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Preface

This is the third volume in the series “Tutorial in Mathematical Biosciences”.
These lectures are based on material which was presented in tutorials or de-
veloped by visitors and postdoctoral fellows of the Mathematical Biosciences
Institute (MBI), at The Ohio State University. The aim of this series is to in-
troduce graduate students and researchers with just a little background in ei-
ther mathematics or biology to mathematical modeling of biological processes.
The first volume was devoted to mathematical neuroscience, which was the
focus of the MBI program in 2002–2003. The second volume dealt with math-
ematical modeling of calcium dynamics and signal transduction, which was
the focus of the MBI program in the winter of 2004. Documentation of these
activities, including streaming videos of the workshops, can be found on the
web site http://mbi.osu.edu.

The present volume is devoted to the topics of cell division cycle, tumor
growth, and cancer chemotherapy. These topics were featured in three MBI
workshops held during the fall of 2003. The first chapter gives an overview of
the modeling of cell division cycle. This is a process of replicating the genetic
material as well as other cellular components of the cell. The emphasis here is
not on the biochemistry, but rather on the dynamics arising from the topology
of the network of molecular interactions.

Chapters 2–4 deal with various aspects of tumor growth. At the early
stage of tumor growth, the tumor cells receive nutrients (oxygen, glucose,
etc.) from the blood, which circulates in the vasculature. However, as the
tumor grows, the blood supply is unable to keep up with the demand: Indeed,
cells which reside in the core of the tumor do not receive enough nutrients
and they become necrotic. In order to enable its continued growth, the tumor
secretes growth factors and, as a result, new blood vessels are formed and move
into the tumor in a process called angiogenesis. The mathematical model and
analysis of this process are described in Chap. 2. By the time a tumor has
grown to a size that can be detected, there is a strong likelihood that it has
already reached the vascular growth phase. Chapter 3 deals with this situation
by developing a mathematical model exploring the process that enables the
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tumor to “soften” the extracellular matrix and invade the neighboring tissue.
This invasion may eventually lead to cancer metastasis. Chapter 4 is concerned
with the interaction between tumor cells and immune cells. It develops a model
of tumor growth which includes tumor-infiltration cytotoxic lymphocytes in
a relatively small tumor prior to tumor-induced angiogenesis. The models in
Chaps. 2–4 are based on partial differential equations.

Chapter 5 deals with cancer chemotherapy. Two major obstacles to suc-
cessful chemotherapy of cancer are cell-cycle phase dependence of treatment,
and emergence of resistance of cancer cells to cytotoxic agents. The chapter
develops optimal control models with the aim of making chemotherapeutic
processes more successful.

Finally, Chap. 6 gives an overview of mathematical models of solid tumors
and cancer therapy which developed in the last several decades. Here the
emphasis is on novel mathematical problems. The models are generally based
on partial differential equations in a domain, the tumor region, which is one
of the unknowns of the problem. The chapter presents open problems for
mathematicians.

I wish to express my appreciation and thanks to Baltazar Aguda, Howard
Levine, Marit Nilsen-Hamilton, Mark Chaplain, Anastasios Matzavinos, Marek
Kimmel, Georgios Lolas and Andrzej Swierniak for their marvelous contribu-
tions. I hope this volume will serve as a useful introduction to those who want
to learn about important and exciting problems that arise in modeling of cell
division cycle, cell proliferation, and cancer.

Ohio
September 2005 Avner Friedman
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Modeling the Cell Division Cycle

Baltazar D. Aguda

Bioinformatics Institute, 30 Biopolis Street, #07-01 Matrix, Singapore 138671
baltazar@bii.a-star.edu.sg

1 Introduction

The ability of an organism to reproduce and perpetuate its species is one of
life’s defining attributes. As far as we know of all life forms on earth, the
replication of a set of genetic information encoded in the DNA is absolutely
required. Because of stringent requirements for faithful gene replication and
the uncertainty in environmental conditions, the biological cell – with its semi-
permeable membrane delineating the DNA from the surroundings – is a struc-
tural necessity. In other words, the cell could be viewed as the unit of life. The
cell division cycle, or “cell cycle” for short, is the process of replicating the ge-
netic material as well as other cellular components. In this chapter, the reader
is introduced to the current consensus view of the molecular machinery of the
cell cycle. The emphasis is not on the details of the biochemistry, but rather
on the dynamics arising from the topology of the network of molecular inter-
actions. After a summary of the physiology of the cell cycle, the key regulatory
molecules are introduced. Using basic chemical reaction kinetics, the rates of
the steps in the mechanism can be written and a set of dynamical equations
are established. A detailed discussion of the work on fission yeast by Novak
et al. [1] is provided to illustrate the intricacies and problems in modeling the
cell cycle. The more complex mammalian cell cycle is also discussed briefly
to show the evolutionary conservation of molecular pathways essential in cell
cycle regulation.

2 Basic Biology of the Cell Division Cycle:
Chromosome Cycle and Growth Cycle

Just prior to cell division, in a phase called “mitosis” or M phase, the dramatic
events during the segregation of duplicated chromosomes could be visualized
under a microscope as shown in Fig. 1. Before mitosis, the DNA content of the

B.D. Aguda: Modeling the Cell Division Cycle, Lect. Notes Math. 1872, 1–22 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006



2 B.D. Aguda

Fig. 1. Fluorescence microscopy of a dividing cell showing microtubules (in green)
and chromatin (in red). In “interphase” (composed of the cell cycle phases G1, S, and
G2) chromatin is uncondensed and nuclear membrane is intact (not visible here).
Chromatin is condensed in “prophase” (when the nuclear membrane also breaks
down). Pairs of sister chromatids migrate (with the help of mitotic spindle fibers)
to the mid-plane during “metaphase”. The sisters are separated during “anaphase”
and are pulled towards the spindle poles. In “telophase” (not shown here), nuclear
membranes form around the two sets of segregated chromosomes. “Cytokinesis”
is the process of division of the two daughter cells. (Photograph courtesy of W.
C. Earnshaw, Wellcome Trust Centre for Cell Biology, University of Edinburgh,
Scotland, UK)

cell is replicated in S phase (S for Synthesis of DNA). A normal “chromosome
cycle” involves alternating S and M phases with “Gap” phases called G1 and
G2. The canonical sequence of eukaryotic cell cycle phases and their typical
duration (in mammalian cells) are shown in Fig. 2. In early embryonic cell
cycles, S and M phases could alternate without discernible G1 and G2.

In addition to the chromosome cycle, a cell must also grow and replicate
its other components (proteins, membranes, organelles, etc.) and divide these
components more or less evenly between the two progeny cells. Doubling of
cell mass prior to division is especially important for unicellular organisms
such as yeasts in order to maintain a constant average cell size.
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Fig. 2. Phases in the eukaryotic cell cycle. Typical relative durations of the phases
are given for a mammalian cell dividing with a period of 24 hours. S = DNA synthesis
phase, M = mitosis, G1 and G2 are “gap” phases, G0 = quiescent (nondividing)
state

3 The Molecular Regulators of the Cell Cycle:
CDKs and APC

In 2001 the Nobel Prize for Physiology or Medicine was awarded to Paul
Nurse, Timothy Hunt and Leland Hartwell for their seminal discoveries of
key molecular regulators of the cell cycle. Nurse identified and characterized
enzymes called “Cyclin-Dependent Kinases” (CDKs). These enzymes drive
the cell cycle by catalyzing phosphorylation of proteins crucial for cell cycle
progression. Hunt discovered a group of proteins called “cyclins” that bind
CDKs to form cyclin/CDK complexes. The binding of a cyclin is absolutely
required for the activation of a CDK. The cyclins are so named because they
are degraded periodically during the cell cycle which also explains the observed
periodic variation of the kinase activities of CDKs. Hartwell’s group discovered
many genes involved in cell cycle control, including a set of genes called “start”
genes that are crucial for initiating S phase.

Cyclins are synthesized and then abruptly degraded upon exit from mi-
tosis. The enzymatic activities of the CDK partners follow suit. Many of the
phosphorylation targets of CDKs have been identified and, although many are
still unknown, there is little doubt that the CDKs are the master regulators of
various cell cycle-related processes including gene expression, protein degrada-
tion (as in nuclear envelop breakdown in mitosis), replication of centrosomes,
segregation of duplicated chromosomes, etc. This is why the CDKs are often
referred to as components of the “cell cycle engine.” In the models presented
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below, the implicit assumption is that the oscillations in CDK activities drive
all other cell cycle processes.

The separation of the duplicate chromosomes (also called sister chro-
matids) during anaphase requires the activity of an enzyme complex called
the “Anaphase-Promoting Complex” (APC) which targets proteins called “co-
hesins” for degradation (cohesins act as the glue between sister chromatids).
It is now known that the APC targets the mitotic cyclins for destruction and,
importantly, that this removal of mitotic cyclins is required for exit from mito-
sis. Indeed, Tyson, Csikasz-Nagy and Novak [2] propose that “to understand
the molecular control of cell reproduction is to understand the regulation of
CDK and APC activities.” Basically, when CDK activity is low (as in G1),
APC activity is high; and when CDK activity is high (as in S/G2/M phases),
APC activity is low. Thus, one can view the periodic oscillations of CDK ac-
tivity as resulting from a mutual antagonism between CDK and APC. In the
next few paragraphs, a sketch of the essential pathways will be given.

4 The Key Molecular Pathways

Several years of collaboration between the groups of Bela Novak and John
Tyson have resulted to a set of models of the eukaryotic cell cycle [1–5]; the
essentials of which are shown schematically in Fig. 3 for the particular case of
fission yeast (Schizosaccharomyces pombe). In this section, an overview of the
key regulatory network is given in order to motivate the detailed mathematical
modeling that follows.

Two “commitment” points (irreversible transitions) in the cell cycle are
shown in Fig. 3. START refers to the point of commitment for another round
of DNA replication. FINISH is the point of exit from mitosis where the com-
mitment to divide is made. As suggested in the model discussed below, START
and FINISH transitions are associated with the switching on or off of CDK
activity, and that these transitions can be viewed as bifurcation points of a
dynamical model.

The Novak-Tyson (NT) model depicted in Fig. 3 focuses on the mutual an-
tagonisms between Cdc13/Cdc2 and APC (via the auxiliary factors Ste9 and
Slp1), and between Cdc13/Cdc2 and Rum1 (a CDK inhibitor; also referred
to as CKI). Cdc13 is a B-type cyclin, and Cdc2 is a cyclin-dependent kinase
(now also called CDK1). Binding of Rum1 to Cdc13/Cdc2 inhibits Cdc2 ki-
nase activity (process 1 in Fig. 3). In turn, active Cdc2 can phosphorylate
Rum1 which leads to Rum1’s degradation (process 2). Ste9/APC modifies
Cdc13 to a form that renders this cyclin for degradation (process 3). On the
other hand, Cdc13/Cdc2 inhibits Ste9/APC by phosphorylation (process 4).
These mutual antagonisms imply that Cdc13/Cdc2 tends not to coexist with
either Ste9/APC or Rum1. In this version of the NT model, high CDK and
low APC activities are associated with the S/G2/M phases, while low CDK
and high APC activities are associated with the G1 phase.
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Fig. 3. The fission yeast cell cycle showing the major phase transitions (START,
G2/M, and FINISH) along with the network of regulation of the primary cy-
clin/CDK called Cdc13/Cdc2. See text for discussion of this network. The figure
is redrawn and modified from [1]

How are the toggle switches between CDK and APC, and between CDK
and CKI, regulated? There are “helper” [1] molecules that assist the CKI
and the APC to gain the upper hand over the CDK. As shown in Fig. 3, the
helper for Ste9/APC is Slp1/APC (processes 5 and 10). On the other hand,
Cdc2 is helped by “starter kinases” (SK) which inactivate Rum1 (process
6) and Ste9/APC (process 7). Cdc13/Cdc2 inhibits SK activity (process 8)
by downregulating the latter’s transcription (phosphorylation of transcrip-
tion factors for SK). Process 9 represents experimental observations regard-
ing Cdc2-dependent activation of Slp1/APC. Processes 11 and 12 signify the
many phosphorylation processes catalyzed by Cdc2 in order to implement the
START and G2/M transitions. To allow the Cdc2 activity to oscillate between
low (G1-phase) and high (S/G2/M-phase) values, negative feedback loops ex-
ist, namely, the set of processes {9, 5, 3} and the set of processes {8, 6, 1} and
{8, 7, 3}. These negative feedback loops allow the possibility of generating
oscillatory dynamics.
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5 From Qualitative Network and Mechanisms
to Dynamical Equations

In this section, mechanistic details of the qualitative network shown in Fig. 3
are discussed. After the rate expressions for the steps in the mechanism are
specified, deterministic ordinary differential equations can be written to de-
scribe the dynamics of the system. Novak’s and Tyson’s groups have published
various versions of their fission yeast cell cycle model, but for pedagogic rea-
sons, only one of their papers [1] is discussed here in detail to illustrate the
formulation of the dynamical equations, computer simulations and bifurca-
tion analysis. For other descriptions and more analysis of the fission yeast cell
cycle model, see [2] and [3]. The details of the mechanism that corresponds
to Fig. 3 are shown in Fig. 4, and the corresponding dynamical equations are
listed in Table 1.

Growth Cycle

Cell mass, M , is modeled by exponential growth ((1), Table 1). M is divided by
2 at the end of mitosis when MPF (mitosis promoting factor) activity decreases

Fig. 4. Detailed steps of the Novak-Tyson model of the fission yeast cell cycle [1].
The numbering of the steps corresponds to the numbering of the rate coefficients
used in Table 1 in the text. The figure is redrawn from [1]
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Table 1. Equations for the Novak-Tyson (NT) Model for Fission Yeast Cell Cycle
(From Table I of [1])

Eqn. No. Kinetic Equations

1 dM
dt

= µM

2 d[Cdc13T ]
dt

= k1M − k
′
2[Cdc13T ] − k

′′
2 [Ste9][Cdc13T ] − k

′′′
2 [Slp1][Cdc13T ]

3 d[preMPF ]
dt

= kwee([Cdc13T ] − [preMPF ]) − k25[preMPF ]

−k
′
2[preMPF ] − k

′′
2 [Ste9][preMPF ] − k

′′′
2 [Slp1][preMPF ]

4 d[Slp1T ]
dt

= k
′
5 +

k
′′
5 [MPF ]4

J4
5+[MPF ]4

− k6[Slp1T ]

5 d[Slp1]
dt

= k7[IEP ]([Slp1T ]−[Slp1])
J7+([Slp1T ]−[Slp1])

− k8[Slp1]
J8+[Slp1]

− k6[Slp1]

6 d[IEP ]
dt

= k9[MPF ](1−[IEP ])
J9+(1−[IEP ])

− k10[IEP ]
J10+[IEP ]

7 d[Ste9]
dt

=
(k

′
3+k

′′
3 [Slp1])(1−[Ste9])

J3+(1−[Ste9])
− (k

′
4[SK]+k4[MPF ])[Ste9]

J4+[Ste9]

8 d[Rum1T ]
dt

= k11 − (k12 + k
′
12[SK] + k

′′
12[MPF ])[Rum1T ]

9 d[SK]
dt

= k13[TF ] − k14[SK]

Auxiliary Equations

i kwee = k
′
wee + (k

′′
wee − k

′
wee)G(Vawee, Viwee[MPF ], Jawee, Jiwee)

ii G(a, b, c, d) = 2ad

b−a+bc+ad+
√

(b−a+bc+ad)2−4ad(b−a)

iii k25 = k
′
wee + (k

′′
25 − k

′
25)G(Va25[MPF ], Vi25, Ja25, Ji25)

iv [Trimer] = 2[Cdc13T ][Rum1T ]

Σ+
√

Σ2−4[Cdc13T ][Rum1T ]

v Σ = [Cdc13T ] + [Rum1T ] + Kdiss

vi [MPF ] = ([Cdc13T ]−[preMPF ])([Cdc13T −[Trimer])
[Cdc13T ]

vii [TF ] = G(k15M, k
′
16 + k

′′
16[MPF ], J15, J16)

below 0.1, a threshold value chosen by Novak et al. [1] to simulate experiments
as closely as possible. The lack of explicit mechanistic coupling between mass
and the activation of CDK activity is a major shortcoming of models of the
cell cycle at this time. In the NT model, mass is coupled with [Cdc13T] ((2),
Table 1) and with [TF] (equation vii, Table 1; TF = transcription factor).
Note that the use of the Goldbeter-Koshland [6] function G for [TF] allows
for an ultrasensitive response of [TF] to increase in mass. This function is
defined in equation (ii) of Table 1. More detailed explanation about the G
function is given in the Appendix.
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MPF Dynamics

In Table 1, (2), Cdc13T refers to the total of all cdc13/cdc2 complexes, includ-
ing Rum1/cdc13/cdc2 trimers. The first term on the right-hand side (r.h.s.)
of (2) assumes that the rate of synthesis of Cdc13 is proportional to the cell’s
mass. The succeeding terms are degradation rates, the first being due to degra-
dation pathways that are independent of Ste9 and Slp1, while the last two
terms are due to Ste9- and Slp1-induced degradation, respectively.

Figure 5 shows the interconversion of the various species containing
Cdc13/Cdc2. The species called preMPF refers to the dimeric and trimeric
tyrosine-phosphorylated forms of Cdc13/Cdc2. From this figure, one can un-
derstand the equation for preMPF ((3), Table 1). The first term on the r.h.s.
gives the rate of formation of preMPF due to steps catalyzed by Wee1. The sec-
ond term gives the rate of dephosphorylation of preMPF catalyzed by Cdc25.
The last 3 terms are degradation terms similar to those of Cdc13T. Note that

Fig. 5. Various protein complexes involving Cdc13/Cdc2, including the trimers
with Rum1 (tyrosine-phosphorylated and unphosphorylated). preMPF is defined as
the total of the tyrosine-phosphorylated Cdc13/Cdc2, with and without Rum1. The
figure is from [1] and used here with permission
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kwee is assumed to have the form given in equation (i) in Table 1. The second
term is proportional to a G function whose second argument is a function of
[MPF]. Increasing [MPF] therefore decreases kwee (because G increases with
the ratio Vawee/(Viwee[MPF])); thus, the form of kwee encapsulates the mutual
antagonism between Wee1 and MPF. The first term on the r.h.s. of the kwee

equation represents MPF-independent phosphorylation of Wee1.
An explanation similar to that of kwee can be given for the equation

for k25 (equation iii, Table 1). Note the dependence of k25 on [MPF]. The
rate parameter k25 increases with [MPF] since G increases with the ratio
Va25[MPF]/Vi25). This dependence represents an important positive feedback
loop between Cdc25 and MPF [7].

The equation for [Trimer], (iv) and (v) in Table 1, assumes rapid equi-
librium between trimers and the components cdc13/cdc2 and Rum1. The
equation for active MPF is given in (vi) in Table 1.

Dynamics of the FINISH Module (Slp1/APC and IEP)

The total Slp1 concentration, [Slp1T], varies according to (4) of Table 1. The
first term is due to MPF-independent synthesis of Slp1. The second term
is MPF-dependent synthesis of Slp1 which is a Hill-type equation with high
cooperativity as represented by the exponent 4 of [MPF]. This provides a
switch-like behavior for Slp1 that is controlled by MPF. The last term on the
r.h.s. represents degradation.

Active Slp1 varies according to (5) in Table 1. The interpretation of this
equation could be readily understood from Fig. 4. The two enzymatic steps
(7 and 8 of Fig. 4) have Michaelis-Menten kinetics. The last term represents
degradation.

The hypothetical enzyme in its phosphorylated form, namely IEP, varies
according to (6) in Table 1. Novak and Tyson predict the existence of IEP
which provides the delay necessary to give sufficient time for the chromosomes
to align with the metaphase plane before they are separated at anaphase
(Slp1/APC catalyzing the degradation of cohesins). Figure 4 gives a straight-
forward interpretation of the terms on the r.h.s. of (6) in Table 1. Note that
[IE] + [IEP] = 1.

G1/S Module

Ste9, the other APC auxiliary factor involved mainly in the G1/S module,
varies according to (7) in Table 1. The first term on the r.h.s. represents the
activation of the inactive form of Ste9 (for both Slp1-independent and Slp1-
dependent activation). The second term is for the deactivation of Ste9 through
SK-catalyzed and MPF-catalyzed steps.

The total concentration [Rum1T] varies according to (8) in Table 1. The
first term is for the assumed constant synthesis rate of the Rum1 protein. The
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second term represents the three pathways of Rum1 degradation, including
SK-dependent and MPF-dependent routes.

The starter kinase SK concentration varies according to (9) in Table 1.
Note that mass M drives the increase in TF activity according to the G
function discussed previously.

Computer Simulations

Solving the differential equations given in Table 1 gives the periodic oscilla-
tions shown in Fig. 6A. The parameters used in this figure are assumed by
Novak et al. [1] to correspond to “wild-type” fission yeast. The dimensionless
cell mass M increases from 1 to 2, and it should be noted that the “periodic-
ity” in the growth cycle is actually imposed by dividing M by 2 at the end of
mitosis when MPF decreases through the value of 0.1.

Note that cells enter mitosis when MPF activity shoots up and, after
a time delay provided by IEP, Slp1/APC gets activated and initiates the
degradation of Cdc13 (steps 9, 7, 2 in Fig. 4) with a corresponding drop in
MPF activity. Ste9/APC then gets activated (step 3 in Fig. 4) and helps in
the accelerated degradation of Cdc13 causing the FINISH transition. Thus, a
new cycle begins with very low MPF activity and active TF which induces
expression of SK (step 13 in Fig. 4). The rapid increase in SK activity will
inhibit Ste9 and Rum1, thus allowing the moderate increase in MPF and the
associated G1/S transition. The G2/M transition characterized by the large
and abrupt increase in MPF activity is basically due to the inactivation of
Wee1 – carried out by the positive feedback loop between Cdc25 and MPF.

Novak et al. [1] used the model summarized in Table 1 to simulate various
mutants, including those missing in wee1, rum1, ste9 and cdc25. The reader
is referred to [1] for more details.

Phase-Plane and Bifurcation Analysis

Although the NT model has 9 independent dynamical variables, it is interest-
ing to see how Novak et al. [1] carried out a phase-plane analysis in order to
develop an intuitive understanding of the cell cycle transitions. The authors
determined the nullclines on the [Cdc13T]-[MPF] plane shown in Figs. 6B and
6C. The [Cdc13T]-nullcline is determined by setting d[Cdc13T]/dt to zero ((2)
of Table 1) and obtaining an expression containing [Cdc13T] and [MPF ] only.
The mass M in this nullcline function is considered a parameter. The other
variables, [Ste9 ] and [Slp1 ], are ultimately expressed in terms of mass M and
[MPF ] after setting all the other variables at steady state (see [1] for details).
The [MPF ]-nullcline function is derived from equation vi of Table 1 after
solving for the steady state values of [preMPF ] and [Trimer ].

Figures 6B and 6C show two phase planes, one for mass M = 1 (newborn
cells) and for M = 1.6 (cells that just passed the G2/M transition). M is
treated as a control parameter. For newborn cells, the two nullclines intersect
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Fig. 6. (A) Numerical simulations of the Novak-Tyson model defined in Table 1.
Figure is copied from [1], and used here with permission. The parameter values
are those from Table II of the same reference and listed here for convenience (all
constants have units of min−1 except the Ji’s and kdiss which are dimensionless):
k1 = 0.03, k′

2 = 0.03, k2
′′ = 1, k2

′′′ = 0.1, k′
3 = 1, k3

′′ = 10, J3 = 0.01, k′
4 = 2, k4 =

35, J4 = 0.01, k′
5 = 0.005, k5

′′ = 0.3, k6 = 0.1, J5 = 0.3, k7 = 1, k8 = 0.25, J7 =
J8 = 0.001, k9 = 0.1, k10 = 0.04, J9 = J10 = 0.01, k11 = 0.1, k12 = 0.01, k′

12 = 1,
k12′′ = 3, kdiss = 0.001, k13 = 0.1, k14 = 0.1, k15 = 1.5, k′

16 = 1, k16
′′ = 2, J15 =

J16 = 0.01, Vawee = 0.25, Viwee = 1, Jawee = Jiwee = 0.01, Va25 = 1, Vi25 = 0.25,
Ja25 = Ji25 = 0.01, k′

wee = 0.15, kwee
′′ = 1.3, k′

25 = 0.05, k25
′′ = 5, µ = 0.005. (B)

Cdc13T and MPF nullclines for M = 1 (newborn cells), and (C) for M = 1.6 (cells
that just passed the G2/M transition). • = stable steady state; o = unstable steady
state. Figure is from [1] with permission

3 times, giving rise to three steady states, two stable (solid circles) and one
unstable (open circle). The S/G2 cell cycle phase is associated with high
[Cdc13T] level but low [MPF ] activity. Upon reaching a mass threshold, the
S/G2 state and the unstable steady state are lost, and the system switches to
a steady state characterized by lower [Cdc13T] but higher [MPF ] activity –
this state is associated with M-phase. Note that the steady-state associated
with M-phase is stable in the phase plane of Fig. 6C; when the full set of
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dynamical equations is considered (e.g. including M as a dynamical variable),
the M-phase steady state becomes unstable allowing a FINISH transition into
G1.

6 Mammalian Cell Cycle and Checkpoints

The knowledge learned from lower eukaryotes such as yeast is quite useful in
unraveling the more complex regulatory network of the mammalian cell cycle.
There are at least a dozen more types of CDKs and cyclins in mammals,
[8–9] and particular cyclin/CDK complexes seem to exert their functions at
specific phases of the cell cycle. The current consensus picture is as follows: D-
type cyclins are expressed early in G1; these cyclins bind and activate CDK4
and/or CDK6. The D-type cyclins are sometimes referred to as “growth-factor
sensors”. Prior to S-phase, a G1 checkpoint reminiscent of START in yeast,
but called “Restriction Point” (or R-point) in mammals, is crossed via the
activation of cyclin E/CDK2 [8, 10–11]. The maintenance of S-phase requires
the activities of cyclin A/CDK2 and cyclin A/CDK1 [9]. The G2/M transition
is triggered by an exponential increase in the activity of cyclin B/CDK1 (also
called MPF or “mitosis promoting factor” in the older literature). As in yeast,
the degradation of cyclin B is required for exit from mitosis. There had been
attempts at modeling the mammalian cell cycle [8, 12–14]. The discussion
here will focus on the control mechanism of the G1/S transition guarded by
the R-point. The suggestion will also be made that the G2/M transition is
basically controlled in the same way, i.e. that there is an intrinsic instability
in the network which is targeted by signaling pathways to arrest or slow down
cell cycle progression. These ideas are based on the results of Aguda and
co-workers [7–8, 15–17].

A qualitative network of the G1/S transition is shown in Fig. 7. The pre-
replication complex (pre-RC) is composed of several protein complexes (ORC,
MCMs, Cdc6, etc.) involved in recognition of origins and initiation of DNA
replication (e.g. opening the DNA duplex). Transcription factors of the E2F
family have been shown to induce expression of various S-phase genes, in-
cluding many members of the pre-RC, cyclin E, cyclin A, Cdc25A, etc. [18].
In quiescent cells, the E2Fs are inhibited by members of the retinoblastoma
protein (RB) family. This inhibition is due to binding of RB to E2F, as well
as recruitment by RB of HDAC proteins that transform chromatin struc-
ture into one that is repressesive of transcription [19]. Upon growth factor
(GF) stimulation, D-type cyclins start the cascade of phosphorylation steps
leading to inactivation of RB. Active CDK4 or CDK6 phosphorylates RB
causing the latter’s dissociation from E2F; cyclin E and cyclin A can then
be expressed and subsequently activate CDK2 which further phosphorylates
RB. The positive feedback loops in RB phosphorylation (see Fig. 7) are ob-
vious candidates for the explanation of the switch-like behavior of the R-point.
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Fig. 7. A qualitative network of the major interactions involved in the G1/S transi-
tion in the mammalian cell cycle. Arrows mean “activate” and hammerheads mean
“inhibit”. Dashed lines are transcriptional and translational processes. Solid lines
are protein-level interactions. See text for details

In addition to RB, there are CDK Inhibitor proteins (collectively called
“CKIs”) that bind and inhibit the CDKs. To simplify the discussion, only one
of them is shown in Fig. 7, namely, the CKI called p27 (also named Kip1). This
protein has been shown to play a significant role in regulating the G1/S tran-
sition via a mutual antagonistic relationship with CDK2. Also, as shown in
Fig. 7, a positive feedback loop between the phosphatase Cdc25A and CDK2
exists. Note that this Cdc25A-CDK2 loop is similar to the positive feedback
represented in the parameter k25 for the G2/M transition in the Novak-Tyson
model (in mammals, the isoform Cdc25C is involved in a positive feedback
loop with CDK1 during the G2/M transition). The hypothesis that have been
advanced previously [8] regarding the “kinetic origin” of the switching be-
havior of the R-point is that the subnetwork involving CDK2, Cdc25A, and
p27Kip1 guarantees the existence and sharpness of the activation switch of
CDK2. The CDK2-Cdc25A-p27 subnetwork is characterized by two coupled
positive loops that generate the sharpness of the CDK2 switch.

The details of the positive feedback loop between CDK2 and Cdc25A
is interesting. As shown in Fig. 8, both proteins undergo phosphorylation-
dephosphorylation (PD) cycles. Active Cdc25A removes an inhibitory phos-
phate group from CDK2. In return, active CDK2 phosphorylates and thereby
activates Cdc25A. It was shown previously [7] that several interactions
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Fig. 8. Mechanistic details of the CDK2-Cdc25A-p27Kip1 subnetwork. Inactive
Cdc25A (iCdc25A) is transformed to the active state (aCdc25A) by its phos-
phorylation by active Cyclin E/CDK2 (aCycE/CDK2). Inactive Cyclin E/CDK2
(iCycE/CDK2) is dephosphorylated by aCdc25A and transformed to active Cyclin
E/CDK2 (aCycE/CDK2). The inhibitor p27Kip1 forms a trimer with CycE/CDK2
thereby repressing the kinase activity of CDK2; aCycE/CDK2 phosphorylates
p27Kip1 rendering the latter a target of the protein degradation machinery

between cyclic enzyme reactions (PD cycles being specific examples) are un-
stable. For example, positively coupled PD cycles exhibit transcritical bifur-
cation as shown in Fig. 9. For the specific example of mass-action kinetics
assumed in this figure, a set of independent dynamical equations is the fol-
lowing:

dy1

dt
= v1f − v1r

dy2

dt
= v2f − v2r

(1)

where v1f = k1fx1y2, v1r = k1ry1, v2f = k2fx2y1, and v2r = k2ry2. Note that
there are two conservation conditions, E1 = x1 + y1 and E2 = x2 + y2.

There are two branches of steady states, one is a zero steady state for
all total enzyme concentrations while the other is a branch with a positive
slope. The transcritical bifurcation point, where these two branches intersect,
is determined from the following equation (for mass-action kinetics):

E1E2 =
k1r

k1f

k2r

k2f
(2)

It is interesting to notice from the above equation and from Fig. 9 that in
order for Y1 and Y2 to have positive steady states, the product E1E2 must be
greater than the value of the r.h.s. of (2). If Y1 and Y2 are interpreted as the
active states of proteins 1 and 2, one can then claim that these proteins must
increase beyond threshold levels defined by (2). This is one possible mechanism
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E1

Fig. 9. Transcritical bifurcation diagram generated by positively coupled cycles. E1

is the sum of [X1] and [Y1]. The steady state concentrations ([ ]ss) of Y1 and Y2 are
plotted versus E1. Solid curves are stable steady states; dashed line is a branch of
unstable steady states

that may be relevant to the important issue of coupling cell growth with the
cell cycle.

For the G2/M transition, a subnetwork topology similar to the CDK2-
Cdc25A-p27 subnetwork in G1/S can be identified. This is the CDK1-Cdc25C-
Wee1 that is also a component of the Novak-Tyson model. Indeed, it has
been suggested that the CDK1-Cdc25C-Wee1 subnetwork is a target of DNA
damage signal transduction pathways to arrest the cell cycle [15].

7 Coupling Between the Cell Cycle and Apoptosis

When the cell cycle machinery is in overdrive (e.g. due to overexpression of
cancer-causing genes called oncogenes or, alternatively, due to inhibition of
tumor suppressor genes), cells may “commit suicide” or apoptosis for the well
being of the multicellular organism. Aguda & Algar [17] recently reviewed and
analyzed the complex molecular networks linking the initiation of S phase and
the activation of enzymes called caspases that execute the breakdown of cellu-
lar proteins during apoptosis. These authors also proposed a modularization
scheme (Fig. 10A) that subdivides the network into modules corresponding to
signal transduction pathways, S-phase initiation, apoptosis, and a control node
that coordinates the cell cycle and apoptosis. An example of a kinetic model
for this modular network is shown in Fig. 10B. Craciun, Aguda & Friedman
[20] carried out a detailed mathematical analysis of the Aguda-Algar model
using the following set of equations:
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Σ

Fig. 10. (A) The modular structure of the Aguda-Algar model that links the initi-
ation of the cell cycle and apoptosis with growth-factor signaling [17]. (B) A kinetic
model corresponding to (A) that implements the ultrasensitive responses of the sig-
naling, cell cycle, and apoptosis modules. The cyclic enzyme reactions involving the
couples (S1, S2), (C1, C2), and (A1, A2) possess the zeroth-order ultrasensitivity
discussed in the Appendix

dΣ

dt
= ε0(ks − ksd1Σ − ksd2C2Σ) (3)

dS2

dt
= ε−2

(
k1ΣS1

KM1 + S1
− vm1S2

KMr1 + S2

)
(4)

dG2

dt
= ε−3(k2S2 + k2aC2 − km2G2 − km2aC2G2) (5)

dC2

dt
= ε−1

(
k3G2C1

KM3 + C1
− vm3C2

KMr3 + C2

)
(6)

dA2

dt
= ε2

(
k4G2A1

KM4 + A1
+

k4aC2A1

KM4 + A1
− vm4A2

KMr4 + A2

)
(7)

where Σ = signaling molecule, S2 = active signaling protein, G2 = control
node of transcription factors, C2 = active cell cycle marker (for initiation of
S phase), and A2 = active apoptosis marker. S1, C1, and A1 are the corre-
sponding inactive forms of the molecules.

Using (3)–(7), a phase diagram can be constructed that demonstrates the
capability of the modular network (Fig. 10) to simulate a common experimen-
tal observation, namely, that increasing intensity of growth factor stimulation
(represented by the parameter ks) can drive the cell from quiescence (non-
dividing) to cell cycling and ultimately to apoptosis (see [17] for review). A
phase diagram is shown in Fig. 11 using the parameters ks and ksd2; the latter
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Fig. 11. A phase diagram constructed from the model equations (3)–(7) in the text
(from Craciun, Aguda & Friedman [20]). The parameter ks is associated with the
intensity of growth-factor signaling, and the parameter ksd2 is associated with the
strength of the negative feedback loop from the cell cycle to the signal molecule Σ
(see Fig. 10). Fixed parameter values are: ksd1 = 0.03, k1 = k3 = 10, Vm1 = 1,
kM1 = kMr1 = 0.02, k2 = 0.1, k2a = 0.01, km2 = 1, km2a = 0.001, Vm3 = 0.1, kM3 =
0.02, kMr3 = 0.02, k4 = 1, k4a = 1, Vm4 = 1, kM4 = 0.02, kMr4 = 0.1, ε = 0.1,
S1 + S2 = 1, C1 + C2 = 1, A1 + A2 = 1

parameter is a rate constant associated with the C2-dependent decay of the
signal Σ (i.e. a negative feedback loop from the cell cycle to growth-factor
signaling). An interesting prediction from the phase diagram is the region la-
beled “q-a′′ where the system is bistable, i.e. the system can either be in a
quiescent (q) state or in the apoptotic (a) state depending on its history (or
initial conditions).

8 Conclusions and Future Directions

Novak and Tyson have integrated the details of the eukaryotic cell cycle into a
coherent picture of a network of molecular interactions whose dynamics could
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be modeled by ODEs and analyzed using the tools of dynamical systems and
bifurcation theories. An implicit assumption in the NT model is that there is
an autonomous oscillator, namely the CDK oscillator, that drives the cell cycle
processes (directly or indirectly) of DNA synthesis, centrosome segregation,
chromosome segregation, nuclear envelop breakdown, cytokinesis, etc. The
NT model further hypothesizes that transitions between cell cycle phases are
represented by bifurcations of the model dynamical system, and that cell cycle
checkpoints are controlled by the parameters affecting these bifurcations.

Topological analysis of the cell cycle network identified essential positive
and negative feedback loops. The switch from G1 to S/G2/M in the NT model
is associated with bistability caused by positive loops in the model. The CDK
oscillations are possible due to the presence of negative loops. The coupling
between these positive and negative loops gives rise to hysteretic oscillations
(periodic switching between the lower and upper branches of stable steady
states). Breaking down the complex network into these essential loops pro-
vides a good way of reducing the model without removing required qualitative
features [17]; such a model reduction also leads to the interesting hypothesis
that there exists a minimal cell cycle network structure that is conserved from
lower to higher eukaryotes, but modified only according to new demands of
multicellularity [21].

Future mathematical models of the cell cycle are expected to utilize ge-
nomic, transcriptomic, and proteomic data that are rapidly accumulating as a
result of recent advances in high-throughput biotechnologies [22–26]. Bioinfor-
maticians are currently creating pathways databases or knowledgebases that
integrate heterogeneous sources of information (a good example of a knowl-
edgebase can be found at http://reactome.org ). A challenge for mathemati-
cians and modelers will be to devise methods of extracting kinetic models
from these pathways databases [27].
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Appendix

Zeroth-Order Ultrasensitivity
and the Goldbeter-Koshland Function

The Goldbeter-Koshland function G is used in the Novak-Tyson (NT) model
to generate a switching behavior when certain parameters are varied. Here, it
is shown how this switching behavior called zeroth-order ultrasensitivity [6]
arises when the Michaelis constants (Jm) are small, and what parameters can
be varied to see this ultrasensitivity. A very small Jm means that the enzyme-
substrate complex is very tight and hardly dissociates. Thus, the NT model
that uses the function G makes the assumption that the enzyme-substrate
complexes involved in the steps are very stable.

For a reversible reaction such as that shown in Fig. 12, if both steps a
and i are enzyme-catalyzed steps with Michaelis-Menten kinetics, the rate of
change of species A concentration is:

d[A]
dt

=
Va[I]

Ja + [I]
− Vi[A]

Ji + [A]
(A.1)

Since the mechanism is cyclic, and no mass is lost, the following conservation
condition holds

[I] + [A] = C, constant . (A.2)

If [A] is at steady state, i.e. d[A]/dt = 0, and using the conservation condition
to express [I] in terms of [A], one can derive the following equation for the

Fig. 12. How zeroth-order ultrasensitivity arises from a cyclic enzyme reaction.
Both reaction steps a and i are catalyzed with Michaelis-Menten kinetics, and with
maximum steady state rates Va and Vi, respectively. The Goldbeter-Koshland func-
tion, G, is the fraction of species A at steady state. Black curve corresponds to
Michaelis constants Ja = Ji = 0.001; gray curve is for Ja = Ji = 1
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fraction as = [A]s/C at steady state (this fraction is none other than the
function G). Note that the steady state equation is a quadratic polynomial in
as and the expression below considers one of the roots (see [4]).

as =
[A]
C

= G(Va, Vi, Ja, Ji) =
2VaJi

B +
√

B2 − 4VaJi(Vi − Va)
(A.3)

where
B = Vi − Va + Vi

Ja

C
+ Va

Ji

C

A plot of G versus (Va/Vi) for various values of Michaelis constants, Ja and
Ji, is shown in Fig. 12. Note that as the J’s go to zero, G becomes a step
function.
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Abstract. Angiogenesis, the formation of new blood vessels from an existing vascu-
lature, is a complex biochemical process involving many different biomolecular and
cellular players. We propose a new model for this process based upon bio-molecular
considerations and the cell cycle.
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1 Introduction

Angiogenesis is one of the many important processes that occurs in both nor-
mal development such as placental growth and embryonic development as well
as in abnormal growth such as in the rapid growth of malignant tumors. The
purpose of this paper is to give the mathematically inclined reader a sense of
the underlying biochemical and mathematical ideas that have been recently
coupled together to model this process. Most of what we have to say here has
already appeared in the mathematical biology literature. However, we have
added included some new modifications that have yet to appear but that may
offer us new insight into modeling this complex phenomenon.

Outline

II. What is angiogenesis?
III. What are the key events in angiogenesis?
IV. What are the chemical and cellular contributions to capillary structure?

A. Endothelial cells form the capillary wall.
B. Pericytes surround the endothelial cells and provide structural and

functional support.
C. The basal lamina encases the endothelial cells and pericytes.

V. Interaction of endothelial cells with their environment.
A. The integrins and the extracellular matrix.
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VI. What are the extracellular events leading to vascularization?
A. Individual matrix proteins.

VII. Extracellular soluble proteins that alter the environment and influence
EC function: Proteases and protease inhibitors.

VIII. Growth and angiogenesis: Factors that stimulate angiogenesis.
IX. Inhibitors of angiogenesis.
X. Cellular events that characterize angiogenesis.

A. Proliferation.
B. Apoptosis.
C. Migration.

XI. Intracellular signals (signal transduction) that regulate cellular events.
XII. How can these events be modeled mathematically?

A. Discrete versus continuum models-a question of scale.
B. The mathematical ideas in prospective
C. A quick review of enzyme kinetics and the Michealis-Menten hy-

pothesis.
D. The role of chemical kinetics in the simplification of the intracellular

events.
E. The role of the cell cycle.
F. The role of chemotaxis, haptotaxis and chemokinesis in modeling

cell movement.
G. Contact inhibition, crowding and how to model them.

XIII. Other housekeeping chores-model extensions.
XIV. Vocabulary

2 What is Angiogenesis?

The vasculature is the system of channels through the bodies of plants and
animals by which proteins and nutrients are distributed to all component cells.
In mammals and other vertebrates these component parts of the vasculature
take the form of the cardiovascular and lymphatic vascular systems. The car-
diovascular system, with its faster circulation rates, is the primary means of
delivering oxygen and nutrients to tissues in the mammalian body (Fig. 1).
The blood vessels transport a variety of cells such as erythrocytes (red blood
cells) and many different cell types of the immune system.

The lymphatic system also provides a means for cells of the immune system
to move around the body that is exploited by cancer cells that have become
mobile (metastatic). There are two stages of formation of the vasculature. The
first occurs de novo during embryogenesis and involves a process called vas-
culogenesis. The lymphatic system is formed later during embryogenesis than
the cardiovasculature by a similar process called lymphangiogenesis. The sec-
ond stage of formation of the vasculature occurs in the adult as new blood or
lymphatic vessels sprout from the old. In this way, new capillaries are formed
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ANGIOGENESIS

Fig. 1. Aspects of Angiogenesis: Cross sections of capillaries, veins and arteries
at various scales as well as the branched network of the vasculature (subfigure at
the upper right hand corner). http://cellbio.utmb.edu/microanatomy/ cardiovascu-
lar/cardiovascular system.htm
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that penetrate new tissues that form during processes such as in wound heal-
ing and mammary, uterine and placental growth during reproduction. The
body’s ability to initiate angiogenesis and send capillaries into new tissues is
also used to advantage by tumors to supply their nutritional needs. Endothe-
lial cells (EC) form the linings of the vertebrate vasculatures. The channel
(lumen) of the blood or lymphatic vessel is enclosed by ECs that are sealed,
one to the other at their periphery. The smallest capillaries are 10–15 µm
in diameter, formed by a single EC wrapped around a lumen through which
only one or two erythrocytes can pass simultaneously. These capillaries are
distributed throughout the vertebrate body with no cell being more than a
few microns away from a capillary and even the poorest tissues having a few
dozen cross-sections of capillaries in each square mm [26].

ECs of the cardiovasculature and lymphatic vasculature differ in several
respects. Whereas ECs of blood vessels form tight junctions and adherens
junctions that seal the entire edges of the cells to each other, the lymphatic
ECs form focal adhesions along their borders with only occasional tight junc-
tions. ECs of the two vasculatures are also different in their gene expression
patterns and a number of protein markers (products of gene expression) have
been identified that distinguish the two cell types [101].

As well as in the nature and morphologies of the ECs that form their
structure, the vessels of the two vasculatures also differ in the structures that
surround the single layer of endothelium. Blood vessels and capillaries are
surrounded by a distinct proteinaceous basement membrane and muscle-like
cells called pericytes (1). Lymphatic vessels are not surrounded by these fea-
tures and instead their ECs are linked to fibres called “anchoring filaments”
that extend well into the connective tissue that surrounds the vessels [36].
Larger blood vessels and also portions of larger lymphatic structures called
procollectors are also surrounded by a muscle layer.

In this review we focus on the process of angiogenesis that results in the
formation of blood-conducting capillaries of the cardiovascular system. Vascu-
larization and the nutrient supply that it delivers is essential for tissue expan-
sion as it has been demonstrated that a mass of cells cannot expand beyond
about 1 mm in diameter in its absence [28, 63]. New capillaries are formed in
response to specific protein signals released by growing tissues. These angio-
genic signals cause capillaries to sprout from surrounding blood vessels and
grow into the new tissue. New capillaries can also be initiated de novo by
circulating stem cells from the bone marrow that are attracted to the tissue
by the emitted angiogenenic signals [3].

3 What are the Key Events in Angiogenesis?

The key cellular activities in angiogenesis are cellular proliferation and mi-
gration. Both these events are highly regulated and involve signals (generally
proteins) that stimulate or inhibit the activities of cells or the proteins they
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Fig. 2. Cell death. In apoptosis, or programmed cell death, shown on the left, the
chromatin condenses and the cell blebs into smaller subunits. In necrosis, shown on
the right, the cell first swells. The cell wall lyses and fragmentation results

Fig. 3. Stages of angiogenesis. Capillary sprouting (cross section). From left to right,
the invasion of the endothelial cell into the ECM, cell proliferation, onset of lumen
formation, and, maturation of lumen

produce. Inhibition can be achieved by preventing proliferation or migration,
but is also sometimes achieved by killing the cell, which dies by a process
called apoptosis.

In apoptotic death the cell is fragmented into lipid membrane-enclosed
fragments. The apoptotic fragments are engulfed by phagocytic cells like
macrophages that roam the body and function as efficient garbage collec-
tors. Apoptosis of ECs results in the regression of blood vessels, a process
that is called pruning, which is not the same as necrosis. (Fig. 2).
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New blood vessels can be formed by at least three different cellular modes
of angiogenesis. First, and most discussed, is sprouting angiogenesis in which
cells move away from the walls of an existing blood vessel and begin a new
column of cells (a capillary) with a trajectory away from the original vessel
and towards the angiogenic signal (Fig. 3). The second mode of angiogenesis
occurs when circulating endothelial progenitor cells from the bone marrow,
attracted by angiogenesis signals, move into the signaling tissue and form
capillaries that link up with nearby existing blood vessels [95]. Also known as
adult neoangiogenesis, this process resembles embryonic vasculogenesis during
which the vascular system is initially formed.

A third mode of angiogenesis is a form of vascular remodeling, that involves
the division of existing blood vessels into two by the process of intussusception.
In intussusceptive angiogenesis ECs that line a blood vessel move inwards and
meet in the lumen. The touching ECs then form junctions that eventually
result in splitting the lumen into two. With time, other cells such as fibroblasts
and pericytes move between the split vessel and thus two vessels are born from
one [19].

The debate is not yet resolved as to how the capillary lumen is formed [21].
Some suggest that the lumen is an intracellular event in which vacuoles of con-
tiguous ECs grow larger and finally fuse across cell borders to create a contin-
uous lumen within the aligned endothelium of the capillary as is represented
in Fig. 3 [31, 99]. This hypothesis is consistent with the observation that many
capillaries are surrounded by a single EC. Others suggest that formation of
the lumen is an intercellular event where certain cells die by apoptosis thus
creating a lumen in their wake [69]. Yet another means of creating a lumen
might be the extension of capillary walls around a lumen created by proteolytic
degradation of the tissue material (extracellular matrix, abbreviated as ECM)
into which the capillary is invading. These models are not mutually exclusive
and could all operate together or in different tissue environments [31, 99].

From the molecular to the cellular level, each event and activity of angio-
genesis is controlled by positive and negative regulators. Frequently the two
regulatory modes are temporally shifted such that one mode initiates first
followed by an increase in activity of the opposing mode. This general feature
of normal physiological events limits the time period of the event and thus
ensures that the system will again attain a steady state condition. The change
that initiates angiogenesis can be an external perturbation such as wounding
or irradiation or the development of a diseased state such as cancer or heart
disease. These diseased cells also operate in the same tissue environment, and
with largely the same molecular components, as normal cells. But, due to
a change in one or more of their molecular components, the diseased cells’
regulatory responses are altered such that a new steady state is approached.
Because cells in the body interact and influence each others behavior, the new
steady state that is achieved after disease is initiated includes changes in both
diseased and normal cells of the body.
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4 What are the Chemical and Cellular Contributions
to Capillary Structure?

4.1 Endothelial Cells form the Capillary Wall

The EC is the key cellular component of the capillary that wraps itself around
a central cavity called the lumen. There are many types of ECs that are
recognized by their different patterns of gene expression. Cell edges overlap
and are sealed by tight junctions, which are regions containing proteins that
link the two opposing cell membranes and intracellular cytoskeletal structures
in each cell. By this structural integration the endothelium seals the tissues
from direct contact with the blood and its contents. Gases pass rapidly from
the blood through the ECs to the tissues beyond. The ECs have at least two
adaptations to promote movement of nutrients from the blood to the tissues.
First, the cells carry out an active process of pinocytosis, which refers to the
pinching off into the cell of small vesicles from the cell surface membrane that
contain blood fluids. These pinocytic vesicles move from the lumenal (blood
side) surface to the ablumenal (tissue side) surface of the endothelium and
the vesicle contents are released into the tissue.

To increase the speed of delivery of the nutrient-containing blood fluids
into the tissues the EC has a unique feature referred to as fenestrae (“win-
dows”) in which the lumenal and ablumenal membranes have fused to create
pores of about 150–175 nm in diameter [10]. The extent of fenetration and the
size of the fenestrae in a blood vessel varies with the host tissue and with the
presence a variety of drugs and hormones. Capillaries that are not fenestrated
are called continuous capillaries. Fenestrated capillaries are divided into two
types depending on whether the basement membrane surrounding the cap-
illary is present (fenestrated capillary) or absent (discontinuous capillary).
Discontinuous capillaries form in tissues such as the liver where exchange of
materials between blood and tissue is rapid.

ECs are also the means by which white blood cells and endothelial progeni-
tor cells from the bone marrow recognize a region of the body in which changes
are occurring – e.g. disease or inflammation. In response to signals from the
changing tissue, nearby ECs expose certain receptors on their surfaces to which
the blood cells attach and then move through the EC layer into the tissue.
The movement of white blood cells (leukocytes) has been well studied and
involves a process called diapedesis, which literally means “walking through”.
Recently, a “transmigratory cup” structure has been observed in ECs that is
believed to be the means by which leukocytes are directed through the EC
cytoplasm [13]. Although it is yet been demonstrated, endothelial progenitor
cells may also pass through the endothelium by way of the transmigratory
cup.
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4.2 Pericytes Surround the Endothelial Cells
and Provide Structural and Functional Support

Pericytes surround the ECs in capillaries. Apposition of these two cell types is
intimate as evidenced by their interdigitated cell surfaces [9]. Pericytes, some-
times called Cells of Rouget, are of mesechymal derivation and are believed
recruited by the ECs. The ECs promote the differentiation of these undiffer-
entiated mesenchymal cells into pericytes [43]. The traditional view is that the
ECs first form the nascent capillary and then recruit pericytes to surround
them [51]. However, more recent evidence suggests that the pericyte also part-
ners with the EC in forming the capillary channel and lumen. For example
pericytes were found near the tips of capillaries in newborn mouse retina and
in tumors there are regions of capillaries that contain only pericytes [86].

Pericytes are believed to play two important roles in capillaries. The first,
based on their observed location in tissues, is structural. This conclusion is
based on observations of location. For example, there are few pericytes located
around capillaries in the muscle where there are many other cells that can
provide support for the fragile ECs that form the capillary. By contrast, there
are many pericytes around capillaries in the brain and the feet and distal legs
where it is postulated more mechanical support is needed to maintain lumen
structure. Pericytes are also located in identifiable positions in capillaries,
such as at the junctions of endothelial venules and over the gaps between ECs
that are created during inflammation (reviewed in [105]). The presence of the
pericytes stabilizes the vessel wall. Capillaries surrounded by pericytes are
much less likely to regress than capillaries without these cells.

The second role of the pericyte is communication with the EC that results
in a coordinated course of capillary development. The communication is mu-
tual and involves each cell type either inhibiting or promoting proliferation
of the other. For example, the pericyte secretes inhibitors of EC growth that
would have the effect of suppressing the lateral expansion of an already formed
capillary [105]. During periods of capillary growth, such as when oxygen levels
are low, the pericytes secrete vascular endothelial growth factor (VEGF) that
stimulates EC growth [123] and angiopoietin-1, a survival factor for ECs [23].
Conversely, the EC secretes a growth factor called platelet-derived growth
factor (PDGF) that stimulates pericyte growth [40]. VEGF secreted by peri-
cytes also stimulates pericyte cell growth, a phenomenon known as autocrine
regulation of cell growth. The impact of this close relation between ECs and
pericytes is evidenced by the observation that treatment with an inhibitor
of EC growth was unsuccessful in causing regression of tumor capillaries and
resulted in an increased production by pericytes of angiopoietin, a survival
factor for ECs. By contrast, treatment with an inhibitor of both endothelial
and pericyte growth resulted in capillary regression [23].
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4.3 The Basal Lamina Encases
the Endothelial Cells and Pericytes

Capillaries are surrounded by a proteinaceous membrane called the basement
membrane or basal lamina [79], and discussed in [5]. The major protein and
proteoglycan components of this membrane include the proteins laminin, type
IV collagen, entactin/nidogen, and fibronectin, and a heparan sulfate proteo-
glycan called perlecan. These components are produced by the ECs and sur-
rounding pericytes and are organized in the membrane so as to give it the
characteristic lamina structure observed when tissue sections are analyzed by
transmission microscopy. The basement membrane is probably formed by the
cells during the process of angiogenesis and is found to surround new capil-
laries up to, but not including, the growing tip [52].

