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Birkhäuser
Boston • Basel • Berlin



Valentin Boju
MontrealTech
Institut de Technologie de Montreal
P.O. Box 78575, Station Wilderton
Montreal, Quebec, H3S 2W9 Canada
valentinboju@montrealtech.org

Louis Funar
Institut Fourier BP 74
URF Mathematiques
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Preface

The authors met on a Sunday morning about 25 years ago in Room 113. One of us
was a college student and the other was leading the Sunday Math Circle. This circle,
within the math department of the University of Craiova, gathered college students
who possessed a common passion for mathematics. Most of them were participating
in the mathematical competitions in vogue at that time, namely the Olympiads. Others
just wanted to have good time.

There were similar math circles everywhere in the country, in which high-school
students were committed to active training for math competitions. The highest stan-
dard was achieved by the selective training camps organized at the national level,
which were led by professional coaches and mathematicians who were able to stimu-
late and elicit high performance. To mention a few among the leaders, we recall Dorin
Andrica, TomaAlbu, TituAndreescu, Mircea Becheanu, Ioan Cuculescu, Dorel Mihet,
and Ioan Tomescu.

The Sunday Math Circle shifted partially from its purpose of Olympiad training
by following freely the leader’s ideas and thus becoming a place primarily intended
for disseminating beautiful mathematics at an elementary level. The fundamental
texts were the celebrated book of Richard Courant and Herbert Robbins with the
mysterious title What is mathematics?, and the book of David Hilbert and Stefan
Cohn–Vossen entitled Geometry and the Imagination. The participants soon realized
the differences in both scale and novelty between the competition-type math problems
that they encountered every day and the mathematics built up over hundreds of years
and engaged in by professional mathematicians.

Competition problems have to be solved in a short amount of time, and people
compete against each other. These might be highly nontrivial, unconventional prob-
lems requiring deep insights and a lot of imagination, but still they have the advantage
that one knows in advance that they have a solution. In the real mathematical world,
problems often had to wait not merely years but sometimes centuries to be solved. A
working mathematician could go for months or years trying to solve a particular prob-
lem that had not been solved before and take the risk of bitterly failing. Moreover, the
sustained effort needed for accomplishing such a task would have to take into account
a delicate balance between the accumulation of knowledge, methods, and tools and
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the creation from scratch of a path leading to a solution. This intellectual adventure
is filled with suspense and frustration, since one does not know for sure what one is
trying to prove or whether it is indeed true.

Real mathematics seemed to many of us to be too far away from competition
problems. The philosophy of the Sunday Math Circle was that, in contrast to what we
might think, the border between the two kinds of mathematics could be so vague and
flexible that at times one could cross it at an early age. The history of mathematics
abounds in examples in which a fresh mind was able to find an unexpected solution
that specialists had been unable to find. One needs, however, the right training and the
unconventional sense of finding the inspiring problem. Eventually, once a solution
has been found, mathematicians are then willing to try to understand it even better,
and other solutions follow in time, each one simpler and clearer than the previous
one. In some sense, once solved, even the hardest problems start losing slowly their
aura of difficulty and eventually become just problems. Problems that are today part
of the curriculum of the average high-school student were difficult research problems
three hundred years ago, solved only by brilliant mathematicians. This phenomenon
demonstrates the evolution that language and science have undergone since then.

The authors conceived the present book with the nostalgia of the “good old times"
of the Sunday Math Circles. We wanted something that carries the mark of that philos-
ophy, namely, a number of challenging math problems for Olympiads with a glimpse
of related problems of interest for the mathematician. The present text is a collection
of problems that we think will be useful in training students for mathematical com-
petitions. On the other hand, we hope that it might fulfill our second goal, namely,
that of awakening interest in advanced mathematics. Thus its audience might range
from college students and teachers to advanced math students and mathematicians.

The problems in each section are in increasing order of difficulty, so that the reader
give some of the problems a try. We wanted to have 25% easy problems concerning
basic tools and methods and consisting mainly of instructional exercises. The beginner
might jump directly to the solutions, where a concentrate of the general theory and
basic tricks can be found. The largest chunk contains about 50% problems of medium
difficulty, which could be useful in training for mathematical competitions from local
to international levels. The remaining 25% might be considered difficult problems
even for the experienced problem-solver. These problems are often accompanied by
comments that put the results in a broader perspective and might incite the reader to
pursue the research further.

The problems serve as an excuse for introducing all sorts of generalizations and
closely related open problems, which are spread among the solutions. Some of these
are truly outstanding problems that resisted the efforts of mathematicians over the
centuries, such as the congruent numbers conjecture and the Riemann hypothesis,
which are among seven Millennium Prize Problems that the Clay Mathematics Insti-
tute recorded as some of the most difficult issues with which mathematicians were
struggling at the turn of the second millennium and offered a reward of one million
dollars for a solution to each one. In mathematics the frontier of our knowledge is
still open, and it abounds in important unsolved problems, many of which can be
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understood at the undergraduate level. The reader might be soon driven to the edge
of that part of mathematics where he or she could undertake original research.

We drew inspiration from the spirit of the famous books by R. K. Guy and his
collaborators. Nevertheless, our aim was not to build up a collection of open questions
in elementary mathematics but rather to offer a journey among the basic methods in
problem-solving. Developing intuition and strengthening the most popular techniques
in mathematical competitions are equally part of the goal. In the meantime, we offer the
enthusiastic reader a brief glimpse of mathematical research, a place where problems
yet unsolved long for deliverance.

The present collection of problems evolved from a notebook in which the second-
named author collected the most interesting and unconventional problems that he
encountered during his training for mathematical competitions in the 1980s. In the
tradition of the Romanian school of mathematical training, he encountered problems
inspired by both Russian Olympiads and American Competitions. Some (if not most)
of the problems have already appeared elsewhere, especially in Kvant, Matematika
v Shkole, American Mathematical Monthly, Elemente der Mathematik, Matematikai
Lapok, Gazeta Matematica, and so, in a sense, the collection gained a certain cos-
mopolitan flavor. We have given the source in the problem section, when known, and
more detailed information in the comments within the solutions part.

The original set of problems is complemented by more basic exercises, which
aim at introducing many of the tricks and methods of which the competitor should be
aware. Years later, we followed the destiny of some of the most intriguing questions
from the notebook. Some of them led to developments that are well beyond the scope
of this book, and we decided to outline a few of them.

We have supplied a short glossary containing some less usual definitions and
identities in the geometry of triangles and the solution of Pell’s equation. In order to
help the reader find his or her way through the book, we have provided both an index
concerning all mathematical results needed in the proofs, which are usually stated at
the place where they are used first, and an index of mathematical terms at the end of
the book.

The authors have benefited from discussions, corrections, help, and feedback from
several people, whom we want to thank warmly: Dorin Andrica, Barbu Berceanu,
Roland Bacher, Maxime Wolff, Mugurel Barcǎu, Ioan Filip, and Simon György
Szatmari. We also thank Ann Kostant, Editorial Director, Springer, and Avanti
Paranjpye, Associate Editor, Birkhäuser Boston, for their productive suggestions.
One of them led to the “Index of Topics and Methods,” which might be useful for
a better reception of the book by readers. We are very grateful to Elizabeth Loew,
our Production Editor, for her patience and dedication to accuracy and excellence.
Finally, we are thankful to David Kramer for his thorough copyediting corrections.

Valentin Boju and Louis Funar
Montreal, Canada and Saint-Martin-d’Hères, France
July 2006
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Part I

Problems



1

Number Theory

Problem 1.1. Show that we have Ckn ≡ 0 (mod 2) for all k satisfying 1 ≤ k ≤ n− 1
if and only if n = 2β , where β ∈ Z

∗+. Here Ckn denotes the number of combinations,
i.e., the number of ways of picking up a subset of k elements from a set of n elements.
Known also as the binomial coefficient or choice number and sometimes denoted as(
n
k

)
it is given by the formula

Ckn =
(
n

k

)
= n!

k!(n− k)!

where the factorial n! represents

n! = 1 × 2 × 3 × · · · × n.

Problem 1.2. Let P = anx
n + · · · + a0 be a polynomial with integer coefficients.

Suppose that there exists a number p such that:

1. p does not divide an;
2. p divides ai , for all i ≤ n− 1;
3. p2 does not divide a0.

Then P is an irreducible polynomial in Z[x].

Problem 1.3. Given mi, bi ∈ Z+, i ∈ {1, 2, . . . , n}, such that gcd(mi,mj ) = 1 for
all i �= j , there exist integers x satisfying x ≡ bi (mod mi) for all i. This result is
usually known as the Chinese remainder theorem.

Problem 1.4. If gcd(a,m) = 1, then it is a classical result of Euler that we have the
following congruence:

aϕ(m)+1 ≡ 0 (mod m),

where ϕ(m) is the Euler totient function, which counts how many positive integers
smaller than m are relatively prime to m. Prove that this equality holds precisely for
those numbers a,m such that for any prime number p that divides a, if pk divides m
then pk also divides a.



4 1 Number Theory

Problem 1.5. (Kvant) Let p > 2 be a prime number and ak ∈ {0, 1, . . . , p2 − 1}
denote the value of kp modulo p2. Prove that

p−1∑

k=1

ak = p3 − p2

2
.

Problem 1.6. If k ∈ Z+, then show that
[√
k2 + 1 + · · · +

√
k2 + 2k

]
= 2k2 + 2k,

where [x] denotes the integer part, i.e., the largest integer smaller than x.

Problem 1.7. (Amer. Math. Monthly) If n is not a multiple of 5, then P = x4n +
x3n + x2n + xn + 1 is divisible by Q = x4 + x3 + x2 + x + 1.

Problem 1.8. (Amer. Math. Monthly) Let p be an odd prime and k ∈ Z+. Show that
there exists a perfect square the last k digits of whose expansion in base p are 1.

Problem 1.9. Any natural number greater than 6 can be written as a sum of two
numbers that are relatively prime.

Problem 1.10. (International Math. Olympiad) Prove that it is impossible to extract
an infinite arithmetic progression from the sequence S = {1, 2k, 3k, . . . , nk, . . . },
where k ≥ 2.

Problem 1.11. (Amer. Math. Monthly) Prove that ba−j+1 dividesCjba if a, b ≥ 2, j ≤
a + 1.

Problem 1.12. Solve in integers the following equations: (1) x2 = y2 + y3; (2)
x2 + y2 = z2.

Problem 1.13. Let a, b, c, d ∈ Z+ be such that at least one of a and c is not a perfect
square and gcd(a, c) = 1. Show that there exist infinitely many natural numbers n
such that an + b, cn + d are simultaneously perfect squares if one of the following
conditions is satisfied:

1. b and d are perfect squares;
2. a + b, c + d are perfect squares;
3. a(d − 1) = c(b − 1).

Moreover, there do not exist such numbers if a = 1, b = 0, c = 4k2 − 1, d = 1.

Problem 1.14. If N = 2 + 2
√

28n2 + 1 ∈ Z for a natural number n, then N is a
perfect square.

Problem 1.15. Let n ≥ 5, 2 ≤ b ≤ n. Prove that
[
(n− 1)!

b

]
≡ 0 (mod b − 1).
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Problem 1.16. (Amer. Math. Monthly) Prove that for every natural number n, there
exists a natural number k such that k appears in exactly n nontrivial Pythagorean
triples.

Problem 1.17. (Amer. Math. Monthly) Let n, q ∈ Z+ be such that all prime divisors
of q are greater than n. Show that

(q − 1)(q2 − 1) · · · (qn−1 − 1) ≡ 0 (mod n!).

Problem 1.18. Every natural number n ≥ 6 can be written as a sum of distinct primes.

Problem 1.19. Every number n ≥ 6 can be written as a sum of three numbers that
are pairwise relatively prime.

Problem 1.20. (Romanian training camp, Sinaia 1984) Find all pairs of integers
(m, n) such that

Cnm = 1984,

where Cnm = m!
n!(m−n)! denotes the usual binomial coefficient.

Problem 1.21. (Romanian training camp, Sinaia 1984) Find the set A consisting of
natural numbers n that are divisible by all odd natural numbers a with a2 < n.

Problem 1.22. Prove that 21092 − 1 is divisible by 10932.

Problem 1.23. (Amer. Math. Monthly) Let n ≥ 0, r > 1, and 0 < a ≤ r be three
integers. Prove that the number n, when written in base r , has precisely

∞∑

k=1

[
nr−k + ar−1

]
−

[
nr−k

]

digits that are greater than or equal to r − a.

Problem 1.24. Find a pair (a, b) of natural numbers satisfying the following proper-
ties:

1. ab(a + b) is not divisible by 7.
2. (a + b)7 − a7 − b7 is divisible by 77.

Problem 1.25. (International Math. Olympiad 1984) Let 0 < a < b < c < d be odd
integers such that

1. ad = bc

2. a + d = 2k, b + c = 2m, for some integers k and m.

Prove that a = 1.

Problem 1.26. (Amer. Math. Monthly) Find those subsets S ⊂ Z+ such that all but
finitely many sums of elements from S (possibly with repetitions) are composite
numbers.
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Problem 1.27. (Amer. Math. Monthly) Prove that for any natural n > 1, the number
2n − 1 does not divide 3n − 1.

Problem 1.28. (Putnam Competition 1964) Let un be the least common multiple of
the first n terms of a strictly increasing sequence of positive integers. Prove that

∞∑

n=1

1

un
≤ 2.

Find a sequence for which equality holds above.

Problem 1.29. (Amer. Math. Monthly) Let ϕn(m) = ϕ(ϕn−1(m)), where ϕ1(m) =
ϕ(m) is the Euler totient function, and set ω(m) the smallest number n such that
ϕn(m) = 1. If m < 2α , then prove that ω(m) ≤ α.

Problem 1.30. Let f be a polynomial with integer coefficients andN(f ) = card{k ∈
Z; f (k) = ±1}. Prove thatN(f ) ≤ 2 + deg f , where deg f denotes the degree of f .

Problem 1.31. Prove that every integer can be written as a sum of 5 perfect cubes.

Problem 1.32. If n ∈ Z, then the binomial coefficient C2n = (2n)!
(n!)2

has an even
number of divisors.

Problem 1.33. (Amer. Math. Monthly) Prove that every n ∈ Z+ can be written in
precisely k(n) different ways as a sum of consecutive integers, where k(n) is the
number of odd divisors of n greater than 1.

Problem 1.34. (Amer. Math. Monthly) Let π2(x) denote the number of twin primes
p with p ≤ x. Recall that p is a twin prime if both p and p+ 2 are prime. Show that

π2(x) = 2 +
∑

7≤n≤x
sin

(
π

2
(n+ 2)

[
n!

n+ 2

])
sin

(
π

2
n

[
(n− 2)!

n

])

for x > 7.

Problem 1.35. (Kvant)

1. Find all solutions of the equation 3x+1 + 100 = 7x−1.
2. Find two solutions of the equation 3x + 3x

2 = 2x + 4x
2
, and prove that there are

no others.

Problem 1.36. (Kvant) Let σ(n) denote the sum of the divisors of n. Prove that there
exist infinitely many integers n such that σ(n) > 2n, or even stronger, such that
σ(n) > 3n. Prove also that σ(n) < n(1 + log n).

Problem 1.37. (American Competition) Let ai be natural numbers such that
gcd(ai, aj ) = 1 and the ai are not prime numbers. Show that

1

a1
+ · · · + 1

an
< 2.
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Problem 1.38. Let σ(n) denote the sum of divisors of n. Show that σ(n) = 2k if and
only if n is a product of Mersenne primes, i.e., primes of the form 2k − 1, for k ∈ Z.

Problem 1.39. (Putnam Competition) Find all integer solutions of the equation |pr −
qs | = 1, where p, q are primes and r, s ∈ Z \ {0, 1}.
Problem 1.40. Consider an arithmetic progression with ratio between 1 and 2000.
Show that the progression does not contain more than 10 consecutive primes.

Problem 1.41. (Amer. Math. Monthly) Let a1 = 1, an+1 = an + [√
an

]
. Show that

an is a perfect square iff n is of the form 2k + k − 2.

Problem 1.42. Recall that ϕ(n) denotes the Euler totient function (i.e., the number
of natural numbers less than n and prime to n), and that σ(n) is the sum of divisors
of n. Show that n is prime iff ϕ(n) divides n− 1 and n+ 1 divides σ(n).

Problem 1.43. (Amer. Math. Monthly) A number is called ϕ-subadditive if ϕ(n) ≤
ϕ(k) + ϕ(n − k) for all k such that 1 ≤ k ≤ n − 1, and ϕ-superadditive if the
reverse inequality holds. Prove that there are infinitely many ϕ-subadditive numbers
and infinitely many ϕ-superadditive numbers.

Problem 1.44. (Amer. Math. Monthly) Find the positive integers N such that for all
n ≥ N , we have ϕ(n) ≤ ϕ(N).

Problem 1.45. A number n is perfect if σ(n) = 2n, where σ(n) denotes the sum of all
divisors of n. Prove that the even number n is perfect if and only if n = 2p−1(2p−1),
where p is a prime number with the property that 2p − 1 is prime.

Problem 1.46. (Elemente der Mathematik) A number n is superperfect if σ(σ(n)) =
2n, where σ(k) is the sum of all divisors of k. Prove that the even number n is
superperfect if and only if n = 2r , where r is an integer such that 2r+1 − 1 is prime.

Problem 1.47. Ifa, b are rational numbers satisfying tan aπ = b, thenb ∈ {−1, 0, 1}.
Problem 1.48. (Amer. Math. Monthly) LetAn = run+ svn, n ∈ Z+, where r, s, u, v
are integers,u �= ±v, and letPn be the set of prime divisors ofAn. ThenP = ⋃∞

n=0 Pn
is infinite.

Problem 1.49. Solve in natural numbers the equation

x2 + y2 + z2 = 2xyz.

Problem 1.50. (Amer. Math. Monthly) Find the greatest common divisor of the fol-
lowing numbers: C1

2n, C
3
2n, C

5
2n, . . . , C

2n−1
2n .

Problem 1.51. (Amer. Math. Monthly) Prove that if Sk = ∑n
i=1 k

gcd(i,n), then Sk ≡
0 (mod n).
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Problem 1.52. Prove that for any integer n such that 4 ≤ n ≤ 1000, the equation

1

x
+ 1

y
+ 1

z
= 4

n

has solutions in natural numbers.

Problem 1.53. (Nieuw Archief v. Wiskunde) For a natural number n we set S(n) for
the set of integers that can be written in the form 1+g+· · ·+gn−1 for some g ∈ Z+,
g ≥ 2.

1. Prove that S(3) ∩ S(4) = ∅.
2. Find S(3) ∩ S(5).

Problem 1.54. If k ≥ 202 and n ≥ 2k, then prove that Ckn > nπ(k), where π(k)
denotes the number of prime numbers smaller than k.

Problem 1.55. (Amer. Math. Monthly) Let Sm(n) be the sum of the inverses of the
integers smaller thanm and relatively prime to n. Ifm > n ≥ 2, then show that Sm(n)
is not an integer.

Problem 1.56. Solve in integers the following equations:

1. x4 + y4 = z2;
2. y3 + 4y = z2;
3. x4 = y4 + z2.

Problem 1.57. Show that the equation

x3 + y3 = z3 + w3

has infinitely many integer solutions. Prove that 1 can be written in infinitely many
ways as a sum of three cubes.

Problem 1.58. Prove that the equation y2 = Dx4 + 1 has no integer solution except
x = 0 if D �≡ 0,−1, 3, 8 (mod 16) and there is no factorization D = pq, where
p > 1 is odd, gcd(p, q) = 1, and either p ≡ ±1 (mod 16), p ≡ q ± 1 (mod 16), or
p ≡ 4q ± 1 (mod 16).

Problem 1.59. (Amer. Math. Monthly) Find all numbers that are simultaneously tri-
angular, perfect squares, and pentagonal numbers.

Problem 1.60. (Amer. Math. Monthly) Find all inscribable integer-sided quadrilater-
als whose areas equal their perimeters.

Problem 1.61. (Amer. Math. Monthly) Every rational number a can be written as a
sum of the cubes of three rational numbers. Moreover, if a > 0, then the three cubes
can be chosen to be positive.

Problem 1.62. 1. Every prime number of the form 4m + 1 can be written as the
sum of two perfect squares.
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2. Every natural number is the sum of four perfect squares.

Problem 1.63. Every natural number can be written as a sum of at most 53 integers
to the fourth power.

Problem 1.64. Let G(k) denote the minimal integer n such that any positive integer
can be written as the sum of n positive perfect kth powers. Prove that G(k) ≥ 2k +[

3k

2k

]
− 2.

Problem 1.65. (Amer. Math. Monthly) LetR(n, k) be the remainder whenn is divided
by k and

S(n, k) =
k∑

i=1

R(n, i).

1. Prove that limn→∞ S(n, n)

n2 = 1 − π2

12 .
2. Consider a sequence of natural numbers (ak) growing to infinity and such that

limk→∞ ak log k
k

= 0. Prove that limk→∞ S(kak, k)

k2 = 1
4 .

Problem 1.66. (Nieuw Archief v. Wiskunde) Let a1 < a2 < a3 < · · · < an < · · · be
a sequence of positive integers such that the series

∞∑

i=1

1

ai

converges. Prove that for any i, there exist infinitely many sets of ai consecutive
integers that are not divisible by aj for all j > i.

Problem 1.67. (Amer. Math. Monthly) Denote by Cn the claim that there exists a set
of n consecutive integers such that no two of them are relatively prime. Prove that Cn
is true for every n such that 17 ≤ n ≤ 10000.

Problem 1.68. (Schweitzer Competition) Prove that a natural number has more di-
visors that can be written in the form 3k + 1, for k ∈ Z, than divisors of the form
3m− 1, for m ∈ Z.

Problem 1.69. (Amer. Math. Monthly) A numberN is called deficient if σ(N) < 2N
and abundant if σ(N) > 2N .

1. Let k be fixed. Are there any sequences of k consecutive abundant numbers?
2. Show that there are infinitely many 5-tuples of consecutive deficient numbers.

Problem 1.70. (Amer. Math. Monthly) Does there exist a nonconstant polynomial
an2 +bn+cwith integer coefficients such that for any natural numbersm all its prime
factors pi are congruent to 3 modulo 4? Prove that for any nonconstant polynomial
f with integer coefficients and anym ∈ Z there exist a prime number p and a natural
number n such that p divides f (n) and p ≡ 1 (mod m).



2

Algebra and Combinatorics

2.1 Algebra

Problem 2.1. Set Sk,p = ∑p−1
i=1 i

k , for natural numbers p and k. If p ≥ 3 is prime
and 1 < k ≤ p − 2, show that

Sk,p ≡ 0 (mod p).

Problem 2.2. LetP = a0 +· · ·+anxn andQ = b0 +· · ·+bmxm be two polynomials
with m ≤ n. Then, deg gcd(P,Q) ≥ 1 if and only if there exist two polynomials K
and L, such that deg K ≤ m− 1, deg L ≤ n− 1, andK ·P = L ·Q. Prove that this
is equivalent to the vanishing of the following (n+m)× (n+m) determinant:

det

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a0 a1 a2 · · · am−1 · · · an−1 an 0 0 · · · 0
0 a0 a1 · · · am−2 · · · an−2 an−1 an 0 · · · 0
...
...

...
...

...
...

...
...

...

0 0 0 · · · a0 · · · an−m−1 an−m an−m+1 · · · an
0 0 0 · · · 0 · · · an−m−2 an−m−1 an−m · · · an−1
...
...

...
...

...
...

...
...

0 0 0 · · · 0 0 a0 a1 a2 · · · am
b0 b1 · · · bm−1 bm 0 0 0 0 · · · 0
0 b0 · · · bm−2 bm−1 bm 0 0 0 · · · 0
...
...

...
...

...
...

...
...

...

0 0 · · · b0 b1 · · · · · · · · · 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 0.

Problem 2.3. Prove that if P,Q ∈ R[x, y] are relatively prime polynomials, then the
system of equations

P(x, y) = 0,
Q(x, y) = 0,

has only finitely many real solutions.
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Problem 2.4. Let a, b, c, d ∈ R[x] be polynomials with real coefficients. Set

p =
∫ x

1
ac dt, q =

∫ x

1
ad dt, r =

∫ x

1
bc dt, s =

∫ x

1
bd dt.

Prove that ps − qr is divisible by (x − 1)4.

Problem 2.5. 1. Find the minimum number of elements that must be deleted from
the set {1, . . . , 2005} such that the set of the remaining elements does not contain two
elements together with their product.

2. Does there exist, for any k, an arithmetic progression with k terms in the infinite
sequence

1,
1

2
, . . . ,

1

2005
, . . . ,

1

n
, . . .?

Problem 2.6. (Amer. Math. Monthly) Consider a set S of n elements and n+1 subsets
M1, . . . ,Mn+1 ⊂ S. Show that there exist r, s ≥ 1 and disjoint sets of indices
{i1, . . . , ir} ∩ {j1, . . . , js} = ∅ such that

r⋃

k=1

Mik =
s⋃

k=1

Mjk .

Problem 2.7. Let p be a prime number, and A = {a1, . . . , ap−1} ⊂ Z
∗+ a set of

integers that are not divisible by p. Define the map f : P(A) → {0, 1, . . . , p − 1}
by

f ({ai1 , . . . , aik }) =
k∑

p−1

aip (mod p), and f (∅) = 0.

Prove that f is surjective.

Problem 2.8. Consider the function Fr = xr sin rA + yr sin rB + zr sin rC, where
x, y, z ∈ R, A + B + C = kπ , and r ∈ Z+. Prove that if F1(x0, y0, z0) =
F2(x0, y0, z0) = 0, then Fr(x0, y0, z0) = 0, for all r ∈ Z+.

Problem 2.9. Let T (z) ∈ Z[z] be a nonzero polynomial with the property that
|T (ui)| ≤ 1 for all values ui that are roots of P(z) = zn − 1. Prove that either
T (z) is divisible by P(z), or else there exists some k ∈ Z+, k ≤ n − 1, such that
T (z) ± zk is divisible by P(z). The same result holds when instead of P(z), we
consider zn + 1.

Problem 2.10. 1. If the map x �→ x3 from a group G to itself is an injective group
homomorphism, then G is an abelian.

2. If the map x �→ x3 from a groupG to itself is a surjective group homomorphism,
then G is an abelian.

3. Find an abelian group with the property that x �→ x4 is an automorphism.
4. What can be said for exponents greater than 4?
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Problem 2.11. (Amer. Math. Monthly) Let V be a vector space of dimension n > 0
over a field of characteristic p �= 0 and let A be an affine map A : V → V . Prove
that there exist u ∈ V and 0 ≤ k ≤ np such that Aku = u.

Problem 2.12. (Putnam Competition 1959) Find the cubic equation the zeros of which
are the cubes of the roots of the equation x3 + ax2 + bx + c = 0.

Problem 2.13. (Putnam Competition 1956) Assume that the polynomials P,Q ∈
C[x] have the same roots, possibly with different multiplicities. Suppose, moreover,
that the same holds true for the pair P + 1 and Q+ 1. Prove that P = Q.

Problem 2.14. (Amer. Math. Monthly) Determine r ∈ Q, for which 1, cos 2πr, sin 2πr
are linearly dependent over Q.

Problem 2.15. (Amer. Math. Monthly)

1. Prove that there exist a, b, c ∈ Z, not all zero, such that |a|, |b|, |c| < 106
∣∣
∣a + b

√
2 + c

√
3
∣
∣∣ < 10−11.

2. Prove that if 0 ≤ |a|, |b|, |c| < 106, a, b, c ∈ Z, and at least one of them is

nonzero, then
∣∣∣a + b

√
2 + c

√
3
∣∣∣ > 10−21.

Problem 2.16. (Amer. Math. Monthly) Prove that if n > 2, then we do not have any
nontrivial solutions for the equation

xn + yn = zn,

where x, y, z are rational functions. Solutions of the form x = af, y = bf, z = cf ,
wheref is a rational function anda, b, c are complex numbers satisfyingan+bn = cn,
are called trivial.

Problem 2.17. (Kvant) A table is an n× k rectangular grid drawn on the torus, every
box being assigned an element from Z/2Z. We define a transformation acting on
tables as follows. We replace all elements of the grid simultaneously, each element
being changed into the sum of the numbers previously assigned to its neighboring
boxes. Prove that iterating this transformation sufficiently many times, we always
obtain the trivial table filled with zeros, no matter what the initial table was, if and
only if n = 2p and k = 2q for some integers p, q. In this case we say that the
respective n× k grid is nilpotent.

2.2 Algebraic Combinatorics

Problem 2.18. Let us consider a four-digit number N whose digits are not all equal.
We first arrange its digits in increasing order, then in decreasing order, and finally,
we subtract the two obtained numbers. Let T (N) denote the positive difference thus
obtained. Show that after finitely many iterations of the transformation T , we obtain
6174.
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Problem 2.19. Find an example of a sequence of natural numbers 1 ≤ a1 < a2 <

· · · < an < an+1 < · · · with the property that everym ∈ Z+ can be uniquely written
as m = ai − aj , for i, j ∈ Z+.

Problem 2.20. (Amer. Math. Monthly) Consider the set of 2n integers {±a1,±a2, . . . ,

±an} and m < 2n. Show that we can choose a subset S such that

1. The two numbers ±ai are not both in S;
2. The sum of all elements of S is divisible by m.

Problem 2.21. (Proposed for the International Math. Olympiad) Show that for ev-
ery natural number n there exist prime numbers p and q such that n divides their
difference.

Problem 2.22. An even number, 2n, of knights arrive at King Arthur’s court, each
one of them having at most n − 1 enemies. Prove that Merlin the wizard can assign
places for them at a round table in such a way that every knight is sitting only next to
friends.

Problem 2.23. (Putnam Competition) Let r, s ∈ Z+. Find the number of 4-tuples
of positive integers (a, b, c, d) that satisfy 3r7s = lcm(a, b, c) = lcm(a, b, d) =
lcm(a, c, d) = lcm(b, c, d).

Problem 2.24. (Putnam Competition)

1. Let n ∈ Z+ and p be a prime number. Denote byN(n, p) the number of binomial
coefficients Csn that are not divisible by p. Assume that n is written in base p as
n = n0 +n1p+· · ·+nmpm, where 0 ≤ nj < p for all j ∈ {0, 1, . . . , m}. Prove
that N(n, p) = (n0 + 1)(n1 + 1) · · · (nj + 1).

2. Write k in base p as k = k0 + k1p + · · · + kjp
j , with 0 ≤ kj ≤ p − 1, for all

j ∈ {0, 1, . . . , s}. Prove that

Ckn ≡ Ck0
n0
Ck1
n1

· · ·Ckjnj (mod p).

Problem 2.25. (Putnam Competition) Define the sequence Tn by T1 = 2, Tn+1 =
T 2
n − Tn + 1, for n ≥ 1. Prove that if m �= n, then Tm and Tn are relatively prime,

and further, that
∞∑

i=1

1

Ti
= 1.

Problem 2.26. Let α, β > 0 and consider the sequences

[α], [2α], . . . , [kα], . . . ; [β], [2β], . . . , [kβ], . . . ,

where the brackets denote the integer part. Prove that these two sequences taken
together enumerate Z+ in an injective manner if and only if

α, β ∈ R \ Q and
1

α
+ 1

β
= 1.
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Problem 2.27. We say that the sets S1, S2, . . . , Sm form a complementary system if
they make a partition of Z+, i.e., every positive integer belongs to a unique set Si . Let
m > 1 and α1, . . . , αm ∈ R+. Then the sets

Si = {[nαi], where n ∈ Z+}
form a complementary system only if

m = 2, α−1
1 + α−1

2 = 1, and α1 ∈ R \ Q.

Problem 2.28. Let f : Z+ → Z+ be an increasing function and set

F(n) = f (n)+ n, G(n) = f ∗(n)+ n,

where f ∗(n) = card({x ∈ Z+; 0 ≤ f (x) < n}). Then {F(n); n ∈ Z+} and
{G(n); n ∈ Z+} are complementary sequences. Conversely, any two complemen-
tary sequences can be obtained this way using some nondecreasing function f .

Problem 2.29. LetM denote the set of bijective functions f : Z+ → Z+. Prove that
there is no bijective function between M and Z.

Problem 2.30. (Amer. Math. Monthly) Let F ⊂ Z be a finite set of integers satisfying
the following properties:

1. For any x ∈ F there exist y, z ∈ F such that x = y + z.
2. There exists n such that for any natural number 1 ≤ k ≤ n, and any choice of
x1, . . . , xk ∈ F , their sum x1 + · · · + xk is nonzero.

Prove that card(F ) ≥ 2n+ 2.

Problem 2.31. (Amer. Math. Monthly) For a finite graph G we denote by Z(G) the
minimal number of colors needed to color all its vertices such that adjacent vertices
have different colors. This is also called the chromatic number of G.

Prove that the inequality

Z(G) ≥ p2

p2 − 2q

holds if G has p vertices and q edges.

Problem 2.32. LetDk be a collection of subsets of the set {1, . . . , n} with the property
that whenever A �= B ∈ Dk , then card(A ∩ B) ≤ k, where 0 ≤ k ≤ n − 1. Prove
that

card(Dk) ≤ C0
n + C1

n + C2
n + · · · + Ck+1

n .

Problem 2.33. Prove that

1

p!

n∑

k=0

(−1)n−kCknkp =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, if 0 ≤ p < n,

1, if p = n,

n/2, if p = n+ 1,
n(3n+1)

24 , if p = n+ 2,
n2(n+1)

48 , if p = n+ 3,
n(15n3+30n2+5n+1)

1152 , if p = n+ 4.
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Problem 2.34. Write lcm(a1, . . . , an) in terms of the various gcd(ai, . . . , aj ) for
subsets of {a1, . . . , an}.
Problem 2.35. Let f (n) be the number of ways in which a convex polygon with n+1
sides can be divided into regions delimited by several diagonals that do not intersect
(except possibly at their endpoints). We consider as distinct the dissection in which
we first cut the diagonal a and next the diagonal b from the dissection in which we
first cut the diagonal b and next the diagonal a. It is easy to compute the first values
of f (n), as follows: f (1) = 1, f (2) = 1, f (3) = 3, f (4) = 11, f (5) = 45. Find the
generating function F(x) = ∑

f (n)xn and an asymptotic formula for f (n).

Problem 2.36. Find the permutation σ : (1, . . . , n) → (1, . . . , n) such that

S(σ) =
n∑

i=1

|σ(i)− i|

is maximal.

Problem 2.37. (Amer. Math. Monthly) On the set Sn of permutations of {1, . . . , n}
we define an invariant distance function by means of the formula

d(σ, τ ) =
n∑

i=1

|σ(i)− τ(i)|.

What are the values that d could possibly take?

Problem 2.38. (Preliminaries for the International Math. Olympiad, Romania) The
set M = {1, 2, . . . , 2n} is partitioned into k sets M1, . . . ,Mk , where n ≥ k3 + k.
Show that there exist i, j ∈ {1, . . . , k} for which we can find k + 1 distinct even
numbers 2r1, . . . , 2rk+1 ∈ Mi with the property that 2r1 − 1, . . . , 2rk+1 − 1 ∈ Mj .

Problem 2.39. (Preliminaries for the International Math. Olympiad, Great Britain)
Let S be the set of odd integers not divisible by 5 and smaller than 30m, where
m ∈ Z

∗+. Find the smallest k such that every subset A ⊂ S of k elements contains
two distinct integers, one of which divides the other.

Problem 2.40. Prove that
∏

1≤j<i≤n
ai−aj
i−j is a natural number whenever a1 ≤ a2 ≤

· · · ≤ an are integers.

Problem 2.41. Is there an infinite setA ⊂ Z+ such that for all x, y ∈ A neither x nor
x + y is a perfect power, i.e., ak , for k ≥ 2? More generally, is there an infinite set
A ⊂ Z+ such that for any nonempty finite collection xi ∈ A, i ∈ J , the sum

∑
i∈J xi

is not a perfect power?

Problem 2.42. (Amer. Math. Monthly) Let

f (n) = maxA
A
A

...

Ak

3
2

1 ,

where n = A1 +· · ·+Ak . Thus, f (1) = 1, f (2) = 2, f (3) = 3, f (4) = 4, f (5) =
9, f (6) = 27, f (7) = 512, etc. Determine f (n).
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Problem 2.43. Consider a setM withm elements andA1, . . . , An distinct subsets of
M such that card(Ai ∩ Aj) = r ≥ 1 for all 1 ≤ i �= j ≤ n. Prove that n ≤ m.

Problem 2.44. (Amer. Math. Monthly) Setπ(n) for the number of prime numbers less
than or equal to n. Prove that there are at most π(n) numbers 1 < a1 < · · · < ak ≤ n

with gcd(ai, aj ) = 1.

Problem 2.45. (Nieuw Archief v. Wiskunde) Prove that for every k, there exists n such
that the nth term of the Fibonacci sequence Fn is divisible by k. Recall that Fn is
determined by the recurrence: Fn+2 = Fn + Fn+1, for n ≥ 0, where the first terms
are F0 = 0, F1 = 1.

Problem 2.46. (Amer. Math. Monthly) Consider a set of consecutive integers C +
1, C + 2, . . . , C + n, where C > nn−1. Show that there exist distinct prime numbers
p1, p2, . . . , pn such that C + j is divisible by pj .

Problem 2.47. (Nieuw Archief v. Wiskunde) Let p be a prime number and f (p) the
smallest integer for which there exists a partition of the set {2, 3, . . . , p} into f (p)
classes such that whenever a1, . . . , ak belong to the same class of the partition, the
equation

k∑

i=1

xiai = p

does not have solutions in nonnegative integers. Estimate f (p).

Problem 2.48. (Schweitzer Competition) Consider m distinct natural numbers ai
smaller than N such that lcm(ai, aj ) ≤ N for all i, j . Prove that m ≤ 2

[√
N
]
.

Problem 2.49. The setM ⊂ Z+ is calledA-sum-free, whereA = (a1, a2, . . . , ak) ∈
Z
k+, if for any choice of x1, x2, . . . , xk ∈ M we have a1x1 + a2x2 + · · · + akxk �∈ M .

IfA,B are two vectors, we define f (n;A,B) as the greatest number h such that there
exists a partition of the set of consecutive integers {n, n + 1, . . . , h} into S1 and S2
such that S1 is A-sum-free and S2 is B-sum-free. Assume that B = (b1, b2, . . . , bm)

and that the conditions below are satisfied:

a1 + a2 + · · · + ak = b1 + b2 + · · · + bm = s,

and
min

1≤j≤k aj = min
1≤j≤m bj = 1, k,m ≥ 2.

Prove that f (n;A,B) = ns2 + n(s − 1)− 1.

Problem 2.50. (Amer. Math. Monthly) Let 1 ≤ a1 < a2 < · · · < an < 2n be a
sequence of natural numbers for n ≥ 6. Prove that

min
i,j

lcm(ai, aj ) ≤ 6
([n

2

]
+ 1

)
.

Moreover, the constant 6 is sharp.
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Problem 2.51. (Amer. Math. Monthly) Let 1 ≤ a1 < a2 < · · · < ak < n be such that
gcd(ai, aj ) �= 1 for all 1 ≤ i < j ≤ k. Determine the maximum value of k.

Problem 2.52. (International Math. Olympiad 1978) Consider the increasing se-
quence f (n) ∈ Z+, 0 < f (1) < f (2) < · · · < f (n) < · · · . It is known that
the nth element in increasing order among the positive integers that are not terms of
this sequence is f (f (n))+ 1. Find the value of f (240).

Problem 2.53. (Amer. Math. Monthly) We define inductively three sequences of in-
tegers (an), (bn), (cn) as follows:

1. a1 = 1, b1 = 2, c1 = 4;
2. an is the smallest integer that does not belong to the set

{a1, . . . , an−1, b1, . . . , bn−1, c1, . . . , cn−1};
3. bn is the smallest integer that does not belong to the set

{a1, . . . , an−1, an, b1, . . . , bn−1, c1, . . . , cn−1};
4. cn = 2bn + n− an.

Prove that
0 < n

(
1 + √

3
)

− bn < 2 for all n ∈ Z+.

2.3 Geometric Combinatorics

Problem 2.54. We consider n points in the plane that determine C2
n segments, and to

each segment one associates either +1 or −1. A triangle whose vertices are among
these points will be called negative if the product of numbers associated to its sides
is negative. Show that if n is even, then the number of negative triangles is even.
Moreover, for odd n, the number of negative triangles has the same parity as the
number p of segments labeled −1.

Problem 2.55. (Amer. Math. Monthly) Given n find a finite set S consisting of natural
numbers larger than n with the property that for any k ≥ n the k × k square can be
tiled by a family of si × si squares, where si ∈ S.

Problem 2.56. We consider 3n points A1, . . . , A3n in the plane whose positions are
defined recursively by means of the following rule: first, the triangle A1A2A3 is
equilateral; further, the points A3k+1, A3k+2, and A3k+3 are the midpoints of the
sides of the triangle A3kA3k−1A3k−2. Let us assume that the 3n points are colored
with two colors. Show that for n ≥ 7 there exists at least one isosceles trapezoid
having vertices of the same color.

Problem 2.57. Is there a coloring of all lattice points in the plane using only two
colors such that there are no rectangles with all vertices of the same color whose side
ratio belongs to

{
1, 1

2 ,
1
3 ,

2
3

}
?
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Problem 2.58. (Amer. Math. Monthly) Let G be a planar graph and let P be a path
in G. We say that P has a (transversal) self-intersection in the vertex v if the path
has a (transversal) self-intersection from the curve-theoretic viewpoint. Let us give an
example: Take the point 0 in the plane and the segments 01, 02, 03, 04 going counter-
clockwise around 0. Then a path traversing first 103 and then 204 has a (transversal)
self-intersection at 0, while a path going first along 102 and further on 304 does not
have a (transversal) self-intersection.

Prove that any connected planar graph G with only even-degree vertices admits
an Eulerian circuit without self-intersections. Recall that an Eulerian circuit is a path
along the edges of the graph that passes precisely once along each edge of the graph.

Problem 2.59. (Hungarian Competition) Let us consider finitely many points in the
plane that are not all collinear. Assume that one associates to each point a number
from the set {−1, 0, 1} such that the following property holds: for any line determined
by two points from the set, the sum of numbers associated to all points lying on that
line equals zero. Show that, if the number of points is at least three, then to each point
one is associated with 0.

Problem 2.60. (Amer. Math. Monthly) If one has a set of squares with total area
smaller than 1, then one can arrange them inside a square of side length

√
2, without

any overlaps.

Problem 2.61. Prove that for each k there exist k points in the plane, no three collinear
and having integral distance from each other. If we have an infinite set of points with
integral distances from each other, then all points are collinear.

Problem 2.62. (International Math. Olympiad 1984) Let O,A be distinct points in
the plane. For each point x in the plane, we write α(x) = x̂OA (counterclockwise).
Let C(x) be the circle of center O and radius |Ox| + α(x)

|Ox| . If the points in the plane
are colored with finitely many colors, then there exists a point y with α(y) > 0 such
that the color of y also belongs to the circle C(y).

Problem 2.63. (Amer. Math. Monthly) Let k, n ∈ Z+.

1. Assume that n−1 ≤ k ≤ n(n−1)
2 . Show that there exist n distinct points x1, ..., xn

on a line that determine exactly k distinct distances |xi − xj |.
2. Suppose that [n2 ] ≤ k ≤ n(n−1)

2 . Then there exist n points in the plane that
determine exactly k distinct distances.

3. Prove that for any ε > 0, there exists some constant n0 = n0(ε) such that for any
n > n0 and εn < k <

n(n−1)
2 , there exist n points in the plane that determine

exactly k distinct distances.

Problem 2.64. (International Math. Olympiad 1978) Show that it is possible to pack
2n(2n+ 1) nonoverlapping pieces having the form of a parallelepiped of dimensions
1 × 2 × (n+ 1) in a cubic box of side 2n+ 1 if and only if n is even or n = 1.
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Problem 2.65. (Putnam Competition 1964) Let F be a finite subset of R with the
property that any value of the distance between two points from F (except for the
largest one) is attained at least twice, i.e., for two distinct pairs of points. Prove that
the ratio of any two distances between points of F is a rational number.
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Geometry

3.1 Synthetic Geometry

Problem 3.1. Let I be the center of the circle inscribed in the triangle ABC and
consider the points α, β, γ situated on the perpendiculars from I on the sides of the
triangle ABC such that

|Iα| = |Iβ| = |Iγ |.
Prove that the lines Aα,Bβ,Cγ are concurrent.

Problem 3.2. We consider the angle xOy and a pointA ∈ Ox. Let (C) be an arbitrary
circle that is tangent to Ox and Oy at the points H and D, respectively. Set AE for
the tangent line drawn from A to the circle (C) that is different from AH . Show that
the lineDE passes through a fixed point that is independent of the circle (C) chosen
above.

Problem 3.3. Let C be a circle of center O and A a fixed point in the plane. For any
point P ∈ C, let M denote the intersection of the bisector of the angle ÂOP with
the circle circumscribed about the triangle AOP . Find the geometric locus of M as
P runs over the circle C.

Problem 3.4. Let ABC be an isosceles triangle having |AB| = |AC|. If AS is an
interior Cevian that intersects the circle circumscribed aboutABC at S, then describe
the geometric locus of the center of the circle circumscribed about the triangle BST ,
where {T } = AS ∩ BC.

Problem 3.5. LetAB,CD,EF be three chords of length one on the unit circle. Then
the midpoints of the segments |BC|, |DE|, and |AF | form an equilateral triangle.

Problem 3.6. (Amer. Math. Monthly) Denote by P the set of points of the plane. Let
� : P ×P → P be the following binary operation:A�B = C, whereC is the unique
point in the plane such thatABC is an oriented equilateral triangle whose orientation
is counterclockwise. Show that � is a nonassociative and noncommutative operation
satisfying the following “medial property”:
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(A � B) � (C � D) = (A � C) � (B � D).

Problem 3.7. Consider two distinct circles C1 and C2 with nonempty intersection
and let A be a point of intersection. Let P,R ∈ C1 and Q,S ∈ C2 be such that
PQ and RS are the two common tangents. Let U and V denote the midpoints of the
chords PR and QS. Prove that the triangle AUV is isosceles.

Problem 3.8. (Amer. Math. Monthly) If the planar triangles AUV, VBU , and UVC
are directly similar to a given triangle, then so is ABC. Recall that two triangles are
directly similar if one can obtain one from the other using a homothety with positive
ratio, rotations and translations.

Problem 3.9. (Amer. Math. Monthly) Find, using a straightedge and a compass, the
directrix and the focus of a parabola. Recall that the parabola is the geometric locus
of those points P in the plane that are at equal distance from a point O (called the
focus) and a line d called the directrix.

Problem 3.10. Prove that if M is a point in the interior of a circle and AB ⊥ CD

are two chords perpendicular at M , then it is possible to construct an inscribable
quadrilateral with the following lengths:

∣∣|AM| − |MB|∣∣, |AM| + |MB|, ∣∣|DM| − |MC|∣∣, |DM| + |MC|.
Problem 3.11. (Amer. Math. Monthly) If the Euler line of a triangle passes through
the Fermat point, then the triangle is isosceles.

Problem 3.12. Consider a point M in the interior of the triangle ABC, and choose
A′ ∈ AM,B ′ ∈ BM , and C′ ∈ CM . Let P,Q,R, S, T , and U be the intersections
of the sides of ABC and A′B ′C′. Show that PS, TQ, and RU meet at M .

Problem 3.13. Show that if an altitude in a tetrahedron crosses two other altitudes,
then all four altitudes are concurrent.

Problem 3.14. Three concurrent Cevians in the interior of the triangle ABC meet
the corresponding opposite sides atA1, B1, C1. Show that their common intersection
point is uniquely determined if |BA1|, |CB1|, and |AC1| are equal.

Problem 3.15. (International Math. Olympiad 1983) LetABCD be a convex quadri-
lateral with the property that the circle of diameterAB is tangent to the lineCD. Prove
that the circle of diameter CD is tangent to the line AB if and only if AD is parallel
to BC.

Problem 3.16. Let A′, B ′, C′ be points on the sides BC,CA,AB of the triangle
ABC. LetM1,M2 be the intersections of the circleA′B ′C′ with the circleABA′ and
let N1, N2 be the analogous intersections of the circle A′B ′C′ with the circle ABB ′.

1. Prove thatM1M2, N1N2, AB are either parallel or concurrent, in a point that we
denote by A′

1;
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2. Prove that the analogously defined points A′
1, B

′
1, C

′
1 are collinear.

Problem 3.17. (Putnam Competition) A circumscribable quadrilateral of area S =√
abcd is inscribable.

