

Wor kflow M anagement
Models, Methods, and Systems

Wil van der Aalst and Kees van Hee

The MIT Press Cambridge, Massachusetts L ondon,
England

This translation © 2002 Massachusetts Institute of Technology

Originally published under the title Workflow Management:
Modellen, Metho-den en Systemen, 1997, by Academic Service.

All rights reserved. No part of this book may be reproduced in any
form by any e€lectronic or mechanical means (including
photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

This book was set in Sabon on 3B2 by Asco Typesetters, Hong
Kong, and was printed and bound in the United States of America.

Library of Congress Catal oging-in-Publication Data

Aalst, Wil van der.
Workflow management / Wil van der Aalst,
Kees van Hee. p. cm. — (Cooperative
information systems)
Includes bibliographical references and index.
ISBN 0-262-01189-1 (he. : ak. paper)
1. Management information systems. 2. Production
management.
3. Workflow. I. Hee, Kees Max van, 1946- II. Title.
I1l. Series.
T58.6.A17 2002
658.5'1—dc21 2001042602

Contents

Series Foreword
Acknowledgments
| ntroduction

1 Organizing Workflows

2 Modeling Workflows

3 Management of Workflows

4 Anayzing Workflows

5 Functions and Architecture of Workflow Systems
6 Roadmap for Workflow System Development

7 Sagitta 2000 Case Study

Appendix A: Workflow Theory

Appendix B: Workflow Modeling Using UML
Solutions to Exercises

Glossary

Bibliography

| ndex

Vil
XI
Xiii

31
75
99
145
211
243

267
293
305
345
359
365

SeriesForeword

The traditional view of information systems as tailor-made, cost-intensive
database applications is changing rapidly. The change is fueled partly by a
maturing software industry, which is making greater use of off-the-shelf
generic components and standard software solutions, and partly by the
onslaught of the information revolution. In turn, this change has resulted in a
new set of demands for information services that are homogeneous in their
presentation and interaction patterns, open in their software architecture,
and global in their scope. The demands have come mostly from application
domains such as e-commerce and banking, manufacturing (including the
software industry itself), training, education, and environmental management,
to mention just afew.

Future information systems will have to support smooth interaction with
a large variety of independent, multi-vendor data sources and legacy
applications running on heterogeneous platforms and distributed infor-
mation networks. Metadata will play a crucial role in describing the contents
of such data sources and in facilitating their integration.

As well, a greater variety of community-oriented interaction patterns will
have to be supported by next-generation information systems. Such
Interactions may involve navigation, querying, and retrieval, and will have
to be combined with personalized notification, annotation, and profiling
mechanisms. Such interactions will also have to be intelligently interfaced
with application software, and will need to be dynamically integrated into
customized and highly connected cooperative environments. Morever the
massive investments in information resources, by governments and
businesses alike, call for specific measures that ensure security, privacy, and
accuracy of their contents.

viii Series Foreword

All these are challenges for the next generation of information systems.
We call such systems Cooperative Information Systems, and they are the
focus of this series.

In layman terms, cooperative information systems are servicing a di-
verse mix of demands characterized by content—community—commer ce.
These demands are originating in current trends for off-the-shelf soft-
ware solutions such as enterprise resource planning and e-commerce
systems.

A major challenge in building cooperative information systems is to
develop technologies that permit continuous enhancement and evolution
of current massive investments in information resources and systems.
Such technologies must offer an appropriate infrastructure that supports
not only development, but also evolution of software.

Early research results on cooperative information systems are becom-
Ing the core technology for community-oriented information portals or
gateways. An information gateway provides a "one-stop shopping" place
for a wide range of information resources and services, thereby creating a
loyal user community.

The research advances that will lead to cooperative information system
will not come from any single research area within the field of infor-
mation technology. Database and knowledge-based systems, distributed
systems, groupware, and graphical user interfaces have all matured as
technologies. While further enhancements for individual technologies are
desirable, the greatest leverage for technological advancement is expected
to come from their evolution into a seamless technology for building and
managing cooperative information systems.

The MIT Press Cooperative Information Systems series will cover this
area through textbooks and research editions intended for the researcher
and the professional who wishes to remain up-to-date on current devel-
opments and future trends.

The series will present three types of books:

» Textbooks or resource books intended for upper level undergraduate
or graduate level courses;

» Research monographs, which collect and summarize research results
and development experiences over a number of years; and

 Edited volumes, including collections of papers on a particular topic.

Series Foreword I X

Authors are invited to submit to the series editors book proposals
that include a table of contents and sample book chapters. All submis-
sions will be reviewed formally and authors will receive feedback on their

proposal.

John Mylopoul os jm@cs. tor Michael Papazoglou
onto. edu Dept. of Computer M.P.Papazoglou@kub.nl
Science University of Tilburg University
Toronto Toronto, Ontario INFOLAB
Canada P.O. Box 90153

5000 LE Tilburg
Joachim W. Schmidt The Netherlands

j.Iv.schmidt@tu-harburg.de
Software Systems I nstitute
Technische Universitat TUHH
Hamburg, Germany

Acknowledgments

This book was prepared in close cooperation with the workflow
groups at Deloitte & Touche Bakkenist, the Faculty of Mathematics
and Computing Science, and the Faculty of Technology Management at
Eindhoven University of Technology. The authors would like to thank
al (former) members and students of these groups, in particular Twan
Hasten, Silvia de Cast, Ernst Kleiberg, Selma Limam, Michel van Osch,
Jaap Rigter, Eric Verbeek, Marc Voorhoeve, Laurens Vrijnsen, Gerd
Wagner, and Jaap van der Woude. We would also like to thank Michiel
Bos and Niels van Kiel for helping us preparing the English version of
our book and Monique Jansen for proofreading the final version.

Specia thanks are also due to our co-authors, Andre Blommers and
Peter van der Toorn, each of whom contributed a chapter. Last but not
least, we would like to thank the Dutch Tax Authority for permission to
use the Sagitta 2000 project as a case study for this book.

December 2000
Wil van der Aalst
Keesvan Hee

| ntroduction

This book is about the management of business processes. This is cer-
tainly not a new topic. Since the beginning of the Industrial Revolution, it
has been written about from every possible point of view—economic,
sociological, psychological, accountancy, mechanical engineering and
business administration. In this book, we examine the management of
business processes from the perspective of computing, or—to put it more
broadly—of information technology. The reason is that information
technology has made huge leaps forward in recent years, resulting in
the creation of completely new ways of organizing business processes.
The development of generic software packages for managing business
processes—so-called workflow management systems (WFM S)—is par-
ticularly important in this respect.

Until recently, the golden rule was: "First organize, then computerize."
This implied that processes were developed with the implicit assumption
that the business process would primarily be managed by people. Then
an organizational structure would be developed under which groups of
people, or departments, were allocated particular tasks. Only then did
people consider whether computers—or rather, information systems—
could partially support, or even take over, the work. This approach does
not sufficiently examine the opportunities offered by information sys-
tems. We have now reached a turning point: we first design business
processes in a more abstract way, without considering implementation,
and then we design the information systems and the organization hand in
hand. In fact, we decide whether each task in a process should be per-
formed by an information system or a person.

There are still some problems with this depiction. First, the notion that
we can organize business processes differently using information systems

XV | ntroduction

IS not new. People have long done this with business processes whose
primary task is the processing of information. During the 1970s, serious
efforts were made to completely computerize the management of business
processes using information systems. This proved impossible with the
technology then available. Even today, and for the foreseeable future,
there are and will remain many tasks in the business process which can
only be performed by people. In reaction to the reckless attempts of the
1970s, the role played by information technology has been somewhat
restricted.

Information systems are used to reduce people's workload, particularly
In offices. By analyzing thoroughly what people in offices do—by asking
why they do it—the following information processing functions have
been identified: text writing, drawing, calculating, filing, and communi-
cating information. These analyses have led to the development of the
following products: word processors, drawing systems, spreadsheet sys-
tems, database systems and electronic-mail systems. All these systems are
generic in nature: they are not limited to a specific business application—
as, say, accounting systems are—and so are widely used. Thanks to
widespread distribution, this software is of high quality and relatively
cheap. (In fact, accounting systems are widely usable, but not as exten-
sively as word processors.)

Partly because of this development, the impact made by information
technology has increased enormously, which in turn has led to many
more people studying the possibilities presented by it. And this has
resulted in the "BPR wave." BPR stands for business process redesign (or
business process re-engineering) and is a method, for improving the
effectiveness and efficiency of business processes. BPR is based upon the
notion that, if full use is made of information technology, business pro-
cesses could be entirely different than at present. It therefore is wise to
redesign the current processes completely, in the way described above.
How business processes are organized is thus no longer the sole prerog-
ative of the organizational or business expert: the information technolo-
gist now also has a major role to play. Thisis a good thing, because the
Information technologist is a developer of processes par excellence. After
al, every agorithm defines a process. Until recently, however, the role of
the information technologist was limited to the processing of information

| ntroduction XV

In computer systems—whereas, in fact, the main task of many other
business processes is information processing.

In the past, it was the functional structure of an organization that
played the most important role in how it was organized. Now the busi-
ness processes are crucial. For this, a good frame of reference is required
so that processes can be defined and analyzed clearly. Definition is im-
portant when preparing a (re)design, and before deciding whether to
actually implement a new process it is very important to first establish
whether it will work properly. To do this, one must be able to analyze
the process defined. This can be done in a number of ways. For example,
formal methods can be used to identify processes properties, or lack of
them. Another analysis method uses simulation techniques, sometimes
supported by computer animation. Supporting software tools are essen-
tial to this.

This book presents a reference framework for defining processes and
discusses analytical methods. In doing so, extensive use is made of Petri
nets, a formal concept that has been developing since the 1960s and that
made particularly significant leaps forward during the 1980s. Petri nets
are ideally suited for defining and analyzing complex processes. Another
useful property is that they make the definitions easy to understand for
non-experts. This eases communication between designers and users.
There also exist software tools which support the definition and analysis
of processes.

Once new business processes have been developed, they then have to
be implemented. The management and, in part, the execution of pro-
cesses are handled by people, with the help of information systems. As
already mentioned, during recent years a new class of generic software
has been evolving: workflow management systems. This software sup-
ports business processes by taking on their information logistics. In other
words, workflow management systems ensure that the right informa-
tion reaches the right person at the right time, or is submitted to the right
computer application at the right moment. A workflow management
system does not, therefore, actually perform any of the tasks in a process.
Herein lies both its strength—it is generic software and so can be used in
many situations—and its weakness: usually actual application software
IS also needed.

XV | ntroduction

The term "workflow" is used here as a synonym for "business pro-
cess." We shall, as far as possible, use the terminology developed by the
WorkFlow Management Coalition (WFMC). This is an organization
dedicated to developing standard terminology and standard interfaces
for workflow management systems components.

This book begins by describing the organization of workflows. This is
Important in order to be able to understand the role which workflow
management systems can play and how they should be applied. The
terms that are required in order to be able to deal with processes are
Introduced in an informal way, thus providing a basis for the rest of the
book. Then there follows a chapter about modeling workflows. This in-
cludes a simple introduction to Petri-net theory. The next chapter covers
the management of resources that contribute to business processes. These
resources may be people, but can also be machines or computer systems.
Techniques for analyzing processes are also considered. Then workflow
management systems are introduced, with both their functions and
architecture being covered. Then there follows a methodology for devel-
oping workflow applications. The final chapter is devoted to a case study
of an actual application.

As an appendix, we have included an alphabetical glossary containing
all the relevant terms used with their synonyms and short definitions. The
first time that an important term is used, it is printed in italics.

This book is intended for students in information technology, indus-
trial engineers, and for those who are professionally involved in imple-
menting BPR using WFMS.

1

Organizing Wor kflows

1.1 Ontology for Workflow Management

The objective of this chapter is to develop a reference framework. This
framework has three functions in this book. First, it is used to define
the business-management context within which workflow management
systems operate. Second, it is used to model and analyze processes. And
third, it is used to describe the functionality and architecture of workflow
management systems. A reference framework is a system of straight-
forwardly defined terms that describe a particular field of knowledge. It
Is also known as an ontology.

The ontology in which we are interested is that of processes. The terms
used are generic in nature and can be applied in virtualy all working
situations. In practice, however, many have various synonyms which are
widely used; for the sake of clarity, we will try to use a single "preferred
term" as often as possible. This will be in line with the terminology used
by the Workflow Management Coalition. In this chapter, we first discuss
the role of work in society. Then we examine processes, followed by the
distribution of work. The relationship between the principal and the
contractor plays an important role in this. Specifically in electronic busi-
ness these relationships are extremely important. We then study organi-
zational structures and the management of processes. Finally, we look at
the role played by (computerized) information systems in the establish-
ment and management of business processes.

1.2 Work

People work to live—even though some become so involved that they
give the impression of living for their work. In fact, we work because we

2 Chapter 1

need products to maintain our lives (for example: food, clothing, a home,
a means of transport, not to mention entertainment). We do not produce
all the things that we need ourselves, because that is inefficient. It actually
would be impossible to manufacture all the products that we use during
our livesin a modern society, ourselves. We would have to learn so many
different and complex skills that they alone would take up our entire
lives. We would need many lifetimes just to make the tools needed to
produce the necessities of life. This is why we are instead organized into
specialized "business units," in which people produce a limited range of
products in a highly efficient way, with the help of machines. These
products are supplied to other people through a market mechanism and a
distribution structure in exchange for money, which enables the pro-
ducers to buy those products that they do not make themselves. With
production distributed in such a way, there is also created work that
would not exist if everybody was entirely self-sufficient in producing
all the products they need. For example, managing money—what the
banks do—and preparing advertising materials would not be necessary.

There have thus developed all kinds of services and products that do
not make a direct contribution to keeping us alive, but are necessary to
keep the organization operating. Despite this "burden,"” we are able to
produce so efficiently that we have a large amount of free time—thus
further stimulating the demand for entertainment. The leisure industry
therefore is also aflourishing one.

Modern society has become so complex that nobody can entirely sur-
vey it any longer, and many people do not know what role their work
plays in the overal scheme of things. This "alienation" is a major social
problem that falls outside the scope of this book. But even within large
companies there exists a high degree of work specialization, which results
In the "big picture” being lost and employees not always realizing why
they have to do the things they are told to do. Such alienation from work
has a negative effect upon productivity. This is why many companies are
organizing their work in such a way that their employees clearly under-
stand that they are working for a particular customer. Among the
objectives of such customer-oriented work is an increase in employees
motivation, and hence their productivity. The fact that we have moved
from living in a supply-driven economy, in which the means of produc-

Organizing Workflows

Capacity
utilization

Figurel.l
Organizational paradigm shift

tion were scarce, to a demand-driven one in which it is the customers
who are scarce, has only served to reinforce this tendency. This shift of
focus from the means of production to the customer is also known as
"organizational paradigm shift" (seefigure 1.1).

