF-nets: free choice
WF-nets, well-structured WF-nets, and S-coverable WF-nets.

A.4.1 Free choice WF-nets

Most of the WFMSs available at the moment, abstract from states
between tasks; in other words, states are not represented explicitly. These
WFMSs use building blocks such as the AND-split, AND-join, OR-split,
and OR-join to specify workflow procedures. The AND-split and the
AND-join are used for parallel routing. The OR-split and the OR-join
are used for conditional routing. Because these systems abstract from
states, every choice is made inside an OR-split building block. If we
model an OR-split in terms of a Petri net, the OR-split corresponds to a
number of transitions sharing the same set of input places. This means
that for these WFMSs, a workflow procedure corresponds to a free
choice Petri net (cf. definition 7).

It is easy to see that a process definition composed of AND-splits,
AND-joins, OR-splits, and OR-joins is free choice. If two transitions
t1 and t2 share an input place (•t1 ∩ t2 ≠ Φ), then they are part of an
OR-split, that is, a "free choice" between a number of alternatives.
Therefore the sets of input places of t1 and t2 should match (•t1 = •t2).
Figure A.2 shows a free choice WF-net. The WF-net shown in figure A.1

Figure A.3

A non-free choice WF-net containing a mixture of parallelism and choice

is not free choice; archive and process_complaint share an input place
but the two corresponding input sets differ.

We have evaluated many WFMSs and just one of these systems (COSA
[18]) allows for a construct that is comparable to a non-free choice
WF-net. Therefore it makes sense to consider free choice Petri nets in
more detail. Clearly parallelism, sequential routing, conditional routing,
and iteration can be modeled without violating the free choice property.
Another reason for restricting WF-nets to free choice Petri nets is the
following. If we allow non-free choice Petri nets, then the choice between
conflicting tasks may be influenced by the order in which the preceding
tasks are executed. The routing of a case should be independent of the
order in which tasks are executed. A situation where the free choice
property is violated is often a mixture of parallelism and choice. Figure
A.3 shows such a situation. Firing transition t1 introduces parallelism.
Although there is no real choice between t2 and t5 (t5 is not enabled), the
parallel execution of t2 and t3 results in a situation where t5 is not
allowed to occur. However, if the execution of t2 is delayed until t3 has
been executed, then there is a real choice between t2 and t5. In our
opinion parallelism itself should be separated from the choice between
two or more alternatives. Therefore we consider the non-free choice
construct shown in figure A.3 to be improper. In literature, the term
confusion is often used to refer to the situation shown in figure A.3.

Free choice Petri nets have been studied extensively (cf. [9]) because
they seem to be a good compromise between expressive power and
ana-lyzability. It is a class of Petri nets for which strong theoretical results
and efficient analysis techniques exist. For example, the well-known
Rank Theorem ([8]) enables us to formulate the following corollary.

278 Appendix A

Workflow Theory 279

COROLLARY 1. The following problem can be solved in polynomial
time: given a free choice WF-net, decide if it is sound.

PROOF. Let PN be a free choice WF-net. The short-circuited net PN is
also free choice. Therefore the problem of deciding whether (PN, i) is live
and bounded can be solved in polynomial time (Rank theorem [8]). By
theorem 1, this corresponds to soundness.

Corollary 1 shows that, for free choice nets, there are efficient algorithms
to decide soundness. Moreover a sound free choice WF-net is guaranteed
to be safe (given an initial state with just one token in i).

LEMMA 1. A sound free choice WF-net is safe.

PROOF. Let PN be a sound free choice WF-net. PN is the Petri net PN
extended with a transition connecting o and i. PN is free choice and
well-formed. Hence PN is S-coverable [9] (i.e., each place is part of
an embedded strongly connected state-machine component). Since
initially there is just one token, (PN, i) is safe and so is (PN, i).

Safeness is a desirable property because it makes no sense to have multi-
ple tokens in a place representing a condition. A condition is either true
(1 token) or false (no tokens).

Although most WFMSs only allow for free choice workflows, free
choice WF-nets are not a completely satisfactory structural characteriza-
tion of "good" workflows. On the one hand, there are non-free choice
WF-nets that correspond to sensible workflows (cf. figure A.1). On the
other hand there are sound free choice WF-nets that make no sense.
Nevertheless the free choice property is a desirable property. If a work-
flow can be modeled as a free choice WF-net, one should do so. A
workflow specification based on a free choice WF-net can be enacted by
most workflow systems. Moreover a free choice WF-net allows for effi-
cient analysis techniques and is easier to understand. Non-free choice
constructs such as the construct shown in figure A.3 are a potential
source of anomalous behavior (e.g., deadlock) which is difficult to trace.

A.4.2 Well-structured WF-nets

Another approach to obtain a structural characterization of "good"
workflows, is to balance AND/OR-splits and AND/OR-joins. Clearly
two parallel flows initiated by an AND-split should not be joined by an
OR-join. Two alternative flows created via an OR-split, should not be

Figure A.4

Good and bad constructions

synchronized by an AND-join. As shown in figure A.4, an AND-split
should be complemented by an AND-join and an OR-split should be
complemented by an OR-join.

One of the deficiencies of the WF-net shown in figure A.2 is the fact
that the AND-split register is complemented by the OR-join c3 or the
OR-join o. To formalize the concept illustrated in figure A.4 we give the
following definition.

DEFINITION 13 (Well-handled). A Petri net PN is well handled iff, for
any pair of nodes x and y such that one of the nodes is a place and the
other a transition and for any pair of elementary paths C1 and C2
leading from x to y, α(C1) ∩ α(C2) = {x,y} => C1 = C2.

Note that the WF-net shown in figure A.2 is not well handled.
Well-handledness can be decided in polynomial time by applying a
modified version of the max-flow min-cut technique. A Petri net that
is well handled has a number of nice properties such as strong
connectedness and well-formedness coincide.

LEMMA 2. A strongly connected, well-handled Petri net is well formed.

PROOF. Let PN be a strongly connected well-handled Petri net. Clearly,
there are no circuits that have PT-handles nor TP-handles [11]. Therefore
the net is structurally bounded (see theorem 3.1 in [11]) and structurally
live (see theorem 3.2 in [11]). Hence PN is well-formed.

280 Appendix A

Workflow Theory 281

Clearly well-handledness is a desirable property for any WF-net PN.
Moreover we also require the short-circuited PN to be well handled. We
impose this additional requirement for the following reason. Suppose we
want to use PN as a part of a larger WF-net PN'.

PN' is the original WF-net extended with an "undo task." See figure
A.5. Transition undo corresponds to the undo task, transitions t1 and t2
have been added to make PN' a WF-net. It is undesirable that transition
undo violates the well-handledness property of the original net. However
PN' is well handled iff PN is well handled. Therefore we require PN to
be well handled. We use the term well-structured to refer to WF-nets
whose extension is well-handled.

DEFINITION 14 (Well-structured). A WF-net PN is well-structured iff
PN is well-handled.

Well-structured WF-nets have a number of desirable properties. Sound-
ness can be verified in polynomial time and a sound, well-structured
WF-net is safe. To prove these properties we use some of the results
obtained for elementary extended non-self-controlling nets.

DEFINITION 15 (Elementary extended non-self-controlling). A Petri net
PN is elementary extended non-self-controlling (ENSC) iff, for every pair
of transitions t1 and t2 such that •t1 ∩ •t2 ≠ Φ, there does not exist an
elementary path C leading from t1 to t2 such that •t1 ∩ α(C) = Φ.

THEOREM 2. Let PN be a WF-net. If PN is well-structured, then PN is
elementary extended non-self-controlling.

PROOF. Assume that PN is not elementary extended non-self-control-
ling. This means that there is a pair of transitions t1 and tk such that
•t1 ∩ •tk ≠ Φ and there exists an elementary path C = <t1,p2,t2, • • •, pk,
tk> leading from t1 to tk and •t1 ∩ α(C) = Φ. Let p1∈ •t1 ∩ •tk. C1 = <p1,
tk> and C2 = <p1,t1,p2, t2,... ,pk, tk) are paths leading from p1 to tk.
(Note that C2 is the concatenation of <p1> and C.) Clearly, C1 is ele-
mentary. We will also show that C2 is elementary. C is elementary, and
p1 ∉ α(C) because p1∈•t1. Hence C2 is also elementary. Since C1
and C2 are both elementary paths, C1 ≠ C2 and α(Ci) ∩ α(Ci) = {p1,
tk}, we conclude that PN is not well-handled.

Consider for example the WF-net shown in figure A.6. The WF-net
is well-structured and, therefore, also elementary extended non-self-

282 Appendix A

Figure A.6

A well-structured WF-net

controlling. However the net is not free choice. Nevertheless it is possible
to verify soundness for such a WF-net very efficiently.

COROLLARY 2. The following problem can be solved in polynomial
time. Given a well-structured WF-net, to decide if it is sound.

PROOF. Let PN be a well-structured WF-net. The short-circuited net
PN is elementary extended non-self-controlling (theorem 2) and struc-
turally bounded (see proof of lemma 2). For bounded elementary
extended non-self-controlling nets, the problem of deciding whether a
given marking is live can be solved in polynomial time (see [6]). There-
fore the problem of deciding whether (PN, i) is live and bounded can be
solved in polynomial time. By theorem 1, this corresponds to soundness.

LEMMA 3. A sound well-structured WF-net is safe.

PROOF. Let PN be the net PN extended with a transition connecting o
and i. PN is extended non-self-controlling. PN is covered by
state-machines (S-components), see corollary 5.3 in [6]. Hence PN is
safe and so is PN (see proof of lemma 1).

Well-structured WF-nets and free choice WF-nets have similar prop-
erties. In both cases soundness can be verified very efficiently and
soundness implies safeness. In spite of these similarities, there are sound
well-structured WF-nets that are not free choice (figure A.6) and there are
sound free choice WF-nets that are not well structured. In fact, it is

Workflow Theory 283

284 Appendix A

possible to have a sound WF-net that is neither free choice nor well
structured (figures A.1 and A.3).

A.4.3 S-coverable WF-nets

What about the sound WF-nets shown in figure A.1 and figure A.3? The
WF-net shown in figure A.3 can be transformed into a free choice
well-structured WF-net by separating choice and parallelism. The
WF-net shown in figure A.1 cannot be transformed into a free choice or
well-structured WF-net without yielding a much more complex WF-net.
Place c5 acts as some kind of milestone which is tested by the task
process_ complaint. Traditional workflow management systems that do
not make the state of the case explicit are not able to handle the workflow
specified by figure A.1. Only workflow management systems such as
COSA [18] have the capability to enact such a state-based workflow.
Nevertheless it is interesting to consider generalizations of free choice and
well-structured WF-nets: S-coverable WF-nets can be seen as such a
generalization.

DEFINITION 16 (S-coverable). A WF-net is S-coverable if the
short-circuited net PN is S-coverable.

The WF-nets shown in figure A.1 and figure A.3 are S-coverable. The
WF-net shown in figure A.2 is not S-coverable. The following two cor-
ollaries show that S-coverability is a generalization of the free choice
property and well-structuredness.

COROLLARY 3. A sound free choice WF-net is S-coverable.

PROOF. The short-circuited net PN is free choice and well-formed.
Hence, PN is S-coverable (cf. [9]).

COROLLARY 4. A sound well-structured WF-net is S-coverable.

PROOF. PN is extended non-self-controlling (theorem 2). Hence, PN is
S-coverable (cf. corollary 5.3 in [6]).

All the sound WF-nets presented in this appendix are S-coverable.
Every S-coverable WF-net is safe. The only WF-net that is not sound, that
is, the WF-net shown in figure A.2, is not S-coverable. These and other
examples indicate that there is a high correlation between S-coverability
and soundness. It seems that S-coverability is one of the basic require-
ments any workflow process definition should satisfy. From a formal
point of view, it is possible to construct WF-nets that are sound but

Workflow Theory 285

not S-coverable. Typically these nets contain places that do not restrict
the firing of a transition, but that are not in any S-component. (See for
example figure 65 in [14].) From a practical point of view, these WF-nets
are to be avoided. WF-nets that are not S-coverable are difficult to inter-
pret because the structural and dynamical properties do not match. For
example, these nets can be live and bounded but not structurally
bounded. There seems to be no practical need for using constructs which
violate the S-coverability property. Therefore we consider S-coverability
to be a basic requirement any WF-net should satisfy.

Another way of looking at S-coverability is the following interpreta-
tion: S-components correspond to document flows. To handle a work-
flow several pieces of information are created, used, and updated. One
can think of these pieces of information as physical documents, insofar as
at any point in time the document is in one place in the WF-net. Natu-
rally the information in one document can be copied to another docu-
ment while executing a task (i.e., transition) processing both documents.
Initially all documents are present but a document can be empty (i.e.,
corresponds to a blank piece of paper). It is easy to see that the flow of
one such document corresponds to a state machine (assuming the exis-
tence of a transition t*). These document flows synchronize via joint
tasks. Therefore the composition of these flows yields an S-coverable
WF-net. One can think of the document flows as threads. Consider for
example the short-circuited net of the WF-net shown in figure A.1. This
net can be composed out of the following two threads: (1) a thread cor-
responding to the processing of the form (places i, c2, c3, c5, and o), and
(2) a thread corresponding to the actual processing of the complaint
(places i, c2, c4, c5, c6, c7, c8, and c9). Note that the tasks register and
archive are used in both threads.