Problem 3.18. (Nieuw Archief v. Wiskunde) Let O be the center of the circumcircle,
Ge the Gergonne point, Na the Nagel point, and G1, N1, the isogonal conjugates of
G and N , respectively. Prove thatG1, N1, andO are collinear (see also the Glossary
for definitions of the important points in a triangle).

3.2 Combinatorial Geometry

Problem 3.19. Consider a rectangular sheet of paper. Prove that given any ε > 0,
one can use finitely many foldings of the paper along its sides in either 2 equal parts
or 3 equal parts to obtain a rectangle whose sides are in ratio r for some r satisfying
1 − ε ≤ r ≤ 1 + ε.

Problem 3.20. (Amer. Math. Monthly) Show that there exist at most three points on
the unit circle with the distance between any two being greater than

√
2.

Problem 3.21. (Komal) A convex polygon with 2n sides has at least n diagonals not
parallel to any of its sides.

Problem 3.22. Let d be the sum of the lengths of the diagonals of a convex polygon
P1 . . . Pn and p its perimeter. Prove that for n ≥ 4, we have

n− 3 < 2
d

p
<

[n
2

] [n+ 1

2

]
− 2.

Problem 3.23. (Amer. Math. Monthly) Find the convex polygons with the property
that the function D(p), which is the sum of the distances from an interior point p to
the sides of the polygon, does not depend on p.

Problem 3.24. Prove that a sphere of diameter 1 cannot be covered by n strips of
width li if

∑n
i=1 li < 1. Prove that a circle of diameter 1 cannot be covered by n strips

of width li if
∑n
i=1 li < 1.

Problem 3.25. (Kvant) Consider n points lying on the unit sphere. Prove that the
sum of the squares of the lengths of all segments determined by the n points is less
than n2.

Problem 3.26. (Kvant) The sum of the vectors
−−→
OA1, . . . ,

−−→
OAn is zero, and the sum

of their lengths is d . Prove that the perimeter of the polygon A1 . . . An is greater than
4d/n.

Problem 3.27. (Amer. Math. Monthly) Find the largest numbers ak , for 1 ≤ k ≤ 7,
with the property that for any point P lying in the unit cube with vertices A1 . . . A8,
at least k among the distances |PAj | to the vertices are greater or equal than ak .
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Problem 3.28. (Amer. Math. Monthly) The line determined by two points is said to
be admissible if its slope is equal to 0, 1,−1, or ∞. What is the maximum number
of admissible lines determined by n points in the plane?

Problem 3.29. If A = {z1, . . . , zn} ⊂ C, then there exists a subset B ⊂ A such that

∣
∣
∑

z∈B
z
∣∣ ≥ π−1

n∑

i=1

|zi |.

Problem 3.30. (Amer. Math. Monthly) Let A1, . . . , An be the vertices of a regular
n-gon inscribed in a circle of center O. Let B be a point on the arc of circle A1An

and set θ = ÂnOB. If we set ak = |BAk|, then find the sum

n∑

k=1

(−1)kak

in terms of θ .

Problem 3.31. (Amer. Math. Monthly) Consider n distinct complex numbers zi ∈ C

such that
min
i �=j |zi − zj | ≥ max

i≤n |zi |.
What is the greatest possible value of n?

Problem 3.32. The interior of a triangle can be tiled by n ≥ 9 pentagonal convex
surfaces.What is the minimal value ofn such that a triangle can be tiled byn hexagonal
strictly convex surfaces?

Problem 3.33. (Putnam Competition) We say that a transformation of the plane is a
congruence if it preserves the length of segments. Two subsets are congruent if there
exists a congruence sending one subset onto the other. Show that the unit disk cannot
be partitioned into two congruent subsets.

Problem 3.34. Prove that the unit disk cannot be partitioned into two subsets of
diameter strictly smaller than 1, where the diameter of a set is the supremum distance
between two of its points.

Problem 3.35. A continuous planar curve L has extremities A and B at distance
|AB| = 1. Show that for any natural number n there exists a chord determined by
two points C,D ∈ L that is parallel to AB and whose length |CD| equals 1

n
.

Problem 3.36. The diameter of a set is the supremum of the distance between two
of its points. Prove that any planar set of unit diameter can pe partitioned into three

parts of diameter no more than
√

3
2 .

Problem 3.37. 1. Prove that a finite set of n points in R
3 of unit diameter can be

covered by a cube of side length 1 − 2
3n(n−1) .
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2. Prove that any planar set of n points having unit diameter can pe partitioned into

three parts of diameter less than
√

3
2 cos 2π

3n(n−1) .

Problem 3.38. Prove that any convex set in R
n of unit diameter having a smooth

boundary can be partitioned into n+ 1 parts of diameter d < 1.

Problem 3.39. Let D be a convex body in R
3 and let σ(D) = supπ area(π ∩ D),

where the supremum is taken over all positions of the variable plane π . Prove thatD
can be divided into two parts D1 and D2 such that σ(Di) < σ(D).

Problem 3.40. If we have k vectors v1, v2, . . . , vk in R
n and k ≤ n + 1, then there

exist two vectors making an angle θ with cos θ ≥ − 1
k−1 . Equality holds only when

the endpoints of the vectors form a regular (k − 1)-simplex.

Problem 3.41. 1. Consider a finite family of bounded closed convex sets in the
plane such that any three members of the family have nonempty intersection.
Prove that the intersection of all members of the family is nonempty.

2. A set of unit diameter in R
2 can be covered by a ball of radius

√
1
3 .

Problem 3.42. (Amer. Math. Monthly) Let T be a right isosceles triangle. Find the
disk D such that the difference between the areas of T ∪D and T ∩D is minimal.

Problem 3.43. (Amer. Math. Monthly) Let r be the radius of the incircle of an arbitrary

triangle lying in the closed unit square. Prove that r ≤
√

5−1
4 .

Problem 3.44. Let P be a point in the interior of the tetrahedron ABCD, with the
property that |PA| + |PB| + |PC| + |PD| is minimal. Prove that ÂPB = ĈPD

and that these angles have a common bisector.

Problem 3.45. (Putnam Competition 1948) Let OA1, . . . , OAn be n linearly inde-
pendent vectors of lengths a1, . . . , an. We construct the parallelepipedH having these
vectors as sides. Then consider the n altitudes inH as a new set of vectors and further,
construct the parallelepiped E associated with the altitudes. If h is the volume of H
and e the volume of E, then prove that

he = (a1 . . . an)
2.

Problem 3.46. Let F be a symmetric convex body in R
3 and let AF,λ denote the

family of all sets homothetic to F in the ratio λ that have only boundary points in
common with F . Set hF (λ) for the greatest integer k such that AF,λ contains k sets
with pairwise disjoint interiors. Prove that

hF (λ) ≤ (1 + 2λ)3 − 1

λ3 .
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Problem 3.47. Let � denote the square of equations |xi | ≤ 1, i = 1, 2, in the plane,
and let A = (a1|a2) be an arbitrary nonsingular 2 × 2 matrix partitioned into two
columns. We identify each column with a vector in R

2. Prove that the following
inequality holds:

min
A

max
x∈�

∣∣∣
∣
〈a1, x〉〈a2, x〉

det A

∣∣
∣∣ = 1

2
,

where 〈x, y〉 = x1x2 + y1y2 is the usual scalar product.

Problem 3.48. We denote by δ(r) the minimal distance between a lattice point and
the circle C(O, r) of radius r centered at the originO of the coordinate system in the
plane. Prove that

lim
r→∞ δ(r) = 0.

Problem 3.49. (Putnam Competition) Consider a curve C of length l that divides the
surface of the unit sphere into two parts of equal area. Show that l ≥ 2π .

Problem 3.50. (Amer. Math. Monthly) Let K be a planar closed curve of length 2π .
Prove that K can be inscribed in a rectangle of area 4.

Problem 3.51. 1. Consider a family of plane convex sets with area a, perimeter p,
and diameter d. If the family covers area A, then there exists a subfamily with
pairwise disjoint interiors that covers at least area λA, where λ = a

a+pd+πd2 .
2. Assume that any two members of the family have nonempty intersection. Prove

that there exists then a subfamily with pairwise disjoint interiors that covers area
at least μA, where μ = a

πd2 .

Problem 3.52. (Putnam Compettion 1957) Let C be a regular polygon with k sides.
Prove that for every n there exists a planar set S(n) ⊂ R

2 such that any subset
consisting of n points of S(n) can be covered by C, but S(n) itself cannot be included
in C.

Problem 3.53. Let M be a convex polygon and let S1, . . . , Sn be pairwise disjoint
disks situated in the interior of M . Does there exist a partition M = D1 ∪ · · · ∪Dn
such thatDi are convex disjoint polygons, each of which contains precisely one disk?

Problem 3.54. Consider an inscribable n-gon partitioned by means of n − 2 nonin-
tersecting diagonals into n− 2 triangles. Prove that the sum of the radii of the circles
inscribed in these triangles does not depend on the particular partition.

Problem 3.55. (Elemente der Mathematik) Prove that in an ellipse having axes of
lengths a and b and total length L, we have L > π(a + b).

Problem 3.56. (Kvant) Let F be a convex planar domain and F ′ denote its image
by a homothety of ratio − 1

2 . Is it true that one can translate F ′ in order for it to be
contained in F ? Can the constant 1

2 be improved? Generalize to n dimensions.
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Problem 3.57. (Nieuw Archief v.Wiskunde)A classical theorem, due to Cauchy, states
that a strictly convex polyhedron in R

3 whose faces are rigid must be globally rigid.
Here, rigidity means continuous rigidity in the sense that any continuous deformation
of the polyhedron in R

3 that keeps the lengths of edges fixed is the restriction of a
deformation of rigid Euclidean motions of three-space. Prove that a 3-dimensional
cube immersed in R

n remains rigid for all n > 3.

Problem 3.58. Consider finitely many great circles on a sphere such that not all of
them pass through the same point. Show that there exists a point situated on exactly
two circles. Deduce that if we have a set of n points in the plane, not all of them lying
on the same line, then there must exist one line passing through precisely two points
of the given set.

Problem 3.59. Given a finite set of points in the plane labeled with +1 or −1, and
not all of them collinear, show that there exists a line determined by two points in the
set such that all points of the set lying on that line are of the same sign.

Problem 3.60. (Amer. Math. Monthly) If Q is a given rectangle and ε > 0, then Q
can be covered by the union of a finite collection S of rectangles with sides parallel
to those of Q in such a way that the union of every nonoverlapping subcollection of
S has area less than ε.

Problem 3.61. Prove that the 3-dimensional ball cannot be partitioned into three sets
of strictly smaller diameter.

3.3 Geometric Inequalities

Problem 3.62. If a, b, c, r, R are the usual notations in the triangle, show that

1

2rR
≤ 1

3

(∑ 1

a

)2

≤
∑ 1

a2 ≤ 1

4r2 .

Problem 3.63. (Amer. Math. Monthly) If a, b, c are the sides of a triangle, then prove

that (b+c)
2

4bc ≤ ma
wa

and b2+c2

2bc ≤ ma
ka

, where ma,wa, ka denote respectively the lengths
of the median, bisector, and altitude issued from A.

Problem 3.64. (Putnam Competition) If S(x, y, z) is the area of a triangle with sides
x, y, z, prove that

√
S(a, b, c)+ √

S(a′, b′, c′) ≤ √
S(a + a′, b + b′, c + c′).

Problem 3.65. (Nieuw Archief v. Wiskunde) It is known that in any triangle we have
the inequality

3
√

3r ≤ p ≤ 2R + (3
√

3 − 4)r,

where p denotes the semiperimeter. Prove that in an obtuse triangle we have

(3 + 2
√

2)r < p < 2R + r.
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Problem 3.66. Prove the Euler inequality

R ≥ 2r.

Problem 3.67. Prove that in a triangle we have the inequalities

36r2 ≤ a2 + b2 + c2 ≤ 9R2.

Problem 3.68. (Amer. Math. Monthly)

1. Let ABC and A′B ′C′ be two triangles. Prove that

a2

a′ + b2

b′ + c2

c′
≤ R2 (a

′ + b′ + c′)2

a′b′c′
.

2. Derive that

a2 + b2 + c2 ≤ 9R2,

cosA cosB cosC ≤ 1

8
.

Problem 3.69. (Elemente der Mathematik) Prove that the following inequalities hold
in a triangle:

4
∑

cyclic

hAhB ≤ 12S
√

3 ≤ 54Rr ≤ 3
∑

cyclic

ab ≤ 4
∑

cyclic

rArB.

Problem 3.70. (Amer. Math. Monthly) Prove that in an any triangle ABC, we have
√

1 + 8 cos2 B

sinA
+

√
1 + 8 cos2 C

sinB
+

√
1 + 8 cos2 A

sinC
≥ 6.

Problem 3.71. Let P be a point in the interior of the triangle ABC. We denote by
Ra,Rb, Rc the distances from P toA,B,C and by ra, rb, rc the distances to the sides
BC,CA,AB. Prove that

∑

cyclic

R2
a sin2 A ≤ 3

∑

cyclic

r2
a ,

with equality if and only if P is the Lemoine point (i.e., the symmedian point).

Problem 3.72. Prove the inequalities

16Rr − 5r2 ≤ p2 ≤ 4R2 + 4Rr + 3r2.

Problem 3.73. Prove the following inequalities, due to Roché:

2R2 + 10Rr − r2 − 2(R − 2r)
√
R2 − 2Rr

≤ p2 ≤ 2R2 + 10Rr − r2 + 2(R − 2r)
√
R2 − 2Rr.
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Problem 4.1. (Amer. Math. Monthly) Prove that z ∈ C satisfies |z| − �z ≤ 1
2 if and

only if z = ac, where |c − a| ≤ 1. We denote by �z the real part of the complex
number z.

Problem 4.2. Let a, b, c ∈ R be such that a + 2b + 3c ≥ 14. Prove that
a2 + b2 + c2 ≥ 14.

Problem 4.3. Let fn(x) denote the Fibonacci polynomial, which is defined by

f1 = 1, f2 = x, fn = xfn−1 + fn−2.

Prove that the inequality

f 2
n ≤ (x2 + 1)2(x2 + 2)n−3

holds for every real x and n ≥ 3.

Problem 4.4. (Amer. Math. Monthly) Prove the inequality

min
(
(b − c)2, (c − a)2, (a − b)2

)
≤ 1

2

(
a2 + b2 + c2

)
.

Generalize to min1≤k<i≤n(ak − ai)
2.

Problem 4.5. Let a1, . . . , an be the lengths of the sides of a polygon andP its perime-
ter. Then

a1

P − a1
+ a2

P − a2
+ · · · + an

P − an
≥ n

n− 1
.

Problem 4.6. Assume that a, b, and c are positive numbers that cannot be the sides
of a triangle. Then the following inequality holds:

(abc)2(a + b + c)2(a + b − c)(a − b + c)(b − a + c)

≥
(
a2 + b2 + c2

)3 (
a2 + b2 − c2

) (
a2 − b2 + c2)(b2 − a2 + c2

)
.
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Problem 4.7. (Amer. Math. Monthly) Prove that sin2 x < sin x2, for 0 < x ≤ √
π
2 .

Problem 4.8. Let P(x) = a0 + a1x + · · · + anx
n be a real polynomial of degree

n ≥ 2 such that

0 < a0 < −
[
n
2

]
∑

j=1

1

2k + 1
a2k.

Show that P(x) has a real zero in (−1, 1).

Problem 4.9. (Amer. Math. Monthly) Find the minimum of β and the maximum of α
for which (

1 + 1

n

)n+α
≤ e ≤

(
1 + 1

n

)n+β

holds for all n ∈ Z+.

Problem 4.10. (International Math. Olympiad 1984) Prove that for nonnegative x, y,
and z such that x + y + z = 1, the following inequality holds:

0 ≤ xy + yz+ zx − 2xyz ≤ 7

27
.

Problem 4.11. (Putnam Competition 1948) Consider the sequence of nonzero com-
plex numbers a1, . . . , an, . . . with the property that |ar − as | > 1 for r �= s. Prove
that ∞∑

n=1

1

a3
n

converges.

Problem 4.12. (Amer. Math. Monthly) Consider the sequence Sn given by

Sn = n+ 1

2n+1

n∑

i=1

2i

i
.

Find limn→∞ Sn.

Problem 4.13. (Putnam Competition 1951) Prove that whenever a, b > 0 we have
∫ 1

0

ta−1

1 + tb
dt = 1

a
− 1

a + b
+ 1

a + 2b
− 1

a + 3b
+ · · · .

Problem 4.14. (Putnam Competition 1951) Let a, b, c, d ∈ Z
∗+, and r = 1 − a

b
− c

d
.

If r > 0 and a + c ≤ 1982, then r > 1
19833 .

Problem 4.15. (Amer. Math. Monthly) Let ai ∈ R. Prove that

nmin(ai) ≤
n∑

i=1

ai − S ≤
n∑

i=1

ai + S ≤ nmax(ai),

where (n− 1)S2 = ∑
1≤i<j≤n(ai − aj )

2, with S �= 0, and with equality if and only
if a1 = · · · = an.



4 Analysis 31

Problem 4.16. (Schweitzer Competition) Consider a periodic function f : R → R,
of period 1 that is nonnegative, concave on (0, 1) and continuous at 0. Prove that for
all real numbers x and natural numbers n the following inequality f (nx) ≤ nf (x) is
satisfied.

Problem 4.17. (Amer. Math. Monthly) Let (an) be a sequence of positive numbers
such that

lim
n→∞

(a1 + · · · + an)

n
< ∞, lim

n→∞
an

n
= 0.

Does this imply that limn→∞
a2

1+···+a2
n

n2 = 0?

Problem 4.18. (Amer. Math. Monthly) Show that for a fixed m ≥ 2, the following
series converges for a single value of x:

S(x) = 1 + ...+ 1

m− 1
− x

m
+ 1

m+ 1
+ · · · + 1

2m− 1
− x

2m

+ 1

2m+ 1
+ · · · + 1

3m− 1
− x

3m
+ · · · .

Problem 4.19. (Amer. Math. Monthly) Prove that if zi ∈ C, 0 < |zi | ≤ 1, then
|z1 − z2| ≤ | log z1 − log z2|.
Problem 4.20. (Nieuw Archief v. Wiskunde) The roots of the function of a complex
variable

ζ4(s) = 1 + 2s + 3s + 4s

are simple.

Problem 4.21. (Putnam Competition 1953) Compute

I =
∫ π/2

0
log sin x dx.

Problem 4.22. (Putnam Competition 1957) Let f a be positive, monotonically de-
creasing function on [0, 1]. Prove the following inequality:

∫ 1
0 xf

2(x)dx
∫ 1

0 xf (x)dx
≤

∫ 1
0 f

2(x)dx
∫ 1

0 f (x)dx
.

Problem 4.23. (Schweitzer Competition) Prove that every real number x such that
0 < x ≤ 1 can be represented as an infinite sum

x =
∞∑

k=1

1

nk
,

where the nk are natural numbers such that nk+1
nk

∈ {2, 3, 4}.
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Problem 4.24. (Amer. Math. Monthly) Let Sn denote the set of polynomials p(z) =
zn + an−1z

n−1 + · · · + a1z+ 1, with ai ∈ C. Find

Mn = min
p∈Sn

(
max|z|=1

|p(z)|
)
.

Problem 4.25. (Amer. Math. Monthly) Find an explicit formula for the value of Fn
that is given by the recurrence Fn = (n+2)Fn−1 −(n−1)Fn−2 and initial conditions
F1 = a, F2 = b.

Problem 4.26. Find the positive functions f (x, y) and g(x, y) satisfying the follow-
ing inequalities:

(

n∑

i=1

aibi)
2 ≤ (

n∑

i=1

f (ai, bi))(

n∑

i=1

g(ai, bi)) ≤ (

n∑

i=1

a2
i )(

n∑

i=1

b2
i )

for all ai, bi ∈ R and n ∈ Z+.

Problem 4.27. (Putnam Competition 1946) Let g ∈ C1(R) be a smooth function such
that g(0) = 0 and |g′(x)| ≤ |g(x)|. Prove that g(x) = 0.

Problem 4.28. (Putnam Competition 1947) Let a1, b1, c1 ∈ R+ such that a1 + b1 +
c1 = 1 and define

an+1 = a2
n + 2bncn, bn+1 = b2

n + 2ancn, cn+1 = c2
n + 2anbn.

Prove that the sequences (an), (bn), (cn) have the same limit and find that limit.

Problem 4.29. (Kvant) Consider the sequence (an), given by a1 = 0, a2n+1 = a2n =
n− an. Prove that an = n

3 , for infinitely many values of n. Does there exist an n such
that |an − n

3 | > 2005? Also, prove that

lim
n→

an

n
= 1

3
.

Problem 4.30. Compute the integral

f (a) =
∫ 1

0

log(x2 − 2x cos a + 1)

x
dx.

Problem 4.31. (Amer. Math. Monthly) Let −1 < a0 < 1, and define an =
( 1

2 (1 + an−1)
)1/2

for n ≥ 1. Find the limits A,B, and C of the sequences

An = 4n(1 − an), Bn = a1 · · · an, Cn = 4n(B − a1a2 · · · an).
Problem 4.32. (Amer. Math. Monthly) Let consider the sequence given by the recur-
rence

a1 = a, an = a2
n−1 − 2.

Determine those a ∈ R for which (an) is convergent.
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Problem 4.33. Let 0 < a < 1 and I = (0, a). Find all functions f : I → R

satisfying at least one of the conditions below:

1. f is continuous and f (xy) = xf (y)+ yf (x).
2. f (xy) = xf (x)+ yf (y).

Problem 4.34. If a, b, c, d ∈ C, ac �= 0, prove that

max(|ac|, |ad + bc|, |bd|)
max(|a|, |b|)max(|c|, |d|) ≥ −1 + √

5

2
.

Problem 4.35. (Putnam Competition) Let
∑∞
i=1 xi be a convergent series with de-

creasing terms x1 ≥ x2 ≥ · · · ≥ xn ≥ · · · > 0 and let P be the set of numbers
which can be written in the form

∑
i∈J xi for some subset J ∈ Z+. Prove that P is

an interval if and only if

xn ≤
∞∑

i=n+1

xi for every n ∈ Z+.

Problem 4.36. (Amer. Math. Monthly) Does there exist a continuous function f :
(0,∞) → R such that f (x) = 0 if and only if f (2x) �= 0? What if we require only
that f be continuous at infinitely many points?

Problem 4.37. (Kvant) Find the smallest number a such that for every real polynomial
f (x) of degree two with the property that |f (x)| ≤ 1 for all x ∈ [0, 1], we have
|f ′(1)| ≤ a. Find the analogous number b such that |f ′(0)| ≤ b.

Problem 4.38. Let f : R → R be a function for which there exists some constant
M > 0 satisfying

|f (x + y)− f (x)− f (y)| ≤ M, for all x, y ∈ R.

Prove that there exists a unique additive function g : R → R such that

|f (x)− g(x)| ≤ M, for all x ∈ R.

Moreover, if f is continuous, then g is linear.

Problem 4.39. (Amer. Math. Monthly) Show that if f is differentiable and if

lim
t→∞

(
f (t)+ f ′(t)

) = 1,

then
lim
t→∞ f (t) = 1.

Problem 4.40. (Putnam Competition) Let c be a real number, and let f : R → R be
a smooth function of class C3 such that limx→∞ f (x) = c and limx→∞ f ′′′(x) = 0.
Show that limn→∞ f ′(x) = limx→∞ f ′′(x) = 0.
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Problem 4.41. (Putnam Competition) Prove that the following integral equation has
at most a continuous solution on [0, 1] × [0, 1]:

f (x, y) = 1 +
∫ x

0

∫ y

0
f (u, v) du dv.

Problem 4.42. (Putnam Competition) Find those λ ∈ R for which the functional
equation ∫ 1

0
min(x, y)f (y) dy = λf (x)

has a solution f that is nonzero and continuous on the interval [0, 1]. Find these
solutions.

Problem 4.43. (Amer. Math. Monthly) Let X be an unbounded subset of the real
numbers R. Prove that the set

AX = {t ∈ R; tX is dense modulo 1}
is dense in R.

Problem 4.44. (Putnam Competition) Consider P(z) = zn + a1z
n−1 + · · · + an,

where ai ∈ C. If |P(z)| = 1 for all z satisfying |z| = 1, then a1 = · · · = an = 0.

Problem 4.45. Let I ⊂ R be an interval and u, v : I → R smooth functions satisfy-
ing the equations

u′′(x)+ A(x)u(x) = 0, v′′(x)+ B(x)v(x) = 0,

where A,B are continuous on I and A(x) ≥ B(x) for all x ∈ I . Assume that v is not
identically zero. If α < β are roots of v, then there exists a root of u that lies within
the interval (α, β), unless A(x) = B(x), in which case u and v are proportional for
α ≤ x ≤ β.

Problem 4.46. (Amer. Math. Monthly) LetV be a finite-dimensional real vector space
and f : V → R a continuous mapping. For any basis B = {b1, b2, . . . , bn} of V ,
consider the set

EB = {z1b1 + · · · + znbn, where zi ∈ Z}.
Show that if f is bounded on EB for any choice of the basis B, then f is bounded
on V .

Problem 4.47. (Amer. Math. Monthly) It is known that if f, g : C → C are entire
functions without common zeros then there exist entire functions a, b : C → C such
that a(z)f (z)+ b(z)g(z) = 1 for all z ∈ C.

1. Prove that we can choose a(z) without any zeros.
2. Is it possible to choose both a and b without zeros.

Problem 4.48. (Amer. Math. Monthly) Consider a compact set X ⊂ R. Show that a
necessary and sufficient condition for the existence of a monic nonconstant polyno-
mial with real coefficients h ∈ R[x] such that |h(x)| < 1 for all x ∈ X is the existence
of monic nonconstant polynomial g(x) ∈ R[x] such that |g(x)| < 2 for all x ∈ X.
Prove that 2 is the maximal number with this property.
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Number Theory Solutions

Problem 1.1. Show that we have Ckn ≡ 0 (mod 2) for all k satisfying 1 ≤ k ≤ n− 1
if and only if n = 2β , where β ∈ Z

∗+. Here Ckn denotes the number of combinations,
i.e., the number of ways of picking up a subset of k elements from a set of n elements.
Known also as the binomial coefficient or choice number and sometimes denoted as(
n
k

)
it is given by the formula

Ckn =
(
n

k

)
= n!

k!(n− k)!

where the factorial n! represents

n! = 1 × 2 × 3 × · · · × n.

Solution 1.1. Denote by expk(m) the maximal exponent of m in k, i.e., the maximal
r such that mr divides k. Since Ckn = n!

k!(n−k)! , the exponent of 2 in Ckn has the value

expCkn (2) = expn!(2)− expk!(2)− exp(n−k)!(2),

which is, by hypothesis, strictly positive for all considered k. Now, the exponent of 2
in a factorial is given by the following formula:

expm!(2) =
∞∑

i=1

[m
2i

]
,

where the brackets denote the integer part. This implies that our claim is equivalent
to the inequality

∑

i=1

[ n
2i

]
−

∑

i=1

[
k

2i

]
−

∑

i=1

[
n− k

2i

]
> 0.

Let us now suppose that n = 2β + s, with 1 ≤ s < 2β . If we take k = s, then the
exponent above can be calculated as
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([
2β + s

2

]
+ · · ·

)
−

([ s
2

]
+ · · ·

)
−

([
2β

2

]
+ · · ·

)
= 0,

contradicting our assumptions. Thus, it is necessary that n = 2β .
The sufficiency is established as follows. We have the identity (a+b)2 = a2 +b2

in Z/2Z. Using induction on β, one proves that (x + y)2
β = x2β + y2β ∈ Z/2Z. In

particular, (x + 1)2
α = x2α + 1, and therefore, by identifying the coefficients of the

binomial expansion on the left- and right-hand sides, we obtain the claim.

Comments 1 Using the formula Ckn = Ckn−1 + Ck−1
n−1 , we find that Ckn ≡ 1 (mod 2)

for all k ≤ n if and only if n = 2α − 1.

Problem 1.2. Let P = anx
n + · · · + a0 be a polynomial with integer coefficients.

Suppose that there exists a number p such that:

1. p does not divide an;
2. p divides ai , for all i ≤ n− 1;
3. p2 does not divide a0.

Then P is an irreducible polynomial in Z[x].

Solution 1.2. Let ϕ : Z → Z/pZ be the reduction modulo p and let ϕ : Z[x] →
Z/pZ[x] be the map consisting of taking the reduction modulo p of all coefficients.
This map is actually a homomorphism of rings, meaning that it respects addition and
multiplication of polynomials. We have

ϕ(P (x)) = ϕ(an)x
n �= 0.

Assume that P is not irreducible, and so P = P1 · P2. Then ϕ(P ) = ϕ(P1) · ϕ(P2).
Moreover, the only way to write ϕ(an)xn ∈ Z/pZ[x] as a product of two polynomials
is βxk · γ xl , where k + l = n and βγ = ϕ(an). In particular, if we write P1(x) =
β0 + · · · + βkx

k , P2(x) = γ0 + · · · + γlx
l , then ϕ(βk) = β, ϕ(βi) = 0 if i < k,

and ϕ(γi) = γ, ϕ(γi) = 0 if i < l. Eventually, this yields a0 = β0γ0 ≡ 0 (mod p2),
which contradicts our assumptions.

Comments 2 This result is known as the Eisenstein criterion. Using this result we
can give an alternative solution to Problem 1.1 above. Assume that Ckn ≡ 0 (mod 2)
for k ∈ {1, . . . , n − 1}. Then the Eisenstein criterion shows that the polynomial
P(x) = (x + 1)n + 1 is irreducible. This means that Q(x) = P(x − 1) = xn + 1
is equally irreducible. On the other hand, if we can write n = 2a(2b + 1), with
a, b ∈ Z+, then xn + 1 is divisible by x2a + 1; thus irreducibility of Q(x) implies
that b = 0. Therefore, n = 2a , as claimed.

Problem 1.3. Given mi, bi ∈ Z+, i ∈ {1, 2, . . . , n} such that gcd(mi,mj ) = 1 for
all i �= j , there exist integers x satisfying x ≡ bi (mod mi) for all i. This result is
usually known as the Chinese remainder theorem.
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Solution 1.3. For n = 2, we have m1Z +m2Z = Z. Therefore there exist ai ∈ miZ
such that a1 +a2 = 1. Then x = a1b2 +a2b1 satisfies the conditions of the statement.

Since mi are relatively prime, for each j ∈ {1, 2, . . . , n} there exists yj ∈ Z sat-
isfying the conditions yj ≡ 1 (mod mj) and yj ≡ 0 (mod m1 · · ·mj−1mj+1 · · ·mn).
Then take x = b1y1 + · · · + bnyn, which satisfies the system of congruences.

Problem 1.4. If gcd(a,m) = 1, then it is a classical result of Euler that we have the
following congruence:

aϕ(m)+1 ≡ 0 (mod m),

where ϕ(m) is the Euler totient function, which counts how many positive integers
smaller than m are relatively prime to m. Prove that this equality holds precisely for
those numbers a,m such that for any prime number p that divides a, if pk divides m
then pk also divides a.

Solution 1.4. Let p be a prime number and e the maximal exponent such that pe

divides m. If p divides a, then pe divides a. If p does not divide a, then aϕ(p
e) ≡

1 (mod pe), because ϕ(m) is a multiple of ϕ(pe). Therefore aϕ(m) ≡ 1 (mod pe).
This implies that pe divides a(aϕ(m) − 1). Hence m divides a(aϕ(m) − 1).

In order to establish the converse, let p be a divisor of a such that pk divides m
but pk does not divide a. Then pk does not divide a(aϕ(m)−1), because obviously, p
and aϕ(m) − 1 are relatively prime. Consequently, m is not a divisor of a(aϕ(m) − 1).

Problem 1.5. Let p > 2 be a prime number and let ak ∈ {0, 1, . . . , p2 − 1} denote
the value of kp modulo p2. Prove that

p−1∑

k=1

ak = p3 − p2

2
.

Solution 1.5. We have

(p − k)p = (−k)p + C1
pp(−k)p−1 + · · · + pp ≡ −kp (mod p2).

Therefore, ap−k = p2 − ak . In particular, summing up these equalities, we obtain
∑k−1
p−1 ap−k = p2(p − 1)− ∑p−1

k=1 ak , which yields
∑p−1
k=1 ak = p2(p−1)

2 .

Problem 1.6. If k ∈ Z+, then show that
[√
k2 + 1 + · · · +

√
k2 + 2k

]
= 2k2 + 2k,

where [x] denotes the integer part, i.e., the largest integer smaller than x.

Solution 1.6. We have
√
k2 +m− k = m√

k2+m+k , and if 1 ≤ m ≤ 2k, then m
2k+1 ≤

m√
k2+m+k ≤ m

2k . Summing up all terms, we obtain

k =
2k∑

m=1

m

2k + 1
≤

(
2k∑

m=1

√
k2 +m

)

− 2k2 ≤
2k∑

m=1

m

2k
= k + 1

2
,

whence the claim.
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Problem 1.7. If n is not a multiple of 5, then P = x4n + x3n + x2n + xn + 1 is
divisible by Q = x4 + x3 + x2 + x + 1.

Solution 1.7. If ξ is a fifth primitive root of unity, then

P(ξ) = ξ4n + ξ3n + ξ2n + ξn + 1 = ξ5n − 1

ξn − 1
= 0.

Hence P = (x − ξ)(x − ξ2)(x − ξ3)(x − ξ4)R = Q · R, for some polynomial R.

Comments 3 More generally, x(m−1)n + · · · + 1 is divisible by xm−1 + · · · + 1 if
gcd(m, n) = 1.

Problem 1.8. Let p be an odd prime and k ∈ Z+. Show that there exists a perfect
square the last k digits of whose expansion in base p are 1.

Solution 1.8. Use induction on k. It is obvious for k = 1. Let us assume that x2 =
1 + p + · · · + pk−1 + (apk + · · · ) and gcd(x, p) = 1. Then we have

(x + cpk)2 = x2 + 2cxpk + c2p2k = 1 + p + · · · + pk−1 + (a + 2cx)pk + · · · .
If p is odd, then gcd(2x, p) = 1. Moreover, the congruence 2xc + a ≡ 1 (mod p)
has at least one solution c ∈ {0, 1, . . . , p − 1}. If c0 is a solution, then (x + c0p

k)2

has its last k + 1 digits equal to 1.

Comments 4 The result can be extended to higher exponents r ≥ 2 and prime
numbers p that do not divide r , or more generally to p such that gcd(p, r) = 1.
Moreover, the last digits can be arbitrarily prescribed.

Problem 1.9. Any natural number greater than 6 can be written as a sum of two
numbers that are relatively prime.

Solution 1.9. For odd n ≥ 7, we can write n = 2k + 1 = k + (k + 1), where
gcd(k, k+1) = 1. Consider now n = 2m, wherem ≥ 3. Recall Chebyshev’s theorem
that for anym ≥ 2 there exists a prime number p such thatm < p < 2m. Therefore,
we have 0 < 2m − p < m. Further, gcd(p, 2m − p) = 1, since 2m > p > m and
gcd(m, p) = 1.

Problem 1.10. Prove that it is impossible to extract an infinite arithmetic progression
from the sequence S = {1, 2k, 3k, . . . , nk, . . .}, where k ≥ 2.

Solution 1.10. Let r be the ratio of an arithmetic progression A ⊂ S. If n > r , then
(n + 1)k − nk ≥ 2n + 1 > r . Thus the difference between consecutive terms of S
grows higher than r , and hence A is finite.

Comments 5 The result is also true when we replace S with the sequence an+2 =
pan+1 + qan, for 1 ≤ p ≤ q + 1.

Problem 1.11. Prove that ba−j+1 divides Cjba if a, b ≥ 2, j ≤ a + 1.
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Solution 1.11. An easy induction on n shows that bn ≥ n+ 1, and hence ba ≥ j . We
write the combinations (also called binomial coefficients) as

C
j
ba = 1

j !

j−1∏

i=0

(ba − i).

Let i = brm, where gcd(m, b) = 1, so that ba − i = br(ba−r −m). This shows that
i and ba − i are divisible by the same power of b. Therefore, the exponent of b in Cjba
equals the result of subtracting from a the exponent of b in j !. The latter is at most
j − 1 because bj−1 ≥ j , and hence the claim.

Problem 1.12. Solve in integers the following equations: (1) x2 = y2 + y3; (2)
x2 + y2 = z2.

Solution 1.12. 1. The plane curve determined by the first equation has the following
form:

x

y

0

D
T

P

We will look for a parameterization of this curve by projecting from the origin 0
onto the line D given by y = 1. Thus, to each point P of the curve we associate the
point T , which is the intersection of the half-line 0P with the lineD. Denote by t the
natural parameter of D. This amounts to setting y = 1

t
x within the equation, which

immediately yields x = t3 − t and y = t2 − 1.
If x, y ∈ Z, then t ∈ Q. Moreover, t2 = y + 1 ∈ Z, but a rational number whose

square is an integer must be an integer itself. Thus the integer solutions are given by
the family x = t3 − t and y = t2 − 1, where t ∈ Z.

2. Dividing by z2, we reduced the problem of finding the rational solutions of the
equation x2 + y2 = 1. This is a circle of unit radius in the plane. We now use the
stereographic projection from the point P(−1, 0) onto the vertical line x = 1 in order
to find a more-convenient parameterization of the circle.

P Q

X
T
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If t is the new parameter on the vertical line, then x2 + y2 = 1 and x+1
2 = y

t
. This

yields x = 1−s2

1+s2 and y = 2s
1+s2 , where s = t

2 .

Therefore the integer solutions of our equation are given by x = (r2 − s2)v,
y = 2vrs, and z = (r2 + s2)v, where s, r, v ∈ Z. The primitive solutions, for which
gcd(x, y, z) = 1, are those for which v = 1 and gcd(r, s) = 1. The triples (x, y, z)
are called Pythagorean triples.

Comments 6 The two Diophantine equations above correspond to rational algebraic
curves, i.e., to curves in the plane that admit a natural parameterization by means of
rational functions. This situation is quite exceptional.

Comments 7 The Pythagorean equation x2 +y2 = z2 can be generalized by adding
more variables and still keeping its rational behavior to

x2
1 + x2

2 + · · · + x2
n+1 = z2, n ≥ 1.

The general (primitive) solution of this equation in integers can be obtained by the
same method as above and reads

x1 = s2
1 + s2

2 + · · · + s2
n − u2,

x2 = 2s1u,

x3 = 2s2u,

...
...

xn+1 = 2snu,

z = s2
1 + s2

2 + · · · + s2
n + u2,

for arbitrary integer parameters s1, s2, . . . , sn, u ∈ Z.

Comments 8 Another famous generalization of the Pythagorean equation is

xk + yk = zk, k ≥ 3,

which was conjectured by Fermat to have no nontrivial solutions for k ≥ 3. Several
particular cases were solved over the years (k = 4 by Fermat, k = 3 by Euler,
k = 5, 14 by Dirichlet, k = 7 by Lamé, etc). However, it took more than three
hundred years for the conjecture be eventually settled by A.Wiles in 1995.

Comments 9 Euler considered the more general equation

xk1 + xk2 + · · · + xkn = zk.

He conjectured that there are no nontrivial solutions unless n ≥ k and proved it for
n = 3. However, Lander and Parkin found counterexamples for n = 5, for example,

275 + 845 + 1105 + 1335 = 1445,



5 Number Theory Solutions 43

and later, N. Elkies settled the case n = 4 by finding another counterexample:

2 682 4404 + 15 365 6394 + 18 796 7604 = 20 615 6734.

A subsequent computer search by R. Frye found the following minimal solution for
n = 4 (which is unique in the range z ≤ 1 000 000):

95 8004 + 217 5194 + 414 5604 = 422 4814.

See also

• N.D. Elkies: On A4 + B4 + C4 = D4, Math. Comp. 51 (1988), 184, 825–835.
• J.L. Lander and T.R. Parkin: A counterexample to Euler’s sum of powers conjec-

ture. Math. Comp. 21 (1967), 101–103.

Problem 1.13. Let a, b, c, d ∈ Z+ be such that at least one of a and c is not a perfect
square and gcd(a, c) = 1. Show that there exist infinitely many natural numbers n
such that an + b, cn + d are simultaneously perfect squares if one of the following
conditions is satisfied:

1. b and d are perfect squares;
2. a + b, c + d are perfect squares;
3. a(d − 1) = c(b − 1).

Moreover, there do not exist such numbers if a = 1, b = 0, c = 4k2 − 1, d = 1.

Solution 1.13. There exists n such that an + b, cn + d are perfect squares iff the
equation

ax2 − cy2 = ad − bc

has integer solutions. In fact,
√
cn+ d,

√
an+ b are solutions of the equation. Con-

versely, if (x, y) is a solution, then

a(x2 − d) = c(y2 − b).

Since gcd(a, c) = 1, we find that c divides x2−d, while a divides y2−b. In particular,
we obtain that x2 − d = kc and y2 − b = ka.

Further, ac is not a perfect square and so the Pell equation

u2 − acv2 = 1

has infinitely many solutions (un, vn). If (x, y) is a solution of our equation, then

xn = unx + dvny, yn = uny + vnx

form an infinite sequence of solutions. Thus it suffices to determine one solution for
the equation in order to find infinitely many.

The first two cases are immediate, and the third corresponds to the solution (1, 1).
Finally, note that the Pell-type equation x2 − (4k2 − 1)y2 = −1 has no integer

solutions, by modulo 4 considerations.
See also:
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• T. Andreescu and D. Andrica, Quadratic Diophantine Equations, Springer Mono-
graphs in Math., 2006.

Problem 1.14. If N = 2 + 2
√

28n2 + 1 ∈ Z for a natural number n, then N is a
perfect square.

Solution 1.14. If
√

28n2 + 1 = k, then N = 2 + 2k. If N ∈ Z, then k ∈ 1
2 Z. But k

is the square root of an integer, and whenever such a square root is a rational number,
then it is actually an integer. This proves that k ∈ Z. Now, 28n2 = (k − 1)(k + 1),
and therefore k is odd, k = 2t + 1. Thus, 7n2 = t (t + 1). We have two cases:

1. If 7 divides t + 1, then, t = 7s − 1 and so (7s − 1)s = n2, for s ∈ Z. But
gcd(s, 7s − 1) = 1 and thus 7s − 1 = n2

1 and s = n2
2, where n1n2 = n. Moreover,

any square, in particular n2
1, is congruent to 1, 2, or 4 (mod 7). In particular, it cannot

be equal to 7s − 1.
2. If 7 divides t , i.e., t = 7s, then n2 = s(7s + 1). Since gcd(s, 7s + 1) = 1, we

have 7s + 1 = n2
1 and s = n2

2. This implies that

N = 2 + 2k = 2 + 2(14n2
2 + 1) = 4(7n2

2 + 1) = 4(7s + 1) = 4n2
1.

Problem 1.15. Let n ≥ 5, 2 ≤ b ≤ n. Prove that
[
(n− 1)!

b

]
≡ 0 (mod b − 1).

Solution 1.15. We have four cases to consider:
1. If b < n, then (n−1)! is divisible by b(b−1) and therefore (n−1)!

b
is an integer

divisible by b − 1.
2. Suppose b = n, where n is not prime and not the square of a prime number,

hence n = rs, where 1 < r < s < n. Since gcd(n, n − 1) = 1 and s < n − 1, we
derive that (n − 1)! contains the factors r, s, and n − 1, and therefore it is divisible
by rs(n− 1) = b(b − 1).

3. If b = n is the square of a prime, i.e., n = p2, then p ≥ 3 and hence
1 < p < 2p < 2p2 −1 = n−1. This implies that (n−1)! is divisible by the product
of p, 2p, and n− 1, i.e., by 2p2(n− 1) = 2b(b − 1).

4. If b = n is a prime number p, then by Wilson’s theorem we have (p−1)!+1 ≡
0 (mod p),
[
(p − 1)!

p

]
=

[
(p − 1)! + 1

p
− 1

p

]
= (p − 1)! + 1

p
−1 = (p−1)

(
(p − 2)! − 1

p

)
.

Now gcd(p, p − 1) = 1, so p − 1 divides
[
(p−1)!
p

]
.

Problem 1.16. Prove that for every natural number n, there exists a natural number
k such that k appears in exactly n nontrivial Pythagorean triples.

Solution 1.16. Let us show that 2n+1 appears in exactly n triples. If n = 0, it amounts
to saying that 2 does not appear in any such triple, which is immediate.
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Let us now use induction on n. All primitive Pythagorean triples are given by

x = u2 − v2, y = 2uv, z = u2 + v2,

where gcd(u, v) = 1 and u, v are not both odd and u > v.
If u, v are both odd, then y = 2uv = 2n+1 and therefore u = 2n and v = 1.

The nonprimitive triples in which 2n+1 appears are those divisible by 2, and thus they
are in bijection with the Pythagorean triples in which 2n appears. By the recurrence
hypothesis we have n such triples. Therefore 2n+1 appears in n nonprimitive triples
and one primitive triple, and thus in n+ 1 such triples.

Problem 1.17. Let n, q ∈ Z+ be such that all prime divisors of q are greater than n.
Show that

(q − 1)(q2 − 1) · · · (qn−1 − 1) ≡ 0 (mod n!).

Solution 1.17. Let p ≤ n, prime. Since p is not a divisor of qk , we have qk(p−1) ≡
1 (mod p), for all k. Therefore at least

[
(n−1)
(p−1)

]
factors from the left-hand side are

divisible by p.
Let us now compute the exponent of p in n!, which is

expn!(p) =
∞∑

k=1

[
n

pk

]
<

∞∑

k

n

pk
= n

p − 1
.

Now expn!(p) ∈ Z, and so the strict inequality above implies that expn!(p) ≤
[
n−1
p−1

]
.

Thus the left-hand side is divisible by pexpn!(p). Since this holds for all p ≤ n, the
claim follows.

Comments 10 Let q = pm, where p > n is a prime number. LetG denote the group
of nonsingular matrices over the Galois field with q elements. Then the order of the
groupG is |G| = qn(n−1)/2(q−1) · · · (qn−1). Let nowG∗ be the subgroup generated
by the diagonal matrices and their permutations. One finds that |G∗| = (q − 1)nn!.
Since the order of a subgroup divides the order of the larger group, we derive

(q − 1) · · · (qn − 1) ≡ 0 (mod (qn − 1)nn!),

improving the relation above.

Problem 1.18. Every natural number n ≥ 6 can be written as a sum of distinct primes.

Solution 1.18. Let n ≥ 15. One knows by Chebyshev’s theorem that there exists a
prime p between n

2 and n. Then 0 < n− p < n
2 . Further, there exists a prime q such

that n−p2 < q < n−p, and the rest n−p− q satisfies therefore 0 < n−p− q < n
4 .

We continue this process until there remains either a prime number or a number from
the set {7, 8, . . . , 14}. Since 7 = 5 + 2, 8 = 5 + 3, 9 = 7 + 2, 10 = 7 + 3, 11 = 11,
12 = 7 + 5, 13 = 13, and 14 = 2 + 5 + 7, the claim follows.
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Problem 1.19. Every number n ≥ 6 can be written as a sum of three numbers which
are pairwise relatively prime.

Solution 1.19. By Chebyshev’s theorem , there exists a primep such that n2 < p < n.
Note next that a natural number m such that m is divisible by all prime numbers

strictly smaller than m must be 2. In fact, otherwise, again by Chebyshev’s theorem,
there exists a prime bigger than m

2 , which cannot divide m. Thus there exists a prime
q such that n− p is not divisible by q, and so gcd(n− p, q) = 1.

If gcd(p, n−p−q) > 1, then n−p−q = ap, which cannot happen, sincep > n
2

and a �= 0, since n − p − q > 0. If gcd(q, n − p − q) > 1, then n − p − q = aq,
which contradicts our choice of q. Thus p, q, n− p − q satisfy the claim.

Problem 1.20. Find all pairs of integers (m, n) such that

Cnm = 1984,

where Cnm = m!
n!(m−n)! denotes the usual binomial coefficient.

Solution 1.20. We consider 0 ≤ n ≤ m
2 . We have 1984 = 26 · 31. Since 1984 =

(n+1)(n+2)···(m−1)m
(m−n)! , then either 31 divides (n+ 1)(n+ 2) · · · (m− 1)m (and does not

divide (m − n)!), so that m ≥ 31, or else 31 also divides (m − n)! and hence again
m ≥ 31.

If n ≥ 3, then Cnm ≥ C3
m ≥ C3

31 = 1
6 (29 · 30 · 31) > 64 · 31 = 1984. Thus

n ∈ {0, 1, 2}.
Finally, if n = 1, then m = 1984, while C2

m = 1984 does not have any solutions
in natural numbers.