In order to make work "controllable" and to encourage communica-
tion between employees, workflow management systems have evolved.
These are a new class of information system. They make it possible to
build, in a straightforward way, a "bridge" between people's work and
computer applications.

1.3 Business Processes

There are many different types of work, such as baking bread, making a
bed, designing a house or collecting survey results to compile a statistic.
In all of these examples, we can see the one tangible "thing" that is pro-
duced or modified: the bread, the bed, the house, or the statistic. In this
book, we shall call such a"thing" a case. Other terms used are work,
job, product, service, or item. A case does not need be a specific object; it
can also be more abstract—Ilike, say, a lawsuit or an insurance claim. A
building project or the assembly of a car in a factory are also examples of
Cases.

Working on a case is discrete in nature. That is, every case has a be-
ginning and an end, and each can be distinguished from every other case.

4 Chapter 1

Each case involves a process being performed. A process consists of a
number of tasks that need to be carried out and a set of conditions that
determine the order of the tasks. A process can also be called a proce-
dure. A task isalogical unit of work that is carried out as a single whole
by one resource. A resource is the generic name for a person, machine or
group of persons or machines that can perform specific tasks. This does
not always mean to say that the resource necessarily carries out the task
independently, but that it is responsible for it. We will examine this sub-
ject more closely in the next section.
As an example of a process, we shall examine how a (fictional) insur-

ance company deals with a claim. We can identify the following tasks:

1. recording the receipt of the claim;

2. establishing the type of claim (for example, fire, motor vehicle, travel,
professional);

3. checking the client's policy, to confirm that it does in principle cover
what has been claimed for;

4. checking the premium, to confirm that payments are up to date;

5. rgjection, if task 3 or 4 has a negative result;

6. producing aregjection letter,

7. estimating the amount to be paid, based upon the claim details;

8. appointment of an assessor to research the circumstances of the dam
age and to establish its value;

9. consideration of emergency measures to limit further damage or re
lieve distress;

10. provision of emergency measures if approved as part of task 8;

11. establishment or revision of amount to be paid and offer to client;
12. recording of client's reaction: acceptance or objection;

13. assessment of objection and decision to revise (task 11) or to take
legal proceedings (task 14);

14. lega proceedings,

15. payment of claim; and

16. closure of clam: filing.

Here we can see sixteen tasks that do not necessarily need to be per-
formed in the order shown. Two or more tasks that must be performed
In a strict order are called a sequence. For some cases, certain tasks do
not need to be carried out. One example is the appointment of an expert,
If the claim report is clear and the amount of the claim is below a par-

Organizing Workflows 5

ticular value, the involvement of an expert is not necessary. Other tasks
that do not always need to be performed are taking emergency measures,
assessing an objection, or taking legal proceedings. Sometimes, therefore, a
choice between two or more tasks can be made. This we call a selection.

There are also tasks that can be performed in parallel, for exam-
ple checking the policy and checking the premiums. These tasks must
both be completed before the "regection” task can begin. This is called
synchronization.

This example of a process also includes iteration, or repetition—
namely, the repeated assessment of an objection or the revision of the
amount to be paid. In theory, this could go on forever. Figure 1.2 shows
the order of the tasks as a process diagram: an arrow from task A to task
B means that A must be done before B. We can also see that the diagram
contains more information than the list of tasks. For example, it shows
that a claim can only be closed once any emergency measures required
have been taken. Each task is indicated by a rectangle. If atask has more
than one successor task—that is, if it has more than one arrow leading
from it—then precisely one of these subseguent tasks must be chosen
during the task in question. If atask has more than one predecessor—
more than one arrow leading to it—then all of these must be completed
before that task can begin (synchronization). The circles indicate where
particular workflows meet or split. The gray circles have several precur-
sor tasks and only one subsequent task. They indicate that only one of
the preceding tasks needs to be performed in order to continue. The
black circles have one predecessor and several subsequent tasks. They
show that all the subsequent tasks must be performed. (The circles can be
regarded as "dummy" tasks.) Chapter 2 introduces a process notation
which makes it easier to express such properties.

To summarize, we can identify four different basic mechanisms in
process structures. sequence, selection, parallelization, and iteration. All
are very commonplace in practice, and in principle all processes can
be modeled using these four constructions. We shall consider them in
greater detail in chapter 2.

Some tasks can be performed by a computer without human interfer-
ence. Other tasks require human intelligence: a judgment or a decision.
For instance, a bank employee decides if a client's loan request will be
granted or not. Human workers need knowledge to execute tasks. This

6 Chapter 1

1. Recordingi

v

2. Establish type

3. Policy 4. Premium

/

5. Reject?

\.

6. Reject!

7. Size of claim

\

8. Assessor

11. Settlement

13. Objection

[_ I
_12. Reaction

S

Figure 1.2
Insurance claim process

—

9. Emergency?

ED—-’ 15. Pay
ﬂ}» 14. Proceeding

>~

10. Measures

/

16. Close
Y

Organizing Wor kflows 7

knowledge is stored in their minds by experience, the so-called tacit
knowledge. Other forms of knowledge can be obtained by learning and
Information retrieval, the so-called explicit knowledge. Knowledge man-
agement is concerned with the acquisition, enrichnment, and distribution
of knowledge so that the right knowledge is at the right time with the
person who has to fulfill atask.

A task can also be defined as a process that cannot be subdivided any
further: an atomic process. There is a subjective element in this—what
one person regards as a single task may be a nonatomic one to another.
For an insurance company, for example, the compilation of an assessor's
report of damage to a car is a single task, whereas for the expert himself
It IS a process comprising various tasks, such as checking the chassis, en-
gine, and bodywork. A task is therefore an atomic process for the person
defining or ordering it, but for the person carrying it out it is often a
nonatomic one.

A single process is carried out on each case. We call the performance of
atask by aresource an activity. Various cases may have the same pro-
cess, but each case may follow a different route through that process. In
the insurance company, for example, one claim may involve an objection
and another not. The route taken depends upon the specific character-
istics of the case—the case attributes. The number of processes in a
company is (generally) finite and far smaller than the number of cases to
be handled. As aresult, a company can develop a routine for performing
processes and thus operate efficiently.

This is clearly seen in the clothing industry: it is much faster to make
one hundred skirts with the same pattern than one hundred skirts using
different patterns. Off-the-rack is cheaper than made-to-measure. What's
more, producing one thousand skirts of the same pattern is less expensive
than ten times making one hundred in that pattern. This is called the
economy of scale: the costs per case fall as the number of cases increases.
Companies therefore endeavor to keep the number of processes small
and to make the number of cases that each can perform as high as pos-
sible—at least, as long as they can earn something from each case. Profit,
after al, isthe ultimate objective.

An insurance company wants to keep the number of claims as |low
as possible—but thisis generally a factor that it cannot control. It will
also try to keep the number of processes low. Thereis, however, a catch:

8 Chapter 1

I
,L

Selection task C

/

Figurel.3
Combination of two processes into one

the processes must not become too complicated. It is better to have a few
more, but simpler, processes than a few which are overly complex. Re-
member that, in theory, it is possible to combine two or more processes
Into one, as shown in figure 1.3. Processes A and B are joined to form a
single process, C.

Here one additional task has been added: deciding what type of case
we are dealing with and so choosing which of the processes to follow.
This is therefore a false economy. In order to reach an efficient process
structure, calculations need to be made which cannot generally be per-
formed without the aid of computer simulations.

The situation that we have just described is the most common: a small
number of processes with alot of cases. There are, however, exceptions
to thisrule. A tailor, for example, produces every suit made-to-measure;
one could therefore say that he must design and start up a new process
for each case. This also applies to an architect who has to design every
new house or office block from scratch. But we can also view thisin a
different way: both the tailor and the architect will certainly use a stan-
dard approach, and thus a process which they always follow. The tailor
will start by taking the customer's measurements, then show him a
number of patterns and try to establish with him which best matches his
wishes, and then make changes to the pattern. Then the fabric is chosen
and the tailor starts drawing the pattern. There are also many other tasks

Organizing Workflows 9

that can be identified as a part of each case. The same applies to the ar-
chitect. What we can see here is that there is indeed a process, but the
tasks performed are highly dependent upon the case. This is, therefore, a
yardstick for the complexity of a process. the degree to which the tasks
depend on the cases.

Although we shall deal primarily with situations in which many cases
pertain to a single process, there are many situations in which a new
process needs to be designed for each case. We call these "one of a kind"
processes. In these, the first stage in tackling the case is the design of its
specific process. Even here, there are frequently standard tasks from which
the process is compiled. In such cases, we say that every case has its own
project. The words "project" and "process' are here synonymous.

We have already seen that the work carried out on cases is of a discrete
nature: each has a single beginning and a single end. However, there
IS also work of a continuous nature which does not clearly belong to
a single case. Take, for example, a doorman whose work consists of
assisting people to enter a building, or a policeman who has to guarantee
security in adistrict by patrolling it. In both examples a case can still—
with a little goodwill—be defined by identifying periods and regarding
door keeping or patrolling for a particular period as one case. The em-
ployee thus automatically receives a continual sequence of cases, one for
each period. Another way of regarding work of a continuous nature in
case terms is to regard the work as a whole as one case comprising a
continual repetition of tasks. In this book, we concentrate upon discrete
work—~but in doing so we do not exclude continuous work. It can serve
as an extreme example with which the principles presented in the book
can be put to the test.

To conclude this section, we shall subdivide processes into three cate-
gories. primary, secondary, and tertiary:

* Primary processes are those that produce the company's products or
services. They therefore are known also as production processes. They
deal with cases for the customer. As a rule, they are the processes that
generate income for the company, and are clearly customer-oriented.
Sometimes the customer is not yet known, as when firms produce to
stock. Examples of primary processes are the purchase of raw materials
and components, the sale of products and services, design and engineer-
Ing, and production and distribution.

10 Chapter 1

ima
- primary
process
support managerial
-« process < > process ‘ >

Figure 1.4
Links between the three types of processes

» Secondary processes are those that support the primary ones. They
therefore are also known as support processes. One important group
of secondary processes concentrates upon maintaining the means of
production: the purchase and maintenance of machinery, vehicles, and
premises. A comparable group of processes is that involving personnel
management: recruitment and selection, training, work appraisal, pay
rolls, and dismissal. Financial administration is also a secondary process,
as is marketing.

o Tertiary processes are the managerial processes that direct and coordi
nate the primary and secondary processes. During these, the objectives
and preconditions within which the managers of the other processes must
operate are formulated, and the resources required to carry out the other
processes are allocated. The managerial processes also encompass the
maintenance of contacts with financiers and other stakeholders.

Figure 1.4 shows the relationships between the three types of processes.

The managerial processes have objectives and capital as their input,
and must deliver performance—often in the form of profit. Support
processes receive, from the managerial processes, the means to buy in
resources, and they dispose of resources which are no longer functioning.
The resources managed by the secondary processes are placed at the dis-
posal of the primary processes, which return them after use. As input, the
primary processes receive orders on the one hand and raw materials and
components on the other. As output, they deliver products and services.
They receive assignments and purchasing budgets from the managerial
processes. Support and primary processes report back to the managerial
processes and submit their income.

The secondary and tertiary processes are often continuous in nature,
although they may contain discrete subprocesses, whereas the primary
processes are usually case driven and thus have a discrete character.

Organizing Workflows 11

1.4 Allocating and Accepting Work

Animals and machines work on orders, or assignments, given by people.
But most people's work is also assigned or outsourced to them by other
people: their principals. Exceptions are artists, scientists, and politicians,
who can—to some extent—decide for themselves what work they are
going to do.

There are two forms of principals. the boss and the customer. Ulti-
mately, assignments ordered by bosses are directly or indirectly related to
work for customers. The relationship is "direct" if the work carried out
results in a product or service for a customer, which may be unknown.
This mainly applies to the primary processes. The relationship is "indi-
rect" if the work involves maintaining or improving the production pro-
cess. the secondary and tertiary processes.

In most organizations there exists a hierarchy under which assign-
ments that people receive can (in part) be passed on to people further
down the hierarchy. A person who is assigned atask is a contractor, also
known as a resource. We mainly use the latter term because assignments
can be «carried out by machines—in particular, computer
applications— as well as by people. Thus far we have discussed
principals and contractors as if they are individual people, but they can in
fact also be company departments or separate firms. We will therefore
use the term actor to describe principals and contractors in general. An
actor may play both roles—as a principal and a subcontractor (or
resource)—at the same time.

A contractor does not necessarily carry out the work itself, but may
redirect or subcontract it to third parties. But the contractor always
directs the work which it accepts.

In larger organizations, employees carrying out an assignment often do
not know for which customer the task is being performed. This is par-
ticularly the case when products are being produced to stock, because
during production the identity of the customer is still unknown. (And
sometimes there is eventually no customer at all for the product.)

As indicated before, a principal is either a customer or a boss. There is
also a wide variety among customers. For the Prison Service, criminals
(prisoners) are its customers,; the Inland Revenue's customers are the
taxpayers, a hospital's customers are its patients. The role of a customer
IS dependent upon the situation: the baker is the gardener's customer

12 Chapter 1

when the gardener looks after the baker's garden, but the gardener is the
baker's customer when he buys bread.

In large organizations, there is a marked tendency to accentuate the
role of the customer more clearly. The principle that "the customer is
aways right" is winning ground over "working for the boss." Customer
awareness ensures that people are more conscious of who they are work-
ing for, which leads to a more careful approach to their work: after
al, if they deliver poor quality work, they will be unsure whether the
customer will order more. (For a prison "customer,” this principle works
the other way around.)

For all work a principal and a contractor exist who have a—some-
times unwritten—contract with one another about the case to be per-
formed, the deadline for its completion, and the price to be paid. If the
contractor Is a separate company, then a communications process will be
created between principal and contractor before the contract is entered
Into, and communications between the two actors may continue to be
necessary during the performance of the task. When the relationship be-
tween the contractor and the principal is formalized, a communications
protocol can be observed. This can be very complex. Figure 1.5 shows an
example of a communications protocol.

Principal Contractor
|
specification :
P quote
assignment
P
le confirmation
order o
r completion
Figure 1.5

Communications protocol

Organizing Wor kflows 13

In this example, we can see the successive steps in the relationship. The
principal first provides a specification of the work to be carried out. Then
the contractor produces a plan for performing the work and fixes a price.
Thisis the "quote" that it submits to the principal. The latter studies the
guote and orders the work in accordance with it. In practice, there can be
alot of discussion between the parties in the meantime, with the principal
making supplementary demands—about the price, for example—and
the contractor explaining how it intends to carry out the work. In
many cases, the moment when the order is confirmed is not the same as
when it actually begins. If the work forms part of alarger project that the
principal is directing, then the work can only begin once other elementsin
the project have been completed; the principal thus determines at what
point the work can start. The number of steps in a communications
protocol between a principal and a contractor therefore can vary from
case to case according to the specific characteristics and handling of each,
and so does not need to be fixed in advance.