5 Interaction of Endothelial Cells
with Their Environment

5.1 The Integrins and the Extracellular Matrix

The tip of the capillary is the location of most of the cell proliferation and
movement in the forming capillary [12]. Unlike the cells in the column behind
the tip, which are in contact with the basement membrane and frequently
associated with pericytes, these cells are in contact with the ECM of the tis-
sue into which the capillary is growing. The ECM consists mainly of proteins
and proteoglycans and is the source of many cues for the invading ECs and
pericytes. These cues are received by cell surface receptors that interact phys-
ically with the proteins in the matrix. The cells integrate the information
gained from a variety of cell surface receptors to “sense” their environment.

The composition of the ECM varies between tissues. However, the major
protein components of most extracellular matrices are the collagens, laminins
and fibronectin. These proteins are recognized by a class of receptors called
the integrins [96]. The integrins are a family of related proteins situated in
the cell surface with their longer axis at 90◦ to the plane of the membrane.
As for all proteins, the integrins are polymers of amino acids that fold into
several defined and distinguishable structures referred to as domains. Being
transmembrane proteins, the integrins have three major domains of struc-
ture identified as the extracellular, transmembrane and intracellular domains.
The extracellular domain interacts with the ECM protein and the intracel-
lular domain creates signals inside the cell in response to this extracellular
interaction.

Functionally, each unique integrin receptor consists of a different combina-
tion of one α and one β subunit. The subunits are encoded by different genes.
So far, 18 different α subunits and 4 different β subunits have been identified
in mammals. Together, the α and β subunits forming the active receptor that
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can transmit information bidirectionally across the membrane [96, 121]. Each
combination of α and β subunit provides a different specificity of binding to
one or more ECM proteins and a different specificity for interacting with in-
tracellular signaling molecules. Although all possible combinations have not
been identified, at least twenty-four different α−β integrin combinations have
been characterized, subsets of which are on the surfaces of every cell in the
body. Aptly named, the integrins function to integrate the cell’s behavior with
its environment.

ECs create a large part of their environment. Thus, they produce and se-
crete many proteins into the ECM and basement membrane that surrounds
them. When removed from their normal tissue environment and placed in cul-
ture, the ECs synthesize and secrete ECM proteins. These proteins adsorb to
the plastic dishes in which the cells are cultured and the cells attach them-
selves to the ECM proteins as they were attached in vivo. Much has been
learned about the interaction of cells with ECM proteins from studies of cells
in culture. For example, the ECM promotes EC migration, proliferation, sur-
vival, and morphogenesis and tubes can be formed in culture by ECs in the
presence of the appropriate combination of ECM proteins [18, 88]. As is ex-
pected from the observation that cells express a defined number of integrins on
their surfaces, the cellular response to ECM proteins is saturable. However, for
some cellular functions, such as migration, the EC response is biphasic with
optimal activity in a middle-range of ECM protein concentrations [18, 88].

Once secreted, the ECM proteins interact in defined ways to form a larger
three-dimensional assembly. Although each α−β heterodimeric integrin mole-
cule recognizes only a portion of its ECM protein ligand, the combination of
integrins and other receptors on the cell surface provide the EC with a means
of gauging the larger structural features of the ECM assembly [48, 102, 107].
This recognition might be the result of the combination of receptors on the
cell surface that are in contact with their ligands. However, the flexibility
of proteins also plays a role. When ECM proteins interact in macromolecu-
lar assemblies new epitopes are exposed for the EC to recognize. These new
epitopes can result from the close apposition of polypeptide chains from two
different proteins, but are also likely the result of local changes in the struc-
ture of particular proteins promoted by their interaction with other proteins
in the macromolecular assemblage of the ECM [106] and references therein.

6 What are the Extracellular Events Leading
to Vascularization?

The interaction between EC and ECM is bidirectional. The ECM influences
the morphology and function of the EC and the EC create and remodel the
ECM. Essential to the remodeling are proteases secreted by the EC that
cleave ECM protein bonds and result in the eventual destruction (decay) of
the proteins. In some cases, the action of proteases may expose new sites on
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Fig. 4. Structure of fibronectin. Each symbol (oval, circle or square) represents a
sequence of amino acids that are identified as a structural entity or domain. The
RGD sequence that interacts with the integrins is identified in the bottom molecule
(From Magnusson, and Mosher, 1998 Arteriosclerosis, Thrombosis, and Vascular
Biology 18 1363–1370, permission pending)

the ECM for cell interaction. Proteases can also release active polypeptide
fragments from the ECM proteins. For example, endostatin, an inhibitor of
angiogenesis, is a C-terminal (-carboxyl or -COOH end) fragment of collagen
XVIII released by the action of the protease plasmin [47].

Other proteins that have become associated with the ECM after its as-
semblage can be released by protease action. These proteins are also originally
secreted by the EC or surrounding cells such as pericytes. They are growth
factors1 growth inhibitors, survival factors and morphogenetic factors for ECs.
Thus, the constant remodeling of the ECM in vivo is achieved by a continuous
interaction between the cell and its environment that allows the EC to pick up
cues previously laid down by itself and by its EC neighbors (autocrine cues),

1The term “factor” refers to the historical means by which these extracellular
regulatory proteins were first identified as components in mixtures of proteins such
as serum or tissues extracts. When first identified, the activity, such as stimulation of
angiogenesis or growth, was referred to as being caused by a factor present in these
protein mixes. The protein, thus identified as a growth factor, angiogenesis factor,
etc. was later purified and the protein sequence and its gene identified precisely.
However, in many cases the designation of factor has remained associated with
these regulatory proteins.
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Fig. 5. Assembly and structure of collagen. Type I collagen chains (A) form triple
helices called protomers (B). Protomers assemble into large macromolecular com-
plexes in the ECM (D) as also seen in electron micrographs of extracellular matrix
protein preparations. Proteases cleave endostatin from the C-terminus of the as-
sembled monomers. The molecular structure of an endostatin molecule is shown in
which the polypeptide chain is represented as a ribbon diagram (E). (The blue ar-
rows refer to the β sheet secondary structure while the orange tubes correspond to
the α helix secondary structure of the protein). (From Sundaramoorthy etal 2002
JBC 277 31142-53, Bätge et al. 1997 J Biochem 122 109–115 Hohenester et al. 1998
EMBO J 17 1656–64, permission pending)
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cues from neighboring unlike cells such as pericytes (paracrine cues) and cues
delivered by the blood stream from distant cells and tissues (endocrine cues).

6.1 Individual Matrix Proteins

Amongst the myriad of ECM proteins, several stand out as having a major im-
pact on angiogenesis. One such protein is fibronectin (FN; Fig. 4). This protein
was first named LETs (large external transformation-sensitive protein) when
it was found to be lost when cells in culture become transformed (cancer-
like) [97]. Fibronectin is synthesized by almost every cell type in the body
and becomes a component of the ECM laid down when cells are taken from
the body and cultured in the laboratory. The cells interact with fibronectin
through a variety of integrin heterodimers including α3 : β1, α4 : β1, α5 : β1,
α8 : β1, αV : β1, αV : β3, αV : β5, αV : β6, α4 : β7, and αV : β8 [52].
In each of these interactions cells recognize the very small sequence domain
on fibronectin that is typified by the three amino acid sequence RGD (Arg-
Gly-Asp) [35]. The importance of fibronectin to angiogenesis is evidenced by
the observation that mice with the fibronectin gene inactivated die in utero
with deformed vasculature [34]. Further analysis of the process of vasculoge-
nesis and angiogenesis in these knockout mice revealed that the presence of
fibronectin is critical for correct morphogenesis of the heart and blood vessels,
but not for the initial differentiation of stem cells and conversion of progeni-
tor cells to become endothelial cells [119]. Although these observations were of
vasculogenesis rather than angiogenesis, which occurs in the adult, it is likely
that in angiogenesis fibronectin is also required for formation/stabilization of
the vessel lumen and may not be necessary for the early events in angiogenesis
such as cell migration, differentiation and tube formation [106].

The collagens have long been recognized as structural proteins of tissues
and cartilage (Fig. 5). They are long molecules that associate as trimers with a
helical central structure and nonhelical ends. These assembled collagen struc-
tures form a ∼1.5 nm diameter by 300 mm-long rod resembling a thread that
is unraveling at each end. Their thread-like structures allow them to con-
tribute to microscopic collagen fibres containing many collagen trimers that
are stacked together in a staggered configuration to form a collagen bundle
that becomes the basis of cartilage and other structural features of the body.
The strength of the collagen bundles is augmented by the individual collagen
molecules being chemically cross-linked to one another during formation of
the fibres and further stabilized by the association of other proteins such as
decorin [34]. Collagens are an important structural component of the base-
ment membrane that lines the capillaries and blood vessels and is formed
during angiogenesis. Mutant mice that lack collagen I die in utero with ev-
idence of rupture of their major blood vessels [66]. Mice with mutations in
collagen III also die young with ruptured blood vessels [65]. Mutations in col-
lagen III result in disordered collagen I fibrils and it is believed that collagen
III is required for the formation of structurally sound collagen I fibrils [38].
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The importance of the collagen I fibrils to angiogenesis is evident because
agents that inhibit collagen crosslinking also inhibit angiogenesis [49]. From
these observations the basement membrane has been identified as a possible
target for controlling tumor growth by inhibiting angiogenesis [67].

As well as being an important component of the basement membrane that
surrounds the growing capillary, collagens are part of the ECM into which
the growing capillaries move. Cell migration is associated with the release of
proteases that cleave proteins in the ECM to allow the cells to enter this space.
Protein cleavage alters the exposed epitopes and, for collagen IV, cleavage by
certain proteases results in the exposure of a cue, called a cryptic migratory
site, that promotes endothelial cell migration in the direction of the cleaved
collagen, a process known as haptotaxis [39, 122].

Laminins are important components of the extracellular matrix for angio-
genesis and many other events in tissue morphogenesis. These proteins are
heterotrimers made of one of each of three different types of subunits named
alpha, beta and gamma. A large proportion of the length of the laminin het-
erotrimer is a coiled coil that forms a fibrillar structure. In all, 15 different
laminin heterotrimers have been identified that consist of different combina-
tions of six α, four β and two γ subunits. Laminin 8 (α4 − β1 − γ1) predom-
inates in the basement membrane of capillaries. Mice that do not contain an
active laminin α4 subunit gene show impaired microvessel development [113].
The further polymerization of laminins into the larger structures found in the
ECM is believed to be promoted by their calcium binding N-terminal (LN)
domains [71]. Laminin also interacts with other components of the basement
membrane and is essential for the assembly of the macromolecular complex
ECM. Basement membrane does not assemble in the absence of the γ1 sub-
unit of laminin despite the presence of other basement membrane components
such as type IV collagen, nidogen and perlecan [62]. In addition to laminin
at least two other extracellular calcium-binding proteins play important roles
in angiogenesis as part of the ECM. These are fibrillin-1 and fibulin-1. Mice
containing mutations in each gene die around birth with hemorrhages of many
blood vessels [38, 56, 91].

7 Soluble Proteins that Modify the ECM and Influence
EC Function: Proteases and Protease Inhibitors

The condition under which the physiological activities of cells and tissues are
maintained in equilibrium is referred to as homeostasis. To achieve homeosta-
sis cells receive and respond to extracellular cues in the form of molecules that
move in their immediate environment. These extracellular signals guide cells
to decisions regarding the rate of their metabolism, whether they proliferate,
remain quiescent, or undergo apoptosis, what genes they activate or deacti-
vate, how they distribute proteins on their surfaces and throughout the cell,
which cellular proteins are active, what shape they adopt and what proteins
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they secrete. Receptors (also proteins), most of which are located on the cell
surface are the means by which cells recognize extracellular cues. Like the inte-
grin receptors, most receptors are transmembrane proteins with extracellular,
transmembrane and intracellular domains. Some receptors are located entirely
inside the cell to recognize hydrophobic cues that move readily through the
lipid membrane of the cell surface. Each cell’s ability to respond to the cues in
its environment depends in part on the receptors that it produces and places
appropriately to receive external cues. The other necessary component for
each cellular response is the presence and correct intracellular placement of
the components of the signal transduction pathways that transmit the extra-
cellular signal to activate an intracellular event.

The ECM is a dynamic structure. It is actively maintained and, when
necessary, remodeled by the cells imbedded in and around it [29]. Cells regulate
the content of the ECM by secreting new ECM protein, and inhibitors of these
proteases. ECM proteins are degraded by proteases (also called proteolytic
enzymes or proteinases) that cleave the polypeptide chains that constitute
proteins, thereby creating smaller polypeptides. The site between two amino
acids on a particular protein that is cleaved by a protease is determined by the
specificity of that protease for the amino acid sequence around the cleavage
site (sissile bond) and by the availability of that site to the protease. Active
proteases are sensitive to environmental factors such as pH. Thus, although
in the active form, the protease might only perform its activity in specific
locations in the ECM that possess the appropriate conditions for optimal
protease activity.

Different proteases have different specificities. For most proteases there is
degeneracy in the amino acid sequence recognized for cleavage. There may be
several or even many sites on a protein recognized by a particular protease.
Cleavage(s) by a protease to release two or more polypeptides can reveal
other sites for cleavage by the same or by another protease. Cells secrete
many different proteases with different specificities with the result that ECM
proteins can eventually be degraded to their amino acid constituents or to
small polypeptides that are taken up by the cells for complete degradation.
The resulting amino acids can be used by the cells for synthesis of other
proteins.

Although degradation of ECM proteins eventually goes to completion re-
sulting in “recycled” amino acid and peptide products that provide nutrients
for the cells, some cleaved fragments are used by the cells to maintain home-
ostasis and as cues to signal changes in the ECM. Two examples are endo-
statin, which is a cleavage product of collagen, and angiostatin, which is a
cleavage product of plasminogen. In the latter case, cleavage of plasminogen
by plasminogen activator results in two functional products, which are plas-
min and angiostatin. Plasmin is a potent protease that degrades the ECM
proteins. Degradation of ECM proteins releases many soluble factors that
had been previously deposited in the ECM.
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In their initial forms, when secreted by cells, most proteases are in an in-
active condition referred to as the proform. Conversion of the proform to the
catalytically active form of the protease usually involves cleavage of the pro-
form to release a terminal fragment. This cleavage can be achieved in several
ways. The proforms of some proteases have very low catalytic activities that
can sometimes also be activated by specific extracellular conditions, such as
particular pH ranges, to self-cleave. This is referred to as autocatalysis. For
some proteases proform activation is achieved upon cleavage by one or more
other types of proteases. Many examples exist of cascades of protease activa-
tion where the activation of one protease results in the cleavage and activation
of another of a different type. The activation of plasmin by plasminogen acti-
vator is part of such a proteolytic cascade [64]. This cascade is also regulated
by a positive feedback mechanism, in which plasmin activates plasminogen ac-
tivator, that results in an exponential explosion of plasmin activity initiated
by a small amount of catalytically active plasminogen activator.

When plasminogen is cleaved to form plasmin, the N-terminal fragment
released by the action of plasminogen activator, called angiostatin, is an in-
hibitor of angiogenesis. Thus, by the single action of secreting the protease
plasminogen activator, cells cause the activation of plasmin, degradation of the
ECM, release of a number of growth and angiogenesis factors from the ECM
and release of angiostatin an inhibitor of angiogenesis. The consequence of this
complex response to plasminogen activator release is a temporary deviation
from homeostasis. For example, angiogenesis is stimulated by an increase in
active plasmin and the growth factors released from the ECM. Certain other
proteases also release angiostatin from plasminogen [90].

Synthesis and release of proteases is highly regulated temporally such that,
after a perturbation that results in the increased expression and release of
proteases, the production of these proteases soon decreases to the low original
basal level(s). Without continued release of plasminogen activator and other
proteases, homeostasis is soon reestablished by the activity of angiostatin and
other inhibitors of angiogenesis.

In addition to the cells tightly controlling the rate at which proteases and
their proforms are synthesized and secreted, proteases are controlled by pro-
tease inhibitors that are secreted by EC and other cells. Examples of inhibitors
relevant to angiogenesis are the plasminogen activator inhibitors (PAI-1 and
PAI-2), tissue inhibitor of metalloproteinases (TIMPs -1 through 4). The bal-
ance of protease and protease inhibitor secreted by the population of cells in
the tissue is critical to maintaining tissue structure and function. Too little
protease activity prevents the cells from remodeling the ECM, for example to
allow the EC to migrate in angiogenesis. Too much protease activity results in
disintegration of the tissue. Consequently the synthesis and secretion of pro-
tease inhibitors is also tightly controlled by the cells in response to many cues
such as growth factors and growth inhibitors. In some cases the cells integrate
signals from several regulatory factors to establish a rate of production and
secretion of proteases and their inhibitors [111, 112].
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The role of proteases in angiogenesis is more complex than their catalytic
action on ECM proteins. When bound directly to the cell surface they are
also involved in regulating cell movement and other cell responses. For exam-
ple, the urokinase-type plasminogen activator receptor (uPAR) is a specific
receptor for urokinase plasminogen activator (uPA) that is linked to the cell
surface by a glycosyl phospholipid tether. This receptor, that lacks an intra-
cellular domain interacts with other cell surface receptors with intracellular
domains, such as the integrins, and the epidermal growth factor receptor, and
thereby regulates cellular activities that include proliferation, cell shape and
cell migration [84]. uPAR is localized to the leading edge of the cell surface
of migrating cells [24]. Plasmin also binds to several molecules on the cell
surface, including a histidine-rich glycoprotein, annexin-II, gangliosides and
αVβ3 integrins and promotes cell migration by a mechanism that requires it
to be catalytically active [54, 109]. The close association between plasmino-
gen and uPA on the cell surface increases the probability that plasmin will be
activated and provides the cell with a leading cutting edge for penetrating the
ECM. Interestingly, angiostatin, the portion of plasminogen that is cleaved off
by uPA to produce active plasmin, also binds to αV β3 integrins and inhibits
the cell migration promoted by plasmin [109].

8 Growth and Angiogenesis Factors:
Factors that Stimulate Angiogenesis

Angiogenesis is regulated by growth factors and angiogenesis factors, which are
proteins that stimulate cellular functions by binding to and activating specific
cell surface receptors (Fig. 8). Some of these proteins, such as VEGF and
angiopoietin, act specifically on ECs. Other proteins, such as FGF, angiogenin,
EGF, PDGF, and CXC cytokines with ELR motifs also stimulate proliferation
of other cell types in the body including those cells that contribute to new
tissue formed during repair. Similarly, there are many protein inhibitors of
angiogenesis, some of which seem specific for ECs (endostatin) and others
that also affect the behavior of other cells (angiostatin, PEDF, TGFα, TNF,
angiopoietin 2, CXC cytokines without ELR motifs).

In most cases, growth factors and angiogenesis factors are produced locally.
Their production or release is regulated by changes in the tissue environment
that characterize conditions requiring angiogenesis. These changes occur when
a tissue is wounded or damaged resulting in the need for vascularization of the
new tissue produced to repair the damage. Events that regulate the production
of growth factors include hypoxia (decreased oxygen available to the damaged
tissue), breakage of cells in a wounded tissue, released proteases, and entry of
cells of the adaptive immune response that release cytokines. Some of these
events (hypoxia, cytokines) initiate changes in gene expression to produce
more angiogenesis factors. Other events result in the release of angiogenesis
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factors from the ECM (proteases) or the cells (cell breakage). Both types of
events are important for regulating angiogenesis.

Many angiogenesis factors have been identified. They include proteins that
signal changes in behavior of ECs or other cells that regulate angiogenesis.
A balance of positive and negative signals for cellular behavior is a hallmark
of biological control mechanisms that moderates the extent of the cellular
response and ensures a limited time of response. Of all the angiogenesis fac-
tors, a central player is vascular endothelial growth factor (VEGF), which
provides a positive signal for angiogenesis by promoting EC proliferation and
migration towards a region of higher VEGF concentration, a process known
as chemotaxis [37, 80]. VEGF also promotes EC survival under adverse condi-
tions, such as lack of nutrients or other growth factors, and it promotes tube
formation by ECs. VEGF production is increased in cells under hypoxic con-
ditions. Although encoded by a single gene, there are several forms of VEGF
(called isoforms) that vary in the length of their primary (polypeptide) se-
quence and that have different propensities for interacting with the ECM due
their secondary and tertiary (folded) structures.

Fibroblast growth factor-2 is also a potent angiogenesis factor. Also called
basic FGF (bFGF), FGF-2 is a member of a large family of related proteins
of which there are at least twenty-four members encoded by different genes.
FGF-2 is an unusual extracellular protein because it does not have the typical
N-terminal (amino, NH3 sequence (signal sequence) required for secretion by
the conventional secretory pathway that involves the endoplasmic reticulum
and the golgi apparatus. Instead FGF-2 is released in vesicles shed from the
cell surface [110]. FGF-2 shedding is stimulated by serum, that is produced
on wounding as a result of blood clotting.

As well as acting independently, FGF-2 and VEGF can act together to
stimulate angiogenesis by several means. For example, FGF can induce the
increased expression and production of VEGF by endothelial cells [103]. Some
isoforms of VEGF can displace FGF-2 from the ECM with the resulting effects
on cell proliferation being directly stimulated by the freed FGF-2 rather than
by VEGF [53]. When present together VEGF and FGF-2 act synergistically
to stimulate angiogenesis [4].

FGF-2 and the 165 kDa isoform of VEGF bind heparan sulphate proteogly-
cans (HSPGs) that are found on cell surfaces, in the ECM and in body fluids.
Some HSPGs are located on the cell surface where they can promote VEGF
and FGF-2 actions [98]. Syndecan and glypican-1 are two well-described cell
surface HSPGs that interact with FGF-2 and VEGF to promote the efficiency
of activation of their respective signaling receptors [14, 50, 94, 114]. Perlecan,
an HSPG located in the ECM, has both positive and negative effects on bFGF
signaling. But, removal of the heparan sulfate component of this proteoglycan
results in impaired wound healing and angiogenesis and in diminished FGF-
2-induced tumor growth in transgenic mice [125]. These results suggest that
perlecan also promotes FGF-2 activation of angiogenesis.
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Some HSPGs inhibit angiogenesis. For example, heparan sulphate proteo-
glycans in the aqueous humor of the eye bind FGF and VEGF and prevent
these angiogenesis factors from binding their receptors on the cell surface and
activating the cellular events that lead to angiogenesis [25]. Similar reservoirs
of growth factors are believed to be bound by HSPGs in the extracellular
matrix [116]. Perturbations that release growth factors from HSPG-bound
reservoirs change the balance of signals to ECs and can initiate angiogenesis.
Another inhibitory effect of HSPGs comes from type VIII collagen, a hybrid
collagen/HSPG that is located in the basement membrane and is the source
of the angiogenesis inhibitor, endostatin.

9 Inhibitors of Angiogenesis

At least two types of angiogenesis inhibitors are produced as a result of pro-
teolysis of ECM proteins. These are the endostatins, which are released from
types VIII and XV collagens (Fig. 5), and angiostatin, which is released from
plasminogen. Both angiostatin and the endostatin derived from type VIII col-
lagen bind to HSPGs and are likely also trapped in the ECM to be released
secondarily upon degradation of the HSPGs that hold them. Different pro-
teases are responsible for creating these inhibitors, with endostatins cleaved
from the collagens by cathepsin L or matrix metalloproteases (MMPs) and an-
giostatin cleaved from plasminogen by plasminogen activator. These proteases
are produced in response to tissue damage and their expression is stimulated
by FGF-2 [27, 82, 93].

The inhibitors released by protease action bind a variety of proteins and
HSPGs in the ECM and on cell surfaces. Angiostatin binds several proteins
on the cell surface, including angiomotin, the subunits of cell-surface ATP
synthase, annexin II and the αVβ3 integrins. By interacting with these cell
surface proteins, angiostatin may inhibit angiogenesis by inhibiting EC mi-
gration [57, 73, 109, 115]. Endostatins also bind specific receptors on the cell
surface. The two endostatins (-V and -VIII) are similar in three dimensional
structure but only 61% identical in primary sequence, which results in different
combinations of amino acid side-chains being exposed on their surfaces [100].
Consequently, these molecules demonstrate differences in affinities for molec-
ular targets on the cell surface and in the ECM.

The best studied endostatin is endostatin-VIII that binds the α5β1 inte-
grin receptor through which it inhibits adhesion to the ECM, causes disassem-
bly of the focal adhesions that hold the cell to its substratum and decreases
the secretion of ECM proteins by ECs [120]. These cellular responses are reg-
ulated by the integration of a multitude of intracellular signaling events [2].
Other cell surface molecules such as glypican (an HSPG), KDR (the VEGF
receptor) and the TNF receptor may also be involved in regulating the cellular
response to endostatin [8].
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An obvious means of inhibiting angiogenesis is to inhibit the proteases that
promote cell migration and proliferation. As expected, protease inhibitors of
angiogenesis include inhibitors of plasminogen activator (PAI-1 and PAI-2)
and of MMPs (TIMPs). However, recent studies revealed an unusual twist
when it was found that, rather than mediating its effect on angiogenesis by
inhibiting the activity of MMPs, TIMP-2 acts directly on the EC by bind-
ing α3β1 integrins to activate phosphatases that remove phosphates from the
intracellular domains of the FGF and VEGF receptors [104]. Dephosphoryla-
tion inactivates these receptors and results in decreased levels of intracellular
signals that promote angiogenesis.

Inhibition of angiogenesis also occurs by pure competitive mechanism,
whereby an inhibitor binds an angiogenesis factor to prevent it from binding
to its cell surface receptor by which it stimulates angiogenesis. Some ECM
proteins, other secreted proteins and HSPGs fit in this category. However,
their roles are often quite broad in that they bind many growth factors and
influence many cellular events. By contrast, sFLT is a very specific competi-
tive inhibitor of angiogenesis. This protein is a product of the same gene as
the VEGF receptor, FLT-1. However, the alternative mRNA transcript that
encodes sFLT-1 is shorter than the mRNA that encodes FLT-1. As a result,
synthesis of sFLT-1 terminates before the transmembrane sequence of the
full-length receptor and the resulting sFLT-1 is secreted by ECs as a soluble
extracellular protein. This secreted extracellular domain of the VEGF receptor
binds to VEGF and thus sFLT-1 competes with the cell surface FLT-1 recep-
tor for VEGF. sFLT-1 expression is regulated differently from the expression
of FLT-1 and thus, it is likely that EC regulate their ability to respond to
VEGF in part by secreting sFLT-1 [70].

Other cells such as haematopoietic cells also produce inhibitors of angio-
genesis. Growth factors and other cellular regulators produced by hematopoi-
etic cells are collectively referred to as cytokines. IL-12 is a cytokine produced
by dendritic cells, macrophages and monocytes that inhibits angiogenesis in
vivo [117]. The mechanism of this inhibition appears to be indirect and in-
volves other cytokines and matrix metalloproteases. IL-12 stimulates the se-
cretion of IFN by T lymphocytes and natural killer (NK) cells. IFN stimulates
the production of the chemokines CXCL9 and CXCL10 by CD4+ lympho-
cytes. These chemokines suppress the production of MMP9 by endothelial
cells and thereby inhibit angiogenesis [72].

10 Cellular Events that Characterize Angiogenesis

10.1 Proliferation

Most cells in the human body are quiescent, which means that they are not
proliferating. Proliferation of EC and other cells is stimulated by growth fac-
tors. The ability of a cell to respond to a particular growth factor is determined
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by the presence of specific receptors on that cell’s surface. Growth factor re-
ceptors transmit a signal from the outside of the cell to the inside that results
in changes in the expression of genes that control cell proliferation. Different
cell types are identified by the growth factor receptors that they express on
their surfaces. ECs present FGF and VEGF receptors and therefore proliferate
in response to these two growth factors.

Proliferating cells pass through defined phases of cellular activity before
they divide to form two cells (Fig. 6). The phases of the cell cycle are char-
acterized by the genes that are expressed and the protein activities that are
present in the cell during that period. These phases are referred to as G1

(gap 1), S (DNA synthesis), G2 (gap 2) and M (mitosis). Growth factors bind
to the extracellular domains of their specific receptors and initiate cascades of
intracellular signals that target particular genes to initiate the growth cycle.
Quiescent cells are viewed as residing in a fifth growth phase referred to as
G0. Whereas, with proper nutrition and other requirements, a cell can remain
in G0 for an indefinite period, the cell cycle (G1, S, G2 and M) takes between
12 and 70 hours to complete. The variability in cell cycle length probably
partly depends on the cell type. However, even for a single cell type there is
some variability in cycle time that occurs at specific periods in the cell cycle.
For example, directly after cell division (mitosis) is a period in G1 referred to
as G1-pm that takes 3–4 hours in cells studied so far (see [22] and references
therein). Passage through this phase is highly dependent on the presence of
growth factors. If growth factor receptors are not activated during this pe-
riod the cell diverges from the growth cycle and enters G0. The presence of
growth factors allows the cell to pass through a restriction point (R) to the
second part of G1 for which transit does not depend on the presence of growth

Fig. 6. The cell cycle. Cells proliferate by progressing through G1, S, G2 and M.
Current thinking is that cell differentiation is preceded by cell entry into the G0 or
quiescent state
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Fig. 7. VEGF signalling. Here a molecule of VEGF is shown bound to its dimeric
receptor (blue). Within the cell cytoplasim a signal transduction cascade is shown
resulting in the activation of a protease (MMP). The transcription factor (AP1)
which enters the nucleus to activate transcription of the MMP gene. This results in
the cellular expression of the protease

factors. This portion of G1, called G1-ps is highly variable in its length with
some cells spending up to 20h before reaching the next phase of the cell cycle,
the S phase.

Proteins called cyclins are central regulators of the cell cycle and the genes
encoding certain cyclins are primary targets of growth factor-initiated signal
transduction [74]. The cyclins are regulators of ser/thr protein kinases, en-
zymes that use ATP to add phosphate to serine and threonine residues on
specific proteins that effect transit through the cell cycle. Phosphorylation is
a frequent means of controlling enzyme activity and protein function. Addi-
tion of one or more negative charges due to the addition of phosphate(s) to
strategic location(s) on the protein molecule alters the local electrostatic con-
figuration and the structure of the phosphorylated protein with the result that
the protein’s activity changes. Thus, growth factors increase expression of the
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cyclin D1 gene2, which is followed by increased production of the cyclin D1
protein by the process of translation. Cyclin D1, in turn, activates the protein
kinases Cdk4 and Cdk6. Cyclin D1 is rapidly degraded during the subsequent
S phase. In a similar manner cyclins A and B control the transit though S, G2

and M, each synthesized at the appropriate point in the cell cycle and rapidly
degraded prior to or during the next stage.

10.2 Apoptosis

EC death is tightly controlled by environmental signals including cytokines
and growth factors. A cell contains many components that could be either
toxic to the cells surrounding it or could activate an inflammatory response in
the tissue. To avoid the release of intracellular material, cells die naturally by
a mechanism called apoptosis. Apoptotic death is orchestrated by a regulated
sequence of cellular events that involve a cascade of intracellular proteases
called the caspases. Apoptosis can be initiated in cells by specific cytokines
that activate receptors, which initiate the caspase cascade, or by stress caused
by events such as oxidation of surface or intracellular proteins or other mole-
cules (oxidative stress) that results in activation of caspases via cytochrome
c release from the mitochondria. Unlike necrotic cell death, during which the
cells lyse and release their contents into the surroundings, apoptotic cell death
involves the cells breaking into smaller portions that are surrounded by a cel-
lular membrane and that can be engulfed by the circulating white blood cells.
The absence of growth factors results in apoptosis of ECs and most other
mammalian cells. Although the mechanism of this regulation is not clearly
defined, it is suggested to be mediated by the release of reactive oxidative
molecules by growth factor-starved cells [89]. Apoptosis of ECs is also in-
hibited by shear stress by a mechanism that is ill-defined but is reported to
involve the MAP kinase signal transduction pathway (a series of sequentially
acting protein kinases) and an inhibitor of caspases [92, 108].

10.3 Migration

Some growth factors, such as VEGF and FGF, also stimulate cells to migrate.
The direction of migration is up the growth factor gradient (chemotaxis) if
one exists. Migration is also regulated by signals (signal transduction) ema-
nating from the growth factor receptor. In this case, the signals result in the

2To increase expression of a gene means that the gene is activated and more
transcript is produced. The transcript becomes messenger RNA (mRNA) that is
then translated to protein. Frequently the term “increased gene expression” is used
more generally and refers to increased mRNA encoded by a particular gene. As
the steady level of a particular mRNA depends on the rate of its synthesis and
degradation and both of these are controlled events, the reader can not be confident
that a reference to increased gene expression truly reflects increased transcription
from that gene unless experimental evidence is presented to verify this conclusion.
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modification and consequent activation of proteins that regulate cell shape
and cell adhesion to the ECM. These proteins constitute the cell cytoskele-
ton, a diverse group of proteins that form large multiprotein complexes. Some
of these complexes (such as formed by actin and tubulin) are long fibers that
can extend the entire length of the cell and that grow by the addition of
more protein subunits to one end. Others form large multiprotein complexes
that organize at specific sites on the membrane and form connections with
the integrins and thus also with the ECM proteins bound by the integrins.
These complexes are the molecular basis of the focal adhesions. The presence
of a growth factor at only one side of the cell results in localized activation
of growth factor receptors, which in turn locally activates the growth of actin
fibers and assembly of focal adhesions. Local growth of actin fibers results in
extension of the cell membrane towards the growth factor to form a cellular
structure called a pseudopodium. Focal adhesions are formed at the tips of the
pseudopodia. Thus, the cell extends forward towards the growth factor and
grasps the ECM. Proteases released in response to the growth factor stimulus
cut through the ECM to allow the cell to penetrate the matrix. Release of
focal adhesions in the rear (where there is less or no growth factor) results in
amoeboid movement of the cell up the growth factor gradient.

11 Intracellular Signals (Signal Transduction)
that Regulate Cellular Events

Growth factor receptors are decision switches that translate extracellular sig-
nals to initiate cellular activities. Each receptor has a defined specificity for
certain growth factors. The receptor is activated when it binds its ligand, the
growth factor. The ability of a receptor to bind a growth factor is expressed in
terms of its affinity, which in turn is expressed mathematically, in terms of the
free growth factor concentration, as a dissociation constant (Kd). The higher
the affinity, the lower the Kd and the tighter the binding between receptor and
growth factor.3 The lower the Kd, the more sensitive the cell will be to the
presence of a particular growth factor. Growth factor receptors generally have
Kds in the picomolar (10−12) or high femptomolar (10−15) range. The in vivo
concentrations of growth factors are very difficult to determine. But, because
the Kd of the receptor determines the concentration range of growth factor
over which the activation level of the receptor changes in vivo, this number
can be used to estimate the likely concentrations of growth factor that are
present in vivo when the receptor is activated.

Most growth factor receptors are transmembrane proteins with three do-
mains. The extracellular domain is the growth factor binding domain. The
transmembrane domain is generally a short polypeptide chain that forms an

3In this context, sometimes the association constant, Ka = 1/Kd may be used
as a direct measure of binding affinity.
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alpha helical structure. The intracellular domain is a type of enzyme called
a protein kinase that, when activated by a growth factor, transfers the phos-
phate from ATP to either tyrosine (EGF, TGFα, PDGF, FGF, VEGF recep-
tors) or serine and threonine (TGFβ receptors) side-chains on other proteins
and on itself. Cytokine receptors and integrins also use protein kinases in their
responses to ligand activation, but the protein kinase is not part of the recep-
tor. One or more cytoplasmic protein kinases are activated when the receptor’s
extracellular domain binds to its cognate cytokine or when integrins bind to
their ECM targets. In many cases the protein kinase(s) become associated
with receptors as a result of changes in structure of the intracellular domains
of the receptors by which new sites for protein interactions are created.

An active receptor consists of more than one receptor protein, each pro-
tein component of which is called a subunit. The active receptor can be a
multimer of the same type of receptor subunits (EGF, FGF, VEGF recep-
tors) called a homodimer or can be a multimer of different types of receptor
subunits (TGFβ, IFNγ receptors) called a heterodimer. Those receptors that
form homodimers often form heterodimers with other receptor monomers of
the same family that are related in sequence and structure and that are ex-
pressed in the same cells. For example, there are three VEGFRs, VEGFR1
(also called FLT-1), VEGFR2 (also called KDR in humans and flk-1 in mice)
and VEGFR3. Of these, at least VEGFR1 and VEGFR2 can form homod-
imers and heterodimers.

In some cases (integrins) both inactive and active receptors are dimers
and ligand binding results in a change in structure within the dimer [121]. In
other cases (EGF, TGFβ, FGF, VEGF, IFNγ receptors) the individual recep-
tor subunits are believed to be distributed independently on the membrane
and ligand binding increases their affinity for each other with the resulting
formation of an active dimer. Once formed, the dimerized receptor can have a
higher affinity for the ligand than the monomer, which stabilizes the dimeric
structure. For example, the VEGFR2 dimer binds VEGF 100 times more
tightly than does the monomer [30].

Many growth factors, including VEGF and FGF, are also dimers (Fig. 9).
In their respective growth factor-receptor complexes the growth factor dimers
interact with each receptor subunit of the receptor dimer. Heterodimeric
growth factors can also sometimes form that promote the formation of cer-
tain heterodimeric receptors. For example, heterodimers of PLGF and VEGF
subunits will cause the formation of VEGFR1 and VEGFR2 heterodimers be-
cause PLGF only binds to VEGFR1 and VEGF binds to VEGFR2. Receptor
homodimers and heterodimers are likely to have different structures and thus
may have different functions as seems true for the VEGFRs [68].

In the case of a dimeric growth factor that forms a tetrameric active recep-
tor:growth factor complex the dependence of receptor activation on growth
factor concentration is biphasic if the growth factor can bind to both receptor
monomers. Initially, with increasing concentration of the dimeric growth fac-
tor, the receptor activation increases until all receptor subunits are involved in
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Fig. 8. Tyrosine kinase Receptors. The surface of a cell is a complex place. In this
figure, classes of tyrosine kinase receptors are displayed, the cytosolic side being
below the horizontal bar. Below each receptor is a set of names, each referring to a
different receptor in the class indicated. For example, Flt1, KDR and Flt4 are all
growth factor receptors of the VEGFR type. (From Hubbard and Till Annu Rev
Biochem 2000; 69:373–98). Reprinted, with permission, from the Annual Review of
Biochemistry, Volume 69 c© 2000 by Annual Reviews www.anualreviews.org

tetrameric complexes consisting of one receptor dimer and one growth factor
dimer. As the growth factor concentration increases beyond this saturation
point trimeric complexes of growth factor dimers with receptor monomers
become increasingly common with the resulting decrease in the number of
active receptor:growth factor tetramers. This phenomenon has been observed
for FGF and VEGF receptor activation profiles and cellular responses that in-
volve receptor-growth factor complexes in which growth factor can bind each
receptor monomer but not for cellular responses to TGFβ where only one of
the heterodimeric receptor subunits has a significant affinity for the TGFβ
dimer [30, 124].

The plasticity of protein structure results in a change in the overall struc-
ture of the receptor dimer within the receptor:growth factor complex when
the growth factor and receptor subunits interact. Thus, growth factors, cy-
tokines and ECM ligands activate their cognate receptors by changing the
structural interfaces of interaction between individual receptor subunits and
thereby changing the structure of the receptor. This structural change in the
receptor:growth factor complex is transmitted across the body of the receptor
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Fig. 9. VEGF-receptor binding. “A ribbon diagram . . . with the two protomers
of disulfide-linked VEGF shown in orange and purple, and Ig-like domain 2 of Flt1
shown in green. The view in the bottom panel is orthogonal to that in the top panel,
as indicated.” From Hubbard and Till Annu Rev Biochem 2000; 69:373–98 Fig. 3.
Reprinted, with permission, from the Annual Review of Biochemistry, Volume 69
c© 2000 by Annual Reviews www.anualreviews.org

from outside to inside the cell where the intracellular domains, now struc-
turally altered, are functionally activated.

In most cases, activation of receptor function is associated with phosphory-
lation of the receptor or of associated proteins by the receptor kinase domain
or by associated protein kinases. Phosphorylation alters protein structure and
function. Thus, proteins phosphorylated by growth factor receptors and by
cytokine receptor- and integrin-associated protein kinases can often interact
differently with other proteins to alter their intracellular location, protein as-
sociations, and/or activity, which in turn changes the impact of these proteins
on cellular function.

When the intracellular domain of a receptor is modified by phosphoryla-
tion it also becomes a binding site for many cytoplasmic proteins that contain
specific domains (called SH2 domains) that recognize the phosphorylated re-
ceptor amino acid side chain and its surrounding structure. These interactions
bring other proteins that interact with the SH2-domain proteins close to the
receptor and promote their phosphorylation. When a growth factor receptor
activates a protein by phosphorylation a domino effect is often initiated, which
involves a cascade of events collectively called a signal transduction pathway.
(Figs. 7 and 10). Each signal transduction pathway involves a different set of
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Fig. 10. Potential sites for inhibiting tumor induced angiogenesis.Many inhibitors
of angiogenesis are being tested in clinical trials. These include protease inhibitors,
antibodies against VEGF, the VEGF receptor, or the integrins, inhibitors of the au-
tophosphorylation (activation) of the VEGF receptor, heparin-like drugs that soak
up the VEGF, endostatins and related angiogenesis inhibitors, and inhibitors of cer-
tain general cell functions associated with angiogenesis such as inhibitors of proton
pumps

proteins and can include proteins that bind to other proteins, enzymes such as
protein kinases that phosphorylate other proteins, transcription factors that
regulate gene expression, and proteins that regulate each of the previously
listed activities.

Most signal transduction pathways have more than one molecular target
and thus alter more than one cellular function. Cellular functions that can
be altered by activated receptors include 1) enzymes such as the metabolic
enzymes that provide energy to the cell, 2) structural proteins such as the
protein components of the cytoskeleton that form the cell’s shape and the
proteins that form the focal adhesion complexes that determine where the cell
will attach to the ECM, 3) transcription factors that regulate the expression
of particular genes such as those required for passage through the cell cycle,
and 4) proteins or enzymes that alter the distribution and quantity of other
proteins within the cell such as proteins that are released by the cells, exposed
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in the cell surface or move from the cytoplasm to the nucleus to alter DNA
synthesis or gene activity.

Most receptors activate more than one signal transduction pathway. Some
of these signal transduction pathways target the same molecular species or
target two molecules that interact either physically or by virtue of their mole-
cular targets and their effects on cell function. The interaction of one signal
transduction pathway with another to alter the functional outcome is called
cross-talk. Depending on the nature of the molecular targets and the effect of
the activated signal transduction pathway on them, the result of activating
two signal transduction pathways simultaneously can be more than additive
(e.g. synergistic) or can cancel individual pathway effects on a particular cell
function [15, 81, 111, 112].

Each cell type expresses a different complement of genes that defines them.
Thus, ECs and pericytes are differentiated from each other and from other cell
types by the set of genes that are active (expressed) in these cells. Genes that
encode receptors are amongst the genes that define a cell type. The receptors
exposed to the surface will determine the extracellular signals to which the
particular cell can respond and will therefore determine the signal transduc-
tion pathways that can be activated in that cell. In turn, expression of the
genes that encode the protein components of the signal transduction pathways
will determine which signal transduction pathways are activated in a particu-
lar cell. Also, the presence or absence of different molecular targets (primarily
determined by their gene expression) will determine which cellular functions
are altered by the signal transduction pathways and how these functions are
altered.

Yet another impact on cellular response can be effected by the expression
of genes that alter the intracellular location of a particular protein or that alter
the half-life of the protein. The protein products of certain genes can also alter
the intracellular locations of certain protein components of signal transduction
cascades. If the component of the signal transduction cascade is not located
appropriately in the cell, the cascade will not be activated even though the
gene is expressed and the protein is present in the cell. Similarly, if a protein is
synthesized but rapidly degraded, its concentration will be low and potentially
limiting for the signal transduction pathway or the cellular response in which
it participates. Thus, the response of ECs to their environment that results in
angiogenesis is a combinatorial function of a large number of molecular signal
interactions inside and outside the cells that involve many proteins including
growth factors, receptors, signal transduction molecules and target molecules
inside and outside the cells.
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12 How does one Model These Events Mathematically?

12.1 Discrete Verses Continuum Models-a Question of Scale

Currently there is no mathematical model that attempts to include all the
chemical and cellular components in one large master set of differential equa-
tions. Moreover the necessary complexity of such a model would undoubt-
edly limit its usefulness. Furthermore, it is clear from the forgoing discussion
that the processes involved in angiogenesis are not completely understood at
the biochemical/biological level. Therefore the mathematical modeling of this
process is somewhat like shooting at a moving target. As the biology develops,
so must the modeling. Conversely, and certainly far more interestingly, can
the model predict testable hypotheses?

Over the years a number of authors, including the authors of this article
have developed various simplified models. We refer the reader to www.ncbi.
nlm.nih.gov/entrez/querey.fcgi where keyword searches will yield several dozen
articles on the subject.

In this section we present an overall approach to modeling angiogenesis
based strictly on biochemical kinetics and continuum mechanics. That is, the
model we discuss here is a population model, one that looks at the movements
of large numbers of cells. Such models are often called continuum models, in
contrast to models which follow the movement of individual cells. In a rough
sense, population models are rather like quantum mechanics, where one takes
the point of view that electrons are probability densities, rather than as in
classical mechanics, where one views them as individual particles.

12.2 The Mathematical Ideas in Prospective

The model we propose here is a dynamical system. That is, it is a system of
ordinary and partial differential equations (pdes) in the space-time domain.
The pdes appear on first inspection, to be parabolic, and indeed, each single
equation is. However, those involving cell movement via chemotaxis or hapto-
taxis are strongly coupled. Thus, they not only possess a hyperbolic character,
but also the character of mixed type equation.

In order to understand this in the simplest case, consider the system ut =
duxx − (uvx)x, vt = εvxx + u − av, the model of Keller-Segal (where a, dε
are non negative.) Suppose all three constants are positive. The first equation
is parabolic u while, when ε > 0 the second is parabolic in v. If d = 0 the
first equation becomes hyperbolic in u. If ε = 0 and we take d > 0, and we
eliminate u = vt + av from the first equation, we have

vtt + vtxvx + [vt + a(v − d)]vxx + avt = vtxx − av2
x .

Ignoring the third order term for the moment, the second order operator on
the left hand side has discriminant v2

x−4[vt +a(v−d)] which can change sign.
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Fig. 11. Growth factor receptor blocking by inhibition of tyrosine kinase activity

This means that the equation for v is of mixed type. (The third order term
vtxx can be viewed as a strong damping term.) See [16, 41, 55, 59, 76, 77, 83]
for various mathematical results concerning this system.

12.3 A Quick Review of Enzyme Kinetics
and the Michealis-Menten Hypothesis

Suppose that we have a chemical reaction to convert S to and P . This may
be represented symbolically as

S ↔ P

and which is energetically favorable, i.e. there is a net loss of free energy
for the conversion of the substrate S to the product P. Such a reaction is
said to be thermodynamically favorable or spontaneous. In many cases, there
is an energy barrier between the two states that prevents the reaction from
proceeding. However, a catalyst can sometimes be added to this system that
lowers this barrier to such a degree as to make the reaction kinetically possible
by speeding up the arrival to equilibrium by several orders of magnitude. For
example, the conversion of CO2 (carbon dioxide) to H2CO3 (carbonic acid) in
water is accelerated by a factor of 106 in each direction by the enzyme carbonic
anydrase. (A catalyst cannot change the thermodynamics, i.e. the ultimate
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ratio of the concentrations of products to reactants. It can only change the
speed of the reaction in each direction.4) When the catalyst is a protein,
it is called an enzyme and its name ends in “ase”. The kinetic mechanism
proposed by Michealis and Menten by which enzymes catalyze such reactions
takes place in two steps. First the enzyme binds to the substrate:

E + S
kon

�
koff

{ES} .

Then there is conversion of the intermediate to product and release of the
enzyme:

{ES} km→ E + P .

The intermediate molecular species I = {ES}, will be more likely to convert
to products P than to revert to substrate S. (The product need not be a single
molecular unit. This is especially true when the conversion of S to P involves
the cleavage of one or more of the peptide bonds in S.

Such mechanisms lie at the heart of many signal transduction pathways.
They may be further regulated by competitive or non competitive inhibition.
(In the former case, a second substrate S′ competes with S for E via S′+E →
J → no reaction whereas in the latter, the intermediate is inhibited, i.e.
S′ + {ES} → J → no reaction.)5

A word about notation: Chemists generally denote the concentration (in
moles or micro moles per unit volume) of species A with square brackets
vis: [A]. In most cases, systems are considered to be well stirred so that [A]
depends at most on time. However, we need to assume that the concentrations
of chemical species also depend on position. Therefore we sometimes abandon
the brackets notation and write a(x, y, z, t) or a(·, t) when we consider the
concentration as a point function.

In so far as mass action alone is concerned, the above system yields, in the
well stirred situation, a system of four kinetic ordinary differential equations:

d[S]
dt

= −kon[E][S] + koff [{ES}] ,

d[E]
dt

= −kon[E][S] + (koff+km
)[{ES}] ,

d[{ES}]
dt

= kon[E][S] − (koff+km
)[{ES}] ,

d[P ]
dt

= km[{ES}] .

(1)

4However, by either increasing the concentrations of reactants or decreasing the
concentrations of products via other reactions, this ratio may be changed.

5In many biological systems, such inhibitions are sometimes reversible. For exam-
ple, {ES′}+S � {ES}+S′ so that excess substrate S can overcome the inhibitory
effects of S′. From the point of view of the inhibition of tumorigenic angiogenesis
irreversible inhibition is perhaps more desirable.
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In the well stirred situation with substrates and enzyme with relatively long
half lives, biochemists and applied mathematicians have devoted considerable
energy to understanding this system from their respective points of view.
See [75] for an excellent discussion of this from the mathematician’s viewpoint
in this well stirred case.

If [E]0 denotes the initial concentration of enzyme, the sum of the sec-
ond and third of these equations tells us that in the well stirred case,
[E](t) + [{ES}](t) = [E]0. However, in vivo, this is usually not the case,
as the enzyme may be the product of another reaction pair, be degraded by
virtue of having a short half life or be inactivated by binding to other proteins
or by being sequestered from its substrate; for example located in a different
cell compartment such as the nucleus or mitochondrion.

Biochemists generally assume that such mechanisms are of “Michealis-
Menten” type. This means that the enzyme substrate complex ({ES}) is
assumed to come to equilibrium on a time scale that is much shorter than
that required for the complete conversion of the substrate (S) into the product
(P). From a mathematical point of view this says that the left hand side of
the third equation in (1) is vanishes, i.e.

[{ES}] =
kon

koff + km
[E][S] = [E][S]/KM (2)

where Km = koff +km

kon
is called the Michealis constant. (A very nice discussion

of this hypothesis in terms of the language of singular perturbation theory
(the matching of inner and outer solutions) is given in [75].) We shall assume
this condition in the following without further ado. We see that the condition
tells us the enzyme concentration is also constant. This is unrealistic, but to
be expected because once the hypothesis is invoked we are dealing with the
outer solution of the system (1). See [75]. Applying (2) to the conservation
law, we are led to a single ordinary differential equation for the consumption
of substrate:

d[S]
dt

= −km[E]0[S]
Km + [S]

.

Once [S] is found, [P ] may be found by quadrature.

12.4 The Role of Chemical Kinetics in the Simplification
of the Intracellular Events

In the simplest model of angiogenesis, the endothelial cells that line a given
capillary are induced to proliferate and migrate by growth factor that has
been secreted by a tumor or a gland. In order for such cells to migrate into
the surrounding ECM and begin to build a new capillary, three events must
occur. First, the capillary lining and the surrounding tissue must be degraded.
Second, the cells must be capable of sensing and responding to this degraded
state. Finally, new cells must form to fill the void left by moving cells.

A simplified model for this can be described as follows:
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1. A molecule of growth factor, G, binds to a cell receptor, R to form an
intermediate, {GR} which in turn initiates an intracellular signal cascade
which results in:

a. The expression by the cell of one or more molecules of a proteolytic
enzyme C and

b. initiation of the cell cycle.
2. The protease breaks down the collagen matrix F , which results in a number

of smaller peptides, P.P ′ . . . , at least one of which may have an inhibiting
effect on the process by inhibiting G,R,C or by blocking the further pro-
duction of C by binding with {GR}. (This is a kind of “negative feedback
loop.”)

3. Inhibitors may be introduced into the system (Fig. 10).

In order to keep track of the bookkeeping, we need to recognize several states
for the proteins that will do the work, R,G,C. If a molecule X is in an active
state, we denote it by Xa otherwise it is in an inhibited state, Xi.

In terms of chemical equations, [1a] can be summarized as

Ga + Ra

k1

�
k−1

{GaRa} ,

Y + {GaRa} k2→ nCa + G′ + Ra

(3)

where Y denotes the cell resources used during the cell cycle that are assem-
bled to manufacture the protease, Ca in the active state. Here G′ denotes the
degradation products of growth factor. Some of the molecules of C are in a
configuration so as to catalyze the breakdown of the extracellular matrix:

Ca + F
k3

�
k−3

{CaF} ,

{CaF} k4→ P + P ′ + Ca .

(4)

The Michaelis-Menten hypothesis is to be in force for both (3)–(4), i.e.

[{GaRa}] = [Ga][Ra]/K1
m ,

[{CaF}] = [Ca][F ]/K2
m .

(5)

If we have a competitive inhibitor present, it can interfere with the recep-
tor, the growth factor or the enzyme (Fig. 10). That is, at least one of

Ra + Ir

νr

� Ri ,

Ga + Ig

νg

� Gi ,

Ca + Ic

νc

� Ci

(6)
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must be in force. These inhibitors may come from an external source, be se-
creted by the cells, or be found from among the products of matrix degradation,
i.e., among P, P ′, . . . .