Although a WF-net can, in principle, have exponentially many
S-components, they are quite easy to compute for workflows
encountered in practice (see also the above interpretation of
S-components as document flows or threads). Note that S-coverability
only depends on the structure and the degree of connectedness is
generally low (i.e., the incidence matrix of a WF-net typically has few
non-zero entries). Unfortunately, in general, it is not possible to verify
soundness of an S-coverable WF-net in polynomial time. The problem of
deciding soundness for an S-coverable WF-net is PSPACE-complete.
For most applications this is

286 Appendix A

not a real problem. In most cases the number of tasks in one workflow
process definition is less than 100 and the number of states is less than
200,000. Tools using standard techniques such as the construction of the
coverability graph have no problems in coping with these workflow
process definitions.

A.4.4 Summary

The three structural characterizations (free choice, well-structured and
S-coverable) turn out to be very useful for the analysis of workflow
process definitions. Based on our experience, we have good reasons to
believe that S-coverability is a desirable property any workflow definition
should satisfy. Constructs violating S-coverability can be detected easily
and tools can be build to help the designer to construct an S-coverable
WF-net. S-coverability is a generalization of well-structuredness and the
free choice property (corollary 3 and 4). Both well-structuredness and the
free choice property also correspond to desirable properties of a work-
flow. A WF-net satisfying at least one of these two properties can be
analyzed very efficiently. However we have shown that there are work-
flows that are not free choice and not well-structured. Consider for
example figure A.I. The fact that task process_complaint tests whether
there is a token in c5, prevents the WF-net from being free choice or
well-structured. Although this is a very sensible workflow, most
workflow management systems do not support such an advanced routing
construct. Even if one is able to use state-based workflows (e.g., COSA)
allowing for constructs which violate well-structuredness and the free
choice property, then the structural characterizations are still useful. If a
WF-net is not free choice or not well-structured, one should locate the
source that violates one of these properties and check whether it is really
necessary to use a non-free choice or a non-well-structured construct. If
the non-free choice or non-well-structured construct is really necessary,
then the correctness of the construct should be double-checked,
because it is a potential source of errors. This way the readability and
maintainability of a workflow process definition can be improved.

A.5 Compositionality of WF-Nets

The WF-nets shown in this appendix are very simple compared to the
workflows encountered in practice. For example, in a practical setting

Workflow Theory 287

there are workflows consisting of more than one hundred tasks with a
very complex interaction structure. For the designer of such workflows
the complexity is overwhelming and communication with end-users using
huge diagrams is difficult. In most cases hierarchical (de)composition is
used to tackle this problem. A complex workflow is decomposed into
subflows and each of the subflows is decomposed into smaller subflows
until the desired level of detail is reached. Many WFMSs allow for
such a hierarchical decomposition. In addition, this mechanism can be
utilized for the reuse of existing workflows. Consider for example
multiple workflows sharing a generic subflow. Some WFMS-vendors
also supply reference models which correspond to typical workflows in
insurance, banking, finance, marketing, purchase, procurement, logistics,
and manufacturing.

Reference models, reuse, and the structuring of complex workflows
require a hierarchy concept. The most common hierarchy concept sup-
ported by many WFMSs is task refinement (a task can be refined into
a subflow). This concept is illustrated in figure A.7. The WF-net PN1

contains a task t+ that is refined by another WF-net PN2; in other words,
t+ is no longer a task but a reference to a subflow. A WF-net that repre-
sents a subflow should satisfy the same requirements as an ordinary
WF-net. The semantics of the hierarchy concept are straightforward;
simply replace the refined transition by the corresponding subnet. Figure
A. 7 shows that the refinement of t+ in PN1 by PN2 yields a WF-net PN3.

The hierarchy concept can be exploited to establish the correctness of a
workflow. Given a complex hierarchical workflow model, it is possible to
verify soundness by analyzing each of the subflows separately. This is
illustrated by the following theorem.

PROOF. The proof is a special case of the proof theorem 3 in [5].
The crux of the proof is the observation that every state in PNa

Figure A. 7

Task refinement: WF-net PN3 is composed of PN1 and PN2

mapped onto a state in PN1 and a state in PN2 and vice versa. Moreover
it is essential that the nets are safe: if the subnet PN2 is activated multiple
times, its behavior cannot be related to a single firing of t+ in PN1. For
more details we refer to [5].

Theorem 3 is a generalization of the result given by Vallette in [16].
Figure A.8 shows a hierarchical workflow process with one main work-
flow and two subflows. Both of the subflows are safe and sound. If in the
main workflow the two subflows are replaced by ordinary tasks, then the
main workflow is also safe and sound. Therefore the overall workflow
shown in figure A.8 is also safe and sound. Theorem 3 is of particular
importance for the reuse of subflows. For the analysis of a complex
workflow, every safe and sound subflow can be considered to be a single
task. This allows for an efficient modular analysis of the soundness
property.

288 Appendix A

Workflow Theory 289

Figure A.8

Building complex workflows (that are safe and sound) out of safe and sound
subflows

290 Appendix A

The results presented in this appendix give workflow designers a
handle to construct correct workflows. Although it is possible to use
standard Petri-net-based analysis tools, we have developed a workflow
analyzer, called Woflan, which can be used by people not familiar with
Petri-net theory [4, 17]. Woflan interfaces with existing workflow prod-
ucts such as Staffware, COSA, METEOR, and Protos.

References

[1] Aalst, W. M. P. van der. "Three Good Reasons for Using a Petri-net-based
Workflow Management System." In Proceedings of the International Working
Conference on Information and Process Integration in Enterprises (IPIC'96),
Edited by S. Navathe and T. Wakayama 179-201. Cambridge, Massachusetts,
Nov. 1996.

[2] -------- . "Verification of Workflow Nets." In Application and Theory of Petri

Nets 1997, volume 1248 of Lecture Notes in Computer Science, Edited by P.
Azema and G. Balbo. 407-426. Berlin: Springer-Verlag, 1997.

[3] -------- . "The Application of Petri Nets to Workflow Management." The

journal of Circuits, Systems, and Computers, 8:l(1998):21-66.

[4] -------- . "Woflan: A Petri-Net-Based Workflow Analyzer." Systems Analysis

—Modelling—Simulation, 35:3(1999):345-357.

[5] -------- . "Finding Control-Flow Errors Using Petri-Net-Based Techniques."

Business Process Management: Models, Techniques, and Empirical Studies,
volume 1806 of Lecture Notes in Computer Science. 161-183. Berlin:
Springer-Verlag, 2000.

[6] Barkaoui, K., J. M. Couvreur, and C. Dutheillet. "On Liveness in Extended
Non Self-Controlling Nets." In Application and Theory of Petri Nets 1995,
volume 935 of Lecture Notes in Computer Science, Edited by G. De Michelis and
M. Diaz. 25-44. Berlin: Springer-Verlag, 1995.

[7] Cheng, A., J. Esparza, and J. Palsberg. "Complexity Results for 1-safe Nets."
foundations of Software Technology and Theoretical Computer Science, volume
761 of Lecture Notes in Computer Science, Edited by R. K. Shyamasunder.
326-337. Berlin: Springer-Verlag, 1993.

[8] Desel, J. "A Proof of the Rank Theorem for Extended Free-Choice Nets."
Application and Theory of Petri Nets 1992, volume 616 of Lecture Notes
in Computer Science, Edited by K. Jensen. 134-153. Berlin: Springer-Verlag,
1992.

[9] Desel, J. and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge
Tracts in Theoretical Computer Science. Cambridge: Cambridge University Press,
1995.

[10] Esparza, J. "Synthesis Rules for Petri Nets, and How They Can Lead to
New Results." In Proceedings of CONCUR 1990, volume 458 of Lecture Notes

Workflow Theory 291

in Computer Science, Edited by J. C. M. Baeten and J. W. Klop. 182-198. Berlin:
Springer-Verlag, 1990.

[11] Esparza, J. and M. Silva. "Circuits, Handles, Bridges, and Nets." In Ad-
vances in Petri Nets 1990, volume 483 of Lecture Notes in Computer Science,
Edited by G. Rozenberg. 210-242. Berlin: Springer-Verlag, 1990.

[12] Gostellow, K., V. Cerf, G. Estrin, and S. Volansky. "Proper Termination of
Flow-of-control in Programs Involving Concurrent Processes." ACM Sigplan,

7:ll(1972):15-27.

[13] Kindler, E. and W. M. P. van der Aalst. "Liveness, Fairness, and Recur-
rence." Information Processing Letters, 70(1999):269-274.

[14] Reisig, W. Petri Nets: An Introduction, volume 4 of EATGS Monographs in
Theoretical Computer Science. Berlin: Springer-Verlag, 1985.

[15] Reisig, W. and G. Rozenberg, editors. Lectures on Petri Nets I: Basic
Models, volume 1491 of Lecture Notes in Computer Science. Berlin:
Springer-Verlag, 1998.

[16] Vallete, R. "Analysis of Petri Nets by Stepwise Refinements." Journal of
Computer and System Sciences, 18(1979):35-46.

[17] Verbeek, H. M. W., T. Basten, and W. M. P. van der Aalst. "Diagnosing
Workflow Processes using Woflan." Computing Science Report 99/02, Eind-
hoven: Eindhoven University of Technology, 1999.

[18] Software-Ley. COSA User Manual. Software-Ley GmbH, Pullheim, Ger-
many, 1998.

Appendix B: Workflow Modeling Using
UML

In recent years, the Unified Modeling Language (UML) has become the
de facto standard for software development. UML is a graphical lan-
guage for visualizing, specifying, constructing, and documenting the
artifacts of a software intensive system. However, the use of UML is not
restricted to software development. Some of its diagrams also are used for
enterprise modeling, business engineering, process analysis, and system
configuration. Given the widespread use of UML as an industry standard
and the fact that UML offers four diagram types for process modeling,
this appendix discusses the use of UML in the context of workflow
management. The most relevant diagram types are introduced and the
relationship with the modeling technique used in this book is discussed.
The development of UML started in 1994 when James Rumbough
joined Grady Booch at Rational Software Corporation. Both had been
working on object-oriented methods named OMT (Object Modeling
Technique) and Booch. In 1994 there were about fifty object-oriented
methods. Rumbough and Booch joined forces to unify their methods and
to gain critical mass. In 1995, a third prominent author of
object-oriented methods joined this initiative: Ivar Jacobson
contributed his work on OOSE (Object-oriented Software Engineering)
to the UML project within Rational. In January 1997, UML 1.0 was
offered to the Object Management Group (OMG), in response to their
request for a standard modeling language. Since this time, UML has
been adopted by industry and academia as the standard language for
object-oriented modeling. Moreover, the language was extended and
refined in several iterations. This appendix is based on UML 1.3.

294 Appendix B

UML 1.3 defines the following diagram types:

• Use case diagram
• Class diagram
• Sequence diagram
• Collaboration diagram
• Statechart diagram
• Activity diagram
• Component diagram
• Deployment diagram

A use case diagram shows a set of cases and actors and their relation-
ships. A class diagram shows a set of classes and their relationships. Both
diagrams address the static view of a system. The use case diagram
focuses on identifiable pieces of functionality and puts these pieces of
functionality into context. The class model is mainly a structuring mech-
anism for objects. Both sequence diagrams and collaboration diagrams
are essentially interaction diagrams, that is, diagrams focusing on the
interaction (e.g., message passing) between objects and actors. A sequence
diagram is an interaction diagram that emphasizes the time-ordering of
messages. A collaboration diagram emphasizes the organizational struc-
ture rather than time-ordering. Statechart diagrams are typically used to
model object lifecycles. A Statechart diagrams emphasizes object states.
Activity diagrams are typically used to describe the flow of control
among objects. Compared to Statechart diagrams the emphasis is moved
from states to activities. Note that UML uses four types of diagrams to
model the dynamic view of a system: sequence diagrams, collaboration
diagrams, Statechart diagrams, and activity diagrams model dynamic
behavior. The remaining two diagram types model the implementation
view of a system. In a component diagram sets of objects are grouped
into components. A deployment diagram shows the configuration of run-
time processing nodes and the components that live on them.