An actor responsible for a process may assign or outsource atask as a
whole to a contractor or he may decompose it into a process, that is, a
network of tasks, each of which he assigns to a contractor. At their turn
these contractors may repeat this decomposition process. This decompo-
sition leads to a contract tree. Execution of a task for a particular case
reguires the enactment of a communications protocol between principals
and contractors. Instead of decomposing a task into a process and out-
sourcing the subtasks of this process for all cases that pass the task, it is
also possible to do this for each case in a different way. Then the execu-
tion of atask for a particular case starts with a "design phase,” in which
the network of tasks is created and in which the (subcontractors are
selected. Figure 1.6 shows an example of this. In this example, the task is
the transportation of a cargo from point A to point K. The principal P
subdivides this work into two tasks: transportation from point A to point
D, and transportation from point D to point K. Each of these tasks is
subcontracted to a different contractor, that is, contractors Q and R.
Each of the tasks is then subdivided again by these two: by principal/
contractor Q into transportation from A to C and then C to D, and
by principal/contractor R from D to J and then from J to K. This is
Illustrated in figure 1.6. Note that both Q and R act as principal and
contractor.

14 Chapter 1

Transport A - K
principal P

contractor Q contractor R
Transport A -D Transport D -K
principal Q

principal R

contractor S contractor T

| Transport A -C Transport C - D

contractor U contractor V

| Transport D -J TransportJ - K

Figure 1.6
Contract tree

This tree contains "nodes', which are shown in the example as rec-
tangles. "Branches" link two "nodes." The "nodes" show those actors
who are responsible for a part of the work. In this example, the actors
are identified by the tasks that they must perform. The "root" of the tree
(which we actually show at the top of the diagram) receives the assign-
ments directly from the principal. The "leaves' of the tree (that is, the
lowest of the "nodes") are the actors who actually carry out the tasks.
The other actors are both principals and contractors. An actor X is a
subcontractor of another actor Y if thereisan arc from Y to X. An actor
Is a principal if there is an arc leading from this actor to another actor.
Consider for example figure 1.6. Actor Q is a subcontractor of P and
a principal of Sand T. Such decomposition and outsourcing pProcesses
occur frequently inside organizations but also between different orga-
nizations. In electronic business we try to automate/computerize these
processes as much as possible. If we want to support business processes
by information systems, we need very detailed and precise descriptions of
these business processes. If we want to couple business processes of dif-
ferent organizations in an automatic/computerized way, this becomes
even more important.

1.5 Organizational Structures
A great deal of literature has been published about organizational struc-

tures, and any attempt to summarize it in a few paragraphs is doomed to
fail. Therefore we shall not try to do so. We shall, however, discuss those

Organizing Wor kflows 15

properties of the three most important forms of organizational structure
that are relevant to workflow organization.

An organizational structure establishes how the work carried out by
the organization in question is divided up amongst its staff. In most cases
this does not mean the people themselves, but rather the roles or func-
tions that they fulfill. A single person can fulfill several roles during her
or his lifetime. Somebody can, for example, begin as an administrative
assistant and end up as head of accounts. People may also fulfill different
roles in time. It may be that the same person is both a driver and a mes-
senger, delivering messages when there is nobody to be driven. One im-
portant aspect of an organizational structure is the division of authorities
and responsibilities. If an executive has specific responsibilities, then he
also has to have particular authorities. These often involve the authority
to assign work to other members of staff—in other words, to outsource
work to others. Conversely, an executive is responsible for ensuring that
the work assigned to him by authorized colleagues actually is carried out.

The three most important forms of organizational structure—or
rather, coordination mechanisms—are:

1. the hierarchical organization;
2. the matrix organization; and
3. the network organization.

The hierarchical organization is the best known of these, and is charac-
terized by a "tree" structure. Such a structure is called an organizational
chart. We already have encountered tree structures in the previous sec-
tion in the form of contract trees. In an organizational chart, each node
which is not a "leaf" indicates an individual role or function. The
"|leaves' of the tree usually represent groups of staff or departments. The
"branches" show authority relationships: the person at the start (top) of
the branch is authorized to order work from the person or department at
the end (bottom) of it.

There is aso another definition of the organizational chart that closely
resembles ours but is, in fact, different. Under this definition, each "leaf"
shows a person and each node at a higher level represents a department.
The "root" node indicates the entire company, and every other node a
part of that above it. The people indicated in each leaf thus belong to the
department shown in the node immediately above them. Whereas the

16 Chapter 1

Managing director

|

Head of Sales Administration Head of Production
Advertising Dept. Sales Force Production Dept. Stores Dept.
Figure 1.7

Organizational chart

first definition shows the person who is responsible for all the people
below him in the tree for whom he represents the root, the second
regards each of these collections of staff as one department. The similar-
ity between organizational charts and contract trees is that both express
principal-contractor relationships as "branches." The difference is that in
an organizational chart this relationship is not linked to any specific
case, whereas this relationship is very relevant for a transaction tree. In
a strictly hierarchical organization, communication between two nodes
always passes through their closest common predecessor. Figure 1.7
shows an example of an organizational chart.

In this example, formal communication between the sales force and
the stores department must go through the head of sales, the managing
director and the head of production. The "management” or "board" is
often at the "root" of an organizational chart. Its "leaves' are the com-
pany's departments. One typical example of a hierarchical organization
IS the army. In practice, there exists a lot of informal communication
between the various individual members of staff and departments, al-
lowing communication to be quicker than if it were to follow hierarchical
lines. Purely hierarchical organizations are virtually extinct now, since
this structure is too inflexible. In many firms it is too unwieldy to allow
the delegation of work only through fixed, hierarchical channels.

In designing a hierarchical organization, we are free to choose what
departments are created and what management layers exist above them.
In allocating staff into departments, we can select from three principles:

« The capacity group. Put people with the same skills together in the
same department. In principle, such people are interchangeable. The task

Organizing Wor kflows 17

of the head of department is to keep its members "up-to-date"—through
training, for example—and to do his best to "sell" them to other business
units for whom they perform their work. Typical examples are typing
pools and pools of maintenance engineers.

* The functional department. This performs an interdependent group of
tasks, each often requiring the same skills. Responsibility for the work of
the department rests with its head. Typical examples are departments like
accounting, marketing, and maintenance.

» Process or production departments. In this case, the department isre
sponsible for a complete business process or for the manufacturing of a
product.

The first or second type of organization is often chosen for the secondary
processes. In the primary ones, the third form begins to gain importance.
Superseding the departments are the hierarchical management layers. In
choosing these, the following question plays an important role: is the
amount of coordination required between the departments large or
small? There should be as few layers as possible between departments
which need to coordinate to a great extent, so they should preferably
have a single manager.

A manager has a maximum span of control. In other words, he cannot
direct an unlimited number of subordinates. How large a particular
manager's span of control is depends to a great extent upon the nature of
the work and her own experience.

This is how the matrix organization came about. This form of organi-
zation is structured in accordance with two dimensions: the functional
and the hierarchical. The hierarchical part is the same as described above
and is usually based upon functional or capacity groups. people with the
same skills belong to the same group. The functional part is based upon
the tasks which have to be performed. (The terminology can be rather
confusing.) Each person thus has a hierarchical boss—the head of the
department to which he belongs—and a functional boss, who is re-
sponsible for the task to be carried out. The tasks—which in the context
of matrix organizations are usually called "projects'—are unique; in
other words, no fixed structure can be created based upon the tasks, so
the hierarchical (fixed) structure is based upon the skills of the people
concerned. The functional bosses are known as "project leaders."

Matrix organizations are found mostly in companies that operate on
a project basis, such as building contractors, installation firms, and soft-

18 Chapter 1

Project-1 Project-2 Project-3
Supervisors Louise Anita John
Carpenters Pete Karl Geraldine
Masons Henry Tom Jerry
Painters Bert Simone Simone
Plasterers Charles Peter Paul
Figure 1.8

Staff allocation in a matrix organization

ware houses: in other words, in businesses that do not carry out serial
production but rather unique projects. The functional structure thus is
constantly subject to change. It is quite possible that person A is for a
while the leader of a project in which person B participates, and then
a little later B becomes the leader of a project involving A. Figure 1.8
shows an example of staff allocation in a matrix organization. The col-
umns show the functional allocation and the rows the hierarchical.

We can see how one person can take part in more than one project.
Naturally, one person may be involved only in one project at a time, but
It is equally possible for someone to work alternately on several proj-
ects during the same period. Often several people within one depart-
ment work on the same project. In the matrix, this would mean more
than one person being included in the same cell. For the sake of simplic-
Ity, thisis not shown in figure 1.8. A form of organization which strongly
resembles the matrix type occurs when processes are managed by a pro-
cess manager and cases by a case manager. The former is responsible for
the quality and efficiency of "her" process, whereas the latter ensures the
rapid and correct completion of "her" cases. This can lead to a conflict of
Interests.

The last form of organization which we can identify is the net-
work organization. In this, autonomous actors collaborate to supply
products or services. To the customer, though, they appear to be one
organization—which is why the network organization is sometimes
called a virtual organization. The actors perform as principals and con-
tractors. The autonomy means that there exists no formal perma-
nent (employment) relationship, which means that an actor can choose
whether or not she wishes to carry out a particular task. The actors
required to perform each task therefore must be recruited individually on

Organizing Wor kflows 19

each occasion. This may be done through a protocol and a contract tree,
as discussed in the previous section. This can be a time-consuming busi-
ness, so "framework" contracts are often drawn up for regular assign-
ments. Such a contract determines that a party is available upon request
to perform a particular type of work. Just as in a matrix organization,
party A can be party B's principal for one type of work but its subcon-
tractor for another.

More and more network organizations are being created. There are
two main reasons for this. First, firms are trying to keep their perma-
nent workforce as small as possible instead making more extensive use of
temporary staff and subcontractors. This, together with the fact that
many people are now working part time, is known as the flexibilization
of labor. In this way firms can control their fixed costs. The use of co-
makers and outsourcers, which are examples of contractors, is very
common in the building and motor industries. The second reason is that
specialist companies, each with only a limited product range, can sup-
ply together an entire product. Examples are found in the construction
Industry—in which a range of actors join forces to build a bridge—and
amongst consultancy firms, which package their individual knowledge to
offer an integrated product incorporating, say, financial, legal, fiscal, and
IT advice. A network organization is, to a certain degree, comparable
with a matrix organization. After all, the resources for each project are
assembled individually. The difference, however, is that in this case those
resources do not have the same employer.

1.6 Managing Processes

One established way of studying the management of processes is to dis-
tinguish between a management system and a managed system. The
word "system" here means all those people, machines, and computerized
Information systems that carry out particular processes. A managed sys-
tem can even be further subdivided into a lower-level management sys-
tem and a managed system (see figure 1.9). The managed system at the
lowest level of this subdivision is an enactment system. At the highest
level, a system is always part of a managed system. A management sys-
tem can manage several systems, and in doing so, it ensures the ability of

20 Chapter 1

1 v
management

t ¢« 1T &
management management
I v

managed T l
system enactment

Figure 1.9

Recursive management paradigm: The whole entity is a managed system

the managed systems to communicate with one another and with the
outside world—that is, the managed system at a higher level.

Between the management system and the managed system there oc-
curs an exchange of information. This enables the management system
to communicate objectives, preconditions, and decisions to the man-
aged system, and the managed system—conversely—reports back to
the management system. Based upon these reports, the management
system may revise the objectives, preconditions, and decisions. This
so-called planning and control cycle can be identified in every
organi zation.

Process management has long been divided into four levels. The dis-
tinction between these is based upon the frequency and scope of the
decisions to be made. By scope, we mean two things. the period of time
over which the decision has an influence, and its (potential) financial
Impact. The four levels are as follows (see figure 1.10):

1. Real-time management. Decisions can be made very
frequently(intervals range from microseconds to hours). The period of
time during which the decision has an effect is very short, and the
financial consequences of awrong decision are small.

2. Operational management. Decisions are made very regularly (from
hours to days) and their scope is limited. In other words, the influence of
the decision is no longer noticeable after a short period.

3. Tactical management. Decisions are made periodically (from days to
months), and their scope is limited.
4. Strategic management. Decisions are made only once, or no more

than every couple of years, and their scope is wide. The influence of a
strategic decision can remain noticeable for many years.

Management Time horizon Financial impact | Type of decisions | Supporting
level methods
Real-time Seconds-hours Low Equipment control | Control theory
Operational Hours-days Limited Resource Combinatorial
assignment optimization (e.g.,
scheduling)
Tactical Days-months High Resource capacity | Stochastic models
planning and (e.g., queueing
budgeting models)
Strategic Months-years Very high Process design and | Financial models,
resource types multi-criteria
analvsis
Figure 1.10

Four levels of process management

smopfyiop Surzuv3i(

Ic

22 Chapter 1

Another distinction between these levels of management is the types of
decisions which are made. Real-time and operational management in-
volve only dynamic aspects, not the structure of the business processes.
Real-time management involves the control of machines and vehicles.
Operational management mostly concerns the allocation of resources to
cases and the routing of those cases. Typical examples of operational
management are production scheduling and the routing of trains.

Tactical management concerns. capacity planning and budgeting for
operational management. Capacity planning involves determining the
guantities of resources required per type of case. This means not only
human resources, but also the machines and raw materials used in per-
forming the case. Stocks management is a typical example, involving not
only the management of the raw-materials stocks themselves but also
that of reserve resources. Budgeting concerns the allocation of financial
means and the formulation of targetsin financial terms.

Strategic management is concerned with the structural aspects of pro-
cesses and types of resources. One strategic question is whether the
company should carry out a particular process itself, or source it out.
Another question is how the processes should be structured and what
procedures should be followed.

Each management level, except for real-time management, also has the
task to take care of exceptions to rules that are made for the lower levels.
Tactical management may be involved if the resource allocation at the
operational level does not succeed.

Decision making is an important feature of (process) management. The
discipline of operations research (OR) searches for the best possible solu-
tions to decision problems using mathematical techniques. Artificial in-
telligence (Al) tries to develop computer systems that can imitate human
techniques for solving decision problems (heuristics). Organizational so-
ciology tackles such things as methods by which people can cooperate to
find a solution. Here, we shall confine ourselves to summarizing the four
phases that are always passed through when solving decision problems:

1. Definition involves establishing exactly what the problem is and, in
particular, within what scope a solution to it must be found. Drawing up
optimization criteria often forms part of this phase.

2. Creation involves formulating one or more solutions that fall within
the scope defined or satisfy an optimization criterion.