We can write down the “conservation laws” for the receptor, growth factor
and protease densities as:

[R] = [Ra] + [Ri] + [{GaRa}] ,

[G] = [Ga] + [Gi] + [{GaRa}] ,

[C] = [Ca] + [Ci] + [{CaF}] .

The equilibria (6) give rise to

νr[Ra][Ir] = [Ri] ,

νg[Ga][Ig] = [Gi] ,

νc[Ca][Ic] = [Ci] .

However, it the inhibitor is noncompetitive, then one of

{GaRa}a + Îr

ν̂r

� {GaRa}i ,

{GaRa}a + Îg

ν̂g

� {GaRa}i ,

{CaF}a + Îc

ν̂c

� {CaF}i

(7)

must be in force where now the “ ˆ ” denotes non-competitive equilibrium.
Then the conservation laws:

[{GaRa}] = [{GaRa}a] + [{GaRa}i] ,

[{CaF}] = [{CaF}a] + [{CaF}i]

will be in force along with the equilibrium equations:

ν̂r[{GaRa}a][Îr] = [{GaRa}i] ,

ν̂g[{GaRa}a][Îg] = [{GaRa}i] ,

ν̂c[{CaF}a][Îc] = [{CaF}i] .

The questions of which molecules are inhibited and what type of inhibition
is in play (Fig. 10).

The answers depend, to a degree, on the molecular geometry that comes
into play as well as on the mechanisms involved in the reactions.

When we write down the mass action rate laws, we must also take into
account the sources of these inhibitors. One obvious source is that they are
introduced intravenously. This was the point of view taken in [58, 60]. How-
ever, inhibitors, as we remarked above, arise as fragments of collagen decay
among other processes.
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For simplicity, let us consider the case in which growth factor activates
a cell receptor while the enzyme that results from it degrades the collagen
matrix. Furthermore, suppose that among the products of this degradation
is a competitive inhibitor of growth factor, Ig. Assume also that we are no
longer in the “well stirred” situation. Then chemical equations become:

Ga + Ra

k1

�
k−1

{GaRa} k2→ Ca + Ra ,

Ca + F
k3

�
k−3

{caF} k4→ Ca + Ig + F ′ ,

Ga + Ig

νg

� Gi .

(8)

If we write down all eight differential equations coming from the first two
of these chemical equations via mass action and use the Michealis-Menten
hypothesis without recourse to conservation laws we obtain:

∂ga

∂t
= (−k1 + k−1/K1

m)gara = −k2gara

K1
m

,

∂ca

∂t
=

k2gara

K1
m

,

∂f

∂t
= (−k3 + k−3/K2

m)caf = −k4caf

K2
m

,

∂ig
∂t

=
k4caf

K2
m

.

(9)

We must also allow for molecular decay of Ga, Ca, Ig and tie these rates
to the rates of diffusion of G,C, Ig. Moreover, a term must be included that
reflects the capacity for cell expression of collagen.

We have some choices for our set of dependent variables. If we chose
{g, c, r, f, ig} as our set, we can find ra, ca, ga from the equations that arise
from the “conservation laws”.

ra =
r

1 + ga/K1
m

,

ga =
g

1 + νgig + ra/K1
m

,

ca =
c

1 + f/K2
m

.

(10)

With this choice we can include in the diffusion equations for g, c the
kinetic rate terms coming from the reaction mechanisms (9).

It is also necessary to have a movement equation for receptor density. If ρ
is the number of receptors of the type under consideration per cell, r(x, yz, t)
is the number of receptors in micro moles per liter and N(x, y, z, t) is the
cell density in cells per liter, then ρ = r/N will be the number of receptors
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per cell expressed in micro moles per cell. If 1/Nmax denotes the volume of
a single cell, then rmax = ρNmax and thus r = rmaxN/Nmax. The quantity
rmax may be estimated as follows: For many growth factors, there are roughly
105 receptors per endothelial cell. The volume of a typical EC is about 103

cubic microns or 10−15 cubic meters [78]. This means that there are roughly
1020 receptors per cubic meter or 1017 per liter [6, 7, 118]. Dividing this by
Avogadro’s number, 6 × 1023 we conclude that there are 1.2 × 10−6 moles
per cubic liter or roughly 1.2 micromoles per liter. Thus we typically take
rmax ≈ 1.0µM.

Cells also express collagen. One way to model the expression of collagen is
to use a logistic term for collagen production that also depends upon the rela-
tive cell density. that is, we include a term of the form f(1−f/fM )(N/Nmax)
where fM is the density of pure collagen (1/fM is the specific volume of col-
lagen.)

Before discussing the cell movement equations, we summarize the equa-
tions we have thus far in view of the forgoing comments. We let Dz, µz be
the diffusion coefficient and the decay rate of molecular species z. (Decay
rate = ln 2/(half life).) We also let σz denote the rate at which cells can
express z in micro molarity per unit time. We track the variables g, c via
diffusion. If we do this, we must subtract from ∂tg the rate terms that cor-
respond to the cellular consumption of active growth factor and the decay of
active growth factor while adding a term that expresses the cellular expres-
sion of growth factor. A similar adjustment must be done for the protease rate
equation. Then the rate laws become

∂g

∂t
= Dg∆g +

(
σg − k2ga

K1
m + ga

)
N

Nmax
− µgga

∂c

∂t
= Dc∆c +

k2ga

K1
m + ga

N

Nmax
− µcca ,

∂f

∂t
=

4
Tf

f

(
1 − f

fM

)
N

Nmax
− k4caf

K2
m

,

∂ig
∂t

= Dig
∆ig +

k4caf

K2
m

+ σi
N

Nmax
− µig

ig

(11)

where we have written

k2gara

K1
m

=
k2gar

K1
m + ga

=
k2ga

K1
m + ga

N

Nmax

in view of the comment that rmax ≈ 1.0µM . (Here 4/Tf is just a convenient
way of writing the time scale for collagen production.) The equations (10) are
then used to compute ga, ca. The form on the decay terms (νgga and µcca) is
taken to reflect that it is only the active form of the molecular species that
undergoes “decay”.
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12.5 The Role of the Cell Cycle

For a given cell, we can expect that a receptor is either in an active state,
ready to interact with growth factor, or in an inactive state. Furthermore,
there are two subclasses of cells, those that are in the resting state G0 and
those that are in one of the other states (G1, S,G2,M). We denote by Ni the
population of cells that are in the resting state. Then a simple logistic rate
law6 for the cells in one of the cell cycle states is given by (in the well stirred
case):

dN

dt
= λ

ga

K + ga
N

(
1 − N + Ni

Nmax

)
− µN . (12)

It is perhaps important to emphasize the meaning of such a logistic equa-
tion from the point of view of the cell cycle. The equation itself is only a
population equation. It does not tell us anything about which phase in the
cell cycle a given cell is in. It is only a model of how we believe the local
population density of cells moving through the states G1, S,G2,M is growing.
However, it is not completely unrelated to the cell cycle in the sense that at
saturation with a low cell density

dN

dt
= (λ − µ)N .

This tells us that the time through one pass of the cell cycle is ln 2/(λ − µ).
Likewise, although individual cells in the G0 state do not proliferate, in

any given small region of space, the local density can change with time as
cells pass in and out of this state. For example, as the capillary advances, the
local population of cells at a fixed point behind the tip does grow from zero
to some maximum number by virtue of entry of proliferating cells into the
G0 state. We would like to have a description of the local population in this
state that reflects the fact that as factors, which encourage the proliferation
of active cells, decrease the population of cells in the G0 state increases and
vice versa. That is, we would like a way to describe the rate of exit from the
cell cycle as a function of the concentrations of the factors that encourage cell
proliferation. We could model this by introducing a second inhibitor Ir that
competes with growth factor for active receptors Ra.

Another approach is to argue that there is some logistic influence on the
population of cells in the G0 state that decreases as the concentration of
growth factor increases vis:

dNi

dt
= λ

K

K + ga
Ni

(
1 − N + Ni

Nmax

)
(13)

where we have assumed that the apoptosis rate for quiescent cells is zero.7

6Equations of this form where the cells have two different carrying capacities
have been used in [32, 33, 61].

7Here the formal “doubling time” is ln 2/λ for small populations of quiescent cells.
Because the equation is a description of the growth of the quiescent cell population
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Adding the last two equations and writing NT = N + Ni we have

dNT

dt
≤ λ

(gaN + KNi)
K + ga

(
1 − NT

Nmax

)
(14)

so that (by the maximum principle) the total cell density cannot exceed the
carrying capacity.

The idea here is that as the concentration of growth factor increases, the
coefficient ga

K+ga
increases (i.e. the proliferation rate of active cells increases),

while the coefficient K
K+ga

decreases. It says that, as the growth factor con-
centration increases without bound, the rate of growth of the population of
quiescent cells goes to zero. A model that would shut off the growth of the
population of quiescent cells at a finite value of growth factor concentration
can be obtained by replacing K

K+ga
by max{K−νga,0}

K+ga
so that as soon as the

concentration of growth factor exceeds K/ν the population density of quies-
cent cells stops increasing.

In some situations, the coefficient ga

K+ga
may be replaced by a function,

ϕ(ga) which first increases and then decreases as ga increases. Such a choice
means that active cells would lose the ability to respond to growth factor if
the concentration is large enough. The corresponding coefficient in the rest
state equation would replaced by ϕmax − ϕ(ga). Under either circumstance,
the proliferation rates of cells in the rest state and cells in the active state
move in opposition to one another.

In both equations (12), (13) there are no terms that allow for cell move-
ment/chemotaxis/haptotaxis. We turn next to a modification of these equa-
tions that allows for this and that permits us to distinguish between the active
cells and the resting cells even further. It is important to emphasize here that
the addition of diffusive and chemotactic terms to the logistic growth equations
can markedly affect the dynamical behavior of solutions of such systems. Even
the simple additional replacement of constants in the standard logistic equa-
tions by space or time dependent known functions will have similar effects.
See for example, [11, 20, 44–46]

12.6 The Role of Chemotaxis, Haptotaxis and Chemokinesis
in Modeling Cell Movement

If J is the flux of a substance moving through a fluid, then mass balance leads
us to the so called “equation of continuity”

∂η

∂t
= −∇ · J

density, this constant cannot be interpreted as a time through the cell cycle when
the population density is small. The population density of quiescent cells increases
because some cells enter into the G0 state, not because they are dividing.
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when there are no sources or sinks of the substance present. Here η is the
concentration in mass or moles per unit volume of the substance while the
flux carries the same mass or mole units but per unit area rather than per
unit volume. In the case of ordinary Fickian diffusion (Brownian motion), the
flux is related to the concentration by a constitutive equation known as Fick’s
Law:

J = −D∇η

where D is a coefficient of proportionality carrying the units of area per unit
time. When the substance is molecular, it is called a diffusion coefficient.
When we are dealing with large numbers of cells, we call it a cell movement
coefficient. In the case that it is constant, eliminating the flux between the
two equations above leads to the ordinary diffusion equation

∂η

∂t
= D∆η

where ∆ = ∇ · ∇ = ∇2 denotes the Laplace operator. This is the usual
equation for small molecular species diffusing in an isotropic fluid such as
water or benzene in the absence of convective flow and sources or sinks of this
species.

Suppose the medium is not isotropic. Then D must be replaced by a
(3 × 3) tensor that reflects the structure of the medium. In this case,

J = −D(x, y, z)∇η

where D may be position dependent. This is the case in an extracellular matrix
that consists of cells, collagen and other connective tissue.

Further complicating the movement of our species, is the fact that its
movement can be influenced by other species in the local environment. In the
case of cell movement, this can happen because certain cell surface molecules
can attach themselves to specific anchor points in the matrix that may ei-
ther prevent motion (cell adhesion), or in the case of pseudopodia, encourage
motion (haptotaxis). Or it could happen because the cell, through surface re-
ceptors, detects biomolecules that either encourage movement in the direction
of the concentration gradient of that molecule or that encourage movement
in the direction opposite to the concentration of that molecule. Either type
of movement is called chemotaxis. (A further distinction is sometimes in that
when the magnitude of the gradient response depends on the concentration
of the molecule as well as on the magnitude of the gradient, the response
is called chemokinetic.) If there are several agents present, such as growth
factors, proteases, structure proteins, then the flux of cell density will be in-
fluenced by several gradients. For example, suppose that g(x, t), c(x, t), f(x, t)
are the concentrations of growth factor, protease and collagen and η(x, t) is

J = −D(η)∇xη + [G(η, g, c, f)∇xg + M(η, g, c, f)∇xc + F (η, g, c, f)∇xf ]η
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where G,M,F are some phenomenological functions of (η, g, c, f). These func-
tions determine the influence of the specific species on the flux of the cell
density. For example, at those points where G > 0, the flux of growth factor
opposes the diffusion flux while where G < 0, the flux of growth factor assists
the diffusion flux.

A further simplification of this flux vector can be made if we can assume
that there is a potential function T (g, c, f) such that G = D(η)∂gT,M =
D(η)∂cT, F = D(η)∂fT , an assumption that holds if and only if
curl(G,M,F ) =

−→
0 .8 Setting τ(g, c, f) = exp(T (g, c, f), and using the re-

sulting flux vector in the continuity equation we obtain:

∂η

∂t
= ∇ ·

{
D(η)

[
∇ ln

(
η

τ(g, c, f)

)]}
. (15)

Notice that it does not matter whether or not D is constant, a scaler or even
a 3× 3 matrix. The idea of [85] was to use the random walk argument of [17]
together with the assumption of a constant diffusion coefficient to pass from a
discrete random walk equation that results from the consideration of particle
movement that is biased by chemotactic movement to a continuous equation in
the particle density that reflects this bias. Here we obtain the continuous form
of the chemotactic movement equation, (15) via elementary considerations.

The advantage of using (15) as a starting point for a cell movement equa-
tion becomes apparent if one assumes further that the biochemical species act
independently of each other, i.e.,

τ(g, c, f) = τ1(g)τ2(c)τ3(f) .

We can determine the qualitative form of the individual factors based on our
knowledge of how each agent influences cell motion. For example, it is known
that as growth factor concentration increases, the chemotactic response first
increases and then decreases. This is also true of protease and matrix protein.
However, the relative sizes of these functions may be different and not all
factors need be present in the response function. Never-the-less, (15) dictates
the rule of thumb: “Cell density follows the chemotactic response function.”
The function τ is sometimes called the probability transition rate function
(PTF) or the chemotactic response function.

12.7 Contact Inhibition and Crowding and How to Model Them

The presentation here was inspired by [42, 87]. Suppose that we have two
cell types and we denote by η1, η2 their probability density functions (local
concentrations). Suppose they move not only randomly but also “self chemo-
tactically” and “chemotactically” in the sense that the flux of each species
is determined not only by the gradient of the species itself but also by how

8when there is only one agent present, such a function T always exists.
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the two species interact. For example the flux J1 of the first species takes the
form:

J1 = −D11(η1, η2)∇xη1 − D12(η1, η2)∇xη2

where the cross term D12(η1, η2) need not be of one sign. Thus, where this
coefficient is positive, the (random) movement of the first cell type is aided
by the gradient of the second type and where this coefficient is negative, the
gradient of the second type tends to inhibit the movement of the first cell
type.

A double application of the continuity equation for each species separately
leads to the system

∂tη1 = ∇x[D11(η1, η2)∇xη1] + ∇x[D12(η1, η2)∇xη2] .

∂tη2 = ∇x[D21(η1, η2)∇xη1] + ∇x[D22(η2, η2)∇xη2] .
(16)

Suppose that there is a scalar function D1(η1, η2) such that the vector field

[A1, B1] ≡
[

[D11(η1, η2)
η1D1(η1, η2)

,
D12(η1, η2)
η1D1(η1, η2)

]

is exact in the triangular region defined by the inequalities 0 ≤ η1, η2 and
0 ≤ η1/N1 + η2/N2 ≤ 1 where Ni is the carrying capacity of species i. That
is, there is a scaler function τ1(η1, η2) such that ∇[ln(τ1)] = [A1, B1], i.e.

D11(η1, η2) = D1(η1, η2){1 − η1∂η1 ln[τ1(η1, η2)]} ,

D12(η1, η2) = −D1(η1, η2)η1∂η2 ln[τ1(η1, η2)] .

Suppose also that there are corresponding functions D1, τ2 such that

D22(η1, η2) = D2(η1, η2){1 − η2∂η2 ln[τ2(η1, η2)]} ,

D21(η1, η2) = −D2(η1, η2)η2∂η1 ln[τ2(η1, η2)] .

Then (16) can be written in the more compact forme:

∂tη1 = ∇x

{
D1(η1, η2)η1∇x ln

[
η1

τ1(η1, η2)

]}
,

∂tη2 = ∇x

{
D2(η1, η2)η2∇x ln

[
η2

τ2(η1, η2)

]}
.

(17)

Notice once again the ubiquitous logarithm.
As a simple example, suppose for i = 1, 2 τi(η1, η2) = ηi[1 − (η1/N1 +

ηe/N2)] and that the Di are constant. (Here 1/Ni is the specific volume of
species i.) Then the dynamics suggest that ηi will follow ηi[1 − (η1/N1 +
ηe/N2)]. Consequently, with no flux boundary conditions, the quantity (η1/N1+
ηe/N2) should evolve to a constant. Notice that, when η3−i is fixed, τi first
increases and then decreases as ηi increases from 0 to Ni. In other words,
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there is a tendency for the cells to first to aggregate and then to disaggregate
near the carrying capacity.

It is perhaps worth mentioning that such a reduction is not, in general,
always possible because the conditions for exactness may not be satisfied for
any Di in the region of interest in the η1 − η2 plane. That is, the first order
partial differential equation for Di, ∂η2Ai = ∂η1Bi, may not be solvable in this
region. The possibility of such a reduction is even less likely in three space
dimensions (i.e. in real tissues) in the case that the coefficients Dij are tensors,
i.e., the flux vectors are not coplanar with the cell density gradients.

Now we are in a position to modify (12), (13) to include cell movement.
We assume

1. Active cells, i.e. cells in G1, S,G2,M are capable of expressing growth factor
and collagen as described above.

2. Cells in G0, the cells in the rest state do not express growth factor.
3. Active cell movement is induced by growth factor, protease and collagen

gradients and contact inhibition.
4. Quiescent cell movement is induced solely by collagen gradients and contact

inhibition.
5. The cell movement coefficients D1,D2 are constant.
6. There is a positive threshold for growth factor, ge and transfer rates, δ, δ′

between active and inactive cells such that when the growth factor is above
this threshold, inactive cells become active at rate δ and when it is below
this threshold, active cells become inactive at rate δ′.

This leads to the system:

∂N

∂t
= ∇ ·

{
D1N

[
∇ ln

(
N

τ1(N,Ni, ga, ca, f)

)]}

+ λ
ga

K + ga
N

(
1 − N + Ni

Nmax

)
− µN

+ δH(g − ge)Ni − δ′H(ge − g)N ,

∂Ni

∂t
= ∇ ·

{
D2Ni

[
∇ ln

(
Ni

τ2(N,Ni, f)

)]}
+ λ

K

K + ga
Ni

(
1 − N + Ni

Nmax

)

− δH(g − ge)Ni + δ′H(ge − g)N ,

∂g

∂t
= Dg∆g+

(
σg − k2ga

K1
m + ga

)
N

Nmax
− µgga ,

∂c

∂t
= Dc∆c +

k2ga

K1
m + ga

N

Nmax
− µcca ,

∂f

∂t
=

4
Tf

f

(
1 − f

fM

)
N + Ni

Nmax
− k4caf

K2
m

,

∂ig
∂t

= Dig
∆ig +

k4caf

K2
m

+ σi
N + Ni

Nmax
− µig

ig .

(18)
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The active protease and active growth factor are related to g, c by g =
ga(1+ νgig + ra/K1

m) and c = ca(1+ f/K2
m) where ra = rmax(N/Nmax)/

(1+ ga/K1
m). The first and third of these lead to g = ga(1+ νgig + rmax(N/

Nmax)/(ga+K1
m)) ≡ F (ga). Typically, one assumes that ga � K1

m so that the
relation between g and ga is linear. However, the function F (·) is strictly in-
creasing, unbounded on [0,∞) and vanishes at ga = 0. Therefore the resulting
quadratic in ga always has a unique positive solution and the approximation
is unnecessary.

12.8 Other Housekeeping Chores-Model Extensions

No system such as (18) can be solved computationally as is. We need to close
the system in a number of ways. We also need to describe the procedure for
gleaning numerical information from the system. Currently the authors and
M. W. Smiley are examining these issues. David Pinkston, an undergraduate
honors student at Iowa State, has studied the one dimensional version of this
system.

1. The geometry of the problem must be set. This is done in conjunction
with a renormalization of all the variables to non dimensional variables.
In the case of in situ angiogenesis or vasculogenesis, a bounded two or
three dimensional region will suffice. However, if one wishes to describe the
penetration of a nascent capillary into the surrounding ECM, it may be
necessary to prescribe transmission boundary conditions from one domain
to a second, adjacent domain. An illustration of this was carried out in
[58] for a single cell type where Folkman’s classic diagram for incipient
angiogenesis [29] was used as a model. (The remaining boundary conditions
can be set as dictated by the biological problem. For example, no flux
boundary conditions or mixed type conditions as needed can be selected.)

2. Initial conditions for the six dynamic variables (N,Ni, g, c, f, ig) must be
set. These can be found by prescribing (N,Ni, g, c, f, ig) initially. The pri-
mary difficulty here is in deciding how the initial densities of the quiescent
and active cells are to be distributed. However, these may not always be
known. We can proceed in one or more of three ways to test the model.
a. One seeks spatially homogeneous steady states and studies, at least

computationally, what happens when these steady states are perturbed.
b. One can begin with homogeneous steady state condition as initial data

and then drive the growth factor or inhibitor equations via source
terms. For example, two such possibilities are:

∂g

∂t
= Dg∆g +

(
σg − k2ga

K1
m + ga

)
N

Nmax
− µgga + GS(x, t) ,

∂ig
∂t

= Dig
∆ig +

k4caf

K2
m

+ σi
N

Nmax
− µig

ig + IS(x, t) .

(19)

One views GS as an additional source of growth factor, perhaps from
a small source within the region as from a tumor (a source function
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with compact support within the region of interest). The source term
for inhibitor IS can be viewed as coming from a remote tumor or as
being introduced mechanically from the outside, much as one would
introduce drugs intravenously.

3. These sources could be introduced via inhomogeneous terms in the bound-
ary conditions for the fluxes of g, i on the boundary. This was the choice
made in [58].

4. Other cell types can be included in this model along with the corresponding
chemistry. A first attempt at including more than one cell type in angiogen-
esis modeling was carried out for the one dimensional problem in [60] where
the roles of pericytes and macrophages were included. This was also the
first time, to our knowledge that inhibitors were included in biochemical
equations for angiogenesis modeling.

13 Vocabulary

Like most well developed disciplines, biochemistry and cell biology are rich
in acronyms, jargon and terminology that seem impenetrable to the outsider.
Likewise, mathematics possesses its own jargon, almost equally impenetrable
to the non mathematician. Here we have included some definitions (some of
which are taken from [1]).

aliphatic: referring to an organic molecule consisting only of carbon and
hydrogen and having no closed chain structure.
amino acid: One of the twenty-one molecules that form the building
blocks of proteins. They have an amino (basic) end, −NH2 and a carbonyl
(acidic) end -COOH
angiogenesis: The growth of new blood vessels from existing vessels.
apoptosis: Programmed cell death. It results in cells fragmenting into
smaller lipid enclosed units.
ATP, adenosine triphosphate, a molecule consisting of one of the bases,
adenine, a sugar and three phosphates. This molecule provides the energy
needed to drive most cellular functions.
Cdk: cyclin dependent kinase.
Chemokine: A cytokine that stimulates directional cell migration of

white blood cells.
CXC cytokines: A family of cytokines characterized by an amino acid
sequence motif that includes CXC, where the letter C represents cysteine
and X, refers to any aliphatic amino acid.
CXCL9: A chemokine induced by interferon.
CXCL10: Also called IFN-inducible protein 10 (IP10), a chemokine.
cytokine: Any of a class of immunoregulatory substances that are se-
creted by cells of the immune system.
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ELR motif: motifs characterized by an amino acid sequence ELR (glu-
tamic acid-leucine-arginine) that immediately precedes the first cysteine
amino acid residue in the protein sequence.
ECM: The extracellular matrix of proteins that holds the cells of a tis-
sue in place. Sometimes it refers to the tissue exterior to the circulatory
system.
EGF, epidermal growth factor: A growth factor that stimulates the
growth of epidermal cells.
endothelial cells (EC): The cells lining the interior of all blood vessels.
enzyme: A protein that functions as a catalyst to accelerate a reaction.
epitope: A molecular region on the surface of an antigen capable of elic-
iting an immune response and combining with the specific antibody pro-
duced by such a response.
FGF, fibroblast growth factor: A growth factor that stimulates the
growth of fibroblasts (cells that maintain the ECM).
FLT-1, fms-like tyrosine kinase 1: The VEGF receptor-1.
growth factors: Any of a number of proteins that are capable of stimu-
lating cell mitosis.
HSPG: heparan sulphate proteoglycan.
IFN, interferon: Any of a family of heat stable, soluble, basic, antiviral
glycoproteins of low molecular weight usually produced by cells exposed
to the action of virus or another intracellular parasite (as a bacterium) or
experimentally to the action of chemicals.
integrins: A family of glycoproteins that are found on all or most mam-
malian cell surfaces that are composed of two dissimilar polypeptide
chains.
-kinase: Any catalyst that aids in the addition of a phosphate group.
KDR, kinase insert domain-containing receptor: The human
VEGF receptor-2, called flk-1 (“fetal liver kinase 1”) in mice.
lumen: the central cavity of a tubular like structure, e.g. the channel
through which the blood flows or the interior of the ureter. The bore of a
needle.
MMP, matrix metalloprotease: One of a large family of zinc ion bear-
ing proteases.
PAI: plasminogen activator, a protease inhibitor.
PDGF: platelet derived growth factor.
PEDF: pigment epithelium-derived factor
peptide bond: The bond that links the carbonyl carbon of one amino
acid in a polypeptide protein to the adjacent nitrogen atom in the amine
end of its nearest amino acid neighbor.
peptides: Short chains of amino acids.
phosphatase: Any catalyst that aids in the removal of a phosphate group.
PLGF: placental growth factor.
pro-uPA The inactive proform of the urokinase plasminogen activator
that can be activated by cleavage.
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proteoglycan: One of a number of high molecular weight glycoproteins
found in the extracellular matrix of connective tissue, made up mostly
of carbohydrate consisting of various polysaccharide side chains linked to
a protein and resembling polysaccharides rather than proteins in their
properties.
proteolysis: The cleavage of a peptide bond between two adjacent amino
acids in a protein into two smaller peptides and a molecule of water.
RGD: The arginine-glycine-aspartate, amino acid sequence. A term used
to define a domain (RGD domain) that is found in fibronectin and other
ECM proteins that is bound by the integrin receptors.
proteolytic enzymes, proteases Enzymes that facilitate proteolysis.
sFLT-1: The soluble extracellular domain of the VEGF receptor-1.
TGFβ: Transforming growth factor type β, a growth factor for some cells
and a growth inhibitor for others.
TIMP: Tissue inhibitor of metalloproteinases.
TNFα: Tumor necrosis factor α.
VEGF: Vascular endothelial cell growth factor.
uPAR: Urokinase plasminogen activator receptor.
uPA: Urokinase plasminogen activator, a protease.
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Abstract. The growth of solid tumors proceeds through two distinct phases: the
avascular and the vascular phase. It is during the latter stage that the insidious
process of cancer invasion of peritumoral tissue can and does take place. Vascular
tumors grow rapidly allowing the cancer cells to establish a new colony in dis-
tant organs, a process known as metastasis. The metastatic cascade is a multi-
step process that involves the over-expression of proteolytic enzyme activity such
as the urokinase-type plasminogen activator (uPA) and matrix metalloproteinases
(MMPs). uPA initiates the activation of an enzymatic cascade that primarily in-
volves the activation of plasminogen and subsequently its matrix degrading protein
plasmin. Degradation of the peritumoral tissue enables the cancer cells to migrate
through the tissue and subsequently to spread to secondary sites in the body.

In this chapter we consider a mathematical model of cancer cell invasion of ex-
tracellular matrix which focuses on the role of the urokinase plasminogen activation
system. The model consists of a system of reaction-diffusion-taxis partial differential
equations describing the interactions between cancer cells, urokinase plasminogen ac-
tivator (uPA), uPA inhibitors, plasmin and the host tissue. That partial differential
equations (naturally) focus on the spatio-temporal dynamics on the uPA system and
its role in tissue invasion. The results obtained from the spatio-temporal systems,
underscore the ability of rather simple models to produce complicated dynamics,
associated with tumour heterogeneity and cancer cell progression and invasion.

1 Introduction

During the last two decades, mathematics has made a considerable impact as a
useful tool with which to model and understand biological phenomena. Math-
ematical modelling is now recognised as an important part of understanding
biomedical systems. Although there are obvious limitations which must be
recognised, mathematics does indeed have a contribution to make, at least in
helping us understand the very basic building blocks of behaviour exhibited
by the cell, the gene, or the enzyme. Through mathematical modelling, bio-
logical phenomena of enormous complexity can be idealized and simplified in
a set of mathematical equations.
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This chapter considers a mathematical model in an attempt to understand
certain properties or aspects of the urokinase plasminogen activation system
and its role in cancer invasion and metastasis. However, we cannot model an
entire biological system, and to ask the question of what role a specific molec-
ular component plays in effecting and/or controlling the locomotive behaviour
of a cell leads immediately to a need to deconvolute a highly complex system.
Asking the next question of how to manipulate the effect of a specific compo-
nent or to control its activity leads to the corresponding need to predict the
outcome of a “reconvolution” of the system with altered properties. Last but
not least, for the prediction of what will result from making any genetic or
biochemical interventions targeting that component or other molecules that
interact with it, it is necessary to integrate, or “reconstruct”, the resulting
alterations in the physical processes up to individual (stochastic) cell paths,
and finally up to cell population (deterministic) distributions.

Before we continue we should make clear what form of equations will be
analysed here, and why. The model considered here will focus on the level of
cell populations or densities and their response to concentrations of chemicals.
Under the continuum hypothesis, the spatio-temporal state of a system of
cells and/or chemical interactions is described by partial differential equations
(PDEs) derived from considerations of conservation of matter. Suppose we
have a fixed but arbitrary volume V enclosed by a surface S and we consider
the flow of cells through this volume. The conservation equation states that
the rate at which the number of cells changes (accumulates or disappears)
within V must be balanced by the net flow (influx or efflux) of cells across
the bounding surface S, plus the number of mitotic, proliferating, and/or
degrading cells in V, or

d
dt

∫
V

u(x, t) dx =
∫

S

−J(x, t) · dS +
∫

V

K(u, p) dV , (1)

where u(x, t) is the concentration of cells at position x and time t; J is the
flux of cells through the closed surface, S = ∂V , per unit volume per unit
time; K(u, p) describes the net rate of mitotic, proliferating, and/or degrading
cells and is generally described by a polynomial or fractional function in u
and p representing interactions with other cells and/or chemicals. Using the
divergence theorem (

∫
V
∇ · JdV =

∫
S
J · dS), (1) may be written

d
dt

∫
V

u(x, t) dV =
∫

V

(−∇ · J + K(u, p)) dV . (2)

Assuming the domain is fixed in time, we may differentiate through the
integral. Using the fact that the choice of volume V was arbitrary we have
that at every point (x, t) the following conservation equation holds.

∂u

∂t
= −∇ · J + K(u, p) . (3)
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Systems of the above form have been used to model a wide variety of
biological phenomena and a number of examples can be found in the books
by Murray (2003) and Edelstein-Keshet (1988). A more formal derivation of
the equation can be found in Okubo (1980).

Although over the past 30 years or so a number of mathematical models
have been proposed in an attempt to describe various key stages of tumour
development, up until now the development of a basic “consensus” model of
solid tumour growth and development is still a mind-bending problem for
existing and future mathematical biologists. In this regard, one of the major
challenges of the next decade that mathematicians will face is to overcome
Karlin’s principle that overshadows every such model up until now, namely
“The purpose of models is not (necessarily) to fit the data, but to sharpen
the questions” (Karlin, 1983), and develop biologically realistic mathematical
models which clarify fundamental cancer processes and which can predict new
strategies of clinical therapy.

2 Mathematical Modelling
of Solid Tumour Growth and Invasion

In vivo cancer growth is a complicated phenomenon involving many inter-
related processes. Solid tumour growth occurs in two distinct phases, the ini-
tial growth being characterised as the avascular phase, the later growth as the
vascular phase. The transition from avascular growth to vascular growth de-
pends upon the crucial process of angiogenesis and is necessary for the tumour
to attain nutrients and dispose of waste products (Folkman, 1974; 1976). To
achieve vascularization, tumour cells secrete a diffusible substance known as
tumour angiogenesis factor (TAF) into the surrounding tissues (Folkman and
Klagsbrun, 1987). This has the effect of stimulating nearby capillary blood
vessels to grow towards and penetrate the tumour, re-supplying the tumour
with vital nutrient. Invasion and metastasis can now take place. By the time
a tumour has grown to a size whereby it can be detected by, in the case of
breast-cancer, simple self-examination, there is a strong likelihood that it has
already reached the vascular growth phase. The primary aim of screening and
the associated image enhancement technologies is therefore to detect cancers
prior to this stage.

By contrast, tumour invasion is a relatively new area for mathematical
modelling. However, over the last 10 years or so many mathematical mod-
els of tumour growth and invasion, both temporal and spatio-temporal, have
appeared in the research literature. A noteworthy interplay between popu-
lation ecological mathematical models and tumour biology was introduced
by Gatenby (1995) and Gatenby and Gawlinski (1996). In his earlier paper
Gatenby (1995) used a Lotka-Volterra competition model to examine tumour
biology through the dynamic interaction of malignant and normal cells. Fur-
thermore, in his latter paper, Gatenby and Gawlinksi (1996) considered a
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deterministic reaction-diffusion equation model for cancer invasion. A reaction-
diffusion model was developed describing the spatio-temporal distributions of
tumour and normal tissue as well as H+ ion concentration. Finally, the math-
ematical model predicts that high H+ ion concentrations in neoplastic tissue
will extend by chemical diffusion, as a gradient into adjacent normal tissue,
where normal cells are unable to survive in this acidic environment and this
results in a progressive loss of layers of normal cells and thus tumour invasion
evolves.

In a very comprehensive paper, Perumpanani et al. (1996) presented a
theoretical model describing cell invasiveness as a function of tumour cell
interactions with the local, normal host cells, noninvasive tumour cells, ex-
tracellular matrix proteins (ECM) and the proteases. Movement is described
across a chemotactic/haptotactic gradient stimulus. Furthermore, their sim-
ulation studies demonstrated that the speed of invasiveness as well as the
concomitant wave profile can be computed as a function of the tumour’s phe-
notypic profile, its extracellular matrix make up, and the gradient stimuli the
tumour finds itself in. In addition, their results highlighted the consequences of
high protease production and excessive proteolysis of the extracellular matrix
milieu in noninvasion.

The paper by Orme and Chaplain (1996) envisions a spherical tumour
growing and invading with regard to the parent blood vessel vascularization
which may consequently lead to metastasis. Their model describes the invasive
tumour cells advancing towards the parent blood vessels (chemoattractants).
However, capillary vessels were unable to reach some parts of the tumour (tu-
mour centre) due to competition for space with tumour cells or high internal
pressure which may cause vessels to collapse.

Turning the tables on traditional views on invasion, Perumpanani et al.
(1998) suggested that extracellular matrix-mediated chemotaxis runs in the
opposite direction to that of invasion. Briefly, the idea behind this concept is
that during the process of human fibrosarcoma cell line (HT1080) migration,
they showed that the degraded components of the extracellular matrix exert
a chemotactic pull stronger than that of undigested fragments and that this
runs in the opposite sense, against the direction of invasion.

In a more recent paper, Perumpanani and Byrne (1998) investigated
whether regional variations in extracellular matrix concentration affect the
propensity of tumours to invade a particular tissue. In other words, they pre-
dicted that for the fibrosarcoma cell line (HT1080) both directed movement
(haptotaxis) up a collagen gradient as well as HT1080 cell proliferation are re-
lated to a collagen gel concentration in a biphasic manner. Of particular note
is their assumption that protease production is proportional to the product
of the tumour cell density and collagen gel concentration, as a consequence
of signals transduced in the invading cells by the surrounding exctracellular
matrix milieu or the collagen gel.

Modelling of a related phenomenon, embryonic implantation involving the
invasion of trophoblast cells into maternal uterine tissue, using a deterministic
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reaction-diffusion approach, has also been carried out (Byrne et al., 1998). A
novel feature of their model, is their assumption that trophoblast cells respond
chemotactically to spatial gradients generated by the inhibitor, rather than
the activator protease. Moreover, recently Byrne et al. (2001) presented a
simpler submodel of the aforementioned model (Byrne et al., 1998), carrying
out a mathematical analysis and obtaining a typical travelling wave solution
of the submodel.

In a recent paper, Anderson et al. (2000) described a unifying conceptual
theoretical framework for modelling tumour invasion and metastasis. They
presented both deterministic and discrete approaches of describing the inva-
sion of host tissue by tumour cells. The continuum approach examined the way
that tumour cells respond to extracellular matrix gradients via haptotaxis in
both one and two dimensions. In particular, the one dimensional model sim-
ulations highlight the possibility that a small cluster of cancer cells can easily
secede from the primary body of the tumour as a result of random and biased
migration as well as matrix degrading enzymes.

Furthermore, a pioneering contribution of the model lies in the fact that in
their two dimensional results they consider the medium in which the tumour
grows to be heterogeneous. By introducing extracellular matrix heterogeneity,
cells are no longer clearly amassed in to those driven by haptotaxis and those
driven by dispersion as a consequence of the already-existing gradients in the
extracellular matrix. In addition, Anderson et al. (2000) developed an ex-
tended discrete model using as a basis the aforementioned continuum model.
Even in the discrete model, they managed to confirm the importance of hap-
totaxis for both invasion and metastasis and they also underscore the effect
of cell proliferation in invasion and migration of cancer cells as an eventuality
of its space-filling function.

Additionally, Turner and Sherratt (2002), develop a discrete model of ma-
lignant invasion using an extension of the Potts model (Stott, 1999). In other
words, they used the Potts model to simulate a population of malignant cells
experiencing interactions due to both homotypic and heterotypic adhesion
while also secreting proteolytic enzymes and experiencing a haptotactic gra-
dient. In this regard, they investigated the influence of changes in cell-cell
adhesion on the invasion process.

In summary, we note that deterministic reaction-diffusion equations have
been used to model the spatial spread of tumours both at an early stage in its
growth (Sherratt and Nowak, 1992) and at the later invasive stage (Orme and
Chaplain, 1996; Gatenby, 1996; Perumpanani, 1996) while modelling of related
phenomena, i.e. embryonic implantation involving invading trophoblasts cells,
using a reaction-diffusion approach has also been carried out (Byrne et al.,
1998).

However, we would like to emphasise that the models mentioned above
consider the medium in which tumours grow to be homogeneous. On the
contrary, in vivo tissues have a high degree of fine-scaled spatial structure
and the paper by Anderson et al. (2000) investigates the effects of spatial
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heterogeneity. Mathematical models of cancer chemotherapy have also been
developed to investigate, for example, the use of targeted enzyme-conjugates
antibodies (ECA) for the selective activation of anti-cancer products (Jackson
et al., 1999; 2000) and the effects of drug resistance on the optimal scheduling
of drugs (Murray, 1997).

The aforementioned models have resulted in a novel perspective on the
different stages of tumour growth. Mathematically, the models all essentially
amount to systems of differential equations. However, it is known that the
spatio-temporal dynamics of such biologically oriented models can be dramat-
ically changed if we assume that the underlying environment to be spatially
heterogeneous. In this regard, Maini et al. (1992) considered the problem of
diffusion-driven instability in a system of reaction-diffusion equations. Their
studies suggested that if we chose a bifurcation parameter (in this case, the ra-
tio of chemical difussivities) to vary across a one-dimensional domain, the pat-
terns exhibited by the system varied in amplitude and/or wavelength across
the domain. Particularly, they suggested that if the parameter was chosen to
be above its bifurcation value only in a sub-interval of the domain, then it was
possible for patterns to propagate into the domain where linear analysis would
predict stability of the uniform steady state – a situation they described as
“environmental instability” (Benson et al., 1993). Based on these results we
can deduce that environmental inhomogeneity could be an important regula-
tor of biological pattern formation.

In line with the aforementioned suggestion of environmental heterogene-
ity, Swanson et al. (2000) considered tissue heterogeneity in the case of brain
gliomas, which are generally highly diffuse. The impressive increased detec-
tion capabilities in computerised tomography (CT) and magnetic resonance
imaging (MRI) have resulted in earlier detection of glioma tumours, although
despite this progress the benefits of early treatment have been minimal. This
is due to the fact that even after surgical excision well beyond the visible
tumour boundary, regeneration near the edge of resection ultimately results.
This is because the presently available imaging techniques only detect a small
proportion of the actual, highly diffuse tumour.

Experiments in rats show that malignant gliomas cells implanted in rat
brain disperse more quickly along white matter tracts than grey matter. Swan-
son (2000) considered a simple reaction-diffusion model for glioma cell inva-
sion on a two-dimensional anatomically accurate slice of brain tissue in which
they imposed a spatially dependent cell diffusion coefficient to account for
different cell motility rates in grey and white matter. Using numerical simu-
lation, they characterised how the proportion of a tumour that was detected
depended on the cell diffusion coefficients and the cell proliferation rate. They
also showed that the heterogeneity within the brain caused the dynamics of
tumour invasion to vary significantly depending on the initial location of the
tumour. These results have important implications on how much tissue a sur-
geon should aim to remove when a tumour is detected.
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In this remaining sections of this chapter mathematical models describing
the “kinesis”, “taxis” and reactions of the urokinase plasminogen activation
system (consisting of cancer cells, urokinase plasminogen activator (uPA) and
extracellular matrix components i.e. vitronectin, fibronectin, laminin) are de-
rived and developed to consider several key components of the system.

3 Biological Background

3.1 An Overview of Cancer

The word cancer is an “umbrella term” for approximately 200 diseases. Since
the earliest medical records were kept, cancer as a disease has been described in
the history of medicine. The origin of the word cancer is credited to the Greek
physician Hippocrates (460–370 B.C.), considered the “Father of Medicine”,
who lifted medicine out of the realms of magic, superstition and religion.

Hippocrates used the terms καρκι̇νos (carcinos) and καρκι̇νωµα (carci-
noma) (the ancient Greek word for “crab”) to describe a group of diseases
that he studied, including cancers of the breast, uterus, stomach and skin.
The hard centre and spiny projections of the tumours as well as the tendency
of tumours to reach out and spread that Hippocrates first observed reminded
him very much of “the arms of a crab”, because of the way a cancer adheres
to any part of its surroundings that it seizes upon in an obstinate manner like
the crab does.

Besides the popular generic term “cancer” that the English language has
adopted (which is also the Latin word for crab), there is another technical
medical term for cancer: νεoπλασι̇α (neoplasia). Neoplasia or neoplasm liter-
ally means new (νε̇o) formation (πλα̇σιs) in Greek. This indicates that cancers
are actually new growths of cells in the body. In this regard the definition of
a cancer is: “a new growth of tissue resulting from a continuous proliferation
of abnormal cells that have the ability to invade and destroy other tissues”
(King, 2000). Another term for cancer is “tumour”. Tumour literally means
“swelling” or mass. In this case, it refers to a mass of non-structured new
cells, which have no known purpose in the physiological function of the body
(Hanahan and Weinberg, 2000).

At the early growth stage the tumour is relatively harmless and is still
avascular, that is, it lacks its own network of blood vessels for supplying nu-
trients, including oxygen, and for removing wastes (Folkman, 1974; 1976).
The critical event that converts a self-contained pocket of aberrant cells into
a rapidly growing malignancy comes when the tumour becomes vascularized
(Folkman, 1976). That means that it has its own blood supply and microcir-
culation. A vascularized tumour has two distinct advantages over an avascular
tumour:

(i) a direct supply of nutrients into the tumour. This results in a rapid increase
in growth.

(ii) the tumour can shed cells into the bloodstream.
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Normal, as well as neoplastic, tissues become vascularized by a process
called angiogenesis, the growth of new capillary blood vessels from pre-existing
vessels (Folkman, 1974; 1976; Pepper, 2001a). The first event of tumour-
induced angiogenesis involves the secretion of a number of chemicals, col-
lectively known as tumour angiogenic factors (TAF), into the surrounding
tissue (Folkman and Klagsbrun, 1987). These factors diffuse through the tis-
sue space creating a chemical gradient between the tumour and any existing
vasculature. Upon reaching any neighbouring blood vessels, previously qui-
escent endothelial cells lining these vessels are stimulated to degrade their
basement membrane, to invade the surrounding stroma and to migrate to-
wards the tumour. As cells migrate, the endothelium begins to form sprouts
which can then form loops and branches through which blood circulates. The
whole process repeats forming a capillary network which eventually connects
with the tumour, completing angiogenesis and supplying the tumour with the
nutrients it needs to grow further. There is now also the possibility of tumour
cells finding their way into the circulation and being deposited at distant sites
throughout the body (Carmeliet and Jain, 2000).

3.2 Invasion and Metastasis

Cancers also possess the ability to actively invade the local tissue and then
spread throughout the body. Invasion and metastasis are the most insidious
and life-threatening aspects of cancer (Liotta and Stetler-Stevenson, 1991;
Liotta and Clair, 2000). We first examine invasion. Whether physiological or
malignant invasion, the regulation for its necessary events involves spatial and
temporal coordination, as well as certain cyclic “on-off” processes, at the level
of individual cells. Motility, coupled with regulated, intermittent adhesion
to the extracellular matrix and degradation of matrix molecules, allows an
invading cell to move through the three-dimensional tissue matrix. At the
leading edge of the motile cell, receptor-ligand and proteolytic-antiproteolytic
complexes coordinate sensing, protrusion, burrowing and traction of the cell
(Liotta and Stetler-Stevenson, 1991; Lauffenburger and Horwitz, 1996).

Conventional wisdom used to hold that invasion (as well as metastasis) is
a late event – often “too late” – in the clinical course of a patient’s cancer.
However, we now know that invasion can be both early and clinically “silent”
(Aznavoorian et al., 1993). The threat of tumour invasion is exemplified by
the fact that brain cancer does not need to metastasize to kill a patient. The
growth of a brain tumour mass in the confined area of the skull causes com-
pression damage: in addition, local invasion may enable brain tumour cells
to move away from the primary tumour and to reach other sites within the
brain. Such insidious behaviour may represent the inappropriate use of a pro-
gramme responsible for the outgrowth of neuronal protrusions called neurites
during normal neuronal development (Liotta and Clair, 2000). Indeed, can-
cer invasion in general may be a deregulated form of a physiological invasion
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process required for neuronal wiring in the embryo, tissue remodelling in the
formation of blood vessels, and wound healing.

The most significant turning point in the disease (cancer), however, is
the establishment of metastasis. The metastatic spread of tumour cells is the
predominant cause of cancer deaths, and with few exceptions, all cancers can
metastasize. At this stage, the patient can no longer be cured by local therapy
alone. Metastasis is defined as the formation of secondary tumour foci at a
site discontinuous from the primary tumour (Liotta and Stetler-Stevenson,
1991; Liotta and Clair, 2000). Metastasis unequivocally signifies that a tumour
is malignant and this is in fact what makes cancer so lethal. In principal,
metastases can form following invasion and penetration into adjacent tissues
followed by dissemination of cells in the blood vascular system (hematogeneous
metastasis) and lymphatics (lymphatic metastases). Sequential steps in the
so-called “metastatic cascade” are believed to include the following:

• metastatic cells arise within a population of neoplastic/tumourigenic cells
as a result of genomic instabilities;

• vascularization of the tumour through the angiogenesis process;
• detachment of metastatic-competent cells that have already evolved;
• migration of the metastatic cells;
• local invasion of cancer cells into the surrounding tissue, requiring adhesion

to and subsequent degradation of extracellular matrix (ECM) components;
• transport of metastatic cells either travelling individually or as emboli

composed of tumour cells (homotypic) or of tumour cells and host cells
(heterotypic);

• metastatic cells survive their journey in the circulation system;
• adhesion/arrest of the metastatic cells at the secondary site, cells or emboli

arrest either because of physical limitations (i.e. too large to traverse a
lumen) or by binding to specific molecules in particular organs or tissues;

• escape from the blood circulation (extravasation);
• proliferation of the metastatic tumour cells;
• growth of the secondary tumour in the new organ.

Metastases can appear shortly after surgery but can also remain unde-
tected for more than a decade before manifesting themselves clinically (King,
2000; Chambers et al., 2002; Fidler, 2002). This indicates that disseminated
cancer cells can persist in a dormant state, unable to form a progressively in-
creasing tumor mass (Chambers et al., 2002). Such heterogeneity of outcome
indicates that the fate of tumour cells that disseminate to distant organs be-
fore surgery must be regulated by either inherent cancer cell properties or the
milieu of the target organs, or both. Identifying the mechanisms that keep
metastases in their dormant, occult state is one of the most challenging and
important avenues of cancer research (Chambers et al., 2002; Fidler, 2002).

It is well recognized that the majority of cells within a tumour cannot
complete the process of metastasis. Indeed, a very small percentage (0.01%) of
circulating tumour cells entering the bloodstream successfully form clinically
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detectable lesions (Fidler et al., 1991). Thus, metastasis is a highly selective
competition, favouring the survival of a minor subpopulation of metastatic
tumour cells that pre-exist within the primary tumour. By inference, it follows
that a similarly small percentage of cells within a primary tumour would
display a marker for metastasis (Duffy, 2001). A tumour marker can be defined
as a substance produced either by a tumour or by the body in response to
a tumour that aids cancer detection and/or monitoring. Just as it is easier
to see a single, lit candle in a dark room than to find the only unlit candle
in a room full of lit candles, it is easier to identify a single cell expressing a
new metastatic marker against a background of non-expressing cells than it
is to find non-expressing cells within a mass of cells that express a particular
metastatic marker.

3.3 Tumour Heterogeneity

The development of metastasis is dependent on an interplay between host
factors and intrinsic characteristics of malignant cells. The metastasis of can-
cer cells is one of the most devastating aspects of neoplasia. It is responsible
for most therapeutic failures because patients succumb to multiple secondary
tumour growths and not necessarily to the primary tumour. A major issue,
which has recently received a great deal of attention, is the possibility that
neoplasms are heterogeneous and contain subpopulations of cells with differing
metastatic capabilities (Brattain et al., 1981). The question of heterogeneity
in solid tumours has been of increasing interest to cancer biologists in recent
years (Alexandrova, 2001). Therefore, we can ask: “Does the process of metas-
tasis represent the random survival of tumour cells, or does it result from the
survival and growth of a specialized subpopulation of cells ?”.

During tumour evolution, genetic changes may lead to emergence of new
tumour cell subpopulations with diverging phenotypic characteristics (Nowell,
1986; Fleuren, 1995), thus resulting in a heterogeneous mixture of cells differ-
ing in immunogenic properties, in metastatic ability and in responsiveness to
cytotoxic agents etc. This process is a fundamental property of cancer and has
important biological and clinical consequences among which augmentation of
tumour progression and development of resistance to treatment are most cru-
cial for the host. Not surpisingly then, it has also been demonstrated that
neoplasms are also heterogeneous with regard to invasion and metastasis, i.e.,
that they contain a variety of subpopulations of cells with differing metastatic
potentials (Fidler, 1978).

Tumours are variable in several ways. Their characteristics change with
organ site and cell origin. Numerous host variables, such as age and hormonal
status, also introduce differences. For example, the same cancer can even vary
in different species as well as in commonly believed similar hosts. However,
this inter-tumour variation is not what most investigators mean by “tumour
heterogeneity”. The term “tumour heterogeneity” means the existence of
distinct subpopulations of tumour cells with specific characteristics within a
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single neoplasm (Heppner, 1984). However, even here, there is room for confu-
sion. Tumours are architectually complex, differing regionally in vasculature,
connective tissue components, and other characteristics which can alter the
phenotype of otherwise identical cells. Marked differences in the proliferation
behaviour of tumour cells within a single cancer cell are commonplace. Some
cells, perhaps most, are reproductively dead; others are out of cycle; and still
others are cycling but are, at a given time, at different stages in the process.
Additionally, many cellular phenotypes, such as antigen expression, membrane
composition, response to chemotherapy, metastatic proclivity, to name a few,
are themselves functions of the cell cycle.

The possible existence of highly metastatic variant cells within a primary
tumour suggests that we no longer should consider a neoplasm to be a uni-
form entity (Fidler, 1978; Heppner, 1984). In this regard, tumour heterogene-
ity and progression are major features of neoplastic development. Tumour cell
societies are highly adapted for survival and proliferation. They can success-
fully survive natural and artificial (therapeutic) selection by producing new
variants (Fidler, 1978; Heppner, 1984). Therefore, for cancer researchers and
clinicians, tumour heterogeneity and progression represent problems that need
to be solved or circumvented. A better understanding of tumour anarchy will
help scientists to clarify such important biological phenomena such as appear-
ance of metastases, drug resistance, spontaneous regression and could improve
cancer prevention, diagnosis and therapy.

3.4 Proteolysis and Extracellular Matrix Degradation

The prognosis of a cancer is primarily dependent on its ability to invade and
metastasize. Many steps that occur during tumour invasion and metastasis (as
well as in a number of distinct physiological events in the healthy organism,
such as trophoblast invasion, and skin wound healing) require the regulated
turnover of extracellular matrix (ECM) macromolecules. A more localized
degradation of matrix components is required when cells migrate through a
basal lamina. It is now widely believed that the breakdown of these barriers is
catalyzed by proteolytic enzymes released from the invading tumour. Most of
these proteases belong to one of two general classes: many are metalloproteases
while others are serine proteases (Andreasen et al., 1997; 2000). Proteases give
cancers their defining characteristic – the ability of malignant cells to break
out of tissue compartments.