Workflow management systems focus on the process perspective. Since
sequence diagrams, collaboration diagrams, Statechart diagrams, and
activity diagrams address the dynamic behavior of a system, these dia-
grams are very relevant for workflow management and will be discussed
in more detail. Component diagrams and deployment diagrams are rele-
vant for the architecture, implementation, and run-time configuration of

Workflow Modeling Using UML 295

the workflow system. Although relevant, a detailed discussion of these
diagram types is outside the scope of this book. Use case diagrams are
very useful in the early stages of workflow modeling. A use case diagram
can be used to identify stakeholders and clarify the case types handled by
the workflow system. The class diagram can be used to model the rela-
tionships between cases and case attributes.

B.1 Sequence Diagram

Figure B.1 shows two sequence diagrams. The diagram on the lefthand
side models a scenario which corresponds to a customer successfully
ordering a book. The righthand side diagram models the scenario where
a customer order is rejected because the ordered book is not in stock. A
sequence diagram shows for each object or actor a so-called lifeline. In
both diagrams shown in figure B.1 there are three lifelines: the customer
lifeline, the bookshop lifeline, and the publisher lifeline. Time is increas-
ing along each lifeline from top to bottom. A sequence diagram also
shows the messages exchanged. Consider for example the lefthand side
diagram. First the customer orders a book by sending the message
Order_book. Then the (on-line) bookshop sends a query to the publisher
to see whether the book is available (message Query). The publisher
responds by sending the message In_stock indicating that the book is
available. The bookshop confirms the order (message Confirm_order)
and pays for the book (message Payment). After receiving the payment,
the publisher sends the book to the customer (message Deliver_book)
and notifies the bookshop (message Notify). Triggered by this notifica-
tion, the bookshop sends a bill (message Bill) and the customer pays for
the book (message Payment).

Note that the lefthand side diagram does not specify a process but
merely one scenario. This scenario corresponds to handling a customer
order successfully. If the book is not in stock, the diagram on the
right-hand side applies. In the second scenario, the book is not
available (message Out_of_stock) and the customer order is rejected
(message Reject_order). Figure B.1 illustrates that sequence diagrams
can only be used to model scenarios and are not suitable for making
full-fledged process models. The basic sequence diagram has no
provision for routing constructs such as choice, synchronization,
iteration, etc. Sequence dia-

296 Appendix B

Workflow Modeling Using UML 297

grams have been extended with features to handle these routing con-
structs. However, these extended diagrams become difficult to read and
difficult to interpret.

B.2 Collaboration Diagram

A collaboration diagram highlights the organization of objects that par-
ticipate in an interaction. Compared to sequence diagrams the emphasis
is shifted from temporal relations to organizational relations. From a
semantical point of view collaboration diagrams and sequence diagrams
are interchangeable, that is, semantically equivalent. The lifelines are
replaced by numbered sequences. Consider figure B.2. The two collabo-
ration diagrams correspond to the two sequence diagrams shown in
figure B.1. One can translate a sequence diagram and translate it to a
collaboration diagram without any loss of information (and vice-versa).
The order of the messages exchanged is captured by a numbering
scheme. The numbers in figure B.2 indicate the order in which messages
are exchanged among the customer, bookshop, and publisher. Collabo-
ration diagrams can be extended with more complex constructs such as
nesting, iteration, and branching. However, just like sequence diagrams,
collaboration diagrams are particularly suited for modeling scenarios,
that is, examples of straight sequential flows of control. For true process
modeling one should use statecharts diagrams or activity diagrams.

B.3 Statechart Diagram

Statecharts are an extension of basic state machines. A basic state machine
consists of states and transitions. At any point in time, the system (or
object) resides in one of these states. A transition moves the system from
one state to another. The basic state machine corresponds to the class of
Petri nets where each transition has one input and one output place. In a
statechart diagram one can have composite states, orthogonal regions,
variables, events, conditions, and actions. Composite states can be used
for nesting. Orthogonal regions can be used to model parallelism. Tran-
sitions can be augmented with so-called ECA (event-condition-action)
rules. This means that a transition only takes place when a specified event
occurs and a condition is satisfied. Both the event and condition are

298 Appendix B

Figure B.3

A statechart diagram

optional. It is also possible to add an action to a transition. This means
that the action is executed the moment the transition takes place. The
standard notation for these ECA rules is "event [condition]/ action."

Figure B.3 shows a very simple statechart diagram. This statechart
models the lifecycle of an order. The initial state is modeled by a black
dot. The final state is modeled by a black dot within a circle. A state is
modeled by a rounded rectangle. Transitions are modeled by arcs. The
transition connected to states order_created to query_sent generates the
action send_query. In state query_sent two potential transitions are
enabled. One of them is triggered by the event notify_in_stock and leads
to state in_stock. The other one is triggered by the event notify_out_of_
stock and leads to state out_of_stock.

Workflow Modeling Using UML 299

300 Appendix B

B.4 Activity Diagram

Statecharts are well-suited for modeling the lifecycle of one object.
Unfortunately Statecharts are less suitable to model the control flow
among objects. For this purpose UML offers activity diagrams. Activity
diagrams are close to the diagramming technique used in this book.
Therefore it is no surprise to see that activity diagrams are used for enter-
prise modeling, workflow modeling, and business process re-engineering.
Consider figure B.4. This activity diagram models the process illustrated
by the two sequence/collaboration diagrams. The diagram is divided
into three main parts: customer, bookshop, and publisher. These parts are
called swimlanes. A swimlane specifies a locus of activities and is
particularly useful for business modeling. Using swimlanes it is possible to
partition the process into roles or organizational units. Please note that
the modeling technique used in this book can also be extended with
swimlanes. Just like in a statechart diagram the initial and final state are
indicated using black dots. Activities (also called activity states) are
denoted by rounded rectangles. Solid lines correspond to control flow.
Dashed lines correspond to object flow. The objects passed are modeled
by rectangles. Consider for example the upper left corner of the activity
diagram. Starting in the initial state the activity send_order is executed.
After execution of send_order an object order is passed on to the book-
shop which executes handle_customer_order. The thick horizontal lines
in figure B.4 correspond to synchronization bars. A synchronization bar
is either a fork or a join. Forks correspond to AND-splits. Joins corre-
spond to AND-joins. An explicit OR-split is modeled by a so-called
branch and is depicted by a diamond. The diamond symbol can also be
used to model OR-joins. The activity diagram shown in figure B.4 has
one branch. This branch makes the process dependent upon the avail-
ability of the book ordered by the customer. The remainder of the pro-
cess is self-explanatory.

B.5 Other Process Modeling Techniques

Many process modeling techniques have been developed since the early
sixties. Some of these techniques are informal in the sense that the dia-
grams used have no formally defined semantics. These models are typi-

Figure B.4

An activity diagram

Workflow Modeling Using UML 301

302 Appendix B

cally very intuitive and the interpretation shirts depending on the modeler,
application domain, and characteristics of the business processes at hand.
Examples of informal techniques are ISAC, DFD, SADT, and IDEF.
SADT, and its military equivalent IDEF0, were developed to describe
complex systems and control the development of complex software
through a systematic approach to requirements definition. One of the
aims was to develop a process that includes definition of human roles
and interpersonal procedures as part of the technique. SADT (or IDEF)
approaches requirements definition through a series of steps that deter-
mine why the system is needed, what the system features will serve, and
how the system is to be constructed. Related and comparable techniques
are the Structured Design approach of Yourdon, Structured Analysis of
De Marco, Essential System Analysis of McMenamin and Palmer, and
Information Systems Work and Analysis of Change (ISAC) developed by
Lundeberg, Goldkuhl, and Nilson. These techniques have in common
that they have no formal semantics. Although there have been efforts to
provide formal semantics for most of these techniques (most notable
IDEFO), these semantics typically use an interpretation that is different
from the way these models are described in textbooks and applied in
practice.

There are many formal process modeling techniques: for example,
finite state machines, labeled transition systems, statecharts, Petri nets,
and process algebra's such as ACP, CSP, and CCS. Finite state machines
and labeled transition systems are basic models that have problems
coping with concurrency and large state spaces. Both statecharts and
Petri nets provide methods for coping with concurrency and large state
spaces. Although statecharts and Petri nets are fundamentally different,
they share the same characteristics. Both techniques are graphical, have
formal semantics, and support concurrent processes. The focus of
state-charts is on states and state transitions. The focus of Petri nets is
on object flow (tokens) and activities (transitions). Process algebras such
as ACP, CSP, and CCS are not graphical and are hardly used for
business process modeling.

While UML reflects some of the best modeling experiences available, it
suffers from a lack of precise semantics; this is necessary if one is to use
the notations to precisely model systems and to rigorously reason about
the models. One could argue that the syntax of UML is formalized.

Workflow Modeling Using UML 303

However in many situations the interpretation of a syntactical construct
is ambiguous or undefined. The precise UML (pUML) group aims to
bring together international researchers and practitioners who share the
aim of developing the Unified Modeling Language (UML) toward a pre-
cise (i.e., well-defined) modeling language. This initiative shows that
UML is somewhere in between formal and informal process modeling
techniques.

To conclude, we discuss the relationship between UML and the mod-
eling technique used throughout this book. There is a clear relationship
between activity diagrams and the Petri-net-based process definitions
used in this book. An activity diagram can be translated into a Petri net
by translating activities to transitions, object flows to places, and syn-
chronization bars to transitions. Moreover additional places need to be
added to connect the transitions. Similarly a rough translation from Petri
nets to activity diagrams is possible. In an activity diagram there is no
explicit marking (i.e., global state) concept and the moment of choice is
not well defined. Therefore subtle constructs such as the implicit choice,
the milestone, and non-free choice structures are difficult to handle. Inter-
action diagrams, that is, sequence diagrams and collaboration diagrams,
can be translated easily to Petri nets. Consider for example a sequence
diagram: each lifeline is represented by a sequence of places and tran-
sitions. Messages are represented by places connecting a transition from
one lifeline to a transition of another lifeline. Translating a basic
state-chart diagram to a Petri net is also straightforward: each state in
the statechart corresponds to a place in the Petri net, and each transition
in the statechart corresponds to a transition in the Petri net.
Translating more advanced concepts such as composite states (i.e.,
nesting of states), orthogonal regions (i.e., concurrent substates), and
history states are more difficult to translate. Similarly certain Petri-net
constructs are difficult to mimic using statecharts (e.g., unbounded
places and non-free choice behavior). It should also be noted that most
analysis techniques based on statecharts are brute force techniques that
simply explore the state space. For Petri nets, as was demonstrated in
appendix A, there are also structural techniques which analyze the
process without exploring the state space.

Note that for each of the diagrams shown in this appendix there is a
straightforward equivalent Petri-net-based process definition. This is left
as an exercise for the interested reader.

Solutions to Exercises

SOLUTIONS TO EXERCISES, CHAPTER 1

Exercise 1.1

(a) The rules are:

• sequencing: one after the other;
• selection of choice: only one of the tasks will be performed, depending
on some condition;
• parallelism: tasks may be performed at the same time or in any order;
and
• iteration: one or more tasks have to be executed (potentially) multiple
times.
(b) Iteration is not a basic construct: it can be expressed in terms of
"selection of choice."

306 Solutions to Exercises

Exercise 1.2

Figure S1.1

Insurance process

Solutions to Exercises 307

Exercise 1.3

Considered within one process a task is a logical unit of work that is
performed by one resource. Considered from the point of view of a
(sub)contractor a task is an order to be fulfilled. However, the fulfilment
may require a process with several tasks.

Exercise 1.4

We can divide the personnel in capacity groups, functional departments,
and process teams. An advantage of capacity groups is that persons with
the same skills are in the same unit, which gives flexibility in resource
planning. A disadvantage is that the units have no direct responsibility
for a process or case handling. An advantage of process teams is that they
are focused on the performance of processes and efficient case handling.
A disadvantage is that the exchange of employees between process teams
is more difficult. A functional department organization is a mixture of
both: there is no responsibility for complete case handling, but there is
responsibility for a set of tasks of possibly more than one process that
require similar skills.

SOLUTIONS TO EXERCISES, CHAPTER 2

Classical Petri Nets

Exercise 2.1 German traffic light

(a) The possible states and transition system are as shown in figure S2.1.

Figure S2.1

States and transitions

308 Solutions to Exercises

(b) The model constructed with the solid lines is able to behave like a
German traffic light, i.e., ignore places c1 and c2.

Figure S2.2

German traffic light model

(c) The addition of the dotted places and arcs is required to make the
model work as a German traffic light. Without this, the traffic light can
behave properly, but there are also potential anomalies such as:

• transition red_yellow fires repeatedly without switching to yellow or
green and thus results in an accumulation of tokens in yellow.
• yellow_red can fire before green_yellow fires.

Exercise 2.2 Project X

(a)

Figure S2.3
Project X

(b) To make E optional, a by-pass for this transition has to be made.

Figure S2.4
Bypass E

(c) Place c8 is introduced to make sure that if transition D starts, B and
C are not able to be executed because they also need a token in c8. When
transition E is finished, a token is produced for c8 to make new tran-
sitions possible.

Solutions to Exercises 309

Figure S2.5
Extension c8

Exercise 2.3 Railnet

(a) One track can be modeled as shown in figure S2.6.