Organizing Workflows 23

3. Evaluation involves assessing different solutions, for instance
by multi-criteria analysis.

4. Selection involves selecting one solution that works in order to im-
plement it.

In principle, computer support is available for all these tasks, particularly
the second and third. This is sometimes possible using a simple spread-
sheet but usually requires mathematical techniques or simulation models.

1.7 Information Systems for Business Processes

The organization of work, both within and between companies, is be-
coming more and more complicated. This is why (computerized) infor-
mation systems have been developed that support the management of
processes and their coordination. We shall first offer a method of classi-
fying information systems. Then we shall outline how they have been
developed in the past and how they will probably be developed in the
near future.

Information systems can be categorized in many ways. The one we
have chosen to use here is based upon the role played by the system in
the processes. The list below is in ascending order of functionality:
the first type of system listed contains very little knowledge of the pro-
cesses and should only be used to support the people who actually do the
work, whereas the final one can manage processes without any human
Intervention:

» Office information systems. These systems assist the staff responsible
for carrying out and managing processes with basic information
processing: writing, drawing, calculating, filing, and communication.
They

include word processors, drawing packages, spreadsheets, simple data
base management systems, and electronic mail. These systems do not
themselves contain any knowledge of the processes. Although the infor-
mation that they process may contain business knowledge, they them
selves cannot do anything with this.

» Transaction-processing systems. These systems, also called registra-
tional systems, register and communicate the relevant aspects of changes
In the circumstances of a process and record these changes. Transaction-
processing systems that specialize in communication between different
organizations are called interorganizational information systems. These
often use electronic data interchange (EDI) using standards for data ex-

24 Chapter 1

change like XML. The heart of such a system generally is a database
management system, but today a workflow management system also
becomes an essential component. The latter type of system does have
some knowledge of the processes, as proven—for example—by the fact
that it can independently interpret incoming transactions and thus deter-
mine where and how the input data should be stored.

« Knowledge-management systems. These systems take care of acquisi-
tion and distribution of knowledge to be used by knowledge workers,
either case workers or managers. The knowledge they handle is explicit
knowledge that can be represented in digital form. One of the simplest
forms of a knowledge-management system is a search engine coupled to
a document-management system. With such a system, aknowledge
worker is able to find relevant text fragments produced by himself or
others by means of keywords or free-text search. A more advanced
facility is a case-based reasoning system that searches through a database
of best-practice cases and finds cases with ahigh level of similarity to the
actual case. The solution presented by the cases found might be applica-
ble for the actual case as well. Managers are interested mostly in
aggregated data about the processing of cases or about the cases
themsel ves.

Here we often use data warehouses that are connected to tools for sta-
tistical analysis. A data warehouse is a database that stores aggregated
data in multidimensional cells, for instance the number of customers that
bought a typical kind of product in a specific time period and a geo
graphical region.

» Decision-support systems. These compute decisions through interac-
tion with people. There are two types of decision-support systems. The
first type is based upon mathematical models. Examples include budget-
Ing and investment systems and production-planning systems. The sec-
ond type is based upon logical reasoning systems. They are also known
as expert systems. One example is a system for establishing the cause of a
defect in a machine. These systems are used at all levels of management
(operational, tactical, and strategic).

« Control systems. Also known as programmed decision-making sys-
tems, these systems cal culate and implement decisions entirely auto-
matically, based upon the recorded state of a process. Examples are
automatic ordering, climate control, and invoicing systems.

An information system is often a combination of the four types de-
scribed above. From the viewpoint of efficiency, the control system ap-
pears to be the ideal because it requires no staff. In practice, the number
of applications in which such systems can be used turns out to be very
limited, and only well defined decision situations can be approached in
thisway. Nevertheless, they do work for some operational management

Organizing Workflows 25

. Application
Application WEFMS
3| UIMS
DBMS
Operating System Operating System

Figure 1.11
Decomposition of generic functionality

problems. The decision-support systems, which solve management prob-
lems through interaction with people, offer the most potential because
they combine human insight with the computer's calculating power. We
still have absolutely no idea how an information system should make a
decision about many problems at the strategic level. In practice, most
Information systems are office-information and transaction-processing
systems.

We shall now examine the way in which we develop information sys-
tems. This will be done by means of a historical summary. The bound-
aries of the time periods given should not be regarded as clear-cut, but
that is not the most important point. The summary below highlights the
Influence of workflow management systems. What the history shows is
that more and more generic tasks have been taken out of programs and
put into decomposed management systems. Figure 1.11 illustrates this
evolution.

1. 1965-1975: decompose applications. During this period, informa-
tion systems comprised decomposed applications, each with its own
databases and definitions. The applications ran directly on the operating
system and either had no user interface or one entirely of their own. Data
were stored between two runs of the application program, originally on
punch cards and paper tapes, and later on magnetic tape and in disk
memory. There was no exchange of data between different applications.
It thus was possible for a member of staff to have different names in the
payroll program and the personnel program. It was impossible to achieve
added value by combining different sources of data.

2. 1975-1985: database management—"take data management out of
the applications." This period is characterized by the rise of the database

26 Chapter 1

management system (DMBS). Originally these were hierarchical and
network databases, later relational ones. A database is a permanently
available, integrated collection of data files which can be used by many
applications. The use of databases has the advantages that data managed
by different applications can be combined, that data structures only need
to be defined once, that the organization of data can be handed over to
a database management system, and that the same data item only needs
to be stored once. A DBMS is a piece of generic software that can be used
to define and use databases: to add, view, revise, and delete data. The use
of database management systems has also radically changed the
system-development process. once the database has been defined,
different developers can work on designing applications on it at the same
time. To do this, methods were developed for establishing data
structures before the applications were defined. This is the data-oriented
approach to sys-tem development. This period thus can be characterized
as that during which the data organization was beginning to be extracted
from application programs.

3. 1985-1995: user-interface management—"take the user interface out
of the applications." It was during this period that the next bottleneck in
system development appeared. Because we were devel oping more and
more interactive software, a great deal of time was being spent devel op-
Ing user interfaces. Originally these were designed by the developers
screen by screen, field by field. Not only did this take up alot of time,
but also each designer had her own style, which meant that every system
had to operate in adifferent way. There are now user-interface manage-
ment systems (UIMS) that solve both these problems: a user interface
can be defined rapidly and the designer is"invited" to do thisin a standard
way. In recent years, a transition has taken place from character-based
user interfaces to graphics-based ones, and as a result the utilization of
user-interface management systems has increased. Today the functions
of user-interface management systems are integrated in other tools,
like database management systems, program environments, and web
browsers. During this period the user interfaces were extracted from the
application programs.

4. 1995-2005: workflow management—"take the business processes
out of the applications." Now that data management and user
Interfacing have largely disappeared from applications themselves, it
seems that much of the software is devoted to business processes
(procedures) and the handling of cases. Therefore, it has become
attractive to isolate this component now and find a separate solution
for it. Not only can this accelerate the development of information
systems, but it also offers the added advantage that the business
processes become easier to maintain.

Organizing Wor kflows 27

Today, it occurs frequently that management wants to change an
administrative procedure, but this would have far-reaching
conseguences for the software. As a result, the change is not carried
through. Workflow systems should solve such problems. A workflow
system manages the workflows and organizes the routing of case data
amongst the human resources and through application programs. Just as
databases are developed and used with the assistance of a database
management system, so workflow management systems (WFMS) can be
used to define and use workflow systems. This period can be
characterized as that during which the processes were extracted from the
applications.

To put workflow management in historical perspective, we should
mention some of the early work on workflow management. The idea to
have generic tools, or at least generic methods, for supporting business
processes emerged in the 1970s with pioneers such as Skip Ellis and
Michael Zisman. Zisman completed his Ph.D. thesis "Representation,
Specification, and Automation of Office Procedures’ in 1997 (University
of Pennsylvania). In the 1970s, Ellis and others worked at Xerox PARC
on "Office Automation Systems." Ellis already used Petri-net-based
work-flow models (the so-called information control nets) in the late
1970s. One could wonder why it took such along time before workflow
management systems became established as a standard component for
enterprise information systems. There are several reasons for this. First of
al, workflow management requires users linked to a computer
network. Only in the 1990s did workers become connected to the
network. Second, many information systems evolved from systems that
are unaware of business processes and the organization to systems that
are aware; therefore, workflow was never considered as a really new
piece of functionality. Finally, the rigid and inflexible character of the
early (and some of the contemporary) products scared away many
potential users.

A workflow management system can be compared with an operating
system: it controls the workflows between the various resources—people
or applications. It is confined to the logistics of case handling. In other
words, a change to the content of case data is implemented only by
people or application programs. A workflow management system has a
number of functions that can be used to define and graphically track
workflows, thus making both the progress of a case through a workflow
and the structure of the flow itself easy to revise. It therefore is not re-

28 Chapter 1

markable that workflow management systems have become the ideal tool
for achieving BPR.

In the above evolution, we can see that disentangling functions from
applications is the way to improve efficiency. By separating certain
functions, generic solutions (management systems) can be developed
for them. In this way Iinformation systems can be made
component-based, by first configuring the components and then
Integrating them (a process also known as assembling). Configuration is
the setting of parameters, which may take all sorts of forms. The input of
a database scheme into a database management system and the definition
of a process scheme in a workflow management system are examples of
component configuration.

For integration of components we have the so-called middleware.
Some form of middieware just is a set of standards and language
features that create a communication structure at compile time.
Another form is a component that takes care of the communication needs
of other components.

Alongside these developments, we also increasingly observe companies
buying—for specific processes—standard software packages that
combine a large number of the functions defined above. For a specific
process, such generic software has to be configured; that is, parameters
must be set. The advantage of a standard software package is that there
are no development costs, but one drawback is that the system may not
meet all the wishes of its users. This disadvantage could, though, be
seen as a benefit, because it forces the organization to work in the
tried and trusted way embedded in the package. In fact, such a software
package contains a generic company model that can be adapted to a
specific business situation.

EXERCISES

Exercise 1.1
A workflow is defined as a network of tasks with rules that determine the
(partial) order in which the tasks should be performed.

(@ Which are these essential ordering principles?
(b) Show that iteration can be made by the other ordering principles.

Organizing Workflows 29

Exercise 1.2

In this chapter we have seen (figure 1.2) some notation to describe a
network of tasks. (This is not the notation we will use in the remainder of
the book.) A task is represented by a rectangle and it has one or more
direct predecessors and one or more direct successors. The rules are: all
predecessors should be ready before the task may be executed and
exactly one successor will be executed. Further there are two kinds of
connectors. open and closed circles with rules for passing signals.
Change these rules as follows: tasks have exactly one incoming and one
outgoing arc. Connectors may have one or more incoming and
outgoing arcs. Open circles pass the signal from only one incoming to
one outgoing arc exactly. Closed circles require from all incoming arcs a
signal and pass it to all outgoing arcs. Model the claim handling example
of figure 1.2 with these new rules. (It is allowed to connect circles to
each other.)

Exercise 1.3
The concept "task” has two meanings, depending on the point of view.
Give these two meanings and explain them.

Exercise 1.4
Give the three principles to assign employees to departments in a
hierarchical organization and give pros and cons for each choice.

2

Modeling Workflows

2.1 Wor kflow Concepts

The success of a workflow system stands or falls on the quality of the
workflows put into it. This book therefore devotes considerable attention
to the modeling and analysis of workflows. In this chapter, we shall limit
ourselves initially to the process itself. As atool, we use Petri nets. With
their help, we can represent a process in a straightforward way. We can
also use them to analyze these processes. We shall go into this aspect
more extensively in chapter 4. Before any of this, we should first examine
some of the concepts introduced in chapter 1 in more detalil.

2.1.1 The case

The primary objective of a workflow system is to deal with cases.
Examples of cases include an insurance claim, a mortgage application, a
tax return, an order, or a patient in a hospital. Similar cases belong to the
same case type. In principle, such cases are dealt with in the same way.

Each case has a unique identity. This makes it possible to refer to the
case in question. A case has a limited lifetime. Consider, for example, an
insurance claim. This case begins at the moment when the claim is
submitted and disappears from the workflow system at the point when
the processing of the claim has been completed. Between the appearance
and disappearance of a case, it aways has a particular state. This state
consists of three elements: (1) the values of the relevant case attributes,
(2) the conditions that have been fulfilled; and (3) the content of the
case.

A range of variables can be associated with each case. These case
attributes are used to manage it. Thanks to them it is, for example,
possible to indicate that a task may—under certain conditions—be
omitted.

32 Chapter 2

When handling an insurance claim, we may use the case attribute
"estimated claim value." Based upon the value of this variable, the
workflow system can decide whether or not to activate the "send
assessor" task. Note that the value of a case attribute may change as the
case progresses.

We cannot use a case attribute to see how far a case has progressed. To
do this, we use conditions. These are used to determine which tasks have
been carried out, and which still remain to be performed. Examples of
conditions include "order accepted," "application refused,” and "under
consideration." We can also regard a condition as a requirement that
must be met before a particular task may be carried out. Only once all
the conditions for a task within a particular case have been met can that
task be performed. For any given case, it is at all times clear which
conditions have been met and which not. We can also use the word
phase instead of condition. This, however, is confusing when several
conditions have been met: the case would be in more than one phase
simultaneously.

In general, the workflow system does not contain details about the
content of the case, only those of its attributes and conditions. The
con-tent is contained in documents, files, archives, and/or databases that
are not managed by the workflow management system.

2.1.2 Thetask

The term task already has been mentioned extensively. It refers to one of
the most important concepts in this book. By identifying tasks, it is
possible to structure workflows. A task is a logical unit of work. It is
Indivisible and thus is always carried out in full. If anything goes
wrong during the performance of a task, then we must return to the
beginning of the entire task. In this respect, we refer to a rollback.
However, the indivisible nature of a task depends upon the context
within which it is defined. A task which is contracted out by a client to
asupplier isregarded as "atomic" (indivisible) by the former. This does
not have to be the case for the supplier, though: he may well split the
task set into smaller ones.

Typing a letter, assessing a valuation report, filing a complaint,
stamping a document, and checking personal data are all examples of
tasks. We can differentiate between manual, automatic and
semi-automatic tasks. A manual task is entirely performed by one or
more people, with-

Modeling Wor kflows 33

e work | | I .
i
[—tas—k_}_"(o activity]

(casc]
Figure 2.1

The relationship between the terms task, case, work item, and activity

out any use of an application: for example, carrying out a physical check.
By contrast, an automatic task is performed without any intervention by
people. This usually means that an application—a computer
program— can carry out the task entirely based upon previously
recorded data. Both a person and an application are involved in a
semi-automatic task. For example, the completion of a valuation report
by an insurance assessor supported by a specially developed program.