However, proteolytic degradation of the extracellular matrix is essential
for the processes of tissue remodelling as well. These processes take place in a
number of distinct physiological events in the healthy organism, such as tro-
phoblast invasion, mammary gland involution, and skin wound healing. The
plasminogen activation system has an important position among the extra-
cellular proteases engaged in these degradation reactions. This system is or-
ganized as a proteolytic cascade with active proteases and their pro-enzymes,
protease inhibitors, and extracellular binding proteins.
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Although it was originally thought that their role was simply to break
down tissue barriers, enabling tumour cells to invade through stroma and
blood vessel walls at primary and secondary sites, it is now understood that
matrix metalloproteinases (MMPs) and plasminogen activators (PAs) also
participate in angiogenesis (Pepper, 2001a) and are selectively upregulated in
proliferating endothelial cells (Andreasen et al., 1997; 2000; Pepper, 2001a).
In the following section, we will demonstrate the pleiotropic activities that the
urokinase plasminogen activation system has in cell migration, cell movement,
tumour progression, and metastasis. Rather than being comprehensive, the
next section will cover specific areas which are currently undergoing rapid
development.

3.5 The Urokinase Plasminogen Activation System:
Biology and Regulation

Distant metastasis, and not the primary tumour itself, is the predominant
cause of death in patients with malignant solid tumours. Thus, novel therapy
concepts aimed at preventing tumour cell spread to distant organs are urgently
needed. Up to now cancer drug development has focussed on the identifica-
tion of molecules with cytotoxic activity against tumour cells. However, it
has become evident that cytotoxic molecules, identified simply on the basis of
their ability to poison as many cancer cells (and often, normal cells) as possi-
ble, are insufficient and, in some cases, undesirable to combat the progression
of many tumours. In this regard, a paradigm shift is currently underway in
the discovery of anti-cancer therapies focusing on the modulation of tumour
characteristics other than tumour cell proliferation directly as a means of sup-
pressing tumour growth, invasion and metastasis. These approaches include
attempting to inhibit tumour neovascularization (angiogenesis), extracellular
matrix (ECM) remodelling (e.g. during local invasion) and responsiveness of
the tumour to growth factors as well as attempting to increase the rate of
tumour cell apoptosis (Kohn and Liotta, 1995).

Extracellular proteolytic enzymes such as serine proteinases and metallo-
proteinases, have been implicated in cancer invasion, angiogenesis and metas-
tasis, the basic idea being that the release of proteolytic enzymes in tumours
facilitates cancer-cell invasion into the surrounding normal tissue by break-
down of basement membranes and ECM (see the review by Mignatti and
Rifkin, 1993). It has been suggested that plasminogen activation is an essen-
tial prerequisite to many of the activities mediated by tumour-associated cells
and it has been implicated in angiogenesis, growth factor activation and mobi-
lization, ECM remodelling, invasion and metastasis goes back several decades
(see the review by Danø et al., 1985).

The serine proteases of the plasminogen activation system have tradition-
ally been considered as part of the haemostatic mechanism owing to the
dissolution of fibrin clots by plasmin (fibrinolysis). However, the plasmino-
gen activation system has also been implicated in cellular migration, invasion
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and angiogenesis (Andreasen et al., 1997; 2000; Pepper, 2001; Rakic et al.,
2003). To some extent the existence of two distinct plasminogen activators
accounts for these apparently distinct functions, with tissue plasminogen acti-
vator (tPA) being the primary fibrinolytic activator and urokinase-type plas-
minogen activator (uPA) the primary cellular activator which converts the
pro-enzyme plasminogen to its active derivative, plasmin. Both plasminogen
activators (PAs) are controlled by plasminogen activator inhibitors (PAIs), of
which PAI-1 appears to be the predominant physiological inhibitor. Whereas
tPA is primarily involved in clot dissolution (generation of plasmin for throm-
bolysis), uPA is recruited to the cell membrane immediately after its secretion
via a specific uPA receptor (uPAR) expressed on the cell surface, and plays
a role in localized cell-associated proteolysis which is an important process
for cancer invasion, angiogenesis, tissue remodeling, cardiovascular complica-
tions, wound healing, and the immune response. Thus, despite their common
enzymatic activities, the two PAs appear to play distinct roles in the organ-
ism. Moreover there are two main inhibitors of plasminogen activators, PAI-1
and PAI-2, while plasmin itself is inhibited by α2-anti-plasmin (α2AP).

The urokinase receptor (uPAR) is a cell membrane-anchored binding pro-
tein for uPA, accumulating plasminogen activation activity at cell surfaces.
It has been claimed that binding of uPA to uPAR is required for its role in
pericellular proteolysis because it would accelerate plasminogen activation,
delay inhibition by PAI-1, regulate clearance of uPA, and localize plasmin
proteolysis to the cell surface at the leading edge of the migrating cell.

Numerous studies have shown the relationship between the level of expres-
sion of uPA, uPAR, PAI-1 and their aggressive phenotypes of cancer. Based on
evidence from experimental invasion and metastasis models and on expression
patterns for components of the uPA system in tumours and normal tissues,
it now seems beyond reasonable doubt that the uPA-mediated pathway of
plasminogen activation plays a central role in tumour biology. In general, ma-
lignant tumours originating from the brain, colon, stomach, uterus, ovary,
breast, kidney, colon and prostate express higher amounts or show higher ac-
tivity of these enzymes than their normal or benign counterparts (Andreasen
et al., 1997; 2000; Pepper, 2001; Rakic et al., 2003). Also more aggressive
tumours show higher amounts of uPA system elements than less aggressive
malignant tumours. Consequently, it has been established that in extensively
investigated tumours such as breast cancers, the expression of uPA and PAI-
1 can be used as prognostic markers predicting the outcome of the disease
(Duffy et al., 1999).

However, the uPA system appears to be involved not only in cancer cell
migration and invasion, but also in other tumour processes which may col-
lectively be called “cancer cell-directed tissue remodelling”. Examples of such
processes are angiogenesis (Pepper, 2001c) and desmoplasia, i.e., stimulation
of fibroblast proliferation and extracellular matrix protein synthesis. Although
such processes involve migration and invasion by non-cancer cells, these may
influence tumour growth, invasion and metastasis as well. Andreasen et al.
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(2000) investigated such processes, and they have concluded that such a sys-
tem has plasmin-independent functions, based on the interactions of PAI-1
and uPAR with integrins and the ECM protein vitronectin and of plasmino-
gen activator-inhibitor complexes with endocytosis receptors. Nevertheless,
this evidence was, to a large extent, obtained with non-cancer cells, but as
has been stated in the previous section, no qualitative differences exist be-
tween cancer cells and normal cells (such as endothelial cells) with respect to
the basic processes of migration and invasion.

In this regard, Danø et al. (1994) pointed out the importance of the stro-
mal/cancer cell interaction in cancer invasion, and of the “orchestration” of
the various proteases in this complex process. In their view, cancer mimics
specific tissue remodelling processes with invasion as a form of uncontrolled
tissue remodelling. Indeed, the same cell types that express specific compo-
nents of the proteolytic system in remodelling processes also do so in cancer
invasion. In squamous skin cancer (as in skin wound healing), the epithelial or
the cancer cells, in addition to macrophages, produce both uPA and uPAR.
In colon cancer, as in the shedding of epithelial cells in gastrointestinal tract,
uPA is produced by fibroblast-type cells, uPAR by cancer (or epithelial) cells,
and PAI-1 by endothelial cells. In mammary cancer, as in mamary gland in-
volution, uPA is produced by myofibroblasts, while uPAR is not produced by
cancer cells but mostly by macrophages. For this reason, it is important to
study the remodelling processes of normal tissues in more detail.

In the following sections, we will describe the recent rapid increase in
knowledge about the cell biology and regulation of plasminogen activation
in relation to cell adhesion, tumour growth, cell migration, cell invasion and
metastasis. Rather than being comprehensive, this section will cover specific
areas related to the subsequent mathematical intrepretation of the plasmino-
gen activation system in later chapters of this thesis. For a more detailed
biochemical analysis of the model the reader is referred to the reviews by
Andreasen et al. (1997), Irigoyen et al. (1999), and Andreasen et al. (2000).

3.6 Roles and Components of the PA System

Tumour expansion and dissemination can be considered as an unregulated tis-
sue remodelling process which progressively involves both cancer and normal
cells. Recruitment and reorganization of the normal host cells progressively
impairs organ function, as neoplastic cells grow and influence the develop-
ment of a supporting stroma infiltrated by a new blood capillary network.
Tumour cell invasion and metastatic processes require the coordinated and
temporal regulation of a series of adhesive, proteolytic and migratory events.
Proteases have the potential to breach the mechanical barriers imposed by
the basement membrane and surrounding extracellular matrix components, a
prerequisite for endothelial, inflammatory or cancerous cell migration to dis-
tant sites. They have also been implicated in the activation of cytokines or
other proteases, as well as in the release of growth factors sequestered within
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the extracellular matrix. Recent information has underlined the importance
of cell-surface proteases, their receptors/activators or their inhibitors in cell
migration, cell adhesion as well as in cancer cell invasion and metastasis. Novel
information has recently been reported regarding the urokinase plasminogen
activator system that underlines the importance of another signalling system
in the mediation and regulation of cell recruitment and metastasis, although
its role in extracellular matrix degradation goes back several decades (see the
review by Danø et al., 1985). This section will review the available informa-
tion on the pro-metastatic activity of the uPA system, its regulation and the
molecular mechanisms involved.

The enzymatic system consists of the urokinase receptor (uPAR), uroki-
nase plasminogen activator (uPA), the matrix-like protein vitronectin (VN)
and plasminogen activator inhibitors: type-1 (PAI-1) and type-2 (PAI-2). uPA
is an extracellular serine protease produced from cells as a single-chain proen-
zyme pro-uPA. Two major functional domains make up the uPA molecule:
the protease domain and the growth factor domain. The protease moiety acti-
vates plasminogen and, hence, generates plasmin, a serine protease capable of
digesting basement membrane and extracellular matrix proteins (see Fig. 1).
Plasmin itself is a broadly acting enzyme that not only catalyzes the break-
down of many of the known extracellular matrix (ECM) and basement mem-
brane molecules, such as vitronectin, fibrin, laminin and collagens, but also
may activate metalloproteinases. Thus, the unrestrained generation of plasmin
from plasminogen by the action of plasminogen activator (PA) is potentially
hazardous to cells. In this regard, the process of plasminogen activation in a
healthy organism is strictly controlled through the availability of PAs, local-
ized activation, and interaction with specific inhibitors (PAIs). One of these
inhibitors, PAI-1, which is believed to be the most abundant, fast-acting in-
hibitor of uPA in vivo (Andreasen et al., 1997; 2000). In other words, for cells
to protect themselves they must secrete a surplus of inhibitors to guarantee
restraint of pericellular proteolysis. Indeed secreted uPA is often associated
with plasminogen activator inhibitor-1 (PAI-1) and remains inactive.

The growth factor domain has no protease activity but can bind a spe-
cific, high affinity cell-surface receptor, uPAR (or CD87). uPAR is expressed
in considerable amounts on the cell surface of various cell types and as im-
plied by the name, it was first identified as a high-affinity receptor for uPA.
Additionally, uPAR mediates the binding of the zymogen pro-uPA to the
plasma membrane where plasmin converts pro-uPA to the active zymogen,
uPA, which in turn converts plasma membrane-associated plasminogen into
plasmin. Importantly, uPA is not the only ligand for uPAR that is able to bind
to the matrix-like form of vitronectin (VN) (see Fig. 1) and thus place em-
phasis on a non-proteolytic role for uPAR (Chapman 1997). uPAR contains
a vitronectin binding site(s) distinct form the urokinase binding site. The
strength of interaction between uPAR and vitronectin is not mutually exclu-
sive; rather inactive pro-uPA, as well as active uPA promote VN binding. In
addition, uPAR can also bind integrins at sites distinct from its uPA- and
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Fig. 1. Schematic diagram showing uPA binding to the cell membrane. uPA binds
with high affinity to uPAR, where uPAR is anchored to the surface of a variety
of cells including tumour cells. This binding activates uPA and focuses proteolytic
activity to the cell surface where plasminogen is converted to plasmin. Components
of the extracellular matrix such as fibronectin, laminin and vitronectin are degraded
by plasmin, facilitating cell migration, angiogenesis and metastasis. Vitronectin in-
teracts with uPAR leading to the activation of an intracellular signalling cascade

vitronectin-binding sites. These interactions account for the effects of uPAR
on cell adhesion and migration.

At this point, the extracellular protein vitronectin enters the picture. Vit-
ronectin is a versatile glycoprotein that is found in circulation, in the extracel-
lular matrix of endothelial cells, and within various tissues of the human body
(Podor et al., 2000). Vitronectin participates in the regulation of humoral re-
sponses such as coagulation and fibrinolysis. Moreover other functions of the
protein that are confined to surfaces or tissues include cell-adhesion and reg-
ulation of pericellular proteolysis (Comper, 1996). As the name indicates,
vitronectin binds strongly to glass surfaces (vitro = glass). Interactions with
an assortment of biological molecules are responsible for the multiple func-
tions exhibited by vitronectin. Defining the binding sites for these various
biomolecule, along with determining the molecular mechanism of regulation,
constitutes and active area of research on the protein. Work to date has fo-
cused on binding sites for several ligands, including heparin, plasminogen acti-
vator inhibitor-1, and integrins. Vitronectin binds several integrins expressed
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on the cell membrane, including αvβ3. It accumulates prominently in extra-
cellular matrices associated with acute injury and several malignant tumours.
Vitronectin functions as the major high-affinity binding protein of plasmino-
gen activator inhibitor type-1 (PAI-1) and urokinase plasminogen activator
receptor (uPAR). The finding that uPAR contains a high affinity binding site
for vitronectin may elucidate previously unexplained and paradoxical obser-
vations regarding this receptor.

First, these observations may account, at least in part, for the restricted
cell surface localization of urokinase-occupied uPAR to focal contact sites
in fibroblasts. These contact sites are known to co-localize with vitronectin
in adherent cell lines, and the presence of vitronectin has been shown to
redistribute cell surface uPAR receptors. Second, these observations raise an
alternative interpretation of the paradox that increased PAI-1 is associated
with enhanced cellular movement, e.g. metastasis, even though this should
decrease cell surface proteolytic activity. Vitronectin is recognized as the major
binding protein of PAI-1, and its binding to uPAR could be expected to bring
PAI-1 in close approximation with uPA, thereby promoting inhibition and
clearance of uPA from the receptor. We postulate that this process may effect
a lower avidity of cellular attachment to vitronectin. In this paradigm, PAI-1,
although decreasing uPA activity, would also promote detachment of the cell
from its contact site. Thus, PAI-1 in circumstances where sustained proteolytic
activity is not vital to movement could promote rather than retard migration.

PAI-1, the inhibitor of uPA, belongs to the serpin (serine protein
inhibitors) family (Alberts et al., 1994) and can specifically bind to and in-
hibit not only free, but also receptor-bound uPA (see Fig. 1). When PAI-1
is available, it can bind to the uPA/uPAR complex triggering the internal-
ization of the uPA/uPAR/PAI-1 complex by receptor-mediated endocytosis.
The uPA/uPAR/PAI-1 complex will be dissociated and PAI-1 and uPA will
be digested, but the receptor will be recycled to the cell surface and concen-
trate the uPA (if available) on the cell surface again. This process will lead
to clearing of PAI-1 from the vicinity of the cell surface (Conese et al., 1995;
Nykjær et al., 1997). It is not clear why PAI-1 is concentrated in the nucleus
of the cancer cell. However, many receptor-binding proteins bind to the recep-
tor and are then endocytosed. It is, therefore, conceivable that such protein
signalling (or their degradation products) acts directly within the cell, or cell
nucleus. It has been reported that the receptor-mediated internalization of
uPA/uPAR/PAI-1 complexes may trigger the proliferation of the cancer cells.
Additionally, inhibition of cell adhesion and migration by PAI-1 on VN occurs
because the same region of VN is required for interaction with PAI-1, uPAR
and integrins. In other words, PAI-1 competes with uPAR for binding to VN.

The uPA/uPAR/PAI-1/VN system therefore appears to be a very im-
portant function in the regulation of the attachment/detachment machinery,
namely to inform cells when, how and where to move. Availiable data suggests
that cells respond to a “go” signal through the stimulation of surface prote-
olysis, exposure to chemotactic epitope(s), and recycling of “naked” uPAR to
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novel surface proteolysis, and to a “stop” signal via PAI-1-dependent inter-
nalization and degradation of uPA. Additionally, cells respond to a “pause”
signal through transient uPAR-dependent adhesion stages, thus shifting the
cells between an “adhesion – mode” and a “migration – mode”. Thus occu-
pation of cell surface uPAR by uPA and concomitant urokinase activity are
ephemeral in the settings of this protease inhibitor.

3.7 Proteolytic Stimulation of Cell Migration

Cell migration plays a central role in a wide variety of physiological and patho-
physiological processes, for instance embryonal development, inflammation,
and cancer metastasis (for reviews see Lauffenburger and Horwitz, 1996). Cell
migration is the locomotion of a cell on a substratum of extracellular matrix
(ECM) proteins. Cells require attachment sites on extracellular matrices in
order to reorganize their cytoskeleton and initiate protrusions important to
migration. In this regard, cancer cells require a well-regulated, pericellular
proteolysis to migrate. They must cleave linkages to the extracellular matrix
and to other cells and degrade barriers like the basement membrane, the de-
struction of which is a common observation in invasive cancer as well as in
normal pathological situations such as wound healing.

Although proteolysis and migration through tissue barriers are normal
cell functions in specific physiological circumstances, it is clear that a general
aspect of malignant neoplasms includes a shift toward sustained invasive ca-
pacity. For invasion to take place, cyclic attachment to matrix components
and subsequent release must occur in a directed and controlled manner. This
implies that proteolysis, although enhanced in tumour cells, is still tightly
regulated in a temporal and spatial fashion with respect to cell attachment.
Proteolytic activity is the balance between the local concentration of activated
enzymes and their endogenous inhibitors.

Cell migration proceeds through extension of the leading cytoplasmic edge,
a process which among other events involves adhesion, mediated by several
proteases and their extracellular matrix protein ligands. Such interactions
lead to the generation of specific intracellular signals and reorganization of
the cytoskeleton. The adhesions at the leading cellular edge are thought to
provide guidance and traction for pulling the cell body forward. Dissociation
of integrin/ligand and cell surface receptor/ligand complexes, via regulated
signals delivered from the cell interior, allows retraction of the trailing edge
(Lauffenburger and Horwitz, 1996).

This adhesion may not be so stringent as to prevent movement, nor too
weak to provide traction. The extent of migration may thus vary with the
avidity of adhesion. In addition, adhesion must be regulatable or reversible
to allow detachment. Detachment from focal adhesive sites during migration
is thought to occur by several mechanisms including cell surface proteolysis,
alterations in integrin conformation, and bulk shedding of attachment sites.
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Fig. 2. Schematic diagram showing localization of uPA, uPAR, PAI-1 and plas-
minogen on the cell surface and in the pericellular space

Extracellular proteolytic enzyme systems like the plasminogen activation sys-
tem may facilitate release of the trailing edge by degradation of extracellular
matrix proteins. Several proteases are involved in cell migration and invasion,
but an important role has been ascribed to the plasminogen activation system.

The effects of the plasminogen activation system in cell migration may
be due to a proteolytic as well as a non-proteolytic mechanism (Andreasen
et al., 1997; Tarui et al., 2001). A proteolytic mechanism of cell migration
implies plasmin generation at focal adhesion sites, catalyzed by uPAR-bound
uPA, which could help to break physical barriers and promote detachment of
the trailing edge of the cells from matrix proteins that might impede their
migration. On the other hand, with a non-proteolytic mechanism, uPA is
thought to promote cell migration by enhancing adhesion at the leading edge,
through stimulation of binding of uPAR to VN, modulation of uPAR/integrin
interactions and/or by initiation of signal transduction cascades. It is also
possible that both mechanisms operate simultaneously in migrating cells (see
Fig. 2).

Soon after it was reported that uPAR contains a vitronectin-binding site,
it was realized that active PAI-1 blocks the interaction of uPAR and vit-
ronectin. In this regard, Waltz et al. (1997) and Deng et al. (1996) reported
that PAI-1 regulates proteolytic activity (both on the cell surface and in solu-
tion), blocks binding of and adhesion to vitronectin by myeloid cells and also
blocks binding of soluble uPAR (suPAR) – that is lacking the GPI-anchor-
to vitronectin. Moreover Kanse et al. (1996) demonstrated that PAI-1 blocks
binding of vitronectin to uPAR on endothelial cells. Inhibition of both uPA
activity and of uPA/uPAR interactions prevents extracellular matrix degra-
dation. On the other hand, when PAI-1 binds to vitronectin, it interferes with
vitronectin recognition by integrins, thereby stimulating release of cells from
the matrix and paradoxically supporting cell migration.

It seems possible to arrive at a model unifying the many observations by
assuming that proteolytic and non-proteolytic mechanisms of uPA action on
cell migration are operating simultaneously in individual migrating cells. If
pro-uPA is converted to active uPA at the ventral surface of the cells, non-
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proteolytic mechanisms could dominate at the leading edge and proteolytic
mechanisms at the trailing edge. The relative importance of the proteolytic
and the non-proteolytic elements and the net effect of (pro-)uPA and PAI-
1 would be expected to depend on the level of expression by the migrating
cells of uPAR, endocytosis receptors, and integrins, of the composition of the
ECM, of the pericellular localization of (pro-)uPA and PAI-1, of mechanisms
for pro-uPA activation, and of the stimuli that induce cell motility.

3.8 Chemo- and Hapto-Taxis

Tumour cells encounter a variety of soluble and substratum-bound factors
which may influence their directed migration at different stages in the process
of tumour invasion and metastasis. Such factors can promote the directed
movement of tumour cells by at least two mechanisms, termed chemotaxis
and haptotaxis.

Chemotaxis is defined as cellular locomotion directed in response to a
concentration gradient of a chemical factor in solution (Lackie and Wilkinson,
1981). Cells sense the chemical and migrate toward higher concentrationsof
this substance until they reach the source secreting it. On the other hand,
gradients do not have to be in solution. An adhesive molecule could be present
in increasing amounts along an extracellular matrix. A cell that was constantly
making and breaking adhesions with such a molecule would move from a region
of low concentration to an area where that adhesive molecule was more highly
concentrated. Such a phenomenon is called haptotaxis (Carter, 1967).

The potential importance of a chemotactic response to ECM components
is apparent when considering that during the process of tumour invasion and
metastasis, proteolytic degradation results in solubilization of ECM compo-
nents (Aznavoorian, 1990). As a result, tumour cells could conceivably detect
and respond to the soluble fragments as well as to the insoluble intact matrix
molecules. Therefore, chemotaxis and haptotaxis to ECM components repre-
sent two separate and distinguishable means by which tumour cells penetrate
membranes and interstitial stroma.

Chemotaxis and Signal Transduction

Induction of chemotaxis and chemokinesis by uPA has been reported in a
variety of cell types (Pepper et al., 1993; Gyetko et al., 1994; Resnati et al.,
1996). This activity is exerted through its specific, high affinity cell surface
receptor uPAR (or CD87) (Resnati et al., 1996). This receptor is expressed
by activated blood leukocytes, endothelial cells, macrophages, fibroblasts, and
by different types of cells in human cancer. The receptor anchors uPA at the
leading edge of migrating cells and localizes it at the focal contacts and to cell-
to-cell contact sites (Blasi et al., 1987; Besser et al., 1996; Fazioli et al., 1997).
These sites also contain adhesion molecules, integrins, cadherins, cytoskeleton-
connecting proteins, and signal transducing molecules.
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Cell motility (e.g. chemotaxis, chemokinesis, migration) stimulated by ac-
tive uPA can involve plasmin generation and the subsequent degradation of
ECM proteins and/or proteolytic trimming of cell surface components, includ-
ing adhesion receptors and uPAR itself. uPAR has been reported to associate
with many signaling molecules and to mediate signal transduction (Aguirre
Ghiso et al., 1999). Much attention has been focused on the possibility that
uPA binding uPAR activates intracellular signal transduction cascades. Re-
cent reports observed that the binding of uPA to uPAR in tumour or en-
dothelial cells activates the mitogen-activated protein kinases extracellular
regulated kinase 1 and 2 (ERK-1, ERK-2) (Andreasen et al., 1997; 2000).
However, a major question is how uPAR mediates cellular signaling, since
uPAR is not a transmembrane molecule but belongs to the group of proteins
that are tethered to the plasma membrane.

The membrane attachment of uPAR via a GPI anchor (i.e. the lack of
an intra-cytoplasmic region capable of connecting with the cytoplasmic sig-
nal transducers, suggests the existence of one or more hypothetical “trans-
membrane adapter molecules” that connects uPAR and signalling molecules
(Resnati et al., 1996). Integrins may serve as such signal transducers, and
indeed uPAR has been shown to be associated in the plasma membrane with
complexes of integrins and tyrosin kinases suggesting a role for these com-
plexes in transmembrane transmission of signals via uPAR. uPA/uPAR in-
teraction causes catalytically independent responses in endothelial cells, in-
cluding chemotaxis and chemokinesis. Based on the fact that the binding of
ligands to integrins initiates a signal-transduction cascade it was speculated
that the reported binding of uPA to the ligand VN is involved in initiation of
a signal transducing cascade (Andreasen et al., 1997; 2000).

Certain actions of uPA on different cell types in culture suggest that a
signal is initiated by binding of uPA to uPAR. A chemotactic activity of uPA
has long been recognized in vitro on different cell types in culture (Busso
et al., 1994; Gyetko et al., 1994; Resnati et al., 1996). The chemotactic ac-
tivity of uPA strictly depends on binding to its receptor uPAR: it does not
occur in murine cells lacking uPAR, or containing uPAR but not recognizing
human uPA; it can be restored by transfection of the uPAR; and it is inhib-
ited by antibodies that prevent uPA/uPAR interaction (Resnati et al., 1996).
Occupancy of uPAR transduces a signal that results in the movement of cells;
indeed uPA binding to uPAR activates several tyrosine kinases (Busso et al.,
1994; Resnati et al., 1996). It is noteworthy that the signaling pathways ac-
tivated by uPA/uPAR seem to be the same pathways that induce their own
expression. Thus, it is possible that over-expression of the uPA/uPAR system
in tumour cells leads to a signalling loop and/or activation of additional mech-
anisms dependent on these molecules that contribute to enhanced pericellular
proteolysis, migration and proliferation (Aguirre Ghiso et al., 1999). However,
at present the details of how uPA/uPAR/integrins interact and the precise
way they assemble to generate signals are still under thorough investigation.
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Cell Adhesion and Haptotaxis

Both cell-cell interactions and cell-stroma interactions play an important role
during the invasive cascade. Connections through cell adhesion molecules, in-
tegrins, and cadherins stabilize tissue integrity, whereas loss or alteration of
these cell surface proteins has been shown to be associated with increased
metastatic potential. The strength and duration of cellular interactions are
modulated by (a) the repertoire of receptor expression (especially integrins);
(b) the relative abundance of adhesive and counteradhesive factors in the
extracellular matrix; and (c) extracellular hydrolytic enzyme systems. In this
regard, pericellular proteolysis initiated by the plasminogen activator/plasmin
system fulfils pivotal functions in cellular migration. Direct binding of plas-
minogen activators and plasminogen/plasmin to cell surface receptors or to
extracellular matrix drastically increases the local concentration and the ef-
ficiency of protease formation/action. The nonclassical activities of the plas-
minogen activation system and the pericellular cooperation of its components
with adhesion receptors, extracellular matrix (ECM) proteins and signalling
molecules, have provided new insights into their role as molecular coordinators
of cell adhesion.

The classical role of plasminogen activation is one counteracting cell-
substratum and cell-cell adhesion, as pericellular plasmin generation leads
to degradation of adhesion receptors and their extracellular matrix ligands
(Mignatti and Rifkin, 1993). However, under some conditions, binding of uPA
to uPAR promotes cell-substratum adhesion. In this regard, binding of uPA to
uPAR stimulates the adhesion of several integrin-independent cell lines to vit-
ronectin (VN). On the other hand, PAI-1 inhibits uPAR-dependent adhesion
to vitronectin. These observations show that uPA and uPAR may also affect
cell adhesion. Additionally, the avidity of uPAR for vitronectin is strongly
promoted by occupancy of the receptor with uPA.

Recently, it has become clear that uPAR is involved in cell-stroma in-
teractions and signal transducing events that are independent of its role in
plasminogen activation. Both the expression pattern of uPAR and its prox-
imity to adhesion and signalling molecules places this protease receptor at
the crossroads of cellular adhesion. uPAR can be found at various locations
depending on the cell type and activation state (Kjøller, 2002). For example,
it can be found at the apical surface of quiescent epithelial or endothelial cells
or concentrated at focal or cell-cell contacts in invasive cells in association
with other proteins, such as ECM adhesion molecules, cytoskeletal elements,
integrins and signalling factors. It participates in cell adhesion directly by
binding to vitronectin and indirectly by modulating the affinity of integrins
for their complementary ligands (Tarui et al., 2001).

uPAR has been shown to bind not only uPA, but also but also the extra-
cellular matrix protein, vitronectin (VN). By virtue of the latter activity, it
acts as an adhesion receptor. The vitronectin-binding site on uPAR is distinct
from the uPA binding site. The vitronectin/uPAR complex is enhanced by
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the simultaneous binding of urokinase (Kanse et al., 1996). The uPA/uPAR
interaction increases the binding of vitronectin to the cells meaning that,
somewhat paradoxically, uPA promotes cell adhesion. In this regard, it has
been proposed by Wei et al. (1994) that the interaction of uPAR binding to
vitronectin takes part in a balanced attachment and release scenario, directed
by the plasminogen activator inhibitor type-1, which competes with uPAR in
the vitronectin binding process (Deng et al., 1996).

A further, indirect role of uPAR in adhesion is provided by interactions
with certain integrins, influencing the binding properties of the latter (Tarui
et al., 2001). This broadens the currently held concept of uPAR-integrin in-
teractions, in which uPAR is proposed to interact exclusively with integrins
residing on the same cell (cis interaction) as an “associated protein” that
mediates signal transduction directly or through the mediation of a distinct
transmembrane adaptor protein. The simultaneous recognition of vitronectin
by uPAR and integrins co-localizes these two receptors to adhesion structures
and directs (haptotaxis) the proteolytic activity of plasminogen systems to
the matrix.

Likewise, to make matters even more complicated, active PAI-1, which is
the main PA antagonist, serves as a potent competitor for vitronectin binding
to uPAR and integrins and thus disrupts uPAR-mediated adhesion, but also
sterically inhibits integrin binding to vitronectin. Vitronectin is considered
the primary PAI-1 binding plasma protein. Like PAI-1, vitronectin is signifi-
cantly increased at sites of disease, or injury, where it binds collagens, uPAR
or integrins. PAI-1 also seems to play a central role in cell adhesion mediated
through integrins or the uPA/uPAR complex. However, when PAI-1 inhibits
uPA or when PAI-1 binds vitronectin, the uPA/uPAR complex no longer in-
teracts with vitronectin. The higher affinity of PAI-1 to vitronectin than that
of the uPA/uPAR complex to vitronectin is likely to be responsible for the re-
lease of cells from this substratum by an excess of PAI-1 (Czekay et al., 2003).
Therefore Deng et al. (1996) suggested that the delicate balance between cell
adhesion and cell detachment is governed by PAI-1. It is tempting to specu-
late that the de-adhesive effects of PAI-1 are related to the observation that
high PAI-1 levels are associated with a poor prognosis for survival in several
metastatic human cancers (Andreasen et al., 2000).

All studies on the PA-plasmin system cited in this chapter provide ample
evidence for the requirement for this system in a large number of biologi-
cal phenomena and in a variety of diseases. Cell migration, cell adhesion,
angiogenesis, cancer invasion and metastasis, etc. seem too many, and the
underlying mechanisms and functions too different, for one protease with a
single substrate, plasminogen. The recent results on signal transduction show
that uPA, in addition to its enzymatic activity, can signal through its receptor
inducing a variety of activities which liken it to chemokines. The assimilation
explains uPA pleiotropism and its involvement in so many different diseases.

The original idea of plasminogen activation as a rate-limiting factor in
tumour invasion and metastasis has been supported by many results with in
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vitro and in vivo model systems and by demonstration of correlations be-
tween patient prognosis and tumour levels. The increased knowledge about
the system has also led to the realization that the system works in a far more
complex way than described by the original hypothesis. Much evidence sug-
gests that the system also has plasmin-independent functions, consisting in
intracellular signal transduction cascades being initiated by binding of uPA
to uPAR, in uPAR acting as a vitronectin receptor and as a regulator of in-
tegrin function, in PAI-1 acting as a regulator of uPAR and integrin binding
to vitronectin, in interactions with endocytosis receptors and in an interplay
with other proteolytic enzyme systems.

This linkage suggests to us that four molecules: uPA, PAI-1, uPAR and
vitronectin, constitute the core of an integrated dynamical system which al-
lows spatial and temporal rearrangements of its components at cell surfaces
during cell migration and invasion. Moreover, it has become clear that the
system has a multi-functional role in tumour biology. The system seems to
function not only in cancer cell migration and invasion, but also in remodelling
of the tissue surrounding the cancer cells, which may contribute decisively to
the overall process of metastasis. As the biologies of individual tumours are
different, different processes may be rate limiting for the endpoint of metasta-
sis in different tumours, and the importance of the uPA system may therefore
vary.

Under some conditions, the protease activity of the urokinase/plasmin
arm of this system may be more important in cellular movement and tissue
remodelling; under other conditions, the intrinsic adhesiveness of uPAR for
vitronectin, perhaps regulated by repeated uPA/PAI-1 turnover or other in-
teractions, may be more important. In addition, the unexpected finding that
PAI-1 is a marker for a poor prognosis has been the impetus for a variety of
studies with in vitro and in vivo model systems, but they have not yet pro-
vided one unifying hypothesis for the role of PAI-1. Some observations suggest
that PAI-1 may counteract migration and invasion by inhibiting uPA, while
other observations support the hypothesis that PAI-1 is needed for the opti-
mal function of the uPA system in these processes, by regulating cell adhesion
and by restricting proteolysis in time and space. In this regard, a dual role for
uPAR and PAI-1 has been clearly defined, with uPA playing a more ancillary
role. The counter-intuitive possibility that inhibition of PAI-1 might serve to
inhibit cancer invasion is one that merits further investigation.

4 The Mathematical Model of Proteolysis
and Cancer Cell Invasion of Tissue

In this section we develop a new mathematical model based on a generic solid
tumour growth, which for simplicity we assume is at the avascular stage, fo-
cusing solely on how the interactions between the cancer cells (c), urokinase
plasminogen activator (uPA) (u), plasminogen activator inhibitor-1 (PAI-1)
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(p), plasmin (m) and the extracellular matrix substrate (ECM) (v) may reg-
ulate tumour invasion and metastasis. As we have described in the previous
sections, plasmin is a protease which is generated at the cell surface from its
inactive precursor, plasminogen, via the proteolytic activity of urokinase plas-
minogen activator (uPA). Plasmin is a protease, which in addition to fibrin
and other proteases, cleaves many extracellular matrix proteins, including fi-
bronectin, laminin, vitronectin and thrombospondin and can activate many of
the matrix mettaloproteinases, which degrade still other matrix constituents.
Plasmin also can affect the activity of cytokines and growth factors, notably
TGF-beta, which influences the composition of the extracellular milieu.

In this regard, the unrestrained generation of plasminogen activator (uPA)
is potentially hazardous to cells. Therefore, to maintain tissue homeostasis and
avoid unrestrained tissue damage, plasmin activity must be tightly controlled.
Such regulation is achieved at multiple “checkpoints” within the plasminogen
system. A primary role in plasmin regulation is played by the availability of
the plasminogen activators and their corresponding inhibitors.

We now describe the way in which the tumour cell density c(x, t), the uroki-
nase plasminogen activator (uPA) protease concentration u(x, t), plasmino-
gen activator inhibitor-1 (PAI-1) concentration p(x, t), plasmin concentration
m(x, t) and the extracellular matrix substrate (ECM, vitronectin) v(x, t) are
involved in invasion and derive partial differential equations governing the
evolution of each variable.

(a) Cancer Cells:

It is well known that pericellular proteolysis plays a crucial role in tumour
cell invasion. The controlled degradation of the extracellular matrix by tumour
cell-associated proteases allows tumour cells to invade surrounding tissues and
gain access to the circulation. In addition, invasive cells in vivo adhere to sur-
rounding ECM molecules via specific receptors such as integrins or urokinase
plasminogen activator receptors (uPAR), and produce and secrete uPA as well
as other proteases such as matrix metalloproteinases (MMPs) (Aznavoorian
et al. 1992). The consequent digestion of ECM allows the cells to move into
the spaces thereby created and also sets up tissue gradients, which the cells
then exploit to move forwards (McCarthy et al., 1983; McCarthy et al., 1986;
Taraboletti et al., 1987; Aznavoorian et al., 1990; Aznavoorian et al., 1996).
Movement up concentration gradients of ECM has been reported as a mech-
anism enabling movement through tissues by a variety of cell types. Tumour
cell motility toward high concentrations/densities of substratum-bound insol-
ubilized components has been termed “haptotaxis”. Additionally, the term
“chemotaxis” has also been used to describe tumour cell motility and is re-
ferred to directed migration in a gradient of a soluble attractant (Taraboletti
et al., 1987).

We assume that there is a change in cell number density due to dispersion,
arising from random locomotion and we take Dc as the cell random motility
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coefficient, characterising how cells would disperse from higher to lower densi-
ties. In other words, this means that if the initial cancer cell profile is localized
in a finite region then at all subsequent times it will be confined to a finite
region whose size however could change over time. On the other hand by
choosing Dc to be constant we impose that an infinitesimally small density of
cancer cells penetrate the entire spatial domain immediately which is physi-
cally unrealistic. However such a choice does not affect the general framework
of the process since the contribution of the chemokinetic term Dc is always
the smallest in cancer cell locomotion.

The second most important term that quantifies the change in cell num-
ber density is that of the “directional flow” of cells due to spatial gradients of
environmental stimuli, such as those stimulating chemotactic or haptotactic
responses. We refer to this directed movement of tumour cells in the uroki-
nase plasminogen activation model as chemotaxis and haptotaxis – namely a
response to gradients of diffusible and non-diffusible macromolecules such as
urokinase plasminogen activator (Besser et al., 1996; Fazioli et al., 1997; Blasi,
1999; Carlin et al., 2003), plasminogen activator inhibitor-1 (PAI-1) (Degryse
et al., 2001; Waltz et al., 2001) and vitronectin (Aznavoorian, 1990; 1996;
Bafetti et al., 1996; Kanse et al., 1996; Chapman et al., 1997; Degryse et al.,
2001) respectively. To incorporate this response into our mathematical model
we take the cancer cell flux (due to gradients) to be Jflux = Jchemo +Jhapto,
namely Jflux = χcc∇u+ζcc∇p+ξcc∇v, where χc, ζc, ξc > 0 are the chemotac-
tic and haptotactic coefficients respectively, characterising biased directional
movement in response to spatial gradients. Additionally, we include a prolif-
eration term. Therefore, based on the above assumptions we obtain the “word
equation” below for the cancer cell density:(

rate of change of cell density
)

=
(
flux due to randommotion

)
−
(
chemotaxis due to uPA

)
−

(
chemotaxis due toPAI − 1

)
−
(
haptotaxis due toVN

)
+

(
production due to cell proliferation

)
+
(
proliferation due to uPA cancer cells interactions

)
Representing by Dc, χc, ζc, ξc, µ2 and φ13 the random motility, uPA-

mediated chemotaxis, PAI-1-mediated chemotaxis, VN-mediated haptotaxis
coefficients, the cancer cell proliferation rate and the cancer cell-surface re-
ceptors recycling rate, then the above “word equation” takes the following
mathematical form:

∂c

∂x
= Dc

∂2c

∂x2︸ ︷︷ ︸
Random Motion

− ∂

∂x

(
χc c

∂u

∂x︸ ︷︷ ︸
uPA−chemo

+ ζc c
∂p

∂x︸ ︷︷ ︸
PAI−1−chemo

+ ξc c
∂v

∂x︸ ︷︷ ︸
VN−hapto

)

+ φ13 c u︸ ︷︷ ︸
proliferation

+µ1 c

(
1 − c

co

)
︸ ︷︷ ︸

proliferation

,
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Regarding cell proliferation, we assume that in the absence of any extra-
cellular matrix (v = 0) cancer cell proliferation satisfies a logistic growth law,
with µ1 representing the proliferation rate and co representing the maximum
sustainable cell density for cancer cells. Additionally, we include the (φ13cu)
term representing the fact that uPA “augments” cell proliferation in physio-
logical (Pleknhanova et al., 2001) and pathophysiological processes (Aguirre-
Ghisso et al., 2001). It is assumed that the binding of uPA to its cell surface
receptor (uPAR), forms the uPA/uPAR complex which additionally is able to
bind to PAI-1 and form the resulting uPA/uPAR/PAI-1 complex (Andreasen
et al., 1994; Andreasen et al., 1997; Andreasen et al., 2000). The resulting
uPA/uPAR/PAI-1 complex is internalized and degraded. Consequently, uPAR
is internalized as a component of the complex uPA/uPAR/PAI-1 and then
coendocytosed but later re-circulated to the cell surface. The re-circulated
cancer cell surface receptor gives the cell the opportunity to bind to VN and
other extracellular matrix components that are also assumed to enhance cell
proliferation. Additionally, another approach is that uPA bound to cancer
cell-surface receptors triggers several transducing signals that promote cancer
cell proliferation as well.

(b)Extracellular Matrix:

Since extracellular matrix (ECM) is “static”, therefore we neglect any dif-
fusion terms (or other “migration” terms) from its behaviour. Additionally,
based on the experimental evidence that uPA activates plasminogen to pro-
duce the cancer cell-surface associated protein plasmin which in turn catalyzes
the breakdown of many of the known extracellular matrix (ECM) and base-
ment membrane molecules (such as fibronectin, laminin, vitronectin and colla-
gen) we assume that plasmin formation either degrades the extracellular ma-
trix upon contact or through its activation from uPA secretion (Irigoyen et al.,
1999). Moreover, several studies suggest that normal cells, as well as cancer
cells such as gliomas, have the ability to produce numerous ECM components
(Degryse et al., 2001). On the other hand, as has previously been mentioned,
the major role of PAI-1 is to inhibit uPA production and thus we assume that
PAI-1 binding to uPA results indireclty in the production of VN. In other
words, we assume that uPA binding to PAI-1 releases the PAI-1-bound VN
and therefore gives VN the opportunity to bind to the cell-surface receptors
such as uPAR and/or integrins and promote its own production through the
regulation of cell-matrix-associated signal transduction pathways. Finally, we
assume a logistic-type proliferation or remodelling term for the extracellular
matrix.
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Combining these effects we obtain the following “word equation”:
(
Rate of change of ECM density

)
=
(
−degradation due to plasmin formation

)

+
(
proliferation

)
+

(
indirect growth of VN due toPAI − 1/uPA binding

)
−

(
neutralization due toPAI − 1 inhibition

)
.

Denoting by, δ the degradation rate, µ2 the proliferation rate, φ21 the
production rate of PAI-1/uPA binding, and φ22 the counterbalancing of PAI-
1 binding to VN, we rewrite the “word equation” in the following form:

∂v

∂t
= (−δ v m)︸ ︷︷ ︸

degradation

+ φ21 u p︸ ︷︷ ︸
uPA/PAI−1

− φ22 v p︸ ︷︷ ︸
PAI−1/V N

+ µ2 v

(
1 − v

vo

)
︸ ︷︷ ︸

proliferation

,

where vo represent the maximum sustainable density for the extracellular
matrix.

(c) urokinase Plasminogen Activator - uPA:

Factors influencing the urokinase plasminogen activator (uPA) concentration
are assumed to be diffusion, protease production and protease decay. Specifi-
cally, uPA is secreted by the cancer cells, diffuses throughout the extracellular
matrix, with constant diffusion coefficient Du, while its binding to PAI-1 as
well as to cancer cell surface receptors (uPAR) dominates its removal from the
system. Combining these assumptions, yields the following “word equation”:

(
Rate of change of uPA concentration

)
=

(
motion due to diffusion

)

+
(
production due to cancer cells

)
−

(
removal due toPAI − 1 inhibition

)
−

(
removal due to binding to cancer cells

)
.

If we denote by Du, α31, φ31, and φ33 respectively, the chemoattractant’s
assumed diffusion coefficient, its rate of production by cancer cells, its neu-
tralization by PAI-1 inhibition and its rate of binding to cell-surface receptors
(uPAR), then the above word equation can be rewritten as:

∂u

∂t
= Du

∂2u

∂x2︸ ︷︷ ︸
Diffusion

− φ31 p u︸ ︷︷ ︸
PAI−1/uPA

− φ33 c u︸ ︷︷ ︸
uPA/cells

+ α31 c︸ ︷︷ ︸
production

. (4)
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(d)Plasminogen Activator Inhibitor – 1:

PAI-1 has a distinguished role among the factors implicated in the plasmino-
gen activation system. Although its initial role, and the one implied by its
name, is to inhibit and prevent excessive proteolysis of the peritumoral tis-
sue, recent findings associate PAI-1 with a much different role – namely to
promote tumour invasion and metastasis. PAI-1 is the primary inhibitor of
uPA, being produced by many cell types (Andreasen et al., 1994, Conese and
Blasi, 1995a; 1995b) while it is also present in blood plasma. In this regard,
we assume that PAI-1 inhibitor diffuses with a constant diffusion coefficient
Dp, and is either produced by the extracellular matrix as a result of uPA
binding to the cancer cells surface receptors, u c, or through the degradation
of the extracellular matrix, again as a result of uPA/uPAR regulation, u c v.
Moreover, it is well established that PAI-1 inhibits uPA (Andreasen et al.,
1994; 1997) and that PAI-1 in the resulting PAI-1/uPA complexes no longer
binds to VN (Andreasen et al., 1994; 1997). Regarding the aforementioned
assumptions we obtain the “word equation” below:

(
Rate of change of PAI − 1 concentration

)
=

(
motion due to diffusion

)

+
(
production due to plasmin activation or cell secretion

)
−

(
loss due toVNbinding

)
−

(
loss due to uPAbinding

)
.

Denoting by Dp the assumed PAI-1 diffusion coefficient, α41 the rate of pro-
duction as a result of either plasmin formation or cancer cells secretion, φ41

the neutralization rate by uPA binding and by φ42 the neutralization rate by
VN binding, then the above word equation can be rewritten as:

∂p

∂t
= Dp

∂2p

∂x2︸ ︷︷ ︸
Diffusion

− φ41 p u︸ ︷︷ ︸
PAI−1/uPA

− φ42 p v︸ ︷︷ ︸
PAI−1/VN

+ (α41 m)︸ ︷︷ ︸
production

(5)

(e) Plasmin

In examining the conservation of mass regarding plasmin concentration, we
assume that binding of uPA/uPAR provides the cell surface with a potential
proteolytic activity via activation and cell-surface co-localization of plasmino-
gen and thus enhances rates of plasmin formation (Andreasen et al., 1997;
Chapman, 1997; Andreasen et al., 2000), while the activity of uPA, and there-
fore the formation of plasmin, is inhibited by the binding of the serine pro-
tease inhibitor-1 (PAI-1) to urokinase plasminogen activator (uPA) (Conese
and Blasi, 1995a; 1995b Andreasen et al., 1997; 2000). Additionally, we as-
sume that the binding of PAI-1 to VN indirectly results in the binding of uPA
to uPAR and therefore in plasmin formation. Based on the aforementioned
assumptions we deduce the “word equation” below:
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(
Rate of change of plasmin concentration

)
=

(
motion due to diffusion

)
(

+ production by cells
)
−

(
loss due to uPA/PAI − 1 binding

)
+

(
production due toPAI − 1/VNbinding

)
.

If we now symbolize by Dm, φ53, φ52 and φ51, respectively, plasmin’s assumed
constant diffusion coefficient, its rate of production due to uPA/uPAR bind-
ing, its rate of production due to PAI-1/VN, and its inactivation rate due to
uPA inhibition by PAI-1, then we have:

∂m

∂t
= Dm

∂2m

∂x2︸ ︷︷ ︸
Diffusion

− φ51 p u︸ ︷︷ ︸
PAI−1/uPA

+ φ52 p v︸ ︷︷ ︸
PAI−1/VN

+ φ53 u c︸ ︷︷ ︸
uPA/cells

. (6)

Hence the complete system of equations describing the interactions of tu-
mour cells, ECM, uPA, PAI-1 and plasmin as described in the previous para-
graphs is

∂c

∂t
= Dc

∂2c

∂x2︸ ︷︷ ︸
Random Motion

− ∂

∂x

(
χcc

∂u

∂x︸ ︷︷ ︸
uPA−chemo

+ ζcc
∂p

∂x︸ ︷︷ ︸
PAI−1−chemo

+ ξcc
∂v

∂x︸ ︷︷ ︸
VN−hapto

)

+ (φ13 c u)︸ ︷︷ ︸
proliferation

+ µ1 c

(
1 − c

co

)
︸ ︷︷ ︸

proliferation

,

∂v

∂t
= (−δ v m) or (−δ u mv)︸ ︷︷ ︸

degradation

− φ21 u p︸ ︷︷ ︸
uPA/PAI−1

+ φ22 v p︸ ︷︷ ︸
PAI−1/V N

+µ2 v

(
1 − v

vo

)
︸ ︷︷ ︸

proliferation

,

∂u

∂t
= Du

∂2u

∂x2︸ ︷︷ ︸
Diffusion

− φ31 p u︸ ︷︷ ︸
PAI−1/uPA

− φ33 c u︸ ︷︷ ︸
uPA/cells

+ α31 c︸ ︷︷ ︸
production

,

∂p

∂t
= Dp

∂2p

∂x2︸ ︷︷ ︸
Diffusion

− φ41 p u︸ ︷︷ ︸
PAI−1/uPA

− φ42 p v︸ ︷︷ ︸
PAI−1/VN

+ (α41 m) or (α41 c)︸ ︷︷ ︸
production

,

∂m

∂t
= Dm

∂2m

∂x2︸ ︷︷ ︸
Diffusion

− φ51 p u︸ ︷︷ ︸
PAI−1/uPA

+ φ52 p v︸ ︷︷ ︸
PAI−1/VN

+ φ53 u c︸ ︷︷ ︸
uPA/cells

. (7)

We consider the system to hold on some spatial domain Ω = [0, 2] (e.g.
a region of tissue) with appropriate boundary and initial conditions for each
of the aforementioned variables. We assume that cancer cells, and as a con-
sequence uPA, PAI-1 and plasmin, remain within the domain of tissue under
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consideration and therefore zero-flux boundary conditions are imposed on ∂Ω,
the boundary of Ω.

Before solving the system numerically, it is helpful to recast the problem
in terms of dimensionless variables, rescaling distance with the maximum dis-
tance of the cancer cells at this early stage of invasion L = 0.1−1 cm, time with
τ = L2

D (where D represents a chemical diffusion coefficient ∼ 10−6 cm2 s−1,
Bray, 2000), tumour cell density with co, ECM density with vo, uPA concen-
tration with uo, PAI-1 concentration with po and plasmin concentration with
mo (where co, vo, uo, po,mo are appropriate reference variables). The depen-
dent variables and key parameters are rescaled thus:

t̃ =
t

τ
, x̃ =

x

L
, c̃ =

c

co
, ṽ =

v

vo
, ũ =

u

uo
, p̃ =

p

po
, ñ =

m

mo
,

D̃c =
Dc

D
, D̃u =

Du

D
, D̃p =

Dp

D
, D̃m =

Dm

D
,

χ̃c = χc
uo

D
, ξ̃c = ξc

vo

D
, ζ̃c = ζc

po

D
, µ̃1 = µ1τ, µ̃2 = µ2τ,

δ̃ =
(

δ
moτ

vo

)
or

(
δ
mouoτ

vo

)
, α̃31 = α31

co

uo
τ, α̃41 =

(
α41

mo

po
τ

)
or

(
α41

co

po
τ

)
,

φ̃13 = φ11uoτ, φ̃21 = φ21
uopo

vo
τ, φ̃22 = φ22poτ, φ̃31 = φ31poτ, φ̃33 = φ33coτ,

φ̃41 = φ41uoτ, φ̃42 = φ42voτ, φ̃51 =φ51
uopo

mo
τ, φ̃52 =φ52

vopo

mo
τ, φ̃53 =φ53

uoco

mo
τ,

Dropping the tildes for notational convenience, we obtain the non-dimensio-
nal system of equations:

∂c

∂t
= Dc

∂2c

∂x2︸ ︷︷ ︸
Random Motion

− ∂

∂x

(
χcc

∂u

∂x︸ ︷︷ ︸
uPA−chemo

+ ζcc
∂p

∂x︸ ︷︷ ︸
PAI−1−chemo

+ ξcc
∂v

∂x︸ ︷︷ ︸
VN−hapto

)

+ (φ13 c u)︸ ︷︷ ︸
proliferation

+ µ1 c (1 − c)︸ ︷︷ ︸
proliferation

,

∂v

∂t
= (−δ v m) or (−δ umv)︸ ︷︷ ︸

degradation

− φ21 u p︸ ︷︷ ︸
uPA/PAI−1

+ φ22 v p︸ ︷︷ ︸
PAI−1/V N

+ µ2 v (1 − v)︸ ︷︷ ︸
proliferation

,

∂u

∂t
= Du

∂2u

∂x2︸ ︷︷ ︸
Diffusion

− φ31 p u︸ ︷︷ ︸
PAI−1/uPA

− φ33 c u︸ ︷︷ ︸
uPA/cells

+ α31 c︸ ︷︷ ︸
production

, (8)

∂p

∂t
= Dp

∂2p

∂x2︸ ︷︷ ︸
Diffusion

− φ41 p u︸ ︷︷ ︸
PAI−1/uPA

− φ42 p v︸ ︷︷ ︸
PAI−1/VN

+ (α41 m) or (α41 c)︸ ︷︷ ︸
production

∂m

∂t
= Dm

∂2m

∂x2︸ ︷︷ ︸
Diffusion

− φ51 p u︸ ︷︷ ︸
PAI−1/uPA

+ φ52 p v︸ ︷︷ ︸
PAI−1/VN

+ φ53 u c︸ ︷︷ ︸
uPA/cells

.
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In order to close the system, boundary and initial conditions, for c, v, u, p
and m are required.