Thus, the solutions are (1984, 1), (1984, 1983).

Comments 11 More generally, if N has a prime divisor p > k
(
k
√
N + 1

)
, k < p

2 ,

then the equation Cnm = N has at most 2k solutions. One derives, furthermore, that
the number F(N) of such solutions can be estimated from above:

F(N) = O(logN/ log logN).

Recall that F(N) = O(g(N)) if limN→∞ F(N)
g(N)

< ∞. It is conjectured that F(N) is
uniformly bounded, independently of N .

Problem 1.21. Find the setA consisting of natural numbers n that are divisible by all
odd natural numbers a with a2 < n.

Solution 1.21. Let p1 = 3, p2, . . . , pm be the firstm odd primes. Choose k such that
(2k − 1)2 < n ≤ (2k + 1)2 and m maximal such that pm ≤ 2k − 1. By hypothesis,
pm+1 > 2k + 1 and hence, n < p2

m+1.
Assume that n is in A. Then the pi divide n for all i ≤ m, and thus p1p2 · · ·pm

divides n. Moreover, the Bonse–Pósa inequality states that

p1 · · ·pm > p2
m+1, m ≥ 4.
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Thus m ≤ 3.
If m = 3, then n ≤ 169 and 105 divides n. However, n = 105 does not belong to

A, since it is not divisible by 9.
If m = 2, then n ≤ 49 and n is divisible by 15.
If m = 1, then n ≤ 25 is divisible by 3.
If m = 0, then n ≤ 9.
The answer is thereforeA = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 18, 21, 24, 30, 45}.

Comments 12 Panaitopol recently gave an elementary proof of a more-general
Bonse–Pósa inequality p1p2 · · ·pn > p

n−π(n)
n+1 , for n ≥ 2, which implies that

p1p2 · · ·pn > pkn+1 for n > 2k. This has been further improved by Alzer and Berg.

• L. Panaitopol: An inequality involving prime numbers, Univ. Beograd. Publ. Elek-
trotehn. Fak. Ser. Mat. 11 (2000), 33–35.

• H. Alzer, C. Berg: Some classes of completely monotonic functions II, The Ra-
manujan Journal 11(2006), 225–248.

Problem 1.22. Prove that 21092 − 1 is divisible by 10932.

Solution 1.22. Set p = 1093 and thus p2 = 1194649. Observe that
37 = 2187 = 2p + 1,
314 ≡ 4p + 1 (mod p2),
214 = 16348 = 15p − 11, 228 ≡ −330p + 121 (mod p2),
32 · 228 ≡ −2970p + 1089 ≡ −1876p − 4 (mod p2), and therefore
32 · 226 ≡ −469p − 1 (mod p2). Therefore we infer that
314 · 2182 ≡ −(489p + 1)7 ≡ −3283p − 1 ≡ −4p − 1 ≡ −314 (mod p2),

and using the fact gcd(314, p2) = 1, we obtain 2182 ≡ −1 (mod p2), yielding
21092 − 1 ≡ 0 (mod 10932).

Problem 1.23. Let n ≥ 0, r > 1, and 0 < a ≤ r be three integers. Prove that the
number n, when written in base r , has precisely

∞∑

k=1

[
nr−k + ar−1

]
−

[
nr−k

]

digits that are greater than or equal to r − a.

Solution 1.23. We write n = n1 + n2r + n3r
2 + · · · in base r . Then the digits nj are

computed by the formulas

n1 = n−
[n
r

]
r, n2 =

[n
r

]
−

[ n
r2

]
r, . . . , nk =

[ n

rk−1

]
−

[ n
rk

]
r.

For a fixed k, we have nk ≥ r − a if and only if
[

n
rk−1

]
−

[
n
rk

]
r ≥ r − a, which is

equivalent to asking that
[

1
r

([
n
rk−1

]
+ a

)]
≥

[
n
rk

]
+ 1.

Now let n = mrk−1 + s, where 0 ≤ s < rk−1. Then
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[

1

r

([ n

rk−1

]
+ a

)]
=

[m
r

+ a

r

]
=

[m
r

+ s

rk
+ a

r

]
=

[ n
rk

+ a

r

]

and therefore nk ≥ r − a if and only if
[
n1
rk

+ a
r

]
>

[
n
rk

]
. However, we have

−
[ n
rk

]
+

[ n
rk

+ a

r

]
=

{
0, if nk < r − a,

1, if nk ≥ r − a.

Thus, the total number of digits greater than r − a is

∞∑

k=1

([ n
rk

+ a

r

]
−

[ n
rk

])

as claimed.

Comments 13 The same argument shows that given a sequence ak ∈ {1, 2, . . . , r},
the number of digits nk of n written in base r that satisfy the inequalities

nk ≥ r − ak

is ∞∑

k=1

([ n
rk

+ ak

r

]
−

[ n
rk

])
.

Problem 1.24. Find a pair (a, b) of natural numbers satisfying the following proper-
ties:

1. ab(a + b) is not divisible by 7;
2. (a + b)7 − a7 − b7 is divisible by 77.

Solution 1.24. Since a, b, a + b �≡ 0 (mod 7), there exists the inverse a−1 of a in
Z/77

Z; moreover, k = ba−1 �≡ 0,−1 (mod 77). Then 77 divides (a−1)7((a + b)7 −
a7 − b7) = (1 + k)7 − 1 − k7. Developing the latter, we find that

7k(k5 + 3k4 + 5k3 + 5k2 + 3k + 1) ≡ 0 (mod 77);
thus

(k + 1)(k4 + 2k3 + 3k2 + 2k + 1) ≡ 0 (mod 76).

Since k �≡ −1 (mod 77), we obtain

(k2 + k + 1)2 ≡ 0 (mod 76),

and so we have to solve in integers the equation k2 +k+1 = 73s. The discriminant is
D = 4·73s−3, which has to be a squarep2. We need then to findp such that 73 divides
p2 + 3. We note that 72 divides p2 + 3 only if either p = 12 + 49q or p = 37 + 49q.
By replacing above, we find in the first case p2 + 3 = 49(24q + 3) ≡ 0 (mod 343),
which yields q ≡ −1 (mod 7) and thus k = −19 + 343r . The second case yields the
solutions k = 18 + 343r .

In particular, (1, 18) and (1, 324) are solutions for the problem.
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Problem 1.25. Let 0 < a < b < c < d be odd integers such that

1. ad = bc

2. a + d = 2k, b + c = 2m, for some integers k and m.

Prove that a = 1.

Solution 1.25. Let a
b

= c
d

= x
y

, where gcd(x, y) = 1. One obtains then, from the
other equations, the value

a = x2m(y − 2k−mx)
y2 − x2 .

Since a is odd, we have y2 − x2 = 2ms for some integer s. Recall that x, y are
odd, since they divide a and b, respectively. We obtain, then, the following types of
solutions:

1.

{
y = 2m−2s1 + s2,

x = 2m−2s1 − s2,

2.

{
y = s1 + 2m−2s2,

x = s1 − 2m−2s2,

where the si are both integers. Moreover, when replacing x and y by these values
in the expression of a, we obtain that s1 must divide 2k−m + 1 and s2 must divide
2k−m − 1. Further, we have the equivalences

k > m iff a + d > b + c iff a + bc

a
> b + c iff (a − b)(a − c) > 0.

The inequality a + bc
a

≤ 1 + bc implies that k < 2m− 2.
Now, in the first type of solutions, we have s1 > 2m−2s2, and s1 divides 2k−m+1,

hence s2 = 1, s1 = 2k−m + 1, k = 2m− 2.
In the second case, we have y ≤ b < 2m−1 and thus s1 < 2, which yields s1 = 1.

Since 3y > 2m−1, we find that x = a, y = b, and replacing in the expression of a,
we obtain s2 = 2m−2 − 1, so that a = 1.

Problem 1.26. Find those subsets S ⊂ Z+ such that all but finitely many sums of
elements from S (possibly with repetitions) are composite numbers.

Solution 1.26. Let S∗ = {x = ∑
ai∈S ai} be the semigroup generated by S. We prove

that S∗ contains only composite numbers iff there exists a prime number p, with
p /∈ S, such that p divides all elements of S. This condition is obviously sufficient.
In order to prove the converse, let us assume the contrary, i.e., that gcd(S) = 1. Then
there exists a finite subset T = {c1, . . . , cn} ⊂ S such that gcd(T ) = 1. This implies
that there exist integers xi ∈ Z such that

n∑

i=1

cixi = 1.
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Separating the terms with xi > 0 and those with xi < 0, we obtain two elements
a, b ∈ S∗ with the property that a − b = 1. In particular, gcd(a, b) = 1. From
Dirichlet’s theorem, the arithmetic progression {a+kb}k∈Z+ contains infinitely many
primes; but a + kb ∈ S∗, contradicting our assumptions. The claim follows.

Comments 14 Another proof can be given by using the Chinese remainder theorem
and showing that if S is such that gcd(S) = 1, then S∗ is Z+ −A, where A is a finite
subset. The problem of determining the maximal element of A is called the Frobenius
coin problem. If S = {a1, a2}, then the maximal number is F(S) = a1a2 − a1 − a2,
as was proved by Sylvester. If card(S) = 3, the problem was solved by Selmer and
Beyer, but for card(S) ≥ 4, there is no closed formula for F(S). Erdős and Graham
proved that

F({a1 < a2 < · · · < an}) ≤ 2an−1

[an
n

]
− an,

and Brauer that

F({a1 < a2 < · · · < an}) ≤
n∑

i=1

ai

(
gcd(a1, a2, . . . , ai)

gcd(a1, a2, . . . , ai+1)
− 1

)
.

Curtis proved that there is no closed formula expressing F(S) for n ≥ 4 that involves
only polynomials.

• A. Brauer: On a problem of partitions, Amer. J. Math. 64 (1942), 299–312.
• F. Curtis: On formulas for the Frobenius number of a numerical semi-group, Math.

Scand. 67 (1990), 2, 190–192.
• P. Erdős and R.L. Graham: On a linear Diophantine problem of Frobenius, Acta

Arith. 21 (1972), 399–408.
• E.S. Selmer and Ö. Beyer: On the linear Diophantine problem of Frobenius in

three variables, J. Reine Angew. Math. 301 (1978), 161–170.

Problem 1.27. Prove that for any natural number n > 1, the number 2n − 1 does not
divide 3n − 1.

Solution 1.27. SetAn = 2n−1 and Bn = 3n−1, where n > 1. For even n, 3 divides
An, while 3 does not divide Bn, and so An does not divide Bn.

Now let n > 1 be odd, of the form n = 2m−1. Using 24 ≡ 22 (mod 12), we infer
An ≡ −5 (mod 12). Since any prime greater than three is congruent to either ±5, or
±1 modulo 12, there is at least one prime divisor p ofAn such that p ≡ ±5 (mod 12).
IfAn dividesBn, thenp divides 3Bn and thus 3 ≡ 3n+1 ≡ 32m (modp), which implies
that 3 is a quadratic residue modulo p. But this contradicts the quadratic reciprocity
theorem (an easy consequence of which is the fact that 3 cannot be a quadratic residue
modulo p), since p ≡ ±5 (mod 12).

Problem 1.28. Let un be the least common multiple of the first n terms of a strictly
increasing sequence of positive integers. Prove that

∞∑

n=1

1

un
≤ 2.
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Find a sequence for which equality holds above.

Solution 1.28. Let ak be the increasing sequence, and uk = lcm(a1, a2, . . . , ak). We
have ∞∑

k=1

1

uk
=

∞∑

k=1

1

lcm(a1, a2, . . . , ak)
≤ 1

a1
+

∞∑

k=2

1

lcm(ak, ak+1)

= 1

a1
+

∞∑

k=2

gcd(ak, ak+1)

akak+1
≤ 1

a1
+

∞∑

k=2

ak+1 − ak

akak+1

= 1

a1
+

∞∑

k=2

(
1

ak
− 1

ak+1

)
= 2

a1
≤ 2.

Examples of sequences for which equality holds are ak = 2k−1, and a1 = 1, a2 =
2, a3 = 6, ak = 3 · 2k−2, for k ≥ 4.

Problem 1.29. Let ϕn(m) = ϕ(ϕn−1(m)), where ϕ1(m) = ϕ(m) is the Euler totient
function, and set ω(m) the smallest number n such that ϕn(m) = 1. If m < 2α , then
prove that ω(m) ≤ α.

Solution 1.29. If we consider the minimal j with ϕj (m) = 1, then ϕj−1(m) = 2.
Also, we have ϕ1(m) < m < 2α , but ϕ1(m) is an even number and thus ϕ2(m) ≤
1
2ϕ1(m) < 2α−1. By induction, we obtain ϕj−1(m) < 2α−(j−2), whence the claim.
For even m, we have ω(m) ≤ α − 1.

Problem 1.30. Let f be a polynomial with integer coefficients andN(f ) = card{k ∈
Z; f (k) = ±1}. Prove thatN(f ) ≤ 2 + deg f , where deg f denotes the degree of f .

Solution 1.30. Set N+(f ) = card{k; k ∈ Z, f (k) = 1} and, respectively, N−(f ) =
card{k; k ∈ Z, f (k) = −1}. We claim first that either N+(f ) ≤ 2 or N−(f ) ≤ 2.
Assume the contrary. Then there exist a, b, c, d, e, g distinct integers such that

f (a) = f (b) = f (c) = −1 and f (d) = f (e) = f (g) = +1.

Thus we can write

f (x) = Q(x)(x − a)(x − b)(x − c)− 1 = R(x)(x − d)(x − e)(x − g)+ 1,

whereQ and R are polynomials with integer coefficients. Consequently, we have the
polynomial identity

(x − a)(x − b)(x − c)Q(x) = (x − d)(x − e)(x − g)R(x)+ 2.

Let x take the values a, b, and c, respectively. Then we find that a − d, a − e, a − g

divide 2 and therefore a − d, a − e, a − g ∈ {1,−1, 2,−2}. In a similar way, b −
d, b − e, b − g ∈ {1,−1, 2,−2} and c − d, c − e, c − g ∈ {1,−1, 2,−2}. We can
assume, from symmetry, that a < b < c and g < e < d. We have then the strict
inequalities a − d < b− d < e− d < c− e < c− g, and hence at least five distinct
difference numbers that belong to {1,−1, 2,−2}, which is absurd. Thus our starting
assumption is false.

In particular, if N+(f ) ≤ 2, then N(f ) ≤ N(f )+ 2 ≤ deg f + 2.
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Comments 15 The result can be improved as follows:

N(f )− deg f =

⎧
⎪⎪⎨

⎪⎪⎩

1, if deg f = 1,
≤ 2, if deg f ∈ {2, 3},
≤ 1, if deg f = 4,
≤ 0, if deg f ≥ 5.

The solution is analogous. The equality for degree 2 can be attained, for instance, by
taking f (x) = x2 − (2k + 3)x + k2 + 3k + 1.

Problem 1.31. Prove that every integer can be written as a sum of 5 perfect cubes.

Solution 1.31. We have

6n = 03 + (n+ 1)3 + (n− 1)3 + (−n)3 + (−n)3,
and this is written as a sum of four perfect cubes. Thus

1. 6n+ 1 = 6n+ 13,
2. 6n+ 2 = 6(n− 1)+ 23,
3. 6n+ 3 = 6(n− 4)+ 33,
4. 6n+ 4 = 6(n+ 2)+ (−2)3,
5. 6n+ 5 = 6(n+ 1)+ (−1)3.

Comments 16 Observe that we did not require the cubes to be positive. It is still
unknown whether every integer is the sum of four cubes, although three cubes do not
suffice. For instance, numbers that are congruent to ±4 modulo 9 cannot be written
as sums of three cubes, and moreover, it is not yet known whether they can be written
as sums of four cubes. If we are looking for positive cubes, then the minimal number
needed is 9, this being a particular case of the Waring problem. Notice that any
sufficiently large number is a sum of seven positive cubes. The proof is more involved;
for instance, see:

• G.L. Watson: A proof of the seven cube theorem. J. London Math. Soc. 26 (1951),
153–156.

Problem 1.32. If n ∈ Z, then the binomial coefficient Cn2n = (2n)!
(n!)2

has an even
number of divisors.

Solution 1.32. The number of divisors of x, usually denoted by τ(x), is odd if and
only if x is a perfect square. In fact, once we have a divisor d , there is a complementary
divisor associated with it, namely x

d
. These divisors are distinct unless x is a square

and the divisor is its square root.
Further, it is known that for every natural number n, there exists a prime p satis-

fying n < p ≤ 2n, and therefore 2n < 2p ≤ 4n. Writing Cn2n = (2n)!
n!n! , we find that

the prime p appears with exponent 1 in the development of Cn2n and thus it cannot be
a perfect square.



5 Number Theory Solutions 53

Problem 1.33. Prove that every n ∈ Z+ can be written in precisely k(n) different
ways as a sum of consecutive integers, where k(n) is the number of odd divisors of n
greater than 1.

Solution 1.33. We have x + (x + 1)+ (x + 2)+ · · · + (x + y) = 1
2 (y + 1)(2x + y).

Therefore, we must find the number of natural solutions (x, y) of the Diophantine
equation 1

2 (y + 1)(2x + y) = n. We have two cases to consider:
1. If y = 2z is even, then (2z + 1)(x + z) = n. If we let u = 2z + 1, then u

is an odd divisor of n. There is also associated the complementary divisor v, so that
uv = n. Now v = x+ z, and thus we find that z = 1

2 (u− 1) and x = 1
2 (2v− u+ 1).

Therefore (x, z) is an acceptable solution if and only if 2v − u ≥ 1.
2. If y = 2z − 1 is odd, then z(2x + 2z − 1) = n. Let u = 2x + 2z − 1, which

is an odd divisor of S, and let v be the complementary divisor: uv = n. Then z = v;
hence x = 1

2 (u − 2v + 1). This implies that (x, z) is an acceptable solution if and
only if 2v − u ≤ −1.

Now, given u > 1, an odd divisor of n, then either the first inequality or the second
(but not both) could hold. Therefore, the number of solutions is that claimed.

Problem 1.34. Let π2(x) denote the number of twin primes p with p ≤ x. Recall
that p is a twin prime if both p and p + 2 are prime. Show that

π2(x) = 2 +
∑

7≤n≤x
sin

(
π

2
(n+ 2)

[
n!

n+ 2

])
sin

(
π

2
n

[
(n− 2)!

n

])

for x > 7.

Solution 1.34. If n > 5 is composite, then (n−2)!
n

is an even integer, and therefore

sin
(
π
2 n

[
(n−2)!
n

])
= 0.

If p is prime, then by Wilson’s theorem, (p − 2)! ≡ −(p − 1)! ≡ 1 (mod p),
which implies that [

(p − 2)!

p

]
= (p − 2)! − 1

p
.

If p > 5, then 4 divides (p − 2)!, and therefore

sin

(
π

2
p

[
(p − 2)!

p

])
= sin

(π
2

[(p − 2)! − 1]
)

= −1.

Consequently, the nth term of the sum is zero if at least one among n, n + 2 is
composite, and 1 if both n and n+ 2 are prime. Finally, one adds 2 units in order to
count the pairs (3, 5), (5, 7).

Problem 1.35. 1. Find all solutions of the equation 3x+1 + 100 = 7x−1.
2. Find two solutions of the equation 3x + 3x

2 = 2x + 4x
2
, and prove that there are

no others.
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Solution 1.35. 1. x = 4 is a solution. If x < 4, then 3x+1 + 100 > 7x−1, and if
x > 4, then 3x+1 + 100 < 7x−1. Therefore, this solution is unique.

2. Let ρ(x) = 4x
2 −3x

2

3x−2x . We have

ρ′(x) = (2 · 4x
2

ln 4 − 2 · 3x
2

ln 3)x(3x − 2x)− (4x
2 − 3x

2
)(3x ln 3 − 2x log 2)

(3x − 2x)2
.

Therefore ρ′(x) ≥ (4x
2 −3x

2
)(3x−2x)(x−1) ln 3 = μ(x). Next, we haveμ(x) = 0

if and only if x ∈ {0, 1}. These values are isolated roots of ρ′, and thus ρ is strictly
increasing forx ∈ R+. Therefore, the only two solutions of the equation arex ∈ {0, 1},
because, for other values of x, we have ρ(x) > 1.

Problem 1.36. Let σ(n) denote the sum of the divisors of n. Prove that there exist
infinitely many integersn such thatσ(n) > 2n, or, even stronger, such thatσ(n) > 3n.
Prove also that σ(n) < n(1 + log n).

Solution 1.36. 1. Recall that if n = p
a1
1 . . . p

ak
k is the factorization of n into prime

factors, then we have the formula σ(n) = ∏k
i=1

p
ai+1
i −1
pi−1 . Observe next that n = 2p3q

satisfies the inequality σ(n) > 2n for p, q > 2. Moreover, if n = 2p3q5s , then
σ(n) > 3n.

2. We have σ(n) = ∑
d/n d; hence

σ(n)

n
=

∑

d/n

d

n
=

∑

d/n

1

d
=

∑

d/n

1

d
< 1 + 1

2
+ 1

3
+ · · · + 1

n
< 1 + log n.

Therefore σ(n) < n(1 + log n).

Problem 1.37. Let ai be natural numbers such that gcd(ai, aj ) = 1, and ai are not
prime numbers. Show that:

1

a1
+ · · · + 1

an
< 2

Solution 1.37. Each ai has at least one proper prime divisor pi . Thus one can write
ai = piqisi , wherepi and qi are, not necessarily distinct, primes. Now, gcd(ai, aj ) =
1 implies that pi, qi �= pj , qj . Therefore, the n numbers min(pi, qi) are distinct. We
derive that

∑ 1

ai
≤

∑ 1

piqi
≤

∑ 1

(min(pi, qj ))2
≤

∑

k≥1

1

k2 = ζ(2) = π2

6
< 2.

Comments 17 We denoted above by ζ the Riemann zeta function, defined by

ζ(s) =
∑

k≥1

k−s .

One knows the values of the zeta function at specific points. Let Bn denote the nth
Bernoulli number, determined by the Taylor expansion
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x

ex − 1
=

∞∑

n=0

Bn

n!
xn.

The Bernoulli numbers are rational for all n and have the property that B2n+1 = 0 if
n ≥ 1. Their first values are B0 = 1, B1 = − 1

2 , B2 = 1
6 , B4 = − 1

30 , B6 = 1
42 . Using

contour integration, one finds the following expression for the Riemann zeta function
in terms of Bernoulli numbers:

ζ(2n) = (−1)n−1 (2π)
2n

2(2n)!
B2n

for all natural n. In particular, ζ(n) is transcendental for even n. It is considerably
more difficult to show the irrationality at odd values. The arithmetic nature of the zeta
values at odd positive integers has remained a mystery since Euler’s time even though
one now conjectures that the numbersπ, ζ(3), ζ(5), . . . are algebraically independent
over the rationals. Apéry finally proved in 1979 that ζ(3) is irrational. Recent progress
was made by Rivoal in 2000, who showed that there are infinitely many integers n
such that ζ(2n+ 1) is irrational. This result was subsequently tightened by Zudilin,
who showed that one of ζ(5), ζ(7), ζ(9), and ζ(11) is irrational.

The Riemann zeta function has an analytic continuation to the entire complex
plane except for a simple pole at s = 1. We have another marvelous identity concern-
ing its values at negative integers and Bernoulli numbers:

Bn = (−1)nnζ(1 − n)

for natural n.

• T. Rivoal: La fonction zêta de Riemann prend une infinité de valeurs irrationnelles
aux entiers impairs, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), 4, 267–270.

• V.V. Zudilin: One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational, Uspekhi
Mat. Nauk 56 (2001), 4 (340), 149–150; translation in Russian Math. Surveys 56
(2001), 4, 774–776.

Problem 1.38. Let σ(n) denote the sum of divisors of n. Show that σ(n) = 2k if and
only if n is a product of Mersenne primes, i.e., primes of the form 2k −1, for k ∈ Z+.

Solution 1.38. If n = ∏
i p

ai
i , then σ(n) = ∏

i σ (p
ai
i ) = ∏

i (1 + pi + · · · + p
ai
i ).

Moreover, if each prime factor is a Mersenne number, then pi = 2bi − 1 and ai = 1,
which implies that σ(n) = ∏

i 2bi = 2k .
Conversely, each prime factor p of n must satisfy 1 + · · · + pa = 2s for some

s ∈ Z. This implies that a = 2q + 1 for q ∈ Z and furthermore, 2s = (1 + p)(1 +
p2 + p4 + · · · + p2q). In particular, 1 + p = 2e (thus p is a Mersenne prime) and
1 + p2 + · · · + (p2)q = 2n.

If q > 0, then the last equation implies again that q is odd, i.e., q = 2v + 1. We
obtain next (1 + p2)(1 + p4 + · · · + p4v) = 2n, and so 1 + p2 = 2w. In particular,
1+p = 2e divides 2w = 1+p2. But 1+p divides 1−p2 and so 1+p2 +1−p2 = 2.



56 5 Number Theory Solutions

Since 1+p ≥ 1+2 = 3, we obtain a contradiction. Therefore, q = 0 and the exponent
of the prime is a = 1, as claimed.

Problem 1.39. Find all integer solutions of the equation |pr − qs | = 1, where p, q
are primes and r, s ∈ Z \ {0, 1}.
Solution 1.39. The only solutions are p = 3, q = 2, r = 2, s = 3 and p = 2, q =
3, r = 3, s = 2. Obviously, one prime number should be even, hence 2. Let us assume
that q = 2 and p is odd. Then the equation reads

pr ± 1 = 2s .

If r > 1 is odd, then:
1. (pr + 1)/(p + 1) is the odd integer pr−1 − pr−2 − pr−3 − · · · − 1 > 1,

contradiction.
2. (pr − 1)/(p − 1) is the odd integer pr−1 + pr−2 + pr−3 + · · · + 1 > 1,

contradiction again.
Therefore r = 2t . Further, we have two cases for the equation above:
1. 2s = (

pt
)2 + 1 = (2n+ 1)2 + 1 = 4n2 + 4n+ 2. This is impossible since 4

divides 2s since s > 1, while 4 does not divide the right-hand side 4n2 + 4n+ 2.
2. 2s = (pt )2 − 1 = 4n2 + 4n = 4n(n+ 1). Now, either n or n+ 1 is odd, which

would lead us to a contradiction as soon as n ≥ 2. Thus n = 1 and the solutions are
those claimed above.

Comments 18 Catalan conjectured in 1844 that 32 − 23 = 1 is the only solution
of the Diophantine equation xm − yn = 1, in the integer unknowns x, y,m, n ≥ 2.
This was confirmed in 2002 by P. Mihǎilescu, who gave a brilliant solution using
cyclotomic fields. Note that it suffices to consider the case in which the exponents
m, n are prime numbers. About one hundred years before Catalan, Euler had proved
that there are no other solutions to the equation |x3 − y2| = 1, using the descent
method.V.A. Lebesgue showed in 1850 that the equation xm−y2 = 1 has no solutions.
More than one century later, in 1961, Chao Ko showed that the equation x2 −yn = 1
has no solutions if n ≥ 3. His proof was improved by E. Z.Chein in 1976. More details
concerning the history of the conjecture and various partial solutions can be found
in the book of Ribenboim.

• T. Metsänkylä: Catalan’s conjecture: another old Diophantine problem solved,
Bull. Amer. Math. Soc. (N.S.) 41(2004), 1, 43–57.

• P. Mihǎilescu: Primary cyclotomic units and a proof of Catalan’s conjecture, J.
Reine Angew. Math. 572 (2004), 167–195.

• P. Ribenboim: Catalan’s Conjecture. Are 8 and 9 the Only Consecutive Powers?
Academic Press, Inc., Boston, MA, 1994.

Problem 1.40. Consider an arithmetic progression with ratio between 1 and 2000.
Show that the progression does not contain more than 10 consecutive primes.
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Solution 1.40. Suppose that there are 11 consecutive prime terms in the progression.
Let r be the ratio. The respective terms are:

h+ nr, h+ nr + r, h+ nr + 2r, . . . , h+ nr + 10r.

Letp be a prime number less than 12. If r �= 0 (mod p), then there exists some i ≤ 10
such that h+ ir ≡ 0 (mod p), and hence h+ ir will not be prime. This shows that r is
divisible by 2, 3, 5, 7, 11 and thus greater than 2000, contradicting our assumptions.

Comments 19 More generally, if the ratio r is less than p1 · · ·pn, then the maximum
number of consecutive primes is at most pn − 1.

Problem 1.41. Let a1 = 1, an+1 = an + [√
an

]
. Show that an is a perfect square iff

n is of the form 2k + k − 2.

Solution 1.41. Letnk = 2k+k−2.We will prove by induction first thatank = (2k−1)2

and second that nk−1 < m < nk implies that am is not a perfect square. The assention
is true for k = 1. One proves by induction on i that the formulas

ank+2i = (2k−1 + 1 − i)2 + 2k,

ank+2i+1 = (2k−1 + i)2 + 2k−1 − i,

hold for 0 ≤ i ≤ 2k−1. In particular, if i = 2k−1, we obtain ank+1 = (2k)2. The
other values are not perfect squares, since they are located between two consecutive
squares.

Problem 1.42. Recall that ϕ(n) denotes the Euler totient function (i.e., the number
of natural numbers less than n and prime to n), and that σ(n) is the sum of divisors
of n. Show that n is prime iff ϕ(n) divides n− 1 and n+ 1 divides σ(n).

Solution 1.42. If n is prime, then ϕ(n) = n − 1, σ (n) = n + 1. Conversely, let us
assume n ≥ 3. Then ϕ(n) is even and thus n must be odd. If p is an odd prime such
that pr divides n and r ≥ 2, then pr−1 divides ϕ(n) and thus pr−1 divides n − 1,
which is a contradiction, since n and n − 1 are coprime, i.e., gcd(n, n − 1) = 1.
Therefore, we have n = p1 · · ·pk , where pi are odd primes.

We have further, ϕ(n) = (p1 − 1) · · · (pk − 1) and σ(n) = (p1 + 1) · · · (pk + 1).
This implies that 2k divides both ϕ(n) and σ(n).

If k ≥ 2, then 4 divides ϕ(n) and hence n−1. This implies that gcd(4, n+1) = 2.
Since 2k divides σ(n), we find that 2k−1 must divide σ(n)

n+1 . In particular, 2k−1 <
σ(n)
n

,
but

σ(n)

n
=

(
1 + 1

p1

)
· · ·

(
1 + 1

pk

)
<

(
4

3

)k
,

which leads to a contradiction when k ≥ 2. Therefore, k = 1 and so n is prime.

Comments 20 An old conjecture due to Lehmer states that if ϕ(n) divides n−1, then
n is prime. P. Hagis Jr. proved that the number of prime divisors τ(n) is either 1 or
τ(n) ≥ 298 848 and n > 101937042 if 3 divides n, and τ(n) ≥ 1991 and n > 108171

in general. The reader may consult:
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• P. Hagis Jr.: On the equationM · ϕ(n) = n− 1, Nieuw Arch. Wisk. (4) 6 (1988),
3, 255–261.

Problem 1.43. A number is called ϕ-subadditive if ϕ(n) ≤ ϕ(k)+ ϕ(n− k) for all k
such that 1 ≤ k ≤ n−1, andϕ-superadditive if the reverse inequality holds. Prove that
there are infinitely many ϕ-subadditive numbers and infinitely many ϕ-superadditive
numbers.

Solution 1.43. Let p ≥ 3 prime and 1 < k < p. We have then

ϕ(k)+ ϕ(p − k) ≤ k − 1 + (p − k − 1) = p − 2 < ϕ(p).

Now p − 1 is composite; thus ϕ(p − 1) ≤ p − 1, and hence ϕ(1) + ϕ(p − 1) ≤
1 + p − 3 < ϕ(p). Therefore, every prime number p is ϕ-superadditive.

Let r ≥ 2 and set nr = p1 · · ·pr for the product of the first r prime numbers.
Consider some natural numberm, such that 1 < m < nr . Let q1, . . . , qs be the prime
divisors of m. We have qj ≥ pj and thus s ≤ r , since otherwise we would have
m ≥ q1 · · · qs > p1 · · ·pr = nr . Further, one computes

ϕ(m)

m
≥

s∏

i=1

(
1 − 1

qi

)
≥

r∏

i=1

(
1 − 1

pi

)
= φ(nr)

nr
.

This implies that

ϕ(m)+ ϕ(nr −m) ≥ m
ϕ(nr)

nr
+ (nr −m)

ϕ(nr)

nr
= ϕ(nr).

Problem 1.44. Find the positive integers N such that for all n ≥ N , we have ϕ(n) ≤
ϕ(N).

Solution 1.44. 1. LetN ≥ 5. According to Chebyshev’s theorem, there exists a prime
number p such that

p

[
N + 3

3

]
< p < 2

[
N + 3

2

]
− 2 ≤ N + 2.

We haveϕ(p) = p−1 > N+1
2 ≥ ϕ(N+1) for oddN andϕ(p) = p−1 > N

2 ≥ ϕ(N)

for even N .
This means that N ≤ 5, and since ϕ(1) = ϕ(2) = 1, ϕ(3) = ϕ(4) = 2, we have

N ∈ {1, 2, 3, 4}.
Problem 1.45. A number n is perfect if σ(n) = 2n, where σ(n) denotes the sum of all
divisors of n. Prove that the even number n is perfect if and only if n = 2p−1(2p−1),
where p is a prime number with the property that 2p − 1 is prime.

Solution 1.45. Since n is even, one can write n = 2qm, where q ≥ 1 and m is

odd. One knows that σ(pa) = pa+1−1
p−1 if p is prime, and σ(pa1

1 p
a2
2 · · ·pass ) =

σ(p
a1
1 )σ (p

a2
2 ) · · · σ(pass ) if pj are distinct primes.
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We have then σ(m) > m, and we write σ(m) = m+ r for some natural number
r ≥ 1. The hypothesis σ(n) = 2n is equivalent then to 2q+1m = (2q+1−1)(m+r) =
2q+1m−m+ (2q+1 − 1)r . Thus m = (2q+1 − 1)r . We have found therefore that r
divides m and r < m. But σ(m) = m+ r is the sum of all divisors of m, and thus r
is the sum of all divisors of m that are strictly smaller than m. Since r itself is such a
divisor, it follows that it cannot be any other divisor ofm smaller than r and so r = 1.
In particular, this means that m is prime.

This means that σ(m) = m + 1 = 2q+1 − 1 and 2q+1m = (2q+1 − 1)(m + 1).
Since m is odd and relatively prime to m+ 1, it follows that m = 2q+1 − 1. Further,
m has to be prime and so p = q + 1 is a prime number. In fact, if p is composite, say
p = ab, then 2p − 1 = (2a − 1)(1 + 2a + · · · + 2a(b−1)). This proves the claim.

Comments 21 Perfect numbers were known in antiquity. Euclid stated in Book IX
of his Elements that a number of the form 2p−1(2p − 1) for which the odd factor is
prime is a perfect number, and noticed that 6, 28, 496, and 8128 are perfect. Descartes
claimed in 1638, in a letter to Mersenne, that every even perfect number should be
of this form, and this was proved later by Euler to be true. Euler also considered
the problem of the existence of odd perfect numbers. Although numbers up to 10300

have been checked, no odd perfect numbers have been found to this day, supporting
the conjecture that there are no odd perfect numbers. This is one of the oldest open
problems in mathematics, along with the congruent number problem.

Dickson proved in 1913 that for each k, there are at most finitely many odd perfect
numbers with k distinct prime factors, and the best estimate known (due to Pace
P. Nielsen) is that such a number is smaller than 24k . Here are some properties that
an odd perfect number must satisfy:

• P. Hagis Jr. and, independently, J.E.Z. Chein proved that it has at least 8 distinct
prime factors (at least 11 if it is not divisible by 3);

• H.G. Hare showed that it has at least 47 prime factors in total, including repeti-
tions;

• P. Jenkins proved that it has at least one prime factor greater than 107, and
D.E. Iannucci showed that it has two prime factors greater than 104, and three
prime factors greater than 100;

• it is divisible by the power of a prime number that is greater than 1020;
• it is a perfect square multiplied by an odd power of a single prime.

Primes of the form 2p − 1 (so p is also prime) are called Mersenne primes. It is
still unknown whether there exist infinitely many Mersenne primes. The first few such
primes correspond to p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89. As of October 2006, only
44 Mersenne primes were known; the largest known prime number, 232 582 657 − 1, is
a Mersenne prime having 9 808 358 digits. It was discovered in September 2006 by
Curtis Cooper and Steve Boone.

• R.K. Guy: Unsolved Problems in Number Theory, section B1, 2nd ed. New York,
Springer-Verlag, 44–45, 1994.
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• P. Hagis, Jr.: An outline of a proof that every odd perfect number has at least eight
prime factors, Math. Comput. 34 (1980), 1027–1032.

• D.E. Iannucci: The second largest prime divisor of an odd perfect number exceeds
ten thousand, Math. Comput. 68 (1999), 1749–1760.

• D.E. Iannucci: The third largest prime divisor of an odd perfect number exceeds
one hundred, Math. Comput. 69 (2000), 867–879.

• P. Jenkins: Odd perfect numbers have a factor that exceeds 107, Math.Comput.
72 (2003), 1549–1554.

• P.P. Nielsen: An upper bound for odd perfect numbers, Integers 3(2003), A14,
(electronic).

Problem 1.46. A number n is superperfect if σ(σ(n)) = 2n, where σ(k) is the sum
of all divisors of k. Prove that the even number n is superperfect if and only if n = 2r ,
where r is an integer such that 2r+1 − 1 is prime.

Solution 1.46. If n = 2r and 2r+1 − 1 is prime, then σ(σ(n)) = σ(2r+1 − 1) =
2r+1 = 2n. Conversely, let us consider n = 2rq, where q is odd and r ≥ 1. Then we
have the identity

2r+1q = 2n = σ(σ(n)) = σ((2r+1 − 1)σ (q)).

Moreover, if q > 1, then the number (2r+1−1)σ (q) has at least three distinct divisors,
namely (2r+1 − 1)σ (q), σ (q), and 2r+1 − 1. Thus

σ((2r+1 − 1)σ (q)) ≥ 2r+1σ(q)+ 2r+1 − 1 > 2r+1q,

which is a contradiction. Therefore q = 1 and 2r+1 = σ(2r+1 − 1); thus 2r+1 − 1 is
prime, as claimed.

Comments 22 It is still unknown whether there exist odd superperfect numbers. If
one exists, it must be a square and greater than 7 · 1024, as was proved by J.L.
Hunsucker and C. Pomerance. Earlier, in 1967, D. Suryanarayana proved that there
do not exist odd superperfect numbers that are powers of a prime.

• J.L. Hunsucker and C. Pomerance: There are no odd super perfect numbers less
than 7 · 1024, Indian J. Math. 17 (1975), 3, 107–120.

Problem 1.47. Ifa, b are rational numbers satisfying tan aπ = b, thenb ∈ {−1, 0, 1}.
Solution 1.47. Write a = m

n
, where gcd(m, n) = 1. De Moivre’s identities read

(cos aπ+i sin aπ)n = cosmπ+i sinmπ, (cos aπ−i sin aπ)n = cosmπ−i sinmπ.

Therefore
(

1 + ib

1 − ib

)n
=

(
1 + i tan aπ

1 − i tan aπ

)n
=

(
cos aπ + i sin aπ

cos aπ − i sin aπ

)n
= 1.
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Consider the polynomial P = xn − 1 ∈ Z[i][x]. Since P is a monic polynomial and
Z[i] is a factorial ring, any root of P that lies in Q[i] actually belongs to the ring of
integers Z[i]. This means that

1 + ib

1 − ib
= 1 − b2

1 + b2 + i
2b

1 + b2 ∈ Z[i]

and hence 1−b2

1+b2 ∈ Z, 2b
1+b2 ∈ Z. Now it is immediate that b ∈ {−1, 0, 1}.

Problem 1.48. Let An = run + svn, n ∈ Z+, where r, s, u, v are integers, u �= ±v,
and Pn be the set of prime divisors of An. Then P = ⋃∞

n=0 Pn is infinite.

Solution 1.48. We suppose that rsuv �= 0. We can assume, without loss of generality,
that gcd(ru, sv) = 1, and so the prime numbers in P do not divide rsuv. Let us
suppose that P is finite, say {p1, p2, . . . , pm}.

We have ui �= vi , for any i �= 0, because u �= ±v. Then there exists some a
such that ui �≡ vi (mod pak ) for all 1 ≤ i ≤ m + 1, 1 ≤ k ≤ m. Moreover, if
1 ≤ i < j ≤ m+ 1, then

Aj − vj−iAi = ruj
(
uj−i − vj−i

)
,

and therefore we cannot have Ai ≡ Aj (mod pak ), for all k ≤ m. Thus there exists
t within the range 1 ≤ t ≤ m + 1 such that At �≡ 0 (mod pak ) for 1 ≤ k ≤ m. We
choose now some b such that ub ≡ vb (mod pak ) for all 1 ≤ k ≤ m. We can take, for
instance, b = ϕ(ca), where ϕ is Euler’s totient function and c = p1 · · ·pm. We now
choose n large enough that At+nb > ca . Since we have At+nb ≡ At �≡ 0 (mod pak )
for all 1 ≤ k ≤ m, we obtain thatAt+nb must also have a prime divisor different from
p1, . . . , pm.

Comments 23 This problem is a particular case of a result of G. Pólya, see also:

• G. Pólya: Arithmetische Eigenschaften der Reihenentwiclungen rationalen Func-
tionen, J. Reine Angew. Math. 151 (1921), 1–31.

Problem 1.49. Solve in natural numbers the equation

x2 + y2 + z2 = 2xyz.

Solution 1.49. If x, y, z are odd, then the left-hand side is odd and therefore nonzero.
Thus 2xyz ≡ 0 (mod 4). Each square is congruent to either 0 or 1 modulo 4, and
thus x, y, z must be even. Set x = 2x1, y = 2y1, z = 2z1. The equation becomes
x2

1 + y2
1 + z2

1 = 4x1y1z1. The same argument shows that x1, y1, z1 are even. By
induction, we find a sequence of triples with xn = 2xn+1, yn = 2yn+1, zn = 2zn+1,
satisfying

x2
n+1 + y2

n+1 + z2
n+1 = 2n+2xn+1yn+1zn+1.

Moreover, if n ≥ max(|x|, |y|, |z|), then |xn| = | 1
2n+1 x| < 1 and similarly for the

other unknowns. Since xn is an integer, we obtain xn = 0 and thus x = y = z = 0.
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Problem 1.50. Find the greatest common divisor of the following numbers:C1
2n, C

3
2n,

C5
2n, . . . , C

2n−1
2n .

Solution 1.50. We have the identity C1
2n + · · · + C2n−1

2n = 22n−1, which can be
obtained by writing the binomial expansion of (x + 1)n and evaluating it at x = 1
and x = −1. Therefore, the greatest common divisor g should be of the form 2p, for
some natural number p.

If n = 2kq, where q is odd, then C1
2n = 2k+1q and hence g ≤ 2k+1. But now

we can compute Cp2n = C
p

2k+1q
= 2k+1q

p
C
p−1
2k+1q−1

. Since p is odd and the binomial

coefficient is an integer, it follows that 2k+1 divides Cp2n for all odd p. This proves
that the number we are seeking is g = 2k+1.

Problem 1.51. Prove that if Sk = ∑n
i=1 k

gcd(i,n), then Sk ≡ 0 (mod n).

Solution 1.51. 1.
∑n
i=1 k

gcd(i,n) = ∑
d/n ϕ

(
n
d

)
kd . If gcd(m, n) = 1, then we have

the following identity:

mn∑

i=1

kgcd(i,mn) =
∑

d/m

ϕ
(m
d

)∑

τ/n

ϕ
(n
τ

)
(kd)τ .

Thus it suffices to prove the claim for n = pα , where p is prime.
The case α = 1 or p divides k is trivial. Let α > 1 and gcd(p, k) = 1. We will

prove the claim by induction on α, as follows:

∑
ϕ

(
pα

pi

)
kp

i = kp
α + ϕ(p)kp

α−1 + ϕ(p2)kp
α−2 + · · · + ϕ(pα)k

≡ kp
α−1 + (p − 1)kp

α−1 + · · · + ϕ(pα)k

≡ p(kp
α−1 + · · · + ϕ(pα−1))k

≡ p

α−1∑

i=0

ϕ

(
pα−1

pi

)
kp

i

(mod pα).

This proves the induction step.
2. One observes that 1

n
Sk counts the number of circular permutations of length k

on n elements. Hence, Sk ≡ 0 (mod n).

Problem 1.52. Prove that for any integer n such that 4 ≤ n ≤ 1000, the equation

1

x
+ 1

y
+ 1

z
= 4

n

has solutions in natural numbers.

Solution 1.52. It suffices to consider the case n prime, since a solution for n yields a
solution for a multiple of n. Let a, b, c, d ∈ Z+. If
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an+ b + c = 4abcd,

then (x, y, z) = (bcd, abdn, acdn) is a solution. In particular, take a = 2, b =
1, c = 1. Then, if n = 4d − 1, we obtain a solution as above. This works actually for
any n ≡ −1 (mod 4). Taking a = 1, b = 1, c = 1, we solve the case n ≡ 2 (mod 4).
If n ≡ 0 (mod 4), then we have the solutions x = y = z = 3n/4. It remains to check
the case n ≡ 1 (mod 4).

Further, take a = 1, b = 1, c = 2, and thus we solve the case n ≡ 3 (mod 8).
The only case remaining is then n ≡ 1 (mod 8).

If n = 3, we have the solutions (x, y, z) = (3, 2, 2). Write

an+ b = c(4abd − 1) = cq, where q ≡ −1 (mod 4ab).

Take q = 3, a = b = 1; then n ≡ −1 (mod 3) is solved. There remains the case
n ≡ 1 (mod 3), which we will suppose from now on.

If n = 7, then we have the solution (x, y, z) = (2, 28, 28). Next take q = 7 and
ab ∈ {1, 2}. This leads to solutions for n ≡ −1,−2,−4 (mod 7). Thus it suffices to
consider n ≡ 1, 2, 4 (mod 7).

Take q = 15 and a = 2, b = 1 or a = 1, b = 2. This solves the equation for
n ≡ −2,−8 (mod 15). Since n ≡ 1 (mod 3), we have n ≡ −2,−3 (mod 5). Hence,
we may suppose that n ≡ 1, 4 (mod 5).

By asking that n satisfy all these congruences, it follows that the problem is solved
for all n such that

n �≡ 1, 121, 169, 289, 361, 529 (mod 840).

Since the first prime number not satisfying this condition is 1009, the claim follows.

Comments 24 Erdős and Straus conjectured that the equation 1
x

+ 1
y

+ 1
z

= 4
n

has
solutions for every n ≥ 4. Mordell proved that this conjecture is true, except possibly
for the primes in six particular residue classes modulo 840. Vaughan showed that a
sufficient condition for the more general conjecture in which 4

n
is replaced by m

n
is

the existence of positive integers a, b for which an + b has a divisor congruent to
−1 (mod mab). The conjecture was verified by I. Kotsireas, via computer search, for
n ≤ 1010.

Schinzel conjectured further that the equation

m

n
= 1

x1
+ · · · + 1

xk

has positive integer solutions xi if m > k ≥ 3; actually, the truth of the conjecture
for m > k = 3 implies its validity for every m > k ≥ 3. See also the book of R.K.
Guy which contains more partial results on this topic.

• P. Erdős: On a Diophantine equation (Hungarian, English summary) Matematikai
Lapok 1 (1950), 192–210.

• R.K. Guy: Unsolved Problems in Number Theory, Section D11, Springer, New
York, 1981.
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• L.J. Mordell: Diophantine Equations, Pure and Applied Mathematics, Vol. 30
Academic Press, London-New York 1969.

• A. Schinzel: Sur quelques propriétés des nombres 3/n et 4/n, où n est un nombre
impair, Mathesis 65 (1956), 219–222.

• W. Sierpiński: Sur les décompositions de nombres rationnels en fractions pri-
maires, Mathesis 65 (1956), 16–32.

Problem 1.53. For a natural number n, we set S(n) for the set of integers that can be
written in the form 1 + g + · · · + gn−1 for some g ∈ Z+, g ≥ 2.

1. Prove that S(3) ∩ S(4) = ∅.
2. Find S(3) ∩ S(5).

Solution 1.53. 1. Let g, h ≥ 2 be integers satisfying the equation

1 + g + g2 = 1 + h+ h2 + h3

and therefore h3 = (g − h)(g + h + 1). Any prime divisor p of h divides g − h or
g + h+ 1.