Figure S2.6

One railroad track

A track consists of three places (b = busy, c = claimed, and f = free)
and the transitions between them. To make four tracks with two trains,
we copy this track four times and place two tokens in a b-place and two
tokens in an f -place.

We then have to make some additions. A train can move to another
track only if it has successfully claimed another one. Therefore it has to

310 Solutions to Exercises

Solutions to Exercises 311

check if the other track is free. These are the arcs between the b-places
and the use track transition.

Figure S2.7
Two tracks

Also note that the transitions use_track and clear_track of two sub-
sequent tracks are executed at the same time. Therefore, we fuse them in
one transition: transfer.

Figure S2.8

Complete system consisting of four tracks and two trains

312 Solutions to Exercises

(b) Just add new tracks. While the total number of states increases
rapidly, the size of the Petri net is linear in the number of tracks. Note
that the number of states is expressed by the following equation:

Exercise 2.4 Binary counter

The different states are of course as follows:

a b c
 a b c

0 0 0 = 0 1 0 0 = 4
0 0 1 = 1 1 0 1 = 5
0 1 0 = 2 1 1 0 = 6
0 1 1 = 3 1 1 1 = 7

This gives us the following model shown in figure S2.9.

Figure S2.9

Binary counter

The places a1 and a0 represent the state of the first digit, b1 and b0 rep-
resent the state of the second digit, and c1 and c0 represent the state of
the third digit.

High-Level Petri Nets

Exercise 2.5 Driving school

(a)

Figure S2.10

Driving school

(b) Every token in the places begin, c1, c2, c3, c4, c5, c5, end has a value
now. For instance: A person named J. Walker, 18 years old who has
taken no lessons and no exams yet, is represented as:

[id: 'X07'; name: 'J. Walker'; age: '18'; gender: 'male'; nof_lessons: '0';
nof_exams: '0']

The last two attributes are important to the exercise, because we want
two know how many lessons and exams a person has already had. The
transitions are specified as follows:

register: nof_lessons: = 0
nof exams: = 0

Solutions to Exercises 313

314 Solutions to Exercises

The transition to more and ready can be fused in one transition: more?
with the following behavior:

if

nof_lessons < 10

then

produce token for c1

else

produce token for c4

Figure S2.11

Transitions more and ready combined into transition morel

end_lesson: nof_lessons: = nof_lessons + 1

end_exams: nof_exams: = nof_exams + 1

again has a precondition: nof_exams < 3

set the attribute nof_lessons: = 0, because one has to take another ten
lessons before the next exam.

(c) All delays are equal to zero except the one indicated in figure S2.12.

Figure S2.12

Addition of positive delays

Exercise 2.6 Bicycle factory

(a)

Figure S2.13

Bicycle factory

(b) Capacity A: 3* (60 minutes/20 minutes of action SA2) = 9 p/h

Capacity B: 7* (60 minutes/20 + 40 minutes of action SA1 and

SA3) = 7 p/h

We identify the capacity of machine B as the bottleneck and so the
factory is capable of producing seven bicycles an hour.

Solutions to Exercises 315

Figure S2.14

Insurance company

The choice between OK (and then pay) and not_OK can also be made
with one place for the not_OK and the c9 places. In this case sendjetter
has only one input place and does not require the OR-join notation.

Figure S2.15

Removing the OR-join by merging places c9 and not_OK

316 Solutions to Exercises

Workflow Exercises

Exercise 2.7 Insurance company

Solutions to Exercises 317

Exercise 2.8 Complaints handling

The most difficult part to model is the relation between the handling of
the form and the actual processing: Task process has to wait until the
handling of the form is completed and may be executed an arbitrary
number of times. In figure S2.16, this problem is resolved by having two
tasks for the actual processing: process and process_again. In figure
S2.17, there is just one task named process. Here process takes a token
from c9 but also places one immediately back. As a result, process can
be executed an arbitrary number of times without removing the token
from c9.

Figure S2.16

Complaints handling

Figure S2.17 Complaints
handling

Exercise 2.9 Let's have a party

(a) Three parts of the process can be identified:

• organizing the location
• organizing the music
• final arrangements (billing, food, drinks and visit)
The first two parts are executed in parallel followed by the third part.
The second part (music) is the most complex part of the process. Two
implicit OR-splits are needed to handle time-outs.

318 Solutions to Exercises

Figure S2.18
Party

(b) Improvement:

The most important bottleneck in the process is the selection of a band.
This part of the process may take a longtime, particularly when one or
two bands refuse or when the performance of a band is too poor.
Therefore, the biggest improvement can be obtained when the process is
split into two separate processes: one for handling requests for parties
and one for evaluating bands. As a result, bands can be evaluated inde-
pendent of specific requests for parties.

Solutions to Exercises 319

320 Solutions to Exercises

SOLUTIONS TO EXERCISES, CHAPTER 3

Exercise 3.1 Insurance company

The following roles are identified:

Employee (E)

Claim handler (CH)

Claim handler A (CHA)

Claim handler B (CHB)

The following organizational units are identified:

Department Car Damages (CD)
Finance Department (FN)

This results in the model shown in figure S3.1.

Figure S3.1

Resource classification insurance company

We assume that all claim handlers are also employees. This means that
when an employee of the Car Damages department is required for a task,
it doesn't matter whether he or she is a claim handler or not. If we
assume instead that claim handlers cannot do the task of an "ordinary"
employee, then figure S3.1 needs to be adapted (CH, CHA, and CHB
will be outside E).

Solutions to Exercises 321

If we combine the resource classification with the process model, we
obtain the model shown in figure S3.2.

Figure S3.2

Resource classification in model insurance company

Exercise 3.2 Complaints handling

The following roles are identified:

Employee (E)

Complaint manager (CM)

The following organizational units are identified:

department C (DC)

Logistics department (LD)

This results in the model shown in figure S3.3.

Figure S3.3

Resource classification complaints handling

Here we (also) assume that the complaint manager is an employee. This
means that he is also available for work that could be done by an
employee.

If we combine the resource classification with the process model, we
obtain the model shown in figure S3.4.

Figure S3.4

Resource classification in model complaints handling

322 Solutions to Exercises

Solutions to Exercises 323

Exercise 3.3 Employment office

(a) The following roles are identified:

Public Relations (PR)

Business Relations (BR)

Recruitment (RC)

Manager (MA)

IT-specialist (IT)

The following organizational units are identified:

Job Shop (JS)

Eindhoven (EH)

Leeuwarden (LW)

This results in the model shown in figure S3.5.

Figure S3.5

Resource classification employment agency

(b) Figure S3.6 shows the process model. It is important to add the right
triggers. The time trigger added to task stop processing for instance is
crucial to keeping the flow moving and prevents cases residing forever in
place wait.

Figure S3.6

Process employment agency

Exercise 3.4 Have a nice flight with CRASH

(a) The following roles are identified:
Loadmaster (LM)
Navigator (NV)
Captain (CP)

Meteo (MT)

324 Solutions to Exercises

Solutions to Exercises 325

Director
Logistics
Secretary
Courier

(DR)

(LG)

(SE)

(CO)

The following organizational units are
identified:

AIR KLM
Support
CRASH

This results in the model shown in figure S3.7.

Figure S3.7
Resources CRASH

(b) The process is straightforward; simply apply the basic routings con-
structs. Task discuss requires two resources: a navigator and a load
master. Therefore, two roles are attached to this task: NV and LM (see
figure S3.8). Because they are both members of CR we use the NV/LM,
CR notation. It is also possible to see them as independent members of

(AR)
(KL)
(SP)
(CR)

326 Solutions to Exercises

a different organizational unit and use the notation NV, AR/LM, CR.
This concept is also used in the other tasks where two different resources
are required. Note that the current generation of workflow systems does
not support multiple resources working on one work item. Therefore, we
avoid tasks with multiple resources as much as possible.

Figure S3.8
Process CRASH

Solutions to Exercises 327

(c) Possible improvements: The introduction of electronic documents
(workflow system) can improve the throughput time. Several tasks
become redundant (e.g. copy_and_distribute, put_onto_ form) and the
amount of parallelism can be increased. Moreover, the tasks sign_LG
and cap_signs should be executed as early as possible, to avoid work for
flights that are never really done.

SOLUTIONS TO EXERCISES, CHAPTER 4

Exercise 4.1 Optimize data usage

(a)

Figure S4.1

Sequential process

(b) No, it is not possible to represent various forms of routing such as
selective and parallel routing.
(c) In figure S4.2 we see all the precedence relations. In figure S4.3 we
skip the ones that can be derived, i.e., if taskl has to be executed before
task2 and task7 and task2 also has to be executed before task7, the
relation between task1 and task7 can be derived and therefore omitted.
This will result in the Petri net shown in figure S4.4.

Figure S4.4

Petri net

(d) Yes. Tasks 2 and 3 and tasks 4, 5, and 6 are executed by one type of re-
source and can be clustered. Therefore they can be combined into one task.

Exercise 4.2 Invariants

(i) First Petri net (figure 4.38)

(a) w_rest + type_mail
(=1) r_rest + read_mail
(= 1)

328 Solutions to Exercises

Figure S4.2

Total process

Figure S4.3

Stripped process

Solutions to Exercises 329

(b) begin + send_mail + receive_mail + read
(c) No, there can be arbitrarily many tokens in place mailbox
(d) Yes
(e) Yes
(f) {w_rest, type_mail, begin, send_mail}, {read_mail, r_rest, receive_
mail, read}
(ii) Second Petri net (figure 4.39)

(a) cl + c2 (= 1)
c3 + c4 (=1)

(b) a+b+c+d
(c) Yes
(d) Yes
(e) No
(f) {c1, c2, a, b, c, d}, {c3, c4, a, b, c, d}
(iii) Third Petri net (figure 4.40)

(a) c1 + c4 (= 1)
c2 + cS (= 1)
c3 + c6 (=
1)

(b)g
a+b
c + d

e + f

(c) Yes
(d) Yes
(e) No
(f) {c1, c4, a, b, g, e}, {c2, c5, a, c, d, g}, {c3, c6, e, f, c, g}
(iv) Fourth Petri net (figure 4.41)

(a) start + c1+c2 + c3 + c4 + end (=1)
start + order_a + c5 + c7 + c9 + c11+c13+invoice + c4+end (=1)
start + order_a + c6 + c8 + notification + c2 + c3 + c4 + end (=1)
c5 + c7- c6 - c8 (= 0)
c9 + cll - cl0 - c12 (=0)
Etc.

(b) produce_b + check_b + NOK_b
produce_c + check_c + NOK_c

(c) Yes
(d) No
(e) Yes
(f) None

330 Solutions to Exercises

Exercise 4.3 Verification process definition

(a)

Figure S4.5

Reachability graph

Solutions to Exercises 331

Exercise 4.4 Search for errors

(i) If a form is processed and evaluate produces a token for c7, a token
will remain in c9. When a time_out occurs and evaluate produces a token
for c4, the process deadlocks in the state marking c8 and c4.

(ii) Because c9 begins as an empty place and remains empty, the process
cannot continue when tokens are placed in c1 and c2.

(iii) If the upper part of the process reaches c8 before a token in the
process part below reaches c4, process is unable to fire and the process
deadlocks in the state marking c8 and c4.

Exercise 4.5 Performance analysis I

We use the following formulas:

332 Solutions to Exercises

Exercise 4.6 Performance analysis n

Exercise 4.7 Performance analysis III

Solutions to Exercises 333

Total: LT
= 6.53

ST = 1 * 0.5 + 0.8 * 0.143 + 0.56 * 0.0694 = 0.5 + 0.114 + 0.0389 = 0.65
(39.2 minutes)

(b) Alternative 1:

Figure S4.6
Alternative 1

It is possible to reduce flow time by executing things in parallel.

Figure S4.7
Alternative 2

In this case more tokens will go directly to end so the resources are used
less.

ct2 has now become the bottleneck and there are fewer cases in the
system.

Total:

LT = 3.79

Maximal throughput = λ * (1/ρbottleneck) = 10 * (1/0.67) = 15

Other alternatives:

• Combine ct1 and ct2 into one task to save setup time.
• Make one pool of resources available for all tasks.

334 Solutions to Exercises

Solutions to Exercises 335

Exercise 4.8 E-business

(a)

 set of selected used new

step tasks task block task

1 a a sequence b

2 a,b b sequence c

3 a,b,c b iteration d

client workflow

step

set of
tasks

selected
task

used
block

new
task

1 e e sequence f

server workflow

(b)

step

set of
tasks

selected
task

used
block

new
task

1 a a sequence b

2 a,b b sequence c

3 a,b,c b iteration d

4 a,b,c,d b and e

5 a,b,c,d,e e sequence f

coupled workflow

Steps 1, 2 and 3 of the coupled workflow are the same as for the client
workflow. Step 4 is new and step 5 is step 1 of the server workflow.