A task refers to a generic piece of work, and not to the performance of
an activity for one specific case. In order to avoid confusion between the
task itself and the performance of that task as part of a particular case,
we use the terms work item and activity. A work item is the combination
of a case and a task which is just about to be carried out. A work item is
created as soon as the state of a case allows it. We thus can regard a
work item as an actual piece of work which may be carried out. The term
activity refers to the actual performance of a work item. As soon as work
begins upon the work item, it becomes an activity. Note that, unlike a
task, both a work item and an activity are linked with a specific case.
Figure 2.1 shows this diagrammatically.

2.1.3 The process

The way in which a particular category of cases should be carried out is
described by the relevant process. This indicates which tasks need to be
carried out. It also shows the order in which this should be done. We can
also regard a process as a procedure for a particular case type. In general,
many different cases are handled using a single process. It therefore is
possible to enable a specific treatment based upon the attributes of a
certain case. For example, it may be that one task in the processis only

34 Chapter 2

performed on some of the cases. The order in which the tasks are
per-formed may also vary depending upon the properties of the case.
Conditions are used to decide which order is followed. In essence, a
process istherefore constructed from tasks and conditions.

It Is possible to make use of previously defined processes as part of
another process. So, in addition to tasks and conditions, a process may also
consists of (zero or more) subprocesses. Each of the subprocesses again
consists of tasks, conditions, and possibly even further subprocesses. By
explicitly identifying and separately describing subprocesses, frequently
occurring ones can be used repeatedly. In this way, complex processes
can also be structured hierarchically. At the highest level of process
de-scription, we see a limited number of subprocesses. By examining one
or more of these we can, as it were, "zoom in" on particular sections of
the process.

The lifecycle of a case is defined by a process. Because each case has a
finite lifetime, with a clear beginning and end, it is important that the
process also conforms with this. So each process also has a beginning and
an end, which respectively mark the appearance and completion of a
case.

2.1.4 Routing

The lifecycle of acaseislaid down in the process. In this respect, we refer
to the routing of the case. Routing along particular branches determines
which tasks need to be performed (and in which order). In routing cases,
we make use of four basic constructions:

* The simplest form of routing is the sequential execution of tasks. In
other words, they are carried out one after the other. There is usually
also a clear dependency between them. For example, the result of one
task isinput to the next.

* |f two tasks can be performed simultaneously, or in any order, then we
refer to parallel routing. In this case, there are two tasks which both need
to be performed without the result of one affecting the other. The two
tasks are initiated using an AND-split and later resynchronized using an
AND-join.

 We refer to selective routing when there is a choice between two or
more tasks. This choice may depend upon the specific properties of the
case, as recorded in the relevant case attributes. Such a choice between
alternatives is also known as an OR-split. The alternative paths are

Modeling Wor kflows 35

reunited using an OR-join. As well as selective routing, we also use the
terms alternative or conditional routing.

* In the ideal situation, a task is carried out no more than once per case.
Sometimes, however, it is necessary to perform a particular task several
times. Consider, for example, a task which needs to be repeated until the
result of the subsequent "check" task is satisfactory. We call this form of
routing iteration.

We shall return to these four forms of routing in more detail |ater.

2.1.5 Enactment

A work item assignment can only be carried out once the state of the case
In question allows it. But actual performance of such an assignment often
requires more than this alone. If it has to be carried out by a person, he
must first take the assignment from his "in tray" before an activity can
begin. In other words, the work item is worked on only once the
employee has taken the initiative. In such a case we refer to triggering:
the work item is triggered by a resource (in the example, an employee).
However, other forms of triggering are possible: an external event (for
example, the arrival of an EDI message) or reaching a particular time (for
example, the generation of a list of orders at six o'clock). We thus
distinguish between three types of triggers: (1) aresource initiative, (2) an
external event, and (3) atime signal. Work items which must always be
carried out Iimmediately—without the intervention of external
stimuli— do not require atrigger.

The concepts summarized above are the central themes of this chapter.
We thus shall focus mainly upon the modeling of the processes which
underlie the workflows. In the next chapter, we shall turn our attention
to the allocation of work items, the arrangement of the organizational
structure, and specific staff skills. In chapter 4, we shall see how we can
analyze the workflows model ed.

2.2 Petri Nets

Unlike many other publications on workflow management, this book
takes a formal approach based upon an established formalism for the
modeling and analysis of processes—Petri nets. The use of such aformal
concept has a number of major advantages. In the first place, it forces

36 Chapter 2

precise definition. Ambiguities, uncertainties, and contradictions are thus
prevented, in contrast to many informal diagramming techniques. Sec-
ondly, the formalism can be used to argue about processes. It thus becomes
possible, for example, to establish certain patterns. Thisis closely linked
with the fact that a formalism often enables the use of a number of ana-
lytical techniques (those for analyzing performance, for instance, as well
as those for verifying logical properties). As we shall see later, it becomes
possible to check whether a case is successfully completed after a period
of time. There thus are various good reasons to opt for a formal method.
Before we depict the concepts listed earlier in this chapter within Petri
nets, it is important to know something about this technique. For the
sake of completeness, we shall go deeper into them than is strictly neces-
sary for the purposes of workflow management.

Petri nets were devised in 1962 by Carl Adam Petri as a tool for mod-
eling and analyzing processes. One of the strengths of this tool is the fact
that it enables processes to be described graphically. Later, we shall see
that we can use it to present workflow processes in an accessible way.
Despite the fact that Petri nets are graphical, they have a strong mathe-
matical basis. Unlike many other schematic techniques, they are entirely
formalized. Thanks to this formal basis, it is often possible to make
strong statements about the properties of the process being modeled.
There are also several analysis techniques and tools available which can
be applied to analyze a given Petri net.

Over the years, the model proposed by Carl Adam Petri has been
extended in many different ways. Thanks to thesg, it is possible to model
complex processes in an accessible way. Initially, however, we shall con-
fine ourselves to the classic Petri net as devised by Petri himself.

2.2.1 Classical Petri nets

A Petri net consists of places and transitions. We indicate a place using
acircle. A transition is shown as a rectangle. Figure 2.2 shows a sim-
ple Petri net, consisting of three places (claim, under Consideration, and
ready] and three transitions (record, pay, and send _letter). This network
models the process for dealing with an insurance claim. Arriving at the
place claim, it is first recorded, after which either a payment is made or a
letter sent explaining the reasons for rejection.

Modeling Wor kflows
token transition place

& w0
claim record under\[/ready
consideration ‘

send letter

Figure 2.2
A classic Petri net

Places and transitions in a Petri net can be linked by means of a
directed arc. In figure 2.2, for example, the place claim and the transition
record are linked by an arrow pointing from the former to the latter.
There are two types of arcs: those that run from a place to a transition
and those that run from a transition to a place. Arcs from a place to a
place or atransition to atransition are not possible.

Based upon the arcs, we can determine the input places of a transition.
A place p is an input place for a transition t if—and only if—there
Is a directed arc running from p to t. Similarly, we can determine the
output places of atransition. A place p is an output place for atransition
t if—and only if—there is a directed arc running fromt to p. As it hap-
pens, in figure 2.2 each transition precisely has one input and one output
place.

Places may contain tokens. These are indicated using black dots. In
figure 2.2 the place claim contains three tokens. The structure of a Petri
net is fixed; however, the distribution of its tokens among the places can
change. The transition record can thus take tokens from the claim input
place and put them in under Consideration. We call this the firing of the
transition record. Because the firing of transitions is subject to strict rules,
we shall first introduce a number of terms.

The state of a Petri net is indicated by the distribution of tokens
amongst its places. We can describe the state illustrated in figure 2.2
using the vector (3,0,0). In other words, there are three tokens in claim,
none in under Consideration, and none in ready.

A transition may only fire if it is enabled. This occurs when there is at
|least one token at each of its input places. The transitions are then, as
it were, "loaded": ready to fire. In figure 2.2, the transition record is
enabled. The other two are not.

37

38 Chapter 2

)

o ~ — T
—1 ——0O /Ody

claim record under
consideration

J

send letter
record fires -

O = O

/ ready

send letter

b

4

claim record under
consideration

Figure2.3
State before and after the transition "record" fires

A transition may fire from the moment it is enabled. As it fires, one
token is removed from each input place and one token added to each out-
put place. In other words, the moment it fires, a transition consumes tokens
from the input place and produces tokens for the output place. Figure 2.3
shows the effect of firing the transition record. Its result is that one token
IS transferred from the place claim to the place under Consideration. We
can also describe the new situation using the vector (2,1,0).

Once record has fired, a situation arises in which three transitions are
enabled. The transition record can fire again because there is at least one
token in claim, and the transitions pay and send letter can fire because
there is a token in under Consideration. In this situation, it is not pos-
sible to tell which transition will fire first. If we assume—for the sake of
convenience—that it is the transition pay which fires, then the state
Illustrated in figure 2.4 will be reached.

Note that the transition send |etter, which was enabled before firing,
IS no longer enabled. The transition record is still enabled and will
therefore fire. Eventually, after a total of six firings, the Petri net will
reach the state (0,0,3). That is, a state with three tokens in the place
ready. In this state, no further firing is possible.

Modeling Workflows

@/ ,

}| a
@ pay /
claim record undex‘: ready

consideration

send letter

Figure 2.4
State after “pay” fires

oo)(:‘/

under
consideration

claim record

send letter

Figure2.5
The modified Petri net

Transitions are the active components in a Petri net. By firing a tran-
sition, the process being modeled shifts from one state to another. A
transition therefore often represents an event, an operation, a transfor-
mation, or a transportation. The places in a Petri net are passive, in the
sense that they cannot change the network's state. A place usually rep-
resents a medium, buffer, geographical location, (sub)state, phase, or
condition. Tokens often indicate objects. These can be physical ones, but
also objects representing information. In the network considered above,
each token represents an insurance claim.

In the Petri net shown in figure 2.2, it is possible for several cases to
be in progress simultaneously. If the transition record fires twice in
succession, then there will be at least two tokens in the place under
consideration. If, for some reason, we wish to limit the number of cases
which can be under consideration at the same time to a maximum of one,
then we can modify the Petri net as shown in figure 2.5. The additional
place free ensures that the transition record is blocked as soon as a claim
goes under consideration.

39

40 Chapter 2

_> yellow g

green gy

Figure 2.6
A set of traffic lightsillustrated on a Petri net

In the initial state depicted, record is enabled because there is at least
one token at each of the input places. Once transition record has fired,
the state is such that record is no longer enabled, but the other two
transitions are. Once one of these has fired, there is again a token in the
place free. Only at this point is record again enabled. By adding the place
free, the maximum number of cases that can be under consideration at
any time has indeed been limited to one. If we wish to limit the number
of cases in progress at any time to a maximum of n, then we can model
this simply by placing n tokens in the place free at the start.

Using Petri nets, we can also describe processes that are repetitive in
nature. Figure 2.6 shows how we can model the cyclical activity of a set
of traffic lights.

The traffic lights' three possible settings are illustrated by three places.
red, yellow, and green. The three possible light changes are shown by the
transitions rg, gy, and jr. Imagine now that we want to model the traffic
lights at the crossing of two one-way streets. In this case, we require two
sets of traffic lights that interact in such a way that one of the two is
always red. Obviously, the Petri net shown in figure 2.6 needs to be
duplicated. Each set of lights is modeled using three places and three
transitions. This, however, is not sufficient, because it does not exclude
unsafe situations. We therefore add an extra place x, which ensures that
one of the two sets of lightsis aways at red (see figure 2.7).

Modeling Wor kflows
41

O red2

yellow2

genl green?

Figure 2.7
Two sets of traffic lights

When both traffic lights are red, there is a token in the place x. As one
set of lights changes to green, the token is removed from x and so the
other set is blocked. Only when both sets of lights are again red is the
other able to change to green once. In chapter 4, we use an analytical
technique to show that the traffic lights do indeed operate safely.

2.2.2 High-level Petri nets

Because Petri nets are graphical, they are easily accessible and easy to use.
They also have a strong mathematical basis and there are many analyti-
cal techniques available for them. In chapter 4, we shall see that we can
use these techniques to analyze workflows. Despite this strength, the
classic Petri net has shortcomings in many practical situations. It becomes
too large and inaccessible, or it is not possible to model a particular
activity. Thisiswhy the classic Petri net has been extended in many ways.
Thanks to these extensions, it is possible to model complex situations in
a structured and accessible way. In this section we shall focus upon the
three most important extensions: (a) color extension, (b) time extension,
and (c) hierarchical extension. We call Petri nets extended with color,
time, and hierarchy high-level Petri nets. Because a complete description
of high-level Petri nets would go too far, we shall confine ourselves to
those aspects that are important in the context of workflow management.

(a) The color extension Tokens are used to model a whole range of
things. In one model they can represent insurance claims, in another the
state of traffic lights. However, in the classic Petri net it isimpossible to

42 Chapter 2

distinguish between two tokens: two in the same place are by definition
Indistinguishable. In general, this is an undesirable situation. In the case
of two insurance claims, for example, we want to incorporate the sepa-
rate characteristics of the two clams in the model. We want to include
such things as the nature of the claim, the policy number, the name of the
policyholder, and the assessed value of the claim. In order to enable
the coupling of an object's characteristics with the corresponding token,
the classic Petri net is extended using "color." This extension ensures that
each token is provided with a value or color. A token representing a
particular car will, for instance, have a value which makes it possible to
Identify its make, registration number, year of manufacture, color, and
owner. We can notate a possible value for such atoken as follows:. [brand:
'BMW; registration: | 144 NFX'; year: '1995'; color: 'red’; owner:
'Johnson'].

Because each token has a value, we can distinguish different tokens
from one another. By "valuing" tokens, they are—as it were—qgiven dif-
ferent colors.

A firing transition produces tokens that are based upon the values of
those consumed during firing. The value of a produced token therefore
may depend upon those of consumed ones. Unlike in the classic Petri net,
the number of tokens produced is also variable: the number of tokens
produced is determined by the values of those consumed.

To illustrate this, we shall use a process for dealing with technical
faults in a product department. Every time a fault occurs—for example, a
jammed machine—it is categorized by the department's mechanic. The
fault can often be put right as it is being categorized. If thisis not the
case, then a repair takes place. After this has been done, atest is carried
out, with three possible results: (1) the fault has been solved; (2) a further
repair is required; or (3) the faulty component must be replaced. This
process is modeled in figure 2.8 using a Petri net.

A token in the place fault means that a fault has occurred which needs
to be dealt with. For each token in fault, the transition categorize will fire
precisely once. During each firing precisely one token will be produced,
In either the place solved or the place nr (needs repair). In contrast with
the classic Petri net, it is now possible for an output place not to receive a
token. During the execution of transition categorize, a choice IS now
made based upon the information available. As aresult of this choice, the

Modeling Wor kflows

fault categorize solved

repair nt test

- OO H0

Figure 2.8
The process for dealing with faults

fault is either regarded as solved or a repair is carried out. The token in
the place fault has a value in which the relevant properties of the fault are
recorded (for example: the nature of the fault, the identity of the
non-functioning component, its location code, and fault history). If a
repair is required, then the transition repair will fire, bringing the token
to place nt, followed by the firing of transition test. The transition test
produces precisely one token, which appears in one of the three output
places. The relevant information about the fault is always retained in the
value of the token in question.