In the first case, p divides g, and in the second case, p divides g+1. Furthermore,
if pm divides h then either p3m divides g − h or p3m divides g + h + 1, because
gcd(g, g + 1) = 1. Thus we can write h = h1h2, where gcd(h1, h2) = 1, so that

h3
1 = g − h, h3

2 = g + h+ 1.

In particular, we have 2h1h2 = 2h = h3
2 − h3

1 − 1.
We will show that this Diophantine equation does not have any solutions h1, h2 ≥

0. Let fh1(h2) = h3
2 −h3

1 − 2h1h2 − 1. First, we have fh1(h2) ≤ −1 if 0 ≤ h2 ≤ h1.
Moreover, if h2 > h1, then fh1 is increasing and so fh1 does not have any natural
zeros, since

fh1(h1 + 1) = h2
1 + h1 > 0.

This proves that S(3) ∩ S(4) = ∅.
2. Let f (x) = 1 + x + x2 and g(x) = 1 + x + x2 + x3 + x4. Then f and g are

strictly increasing functions on Z+. Moreover, we have the following inequalities:

[f (4n2 + 5n+ 1) < g(2n+ 1) < f (4n2 + 9n+ 4) < g(2n+ 2)

< f (4n2 + 9n+ 5) < f (4(n+ 1)2 + 5(n+ 1)+ 1), for all n ≥ 1.

This implies that g(n) �= f (k) if n ≥ 3, k ≥ 1 are natural numbers. Finally, if
n ∈ {1, 2}, then f (1) = 3 < g(1) = 5 < 7 = f (2), and g(2) = 31 = f (5).
Therefore S(3) ∩ S(5) = {31}.
Problem 1.54. If k ≥ 202 and n ≥ 2k, then prove that Ckn > nπ(k), where π(k)
denotes the number of prime numbers smaller than k.
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Solution 1.54. 1. Let us show first that Ck2k >
4k
k

if k ≥ 4. If k = 4, then Ck2k = 70 ≥
64 = 4k

k
. We will use next a recurrence on k. We have

Ck+1
2k+2 = (2k + 2)(2k + 1)

(k + 1)2
Ck2k >

2(2k + 1)

k + 1
· 4k

k
>

4k · 4k

k · (k + 1)
= 4k+1

k + 1
.

2. We will use the well-known estimate

π(k) <
k

log k − 3
2

, for k > 5.

The inequality
4k

k
> (2k)k/(log k−3/2)

is equivalent to k log 4 − log k > k
log k+log 2
log k−3/2 , which is true as soon as k ≥ 1414.

Moreover,

Ck2k >
4k

k
> 2k

k/(log k−3/2)
> (2k)π(k), for k ≥ 1414.

By direct computer verification, one has Ck2k > (2k)π(h) for 202 ≤ h ≤ 1413.
3. Now if s ≥ 1, we have

k > π(k) ≥ 1 + π(k)− 1

s
= π(k)+ s − 1

s
.

The product of these inequalities for 1 ≤ s ≤ r gives us kr > Crπ(k)+r−1. Then

Ckn+1 =
(

1 − k

n+ 1

)−1

Ckn >

(
1 − k

n+ 1

)−1

nπ(k) = nπ(k) ·
∞∑

r≥0

kr

(n+ 1)r

> nπ(k) ·
∞∑

r≥0

Crπ(k)+r−1

(n+ 1)r
= nπ(k)

(
1 − 1

n+ 1

)−π(k)
= (n+ 1)π(k).

Problem 1.55. Let Sm(n) be the sum of the inverses of the integers smaller than m
and relatively prime to n. If m > n ≥ 2, then show that Sm(n) is not an integer.

Solution 1.55. Let us write

Sm(n) = 1 + 1

a1
+ · · · + 1

as
,

where 1 < a1 < a2 < · · · < as < m and gcd(ai, n) = 1. Observe first that a = a1 is
prime, since otherwise, any proper divisor of a would be smaller and still relatively
prime to n. Let k be the largest integer such that ak ≤ m. Then there exists some
i ≤ s such that ak = ai , because ak is also a number relatively prime to n.

Moreover, if ak divides aj for some j , then j = i. In fact, let us assume that
aj = cak for some integer c > 1. If c < a, then by hypothesis, gcd(c, n) > 1, and
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hence aj would not be relatively prime to n. If c ≥ a, then m > aj = cak ≥ ak+1,
which would contradict the choice of k, supposed to be maximal with the property
that ak ≤ m.

Let us suppose now that Sm(n) is an integer, and set L = lcm(a1, . . . , as). One
knows from above that ak divides L, while ak+1 does not divide L.

We have also

LSm(n)−
s∑

j=1,j �=i

L

aj
= L

ai
.

If Sm(n) were an integer, then the left-hand side would be a multiple of a. On the
other hand, the term on the right-hand side is L

ai
= L

ak
, which cannot be a multiple of

a, by the choice of k. This contradiction proves that Sm(n) is not an integer.

Problem 1.56. Solve in integers the following equations:

1. x4 + y4 = z2;
2. y3 + 4y = z2;
3. x4 = y4 + z2.

Solution 1.56. 1. Suppose that there exists a nontrivial solution for which x or y is
nonzero and hence a solution with x, y, z > 0. Consider the solution for which z is
minimal among all possible solutions. We may suppose that gcd(x, y, z) = 1. Then
the triple (x2, y2, z) is a primitive Pythagorean triple and so gcd(x, y) = gcd(y, z) =
gcd(x, z) = 1. We can write x2 = m2 − n2, y2 = 2mn, z = m2 + n2, where m, n
are integers. Since the solutions are primitive, it follows that x and z must be odd. In
particular, m �≡ n (mod 2), since otherwise, x would be even. We have two cases:

(i). If m is even and n is odd, then x2 = m2 − n2 ≡ −1 (mod 4), which is
impossible, since any square is congruent to either 0 or 1 modulo 4.

(ii). If m is odd and n is even, then we have y2 = 2mn and gcd(m, n) = 1. Thus
m = m2

1 and n = 2n2
1. Moreover, x2 = m4

1 − 4n4
1, and so

(m2
1 − x)(m2

1 + x) = 4n4
1.

If d divides bothm2
1 −x andm2

1 +x, then d divides 2m and n and so d = 2 or d = 1.
But m2

1 − x and m2
1 + x are congruent modulo 2, and they cannot be both odd, since

their product is even. Thus m2
1 − x = 2a4 and m2

1 + x = 2b4. In particular, we find
that

a4 + b4 = m2
1,

where a, b are nonzero and m1 < m2
1 = m < z. Thus we have obtained a solution

with z smaller than the initial one, which is a contradiction. Therefore there are no
nontrivial solutions.

2. We have (y3 + 4y)2 = y6 + 8y4 + 16y2 = z4. Also, (y3 − 4y)2 = y6 +
16y2 − 8y4. Adding these equations, we obtain (2y)4 = z4 − (y3 − 4y)2. It is known
that the equation u4 − v4 = w2 does not have nontrivial integer solutions (see the
previous equation). Therefore either 2y = 0 and z4 = (y3 − 4y)2 = 0, which leads
to y = z = 0, or else z = 2y, y3 − 4y = 0, which implies y = 2, z = 4.
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3. Consider a positive solution (x, y, z) with gcd(x, y) = 1 and minimal x.
Then (y2, z, x2) is a primitive Pythagorean triple, and hence we have two possible
situations:

(i). Either y2 = m2 −n2, x2 = m2 +n2, z = 2mn, wherem > n and gcd(m, n) =
1. Then

a4 = b4 + (xy)2

and a < x, contradicting the fact that x was chosen minimal.
(ii). Or z = m2 −n2, x2 = m2 +n2, y2 = 2mn, wherem > n and gcd(m, n) = 1.

Then (m, n, x) is also a primitive Pythagorean triple and thusm is odd and n is even.
Since y2 = 2mn and n is odd, we can write m = 2a2, n = b2, so that y = 2ab.
Using the fact that (m, n, x) is a primitive Pythagorean triple, where m is even and n
is odd, we derive thatm = 2rs, n = r2 − s2 = b2, with gcd(r, s) = 1. Thus a2 = rs,
which yields r = u2, s = v2, and thus, expressing n as above, we obtain:

u4 = v4 + b2

with u < r < m < x, contradicting the minimality of x. Thus there are no nontrivial
solutions.

Comments 25 In particular, the Fermat equation x4 + y4 = z4 has no nontrivial
solutions. The same method, called infinite descent, can be used successfully to prove
that the equations x4 + dy4 = z2 have no solutions, when d is prime and d ≡
7, 11 (mod 16), or d

2 is prime and d
2 ≡ ±3 (mod 8), or −d is prime and −d ≡

±3, 11 (mod 16), or d
4 is prime and d

4 ≡ ±3, 11 (mod 8). For more information
about Diophantine equations see

• L.J. Mordell: Diophantine Equations, Academic Press, Pure and Applied Math.
vol. 30, London, New York, 1969.

Problem 1.57. Show that the equation

x3 + y3 = z3 + w3

has infinitely many integer solutions. Prove that 1 can be written in infinitely many
ways as a sum of three cubes.

Solution 1.57. 1. We make the change of variables x+y = X, x−y = Y , z+w = Z,
z− w = W . The equation now reads

X
(
X2 + 3Y 2

)
= Z

(
Z2 + 3W 2

)
.

We use the identity
(
a2 + 3b2

) (
A2 + 3B2

)
= (aA+ 3bB)2 + 3(bA− aB)2

and derive
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X
(
X2 + 3Y 2

)2 = Z
(
(XZ + 3YW)2 + 3(YZ −XW)2

)
.

Set

p = XZ + 3YW

X2 + 3Y 2 , q = YZ −XW

X2 + 3Y 2 ,

and thus X
Z

= p2 + 3q2. Choose Z = 1, for simplicity. We have then

pX + 3qY = 1, pY − qX = W,

from which one can obtain the values of Y and W . Finally, we obtain

x = 1 − (p − 3q)
(
p2 + 3q2

)
, y = −1 + (p + 3q)

(
p2 + 3q2

)
,

z = p + 3q −
(
p2 + 3q2

)2
, w = −p + 3q +

(
p2 + 3q2

)2
.

These are all rational solutions of our equation. If p, q ∈ Z, then we obtain infinitely
many integer solutions. However, it is not clear that these formulas will provide all
integer solutions of our equations.

2. Set p = 3q, t = 2q. We obtain

1 =
(

1 − 9t3
)3 +

(
3t − 9t4

)3 +
(

9t4
)3
.

Comments 26 It is unknown whether 3 can be written in infinitely many ways as a
sum of three cubes.

Problem 1.58. Prove that the equation y2 = Dx4 + 1 has no integer solution, except
x = 0, if D �≡ 0,−1, 3, 8 (mod 16) and there is no factorization D = pq, where
p > 1 is odd, gcd(p, q) = 1, and either p ≡ ±1 (mod 16), p ≡ q ± 1 (mod 16), or
p ≡ 4q ± 1 (mod 16).

Solution 1.58. Let x, y > 0 be a nontrivial solution with minimal x. If x is odd, then
Dx4 +1 �≡ 0, 1, 4, 9 (mod 16), and thus it is not a quadratic residue modulo 16. Thus
x should be even and y odd. Further, we have

y + 1 = 2pa4, y − 1 = 8qb4, x = 2ab

or
y − 1 = 2pa4, y + 1 = 8qb4, x = 2ab,

where D = pq, gcd(p, q) = 1, and a is odd.
If p > 1, then

pa4 − 4qb4 = ±1.

If b is even, then p ≡ ±1 (mod 16), contradiction. If b is odd, then p ≡ 4q ±
1 (mod 16), again false.

Thus p = 1 and
a4 − 4Db4 = ±1.
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The equation a4 − 4Db4 = −1 has no solution modulo 4; thus a4 − 1 = 4Db4. Then
D = rs, b = cd , gcd(r, s) = 1, and

a2 + 1 = 2rc4, a2 − 1 = 2sd4.

Thus c, r are odd, and we have

rc4 − sd4 = 1.

If r = 1, then c4 −Dd4 = 1 and x = 2acd, so there exists a solution of our equation
with d ≤ x/2, contradicting the minimality of x.

If r > 1, then d cannot be even because r �≡ ±1 (mod 16). But if d is odd, then
r ≡ s + 1 (mod 16), contradicting our assumptions.

Problem 1.59. Find all numbers that are simultaneously triangular, perfect squares,
and pentagonal numbers.

Solution 1.59. We have the Diophantine equations

n = p2 = 1

2
q(q + 1) = 1

2
r(3r − 1).

We derive that

(2q + 1)2 = 1 + 8p2and (6r − 1)2 = 1 + 24p2.

In particular, we obtain

(6r − 1)2 = (4p)2 + (2q + 1)2.

Since gcd(4p, 2q+1) = 1, the triple (4p, 2q+1, 6r−1) is a primitive Pythagorean
triple. This means that the integer solutions are determined as functions of two integer
parameters m, n ∈ Z by means of the formulas

4p = 2mn, 2q + 1 = m2 + n2, 6r − 1 = m2 + n2.

Substituting in the previous equation, we obtain them4 − 4m2n2 +n4 = 1 constraint
on the parameters, which can also be written as (m2 − 2n2)2 = 3n4 + 1.

We now use a theorem that says that the Ljunggren equation

x2 = Dy4 + 1

has at most two positive integer solutions if D > 0 is not a perfect square.
In our case, the equation x2 = 3y4 + 1 has the obvious solutions (7, 2) and (2, 1)

and thus these are all the solutions in natural numbers. Therefore there is only one
solution (m, n) = (2, 1).
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Comments 27 The proof above is based on a deep result concerning the equation
x2 = Dy4 + 1, proved by Ljunggren in 1942. Ljunggren also gave an algorithm that
computes the nontrivial solution when it exists. The previous problem is a particular
case in which a short elementary proof (due to L. Mordell) is available.

Ljunggren extended his methods to deal with the more-delicate equation x2 = Dy4 −
1. He proved that this Diophantine equation has at most two positive solutions for
D > 0, not a perfect square. In particular, x2 = 2y4 − 1 has only the solutions (1, 1)
and (13, 239), which have been known for two centuries. Recently, Chen and Voutier
proved that there is at most one solution in positive integers when D ≥ 3.

• W. Ljunggren: Einige Eigenschaften der Einheiten reeller quadratischer und rein-
biquadratischer Zahlkörper mit Anwendung auf die Lösung einer Klasse unbe-
stimmter Gleichungen vierten Grades, Skr. Norske Vid. Akad. Oslo 1936, 12,
1–73.

• W. Ljunggren: Über die Gleichung x4 − Dy2 = 1, Arch. Math. Naturvid. 45
(1942) 5, 61–70.

• W. Ljunggren: Zur Theorie der Gleichung x2 +1 = Dy4, Avh. Norske Vid. Akad.
Oslo. I. 1942.

• J.H. Chen and P.Voutier: Complete solution of the Diophantine equationX2+1 =
dY 4 and a related family of quartic Thue equations, J. Number Theory 62 (1997),
1, 71–99.

Problem 1.60. Find all inscribable integer-sided quadrilaterals whose areas equal
their perimeters.

Solution 1.60. We have 16S2 = ∏
cyclic(a + b + c − d), and so the problem is

equivalent to the Diophantine equation

16(a + b + c + d)2 =
∏

cyclic

(a + b + c − d).

Assume that 0 < d ≤ c ≤ b < a ≤ b+ c+ d, for the sake of simplicity. If we write
x = −a + b + c + d , y = a − b + c + d, z = a + b − c + d, t = a + b + c − d ,
then the above equation becomes

(x + y + z+ t)2 = xyzt.

If this equation has a real solution, then the quadratic equation (X + y + z + x)2 −
Xxyz = 0 has two real roots. The product of these real roots is (x + y + z)2. Since
the solution t satisfies 0 < t < x + y + z, it follows that t is the smallest of the two
roots, and thus it is determined by the formula

2t = xyz− 2(x + y + z)− √
xyz(xyz− 4x − 4y − 4z)

with the obvious constraint xyz > 4(x + y + z).
Therefore, we need that λ = x+y+z

xyz
< 1

4 . Now, 3t ≥ x + y + z, since t is the

longest side, and thus 8
3λ+ √

1 − 4λ ≤ 1, implying that λ ≥ 3
16 .
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We have obtained the inequalities 1
4 > λ ≥ 3

16 , which immediately imply that
5 ≤ xy ≤ 16.

Since λ < 1
4 , we get z > 4(x + y)/(xy − 4).

On the other hand, we assumed that z ≤ t , which is equivalent to

(xy − 4)z2 − 4(x + y)z− (x + y)2 ≤ 0,

and therefore z ≤ (x + y)/(
√
xy − 2). Consequently,

4(x + y)

xy − 4
≤ z ≤ x + y√

xy − 2
.

One can list all integer values of x, y, z, t satisfying the inequalities above and
that are solutions to the Diophantine equation. This leads to

(x, y, z, t) ∈ {(1, 9, 10, 10), (2, 5, 5, 8), (3, 3, 6, 6), (4, 4, 4, 4)}
and their permutations.

Problem 1.61. Every rational number a can be written as a sum of the cubes of three
rational numbers. Moreover, if a > 0, then the three cubes can be chosen to be
positive.

Solution 1.61. Assume that we know how to write a = x3 + y3 + z3 and let us
introduce u = x+y+z and v = x+y. Then a = (x+y+z)3−3(x+y)(y+z)(z+x),
and we derive easily that a = u3 − 3v(u− x)(u− v + x).

We will require furthermore that u and v satisfy the additional constraint u3 =
3v(u2 − x2). Then a = 3v2(u− x).

We introduce the new variable w = x
u

∈ Q, so that u = 3v(1 − w2). Therefore
a = 3v2(u− x) = 3v2u(1 −w) = 9v3(1 −w)2(1 +w) = 27v3(1 −w)3 · 1

3 · 1+w
1−w .

Set m = 3v(1 − w) and introduce it above in order to obtain a = m3

3
1+w
1−w .

Now we reverse the line of thought by letting m ∈ Q be an arbitrary parameter.
The previous formulas yield w = 3a−m3

3a+m3 and also the following solutions:

v = 3a +m3

6m2 , u = 6am

3a +m3 .

This yields the rational solutions x = wu, y = v − wu, z = u− v.
Let us prove the positivity part. We have that x = uw ≥ 0 is equivalent to

0 < m <
3
√

3a. But let us assume for a moment that m = 3
√

3a. Then y = 3√3a
3 , z =

2 3√3a
3 , x = 0. Regarding the solutions y, z as functions y = y(m), z = z(m) of

the parameter m, we immediately see that these are continuous functions, which are
strictly positive at m = 3

√
3a. In particular, there exists a small neighborhood W of

3
√

3a such that y(m), z(m) > 0. This means that for m ∈ Q+ ∩ (0, 3
√

3a) ∩W, we
have x, y, z ∈ Q+, as claimed.
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Problem 1.62. 1. Every prime number of the form 4m + 1 can be written as the
sum of two perfect squares.

2. Every natural number is the sum of four perfect squares.

Solution 1.62. 1. Let p be such a prime number. The congruence z2 +1 ≡ 0 (mod p)
has at least one solution, because −1 is a quadratic residue when p is of the form
4m+ 1. This follows from the more general Euler criterion computing the Legendre

symbol
(
a
p

)
as follows:

(
a

p

)
= a

p−1
2 (mod p)

for arbitrary prime p. Recall that the Legendre symbol
(
a
b

)
equals 1 if a is a quadratic

residue modulo b (i.e., there exists some integer n such that n2 ≡ a(mod b)), and −1
otherwise.

Let then m ∈ Z+, m �= 0, and z ∈ Z be such that

mp = z2 + 1.

We can suppose that −p
2 < z <

p
2 , by using a translation multiple of p. Then

m = 1
p
(z2 + 1) < 1

p

(
p2

4 + 1
)
< p. Set x = z, y = 1, so that mp = x2 + y2.

We shall prove that if m > 1, then there exists m′ < m with the same properties.
This process stops when m = 1, where we find the wanted sum of two squares.

Let us consider u, v such that −m
2 ≤ u, v ≤ m

2 , satisfying

u ≡ x (mod m), v ≡ y (mod m).

Thus
u2 + v2 = x2 + y2 ≡ 0 (mod m),

and so there exists some r ∈ Z+ for which

u2 + v2 = mr.

Observe that r �= 0, since otherwise x, y would be multiples of m, and so m would

divide p. Further, r = 1
m

(
u2 + v2

)
< 1

m

(
m2

4 + m2

4

)
< m. We will use the identity

(
a2 + b2

) (
A2 + B2

)
= (aA+ bB)2 + (aB − bA)2

and multiply the two equalities above, obtaining

m2rp =
(
x2 + y2

) (
u2 + v2

)
= (xu+ yv)2 + (xv − yu)2.

Moreover,

xu+ yv ≡ x2 + y2 ≡ 0 (mod m) and xv − yu ≡ xy − yx ≡ 0 (mod m),
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and thus, dividing the equation by m2, we obtain

rp = a2 + b2,

where r < m. Thus, m′ = r satisfies all required properties. This proves the first
claim.

2. The identity

(a2 + b2 + c2 + d2)(A2 + B2 + C2 +D2) = (aA+ bB + cC + dD)2

+(aB − bA− cD + dC)2 + (aC + bD − cA− dB)2 + (aD − bC + cB − dA)2

reduces the problem to the case of prime numbers. Moreover, we know that primes
of the form 4m+ 1 can be written as a sum of two squares, and 2 = 12 + 12. Thus it
suffices to consider the primes of the form 4m+ 3. The method of proof is the same
as above.

We show first that the congruence x2 + y2 + 1 ≡ 0 (mod p) has solutions.
By the Euler criterion, −1 is a quadratic nonresidue modulo p and thus −y2 is a
quadratic nonresidue modulo p. Moreover, each quadratic nonresidue is of the form
−y2 (mod p). Then we have to find a quadratic nonresidue n and a quadratic residue
r such that r + 1 = n (mod p). Consider in the sequence {1, 2, 3, . . . , p − 1, p} the
smallest quadratic nonresidue n. Then n > 1 and n − 1 must be a quadratic residue
by the minimality of n, and this yields our pair (r, n).

We write now
mp = x2 + y2 + 12 + 02,

where m ∈ Z+ is nonzero. We choose x, y such that −p
2 < x, y <

p
2 , using a

translation multiple of p. Then m = 1
p

(
x2 + y2 + 1

)
< 1

p

(
p2

4 + p2

4 + 1
)
< p.

Consider a = x, b = y, c = 1, d = 0. If m > 1, we will find another m′ < m such
that m′p is still a sum of four squares.

Choose A,B,C,D such that −m
2 < A,B,C,D ≤ m

2 and

a ≡ A (mod m), b ≡ B (mod m), c ≡ C (mod m), d ≡ D (mod m).

Then A2 + B2 + C2 +D2 ≡ 0 (mod m) and thus there exists r ∈ Z+ such that

mr = A2 + B2 + C2 +D2.

Furthermore, r �= 0, since otherwise,A = B = C = D = 0, and thus a, b, c, d would
be multiples ofm, and somwould dividep. Moreover, r = 1

m
(A2+B2+C2+D2) ≤

m, with equality if and only if A = B = C = D = m
2 , m even. The equality would

imply that a2 = m2

4 (mod p) and thus pm ≡ 0 (mod m2). Thus m divides p, which
is false. Thus r < m. Further, multiplying the two identities, we obtain

m2rp =
(
a2 + b2 + c2 + d2

) (
A2 + B2 + C2 +D2

)
= X2 + Y 2 + Z2 +W 2.

The terms X, Y,Z,W are multiples of m, since, for example,
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X = aA+ bB + cC + dD ≡ a2 + b2 + c2 + d2 ≡ 0 (mod m),

and similarly for Y,Z,W . Therefore, one can divide by m2 and find that

rp = X′2 + Y ′2 + Z′2 +W ′2

with r < m. Then take m′ = r . This proves the claim.

Comments 28 The proof given above was obtained by Lagrange, and all elementary
proofs known until now are variations of the present one. The numbers of the form
4m(8k + 7) cannot be represented as sums of three squares. Thus 4 is the minimal
number with this property. However, all numbers that are not of the form 4m(8k+ 7)
are sums of three perfect squares.

Problem 1.63. Every natural number can be written as a sum of at most 53 integers
to the fourth power.

Solution 1.63. Consider the identity

6
(
x2

1 + x2
2 + x2

3 + x2
4

)2 =
∑

1≤i≤j≤4

(xi − xj )
4 +

∑

1≤i<j≤4

(xi + xj )
4.

We write n = 6x + y, where 0 ≤ y ≤ 5. According to Lagrange’s theorem (the
previous problem), any natural number is the sum of four perfect squares. Therefore

x = α2
1 + α2

2 + α2
3 + α2

4, αi = α2
i1

+ α2
i2

+ α2
i3

+ α2
i4
.

Then

6x =
4∑

i=1

6

⎛

⎝
4∑

j=1

α2
ij

⎞

⎠

2

=
4∑

i=1

∑

1≤j<k≤4

(αij − αik )
4 +

4∑

i=1

∑

1≤j<k≤4

(αij + αij + αik )
4 =

48∑

i=1

w4
i .

Now, any y ∈ {0, . . . , 5} can be written as a sum of at most 5 fourth powers, and thus
n can be written as a sum of at most 53 fourth powers.

Comments 29 The problem of determining the minimumG(k) such that any number
is the sum ofG(k)perfect (positive) kth powers (in our case k = 4) is called theWaring
problem. For instance, Lagrange proved in 1770 thatG(2) = 4. Earlier the same year,
Edward Waring had conjectured that something similar could be proved for cubes,
fourth powers, and so on. He stated, without proof, that it would take the sum of at
most nine cubes or 19 fourth powers to express any positive integer. Waring arrived at
his conjectures about cubes and fourth powers by collecting data and looking for pat-
terns. The sequence of minimum number of cubes needed to write n ≤ 30 as a sum of
cubes is 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 4, 1, 2, 3, 4.
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Fourth powers show similar behavior: 15 can be written as the sum of 15 fourth
powers, 31 requires 16 fourth powers, 47 requires 17, 63 requires 18, and 79 re-
quires 19. Among the first 12000 numbers, the only number other than 23 that re-
quires nine cubes is 239. Fifteen numbers require a minimum of eight cubes: 15,
22, 50, 114, 167, 175, 186, 212, 213, 238, 303, 364, 420, 428, and 454. The list of
numbers requiring seven cubes is much longer, but it includes no numbers greater
than 8042.

In 1909, David Hilbert proved that there is some universal constant G(k) such that
every natural number is the sum of at most G(k) kth powers. However, his proof did
not provide an effectiveG(k). In 1912, A.J. Kempner completed a 1909 partial proof
by A. Wieferich to establish, once and for all, that every integer can be expressed as
a sum of nine cubes. In 1940, S.S. Pillai showed that every integer can be expressed
as a sum of 73 sixth powers.

The easy estimate obtained above, that G(4) ≤ 53, is far from being sharp. The
assertion that 37 fifth powers are sufficient was proved by Chen Jingrun in 1964. It
wasn’t until 1986 that R. Balasubramanian, J.-M. Deshouillers, and F. Dress proved
that G(4) = 19, by showing that it suffices to check the claim for those numbers less
than 10367.

A related question concerns the number of terms required to express every sufficiently
large integer as a sum of kth powers. For example, even though every integer can be
expressed as a sum of at most nine cubes, every integer larger than a certain value
(probably 8 042) can be written as the sum of at most seven cubes. One conjectures that
every sufficiently large integer can be expressed as the sum of no more than four cubes.
The largest number now known not to be a sum of four cubes is 7 373 170 279 850.
Davenport proved that any sufficiently large integer is represented as the sum of 16
fourth powers, and Kempner that no integer of the form 16h31 is representable as a
sum of fewer than 16 integral fourth powers.

In 1995, Irving Kaplansky and Noam D. Elkies proved that any integer can be ex-
pressed as the sum of two squares and a cube, when positive and negative integers are
allowed. Numerical experiments show evidence for the conjecture that all but finitely
many numbers can be expressed as the sum of a square and two cubes, using only
positive integers. See also:

• R. Balasubramanian, J.-M. Deshouillers, and F. Dress: Problème de Waring pour
les bicarrés. I. Schéma de la solution. C. R. Acad. Sci. Paris Sér. I Math. 303
(1986), 4, 85–88.

• H. Davenport: On Waring’s problem for fourth powers, Ann. of Math. (2) 40
(1939), 731–747.

• W.C. Jagy and I. Kaplansky: Sums of squares, cubes, and higher powers, Exper-
imental Mathematics 4 (1995), 169–173.

• H. Rademacher and O. Toeplitz: The Enjoyment of Mathematics: Selections from
Mathematics for the Amateur, New York, Dover, 1990.
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Problem 1.64. Let G(k) denote the minimal integer n such that any positive integer
can be written as the sum of n positive perfect kth powers. Prove that G(k) ≥ 2k +[

3k

2k

]
− 2.

Solution 1.64. Let us write 3k = 2kq + r , where 0 < r < 2k and q =
[

3k

2k

]
, and

consider the number A = 2kq − 1. We can write A = (q − 1)2k + (2k − 1)1k , thus

as a sum of 2k +
[

3k

2k

]
− 2 perfect kth powers. Let us show that we cannot do better.

First, A < 3k , and thus we cannot use 3k among our kth powers. On the other hand,
A < 2kq, and thus at most q − 1 terms among our kth powers could be equal to
2k . The remaining terms should be 1k , and thus there are at least q − 1 + 2k − 1, as
claimed.

Comments 30 This is the general case of the Waring problem, discussed above. It is

conjectured thatG(k) = 2k +
[

3k

2k

]
− 2, for any k ≥ 2. Moreover, the conjecture was

proved by L.E. Dickson and (independently) by S.S. Pillai for those k satisfying

r = 3k − 2kq ≤ 2k − q − 2,

where q and r are as above. This inequality was verified for all k ≤ 471 600 000.
Moreover, it is known that the inequality holds for all sufficiently large k, but we do
not have an effective lower bound.

Problem 1.65. Let R(n, k) be the remainder when n is divided by k and

S(n, k) =
k∑

i=1

R(n, i).

1. Prove that limn→∞ S(n, n)

n2 = 1 − π2

12 .
2. Consider a sequence of natural numbers (ak) growing to infinity and such that

limk→∞ ak log k
k

= 0. Prove that limk→∞ S(kak, k)

k2 = 1
4 .

Solution 1.65. 1. We calculate that:

S(n+ 1, n+ 1) = S(n, n)− σ(n+ 1)+ 2n+ 1,

where σ(m) denotes the sum of divisors of m. Therefore, we find that S(n, n) =
n2 − ∑

j≤n σ (j). Furthermore, use the estimate

∑

j≤n
σ (j) = 1

2
ζ(2)n2 + O(n log n)

and get the claim.
2.We have the identities
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S(n, k) = nk −
k∑

i=1

[n
i

]
i = nk −

[n
k

] k∑

i=1

i −
∑

n
k
<k≤n

⎛

⎝

[
n
k

]
∑

i=1

i

⎞

⎠

in order to obtain the estimate

S(n, k) = nk −
[n
k

] k(k + 1)

2
− n2

2

∞∑

i=[
n
k

]+1

1

i2
+ O(n log k).

This automatically yields the first claim. Further,

S(kak, k) = 1

2

⎛

⎝k2ak − kak − k2a2
k

∞∑

i=ak+1

1

i2

⎞

⎠ + O(kak log k),

and we can estimate
( ∞∑

i=N+1

1

i2

)

− 1

N + 1
2

=
∞∑

i=N+1

1

i2
−

∞∑

i=N+1

(
1

N − 1
2

− 1

N + 1
2

)

= −1

4

∞∑

i=N+1

1

i4 − i2

4

= O
(

1

N3

)
,

and hence

S(kak, k)

k2 = 1

4

ak

ak + 1
2

− 1

2k
+ O(a−1

k )+ O
(
ak log k

k

)
,

which proves the claim.

Comments 31 L. Funar conjectured in 1985 that limn→∞ S(2n, n)
n2 = 1 − π2

12 . This
question seems to be still open.

• L. Funar: Problem 6476, Amer. Math. Monthly, 81(1984), 588.

Problem 1.66. Let a1 < a2 < a3 < · · · < an < · · · be a sequence of positive
integers such that the series

∞∑

i=1

1

ai

converges. Prove that, for any i, there exist infinitely many sets of ai consecutive
integers that are not divisible by aj for all j > i.
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Solution 1.66. Fix an arbitrary i. The set Sn = {n − ai, n − ai + 1, . . . , n − 1} is
called admissible for aj (where j > i) if no element of Sn is divisible by aj . It is
obvious that Sn is admissible for aj if aj divides n. Moreover, Sn is not admissible
for aj if there exists some e, with 1 ≤ e ≤ ai , such that n ≡ e (mod aj ).

Consider ε > 0 sufficiently small and k sufficiently large such that

∑

j>k

a−1
j < ε.

Let β = ai+1 · · · ak and Sn with the property that β divides n. Observe first that the
sets Sn are admissible for those aj with i ≤ j ≤ k. Now assume that j > k. Let
Cj (x) denote the set of those c ≤ x for which Scβ is not admissible for aj . Recall
that c ∈ Cj (x) iff there exists e ∈ {1, 2, . . . , ai} such that cβ ≡ e (mod aj ).

If gcd(β, aj ) = d, then d should divide e, and we can write β = dβ ′, e =
de′, aj = da′

j . Moreover, the condition above is equivalent to cβ ′ ≡ e′ (mod a′
j ).

If aj > βx, then obviously Cj (x) = ∅. Further, for a fixed value of e′, there
are at most x

a′
j

+ 1 solutions c for the previous congruence in the given range. Since

e′ can take at most ai
d

values, we derive that the cardinality of Cj (x) is bounded by

ai

(
x
aj

+ 1
)

.

Therefore, among the multiples of β satisfying n < βx, there are at most

∑

j>k

aix

aj
+ ai card{j |aj < βx} = εaix + o(x)

integers n such that Sn is not admissible. In fact, the estimate card{j |aj < βx} = o(x)

is a consequence of the convergence of the series. This asymptotic estimate implies
that for large x there exist infinitely many values of n that do not belong to any Cj ,
so that Sn is admissible with respect to all aj .

Problem 1.67. Denote byCn the claim that there exists a set of n consecutive integers
such that no two of them are relatively prime. Prove that Cn is true for every n, such
that 17 ≤ n ≤ 10000.

Solution 1.67. We suppose that both p and 2p + 1 are primes and consider those n
for which 3p+2 ≤ n ≤ p2. Set q for the product

∏
pi≤n,pi �=p,2p+1 pi of those prime

numbers smaller than n and distinct from p and 2p+ 1. From the Chinese remainder
theorem, there exists a natural number x satisfying the congruences

x ≡ 0 (mod q), x ≡ −3p − 1 (mod p(2p + 1)).

Now let Sn = {x, x+1, . . . , x+n−1}. Then Sn contains x+1, x+2p+1, . . . , x+
kp + 1, . . ., which have p as a common factor. Also, x + p has the factor 2p + 1 in
common with x + 3p + 1 ∈ Sn. All other numbers from Sn have a common divisor
with q, therefore with x. Therefore the set Sn satisfies the claim Cn, and we have to
look for specific values of p.
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Ifp = 5, thenSn holds for 17 ≤ n ≤ 25.We choose furtherp = 11, 29, 251, 1013,
49919, 5008193, and this yields the claim for all n such that 35 ≤ n ≤ (5008193)2.

The case 26 ≤ n ≤ 34 must be treated separately. There one considers x satisfying

x ≡ 0 (mod 2 · 5 · 11 · 17), x ≡ −1 (mod 3), x ≡ −2 (mod 7 · 19),

x ≡ −3 (mod 13), x ≡ −4 (mod 23).

Comments 32 The claim Cn is false for all n ≤ 16, and true for all n ≥ 17, as
proved in:

1. S.S. Pillai: Onm consecutive integers, Proc. IndianAcad. Sci., Sect.A. 11 (1940),
6–12, 13 (1941), 530–533.

2. A. Brauer: On a property of k consecutive integers, Bull. Amer. Math. Soc. 47
(1941), 328–331.

The proof, which is elementary, is based on the estimate

π(2n)− π(n) ≥ 2

[
log n

log 2

]
+ 2, for n ≥ 75.

Problem 1.68. Prove that a natural number n has more divisors that can be written in
the form 3k + 1, for k ∈ Z, than divisors of the form 3m− 1, for m ∈ Z.

Solution 1.68. Let f (n) (and respectively g(n)) be the number of divisors of the form
3k + 1 (and respectively 3m − 1), for k,m ∈ Z. Let n = uv, where gcd(u, v) = 1.
By making use of the obvious congruences

(−1)(−1) ≡ 1 (mod 3), (−1)1 ≡ −1 (mod 3),

we obtain the formulas

f (n) = f (u)f (v)+ g(u)g(v), g(n) = g(u)f (v)+ f (u)g(v).

Set further h(n) = f (n)− g(n). The identities above prove that

h(n) = h(u)h(v).

In particular, if n = p
α1
1 · · ·pαrr is the factorization into prime factors of n, then

h(n) =
r∏

j=1

h
(
p
αj
j

)
.

Now we have
h(3α) = 1.

If the prime number p ≡ −1 (mod 3), then the divisors of pα of the form 3k + 1 are
1, p2, p4, . . . and the ones of the form 3k − 1 are p, p3, . . . . Therefore
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h(pα) =
{

1, if α is even
0, otherwise.

If the prime number p satisfies p ≡ 1 (mod 3), then all divisors of pα are of the form
3k + 1, and therefore h(pα) = 1 + α. Therefore if n = p

α1
1 · · ·pαrr ,

h(n) =
{∏

ν;pν≡1 (mod 3)(1 + αν), if all αν for which pν ≡ 1 (mod 3) are even,
0, otherwise.

Comments 33 It can be proved that 6h(n) is the number of integer solutions of the
equation

x2 − xy + y2 = n.

In the same way, we can prove that the difference between the number τ4k+1(n) of
divisors of the form 4k + 1 and the number τ4k−1(n) of divisors of the form 4k − 1
is also positive. Moreover, 4(τ4k+1(n) − τ4k−1(n)) is the number of solutions of the
Diophantine equation

x2 + y2 = n.

Comments 34 The positivity result holds more generally when one compares the
numbers of divisors of the form 4k ± 1, 6k ± 1, 8k ± 1, 12k ± 1, 24k ± 1. However,
the analogous result do not hold for any other congruences.

Comments 35 The number of solutions in integers of quadratic equations appears in
many arithmetic questions. The oldest and perhaps one of the most famous unsolved
problems is the congruent numbers problem. Specifically, one asks to determine all
integers that are the areas of right triangles with rational sides, which are called
congruent numbers. For instance, n = 6 is the area of the right triangle of sides 3, 4,
and 5. It is less obvious that 157 is a congruent number, where the simplest solution
for the sides of the associated right triangle reads

6803298487826435051217540

411340519227716149383203
,

411340519227716149383203

21666555693714761309610
,

224403517704336969924557513090674863160948472041

8912332268928859588025535178967163570016480830
.

It is known that congruent numbers are those d for which the equation

dy2 = x3 − x

has infinitely many rational solutions.

Deep results of Tunnell imply the following conjecture, which would be a complete
characterization of congruent numbers. Let d be square-free. Denote by N(d) (and
respectively M(d)) the number of integer solutions of

2x2 + y2 + 8z2 = d, and respectively 2x2 + y2 + 32z2 = d, for odd d,
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4x2 + y2 + 8z2 = d

2
, and respectively 4x2 + y2 + 32z2 = d

2
, for even d.

Then d is a congruent number if and only if

N(d) = 2M(d).

This is a particular case of the Birch–Swinnerton-Dyer conjecture, considered one
of the most important unsolved problems in arithmetic, and included as one of the
seven Millennium Problems (for which the Clay Mathematics Institute will award one
million dollars for a solution). The interested reader might consult

• N. Koblitz: Introduction to Elliptic Curves and Modular Forms, second edition,
Graduate Texts in Mathematics, 97, Springer-Verlag, New York, 1993.

Problem 1.69. A number N is called deficient if σ(N) < 2N and abundant if
σ(N) > 2N .

1. Let k be fixed. Are there any sequences of k consecutive abundant numbers?
2. Show that there are infinitely many 5-tuples of consecutive deficient numbers.

Solution 1.69. 1. Let pn denote the nth prime number. It is known that the infinite
product

∞∏

n=1

(
1 + 1

pn

)

is infinite. Thus, for any m, there exists an integer N(m) such that

N(m)∏

n=m

(
1 + 1

pn

)
> 2.

In particular, this shows that the number t = ∏N(m)
n=m pn is abundant, because σ(t) =

t
∏N(m)
n=m

(
1 + 1

pn

)
. Consider now the sequence defined by

m1 = 1, mj+1 = N(mj )+ 1, for j ≥ 1, and tj =
N(mj )∏

n=mj
pn.

Then the numbers tj are pairwise relatively prime, and therefore for every k there
exists some integer L (depending on k) with the property that L + j ≡ 0 (mod tj ),
for all j ∈ {1, . . . , k}. Observe that any multiple of an abundant number is abundant
itself. This shows that each of the numbers L+ 1, . . . , L+ k is abundant.

2. It is well known that

lim
n→∞

(
1 + 2

n log n

)n
= 1

and limn→∞ pn
n log n = 1. Take n large enough so that
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(
1 + 2

n log n

)n
< 1.01, and pn >

1

2
n log n > 60.

Let us next consider

Qn =
n−1∏

i=1

pj , and Mn = 60pn + 1.

We set xi = Mn+i−1
i

for i ∈ {1, 2, 3, 4, 5}. Because n > 3, it is easy to see that every
xi is relatively prime to Qn. Therefore each xi can be factored into prime factors

xi =
ti∏

j=1

pnji ,

where each nji ≥ n (because otherwise, it would have common factors withQn) and
the number of factors ti is less than or equal to n (otherwise, xi would be greater than
Mn).

Since 1 + 1
pnji

≤ 1 + 1
pn

and for prime p we have σ(ps)/ps ≤ (σ (p)/p)s , we

conclude that

σ(xi)

xi
≤

(
1 + 1

pn

)n
<

(
1 + 2

n log n

)n
< 1.01

and therefore

σ(Mn + i − 1)

Mn+i
= σ(i)

i
· σ(xi)
xi

< 1.75 · 1.01 < 2 .

Thus Mn,Mn + 1,Mn + 2,Mn + 3,Mn + 4 are deficient numbers.

Problem 1.70. Does there exist a nonconstant polynomial an2 + bn+ c with integer
coefficients such that for any natural numberm, all its prime factorspi are congruent to
to 3 modulo 4? Prove that, for any nonconstant polynomial f with integer coefficients
and any m ∈ Z there exist a prime number p and a natural number n such that p
divides f (n) and p ≡ 1 (mod m).

Solution 1.70. 1. We write 4af (n) = (2an+b)2+4ac−b2. If a = 0 or 4ac−b2 = 0,
it is obvious that there are infinitely many prime numbers 4m+1 that divide f (n). Let
us then assume that a(4ac − b2) �= 0. Set p1, . . . , pm for the odd prime divisors of
a(4ac − b2). The Chinese remainder theorem and Dirichlet’s theorem on arithmetic
progressions imply the existence of a prime p satisfying p ≡ 1 (mod pi), for

all i and p ≡ 1 (mod 8). The Legendre symbol satisfies the identities
(
pi
p

)
=

(
p
pi

)
=

(
2
p

)
=

(−1
p

)
= 1, which imply that there exists an integer m such that

m2 ≡ b2−4ac (modp). Since gcd(2a, p) = 1, the congruence 2an+b ≡ m(modp)
has some solution n and then p divides f (n). The answer is therefore negative.
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2. Assume that f is irreducible. Let α1, . . . , αk be the roots of f and let ω be a
primitive mth root of unity. The field K = Q(ω, α1, . . . , αk) is a normal extension
of Q. The Čebotarev density theorem says that the density of rational primes that
completely split in K is 1/[K : Q], and thus nonzero. Let p be such a prime that
moreover, does not divide the discriminant of K . Then p splits completely in every
subfield of K , in particular in Q(α1). From Dirichlet’s unit theorem, it follows that
the congruence f (x) ≡ 0 (mod p) has k distinct solutions, since p does not divide
the discriminant of Q(α1). Let �m be the cyclotomic polynomial of degree m. A
similar argument concerning Q(ω) shows that the congruence �m(x) ≡ 0 (mod p)
has exactly φ(m) roots. Let r be one of them. Then the order of r in Z/pZ is exactly
m and thus m divides p − 1. Therefore p has the required properties.

Comments 36 If we required the prime factors to be congruent to 1 modulo 4, then
the answer would be positive. In fact, for any integer n, the prime divisors of 4n2 + 1
are of the form 4m+ 1.
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Algebra and Combinatorics Solutions

6.1 Algebra

Problem 2.1. Set Sk,p = ∑p−1
i=1 i

k , for natural numbers p and k. If p ≥ 3 is prime
and 1 < k ≤ p − 2, show that

Sk,p ≡ 0 (mod p).

Solution 2.1. Consider the symmetric polynomial P(x) = xk1 + · · · + xkp−1. Ac-
cording to the fundamental theorem of symmetric polynomials, there exists G ∈
Z[x1, . . . , xp−1] such that P(x) = G(σ1, . . . , σp−1), where σi(x1, . . . , xp−1) are
the fundamental symmetric polynomials

σi(x1, . . . , xp−1) =
∑

1≤j1<···<ji≤p−1

xj1 · · · xji .

Furthermore, the largest n with the property that σn actually appears in the develop-
ment ofG satisfies n ≤ degP . In particular, if k ≤ p−2, thenP = G(σ1, . . . , σp−1).

Let us show first that σi(1, 2, . . . , p − 1) ≡ 0 (mod p). In fact, the theorem of
Fermat tells us that ap−1 ≡ 1 (mod p), for any number a �≡ 0 (mod p). Thus the
polynomial Q = xp−1 − 1 ∈ Z/pZ [x] with coefficients in Z/pZ vanishes for all
nonzero classes {1 . . . , p−1} modulop, and so these are all the roots ofQ. Therefore,
Q decomposes in Z/pZ [x] as Q = (x − 1) · · · (x − (p − 1)). By identifying the
coefficients of the right- and left-hand sides, we obtain σi(1, . . . , p−1) ≡ 0 (mod p),
as claimed. Finally, Sk,p = P(1, . . . , p−1) = G(0, 0, 0, . . . , 0) ≡ 0 (modp), which
proves the claim.

Observe that if k = p − 1, then we have ip−1 ≡ 1 (mod p) and hence Sp−1,p ≡
−1 (mod p). In particular, we have

Sk,p =
{

0, if k �≡ −1 (mod p − 1),
−1, if k ≡ −1 (mod p − 1).
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Problem 2.2. LetP = a0 +· · ·+anxn andQ = b0 +· · ·+bmxm be two polynomials
with m ≤ n. Then, deg gcd(P,Q) ≥ 1 if and only if there exist two polynomials K
and L such that deg K ≤ m− 1, deg L ≤ n− 1, andK · P = L ·Q. Prove that this
is equivalent to the vanishing of the following (n+m)× (n+m) determinant:

det

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

a0 a1 a2 · · · am−1 · · · an−1 an 0 0 · · · 0
0 a0 a1 · · · am−2 · · · an−2 an−1 an 0 · · · 0
...
...

...
...

...
...

...
...

...

0 0 0 · · · a0 · · · an−m−1 an−m an−m+1 · · · an
0 0 0 · · · 0 · · · an−m−2 an−m−1 an−m · · · an−1
...
...

...
...

...
...

...
...

0 0 0 · · · 0 0 a0 a1 a2 · · · am
b0 b1 · · · bm−1 bm 0 0 0 0 · · · 0
0 b0 · · · bm−2 bm−1 bm 0 0 0 · · · 0
...
...

...
...

...
...

...
...

...

0 0 · · · b0 b1 · · · · · · · · · 0 · · · 0

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎟
⎠

= 0.

Solution 2.2. Let us write

P = an
∏

∑
δi=n

(x − xi)
δi , Q = bm

∏

∑
γi=m

(x − x̃i )
γi ,

L = cm−1

∏

∑
ξi=n−1

(x − yi)
ξi , K = dm−1

∏

∑
ψi=m−1

(x − ỹi )
ψi ,

and then consider the identity P ·K = Q ·L, each side being decomposed into linear
terms.According to the pigeonhole principle, after the reduction of the common terms,
on each side, left and right, there remains some polynomial of degree ≥ n+m− (n+
m− 1) = 1.