(c) No, such a derivation is not possible. To verify this note that (p,q),
(t, v), and (r, s) form pairs of and-splits and and-joins. So each of them
must be made by one replacement of an and-block. However, then they
would be nested (one enclosed in the other) or disjoint. This is not the
case; in fact, they have the following sequence: p, t, q, r, v, s. So they
cross each other.
(d) Yes, it is a sound and safe workflow. To see this note that without
the message exchange, i.e., without q, t, r, and s, we have a sound and
safe workflow (see exercise 1). Since b and d will fire, we see that t and
later q will fire and so c and e will fire. Similarly r and later v will fire. So

336 Solutions to Exercises

f and later s will fire. No tokens are left, so the net is sound. That the net
is safe is a direct consequence of the fact that the net without message
exchange is safe.

SOLUTIONS TO EXERCISES, CHAPTER 5

Exercise 5.1

Figure S5.1 shows a graphical representation of the reference model of
the WfMC. For a detailed description of the components and interfaces
see chapter 5.

Figure S5.1

The Workflow Management Coalition's reference model (© WFMC)

Exercise 5.2

Answers to the short questions:

(a) Atomicity, Consistency, Isolation, and Durability
(b) Interface 3: Workflow management system and applications are out
of sync.
(c) Workflow designer, Administrator, Process analyst, and Employee.
(d) Interoperability: Specification of the WFMC, SWAP, WF-XML, and
OMG's jointFlow.

Solutions to Exercises 337

(e) Staffware: market leader aiming at production workflow. COSA:
Petri-net-based workflow management system aiming at
production
workflow. ActionWorkflow: a system emphasizing collaboration and
negotiation rather than routing, and quite different from typical produc-
tion systems.
(f) Woflan: verification using state-of-the-art analysis techniques, i.e.,
qualitative analysis. ExSpect: simulation tool based on Petri nets. Both
tools can be used in combination with several workflow products.
(g) Protos (Pallas Athena BV, Plasmolen, The Netherlands), ARIS (IDS
Scheer AG, Saarbriicken, Germany), BusinessSpecs (IvyTeam,
Zug, Switzerland), Income (Promatis AG, Karlsbad, Germany), and
Meta Workflow Analyzer (Meta Software, Cambridge, MA, USA).

Exercise 5.3

COSA is based on Petri nets. Therefore, there is a one-to-one translation
and we do not show the process using CONE. The translation of the
process to Staffware is more involved. Figure S5.2 shows the corre-
sponding workflow process definition in the GWD of Staffware. The
model is straightforward given the description of the building blocks.

Figure S5.2

Process "handle complalint" modeled using the GWD of Staffware

338 Solutions to Exercises

Exercise 5.4

There is a one-to-one translation from the model shown in chapter 2 to
COSA. The translation of the process to Staffware is more involved.
Figure S5.3 shows the corresponding workflow process definition in the
GWD of Staffware. The first part of model is straightforward given the
description of the building blocks. To only thing that is less trivial to
model is the cancel task. Typically, non-free-choice constructs are hard, if
not impossible, to model using Staffware. In this case we can use a simple
trick to model this: two cancel steps with a time-out. For simplicity we did
not model triggers and simplified the choice for both types of insurances.

Figure S5.3

Process "travel agency" modeled using the GWD of Staffware

SOLUTIONS TO EXERCISES, CHAPTER 6

Exercise 6.1

(a) First, it is important to involve (potential) users because they have a
lot of knowledge of the existing processes and systems. Often they also
have good ideas for improvement. So their knowledge and creativity are
of great value for the redesign team.

Solutions to Exercises 339

Second, their involvement is important to obtain commitment in the
organization. Persons who have actively participated in the design of new
processes and systems have the feeling that it is also their "baby." So they
are willing to defend the new processes and systems to anyone, in partic-
ular their colleagues. So they become the key persons in the change pro-
cess. This is essential because very often change operations create strong
resistance with the sitting staff. Change is a very emotional process.

(b) It is very important to select persons with the following character-
istics:

• Respected by their colleagues
• Knowledgeable about processes or systems
• Open-minded, i.e., possessing the ability to "think outside the box"

Exercise 6.2

In the diagnosis phase, business cases are used to determine the values of
the Key Performance Indicators (KPIs) in the actual situation: the null
measurement. It is sometimes easier to explain something by an example
than to formulate the rule to which the example belongs. Business cases
can be considered as examples while processes are the rules. For users it
is therefore easier to "think" in terms of business cases rather than in
more abstract terms of processes. The next phase where they are used is in
the process redesign phase, i.e., in the simulation experiments and in the
games. In specification of requirements they can be used as well. Finally
business cases are used in the integration phase when the system is tested
and for the delivery phase when the acceptance test has to be performed.
Therefore, it is important to maintain the set of business cases carefully.
This way they can also be used in the monitor and improve phase when
an improvement is considered.

Exercise 6.3

Advantages of combining the phases are as follows. It is good to specify
the conceptual data model and functional model together with the com-
ponent structure because then the distribution of functionality over the
components can be derived in an iterative way. If the requirement models
and architecture are divided over two phases, iteration is more difficult. It
can be an advantage to consider the functional and technical details in
one phase, because it prevents technical infeasible requirements.

340 Solutions to Exercises

There are also disadvantages. In the requirements phase the users
could make a significant contribution, while they are less useful in the
specification of the technical architecture. Therefore it is natural to split
the phases here. Another disadvantage is the violation of the "principal
of separation of concerns," which says that it is better to concentrate on
one aspect at a time, i.e., functional and technical details should be con-
sidered in separate phases.

SOLUTIONS TO EXERCISES, CHAPTER 7

Exercise 7.1

We provide the solution only to the question 7.1(b). Figure S7.1 shows
the process model of the current situation. We did not model resource
triggers: most of the tasks require a resource trigger.

Tasks

1. Register private client
2. Register business client
3. Check permit
4. Give blank permit
5. Return improper permit
6. Receive filled permit
7. File proper permit
8. Check proper permit
9. Start business trip

10. Send copy to fd
11. Start private trip
12. Check allowed
13. Prepare proposal
14. Prepare new proposal
15. Call client for approval
16. Send positive memo
17. Check approved proposal
18. Check private trip
19. Determine costs of flights
20. Call client
21. Send negative memo

Figure S7.1

The travel agency process of Somewhere University

342 Solutions to Exercises

22. Make advanced payments
23. Prepare cash and checks
24. Pay registration fees
25. AND-split
26. Check decision
27. Check flight payments
28. AND-split
29. AND-split
30. Make appointment
31. Client pays
32. Send fd costs of business flights
33. Pay for flights
34. Check private trip paid for
35. Check business trip paid for
36. Check all paid for
37. Book hotel
38. Send cash and checks
39. Print voucher
40. Check all booked
41. Print tickets
42. Nothing returned
43. Make handy folder
44. Client returns cash or checks
45. Pick up
46. End private trip
47. Receive declaration
48. Process declaration
49. Calculate balance
50. Deduct from budget
51. AND-split
52. Check approved
53. Correct
54. End business trip
55. Settle balance
56. Close file
57. Send noticifation
58. Receive no filled permit

Solutions to Exercises 343

Conditions

c1. Private trip registered

c2. Business trip registered

c3. No permit

c4. Client fills permit

c5. Filled permit

c6. Proper permit

c7. Improper permit

c8. Permit filed

c9. Copy sent

c10. Copy of file sent

c11. Start trip organization

c12. Not allowed

c13. Allowed

c14. Organizing private trip

c15. Proposal

c16. Positive memo

c17. Advance payment

c18. Client (dis)approved

c19. Registration fee

c20. No schedule

c21. Schedule

c22. Request for cash and checks

c23. Negative memo

c24. Client decided

c25. Flight costs known

c26. Cash and checks

c27. Paying for private trip

c28. Paying for private trip and private flights to be paid for

c29. Some private flights

c30. All business flights

c31. Private flights to be paid for

c32. Business flights to be paid for

c33. Fee done

c34. Client to pay

c35. Paying for business trip

c36. Detailed price info

344 Solutions to Exercises

c37. Payments completed

c38. Private trip paid for

c39. Client payed

c40. Private flights paid for

c41. Business flights paid for

c42. Wait for declaration

c43. Hotels booked

c44. Book hotels

c45. Have tickets printed

c46. Cash and checks sent

c47. Voucher printed

c48. Wait for return

c49. Transport arranged

c50. Tickets printed

c51. Amount info

c52. Folder ready

c53. Picked up

c54. Declaration received

c55. Balance

c56. Processing declaration

c57. Deducted

c58. Amount to deduct

c59. Balance approved

c60. Balance not approved

c61. File to be closed

c62. Settled balance

c63. Approved balance

c64. Unable to guarantee trip

Glossary

Action Workflow ActionWorkflow is a workflow management system that con-
centrates upon the coordination of people.

Activity An activity is the carrying out of an assigned task. In contrast to a
task,

an activity is related to a specific case.

Synonyms

• task instance;
• transition firing; and
• operation.

Actor An actor is a person, machine, or organizational unit that is directly
or indirectly involved in carrying out work. An actor "performs" as a
contractor and/or a subcontractor. Synonyms

• player.

Ad hoc workflow In general, many different cases involve the same business
processes. However in certain cases it is necessary to modify the process for a
specific case. We refer to this as an ad hoc workflow.

AND-join An AND-join is a task that may only be carried out once certain
conditions have been met. We can compare an AND-join with a stage in assem-
bly that can only take place once all the necessary components are available. An
AND-join is applied at the moment when several parallel workflows need to be
synchronized. Using the AND-join, it is possible to coordinate various parallel
workflows for a particular case. Synonyms

• join;
• rendezvous; and
• synchronization task.

AND-split An AND-split task is the logical opposite of an AND-join task.
Carrying out an AND-split results in more than one parallel workflow being
created for the same case. We can also say that an AND-split divides a case into
various parts which can be worked upon simultaneously.

346 Glossary

Synonyms

• split; and
• fork.

API API stands for application programming interface. Most workflow man-
agement systems offer APIs for the integration of that system with other applica-
tions. In the workflow management context, we also sometimes refer to WAPI
(workflow application programming interface) rather than API.

Application A workflow management system only controls the logistical aspects
of a case. Its content usually is supported by other tools such as word processors
and calculation programs. We call these tools applications. The performance of a
task for a particular case can lead to the initiation of an application. In this way
separate applications can be integrated by the workflow management system to
form a single whole. Synonyms

• external program; and
• tool.

Application data This is the data that is used by external programs, rather than
being managed by the workflow system. The latter therefore cannot access this
data directly. It can, however, be accessed indirectly through the case attributes
and the applications themselves.

Architecture The architecture of a (workflow) system is its structure in the form
of components and the way in which they interact with one another (interfacing).
This structure is often hierarchical with a distinction made between the functional
and technical infrastructure. The functional architecture is based upon the struc-
ture of the logical components in the system. The technical architecture refers
mainly to its hardware and software components.

Assignment An assignment is described in a specification that clearly
states which tasks must be carried out to complete a particular case, and in what
order and within what timeframe they must be performed. Synonyms

• commission; and
• order.

Audit trail An audit trail is an electronic archive in which the history of
a workflow is recorded. It contains various details about each case such as
starting time, tasks performed, and resources allocated. Synonyms

• log file; and
• trace.

Business process A business process is one focused upon the production of
particular products. These may be either physical products, such as an aircraft or
bridge, or less tangible ones such as a design, a consultation paper, or an assess-
ment. In other words, the "product" can also be a service.

Glossary 347

Synonyms

• work process.

Business process re-engineering Business process re-engineering is the
fundamental reconsideration and radical restructuring of business processes in
order to achieve drastic improvements in costs, quality, and service. Synonyms

• BPR;
• business process redesign; and
• business regeneration.

Capacity planning Capacity planning determines how many resources are allo-
cated to which resource class during a particular period. Because the range of
cases is often subject to seasonal influences, weekly patterns, and other fluctua-
tions, capacity planning concentrates mainly upon finding a balance between the
resources required and those available.

Case A case is what a workflow management system is designed to control. We
can also regard it as a "product in progress." Examples of a case could include an
insurance claim, a mortgage application, a tax return, an order, or a course of
treatment in a hospital. Each case has a unique identity. Moreover a case is al-
ways at a particular stage of development at any given moment. Synonyms

• case;
• project;
• deal;
• product;
• service;
• process cycle;
• assignment; and
• workflow instance.

Case attribute The way in which a case progresses through the workflow pro-
cess depends upon its specific characteristics. Various attributes therefore can be
identified for each case. An activity may change the value of these attributes.
Naturally a case only draws upon its own attributes. These attributes are used to
"route" a case. For example, a decision resulting from an OR-split may be based
upon the associated case attributes. Synonyms

• operational parameter; and
• case variable.

Case manager A case manager is a person who is responsible for the handling
of a whole case or a set of several tasks for the case.