In a color-extended Petri net, we can set conditions for the values of
the tokens to be consumed. If this is the case, then a transition is only
enabled once there is a token at each of the input places and the pre-
conditions have been met. A transition's precondition is a logical re-
guirement connected with the values of the tokens to be consumed. In the
Petri net illustrated in figure 2.8, we could for example add the following
precondition to the transition categorize: "The value of the token to be
consumed from the place fault must contain a valid location code." The
consequence of this precondition is that faults without a valid location
code are not categorized; they remain in the place fault and are never
consumed by the transition categorize.

We can also use a precondition to "synchronize" tokens. By this we
mean that a transition only fires if a particular combination of tokens can
be consumed. We use the transition assemble, illustrated in figure 2.9, to
Ilustrate this.

Based upon a production order, the transition assemble takes a chassis,
an engine, and four wheels and produces a car. (Thisisthe first example

43

44 Chapter 2

production order

chassis

@ assemble
)

engine

wheel

Figure2.9
The transition "assemble

we have seen in which more than one arrow leads from an input point
to a transition. In this case, there must be at least four tokens in wheel
before assemble can be enabled. The number of incoming arrows thus
shows how many tokens there must be at the input point from which
they come. When a transition fires, the number of tokens consumed is
equal to the number of incoming arrows.) When the transition assemble
fires, tokens are not taken at random from the input places. For example,
the four wheels must be of the same type, the engine must fit the chassis,
the wheel diameter must suit the chassis and the engine power, and so
on. Tokens thus are only taken from the input places in certain combi-
nations. Thisis determined by means of a precondition.

The result of the color extension is that, in contrast to the classic Petri
net, the graphic representation no longer contains all the information.
For each transition, the following factors must be specified:

 Whether there is a precondition. If there is a precondition, then this
must be defined precisely.

* The number of tokens produced per output place during each firing.
This number may depend upon the values of the tokens consumed.

* The values of the tokens produced. This, too, may depend upon the
values of the tokens consumed.

Depending upon the objective for which the Petri net has been produced,
the transitions are specified by a piece of text, afew lines of pseudo-code,
aformal specification, or a subroutine in a programming language.

Modeling Wor kflows 45

(b) The time extension Given a process modeled as a Petri net, we
often want to be able to make statements about its expected perfor-
mance. |If we produce a model of the traffic lights at a road junction, then
we are probably also interested in the number of vehicles that this junc-
tion can handle per hour. If we model the production process in a car
factory, then we also want to know the expected completion time and the
capacity required. To be able to answer these questions, it is necessary to
Include pertinent information about the timing of a process in the model.
However, the classic Petri net does not allow the modeling of "time."
Even with the color extension, it is still difficult to model the timing of a
process. Therefore, this classic Petri net is also extended with time.

Using this time extension, tokens receive a timestamp as well as a
value. This indicates the time from which the token is available. A token
with timestamp 14 thus is available for consumption by a transition
only from moment 14. A transition is enabled only at the moment when
each of the tokens to be consumed has a timestamp equal or prior to
the current time. In other words, the enabling time of a transition is the
earliest moment at which its input places contain sufficient available
tokens. Tokens are consumed on a FIFO (first-in, first-out) basis. The
token with the earliest timestamp thus is the first to be consumed. Fur-
thermore, it is the transition with the earliest enabling time that fires first.
If there is more than one transition with the same enabling time, a
non-deterministic choice in made. Moreover, the firing of one transition
may affect the enabling time of another.

If atransition fires and tokens are produced, then each of these is given
a timestamp equal to or later than the time of firing. The tokens produced
thus are given a delay that is determined by the firing transition. The
timestamp of a produced token is eqgual to the time of firing plus this de-
lay. The length of the delay may depend upon the value of the tokens
consumed. However, it is also possible that the delay has a fixed value
(for example, 0) or that the delay is decided at random. Firing itself is
Instantaneous and takes no time.

To illustrate the time extension, we can use the example of the two sets
of traffic lights, which must not simultaneously be at green or yellow. At
moment O both sets are at red. As we can see in figure 2.10, the
time-stamps of the tokens in the placesredl, x, and red2 are O.

46 Chapter 2

30 0 30
0 5 0
redl @ yrl 0 yr2 | red2
| green2

yellowl ‘ 0 ‘. ydlo
25 X

25
5 ¢ 5
(Ul w2k
genl
Figure 2.10

The two sets of traffic lights with time

The enabling time of the transition rgl is also 0, the maximum of the
timestamps of the tokens in redl and x. The enabling time of rgl is
also 0. There hence exists a nondeterministic choice between rgl and
rgl. Let us assume that rgl fires. The transition rgl consumes the two
tokens from the input places and produces one token for the place greenl
with a delay of 25 time units. In figure 2.10, each delay is shown as a
label linked to an arrow emerging from a transition. (If the delays were
dependent upon the values of the tokens consumed, this would no longer
be possible.) After the firing of rgl, there is a token in greenl with a
time stamp of 25, and gyl is the only enabled transition. The transition
gyl thus will fire at moment 25 and produce a token at yellowl with a
timestamp equal to 25 + 5 = 30. At moment 30, the transition yr1 will
fire. During this firing, yr1 produces a token for redl with a delay of 30
and a token for x without delay. As a result of the firing, rgl has an
enabling time of 60 and rg2 an enabling time of 30. Therefore transition
rg2 now fires. By adding time to the model, we thus have not only
specified the timing of the various phases, but aso forced the traffic lights
to change to green alternately.

(c) The hierarchical extension Although we can already describe very
complex processes using the color and time extensions, usually the re-
sulting Petri net still will not provide a proper reflection of the process
being modeled. Because the modeling of such a process results in a single,
extensive network, any structure is lost. We do not observe the hierar-

Modeling Wor kflows

fault categorize solved

@

%

repair

Figure 2.11
The process "solve fault" contains one subprocess: "repair

chical structure in the process being modeled by the Petri net. The hier-
archical extension therefore ensures that it becomes possible to add
structure to the Petri net model.

In order to structure a Petri net hierarchically, we introduce a new
"building block": a double-bordered square. We call this element a pro-
cess. It represents a subnetwork comprising places, transitions, arcs, and
subprocesses. Because a process can be constructed from subprocesses
that in turn also can be constructed from (further) subprocesses, it Is
possible to structure a complex process hierarchically. In order to
Illustrate this, we shall refine the process modeled in figure 2.8. This re-
finement concerns the activity repair. We no longer wish to regard repair
as a single, indivisible action, but as a subprocess consisting of the fol-
lowing steps: (1) start, (2) trace, (3) change, and (4) end. Moreover, there
IS never more than one fault under repair at a given point in time. To
model this refinement, we replace the transition repair with a subprocess
consisting of four transitions and four places—see figure 2.11.

In figure 2.11, we can see clearly that a process can take two forms:
(1) as a subprocess within a hierarchically superior process (the
double-bordered square), and (2) as the definition of the process (a
summary of

47

48 Chapter 2

the elements from which the process is constructed). We find the meaning
of a process constructed from subprocesses by replacing each of those
subprocesses with the appropriate definition. The process solve fault
Illustrated in figure 2.11 is thus in fact a Petri net consisting of six tran-
sitions and nine places.

By using (sub)processes, we can structure a Petri net hierarchically,
using either a top-down or a bottom-up approach. The top-down
approach begins at the highest level, with processes increasingly being
broken down into subprocesses until, at the lowest level, these consist
only of transitions and places. Repeated decomposition results in a hier-
archical description. The bottom-up approach works in the opposite
direction. It begins at the lowest level. First, the most elementary com-
ponents are described in detail. These elements (subprocesses) are then
combined into larger processes. Repeated composition eventually results
In a description of the entire process.

When modeling complex processes, a hierarchical method of descrip-
tion is often an absolute necessity. Only by dividing the main process into
ever-smaller subprocesses can we overcome its complexity. In this re-
spect, we refer to the divide-and-conquer strategy. However, the identi-
fication of subprocesses has yet another important advantage. It enables
us to reuse previously defined processes. If a particular subprocess recurs
several times, one definition used repeatedly will suffice. The reuse of
(sub)processes often makes it possible to model a complex process more
quickly.

In this section, we have studied the three most important types of
extensions: (a) the color extension, (b) the time extension, and (c) the
hierarchical extension. We call Petri nets which incorporate these
extensions high-level Petri nets. In the remainder of this book, we shall
use the high-level net to model and analyze processes in the context of
workflow management.

2.3 Mapping Workflow Concepts onto Petri Nets

The time has now come to illustrate the concepts described earlier—
the case, task, condition, process, trigger, and so on—using the Petri net
technique.

Modeling Wor kflows 49

2.3.1 The process

Using a process in a workflow management system, we can indicate in
which way a particular category of cases should be handled. The process
defines which tasks need to be carried out. As well as information about
the tasks to be performed, a process also contains information about con-
ditions. In this way, it defines the order in which the tasks need to be
carried out. It is also possible to use previously defined processes within
a larger process. Thus process may also consist of more than one
sub-process, as well as tasks and conditions. It therefore is obvious to
gpecify a process using a Petri net. This network should have one
"entrance" (a place without incoming arcs) and one "exit" (a place
without outcoming arcs). We show conditions as places and tasks as
transitions. This also is obvious, because transitions are the active
components in a Petri net, and places its passive components.

In order to specify aprocess using a Petri net, we shall examine a process
for handling complaints. An incoming complaint first is recorded. Then
the client who has complained and the department affected by the com-
plaint are contacted. The client is approached for more information. The
department is informed of the complaint and may be asked for its initial
reaction. These two tasks may be performed in parallel—that is, simul-
taneously or in any order. After this, the data are gathered and a decision
Is taken. Depending upon the decision, either a compensation payment is
made or a letter is sent. Finally, the complaint is filed. Figure 2.12 shows
how we can illustrate the process just described using a Petri net.

Each of the tasks record, contact_client, contact_department, pay, and
file is modeled using a transition. The assessment of a complaint is
modeled using two transitions. positive and negative. The transition
positive corresponds with a positive decision; the transition negative
corresponds with a negative decision. (Later we shall see how this task
can also be modeled using just one transition.) The places start and end
correspond with the beginning and end of the process being modeled.
The other places correspond with conditions that are or are not met by
every case in progress. The conditions play two important roles: on the
one hand they ensure that the tasks proceed in the correct order, and on
the other hand that the state of the case can be established. The place c8,
for example, ensures that a complaint isfiled only once it has been fully

50 Chapter 2

contact client a8SCss ‘ pay
cl |
record file
—0
start collect end
c2
contact department ‘ send letter
Figure2.12

The process "handle complaint” modeled as a Petri net

dealt with. It also corresponds with the state that exists between a com-
plaint being fully handled and its filing.

From the above, it should be more or less clear that a case is repre-
sented by one or more tokens. Cases thus are illustrated using tokens. In
figure 2.12, the token in the place start shows the presence of a case.
Once record has fired, there are two tokens—one at cl, one at c2—that
represent the same case. As a case is being handled, the number of its
tokens thus may fluctuate. The number of tokens that represent a par-
ticular case is equal to the number of its conditions that have been met.
Once there is a token in end, the case has been completed. In principle,
each process should fulfil two requirements: (1) it should at any time be
possible to reach—Dby performing a number of tasks—a state in which
thereisatoken in end; and (2) when there is atoken in end, all the others
should have disappeared. These two requirements ensure that every case
that begins at the place start will eventually be completed properly. Note
that it is not possible to have a token in end while there remain tasks
still to be performed. The minimum requirements just mentioned, which
every process must meet, can be checked effectively using standard Petri
net tools.

The state of a case is not determined solely by the conditions that have
been met; to steer it, the case may have one or more attributes. For these,
It seems obvious to use the color extension. The value of a token contains
Information about the attributes of the case in question. We shall go into
thisin more detail |ater.

Modeling Wor kflows 51

case 5 case 4 case 3 case 2 case 1

/ contact_client } i assess pay

end

contact_department send_letter

Figure2.13
Each caseisillustrated using one or more tokens

Tokens that correspond with particular cases are kept strictly separate
(by the workflow management system). We can trandate this into Petri
net modeling in two ways. Because tokens belonging to different cases
cannot influence one another, we can produce a separate copy of the
Petri net for each case. Each thus has its own process, as illustrated in
figure 2.12. However we can also use just one Petri net by making use of
the color extension. Thanks to this, we can provide each token with a
value from which it is possible to identify the case to which the token
refers. Thisis shown diagrammatically in figure 2.13.

The state of the Petri net illustrated here indicates that there are cur-
rently five cases in progress. Case 1 has amost been completed, whereas
case 5 is till at the start state. In order to ensure that the token belonging
to different cases do not get "mixed up," each transition is provided with
a precondition that states that only tokens from the same case may be
consumed at any one firing. If the transition collect in the situation
shown in figure 2.13 now fires, this precondition will ensure that the two
tokens for case 3 are consumed.

Figure 2.12 shows a nonhierarchical process. However it goes with-
out saying that a process may be constructed from subprocesses. To
Illustrate this, we can for example combine the first four tasks (record,
contact_client, contact department, and collect) into a single subprocess
called phasel. Figure 2.14 shows how the corresponding Petri net would
look, with two levels.

52 Chapter 2

assess
pay

! positive |

phase 1

0 .
Q -
o ~
. J
Q *e
* *
0
.
Q .
+ ’ S A
o .
0 5 .
0 .
0
0 J [}
.
]
. [y

end

gnegative
send_letter
E':',i ; '._:..................::'::
: contact_client
cl c3
record c5!
collect | % |
contact department %
Figure2.14

The process "handle complaint" now contains the subprocess "phase 1

2.3.2 Routing

Tasks may be optional. That is, there may be tasks that only need to be
carried out for a number of cases. The order in which tasks are per-
formed may also vary from case to case. By routing a case along a num-
ber of tasks, we can determine which tasks need to be carried out (and in
what order). As indicated earlier, four basic constructions for routing are
recognized. For each of these, we shall show the corresponding Petri net
modeling.

(&) Sequential routing We refer to the sequential performance of tasks
when these have to be carried out one after another. If two tasks need to
be carried out sequentially, there usually is a clear interdependence be-
tween them. For example, the result of the first is required in order to
perform the second. In a Petri net, this form of routing is modeled by
linking the two tasks using a place. Figure 2.15 shows an example of
sequential routing.