Conversely, if P = P0 · P1,Q = P0 ·Q1, then Q1 · P = P1 ·Q.
For the second assertion, set K = ∑

uix
i and L = ∑

wix
i . By identifying the

coefficients of P ·K and Q · L, one obtains the identities
∑

j+k=i
ajuk =

∑

j+k=i
bjwk.

Alternatively,

D · (u0, u1, . . . , un−1,−w0,−w1, . . . ,−wm−1)
� = 0,

whereD denotes the matrix from the claim. SinceK and L are nonzero, this implies
that detD = 0.

Problem 2.3. Prove that if P,Q ∈ R[x, y] are relatively prime polynomials, then
the system of equations

P(x, y) = 0,
Q(x, y) = 0,

has only finitely many real solutions.
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Solution 2.3. Assume that the value of y is a fixed y0, so that there exists at least
one solution (x, y0). Then the polynomials P(x, y0) and Q(x, y0) from R[x] have
at least one common root, and hence a nontrivial common divisor. According to the
preceding problem, this amounts to the vanishing of the determinant of some matrix
Dy0 = D(P (x, y0),Q(x, y0)) obtained from the coefficients.

Further, the determinant of Dy0 is a nonzero polynomial in y0. In fact, if Dy
were identically zero, then P andQwould have a common divisor, contradicting our
assumptions. Therefore the number of such y0 for which a solution (x, y0) exists is
finite.

In a similar way, the number of those x0 for which there exist solutions (x0, y) is
finite, by the same argument. This implies that the number of solutions is finite.

Problem 2.4. Let a, b, c, d ∈ R[x] be polynomials with real coefficients. Set

p =
∫ x

1
ac dt, q =

∫ x

1
ad dt, r =

∫ x

1
bc dt, s =

∫ x

1
bd dt.

Prove that ps − qr is divisible by (x − 1)4.

Solution 2.4. Let p, q, r, s be smooth functions such that p(u) = q(u) = r(u) =
s(u) = 0 and det

(
p′ q ′
r ′ s′

)
(u) = 0. Then the function det

(
p q
r s

)
, together with its first

three derivatives, vanishes at u. The proof is immediate. The given p, q, r, s satisfy
the previous conditions at u = 1, and hence the claim.

Problem 2.5. 1. Find the minimum number of elements that must be deleted from
the set {1, . . . , 2005} such that the set of the remaining elements does not contain two
elements together with their product.

2. Does there exist, for any k, an arithmetic progression with k terms in the infinite
sequence

1,
1

2
, . . . ,

1

2005
, . . . ,

1

n
, . . .?

Solution 2.5. 1. If we extract the numbers 1, 2, 3, . . . , 44 and then choose x, y ∈
{45, . . . , 2005}, then xy ≥ 452 > 2005, and thus it cannot belong to the given set.
Therefore the number of elements to be deleted is at most 43.

Consider now the triples (2, 87, 2 · 87), (3, 86, 3 · 86), . . . , (44, 45, 44 · 45) con-
sisting of elements of the given set. We must delete at least one number from each
triple in order that the remaining set be free of products. Thus the minimum number
of elements to be deleted is 43.

2. Yes, it does. Take for instance 1
k! ,

2
k! , . . . ,

k
k! .

Problem 2.6. Consider a set S of n elements and n+ 1 subsets M1, . . . ,Mn+1 ⊂ S.
Show that there exist r, s ≥ 1 and disjoint sets of indices {i1, . . . , ir}∩{j1, . . . , js} = ∅
such that

r⋃

k=1

Mik =
s⋃

k=1

Mjk .
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Solution 2.6. Assume that S = {a1, a2, . . . , an}. We associate to the subset Mj the
vector vj ∈ R

n having the components vj = (v1j , v2j , . . . , vnj ), given by

vij =
{

1, if ai ∈ Mj,

0, if ai �∈ Mj.

Since we have n + 1 vectors v1, . . . , vn+1 in R
n, there exists a nontrivial linear

combination of them that vanishes. We separate the positive coefficients and the
negative coefficients and write down this combination in the form

∑

i∈I
λivi =

∑

j∈J
λj vj ,

where I, J are disjoint sets of indices and λk > 0, for k ∈ I ∪ J . We claim now that

∪i∈IMi = ∪j∈JMj .

In fact, assume that ak ∈ ∪i∈IMi and thus ak ∈ Mi for some i ∈ I . Then the kth
coordinate of the vector vi is nonzero. All coordinates of the vectors vs are non-
negative and the coefficients λi are positive, which implies that the kth coordinate of
the vector

∑
i∈I λivi is nonzero. Since the kth coordinate of

∑
j∈J λj vj is nonzero,

there should exist some j ∈ J for which the kth coordinate of vj is nonzero and
hence ai ∈ Mj ⊂ ∪j∈JMj . This proves that ∪i∈IMi ⊂ ∪j∈JMj , and by symmetry,
we have equality.

Problem 2.7. Let p be a prime number, and A = {a1, . . . , ap−1} ⊂ Z
∗+ a set of

integers that are not divisible by p. Define the map f : P(A) → {0, 1, . . . , p − 1}
by

f ({ai1 , . . . , aik }) =
k∑

p−1

aip (mod p), and f (∅) = 0.

Prove that f is surjective.

Solution 2.7. Let C0 = ∅, Cn = {a1, . . . , an}, for n ≤ p − 2. Set Pn = {f (β)|β ⊂
Cn}, and bn = f ({an}) �≡ 0. One obtains easily the following inductive description
of the sets Pn:

Pn+1 = {r + bn+1|r ∈ Pn ∪ {0}} ∪ Pn.
Furthermore, if Pn = Pn+1, then bn+1 + r ∈ Pn for all r ∈ Pn. In particular,
bn+1 ∈ Pn, and by induction, kbn+1 ∈ Pn, for any k. Since p is prime and bn+1 �= 0,
we obtain Pn = {0, 1, . . . , p − 1}.

Assume now that Pn �= Pn+1 for all n. Since card P0 = 1 and Pn ⊂ Pn+1, we
derive that card Pn ≥ n+ 1, and hence Pp−1 = P .

Problem 2.8. Consider the function Fr = xr sin rA + yr sin rB + zr sin rC, where
x, y, z ∈ R, A + B + C = kπ , and r ∈ Z+. Prove that, if F1(x0, y0, z0) =
F2(x0, y0, z0) = 0, then Fr(x0, y0, z0) = 0, for all r ∈ Z+.
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Solution 2.8. Consider the complex numbers

u = x0(cosA+ i sinA), v = y0(cosB + i sinB), w = z0(cosC + i sinC).

We denote the argument of the complex number z by arg z and its imaginary part
by �z. We have arg u + arg v + arg w = kπ, � u + � v + � w = 0, and
� u2 + � v2 + � w2 = 0. Now � z = 0 means that z is real, so that � z2 = 0.
Thus 2�(uv + vw + wu) = �((u + v + w)2) − �(u2 + v2 + w2) = 0. Next,
arg uvw = arg u+ arg v + arg w = kπ , and so � uvw = 0.

Let us consider the polynomial Pn(x1, x2, x3) = xn1 + xn2 + xn3 . According to the
fundamental theorem of symmetric polynomials, we can write Pn as a polynomial in
the fundamental symmetric polynomials:

Pn(x1, x2, x3) = G(σ1, σ2, σ3),

whereG ∈ R[σ1, σ2, σ3] is a real polynomial andσi , i ∈ {1, 2, 3}, are the fundamental
symmetric polynomials in three variables, namely

σ1(x1, x2, x3) = x1 + x2 + x3, σ2(x1, x2, x3) = x1x2 + x2x3 + x3x1,

σ3(x1, x2, x3) = x1x2x3.

Notice now that σ1(u, v,w) = u + v + w ∈ R, σ2(u, v,w) = uv + vw + wu ∈
R, σ3(u, v,w) = uvw ∈ R, which implies that Pn(u, v,w) ∈ R, and therefore
Fr(x0, y0, z0) = �(Pn(u, v,w)) = 0.

Problem 2.9. Let T (z) ∈ Z[z] be a nonzero polynomial with the property that
|T (ui)| ≤ 1 for all values ui that are roots of P(z) = zn − 1. Prove that either
T (z) is divisible by P(z), or else there exists some k ∈ Z+, k ≤ n − 1, such that
T (z) ± zk is divisible by P(z). The same result holds when instead of P(z), we
consider zn + 1.

Solution 2.9. Let us write T (z) = A(z)P (z) + B(z), where deg B ≤ n − 1 and
A,B ∈ Z[x]. Assume that T (z) is not divisible by P(z), and so B �= 0. Set k for the
multiplicity of the root 0 in B, meaning that B(z) = zkC(z), where C(0) �= 0. We
have then |C(ui)| = |B(ui)| = |T (ui)| ≤ 1.

If we set Qd(z) = zd , then we can compute easily the sum of roots of unity as

d∑

i=1

Qd(ui) = 0, if 1 ≤ d ≤ n− 1.

We want to compute this kind of sum for the polynomial C. Since degC ≤ n − 1,
the previous identities show that only the degree-zero part of C has a nontrivial
contribution, and thus

n∑

i=1

C(ui) = nC(0).

This implies that
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0 < |C(0)| ≤ 1

n

∣∣
∣∣∣

n∑

i=1

C(ui)

∣∣∣
∣∣
≤ 1

n

n∑

i=1

|C(ui)| ≤ 1.

Now C(0) ∈ Z and thus C(0) = ±1, which implies that either C(ui) = 1, for all i,
or else C(ui) = −1, for all i. Since deg C ≤ n− 1, we derive that either C(z) = 1
or else C(z) = −1. In particular, T (z)± zk is divisible by P(z).

The case in which P(z) is replaced by zn + 1 is similar.

Problem 2.10. 1. If the map x �→ x3 from a group G to itself is an injective group
homomorphism, then G is an abelian.

2. If the map x �→ x3 from a groupG to itself is a surjective group homomorphism,
then G is an abelian.

3. Find an abelian group with the property that x �→ x4 is an automorphism.
4. What can be said for exponents greater than 4?

Solution 2.10. 1. We have a3b3 = (ab)3, and thus a2b2 = (ba)2, whence a4b4 =
(a2)2(b2)2 = (b2a2)2 = (ab)4. Using again that a3b3 = (ba)3, we get (ab)3 =
(ba)3. Since the map is injective, we have ab = ba.

2. We continue from above, a3b3 = (ba)3 = (ba)2ba = a2b2(ba); thus ab3 =
b3a. Since the homomorphism is surjective, b3 can take any value in G; hence the
relation above shows that G is abelian.

3. Take any nonabelian group of order 8, for instance the dihedral group D4.
4. For m > 3, there exists a nonabelian group Gm such that x �→ xm is the

identity. For instance, if p is not of the form 2n + 1, then let p be an odd prime factor
of m− 1 and Gm the group of matrices of the form

M =
⎛

⎝
1 a b
0 1 c
0 0 1

⎞

⎠

with arbitrary a, b, c ∈ Z/pZ. Then Gm is a nonabelian group of order p3 such that
the order of every element �= e is p.

Problem 2.11. Let V be a vector space of dimension n > 0 over a field of character-
istic p �= 0 and let A be an affine map A : V → V . Prove that there exist u ∈ V and
1 ≤ k ≤ np such that Aku = u.

Solution 2.11. We write Ax = Bx + a, and thus Akx = Bkx + Cka, where Ck =
Bk−1 + · · · +B + I . We use (B − I )Ck = Bk − I to rewrite the equation to solve as
(B − I )Cku = Cka. There exists a solution if and only if a ∈ ker Ck + Im(B − I ).
We suppose B− I is singular. The restriction of B to the eigenspace S corresponding
to the eigenvalue 1 can be written BS = I +N , where N is nilpotent. Therefore

Ck|S =
k−1∑

i=0

(I +N)i =
k−1∑

i=0

i∑

j=0

C
j
i N

j =
k−1∑

j=0

(k−1∑

i=j
C
j
i

)
C
j
i N

j =
k−1∑

j=0

C
j+1
k Nj .
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If p divides k, then Ck|S = Nk−1, and thus if k − 1 ≥ dim S, then Ck|S = 0.
Therefore, S ⊂ ker Ck if k = lp ≥ 1 + dim S.

Since Im(B − I ) ⊃ Im(B − I )n, which is complementary to S, we can take
k = (n − 1)p if (n − 1)p ≥ dim S + 1, in which case Im(B − I ) + ker Ck = V .
Otherwise, we have either n = 1, or n = 2, p = 2, and dim S = 2. If n = 1, then take
k = p. If n = 2 = p, then take k = 2 if dim S = 1 or B = I , and k = 4 otherwise.
In this situation, k = np is convenient, while in the former case k = (n−1)p suffices.
This proves the claim.

Problem 2.12. Find the cubic equation the zeros of which are the cubes of the roots
of the equation x3 + ax2 + bx + c = 0.

Solution 2.12. It is known that if the matrix M has eigenvalues λ1, . . . , λn and if F
is a polynomial, then F(M) has eigenvalues F(λ1), . . . , F (λn). We consider now the
matrix

M =
⎛

⎝
0 0 −c
1 0 −b
0 1 −a

⎞

⎠ ,

which has the characteristic polynomial x3 + ax2 + bx + c. The characteristic poly-
nomial of M3 will then have as roots the cubes of the given polynomial. We now
compute easily the characteristic polynomial ofM3 as x3 + (a3 −3ab+c)x2 + (b3 −
3ab + 3c2)x + c3 = 0.

Problem 2.13. Assume that the polynomials P,Q ∈ C[x] have the same roots, pos-
sibly with different multiplicities. Suppose, moreover, that the same holds true for the
pair P + 1 and Q+ 1. Prove that P = Q.

Solution 2.13. LetA andB be the sets of roots of P and P +1, respectively. Suppose
that deg P = m ≥ n = deg Q. Obviously, A and B should be disjoint. It follows
that P ′ has at leastm− r roots from the set A and at leastm− s roots from the set B,
because multiple roots of P are roots of P ′. Since deg P ′ = m − 1, we derive that
(m − r) + (m − s) ≤ m − 1 and thus r + s > m. Now, the union A ∪ B has r + s

elements, because these sets are disjoint. On the other hand, each element of A ∪ B
is a root of the polynomial P −Q, of degreem. Thus P −Q has at leastm+ 1 roots,
and thus it vanishes identically.

Problem 2.14. Determine r ∈ Q, for which 1, cos 2πr, sin 2πr are linearly depen-
dent over Q.

Solution 2.14. We consider 0 ≤ r < 1. We suppose that there exists a linear relation
a + b cos 2πr + c sin 2πr = 0, with a, b, c, r ∈ Q. This implies that

(b2 + c2) cos2 2πr + 2ab cosπr + a2 − c2 = 0,

i.e., cos 2πr satisfies a quadratic equation with rational coefficients. The same holds
for sin 2πr .
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Consider now ξ = cos 2πr + i sin 2πr . If n is the smaller denominator of r , then
ξ is a primitive root of nth order.

On the other hand, since both cos 2πr and sin 2πr satisfy quadratic equations,
then ξ satisfies an equation of order 4, with rational coefficients.

We know that ξn = 1. Further, the irreducible polynomial of smallest degree that
divides xn − 1 is 1 + x + · · · + xϕ(n), of degree ϕ(n), where ϕ(n) is Euler’s totient
function.

Our previous discussion implies that ϕ(n) must be a divisor of 4, and hence
ϕ(n) ∈ {1, 2, 4}. Therefore, we have the following cases:

1. ϕ(n) = 1 and hence n ∈ {1, 2}, and so r ∈ {
0, 1

2

}
.

2. ϕ(n) = 2, and thus n ∈ {3, 4, 6}, whence r ∈
{

1
4 ,

3
4 ,

1
3 ,

2
3 ,

1
6 ,

5
6

}
.

3.ϕ(n) = 4, and thus n ∈ {5, 8, 10, 12}, whence r ∈
{

1
8 ,

3
8 ,

5
8 ,

7
8 ,

1
12 ,

5
12 ,

7
12 ,

11
12

}
.

We omitted in the list above those r having denominator 5 or 10 because

sin 2π
5 =

√
1
2 (5 + √

5) does not satisfy any quadratic equation with rational coef-

ficients. Therefore, r ∈ {
x|x = m

24 , gcd(m, 24) �= 1,m ∈ Z
}
.

Problem 2.15. 1. Prove that there exista, b, c ∈ Z, not all zero, such that |a|, |b|, |c| <
106

∣∣∣a + b
√

2 + c
√

3
∣∣∣ < 10−11.

2. Prove that if 0 ≤ |a|, |b|, |c| < 106, a, b, c ∈ Z, and at least one of them is

nonzero, then
∣∣∣a + b

√
2 + c

√
3
∣∣∣ > 10−21.

Solution 2.15. 1. Consider the set S =
{
r + s

√
2 + t

√
3
}

r,s,t∈{0,1,...,106−1}. Then

card S = 1018. Set d = (
1 + √

2 + √
3
)
106. Then all elements x ∈ S are bounded

by d , i.e., 0 ≤ x < d. One divides the interval [0, d] into 1018 − 1 equal intervals
[(k − 1)e, ke], where e = 10−18d and k = 1, . . . , 1018 − 1. By the pigeonhole
principle, there exist two elements x, y ∈ S lying in the same interval, and hence
satisfying

|x − y| ≤ e < 10−11

2. Let F1 = a + b
√

2 + c
√

3, F2 = a + b
√

2 − c
√

3, F3 = a − b
√

2 + c
√

3,
F4 = −a + b

√
2 + c

√
3. Now, 1,

√
2,

√
3 are linearly independent over Z, and thus

Fi �= 0, for all 1 ≤ i ≤ 4. Further, F = F1F2F3F4 ∈ Z, since the product of
conjugates contains no more square roots. This implies that |F1| ≥ 1/|F2F3F4| >
10−21, because 1/|Fi | > 10−7.

Problem 2.16. Prove that if n > 2, then we do not have any nontrivial solutions for
the equation

xn + yn = zn,

where x, y, z are rational functions. Solutions of the form x = af, y = bf, z = cf ,
wheref is a rational function anda, b, c are complex numbers satisfyingan+bn = cn,
are called trivial.
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Solution 2.16. Any rational solution yields a polynomial solution, by clearing the
denominators. Let further (f, g, h) be a polynomial solution for which the degree
r = max{deg(f ), deg(g), deg(h)} is minimal among all polynomial solutions, and
where r > 0.

Consider the root of unity ξ = exp
( 2πi
n

)
and assume that f, g, and h are relatively

prime. The equation can be written as

n−1∏

j=0

(f − ξjh) = gn.

Now, gcd(f, h) and gcd(f, g) are relatively prime, so that f − ξjh and f − ξkh are
relatively prime when k �= j . Since the factorization of polynomials is unique, we
must have g = g1 · · · gn−1, where gj are polynomials satisfying gnj = f − ξjh.

Consider now the set {f − h, f − ξh, f − ξ2h}. Since n > 2, these elements
belong to the two-dimensional space generated by f and h over C. Thus there exists
a vanishing linear combination with complex coefficients in these three elements.
Thus, there exist ai ∈ C so that a0g

n
0 + a1g

n
1 = a2g

n
2 . We then set hj = n

√
ajgj , and

observe that
hn0 + hn1 = hn2 .

Moreover, the polynomials hi and hj are relatively prime if i �= j and max deg(hi) <
r , which contradicts our choice of r . This proves the claim.

Problem 2.17. A table is an n × k rectangular grid drawn on the torus, every box
being assigned an element from Z/2Z. We define a transformation acting on tables
as follows. We replace all elements of the grid simultaneously, each element being
changed into the sum of the numbers previously assigned to its neighboring boxes.
Prove that iterating this transformation sufficiently many times, we always obtain the
trivial table filled with zeros, no matter what the initial table was, if and only if n = 2p

and k = 2q , for some integers p, q. In this case, we say that the respective n× k grid
is nilpotent.

Solution 2.17. Consider the m×m square matrices (m ≥ 2)

Dm =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 · · · 0 1
1 0 1 0 · · · 0 0
0 1 0 1 · · · 0 0
...
...
...
...
...
...
...

0 0 0 0 · · · 0 1
1 0 0 0 · · · 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

.

We will write ≡ below if the equality holds (only) for matrices of entries modulo
2. Then the transformation T from the statement acts on the vector spaceMn,k(Z/2Z)

of n× k matrices with entries in Z/2Z as follows:

T (X) = DnX +XDk, for X ∈ Mn,k(Z/2Z).
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By induction on s, we have that

T 2s (X) ≡ D2s
n X +XD2s

k .

Thus there exists N such that T N(X) ≡ 0 if and only if there exists some s such that
D2s
n X ≡ XD2s

k .
Moreover, we can prove easily that for two matricesA andB of appropriate sizes,

we have AX ≡ XB for all X ∈ Mn,k(Z/2Z) if and only if A and B are multiples of
the identity by the same scalar. This follows, for instance, if we take X having all but
one column (or line) trivial. This assertion is a special case of Schur’s lemma.

Thus T is nilpotent if and only if there exist s and β ∈ Z/2Z such thatD2s
n = β ·1n

and D2s
k = β · 1k . Thus the n× k grid is nilpotent if and only if the n× 1 and 1 × k

grids are nilpotent.
Let us analyze the case of the n× 1 grid. Set a = (a1, . . . , an) and a[k] = Dkna =(

a
[k]
1 , . . . , a

[k]
n

)
. By induction, we have

a[2k]
s ≡ as+2k−1 + as−2k−1 ,

where the indices are modulo n. In particular, if n = 2q , then D2q
n = 0 and the grid

is nilpotent. This proves the “if” part of the statement.
Assume next that n is odd and there exists some r such that a[r] ≡ 0, for any a.

Take such an r that is minimal. If n ≥ 3, then r ≥ 3. We claim now that a[r−1]
s ≡ 1 for

all s. This is true at least for one s, since r is minimal. Since a[r]
s ≡ a

[r−1]
s+1 + a

[r−1]
s−1 ,

we find that the terms corresponding to even indices (modulo n) are all equal. But n
is odd and thus all terms are equal. Further, we have a[r−1]

s = a
[r−2]
s−1 + a

[r−2]
s+1 . We

obtain then that

n ≡
n∑

s=1

a[r−1]
s =

n∑

s=1

(
a

[r−2]
s−1 + a

[r−2]
s+1

) = 2
n∑

s=1

a[r−2]
s ≡ 0 (mod 2),

which is a contradiction. This proves actually that a[r] ≡ 0 when n is odd if and only
if a ∈ {(0, 0, . . . , 0), (1, 1, . . . , 1)}.

Finally, consider n = 2mh, with h odd. For a vector a of length n, we set

�s(a) = (as, as+2m, . . . , as+(h−1)2m).

We observe now that
�s(T

2m(a)) = T (�s(a))

because a[2m+1]
s = as + as+2m . Since the vector �s(a) is of length h (which

is odd), the previous claim shows us that T N(�s(a)) ≡ 0 for some N only if
�s(a) ∈ {(0, 0, . . . , 0), (1, 1, . . . , 1)}. Moreover, this happens for all values of s.
This condition is trivial only when h = 1. This proves the “only if” part.

Comments 37 This result was stated in the 1980s as an open question in the journal
Kvant. The same method can be used to show that the n × k grids in the plane are



6.2 Algebraic Combinatorics 95

nilpotent if and only if n = 2p − 1 and k = 2q − 1 for some natural numbers p, q. A
nice corollary is the following. Define the sequence (αk) by the recurrence relations

α1 = 0, αk+1 = min(2αk + 2, 2N − 2αk − 1).

Then there exists some k such that αk = N − 1 if and only if the parameterN has the
form 2q − 1 for some natural number q. The solution given here is from:

• V. Boju, L. Funar: Iterative processes for Z
n
2 , Analele Univ. Craiova 15 (1987),

33–38.

6.2 Algebraic Combinatorics

Problem 2.18. Let us consider a four-digit number N whose digits are not all equal.
We first arrange its digits in increasing order, then in decreasing order, and finally,
we subtract the two obtained numbers. Let T (N) denote the positive difference thus
obtained. Show that after finitely many iterations of the transformation T , we obtain
6174.

Solution 2.18. Let N have the digits a, b, c, d.
1. Assume that a ≥ b = c ≥ d. Then in T (N), the sum of the first and the fourth

digits is 9, as well as the sum of the second and the third. These give five combinations
of four digits that give 6174, by applying T once more.

2. Otherwise, a ≥ b > c ≥ d. Then in T (N), the sum of the digits placed at
extremities is 10, while the sum of the middle ones is 8. This gives 25 combinations
all leading to the desired result, namely 6174.

Comments 38 Let a be a positive integer having r digits, not all equal, in base g. Let
a′ be the g-adic integer formed by arranging the digits of a in descending order and
let a′′ be that formed by ascending order. Define T (a) = a′ − a′′. Then a is said to be
self-producing if T (a) = a. There exists an algorithm for obtaining self-producing
numbers in any base.

Such a fixed point k of T is called a (g-adic) Kaprekar constant if it has the further
property that every r-digit integer a eventually yields k on repeated iteration of T
and moreover, k is fixed by T . D.R. Kaprekar found that 6174 has this nice property
in a short note published in 1949. Ludington proved that for large r ≥ ng there does
not exist a Kaprekar constant. Here ng is given by

ng =
⎧
⎨

⎩

g − 1 + (k − 1)δ, if g = 2k,
2k + 1 + (g − k − 2)δ, if g = 2t k + 2t−1 + 1,
3k − 4 + (g − 1)δ, if g = 2t + 1,

and δ ∈ {0, 1} is equal to g (mod 2). Further improvements by Lapenta, Ludington,
and Prichett showed that there is no Kaprekar constant in base 10 when the number
of digits is r > 4.
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Hasse and Prichett found that there exists a 4-digit Kaprekar constant in base g if
and only if g = 2n · 5, where n is either 0 or an odd number.

Moreover, the situation is completely understood for 3-digit numbers. If the base g
is odd, then there is a Kaprekar constant given by

(
r−2

2 , r − 1, r2
)
, which is reached

within r+2
2 iterations of T (respectively 1, if r = 2). For instance, 495 is a Kaprekar

constant if g = 10. If the base g is even, then there is no Kaprekar constant. More
precisely, iterations of T will eventually reach the loop of length 2 formed by the pair
of numbers

(
r−3

2 , r − 1, r+1
2

)
,
(
r−1

2 , r − 1, r−1
2

)
, after at most r+1

2 steps (respectively
1 if r = 3).

• K.E. Eldridge and S. Sagong: The determination of Kaprekar convergence and
loop convergence of all three-digit numbers, Amer. Math. Monthly 95 (1988),
105–112.

• J.F. Lapenta, A.L. Ludington, and G.D. Prichett: An algorithm to determine self-
producing r-digit g-adic integers, J. Reine Angew. Math. 310 (1979), 100–110.

• G.D. Prichett, A.L. Ludington, and J.F. Lapenta: The determination of all decadic
Kaprekar constants, Fibonacci Quart. 19 (1981), 45–52.

• A.L. Ludington: A bound on Kaprekar constants, J. Reine Angew. Math. 310
(1979), 196–203.

• H. Hasse and G.D. Prichett: The determination of all four-digit Kaprekar con-
stants, J. Reine Angew. Math. 299/300 (1978), 113–124.

Problem 2.19. Find an example of a sequence of natural numbers 1 ≤ a1 < a2 <

· · · < an < an+1 < · · · with the property that everym ∈ Z+ can be uniquely written
as m = ai − aj , for i, j ∈ Z+.

Solution 2.19. We consider the sequence

a1 = 1, a2 = 2,

a2n+1 = 2a2n,

a2n+2 = a2n+1 + rn,

where rn is the smallest natural number that cannot be written in the form ai − aj ,
with i, j ≤ 2n+ 1.

Comments 39 One does not know the minimal growth of such a sequence ak .

Problem 2.20. Consider the set of 2n integers {±a1,±a2, . . . ,±an} and m < 2n.
Show that we can choose a subset S such that

1. The two numbers ±ai are not both in S;
2. The sum of all elements of S is divisible by m.

Solution 2.20. Let S1, . . . , S2n−1 be the 2n − 1 nonempty distinct subsets of the set
{a1, . . . , an}, where ai ≥ 0. Let F(Si) denote the sum of the elements of Si . Then, by
the pigeonhole principle, there exist i, j such that F(Si) ≡ F(Sj ) (modm). Consider
next the set S = {Si \ Sj } ∪ −{Sj \ Si}. We derive that F(S) ≡ 0 (mod m).
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Problem 2.21. Show that for every natural number n there exist prime numbers p
and q such that n divides their difference.

Solution 2.21. Consider the following arithmetic progression: 1, 1+n, 1+2n, . . . , 1+
rn, . . . .According to Dirichlet’s theorem, there exist infinitely many prime numbers
among the terms of this progression. Let p, q be two of these prime numbers; then
p = 1 + nr and q = 1 + ns, where r �= s. This yields n(r − s) = p− q, as claimed.

An alternative solution is to consider the set of n arithmetic progressions of ratio
n starting respectively at 0, 1, 2, . . . , n− 1. Since the set of prime numbers is infinite
(this is elementary), there exists at least one progression having infinitely many prime
numbers among its terms. The argument above settles the claim.

Problem 2.22. An even number, 2n, of knights arrive at King Arthur’s court, each
one of them having at most n − 1 enemies. Prove that Merlin the wizard can assign
places for them at a round table in such a way that every knight is sitting only next to
friends.

Solution 2.22. 1. We consider the friendship graph G defined below: its vertices
are in bijection with the knights and the edges are joining pairs of vertices whose
respective knights are not enemies. The degree of each vertex is at least n. According
to Dirac’s theorem, such a graph admits a Hamiltonian cycle, and this yields the
wanted assignment of places.

2. Choose an arbitrary assignment of places in which we have two neighbors,
A and B, who are enemies. Let us assume that A lies on the right-hand side of B.
According to the pigeonhole principle, there exists another pair of enemies, say Ã, B̃,
who are neighbors, and moreover, Ã is on the right of B̃.

Let us switch all the places starting at A (and lying on the right side of A) and
ending at B̃, using a symmetry. After such a transformation, the number of enemy
pairs (A,B) is diminished by 2. Applying such transforms iteratively, one obtains a
position in which all neighbors are friends.

Problem 2.23. Let r, s ∈ Z+. Find the number of 4-tuples of positive integers
(a, b, c, d) that satisfy 3r7s = lcm(a, b, c) = lcm(a, b, d) = lcm(a, c, d) =
lcm(b, c, d).

Solution 2.23. The numbers a, b, c, d are of the form 3mi7ni , 1 ≤ i ≤ 4, where
0 ≤ mi ≤ r and 0 ≤ ni ≤ s. Also, mi = r for at least two values of i, and ni = s for
at least two values of i. We have then:

(1) one possibility that mi = r for all four i;
(2) 4r possibilities that precisely one mi ∈ {0, . . . , r − 1};
(3) C2

4r
2 possibilities that exactly two mi ∈ {0, . . . , r − 1}.

Therefore, there are
(
1 + 4r + 6r2

)
possibilities for the mi’s and a similar number

for the ni’s, yielding a total of
(
1 + 4r + 6r2

)(
1 + 4s + 6s2

)
possibilities.

Problem 2.24. 1. Let n ∈ Z+ and p be a prime number. Denote by N(n, p) the
number of binomial coefficients Csn that are not divisible by p. Assume that n is
written in base p as n = n0 + n1p + · · · + nmp

m, where 0 ≤ nj < p, for all
j ∈ {0, 1, . . . , m}. Prove that N(n, p) = (n0 + 1)(n1 + 1) · · · (nm + 1).
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2. Write k in base p as k = k0 + k1p + · · · + ksp
s , with 0 ≤ kj ≤ p − 1, for all

j ∈ {0, 1, . . . , s}. Prove that

Ckn ≡ Ck0
n0
Ck1
n1

· · ·Cksns (mod p).

Solution 2.24. 1. It is clear that Ckp ≡ 0 (mod p) for all k ∈ {1, 2, . . . , p}. Thus

(1 + x)p ≡ 1 + xp in (Z/pZ)[x]. By induction, we find that (1 + x)p
n ≡ 1 + xp

n

in (Z/pZ)[x] for any natural number n. We have then the following congruences in
(Z/pZ)[x]:

(1+x)n = (1+x)n0(1+x)n1p · · · (1+x)nmpm ≡ (1+x)n0(1+xp)n1 · · · (1+xpm)nm.
When developing factors on the right-hand side, we obtain a sum of factors
xa0+a1p+a2p

2+···+ampm , with a coefficient that is nonzero modulo p. Since every
number can be uniquely written in base p, all these factors are distinct and their
coefficients modulo p are nonzero. There are exactly (n0 + 1)(n1 + 1) · · · (nm + 1)
such factors, and therefore as many binomials not divisible by p.

2. As observed above, the factor xk appears in the form xa0+a1p+a2p
2+···+ampm ;

since k can be uniquely written in base p, we have ai = ki . This implies that the

coefficient of xk is Ck0
n0C

k1
n1 · · ·Ckjnj , and hence the claim.

Problem 2.25. Define the sequence Tn by T1 = 2, Tn+1 = T 2
n − Tn + 1, for n ≥ 1.

Prove that if m �= n, then Tm and Tn are relatively prime, and further, that

∞∑

i=1

1

Ti
= 1.

Solution 2.25. We prove by induction that Tn+1 = 1 + T1T2 · · · Tn. In fact, we have

Tn+1 = T 2
n − Tn + 1 = Tn(Tn − 1)+ 1 = Tn(Tn−1Tn−2 · · · T1)+ 1 = 1 + T1 · · · Tn.

Then takem < n. Therefore, Tm divides T1 · · · Tn−1 = Tn−1 and thus gcd(Tm, Tn) =
1. Further, we prove by induction that

n∑

i=1

1

Ti
= 1 − 1

Tn+1 − 1
.

In fact,

k+1∑

i=1

1

Ti
= 1 − 1

Tk+1 − 1
+ 1

Tk+1
= 1 − 1

Tk+1(Tk+1 − 1)
= 1 − 1

Tk+2 − 1
.

Since Tn tends to infinity, we therefore obtain
∑∞
i=1

1
Ti

= 1.
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Problem 2.26. Let α, β > 0 and consider the sequences

[α], [2α], . . . , [kα], . . . ; [β], [2β], . . . , [kβ], . . . ,

where the brackets denote the integer part. Prove that these two sequences taken
together enumerate Z+ in an injective manner if and only if

α, β ∈ R \ Q and
1

α
+ 1

β
= 1.

Solution 2.26. Set AN = {1, 2, . . . , N}; take k maximal such that kα < N + 1
and l maximal such that lβ < N + 1. Therefore, the following inequalities hold:
[
N
α

] ≤ k ≤ [
N+1
α

]
and

[
N
β

]
≤ l ≤

[
N+1
β

]
.

Since AN is injectively enumerated by the two sequences, we have k + l = N ,
and hence [

N

α

]
+

[
N

β

]
≤ N ≤

[
N + 1

α

]
+

[
N + 1

β

]
.

Letting N go to infinity, we obtain 1
α

+ 1
β

= 1.

If α ∈ Q, then also β ∈ Q. In this case, write α = m
n

and β = p
q

. It follows that
[αnqp] = [βmqn], which contradicts the injectivity assumption. Therefore α �∈ Q

and β �∈ Q.
Conversely, we have

N+1 = N + 1

α
+N + 1

β
>

[
N + 1

α

]
+
[
N + 1

β

]
>
N + 1

α
+N + 1

β
−2 = N−1,

whence [
N + 1

α

]
+

[
N + 1

β

]
= N.

In particular, using the notation from above, we have k + l = N .
If the two sequences enumerate AN in a surjective manner, then they will also

enumerateAN injectively, because k+l = N . It suffices then to prove the surjectivity.
Let us assume the contrary. Then there exist u, x, y ∈ Z+ such that xα < u <

u + 1 < (x + 1)α and yβ < u < u + 1 < (y + 1)β. Dividing by α, β respectively
and adding up the inequalities, we obtain

x + y <
u

α
+ u

β
<
u+ 1

α
+ u+ 1

β
< x + 1 + y + 1,

which amounts to
x + y < u < u+ 1 < x + 2 + y.

This is false, because x, y, u are integers, and our claim follows.

Problem 2.27. We say that the sets S1, S2, . . . , Sm form a complementary system if
they make a partition of Z+, i.e., every positive integer belongs to a unique set Si . Let
m > 1 and α1, . . . , αm ∈ R+. Then the sets
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Si = {[nαi], where n ∈ Z+}
form a complementary system only if

m = 2, α−1
1 + α−1

2 = 1, and α1 ∈ R \ Q.

Solution 2.27. If all αj < 1, then the collection Sj contains twice some number. Let
1 ∈ S1, and thus [α1] = 1, α1 �= 1. We prove first that S1 = {[nα1]; n ∈ Z+} and
T = {[nβ − ε]; n ∈ Z+} form a complementary system, where

β = α1

α1 − 1
, and ε =

{
(2(a − c))−1, if α1 = a

c
∈ Q,

0, otherwise.

Let � = {nα1, nβ − ε; n ∈ Z+}. It is sufficient to show that for any integer M > 1,
we have the formula

N = card({x ∈ �; x < M}) = M − 1.

Now, nα1 < M is equivalent to nα1 + δ < M , where δ = (2c)−1 if α1 = a/c ∈ Q,

while δ = 0, if α ∈ R \Q. The maximum value for n is therefore
[
M−δ
α1

]
. In a similar

way, the number of elements of the form nβ − ε that are less than M is
[
M+ε
β

]
. This

implies that N = [(M − δ)/α1] + [(M + ε)/β]. Now we have

M − δ

α1
− 1 <

[
M − δ

α1

]
<
M − δ

α1
,

M + ε

β
− 1 <

[
M + ε

β

]
<
M + ε

β
,

and by summing up the two inequalities, we obtain M − 2 < N < M , and therefore
N = M − 1, as claimed.

Now let k be the smallest integer k �∈ S1. Then there exists some α2 such that
k = [α2] = [β − ε] ≥ 2. We have nβ − 1 ≤ [nβ − ε] < nβ − ε, and therefore

[(n+ 1)β − ε] − [nβ − ε] < (n+ 1)β − ε − nβ + 1 = β + 1 − ε ≤ k + 2 − ε,

[(n+ 1)β − ε] − [nβ − ε] > (n+ 1)β − 1 − nβ + ε = β − 1 + ε > k − 1 + 2ε.

Therefore

k ≤ [(n+ 1)β − ε] − [nβ − ε] = [(n+ 1)α2] − [nα2] ≤ k + 1.

The difference between two consecutive terms of the sequence [nβ − ε] is equal to
the difference between consecutive missing terms from the sequence [nα1]; that is, k
or k+ 1 is the same as the difference between two consecutive terms of the sequence
[nα2]. This implies the fact that the j th term that does not belong to S1 is precisely
[jα2] = [jβ − ε]. This implies that m = 2.

If α1 ∈ Q, then α2 = b/d, and for j = d, we obtain [jα2] > [jβ − ε], which is
false.
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Comments 40 The fact that the two sequences from the previous problem are com-
plementary is known as the Rayleigh–Beatty theorem, since S. Beatty proposed it as
a problem in Amer. Math. Monthly in 1926. Presumably, this was known to Rayleigh,
who mentioned it without proof in 1894. In 1927, J.V. Uspensky proved that if the m
sequences are complementary, thenm ≤ 2; his proof was simplified in several papers
by Skolem, Graham, and Fraenkel, who also provided a far-reaching generalization
in 1969.

• S. Beatty: Problem 3173, Amer. Math. Monthly 33 (1926), 3, 156.
• J. Lambek, L. Moser: Inverse and complementary sequences of natural numbers,

Amer. Math. Monthly 61 (1954), 454–458.
• A.S. Fraenkel: Complementary systems of integers, Amer. Math. Monthly 84

(1977), 114–115.
• A.S. Fraenkel: The bracket function and complementary sets of integers, Canad.

J. Math. 21 (1969), 6–27.
• R.L. Graham: On a theorem of Uspensky, Amer. Math. Monthly 70 (1963), 407–

409.
• Th. Skolem: On certain distributions of integers in pairs with given differences,

Math. Scand. 5 (1957), 57–68.
• J.V. Uspensky, M.A. Heaslet: Elementary Number Theory, McGraw-Hill, New

York, 1939.

Problem 2.28. Let f : Z+ → Z+ be an increasing function and set

F(n) = f (n)+ n, G(n) = f ∗(n)+ n,

where f ∗(n) = card({x ∈ Z+; 0 ≤ f (x) < n}). Then {F(n); n ∈ Z+} and
{G(n); n ∈ Z+} are complementary sequences. Conversely, any two complemen-
tary sequences can be obtained this way using some nondecreasing function f .

Solution 2.28. We compute the number N of integers from {F(n),G(n), n ∈ Z+}
that are smaller than M . Suppose that k terms of the form G(n) are smaller than M .
Then

f ∗(k)+ k < M ≤ f ∗(k + 1)+ k + 1,

and so f ∗(k) < M − k < f ∗(k + 1) + 1. Since f ∗(k) = card{x ∈ Z+; f (x) <
k} < M − k, we derive f (M − k) ≥ k. Further, f ∗(k + 1) = {x ∈ Z+; f (x) <
k + 1} ≥ M − k − 1 implies that f (M − k − 1) < k + 1. Therefore F(M − k) =
f (M − k)+M − k ≥ M and F(M − k − 1) < M . This means that exactly M − k

terms of the form F(n) are smaller than M; therefore N = M .
The converse is immediate by defining f (n) = F(n)− n.

Comments 41 Since f ∗ is nondecreasing, it follows that it makes sense to define
f ∗∗. The sequencesG(n) andH(n), whereH(n) = f ∗∗(n)+n, are complementary,
and thus f ∗∗ = f .

The result is due to A. Frankel.
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Problem 2.29. LetM denote the set of bijective functions f : Z+ → Z+. Prove that
there is no bijective function between M and Z.

Solution 2.29. We will find an injection ρ : R \ (Q ∪ [0, 2]) → M , as follows. To
any α ∈ R \ (Q ∪ [0, 2]) there is associated an irrational β < 2 such that 1

α
+ 1

β
= 1.

Let ρ(α) : Z+ → Z+ be the function defined by

ρ(α)(n) =
{[
α n2

]
, for even n,[

β n+1
2

]
, for odd n.

According to the previous problem, ρ(α) : Z+ → Z+ is a bijection. Moreover, the
map ρ is easily seen to be injective. Thus card(M) ≥ card(R \ Q) = card(R) >
card(Z), and the result follows.

Problem 2.30. Let F ⊂ Z be a finite set of integers satisfying the following proper-
ties:

1. For any x ∈ F , there exist y, z ∈ F such that x = y + z.
2. There exists n such that, for any natural number 1 ≤ k ≤ n, and any choice of
x1, . . . , xk ∈ F , their sum x1 + · · · + xk is nonzero.

Prove that card(F ) ≥ 2n+ 2.

Solution 2.30. By hypothesis, 0 �∈ F . Let F+ = F ∩ Z+, F− = F ∩ Z−, so that
F = F+ ∪ F−. Consider the unoriented graph � whose vertices are the elements of
F+ and whose edges are defined below: x and y are adjacent if there exists z ∈ F

such that x = y + z. By the first hypothesis, each vertex is adjacent to at least one
edge. This implies that the graph � contains a cycle [x1, . . . , xk]. Assume that k is
minimal with this property. This means that there exist zi ∈ F such that:

x1 = x2 + z1 = x3 + z2 + z1 = · · · = x1 + zk + · · · + z1,

which implies that
z1 + · · · + zk = 0.

The second hypothesis implies that k ≥ n + 1, and thus card(F+) ≥ k ≥ n + 1. A
similar argument shows that card(F−) ≥ n+ 1, and the claim follows.

Problem 2.31. For a finite graphGwe denote byZ(G) the minimal number of colors
needed to color all its vertices such that adjacent vertices have different colors. This
is also called the chromatic number of G.

Prove that the inequality

Z(G) ≥ p2

p2 − 2q

holds if G has p vertices and q edges.
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Solution 2.31. If we fixN = χ(G) and the number p of vertices of the graphG, then
we have to show that the number q of edges allowed

q ≤ p2

2

(
1 − 1

N

)
.

By hypothesis, there exists a partition (according to the colors) of the set of vertices into
N classes such that two vertices in the same class are not adjacent. Let n1, n2, . . . , nN
be the number of vertices in the respective classes. The only possibility to get an edge
is to join two vertices lying in different classes, and thus the total number q of edges
is at most

∑
1≤i<j≤N ninj . Further, one knows that

∑
1≤i≤N ni = p. We now have

∑

i<j

ninj ≤ C2
N

p2

N2 = p2

2

(
1 − 1

N

)
.

The equality holds if and only if N divides p and ni = p/N , for all i.

Comments 42 It can be proved, in the same way, that we have

χ(G) ≥ p

[t]

(
1 − t − [t]

1 + [t]

)
,

where t = p − 2q
p

. There exists also an upper bound for an arbitrary graph, namely

χ(G) ≤ 1

2

(
1 + √

8q + 1
)
.

One problem that received a great deal of attention in the past was to get bounds for
the chromatic number of a graph in terms of its topology. For instance, assume that
the graph G is drawn on some surface so that its edges are not crossing each other,
in which case the graph is said to be embedded. If the surface is partitioned into
curvilinear polygons (called “countries”), then the dual graph of this decomposition
is constructed by associating a vertex to each country and joining two vertices if
the respective countries have a common frontier. This way one constructs all graphs
embedded in that surface. Surfaces in R

3 are characterized by only one number,
called the genus g, or equivalently, by its Euler–Poincaré characteristic, which is
2 − 2g. The latter is computed elementarily starting from an arbitrary partition into
curvilinear polygons. If such a partition consists of V vertices, E edges, and F
polygonal countries, then

2 − 2g = V − E + F.

Computing a bound for the chromatic number of an arbitrary graph embedded in a
surface is equivalent to finding the number of colors needed for coloring any map
of the surface so that adjacent countries have different colors. Now, if G is a graph
that can be embedded in a surface of genus g, then it was stated without proof by
Heawood in 1890 that
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χ(G) ≤
[

1

2
(7 + √

1 + 48g)

]
.

This has been known as the Heawood conjecture since then, and it was finally proved in
1968 for all surfaces except for the plane by Ringel and Youngs. The case of the plane
remained open until 1977, when Appel and Haken presented a computer-assisted
proof of that case, thenceforth known as the “four color theorem.” The article of
Stahl presents the history of the problem and of the proofs.

• K. Appel, W. Haken: Every Planar Map is Four Colorable, With the collaboration
of J. Koch, Contemporary Mathematics, 98, American Mathematical Society,
Providence, RI, 1989.

• G. Ringel: Map Color Theorem, Die Grundlehren der mathematischen Wis-
senschaften, Band 209, Springer-Verlag, 1974.

• S. Stahl: The other map coloring theorem, Math. Magazine 58 (1985), 3, 131–145.

Problem 2.32. LetDk be a collection of subsets of the set {1, . . . , n} with the property
that whenever A �= B ∈ Dk , then card(A ∩ B) ≤ k, where 0 ≤ k ≤ n − 1. Prove
that

card(Dk) ≤ C0
n + C1

n + C2
n + · · · + Ck+1

n .

Solution 2.32. LetPk be the set of those subsets of {1, . . . , n} with at most k elements.
Then any maximal (with respect to inclusion) collection Dk as above must contain
Pk , since otherwise, Dk ∪ Pk will still satisfy the requirements while being strictly
larger than Dk . Therefore, let us consider a maximal Dk and set D̃k = Dk \ Pk . For
A ∈ D̃k , let us set D̃ = {A1, . . . , As | card(Ai) = k + 1, and Ai ⊂ A}. If B ∈ D̃k
and Ã ∩ B̃ �= ∅, then there exist i, j such that Ai = Bj , where card(Ai) = k + 1;
this would imply that A ∩ B ⊃ Ai and thus card(A ∩ B) ≥ k + 1, which is absurd.

Therefore, the sets Ã, for A ∈ D̃k , are disjoint. Since each Ã has at least one
element and Ã ⊂ Pk+1 \ Pk , we obtain that card(D̃k) ≤ card (Pk+1 \ Pk) and hence
card(Dk) ≤ card(D̃k)+ card(Pk) = card(Pk+1) = C0

n +C1
n +C2

n +· · ·+Ck+1
n . We

have equality for Dk = Pk+1.

Problem 2.33. Prove that

1

p!

n∑

k=0

(−1)n−kCknkp =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, if 0 ≤ p < n,

1, if p = n,

n/2, if p = n+ 1,
n(3n+1)

24 , if p = n+ 2,
n2(n+1)

48 , if p = n+ 3,
n(15n3+30n2+5n+1)

1152 , if p = n+ 4.