Boundary Conditions: Guided by the in vitro experimental protocol in
which invasion takes place within an isolated system, we assume that there
is no-flux of tumour cells or protease across the boundary of the domain,
namely x = 0 and x = 2, in one-space dimension. These boundary conditions
are represented by the following equations,(

−Dc
∂c

∂x
+ c χ

∂u

∂x
+ c ζ

∂p

∂x
+ c ξ

∂v

∂x

)
= 0, at x = 0, 2 , (9)

for the cells,
∂u

∂x
= 0, at x = 0, 2 , (10)

for the urokinase plasminogen activator (uPA)

∂p

∂x
= 0, at x = 0, 2 , (11)

for the plasminogen activator inhibitor-1 (PAI-1) and

∂m

∂x
= 0, at x = 0, 2 , (12)

for plasmin.
Initial Conditions: The initial distribution of the tumour cells, the extra-
cellular matrix density, the urokinase plasminogen activator (uPA), the plas-
minogen activator inhibitor-1 (PAI-1) concentration and the plasmin concen-
tration are prescribed by the system of equations (13). Initially we assume
that there is a cluster of cancer cells already present and that they have pen-
etrated a short distance into the extracellular matrix while the remaining
space is occupied by the matrix alone. Additionally, we assume that the uPA
protease as well as the PAI-1 (inactivated) inhibitor initial concentration are
proportional to the initial tumour density while we assume that the plasmin
protease is not yet produced from the cancer cells. Combining the above we
have the following system,

c(x, 0) = exp
(
−x2

ε

)
, x ∈ [0, 2] and ε > 0,

v(x, 0) = 1 − 1
2

exp
(
−x2

ε

)
, x ∈ [0, 2] and ε > 0,

u(x, 0) =
1
2

exp
(
−x2

ε

)
, x ∈ [0, 2] and ε > 0, (13)

p(x, 0) =
1
20

exp
(
−x2

ε

)
, x ∈ [0, 2] and ε > 0,

m(x, 0) = 0 , x ∈ [0, 2]

where throughout the chapter we have taken ε to be 0.01.
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4.1 Estimation of Parameters

Whenever possible parameter values are estimated from available experimen-
tal data. However, given the large number of parameters in the model to be
determined, it is perhaps not surprising that several remain unquantified. Fo-
cusing on the aim of our model which is to produce certain experimentally
observed events of the urokinase plasminogen activation system in a quali-
tative manner, in the cases where no experimental data could be found, pa-
rameter values were chosen to give the best qualitative numerical simulation
results. This is in line with previous papers successfully simulating tumour
invasion and angiogenesis (Orme and Chaplain, 1997; Byrne et al., 1998; An-
derson et al., 2000). A full discussion of parameter estimation is given in Lolas
(2003).

We introduce D a reference chemical diffusion coefficient e.g. D ∼ 10−6

cm2 s−1 (Bray, 2000). In their model of epidermal wound healing Sherratt
and Murray (1990), used values of 3 × 10−9 cm2 s−1 – 5.9 × 10−11 cm2 s−1

for the random motility of epidermal cells. Furthermore, in their study of
individual endothelial cells (ECs), Stokes et al. (1991) calculated a random
motility coefficient of (7.1 ± 2.7) × 10−9 cm2 s−1 for ECs migrating in a
culture containing an angiogenic factor αFGF, heparin and fetal serum as
well as a random motility coefficient of migrating endothelial cells with agarose
overlays (2.3±0.6)×10−9cm2 s−1 and without agarose overlays of (6.9±2.6)×
10−9cm2 s−1. In agreement with the aforementioned measurements for cell
dispersion Bray (2000) estimated the animal cell random motility coefficient
to be ∼ 5 × 10−10cm2 s−1. In this regard, our choice for cell dispersion will
vary betweeen 10−9cm2 s−1 and 10−11cm2 s−1, so our nondimensional value
will be between: Dc = 10−3 − 10−5.

For the diffusion coefficient of the chemotactic chemical, Sherratt and Mur-
ray (1990) took values of 3.1 × 10−7cm2 s−1- 6.9 × 10−6cm2 s−1 for an acti-
vator and inhibitor chemical respectively while Chaplain et al. (1995) chose
3.3×10−8cm2 s−1. Assuming that the diffusion coefficient of a diffusible chem-
ical is in the range 10−6−10−9cm2 s−1, we obtain a dimensionless estimate of
Du,Dp in the range 0.001–1. Additionally, regarding the plasmin diffusion co-
efficient, Robbins et al., (1965) estimated the dimensional urokinase-activated
plasmin diffusion coefficient to be 4.91×10−7 cm2 s−1. However, regarding the
existence of uPA as well as PAI-1, we believe that the plasmin diffusion coeffi-
cient will be much smaller. Therefore we choose the dimensionless parameter
Dm to be in the range of 4.91 × 10−2 − 4.91 × 10−4.

Stokes et al. (1991) estimated the chemotaxis coefficient of ECs migrating
in a culture containing αFGF, to be 2600 cm2 s−1 M−1. Andreasen et al. (1997)
estimated the blood plasma concentration of uPA to be around 20 pM while
Collen et al. (1986) considered a uPA concentration around 8 nM in his studies.
Choosing χc between 0.001–1 gives a value of uo in the range 0.38×10−9M −
0.38 × 10−12 M which is consistent with experimental measurements. In the
absence of reliable empirical data, we chose the haptotaxis coefficient ξc to be
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in the range of 2.5×10−3−2.5×10−1 cm2 s−1 M−1. Therefore, considering the
fact that the vitronectin blood plasma concentration is around 4µM (Comper,
1985) leads to a dimensionless estimate of the haptotaxis coefficient ξc in the
range between 0.001–1.

Yu et al. (1997) estimated the doubling time of human epidermoid carmi-
noma cells (HEp3) from in vitro proliferation experiments time to be 24 h.
However, small differences in growth rate were observed but they did not bear
a relation to the level of the urokinase plasminogen activator receptor (uPAR).
In contrast, HEp3 with a full uPAR complement grows best when crowded.
By taking the proliferation rate as the reciprocal of the cell-cycle time we
get µ̃1 ∼ 0.042 h−1. Previously, Sherratt and Murray (1990) as well as Stokes
and Lauffenburger (1991) estimated the growth rate constant to be 0.04 h−1

and 0.056 h−1 respectively, assuming that all cells are proliferating. Neverthe-
less, Stokes and Lauffenburger (1991), Chaplain et al. (1995), as well as Orme
and Chaplain (1997), reduced the chosen value of the proliferation rate to be
0.02 h−1 in order for them to compensate with the assumption that fibronectin
can inhibit endothelial cell proliferation and furthermore that during the an-
giogenesis process proliferation is mainly confined to a zone just proximal to
the tips of the capillary sprouts. In this regard, in our numerical simulations
we will choose the proliferation rate to be between 0.02 h−1 − 0.72 h−1, and
thus obtain the dimensionless parameter of µ1 in the range 0.05–2.

Rijken (1995) and Thorsen (1998) estimated the binding rate of uPA/PAI-
1 to be around 1.8 × 107 M−1 s−1, Moreover Rijken (1995) estimated the
plasma concentration of PAI-1 to be 0.38 nM. Additionally, several studies
(Collen et al., 1986; Andreasen et al., 1997) showed that the urokinase plas-
minogen activator (uPA) concentration was originally described in urine and
its plasma concentration levels are around 0.38 nM to 4.5 nM. However, we
have to bear in mind that when PAI-1 is in excess over uPA the vast majority
of cells are non-adherent and therefore are released from the VN substratum.
On the other hand, when there is a plethora of uPA in the system this results
in uPA binding PAI-1, therefore releasing VN and promoting the cancer cells’
attachment to ECM. In this regard, without loss of generality we will assume
that the reference concentrations of uPA and PAI-1, namely uo, po, have more
or less the same concentrations. Therefore, we obtain φ31, φ41 ∼ 0.1 − 1. The
choice of φ31, φ41 ∼ 0.1 − 1, gives a dimensional parameter for the uPA/PAI-1
binding rate in the range of φ̃31, φ̃41 ∼ 105 − 107 M−1 s−1 which is in agree-
ment with that obtained by Rijken (1995) and Thorsen (1988), respectively.

In addition, the blood plasma membrane concentration of VN was esti-
mated to be 4µM (Naski et al., 1993; Comper, 1996; Andreasen et al., 1997).
However, Naski et al. (1993) as well as Waltz et al. (1997) used in their ex-
periments a rather low concentration of vitronectin i.e. 10 nM. Additionally,
Terranova et al. (1985) found that doses of fibronectin between 0.1 - 10 nM
stimulated cell migration. In this regard, Orme and Chaplain (1997) as well
as Chaplain and Anderson (1996) used as a reference concentration for fi-
bronectin a value of 0.1 nM. Therefore, since we have already assumed that
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the reference PAI-1 concentration is more or less in the nanomolecular state
then we obtain for φ22 φ42 a value of 0.1 − 1. The aforementioned choice of
φ22 φ42 ∼ 0.1 − 1 gives a dimensional parameter for the VN/PAI-1 bind-
ing rate in the range of φ̃22, φ̃42 ∼ 105 − 107 M−1 s−1. This is in line with
the results of several studies that showed that VN tightly binds PAI-1 with
Kd = 0.3 nM (Lijnen and Collen, 1995; Naski et al., 1993; Waltz et al., 1997).

Regarding the secretion rates of uPA from the cells as well as the secretion
of PAI-1 from cancer cells or through plasmin formation, we choose the follow-
ing dimensionless values for our parameters, α31 = 0.1− 2 and α41 = 0.1− 2.
For the terms φ11, φ32, φ53 which actually represent functions associated with
the uPA binding to the cell surface receptors, such as uPAR and integrins, in
other words the proliferation rate of cells due to uPA-binding to the cell sur-
face receptors complex (as in φ13), the neutralization rate of uPA (as in φ33)
and the production (activation) rate of plasmin (as in φ53). In this regard, by
considering the dissociation constant of uPA bound-uPAR to be in the range
of 0.1−0.5 nM (Andreasen et al., 1997; Ellis et al., 1999; Schliom et al., 2000)
and additionally taking the uPAR concentration to be in the subnanomolar
range, i.e. 0.4 − 23 nM (Ellis and Danø, 1991) then we can choose φ33, φ53 to
be in the range of 0.1–1.

There were a couple of parameters in the model that we were unable to
estimate. Therefore, we chose their values in order to give the best qualitative
results in the simulations. Considering the uPA secretion from the cancer cells
we chose the nondimensional value of α to vary between 0.05–1, whereas for
the extracellular matrix degradation rate we consider δ to vary between 1–20.
Furthermore, we chose the extracellular matrix remodelling rate to be three
to five times higher than the cancer cells proliferation rate, and therefore
we took µ2 in the range of 0.15–2.5. Last but not least, we consider τ = 104

seconds. However, regarding φ13 which represents the cancer cells proliferation
rate due to uPA binding to the cell-surface receptors we were unable to find
experimental data associated with the aforementioned parameter. Therefore,
lacking experimental data for the indirect and through signalling regulated
cancer cell proliferation rate we choose φ13 to have a value between 0.01–1.

5 Numerical Simulation Results

To compute accurate numerical solutions in one space dimension we use the
NAG library subroutine D03PCF. This method uses finite difference approx-
imations to perform a spatial discretisation of the model equations, thereby
reducing them to a system of (time-dependent) ordinary differential equations
which are readily integrated (this is the method of lines). The (stiff) ODE sys-
tem is solved using a backward difference formula. Full details can be found
in Lolas (2003). In this section we will confine ourselves to describing the re-
sults of the model for a given set of parameter values and the implications of
the results as they impact on the underlying biology of cancer cell invasion
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of tissue. The following numerical results were obtained using the following
parameter values: Dc = 3.5 × 10−4,Du = 2.5 × 10−3,Dp = 3.5 × 10−3,Dm =
4.91 × 10−3, χ = 3.05 × 10−2, ξ = 2.85 × 10−2, ζ = 3.75 × 10−2, δ =
8.15, α31 = 0.215, α41 = 0.5, φ11, φ31, φ41, φ51 = 0.75, φ22, φ42 = 0.55, φ52 =
0.11, φ13, φ33 = 0.3, φ53 = 0.75, µ1 = 0.15, µ2 = 0.85 (unless specified other-
wise).

In order to examine the relative importance of PAI-1 excess over uPA in
the model, we first of all consider that the production of PAI-1 is higher than
that of uPA, and with all other parameters as above we produce the plots
given in the sequence of Figs. 3–6. We note that by t = 1 (∼3 hours) a group
of cells has built up at the leading edge of the primary tumour. By t = 25 (∼3
days), cancer cells start to produce more uPA which in turn activates plasmin
and therefore degrades the ECM. As time evolves, at t = 35 (∼4 days) two
distinct cluster of cells have formed one near the left hand boundary and the
other one at the centre of the plot as a consequence of increased cancer cell
proliferation. By t = 55 (∼6.5 days) the previously central cluster of tumour
cells starts to migrate driven mainly by VN-mediated haptotaxis.

Additionally, by t = 60 (∼7 days), in Fig. 4, new clusters of cells have
formed due to increased cell proliferation both due to the logistic growth
rate but also due to the uPA-cancer cell surface receptor signalling cascade.
By t = 105 (∼9 days) three main groups of cancer cells have formed with
regions of extracellular matrix re-establishment also observed. As time evolves,
at t = 125 (∼14.5 days) the “anarchy” that characterizes the proliferating
heterogeneity of solid tumours is observed and more clusters of cancer cells
are forming while others are migrating further into the domain. At t = 150
(∼17.5 days) more cluster of cells have generated due to unrestricted cancer
cell proliferation.

At t = 165 (∼19 days), in Fig. 5, the generation of more groups of cancer
cells is observed, while by t = 185 (∼21.5 days) the cancer cells proliferative
heterogeneity is even more evident and we can note several groups of cancer
cells accompanied either by extracellular matrix re-distribution or by increased
levels of urokinase plasminogen activator (uPA) concentration. By t = 250
(∼29 days), six clusters of cancer cells have formed, in which others migrate
to both boundaries driven by hapto- or chemo-taxis respectively. Additionally,
by t = 310 (∼36 days) we note a re-distribution of the extracellular matrix
components accompanied by a decrease in the number of cancer cell clusters.

Furthermore, we note that the rapid extracellular matrix re-establishment
observed at t = 310 (∼36 days), in Fig. 6, is followed by a substantial increase
of new cancer cells grouping throughout the domain. Therefore, by t = 410
(∼47.5 days) we observe five main clusters of cancer cells, while by t = 450
(∼52 days) we see six clusters of cells. Finally, at t = 500 (∼58 days) we
observe a rapid extracellular matrix renewal together with a rapid increase in
tumour cell cluster formation.

Having examined the tumour proliferative heterogeneity we now consider
several changes in the model in order for us to examine the system behaviour
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Fig. 3. Sequence of profiles showing the evolution of the tumour cell density c(x, t)
(solid black line), the uPA protease concentration u(x, t) (dot-dashed blue line),
the ECM density v(x, t) (dashed red line), the PAI-1 concentration p(x, t) (dot-
ted black line) and the plasmin concentration m(x, t) (dot-dashed magenta line).
Parameter values: Dc = 3.5 × 10−4, Du = 2.5 × 10−3, Dp = 3.5 × 10−3, Dm =
4.91 × 10−3, χ = 3.05 × 10−2, ξ = 2.85 × 10−2, ζ = 3.75 × 10−2, δ = 8.15, α31 =
0.215, α41 = 0.5, φ21, φ31, φ41, φ51 = 0.75, φ22, φ42 = 0.55, φ52 = 0.11, φ13, φ33 =
0.3, φ53 = 0.75, µ1 = 0.15, µ2 = 0.85, L = 0.1 cm, τ = 104

by the inclusion or the exclusion of various other terms such as by considering
cancer cell apoptosis as well as an indirect cell proliferation. Therefore, in
the following set of Figs. 7 to 9 we consider a cancer cell apoptotic term.
We will assume that since the uPA-binding to cancer cell surface receptors
results in both having a proliferative influence over the tumour’s behaviour
and an activating effect in the production of plasmin, we consider that over-
production of plasmin is a signal for cancer cell apoptosis (Andreasen et al.,
1997; Andreasen et al., 2000).

Additionally we assume that the PAI-1 binding to VN will result in an
indirect cancer cell proliferation since it will eventually activate uPA-cancer-
cell surface binding. Last, but not least we consider that vitronectin binding
to the cancer cell surface receptors will result in a further plasmin decrease,
as a result of uPA occupation by PAI-1. Therefore, the system that we will
be interested in takes the following form:
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Fig. 4. Sequence of profiles showing the evolution of the tumour cell density c(x, t)
(solid black line), the uPA protease concentration u(x, t) (dot-dashed blue line),
the ECM density v(x, t) (dashed red line), the PAI-1 concentration p(x, t) (dot-
ted black line) and the plasmin concentration m(x, t) (dot-dashed magenta line).
Parameter values: Dc = 3.5 × 10−4, Du = 2.5 × 10−3, Dp = 3.5 × 10−3, Dm =
4.91 × 10−3, χ = 3.05 × 10−2, ξ = 2.85 × 10−2, ζ = 3.75 × 10−2, δ = 8.15, α31 =
0.215, α41 = 0.5, φ21, φ31, φ41, φ51 = 0.75, φ22, φ42 = 0.55, φ52 = 0.55, φ13, φ33 =
0.3, φ53 = 0.3, µ1 = 0.15, µ2 = 0.85, L = 0.1 cm, τ = 104 sec

∂c

∂t
= Dc

∂2c

∂x2︸ ︷︷ ︸
Random Motion

− ∂

∂x

(
χcc

∂u

∂x︸ ︷︷ ︸
uPA−chemo

+ ζcc
∂p

∂x︸ ︷︷ ︸
PAI−1−chemo

+ ξcc
∂v

∂x︸ ︷︷ ︸
VN−hapto

)

+ µ1c(1 − c) + φ13pv︸ ︷︷ ︸
proliferation

− ω1m︸︷︷︸
apoptosis

∂v

∂t
= −δ mv︸ ︷︷ ︸

degradation

− φ21 u p︸ ︷︷ ︸
uPA/PAI−1

+ φ22 v p︸ ︷︷ ︸
PAI−1/V N

+µ2 v (1 − v)︸ ︷︷ ︸
proliferation

,

∂u

∂t
= Du

∂2u

∂x2︸ ︷︷ ︸
Diffusion

− φ31 p u︸ ︷︷ ︸
PAI−1/uPA

− φ33 c u︸ ︷︷ ︸
uPA/uPAR

+ α31 c︸ ︷︷ ︸
production

,

∂p

∂t
= Dp

∂2p

∂x2︸ ︷︷ ︸
Diffusion

− φ41 p u︸ ︷︷ ︸
PAI−1/uPA

− φ42 p v︸ ︷︷ ︸
PAI−1/VN

+ α41 m︸ ︷︷ ︸
production

,

∂m

∂t
= Dm

∂2m

∂x2︸ ︷︷ ︸
Diffusion

− φ51 p u︸ ︷︷ ︸
PAI−1/uPA

+ φ52 p v︸ ︷︷ ︸
PAI−1/VN

+ φ53 u p︸ ︷︷ ︸
uPA/PAI−1

− φ54 c v︸ ︷︷ ︸
V N/cells

. (14)
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Fig. 5. Sequence of profiles showing the evolution of the tumour cell density
c(x, t) (solid line), the uPA protease concentration u(x, t) (dot-dashed line), the
ECM density v(x, t) (dashed line), the PAI-1 concentration v(x, t) (dotted line)
and the Plasmin concentration m(x, t) (dot-dashed magenta line). Parameter val-
ues: Dc = 3.5 × 10−4, Du = 2.5 × 10−3, Dp = 3.5 × 10−3, Dm = 4.9 × 10−3, χ =
3.05 × 10−2, ξ = 2.85 × 10−2, ζ = 3.75 × 10−2, δ = 8.15, α31 = 0.15, α41 =
0.5, φ13, φ33, φ53 = 0.3, φ21, φ31, φ41, φ51 = 0.75, φ22, φ42 = 0.55, φ52 = 0.11, µ1 =
0.15, µ2 = 0.85, L = 0.1 cm, τ = 104 sec

To close our system we have to mention that we took our initial conditions
to be given by the equation (13) while our boundary conditions were given by
the equatons (9)–(12). The aforementioned system is solved using the following
parameter values: Dc = 10−4,Du = 2.5 × 10−3,Dp = 3.5 × 10−3,Dm =
4.9 × 10−3, χc = 1.5 × 10−2, ξc = 2.85 × 10−2, ζc = 3.5 × 10−2, δ = 7.5, α31 =
0.35, α13, φ33, φ53 = 0.1, φ21, φ31, φ41, φ51 = 0.15, φ22 = φ42 = 0.12, φ52 =
0.05, φ54 = 0.03, µ1 = 0.2, µ2 = 0.85, ω1 = 0.085.

Based on the above assumptions, we note that at t = 1 (∼3 hours), in
Fig. 7 a large cluster of cells has built up at the leading edge of the pri-
mary tumour. However, by t = 10 (∼1 day) due to the “taxis” competition
between uPA, PAI-1-mediated and VN-mediated chemotaxis and haptotaxis
respectively cancer cells are unable to migrate further into the region. As time
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ECM density v(x, t) (dashed line), the PAI-1 concentration p(x, t) (dotted line)
and the Plasmin concentration m(x, t) (dot-dashed magenta line). Parameter val-
ues: Dc = 3.5 × 10−4, Du = 2.5 × 10−3, Dp = 3.5 × 10−3, Dm = 4.9 × 10−3, χ =
3.05 × 10−2, ξ = 2.85 × 10−2, ζ = 3.75 × 10−2, δ = 8.15, α31 = 0.15, α41 =
0.5, φ13, φ33, φ53 = 0.3, φ21, φ31, φ41, φ51 = 0.75, φ22, φ42, = 0.55, φ52 = 0.11, µ1 =
0.15, µ2 = 0.85, L = 0.1 cm, τ = 104 sec

evolves, t = 55 (6 days) a large region of the extracellular matrix has been
degraded as a result of uPA over-secretion by the cancer cells.

By t = 60 (∼7 days), in Fig. 8, cancer cells start to migrate further into
the region, while by t = 70 (∼8 days) cancer cells have migrated into the
degraded region. Additionally, by t = 105, (∼12 days) more clusters of cells
have formed due to the uncontrolled cell proliferation and the uPA-cancer cell
surface receptors interactions. Therefore, by t = 120 (∼14 days) we are able
to observe the results of the cancer cell abnormal and irregular proliferative
heterogeneity in more detail with the formation of five clusters of cancer cells.
In line with previously mentioned results, we once again note the cancer cells’
variability, in other words the ability of the tumour cells to produce different
tumour masses following heterogeneous kinetics.
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0.2, µ2 = 0.85, ω1 = 0.085, L = 0.1 cm, τ = 104

Surprisingly, at t = 155 (∼18 days), in Fig. 9 we point out regions of
extracellular matrix redistribution which cancer cells degrade locally through
the uPA production and consequently plasmin activation. Additionally, it is
worth noting that these group of cells are able to migrate to either boundary
and therefore provide the tumour with the ability to extravasate and migrate
into distant sites where new tumours could be formed. As time evolves, t = 250
(29 days), the tumour heterogeneity is even more observable as a result of
increased abnormal cell proliferation.

6 Discussion

In this chapter we have managed to capture the pleiotropic functions of uroki-
nase plasminogen activation system related to pericellular proteolysis and



118 G. Lolas

0 0.5 1 1.5 2
0

1

2

3

4

t = 60

0 0.5 1 1.5 2
0

1

2

3

4

t = 70

0 0.5 1 1.5 2
0

1

2

3

4

t = 85

0 0.5 1 1.5 2
0

1

2

3

t = 105

0 0.5 1 1.5 2
0

1

2

3

4
t = 120

0 0.5 1 1.5 2
0

1

2

3

4
t = 135

uPA uPA

Tumour

Tumour

uPA

uPA

Tumour

PlasminPlasmin

Plasmin

Plasmin Plasmin

Tumour

Tumour

Tumour

uPA

uPA

PAI−1

ECMECMPAI−1

PAI−1 ECM

PAI−1
ECMPAI−1ECM

PAI−1

PAI−1

ECM

Fig. 8. Sequence of profiles showing the evolution of the tumour cell density c(x, t)
(solid black line), the uPA protease concentration u(x, t) (dot-dashed blue line), the
ECM density v(x, t) (dashed red line), the PAI-1 concentration v(x, t) (dotted black
line) and the plasmin concentration m(x, t) (dot-dashed magenta line). Parameter
values: Dc = 10−4, Du = 2.5 × 10−3, Dp = 3.5 × 10−3, Dm = 4.9 × 10−3, χc =
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cancer cell tissue invasion. The main achievement of this chapter is that fairly
simple mathematical models representing the binding interactions of the com-
ponents of the plasminogen activation system coupled with cell migration were
able to capture the main characteristic effects of the system in cancer progres-
sion and invasion.

We have shown in this chapter that the spatially heterogeneous distribu-
tions of cancer cell which arise as a consequence of simple binding reactions
and gradient-driven migration may help to explain certain clinically and ex-
perimentally observed phenomena in carcinoma and multicellular spheroids,
i.e. the heterogeneous “anarchic” spatial distribution of proliferating cancer
cells and tissue.

The applications of our complete plasmin taxis-reaction-diffusion equa-
tions to cancer invasion enable us to model more realistically solid tumour
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invasion of tissue and we believe that the results of the numerical simulations
are highly consistent with in vitro as well as in vivo experimentally observed
proliferative heterogeneity of cancer cells in solid tumours at their invasive
stage. Especially, our models are in line with recent experimental results, that
showed that when breast cells become malignant, plasmin is activated on
their membrane and their morphology is changed from sheet-like structures
to multicellular heterogeneous masses (Chun, 1997).

An analysis of the steady states of the model (Lolas, 2003) reveals that
there no limit cycles present in the kinetic equation of our system. The dy-
namic,heterogeneous spatio-temporal behaviour of the system is therefore due
to the interplay between proliferation, matrix degradation and taxis of the
components of the uPA system. Other interesting dynamic spatio-temporal
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behaviour is observed for other ranges of parameters and this is explored in
great depth in Lolas (2003).

Therefore, considering these reports, one may speculate that through the
activation of plasmin on their membrane, micrometastatic tumour cells form
multicellular clusters and thus manage to shield themselves from the action of
chemotherapeutic drugs, thereby impeding chemotherapies and raising thera-
peutic drug doses to prohibitively high levels. In this regard, compromising the
protective shield or even targeting plasmin with its α2-antiplasmin inhibitor
may be a reasonable target of new therapeutic designs for cancer therapies.

In the models described in this chapter proliferation, “taxis”, invasion and
signalling are strongly correlated and rely on each other for the dynamical
expansion of the entire system in a heterogeneous environment. Therefore,
the present findings provide more evidence that tumours are indeed complex
dynamic biosystems. However, by no means can the present model claim com-
pleteness. Therefore, since invasive tumour cells are widely thought to be re-
sponsible for tumour recurrence and thus ultimately for treatment failure, the
understanding of these complex mechanisms is essential in order to develop
novel and more successful targeting strategies against this fatal disease.
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1. Aguirre Ghiso J.A., Alonso D.F., Faŕıas E.F., Gomez D.E. and and Bal De Kier
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115. Pepper M.S., Sappino A.-P., Stöcklin R., Montesano R., Orci L., and Vas-
salli J.-D. (1993), Upregulation of urokinase receptor expression on migrating
endothelial cells, The Journal of Cell Biology, 122, 673–684.

116. Pepper M.S. (2001a), Role of the matrix metalloproteinase and plasminogen
activator-plasmin systems in angiogenesis, Arteriosclerosis, Thrombosis and
Vascular Biology, 21, 1104–1117.

117. Pepper M.S. (2001b), Extracellular proteolysis and angiogenesis, Thrombolysis
and Haemostasis, 86, 346–355.

118. Perumpanani A.J., Sherratt J.A., Norbury J., Byrne H.M. (1996), Biologi-
cal inferences from a mathematical model for malignant invasion, Invasion &
Metastasis, 16, 209–221.

119. Perumpanani A.J., Simmons D.L., Gearing A.J.H., Miller K.M., Ward G.,
Norbury J., Schneemann M., and Sherratt J.A. (1998), Extracellular matrix-
mediated chemotaxis can impede cell migration, Proceedings of the Royal So-
ciety of London, Series B, 265, 2347–2352.

120. Perumpanani A.J., and Byrne H.M. (1999), Extracellular matrix concentration
exerts selection pressure on invasive cells, European Journal of Cancer, 35,
1274–1280.

121. Planus E., Barlovatz-Meimon G., Rogers R.A., Bonavaud S., Ingber D.E., and
Wang N., Binding of urokinase to plasminogen activator inhibitor type-1 me-
diates cell adhesion and spreading, Journal of Cell Science, 110, 1091–1098.

122. Plekhanova O., Parfyonova Y., Bibilashvily R., Domogatskii S., Stepanova V.,
Gulba D.C., Agrotis A., Bobik A., and Tkachuk V. (2001), Urokinase plasmino-
gen activator augments cell proliferation and neiontima formation in injured
arteries via proteolytic mechanisms, Atherosclerosis, 159, 297–306.

123. Plow E.F., Freaney D.E., Plescia J., Miles L.A. (1986), The plasminogen system
and cell surface: Evidence for plasminogen and urokinase receptors on the same
cell type, Journal of Cell Biology, 103, 2411–2420.

124. Podor T.J., Shaughnessy S.G., Blackburn M.N., and Peterson C.B. (2000),
New insights into the size and stoichiometry of the plasminogen activator
inhibitor type-1/vitronectin complex, Journal of Biological Chemistry, 275,
25402–25410.

125. Poliakov A., Tkachuk V., Ovchinnikova T., Potapenko N., Bagryantsev S., and
Stepanova V. (2001), Plasmin-dependent elimination of the growth-factor-like
domain in urokinase causes its rapid cellular uptake and degradation, Biochem-
ical Journal, 355, 639–645.

126. Preissner K.T., Kanse S.M., and May A.E. (2000), Urokinase receptor: a mole-
cular organizes in cellular communication, Current Opinion in Cell Biology,
12, 621–628.

127. Rakic J.M., Maillard C., Jost, M., Bajou K., Masson V., Devy L., Lambert
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1 Introduction

Cancer still remains one of the most difficult diseases to treat clinically and is
one of the main causes of mortality in developed western societies. The mor-
tality statistics for the United Kingdom for the year 2002 show that 155,180
people were registered as dying from a malignant neoplasm.1 This figure rep-
resents 26% of all causes of death in the UK for 2002. Similar statistics hold
for the United States as can be seen in Fig. 1, which shows the main causes
of death in the USA during the two years 1975 and 2001.

Great effort and resources are devoted to cancer research and our un-
derstanding of cancer biology is constantly expanding. However, the overall
efficiency of our current therapeutic approaches remains rather poor as Fig. 2
indicates. In particular, Fig. 2 compares the death rates associated with the
two main causes of death in the USA (i.e. heart disease and cancer) during the
period 1975–2001. It is evident that the reduction in the death rate associated
with cancer is unfortunately considerably smaller than the one associated with
heart disease.

Current patient therapies for the treatment of cancer include surgery (i.e.
removal of the tumour), chemotherapy (administration of anti-cancer drugs)
and radiotherapy (treatment with X-rays). Of course surgery is appropriate
only for solid tumours. Although there have been great advances in patient
care and treatment over the past few decades with refinement of anti-cancer
drugs and medical equipment, unfortunately chemotherapy and radiotherapy
both still carry major side-effects for individual patients. This is mainly due
to the severe effects that these treatments have on normal, healthy prolifer-
ating cells in the patients. As a result, the treatment of cancers itself causes
significant morbidity and mortality.

Given these facts any design of new therapeutic approaches is of great
interest and one such new approach is to treat cancer using key components

1Source: Cancer Research UK.
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Fig. 1. Diagram showing the main causes of death in the USA in the years 1975
and 2001. Adapted from Ries et al. (2004)

Fig. 2. Distribution of death rates associated with the two main causes of death in
the USA. Adapted from Ries et al. (2004)

of the immune system, the body’s natural defence mechanism. In recent years
there has been much biological, immunological and experimental interest in
trying to develop what may be termed “immunotherapies” for cancers. One
major advantage that some form of effective immunotherapy treatment would
have over conventional anti-cancer treatment would be the fact that cells
and other components of the immune system would be far more specific and
localised in their actions, targetting cancer cells alone and leaving the vast
majority of other healthy cells of the body untouched.

As part of a deeper understanding of cancer therapy the role of quantitative
and predictive mathematical modelling is becoming increasingly appreciated
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by experimentalists and clinicians. Almost every “biological system” is by
definition a highly complex, dynamic nonlinear system with many interact-
ing variables. Because of this inherent complexity the use of modern applied
mathematics has an important role to play in elucidating various aspects of
the dynamical behaviour of these systems and provides a means for controlling
and predicting their evolution. These statements hold in general for biological
systems and also with regard to the specific topic of this chapter, the immune
response to cancer. Mathematical modelling of the immune response to cancer
is the main topic of interest here and we shall examine how modelling can help
to shed light on a complicated process and also to be predictive and how to
design the optimal immunotherapy treatments.

Therefore we start in the next section with an overview of tumour im-
munology. In the subsequent section we develop a continuum partial differen-
tial equation (PDE) model for the spatio-temporal response of cytotoxic T-
lymphocytes to a solid tumour and we examine the spatio-temporal dynamics
of the model by employing numerical simulations in a number of different bio-
logical settings. For a particular choice of parameters the model is able to sim-
ulate the phenomenon of cancer dormancy – a clinical condition that has been
observed in breast cancers, neuroblastomas, melanomas, osteogenic sarcomas,
and in several types of lymphomas. The behaviour of the cancer dormancy
simulations can be described as highly irregular, depicting unstable and het-
erogeneous tumour cell distributions that are nonetheless characterized by a
relatively low total number of tumour cells. This behaviour is consistent with
several immunomorphological investigations with tumour spheroids infiltrated
by cytotoxic T-lymphocytes. Finally, concluding remarks and directions for
future research are given in the last section.

2 Tumour Immunology

2.1 The Immune System

The immune system is a highly complex distributed system of cells and mole-
cules in the body that provides vertebrates with a basic defence against bacte-
ria, viruses, fungi, and other pathogenic agents [101]. The components of the
immune system can be classified as either innate or adaptive, with the latter
being of interest in the framework of this chapter. Innate immune responses
are stimulated by structures that are common to groups of related pathogenic
agents and may not distinguish fine differences among foreign substances. The
associated biological mechanisms exist before infection, are capable of rapid
responses to microbes, react in essentially the same way to repeated infec-
tions and, most importantly, integrate with the adaptive components of the
immune system by stimulating and influencing the nature of adaptive im-
mune responses. Adaptive immunity develops as a response to infection and,
in contrast to innate immune responses, adaptive responses are characterized
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by an “exquisite specificity for distinct macromolecules” and “an ability to
“remember” and respond more vigorously to repeated exposures to the same
microbe” [1].

The principal component of the adaptive immune system is a class of white
blood cells called lymphocytes. There are various distinct sub-populations
of lymphocytes and the cells of each sub-population express specific mem-
brane proteins, which can be used as phenotypic markers. Two broad sub-
populations are of extreme interest because they define two different types
of adaptive immune responses, called humoral and cell-mediated respectively.
More precisely, B-lymphocytes, which in adult mammals develop in the bone
marrow, are responsible for producing antibody molecules. Pathogenic agents,
also called antigens (antibody generators), stimulate B-lymphocytes to re-
lease antibodies into the blood, which in turn can bind to to the antigens
and “mark” them as foreign structures for elimination by other cells of the
immune system (e.g. macrophages). Moreover, antibodies can neutralize anti-
gens such as viruses by coating them and preventing them from invading target
cells or alternatively they can stimulate a system of blood enzymes called the
complement system, which binds to antibody-coated structures and removes
them [93]. According to [1], the term “humoral immunity” originally referred
to the type of immunity that can be transferred to unimmunized individuals
by antibody-containing cell-free portions of the blood, i.e. plasma or serum,
which in the past were called “humors”, and it is this historical framework
that has established the characterization of the response of B-lymphocytes to
an antigen as “humoral”.

The sub-population of lymphocytes responsible for cell-mediated immune
responses consists of the so-called T-lymphocytes, which develop in the thy-
mus. T-lymphocytes express antigen receptors, which can recognize and bind
to specific structures on the membrane of target cells. These structures are
heterotrimers consisting of the so-called major histocompatibility complex
(MHC), and a bound antigenic peptide. According to [1], the MHC was origi-
nally discovered as the genetic locus whose products were responsible for rapid
rejection of tissue grafts exchanged between in-bred mice. The human MHC
molecules were discovered subsequently in the context of research related to
issues concerning blood transfusion and organ transplantation and in this
framework they are also called human leukocyte antigens (HLAs). There are
essentially two types of MHC molecules: class I and class II. Class I molecules
are expressed on virtually every cell in the human body. They bind to peptides
derived from proteins, which are cleaved by various proteolytic mechanisms
inside the cell, and subsequently they present these peptides on the surface
of the cell. Class II molecules can bind to small peptides as well, but they are
expressed on a restricted set of cells, collectively characterized as professional
antigen presenting cells (APCs).

The recognition of a peptide presented on the surface of a target cell as
foreign by a T-lymphocyte and the associated binding of the T-lymphocyte
with the target cell involve the clustering of a large number of T-lymphocyte
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receptors, leading to the phosphorylation of certain enzymes and trigger-
ing various cell-signaling mechanisms. Class II MHC-peptide complexes bind
specifically to a sub-population of T-lymphocytes, which express the CD4 pro-
tein and hence are characterized as CD4+ T-lymphocytes, also called helper
T-cells. Upon antigen recognition helper T-cells essentially release substances
that stimulate various components and mechanisms of both innate and adap-
tive immunity. Class I MHC-peptide complexes bind to CD8+ T-lymphocytes,
also known as cytotoxic T-lymphocytes (CTLs), which upon activation deliver
apoptotic signals and kill the target cell.

Other cells of the immune system include natural killer cells, granulocytes,
neutrophils, basophils, mast cells, monocytes and macrophages. All these are
components of the innate immune system and will not be of main interest in
the framework of this chapter. In the following sections we will focus on the
response of specialized sub-populations of lymphocytes to cancer, starting in
the next section with a discussion of the phenomenon of cancer dormancy in
the context of tumour immunology.

2.2 Cancer Dormancy as a Manifestation
of the Immune System Response to Cancer

A neoplasm (solid tumour) may be defined as “. . . an abnormal mass of tis-
sue whose growth exceeds that of normal tissue, is un-coordinated with that
of the normal tissue, and persists in the same excessive manner after ces-
sation of the stimuli which evoked the change” [79]. A cancer, or malignant
tumour, is a tumour that invades surrounding tissues, traverses at least one
basement membrane zone, grows in the mesenchyme at the primary site and
has the ability to grow in a distant mesenchyme, forming secondary cancers or
metastases. It has been widely proposed that tumours which originate spon-
taneously in humans or animals often grow slowly or exist for a long period
of time in a near-steady-state size even when tumour cells express activated
oncogenes or enhanced growth factor signalling mechanisms. Many months,
years, or even dozens of years may be required for the clinical manifestation
of cancers [76, 125, 135, 140]. A solid tumour which is “near-steady-state” is
described by the term cancer dormancy [4, 140]. The tumour nodule grows to
an approximate size of 1–3 mm in diameter, containing around 105 −106 cells
and then growth slows down and sometimes ceases. However, there are well
documented clinical observations of “latent” or “dormant” human tumours
containing 109 cells or even more [4, 15, 140]. Recent studies of the early steps
in metastasis (the spread of secondary tumours) have suggested that solitary
cancer cells that are neither proliferating nor undergoing apoptosis in suffi-
ciently large numbers could contribute to metastatic recurrence after a period
of “clinical dormancy” [89]. Cancer dormancy is often observed in breast can-
cers, neuroblastomas, melanomas, osteogenic sarcomas, and in several types
of lymphomas, and is often found “accidentally” in tissue samples of healthy
individuals who have died suddenly [4, 16]. In some cases, cancer dormancy
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has been found in cancer patients after several years of front-line therapy and
clinical remission. The presence of these cancer cells in the body determines,
finally, the outcome of the disease. In particular, age, stress factors, infections,
act of treatment itself or other alterations in the host can provoke the initia-
tion of uncontrolled growth of initially dormant cancer cells and subsequent
waves of metastases [50, 134]. Recently, some molecular targets for the induc-
tion of cancer dormancy and the re-growth of a dormant tumour have been
identified [41, 133]. However, the precise nature of the phenomenon remains
poorly understood.

The early stage of primary tumour formation often occurs in the absence of
a vascular network. According to [35] and [112], this stage may last up to sev-
eral years. This limitation of growth is attributed by researchers to the com-
petition between tumour cells for metabolites, a direct cytostatic/cytotoxic
effect produced by the tumour cells on each other, and the competition be-
tween tumour cells and cells of the immune system for metabolites. In some
cases in solid tumours there is a balance between cell proliferation and cell
death. This steady-state of a fully malignant tumour (i.e. with the potential
for invasion and metastases), but one which is under the local control of the
host (e.g. via the immune system, endocrine system, contact inhibition) could
persist for months or years [134].

One of the reasons for the slow growth of tumours and, in some cases, for
their regression, may be the reaction of the host immune system to the nascent
tumour cells. It has been demonstrated that tumour-associated antigens could
be expressed on tumour cells at very early stages of tumour progression. Such
changes are sufficient for intensive lymphoid, granulocyte and monocyte in-
filtration of a tumour. Especially pronounced infiltration may correlate with
a favorable prognosis [17, 75, 76]. The early (avascular) stage and the subse-
quent stages of tumour growth are characterized by a chronic inflammatory
infiltration of neutrophils, eosinophils, basophils, monocytes/macrophages, T-
lymphocytes, B-lymphocytes and natural killer (NK) cells [76, 126, 141]. These
cells penetrate the interior of the tumour and accumulate in it due to at-
tractants secreted from the tumour tissue and the high locomotive ability of
activated immune cells [108]. Indeed during the avascular stage, tumour devel-
opment can be effectively eliminated by tumour-infiltrating cytotoxic lympho-
cytes (TICLs) [73]. The TICLs may be cytotoxic lymphocytes (CD8+ CTLs),
natural killer-like (NK-like) cells and/or lymphokine activated killer (LAK)
cells [28, 37, 75, 141]. Cytostatic/cytotoxic activity of granulocytes and mono-
cytes/macrophages located in the tumour is found less frequently [28, 37, 129].

An important factor, which may influence the outcome of the interactions
between tumour cells and TICLs in a solid tumour, is the spatial distribution
of the TICLs. A thick shell of lymphoid infiltration is often revealed around
the tumour [14, 23] and even near the central hypoxic zone [74]. This would
define an internal structure, whereby the regions of cell proliferation and cell
death alternate, with the TICLs located near the groups of dying tumour
cells [90].
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In spite of some progress into the investigation of TICLs and their mech-
anisms of interaction with tumour cells, our understanding of the spatio-
temporal dynamics of TICLs in avascular tumours and in micrometastases
in vivo is still rather limited. It is perhaps not surprising therefore, that this
complicated picture has not yet received an adequate explanation. Certainly,
other components of the immune system (e.g. cytokines) are involved in mod-
ulating the local cellular immune response dynamics. Production of several
interleukins (IL-2, IL-10, IL-12) cell-adhesion molecules (e.g. ICAM-1) and
chemokines (e.g. LEC) in tumour tissue induce chemotaxis of T-cells and cyto-
toxic reactions of TICLs against tumour cells [21, 38, 42]. Many cytokines are
produced during cell-cell interactions, which can be focussed to perform their
function over short ranges in space and over short intervals of time. Strong
local immune reactions are induced by the release of many interleukins, gran-
ulocyte colony-stimulating factor (G-CSF), interferons, and tumour necrosis
factors. These cytokines are known to recruit and activate a variety of cell
types (often in different ways), which could be tumour-infiltrating cells, or
the tumour cells themselves [37, 64, 107, 121]. Besides effector immune re-
actions, other processes (e.g. cell proliferation, development, locomotion and
apoptosis) are governed in a feedback fashion by their own intensity.

Over the last 20 years three-dimensional tissue cultures have been increas-
ingly used to model the heterogeneity of micro-environmental and population
changes which develop in solid tumours. There are two geometrically different
experimental models – multicellular tumour spheroids [128] and multi-layered
cell tissue [26]. Both of these experimental systems mimic the tumour envi-
ronment better than mono-layer cell cultures because their spatial structure
permits more cell-cell interactions and also permits the modelling of physical
constraints. Numerous studies have been undertaken to examine the different
mechanisms of migration and infiltration of immune cells and their interac-
tions with the tumour cell populations within such tumour models [38, 53, 76].
However the effect of the immune cells on the tumour cells has been mainly
evaluated only crudely by the survival of the tumours without a detailed
spatio-temporal analysis of processes in the tumour. One obstacle to the in-
terpretation and analysis of data obtained from such experiments is a lack of a
quantitative methodology for the characterisation both of the spatio-temporal
patterns of the distributions in these experimental systems, and also of the
large variations at the cell level between different tumour cell types and dif-
ferent populations of immune cells (these differences remarkably affect the
efficiency of the immune control of tumour growth).

It is difficult to control experimentally all of the interacting elements in a
tumour. Furthermore, complex biological systems, such as the immune system
and a cancer in vivo, do not always behave or act as predicted by experimental
investigations in vitro [104]. In this framework, mathematical modelling and
computer simulations can be helpful in understanding some important features
associated with these elaborate systems [2, 3]. In recent years several papers
have begun to investigate the mathematical modelling of various aspects of the
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immune system response to cancer. Specific aspects include the development of
tumour heterogeneities as a result of tumour cell and macrophage interactions
[96–98], macrophage infiltration into avascular tumours [58], receptor-ligand
(Fas-FasL) dynamics [139], tumour progression and immune competition [5, 6,
11–13], and the dynamic of tumour cell-TICL interactions [22, 63, 65, 82, 83].

2.3 Tumour Immunology in Retrospect

According to [100] the origins of modern tumour immunology can be traced
back to the 1950s, when several groups of investigators demonstrated that
(a) the immune system of inbred mice can recognize antigens expressed by
tumour cells induced by chemical carcinogens, (b) such recognition results
in rejection of a subsequent challenge of the same tumour in previously im-
munized animals and (c) immune cells but not antibodies can mediate this
reaction [8, 60, 95, 105]. In particular, [105] were the first to provide a de-
finitive demonstration that chemically induced fibrosarcomas in in-bred mice
express antigens that (a) elicit a transplantation immunity against the tumour
and (b) are not expressed by normal cells. At the same time the concept of
immune surveillance was being proposed by Macfarlane Burnet, stating that
a physiological function of the immune system is to recognize and destroy
clones of transformed cells before they grow into tumours and to kill tumours
after they are formed [1, 19].

The experiments undertaken in these early studies were essentially in vivo
transplantation investigations carried out on mouse models. The basic ex-
perimental procedure employed, various modifications of which were studied
by [8, 60, 95] and [105], is the following. A sarcoma is induced in an in-bred
mouse by painting its skin with the chemical carcinogen methylcholanthrene
(MCA). If the MCA-induced tumour is surgically excised and transplanted
into other syngeneic mice2, the tumour grows. In contrast, if the tumour is
transplanted back into the original host, the mouse rejects it. Moreover, one
can verify that T-cells from the tumour-bearing animal can transfer protective
immunity against the tumour to another tumour-free animal.

A better understanding of these experimental observations came with the
development of in vitro systems that can measure in quantitative terms the cy-
totoxic and proliferative activity of lymphocytes against tumour cells. One of
the first investigations in this direction was [18], where the authors evaluated
the lytic activity of immune lymphocytes by labelling target tumour cells with
the isotope chromium 51 and lymphocytes with tritiated thymidine. Further-
more, the first explorations of the reactions of immune cells against different
types of human tumours were undertaken in [45]. Following the discovery of
MHC restriction by Doherty and Zinkernagel in 1974 (see [29]), it was soon
realized that tumour antigens can also be recognized by T-cells in an MHC-
restricted fashion as demonstrated in [132]. The rapid development of basic

2Syngeneic mice have been inbred so that their chromosomes are identical.
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immunology, thanks to the introduction of molecular techniques, subsequently
made it possible to define the mechanisms by which antigens are presented as
peptides to T-lymphocytes.

2.4 Tumour Antigens

The study of tumour antigens is a central theme in the research area of tumour
immunology mainly for two reasons: (a) it reveals the molecular base of the
interactions of a tumour with the tumour-bearing host’s immune system and
(b) as we will see in the next section, it delimits strategies for designing
protocols for a broad class of therapeutic approaches called immunotherapies.
The early studies in the direction of identifying tumour antigens aimed at
the isolation of proteins, which are expressed exclusively by tumour cells and
thus can serve as molecular markers characterizing these cells. However, it was
soon realized that the vast majority of tumour antigens recognized by CD8+

lymphocytes are non-mutated gene products expressed by normal cells as well.
This surprising discovery led to the first classification of tumour antigens as
either tumour-specific (TSAs) or tumour-associated (TAAs).

It is a remarkable aspect of tumour immunology that self-proteins can be
recognized as foreign by the host’s immune system when they are expressed by
cancer cells. Various reasons can contribute to this phenomenon. For instance,
a variety of proteins can be produced in exceptionally low quantities by normal
cells failing to be recognized by the immune system and to induce tolerance.
The expression of these proteins may be greatly enhanced in mutated cancer
cells leading to an inflammatory reaction. Moreover, in many cases, normal
proteins are produced by cells in immune privileged sites, where T-cells do
not respond effectively and antigens are usually ignored. Transformed cells
emanating from immune-privileged sites and expressing ignored antigens can
metastasize to normal tissues, where the antigens are recognized as foreign by
the host’s immune system.

A variety of methods can be employed to identify tumour antigen gene
products. According to [113], the majority of tumour antigens have been iso-
lated using a genetic approach, which initially involves the generation of a
cDNA library from tumour cell mRNA in a eukaryotic expression vector –
that is a molecular construct that will allow expression of the genes when
they are introduced into eukaryotic cell lines. Pools of cDNAs, generally con-
taining between 100 and 200 individual cDNA clones, are produced and in-
troduced into highly transfectable cell lines expressing the appropriate class
I MHC gene product. Transfected cells are then assayed for their ability to
stimulate cytokine release from tumour-reactive T-cells [113]. Alternatively,
a direct biochemical approach can be employed in which peptides bound to
tumour cell class I MHC molecules are eluted and fractionated according to
appropriate biochemical methodologies. The antigens are identified by testing
the fractions for their ability to sensitize MHC-matched non-tumour target
cells for lysis by a tumour-specific CTL clone [1].
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The modern classification of tumour antigens is based on their molecular
structure and source of origin. It is worth mentioning that this type of classi-
fication is not uniformly consistent in the literature. For instance, according
to certain authors the so-called tissue-specific differentiation antigens include
various abberantly expressed normal cellular proteins (e.g. [113]), whereas ac-
cording to others the definition of the notion of a tissue-specific differentiation
antigen is made in such a way as to exclude abberantly expressed normal cel-
lular proteins (e.g. [1]). Nonetheless, these differences are not of an essential
nature and the common theme underlying the modern classification of tumour
antigens is the understanding of their function and role in the recognition of
tumour cells by the various cell types of the immune system. In what follows
we present such a classification, following mainly [1] and [27].

Products of Mutated Oncogenes and Tumour Suppressor Genes

Many tumours express genes whose products are required for malignant trans-
formation or for maintenance of the malignant phenotype. Often, these genes
are produced by point mutations, deletions, chromosomal translocations, or
viral gene insertions involving cellular proto-oncogenes or tumour suppresor
genes to form oncogenes whose products have transforming activities [1]. Be-
cause these altered genes are not present in normal cells, they do not induce
self-tolerance and peptides derived from them may stimulate T-cell responses
in the host. For instance, some cancer patients have circulating CD4+ and
CD8+ T-cells that can respond to the products of mutated oncogenes such
as Ras, p53, and Bcr-Abl proteins. Furthermore, in animals, immunization
with mutated Ras or p53 proteins induces CTL responses against tumours
expressing these mutants. However, these proteins do not appear to be major
targets of tumour-specific CTLs in most patients with a variety of tumours.

Products of Mutated Genes not Related
to the Malignant Phenotype

An interesting finding from the early experiments with MCA-induced sarco-
mas in mouse experimental models is that different sarcomas of the same cell
type, induced by the same chemical carcinogen on the same mouse are inter-
acting with the host’s immune system in different ways. The immunity that
the host develops in the short time period between the excision of a sarcoma
and its transplantation back into the host is specific for this very particu-
lar sarcoma. The antigens that were connected with this phenomenon were
named tumour-specific transplantation antigens (TSTAs). We now know that
they are extremely diverse mutants of cellular proteins with no relation to
the malignant phenotype and no known function [1]. Their diversity can be
explained by the fact that the carcinogens that induce the tumours in these
experiments may randomly mutagenize virtually any host gene and the class
I MHC antigen presenting pathway can display peptides from any mutated
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cytosolic protein in each tumour. The general principle that mutated host
proteins can function as tumour antigens has been demonstrated in human
cancers as well. It is however restricted to a small number of types of human
cancers [1].