Case state At any point in time, a case has a particular state that is determined
by those conditions that have been met and the values of the associated case
attributes.

348 Glossary

Case type Similar cases belong to the same case type. There is a one-to-one
correspondence between case types and processes. In other words, precisely one
process definition belongs to each case type.

Computer-Supported Cooperative Work Computer-supported cooperative
work (CSCW) is the collective name for the methods, techniques and systems
which support the cooperative performance of work. Groupware products as
well as workflow management systems fall under this heading.

Condition Before a task can be performed as part of a particular case, that
case must fulfill certain conditions. A condition therefore is a necessary
requirement that must be met before an activity can take place. Once all the
conditions for a task in a particular case are met, that task can be carried out.
Synonym

• place.

Contract A binding agreement between a contractor and a subcontractor.

Contractor A (sub)contractor is a "resource" who is responsible for a
process and carries out the activities ordered by the principal. Note that it is also
possible for a contractor to act as a principal by subcontracting other resources.
Synonyms

• subcontractor; and
• process owner.

COSA COSA is Software Ley's-Petri-net-based workflow management system.
See http://www.cosa.de.

Critical success factor A critical success factor is a (verbally expressed) param-
eter of a process or system that plays a key role in the performance of that system
or process.

ExSpect ExSpect is a Petri-net-based simulation tool. See http://www.
exspect.com.

Groupware Groupware is the collective name for software products that enable
groups to cooperate. The term groupware is closely related to CSCW
(computer-supported cooperative work). Groupware and workflow
management software are often used in combination with one another. Typical
groupware products focus mainly upon cooperation between people, whereas the
emphasis of workflow systems is upon supporting business processes.

Hierarchical organization In a hierarchical organization, the authority rela-
tionships have a treelike structure, which is often represented in an organization
chart.

High-level Petri net A high-level Petri net is a Petri net extended to include
color, time, and hierarchy. This extension enables complex processes to be
described in a simple way.

Glossary 349

InConcert InConcert is one of the few ad hoc workflow management systems.
Each case has a private process definition that enables on-the-fly changes and
workflow design by discovery.

Interoperability The term interoperability refers to the ability to enable separate
applications to communicate and cooperate with one another. Because a work-
flow system links and integrates different applications, the term interoperability
certainly applies to it. The mutual interoperability between workflow systems is
also crucial for the success of workflow management in large organizations.

IPSD method IPSD stands for interactive, process-oriented system development.
The IPSD method combines RAD and BPR elements to produce one approach to
the development of workflow systems.

Iteration Iteration is possible within a workflow if its structure permits one
or more tasks to be performed repeatedly. An iteration may, for example,
result from a quality control: as long as the result of the task is unsatisfactory, it
must be repeated. Synonyms

• workflow loop; and
• repetition.

JAD Joint application design (JAD) is an approach to the development of
specifications during a RAD process by using interactive workshops.

Knowledge management Knowledge management is the process of collection,
enrichment, and distribution of knowledge. The goal of knowledge management
to make sure that the right knowledge is at the right time with the person who
needs this knowledge to fulfil a task.

Matrix organization A matrix organization is structured along functional as
well as hierarchical lines. The functional structure is based upon projects of a
temporary nature.

Network organization A network organization consists of independent actors
who together produce goods and/or provide services. Because there exists no
mutual authority relationship between the actors, we also sometimes refer to a
"virtual company."

Organizational chart An organizational chart is a treelike structure that graphi-
cally illustrates authority relationships. In other words, it shows the hierarchical
structure of the positions within an organization.

Organizational unit Staff usually work in groups. The composition of such a
group may be based upon the location of the work, upon common roles to be
fulfilled, or upon a package of tasks. In such situations we refer respectively to a
geographical, a functional, or a process-based group structure. A group of people
working together under its own leadership, on its own tasks, and with its own
responsibilities is called an organizational unit. An organization is often divided

350 Glossary

into organizational units in a hierarchical way, making it possible for one such
unit to form part of another. It should be possible to identify the organizational
unit responsible for performing every task. It is also possible for this to depend
upon the case itself. For example, mortgage applications worth more than
$200,000 are dealt with by unit A. Every resource is "owned" by a particular
organizational unit. In fact, such a unit is none other than a resource class based
upon organizational characteristics. Synonyms

• department; and
• team.

OR-join An OR-join is a task in which a number of alternative
workflows reconverge. Unlike an AND-join, however, no synchronization
occurs. In other words, the task can be performed as soon as just one single
condition has been met. Synonym

• asynchronous join.

OR-split An OR-split is a task in which a choice is made. During the perfor-
mance of an OR-split, one workflow is selected from a number of available
options. Only the selected flow is initiated by the OR-split. The choice is often
based upon the particular attributes of the case in hand. However it may also be a
random one. The OR-split is the logical opposite of the OR-join: an OR-split can
divide a workflow into a number of alternative streams that later reconverge at
an OR-join. There are two types of OR-split tasks: implicit and explicit. The dif-
ference between the two is based upon the moment at which the choice is made.
Synonyms

• switch;
• conditional choice; and
• decision point.

Parallel routing Two or more tasks related to a specific case may be carried out
in parallel if, by definition, the process contains an AND-split and an AND-join.
The AND-split allows more than one task to be initiated at the same time. Upon
completion, the parallel workflows are resynchronized using the AND-join.

Performance indicator A performance indicator is a (definition of a) quantity
that is used to measure a critical success factor of a process or system. Examples
of performance indicators are average flow time, utilzation, and service level.

Petri net A Petri net is the description of a process in terms of places,
transitions, and arcs. The semantics—the precise meaning—is always formally
defined. Synonym

• P/T net.

Place Places are the passive components of a Petri net. A place may contain no,
one, or more tokens. In workflow-process modeling, conditions are depicted by
places.

Glossary 351

Synonyms

• condition; and
• channel.

Primary process A process for dealing with customer-oriented cases. The
process concentrates upon the delivery of products and/or services to the
company's customers. Synonym

• production process.

Principal A principal is an actor who wants an activity to be performed by a
contractor: the principal contracts out work to a subcontractor. Under the terms
of such a contract, the principal and contractor make agreements about the na-
ture of the work, its scheduling, and the costs involved. Within an internal orga-
nizational context, the term principal also encompasses a "boss." Synonyms

• customer;
• contractor;
• case owner; and
• flow owner.

Process The definition of a process indicates which tasks must be performed—
and in what order—to successfully complete a case. In other words, all possible
routes are mapped out. A process consists of tasks, conditions, and subprocesses.
By using AND-splits, AND-joins, OR-splits, and OR-joins, parallel and alterna-
tive flows can be defined. Subprocesses also consist of tasks, conditions, and
possible further subprocesses. The use of subprocesses can enable the hierarchical
structuring of complex processes. Synonyms

• workflow net;
• WF-net;
• flow chart;
• workflow script;
• procedure; and
• process diagram.

Process manager A process manager is responsible for a process: the
completion

of cases and the allocation of resources.

Synonym

• process supervisor.

Protos Protos is a BPR tool that facilitates the modeling and distribution of
workflow models. See http://www.pallas-athena.com/.

Prototype A prototype is a software system whose functionality closely resem-
bles a system that has yet to be produced. A prototype can also be compared with
a scale model.

RAD Rapid application development (RAD) is a method of system develop-
ment. RAD is characterized by a cyclical development process in which close co-
operation with users is prioritized.

352 Glossary

Synonym

• Rapid application development.

Reference model The WFMC's reference model is an architectural definition in
which the following components are distinguished: (1) workflow enactment ser-
vice; (2) process definition tools; (3) workflow client applications; (4) invoked
applications; and (5) administration and monitoring tools.

Resource A resource is a means of production or a group of such means. It may
include such actors as people, machines, means of transport, applications,
departments, and business units. Resources can only perform certain tasks, and
so are grouped into one or more resource classes. The inclusion of a resource in a
particular category provides information about the place that a resource has in
the organization or about a particular quality that it has. Synonyms

• agent;
• participant;
• means of production;
• user;
• performer; and
• employee.

Resource class Resources can only perform a limited number of tasks. In order
to make it easy to indicate—when defining a process—which resources can
carry out a certain task, they are grouped into so-called resource classes. One
resource may belong to several resource classes. The grouping of resource is in
general structured in two ways. First, resources are divided up on the basis of
their place within the organization. This results in resource classes, which are also
known as organizational units: for example, "Purchasing Department," "Team
A," or "Atlanta Branch." Second, they may be divided up according to functional
characteristics—also known as roles. Examples of roles are "Executive C,"
"Information Analyst" and "Cobol programmer." Each of these roles
corresponds with a resource class. Those categories not based upon a role or an
organizational unit are called free resource classes. Synonyms

• resource category;
• group; and
• resource type.

Resource classification Resources—both staff and automated devices—can only
perform a limited number of tasks. What these are depends upon such factors as
which roles a resource can fulfill and the location where this must be done. A
resource classification divides the resources into subsets, also known as resource
classes. Examples of resource classification include separation into roles or into
organizational units. Resources with the same characteristics under a particular
system of classification form a resource class. Some workflow management sys-
tems enable the relationships between the resource classes to be illustrated sche-
matically.

Glossary 353

Synonyms

• organizational diagram;
• organization chart; and
• role model.

Resource management For each case a number of tasks must be carried out.
These are performed by resources. Because the number of resources is limited, it
is necessary to harmonize the activities that need to be carried out with resource
capacity available to do this. This is when we refer to resource management.
Synonyms

• allocation; and
• workload management.

Role In order to perform tasks, skills are required. Each resource—for example,
a person—has certain skills. A role is a collection of complementary skills. It thus
becomes possible to identify which role is necessary to perform which task.
Which roles each resource can perform is also indicated. By using roles, it is
possible to ensure that tasks are assigned to the correct people. In fact, a role is
the same as a resource class based upon functional characteristics. Synonyms

• function; and
• qualification.

Rollback A failure may occur during the performance of an activity. Once the
workflow system has registered this failure, a rollback takes place. In other
words, the workflow system returns to its state at the start of the activity. Once
the failure has been rectified, the activity is performed again. As soon as the
activity has been successfully completed, a "commit" takes place.

Routing The definition of a process determines how cases are routed through
the various tasks. Four types of routing are often distinguished: sequencing, se-
lection, parallelization, and iteration.

Sagitta 2000 Sagitta 2000 is the name of a new Dutch customs declarations
system. Workflow management plays a major role in it.

Secondary process A process which supports the primary processes, in
particular by providing resources. Synonym

• support process.

Selective routing Because most processes need to be able to handle various types
of cases, not all cases proceed through a given process in the same way. In other
words, there may be various routes through a process. In order to ensure that—
dependent upon a case's characteristics—a particular route is chosen, we can
make use of the OR-split or the OR-join. For each case, an OR-split selects from
a number of alternative tasks for each case. These different routes can be
recon-verged using an OR-join.

354 Glossary

Synonyms

• alternative routing;
• conditional routing; and
• selection.

Sequential routing We refer to sequential task execution when a number
of tasks are performed one after the other. When two successive tasks are linked
by a condition, then they must be performed sequentially. Synonyms

• sequencing; and
• succession.

Sound Soundness is a correctness criterion defined for workflow nets, that is,
Petri nets that represent workflow processes. A workflow net is sound if, for any
case, the procedure will terminate eventually and the moment the procedure ter-
minates there is a token in the sink place and all the other places are empty.
Moreover there should be no dead transitions; in other words, it should be pos-
sible to execute an arbitrary task by following the appropriate route though the
workflow net. Synonym

• correct.

Simulation A simulation is the imitation (on a computer) of a process by
running through it in sequence. In this way the process being simulated can be
analyzed. Synonym

• modeling.

Staffware Staffware is one of the leading workflow management systems.
See http://www.staffware.com/.

Task A task is an "atomic" process: one that is not further subdivided into
component processes. It thus is a logical unit of work; in other words, a task is
either carried out in full or not at all. A task is not itself linked to a specific case.
When a task is carried out for a specific case, we refer to it as an activity. We also
differentiate between manual, automatic, and semi-automatic tasks. A manual
task is performed by a person, without any intervention by an application (for
example, the signing of a document). An automatic task is one performed by an
application without any human intervention. A semi-automatic task involves the
use of an interactive application (for example, a word processor). Synonyms

• process task;
• process step;
• work step; and
• transition.

Tertiary process Tertiary processes are those managerial processes that
control the primary and secondary processes.

Glossary 355

Synonyms

• managerial process; and
• executive process.

Token The state of a Petri net is determined by the distribution of
tokens amongst the places. If workflows are mapped onto Petri nets, the state
of a case will correspond to one or more tokens. Synonym

• object.

Transaction A transaction is the exchange protocol which results in a contract
being issued for an activity.

Transaction processing system A transaction processing system is an informa-
tion system that registers, transforms, and communicates relevant details of the
flow of states of a system.