Solution 2.33. Consider the function (ex−1)n, in which we develop first the binomial
and then we develop the exponentials in Taylor series:
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(ex − 1)n =
n∑

k=0

(−1)n−kCknekx =
n∑

k=0

(−1)n−kCkn
( ∞∑

j=0

1

j !
kjxj

)

=
∞∑

j=0

1

j !

( n∑

k=0

(−1)n−kCknkj
)
.

For the same function we now develop the exponential and then the binomial as
follows:

(ex − 1)n =
(
x + 1

2!
x2 + 1

3!
x3 + · · ·

)n

= xn + n

2
xn+1 + n(3n+ 1)

24
xn+2 + n2(n+ 1)

48
xn+3

+ n(15n3 + 30n2 + 5n+ 1)

1152
xn+4 + · · · .

By identifying the first coefficients in the two series, we obtain the formulas from the
statement.

Comments 43 The problem of computing the sums sn,p = ∑n
k=0(−1)kCknk

p is a
classical one, and the first result (for p = n) is due to Leonhard Euler. D. Andrica
gave a method of computation by means of the recurrence relations

sn,p+1 = n(sn,p − sn−1,p), p ≥ 0.

In particular, one recovers the results from the problem.

• D. Andrica: On a combinatorial sum, Gazeta Mat. 5 (1989), 158.

Problem 2.34. Write lcm(a1, . . . , an) in terms of the various gcd(ai, . . . , aj ) for
subsets of {a1, . . . , an}.
Solution 2.34. Let Pj = ∏

1≤i1<···<ij≤n gcd(ai1 , ..., aij ). We have

lcm(a1, . . . , an) = P1P3P5 · · ·
P2P4P6 · · · .

For instance, if n = 3 we have

lcm(x, y, z) = xyz gcd(x, y, z)

gcd(x, y)gcd(y, z)gcd(z, x)
.

Let p be a prime and ei maximal such that pei divide ai . We can assume that en ≤
en−1 ≤ . . . ≤ e1. In Pj , the prime p appears to the ei th power in Cj−1

n−1 cases, and
so the exponent of p in

∏
i P2i+1/

∏
i P2i is e1, because the alternating sum of the

binomial coefficients is zero, with the exception of C0
0 = 1.
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Problem 2.35. Let f (n) be the number of ways in which a convex polygon with n+1
sides can be divided into regions delimited by several diagonals that do not intersect
(except possibly at their endpoints). We consider as distinct the dissection in which
we first cut the diagonal a and next the diagonal b from the dissection in which we
first cut the diagonal b and next the diagonal a. It is easy to compute the first values
of f (n), as follows: f (1) = 1, f (2) = 1, f (3) = 3, f (4) = 11, f (5) = 45. Find the
generating function F(x) = ∑

f (n)xn and an asymptotic formula for f (n).

Solution 2.35. By a simple counting argument, we obtain the recurrence

f (n) = 3f (n− 1)+ 2
n−2∑

k=2

f (k)f (n− k).

If we write y = F(x)− x, then y satisfies the functional equation y = x2 + 3xy +
2y2. This is a consequence of the recurrence relation above. Solving the degree-two
equation in y, we derive that

F(x) = 1

4

(
1 + x −

√
1 − 6x + x2

)
.

Using Taylor’s formula and induction on n, one further shows that

f (n) =
√

3
√

2 − 4

4
√
π

·
(

3 + 2
√

2
)n

n
√
n

(

1 + 3(8 − 3
√

2)

32n
+ O

(
n−2

))

.

Problem 2.36. Find the permutation σ : (1, . . . , n) → (1, . . . , n) such that

S(σ) =
n∑

i=1

|σ(i)− i|

is maximal.

Solution 2.36. We want to prove that a permutation σ that maximizes S(σ) satisfies
σ(1) > σ(2) > · · · > σ(n).

Let us prove first the following intermediate result. If a < c, b < d, then the
inequality

|a − b| + |c − d| ≤ |a − d| + |b − c|
holds with equality when either a < c < b < d or b < d < a < c.

From the symmetry of the previous inequality, we can assume that a < b, d,
and using a translation followed by a homothety on the real axis, we can, moreover,
assume that a = 0, c = 1.

If b < 1, d < 1, the inequality reduces to 2b < 2d.
If b < 1, d > 1, then the inequality is 2b < 2.
If b > 1, d > 1, we obtain equality. This proves the claim.
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Now let σ be a permutation such that S(σ) is maximal. Suppose that there exists
i < j such that σ(i) < σ(j). Let us define another permutation σ ∗ = σ ◦ (i, j),
where (i, j) denotes the transposition interchanging i and j .

According to our claim, we have S(σ ∗) ≥ S(σ).
By modifying iteratively σ by taking the product with the transpositions deter-

mined by all pairs (i, j) as above, we will finally obtain γ :

γ :

(
1 2 · · · n
n n− 1 · · · 1

)
.

Moreover, the inequality above shows that

S(σ) ≤ S(γ ) =
n∑

i=1

|n− 2i + 1|.

Problem 2.37. On the set Sn of permutations of {1, . . . , n} we define an invariant
distance function by means of the formula

d(σ, τ ) =
n∑

i=1

|σ(i)− τ(i)|.

What are the values that d could possibly take?

Solution 2.37. We have d(ρσ, ρτ) = d(σ, τ ), for any ρ, σ, τ ∈ Sn. Therefore, it
suffices to consider the values of d(1, σ ), where 1 is the identity permutation.

If m > 0 is a value of d, we will show below that m− 2 is also a value of d, and
hence d takes all even values from 0 to some 2t , where t has to be determined.

Notice first that d takes only even values, because

d(σ, τ ) ≡
n∑

i=1

(σ (i)− τ(i)) ≡
n∑

i=1

σ(i)−
n∑

i=1

τ(i) ≡ 0 (mod 2).

Letm = d(1, σ ) > 0. There then exist 1 ≤ r < s ≤ n such that σ(r) > r, σ (s) <

s, and σ(i) = i, if r < i < s.
Let ρr,s be the cycle (r, r + 1, . . . , s). We claim that d(1, ρr,sσ ) = m− 2. First,

by hypothesis, σ(r) > s and σ(s) < r . Looking at the contribution of the elements
from r to s to the respective distances, we obtain

d(1, σ )−d(1, ρr,sσ ) = (σ (r)−r+s−σ(s))−(r−σ(s)+s−r−1+σ(r)−r−1) = 2.

Let us show now that t =
[
n2

4

]
(see also the previous problem) and the maximum

distance d(1, σ ) is realized for the permutation θ(i) = n+ 1 − i.

We have d(1, θ) = 2
[
n2

4

]
=

[
n2

2

]
. Let k < n−1, such that σ(i) = n+1− i, for

all i < k, while σ(k) �= n+1−k. We claim that there exists some permutation σ̃ ∈ Sn
with the property that d(1, σ ) ≤ d(1, σ̃ ) and that satisfies σ̃ (i) = n + 1 − i, i ≤ k.
Then, using induction k, we find a sequence of permutations reaching θ such that
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d(1, σ ) ≤ d(1, σ̃ ) ≤ · · · ≤ d(1, θ).

If σ(k) �= n+ 1 − k, we have σ(k) < n+ 1 − k because every number greater than
n + 1 − k is the image of some i < k. But this implies that σ(r) = n + 1 − k, for
some r > k. Let τ be the transposition (k, r). Set σ̃ = τσ ; we have

d(1, σ̃ )− d(1, σ ) = |r − kσ | + |m+ 1 − 2k| − |k − kσ | + |n+ 1 − k − r| = w.

Let us suppose that k ≤ σ(k) ≤ r ≤ n + 1 − k (the other cases are similar). Then
w = r−σ(k)+n+1−2k−σ(k)+k−n−1+k+r = 2(r−kσ) ≥ 0. Analogously,
for all k, r we have

d(1, σ̃ )− d(1, σ ) ≥ 0,

which proves the claim.

Problem 2.38. The set M = {1, 2, . . . , 2n} is partitioned into k sets M1, . . . ,Mk ,
where n ≥ k3 + k. Show that there exist i, j ∈ {1, . . . , k} for which we can find
k + 1 distinct even numbers 2r1, . . . , 2rk+1 ∈ Mi with the property that 2r1 −
1, . . . , 2rk+1 − 1 ∈ Mj .

Solution 2.38. There exists a set Ms that contains at least 2n
k

≥ 2(k2 + 1) elements.
We have to consider two cases:

1. EitherMs contains at least 2(k2+1)
2 = k2 +1 even numbers. Then the set of odd

numbers
O = {r − 1,where r is even, and r ∈ Ms}

has k2 + 1 elements. Then there exists some setMa containing at least k
2+1
k

elements
from O. We choose therefore i = s and j = a. Notice that i might be equal to j .

2. Or elseMs contains at least k2 + 1 odd numbers. The solution is similar to that
from above, considering the set of even numbers.

Problem 2.39. Let S be the set of odd integers not divisible by 5 and smaller than
30m, wherem ∈ Z

∗+. Find the smallest k such that every subset A ⊂ S of k elements
contains two distinct integers, one of which divides the other.

Solution 2.39. Consider the subset N = {1, 7, 11, 13, 17, 19, 23, 29, . . . , 30m − 1}
of elements of S that are not divisible by 3. There are 8m elements in N , which are
written in increasing order a1 < a2 < · · · < a8m. Every element of S can be uniquely
written as x = ai · 3t , where t ∈ Z+ and ai ∈ N .

If k ≥ 8m+ 1, then according to the pigeonhole principle, any subset A ⊂ S of
cardinality card A = k contains two distinct elements x, y ∈ A for which x = ai3t

and y = ai3q . In this case, either x divides y, or y divides x.
Next, for all i, choose the maximal t (i) with the property that ai3t (i) < 30m <

ai3t (i)+1, and set bi = ai3t (i). We have therefore 10m < bi < 30m. The set
{b1, b2, . . . , b8m} contains 8m elements from S, and also we have the inequalities
0 < bi/bj < 3, for any i, j . Since all numbers bi are odd, we derive that bi/bj �∈ Z.
Therefore {b1, . . . , b8m} does not contain a number and one divisor of it. This shows
that the required value of k is 8m+ 1.
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Problem 2.40. Prove that
∏

1≤j<i≤n
ai−aj
i−j is a natural number whenever a1 ≤ a2 ≤

· · · ≤ an are integers.

Solution 2.40. We can suppose ai ≥ 0. Then,

S =
∏

i>j

ai − aj

i − j
=

∏
i>j (ai − aj )

(n− 1)!(n− 2)! · · · 1!
.

We now consider the determinant D of the matrix
⎛

⎜⎜
⎜
⎝

1 1 · · · 1
C1
a1

C1
a2

· · · C1
an

...
...

...

Cn−1
a1

Cn−1
a2

· · · Cn−1
an

⎞

⎟
⎟⎟
⎠
.

It is obvious thatD ∈ Z+. We now write the binomial coefficientCkm using factorials,
and we arrange the factors in the lines. We obtain

D = 1

1!2! · · · (n− 1)!
det

⎛

⎜⎜⎜
⎝

1 1 · · · 1
a1 a2 · · · an
...

...
...

an−1
1 an−1

2 · · · an−1
n

⎞

⎟⎟⎟
⎠

=
∏
i>j ai − aj

∏
i=1(i − 1)!

= S,

and the claim follows.

Problem 2.41. Is there an infinite setA ⊂ Z+ such that for all x, y ∈ A neither x nor
x + y is a perfect power, i.e., ak , for k ≥ 2? More generally, is there an infinite set
A ⊂ Z+ such that for any nonempty finite collection xi ∈ A, i ∈ J , the sum

∑
i∈J xi

is not a perfect power?

Solution 2.41. 1. Yes. Let p1 = 2, p2 = 3, . . . , pn, . . . be the set of primes in in-
creasing order. We then set A = {223, 22325, . . . , 223252 · · ·p2

npn+1, . . .}.
Obviously, no element of A is a perfect power. Moreover, if x ≤ y ∈ A, then we

can write x = 22 · · ·p2
kpk+1 and x = 22 · · ·p2

npn+1. If k < n, then pk+1 divides
x+y = 22 · · ·p2

kpk+1
(
1+pk+1p

2
k+2 · · ·p2

npn+1
)
, while p2

k+1 does not divide x+y,
and thus it cannot be a perfect power. If k = n, the same argument works, unless k = 0,
which was excluded from A.

2. Let us prove that if C ⊂ Z+ is a set of density d(C) = 0, then there exists an
infinite set A ⊂ Z+ such that for any nonempty finite collection xi ∈ A, i ∈ J , the
sum

∑
i∈J xi is not in C.

Recall that the density of the subset C ⊂ Z+ is defined as

d(C) = lim
n→∞

card(C ∩ {1, 2, . . . , n})
n

.

Since d(C) = 0, there exists a natural number a1 �∈ C. Then consider C1 =
C ∪ (C − a1) ∩ Z+, where we set X − λ = {x − λ|x ∈ X}. The density d has the
following fundamental property that results from the definition:
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d(A ∪ B) ≤ d(A)+ d(B).

This implies that d(C1) = 0, and therefore there exists a natural number a2 �∈ C1.
Assuming that both the subsetCk of density zero and the sequencea1, a2, . . . , ak+1,

with ak+1 �∈ Ck , are defined, we set

Ck+1 = Ck

k⋃

p=1

⋃

i1≤i2≤···≤ip≤k+1

(Ck − (ai1 + ai2 + · · · + aip )) ∩ Z+.

It follows that d(Ck+1) = 0 and thus there exists at least one integer ak+2 > ak+1
such that ak+2 �∈ Ck+1.

The sequence (ak) forms an infinite subset A with the required property.
It suffices now to compute the density of the set C = {ak|a ≥ 2, k ≥ 2}. We have

card(C ∩ {1, 2, . . . , n})
n

= [
√
n] + [ 3

√
n] + · · ·

n
≤

√
n log2 n

n
= log2 n√

n
.

Therefore d(C) = 0.

Comments 44 There is an analogous result when products are used instead of sums
of elements in A. For instance, the set

A =
{
a1, a2 = C

a1
2a1
, C

a2
a1+a2

, . . . , C
an
an−1+an

}

has the property that no product of its elements is a perfect power. Is it true that
d(A) = 0?

Problem 2.42. Let

f (n) = maxA
A
A

...

Ak

3
2

1 ,

where n = A1 +· · ·+Ak . Thus, f (1) = 1, f (2) = 2, f (3) = 3, f (4) = 4, f (5) =
9, f (6) = 27, f (7) = 512, etc. Determine f (n).

Solution 2.42. It is clear that if f (n) = A···
Ak

1 , then Ai > 1. Also, f is an increasing

function, and thus f (n+ 1) ≥ f (n)+ 1. If A1 = k, then A···
Ak

2 ≤ f (n− k), and this
implies that whenever n ≥ 4, we have

f (n) = max
2≤k≤n−2

kf (n−k).

It is easy now to see that f (n + 1) ≥ 2f (n). In fact, let f (n) = kf (n−k), for some
k ≥ 2; then

f (n+ 1) ≥ kf (n−k+1) ≥ kf (n−k)+1 ≥ 2f (n).

The next step is to compare af (b+1) with (a + 1)f (b), that is, f (b+1)
f (b)

with log(a+1)
log(a) .

If a ≥ 2, then a + 1 < a2 and hence log(a + 1)/ log a < 2. Thus, if b ≥ 4, then
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f (b + 1)/f (b) ≥ 2, which yields af (b+1) > (a + 1)f (b), as soon as a ≥ 2, b ≥ 3.
For small values of the arguments, we have

log 4

log 3
<
f (4)

f (3)
<
f (3)

f (2)
<

log 3

log 2
.

These show that kf (n−k) has a maximum when k = 2 if n > 6. Therefore, the final
answer is

f (n) =

⎧
⎪⎨

⎪⎩

2···
232

, for odd n > 3,

2···
233

, for even n > 4.

Problem 2.43. Consider a setM withm elements andA1, . . . , An distinct subsets of
M such that card(Ai ∩ Aj) = r ≥ 1 for all 1 ≤ i �= j ≤ n. Prove that n ≤ m.

Solution 2.43. Observe first that ifA is anm×nmatrix andm > n, then det
(
A·A�) =

0, where A� denotes the transpose matrix. In fact, let us border the matrix A by a
null matrix of size (m− n)× n, in order to get anm×mmatrix A′. It is obvious that
A′ · A′� = A · A�, and thus det

(
A · A�) = det

(
A′ · A′�) = 0.

Let D be the n× n matrix whose entries are

Dij =
{
r ≥ 1, if i �= j,

dii ≥ r, otherwise.

Assume that there exists at most one i such that dii = r . We claim then that det(D) �=
0. This follows by subtracting the last line from the first n − 1 and an inductive
argument.

Consider now the m× n matrix A whose entries are

Aij =
{

1, if i ∈ Aj ,
0, otherwise.

It is now immediate that D = A · A� is given by

Dij =
n∑

j=1

aikakj = card(Ai ∩ Aj).

By hypothesis,Dij = r when i �= j , and since theAi are distinct, there exists at most
one i such that Dii = r .

The claim from above tells us that det(D) = det
(
A · A�) �= 0, while the first

observation implies that m ≤ n.

Problem 2.44. Setπ(n) for the number of prime numbers less than or equal ton. Prove
that there are at most π(n) numbers 1 < a1 < · · · < ak ≤ n with gcd(ai, aj ) = 1.
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Solution 2.44. If X is a set, we denote by P(X) the set of nonempty subsets of X.
Define the map h : {1, . . . , n} → P({p1, . . . , pπ(n)}) that associates to the integer x
the set of prime divisors of x.

One then has card(h(ai)) ≥ 1 and furtherh(ai)∩h(aj ) = ∅, from our assumption.
Since the maximal number of disjoint subsets of {p1, . . . , pπ(n)} is bounded by π(n),
the claim follows.

Problem 2.45. Prove that for every k, there exists n such that the nth term of the
Fibonacci sequenceFn is divisible by k. Recall thatFn is determined by the recurrence
Fn+2 = Fn + Fn+1, for n ≥ 0, where the first terms are F0 = 0, F1 = 1.

Solution 2.45. Using the pigeonhole principle, there exists an infinite sequence ni
such that

Fn1 ≡ Fn2 ≡ · · · ≡ Fnm ≡ · · · (mod k).

Moreover, there exists an infinite subsequence nis such that

Fni1+1 ≡ Fni2 +1 ≡ · · · ≡ Fnim+1 ≡ · · · (mod k)

by the same argument. Thus one knows that

Fnis ≡ Fnit (mod k) and Fnis+1 ≡ Fnit+1 (mod k).

The recurrence relation of the Fibonacci numbers shows that

Fnis+m ≡ Fnit+m (mod k), for any m ∈ Z.

Since F0 = 0, we find that there exists n (actually infinitely many such integers) such
that k divides Fn.

Problem 2.46. Consider a set of consecutive integers C + 1, C + 2, . . . , C + n,
where C > nn−1. Show that there exist distinct prime numbers p1, p2, . . . , pn such
that C + j is divisible by pj .

Solution 2.46. Let k ≤ h and consider the factorization of C + k into prime factors.
If C+ k has at least n distinct prime divisors, then we can find one prime divisor that
is not yet associated with the other n − 1 numbers C + i. Assume then that C + k

has at most j ≤ n− 1 prime factors, which are p1k, . . . , pjk for 1 ≤ j ≤ n− 1. We
write down the factorization as

p
a1k
1k · · ·pajkjk = C + k > C > nn−1.

The pigeonhole principle implies that there exists some prime power qk = p
ajk
jk such

that qk > n.
We then associate the prime number pjk toC+k. Let us show that this procedure

yields distinct prime numbers. Suppose that there exist j and k such that the associated
numbers are the same. We know that qk divides C + k and qj divides C + j , and
they are both prime powers of the same prime. Since qk > n and qj > n, we obtain
gcd(qk, qj ) > n. Moreover, gcd(qk, qj ) divides both C + k and C + j and hence
their difference |j − k| < n, which is a contradiction. This proves the claim.
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Problem 2.47. Let p be a prime number and f (p) the smallest integer for which
there exists a partition of the set {2, 3, . . . , p} into f (p) classes such that whenever
a1, . . . , ak belong to the same class of the partition, the equation

k∑

i=1

xiai = p

does not have solutions in nonnegative integers. Estimate f (p).

Solution 2.47. 1. Suppose that a1, a2 are in the same class and gcd(a1, a2) = 1. One
knows then that any natural number greater than or equal to a1a2 can be written as
x1a1 + x2a2, where xi ∈ Z+. Therefore, the prime numbers smaller than

√
p should

to different classes of our partition, and hence

f (p) > π
(
p

1
2
) ∼ 2

√
p

logp
,

where π(n) denotes the number of primes smaller than n.
2. If t ∈ Z+, let us consider the sets of consecutive elements At ={[
p
t+1

]
+ 1, . . . ,

[p
t

]}
. We claim that the equation

∑k
i=1 aixi = p has no integer

solutions if ai ∈ At for 1 ≤ i ≤ k. In fact, if we had a solution xi , then we would
have

p

t + 1

k∑

i=1

xi <

k∑

i=1

aixi <
p

t

k∑

i=1

xi,

and so t <
∑k
i=1 xi < t + 1, which is false, since xi are integers.

Let us consider the classes A1, A2, . . . , AL−1, where L is an integer to be fixed
later.

Consider now, for every prime q < p/L, the classesBq = {q, 2q, . . . , αq, . . .}. It
is immediate that the associated linear equation has no solutions if the coefficients be-
long to someBq , since q does not dividep. Further,A1, . . . , AL−1, B2, B3, . . . , B

[ p
L

]

form a partition of {2, 3, . . . , p}. The total number of classes of this partition is then
L− 1 + π(p/L).

Setting L =
√

2p
logp , we obtain f (p) <

√
8p

logp (1 + O(1)).

Problem 2.48. Consider m distinct natural numbers ai smaller than N such that

lcm(ai, aj ) ≤ N for all i, j . Prove that m ≤ 2
[√
N
]
.

Solution 2.48. Assume that the numbers ai are ordered as 1 ≤ am < · · · < a1 ≤ N .
We will prove by induction on k that ak ≤ N

k
. If k = 1, then it is obvious. Moreover,

if k ≥ 1, then

ak − ak+1 ≥ gcd(ak, ak+1) = akak+1

lcm(ak, ak+1)
≥ akak+1

N
.

This is equivalent to ak+1 + akak+1
N

≤ ak , which yields
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ak+1 ≤ Nak

ak +N
= N − N2

ak +N
≤ N − N2

N
k

+N
= N

k + 1
,

and our claim follows. Furthermore, one has

a[√
N
]
+1

≤ N
[√
N
] + 1

≤ [√
N
]
.

The sequence (aj ) contains then at most [
√
N ] terms between 1 and

[√
N
]
. On the

other hand, between
√
N andN , there are no more than

[√
N
]

terms of our sequence,
and thus we have a maximum number of m ≤ 2

[√
N
]

terms.

Comments 45 If m(N) denotes the maximum number of terms of a sequence (ai),
as in the statement, then Erdős conjectured the following asymptotic behavior of the
function m(n):

m(N) = 3

23/2

√
N + O(1).

See also:

1. P. Erdős: Remarks on number theory. IV. Extremal problems in number theory,
Matematikai Lapok 13 (1962), 228–255.

Problem 2.49. The setM ⊂ Z+ is calledA-sum-free, whereA = (a1, a2, . . . , ak) ∈
Z
k+, if for any choice of x1, x2, . . . , xk ∈ M we have a1x1 + a2x2 + · · · + akxk �∈ M .

IfA,B are two vectors, we define f (n;A,B) as the greatest number h such that there
exists a partition of the set of consecutive integers {n, n + 1, . . . , h} into S1 and S2
such that S1 is A-sum-free and S2 is B-sum-free. Assume that B = (b1, b2, . . . , bm)

and that the conditions below are satisfied:

a1 + a2 + · · · + ak = b1 + b2 + · · · + bm = s,

and
min

1≤j≤k aj = min
1≤j≤m bj = 1, k,m ≥ 2.

Prove that f (n;A,B) = ns2 + n(s − 1)− 1.

Solution 2.49. First consider the sets

S1 = {n, n+ 1, . . . , ns − 1} ∪ {ns2, ns2 + 1, . . . , ns2 + n(s − 1)− 1},
S2 = {ns, ns + 1, . . . , ns2 − 1}.

If xj ∈ S2, then b1x1 + b2x2 + · · · + bmxm ≥ ns2 and thus S2 is B-sum-free.
If x1, x2, . . . , xk ∈ S1, then we have two cases:

1. If xi ≤ ns − 1 for all i, then

ns ≤ a1x1 + a2x2 + · · · + akxk ≤ s(ns − 1) < ns2.
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2. If some xi belongs to {ns2, ns2 + 1, . . . , h}, then

a1x1 + a2x2 + · · · + akxk ≥ ns2 + n(s − 1).

Thus S1 is A-sum-free. This proves that f (n;A,B) ≥ ns2 + n(s − 1)− 1.
Assume now that the set {n, n + 1, . . . , ns2 + n(s − 1)} can be partitioned into

two sets Si that are A (respectively B) sum-free.
Let n ∈ S1. If we take x1 = x2 = · · · = xk = n, then ns = a1x1 + a2x2 + · · · +

akxk �∈ S1, so ns ∈ S2. Taking now x1 = x2 = · · · + = xm = ns ∈ S2, we find that
ns2 ∈ S1.

Suppose that a1 = b1 = 1. If we consider the elements x1 = ns2, x2 = · · · =
xk = n of S1, we derive that n(s2 + s − 1) ∈ S2.

1. If n(s+1) ∈ S1, then take x1 = n, x2 = · · · = xk = n(s+1), and since ns2 ∈ S1,
we find that the set S1 is not A-sum-free.

2. If n(s + 1) ∈ S2, then take x1 = ns, x2 = · · · = xm = n(s + 1), and since
n(s2 + s − 1) ∈ S2, we obtain that the set S2 is not B-sum-free.

This contradiction shows that f (n;A,B) = ns2 + n(s − 1)− 1.

Comments 46 Generalized sum-free sets of integers were considered first by Rado,
who in 1933 gave the upper bound

f (1;A,A) ≤ max

(
(bmc2 − 1)(c − 1)+ bmc,

bmc2(c − 1)

a

)
,

where A = (a, b), m = a
gcd(a,b) and c = max(x0, y0, z0), where (x0, y0, z0) is the

minimal solution of the Diophantine equation ax+ by = z. There are several partial
results known for particular forms of A and B. If we denote the vector (d, d, . . . , d)
with k components by k〈d〉, then Kasá proved that

f (1; 2〈1〉, k〈1〉) =
{

3k − 3, for odd k,
3k − 2, for even k,

f (n; 2〈1〉, k〈1〉) = (2k + 1)n− 1, for even n.

Further, Seress improved this by showing that

f (n;m〈1〉, k〈1〉) = (mk +m− 1)n− 1, for n > 1,m ≥ 3.

The result from the problem is due to L. Funar, who proved also that

f (n; k〈d〉, k〈d〉) = k2d3 + kd − d − 1

for d even and k ≥ d and in several other cases. Abbott showed that this formula
holds for all k, d ≥ 2. Other estimates for f (n;A,B) in the case in whichA,B have
not necessarily the same sum of components have been obtained by P. Moree. These
suggest that there is no such simple closed formula for arbitrary A,B. However,
recent progress has lead to the determination of f (1;A,A) for arbitrary A (also
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known as the 2-color Rado number), by Guo and Sun (improving previous results by
B. Hopkins and D. Schaal). Specifically, we have

f (1;A,A) = a(s − a)2 + (2a2 + 1)(s − a)+ a3,

where a = min1≤j≤k aj and s = a1 + · · · + ak .
The general case, when we consider partitions into n ≥ 3 subsets Sj such that

each Sj is Aj -sum-free, seems to be much more difficult, and no general estimates
from above are known.

• H.L. Abbott: On a conjecture of Funar concerning generalized sum-free sets,
Nieuw Arch. Wisk. (4) 9 (1991), 249–252.

• L. Funar: Generalized sum-free sets of integers, Nieuw Arch. Wisk. (4) 8 (1990),
49–54.

• Song Guo and Zhi-Wei Sun: Determination of the two-color Rado number for
a1x1 + · · · + amxm = x0, math.CO/0601409.

• B. Hopkins and D. Schaal: On Rado numbers for
∑m−1
i=1 aixi = xm, Adv. Appl.

Math. 35 (2005), 433–441.
• P. Moree: On a conjecture of Funar, Nieuw Arch. Wisk. (4) 8 (1990), 55–60.
• R. Rado: Studien zur Kombinatorik, Math. Zeitschrift 36(1933), 424–480.
• A. Seress: k-sum-free decompositions, Matematikai Lapok 31 (1978/83), 191–

194.

Problem 2.50. Let 1 ≤ a1 < a2 < · · · < an < 2n be a sequence of natural numbers
for n ≥ 6. Prove that

min
i,j

lcm(ai, aj ) ≤ 6
([n

2

]
+ 1

)
.

Moreover, the constant 6 is sharp.

Solution 2.50. We assume that among the ai’s we can find both a and 2a. Then
mini,j lcm(ai, aj ) ≤ lcm(a, 2a) ≤ 2n < 6

([
n
2

] + 1
)
. Let a ≤ n be an element of

the sequence, if it exists. If 2a also belongs to the sequence, the claim follows from
above. If 2a is not in the sequence, then we will replace the element a with 2a. This
way the value of mini,j lcm(ai, aj ) is not diminished. We continue this process as far
as possible. At some point, all the elements of the sequence will be greater than n,
and thus the last sequence is forced to be n+ 1, n+ 2, . . . , 2n.

If n = 2k + 1, then take a = 2k + 2, b = 3k + 3, so that lcm(a, b) = 6k + 6 =
6
([
n
2

] + 1
)
.

Now if c, d are such that n + 1 < c < d ≤ 2n, then we have lcm(c, d) ≥
6
([
n
2

] + 1
)
. In fact, lcm(c, d) = pd = qc for some q > p > 1, and thus either

p = 2 and q ≥ 3, or else q ≥ 4.
In the first case, c is an even number; hence c ≥ 2

([
n
2

] + 1
)

and lcm(c, d) =
qc ≥ 3c ≥ 6

([
n
2

] + 1
)
.

In the second case, lcm(c, d) = qc ≥ 4(n + 1) > 6
([
n
2

] + 1
)
. Therefore, if we

choose the set n+ 1, . . . , 2n, we have mini,j lcm(ai, aj ) = 6
([
n
2

] + 1
)
.
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Comments 47 This result is due to P. Erdős, who claimed also that under the same
hypothesis, we have

max
i �=j gcd(ai, aj ) >

38n

147
− C,

where C is a constant independent of n.

Problem 2.51. Let 1 ≤ a1 < a2 < · · · < ak < n be such that gcd(ai, aj ) �= 1 for all
1 ≤ i < j ≤ k. Determine the maximum value of k.

Solution 2.51. Let f (n) denote the maximum of k as a function of n. We have then
f (2) = 1. Assume from now on that n ≥ 3.

Define li (for 1 ≤ i ≤ k) to be the smallest integer satisfying the inequality
n/2 < ai2li . If there exists a pair of distinct indices i and j such that ai2li = aj2lj ,
then either ai divides aj , or conversely, aj divides ai . Therefore, we can replace ai
by ai2li without diminishing the value of k.

Thus we can assume that ai ≥ n
2 , for all i. Further, the condition gcd(ai, aj ) �= 1

tells us that we cannot find two consecutive numbers that both belong to the sequence
ai . Thus, if n is of the form 4m− 1, 4m, or 4m+ 2, then f (n) ≤ m.

Moreover, if n = 4m + 1, then f (n) ≤ m + 1. If we have equality above, then
the sequence ai is forced to be a1 = 2m+ 1, a2 = 2m+ 3, . . . , am+1 = 4m+ 1, and
therefore gcd(a1, a2) = 1, which is a contradiction. Thus f (n) ≤ m if n = 4m+ 1.

By considering the set of all even numbers in the interval [n/2, n] we obtain that
for any n ≥ 3, we have f (n) = [

n+1
4

]
.

Problem 2.52. Consider the increasing sequence f (n) ∈ Z+, 0 < f (1) < f (2) <
· · · < f (n) < · · · . It is known that the nth element in increasing order among the
positive integers that are not terms of this sequence is f (f (n))+ 1. Find the value of
f (240).

Solution 2.52. 1. One knows that the nth absent number is N = f (f (n))+ 1. How-
ever, the numbers smaller than N that belong to the sequence are f (1), f (2), . . . ,
f (f (n)). Moreover, there are n numbers less than or equal to N that do not belong
to the sequence. This means that N = f (n)+ n; thus

f (f (n)) = f (n)+ n− 1.

Therefore f (1) = 1, f (2) = 3. It follows by induction that

f (n) = n+ card {m|f (m) < n}.
Set a0 = 2, an+1 = f (an). We compute

an+1 = an+ card {m|f (m) < an} = an+ card {m|f (m) < an−1} = an+ an−1 − 1,

and therefore the sequence bn = an − 1 satisfies the Fibonacci recurrence bn+1 =
bn + bn−1. We will prove by induction that

f (bn + x) = bn+1 + f (x), for 1 ≤ x ≤ bn−1.
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If n = 0, then b1 = 1 and x = 1 and the claim is verified. Further

f (bn+ x) = bn+ x+ card {y|f (y) < f (bn−1)}+ card {y|bn+1 < f (y) < bn+ x},
which implies that f (bn − 1) < f (an−1) = an and thus f (bn−1) ≤ bn ≤ bn + x. In
particular,

f (y) ≤ bn + x ≤ bn + bn−1 ≤ bn+1 < f (an),

from which we obtain y < an, y ≤ bn. We now write

y = bn+1 + z, where z ≤ bn − bn−1 = bn−2.

Hence

f (bn + x) = bn + x + bn−1 + card {z|f (z) < x} = bn+1 + f (x).

This proves our claim.
Recall now that every natural number can be uniquely written as a sum of

Fibonacci numbers, i.e., as

x = 1 + bk1 + bk2 + · · · + bkp ,

where 1 ≤ k1 < k2 < · · · < kp. If x is written as above, the previous inductive
formula yields the value

f (x) = 1 + bk1+1 + bk2+1 + · · · + bkp+1.

In particular,
f (240) = 1 + 2 + 8 + 377 = 388,

since 240 = 1 + (1 + 5 + 233).
2. We can use in a clever manner the recursion law f (f (n)) = f (n)+ n− 1 in

order to find, step by step,

f (3) = 3 + 1 = 4, f (4) = 4 + 2 = 6, f (6) = 6 + 3 = 9,

f (9) = 9 + 5 = 14, f (14) = 22

f (22) = 35, f (35) = 56, f (56) = 90, f (90) = 145,

f (145) = 234, f (234) = 378.

One knows that f (f (35))+ 1 = 91 is absent, so that f (57) = 92 and thus f (92) =
148, f (148) = 239, f (239) = 386. Next f (f (148)) + 1 = 387 is absent, and
hence f (240) = 388.

Problem 2.53. We define inductively three sequences of integers (an), (bn), (cn) as
follows:

1. a1 = 1, b1 = 2, c1 = 4;
2. an is the smallest integer that does not belong to the set

{a1, . . . , an−1, b1, . . . , bn−1, c1, . . . , cn−1};
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3. bn is the smallest integer that does not belong to the set
{a1, . . . , an−1, an, b1, . . . , bn−1, c1, . . . , cn−1};

4. cn = 2bn + n− an.

Prove that
0 < n

(
1 + √

3
)

− bn < 2 for all n ∈ Z+.

Solution 2.53. We will actually prove that

α < n
(
1 + √

3
) − bn < β, where α = (

9 − 5
√

3
)
/3, β = (

12 − 4
√

3
)
/3.

Observe that the sequence (cn) does not contain two consecutive numbers. Thus an+1
might jump at most two units ahead from bn, and bn two units ahead from an. By
induction, we obtain

1 ≤ bn − an ≤ 2 and 1 ≤ an+1 − bn ≤ 2.

Using the equality

cn+1 − cn = 2(bn+1 − an+1)+ (an+1 − bn)− (bn − an)+ 1

we deduce that
2 ≤ cn+1 − cn ≤ 6.

In particular, there are not six consecutive integers among the sequences aj and bj .
Set γn = n

(
1 + √

3
)−bn. We will prove by induction that α < γn < β, which

is trivially verified for n = 1. Suppose now that this holds true for all n < k. We
consider the truncated sequence ak−2 < bk−2 < ak−1 < bk−1 < ak < bk . As
remarked above, there should be at least one element of the form cj , which can be
inserted between ak−2 and bk , since bk − ak−2 ≥ 6. Let us choose the greatest such
cn, which is cn ≤ bk − 1.

It follows that the set

{a1, a2, . . . , ak, b1, b2, . . . , bk, c1, c2, . . . , cn}
is precisely the set of the first consecutive numbers contained between 1 and bk . In
particular, we have

bk = 2k + n = cn + r, where 1 ≤ r ≤ 5.

On the other hand, we know that cn = 2bn + n − an = bn + n + (bn − an) and
bn − an ≤ 2, and so

2k + n = bk = bn + n+ s, where 2 ≤ s ≤ 7.

However, one can improve the upper bound for s as follows. We have equality only
if r = 5, but in this case we have cn+1 − cn = 6. Using the formula for cn+1 − cn,
we derive that bn − an = 1, and thus one has s ≤ 6.
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Let us now estimate γk , which reads

γk = (1+√
3)k−bk = (1+√

3)

(
bn + s

2

)
− (bn+n+ s) = (s−γn)

(√
3 − 1

2

)

.

If s ≤ 6 we use γn ≥ α to obtain

γk ≤ (6 − α)

(√
3 − 1

2

)

< β.

If s = 6, then we must have bn+1 −an+1 = an+1 −bn = 2, and therefore bn+1 −bn =
4. Thus γn+1 −γn = 1 +√

3 − (bn+1 −bn) = √
3 − 3. Since n+ 1 < k, one uses the

induction hypothesis γn+1 > α in order to get γn = γn+1 + 3 − √
3 > α + 3 − √

3.
Using this inequality above, we derive that

γk ≤ (6 − α − 3 + √
3)

(√
3 − 1

2

)

= β.

If s = 5, then bn+1 −bn ∈ {3, 4}. Thus γn+1 −γn ≤ √
3−2, and so γn > α+2−√

3.
Introducing this above, we obtain

γk < (5 − α − 2 + √
3)

(√
3 − 1

2

)

= β.

The other inequality, γk > α, follows along the same lines.

6.3 Geometric Combinatorics

Problem 2.54. We consider n points in the plane that determine C2
n segments, and to

each segment one associates either +1 or −1. A triangle whose vertices are among
these points will be called negative if the product of numbers associated to its sides
is negative. Show that if n is even, then the number of negative triangles is even.
Moreover, for odd n, the number of negative triangles has the same parity as the
number p of segments labeled −1.

Solution 2.54. Let Pi denote the points in the plane, and let aij be the label of the
segmentPiPj . Then the signature of the trianglePiPjPk is given byPijk = aij ajkaki .
In particular, ∏

i �=j �=k �=i
Pijk = (−1)m,

where m is the number of negative triangles. Now every segment belongs to n − 2
triangles, and thus

∏

i �=j �=k �=i
Pijk =

∏
aij ajkaki =

⎛

⎝
∏

i �=j
aij

⎞

⎠

n−2

= (−1)p(n−2).

Therefore m ≡ pn (mod 2), and the claim follows.



6.3 Geometric Combinatorics 121

Problem 2.55. Given n, find a finite set S consisting of natural numbers larger than
n, with the property that, for any k ≥ n, the k × k square can be tiled by a family of
si × si squares, where si ∈ S.

Solution 2.55. Each of the sets S = {s ∈ Z| n ≤ s ≤ n2}, and S = {s ∈
Z|s is prime, n2 < s < 2n2 + n} is convenient, although neither one is minimal.

We will prove this by induction on the size of the square, for the second set S.
Consider a k × k square, where k ≥ n2. By hypothesis, the m×m square is tiled by
squares from S, for any m with n ≤ m < k. If k is composite, then write k = pq,
where k > p ≥ n. We cover the k × k square by means of q2 p × p squares and we
proceed inductively. If k is prime, then k > 2n2 + n. We divide the square into two
squares, onem×m and the other (k−m)× (k−m), and twom× (k−m) rectangles,
wherem = n(n+ 1). We have k−m > n2 and thus eachm× (k−m) rectangle can
be covered with m× n or m× (n+ 1) pieces and each of these pieces can be further
divided into squares.

Comments 48 The problem whether some region can be tiled by a given set of tiles
is difficult and unsolved in general. The interested reader might consult the survey of
Ardila and Stanley.

The simpler problem of whether an n×m rectangle was tiled by a×b rectangles was
solved by de Bruijn and, independently, by Klarner in 1969. Specifically, this happens
to be possible if and only if mn is divisible by ab, both m and n can be written as
sums of a’s and b’s, and eitherm or n is divisible by a or elsem (or n) is divisible by
b. More generally, them1 ×m2 ×· · ·×mn box is tiled by a1 × a2 ×· · ·× an bricks if
and only if each of the ai has a multiple among themj ’s. Conway and Lagarias gave
necessary conditions for the existence of tilings of rectilinear polygons (i.e., those
having sides parallel to the axes) by a set of finite rectilinear tiles using boundary
invariants, which are combinatorial group-theoretic invariants associated with the
boundaries of the tile shapes and the regions to be tiled. Some new invariants were
discovered recently by Pak.

Notice that for n ≥ 2,m > 2, the problem whether there exists a tiling of a given
rectilinear polygon having only horizontal n× 1 tiles and only vertical 1 ×m tiles is
an NP -complete question, as shown by Beauquier et al.

• F. Ardila, R. Stanley: Tilings, math.CO/0501170.
• D. Beauquier, M. Nivat, E. Rémila, M. Robson: Tiling figures of the plane with

two bars, Comput. Geom. 5 (1995), 1–25.
• N. de Bruijn: Filling boxes with bricks, Amer. Math. Monthly 79 (1969), 37–40.
• J.H. Conway, J.C. Lagarias: Tiling with polyominoes and combinatorial group

theory, J. Combin. Theory Ser. A 53 (1990), 183–208.
• D. Klarner: Packing a rectangle with congruent n-ominoes, J. Combin. Theory 7

(1969), 107–115.
• I. Pak: Ribbon tile invariants, Trans.Amer. Math. Soc. 352 (2000), 12, 5525–5561.

Problem 2.56. We consider 3n points A1, . . . , A3n in the plane whose positions are
defined recursively by means of the following rule: first, the triangle A1A2A3 is
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equilateral; further, the points A3k+1, A3k+2, and A3k+3 are the midpoints of the
sides of the triangle A3kA3k−1A3k−2. Let us assume that the 3n points are colored
with two colors. Show that for n ≥ 7 there exists at least one isosceles trapezoid
having vertices of the same color.

Solution 2.56. Any subset of three points has two points of the same color. Therefore,
there are two points having the same color (which we denote by Aik and Ajk ) among
{A3k+1, A3k+2, A3k+3}.

Consider now the lines determined by these monocolor pairs of points:

{Ai1Aj1 , Ai2Aj2 , . . . , AinAjn}.
We know that all these directions are parallel to the three sides of the initial equilateral
triangle. Thus there exist at least [n3 ] + 1 ≥ 3 lines in the set above that are parallel.
Moreover, each line comes with one of the two colors, and thus there exist at least[

[ n3 ]+1
2

]
+1 ≥ 2 parallel lines of the same color. The four points that determine these

lines form a monocolor isosceles trapezoid.

Problem 2.57. Is there a coloring of all lattice points in the plane using only two
colors such that there are no rectangles with all vertices of the same color, whose side
ratio belongs to

{
1, 1

2 ,
1
3 ,

2
3

}
?

Solution 2.57. No. According to Van der Waerden’s theorem, there exist four lattice
(equidistant) points Ai = (xi, 0) of the same color (say red) on the axis y = 0 such
that x2 − x1 = x3 − x2 = x4 − x3 = k.

Consider the pointsBi with coordinates (xi, k), lying on a parallel line, at distance
k. Then the points Bj contain either two red points—in which case we are done, by
considering the respective Aj—or else at least three black points, Bj1 , Bj2 , and Bj3 .

Consider next the points Ci = (xi, 2k). Then there exist two points among Cj1 ,
Cj2 , and Cj3 that have the same color.

If this color is black, then using the respective Bji and Cji , we obtain a black
rectangle as needed. If the color is red, then the respective Aji and Cji form a red
rectangle, as claimed.

Comments 49 Van der Waerden’s theorem from 1927 states that if the set of nat-
ural numbers Z+ is partitioned into finitely many color classes, then there exist
monochromatic arithmetic progressions of arbitrary length. Erdős and Turán conjec-
tured in 1936 the existence of arbitrarily long arithmetic progressions in sequences
of integers with positive density, and their conjecture was successfully confirmed by
Szemerédi in 1975. Many extensions have been made since that time. Actually, Sze-
merédi proved that for a given length l and density δ > 0, there is an L(l, δ) such
that if L ≥ L(l, δ), any subsetA ⊂ {1, 2, 3, . . . , L} with more than δL elements, will
contain an arithmetic progression of length l. This makes precise Van der Waerden’s
theorem in that there exists W(l, r) such that if W ≥ W(l, r) and {1, 2, 3, . . . ,W }
is the union of r subsets, then one of these necessarily contains an l-term arithmetic
progression, and moreover, W(l, r) can be taken as L(l, 1/r).
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The next breakthrough was made recently by Gowers, who provided the first effective
upper bound to the function L(l, δ). One consequence is a significant improvement
of the upper bound for W(l, r); for example, for some constant c, W(4, r) can be
taken as exp(exp(rc)). Generally, we can take L(l, δ) = exp(δ−c(l)), where c(l) =
22l+9

. These estimates fall short of providing a proof to another conjecture of Erdős
claiming that any set A ⊂ N with

∑
a∈A 1

a
= ∞ contains arbitrarily long arithmetic

progressions.

Another far-reaching generalization was provided by Bergelson and Leibman, as
follows. Suppose that p1, p2, . . . , pm are polynomials with integer coefficients and
no constant term. Then, whenever Z+ is finitely colored, there exist natural numbers
a and d such that the point a and all the points a + pi(d), for 1 ≤ i ≤ m, have the
same color.

Finally, Szemerédi’s theorem was proved to hold for the primes in a spectacular recent
paper by Ben Green and Terence Tao. Specifically, if A is a subset of positive density
within the set of primes (for instance the set of all primes), then A contains infinitely
many arithmetic progressions of length k (for any k ≥ 3). An exposition of this result
can be found in the survey of Kra.

• V. Bergelson, A. Leibman: Polynomial extensions of Van der Waerden’s and Sze-
merédi’s theorems, J. Amer. Math. Soc. 9 (1996), 725–753.

• W.T. Gowers: A new proof of Szemerédi’s theorem, Geometric FunctionalAnalysis
11 (2001), 465–588.

• B. Kra: The Green–Tao theorem on arithmetic progressions in the primes: an
ergodic point of view, Bull. Amer. Math. Soc. (N.S.) 43 (2006), 1, 3–23.

• E. Szemerédi: On sets of integers containing no k elements in arithmetic pro-
gression, Collection of articles in memory of J.V. Linnik, Acta Arith. 27 (1975),
199–245.

• B.L. Van der Waerden: Beweis einer Baudetschen Vermutung, Nieuw Arch. v.
Wiskunde 15 (1927), 212–216.

Problem 2.58. Let G be a planar graph and let P be a path in G. We say that P
has a (transversal) self-intersection in the vertex v if the path has a (transversal) self-
intersection from the curve-theoretic viewpoint. Let us give an example. Take the
point 0 in the plane and the segments 01, 02, 03, 04 going counterclockwise around
0. Then a path traversing first 103 and then 204 has a (transversal) self-intersection at
0, while a path going first along 102 and further on 304 does not have a (transversal)
self-intersection.

Prove that any connected planar graphG, with only even-degree vertices, admits
an Eulerian circuit without self-intersections. Recall that an Eulerian circuit is a path
along the edges of the graph, that passes precisely once along each edge of the graph.

Solution 2.58. We will proceed by double induction, first on the maximum degree of
the vertices and, for the class of graphs with several vertices of maximum degree, on
the number of such vertices. If the degree is d = 2, then the obvious Eulerian circuit
does not have self-intersections. Now let v be a vertex of maximal degree d > 2.
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We split v into two vertices, one of degree 2 and the other of degree d − 2; the first
among the new vertices is incident to two vertices that were previously incident to v,
by means of two consecutive edges (this makes sense since the graph is planar), and
the latter is incident to the remaining ones. If the obtained graph is connected, then
there exists an Eulerian path without self-intersections, and then we simply restore the
graph and see that this way the circuit remains without self-intersections. If the graph
is not connected, then we get two Eulerian circuits. When restoring the graph G, we
glue together the two circuits into one Eulerian circuit, still without self-intersections.