Modeling Wor kflows

OO0

cl task1 c2 task2 c3

Figure2.15
Sequential routing

AND-split ANDj oin

() ‘ c2 task1 c4 _ﬁQ

cl t1 t2 c6

{

c3 task?2 cS5

Figure2.16
Parallel routing

The task that corresponds with the transition task2 is only performed
once the task corresponding with transition taskl has been completed.
This is enforced by place ¢2, which corresponds with the condition that
must apply before task2 can be carried out.

(b) Parallel routing If more than one task can be carried out at the
same time or in any order, then we refer to parallel routing. If we confine
ourselves to the situation with two tasks, taskl and taskl, then there are
three possibilities: both tasks can be performed simultaneously; taskl can
be carried out first, then taskl; or task2 can be first, followed by taskl.
Figure 2.16 illustrates how we can model this situation using a Petri net.
In order to enable the parallel execution of taskl and task2 in the case
corresponding with the token in c1, we begin with a so-called AND-split.
Thisis atask added so as to allow more than one task to be managed at
the same time. In figure 2.16, the transition t1 is the equivalent of an
AND-split. It fires when there is a token in cl, and produces one token in
each c2 and c3. Once condition c2 has been met for a particular case,
taskl can be carried out. Once condition c3 has been met, task2 can be
carried out. Firing tl thus enables the performance of two tasks. We also
say that taskl and task2 can be carried out in parallel. Only when
both

53

54 Chapter 2

have been performed can transition t2 fire. It is the equivalent of an
AND-join: atask added to synchronize two or more parallel flows. Only
when a particular case has fulfilled both condition c4 and condition ¢c5
this task can be performed.

In figure 2.16, we have had to insert two tasks, t1 and t2, to model the
AND-split and the AND-join. We call such "artificial" additions man-
agement tasks, because they do not correspond with a recognizable piece
of work. Thanks to them, we can carry out taskl and task2 in parallel.
However, it is also possible for tasks such as tl and t2 to correspond
with an actual piece of work. In figure 2.12, for example, the task record
corresponds with an AND-split. The task collect corresponds with an
AND-join.

In a business process in which cases are carried out entirely manually
(without the aid of a workflow system), sequential routing is often the
rule due to, for example, physical limitations. For instance, the tasks in
a particular case must be carried out one after the other because the
accompanying document can only be in one place at a time. By intro-
ducing a workflow system, such limitations are largely eliminated. Tasks
that previously had to be carried out sequentially can now be done in
parallel. This can often achieve enormous time savings. Allowing parallel
routing thus is clearly of major significance in the success of a workflow
system.

(c) Selective routing A process lays down the routing for a specific
type of case. But there may be differences in routing between individual
cases. Consider, for example, a process for dealing with insurance claims.
Depending upon the specific circumstances of a claim, a particular route
will be selected. The task send assessor, for example, is not carried out
for small clams. We refer to such cases as selective routing. This involves
a choice between two or more tasks. Figure 2.17 shows an example
modeled in terms of a Petri net.

Once a case fulfils condition c1, either t11 or t12 fires. If it isthe for-
mer, then taskl is enabled. If it is the latter, then it is task2 that is en-
abled. Thus there is a choice between the two tasks. We call the network
consisting of transitions t11 and t12 and places c2 and ¢3 an OR-split.
Once one of the tasks has been performed, the OR-join ensures that a
token appears in c6. In this case, the OR-join is modeled using a network

Modeling Wor kflows

Figure2.17
Sdectiverouting (1)

OR-split OR-join
cl \[/ c6

task2

Figure 2.18 Sdlective
routing (2)

consisting of two places (¢4 and ¢S and two transitions (t21 and £22). So
the OR-split selects one of the two alternative streams and the OR-join
brings them back together. In figure 2.17, we have explicitly modeled the
OR-split and the OR-join by adding two small networks. This is neces-
sary when we want to show the OR-split and OR-join as explicit man-
agement tasks. However, it is also possible to model them implicitly, as
shown in figure 2.18.

When a case fulfils condition cl, either taskl or task2 will be carried
out. So thisis another example of selective routing. If we look at the way
In which the OR-join is modeled in the two previous figures, we notice
little difference. Obvioudly, therefore, an OR-join can be modeled using
several arrows leading into the same place. In the case of the OR-split,
though, there is a difference. In figure 2.17, a choice is made at the mo-
ment when there is a token in cl (that is, when a case fulfils condition
figure 2.18, the choice comes later. Which of the two branchesis

56 Chapter 2

actually selected is decided only at the moment when either taskl or
task2 has to be carried out. This may appear to be only a subtle differ-
ence, but in fact the distinction between the OR-splits in figures 2.17 and
2.18 can be of crucial importance.

Let us assume, for example, that taskl corresponds with the processing
of a valuation report, and that task2 has to be carried out if that report is
not delivered within a given time. In this context, the model provided
using the construction in figure 2.18 is excellent. When the token isin c1,
two subsequent events are possible: either the report arrives and taskl is
carried out, or it is late and task2 is carried out. The decision about
which task to perform is delayed until either the report arrives or a fixed
period of time has elapsed. In figure 2.17, however, the decision must be
taken immediately. If t11, for example, fires, then it is no longer
possible to carry out task2. Later on, we shall show some larger
examples in which the moment the choice is made is of great
significance.

Thus far, we have (automatically) assumed that the choice between
two alternatives is nondeterministic. In other words, we have not ex-
plained how the choice between taskl and task2 is made, because—as
far the process is concerned—it does not matter which task is performed:
the selection is left to the environment of the workflow system. In most
cases, however, the decision is made best according to the specific prop-
erties of the case. Depending upon the values of the case attributes (that
IS, the case's management parameters), we want to be able to choose be-
tween the alternatives. Figure 2.19 shows how we can model this situation.

Based upon the case attributes, transition t1 in figure 2.19 produces a
token for either c2 or c3 (but not for both). In this case, therefore, we
make use of color extension to enable a choice to be made in transition
t1. Using the attributes of the case in question, the decision rule in tl
determines which task should be performed. In doing so, we assume that
all the relevant attributes of this case are contained in the value of the
token in cl. In the case of parallel routing, however, there may be more
than one token assigned to the same case. Because the attributes concern
the entire case, these tokens must have identical values. In other words,
there must never be two tokens assigned to the same case but with dif-
ferent values. In order to enforce this, we must ensure that a change to a
case attribute caused by the performance of a task updates the value of
every token pertaining to that case.

Modeling Wor kflows

OR-join

Figure2.19
Selective routing (3)

We thus can regard a case attribute as information that can be
Inspected and revised by every task relevant to that case. In theory, the
broad nature of a case attribute can be modeled explicitly by linking each
transition with a common place. This place always contains one token
whose value corresponds with those of the case attributes. Because illus-
trating this common place makes the process diagrams confusing, for the
sake of convenience we shall omit it.

In figure 2.19, the number of tokens produced in each of the output
places of tl is variable (O or 1). A choice is made based upon the value
(case attributes) of the token in c1 and the decision rule in t1. However,
we can also produce this choice by using two transitions containing the
appropriate preconditions. Recall that a precondition is based on the
colors of the tokens to be consumed and acts like a transition guard.
Figure 2.20 shows how thisis possible.

The precondition in transition t11 corresponds with the requirements
that need to be met to justify the choice for taskl. The precondition in
t12 determines when task2 should be selected. If the precondition in
t11 isthe negation of the precondition in t12, then each token in cl will
result in a deterministic choice for either taskl and task2. In this case,
therefore, the OR-splitsin figures 2.19 and 2.20 are equivalent.

Because constructions such as the AND-split, AND-join, OR-split and
OR-join occur frequently, we use a special notation to illustrate them.
Thisisshown in figure 2.21.

We represent an AND-split by using the symbol & on the
output side. This indicates that a token must be produced for each of
the output places under all circumstances.

S7

58 Chapter 2

preconditions OR-split

.
-“‘
e

Figure2.20
Selective routing (4)

We represent an AND-join by using the symbolHon the input side.
This indicates that the task being modeled can only take place once there
Is a token at each of the input places. From figure 2.21, we can see that
both the AND-split and the AND-join correspond with a "normal tran-
sition" like those encountered in the classic Petri net.

We represent an OR-split by using the symbolXon the output side.
This indicates that a token must be produced for precisely one of the
output places. As we saw earlier, we can model thisin two ways. In the
rest of this chapter, we shall use only the first of these.

We represent an OR-join by using the symbol&Jon the input side.

We can use the following technique to remember the difference be-
tween the AND and OR symbol. When, in principle, the arrows enter or
|leave the same large triangle, it isan AND. Otherwiseg, it isan OR.

The symbolEon the output side indicates a mixture of an AND-split
and an OR-split. In this case one or more tokens will be produced,
depending upon the value of the case attributes. Figure 2.21 shows two
ways of using this mixed form in a Petri net.

(d) Iterative routing The last form of routing is the repeated execution
of a particular task. Ideally, a task will be performed only once per case.
In certain situations, however, it is necessary to apply iterative routing.
For example, when a certain task needs to be repeated until the results of
a subsequent test prove positive. Figure 2.22 shows how we can model
Iterative routing.

Figure2.21 Modeling Wor kflows
Notation method for common constructions 59
Notation Meaning

O—1:

AND-split

56

&
T

t
AND-join

©—>t

OR-split

8

L
09 ¢
W

OR-join

AND/OR—Sp?O

5

e

or

T

60 Chapter 2

O O—F~O—3—0
cl task1 c2 task?2 c3 c4 task3 cS

Figure 2.22
|terative routing (1)

O -OA-O—1O

c2
cl task1 > c4 task3 cS

task2 c3

Figure2.23
Iterative routing (2)

Taking the case corresponding with the token in c1, we see that taskl
and task2 are performed successively. Once task2 has been completed,
OR-split t determines whether or not it needs to be performed once
again. Once task2 has been carried out one or more times, the case
moves on to task3. Task2 must be carried out at least once between
taskl and task3.

Figure 2.22 assumes that task2 must be performed at least once
("repeat ... until ..."). If thisis not the case, the construction illustrated
in figure 2.23 applies ("while ... do ...").

Immediately upon completion of taskl, OR-split t determines whether
or not task2 needs to be carried out. It now becomes possible for taskl to
be followed directly by task3.

In both examples, there exists an OR-split that makes its decision
based upon the current values of the case attributes. Note that the two
constructions illustrated correspond with the familiar "repeat ...
until ..." and "while ... do ..." constructions that appear in many
programming languages.

Example Using the example described in the previous chapter, we can
now illustrate the concepts defined thus far. The example concerns an

Modeling Wor kflows 61

Insurance company's process for dealing with claims. Chapter 1 identifies
sixteen tasks in this process. In chapter 1 we did not yet introduce the
Petri net tool to model workflow processes. Therefore, we used an "ad
hoc" notation technique to illustrate the routing. Now, however, we can
show the process "properly,” as shown in figure 2.24. But before looking
at that diagram, try to model the process yourself.

For the sake of convenience, the conditions which are used to route the
cases correctly are given "symbolic" names. In practice, however, sym-
bolic names are of no use. For example, we could more appropriately
call condition c7 accepted. Conditions c1 and c20 have a special role;
cl represents the start of the process and c20 its end. Note that the "in-
formal" diagram in chapter 1 and figure 2.24 do closely resemble one
another. The major difference between the two is that the conditions are
explicitly named in figure 2.24. As a result, we can describe the state of a
case.

2.3.3 Enactment

A process is a collection of tasks, conditions, subprocesses, and their
relationships with one another. As we have seen, we can describe a pro-
cess using a Petri net. Conditions are depicted using places and tasks
using transitions. To simplify the representation of a process in terms of a
Petri net, we have defined a method of notating a number of typical
constructions. (Seefigure 2.21.)

A process is designed to deal with a particular category of cases, and so
may handle many individual cases. A task is not specific to a particular
case. However, when a case is being carried out by a process, tasks are
performed for that specific case. In order to avoid confusion between a
task as such and its performance on a specific case, we have introduced
the terms work item and activity. A work item is the combination of a
case and a task which is ready to be carried out. The term activity refers
to the actual performance of awork item. At the point when awork item
Is actually being worked on, it is transformed into an activity. Note that,
unlike a task, both a work item and an activity are linked to a specific
case. The distinction between (1) a task, (2) a work item, and (3) an
activity becomes clear as soon as we translate them into Petri net terms.
A task corresponds with one or more transitions, a work item with a
transition being enabled, and an activity with the firing of atransition.

62

Chapter 2

record

@ 1 c2
cl

c3 2 c4

establish type
policy | 3 4 | premium
reject?
cS 5 cb
c7 cll reject!
\{? :
cl0 amount c8 c9 emergency?
| 7 5b 9 cl8
settlement
g 11 c13 c19 10
expert cl2 measures
cl4
objection (|13 G—Qe— 12 | reaction
clé6 cl7
cl5 14 15 ——9@—9 16 ——)é c20
proceedings pay close
Figure 2.24

The process for dealing with insurance claims

Modeling Wor kflows

L task?2

| c2 | c4

o ® —O
cl taskl O\l task3 task5s c6

c3 5
task4 ©

Figure2.25
An example with various forms of triggering

Transitions in a Petri net are "eager." In other words, they fire as soon
as they are enabled. As we have just established, the enabling of a tran-
sition corresponds with a work item. For an assignment to be carried out,
however, more is often required than ssmply the relevant case having the
right state. If it isto be carried out by a person, she must first take it from
her "in tray" before an activity begins. In other words, the work item is
only carried out once the employee has taken the initiative. This is why
we recoghnized the existence of triggering. Certain work items can only be
transformed into an activity once they have been triggered.

We differentiate between three types of triggers. (1) a resource initia-
tive (such as an employee taking a work item from her in tray); (2) an
external event (such as the arrival of an EDI message); and (3) a time
signal (such as the generation of a list of orders at six o'clock). Work
items that must always be carried out immediately, without the inter-
vention of aresource, do not need atrigger. We can illustrate in a Petri
net which form of triggering applies. Tasks triggered by a resource are
shown using a wide, downward-facing arrow. Those triggered by an ex-
ternal event have an envelope symbol. And those that are time dependent
have a clock symbol. Figure 2.25 shows an example of a process con-
taining "triggering information."

Task2 and task4 are handled by a resource. Task3 is time-dependent,
and taskl requires an external trigger (for example, an EDI message).
The only automatic task is taskb.

The notion of triggering is of major importance. It is not the work-
flow system that is in charge, but the environment. The system cannot
force aclient to return aform; it cannot even force an employee to per-

63

64 Chapter 2

form a work item at a particular time. It is easy to model the triggering
mechanism in Petri net terms. To each transition belonging to a task
reguiring atrigger an extra input place is added. A token in such an extra
Input place represents the trigger. So a token appears in that extra input
place when the trigger is recorded by the workflow system.