Transition Transitions are the active components of a Petri net. The
triggering of a transition results in the state of the network being changed. In
workflow-process modeling, a transition often coincides with a task. Synonyms

• event; and
• processor.

Triage Triage is the selection and prioritization of cases in the performance of a
task, based upon easy-to-identify characteristics. (One example of triage is the
fast lane in a supermarket, where cases are split into large cases—cases that re-
quire a lot of work—and small cases—cases that require less work.) The objec-
tive of triage is to reduce average completion time.

Trigger A work item can only be carried out once the state of the case in ques-
tion allows it. But the actual performance of a task often requires more. If the
work item is to be carried out by a person, she must first "retrieve" it from his
in-tray before it can become an activity. In other words, the work item is only
performed once a resource has taken an initiative. In such cases, we refer to
"triggering": the work item is triggered by a resource. Other forms of triggering
are also possible, though: by an external event (for example, the arrival of an
EDI message) or a particular time (such as the generation of an order list at six
o'clock). We therefore differentiate between three types of triggers: (1)
resource-initiated, (2) externally-generated, and (3) time-based. Work items
that must always be carried out immediately—without the intervention of a
resource or other prompt—do not require a trigger. Synonyms

• activation; and
• prompt.

UML UML (Unified Modeling Language) is the de facto standard for software
development. UML is a graphical language for visualizing, specifying, construct-

356 Glossary

ing, and documenting the artifacts of a software intensive system. However
the use of UML is not restricted to software development. Some of its diagrams
are also used for enterprise modeling, business engineering, process analysis, and
system configuration.

Use case A use case is a case of a workflow process that is used to
describe, demonstrate, specify, or test a process or system. The set of use
cases should cover the most characteristic cases, including errors and exceptions.
Synonyms

• business case; and
• scenario.

Woflan Woflan is a Petri-net-based workflow analyzer. See http://www.tm.
tue.nl/it/woflan.

Work item A work item is the combination of a case and a task which is about
to be carried out. Just like an activity, therefore, a work item is linked to a specific
case. The work item disappears at the moment that it begins to be acted upon—
the moment that performance of the task itself starts. It then becomes an activity.
Note that it is possible, based upon the case's state, to determine which work
items are waiting to be handled. Synonyms

• work assignment; and
• work item.

Workflow A workflow comprises cases, resources, and triggers that relate to a
particular process.

Workflow definition A workflow definition consists of the definition of a pro-
cess, a summary of the resources required, and the classification of those re-
sources into classes.

Workflow definition tool The tool used to define processes and resource
classifications. Synonym

• workflow modeler.

Workflow engine The workflow engine takes care of the actual management
of the workflow. Amongst other things, it is concerned with task-assignment
generation, resource allocation, activity performance, case preparation and
modification, the launching of applications, and the recording of logistical
information. Synonyms

• enactment service; and
• run-time executor.

Workflow interoperability Workflow interoperability is the degree to which
two or more workflow engines are able to work together in dealing with a com-
mon workflow. This encompasses, for example, the exchange of cases and the
contracting out of work items.

Glossary 357

Workflow management The term workflow management refers to the
ideas, methods, techniques, and software used to support structured business
processes. The objective of workflow management is to achieve streamlined
and easy-to-maintain work processes. Synonyms

• workflow support; and
• WFM.

Workflow Management Coalition The Workflow Management Coalition is an
international organization consisting of users, suppliers, and developers of
workflow products. The most important objective of this organization is to de-
velop standards in the workflow field. The results achieved are published through
such media as the World Wide Web (http://www.aiim.org/WfMC/). Synonym

• WFMC.

Workflow management system A workflow management system is a software
package for the implementation of a workflow system. The term refers to a uni-
versally applicable system; in other words, a workflow management system is not
customized to a specific business situation. By configuring such a system, it is
turned into one which supports specific workflows. Unlike a workflow system, a
workflow management system is thus a generic application. Synonym

• WFMS.

Workflow net A workflow net is a Petri net which respresents a workflow pro-
cess. Such a workflow net has one source place and one sink place. Every node
(i.e., place/condition or transition/task) is on a path from the source place to the
sink place. A workflow net is sound if, for any case, the procedure will terminate
eventually and the moment the procedure terminates there is a token in sink place
and all the other places are empty. Moreover there should be no dead transitions;
it should be possible to execute an arbitrary task by following the appropriate
route though the workflow net. Synonym

• WF-net.

Workflow state The state of a workflow is the "sum" of the state of each case,
the state of each of the resources concerned, and the triggers.

Workflow system A workflow system is one that supports the workflows in a
specific business situation. Unlike a workflow management system, a workflow
system is adapted to a particular application. A workflow system usually consists
of a workflow management system plus process and resource classification defi-
nitions, applications, a database system, and so on. We can compare the differ-
ence between a workflow management system and a workflow system to that
between a database management system and a database system. Synonym

• WFS.

35
8

 G

lo
ss

ar
y

W
or

kl
is

t
ha

nd
le

r
A

 w
or

kf
lo

w
 m

an
ag

em
en

t
sy

st
em

 e
ns

ur
es

 t
ha

t
w

or
k

ite
m

s
ar

e
al

lo
ca

te
d

to
 r

es
ou

rc
es

. I
f

a
w

or
k

ite
m

 is
 a

llo
ca

te
d

to
 a

 p
er

so
n,

 it
 a

pp
ea

rs
 in

 h
er

(a

ct
ua

l o
r m

et
ap

ho
ric

al
) i

n-
tra

y.
 T

hi
s

al
w

ay
s

co
nt

ai
ns

 a
 li

st
 o

f t
ho

se
 ta

sk
s

st
ill

 to

be
 p

er
fo

rm
ed

. B
y

se
le

ct
in

g
a

w
or

k
ite

m
 fr

om
 th

e
in

-tr
ay

, t
he

 p
er

so
n

ca
n

ca
rr

y
ou

t
th

at
 ta

sk
. N

ot
e

th
at

 a
 w

or
k

ite
m

 m
ay

 a
pp

ea
r i

n
m

or
e

th
an

 o
ne

 in
-tr

ay
. S

yn
on

ym
s

•
w

or
k

tra
y;

•

in
-tr

ay
;

•
w

or
kl

is
t;

an
d

•
to

-d
o

lis
t.

Bibliography

Workflow Management

Aalst, W. M. P. van der and K. M. van Hee. Workflow Management: Modellen,
Methoden en Systemen. (in Dutch) Schoonhoven: Academic Service, 1997.

Georgakopoulos, D., M. Hornick, and A. Sheth. "An Overview of Workflow
Management: From Process Modeling to Workflow Automation Infrastructure."
Distributed and Parallel Databases, 3(1995):119-153.

Jablonski, S. and C. Bussler. Workflow Management: Modeling Concepts, Archi-
tecture, and Implementation. London: International Thomson Computer Press,
1996.

Koulopoulos, T. M. The Workflow Imperative. New York: Van Nostrand
Rein-hold, 1995.

Leymann, F. and D. Roller. Production Workflow: Concepts and Techniques.
New Jersey: Prentice-Hall, 2000.

Schal, T. Workflow Management for Process Organizations, volume 1096 of
Lecture Notes in Computer Science. Berlin: Springer-Verlag, 1996.

Sheth, A. P., W. M. P. van der Aalst, and I. B. Arpinar. "Processes Driving the
Networked Economy: ProcessPortals, Process Vortex, and Dynamically Trading
Processes." (special issue on Workflow Management Systems) IEEE Con-
currency, 7:3(1999):18-31.

Workflow Management Coalition

Lawrence, P. Editor. Workflow Handbook 1997, Workflow Management Coali-
tion. New York: John Wiley and Sons, 1997.

WFMC. Workflow Management Coalition Terminology and Glossary
(WFMC-TC-1011). Technical report. Brussels: Workflow Management
Coalition, 1996.

Workflow Management Coalition. WFMC Home Page, http://www.wfmc.org.

360 Bibliography

Business Process Management/Re-engineering

Aalst, W. M. P. van der, J. Desel, and A. Oberweis, Editors. Business Process
Management: Models, Techniques, and Empirical Studies, volume 1806 of Lec-
ture Notes in Computer Science. Berlin: Springer-Verlag, 2000.

Aalst, W. M. P. van der. "On the Automatic Generation of Workflow Processes
Based on Product Structures." Computers in Industry, 39(1999):97-111.

Aalst, W. M. P. van der and K. M. van Hee. "Business Process Redesign: A
Petri-Net-Based Approach." Computers in Industry, 29:1-2(1996): 15-26.

Davenport, T. H. Process Innovation : Re-engineering Work Through Informa-
tion Technology. Boston: Harvard Business School Press, 1993.

Hammer, M. Re-engineering Work: Don't automate, Obliterate. Harvard Busi-
ness review, pages 104-112, July/August 1990.

Hammer, M. and J. Champy. Re-engineering the Corporation. London: Nicolas
Brealey Publishing, 1993.

Malone, T. W., W. Crowston, J. Lee, B. Pentland, et al. "Tools for Inventing
Organizations: Toward a Handbook for Organizational Processes." Management
Science, 45:3(1999):425-443.

Morris, D. and J. Brandon. Re-engineering Your Business. New York:
McGraw-Hill, 1993.

Rapid Application Development

Martin, J. Rapid Application Development. New York: MacMillan, 1991.

Petri Nets

Aalst, W. M. P. van der. "Putting Petri Nets to Work in Industry." Computers in
Industry, 25:l(1994):45-54.

Desel, J. and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts
in Theoretical Computer Science. Cambridge: Cambridge University Press, 1995.

Hee, K. M. van. Information System Engineering: a Formal Approach. Cam-
bridge: Cambridge University Press, 1994.

Jensen, K. Colored Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. EATCS monographs on Theoretical Computer Science. Berlin:
Springer-Verlag, 1996.

Murata, T. "Petri Nets: Properties, Analysis and Applications." Proceedings of
the IEEE, 77:4 (April 1989):541-580.

Peterson, J. L. Petri Net Theory and the Modeling of Systems. Englewood Cliffs:
Prentice-Hall, 1981.

Reisig, W. Petri Nets: An Introduction, volume 4 of EATCS Monographs in
Theoretical Computer Science. Berlin: Springer-Verlag, 1985.

Bibliography 361

Reisig, W. and G. Rozenberg, Editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Berlin: Springer-Verlag,
1998.

Reisig, W. and G. Rozenberg, Editors. Lectures on Petri Nets II: Applications,
volume 1492 of Lecture Notes in Computer Science. Berlin: Springer-Verlag,
1998.

Workflow Modeling Using Petri Nets

Aalst, W. M. P. van der. "The Application of Petri Nets to Workflow Manage-
ment." The Journal of Circuits, Systems, and Computers, 8:l(1998):21-66.

Adam, N. R., V. Atluri, and W. Huang. "Modeling and Analysis of Workflows
using Petri Nets." Journal of Intelligent Information Systems,
10:2(1998):131-158.

Ellis, C. A. "Information Control Nets: A Mathematical Model of Office Infor-
mation Flow." In Proceedings of the Conference on Simulation, Measurement
and Modeling of Computer Systems, 225-240, Boulder, Colorado: ACM Press,
1979.

Ellis, C. A. and G. J. Nutt. "Modeling and Enactment of Workflow Systems." In
Application and Theory of Petri Nets 1993, volume 691 of Lecture Notes in
Computer Science, Edited by M. Ajmone Marsan. 1-16. Berlin: Springer-Verlag,
1993.

Workflow Management Systems and Tools

Aalst, W. M. P. van der, P. de Crom, R. Goverde, K. M. van Hee, W. Hofman,
H. Reijers, and R. A. van der Toorn. "ExSpect 6.4: An Executable Specification
Tool for Hierarchical Colored Petri Nets." In Application and Theory of Petri
Nets 2000, Lecture Notes in Computer Science, Edited by M. Nielsen and D.
Simpson. Berlin: Springer-Verlag, 2000.

FileNET. Ensemble User Guide. Costa Mesa, California: FileNET Corporation,
1998.

Hernandez, J. The SAP R/3 Handbook, 1997.

InConcert. InConcert Process Designer's Guide. Cambridge, Massachusetts:
InConcert Inc., 1997.

IBM., IBM MQseries Workflow: Concepts and Architecture. Armonk: IBM
Corporation, 1999.

Pallas Athena. Protos User Manual. Plasmolen, The Netherlands, Pallas Athena
BV, Plasmolen, 1999.

Perreault, Y. and T. Vlasic. Implementing Baan IV. New York: Macmillan
Computer Publishing, 1998.

Promatis. Income Workflow User Manual. Karlsbad, Germany: Promatis GmbH,
1998.

362 Bibliography

Software-Ley. COSA User Manual. Pullheim, Germany: Software-Ley GmbH,
1998.

Staffware. Staffware 2000/GWD User Manual Berkshire, United Kingdom:
Staffware pic, Berkshire, 1999.