Problem 2.59. Let us consider finitely many points in the plane that are not all
collinear. Assume that one associates to each point a number from the set {−1, 0, 1}
such that the following property holds: for any line determined by two points from
the set, the sum of numbers associated to all points lying on that line equals zero.
Show that, if the number of points is at least three, then to each point one associates
the number 0.

Solution 2.59. Let us assume the contrary, i.e., that there exist points with nontrivial
numbers associated to them. Then there should exist points labeled both 1 and −1.

Choose first a point x0 labeled 1. For any other point x �= x0, the line d = x0x

has nε(d) points labeled by ε ∈ {−1, 1}. Moreover, the assumptions imply that
n−1(d) = n+1(d) and n+1(d) ≥ 1, because x0 is labeled 1.

Furthermore, the total number of negative points is n−1 = ∑
d n−1(d), the sum

being taken on all lines d passing through x0. Next, the total number of positive points
is n+1 = 1 + ∑

d(n+1(d) − 1) = n−1 − l + 1, where l is the number of distinct
lines passing through x0. We know that l ≥ 2 by hypothesis; hence we obtain that
n+1 ≤ n−1 − 1.

Choose now a point y0 labeled −1. Then the same argument implies that the
reversed inequality n−1 ≤ n+1 − 1 holds, contradicting the former inequality.

Problem 2.60. If one has a set of squares with total area smaller than 1, then one can
arrange them inside a square of side length

√
2, without any overlaps.

Solution 2.60. We put the squares in decreasing order with respect to their side
lengths. The first square is put in the left corner of the square S (the side of which is√

2), the second square will be set to the right of S, and we go on until it becomes
impossible to put another square without surpassing the borders of S. Then, we start
another line of squares above the first square and so on. Assume that the side lengths
are S1 ≥ S2 ≥ · · · and we haven1, n2, . . . , nk squares on the lines number 1, 2, . . . , k
respectively. It follows that

√
2 − Sn1+1 ≤ S1 + S2 + · · · + Sn1 ≤ √

2,√
2 − Sn1+n2+1 ≤ Sn1+1 + · · · + Sn1+n2 ≤ √

2,

and so on. We want to show that

S1 + Sn1+1 + Sn1+n2+1 + · · · ≤ √
2,



6.3 Geometric Combinatorics 125

which will prove our claim. We know from above that

S2 + S3 + · · · + Sn1+1 ≥ √
2 − S1,

from which we infer

S2
2 + S2

3 + · · · + S2
n1+1 ≥ (√

2 − S1
)
Sn1+1,

and by the same trick, we obtain

S2
n1+2 + · · · + S2

n1+n2+n3
≥ (√

2 − S1
)
Sn1+n2+1,

and so on. By summing up these inequalities, we obtain

1 − S2
1 ≥ S2

2 + S2
3 + · · · ≥ (√

2 − S1
)
(Sn1+1 + Sn1+n2+1 + · · · ),

and hence

S1 + Sn1+1 + Sn1+n2+1 + · · · ≤ 1 − S2
1√

2 − S1
+ S1 = √

2 −
(
1 − √

2S1
)2

√
2 − S1

≤ √
2.

Comments 50 The problem of packing economically unequal rectangles into a given
rectangle has recently received a lot of consideration. L. Moser asked in 1968 to find
the smallest packing default ε in each of the following situations:

1. the set of rectangles of dimensions 1 × 1
n

, for n ∈ Z+, n ≥ 2, whose total area
equals 1 can be packed into the square of area 1 + ε without overlap;

2. the set of squares of side lengths 1
n

, for n ∈ Z+, can be packed without overlap
into a rectangle of area π2/6 − 1 + ε;

3. the (infinite) set of squares with sides of lengths 1/(2n + 1), n ∈ Z+, can be
packed in a rectangle of area π2/8 − 1 + ε.

The best results known to this day yield ε very small, at least smaller than 10−9, using
a packing algorithm due to M. Paulhus. Further computational investigations support
the apparently weaker claim that the packings in the problems above are possible for
every positive number ε. However, G. Martin showed that if this weaker claim holds,
then one can also find a packing for ε = 0, in which case the packing is called perfect.
The general case of the problem above is still open, but a variation of it has been
solved in the meantime. J. Wästlund proved that if 1/2 < t < 2/3, then the squares
of side n−t , for n ∈ Z+, can be packed into some finite collection of square boxes
of the same area ζ(2t) as the total area of the tiles. On the other hand, Chalcraft
proved that there is a perfect packing of the squares of side n−3/5 into a square, and
presumably, his technique works for packing the squares of side n−t into a square,
where 1/2 < t ≤ 3/5; this is true for packing into a rectangle for all t in the range
0.5964 ≤ t ≤ 0.6.

• A. Chalcraft: Perfect square packings, J. Combin. Theory Ser. A 92 (2000), 158–
172.
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• H.T. Croft, K.J. Falconer, R.K. Guy: Unsolved Problems in Geometry, Springer-
Verlag, New York, 1994.

• G. Martin: Compactness theorems for geometric packings, J. Combin. Theory
Ser. A 97 (2002), 225–238.

• A. Meir, L. Moser: On packing of squares and cubes, J. Combin. Theory 5 (1968),
126–134.

• M. Paulhus: An algorithm for packing squares, J. Combin. Theory Ser. A 82
(1998), 147–157.

• J. Wästlund: Perfect packings of squares using the stack-pack strategy, Discrete
Comput. Geom. 29 (2003), 625–631.

Problem 2.61. Prove that for each k there exist k points in the plane, no three collinear
and having integral distances from each other. If we have an infinite set of points with
integral distances from each other, then all points are collinear.

Solution 2.61. 1. Consider the pointP1 on the unit circle having complex coordinates
z = 3

5 + 4
5

√−1. If θ denotes the argument of P1, then θ is noncommensurable with
π , i.e., θ/π ∈ R − Q. Consider the points Pn of coordinates zn. Then the Pn form a
dense set of points in the unit circle. Moreover, we can compute the distance

|PnPk| = 2| sin(n− k)θ |.
Since sin nθ is a polynomial with rational coefficients in sin θ and cos θ , we derive
that the distances between all these points are rational. Given k, choose P1, . . . , Pk
and a homothety of large ratio in order to clear the denominators in these distances.
We obtain then k points with integral pairwise distances.

2. Given three noncollinear pointsP,Q, andR, with |PQ|, |PR| ≤ k, the number
of points X such that the distances |XP |, |XQ|, |XR| are integral is bounded by
4(k + 1)2. In fact, we have, by the triangle inequality,

∣∣|XP | − |XQ|∣∣ < |PQ| = k,

and thus ∣∣|XP | − |XQ|∣∣ ∈ {1, 2, . . . , k}.
Moreover, the geometric locus of thoseX for which

∣∣|XP |−|XQ|∣∣ = j is a hyperbola
with foci P and Q. On the other hand,

∣∣|XP | − |XR|∣∣ ∈ {1, 2, . . . , k},
and thus X belongs to one of the k + 1 hyperbolas having P and R as foci. Thus
X belongs to the intersections of (k + 1)2 pairs of hyperbolas, which have at most
4(k + 1)2 intersection points.

Comments 51 This construction of a dense set of points in the unit circle whose
pairwise distances are rational is due to A. Muller. Then W. Sierpiński found such a
dense set in the circle of radius r , provided that r2 is rational, this condition being
necessary as soon as we have three points at rational distances. The second result is
due to Erdős. The question of Ulam whether there exists a dense set in the plane such
that the distances between any two of its points is rational is still unsolved.
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• P. Erdős: Integral distances, Bull. Amer. Math. Soc. 51 (1945), 996.
• W. Sierpiński: Sur les ensembles de points aux distances rationnelles situés sur

un cercle, Elem. Math. 14 (1959), 25–27.

Problem 2.62. LetO,A be distinct points in the plane. For each point x in the plane,
we write α(x) = x̂OA (counterclockwise). Let C(x) be the circle of center O and
radius |Ox| + α(x)

|Ox| . If the points in the plane are colored with finitely many colors,
then there exists a point y with α(y) > 0 such that the color of y also belongs to the
circle C(y).

Solution 2.62. Let G be the graph of vertices {x ∈ E2, α(x) > 0} in which points x
and y are adjacent if y ∈ C(x).

If C1(ρ1) and C2(ρ2) are two circles of radii ρ1 < ρ2 < 1 centered at the origin,
then there exists a pointM1 ∈ C1(ρ1) that is adjacent to all points ofC2(ρ2). The point
M1 has α(M1) = θ uniquely determined, as follows. The conditionC(M1) = C2(ρ2)

is equivalent to ρ2 = ρ1 + θ
ρ1

, yielding

θ = (ρ2 − ρ1)ρ1 ∈ (0, 1) ⊂ (0, 2π),

and therefore M1 is well determined.
Assume now that the claim from the statement is not true. It will follow that the

color of M1 is distinct from the colors appearing on the circle C2(ρ2).
Let now C1, C2, . . . , Ck, . . . be an infinite sequence of circles centered at the

origin whose respective radii are

0 < ρ1 < ρ2 < · · · < ρk < · · · < 1.

Then let the set of colors that we encounter on Ck be denoted by τk. The previous
argument, when applied to the pair of circles Ci and Cj , shows that there exists a
point on Ci that is colored by a color that does not exist on Cj , if i < j , and thus
τi \τj �= ∅. Since the number of colors is finite, this is impossible as soon as k is large
enough (e.g., k > 2p, where p is the number of colors). This contradiction proves
the claim.

Problem 2.63. Let k, n ∈ Z+.

1. Assume thatn−1 ≤ k ≤ n(n−1)
2 . Show that there existn distinct points x1, . . . , xn

on a line, that determine exactly k distinct distances |xi − xj |.
2. Suppose that

[
n
2

] ≤ k ≤ n(n−1)
2 . Then there exist n points in the plane that

determine exactly k distinct distances.
3. Prove that for any ε > 0, there exists some constant n0 = n0(ε) such that for any
n > n0 and εn < k <

n(n−1)
2 , there exist n points in the plane that determine

exactly k distinct distances.

Solution 2.63. 1. Let m be an integer between 1 and n− 1 such that

n− 1 = C2
n − C2

n−1 ≤ k ≤ C2
n − C2

m.



128 6 Algebra and Combinatorics Solutions

Set p = k− (m− 1)−C2
n +C2

m+1; in particular, we have 1 ≤ p ≤ m. Consider then
the following set of points of the real line:

X = {1, 2, . . . , m,m+ p} ∪ {
πm+2, πm+3, . . . , πn

}
.

The distances between the firstm+1 points correspond to the set {1, 2, . . . , p+m−1}.
The remaining points are independent transcendental points, and thus the distances be-
tween them are all distinct transcendental numbers. Moreover, the distances between
points of the second set and points of the first set are also all distinct (translates of
the former set of transcendental distances by integers). Thus the number of distances
obtained so far is

p +m− 1 +
(

n∑

i=m+2

(i − 1)

)

= k.

2. If
[
n
2

] ≤ k ≤ C2
n , we put the n points in the consecutive vertices of a regular

(2k+ 1)-gon. There are exactly k distinct distances in a regular (2k+ 1)-gon, and all
of them are realized at least once, since k ≥ [

n
2

]
.

3. It suffices to check the case εn ≤ k ≤ [
n
2

]
. Let m = 3 + [√

n
]
. For m ≤ a ≤

n− 2m, 1 ≤ b ≤ m, we consider the following subset of Z × Z:

X = C ∪ {(i, 1)|1 ≤ i ≤ a − 1} ∪ {(1, j)|2 ≤ j < m} ∪ {(0, h)|1 ≤ h ≤ b},
where C is a subset of {(1, j), 2 ≤ i ≤ a − 1, 2 ≤ j ≤ m} with the property that the
distances between the pairs of points in C are all distinct.

The set of squares of the distances between points in X is

D(a, b) = {(i2 + j2)|0 ≤ i ≤ a − 1, 0 ≤ j ≤ m− 1} ∪ {a2 + j2|0 ≤ j ≤ b − 1}.
We have

D(m, 1) ⊂ D(m, 2) ⊂ · · · ⊂ D(m,m) ⊂ D(m+ 1, 1)

⊂ D(m+ 1, 2) ⊂ · · · ⊂ D(n− 2m,m),

and each set from above is obtained from the previous one in the sequence by adjoining
at most one more distance; thus the difference between consecutive sets is either empty
or a singleton. Therefore, card(D(a, b)) is an increasing sequence of consecutive
elements that lie between card(D(m, 1)) and card(D(n− 2m,m)). Observe now that
the upper bound card(D(n− 2m,m)) is at least n− 2m− 1 ≥ [

n
2

]
.

Further, the set D(m, 1) consists of integers between 1 and 2m2 (note that we have
the asymptotic behavior m2 ∼ n) that are sums of two perfect squares. It is known
that whenever μ = λ2 + δ2 and p is a prime number p ≡ 3 (mod 4) if p divides μ,
then p2 also divides μ. Thus, the density of the set of numbers that are sums of two
perfect squares is bounded by the product over the primes p

∏

p≡3 (mod 4)

(
1 − 1

p
+ 1

p2

)
,

which tends to 0. Therefore, for n large enough, we have card(D(m, 1)) < εn, which
proves the claim.
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Comments 52 The result is due to P. Erdős, who proposed it in 1980 as a problem
in Amer. Math. Monthly, related to another question that he considered long ago. In
1946, Erdős posed the problem of determining the minimum number d(n) of different
distances determined by a set of n points in R

2, proved that d(n) ≥ cn1/2, and
conjectured that d(n) ≥ cn/

√
log n. If true, this inequality is best possible, as shown

by the lattice points of the plane. The best result known is due to J. Solymosi and
Cs.D. Tóth, and yields d(n) > cn6/7.

• P. Erdős: On the set of distances of n points, Amer. Math. Monthly 53 (1946),
248–250.

• P. Erdős: Problem 6323, Amer. Math.Monthly 87 (1980), 826.
• J. Solymosi, Cs.D. Tóth: Distinct distances in the plane, The Micha Sharir birthday

issue, Discrete Comput. Geom. 25 (2001), 629–634.

Problem 2.64. Show that it is possible to pack 2n(2n + 1) nonoverlapping pieces
having the form of a parallelepiped of dimensions 1 × 2 × (n+ 1) in a cubic box of
side 2n+ 1 if and only if n is even or n = 1.

Solution 2.64. Let us consider the cube composed of (2n + 1)3 cells of dimensions
1×1×1, which are labeled using the coordinate system (a1, a2, a3), ai ∈ {1, . . . , 2n+
1}.

1. Case n = 1. The 6 pieces are arranged as follows. The first three pieces are
given by

x1 = {(1, 1, 2), (1, 1, 3), (1, 2, 2), (1, 2, 3)},
x2 = {(1, 2, 1), (1, 3, 1), (2, 2, 1), (2, 3, 1)},
x3 = {(2, 1, 1), (3, 1, 1), (2, 1, 2), (3, 1, 2)}.

The next three pieces x4, x5, x6 are located as above, by permuting the indices 3 and
1. The cells (1, 1, 1), (2, 2, 2), (3, 3, 3) remain empty.

2. Suppose now that n is even. We have then (2n+1)3−2n(2n+1)·1·2·(n+1) =
2n+1 cases that remain empty. Each sliceP1,i = {(i, a, b)|a, b ∈ {1, 2, . . . , 2n+1}}
can be divided in four smaller boxes P1,i;1 = {(i, a, b)|a ≤ n+ 1, b ≤ n}, P1,i;2 =
{(i, a, b)|n+ 2 ≤ a, b ≤ n+ 1}, P1,i;3 = {(i, a, b)|n+ 1 ≤ a, n+ 2 ≤ b}, P1,i;4 =
{(i, a, b)|a ≤ n, n+ 1 ≤ b} and one extra cell, namely {(i, n+ 1, n+ 1)}.

Each box P1,i;s has dimensions 1 × n× (n+ 1) and can be covered by n
2 pieces

1 × 2 × (n+ 1). The remaining cells of coordinates (i, n+ 1, n+ 1) remain empty.
3. Assume further that n is odd, n ≥ 3, and that there exists a packing as in

the statement. One associates to a cell (a1, a2, a3) the number p, which counts the
number of i ∈ {0, 1, 2, 3} such that ai = n + 1. One colors the cell blue if p = 3,
red if p = 2, yellow when p = 1, and leaves it colorless when p = 0. Then, we have
one blue cell and 6n red cells.

Now, for each i ≤ 2n+ 1, k ∈ {1, 2, 3}, we set Pk,i = {a1, a2, a3), ak = i}.
Then each slice Pk,i contains an odd number of cells (2n+ 1)2. In the meantime,

every piece contains an even number of cells from a given slice Pk,i , which might be
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2, n+ 1, or 2(n+ 1) cells, respectively. This means that in each slice Pk,i there exists
at least one empty cell.

The total number of empty cells is 2n+1, and for fixed k the slicesPk,1, . . . , Pk,2n+1
are disjoint, so that each slice Pk,i contains exactly one empty cell. In particular, the
set consisting of the blue cell and the red ones contains at most one empty cell.

Furthermore, each piece S contains colored cells because n+1 > 1
2 (2n+1), and

it fits into one of the cases below:
Type 1. S contains the blue cell, n+ 1 red cells, and n yellow cells.
Type 2. S does not contain the blue cell, and it contains 2 red and 2n yellow cells.
Type 3. S does not contain the blue cell, and it contains 1 red, n+ 1 yellow, and

n colorless cells.
Type 4. S does not contain either the blue cell or red cells, but 2 yellow and 2n

colorless cells.
Let us analyze now the total number of colored cells which can be covered by all the
pieces.

• The blue cell is empty. Then there are nonempty red cells and we compute that
the 2n(2n+ 1) pieces contain 2n(2n+ 1) · 2 + 6n · n = 14n2 + 4n colored cells.

• One red cell is empty. Then there exists a piece S of type 1 that contains n+ 1 red
cells and 4n2 + 2n− 1 pieces of type 2. Altogether they contain 5n− 2 red cells.
Then the pieces contain 2n+ 2 + (4n2 + 2n− 1) · 2 + (5n− 2)n = 13n2 + 4n
colored cells.

• The blue and red cells are not empty. Then the pieces of soap will contain nmore
colored cells than in the previous case.

However, the total number of colored cells within the cube is 1 + 6n+ 12n2, and for
n ≥ 3, we have the inequality 13n2 + 4n > 12n2 + 6n+ 1, which is a contradiction,
because the pieces are supposed to be nonoverlapping.

4. Second proof when n > 3. For k ∈ {1, 2, 3}, let us denote bymk the number of
pieces whose longest side is orthogonal to the plane of the slice Pk,i . Each such piece
has exactly 2 cells in common with Pk,n+1. Every piece from the remaining ones has
either n+ 1 or 2(n+ 1) cells in common with Pk,n+1. Therefore, n+ 1 should divide
the number of remaining cells, which is 4n(n+ 1)− 2mk = (2n+ 1)2 − 1 − 2mk .
This implies that n+ 1 divides mk for all k.

Moreover, the total number of cells is m1 + m2 + m3 = 2n(2n + 1). Since
gcd(n, n+ 1) = gcd(n, 2n+ 1) = 1, we derive that n ∈ {1, 3}.
Problem 2.65. Let F be a finite subset of R with the property that any value of the
distance between two points from F (except for the largest one) is attained at least
twice, i.e., for two distinct pairs of points. Prove that the ratio of any two distances
between points of F is a rational number.

Solution 2.65. Let F = {s1, . . . , sn} be a finite set from a vector space V over Q.
Consider the n(n − 1)/2 difference vectors si − sj , where i < j . Some difference
vectors appear several times in the difference vectors sequence, and we call them D
vectors. We will prove a more general result: The vector space generated by those
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differences that are not D vectors coincides with the vector space generated by all
difference vectors.

Proof of the claim. Let us assume the contrary. By the Hahn–Banach lemma, there
exists a linear functional f : V → Q that vanishes on those vectors that are not D
vectors, although f is nonzero on all difference vectors. Observe that we can replace
V with a finite-dimensional linear subspace that contains F .

Let M = f (si),m = f (sj ) be the greatest and respectively the smallest values
from f (F ), where of course, m �= M . The set of linear functionals f : V → Q that
map F one-to-one into Q is dense in the set of linear functionals. Consequently, there
exists g : V → Q that injects F into Q such that

|f (s)− g(s)| ≤ 1

5
(M −m), for all s ∈ F.

Consider g(sp) the maximal value and g(sq) the minimal value within the set g(F ) ⊂
Q. Therefore sp − sq is not a D vector and thus f vanishes: f (sp − sq) = 0. This
implies that

g(si)− g(sj ) ≤ g(sp)− g(sq) ≤ f (sp)− f (sq)+ 2

5
(M −m) = 2

5
(M −m).

On the other hand, g is closely approximated by f ; hence

g(si)− g(sj ) ≤ g(sp)− g(sq) ≤ f (sp)− f (sq)+ 2

5
M − n = 2

5
(M − n),

and also

g(si)− g(sj ) ≥ f (si)− 1

5
(M −m)−

(
f (sj )+ 1

5
(M −m)

)
= 3

5
(M −m),

contradicting the previous equality. This proves our general claim.
Assume now that F ⊂ R, and the extreme points of F are 0 and 1. Consider then

V = R as a vector space over Q. From the hypothesis, 1 is the only distance that is
not attained twice. The claim above tells us that the Q-linear space generated by 1
contains all difference vectors. Thus all distances are rational.

Comments 53 The Hahn–Banach lemma, alluded to above, says that for any vector
subspace W of the vector space V and any vector v ∈ V that does not belong to W ,
there exists a linear map f : V → R such that f (W) = 0 but f (v) �= 0.

The result from the statement is due to Mikusiński and Schinzel, and the proof given
above is due to Straus.

• J. Mikusiński, A. Schinzel: Sur la réductibilité de certains trinômes, Acta Arith.
9 (1964), 91–95.

• E.G. Straus: Rational dependence in finite sets of numbers, Acta Arith. 11 (1965),
203–204.
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Geometry Solutions

7.1 Synthetic Geometry

Problem 3.1. Let I be the center of the circle inscribed in the triangle ABC and
consider the points α, β, γ situated on the perpendiculars from I on the sides of the
triangle ABC such that

|Iα| = |Iβ| = |Iγ |.
Prove that the lines Aα,Bβ,Cγ are concurrent.

Solution 3.1. The lines Aα,Bβ,Cγ are concurrent if and only if they satisfy Ceva’s
theorem. Let us draw A1A2 ‖ BC, where A1 ∈ |AB|, A2 ∈ |AC|, and α ∈ |A1A2|.
We also draw their analogues. Using Thales’ theorem, the Ceva condition is reduced
to ∏

cyclic

|αA2|
|αA1| = 1.

Now I is situated on all three bisectors and |Iγ | = |Iα|. By symmetry we have
|C1γ | = |A2α| and their analogues. This shows that the Ceva condition is satisfied.

Problem 3.2. We consider the angle xOy and a pointA ∈ Ox. Let (C) be an arbitrary
circle that is tangent to Ox and Oy at the points H and D, respectively. Set AE for
the tangent line drawn from A to the circle (C) that is different from AH . Show that
the lineDE passes through a fixed point that is independent of the circle (C) chosen
above.

Solution 3.2. Let A′ be the point on Oy such that |OA′| = |OA|. Let us further
consider the intersection points AE ∩Oy = {F } and DE ∩ |AA′| = {P }.
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O

A

A'

D
F

E
P

H

We use Menelaus’s theorem in the triangle AFA′ with the line DEP as transversal.
We have |PA′|

|PA| · |EA|
|EF | · |DF |

|DA′| = 1.

But one knows that |EA| = |AH |, |EF | = |DF |, and |A′D| = |AH |. Then |PA′|
|PA| =

1, and therefore P is the midpoint of |AA′|. Consequently, P is a fixed point.

Problem 3.3. Let C be a circle of center O and A a fixed point in the plane. For any
point P ∈ C, let M denote the intersection of the bisector of the angle ÂOP with
the circle circumscribed about the triangle AOP . Find the geometric locus of M as
P runs over the circle C.

Solution 3.3. One knows that OM is the bisector of ÂOP , and therefore OM is the
mediator of the segment PB. Also,M is the midpoint of the arc of the circle ÂP , and
thereforeM belongs to the mediator of the segment |AP |. In the triangle PAB,M is
the intersection of two mediators, and hence it also belongs to the mediator of segment
|AB|. It is immediate now that the geometric locus of M is the entire mediator.

Problem 3.4. Let ABC be an isosceles triangle having |AB| = |AC|. If AS is an
interior Cevian that intersects the circle circumscribed aboutABC at S, then describe
the geometric locus of the center of the circle circumscribed about the triangle BST ,
where {T } = AS ∩ BC.

Solution 3.4. We have B̂ST = B̂CA = ĈBA. Thus the line AB is tangent to the
circle circumscribed about BST . Consequently, the center of this circle is situated on
the line that passes through B that is perpendicular to AB.
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Problem 3.5. LetAB,CD,EF be three chords of length one on the unit circle. Then
the midpoints of the segments |BC|, |DE|, and |AF | form an equilateral triangle.

Solution 3.5. Leta, b, c, d, e, f be the complex affixes (coordinates) of the respective
points on the unit circle and ε = exp

( 2πi
3

)
. Then the triangles OAB,OCD,OEF

are equilateral, and therefore we have the following complex identities:

a + εb = 0,

εc + ε2d = 0,

ε2e + f = 0.

These imply that a+f2 + ε b+c2 + ε2 d+c
2 = 0. Now the midpoint of |AF | has the affix

a+f
2 , and the other midpoints are similarly associated to b+c

2 and d+e
2 . The relation

above is equivalent to the claim of the statement.

Problem 3.6. Denote by P the set of points of the plane. Let � : P × P → P be
the following binary operation: A � B = C, where C is the unique point in the plane
such that ABC is an oriented equilateral triangle whose orientation is counterclock-
wise. Show that � is a nonassociative and noncommutative operation satisfying the
following “medial property”:

(A � B) � (C � D) = (A � C) � (B � D).

Solution 3.6. Let A �= B,A � B = C. Then (A � B) � C = C � C = C. But
A � (B � C) = A �A = A �= C; therefore the operation � is nonassociative. Because
A � B,B � A are symmetric with respect to AB, the operation � is noncommutative.

Now identify the points of the plane with complex numbers. Set ε = exp
( 2πi

3

)
.

We have then A � B = A+ ε(B − A). It is now easy to verify that

(A � B) � (C � D) = (1 − ε)2A+ ε(1 − ε)(B + C)+ ε2D.

Moreover, this expression is symmetric in B and C.

Comments 54 It is possible to take an arbitrary ε ∈ C and to define A �ε B = C,
where C is the point such that the triangle ABC is similar to the triangle determined
by the points 0, 1, and ε. Again, the medial property holds for this binary law.

Problem 3.7. Consider two distinct circles C1 and C2 with nonempty intersection
and let A be a point of intersection. Let P,R ∈ C1 and Q,S ∈ C2 be such that
PQ and RS are the two common tangents. Let U and V denote the midpoints of the
chords PR and QS. Prove that the triangle AUV is isosceles.

Solution 3.7. Let B be the other intersection point of the two circles. It is known
that the line AB is the radical axis of the two circles, i.e., the geometric locus of the
points having the same power with respect to the two circles. Let us then consider the
intersection point AB ∩ |PQ| = X. The power of X with respect to either circle is
PC1(X) = |XA| · |XB|. On the other hand, PC1(X) = |XP |2 and PC2(X) = |XQ|2,
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and so we obtain that X is the midpoint of |PQ|. Thus the line AB passes through
the midpoints of |PQ| and |RS|, and thus it is also passes through the midpoint of
|UV |, being also orthogonal to the latter. This shows that AUV is isosceles.

Problem 3.8. If the planar triangles AUV, VBU , and UVC are directly similar to a
given triangle, then so is ABC. Recall that two triangles are directly similar if one
can obtain one from the other using a homothety with positive ratio, rotations and
translations.

Solution 3.8. Using complex numbers, each similarity (i.e., homothety) has the form
z �→ αiz + βi , for some αi, βi ∈ C. The fixed triangle has its vertices located at
z1, z2, and z3, and the pointsA,B,C,U, V are located at a, b, c, u, v respectively. By
hypothesis, u = αizi+1 + βi and v = αizi+2 + βi , where the indices are considered
mod 3. This implies that αizi(zi+1 − zi+2) = zi(u − v) and βi(zi+1 − zi+2) =
zi+1v − zi+2u, so that

3∑

i=1

(αizi + βi)(zi+1 − zi+2) = 0.

But from
3∑

i=1

(zi+1 − zi+2) = 0,
3∑

i=1

zi(zi+1 − zi+2) = 0

we derive

det

⎛

⎝
a z1 1
b z2 1
c z3 1

⎞

⎠ = det

⎛

⎝
α1z1 + β1 z1 1
α2z2 + β2 z2 1
α3z3 + β3 z3 1

⎞

⎠ = 0,

which is equivalent to saying that ABC is similar to the fixed triangle.

Problem 3.9. Find, using a straightedge and a compass, the directrix and the focus
of a parabola. Recall that the parabola is the geometric locus of those points P in the
plane that are at equal distance from a point O (called the focus) and a line d called
the directrix.

Solution 3.9. Let� be an arbitrary direction in the plane. We draw two distinct lines
�1 and �2 cutting the parabola in two nontrivial chords X1X2 and Y1Y2, both being
parallel to �. Let X, Y be the midpoints of |X1X2| and respectively |Y1Y2|. It is
simple to show that the line XY (called the diameter conjugate to the direction �)
is parallel to the symmetry axis of the parabola. Moreover, let T� be the intersection
point between the lineXY and the parabola. Then the line that passes through T� and
is parallel to � is tangent (at T�) to the parabola.

Now we will use a well-known theorem in the geometry of conics, which claims
that if P is a point in the plane (outside the convex hull of the parabola), PA, PB
are the two tangents to the parabola issued from P (where A and B belong to the
parabola) and if the angle ÂPB = π

2 , then AB is a focal chord, i.e., the focus F lies
on the chord |AB|.
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Choose now the direction �⊥ that is orthogonal to � and construct as above the
point T�⊥ on the parabola. Then, according to the previous result, the chord T�T�⊥
is focal.

Choose next another couple of orthogonal directions, δ and δ⊥, and derive the new
focal chord TδTδ⊥ . Then the two focal chords intersect at the focus T�T�⊥ ∩TδTδ⊥ =
{O}. Moreover, we can draw the axis of symmetry of the parabola as the line passing
through the focus that is parallel to (any) diameter conjugate to XY .

Finally, let S be the intersection of the axis with the parabola and let O ′ be the
symmetric of the focus with respect to S. Then the directrix d is the line passing
through O ′ that is orthogonal to the axis OSO ′.

Then �̃, the conjugate of �, meets � at a point on the axis. We represent then
�, �̃ and we find two points of the axis.

Problem 3.10. Prove that if M is a point in the interior of a circle and AB ⊥ CD

are two chords perpendicular at M , then it is possible to construct an inscribable
quadrilateral with the following lengths:

∣∣|AM| − |MB|∣∣, |AM| + |MB|, ∣∣|DM| − |MC|∣∣, |DM| + |MC|.
Solution 3.10. Let us construct AF ‖ CD and CE ‖ AB, where the points E,F lie
on the given circle.
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Then the intersection point BF ∩ ED = O is the center of the circle. Moreover, we
can compute |CE| = ∣∣|MB| − |MA|∣∣ and |AF | = ∣∣|MD| − |MC|∣∣. We rotate the
triangle CED around the center O in order to superpose ED onto FB. Call C′ the
new position of the point C. Then, the length of the fourth side of the quadrilateral
ABC′F is |BC′| = |DM| + |MC|.
Problem 3.11. If the Euler line of a triangle passes through the Fermat point, then
the triangle is isosceles.

Solution 3.11. The Euler lineOG is determined by the circumcenterO and the cen-
ter of gravity G. The trilinear coordinates of the points involved are G(sinB sinC,
sinA sinC, sinA sinB), O(cosA, cosB, cosC), and the Fermat point F(sin(B +
60), sin(C + 60), sin(A + 60)). Therefore, G,O, and F are collinear only if the
determinant of their trilinear coordinates vanishes. By direct calculation, this deter-
minant can be computed as

sin(A− B) sin(B − C) sin(C − A) = 0,

and hence the triangle must be isosceles.

Problem 3.12. Consider a point M in the interior of the triangle ABC, and choose
A′ ∈ AM,B ′ ∈ BM , and C′ ∈ CM . Let P,Q,R, S, T , and U be the intersections
of the sides of ABC and A′B ′C′. Show that PS, TQ, and RU meet at M .

Solution 3.12. The triangles ABC and A′B ′C′ are in perspective with centerM , and
hence A′C′ ∩ AC,B ′C′ ∩ BC, and B ′A′ ∩ BA are collinear. Let xy be the line on
which these points lie.

We make a projective transformation that sends the line xy into the line at infinity.
This way, the sides of the two triangles become pairwise parallel.

Consider A′ fixed and let the points B ′′, C′′ be mobile points sitting on AB ′ and
AC′, respectively. If we move the line B"C" by keeping it parallel to BC, then the
intersection pointsQ′ = AB ∩B ′′C′′ and P ′ = AC ∩B ′′C′′ determine homographic
divisions on AB and AC. When we reach the position where A ∈ B ′′C′′, we see that
Q′T ∩ SP ′ = A; also, when we reach the position for which A′ ∈ B ′′C′′, we find
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thatQ′T ∩ SP ′ = A′. Therefore, sinceQ′, P ′ determine homographic divisions, we
obtain that for any position of B ′′C′′, we have Q′T ∩ SP ′ ∈ AA′. In particular, this
happens when B ′′C′′ = B ′C′, and thus QT ∩ SP ∈ AA′. Analogously, we have
QT ∩ RU ∈ CC′, SP ∩ RU ∈ BB ′. According to Pascal’s theorem, the diagonals
of the hexagon PQRSTU are concurrent, since the edges are pairwise parallel. This
shows that QT ∩ SP ∩ RU ∈ AA′ ∩ BB ′ ∩ CC′ = M .

Problem 3.13. Show that if an altitude in a tetrahedron crosses two other altitudes,
then all four altitudes are concurrent.

Solution 3.13. If the altitude hA fromA intersects hB , thenAB⊥CD. Similarly, if hA

intersects hC , thenAC⊥BD. These can be written vectorially as 〈 →
AB,

→
AD − →

AC〉 =
0, and 〈 →

AC,
→
AD − →

AB〉 = 0, where 〈, 〉 denotes the Euclidean scalar product. These

imply that 〈 →
AB − →

AC,
→
AD〉 = 0, which is equivalent to AD⊥BC. This implies that

all four altitudes are concurrent.

Problem 3.14. Three concurrent Cevians in the interior of the triangle ABC meet
the corresponding opposite sides atA1, B1, C1. Show that their common intersection
point is uniquely determined if |BA1|, |CB1|, and |AC1| are equal.

Solution 3.14. Let |BA1| = |CB1| = |AC1| = δ. From Ceva’s theorem, we obtain

(a − δ)(b − δ)(c − δ) = δ3.

We may assume that a ≤ b ≤ c, and hence δ ∈ [0, a].
The left-hand side is a decreasing function of δ ranging from the value abc,

obtained for for δ = 0, to 0, when δ = a. Further, the right-hand-side function δ3 is
strictly increasing. Therefore, the two functions can have only one common value on
the interval [0, a]. This determines uniquely the intersection point.

Comments 55 Also, if we ask that |CA1|, |BC1|, and |AB1| be equal, their common
value δ̃ coincides with the δ we found above. In particular, the two intersection points
are isotomic to each other.

Problem 3.15. LetABCD be a convex quadrilateral with the property that the circle
of diameter AB is tangent to the line CD. Prove that the circle of diameter CD is
tangent to the line AB if and only if AD is parallel to BC.

Solution 3.15. Let M be the midpoint of |AB| and draw the perpendicular MM ′ ⊥
CD, where M ′ ∈ CD. Then M ′ is the contact point of the circle C1 of diameter AB
and the line CD. Thus ÂM ′B = π

2 , and so |MM ′| = |AB|
2 . Conversely, ifM,M ′ are

as above and satisfy the condition |MM ′| = |AB|
2 , then the circle of diameter AB is

tangent to CD.
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Let nowO = AB∩CD, assuming that the two lines are not parallel. If |OM| = λ

and ÂOD = θ , then |MM ′| = λ sin θ and so |MB| = |MA| = λ sin θ . This turns to

|OB|
|OA| = |OM| + |MA|

|OM| − |MB| = λ(1 + sin θ)

λ(1 − sin θ)
= 1 + sin θ

1 − sin θ
.

Conversely, |OB|
|OA| = 1+sin θ

1−sin θ implies that |MM ′| = |MA| = |MB|.
Let now P be the midpoint of CD and draw the perpendicular PP ′ ⊥ AB,

with P ′ ∈ AB. The previous argument shows that |PP ′| = |CD|
2 is equivalent to

|OC|
|OD| = 1−sin θ

1+sin θ , which, according to Thales’ theorem, is equivalent to saying thatAD

is parallel to BC. But |PP ′| = |CD|
2 iff the circle of diameter CD is tangent to AB,

as claimed.
The last case occurs when AB is parallel to CD. Then |MM ′| is the distance

between the lines AB and CD, and hence |MM ′| = |AB|
2 = |CD|

2 . Thus ABCD is a
parallelogram, and hence AD is parallel to BC.

Problem 3.16. Let A′, B ′, C′ be points on the sides BC,CA,AB of the triangle
ABC. LetM1,M2 be the intersections of the circleA′B ′C′ with the circleABA′ and
let N1, N2 be the analogous intersections of the circle A′B ′C′ with the circle ABB ′.

1. Prove thatM1M2, N1N2, AB are either parallel or concurrent, in a point that we
denote by A′

1;
2. Prove that the analogously defined points A′

1, B
′
1, C

′
1 are collinear.

Solution 3.16. 1. More precisely,M1M2, N1N2, AB are the radical axes of the three
pairs of circles formed by A′B ′C′, ABB ′, and ABC′. The first part follows.

2. Further, A′
1 is the radical center of A′B ′C′, ABB ′, ABA′, and thus |A′

1A| ·
|A′

1B| = p
A′

1
ABB ′ = p

A′
1

A′B ′B ′ , where p denotes the power of the point with respect to

the given circle. Therefore p
A′

1
A′B ′C′ = p

A′
1

ABC , and their analogues, which imply that
the three pointsA′

1, B
′
1, andC′

1 belong to the radical axis of the pair of circlesA′B ′C′
and ABC.

Problem 3.17. A circumscribable quadrilateral of area S = √
abcd is inscribable.

Solution 3.17. By the circumscribability hypothesis, we have a + c = b + d . Let k
be the length of the diagonal that leaves a, b on one side and c, d on the other side.
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Let α, β be the angles of the quadrilateral between a and b, and c and d, respectively.
We have then the law of cosines computing k:

k2 = a2 + b2 − 2ab cosα,

k2 = c2 + d2 − 2cd cosβ.

Subtracting the terms (a − b)2 = (c − d)2, we obtain

2ab(1 − cosα) = 2cd(1 − cosβ).

Now compute the area S of the quadrilateral S = 1
2 (ab sin α+ cd sin β), which is by

hypothesis
√
abcd. Therefore

4S2 = 4abcd = a2b2(1 − cos2 α)+ c2d2(1 − cos2 β)+ 2abcd sin α sin β.

From the former identity, we obtain

4abcd = ab(1+cosα)cd(1−cosβ)+cd(1+cosβ)ab(1−cosα)+2abcd sin α sin β.

After simplification of the terms, we obtain

4 = 2 − 2 cos(α + β),

and therefore α + β = π . This implies that the quadrilateral is inscribable.

Problem 3.18. Let O be the center of the circumcircle, Ge the Gergonne point, Na
the Nagel point, andG1, N1, the isogonal conjugates ofG andN , respectively. Prove
thatG1, N1, andO are collinear (see also the Glossary for definitions of the important
points in a triangle).

Solution 3.18. We will use the trilinear coordinates with respect to the given trian-
gle. These are triples of numbers (see the triangle compendium from the Glossary)
proportional to the distances from the given point to the edges of the triangle. The
trilinear coordinates behave very nicely when we consider the isogonal conjugate. If

P has the coordinates (x, y, z), then its isogonal conjugate has coordinates
(

1
x
, 1
y
, 1
z

)
.

The trilinear coordinates of the points considered above are then

O(cosA, cosB, cosC),

Ge

(
1

a(p − a)
,

1

b(p − b)
,

1

c(p − c)

)
, G1 (a(p − a), b(p − b), c(p − c)) ,

Na

(
p − a

a
,
p − b

b
,
p − c

c

)
, N1

(
a

p − a
,

b

p − b
,

c

p − c

)
.

Further, three points are collinear if the determinant of the 3 × 3 matrix of their
coordinates vanishes. The claim from the statement is then equivalent to the following
identity:
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det

⎛

⎝
cosA cosB cosC

a(p − a) b(p − b) c(p − c)
a

p−a
b

p−b
c

p−c

⎞

⎠ = 0.

We develop the determinant and obtain

∑

cyclic

cosA bc

(
p − b

p − c
− p − c

p − b

)
=

∑

cyclic

cosA
bc

(p − b)(p − c)
a(c − b).

This vanishes iff ∑

cyclic

cosA (p − a)(c − b) = 0,

which is equivalent to

∑

cyclic

(b2 + c2 − a2)(c − b)(−a + b + c)a = 0,

which is immediate.
Note that we could use instead the barycentric coordinates as well. These coordi-

nates are triples of numbers proportional to the areas of the three triangles determined
by the point and two of the vertices of the initial triangle. The barycentric coordinates
of the points considered above are given by

O(a, b, c), Ge

(
1

p − a
,

1

p − b
,

1

p − c

)
, G1

(
a2(p − a), b2(p − b), c2(p − c)

)
,

Na (p − a, p − b, p − c) , N1

(
a2

p − a
,
b2

p − b
,
c2

p − c

)
.

Finally, three points are collinear if and only if their coordinate matrix has vanishing
determinant.

7.2 Combinatorial Geometry

Problem 3.19. Consider a rectangular sheet of paper. Prove that given any ε > 0,
one can use finitely many foldings of the paper along its sides in either 2 equal parts
or 3 equal parts to obtain a rectangle whose sides are in ratio r for some r satisfying
1 − ε ≤ r ≤ 1 + ε.

Solution 3.19. Observe that log3 2 �∈ Q and thus the residues modulo 1 of the ele-
ments n log3 2, with n ∈ Z+, form a dense subset of (0, 1). This implies that the set
of numbers of the form 2a3b, with a, b ∈ Z, are dense in R.

Problem 3.20. Show that there exist at most three points on the unit disk with the
distance between any two being greater than

√
2.
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Solution 3.20. Consider the pointsAi on the unit disk of radius 1 and centerO. Then
|OAi | ≤ 1, and if we assume that |AiAj | >

√
2, then 2 < |OAi |2 + |OAj |2 −

2|OAi | · |OAj | cos ÂiOAj . Thus, cos ÂiOAj < 0 and hence ÂiOAj > π
2 , which

implies that n ≤ 3.

Comments 56 H.S.M. Coxeter proposed this problem in 1933. The same argument
shows that if we have k pointsAi within the unit disk, then there exists a pair of points
such that |AiAj | ≤ max

(
1, 2 sin π

k

)
, and this is sharp for 2 ≤ k ≤ 7.

The result was generalized to higher dimensions by Davenport, Hajós, and, indepen-
dently, Rankin, as follows: There are at most n+ 1 points in the unit ball of R

n such
that the distance between any two points is greater than

√
2.

Here is a proof sketch. Let Ai denote the m points satisfying the hypothesis, so that
they are different from the origin O. Then we have m ≥ n + 2 unit vectors OAi|OAi |
in R

n with the property that 〈vi, vj 〉 < 0. We claim next that there exist pairwise
orthogonal subspaces W1,W2, . . . ,Wm−n ⊂ R

n that span R
n such that each space

Wj contains 1+dimWj vectors among the unit vectors above, v1, . . . , vm, that span
Wj . Since m − n ≥ 2, there exist two vectors among the vi that are orthogonal to
each other, which contradicts our assumptions. The claim follows by induction on the
dimension n. If n = 2, it is immediate. Now, if vi = −vn, for some i < n, then all
other vj should be orthogonal to vn (and to vi). Otherwise, we can write for all i < n,
vi = ui + xivn, for some scalars xi < 0 and some nonzero vector ui orthogonal to
vn. This implies that 〈ui, uj 〉 < 0, when i �= j . We can apply therefore the induction
hypothesis for the subspace orthogonal to vn and the set of vectors vi , i < n, and
obtain the subspacesW ′

j . We define thenWi = W ′
i , for i ≥ 2, and letW1 be the span

of W ′
1 and vn. This proves the claim.

The claim shows that if we have m ≥ n + 2 points on the unit sphere in R
n whose

pairwise distances are at least
√

2, thenm ≤ 2n, and moreover, there exist two points
at distance precisely

√
2.

• H.S.M. Coxeter: Amer. Math. Monthly 40 (1933), 192–193.
• R.A. Rankin: The closest packing of spherical caps in n dimensions, Proc. Glas-

gow Math.Assoc. 2 (1955), 139–144.

Problem 3.21. A convex polygon with 2n sides has at least n diagonals not parallel
to any of its sides. The equality is attained for the regular polygon.

Solution 3.21. Let l be a side of the polygon. Then we have at most n− 2 diagonals
parallel to l. In fact, let d1, d2, . . . , dp be these diagonals. Then the pair of seg-
ments (d1, l) determines a quadrilateral (actually a trapezoid) having three common
sides with the polygon. Moreover, all the pairs (d2, d1), . . . , (dp−1, dp) determine
quadrilaterals, each one containing two sides of the initial polygon. This implies that
p ≤ n− 2.

The total number of diagonals that are parallel to at least one side is at most
2n(n− 2). But there are 2n(2n−3)

2 diagonals, and hence n(2n− 3)− 2n(n− 2) = n

diagonals with the desired property.
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Problem 3.22. Let d be the sum of the lengths of the diagonals of a convex polygon
P1 · · ·Pn and p its perimeter. Prove that for n ≥ 4, we have

n− 3 < 2
d

p
<

[n
2

] [n+ 1

2

]
− 2.

Solution 3.22. Set αk = ∑n
i=1 |PiPi+k|. We will prove first that

p = α1 < α2 < α3 < · · · < α[ n2 ] and α[ n2 ]+1 > · · · > αn−2 > αn−1 = p.

Let us show first that p < α2. Let AiAi+2 ∩ Ai+1Ai+3 = {Oi+1}. Observe that
|Ai+1Oi+1| ≤ |Ai+1Oi+2|, since ̂Ai+1Ai+2Oi+1 ≤ ̂Ai+1Ai+2Oi+2. The triangle
inequality in AiOiAi+1 further yields

|Ai+1Oi+1| + |Oi+1Ai+2| > |Ai+1Ai+2|.

Summing up these inequalities, and using the remark, it follows that p < α2, as
claimed.

Let now k <
[
n
2

] − 1, and set AiAi+k ∩ Ai+1Ai+k+1 = {O}. The triangle
inequality again shows that

|AiAi+k| + |Ai+1Ai+k+1| = |AiO| + |OAi+k| + |Ai+1O| + |OAi+k+1|
> |Ai+1Ai+k| + |AiAi+k+1|.

By summing up over i, we obtain

2αk > αk+1 + αk−1;
thus

αk+1 − αk < αk − αk−1 < · · · < α2 − α1,

and hence the claim.
Moreover, if n = 2m, then

2αm > αm+1 + αm−1 = 2αm+1,

and so αm > αm−1. Thus, we have proved that αk+1 > αk for all k. By summing up
all these inequalities over k, we find that 2d > (n− 3)p.
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Further, consider the triangle inequality |AiAj | < |AiAi+1| + · · · + |Aj−1Aj |
and sum up over all i and j ; this yields

2d <

(([n
2

] [n+ 1

2

])
− 2

)
p.

Problem 3.23. Find the convex polygons with the property that the function D(p),
which is the sum of the distances from an interior point p to the sides of the polygon,
does not depend on p.