Aberrantly Expressed Normal Cellular Proteins

Tumour antigens may be normal cellular proteins that are over-expressed
or aberrantly expressed in tumour cells. A number of CTLs raised against
autologous tumour cells have been found to recognize antigens encoded by
non-mutated genes expressed in both normal and tumoural tissues, although
the CTLs appeared to lyse the tumour cells specifically [27, 51, 114]. For
instance, HER-2/neu, which is found at high levels in about 30% of breast and
ovarian carcinomas [27, 48], is expressed ubiquitously at low levels in various
normal tissues. A peptide derived from HER-2/neu has been found to be the
target of lymphocytes infiltrating some HLA-A2 ovarian cancers [34, 78].

Tumour Antigens Encoded by Genomes of Oncogenic Viruses

Oncogenic viruses are viruses that drive their host cell into uncontrolled pro-
liferation and therefore can be associated with the etiology of some cancers.
Examples in humans include the Epstein-Barr virus (EBV), which is as-
sociated with B-cell lymphomas and nasopharyngeal carcinoma, as well as
human papilloma virus (HPV), which is the etiologic agent of cervical can-
cer [77, 111, 137]. Virus encoded proteins expressed by transformed cells often
function as tumour antigens and elicit specific T-cell responses. Since viral
peptides are foreign to the host’s immune system, virus-induced tumours are
among the most immunogenic tumours known. Detailed studies of antigens
encoded by genomes of oncogenic viruses are usually carried out on mouse
models and in this framework viral antigens have shown to be relevant for
tumour rejection. The most common oncoviruses employed in animal studies
include papovaviruses, such as polyomavirus and simian virus 40 (SV40), and
adenoviruses [54, 55, 59, 102, 130].

Oncofetal Antigens

Oncofetal antigens include the carcino-embryonic antigen (CEA) [44, 49], the
breast cancer mucin MUC-1 [33, 86], the prostate-specific membrane antigen
(PSMA) [72, 88, 131] and alpha fetoprotein (AFP) [20, 113]. These are pro-
teins that are expressed at high levels on cancer cells and in normal developing
(fetal) but not adult tissues. It is believed that the genes encoding the antigens
are silenced during development and are derepressed upon malignant trans-
formation. As techniques for detecting these proteins have improved, it has
become clear that their expression in adults is not limited to tumours. The
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proteins are increased in tissues and in the circulation in various inflammatory
conditions and are found in small quantities even in normal tissues. No evi-
dence has shown that oncofetal antigens are important inducers of antitumour
immunity [1].

Altered Glycolypid and Glycoprotein Antigens

Various aspects of the malignant phenotype associated with cancer cells are
often related to an alteration of the biochemical properties of the cell mem-
brane [10, 110, 123, 136]. Many researchers have reported a correlation of
the processes of tumour invasion and metastasis with the expression of al-
tered, immunogenic forms of membrane glycolipids and glycoproteins, includ-
ing gangliosides, blood group antigens and mucins. Many of these antigens
are tumour-specific and may be used as diagnostic markers and targets for
therapy.

Tissue-Specific Differentiation Antigens

Tissue-specific differentiation antigens include PSA, MART-1/Melan-A, ty-
rosinase, gp100 and TRP-1 (gp75) [120]. These are proteins expressed in a
tumour of a given type as well as in the normal tissue from which the tumour
is derived [32, 43, 85, 99, 115, 118]. They are called differentiation antigens
because they are specific for particular lineages or differentiation stages of
various cell types. Their importance is as potential targets for immunother-
apy and for identifying the tissue of origin of the tumours. According to [113]
the realization of the existence of tissue-specific differentiation antigens came
with the finding in [7] that some melanoma reactive CTLs recognized normal
melanocytes. This suggested that tissue specific antigens might serve as the
targets of tumour-reactive T-cells, a hypothesis that was confirmed by the iso-
lation of a gene that was termed MART-1 or Melan-A following the screening
of a cDNA library with HLA-A2 restricted tumour-infiltrating lymphocytes
in [56] or CTL clones in [25] respectively.

2.5 Immunotherapy and Cancer Vaccines

According to [47] the idea of cancer vaccination can be traced back to the
beginning of the twentieth century. At that time, the pre-existing clinical ex-
perience with regard to the basic principles of vaccination was mature enough
to indicate that autologous or allogeneic tumour cells could be effective as
therapeutic vaccines. The early considerations in this direction led to inter-
esting observations such as the correlation of the effectiveness of the vaccine
in use with a small tumour burden as well as with an increase in leukocyte
counts reported in [138] as early as the year 1914.

Cancer vaccination differs from the usual practice of vaccination against
infectious diseases mainly in two respects. First, as already indicated, cancer



Mathematical Modelling of Spatio-temporal Phenomena 143

vaccination is of a therapeutic nature in contrast to the usual vaccination
procedures, where the aim is the prevention of the development of a possi-
ble infection by the disease. Nonetheless, as noted in [47], some therapeutic
vaccines for infectious diseases exist with the most representative of them be-
ing the vaccines against malaria [92] and leprosy [103]. Second, preventative
vaccines work by boosting the immune system to expand memory cell clones
against the antigens associated with an infectious disease – this will allow
the immune system to respond rapidly in a possible future infection by the
disease. In contrast the main objective of cancer vaccination is the activation
of the effector components of the immune system of a tumour-bearing host
so as to eradicate the tumour. Nevertheless, the establishment of memory is
critical in this case as well in order for the host’s immune system to be able
to respond effectively in a possible future tumour recurrence.

Many different protocols have been developed for the administration of
cancer vaccines in patients depending on various factors. For instance, when
cancer vaccines are used in an adjuvant setting (i.e. treatment of patients after
surgical removal of all clinically evident disease) the vaccinations are carried
out over a period of 1–3 years with repeated immunizations in the first six
months and less frequent injections in the remainder of years 1, 2 and 3 in order
to avoid any possible side effects of the vaccine and to establish memory [47].
However, to date, “there is no agreement as to the optimal frequency or of
how long the vaccines should be administered” [46]. In this direction, many
authors have pointed out that mathematical and computational modelling
can be of extreme importance in establishing a framework for the design and
optimization of effective protocols [2, 3, 36, 63].

Although there is a lot of controversy concerning the administration of
cancer vaccines, there are, nontheless, some general principles which are guid-
ing the development of modern protocols. For instance, it is experimentally
observed that tumours have the ability to develop a variety of mechanisms for
inhibiting or even evading the immune system responses [117]. Table 1 lists

Table 1. Mechanisms involved in inhibition of immune responses to tumours.
Adapted from Hersey and Marincola (2002)

Mechanism Factors Involved

Inhibition of antigen presentation VEGF, IL-10
Inhibition of cytokine production IL-10, TGF-β, α-MSH
Tolerance/anergy of T-cells H2O2, TGF-β, Muc-1, α-MSH
Shift of TH1TC1 to TH2TC2 IL-10, TGF-β
Inhibition of migration of leukocytes PGE2, tumour matrix, P16E
from blood vessels
Tumour-mediated destruction of T-cells FasL, Muc-1
Resistance of tumour cells to killing IL-10, immunoselection of MHC

and antigen loss variants
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some of the most common of these mechanisms along with the chemical fac-
tors involved. According to [47], “specific inhibitors of some of these factors
may be determined over the next few years but until more is known about the
inhibiting factors, it appears appropriate to reduce the negative effects of tu-
mours on immune responses by surgical removal of as much tumour as possible
and immunization at sites removed from negative effects of the tumour”.

In the next section we will present our mathematical model for the immune
response of cytotoxic T-lymphocytes to a solid tumour. The work is essentially
a synthesis of that of [83, 84], with further, more detailed analysis of the model
being carried out in [82].

3 Modelling the Spatio-temporal Response
of Cytotoxic T-lymphocytes to a Solid Tumour

3.1 Deriving the Model

We consider a simplified process of a small, growing, avascular tumour that
elicits a response from the host immune system and attracts a population of
lymphocytes. The growing tumour is directly attacked by TICLs [52, 53, 57]
which, in turn, secrete soluble diffusible factors (chemokines). These factors
enable the TICLs to respond in a chemotactic manner (in addition to random
motility) and migrate towards the tumour cells. Our model will therefore
consist of six dependent variables denoted E, T , C, E∗, T ∗ and α, which
are the local densities/concentrations of TICLs, tumour cells, TICL-tumour
cell complexes, inactivated TICLs, “lethally hit” (or “programmed-for-lysis”)
tumour cells, and a single (generic) chemokine respectively.

We first of all consider the local interactions between the TICLs and tu-
mour cells in vivo which may be described by the simplified kinetic scheme
given in Fig. 3 (see also [65, 83]). The parameters k1, k−1 and k2 are non-
negative kinetic constants: k1 and k−1 describe the rate of binding of TICLs to
tumour cells and detachment of TICLs from tumour cells without damaging
cells; k2 is the rate of detachment of TICLs from tumour cells, resulting in an
irreversible programming of the tumour cells for lysis (i.e. death) with prob-
ability p or inactivating/killing TICLs with probability (1 − p). For the first
time, the possibility of a direct “counterattack” against the effector immune
cells was theoretically postulated by Kuznetsov in his modeling of the local

E + T
k1

k−1

C

k2p + T ∗

k2(1 − p)
E ∗ + T

E

Fig. 3. Schematic diagram of local lymphocyte-cancer cell interactions
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interaction of cytotoxic lymphocytes and tumour cells in vivo [61]. Recently, it
has been shown that such a mechanism might be realized through the Fas re-
ceptor (Fas, Apo-1/CD95) and its ligand (FasL, CD95L) [94]. Engagement of
Fas on a target cell by FasL triggers a cascade of cellular events that result in
programmed-cell-death. Both these transmembrane proteins (belonging to the
tumour necrosis factor (TNF) family of receptors and ligands) are expressed on
the surface of immune cells, including T-lymphocytes and NK-cells. However,
many non-lymphoid tumour cells also express FasL which can counterattack
and kill the Fas-sensitive tumour-infiltrating lymphocytes. On the other hand,
most cancer cells, unlike normal cells, are relatively resistent to Fas-mediated
apoptosis by the immune cells. Resistance to programmed-cell-death (apop-
tosis) through the Fas receptor pathway coupled with expression of the Fas
ligand might enable many cancer cells to deliver a “counterattack” against
attached cytotoxic lymphocytes.

Using the law of mass action, the above kinetic scheme can be “translated”
into a system of ordinary differential equations

dE

dt
= −k1ET + (k−1 + k2p)C , (1)

dT

dt
= −k1ET + (k−1 + k2(1 − p))C , (2)

dC

dt
= k1ET − (k−1 + k2)C , (3)

dE∗

dt
= k2(1 − p)C , (4)

dT ∗

dt
= k2pC . (5)

Next we consider other kinetic interaction terms between the variables
and examine migration mechanisms for the TICLs, tumour cells and also
consider diffusion of the chemokines. We assume that there is no “nonlinear”
migration of cells and no nonlinear diffusion of chemokine i.e. all random
motility, chemotaxis and diffusion coefficients are assumed constant.

Tumour-Infiltrating Cytotoxic Lymphocytes

We assume that the TICLs have an element of random motility and also
respond chemotactically to the chemokines. There is a source term modelling
the underlying TICL production by the host immune system, a linear decay
(death) term and an additional TICL proliferation term in response to the
presence of the tumour cells. Combining these assumptions with the local
kinetics (derived from Fig. 3) we have the following PDE for TICLs:



146 M. Chaplain and A. Matzavinos

∂E

∂t
=

random motility︷ ︸︸ ︷
D1∇2E −

chemotaxis︷ ︸︸ ︷
χ∇ · (E∇α) +

supply︷ ︸︸ ︷
s h(x) +

proliferation︷ ︸︸ ︷
fC

g + T

−
decay︷︸︸︷
d1E −

local kinetics︷ ︸︸ ︷
k1ET + (k−1 + k2p)C , (6)

where D1, χ, s, f , g, d1, k1, k−1, k2, p are all positive constants. D1 is the
random motility coefficient of the TICLs and χ is the chemotaxis coefficient.
The parameter s represents the “normal” rate of flow of mature lymphocytes
into the tissue (non-enhanced by the presence of tumour cells). The function
h(x) is a Heaviside function, which aims to model the existence of a subregion
of the domain of interest where initially there are only tumour cells and where
lymphocytes do not reside. This region of the domain is penetrated by effector
cells subsequently through the processes of diffusion and chemotaxis only (see
below for a full discussion regarding this assumption).

The proliferation term fC/(g + T ), which has been introduced in [62],
represents the experimentally observed enhanced proliferation of TICLs in
response to the tumour and has been derived through data fitting (see also
[65]). This functional form is consistent with a model in which one assumes
that the enhanced proliferation of TICLs is due to signals, such as released
interleukins, generated by effector cells in tumour cell-TICL complexes. We
note that the growth factors that are secreted by lymphocytes in complexes
(e.g IL-2) act mainly in an autocrine fashion. That is to say they act on the
cell from which they have been secreted and thus, in our spatial setting, their
action can be adequately described by a “local” kinetic term only, without
the need to incorporate any additional information concerning diffusivity.

Chemokine Concentration

Chemokines are a super-family of small proteins (8-11kD) secreted primarily
by leukocytes characterized by a few conserved cystein motifs. Expression of
different cytokines and chemokines in tumour tissue (i.e. via gene delivery or
the tumour tissue micro-environment) can induce host responses including in-
filtration of T-cells capable of rejecting immuno-genic tumours [69]. However
the production of chemokines in tumour tissue as well as the trafficking of lym-
phocytes into tumour tissue are dynamic, multi-step processes and currently
the precise role of chemokines in tumour growth is still controversial [9, 119].

We assume that the chemokines are produced when lymphocytes are acti-
vated by tumour cell-TICL interactions. Thus we define chemokine production
to be proportional to tumour cell-TICL complex density C. Once produced
the chemokines are assumed to diffuse throughout the tissue and to decay
in a simple manner with linear decay kinetics. Therefore the PDE for the
chemokine concentration is:



Mathematical Modelling of Spatio-temporal Phenomena 147

∂α

∂t
=

diffusion︷ ︸︸ ︷
D2∇2α +

production︷︸︸︷
k3C −

decay︷︸︸︷
d4α , (7)

where D2, k3, d4 are positive parameters.

Tumour Cells

For a simplified description of the spatio-temporal growth of a solid tumour in
the very early stages of its development, we will use a basic reaction-diffusion
equation. On the kinetic level, the growth dynamics of solid tumours may be
described adequately by the logistic equation:

dT

dt
= b1(1 − b2T )T , (8)

which takes into account a density limitation of growth [65, 80, 81]. The
inclusion of a spatial diffusion term in (8) leads to the well-known Fisher-
Kolmogorov equation:

∂T

∂t
= D3∇2T + b1(1 − b2T )T , (9)

which has been used by a number of authors for the modelling of the spatio-
temporal evolution of solid tumours [30, 71]. In particular, the appropriate-
ness of (9) for modelling tumour growth has been discussed in [30], where a
lattice-free single-cell-based model of tumour growth in situ has been devel-
oped. Within realistic ranges of model parameters, the authors were able to
provide a quantitative description of the growth curves in certain experiments.
Furthermore, they have approximated the spatio-temporal evolution of their
discrete model with a Fisher-Kolmogorov equation.

An alternative approach is to modify the logistic growth kinetics by in-
corporating terms modelling competition for space between various cell types
[39, 40]. However, in the framework of our model, we will assume that the
TICLs do not compete with the tumour cells for space. This is a reasonable
assumption since according to observations [68] the volume of extracellular
space in tumours is typically in the range 25–65% of the total volume of cells
and hence there is enough space for the migration of lymphocytes within a
tumour. Also, tumour cells lack the contact inhibition properties of normal
cells and destroy the extracellular matrix. This allows the lymphocytes to mi-
grate into the tumour tissue faster than in normal tissue, which has regular
extracellular matrix. Therefore we do not explicitly include a term for space
competition between the tumour cells and the lymphocytes and thus a logis-
tic growth term is, we believe, a good first modelling approximation to the
tumour growth local kinetics.

We assume that migration of the tumour cells may be described by simple
random motility and hence the PDE governing the evolution of the tumour
cell density is:
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∂T

∂t
=

random motility︷ ︸︸ ︷
D3∇2T +

logistic growth︷ ︸︸ ︷
b1(1 − b2T )T −

local kinetics︷ ︸︸ ︷
k1ET + (k−1 + k2(1 − p))C ,

(10)
where D3 is the random motility coefficient of the tumour cells, and b1, b2, k1,
k−1, k2, p are positive parameters. The maximal growth rate of the tumour
cell population is b1, which incorporates both cell multiplication (mitosis) and
death. The maximum density of the tumour cells is defined, and is represented
by the parameter b−1

2 (cf. [31, 106]).

Tumour Cell-TICL Complexes

We assume that there is no diffusion of the complexes, only interactions gov-
erned by the local kinetics derived from Fig. 1. The absence of a diffusion
term is justified by the fact that formation and dissociation of complexes oc-
curs on a time scale of tens of minutes, whereas the random motility of the
tumour cells, for example, occurs on a time scale of tens of hours. Thus, the
cell-cell complexes do not have time to move. Therefore the equation for the
complexes is given by

∂C

∂t
=

local kinetics︷ ︸︸ ︷
k1ET − (k−1 + k2)C . (11)

Inactivated TICLs and Dead Tumour Cells

We assume that inactivated and “lethally hit” cells are quickly eliminated from
the tissue (for example, by macrophages) and do not substantially influence
the immune processes being analyzed (a slightly more complicated model
might consider the re-introduction of the inactivated TICLs at some later
stage). Inactivated cells also do not migrate and therefore we have:

∂E∗

∂t
=

local kinetics︷ ︸︸ ︷
k2(1 − p)C −

decay︷ ︸︸ ︷
d2E

∗ , (12)

∂T ∗

∂t
=

local kinetics︷ ︸︸ ︷
k2pC −

decay︷ ︸︸ ︷
d3T

∗ . (13)

Therefore the complete system is:
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∂E

∂t
= D1∇2E − χ∇ · (E∇α) + s h(x) +

fC

g + T
− d1E

−k1ET + (k−1 + k2p)C , (14)
∂α

∂t
= D2∇2α + k3C − d4α , (15)

∂T

∂t
= D3∇2T + b1(1 − b2T )T − k1ET + (k−1 + k2(1 − p))C , (16)

∂C

∂t
= k1ET − (k−1 + k2)C , (17)

∂E∗

∂t
= k2(1 − p)C − d2E

∗ , (18)

∂T ∗

∂t
= k2pC − d3T

∗. (19)

It is easy to see that (18) and (19) are only coupled to the full system
through the complexes C and that neither E∗ nor T ∗ have any effect on the
variable C. Thus, for the remainder of this chapter, it is sufficient to analyse
(14), (15), (16) and (17) which essentially dictate the behavior of the complete
system.

For the sake of simplicity, in what follows in this section we will consider
the case of one-dimensional tumour growth. Later on, in Sect. 3.7, we will
present some simulations concerning the case of radially symmetric “three-
dimensional” growth and in Sect. 3.8 we will focus on an explicit 2-dimensional
finite-element-method simulation.

The Heaviside function h(x) introduced in (14) models the existence of
a subregion of the domain of interest where lymphocytes do not reside and
which is penetrated by effector cells through the processes of diffusion and
chemotaxis only. For instance, consider the specific case of a tumour that
appears below the outer surface of a tissue (e.g. in the basal cell layer of
the epidermis) and propagates into deeper levels of the tissue, i.e. invades
the dermis (vertical tumour growth). This account could describe a nodular
malignant melanoma which has no clinically or histologically evident radial
growth phase. Of course, a short radial growth phase presumably does exist
but dermal invasion is assumed to occur so rapidly that a preinvasive stage is
not apparent [79]. Invasive growth is extremely insidious and dangerous, giv-
ing rise to metastases or secondary tumours [23, 24]. Considering the host’s
immune system response to the invasive tumour growth just described, we
should note that intra-epidermal lymphocytes constitute only about 2% of
skin-associated lymphocytes (the rest reside in the dermis). Intra-epidermal
T cells may express a more restricted set of antigen receptors than do lympho-
cytes in most extracutaneous tissues. In mice (and some other species), many
intra-epidermal lymphocytes are T cells that express an uncommon type of
antigen receptor formed by γ and δ chains instead of the usual α and β chains
of the antigen receptors of CD4+ and CD8+ T cells. This is also true of intra-
epithelial lymphocytes in the intestine. Neither the specificity nor the function
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of this T cell subpopulation is clearly defined [1]. Thus, for the purposes of our
modelling, we can assume that intra-epidermal lymphocytes are not relevant
to the evolution of our system. Therefore, we separate the domain of interest
to two subregions, an epidermis-like one and a dermis-like one, by introducing
the Heaviside function.

We note here that the one-dimensional version of (14), (15), (16) and (17)
does not entirely capture the evolution of a malignant melanoma of the skin,
since the actual geometry is more intricate and complicated. However our
purpose here is to investigate the dynamics of the model under discussion in
a simple one-dimensional setting, which can give interesting insights. Never-
theless, our setting can be modified towards more realistic geometries.

We define the one-dimensional spatial domain to be the interval [0, x0],
and we assume that there are two distinct regions in this interval – one region
entirely occupied by tumour cells, the other entirely occupied by the immune
cells. We propose that an initial interval of tumour localization is [0, l], where
l = 0.2x0. Therefore the function h(x) (cf. 14) is defined as follows:

h(x) =

{
0, if x − l ≤ 0 ,

1, if x − l > 0 .

3.2 Boundary and Initial Conditions

We now close the system by applying appropriate boundary and initial con-
ditions. Zero-flux boundary conditions (BC) are imposed on the variables
E,α, T , which in our system are equivalent to

n · ∇E = n · ∇α = n · ∇T = 0 . (20)

The initial conditions (IC) are given by:

E(x, 0) =
{

0, if 0 ≤ x ≤ l ,
E0(1 − exp(−1000(x − l)2)), if l < x ≤ x0 ,

T (x, 0) =
{

T0(1 − exp(−1000(x − l)2)), if 0 ≤ x ≤ l ,
0, if l < x ≤ x0 ,

(21)

C(x, 0) =
{

0, if x /∈ [l − ε, l + ε] ,
C0 exp(−1000(x − l)2), if x ∈ [l − ε, l + ε] ,

α(x, 0) = 0, ∀x ∈ [0, x0] ,

where
E0 =

s

d1
, T0 =

1
b2

, C0 = min(E0, T0), 0 < ε � 1. (22)

Figure 4 depicts qualitatively the ICs described in (21) (after the non-
dimensionalization of the next section), which shows a front of tumour cells
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Fig. 4. Initial conditions used for the tumour infiltrating cytotoxic lymphocytes,
tumour cells, and complexes

encountering a front of TICLs, resulting in the formation of TICL-tumour cell
complexes. In the absence of a tumour, the homogeneous steady-state density
of the TICLs is s/d1 and therefore this is the value we have taken for the
initial density E0 of TICLs in the initial conditions. Similarly, in the absence
of an immune response, the homogeneous steady-state density of the tumour
cells is 1/b2 and this is what we take as the initial density of tumour cells T0 in
the initial conditions. Thus, when the fronts of the two cell populations meet,
the maximum density of TICL-tumour cell complexes will be min(E0, T0) and
hence our choice for C0.

3.3 Estimation of Parameters

In order to carry out an analysis of the model by numerical methods it is
useful to estimate values for the parameters obtained from experimental data
and work with a non-dimensional system of equations.

The murine B cell lymphoma (BCL1) is used as an experimental model of
tumour dormancy in mouse [125, 134]. It has been demonstrated that CD8+

T-cells are required for inducing and maintaining dormancy in BCL1. In these
experiments CD8+ T cells are enhanced with anti-Id antibodies into inducing
dormancy by secreting IFN-γ. A description of the growth kinetics of a BCL1

lymphoma in the spleen of recipient mice, chimeric with respect to the Major
Histocompatibility Complex (MHC) [125], was provided by the model of [65].
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The kinetic parameters (obtained in [22]) were determined to have the
following values:

b1 = 0.18 day−1, b2 = 2.0 × 10−9 cells−1cm ,

k1 = 1.3 × 10−7 day−1cells−1cm, k−1 = 24.0 day−1 ,

k2 = 7.2 day−1, p = 0.9997 ,

d1 = 0.0412 day−1, f = 0.2988 × 108 day−1cells cm−1 ,

g = 2.02 × 107 cells cm−1, s = 1.36 × 104 day−1cells cm−1 ,

In addition to the kinetic parameters, we require estimates of the cell
motility parameters. As we have seen in the previous sections, a tumour may
be infiltrated by TICLs as a result of passive migration (random motility) or
active transport (chemotaxis). In the first case, the random motility coefficient
of the TICLs can be evaluated employing Einstein’s formula:

D1 =
kT

6πR1η
,

where k is Boltzmann’s constant, T is the temperature in degrees Kelvin, R1 is
the average radius of a TICL and η is the viscosity coefficient of the medium.
With values of T = 310K (37◦C), R1 = 4 µm and η = ηwater, this gives an
estimate of the TICL random motility coefficient D1 = 7.0× 10−5 cm2 day−1.
This value is close to the random motility coefficient of CTLs in vitro obtained
by [116], studying sequential killing of immobilised allogenic tumour cells by
CTLs.

The random motility of tumour cells in tissue is conditioned largely by the
replication of the cells and the growth of the tumour. The random motility
coefficient may therefore be estimated from the following equation [106]:

D3 = 4R2
2 a ,

where R2 is the average radius of a tumour cell and a is the rate of duplication
of a tumour cell. Assuming R2 = 4− 15 µm and a = 0.1− 1 day−1, we obtain
a range of values D3 = 0.6 − 9 × 10−6 cm2 day−1.

We know that TICLs are capable of infiltrating solid or lymphoma-like tu-
mours rather rapidly [53, 75, 108, 126] and it is apparent, that if the movement
of the TICLs and/or tumour cells is an active process induced by chemoat-
tractants, the value of the diffusion coefficients of these cells may be appre-
ciably greater and perhaps even reach approximately 10−2 cm2 day−1 [38, 53].
Thus, the intervals of variation of the random motility coefficients may be
large, depending upon the physical and biochemical properties of the sur-
rounding tissue matrix and the concentration of various chemoattractants
(chemokinesis). However in the simulations to be presented in the subse-
quent sections we assumed all random motility to be constant and took
D1 = D3 = 10−6cm2day−1.

Chemokines diffuse several orders of magnitude faster than cells. A rea-
sonable range of values for the diffusion coefficient of the chemokine D2 is:
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10−4cm2day−1 ≤ D2 ≤ 10−2cm2day−1. (23)

A more precise estimate for D2 can be found from the data of [67], which are
concerned with the motion of monoclonal antibodies (MCA). These results
can be modified to account for the molecular mass of a typical chemokine (11
kD) and then can be combined with the Stokes-Einstein formula. This yields
a value of D2 = 8 × 10−3 cm2 day−1. However, in our simulations the above
range of values for D2, given by equation (23), were used.

The half-life of chemokines is around 60 days [109] and so we obtained an
estimate for d4 of 0.693/60 = 1.155 × 10−2day−1. We estimated the chemo-
tactic response of the TICLs from data of macrophages in response to MCP-
1 [96, 127]. From the range of estimates in these papers we chose a value of
1.728× 106 cm2 day−1 M−1. The chemokine production parameter k3 was es-
timated from data from several groups [21, 70, 87]. These data estimated the
rate of production of chemokine (lymphotactin and IL-8) to be in the range
of 20−3000 molecules · cell−1minute−1.

Before proceeding with the numerical analysis, we non-dimensionalize our
equations in the standard manner.

3.4 Non-Dimensionalization

We non-dimensionalise equations (14), (15), (16) and (17), the boundary con-
ditions and initial conditions. An order-of-magnitude density scale is selected
for the E, T and C cell densities, of E0, T0 and C0, respectively, as suggested
by the initial conditions. These are then given as E0 ≈ 3.3× 105 cells · cm−1,
T0 = 0.5 × 109 cells · cm−1 and C0 = E0 ≈ 3.3 × 105 cells · cm−1.

The chemokine concentration is normalised through some reference con-
centration α0 which we take to be 10−10M [91]. Time is scaled relative to the
diffusion rate of the TICLs, i.e. t0 = x2

0 D−1
1 , and the space variable x is scaled

relative to the length of the region under consideration (i.e. x0 = 1 cm). Then,
on making the following substitutions:

E =
E

E0
, T =

T

T0
, C =

C

C0
, α =

α

α0
, x =

x

x0
, t =

t

t0
,

and omitting the bars for the sake of clarity, equations (14), (15), (16) and
(17) may be re-written as:

∂E

∂t
= ∇2E − γ∇(E∇α) + σh(x) +

ρC

η + T
− σE − µET + εC , (24)

∂α

∂t
= δ∇2α + κC − ξα , (25)

∂T

∂t
= ω∇2T + β1(1 − β2T )T − φET + λC , (26)

∂C

∂t
= µET − ψC, (27)
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where

σ =
st0
E0

= d1t0, ρ =
ft0C0

E0T0
, µ =

k1t0T0E0

C0
= k1t0T0 ,

η =
g

T0
, ε =

t0C0(k−1 + k2p)
E0

, ω =
D3t0
x2

0

= D3D
−1
1 ,

β1 = b1t0, β2 = b2T0, φ = k1t0E0,

λ =
t0C0(k−1 + k2(1 − p))

T0
, ψ = t0(k−1 + k2), γ =

χα0t0
x2

0

= χα0D
−1
1 ,

δ =
D2t0
x2

0

= D2D
−1
1 , κ =

k3t0C0

α0
, ξ = d4t0.

After non-dimensionalization, the boundary conditions become:

∂E

∂x
(0, t) = 0,

∂E

∂x
(1, t) = 0 ,

∂α

∂x
(0, t) = 0,

∂α

∂x
(1, t) = 0 ,

∂T

∂x
(0, t) = 0,

∂T

∂x
(1, t) = 0 ,

which then imply, assuming some smoothness of the solution and the form of
equation (27),

∂C

∂x
(0, t) = 0,

∂C

∂x
(1, t) = 0 .

Our initial conditions take the following form:

E(x, 0) =
{

0, if 0 ≤ x ≤ l ,
1 − exp(−1000(x − l)2), if l < x ≤ 1 ,

T (x, 0) =
{

1 − exp(−1000(x − l)2), if 0 ≤ x ≤ l ,
0, if l < x ≤ 1 ,

(28)

C(x, 0) =
{

0, if x /∈ [l − ε, l + ε] ,
exp(−1000(x − l)2), if x ∈ [l − ε, l + ε] ,

α(x, 0) = 0, ∀x ∈ [0, 1].

Values for all the non-dimensional parameters are obtained from the esti-
mated dimensional parameters in paragraph 3.3. Concerning the chemokine
production rate, we note that the data presented in paragraph 3.3 correspond
to in vitro experimental settings and that we were unable to find any in vivo
measurements in the literature. However, it seems reasonable to assume that
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not all complexes formed in vivo result in chemokine production and thus
our choice for the value of parameter κ is slightly lower than the minimum
value coming from the available in vitro data. Therefore, in the following sim-
ulations a value of κ = 104 has been chosen. This value of κ is of the same
order of magnitude as that of ξ i.e. κ ≈ ξ and we note that this is also in
line with the non-dimensional argument presented in [96]. All values of the
non-dimensionalized parameters are given in [84] where a full description of
the numerical scheme used can also be found.

By employing a numerical method, we obtain solutions for the above non-
dimensionalized system, in the following section.

3.5 Numerical Simulation Results

The non-dimensionalized model was solved numerically using NAG routine
D03PCF, which integrates systems of partial differential equations via the
method of lines and a stiff ODE solver. We are aware of the numerical difficul-
ties that the model poses and special care was taken to specify an appropriate
number of grid points used in the numerical scheme. The FORTRAN code,
which sets up the system and calls the D03PCF routine, can be found in [84].
As noted above, the non-dimensionalized parameter values employed in the
numerical simulations to be presented here are also explicitly provided within
the code.

Figures 5(a)–(d) show the spatial distribution of TICL density within the
tissue at times corresponding to 100, 400, 700 and 1000 days respectively. The
figures show a heterogeneous spatial distribution of TICL density throughout
the tissue. Figures 6(a)–(d) show the corresponding spatial distribution of tu-
mour cell density within the tissue at times corresponding to 100, 400, 700
and 1000 days. The figures show a train of solitary-like waves invading the
tissue and subsequently creating a spatially heterogeneous distribution of tu-
mour cell density throughout. Figures 7(a)–(d) show the corresponding spatial
distribution of tumour cell-lymphocyte complexes within the tissue at times
corresponding to 100, 400, 700 and 1000 days respectively. The dynamics of
this spatio-temporal heterogeneity appear to persist as the long-time behav-
iour of the system in Figs. 8–10 shows. The times here correspond to 3000,
5000, 7000 and 10000 days respectively.

In addition to observing the above spatio-temporal distributions of each
cell type within the tissue, the temporal dynamics of the overall populations
of each cell type (i.e total cell number) was examined. This was achieved
by calculating the total number of each cell type within the whole tissue
space using numerical quadrature. Figure 11(a) shows the variation in the
number of TICLs within the tissue over time (approximately 80 years, an
estimated average lifespan). Initially, the total number of TICLs within the
tissue increases and then subsequently oscillates around some stationary level
(approximately 5.9 × 106 cells). Long-time numerical calculations indicated
that this behaviour will persist for all time.
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Fig. 5. Spatial distribution of TICL density within the tissue at times corresponding
to 100, 400, 700 and 1000 days respectively. Solid line with chemotaxis, dashed
without (i.e. γ = 0)

A similar scenario is observed for the tumour cell population. From Fig.
11(b), we observe that initially, the tumour cell population decreases in num-
ber before subsequently oscillating around some stationary value (approxi-
mately 107 cells) for all time. Figure 11(c) gives the corresponding temporal
dynamics of the complexes. Figure 12 provides a more detailed view of the
early oscillations in the total number of tumour cells.

The above simulations appear to indicate that eventually the tumour cells
develop very small-amplitude oscillations about a “dormant” state, indicating
that the TICLs have successfully managed to keep the tumour under control.
The numerical simulations demonstrate the existence of cell distributions that
are quasi-stationary in time and heterogeneous in space.

Concerning the spatial evolution of cancer dormancy with reference to
the aspect of spatial containment, we note that the use of a fixed domain
is consistent with various realistic biological settings. BCL1 lymphomas of
the spleen, for instance, are considered to be very good in vivo experimental
models for investigating the various aspects of tumour development precisely
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Fig. 6. Spatial distribution of tumour cell density within the tissue at times cor-
responding to 100, 400, 700 and 1000 days respectively. Solid line with chemotaxis,
dashed without (i.e. γ = 0)

due to the fact that tumour cells are spatially contained within the lymph
tissue of the spleen. Spleens in mice are elongated organs with boundaries
defined by very strong basal membranes, which do not permit the tumour cells
to escape unless they break these membranes (through well-known invasive
processes) and then initiate metastases. However, in our model, we do not
consider these cases and this is why we employ a fixed domain and impose
zero-flux boundary conditions. Of course, if the domain itself were evolving
the tumour cells would not be contained in space, but would rather spread
throughout the domain. In the latter case we note that, from a mathematical
point of view, it would be trivial to induce some kind of spatial containment
of the tumour cells in a subregion of the domain by incorporating some non-
autonomous ODE kinetics. However, this is not a realistic approach for the
biological settings we consider and our numerical simulations do reflect several
temporal as well as spatial aspects of tumour dormancy as these are described
in various immunomorphological investigations.
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Fig. 7. Spatial distribution of tumour cell-TICL complex density within the tissue
at times corresponding to 100, 400, 700 and 1000 days respectively. Solid line with
chemotaxis, dashed without (i.e. γ = 0)

The interesting spatio-temporal dynamics of the system (i.e. the irregular
invasive “waves”) require us to investigate the underlying (spatially homoge-
neous) kinetics of our system. The interested reader is referred to the papers
of [82–84] where a full analysis (bifurcation analysis and travelling-wave analy-
sis) is presented.

3.6 Cancer Vaccination

In this section we consider the spatio-temporal dynamics of system (24)–(27)
in the framework of a cancer-vaccination scenario. More precisely, we modify
the Heaviside function so as to enable an increased influx of effector cells in
a sub-region of the domain of interest. As in Sect. 3.5, we consider a one-
dimensional domain, which, after non-dimensionalization, is identified by the
interval [0, 1] ⊂ R. The (non-dimensionalized) modified Heaviside function
employed, hereafter called the influx funtion, is given by
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(c) 7000 days
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(d) 10000 days

Fig. 8. Spatial distribution of TICL density within the tissue at times corresponding
to 3000, 5000, 7000 and 10000 days respectively. Solid line with chemotaxis, dashed
without (i.e. γ = 0)

h(x) =




0, if 0 ≤ x ≤ 0.2 ,
1, if 0.2 < x < 0.8 ,
100, if 0.8 ≤ x ≤ 1 .

Clearly, according to equation (24), this choice leads to an enhanced influx of
effector cells into the interval [0.8, 1]. This could be due to the local admin-
istration of vaccine agents, which enhance the influx of effector cells into the
region, or alternatively due to the direct administration of activated cytotoxic
T-lymphocytes in an adoptive immunotherapy context [1, 47, 63].

The modified system of equations (24)–(27), with the influx function incor-
porated, was solved numerically over the interval [0, 1] with zero-flux boundary
conditions imposed and the initial conditions given by (28). The results of the
numerical simulations are depicted in Figs. 13–15, where we neglect the early
transient dynamics by focusing on a time interval between 1000 and 1500
days. The spatio-temporal dynamics of the system over the interval [0, 0.8)
are similar to the dynamics discussed in Sect. 3.5. However, as can be seen in
Figs. 14 and 15, the enhanced influx of effector cells leads to the existence of
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Fig. 9. Spatial distribution of tumour cell density within the tissue at times corre-
sponding to 3000, 5000, 7000 and 10000 days respectively. Solid line with chemotaxis,
dashed without (i.e. γ = 0)

a sub-region of the domain of interest where the tumour cells are effectively
eradicated, resulting in the spatial containment of the tumour mass within
the limits of a well-defined restricted domain. Moreover, as Fig. 13 shows, the
tumour-free sub-region is characterized by an increased number of effector
cells, with a stationary-in-time effector cell distribution. Long-time numerical
computations indicated that this behaviour will persist for all time.

3.7 Radially Symmetric Solid Tumour Growth

We now turn our attention to the numerical solution of the system of equa-
tions (24), (26), and (27) in a radially symmetric 3-dimensional setting. In
particular, we seek solutions of the form E(r, t), T (r, t), and C(r, t) where r is
the radius in spherical polar coordinates. In this setting we are assuming that
the growth of the solid tumour represents the early avascular phase observed
in multicell spheroids. We assume that there is no necrotic core only viable,
proliferating cells. We also study the case where chemotaxis is not present
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(c) 7000 days
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(d) 10000 days

Fig. 10. Spatial distribution of tumour cell-TICL complex density within the tissue
at times corresponding to 3000, 5000, 7000 and 10000 days respectively. Solid line
with chemotaxis, dashed without (i.e. γ = 0)

(i.e. γ = 0). Rewriting the system in terms of spherical coordinates (assuming
that all the partial derivatives of E and T with respect to the spherical polar
angles θ and φ are equal to zero) we have:

∂E

∂t
=

1
r2

[
∂

∂r

(
r2 ∂E

∂r

)]
+ σh(r) +

ρC

η + T
− σE − µET + εC , (29)

∂T

∂t
=

1
r2

[
∂

∂r

(
ωr2 ∂T

∂r

)]
+ β1(1 − β2T )T − φET + λC , (30)

∂C

∂t
= µET − ψC. (31)

The results of the numerical simulations are presented in Figs. 16–18 which
show cross sections through the spherical tumour. Figure 16 shows the spa-
tial distribution of TICL density within the tissue at times corresponding to
100, 400, 700 and 1000 days respectively. The figures show a heterogeneous
spatial distribution of TICL density throughout the tissue. Figure 17 shows
the corresponding spatial distribution of tumour cell density within the tissue
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Fig. 11. Total number of (a) lymphocytes, (b) tumour cells, and (c) tumour cell-
TICL complexes within tissue over a period of 80 years

at times corresponding to 100, 400, 700 and 1000 days. The figures show a
train of solitary-like waves invading the tissue and subsequently creating a
spatially heterogeneous distribution of tumour cell density throughout. Fig-
ure 18 shows the corresponding spatial distribution of tumour cell-lymphocyte
complexes within the tissue at times corresponding to 100, 400, 700 and 1000
days respectively.

3.8 Explicit 2-Dimensional Modelling

In this section we undertake an explicit two-dimensional numerical investiga-
tion of a restricted version of the model developed in Sect. 3.1. More precisely,
the full model is a system of a mixed hyperbolic-parabolic type and as such
it poses various difficulties in its numerical approach, especially in a multi-
dimensional framework. Hence, for the sake of computational simplicity, we
do not consider the effect of chemotaxis and we omit the Heaviside function
in (24). However, preliminary numerical experimentations with FEMLAB3 on
the restricted system over a rectangular two-dimensional domain indicated the
necessity for either greatly enhancing the grid or using a stabilizing method,
such as streamline diffusion for instance, since several difficulties associated

3See www.comsol.com
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Fig. 12. Total number of tumour cells within tissue over a period of 20 years
illustrating the early dynamics. The number of tumour cells initially decreases before
settling down to an oscillatory behaviour around a stationary level of approximately
107 cells

with numerical instabilities emerged. We note here that this was anticipated
since the model, even in its restricted form, combines two highly different
time scales – the one associated with the slow spatial movement of the cells
and the one that underlies the fast reaction kinetics. Nonetheless, the mod-
elling assumptions, and in particular the estimated ranges of values for the
random motility coefficients, suggested that we could also modify the system
towards a more diffusive setting and thus we have chosen to alter the random
motility coefficients in the non-dimensionalized system by multiplying them
by a factor of ten. Specifically then, we have chosen to focus on the following
non-dimensionalized reaction-diffusion system:

∂E

∂t
= ω1∇2E + σ +

ρC

η + T
− σE − µET + εC , (32)

∂T

∂t
= ω2∇2T + β1(1 − β2T )T − φET + λC , (33)

∂C

∂t
= µET − ψC , (34)
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Fig. 13. Cancer-vaccination simulation. Spatial distribution of TICL density within
the tissue at the time interval between 1000 and 1500 days
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Fig. 14. Cancer-vaccination simulation. Spatial distribution of tumour cell density
within the tissue (between 1000 and 1500 days)

where σ, ρ, η, µ, ε, β1, β2, φ, λ and ψ are the non-dimensionalized parameters
defined previously, and ω1 = ω2 = 10.

In what follows, we consider the system (32)–(34) over the two-dimensional
rectangular domain

D = [0, 1] × [0, 1] ⊂ R
2,
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Fig. 15. Cancer-vaccination simulation. Spatial distribution of tumour cell-TICL
complex density within the tissue (between 1000 and 1500 days)

with zero-flux boundary conditions imposed. Moreover, we assume that ini-
tially there are no complexes formed and that there is a homogeneous distri-
bution of effector cells. That is to say, for all (x, y) ∈ D,

E(x, y, 0) = 1 and C(x, y, 0) = 0 .

We also assume that three small clumps of tumour cells exist as Fig. 19 shows4.
We have used FEMLAB to solve equations (32)–(34) with the boundary

and initial conditions described. FEMLAB provides a number of options to
the user concerning the discretization of partial differential equations and the
approximation of solutions. We have specified to the software a finite ele-
ment space based on triangular linear Lagrange elements. The mesh consisted
of 36,090 nodes and 71,606 elements, 572 of which were associated with the
boundary of the domain. FEMLAB controls the quality of the mesh by as-
signing to each element a quality measure – a number q between 0 and 1. In
2-D, the triangle quality measure employed by FEMLAB is given by:

q =
4
√

3α

h2
1 + h2

2 + h2
3

,

where α is the area and h1, h2 and h3 the side lengths of the triangle. Some
information concerning the quality of the mesh we have used is provided in
Fig. 20, which shows a histogram of the distribution of the measure q for all
the elements in the mesh.

4An explicit algebraic expression for the initial tumour cell distribution can be
found in the FEMLAB M-file in [84].
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Fig. 16. Spatial distribution of TICL density within the tissue at times correspond-
ing to 100, 400, 700 and 1000 days respectively

The above spatial finite element discretization was combined with a fi-
nite difference solver in a method-of-lines approach. In particular, we have
used MATLAB’s ode15s (see [122]) for the time integration of the associated
semi-discrete Galerkin formulation of equations (32)–(34). The fast time scale
underlying the kinetics of the model suggested that special care should be
taken with respect to the time stepping and thus we have specified to the
software a maximum (non-dimensional) time step of 10−7.

The results of the numerical computations are shown in Figs. 21–26. In
particular, Figs. 21(a)–(d) show the evolution of the (non-dimensionalized)
spatial distribution of TICL density within the tissue at times corresponding
to 80, 100, 200 and 400 days respectively. We note that these values correspond
to 80 × 10−6, 100 × 10−6, 200 × 10−6 and 400 × 10−6 non-dimensional time
units respectively. The corresponding spatial distributions of tumour cell and
tumour cell-TICL complex densities are shown in Figs. 22(a)–(d) and 23(a)–
(d). Similarly, Figs. 24(a)–(d) show time instances of the evolution of the
spatial distribution of TICL density within the tissue at times corresponding
to 480, 500, 640 and 700 days respectively, whereas Figs. 25(a)–(d) and 26(a)–
(d) show the corresponding spatial distributions of tumour cell and tumour
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Fig. 17. Spatial distribution of tumour cell density within the tissue at times cor-
responding to 100, 400, 700 and 1000 days respectively

cell-TICL complex densities. Clearly, the simulations depict a reduction of
the tumour bulk as a result of the cytotoxic activity of the TICLs, accompa-
nied with an irregular evolution of the spatial distribution of the tumour cell
density.

4 Discussion and Conclusions

In this chapter we have examined a spatio-temporal mathematical model de-
scribing the growth of a solid tumour in the presence of an immune system
response. In particular, we focussed attention upon the interactions of tumour
cells with a special sub-population of T-cells, so-called tumour-infiltrating cy-
totoxic lymphocytes (TICLs), in a relatively small, multicellular tumour, with-
out central necrosis and at some stage prior to tumour-induced angiogenesis.
The T-lymphocytes were assumed to migrate into the growing solid tumour
and interact with the tumour cells in such a way that lymphocyte-tumour cell
complexes were formed. These complexes resulted in either the death of the
tumour cells (the normal situation) or the inactivation (sometimes even the
death) of the lymphocytes. The migration of the TICLs was determined by a
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Fig. 18. Spatial distribution of tumour cell-TICL complex density within the tissue
at times corresponding to 100, 400, 700 and 1000 days respectively

combination of random motility and chemotaxis in response to the presence
of specialized chemoattractants (chemokines). The resulting system of four
nonlinear partial differential equations (TICLs, tumour cells, complexes and
chemokines) was analysed and numerical simulations were presented.

For a particular choice of parameters the model was able to simulate the
phenomenon of cancer dormancy – a clinical condition that has been observed
in breast cancers, neuroblastomas, melanomas, osteogenic sarcomas, and in
several types of lymphomas – by depicting spatially unstable and heteroge-
neous tumour cell distributions that were nonetheless characterized by a rela-
tively small total number of tumour cells. This behaviour was consistent with
several immunomorphological investigations. However, as noted in [82], the
alteration of certain parameters of the model is enough to induce bifurcations
into the system, which in turn result in the existence of travelling-wave-like
solutions in the numerical simulations. These travelling waves are of great
importance because when they exist, the tumour invades the healthy tissue
at its full potential escaping the host’s immune surveillance. The existence of
these travelling waves has been established rigorously in [82] for a reduced
system, which nonetheless captures the essential elements of the full model.
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Fig. 19. Initial condition for the tumour cell density T

Various new results have been presented in this chapter and, in particular,
the model was tested under various different biological settings (radially sym-
metric growth, 2-dimensional growth in a square domain, cancer vaccination
etc.). The simulations presented here agree with the theoretical indications
provided in [83] according to which the irregular evolution of the cancer dor-
mancy simulations is an actual manifestation of spatio-temporal chaos. In
this direction, a more in-depth bifurcation analysis of the ODE kinetics of
the model reveals the existence of oscillatory solutions for the ODE system
emerging through a Hopf bifurcation and establishes a correlation between the
existence of the associated stable limit cycle with the irregular spatio-temporal
evolution of the PDE system and the onset of cancer dormancy (see [82, 83]).

Our numerical and bifurcation analysis of the spatio-temporal model of
cytotoxic T-cell dynamics in cancer tissue supports the idea that the TICLs
can play an important role in the control of cancer dormancy. Moreover, the
model allowed us to identify certain critical parameters of the process in which
cancer cells are present in a tissue but do not clinically occur for a long period
of time, but can begin to grow progressively at later date. Hence, our model
could be potentially used to estimate the time interval between the primary
treatment of an immunogenic tumour and tumour recurrence (see also [63]).

We note that heterogeneous spatial patterning in an immune-system model
has also been found by [96–98] concerning macrophage interactions with tu-
mour/mutant cells. In this case however the patterning was produced via an
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Fig. 20. Histogram showing the distribution of the mesh qualities for all elements
in the mesh

activator-inhibitor (Turing) mechanism by considering the mutant cells as the
local activator and the chemical regulator as the long-range inhibitor. There
are some significant differences between that work and the one presented here.
The kinetics of the model presented in [98] did not exhibit any Hopf bifurcation
and, in the absence of a macrophage-based immunotherapy, the introduction
of a small mutant cell density always caused the system to evolve to one of the
two possible tumour invasion steady states it was able to predict. In our case,
depending on the choice of parameters, the system kinetics may evolve to a
tumour invasion steady state but they can also display an oscillatory behavior
with the tumour cell density bounded as a result of the cytotoxic activity of
the TICLs.

Perhaps more appropriately, the evolution of the formal kinetics of our sys-
tem appears to have some similarities with the evolution of the ODE kinetics
of the ecological models presented in [124]. In both cases the global dynamics
concerning the positive solutions consist of two unstable steady states and
a stable limit cycle emerging through a Hopf bifurcation (see [83]). However
some differences between the models exist with the most obvious of them
being the different biological frameworks (ecology vs. immunology) and the
difference in the dimensions of the corresponding phase spaces. We note that
previous authors have pointed out the existence of similarities between the im-
mune system response to immunogenic antigens and predator-prey ecological
interactions [93] – and more generally an “ecological competition” between



Mathematical Modelling of Spatio-temporal Phenomena 171

Fig. 21. Spatial distribution of TICL density within the tissue at times correspond-
ing to 80, 100, 200 and 400 days respectively

cancer cells and normal tissue cells [39, 40] – and that the mathematical
particularities of our system could lead to entirely different spatio-temporal
dynamics than those presented in [124]. This is to be investigated.

The numerical predictions of our model make it possible to comprehend
the mechanisms involved in the appearance of spatio-temporal heterogeneities
detected in solid tumours infiltrated by cytotoxic lymphocytes. These are
described in numerous immunomorphological investigations [14, 90]. We note
that this model could be extended further. Specifically, explicit interactions
between the cancer cells and the host tissue could be incorporated into the
basic kinetic model (Fig. 3). For example, [139] proposed a mathematical
model of a tumour cell “counter-attack” against cytotoxic T-cells. The model
consists of ordinary differential equations which represent the cross-linking of
FasL and Fas. The authors consider the antagonistic interactions of two cell
types: armed effector T-cells, and FasL positive tumour cells. The model is
based upon the observation that certain types of human tumours can produce
functional FasL and can induce the apoptotic killing of activated lymphocytes
in vitro.
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Fig. 22. Spatial distribution of tumour cell density within the tissue at times cor-
responding to 80, 100, 200 and 400 days respectively

Fig. 23. Spatial distribution of tumour cell-TICL complex density within the tissue
at times corresponding to 80, 100, 200 and 400 days respectively
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Fig. 24. Spatial distribution of TICL density within the tissue at times correspond-
ing to 480, 500, 640 and 700 days respectively

Fig. 25. Spatial distribution of tumour cell density within the tissue at times cor-
responding to 480, 500, 640 and 700 days respectively
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Fig. 26. Spatial distribution of tumour cell-TICL complex density within the tissue
at times corresponding to 480, 500, 640 and 700 days respectively

Recent model-fitting predicts that the life time of effector T-cells in vivo
could be short (about several days) [63]. Long term maintainance of anti-
cancer immunity after stopping immunotherapy could be improved if long-life
immune memory cells could be activated during immunization. In particular,
numerical modelling by [63] suggests that immune memory T-killer cells could
be critical targets for immunization and vaccination strategies against solid
tumours. Thus, an incorporation of the memory cells in our model could be
helpful in better understanding cancer dormancy and cancer re-growth mech-
anisms and in optimizing the therapeutic strategy to reduce the risk of tumour
relapse.

Finally, the familiar concept of a central necrotic core (and explicit oxygen
distribution/uptake) could also be incorporated. It has been stated that the
rate of macrophage and neutrophil accumulation in a spheroid depends on
the density of tumour cells and is determined by a law analogous to that of
Michaelis-Menten kinetics, while the accumulation of immune lymphocytes
in a tumour is determined by the three-cell cooperation of lymphocytes,
macrophages and tumour cells (see [66]). This data could provide further
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adaptations to our model, incorporating new cell types and increasing the
realism of the system.

We hope that the results presented here (and the effects caused by the
nonlinearity of the system) will make it possible for researchers and clinicians
to have a better idea of the complicated and sometimes counter-intuitive out-
come of processes occurring in immune-system interactions with tumour cells
and thereby to develop more effective immunotherapy strategies and treat-
ments for the control and possible elimination of cancers. Our modelling and
analysis offers the potential for quantitative analysis of mechanisms of tumour-
cell-host-cell interactions and for the optimization of tumour immunotherapy
and genetically engineered anti-tumour vaccines.
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Abstract. Two major obstacles against successful chemotherapy of cancer are (1)
cell-cycle-phase dependence of treatment, and (2) emergence of resistance of cancer
cells to cytotoxic agents. One way to understand and overcome these two problems
is to apply optimal control theory to mathematical models of cell cycle dynamics.
These models should include division of the cell cycle into subphases and/or the
mechanisms of drug resistance. We review our results in mathematical modeling
and control of the cell cycle and of the mechanisms of gene amplification (related to
drug resistance), and estimation of parameters of the constructed models.