The triggering mechanism also shows that the timing of an OR-split
choiceis crucial. In figure 2.25, the timing of the nondeterministic choice
between task2 and task3 is as late as possible. Once condition ¢c2 has
been met there are two possibilities. The first is that an employee begins
the work item corresponding with task2 before the moment specified for
the performance of task3 is reached. Alternatively, no employee takes the
Initiative to carry out task2 before that moment. In the first case task2
fires, in the second task3 fires. A choice between the two alternatives thus
Is delayed until the moment when the first trigger is recelved. Because it is
not known in advance which one will be activated, the implicit OR-split
In the form of place c2 cannot be replaced by an explicit OR-split in the
form of one or two additional transitions. So the OR-split comes in two
forms: implicit and explicit. Figure 2.26 shows these diagrammatically.

Like the firing of a transition, an activity—that is, the actual perfor-
mance of atask for a specific case—is an atomic unit. It thus is always
carried out in full. However, a fault may occur during the performance of
the task related to the activity. For example, it may make use of a re-
source (such as an employee) which interrupts it for some reason or
another. An employee may notice, say, that certain data required to carry
out the task are missing. Or the activity may use an application (such as a
program for calculating interest charges) that crashes while performing

Implicit OR-split Explicit OR-split

Figure 2.26
Thereis an essential difference between the implicit and explicit OR-split

Modeling Wor kflows 65

the task. Moreover a failure in the workflow system itself—perhaps due
to a system error—during an activity cannot be ruled out.

In all such cases, a so-called rollback is required. This involves return-
Ing the workflow system to its state prior to the start of the activity.
Following the rollback, the activity can be restarted. Only when the
activity has been successfully completed does a so-called commit occur
and all changes made become definitive. As far as the process is con-
cerned, a rollback is very simple: the case attributes and all valid con-
ditions are returned to their original values. For the application (which
has been cut off in the middlie of performing a task), a rollback can be
more complicated.

2.3.4 Example: Travel agency
Let us consider an example where triggers play an important role. To
organize atrip, atravel agency executes several tasks. First the customer
IS registered. Then an employee searches for opportunities which are
communicated to the customer. Then the customer will be contacted to
find out whether she or he is still interested in the trip of this agency and
whether more alternatives are desired. There are three possibilities: (1)
the customer is not interested at all, (2) the customer would like to see
more alternatives, and (3) the customer selects an opportunity. If the
customer selects atrip, the trip is booked. In parallel, one or two types of
Insurance are prepared if they are desired. A customer can take insurance
for trip cancellation or/and for baggage loss. Note that a customer can
decide not to take any insurance, just trip cancellation insurance, just
Baggage loss insurance, or both types of insurance. Two weeks before the
start date of the trip the documents are sent to the customer. A trip can
be cancelled at any time after completing the booking process (including
the insurance) and before the start date. Note that customers who are not
insured for trip cancellation can cancel the trip (but will get no refund).

Based on this informal description, we create the corresponding pro-
cess using the constructs introduced in this chapter. Figure 2.27 shows
the result.

The process, like any workflow process in this book, has a source place
which serves as the start condition (i.e., case creation) and a sink place
which serves as the end condition (i.e., case completion). First, the tasks

66 Chapter 2

L1 | L L \D' contact _cust

c3

. c2 .
start register search communicate

__,O cancel

AND \ c¢6 insurancel? ¢9 insurancel cll 03 .14
split o 2 o AND join ©'° send documents
c7 insurance2? ¢10 insurance2 c12
Figure2.27

The travel agency

register, search, communicate, and contact_cust are executed sequen-
tially. Task contact_cust is an OR-split with three possible outcomes: (1)
the customer is not interested at all, that is, a token is put into end, (2)
the customer would like to see more alternatives, that is, a token is put
Into c2, and (3) the customer selects an opportunity, that is, atoken is
put into c15 to initiate the booking. Tasks AND_split and AND _join
have just been added for routing purposes. These routing tasks enable the
parallel execution of the booking and insurance tasks. The task book
corresponds to the actual booking of the trip. Tasks insurancel and
Insurance2 correspond to handling both types of insurance. Since both
types of insurance are optional, there is a bypass for each of these tasks.
The OR-split insurancel ? allows for a bypass of task insurancel by put-
ting atoken in cll. After handling the booking and optional insurances
the AND-join puts atoken in ¢13. The remainder of the process is, from
the viewpoint of triggers, very interesting. Note that all tasks executed
before this point are either tasks that require a resource trigger or auto-
matic tasks added for routing purposes only. The downward-facing
arrows denote the resource triggers. If the case isin c13, then the normal
flow of execution is to first execute task send documents and then exe-
cute start_trip. Note that task send documents requires both aresource

Modeling Wor kflows 67

trigger and a time trigger. These two triggers indicate that two weeks
before the beginning of the trip a worker sends the documents to the
customer. Task start_trip has been added for routing purposes and
requires a time trigger. Without task startjtrip, that is, putting the token
In end after sending the documents, it would have been impossible to
cancel the trip after sending the documents. Task cancel is an explicit
OR-join and requires both a resource trigger and an external trigger.
Thistask is only executed if it is triggered by the customer. Task cancel
can only be executed when the case is in ¢13 or c14, that is, after han-
dling the booking and insurance related tasks and before the trip starts.
Using the travel agency example, we point out two guidelines for
modeling. The first guideline concerns the use of OR-joins. OR-join tasks
should be avoided as much as possible. In most situations it is possible to
use places/conditions instead of explicitly modeling OR-join tasks. If an
OR-join task has two or more input conditions and these conditions are
not input for any other task, then these conditions can be fused together
because, from a semantical point of view, they are identical. As a result
the number of elements in the diagram is reduced and there is no need to
use an OR-join. For example, place c2 in figure 2.27 can be split into two
conditions; one condition for new cases and one condition for cases that
require more work. Such a split would introduce the need for an OR-join
task search. The resulting diagram only becomes more complex without
changing the actual behavior. Therefore we prefer the solution with one
condition c2 with two incoming arcs. Only in rare situations are OR-join
tasks needed to obtain the desired behavior. Consider for example figure
2.27. Task cancel is an OR-jaoin. It is not possible to remove this OR-join
by fusing the input conditions c13 and c14. Conditions c13 and c14
correspond to different states, that is, in ¢c13 send_documents is enabled
and in cl14 start_trip is enabled. The second guideline for modeling con-
cerns the use of triggers for the first task in the process. In figure 2.27
we could have added an external trigger to task register. This trigger
would correspond to the request of the customer. Another interpretation
IS that the request of the customer corresponds to the creation of the
Initial token in condition start. This interpretation is used in figure 2.27.
Therefore the external trigger was not added to task register. In this book
we prefer to use this interpretation. However the interpretation that the

68 Chapter 2

first task requires an external trigger to initiate the process is also
allowed.

And finally ... In this chapter, we have introduced a process-modeling
technique for the specification of workflows. It is based upon the theory
of Petri nets and has a number of advantages. First, the technique is
graphical and easy to apply. As we have seen using several examples,
workflow concepts can be illustrated elegantly using Petri nets. Second, it
IS a technique with a good formal foundation: the meaning of each pro-
cess is precisaly defined. As a result, we have for example discovered that
two types of OR-split exist. Another important advantage over many
other process-modeling techniques is the fact that (interim) states are
explicitly indicated. This enables us to differentiate between an implicit
and an explicit OR-split. Explicit states also make it conceptually easier
to cancel cases. Cancellation can be achieved simply by removing all the
tokens belonging to that case. An explicit notion of statesis also essential
when transferring a case from one workflow system to another. Finally—
because Petri nets have a formal basis—various analytical methods are
possible.

EXERCISES
Exercises Classical Petri Nets

Exercise 2.1 German traffic light

There are some differences between traffic lights in different countries.
The traffic lights described in this chapter are Dutch traffic lights. The
traffic lights in Germany have an extra phase in their cycle. German
traffic lights do not turn suddenly from red to green, but rather give an
additional yellow light just before turning to green.

(@) ldentify the possible states and model the transition system. A tran
sition system lists all possible states and state transitions.

(b) Provide a Petri net that is able to behave like a German traffic light.
There should be three places indicating the state of each light and all state
transitions of the transition system should be supported.

(c) Give aPetri net that exactly behaves like a German traffic light. Make

sure that the Petri net does not allow state transitions that are not
possible.

Modeling Wor kflows 69

Figure2.28
Project X

Exercise 2.2 Project X

A secret project by the government (let's call it Project X) will be exe-
cuted by one person and consists of 6 tasks: A, B, C, D, E, and F. Figure
2.28 specifies the order in which the tasks need to be executed (prece-

dence graph, cf. PERT/CPM). A possible execution trace is for example
ABDCEF.

(@ Model the project in terms of a classical Petri net.
(b) How does one model so that E is optional ?

(0 How does one model so that D and E should be executed consecu
tively, that is, B and C are not allowed between D and E?

Exercise 2.3 Railnet

A circular rall network consists of four tracks. Each track is in one of the
following three states:

* Busy, that is, there isatrain on the track.

 Claimed, that is, atrain has successfully requested access to the
track.

» Free, that is, neither busy nor claimed.

There are two trains driving on the circular track. The track where a
train resides is busy. To move to the next track a train first claims the
next track. Only free tracks can be claimed. Busy tracks are released
the moment the train moves to another track. One can abstract from
the identity of trains only the state of the rail network is considered.

(@ Model the dynamic behavior of the rail network in terms of a Petri
Net.

(b) Isit easy to model the situation with 10 tracks (160 states)?

70 Chapter 2

Exercise 2.4 Binary counter

The following (binary) counter is to be modeled as a Petri net. The
marking of a place represents a binary value (1 or 0). The combination of
the markings of these places represents the natural number that is dis-
played by the counter. For example, the binary number 101, that is, 5,
marks two places corresponding to a "1" (i.e., the places 2 and 2°) and
one place corresponding to a "0" (i.e., the place 2). Make a model of a
counter able to count from 0 to 7.

Exercises High-Level Petri Nets

Exercise 2.5 Driving school

A driving school is trying to set up an information system to track the
progress of the students' training and the deployment of instructors. As a
starting point for a formal process model the following description can
be used.

New students register with the driving school. A registered student
takes one or more driving lessons followed by an examination. Each
driving lesson has a beginning and an end. Instructors give driving les-
sons. The driving school has five instructors. Each driving lesson is fol-
lowed by either another lesson or an examination. The examination has
a beginning and an end and is supervised by a driving examiner. In total
there are ten driving examiners. For the outcome of an examination there
are three possibilities:

1. The student passes and |eaves the driving school.
2. The student fails and takes additional lessons in order to try again.
3. The student fails and gives up.

(@ Model the driving school interms of a classical Petri net.

(b) Use a colored Petri net to model that one takes ten lessons before
taking the exam and people will drop out if they fail three times.

() Add time to model that a lesson takes one hour and an exam thirty
minutes.

Exercise 2.6 Bicycle factory
A factory produces bicycles (just one type). The Bill Of Materials (BOM)
Isgiven in figure 2.29.

Modeling Wor kflows
40 minutes
20 minutes / machine Of
mac};;nz()f —\) blCYCIG type B
20 minutes subassembly_2 brake
machme of
subassembly_l wheel
/ \
frame pedal
Figure2.29
Bicycle factory

Suppliers deliver the raw materials. First the frame and two pedals are
assembled. This takes twenty minutes and is done by a machine of type
B. The other two assembly steps are defined in a similar fashion (see fig-
ure 2.29). Finally, the end product is delivered after three assembly steps.
The factory has three machines of type A, and seven machines of type B.
Each of the machines has a capacity 1, that is, a machine is either free or

busy.
(@ Model the factory in terms of a Petri net. Make sure to model the

states of the machines (busy/free) explicitly and abstract from time.

(b) Add time to model the temporal behavior. What is the maximal
throughput per hour?

Workflow Process Definitions

Exercise2.7 Insurance company

Insurance company X processes claims that result from traffic accidents
with cars where customers of X are involved in. Therefore, it uses the
following procedure for the processing of the insurance claims.

71

72 Chapter 2

Every claim, reported by a customer, is registered by an employee of
department CD (where CD is Car Damages). After the registration of the
claim, the insurance claim is classified by a claim handler of rank A or B
within CD. There are two categories. simple and complex claims. For
simple claims two tasks need to be executed: check insurance and phone
garage. These tasks are independent of each other. The complex claims
require three tasks to be executed: check insurance, check damage his-
tory, and phone garage. These tasks need to be executed sequentially in
the order specified. Both for the ssmple and complex claims, the tasks are
done by employees of department CD. After executing the two respec-
tively three tasks a decision is made. This decision is made by a claim
handler of rank A and has two possible outcomes: OK (positive) or NOK
(negative). If the decision is positive, then insurance company X will pay.
An employee of the finance department handles the payment. In any
event, the insurance company sends a letter to the customer who sent the
claim. An employee of the department CD writes this | etter.

Model the workflow by making a process definition in terms of a Petri
net using the techniques introduced in this chapter.

Exercise 2.8 Complaints handling

Each year travel agency Y has to process a lot of complaints (about
10,000). There is a special department for the processing of complaints
(department C). There is also an internal department called logistics (de-
partment L) which takes care of the registration of incoming complaints
and the archiving of processed complaints. The following procedure is
used to handle these complaints.

An employee of department L first registers every incoming complaint.
After registration a form is sent to the customer with questions about the
nature of the complaint. This is done by an employee of department C.
There are two possibilities: the customer returns the form within two
weeks or he does not. If the form is returned, it is processed automati-
cally resulting in a report that can be used for the actual processing of the
complaint. If the form is not returned on time, a time-out occurs resulting
In an empty report. Note that this does not necessarily mean that the
complaint is discarded. After registration, that is, in parallel with the
form handling, the preparation for the actual processing is started.

Modeling Wor kflows 73

First, the complaint is evaluated by a complaint manager of depart-
ment C. Evaluation shows that either further processing is needed or it is
not. Note that this decision does not depend on the form handling. If no
further processing is required and the form is handled, the complaint is
archived. If further processing is required, an employee of the complaints
department executes the task "process complaint” (this is the actual
processing where certain actions are proposed if needed). For the actual
processing of the complaint, the report resulting from the form handling
IS used. Note that the report can be empty. The result of task "process
complaint” is checked by a complaint manager. If the result is not OK,
task "process complaint” is executed again. This is repeated until the re-
sult is acceptable. If the result is accepted, an employee of the department
C executes the proposed actions. After this the processed complaint is
archived by an employee of department L.

Give the process, that is, model the workflow by making a process
definition in terms of a Petri net.

Exercise 2.9 Let's have a party

A group of students wants to set up an agency to organize parties. The
customer should indicate the amount of money to be spent, the number
of persons the party is meant for, and the