Verbeek, H. M. W. and W. M. P. van der Aalst. "Woflan 2.0: A Petri-net-based
Workflow Diagnosis Tool." In Application and Theory of Petri Nets 2000, Lec-
ture Notes in Computer Science, Edited by M. Nielsen an D. Simpson. Berlin:
Springer-Verlag, 2000.

Workflow Analysis

Aalst, W. M. P. van der. "Formalization and Verification of Event-driven Process
Chains." Information and Software Technology, 41:10(1999):639-650.

--------------- . "Woflan: A Petri-net-based Workflow Analyzer." Systems
Analysis—

Modeling—Simulation, 35:3(1999):345-357.

Aalst, W. M. P. van der, K. M. van Hee, and H. A. Reijers. "Analysis of
Discrete-time Stochastic Petri Nets." Statistica Neerlandica, 2000 (forthcoming).

Aalst, W. M. P. van der and A. H. M. ter Hofstede. "Verification of Workflow
Task Structures: A Petri-net-based Approach." Information Systems, 25:1(2000):
43-69.

Hofstede, A. H. M. ter, M. E. Orlowska, and J. Rajapakse. "Verification Prob-
lems in Conceptual Workflow Specifications." Data and Knowledge Engineering,
24:3(1998):239-256.

Sadiq, W. and M. E. Orlowska. "Applying Graph Reduction Techniques for
Identifying Structural Conflicts in Process Models." In Proceedings of the 11th
International Conference on Advanced Information Systems Engineering (CAiSE
'99), volume 1626 of Lecture Notes in Computer Science, 195-209. Berlin:
Springer-Verlag, 1999.

Workflow Flexibility

Aalst, W. M. P. van der, and T. Basten. "Inheritance of Workflows: An Approach
to Tackling Problems Related to Change." Theoretical Computer Science, 2000
(forthcoming).

Aalst, W. M. P. van der, T. Basten, H. M. W. Verbeek, P. A. C. Verkoulen, and
M. Voorhoeve. "Adaptive Workflow: On the Interplay Between Flexibility and
Support." In Enterprise Information Systems, Edited by J. Filipe. 61-68. Norwell:
Kluwer Academic Publishers, 2000.

Ellis, C. A., K. Keddara, and G. Rozenberg. "Dynamic Change within Workflow
Systems." In Proceedings of the Conference on Organizational Computing Sys-
tems, Edited by N. Comstock, C. Ellis, R. Kling, J. Mylopoulos, and S. Kaplan.
10-21, Milpitas, California, August 1995. New York: ACM SIGOIS, ACM
Press, 1995.

Bibliography 363

Heinl, P., S. Horn, S. Jablonski, J. Neeb, K. Stein, and M. Teschke. "A Compre-
hensive Approach to Flexibility in Workflow Management Systems." In Work
Activities Coordination and Collaboration (WACC'99), 79-88, San Francisco,
February 1999. New York: ACM Press, 1999.

Reichert, M. and P. Dadam. "ADEPTflex: Supporting Dynamic Changes of
Workflow without Losing Control." Journal of Intelligent Information Systems,
10:2(1998):93-129.

Interorganizational Workflow

Aalst, W. M. P. van der. "Loosely Coupled Interorganizational Workflows:
Modeling and Analyzing Workflows Crossing Organizational Boundaries."
Information and Management, 37:2(March 2000):67-75.

--------------- . "Process-oriented Architectures for Electronic Commerce and Inter
organizational Workflow." Information Systems, 24:8(2000):639-671.

--------------- . "Interorganizational Workflows: An Approach based on
Message

Sequence Charts and Petri Nets." Systems Analysis—Modeling—Simulation,
34:3(1999):335-367.

Operations Research

Baker, K. R. Introduction to Sequencing and Scheduling. New York: Wiley &t
Sons, 1974.

Buzacott, J. A. "Commonalities in Re-engineered Business Processes: Models and
Issues." Management Science, 42:5(1996):768-782.

Kleinrock, L. Queueing Systems, Vol. 1: Theory. London: Wiley-Interscience,
1975.

Moder, J. J. and S. E. Elmaghraby. Handbook of Operations Research: Founda-
tions and Fundamentals. New York: Van Nostrand Reinhold, 1978.

Pinedo, M. Scheduling: Theory, Algorithms, and Systems. Englewood Cliffs,
Prentice-Hall, 1995.

Ross, S. M. A Course in Simulation. New York: Macmillan, 1990.

Unified Modeling Language (UML)

Booch, G., J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Reading, Massachusetts: Addison-Wesley, 1998.

Rumbaugh, J., I. Jacobson, and G. Booch. The Unified Modeling Language Ref-
erence Manual. Reading, Massachusetts: Addison-Wesley, 1999.

Marshall, C. Enterprise Modeling With UML: Designing Successful Software
Through Business Analysis. Reading, Massachusetts: Addison-Wesley, 2000.

Index

ACID properties, 166

Action workflow, 173, 182, 345

Activity, 7, 33, 61, 345

Activity diagrams, 294, 300

Actor, 11, 345

Adaptive workflow, 192, 193

Ad hoc workflow, 194, 345

Administration and monitoring tool,

157

Administrator, 160 Allocation
principle, 77, 78, 84 Analysis
techniques, 99 Analysis tool, 153
AND-join, 34, 54, 57, 58, 345
AMD-split, 34, 53, 54, 57, 58,

345

Application, 146, 156, 170, 346
Application data, 162, 346
Application programming interface,

162, 346

Architecture, 149, 346
ARIS, 186

Assignment, 77, 78, 346
Atomicity, 166 Audit trail,
158, 346 Automatic task,
32

Batch processing, 155
Bottleneck, 87
Boundedness, 109, 270
BPR. See Business process

re-engineering Business
process, 3, 346 Business
process maps, 182

Business process re-engineering (BPR),

90, 186, 212, 212, 347 BPR
lifecycle, 213 relation to workflow
management,

90

Capacity planning, 125, 347

Capacity requirement, 128

Case, 3, 31, 33, 347

Case attribute, 7, 31, 347

Case manager, 78, 91, 347

Case state, 347

Case type, 31, 33, 347

Chained processing, 155

Class diagram, 294

Collaboration diagrams, 294, 297

Comaker, 19

Commit, 248

Communications protocol, 13

Component-based information system,

28

Component diagram, 294
Computer-supported cooperative

work, 192, 348
Condition, 4, 31, 348
Consistency, 166

Continuous process improvement, 238
Contract, 12, 348 Contractor, 11, 348
Contract tree, 13, 14 Control system,
24 COSA, 173, 180, 258, 348 Critical
success factors, 221, 348 CRUD
matrix, 134

366 Index

Database management system, 25,

170, 258

Data warehouse, 24
Decision-support system, 24
Deployment diagram, 294
Diagnosis, 220 Diagnosis
phase, 213 Directed arc, 37
Durability, 166 Dutch
Customs Service, 243
Dynamic change, 193

Earliest Due Date, 85

Employee, 160

Enabling, 37, 269

Enactment, 35, 61, 236

Enactment system, 19

Enterprise application integration, 241

Enterprise resource planning systems,

206

Explicit knowledge, 7 Explicit
OR-split, 64 ExSpect, 185, 186, 348
External performance indicator, 88

First-In, First-Out, 85
FlowMake, 185
Free-choice, 109

Groupware, 348

Guidelines for (re)designing workflow,
91

Hardware, 169

Hierarchical organization, 15, 348

High-level Petri net, 41, 48, 348

color extension, 41, 48

hierarchical extension, 41, 46, 48

time extension, 41, 45, 48
Historical data, 161

Implicit OR-split, 64 Improving
workflows, 87 InConcert, 195,
349 Information control net, 27
Input place, 37, 268 Integrated
worklist handler, 154

Integration framework, 230
Interactive process-oriented system

development (IPSD), 211, 217, 349
Internal data, 162 Internal
performance indicator, 89 Internet,
205

Interoperability, 204, 349
Interoperability standards, 167
OMG's jointFlow, 168 simple
workflow access protocol,

168

Invoked application, 156, 164 IPSD.
See Interactive process-oriented

system development
Isolation, 166 Iteration,
5, 35, 349 Iterative
routing, 58, 60

JAD. See Joint application design
Joint application design (JAD), 215

Key performance indicators, 222, 238
Knowledge management, 7, 24, 349

Last-In, First-Out, 85 Liveness,
109, 269 Logical unit of work,
166, 248 Logistical management
data, 162

Managed system, 19 Manual
task, 32 Markovian analysis, 118
Matrix organization, 17, 349

Network organization, 18, 349
Network software, 170

Office information system, 23
Ontology, 1 Operating system, 170
Operational management, 20, 22,

157, 161

Operational phase, 213
Organizational paradigm shift, 3
Organizational structures, 14
Organizational unit, 76, 80, 349
Organization chart, 77, 349

Index 367

OR-join, 35, 55, 57, 58, 350 OR
split, 34, 54, 55, 56, 57, 58, 350
Output place, 37, 268 Outsourcer,
19

Parallel routing, 34, 53, 350

Performance analysis, 118

Performance indicator, 88, 350

Petri-net, 27, 35, 36, 268, 350 color
extension, 41, 48 consumption of
tokens, 38 hierarchical extension,
41, 46, 48 ISO standard for
(high-level) Petri

nets, 168

production of tokens, 38
time extension, 41, 45, 48

Place, 36, 37, 268, 350

Place invariant, 135

Primary process, 9, 351

Principal, 11, 351

Procedure, 4, 33

Process, 4, 33, 49, 61, 351

Process analyst, 160

Process definition, 151, 161, 164

Process interchange format, 167

Process manager, 351

Process specification language, 168

Production scheduling, 22

Protos, 186, 189, 190, 351

Prototype, 351

Queueing theory, 119, 130

RAD. See Rapid application

development Rapid
application development

(RAD), 212, 214, 351
Reachability analysis, 100
Reachability graph, 100, 101
Real-time management, 20,22
Reconstruction phase, 213
Recording and reporting tool, 158
Redesign phase, 213 Reference
model, 148, 149, 352

Interface 1, 151, 164, 167

Interface 2, 154, 164

Interface 3, 156, 164, 165

Interface 4, 158, 164, 168

Interface 5, 157, 164 Resource, 4,
75, 80, 352 Resource class, 76, 80,
352 Resource classification, 75, 153,
161,

352

Resource management, 75, 79, 353
Role, 76, 80, 353 Role model, 77
Rollback, 32, 248, 353 Routing, 52,
353

Sagitta, 200, 243, 353 customs service
business process, 251 methodology,
246 S-coverable, 270 Secondary
process, 10, 353 Selecting a workflow
management

system, 189, 256
Selection, 5

Selective routing, 34, 54, 353
Semi-automatic task, 32
Separation of function, 78
Separation of management and

execution, 146
Sequence, 4

Sequence diagrams, 294, 295
Sequential routing, 34, 52, 354
Shortest processing time, 85 Shortest
rest-processing time, 85 Simulation,
119, 354 Soundness property, 107,
108, 274,

275, 354

Staffware, 173, 354 Standard
worklist handler, 154 State, 31,
37

Statechart diagrams, 294, 297
Strategic management, 20, 22
Structural analysis, 103
Structware/BusinessSpecs, 185
Synchronization, 5

Tacit knowledge, 7 Tactical
management, 20 Task, 4, 32, 33,
61, 250, 354 Tertiary process, 10,
354 Token, 37, 268, 355

368 Index

Transaction, 355

firing of, 38, 269
Transaction-processing system, 23,

166, 355

Transition, 36, 268, 355
Transition invariant, 135
Triage, 123, 355 Trigger, 35,
63, 355

UML. See Unified modeling language
Unified modeling language (UML),

293, 355

Use case, 294, 356 Use case diagram,
294, 295 User-interface management
system, 26

Virtual organization, 18

WFM. See Workflow management
WFMC. See Workflow management

coalition WFMS. See Workflow
management

system

WF-net. See Workflow net
Woflan, 185, 356 Work, 1
Workflow, 356

Workflow client application, 153, 164
Workflow concept, 31 Workflow
definition, 356 Workflow definition
tool, 356 Workflow designer, 159
Workflow enactment service, 150
Workflow engine, 150, 356 Workflow
interoperability, 356. See

also Interoperability standards
Workflow management (WFM), 1,

26, 357 Workflow
management coalition

(WFMC), 149, 357 reference
model of, 148, 149, 352

(see also Reference model)
process definition language, 167
Workflow management system

(WFMS), 3, 27, 145, 148, 171, 357
data stored in, 161, 162 examples of
products, 171-191

functionality, 150-159
selection of, 189

technical infrastructure, 169, 170
Workflow net (WF-net), 107, 271,

357

compositionality of WF-nets, 286
free choice WF-nets, 277
S-coverable WF-nets, 284
well-structured WF-nets, 279
Workflow state, 50, 51, 357
Workflow system, 27, 357 Work
item, 33, 61, 356 Worklist
handler, 154, 357

	Workflow Management: Models, Methods & Systems