1 Introduction

In this paper we are concerned with three issues:

1. The inner structure of the cell cycle and the cell-cycle-phase specificity of
some chemotherapy agents.

2. The dynamics of emergence of resistance of cancer cells to chemotherapy,
as understood based on recent progress in molecular biology.

3. Estimation of quantitative parameters of the cell cycle, drug action and
cell mutation to resistance.

The main purpose of the paper is to outline our own views on the issues
involved. The paper is in large part a critical survey of published work by us
and others. Wherever appropriate, we give credit to others, without attempts
at an exhaustive review.

The philosophy of this paper is related to our professional experience. The
first author has spent almost ten years in a cancer research institute trying
to develop models of the cell cycle for the purpose of estimation of cell-cycle-
phase specific action of anticancer drugs. In addition, he investigated gene am-
plification as the mechanism of resistance of cancer cells. The other author has

M. Kimmel and A. Swierniak: Control Theory Approach to Cancer Chemotherapy: Benefiting
from Phase Dependence and Overcoming Drug Resistance, Lect. Notes Math. 1872, 185–221
(2006)
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been involved for two decades in attempts to develop a satisfactory theory of
optimal control of bilinear systems resulting from a description of chemother-
apy action using ordinary differential equations. The cell-cycle-phase speci-
ficity is essential for the initial period of chemotherapy, when at issue is the
most efficient reduction of the cancer burden. This seems to be of practi-
cal importance mainly in nonsurgical cancers such as for example leukemias.
Emergence of clones of cancer cells resistant to chemotherapy is important
in treatment and prevention of systemic spread of disease. This comprises
potential treatment of metastasis and all variants of adjuvant chemotherapy.

Mathematical modeling of cancer chemotherapy has had more than four
decades of history. It has contributed to the development of ideas of chemother-
apy scheduling, multidrug protocols, and recruitment. It has also helped in the
refinement of mathematical tools of control theory applied to the dynamics
of cell populations [39]. However, regarding practical results it has been, with
minor exceptions, a failure. The reasons for that failure are not always clearly
perceived. They stem from the direction of both biomedicine and mathemat-
ics: important biological processes are ignored and crucial parameters are not
known, but also the mathematical intricacy of the models is not appreciated.

In this paper, we would like to outline several directions of research which
may play a role in improving the situation and realizing the obvious potential
existing in the mathematical approach. Because of recent progress in methods
of monitoring cancer cell populations, new insights and more precise measure-
ments became possible. This, together with a progress in mathematical tools,
has renewed hopes for improving chemotherapy protocols.

Cell-cycle-phase specificity of some cytotoxic drugs is important since it
makes sense to apply anticancer drugs when cells gather in the sensitive phases
of the cell cycle. It can be approached by considering dissection of the cell
cycle into an increasing number of disjoint compartments, with drug action
limited to only some of them. We provide a classification of several simplest
models of this kind. Mathematical problems encountered include singularity
and non-uniqueness of solutions of the optimization problems.

The emergence of resistance to chemotherapy has been first considered
in a point mutation model of Coldman and Goldie (e.g. [30, 47]) and then
in the framework of gene amplification by Agur and Harnevo (e.g. [52–54]).
The main idea is that there exist spontaneous or induced mutations of can-
cer cells towards drug resistance and that the scheduling of treatment should
anticipate these mutations. The point mutation model can be translated into
simple recommendations, which have even been recently tested in clinical tri-
als. The gene amplification model was extensively simulated and also resulted
in recommendations for optimized therapy. We present a model of chemother-
apy based on a stochastic approach to evolution of cancer cells. Asymptotic
analysis of this model results in some understanding of its dynamics. This,
in our opinion, is the first step towards a more rigorous mathematical treat-
ment of the dynamics of drug resistance and/or metastasis. Optimization of



Control Theory Approach to Cancer Chemotherapy 187

the chemotherapy in this case may be viewed as the progress in creating
chemotherapy resistant to drug resistance.

There is no doubt that the parameters of spontaneous cancer cells popula-
tions existing in vivo in humans differ considerably from those of the test tube
“transformed” cells and from those of the induced animal tumors. However,
much information regarding cell-cycle-phase specificity of anticancer agents
has been obtained using in vitro experimental models. We present some of
these results which do not seem to be sufficiently well known. We also dis-
cuss some approaches to estimation of cell cycle parameters of human tumors.
Finally we discuss estimation of the rates of mutations leading to drug resis-
tance.

2 Modeling the Cell Cycle

The cell cycle is composed of a sequence of phases traversed by each cell from
its birth to division. These phases are: G1, or the growth phase; S, or the
DNA synthesis phase; G2, or the preparation for division phase; and M, or
the division phase. After division, the two daughter cells usually re-enter G1.
It may however happen that one or both daughters deviate from this path
and become dormant or resting, or in other words, they enter the quiescent
G0 phase. From there after a variable and usually rather long time cells may
reenter the cell cycle in G1 [9].

This idealized scheme is confounded in solid tumors by the existence of
a geometric gradient of availability of oxygen and nutrients. This causes a
stratification in viability of cells: usually, cycling cells are located near the
surface or near blood vessels, further layers are occupied by dormant cells,
while the deepest regions form a necrotic core. This may lead to self-limiting
growth phenomena, which may be described by biologically based nonlinear
models including Pearl-Verhulst, Cox-Woodbury-Meyers, Michaelis-Menton
equations (see e.g. [90, 113–116]), or Gompertz-type equations [50, 108, 110,
117, 142, 148]. It is interesting to note that Gompertz proposed his model
for demographic purposes [48], and its biological meaning is difficult to jus-
tify, but the Gompertzian growth is a good approximation of a number of
experimental data for tumor growth. We do not consider this structure in our
models. Instead we build a set of models of cell cycle kinetics composed of
compartments (see e.g. [59, 133]) each of them containing a phase or a cluster
of phases.

The transit times through all the phases of the cell cycle are variable, par-
ticularly in malignant cells. Usually it is assumed that most of this variability
is concentrated in the G1 phase (and in G0 whenever it exists). The sim-
plest models arise if the transit times through each compartment are assumed
exponentially distributed.

Denote by Ni(t) the average number of cells in the i-th compartment at
time t, and by x+

i (t) and x−
i (t), the average flow rates of cells into and out of
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this compartment, respectively. Then,

Ṅi(t) = x+
i (t) − x−

i (t) , (1)

and
x−

i (t) = aiNi(t) , (2)

where ai is the parameter of the exponential distribution, equal to the inverse
of the average transit time. If the preceding compartment is numbered i − 1,
then

Ṅi(t) = −aiNi(t) + ai−1Ni−1(t) . (3)

for i = 2, 3, . . . , n where n is a number of compartments. The boundary con-
dition for the obtained set of equations is given by:

Ṅ1(t) = −a1N1(t) + 2anNn(t) . (4)

Therefore, under the exponentiality assumption, the unperturbed dynamics
of cell cycle, i.e. the number of cells in various cell cycle compartments versus
time, in the absence of external stimuli, is expressed by a system of ordinary
linear differential equations. We consider three types of perturbations of the
cell cycle [118, 128]:

Cell Killing. At time t, only a fraction u(t) of the outflux from compartment
i contains viable cells (0 ≤ u(t) ≤ 1). The remaining cells are dead and no
longer considered part of the system.

Ṅi(t) = −aiNi(t) + ai−1Ni−1(t) , (5)
Ṅi+1(t) = −ai+1Ni+1(t) + u(t)aiNi(t) , (6)

The reproductively dead cells may however continue to progress through the
cycle for some time, thus confounding estimates of cell proliferation.

Cell Arrest. At time t, the outflux from compartment i is reduced to a
fraction v(t) of the normal value (0 < vm ≤ v(t) ≤ 1) . The remaining cells
are arrested in compartment i.

Ṅi(t) = −v(t)aiNi(t) + ai−1Ni−1(t) , (7)
Ṅi+1(t) = −ai+1Ni+1(t) + v(t)aiNi(t) . (8)

The complete arrest is not possible, and it is why vm is always strictly positive.

Alteration of the Transit Time. The parameter of the exponential distrib-
ution of the transit time through compartment i is changed by factor y(t) > 0.
Depending on whether y(t) is less or greater than 1, this is equivalent to re-
spectively extending or reducing the mean transit time. In the latter case it
is used in the so called recruitment of dormant cells to the proliferation cycle.
The mathematical description has the form:
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Ṅi(t) = −y(t)aiNi(t) + ai−1Ni−1(t) , (9)
Ṅi+1(t) = −ai+1Ni+1(t) + y(t)aiNi(t) , (10)

Formally, these equations are identical as those describing cell arrest. This
effect is caused by the exponentiality assumption.

Since our models describe an average behaviour of considered subpopu-
lations the compartments which they represent are sometimes called “proba-
bilistic” or “statistical” ones. “Deterministic” description of the continuously
dividing population should employ partial differential equations (for exam-
ple of von Förster [43]), integro-differential or integral equations (for exam-
ple [65]). In this case the one independent variable represents the chronological
time while the other age or size. In our models the age is simply discretized
and the dynamics from one stage to the other is averaged. The combined
approach is to use both “probabilistic” and “deterministic” compartments to
model the cell cycle as for example in [34, 35].

The first class of drug actions is represented by G2/M specific agents,
which include the so-called spindle poisons like Vincristine, Vinblastine or
Bleomycin which destroy a mitotic spindle [25] and Taxol [42] or 5-Fluorouracil
[26] affecting mainly cells during their division. Killing agents also include S
specific drugs like Cyclophosphamide [42] or Methotrexate – MTX [96] acting
mainly in the DNA replication phase, Cytosine Arabinoside – Ara-C, rapidly
killing cells in phase S through inhibition of DNA polymerase by competi-
tion with deoxycytosine triphosphate [32]. Among the blocking drugs used to
arrest the cells immediately before or during DNA synthesis we can mention
antibiotics like Adriamycin, Daunomycin, Dexorubin, Idarudicin which cause
the progression blockage on the border between the phases G1 and S by in-
terfering with the formator of the polymerase complex or by hindering the
separation of the two polynucleotide strands in the double helix [4]. Another
blocking agent is Hydroxyurea – HU [35, 84] which is found to synchronize
cells by causing brief and invisible inhibition of DNA synthesis in the phase
S and holding cells in G1. The recruitment action was demonstrated [5] for
Granulocyte Colony Stimulating Factors – G-CSF, Granulocyte Macrophage
Colony Stimulating Factors – GM-CSF, Interleukin-3 – Il-3, specially when
combined with Human Cloned Stem Cell Factor – SCF.

This classification of anticancer agents is not quite sharp and there is
some controversy in the literature concerning both the site and the role of
action of some drugs. For example, although mostly active in specific phases
Cyclophosphamide and 5-Fluorouracil kill cells also in other phases of the
proliferation cycle that enables to encounter them to cycle specific agents [21,
25]. On the other hand some antimitotic agents like curacin A [77] act by
increasing the S phase transition time (blocking) and decreasing the M phase
transition time.

Killing agents which we consider in our model are applied in the G2/M
phase which makes sense from a biological standpoint for a couple of reasons.
First, in mitosis M the cell becomes very thin and porous. Hence, the cell
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is more vulnerable to an attack while there will be a minimal effect on the
normal cells. Second, chemotherapy during mitosis will prevent the creation
of daughter cells.

While the killing agent is the only control considered in the two-
compartment model below, in the three-compartment model in addition a
blocking agent is considered which slows down the development of cells in the
synthesis phase S and then releases them at the moment when another G2/M
specific anticancer drug has maximum killing potential (so-called synchroniza-
tion [22]). This strategy may have the additional advantage of protecting the
normal cells which would be less exposed to the second agent (e.g. due to
less dispersion and faster transit through G2/M) [2, 34]. This cell cycle model
includes separate compartments for the G0/G1, S and G2/M phases.

One of the major problems in chemotherapy of some leukemias is consti-
tuted by the large residuum of dormant G0 cells which are not sensitive to most
cytotoxic agents [26, 57, 83]. Similar findings for breast and overian cancers
were reported, e.g. in [28, 42]. As indicated by these authors the insensitivity
of dormant cells to the majority of anticancer drugs and percentage of tumor
mass resting is a fact which, if ignored, leads not only to clinical problems
but also to some erronomous theoretical considerations. Experiments with
Ara-C [32], indicated that while double injected during cell cycle or combined
with Adriamycin or anthracyclines led to serious reduction of leukemic burden
without an evident increase of negative effect on normal tissues. This thera-
peutic gain was attributed to the specific recruitment inducing effect of Ara-C
on leukemic cells in the dormant phase It became possible to efficiently recruit
quiescent cells into the cycle using cytokines [132] (substances playing a role
in the regulation of normal hemopoiesis) like G-CSF, GM-CSF, and especially
Il-3 combined with SCF. Then, a cytotoxic agent like Ara-C or anthracyclines
may be used. The other three compartment model below uses separate com-
partments for the G0, G1 and S+G2/M phases and includes such a recruiting
agent. Moreover, it enables also analysis of the alteration of the transit time
through G0 phase due to the feedback mechanism that recruits the cells into
the cycle when chemotherapy is applied. In a similar way we may model other
types of manipulation of the cell cycle as for example the use of triterpenoids
to inhibit proliferation and induce differentiation and apoptosis in leukemic
cells [75].

The important assumption which is satisfied in all our models is that the
control systems which they represent are internally positive [60] i.e.:

(+) The first orthant of the control system is positively invariant, that is for
any admissible control and or positive initial states, the state remains
positive for all times t > 0.

Thus the obvious modelling state-space constraints that the state is positive,
need not be included in our model explicitly and the analysis simplifies. A
simple sufficient condition for (+) to hold (for example, see [60]) is that:
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(M) all the system matrices for all admissible controls are so-called M -
matrices, i.e. have negative diagonal entries, but non-negative off-diagonal
entries.

This condition is natural and will be satisfied for any compartmental model
whose dynamics is given by balance equations where the diagonal entries
correspond to the outflows from the i-th compartments and the off-diagonal
entries represent the inflows from the i-th into the j-th compartment, i �= j. It
is satisfied for each of the models described here. More generally, if condition
(+) were violated, this is a strong indication that the modelling is inconsistent.

3 Control Problems with Cell-Cycle-Phase Dependence

The classical control theoretic design problem may be stated as follows. Let
the dynamic properties of a system be described by its state, and the external
actions i.e. control and disturbances be given by input variables. Moreover
assume that we are given a target set of required system states or outputs.
Find control actions which enable reachability of the desirable region. If we are
able to describe a disease by a finite number of dynamically changing parame-
ters we are also able to formulate the control problem in the sense mentioned
above. In the models considered here the problem of finding an optimal can-
cer chemotherapy protocol is formulated as an optimal control problem over
a finite time-interval, the fixed therapy horizon. The state variable is given
by the average number of cancer cells and the control is the effect of the drug
dosages on the respective subpopulation. The goal is to maximize the num-
ber of cancer cells which the agent kills, respectively minimize the number
of cancer cells at the end of the therapy session, while keeping the toxicity
to the normal tissues acceptable. The latter aspect is modelled implicitly by
including an integral of the control over the therapy interval in the objective
so that minimizing controls will have to balance the amount of drugs given
with the conflicting objective to kill cancer cells.

From the first attempts at cell-cycle-phase dependent chemotherapy, one of
the central ideas was that of synchronization [79]. In one version, the concept
includes using an agent to arrest cells before they enter a sensitive phase. After
enough of them accumulate, they are released into the sensitive phase and then
targeted by a killing agent. This tactic is employed in the first of our three-
compartments models. However, synchronization may be achieved, at least in
theory, using only one agent, by periodic administration (see e.g. [35, 140]).
At appropriate frequency and dosage, maximum efficiency would be achieved
(the resonance). This tactic may be combined with attempts at sparing the
normal cells by taking advantage of the difference in cell cycle duration of
cancer and normal cells. This problem was considered in a number of papers
by Agur and coworkers (e.g. [2, 3, 29]). Their line of reasoning is based on the
so called Z-method in which the crucial parameter is the elimination coefficient
Z measuring the treatment efficacy defined by
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Z = 1 − Tm

Th
, (11)

where Tm is the elimination time of the malignant population and Th is the
one of critical host population. Agur et al. [3] find that treatment efficacy is a
nonmonotonic function of the relation between the cell generation time and the
period of drug administration with maxima occurring when the critical host
cell cycle length is a multiple of the chemotherapeutic period. The results in
the papers imply that short drug-pulses at appropriate intervals may be more
efficient than a drug administered at arbitrary intervals or a continuous slowly
released drug. Under the condition that the cell cycle parameters of malignant
cells have a relatively large variation, the drug protocol could be determined
by the host temporal parameters alone and should reduce cytotoxity even in
the case of similar mean cell cycle times for cancer and normal tissues.

3.1 Single Compartment, Single Killing Agent

In the simplest model it is assumed that the cytotoxic agent is not cell-cycle-
phase specific [72]. Therefore, whole cell cycle is modeled as a single compart-
ment. The corresponding single differential equation has the form,

Ṅ(t) = −aN(t) + 2u(t)aN(t), N(0) = N0, 0 ≤ u(t) ≤ 1 . (12)

Control variable u(t) assumes values u(t) = 1 when the drug is not adminis-
tered, u(t) = 0 when the maximum dose is used, and 0 < u(t) < 1 in all other
cases.

This bilinear model is used to find the optimal control which minimizes
the performance index,

J = rN(T ) +
∫ T

0

[1 − u(t)] dt . (13)

In biological terms, the effect of the optimal control is minimization of the
number of cancer cells at the end of the assumed therapy interval [0, T],
combined with minimization of the cumulative negative effects of the drug
upon the normal tissues; r is a weighing coefficient.

This optimization problem is mathematically so simple that it can be
explicitly solved. Substituting the solution of equation (12) into (13) yields,

J = rN(T ) +
1
2
T +

1
2a

ln
[

N0

N(T )

]
, (14)

and its minimum value is obtained for

N(T ) =
1

2ar
, (15)

if the following inequality is satisfied,
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0 ≤ 1
2
T − 1

2a
ln(2arN0) = T1 ≤ T . (16)

This inequality results from the constraints imposed on the control variable.
In this case, any control satisfying the relationship,

∫ T

0

u(t)dt =
1
2
T +

1
2a

ln
[

N0

N(T )

]
=

1
2
T − 1

2a
ln(2arN0) , (17)

is optimal.
In [121] we explain the nonuniqueness of the solution by its total singu-

larity. Moreover in [120] we have shown that extensions of the first order
model assuming Bellman’s model of pharmacokinetics for anticancer drug
(see [16, 31]), or simultaneously considering the drug effect on cancer and
normal proliferating cells, do not enable us to avoid the singularity of optimal
control.

3.2 Two Compartments, Single G2M – Specific Killing Agent

This is probably the simplest situation in which it is possible to contemplate
the effects of phase specificity [119, 123]. Compartment 1 consists of the G1

and S phases and compartment 2 of the G2 and M phases. The corresponding
system of two differential equations has the form,

Ṅ1(t) = −a1N1(t) + 2ua2N2(t), N1(0) = N10 > 0 ,

Ṅ2(t) = −a2N2(t) + a1N1(t), N2(0) = N20 > 0 .
(18)

The performance index has the form analogous to (14),

J =
2∑

i=1

riNi(T ) +
∫ T

0

[1 − u(t)] dt , (19)

and its interpretation is identical as before.
If the optimal control is of the bang-bang type, it can be found from the

maximum principle [100] by minimizing the so called hamiltonian function:

H = p1(−a1N1 + 2ua2N2) + p2(−a2N2 + a1N1) + 1 − u , (20)

that results in:

u(t) =
{

0; 2a2N2(t)p1(t) > 1 ,
1; 2a2N2(t)p1(t) < 1 ,

(21)

where p = (p1, p2)T is the costate vector defined by the conjugate equations,

ṗ1(t) = a1(p1(t) − p2(t)), p1(T ) = r1 ,
ṗ2(t) = a2(p2(t) − 2p1(t)u(t)), p2(T ) = r2 ,

(22)
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Since the control system satisfies condition (M), then it follows from the
adjoint equation that for any admissible control the first orthant in costate-
space is negatively invariant under the flow of the adjoint system, i.e. if pi(T ) >
0 for all i = 1, 2, then pi(t) > 0 for all times t ≤ T . In this case, since N(0)
and p(T ) have positive components, it follows that all states Ni and costates
pi are positive over [0, T ].

The case 2a1N2p2 = 1 leads to the singular control problems which cannot
be excluded using only the first order necessary conditions .

The standard method to solve the problem is to find a numerical solution of
the two point boundary value problem (TPBVP) which may be performed us-
ing Mohler’s STVM [87, 103], semianalytical shooting algorithm [123] or gra-
dient type methods [37, 38]. Among the other methods used to solve optimal
control problems arising in chemotherapy scheduling we should mention con-
trol parametrization techniques developped by Teo and Martin (see [85, 86]).
Numerical studies do not exhibit the whole complexity of the problem. By
finding invariance properties of the solutions to the TPBVP on the torus and
formulating a special symmetry relation we have been able to classify [126]
all the solutions to TPBVP problems. The analysis has indicated the irreg-
ularity of the optimal control problem [127], arising from multiplicity of so-
lutions [98], existence of periodic trajectories [122] and existence of singular
solutions [121]. The classification of complete trajectories enables to avoid a
major disadvantage of a penalty method which has been used in formulation of
the performance index i.e. no systematic way of choosing the value of weight-
ing vector. Since final values of the costate vector are weighting parameters in
the performance index the analysis of solutions for all possible boundary con-
ditions allows for consideration of their sensitivity to the value chosen for r.
The regions of r for which the multiple solutions of the optimal control prob-
lem may appear can also be easily assigned [128]. To avoid them, additional
constraints may be imposed for the process of reducing the tumor burden. One
of the reasonable requirements is that the tumor-population decreases faster
than a given rate as proposed by Sundareshan and Fundakowski [111, 112] for
multicompartmental models. This constraint may be for example satisfied for
the periodic solutions [124].

Moreover recently singularity of optimal arcs was excluded with the use
of high-order necessary conditions for optimality and sufficient conditions for
optimal bang-bang strategies were found which enable to determine whether
controls found by the use of Pontryagin maximum principle are at least locally
optimal [80]. More precisely singular controls are calculated by differentiating
the switching function in time until the control variable explicitly appears in
the derivative, then finding the control which makes it equal to 0. For a single-
input system which is linear in the control it is known [78] that the order of
this derivative must be even, say 2k, and k is called the order of the singular
arc on the interval I. It is a necessary condition for optimality of a singular
arc of order k, the so-called generalized Legendre-Clebsch condition [78], that
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(−1)k ∂

∂u

d2k

dt2k

∂H

∂u
≥ 0 . (23)

Note that the term ∂H
∂u in (23) represents the switching function for the prob-

lem. This framework directly applies to the 2-compartment model which has
a scalar control. Elementary and direct calculations show that in this case
singular arcs are of order 1 and that

∂

∂u

d2

dt2
∂H

∂u
= 4a1a2 > 0 (24)

violating the Legendre-Clebsch condition. To develop sufficient conditions for
local optimality field-theoretic concepts have been used. Essentially, if the
flow of the system is a diffeomorphism away from the switching surfaces and
if it crosses the switching surfaces transversally, then using the method of
characteristics a differentiable solution to the Hamilton-Jacobi-Bellman equa-
tion can be constructed [92]. This then implies optimality of the flow. The
transversality condition:

∣∣∣∣ d

dt
(N2(tk)p1(tk))

∣∣∣∣+ 2a2N2(tk)S(tk) > 0 (25)

should be checked at each crossing of the switching surfaces at time tk To find
S(tk) a matrix discrete Riccati type equation should be solved iteratively for
the moments of control switchings. The sufficient conditions lead to yet an-
other numerical algorithm for the optimal protocols design based on backward
integration of the combined flow along the characteristics.

3.3 Three Compartments, Cell Arrest in S and Killing in G2M

One of the conceivable strategies of protocol optimization, exploiting drug
specificity, is to arrest cancer cells in the S phase [22, 49], and then release
them at the moment when another G2M specific anticancer drug has the
maximum killing potential. This strategy may have the additional advantage
of protecting the normal cells which would be less exposed to the second agent
(e.g. due to less dispersion and faster transit through G2M). The cell cycle
model includes separate compartments for the G1, S and G2M phases [119,
123].

The control problem is to find u(t) ∈ [0, 1] and v(t) ∈ [vm, 1] such that

Ṅ1(t) = −a1N1(t) + 2u(t)a3N3(t), N1(0) = N10 > 0 ,

Ṅ2(t) = −v(t)a2N2(t) + a1N1(t), N2(0) = N20 > 0 .

Ṅ3(t) = −a3N3(t) + v(t)a2N2(t), N3(0) = N30 > 0 .

(26)

and the index

J =
3∑

i=1

riNi(T ) +
∫ T

0

[1 − u(t)] dt , (27)
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is minimized. The bang-bang solution found from the maximum principle has
the following form

u(t) =
{

0; 2a3N3(t)p1(t) > 1
1; 2a3N3(t)p1(t) < 1 (28)

v(t) =
{

vm; p2(t) < p3(t)
1; p2(t) > p3(t)

(29)

where the costate vector satisfies the following set of equations,

ṗ1(t) = a1(p1(t) − p2(t)), p1(T ) = r1 ,
ṗ2(t) = a2(p2(t) − p3(t))v(t), p2(T ) = r2 ,
ṗ3(t) = a3(p3(t) − 2p1(t))u(t), p3(T ) = r3 ,

(30)

The arising TPBVP may be once more treated numerically [38] by the gradi-
ent method in the way similar as for two-compartmental models. Analytical
treatment becomes much more complicated since the problem could not be
projected into the plane. But also in this case it is possible to eliminate singular
controls as not optimal and formulate sufficient conditions for local optimal-
ity of bang-bang strategies [81]. In this case the generalized Legendre-Clebsch
condition (23) still applies to the first control u if we freeze the second control
v. Assuming v is constant, it can be shown that a singular control u must be
of order 2, but again (23) is violated. Direct, but longer calculations verify
that

∂

∂u

d4

dt4
∂H

∂u
= −12a1a2a

2
3v(a1 + a2v)p1(t)N2(t) < 0 . (31)

Furthermore, if the control v is singular on an interval I, then it can easily be
seen that u also must be singular on I. In this case it is a necessary condition
for optimality, the so-called Goh condition [78], that on I we have

∂

∂v

d

dt

∂H

∂u
≡ 0 . (32)

However, a direct calculation gives

∂

∂v

d

dt

∂H

∂u
= 2a2a3p1(t)N2(t) > 0 (33)

violating the Goh-condition . Derivation of the sufficient conditions of local
optimality for bang-bang strategies follows the similar line as for the two-
compartment model. Of course transversality conditions should be checked
for both switching controls and to do this we are led to a system of discrete
Riccati equations which should be iterated in all considered switching mo-
ments for both control variables. An additional assumption, formulated only
for technical reasons, is that there are no simultaneous switchings for both
controls.
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3.4 Three Compartments, Cell Recruitment from G0

and Killing in G2M

One of the major problems in chemotherapy of some leukemias is constituted
by the large residuum of dormant G0 cells which are not sensitive to most
cytotoxic agents. It became recently possible to efficiently recruit these cells
into the cycle using cytokines [5, 132], substances playing a role in the regula-
tion of normal hemopoiesis. Then, a cytotoxic agent may be used. To model
such a system, we use separate compartments for the G0, G1 and S + G2M
phases, numbered 0, 1 and 2 [128].

The control problem is to find u(t) ∈ [0, 1] and y(t) ∈ [1, ym] such that

Ṅ0(t) = −ya0N0(t) + 2b0u(t)a2N2(t), N0(0) = N00 > 0 ,

Ṅ1(t) = −a1N1(t) + ya0N0(t) + 2b1u(t)a2N2(t), N1(0) = N10 > 0 .

Ṅ2(t) = −a2N2(t) + a1N1(t), N2(0) = N20 > 0 .

(34)

where b0 and b1 are the probabilities of the daughter cell entering after division
G0 and G1, respectively. The index to be minimized is

J =
2∑

i=0

riNi(T ) +
∫ T

0

[1 − u(t)] dt . (35)

An interesting special case is N00 > 0, N10 = N20 = 0, r0 > 0, r1 = r2 = 0,
i.e. all the cells concentrated in G0 at the onset of the therapy, the principal
purpose of the therapy being minimization of their eventual number based on
presumption that this will yield the eventual demise of the whole population.

The bang-bang solution found using the maximum principle has the fol-
lowing form

u(t) =
{

0; 2a2N2(t)(b0p0(t) − b1p1(t)) > 1
1; 2a2N2(t)(b0p0(t) − b1p1(t)) < 1 (36)

y(t) =
{

1; p1(t) > p0(t)
ym; p1(t) < p0(t)

(37)

where the costate vector satisfies the following set of equations,

ṗ0(t) = y(t)a0(p0(t) − p1(t)), p0(T ) = r0 ,
ṗ1(t) = a1(p1(t) − p2(t)), p1(T ) = r1 ,
ṗ2(t) = a2 [p2(t) − 2u(t)(b0p0(t) + b1p1(t))] , p2(T ) = r2 ,

(38)

The arising two-point boundary value problem (TPBVP) expressed by equa-
tions (34) and (36–38) is formally similar to the TPBVP expressed by equa-
tions (26) and (28–30) and leads to the same mathematical problems. In this
case the analysis of singular arcs is slightly more cumbersome [125]. For con-
stant y we have:

∂

∂u

d2

dt2
∂H

∂u
= 4a1a2b1 > 0 (39)
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violating the Legendre-Clebsch condition. These calculations therefore exclude
the optimality of singular controls u when y is constant. It might still be
possible, however, that y is singular and not constant over any subinterval
J ⊂ I. In this case u also must be singular on I. For this example the Goh
condition is actually satisfied but after some simple but lenghty calculations
we have found that it is possible only for u = 0.5 and leads to constant Nis
and pis and in consequence to constant y but it, in turn, implies violation of
the Legendre-Clebsch condition. In [125] it is shown also that the sufficient
conditions for bang-bang strategies in this case and in more general class of
multicompartment models could be derived similarly as for the previously
considered cases. In this case the numerical results can be obtained by the
same gradient method [124].

The interesting finding [128] is that our results do not change at least in
qualitative sense if instead of modeling and minimizing cancer population we
rather decide to model and maximize population of cells in critical normal
tissues while maximizing the cumulative negative cytotoxic effect.

4 Evolution of Resistance by Gene Amplification

4.1 Biological Background

The amount of DNA per cell remains constant from one generation to another
because during each cell cycle the entire content of DNA is duplicated and then
at each mitotic cell division the DNA is evenly apportioned to two daughter
cells. However, recent experimental evidence shows that for a fraction of DNA,
its amount per cell and its structure undergo continuous change.

One way the genome of cancer cells may rapidly evolve is by an increase
in copy number of specific genes, referred to as gene amplification. Gene am-
plification can be enhanced by conditions that interfere with DNA synthesis
and is increased in some mutant and tumor cells. Increased number of gene
copies may produce an increased amount of gene products and, in tumor cells,
confer resistance to chemotherapeutic drugs. Amplification of oncogenes has
been observed in many human tumor cells and also may confer a growth ad-
vantage on cells which overproduce the oncogene products (for an overview
see surveys by Stark [109] and Windle and Wahl [146]).

In the classical experiments of Schimke and his coworkers [23, 61], the an-
ticancer drugs served to select for cells with amplified genes. In some of cell
lines, when the selective agent was removed, the cells with amplified genes
gradually disappeared from the population. The stochastic mechanism lead-
ing to this reversal is discussed in more detail further in this subsection. It
was observed that in such cases the amplified genes were located on extra-
chromosomal fragments of DNA called Double Minute Chromosomes (DM’s).
In other cases, the amplification was stable, ie. persisted after the selective
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agent had been removed. In such cases, the amplified genes usually are lo-
cated on elongated chromosome arms. The most regular of these elongated
arms exhibit a regular band structure (the so called Homogeneously Staining
Regions or HSR’s), but other less regular structures are also observed. They
are either caused by reintegration of extrachromosomal genes as proposed by
Windle, Wahl and coworkers [145], or they arise by a separate mechanism
as proposed by Stark and coworkers [107]. Mathematical models show that
depending on circumstances each of the two variants of stable amplification
is plausible [7, 70] (see also a critique by Harnevo and Agur [54]).

4.2 Probabilistic Modeling of Unstable
and Stable Gene Amplification

Unstable Gene Amplification

Summary of Observations. In some populations of cells with double minute
chromosomes, both the increased drug resistance and the increase in number
of gene copies are reversible. The classical experiment confirming this includes
transfering the resistant cell line into drug-free medium, [23, 61], where cells
gradually lose resistance to the drug by losing extra gene copies. In these ex-
periments, the dihydrofolate reductase (DHFR) gene was amplified after ex-
posing murine 3T6 cells [23] or mouse sarcoma S-180 cells [61] to Methotrexate
(MTX).

The population distribution of numbers of gene copies per cell can be es-
timated by flow cytometry after staining gene products. In the experiments
mentioned, [61], two features of these distributions are notable. (1) As ex-
pected, the proportions of resistant cells (with amplified genes) decrease with
time. (2) Less obvious, the shape of the distribution of the number of gene
copies limited to the resistant cell subpopulation seems to remain stable dur-
ing the loss of resistance.

The Branching Random Walk and Other Models. A mathematical
model of unstable drug resistance should take into account (1) stochastic
changes in number of gene copies from one generation to another and (2) the
stochastic variability in cell lifetimes. One stochastic process which accomo-
dates both (1) and (2) is a random walk superimposed on the time-continuous
branching process [6] of cell proliferation, ie. a branching random walk [71].
We consider a population of abstract particles of types j = 0, 1, 2, . . .:

1. The lifespans of all particles are independent identically distributed expo-
nential random variables with mean 1/λ.

2. At the moment of death, a particle of type j ≥ 1 produces two progeny
particles each belonging to type j +1 with probability b, to type j−1 with
probability d, and to type j with probability 1 − b − d. A particle of type
j = 0 produces two progeny of type 0.

3. The process is initiated at time t = 0 by a single particle of given type i.
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The simplest models of gene amplification in [68] and [71] assume the
above process. Cells with 2j−1 gene copies are said to belong to type j (with
0 gene copies, to type 0). The parameters b and d are the probabilities of gene
amplification and deamplification, respectively.

One of the properties of Markov processes with absorbing states is the
possibility of existence of the quasi-stationary distributions. In intuitive terms,
the unabsorbed part of the probability mass of the process, while constantly
shrinking, approaches a limit if it is properly normed. The Yaglom theorem
for subcritical branching processes [6] can be quoted as an example. It is this
property that explains the apparent stability of distributions of gene copy
number per cell in the resistant subpopulation, placed in the non-selective
medium.

Indeed, let us assume the time-discrete equivalent of the model outlined
above (as in [68]). Let us denote by Xn the type (see the definition above) of
the cell in the nth generation of a randomly selected lineage (n ≥ 0). Then,
{Xn, n ≥ 0} is a time-discrete Markov chain with the following transition
matrix 



1 0 0 0 0 · · ·
d (1 − b − d) b 0 0 · · ·
0 d (1 − b − d) b 0 · · ·
0 0 d (1 − b − d) b · · ·

0 0 0
. . . . . . · · ·

· · · · · · · · · · · · · · · · · ·




. (40)

{Xn, n ≥ 0} is a random walk with an absorbing boundary at 0. Let us
denote by pn

i the probability that the cell type is i in the nth cell generation,

pn
i = Pr{Xn = i} . (41)

We consider the limit properties, as n tends to infinity, of the gene extinction
probability pn

0 , and of the set of conditional probabilities,

cn
i = Pr{Xn = i|Xn �= 0} = pn

i /(1 − pn
0 ) . (42)

that the cell type is i, provided the gene is not extinct. We limit ourselves
to the most important subcritical case, d > b, and assume X0 = 1. Let
vn(s) =

∑
i≥1 cn

i si be the conditional probability generating function (p.g.f.)
of Xn, given Xn �= 0 and let E∞ = limn→∞

∑
i≥1 2i−1cn

i be the expected
number of gene copies as n → ∞. We have the following result (Theorem 1
in [68]).

Suppose that d > b. Then

(1 − pn
0 ) ∼ Khn/

√
n3 , (43)

as n → ∞, where h = 1−(
√

d−
√

b)2, K = [1−(
√

d−
√

b)2]3/2 4
√

d /[2
√

π(
√

d−√
b)2 4

√
b3], and
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vn(s) → v(s) ≡ s

( √
d −

√
b√

d − s
√

b

)2

, (44)

and consequently,

E∞ = v(2)/2 =

( √
d −

√
b√

d − 2
√

b

)2

, (45)

as n → ∞.
This result can be derived from Theorem 2 and Lemma 3 in [95]. As

stated above, it assures existence of the limit distribution of the number of
gene copies per cell in selective conditions.

Stable Amplification

Summary of Observations. In the experimental system of Windle, Wahl
and co-workers [145], the amplification of the DHFR gene was observed in a
Chinese Hamster Ovary (CHO) cell line, which contained only a single DHFR
gene. Cells were challenged by MTX. Amplified genes residing on extrachro-
mosomal elements were observed in cell cultures 8-9 generations later, while
predominantly chromosomally amplified genes were seen after about 30 gener-
ations (only these two time points were investigated). This can be interpreted
as an indication that some extrachromosomal elements containing amplified
gene copy numbers are eventually reintegrated into chromosomes.

Mathematical Model and Its Predictions. In the model devised to re-
produce these observations [70], the basic indivisible unit which serves as the
template for the production of additional gene copies is the amplicon, which
contains at least one copy of the target gene. The size of such structures could
range from submicroscopic to an entire arm of a chromosome and they may
be circular or linear. The acentric (replicating) element (ARE) is understood
to be an extrachromosomal molecular structure containing one or more am-
plicons but no centromere. A centromere is required for regular segregation
to daughter cells. The reintegrated element (RE) is the ARE after it has rein-
tegrated into a chromosome.

The following processes are considered in the model: (a) change in the
number of ARE’s per cell, (b) change in the number of amplicons per ARE,
and (c) reintegration of ARE’s into chromosomes.

Types of elements: ARE’s containing i = 1, 2, . . . amplicons, and RE’s
containing i = 1, 2, . . . amplicons. In each cell generation, with probability
a, the ARE containing i amplicons replicates to yield a product with 2i am-
plicon copies. The catenated replication product then dissociates producing
two acentric molecules. This process results in a pair of molecules containing,
respectively, j and 2i − j amplicons, where j = 1, . . . , 2i − 1. It is assumed
that the probability of each pair (j, 2i − j) is the same, equal to 1/(2i − 1).
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The molecules segregate so that they both go to the same daughter cell with
probability q, and go to different daughter cells with probability 1 − q. With
probability g, the ARE with i amplicon copies replicates to yield a product
with 2i amplicon copies, but this replication product does not dissociate. It
then goes with equal probability to one of the two daughters. With probabil-
ity c = 1 − (a + g), per cell generation, the ARE containing i copies of the
amplicon, integrates into a chromosome with a centromere and then repli-
cates and segregates with the chromosome. This results in each daughter cell
containing an equal number of RE copies. The probability of reintegration is
c = 1 − (a + g).

We may formally define the following random variables:

• Xi
n(ω), the number of ARE’s with i copies of the amplicon, in the n-th

cell generation,
• Y i

n(ω), the number of RE’s with i copies of the amplicon, in the n-th cell
generation.

The sequence {{(X1
n, Y 1

n ), (X2
n, Y 2

n ), . . .}, n = 0, 1, 2, . . . }, is a multitype
Galton-Watson process with a denumerable infinity of particle types. [66].

Modeling the expected values of the process enables reproducing the main
features of Wahl’s experiments: (1) The initial increase in number of acentric
elements per cell, and the number of amplicon copies per acentric element.
(2) Subsequent decrease of the number of ARE’s per cell, as they become
reintegrated. (3) Eventual emergence of a population of cells containing only
integrated elements with a spectrum of amplicon copy numbers at one or more
chromosomal locations.

5 Control Under Evolving Resistance

5.1 Clonal Resistance/Simulation of Gene Amplification

Resistance to antineoplastic drugs has been a major impediment to the suc-
cessful treatment of cancer. Recent studies suggest that several mechanisms
are responsible for the emergence of drug resistance and that high levels of
resistance and poor prognosis are strongly associated with gene or oncogene
amplification.

In recent years the problem of drug resistance in cancer has been mathe-
matically attacked by many authors. The first series of models were devised
by Coldman and Goldie [30] (for an overview see the book by Wheldon [142]).
Underlying these models was the assumption that drug resistance in can-
cer results from a single mutational event whose probability is constant and
independent of external constraints. The model was generalized to describe
evolution of resistance to a number of agents. If it is assumed that multiple
resistance is the most important thing to avoid in the course of chemotherapy,
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then the resulting recommendation is to alternate treatments effective against
strains resistant to single agents, as frequently as possible [46].

Harnevo and Agur [53] introduce a model which treats the emergence of
drug resistance as a dynamic process rather than a single event. Using this
model, based on their previous works [52], they focus on gene amplification
as one of the mechanisms that may lead to drug resistance, and show how
changes in the underlying assumptions affect the predictions about treatment
efficacy. The mathematical modeling results suggest that under gene amplifi-
cation dynamics with high amplification probability, protocols involving fre-
quent low-concentration dosing may result in the rapid evolution of large fully
resistant residual tumors; the same total doses divided into high-concentration
doses applied at larger intervals may result in partial or complete remission.
This last recommendation is an alternative to that of Coldman and Goldie.

Another suggestion is that treatment prognosis may be largely improved
if cells bearing a large number of gene copy number have high mortality.
Therefore, it may be interesting to examine the possibility of incorporating in
the treatment an agent (hypothetical, at present) that increases the mortality
of cells carrying highly amplified genomes.

5.2 Mathematical Model and Optimization
of Control Under Evolving Resistance

In this subsection we present an infinite system of differential equations which
may be used to model controling a cell population with evolving drug resis-
tance caused by gene amplification or other mechanisms. The model is general
enough to accomodate different interpretations (see further on). The model is
motivated by a representation in the terms of the branching random walk [71],
but it also can be understood as a mathematical variation of the model used
by Harnevo and Agur in [53].

The hypotheses are as follows: We consider a population of cells of types
i = 0, 1, 2, . . .. Cells of type 0 are sensitive to the agent, whereas the types i =
1, 2, . . . consist of resistant cells of increasing level of resistance (for example,
with increased number of DHFR or CAD gene copies per cell).

1. The lifespans of all cells are independent identically distributed exponential
random variables with means 1/λi for cells of type i.

2. A cell of type i ≥ 1 may mutate in a short time interval (t, t + dt) into a
type i + 1 cell with probability bidt + o(dt) and into type i − 1 cell with
probability didt + o(dt). A cell of type i = 0 may mutate in a short time
interval (t, t + dt) into a type 1 cell with probability αdt + o(dt), where α
is several orders of magnitude smaller than any of bis or dis.

3. The chemotherapeutic agent affects cells of different types differently. It is
assumed that its action results in fraction ui of ineffective divisions in cells
of type i.
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4. The process is initiated at time t = 0 by a population of cells of different
types.

The postulated relationship for the rate α of the primary amplification
event can be written as follows

α � min(di, bi), i ≥ 1 . (46)

In view of the subcriticality of the process in Subsect. 4.2, it seems reasonable
to assume

di > bi, i ≥ 1 . (47)
If we denote Ni(t) the expected number of cells of type i at time t, we obtain
the following infinite system of differential equations:


Ṅ0(t) = [1 − 2u0(t)]λ0N0(t) − αN0(t) + d1N1(t) ,

Ṅ1(t) = [1 − 2u1(t)]λ1N1(t) − (b1 + d1)N1(t) + d2N2(t) + αN0(t) ,

· · ·
Ṅi(t) = [1 − 2ui(t)]λiNi(t) − (bi + di)Ni(t) + di+1Ni+1(t)

+ bi−1Ni−1(t), i ≥ 2 ,

· · ·

(48)

Also, the folowing relationships between bis and dis seem to be justified by
the intuition that cells overloaded with amplified gene copies may aquire new
copies with more difficulty and lose them easier:

di+1 ≥ di, bi+1 ≤ bi, i ≥ 1 . (49)

As postulated by Schimke (see e.g. [23, 61]), cells with more copies of the drug
resistance gene may proliferate slower, ie.

λi+1 ≤ λi, i ≥ 0 . (50)

In the simplest case, in which the resistant cells are totally insensitive to drug’s
action, and if we ignore differences between parameters of cells of different
type, i.e.

u0 = u, ui = 0, i ≥ 1, and bi = b, di = d, λi = λ , i ≥ 0 ,

the system (48) assumes the following form:


Ṅ0(t) = [1 − 2u(t)]λN0(t) − αN0(t) + dN1(t) ,

Ṅ1(t) = λN1(t) − (b + d)N1(t) + dN2(t) + αN0(t) ,

· · ·

Ṅi(t) = λNi(t) − (b + d)Ni(t) + dNi+1(t) + bNi−1(t), i ≥ 2 ,

· · ·

(51)
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Note that in this model d and b denote respective intesivities and not proba-
bilities as it was in matrix (40). Model (51) may be used to find the optimal
control which minimizes an appropriate performance index, e.g.

J =
∑
i≥0

riNi(T ) +
∫ T

0

u(t)dt , (52)

Necessary conditions for optimal control could be found using the maxi-
mum principle in its abstract version (see e.g [91]). They are formally similar
to those obtained for respective finite dimensional problems. To solve them
efficiently, finite approximation of the system should be used. The other pos-
sibility conferred for example in [131] is to reconfigure the model (51) into the
equivalent integro-differential form.

The model (48) can describe dynamics of any cell population stratified into
a sequence of subcompartments (types) with different kinetics, with fluxes of
cells between these subcompartments. For example, the amplified gene may
not confer resistance but allow the cell to proliferate faster (or to alter the
pattern in a more complex way, see e.g. [67]). This might be the case if it is
an oncogene. Then we might assume all uis equal and λi+1 ≥ λi.

Systems of the type (48) and (51) are not as straightforward as finite
dimensional systems of differential equations. However, at least in simpler
cases, their asymptotic behavior can be characterized quite precisely. As an
example, let us consider the following system,




Ṅ1(t) = λN1(t) − (b + d)N1(t) + dN2(t),
· · ·

Ṅi(t) = λNi(t) − (b + d)Ni(t) + dNi+1(t) + bNi−1(t), i ≥ 2 ,
· · ·

(53)

This is a model of population of cells in which the sensitive cells are instantly
annihilated, and there is no influx of new resistant cells. Let us denote N(t) =∑

i≥1 Ni(t). We have the following result obtained using the methods of [71].
Suppose that Ni(0) = δi1 and d �= b. Then

N(t) = eλt − eλt
√

d/b

∫ t

0

I1(2
√

bdτ)
τ

e−(b+d)τdτ . (54)

where I1(t) is the modified Bessel function of order 1 [1]. Moreover,

N(t) ∼
[
1 − min(b, d)

b

]
eλt

+
d

2
√

π 4
√

(bd)3(
√

d −
√

b)2
t−3/2e[λ−(

√
d−

√
b)2]t , (55)

as t → ∞.
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This result may be derived using Laplace transform machinery. Denote
Laplace transforms of N1(t) and N(t) by N̂1(s) and N̂(s), i.e. N̂1(s) =∫∞
0

N1(t)e−stdt, N̂(s) =
∫∞
0

N(t)e−stdt. Then:

N̂1(s) =
s − λ + b + d −

√
(s − λ + b + d)2 − 4bd

2bd
. (56)

N̂(s) = −s − λ + b + d −
√

(s − λ + b + d)2 − 4bd

2b(s − λ)
+

1
s − λ

. (57)

Note that (see [36]).

(s + b + d) −
√

(s + b + d)2 − 4bd

is the Laplace transform of

(2
√

bd/t)I1(2
√

bdt) exp[(−b − d)t],

Using this we obtain time functions N1(t) (see below) and N(t) (see(54))
by performing inverse Laplace transforms of (56) and (57):

N1(t) =
I1(2

√
bdt)

t
√

bd
e[λ−(b+d)]t , (58)

Using the equations (58) and (54) we can analyze the behavior of functions
N1(t) and N(t) as t approaches infinity. The formulae for the asymptotic
expansions of I1(t) and

∫ t

0
I1(2

√
bdτ)

τ e−(b+d)τdτ given in Lemma 1 and Lemma
2 in the paper [71] (obtained via the Laplace method for integrals [24]) lead
to the asymptotic expansions for N1(t) :

N1(t) ∼
1

2
√

π 4
√

(bd)3
t−3/2e[λ−(

√
d−

√
b)2]t , (59)

and N(t) (see(55)). From (59) and (55), the condition that both N1(t) and
N(t) converge exponentially to zero, as t → ∞, is:

√
d −

√
b >

√
λ . (60)

If (60) is not satisfied, then we have two possibilities. If
√

d−
√

b <
√

λ, then
the solution diverges exponentially to infinity. If

√
d−

√
b =

√
λ, then both N1

and N still converge to zero. However, the convergence is not exponential [73].
Let us notice that the term at eλt in the asymptotic expansion disappears if
d > b. This separates the behavior in the supercritical case from that in the
subcritical case. In the former, the resistant population grows exponentially.
In the latter, it decays only if

√
d −

√
b >

√
λ. The same reasoning could

be repeated for initial conditions of the form Ni(0) = δik for k > 1 leading
to similar expression for N(t) and similar asymptotic behaviors (see [129]).
Since the system is linear the condition (60) is necessary and sufficient for
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eradication of the resistant subpopulation for any initial conditions with final
support. If λ is considered the only parameter affected by control, this means
that unless somehow accessed by cytostatics, the resistant subpopulation may
maintain itself even in the subcritical case. The analysis presented in [99] leads
to a conclusion that being stable for any finite initial condition, the solution
to (53) can diverge if we allow initial conditions with infinitely many nonzero
elements. The factor that determines stability of the solution in this case is
that the rate of decay of successive elements of the initial vector. The rate
of decrease must be faster than [b + d − λ −

√
(b + d − λ)2 − 4bd]−1 [73].

Biologically, the results for initial conditions with infinite support can be
interpreted as follows: Suppose that a significant subpopulation of resistant
cells reached large number of gene copies. Then this population is a persistent
source of proliferating malignant cells, much more difficult to eradicate than
it would be the case under a finite mutation model [129].

Asymptotic analysis of this model results in some understanding of its dy-
namics . This, in our opinion, is the first step towards a more rigorous math-
ematical treatment of the dynamics of drug resistance and/or metastasis In
this case the system is decomposed onto two parts one which includes only the
sensitive subpopulation modeled by the first equation of (51) and the remain-
ing infinite dimensional part of this model which describes the drug resistant
subpopulation. The results on the asymptotic behavior of the drug resistant
subpopulation not supplied from the sensitive compartment, combined with
the Laplace transforms machinery and theory of closed loop systems with pos-
itive feedback (Nyquist theorem) enable analysis of an asymptotic behaviour
of the whole population modeled by (51) for the case of constant dosage drug
administration. More precisely using Nyquist theorem [147] for systems with
irrational transfer functions we found [99] that the conditions which ensure as-
ymptotic eradication of the overall cancer population by continuous constant
drug dosage in subcritical case are given by (60), and

u >
α

d(−b + d − λ +
√

(b + d − λ)2 − 4bd)
+

1
2

. (61)

Moreover the representation of the cancer population in the form of the
closed loop system with positive feedback enables reformulution of the infinite
dimensional model of dynamics into the integro-differential form [130]. This
in turn leads to formulation of optimization problem for protocols design in
the presence of drug resistance [131] in the form treatable by an abstract
Pontryagin maximum principle in the version given by [10]. In the simplest
case when the therapy is initiated when there are no resistant clones yet and
weights ri = r for i = 0 and r1 elsewhere we have the following reformulation
of the model (51) and the performance index (52):

Ṅ0(t) = dα
∫ t

0
φ(t − s)N0(s)ds − αN0(t) + (1 − 2u(t))λN0(t), t > 0

N0(t) = N0(0), t ≤ 0
(62)
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J = rN0(T ) +
∫ T

0

[r1N(T − t)N0(t) + u(t)]dt , (63)

where φ(t) is given by formula (58) for N1(t) and N(t) by formula (54). Using
the abstract maximum principle we obtain the following necessary conditions
for optimal control u(t) and costate p(t) [131]:

u(t) =
{

0; 2λN0(t)p(t) < 1
1; 2λN0(t)p(t) > 1 (64)

ṗ = −
[
dα

∫ T

t

φ(s − t)p(s)ds + p(t)((1 − 2u)λ − α) + αN(T − t)

]
, p(T ) = r

(65)
This analysis does not take into account singular solutions for which in this

case we have no results dealing with their elimination. The gradient method
proposed for two and three compartment models [37, 38] may be however
used with some technical modifications [105] to find optimal bang-bang and
suboptimal periodic solutions. The models in this section are based on the hy-
pothesis that the process of gene amplification can be described by a branching
random walk, as in [71]. A more realistic process, including proliferation of
gene copies between cell divisions, as well as random segregation of gene copies
between daughter cells, is described in [66].

6 Remarks on Estimation of Parameters

6.1 Estimation of Cell Cycle Parameters and Drug Action
in Cultured Cells

Much work has been done on estimation of cell cycle transit times and of
the fractions of cells arrested and/or killed by drugs in cultured normal and
transformed cells. The most systematic series of experiments and measure-
ments known to us has been carried out in the 1980’s in the laboratory of
Darzynkiewicz, Traganos and their coworkers in the Memorial Sloan-Kettering
Cancer Center and in the New York Medical College. A number of cultured
cell lines and a variety of drugs in various concentrations were evaluated by
these researchers using flow cytometric techniques.

The following account is based on reviews [33] and [138] which include
numerous original references. The stathmokinetic or “metaphase arrest“ tech-
nique consists of blocking cell division by an external agent (usually a drug,
e.g. vincristine or colchicine). The cells gradually accumulate in mitosis, emp-
tying the postmitotic phase G1 and with time also the S phase. Flow cytom-
etry allows precise measurements of the fractions of cells residing in different
cell cycle phase. The pattern of cell accumulation in mitosis (M) depends on
the kinetic parameters of the cell cycle and is used for estimation of these
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parameters. Exit dynamics from G1 and transit dynamics through S and G2

and their subcompartments can be used to characterize very precisely both
unperturbed and perturbed cell cycle parameters. A true arsenal of methods
have been developed to analyze the stathmokinetic data. Application of these
methods allow quantification of the cell-cycle-phase action of many agents.

One of the interesting findings was the existence of aftereffects in the action
of many cytotoxic agents. The action of these drugs may extend beyond the
span of a single cell cycle. For example, cells blocked in the S-phase of the
cell cycle and then released from the block, may proceed apparently normally
towards mitosis but then fail to divide, or divide but not be able to complete
the subsequent round of DNA replication. In some experiments it was possible
to trace the fates of individual cells and conclude that their nuclear material
divided but the cytoplasmic contents failed to separate.

The consequence of the aftereffects is that it may be difficult to infer the
long-term effects of cytotoxic drugs based on short term experiments like the
stathmokinetic experiment. One way of testing this assertion is to carry out
both types of experiments, short term and long term, subjecting cells to the
action of the same concentration of the same drug. We may then estimate
the parameters of the cell cycle and of drug action based on the short-term
experiment, substitute them into a mathematical model and try to predict
the results of the long-term experiment. This program has been carried out in
a study by Kimmel and Traganos [74]. Using two concentrations of an exper-
imental anticancer agent CI-921, it was found that while cell cycle estimates
based on stathmokinetic experiments did not differ for these two concentra-
tions, the effects of continuous 24-hour exposure to the drug were completely
different. Only the effects of low concentration continuous exposure were pre-
dicted by the mathematical model using estimates from stathmokinesis.

Analogous aftereffects following irradiation of cells were discovered by Kooi
and co-workers [76].

Another long term program of estimation based on flow cytometry has
been carried out by Bertuzzi and Gandolfi and their collaborators at IASI in
Rome and European Institute of Oncology. For many years their interest has
been concentrated mainly on reducing errors of estimates using procedures like
regularization, but also simulations and modeling of cytotoxic action on the
cell cycle (see e.g. [18, 20]). Moreover their estimation procedures is also used
for modelling the cell kinetic characteristics of in vivo experimental tumors
[18]. Recently they have also been concentrated on the modeling of tumor
cords (see e.g. [17, 19]). Estimation of parameters for such models results in
better understanding of nongenetic reasons of drug resistance.

6.2 Estimation of Cell Cycle Parameters in Cells
from Human Tumors

Recently, much research has been carried out on estimation of cell kinetic pa-
rameters of cells in human tumors in vivo. Basically, the procedure consists
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of injecting the tumor with a labeling compound selectively incorporated by
cells synthesizing DNA and then, after removal of the tumor, of following the
“relative movement” of the labeled cells through the S-phase. The method
was introduced by Begg and co-workers [13]. They followed-up with a series
of application papers [14, 15, 55]. Their main interest is on the potential of
pre-treatment cell kinetic parameters to predict outcome in cancer patients
treated by radiotherapy. One of the findings is that pretreatment cell kinetic
measurements carried out using flow cytometry only provide a relatively weak
predictor of outcome after radiotherapy e.g. [11, 12, 56]. One of possible rea-
sons of this negative result is the change of the parameters during radiother-
apy and the effect of breaks in the therapy for the cell cycle parameters. In
our collaborative research with colleagues from MCS Institute of Oncology in
Gliwice we have observed such phenomena while analysing similar material
(neck and head cancers) [135, 136]. It is difficult to extend these results for
chemotherapeutic effects.

A series of mathematical refinements and applications of the Begg’s
method have been introduced by R.A. White of the Biomathematics Depart-
ment at the M.D. Anderson Institute in Houston [143, 144]. Of a number
of papers by other authors, we quote one devoted to cell cycle kinetics of
leukemias [101]. There are also available many papers on parameter estima-
tion of cell cycle kinetics for experimental human tumors transplanted in mice
or other animals (see e.g. previosuly mentioned [18], where results for human
ovarian carcinoma transplanted in mice are presented).

New possibilities in cell cycle parameter estimation both in vitro and in
vivo are now established by DNA microarray technology. By processing the
data on expression of thousands of genes in different time samples one can
identify the dynamics behavior of the analysed cell populations. There have
been a number of bioinformatical and biomathematical tools developed to cope
with such analysis. Among them we refer to the one based on Singular Value
Decomposition which seems to give especially promising results (see, [104] and
references therein).

6.3 Estimation of Rates of Emergence and Evolution of Resistance

Based on gene amplification studies, there exist three phases in the evolution
of resistance process:

• The relatively rare primary event, i.e. the establishment of the founder cell
of the resistant clone containing at least one unstable copy of the target
gene (the probability of this event, per cell division, corresponds to the
ratio α/λ in our (48)).

• Subsequent amplification and deamplification events, occuring at high rates
compared to α/λ, resulting from instability of the amplified gene (the
probabilities of these events, per cell division, correspond to the ratios
bi/λ and di/λ in (48)).
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• Possible stabilization of the resistant phenotype, by integration of the am-
plified gene in the chromosomal structures (no counterpart in (48)).

The numerical values of the probabilities of gene amplification and deam-
plification can be estimated based on data in [23] and [61]. The probabilities
of deamplification (d) are of the order of 0.10 in both cases, while the prob-
abilities of amplification (b) are about 5 times lower. The process is strongly
subcritical. This means among others that in the absence of selection, the am-
plified phenotype disappears from the population. It can be revived by rare
primary events, such as amplification of extrachromosomal genes following a
deletion of the target gene from the chromosome arm (see further on). The pri-
mary tool with which the primary rate was estimated, is the Luria-Delbrück’s
fluctuation analysis [82]. It consists of finding an experimental distribution of
the number of mutant (i.e. resistant) colonies in cell populations cultured for
a number of generations, and fitting it to the theoretical distribution derived
based on a branching process-type model of proliferation and mutation. A
number of researchers carried out this procedure for mutation to drug resis-
tance (by gene amplification and other means) [88, 89, 137, 139], obtaining
estimates of the mutation probabilities, per cell division, in the range from
10−8 to 10−6, with generally higher estimates for tumorigenic than for “nor-
mal” cells. The data from the above papers were re-analyzed in a paper by
Kimmel and Axelrod [69], using a two-stage model of mutation. Although the
estimates of primary event probabilities remain mostly unchanged, the prob-
abilities of second stage forward and backward mutation are much higher,
comparable to the estimates of amplification and deamplification probabili-
ties obtained in [68] and in [71] (of the order of 0.02 and 0.10, respectively, as
mentioned above).

The classical explanation for the loss of resistance in cells with amplified
DNA in extrachromosomal elements is that in the absence of selective pressure
cells with extra gene copies grow slower and are outgrown by the sensitive
cells [61]. Our model assumes a purely stochastic mechanism. A combination
of two mechanisms is likely. For further comments, see [68].

Estimates of the reintegration probabilities are provided in the study by
Kimmel, Axelrod and Wahl [70] where fitting the model to data from [145]
makes possible to estimate its parameters a, g, c, and q. The best fitting values
are a = 0.780, g = 0.195, c = 0.025, and q = 0.9 The rate of integration c
and the probability of cosegregation q are biologically important parameters.
A high rate of cosegregation might have clinical implications in the sense of
making some cells more sensitive to chemotherapy.

7 Discussion

In this chapter we describe the cell-cycle-phase dependence of cytotoxic drug
action and drug resistance in the context of optimization of cancer chemother-
apy.
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Attempts at optimization of cancer chemotherapy using optimal control
theory have a long history ( [113] is a review by Swan). The methods include
the maximum principle both in the discrete [8, 64] (with parameters taken
from [51, 63]) and continuous versions [103, 116], for a variety of models and
performance indices. The idea has been criticized many times (see e.g. [134,
142]). Only simplest concepts have won attention in the medical world. These
include the clonal resistance model [46] and the kinetic resistance theory by
Norton and Simon [93].

The simplest cell-cycle-phase dependent models of chemotherapy can be
classified based on the number of compartments and types of drug action
modeled. In all these models the attempts at finding optimal controls are con-
founded by the presence of singular and periodic trajectories, and multiple
solutions but recently singular trajectories are excluded and sufficient condi-
tions for strong local optimality are found for a class of bang-bang strategies.
Morover, efficient numerical methods have been developed. In simpler cases, it
is possible to provide exhaustive classification of solutions. We have reviewed
analytic and computational methods which are available. All these attempts
have to be viewed with caution, because of the existence of aftereffects in the
action of many cytotoxic agents. The action of these drugs may extend beyond
the span of a single cell cycle. For example, cells blocked in the S-phase of the
cell cycle and then released from the block, may proceed apparently normally
towards mitosis but then fail to divide, or divide but not be able to complete
the subsequent round of DNA replication. If such effects are substantial, they
are likely to disrupt or complicate the resonances. As indicated for example
in [96, 97], the aftereffects due to accumulation of drugs (in this case MTX)
result in great interindividual differences of the effectiveness of treatment.

The consequence of the aftereffects is that it may be difficult to infer the
long-term effects of cytotoxic drugs based on short term experiments like the
stathmokinetic experiment. One way of testing this assertion is to carry out
both types of experiments, short term and long term, subjecting cells to the
action of the same concentration of the same drug. We may then estimate
the parameters of the cell cycle and of drug action based on the short-term
experiment, substitute them into a mathematical model and try to predict
the results of the long-term experiment. Constructing mathematical models
including aftereffects is possible but leads to notational and computational
complications. Essentially, part of cells released from the direct action of the
drug, are redirected into a different cell cycle in which a large part of them
are either permanently arrested or die. This leads to models with increased
dimensionality. It seems, however, that it still is possible to place the models
in the general class (P) of multicompartmental models discussed in [125].

Concerning the emergence of drug resistance, we have presented the prob-
lem in the framework of gene amplification, although much of what is written
may apply to different mechanisms which are reversible and occur at high
frequency. We have defined a mathematical model which can be used to pose
and solve an optimal chemotherapy problem under evolving resistance. We
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have shown some results regarding dynamics of this model and techniques
used to find solutions for optimization of chemotherapy protocols. Analysis of
variants of this model should give insight into possible scheduling strategies of
chemotherapy in the situations when drug resistance is a significant factor. It
is possible, for example, using the decomposition technique presented in the
paper to include both effects of drug resistance and phase specificity or par-
tial resistance of different subpopulations both in singleagent or multiagent
chemotherapy (see [106]).

All possible applications of the mathematical models of chemotherapy are
contingent on our ability to estimate their parameters. There has been a
progress in that direction, particularly concerning precise estimation of drug
action in culture and estimation of cell cycle parameters of tumor cells in vivo.
Also, more is known about the mutation rates of evolving resistant cell clones.

The traditional area of application of ideas of cell synchronization, recruit-
ment and rational scheduling of chemotherapy including multidrug protocols,
is in treatment of leukemias. It is there where the cell-cycle-phase dependent
optimization is potentially useful.

The emergence of resistant clones is a universal problem of chemother-
apy. However, it seems that its most acute manifestation is the failure to
treat metastasis. A part of this problem is the imperfect effectiveness of ad-
juvant chemotherapy as the tool to eradicate undetectable micrometastases.
In view of toxicity of anticancer drugs, optimal scheduling is potentially use-
ful in improving these treatments. Yet another challenge discussed recently
in modeling of cancer chemotherapy is related to antiangiogenic therapy (see
e.g. [41, 44, 94, 141]). Although the process of vascularization is strongly
distributed (see e.g. [27, 45, 58]) some simple two or three compartmental
models have been also proposed [40, 102]. The advantage of using antiangio-
genic therapy is in resistancy to drug resistance [62]. It is due to the fact that
it is directed against non-malignant endothelial cells which are genetically sta-
ble. Methodology described in our paper can be efficiently extended for this
class of nonlinear models. Moreover decomposition for finite dimensional con-
trolled part and infinite dimensional uncontrolled part used by us in analysis
and optimization of drug resistance evolution and therapy may be applied
to the more complicated models of angiogenesis with distributed parameter
compartments.
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1 Introduction

The role of a mathematical model is to explain a set of experiments, and to
make predictions which can then be tested by further experiments. In set-
ting up a mathematical model of a biological process, by a set of differential
equations, it is very important to determine the numerical value of the para-
meters. For biological processes are typically valid only within a limited range
of parameters.

In the last four decades, various cancer models have been developed in
which the evolution of the densities of cells (abnormal, normal, or dead) and
the concentrations of biochemical species are described in terms of differen-
tial equations. Some of these models use only ordinary differential equations
(ODEs), ignoring the spatial effects of tumor growth. The models which take
spatial effects into consideration are expressed in terms of partial differential
equations (PDEs), and they also need to take into account the fact that the
tumor region is changing in time; in fact, the tumor region, say Ω(t), and its
boundary Γ (t), are unknown in advance. Thus one needs to determine both
the unknown “free boundary” Γ (t) together with the solution of the PDEs
in Ω(t). This type of problem is called a free boundary problem. The models
described in this chapter are free boundary problems. The main concern is the
spatial/geometric features of the free boundary. Some of the basic questions
are: What is the shape of the free boundary? How does the free boundary
behave as t → ∞? Does the tumor volume increase or shrink as t → ∞?
Under what conditions does the tumor eventually become dormant?

In this chapter we present generic PDE models, that is, we do not specify
the parameters. The results, which we shall describe, should nevertheless be
useful when dealing with perhaps somewhat different models in which some
or all of the parameters are determined by experiments. The reader will find
such models in articles listed in references. For clarity of exposition, we have
minimized, in the actual text, historic references to the literature, although
we have included a few in the concluding section.
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This chapter is intended for applied mathematicians and modelers who do
not have more than a very basic knowledge in PDEs. We have also included,
for the interested reader, several open problems, although many more come
easily to mind. The reader who would like to pursue mathematical research
in this direction will find this to be a widely open area of research, and a very
exciting one too!

2 Introduction to Tumors

Cancers are characterized by the following properties: (1) They and their
progeny reproduce at a faster rate than normal cells; and (2) they invade and
continue to proliferate in regions normally occupied by other cells – a process
called metastasis. Cancers are classified by the tissue from which they arise
and by the type of cells involved. For example, leukemia is a cancer of white
blood cells, sarcoma is a cancer arising in muscles and connective tissue, and
carcinoma is a cancer originating from epithelial cells, that is, the closely
packed cells which align the internal cavities of the body. In this chapter, we
shall deal only with carcinomas.

Neoplasm, or tumor, is a growing mass of abnormal cells. As long as this
mass remains clustered together and confined to the cavity, the tumor is said to
be benign. If the tumor has emerged out of the cavity, by breaking out through
the basal membrane and then proliferating into the extracellular matrix, or
stroma, then the tumor has become malignant, and we refer to it as cancer.
When cancer cells invade into the blood stream or the lymphatic vessels, they
may then be transported into another location, thus creating a secondary
tumor ; this process is called metastasis. The primary tumor is the tumor in
its initiated location. A primary tumor is usually traced to a single mutated
cell, from which, over a period of time, a colony of cells is formed. A solid
tumor may typically be detected only when it reaches a size of 1 cm; by then
the tumor contains 109 cells, including normal cells.

DNA replication and repair is not a 100% accurate process. As a result,
many gene mutations take place in the human body over one’s lifetime. There
is evidence that a single abnormal cell, which gives rise to a tumor, has risen
through a number of genetic mutations, or epigenetic mutations; the latter
means a change of gene expression as a result of blocking of gene promoters.

There are two ways by which a gene can become abnormal: (1) A stim-
ulating gene becomes hyperactive, or upregulated; such an abnormal gene is
called oncogene; and (2) An inhibitory gene becomes inactive, or downregu-
lated; it is called a tumor suppressive gene, an example being the p53 gene
which controls the initiation of the cell cycle.

In our mathematical models of tumor growth, we shall represent cells by
their density p(x, t) rather than by their number density N(x, t) (except in
the model (51)–(56); here, x is a point in the tumor region and t is the time
variable. The relation between these two quantities is
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Fig. 1. The evolution of a solid benign tumor to invasive cancer

p(x, t) ≈ N(x, t)dx

where x = (x1, x2, x3), dx = (dx1, dx2, dx3), and N(x, t) is the number of cells
in the box with sides (xi, xi + dxi).

The tumor region is a 3-dimensional region Ω(t), which varies with time
t. Within Ω(t) there are several types of cells, some are abnormal and others
are normal, as well as several different chemicals such as oxygen and other
nutrients, drugs, and immune system inhibitors. The densities of the cells
and the concentrations of the chemicals satisfy a system of partial differential
equations (PDEs) with appropriate boundary conditions. A major difficulty
in the analysis of the models is due to the fact that the region Ω(t) is one
of the unknowns of the problem; usually a physical condition is imposed on
the boundary of Ω(t), which should, in principle, enable us to assert that the
region Ω(t) and the solution of the system of the PDEs in Ω(t) have a unique
solution. The most important component of the solution is the region Ω(t),
since one would like to use the model to predict whether the tumor region will
grow, whether it will invade the stroma, how long this process will take, etc.

A problem of solving a system of PDEs in a domain with an unknown
boundary is called a free boundary problem. Such problems arise in many
areas of the physical sciences and technology; for example, in solidification
and melting processes where the free boundary is the solid/fluid interface, in
jets emerging from a nose, and in bubbles moving in air or water. However, the
free boundary problems which arise in cancer models are more complicated
due to the complexity of the processes underlying the growth of tumors.

A primary tumor can grow up to a typical size of 1mm without requiring
new supply of nutrients; during this stage the tumor is said to be avascular.
In order to continue to grow, the tumor requires new sources of nutrients. It
does it by secreting chemicals called tumor growth factors, which stimulate
the formation of new blood vessels, attracting them into the tumor. This is
the process of angiogenesis; a tumor which has developed beyond this stage
is said to be vascularized.

Let us denote the concentration of nutrients (e.g., oxygen) in the blood by
c. Then, for avascular tumors, we model the evolution of c by
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ε0
∂c

∂t
= Dc∇2c − λc in Ω(t) (1)

where Dc, ε0, λ are positive constants. Here λ is the nutrient consumption
rate, Dc is a diffusion coefficient, and

ε0 =
Tdiffussion

Tgrowth

is the ratio of the nutrient diffusion time scale to the tumor growth (e.g. tumor
doubling) time scale; typically

Tdiffussion ≈ 1 minute, Tgrowth ≈ 1 day ,

so that ε0 is small.
For vascular tumors, we replace the equation (1) by

ε0
∂c

∂t
= Dc∇2c + Γ (cB − c) − λc (2)

where cB is the nutrient concentration in the vasculature and Γ is the rate of
the blood-tissue transfer; thus Γ (cB − c) accounts for the nutrient concentra-
tion after the process of angiogenesis has taken place.

In the sequel, we shall use the change of variables, in the case of vascular-
ized tumors,

c − ΓcB

Γ + λ
→ c and Γ + λ → λ , (3)

so that in both avascular and vascular tumors c satisfies the same equation (1).
However, in the vascular case c may take negative values if c < ΓcB/(Γ + λ)
somewhere in Ω(t) prior to the above change of variables.

3 Three Types of Cells

In this section, we assume that the tumor contains three types of cells: prolif-
erating cells with density p(x, t), quiescent cells with density q(x, t), and dead
cells with density n(x, t). In subsequent sections we shall specialize to tumors
with two types of cells, or with just proliferating cells.

A living cell becomes dead either by apoptosis or by necrosis. In apoptosis,
the cell commits suicide when it receives signal to do so from the outside, or
when it becomes aware of unrepairable damage to its machinery, such as its
DNA. When a cell does not receive sufficient nutrients, it eventually dies, and
this process is called necrosis.

Following [50], we assume that quiescent cells become proliferating at a
rate KP (c) which depends on the concentration of nutrients c, and they be-
come necrotic or go into apoptosis at death rate KD(c). We also assume that
proliferating cells become quiescent at a rate KQ(c) and their death rate is
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KA(c). The density of proliferating cells is increasing due to proliferation at a
rate KB(c). Finally, we assume that dead cells are removed from the tumor,
as they decompose, at a constant rate KR.

Due to proliferation and removal of cells, there is a continuous motion of
cells within the tumor. We shall represent this movement by a velocity field
v. We can then write the conservation of mass laws for the densities of the
proliferating cells p, the quiescent cells q, and the dead cells n within the
tumor region Ω(t) in the following form:

∂p

∂t
+ div(pv) = [KB(c) − KQ(c) − KA(c)]p + KP (c)q , (4)

∂q

∂t
+ div(qv) = KQ(c)p − [KP (c) + KD(c)]q , (5)

∂n

∂t
+ div(nv) = KA(c)p + KD(c)q − KRn . (6)

The tumor tissue will be treated as a porous medium and the moving cells
as fluid flow. In a porous medium, the velocity v of fluid flow is related to the
fluid pressure σ by means of Darcy’s law,

v = −β∇σ(β > 0) .

We also assume that all the cells are physically identical in volume and
mass and that their density is constant throughout the tumor. Then

p + q + n = const. = B .

For simplicity, we take β = 1 and B = 1. If we add equations (2)–(4), we
get

divv = KB(c)p − KRn .

This equation can be used to replace the conservation law for n. If we also
substitute n = 1 − p − q in the equation for divv, we obtain the following
system of equations:

ε0
∂c

∂t
= ∆c − λc = 0 in Ω(t), t > 0 , (7)

∂p

∂t
−∇σ · ∇p = f(c, p, q) in Ω(t), t > 0 , (8)

∂q

∂t
−∇σ · ∇q = g(c, p, q) in Ω(t), t > 0 , (9)

∆σ = −h(c, p, q) in Ω(t), t > 0 , (10)

where

f(c, p, q) = [KB(c) − KQ(c) − KA(c)]p + KP (c)q − h(c, p, q)p ,

g(c, p, q) = KQ(c)p − [KP (c) + KD(c)]q − h(c, p, q)q ,

h(c, p, q) = −KR + [KB(c) + KR]p + KRq .
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We next need to impose boundary conditions. We denote the boundary of
Ω(t) by Γ (t), and take

c = c̄ on Γ (t), t > 0 , (11)
σ = γκ on Γ (t), t > 0 , (12)

∂σ

∂n
= −Vn on Γ (t), t > 0 , (13)

where c̄ is a constant concentration of nutrients, Vn is the velocity of the free
boundary, κ is the mean curvature, and γ is the surface tension coefficient.
In order to explain the condition (12) we first need to explain what we mean
by κ.

For any point y0 on a surface S, consider all the curves � on S passing
through y0, and denote their curvature at y0 by k(�). One can choose orthog-
onal coordinates (x1, x2) in the tangent plane to S at y0, with y0 as the origin,
such that

k(�) = k1 cos2 θ + k2 sin2 θ

where θ is the angle between the x1-axis and the tangent line to � at y0. The
numbers k1 = k1(y0) and k2 = k2(y0) are called the principal curvatures, and

κ = κ(y0) =
1
2
(k1(y0) + k2(y0))

is called the mean curvature. For a sphere S of radius R, κ(y0) ≡ R.
The assumption (12) means that what maintains a compact solid tumor

together is the surface tension. The surface tension is attributed to cell-to-cell
adhesiveness [14, 15, 18].

The condition (13) means that if x = x(t) describes the motion of a point
on Γ (t) and n is the outward normal to Γ (t) at x(t), then the normal deriva-
tion ∂σ

∂n , or (−v · n), is given by −(dx
dt ) · n; this is the well known kinematic

condition.
We supplement the system (7)–(13) by initial and boundary conditions,

p(x, 0) = p0(x) and q(x, 0) = q0(x) are given
functions in Ω(0), where Ω(0) is given,

and p0(x) ≥ 0, q0(x) ≥ 0, p0(x) + q0(x) ≤ 1 , (14)

c(x, 0) = c0(x) in Ω(0), c0(x) ≥ 0 . (15)

We are interested in proving that the system (7)–(15) has a “smooth”
solution. If this is to be the case, then the initial data must be “smooth”
and the initial and boundary data must be “consistent” with the differential
equation for c at Γ (0).

Theorem 1 [27]. If the initial data are sufficiently smooth and the consis-
tency conditions are satisfied, then there exists a unique smooth solution to
the system (7)–(15) for some time interval 0 ≤ t ≤ T .
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In general, one cannot extend the solution beyond some finite time. How-
ever if the initial data are radially symmetric, then one can prove the exis-
tence of a solution for all t > 0 provided ε0 = 0 and the rate coefficients
KA(c),KB(c), etc. satisfy some conditions. Consider for simplicity the case
where c̄ = 1, and assume that the rate coefficients are continuously differen-
tiable for 0 ≤ c ≤ 1 and satisfy the following properties:

K ′
B(c) > 0,K ′

P (c) > 0,K ′
A(c) ≤ 0,K ′

D(c) < 0,K ′
Q(c) < 0 ,

K ′
B(c) + K ′

D(c) > 0 (0 ≤ c ≤ 1);KB(0) = KP (0) = 0 ,

KA(1) = KD(1) = KQ(1) = 0 . (16)

The condition K ′
B(c) + K ′

D(c) > 0 is based on experimental data [29, 30],
whereas all the other conditions in (16) are natural; for example, if c increases
then KB(c) should increase, hence the assumption that K ′

B(c) > 0.

Theorem 2 [28]. If ε0 = 0 and (16) holds then, for any radially symmetric
initial data, there exists a unique radially symmetric solution of (7)–(15) for
all t > 0, and the free boundary Γ (t) = {r = R(t)} satisfies the inequalities

δ0 ≤ R(t) ≤ A0 for all t > 0 (17)

where δ0, A are positive constants.

Note that in the radially symmetric case v = x
r u(r, t) for some function

u(r, t). We also note that in the radially symmetric case we can express R(t)
directly by h(c, p, q) by integrating (10) over {r < R(t)} and using (13):

R2(t)
dR(t)

dt
=
∫ R(t)

0

h(c, p, q)r2dr . (18)

Since the unknown variable σ still appears in the equations (8), (9), the system
for σ cannot be decoupled from the system for c, p, q.

Theorem 2 raises interesting questions:

1. Does there exist a unique radially symmetric stationary solution to the
system (7)–(13)?

2. If so, does R(t) converge to Rs at t → ∞, where Rs is the radius of the
stationary solution?

3. If there are two stationary solutions with radii R−
s and R+

s , which one of
them is stable?

4. Are there stationary solutions which are not radially symmetric?
5. Can Theorem 2 be extended to the case where ε0 > 0?

We have partial answers to these questions when the tumor contains only
two types of cells, or just proliferating cells. These answers will be described
in Sects. 4 and 4.
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4 Two Types of Cells

In this section, we consider a special case of the model of Sect. 3, where
there are only two types of cells. Suppose first that the dead cells are quickly
degraded and removed from the tumor tissue. Under this assumption, we drop
the equation (4) and take

p + q = const. = 1 .

In the radially symmetric case, with v = x
r u(r, t) and c̄ = 1, the system

(7)–(13) with ε0 = 0 takes the form

1
r2

∂c

∂r

(
r2 ∂c

∂r

)
− λc = 0 if r < R(t), t > 0 , (19)

∂p

∂t
+u

∂p

∂r
= KP (c)+[KM (c)−KN (c)]p−KM (c)p2 if r < R(t), t > 0 , (20)

∂u

∂r
+

2
r
u = −KD(c) + KM (c)p if r < R(t), t > 0 , (21)

∂c

∂r
|r=0 = 0, u|r=0 = 0 if t > 0 , (22)

c = 1 on r = R(t) if t > 0 , (23)

dR

dt
= u(R(t), t) if t > 0 , (24)

where KM = KB − KA + KD,KN = KP + KQ, and we prescribe initial
conditions

p|t=0 = p0(r) ≤ 1 if r < R(0), R(0) is given . (25)

From Theorem 2 we already know that the system (19)–(25) has a unique
solution for all t > 0, and that R(t) remains uniformly bounded from above
and below by positive constants. So it is natural to ask whether R(t) has a limit
as t → ∞. If this is the case, and if we set Rs = limt→∞ R(t), then we expect
r = Rs to be the free boundary of a stationary solution (cs(r), ps(r), us(r)).
This leads us to explore a more basic question, namely, does a stationary
solution exist?; such a solution represents a benign, or dormant, malignancy.

Theorem 3 [27]. There exists a unique stationary solution (cs, ps, us, Rs)
of the system (19)–(24); furthermore,

0 < ps(r) < 1, p′s(r) > 0, us(r) < 0, c
′

s(r) > 0

if
0 < r < Rs ,

and
ps(0) > 0, ps(Rs) = 1, p

′

s(Rs) > 0 .
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It is known [22] that if a solution of (19)–(25) satisfies dR/dt ≥ 0 (or ≤ 0)
for all t sufficiently large, or even if just

lim
T→∞

∫ T+1

T

∣∣∣∣dR

dt

∣∣∣∣ dt = 0 , (26)

then the solution must converge to the stationary solution. However, this
condition is not one that can easily be verified (it may not even be satisfied), so
we shall ask an easier question about the asymptotic behavior of the solutions
of (19)–(25):

Problem 1 (P1). : Suppose we take initial values such that

c0(r) = cs(r) + εc1(r), p0(r) = ps(r) + εp1(r) (27)

for r < Rs + εR1, R(0) = Rs + εR1 .

Is it true that for |ε| sufficiently small the solution (c(r, t), p(r, t), u(r, t), R(t))
converges to the stationary solution?

But even this problem has not been solved so far. So we shall pose a yet
simpler problem for which we do have a solution. If we substitute

c(r, t) = cs(r) + εcc(r, t), p(r, t) = ps(r) + εp1(r, t) ,

u(r, t) = us(r) + εu1(r, t), R(t) = Rs + εR1(t)

into the system (19)–(24), (27) and collect only the ε-order terms, we obtain
a linear system for (c1, p1, u1, R1) in {r < Rs, t > 0}, which is called the
linearization of (19)–(24), (27) about the stationary solution.

Theorem 4 [22]. The linearized system has a unique global solution, and

c1 → 0, p1 → 0, u1 → 0, R1 → 0

as t → ∞.

This linear stability result may perhaps be used to solve problem (P1).
The results of this section can probably be extended to the case where the

tumor contains proliferating cells and dead cells, but not quiescent cells.

4 Proliferating Cells

In this section we assume that the tumor contains only proliferating cells. In
this case p ≡ 1 and we are left with only two PDEs, namely (7) and (10); the
latter has the form

∆σ = S(c)
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where S(c) = KB(c)−KA(c). Taking KB(c) and KA(c) to be linear functions
of c, we can write

S(c) = µ(c − c̃)

where µ is a positive constant, and c̃ < c̄. To simplify the notation we scale
x, t, c, and σ, and also take c̃ > 0, so that the free boundary problem takes
the form:

∂c

∂t
− ∆c + c = 0 in Ω(t), t > 0 (α > 0) , (28)

∆σ = −µ(c − c̃) in Ω(t), t > 0 , (29)

c = 1 on Γ (t), t > 0 and 1 > c̃ > 0 , (30)

σ = γκ on Γ (t), t > 0 (31)
∂σ

∂n
= −Vn on Γ (t), t > 0 (32)

with initial conditions

c|t=0 = c0(x) if x ∈ Ω(0), Ω(0) is given . (33)

We can also make γ = 1 or µ = 1 by the above scaling, but these two
parameters have different biological significance:

1. µ(c − c̃) may be viewed as mitotic birth rate when c > c̃ and death rate
when c < c̃;

2. The surface tension coefficient γ represents the cell-to-cell adhesiveness.

As will be seen, the parameter µ/γ plays an important role in the study
of the tumor boundary. For simplicity we take γ = 1.

The results of the previous sections already tell us that the system (28)–
(31) has a unique solution for a small time interval (see also [7]). In the case
of radially symmetric solutions, we have (cf. (18))

R2(t)
dR(t)

dt
=
∫ R(t)

0

µ(c(r, t) − c̃)r2dr .

We can then solve (28), (30) together with this relation, and then proceed to
solve (29), (31) for σ. In this way one establishes the existence of a unique
solution (c(r, t), σ(r, t), R(t)) for all t > 0.

Theorem 5 [36]. There exists a unique radially symmetric stationary solu-
tion, given by

cs(r) =
Rs

sinh Rs

sinh r

r
, σs(r) = C − µcs(r) +

µ

6
c̃r2

where C = 1
Rs

+ µ − µc̃R2
s

6 , and Rs is the unique solution of the equation

tanh Rs =
Rs

1 + ( c̃
3 )R2

s

.
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Definition 1. Take any initial values

c0(x) = cs(r) + εc1(r, θ, ϕ) in Ω(0), Ω(0) : r < Rs + εR1(0, ϑ)

where c1, R1 are arbitrary functions and |ε| is sufficiently small, such that
the smoothness and consistency conditions of Theorem 1 are satisfied. If the
local solution established in Theorem 1 can then be extended to all t > 0, and
(c(x, t), σ(x, t), Ω(t)) converges to the radially symmetric stationary solution
centered about some center x0 as t → ∞ (x0 depends on c1 and R1), then we
say that the stationary solution is asymptotically stable.

Since tumors grown in vitro are nearly, but not exactly, spherical, it is
important to determine whether radially symmetric tumors are asymptotically
stable.

Before we address this question, let us raise another one. Since in vivo one
sees a variety of spatially patterned dormant malignancies, we would like to
explore whether already the simplified model (28)–(32) can produce stationary
solutions which are not radially symmetric. A construction of such solutions
can be achieved by perturbations that produce branches of symmetry-breaking
solutions:

Theorem 6 [31]. For any integer � ≥ 2, there exists a stationary solution
with free boundary

r = Rs + εY�,0(θ) + O(ε2) ,

and
µ = µ� + εµ�1 + O(ε2)

for any small |ε|, where Y�,0(θ) is the spherical harmonic of mode (�, 0),
namely,

Y�,0(θ) =

√
2� + 1

4π
P�(cos θ), P�(x) =

1
2��!

d�

dx�
(x2 − 1)� ,

and µ� is given by

1
µ�

= 2R3 I3/2(R)
I1/2(R)

I5/2(R)/I3/2(R) − I�+3/2(R)/I�+1/2(R)
�[�(� + 1) − 2]

where R = Rs.

Here Im(r) is the modified Bessel function

Im(r) = Σ∞
k=0

(r/2)m+2k

k!Γ (m + k + 1)
.

We note that
µ2 < µ3 < · · · , µ� → ∞ if � → ∞ .
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The two-dimensional analog of Theorem 6 was proved in [37, 38]. Theorem
6 implies that the radially symmetric stationary solution is not asymptotically
stable for µ = µ2 = µ2(Rs). Indeed, any of the stationary solutions established
in Theorem 6 for � = 2 and |ε| small lie in an arbitrarily small neighborhood
of the spherical solutions if |ε| is small, and they remain non-spherical for
all time. On the other hand, the radially symmetric stationary solution is
asymptotically stable if µ is sufficiently small [7]. But is this still true for all
µ < µ2(Rs)?

Theorem 7 [33, 34]. There exists a function µ∗(R) such that µ∗(R) = µ2(R)
if R > R̄ and µ∗(R) < µ2(R) in R < R̄, and such that the following holds:
If µ < µ∗(Rs) then the spherical stationary solution is asymptotically stable,
and if µ > µ∗(Rs) then the spherical stationary solution is linearly unstable.

R̄ is approximately 0.62207.
The bifurcation branch of stationary solutions established in Theorem 7

for � = 2 has two parts, corresponding to ε > 0 and ε < 0. We expect one
part to consist of linearly stable solutions, and the other part to consist of
linearly unstable solutions. One also expects that, in case Rs < R̄, there exists
a branch of periodic solutions analogous to the Hopf bifurcation. Indeed, the
following holds:

Theorem 8 [35]. (i) If µ∗(R) = µ2(R) then the bifurcation branch asserted
in Theorem 2 for � = 2 is linearly stable for ε > 0, and linearly unstable for
ε < 0; (ii) If µ∗(R) < µ2(R) then there is a linearly stable Hopf bifurcation at
µ = µ∗(R).

The assertion in case (ii) means that we have a family of time-periodic
solutions, and every solution of the linearized problem converges to one of
these solutions as t → ∞.

If γ �= 1 in (31) then Theorems 5–8 remain valid with µ and µ� replaced
by µ/γ and µ�/γ. If we think of µ as a fixed parameter and set

γ∗(R) =
µ

µ∗(R)
,

then Theorem 7 asserts that the stationary spherical solution is asymptotically
stable if the cell-to-cell adhesion is sufficiently strong, namely, if γ > γ∗(Rs)
and it is linearly unstable if γ < γ∗(Rs). Theorem 6 asserts that non-spherical
dormant malignancies can occur when cell-to-cell adhesion is weak, and The-
orem 8 addresses the linear stability of the first branch of such non-spherical
tumors.

5 Tumors with Necrotic Core

Theorem 3 shows that in a radially symmetric dormant tumor that contains
only proliferating and quiescent cells, the density of the proliferating cells
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increases toward the boundary of the tumor. A similar result can be estab-
lished for a tumor that contains only proliferating and dead cells. It has also
been experimentally observed that proliferating cells are found mostly near
the boundary of solid tumors, whereas necrotic cells occupy the interior of tu-
mors. This suggests developing a mathematical model for stationary tumors in
which the tumor tissue is divided into two regions: A core region Ω0 consisting
only of dead cells (the necrotic core), and a shell-like region Ω consisting only
of proliferating cells. The boundary Γ0 between Ω0 and Ω is a free boundary
(the inner free boundary).

For the time-dependent model, we introduce the notation

Ω0(t) = necrotic core,
Ω(t) = proliferating shell-like region,
Γ0(t) = boundary of Ω0(t),
Γ (t) = outer boundary of Ω(t).

We assume that

c(x, t) ≡ const. = c∗0 in Ω0(t)

and that c(x, t) is continuously differentiable across Γ0(t). Then

c = c∗0,
∂c

∂n
= 0 on Γ0(t) . (34)

We also assume that the drop in the pressure σ across Γ0(t) is given by
∫

Γ0(t)

∂σ

∂n
ds = −ν|Ω0(t)| (ν > 0) (35)

where |Ω0(t)| denotes the volume of Ω0(t) and ∂/∂n is the derivative in the
direction of the outward normal.

In the outer shell, Ω(t), which contains only proliferating cells, we still
have the system (28)–(32) with the initial condition (33), but we assume that
c0(x) satisfies:

c0

∣∣∣∣Γ0(0) = c∗0,
∂c0

∂n

∣∣∣∣
Γ0(0)

= 0, c∗0 < c0(x) < 1 in Ω(0) . (36)

Finally, it is natural to assume that

c∗0 < c̃ < 1 . (37)

Problem 1 (P2). Extend all the results of Sect. 4 to the system (28)–(33),
(34)–(37).

The mathematical novelty here is that we have two free boundaries, and
that the free boundary conditions on Γ0(t) are of a different type than the
free boundary conditions on Γ (t).
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Integrating (29) over Ω(t) and using (33), (35), we obtain the relation
∫

Ω(t)

µ(c − c̃)dx =
∫

Γ (t)

Vnds + ν|Ω0(t)| . (38)

We shall consider here only the case of radially symmetric solutions. We
can then restate the problem in terms of only the function c. Indeed, if we set

Γ0(t) = {r = ρ(t)}, Γ (t) = {r = R(t)}

then c = c(r, t) satisfies:

α
∂c

∂t
− 1

r2

∂

∂r

(
r2 ∂c

∂r

)
+ c = 0 if ρ(t) < r < R(t), t > 0 (39)

c(ρ(t), t) = c∗0,
∂c

∂r
(ρ(t), t) = 0, t > 0 , (40)

c(R(t), t) = 1, t > 0 , (41)

and, by (38),

R2(t)
dR(t)

dt
=
∫ R(t)

ρ(t)

µ(c(r, t) − c̃)r2dr − ν

3
ρ3(t) , (42)

with initial conditions

c|t=0 = c0(r) for ρ(0) < r < R(0) where ρ(0), R(0) . (43)

After we find c, we can proceed to solve for σ.
Set

γ =
c̃

c∗0
, γ0 =

1
c∗0

(1 < γ < γ0)

and introduce the function

m(η) =
η cosh η − sinh η

η3
.

One can show that m′(η) > 0 for all η > 0 and

m(0) =
1
3
, m(∞) = ∞ .

Hence there exists a unique number ηγ such that

m(ηγ) =
γ

3
.
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Theorem 9 [26]. If γ0 > cosh ηγ then there exists a unique radially symmet-
ric stationary solution (cs(r), ρs, Rs); The solution has the form

cs(r) =
c∗0
r

[sinh(r − ρs) + ρs cosh(r − ρs)], ρs < r < Rs

where ρs and Rs are determined by the conditions cs(Rs) = 1 and

∫ Rs

ρs

µ(cs(r) − c̃)r2dr − ν

3
ρ3

s = 0 .

For a class of initial data which lie in a small neighborhood of the station-
ary solution, the system (39)–(43) has a unique solution (c(r, t), ρ(t), R(t)) and
it converges to (cs(r), ρs, Rs) as t → ∞, provided α (in (39)) is sufficiently
small [26].

6 Cancer Therapy

We consider here the treatment of cancer by drugs (e.g., chemotherapy). More
generally, we shall use the word “inhibitor” to include not only externally
administered drugs, but also chemicals produced by the autoimmune system.
For simplicity we shall lump together all the inhibitors into one, and denote
its concentration by u. We assume that u satisfies a diffusion equation

α1
∂u

∂t
− ∆u − γu = 0 in Ω(t), t > 0 (44)

where α1, γ are positive constants; γu represents the decay rate of the in-
hibitor.

The models introduced in the previous sections need to be modified by
taking into account the effects of the inhibitor. We illustrate this with a drug
which is designed to block the process of angiogenesis in vascular tumors.
The drug causes a decrease in the concentration of nutrients. Hence, in the
equation (2) we add the term −Ku to the right-hand side, where K depends
on the effectiveness of the drug.

Problem 2 (P3). Extend all the results of the previous sections to the case
where −Ku is added to the right-hand side of (2), and u satisfies the equation
(44) with prescribed boundary and initial conditions.

We note that Theorem 1 extends to this case with minor changes in the
proof. We shall now consider the radially symmetric case with tumors con-
sisting of only proliferating cells. Then

α
∂c

∂t
=

1
r2

∂

∂r

(
r2 ∂c

∂r

)
− c − Ku if r < R(t), t > 0 , (45)
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α1
∂u

∂t
=

1
r2

∂

∂r

(
r2 ∂u

∂r

)
− γu if r < R(t), t > 0 , (46)

∂c

∂r
=

∂u

∂r
= 0 at r = 0, t > 0 , (47)

c|R(t) = c̄, u|R(t) = ū, t > 0 , (48)

R2(t)
dR(t)

dt
=
∫ R(t)

0

µ(c − c̃)r2dr, t > 0 , (49)

c|t=0 = c0(r), u|t=0 = u0(r) for r < R(0), R(0) is given . (50)

As in Sect. 5, after solving this system we can proceed to solve for the
pressure σ.

Note that for vascular tumors, the c which appears in (45)–(49) is not
the concentration of nutrient; indeed, it is obtained from the nutrient concen-
tration by the change of variables (3). Hence the quantities c, c̄, c̃ and c0 in
(45)–(49) are not necessarily positive.

Theorem 10 [25]. If 0 < (c̃/c̄) < 1 then there exists a unique stationary
solution (cs, us, Rs) for all t > 0, and, provided α, α1 are sufficiently small,
the stationary solution is globally asymptotically stable if c̄ ≥ 0 and unstable
if c̄ < 0.

By “globally asymptotically stable” we mean that for any initial data, the
solution (c(r, t), u(r, t), R(t)) converges to (cs(r), us(r), Rs); “unstable” means
that for some initial data, R(t) → ∞ if t → ∞.

If (c̃/c̄) does belong to the interval (0, 1) then there may be no stationary
solutions, one stationary solution with radius Rs, or two stationary solutions
with radii R−

s , R+
s , where R−

s < R+
s ; all three cases do occur, depending on the

coefficients of the system (45)–(49). When there are two stationary solutions,
the one with R−

s is asymptotically stable provided R(0) < R+
s ; if R(0) > R+

s

then there are initial data for which R(t) → ∞ as t → ∞ [4].
The proofs of the above results yield additional information regarding the

treatment:

(i) R−
s → 0 and R+

s → ∞ if ū → ∞. Hence, given a tumor with initial size
R(0), we can increase the dose ū to a level ū∗ such that

R−
s < R(0) < R+

s ,

and then R(t) will decrease to R−
s as t increases to ∞. In other words,

every tumor can be made to shrink to any given small size provided it is
treated with sufficiently high dose ū (neglecting side-effects):

(ii) By increasing the coefficient K (i.e., the drug effectiveness), we decrease
R−

s and increase R+
s , so that again we can make any tumor shrink to any

small size.
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Our next model is concerned with gene therapy. One of the obstacles in
developing efficient gene therapy to cancer is caused by the delivery process.
The macromolecules used as carriers to deliver the gene therapy are too large
to be transported and diffused into the nuclei of the tumor cells. A recent
approach aimed at bypassing this problem involves the use of virus. The virus
is engineered to be replication-competent and to selectively bind to receptors
on the tumor cell surface (but not to the surface of normal healthy cells). The
virus particles then proceed to proliferate within the tumor cell, eventually
causing death (lysis). Thereupon the newly reproduced virus particles are re-
leased and then proceed to infect adjacent cancer cells. This process continues
until all the cancer cells are destroyed.

We model this process, as in [60, 61], by introducing three types of cells:
cells uninfected by the virus particles, cells infected by the virus, and dead
cells. Let

p = number density of uninfected cells,
q = number density of infected cells,
n = number density of dead cells,
w = number concentration of the free virus particles, i.e., the virus residing

outside the cells.

Then, by conservation of mass,

∂p

∂t
+ div(pv) = λp − βpw in Ω(t), t > 0 , (51)

∂q

∂t
+ div(qv) = βpw − δq in Ω(t), t > 0 , (52)

∂n

∂t
+ div(nv) = δq − µn in Ω(t), t > 0 , (53)

where λ = proliferation rate of the uninfected cells, βpw accounts for infection
of uninfected cells, δ = death rate of infected cells and µ = removal rate of dead
cells. When a cell dies, virus particles are released. Because virus particles are
small, they satisfy a diffusion equation, so that

ε0
∂w

∂t
= Dw∆w − γw + Nδq (54)

where Nδq is the virus release term, and γ is the virus decay rate.
As in Sect. 3 we assume that

v = −∇σ, σ = pressure .

Since the virus particles are very small, we ignore their contribution to the
average density of the tumor tissue, and thus take p + q + n = const. = c. By
scaling we may take c = 1. Then we can replace equation (53) by

− ∆σ = λp − µ(1 − p − q) in Ω(t), t > 0 . (55)
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We also assume the boundary conditions (31), (32), and

∂w

∂n
= 0 on Γ (t), t > 0 . (56)

Theorem 1 extends to the system (51), (52), (54)–(56) and (12)–(14) with
initial condition

w(x, 0) = w0(x) in Ω(0), w0(x) ≥ 0 .

We next consider only radially symmetric solutions and set

v =
x

r
u(r, t),M =

βN

γ
,Dw = k0R

2(t) ;

we assume that k0 is constant, and replace w by w/N . We then obtain the
system

∂p

∂t
+ u

∂p

∂r
= λp − Mγpw − ph(p, q) if r < R(t), t > 0 , (57)

∂q

∂t
+ u

∂q

∂r
= Mγpw − δq − qh(p, q) if r < R(t), t > 0 , (58)

ε0
∂w

∂t
= k0R

2 1
r2

∂

∂r

(
r2 ∂w

∂r

)
+ δq − γw if r < R(t), t > 0 , (59)

1
r2

∂

∂r
(r2u) = −h(p, q) if r < R(t), t > 0 , (60)

where
h(p, q) = −λp + µ(1 − p − q) ,

and
∂w

∂r

∣∣∣∣r=0 = 0,
∂w

∂r

∣∣∣∣
r=R(t)

= 0 if t > 0 , (61)

u(0, t) = 0 if t > 0 , (62)

dR

dt
= u(R(t), t) if t > 0 , (63)

with initial conditions

p|t=0 = p0(r), q|t=0 = q0(r), w|t=0 = w0 if r < R(0)

where R(0) is given , (64)

p0, q0, w0 are nonnegative

and continuously differentiable, and p0 + q0 ≤ 1 . (65)
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Theorem 11 [39]. There exists a unique solution (p(r,t), q(r,t), w(r,t),
u(r,t), R(t)) of the system (57)–(65) for all t > 0, and

R(0)e−νt ≤ R(t) < R(0)eνt for all t > 0,

for some positive constant ν.

The system (51), (52), (54), (55) with v = −∇σ is similar to the system
(4), (5), (7), (10), but there are some important differences. For the radially
symmetric case, Theorem 11 does not assume that ε0 = 0, as we did in
Theorem 2; on the other hand, the bounds on R(t) obtained in Theorem 11
are much weaker than the bound (17) asserted in Theorem 2.

With regard to stationary solutions, for the present system, we can imme-
diately construct such solutions with constant cell number densities

p(r) ≡ ps, q(r) ≡ qs

and
w(r) ≡ ws =

δ

γ
qs ,

us(r) =
1
3
(−µ + (λ + µ)ps + µqs)r .

Indeed, there are four such pairs (ps, qs):

(0, 0), (1, 0),
(

0,

(
1 − δ

µ

))
provided δ < µ , (66)

and (
λµ − Mδµ + Mδ2 + µδ

(Mδ − λ)Mδ
,
(λ + µ)(Mδ − δ − λ)

(Mδ − λ)Mδ

)
≡ (p∗s, q

∗
s ) (67)

provided p∗s ≥ 0, q∗s ≥ 0.
Notice that since us(Rs) = 0, we must have Rs = 0. This suggests the

possibility of asymptotic stability with limt→∞ R(t) = 0. Indeed we have:

Theorem 12 [39]. Let R(0) be arbitrary positive number and assume that

p0(r) − ps, q0(r) − qs, w0(r) −
δ

γ
qs

are uniformly small in absolute value together with their first derivative, where
(ps, qs) = (0, 1 − δ

µ ), δ < µ, and

M >
µ(λ + δ)
γ(µ − δ)

.

Then
dR(t)

dt
< 0

and
R(0)e−

δ
2 t ≤ R(t) ≤ R(0)e−

δ
4 t

for all t > 0.
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A similar result holds for the stationary point (67), but not for the first
two points in (66).

Problem 3 (P4). Theorem 12 establishes complete therapy if the initial con-
centration of (p, q) is near the point (0, 1− δ

µ ). Is there a general class of initial
data (p0(r), q0(r)) for which one may choose w0(r) that will shrink the tumor
to zero?

For other models of drug treatment see [24, 43–45, 62].

7 Concluding Remarks

A history of mathematical models of tumor growth, which includes exhaustive
literature, was recently published by Aranjo and McElwain [6]. Other good
sources can be found in the volume [4] edited by Adam and Bellomo and in
the journal issue [42] edited by Horn and Webb.

The tumor model (28)–(32) was first developed by Greenspan [40, 41].
It was subsequently analyzed, numerically and by asymptotic analysis, by
Byrne and Chaplain [16, 17] (see also [1–3, 5, 13, 47, 48] for earlier work).
They studied the radially symmetric case and extended the model to include
a necrotic core as in Sect. 5, and inhibitors as in Sect. 6, but with proliferating
cells only. We also mention the papers by Chaplain and collaborators [19, 21,
53] and Byrne and Matthews [20] on spatial patterns in cancer growth. The
model with three types of cells, as in Sect. 3, was introduced in the radially
symmetric case by Pettet, Please, et al. [49]. Models with two types of cells
were also considered in [46, 49, 51, 54, 59]. There are mathematical models
in the literature which are designed to describe a specific type of cancer, or
specific process in the evolution of general tumors, such as angiogenesis (see
Chap. 2 in this volume), tumor invasion (see Chap. 4 in this volume), and the
interaction of tumor with the immune system (see Chap. 3 in this volume).
We mention, in particular, the work of Bertuzzi, Fasano, et al. [9–12] on
tumor chords. The mathematical methods used to prove the theorems cited
in this chapter may possibly be applicable to some such models. We cite one
example which deals with a brain tumor such as glioblastoma, due to Sander
and Deisboeck [52]; (for another example on prostate tumor, see Jackson [44]).
In this model the tumor consists of a spherical core which is surrounded by
invasive spherical shell of tumor cells shedded from the core in response to
chemotaxis (nutrients) and homotype attraction. Denoting the invasive shell
by {r0 < r < R(t)}, the density of tumor cells by c, the nutrient concentration
by n, and the homotype concentration by h, the following system of equations
holds in {r0 < r < R(t)}:

∂c

∂t
= ∇ · (Dc∇c) −∇ · (c∇(χn)) −∇ · (cη∇h) ,



Cancer Models and Their Mathematical Analysis 243

ε0
∂n

∂t
= Dn∆n − c ,

ε1
∂h

∂t
= Dh − µh + λc ,

with appropriate boundary conditions at r = r0 and at the free boundary.
Although this model does not fall within the models described in previous
sections, it is quite possible that the mathematical methods used to prove the
theorems cited in this chapter can be extended to the present model.

We finally recall that a basic assumption in this chapter regarding the
physical structure of the tumor tissue was Darcy’s law v = −∇σ where v is
the velocity of driven cells and σ is the pressure; thus the tissue is assumed
to have the consistency of a porous medium. In some cancer models it may
be more appropriate to assume that the movement of cells within the tumor
follows the Stokes equation for viscous flow

µ∆v = ∇σ

where µ is the viscosity coefficient; the birth rate of tumor cells is related to
v by

∇ · v = KB(c) or ∇ · v = KB(c) − KRn .

The Stokes equation was used by Franks, Byrne, et al. [32] to model the
growth of ductal carcinoma in situ of the breast. A mathematical challenge
is to develop a rigorous mathematical theory of free boundary problems for
cancer models based on Stokes equation.
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