Solution 3.23. Let K be our polygon, p an interior point, a1, . . . , an the distances
from p to the sides ofK , and let u1, . . . , un be unit vectors perpendicular to the sides.
Choose another point, say q, in the interior of K . Denote by v the vector pq. The
distance from q to the side with label i is therefore di = ai +〈ui, v〉, where 〈, 〉 is the
scalar product. It follows that

D(q) = D(p)+
〈 n∑

i=1

ui, v

〉
.

Therefore, a necessary and sufficient condition for D(p) to be constant is that

n∑

i=1

ui = 0.

Observe that the solution can be extended to convex polyhedra in R
m.

Problem 3.24. Prove that a sphere of diameter 1 cannot be covered by n strips of
width li if

∑n
i=1 li < 1. Prove that a circle of diameter 1 cannot be covered by n strips

of width li if
∑n
i=1 li < 1.

Solution 3.24. 1. The lateral area of the body obtained by cutting off the sphere with
two planes at distance h is 2πRh. Let us assume that we have a covering by means
of the strips Bi . Then the sum of areas cut open by the strips Bi is at least the area of
the sphere, hence π

∑n
i=1 li ≥ π , contradicting our assumptions.

2. If we had such a covering, letB∗
i be the spatial strip that cuts the planar stripBi ,

orthogonal to the plane of the circle. Then the union of the strips B∗
i would cover the

cylinder over the disk, in particular the sphere of diameter 1. This would contradict
the first part.

Problem 3.25. Consider n points lying on the unit sphere. Prove that the sum of the
squares of the lengths of all segments determined by the n points is less than n2.

Solution 3.25. Let O be the center of the sphere and let Xi denote the given points.
We denote by vj the vector

−−→
OXj , and by 〈, 〉 the Euclidean inner product. We have

then
|XiXj |2 = 〈vj − vi, vj − vi〉.
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Set S = ∑
i,j |XiXj |2. We have then

2S =
n∑

i=1

〈vi − v1, vi − v1〉 +
n∑

i=1

〈vi − v2, vi − v2〉 + · · · +
n∑

i=1

〈vi − vn, vi − vn〉

= 2n(|v1|2 + · · · + |vn|2)− 2
∑

i,j

〈vj , vi〉

= 2n
n∑

i=1

|vi |2 − 2〈v, v〉 = 2n2 − 2|v|2 ≤ 2n2,

where v = ∑n
i=1 vi .

Problem 3.26. The sum of the vectors
−−→
OA1, . . . ,

−−→
OAn is zero, and the sum of their

lengths is d . Prove that the perimeter of the polygon A1 . . . An is greater than 4d/n.

Solution 3.26. If A is an arbitrary point in the plane, then n
−→
OA = ∑n

i=1(
−−→
OAi +−−→

AiA) = ∑n
i=1

−−→
AiA, which implies that n|OA| ≤ ∑ |AiA|. Let us put A = Ai for

i = 1, 2, . . . , n and sum up the inequalities so obtained:

d = |OA1| + · · · + |OAn| ≤ 2

n

∑

i,j

|AiAj |.

Using the triangle inequality,

|AiAj | < |AiAi+1| + · · · + |Aj−1Aj |,
we infer that

d ≤ 2

n

(
p + 2p + · · · + n− 1

2
p

)
= n2 − 1

4n
p.

Therefore p ≥ 4d n
n2−1

> 4d
n

.

Problem 3.27. Find the largest numbers ak , for 1 ≤ k ≤ 7, with the property that
for any point P lying in the unit cube with vertices A1 . . . A8, at least k among the
distances |PAj | to the vertices are greater or equal than ak .

Solution 3.27. At least eight distances are greater than or equal to 0, and this is sharp
by taking P = Aj , and hence a8 = 0.

By taking P to be the midpoint of an edge, we get a7 ≤ 1
2 . Assume that a7 <

1
2 .

Then there exists some P for which at least two distances |PAj | are strictly smaller
than 1

2 , which is obviously false, since vertices are distance 1 apart. Thus a7 = 1
2 .

Consider P as the center of some face of the cube. We obtain then a6 ≤ a5 ≤
√

2
2 .

If equality does not hold above, then there exists P for which three distances are

smaller than
√

2
2 . However, given three vertices of the cube, there are at least two of

them at distance greater than or equal to the diagonal of a face, namely
√

2. Thus our

assumption fails and so a6 = a5 =
√

2
2 .
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Now let P be the center of the cube. We derive that a4 ≤ a3 ≤ a2 ≤ a1 ≤
√

3
2 .

Assume that a4 <
√

3
2 . Then there exist P and at least five distances strictly smaller

than
√

3
2 . However, for any choice of five vertices of a cube, one finds a pair of

opposite vertices that are distance
√

3 apart. This contradicts our assumptions and

thus a4 = a3 = a2 = a1 =
√

3
2 .

Problem 3.28. The line determined by two points is said to be admissible if its slope is
equal to 0, 1,−1, or ∞. What is the maximum number of admissible lines determined
by n points in the plane?

Solution 3.28. We join two points by an edge if the line determined by them is ad-
missible. We obtain a graph with n vertices. By hypothesis, each vertex has degree
at most 4. Since the sum of degrees over all vertices is twice the number of edges,
we find that there are at most 2n edges, thus at most 2n admissible lines. Moreover,
there are only four directions in the plane, and the same computation shows that there
are at most 1

2n edges associated to every direction. This implies that for odd n, the
maximum number of admissible lines is 2n− 2.

It is easy to construct examples in which we have precisely 2n admissible lines
if n is even and n ≥ 12. For odd n, the associated graph is obtained by adding an
isolated vertex to a maximal graph of order n− 1, and this works for any n ≥ 3.

Finally, if f (n) denotes the maximum number of admissible lines, then explicit
inspection shows that f (2) = 1, f (3) = 3, and f (4) = 6, and so the upper bound
2n is not attained. It can be shown that f (6) = 11 and f (10) = 19. Therefore, for
all n but those from {2, 3, 4, 6, 10}, we have f (n) = 4

[
n
2

]
.

Comments 57 More generally, assume that the admissible directions are k in num-
ber. The same proof shows that there therefore exist at most

[
kn
2

]
admissible lines

determined by n points. Moreover, the minimum number of directions (not necessar-
ily admissible) defined by n points is at least n− 1. See also the article:

• P.R. Scott: On sets of direction determined by n points, Amer. Math. Monthly 77
(1970), 502–505.

Problem 3.29. If A = {z1, . . . , zn} ⊂ C, then there exists a subset B ⊂ A such that
∣∣∣∣
∑

z∈B
z

∣∣∣∣ ≥ π−1
n∑

i=1

|zi |.

Solution 3.29. We reorder the numbers z1, . . . , zn,−(z1 + · · · + zn) in a sequence
w1, . . . , wn+1 such that the sequence arg w1, . . . , arg wn+1 is monotonic. In the
complex plane, the points w1, w1 + w2, . . . , w1 + · · · + wn+1, are the vertices of a
convex polygon P .

Set d(P ) for the diameter of P . Since the diameter of a polygon is the distance
between two vertices, there exists B ⊂ A such that

d(P ) =
∣∣∣
∣
∑

zi∈B
zi

∣
∣∣∣.
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Let p(P ) be the perimeter of P . We have then

p(P ) =
∑

|wi | =
n∑

i

|zi | +
∣∣∣
∣

n∑

i

zi

∣∣
∣∣.

The main isoperimetric inequality states that for any convex planar polygon Q we
have the inequality πd(Q) ≥ p(Q). Applying this to the polygon P settles the claim.

Comments 58 Using a refined isoperimetric inequality for polygons with a given
number of vertices, one finds that there exists B ⊂ {1, . . . , n} such that

∣∣
∣∣
∑

i∈B
zi

∣∣
∣∣ ≥ sin(kπ/(2k + 1))

(2k + 1) sin(π/2k + 1)

n∑

i=1

|zi |.

Problem 3.30. LetA1, . . . , An be the vertices of a regular n-gon inscribed in a circle
of centerO. Let B be a point on the arc of circle A1An and set θ = ÂnOB. If we set
ak = |BAk|, then find the sum

n∑

k=1

(−1)kak

in terms of θ .

Solution 3.30. We have ak = 2r sin
(
kπ
n

− θ
2

)
. Then

n∑

k=1

(−1)kak cos
π

2n
=

∑
(−1)kr

(
sin

(
(2k − 1)π

2n
− θ

2

)
+ sin

(
(2k + 1)π

2n
− θ

2

))

=
(
−1 + (−1)n+1

)
r sin

(
π

2n
− θ

2

)
,

which leads us to

n∑

k=1

(−1)kak =
{

2r sin
(
θ
2 − π

2n

) (
cos π

2n

)−1
, for even n,

0, for odd n.

Problem 3.31. Consider n distinct complex numbers zi ∈ C such that

min
i �=j |zi − zj | ≥ max

i≤n |zi |.

What is the greatest possible value of n?

Solution 3.31. Let |zn| = maxi≤n |zi |; then the zi belong to the disk of radius R =
|zn| centered at the origin. Moreover, the distance between two points of complex
coordinates zi and zj is given by |zi − zj |, which by hypothesis is greater than R.
In particular, we have n points whose pairwise distances are at least R within the
circle of radius R. Let O be the origin and Zi the points. We order the points Zi in
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increasing order with respect to their arguments. If the origin is among the Zi , then
we choose it to be the first point. Further, there remain at least n − 1 points distinct
from the origin. One knows that

n∑

i=2

̂ZiOZi+1 = 2π,

and thus there exists at least one angle ̂ZiOZi+1 ≤ 2π
n−1 . In particular, if n ≥ 8,

then |ZiZi+1| ≤ R

√
2 − 2 cos ̂ZiOZi+1 < R, contradicting our assumptions. Thus

n ≤ 7 and the maximal value n = 7 is reached by the configuration of six vertices of
a regular hexagon together with the origin.

Problem 3.32. The interior of a triangle can be tiled by n ≥ 9 pentagonal convex
surfaces.What is the minimal value ofn such that a triangle can be tiled byn hexagonal
strictly convex surfaces?

Solution 3.32. There is an obvious recurrence, showing how to go from k to k + 3.

We still have to find the appropriate tiling for n ∈ {9, 10, 11}. If n = 9, then we
have the following tiling of the triangle:

A slight deformation of the left corner pentagon shows that a concave quadrilateral
can also be tiled with nine pentagons. Moreover, a tiling by n pentagons of a concave
quadrilateral can be adjusted as below to a tiling of a triangle with n+ 1 pentagons.
This method furnishes a tiling with any number n ≥ 9 of pentagons.
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2. We will show that there are no hexagonal tilings of triangles with convex tiles.
Assume the contrary. We call a tiling good if no hexagon tile has sides in common
with (at least) two sides of the triangle.

Given an arbitrary tiling, we can construct a good tiling of a triangle as follows.
First, the triangle can be assumed to be a right triangle by means of the following
transformation. Consider the cone in R

3 over the initial tiled triangle with a cone
vertex far away, and cut it by a convenient plane so that one of the angles of the
section become right angled. The trace of the coned tiling in the planar section is still
a hexagonal tiling with convex polygons. Further, we double the right triangle along
one of its sides and obtain a tiling that has no hexagons with common edges with both
of the sides opposite to the doubled side. Applying again the same procedure yields
a good tiling.

The main feature of a good tiling by convex polygons is that any hexagon having
a common side with the triangle (called a boundary hexagon) has precisely one side
in common, excepting the case in which the hexagon might have a common angle
with the triangle (called an exceptional boundary hexagon). In the last case, we have
a vertex of the hexagon and its incident sides that are common with the vertex of a
triangle and its incident sides. Thus there are λ ∈ {0, 1, 2, 3} exceptional boundary
hexagons. Let a∂ be the total number of boundary hexagons and ain the hexagons that
are interior, i.e., they have no sides in common with the triangle.

Construct the dual graph associated to the tiling. This is a planar graph whose
vertices have degree 6. The edges going outside of the triangle will be called exterior
edges of the graph, and the remaining ones interior edges. The number of vertices of
this graph is a = ain + a∂ . Counting the sum of degrees of all vertices, we obtain
6a on one side, and 2ein + eo, where ein (respectively eo) is the number of interior
(respectively exterior) edges. Moreover, each exterior edge comes from a unique
boundary hexagon, and two different edges come from different hexagons, excepting
the exceptional hexagons, which have two outgoing edges. Thus eo = a∂ + λ. This
implies that ein = 3a − 1

2 (a∂ + λ).
If we erase the exterior edges of our graph, then we obtain a planar polygon

partitioned into polygons (duals of the hexagons). The total number of vertices is a,
the number of edges is ein and the number of faces f can be estimated from above
as follows. We have ain vertices in the interior of a polygon with a∂ sides. Each
polygon has at least three sides (because our initial hexagons were supposed to be
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strictly convex). Consider the sum of angles of all polygons involved. On the one
hand this yields 2πain + π(aδ − 2), and on the other hand this is at least πf . Thus
f ≤ 2ain + a∂ − 2. The Euler–Poincaré theorem requires that

1 = a − ein + f ≤ a −
(

3a − 1

2
(a∂ + λ)

)
+ 2ain + a∂ − 2 = λ

2
− 2 − a∂

2
.

But λ ≤ 3 and a∂ ≥ 0 lead us to a contradiction.

Comments 59 The same proof shows that there does not exist a tiling of the quadri-
lateral by strictly convex hexagons.

Problem 3.33. We say that a transformation of the plane is a congruence if it preserves
the length of segments. Two subsets are congruent if there exists a congruence sending
one subset onto the other. Show that the unit disk cannot be partitioned into two
congruent subsets.

Solution 3.33. Let us assume that the diskD can be partitioned asD = A∪B, where
A and B are congruent. Let p denote the center of D, and assume that p ∈ A. Let
F : A → B be a congruence.

Let rs be the diameter that is perpendicular to the linepF(p). For any point x ∈ D,
we have |px| ≤ 1. Thus |F(p)F (x)| ≤ 1, for any x ∈ A, and thus |F(p)y| ≤ 1,
for any y ∈ B. Now |F(p)r| > 1 and |F(p)s| > 1, and thus r, s ∈ A. Fur-
ther, |F(r)F (s)| = |rs| = 2 and thus F(r)F (s) is a diameter of the disk. Since
|F(r)F (p)| = |F(s)F (p)| = 1, we derive that F(p) is the midpoint of the diameter
F(r)F (s), and thus it coincides with the centerp. This contradiction proves the claim.

Comments 60 Actually, the same argument shows that the disk cannot be partitioned
into finitely many congruent sets. The problem is due to B.L. Van der Waerden. More
generally, D. Puppe showed that the same holds for any convex compact set in the
plane. See also:

• H. Hadwiger and H. Debrunner: Combinatorial Geometry in the Plane, translated
by V. Klee. With a new chapter and other additional material supplied by the
translator, New York, 1964.

Problem 3.34. Prove that the unit disk cannot be partitioned into two subsets of
diameter strictly smaller than 1, where the diameter of a set is the supremum distance
between two of its points.
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Solution 3.34. Observe first that the diameter of a planar set A coincides with the
diameter of its closure A in R

2. Assume that the disk is partitioned into two sets A
and B of smaller diameter. The points of the boundary circle cannot belong to only
one of the partition sets, since opposite points are at distance 1. One the other hand,
the unit circle cannot be written as the union of two disjoint nontrivial closed subsets
(i.e., closed intervals) because it is connected. This implies that there exists some
point M of the unit circle that belongs to both A and B. Consider now the opposite
point M ′ on the circle. If M ′ ∈ A, then A has diameter 1; otherwise, M ′ ∈ B and so
B has diameter 1, which gives us a contradiction.

Problem 3.35. A continuous planar curve L has extremities A and B at distance
|AB| = 1. Show that, for any natural number n there exists a chord determined by
two points C,D ∈ L that is parallel to AB and whose length |CD| equals 1

n
.

Solution 3.35. Assume that L does not admit chords CD parallel to AB either of
length a or of length b. We will show that L does not admit chords CD parallel to
AB of length a+ b. Let Tx be the planar translation along the line AB of the number
of x units. We have, by hypothesis,

TaL ∩ L = ∅ and TbL ∩ L = ∅.
This implies thatTa+bL∩TaL = ∅. On the other hand, let d(U, V ) denote the distance
between the sets U and V in the plane, given by infP∈U,Q∈V |PQ|. Then obviously
d(Ta+bL,L) ≤ d(TaL,L) + d(Tb+aL, TaL). This implies that d(Ta+bL,L) = 0
if d(TaL,L) = d(Tb+aL, TaL) = 0. Moreover, L and Ta+b(L) are closed subsets,
and thus the distance is attained, i.e., there exist P ∈ L and Q ∈ Ta+b(L) such that
|PQ| = d(L, Ta+b(L)). In particular, P = Q and thus Ta+bL∩L �= ∅, proving our
claim.

Suppose now that there is no parallel chord of length a = b = 1
n

. Then we derive
that there is no such chord of length 2

n
. Take a = 1

n
and b = 2

n
. The previous claim

shows that there is no chord of length 3
n

. An easy induction shows that there is no
chord of length k

n
for k ≤ n. This contradicts the fact that AB has length 1.

Comments 61 The result is due to H. Hopf, who characterized all the possible lengths
of chords arising as above.

• H. Hopf: Über die Sehnen ebener Kontinuen und die Schleifen geschlossener
Wege, Comment. Math. Helv. 9 (1937), 303–319.

Problem 3.36. The diameter of a set is the supremum of the distance between two
of its points. Prove that any planar set of unit diameter can be partitioned into three

parts of diameter no more than
√

3
2 .

Solution 3.36. The main ingredient is to show that a planar set F of unit diameter is
contained within a regular hexagon whose opposite sides are at distance 1.

Given a vector v = v1, let us consider the thinest strip Sv parallel to v that
contains F . Then the strip Sv is bounded by two parallel lines, each line containing
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at least one point of F , by the minimality of the strip. In particular, the width of the
strip is bounded by the distance between two points of F , and so by the diameter
of F .

Now let v2 be the image of v1 by a rotation of angle π3 , and let v3 be the image of the
rotation of angle 2π

3 . The intersection of the corresponding stripsHv = Sv1 ∩Sv2 ∩Sv3

is a semiregular (i.e., all opposite edges are parallel) hexagon having all angles 2π
3 .

However, in general, this hexagon is not regular.

We choose two opposite vertices, say A and A′, of the parallelogram Sv1 ∩ Sv2 .
For instance, we choose A such that the vectors spanning the parallelogram issued
from it are positive multiples of both v1 and v2. We denote by x the distance from
A to the strip Sv3 and by x′ the distance from A′ to the strip Sv3 . We observe that
the hexagon Hv is regular if x = x′. Moreover, let us set f (v) = x − x′. Obviously,
the function that associates to the vector v the quantity x − x′ is continuous. Let us
compute f (−v), by rotating v through π . This amounts to interchanging A with A′,
and thus f (−v) = −f (v). A continuous function taking both positive and negative
values must have a zero. Thus there exists some position of v for which f (v) = 0
and so Hv is regular.

Further, the regular hexagon of width 1 can be partitioned into three pieces having

diameter
√

3
2 , as in the figure below:

This proves the claim.

Comments 62 K. Borsuk proved in 1933 that a planar set of diameter 1 can be
partitioned into subsets of diameter d < 1. The main ingredient above is a lemma
due to J. Pál, from 1920. B. Grünbaum proved (improving on ideas of D. Gale) that a
set of unit diameter in R

3 is contained in a regular octahedron of width 1, with three of
its vertices (one vertex on each diagonal) cut off by planes orthogonal to the diagonals,
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at distance 1
2 from the center. Using a suitable dissection of this polyhedron, one finds

that the set F can be partitioned into four pieces having diameter not bigger than
√

6129030 − 937419
√

3

1518
√

2
≈ 0.9887.

Gale’s conjecture from 1953, that one can always get a partition into four pieces of

diameter no bigger than
√

3+√
3

6 , is still open.

• D. Gale: On inscribing n-dimensional sets in a regular n-simplex, Proc. Amer.
Math. Soc. 4 (1953), 222–225.

• B. Grünbaum: A simple proof of Borsuk’s conjecture in three dimensions, Math.
Proc. Cambridge Philos. Soc. 53 (1957), 776–778.

Problem 3.37. 1. Prove that a finite set of n points in R
3 of unit diameter, can be

covered by a cube of side length 1 − 2
3n(n−1) .

2. Prove that any planar set of n points having unit diameter can be partitioned into

three parts of diameter less than
√

3
2 cos 2π

3n(n−1) .

Solution 3.37. 1.A direction will mean below a line without specified orientation. The
angle between two directions is the smallest among the four angles they define, and
thus it is always within the range

[
0, π2

]
. Consider the set of n points {x1, x2, . . . , xn},

which determine at most N = n(n−1)
2 distinct directions xixj , which we denote

by l1, l2, . . . , lN . We want to prove first that there exist three mutually orthogonal
directions y1, y2, y3, so that

min
1≤i≤3,1≤s≤N ∠(yi, ls) ≥ arccos

(
1 − 1

3N

)
.

Consider an orthogonal frame in R
3 given by three mutually orthogonal vectors

e1, e2, e3, and choose the rotation R1 and R2 of the space with the property that
R1e1 = e2, R1e3 = e3, R2e1 = e3, R2e2 = e2. Using these rotations, we have

min
1≤i≤3,1≤s≤N ∠(yi, ls) = min

1≤s≤N min(∠(y1, ls),∠(y1, R1ls),∠(y1, R2ls)).

Consider the set of 3N directions D = {lj , R1lj , R2lj , 1 ≤ j ≤ N}. We will prove
the following estimate from below:

max
y

min
l∈D ∠(y, l) ≥ arccos

(
1 − 1

3N

)
= θ,

for an arbitrary set D of 3N directions. Assume the contrary. The set of directions
y making an angle smaller than θ with a given direction l form a symmetric cone
Cl,θ of angle 2θ with axis l. If there is no direction y satisfying the inequality above,
then the union of all cones Cl,θ , over l ∈ D will cover the set of all directions in
space. Each symmetric cone Cl,θ intersects the unit sphere along a symmetric pair of
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spherical caps of radius θ . In particular, these spherical caps cover the surface of the
whole sphere, since a point not covered yields a direction not belonging to the union.
Furthermore, this implies that the total area of the spherical caps is (strictly) greater
than the area of the sphere. Now, the area of each spherical cap is 2π(1 − cos θ), and
thus the total area covered by the cones is 12πN(1− cos θ) = 4π . But 4π is the total
area of the sphere, which contradicts the claim. Observe that the inequality must be
strict, since N ≥ 1 and any covering of the sphere by nontrivial spherical caps will
have some overlaps.

Consider now three mutually orthogonal directions yj satisfying the claim above.
Let further ξj ⊂ yj be the image of the given set of points under orthogonal projection
ontoyj . The distance between the images ofxi andxk onyj is |xixk| cos ∠(yj , xixk) ≤
sin θ . Thus each subset ξj is contained in some interval of length less than cos θ , and
thus the set of points is contained in the strip of width sin θ , orthogonal to yj . The
intersection of the three orthogonal strips associated to the direction yj is a cube of
side length cos θ , and the claim follows.

2. The second part follows using the same idea. This time, we consider three
directions y1, y2, y3 in the plane such that y2 is obtained by a counterclockwise
rotation R1 of angle π

3 from y1, and y3 by a counterclockwise rotation R2 of angle π
3

from y2. We claim that for any N directions in the plane, we have

min
1≤i≤3,1≤s≤N ∠(yi, ls) ≥ π

6N
= α.

The same trick as above shows that the 3N symmetric angle sectors of angle 2α cover
the set of all directions and thus the unit circle. Now, the total length of arcs covered
by these symmetric cones is 12Nα = 2π , and the claim follows.

Therefore, the set of points is contained within the intersection of three strips of

width w = cos
(

2π
3n(n−1)

)
, which are orthogonal, respectively, to the directions yj .

The intersection is a semiregular hexagon H . Since all three strips have the same
width, we find that there are only two different side lengths, as in the figure below:

This means that H is the intersection of two equilateral triangles of the same
incenter O. Let A1, . . . , A6 be the vertices of H . We have then |A1A2| = |A3A4| =
|A5A6| = a and |A2A3| = |A4A5| = |A6A1| = b. Moreover, by computing the
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width of H , we find that the lengths a, b are constrained to satisfy a + b = 2√
3
w.

Assume from now on that a ≤ b.We divide the hexagonH by means of three segments
OP,OQ,OR orthogonal to the three longest sides of the hexagon. The diameter of
the pentagonOPA1A2Q is one of its diagonals, and one computes easily |PQ| = a+
b
2 , |OA1| =

√
3b2+(2a+b)2

2
√

3
, and |PA2| ≤ |PQ| since ∠(PA2Q) ≥ ∠(PQA2) = π

3 .

Using the relation between a and b, we obtain that |PQ| ≤ 3
4 (a + b) ≤

√
3

2 w, with
equality only when a = b and the hexagon is regular. On the other hand, |OA1| ≤ 2w

3 ,
with equality when a = 0. This implies that the diameter of each piece is at most√

3
2 w, where w has the value found above.

Comments 63 This version of Borsuk’s problem for finite sets and its higher-
dimensional generalization for covering by cubes was given in:

• L. Funar: A minimax problem in geometry (in Romanian), Proc. 1986 Nat. Conf.
Geometry and Topology - Tîrgoviste, Univ. Bucharest, 91–96, 1988.

Problem 3.38. Prove that any convex body in R
n of unit diameter having a smooth

boundary can be partitioned into n+ 1 parts of diameter d < 1.

Solution 3.38. The first step is to observe that the claim holds for the unit ball Bn.
We consider the regular spherical simplex obtained by projecting the regular simplex
onto the sphere from its incenter. The n + 1 faces of the spherical simplex form a
dissection into pieces of diameter smaller than 1, since there are no opposite points
lying in the same face. Otherwise, one can compute explicitly the diameter of each
piece.

Consider the convex body F with smooth boundary W ⊂ R
n. The only point

where the smoothness is used is when we assume that there exists a unique tangent
hyperplane TpW at each point p of W . Moreover, there exists a unique unit vector
vp in R

n, based at p, that is orthogonal to the tangent hyperplane TpW and points
toward the half-space that does not contain F . This permits us to define a smooth
map G : W → Sn−1 to the unit sphere centered at the origin O, usually called the
Gauss map in differential geometry. We associate to the point p ∈ W the unique point
G(p) ∈ Sn−1 for which the vectors OG(p) and vp are parallel, and so the tangent
space TpW is parallel to the tangent hyperplane TG(p)Sn−1 at the point G(p) on the
sphere. Since F is convex andW is smooth, the mapG is a smooth diffeomorphism.

Consider now the preimage by G of a partition of the unit sphere into pieces of
diameter smaller than 1. This yields a partition of W into n + 1 pieces, which we
denote by A1, A2, . . . , An+1. We claim that each piece Aj has diameter smaller than
1. Assume the contrary. We can replace the Aj by their closures, without modifying
their diameters. Now there should exist two points x, y ∈ Aj at distance 1, which is
the diameter of F . Let TxW and TyW be the tangent planes atW at x, y respectively.
ThenTxW andTyW are orthogonal to the segment xy. Otherwise, a small perturbation
x′ ∈ W of x in some tangent direction from TxW , making an obtuse angle with xy,
will increase the length of |x′y|, but the diameter of W is no larger than 1.
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Therefore G(x) and G(y) are opposite points on the unit sphere, and moreover,
they belong to the same set of the partition, but this is impossible, since the pieces of
the partition are of diameter strictly smaller than 1.

Comments 64 The question whether any set F in R
n can be partitioned into n+ 1

pieces of strictly smaller diameter is known as Borsuk’s problem. Since the diameter
of a set equals the diameter of its convex hull, it suffices to consider the problem the
convex sets. The result in the problem above was obtained by H. Hadwiger in 1945.
The case left open is that in which the convex body has corners.

There was no significant progress in the subject until 1993, when J. Kahn and G.
Kallai gave an unexpected counterexample by showing that the minimal number
f (n) of pieces needed for a dissection into parts of strictly smaller diameter satisfies
f (n) ≥ (1.1)

√
n for large n and that f (n) > n + 1 for n ≥ 1825. The subsets that

they considered are finite sets of points. This bound was subsequently lowered by N.
Alon and then, by A. Hinrichs, and C. Richter to n = 298. A thorough treatment
of the subject is in the recent book of Boltyanski, Martini, and Soltan. However, the
4-dimensional case is still open.

• V. Boltyanski, H. Martini, and P.S. Soltan: Excursions into Combinatorial Geom-
etry, Springer, Universitext, 1997.

• H. Hadwiger: Überdeckung einer Menge durch Mengen kleineren Durchmesser,
Commentarii Math. Helvet. 18 (1945/1946), 73–75, 19 (1946/1947), 71–73.

• A. Nilli: On Borsuk’s problem, Jerusalem combinatorics ’93, 209–210, Contemp.
Math., 178, Amer. Math. Soc., Providence, RI, 1994.

• J. Kahn and G. Kalai: A counterexample to Borsuk’s conjecture, Bull.Amer. Math.
Soc. 29 (1993), 1, 60–62.

Problem 3.39. Let D be a convex body in R
3 and let σ(D) = supπ area(π ∩ D),

where the supremum is taken over all positions of the variable plane π . Prove thatD
can be divided into two parts D1 and D2 such that σ(Di) < σ(D).

Solution 3.39. Choose a point in the interior ofD and a sequence of chords l1, l2, . . . ,
ln, . . . of D passing through this point, the chords being dense in D. Choose also a
sequence ε of positive numbers decreasing rapidly to zero. Let Cn be the set of
points at distance less than εn from ln. By choosing ε small enough, we can ensure
that σ(Cn) < 2−nσ (D). Set D1 = ∪∞

n=1Cn and D2 = D − D1. Then σ(D1) <∑∞
n=1 σ(Cn) < σ(D). It is also clear that for any plane π , area(π ∩ D2) < σ(D).

But D2 is a compact and area(π ∩D2) is a continuous function on the plane π . The
set of planes that intersect D can be parameterized by a point in D (which will be
considered the origin) times the projective space RP 2, and thus by a compact set.
Thus area(π ∩ D2) achieves its minimum, which will therefore be strictly smaller
than σ(D).

Comments 65 The problem was proposed by L. Funar and the solution above was
given by C.A. Rogers. A more interesting question is to consider dissections into convex
subsets. The additional convexity assumption implies that the boundary structure of
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each piece (at the interior of the body) should be polyhedral. In particular, the minimal
number of convex pieces with smaller σ , which the unit ball requires, is 3.

If the bodyD is strictly convex (meaning that the open segment determined by two of
its boundary points is contained in the interior of D) or D is a polyhedron without
parallel edges, then we can show that four pieces suffice. By a recent result of M.
Meyer, two plane sections of maximal area cannot be disjoint. Fix a maximal-area
cross-section F and let F(ε) be the set of points of D, at distance less than ε from
F . The complement of F(ε) has two components, A+ and A−, which are of strictly
smaller σ , because there is no maximal-area plane section contained completely in
D − F(ε). Further, F(ε) can be subdivided, by a hyperplane orthogonal to F , into
two pieces of smaller σ if ε is small enough. However, we don’t know whether three
pieces suffice for an arbitrary convex body.

A related problem is whether we have σ(D) ≤ 1
4 area(∂D), where ∂D denotes the

boundary of D. This would imply that the number of maximal area planar sections
with disjoint interiors is at most 4, with equality for the regular simplex.

• L. Funar: Problem E 3094, Amer. Math. Monthly 92 (1985), 427.
• M. Meyer: Two maximal volume hyperplane sections of a convex body generally

intersect, Period. Math. Hungar. 36 (1998), 191–197.

Problem 3.40. If we have k vectors v1, v2, . . . , vk in R
n and k ≤ n + 1, then there

exist two vectors making an angle θ with cos θ ≥ − 1
k−1 . Equality holds only when

the endpoints of the vectors form a regular (k − 1)-simplex.

Solution 3.40. Assume that the vectors vj are unit vectors. Then

∑

1≤i<j≤k
|vi − vj |2 ≤

⎛

⎝
∑

1≤i<j≤k
|vi − vj |2

⎞

⎠ +
∣∣∣∣∣

k∑

i=1

vi

∣∣∣∣∣

2

= k

k∑

i=1

|vi |2 = k2.

Thus there exists at least one pair i, j for which |vi − vj |≤ 2k
k−1 . This is equivalent to

the fact that the angle θ between vi and vj satisfies the claimed inequality.

Problem 3.41. 1. Consider a finite family of bounded closed convex sets in the
plane such that any three members of the family have nonempty intersection.
Prove that the intersection of all members of the family is nonempty.

2. A set of unit diameter in R
2 can be covered by a ball of radius

√
1
3 .

Solution 3.41. 1. Assume that the convex sets are A1, A2, . . . , Ak and k ≥ 4. We
claim that if each k − 1 sets among them have a common point, then all of them
should have a common point. The result of the problem follows by using recurrently
the previous claim.

Before proceeding, we observe that given a set of k ≥ 4 points in the plane, we
can find two subsets whose convex hulls intersect nontrivially. Here the convex hull
of a set of points is the smallest convex polygon containing these points (and thus all
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segments pairwise connecting them). In fact, if we choose four points among them,
then their convex hull is either a triangle containing the fourth point in its interior, or
else a quadrilateral having two diagonals crossing each other.

Let pi be a point belonging to ∩j �=i,j≤kAi and possibly not to Ai . There
exists therefore a partition of the set {p1, p2, . . . , pk} = P ∪ Q, where P =
{pi1 , pi2 , . . . , pim} and Q = {pj1 , pj2 , . . . , pjk−m}, such that the convex hull of the
subset P intersects in at least one point the convex hull of the subset Q. Recall that
each point ofP belongs to ∩i �∈{i1,i2,...,im}Ai , which is convex as the intersection of con-
vex sets. Thus the convex hull of P is equally contained within ∩i �∈{i1,i2,...,im}Ai . The
same argument shows that the convex hull of Q is contained in ∩j �∈{j1,j2,...,jk−m}Aj .
Since the two convex hulls have at least one common point, this therefore belongs to
∩ki=1Ai , as claimed.

2. It suffices to see that any finite subset is contained in a disk of radius
√

1
3 , which

means that the intersection of balls centered at that points of radius
√

1
3 is nonempty.

By the previous claim, it suffices to consider the case of three points. If the triangle
made by these points is obtuse, then we can take the disk whose diameter is the largest
side of the triangle. If not, then all angles of the triangle are acute and there exists at

least one angle, say A ≥ π
3 . The circumradius of the triangle is R = a

2 sinA ≤
√

1
3 .

Comments 66 The first part of the problem is the particular case of the celebrated
Helly’s theorem, proved in 1923: if a family of closed convex sets in R

n has the
property that any n + 1 among them have a common point, then the intersection of
all sets is nonempty.

The second claim was generalized by Jung in 1901, who proved that any set of diameter
1 in R

n admits an unique n-ball of minimal radius covering it, and the minimal radius

is bounded by
√

n
2(n+1) . The original proof of Jung’s theorem was quite complicated,

but there exists an elementary proof given later by Blumenthal and Wahlin.

It is worthy of notice that any subset of R
n of diameter 1 can be covered also by a

simplex of diameter
√
n(n+1)

2 , according to Gale.

• L.M. Blumenthal, G.E. Wahlin: On the spherical surface of smallest radius en-
closing a bounded subset of n-dimensional Euclidean space, Bull. Amer. Math.
Soc. 47 (1941), 771–777.

• L. Danzer, B. Grünbaum, andV. Klee: Helly’s theorem and its relatives, Convexity,
Proc. Symposia Pure Math. vol. 7, AMS, 1963, 101–180.

• D. Gale: On inscribing n-dimensional sets in a regular n-simplex, Proc. Amer.
Math. Soc. 4 (1953), 222–225.

• H.W.E. Jung: Über die kleinste Kugel, die eine räumliche Figur einschliesst, J.
Reine Angew. Math. 123 (1901), 241–257.

Problem 3.42. Let T be a right isosceles triangle. Find the disk D such that the
difference between the areas of T ∪D and T ∩D is minimal.
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Solution 3.42. Let us show that the circle C boundingD has the following two prop-
erties, valid for an arbitrary triangle T :

1. The circle C is split into three arcs outside T and three arcs inside T . Then the
total length of the outside arcs equals the total length of the inside arcs.

2. The three chords determined by the edges of T have their lengths proportional to
the respective side lengths.

1.Assume thatC has fixed center.When the radius ofC increases by ε, area(T−D)
decreases as linε

2, where lin is the length of the inside arcs. On the other hand,
area(D − T ) decreases as louε

2, where lou is the length of the outside arcs. Thus we
have a local minimum only if (lin − lou)ε

2 does not increase and thus lin = lou.
2. Assume now that C has fixed radius. Since area(T − D) − area(D − T ) =

area(T )− area(D), it is sufficient to minimize area(D−T ). Consider that the center
of D is slightly translated by εu, where u is a unit vector.

Then we can compute the change of area(S − T ) by summing the contribution
of each chord sector. The contribution of A1A2 is εu × (

A1A2
)

and thus the total
variation is

εu× (
A1A2 + B1B2 + C1C2

)
.

The variation must be zero in all directions u and so we obtain the condition

A1A2 + B1B2 + C1C2 = 0.

This implies that the chords are proportional to the side lengths.

If T is right isosceles triangle of unit side length, then the centerO of the circleC
belongs to the altitude, by symmetry considerations. Denote by x the distance from
the centerO to the edges CB and CA, by y the distance fromO to the edgeAB. The
angles determined by the outside chords are 2α, 2β, 2β respectively. SinceO belongs
to the altitude, we have y + √

2x = 1
2 . Moreover, the first claim above implies that

α + 2β = π
2 and thus cosα = sin 2β. This translates into y

r
= 2x

r2

√
r2 − x2 and

thus y2r2 = 4x2r2 − 4x4. The second statement above implies that
√
r2 − y2/

√
2 =√

r2 − x2, and thus introducing above, we obtain 2r2 = 4x − 1. In particular, x
satisfies the equation

16x4 − 16x3 − 12x2 + 8x − 1 = (
4x2 + 2x − 1

)(
4x2 − 6x + 1

) = 0.
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The only convenient root is x =
√

5−1
4 , since among the remaining ones, one is

negative, another one is larger than 1, and the last one would lead to a negative value
for r . Thus

r =
√

1

2

(√
5 − 2

)
, y = 1 + √

2 − √
5

2
√

2
,

and the circle is determined by these parameters.

Problem 3.43. Let r be the radius of the incircle of an arbitrary triangle lying in the

closed unit square. Prove that r ≤
√

5−1
4 .

Solution 3.43. It is clear that the inradius of a triangle contained in a larger triangle
is not bigger than the inradius of the bigger triangle. Thus it suffices to consider only
triangles whose vertices lie on the boundary of the square. Further, at least one vertex
of the triangle can be assumed to be in a corner of the triangle. If two vertices of
the triangle belong to the same edge, then we can assume that these vertices are the
endpoints of that edge, as above. Thus it suffices to consider the triangleOAB whose
vertices are O = (0, 0), A = (a, 1), and B = (1, b) with 0 ≤ a, b ≤ 1. The inradius
of a triangle of area S and semiperimeter p is given by r = S

p
. Therefore,

r = 1 − ab√
1 + a2 + √

1 + b2 + √
(1 − a)2 + (1 − b)2

.

The inequality to be proved is then equivalent to

F(a, b) =
√

1 + a2 +
√

1 + b2 +
√
(1 − a)2 + (1 − b)2 − (√

5 + 1
)
(1 − ab) ≥ 0

for 0 ≤ a, b ≤ 1. We have F(a, 0) ≥ 0. Further, ∂
2F
∂2a

> 0 by a simple computation.

Let ε2 = 1 − 6
√

3
(1+√

5)2
.

1. If 1 ≤ b ≤ 1
4 , set f (x) = F(x, b). Then we observed above that f ′(x) is

increasing, and since f ′(0) = (
1 + √

5
)
y − 1

y2−2y+2
> 0, then f ′(x) > 0 for any

x, and thus f (x) is increasing. In particular, F(a, b) ≥ F(0, b) ≥ 0, provided that
1
4 ≤ b ≤ 1.

2. If 0 ≤ a ≤ 1
4 and 0 ≤ y ≤ ε, we have

f ′(x) = (
1 + √

5
)
b + x√

1 + x2
− 1 − x

√
(1 − x)2 + (1 − b)2

≤ (
1 + √

5
)
ε + x√

1 + x2
− 1 − x√

x2 − 2x + 2
.

Thus f ′( 1
4 ) < 0. As f ′ is increasing, we have f ′(x) < 0, for x ∈ [

0, 1
4

]
, and so f

is decreasing on
[
0, 1

4

]
. But f

( 1
4

) = F
( 1

4 , b
) = F

(
b, 1

4

) ≥ 0, by the previous case.
Thus F(a, b) ≥ 0, for 0 ≤ a ≤ 1

4 and 0 ≤ y ≤ ε.
3. Since F is symmetric, it suffices to check now the case ε ≤ a ≤ 1

4 and
ε ≤ b ≤ 1

4 . Actually, we will use only the fact that ab ≥ ε2. This amounts to saying
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that the area S of the triangle OAB is S = 1−ab
2 ≤ 1−ε2

2 . Any triangle satisfies the

inequality S ≤ p2

3
√

3
, obtained from the Heron formula for the area by the means

inequality. In our case, we have

r = S

p
≤ S

√
3
√

3S
≤ √

5 + 1.

This settles our claim.

Comments 67 The solution presented here is due to Abi-Khuzam and Barbara:

• L. Funar: Problem 6477, Amer. Math.Monthly 81 (1984), 588.
• F.Abi-Khuzam, R. Barbara: A sharp inequality and the inradius conjecture, Math.

Inequalities and Appl. 4 (2001), 323–326.

Problem 3.44. Let P be a point in the interior of the tetrahedron ABCD, with the
property that |PA| + |PB| + |PC| + |PD| is minimal. Prove that ÂPB = ĈPD

and that these angles have a common bisector.

Solution 3.44. Let fA(x) = |AX|. Then fA : E3 → E3 is a smooth function on
E3 − {A}. Moreover, the gradient function (∇fA)(X) is the unit vector of direction
AX, namely AX

|AX| . Consider now the function g = fA + fB + fC + fD for P ∈
int(ABCD). Then g having a minimum at P implies that

(∇g)(P ) =
∑

(∇fA)(P )+
∑

(∇fB)(P )+
∑

(∇fC)(P )+
∑

(∇fD)(P ) = 0.

If a, b, c, d are the unit vectors of directions AP,BP,CP,DP , then the previous
conditions reads a+ b+ c+ d = 0, or alternatively, −(a+ b) = c+ d. Observe now
that (a+b) is the direction of the bisector of the angle ÂPB, while c+d is the direction
of the bisector of ĈPD. Thus these two angles have a common bisector. On the other
hand, we have 〈a + b, a + b〉 = 〈c + d, c + d〉, and because |a| = |b| = |c| = |d|,
by simplifying the terms, we obtain that 〈a, b〉 = 〈c, d〉. This is equivalent to saying
that ÂPB = ĈPD.

Problem 3.45. Let OA1, . . . , OAn be n linearly independent vectors of lengths
a1, . . . , an. We construct the parallelepiped H having these vectors as sides. Then
consider the n altitudes in H as a new set of vectors and further, construct the paral-
lelepiped E associated with the altitudes. If h is the volume of H and e the volume
of E, then prove that

he = (a1 . . . an)
2.

Solution 3.45. Let vi = OAi and wi be the altitude vectors. We have the relations

〈wj , vi〉 = δij‖vi‖2,

where δij is Kronecker’s symbol and 〈, 〉 is the scalar product. The linear functionals
fi(vj ) = δij‖vi‖2 are linearly independent, and thus the dual vectors wj are linearly
independent. Thus E is well defined.
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Moreover, let A be the matrix consisting of the components of the vi’s and let B
be the matrix consisting of the components of the wj ’s. It follows that

AB� = diag
(‖v1‖2, . . . , ‖vn‖2),

where diag(c1, . . . , cn) denotes the diagonal matrix with given entries. Therefore

vol(E)vol(H) = | det A| · | det B�| = (a1 . . . an)
2.

Problem 3.46. Let F be a symmetric convex body in R
3 and let AF,λ denote the

family of all sets homothetic to F in the ratio λ that have only boundary points in
common with F . Set hF (λ) for the greatest integer k such that AF,λ contains k sets
with pairwise disjoint interiors. Prove that

hF (λ) ≤ (1 + 2λ)3 − 1

λ3 .

Solution 3.46. Set Bλ = ∪H∈AF,λH . We prove first that

Bλ ⊂ (1 + 2λ)F,

where αF denotes the homothety of F in ratio α. If v is a point of the boundary ∂F ,
let v′ be given by |ov′| = (1 + λ)|ov|, where o is the symmetry center of F . Set
Fv for the set in AF,λ having center at v′. Let x be a point on the boundary of Fv ,
ox ∩ ∂F = {a}, ov ∩ ∂Fv = {q}, and let vx′′ be parallel to qx, with x′′ ∈ ∂F . Then

q̂v′x = v̂′xo+ v̂′ox ≥ v̂′ox,

so that
v̂ox ≤ v̂ox′′ = q̂v′x.

Since F is convex, the intersection of the two segments |oa| ∩ |vx′′| is nonempty and
contains at least one point, say b. Then |vx′′| ⊂ F , b ∈ F , b ∈ |ox|. Since

‖oa‖
‖ox‖ ≥ ‖ob‖

‖ox‖ = ‖ov‖
‖oq‖ = 1

(1 + 2λ)
,

the point x belongs to (1 + 2λ)F .
Now assume that we have k subsetsFi ∈ AF,λ that have pairwise disjoint interiors.

Then their union is contained in Bλ, and all of them are disjoint from F . This means
that their union is contained in (1 + 2λ)F − F . Their total volume cannot therefore
exceed vol((1 + 2λ)F − vol(F ), and thus their number is bounded by

1

vol(F )

(
vol(1 + 2λ)F − vol(F )

) = (1 + 2λ)3 − 1

λ3 .

Comments 68 Hadwiger considered the problem of finding estimates for hF (1)
(which is called the Hadwiger number of F ) and proved in 1957 that
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n2 + n ≤ hF (1) ≤ 3n − 1

for a convex body F in R
n. Grünbaum conjectured in 1961 (and proved for n = 2)

that for any r satisfying these inequalities there exists a convex body F such that
hF (1) = r .

More generally, the proof used above shows that

hF (λ) ≤ (1 + 2λ)n − 1

λn
.

We have equality above only if 1
λ

∈ Z+ and F is a parallelohedral body. The result
is due to V. Boju and L. Funar.

There are no good estimates from below except in dimension 2. In fact, if n = 2,
the function λhF (λ) approaches an interesting invariant of the oval F , called the
intrinsic perimeter. Define the norm ‖ ∗ ‖F by means of

‖xy‖F = ‖xy‖
‖oz‖ ,

where z is a point of the boundary ∂F such that xy and oz are parallel. This is
called the Minkowski norm (or metric) defined by the oval F . The intrinsic perimeter
p(F) of ∂F is the limit of the perimeters of polygons inscribed in F that approach
∂F . For instance, the intrinsic perimeter of a circle is 2π and that of a square is 8.
Golab in 1932 and Reshetnyak in 1953 showed that the intrinisc perimeter satisfies
the inequalities

6 ≤ p(F) ≤ 8

with equality in the left side only when F is a hexagon, and on the right side only
when F is a rectangle.

Then it was proved by V. Boju and L. Funar that the intrinisc perimeter is related
to Hadwiger numbers by means of the formula

p(F) = 2 lim
λ→0

λhF (λ),

and moreover, we have

3 + 3

λ
≤ hF (λ) ≤ 4 + 4

λ
,

with equality on the left side only if 1
λ

∈ Z+ and F is an affine regular hexagon.
More about packing and covering invariants of convex bodies can be found in the

recent book of Böröckzy, and a complete survey on the Minkowski geometry in the
book of Thompson.

• V. Boju and L. Funar: Generalized Hadwiger numbers for symmetric ovals, Proc.
Amer. Math. Soc. 119 (1993), 931–934.

• K. Böröczky Jr.: Finite packing and covering, Cambridge Tracts in Mathematics,
154, Cambridge University Press, Cambridge, 2004.

• H. Hadwiger: Über Treffanzahlen be. translationsgleichen Eikörpern, Archiv
Math. 8 (1957), 212–213.
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• A.C. Thompson: Minkowski geometry, Encyclopedia of Mathematics and Its Ap-
plications, 63. Cambridge University Press, Cambridge, 1996.

Problem 3.47. Let � denote the square of equations |xi | ≤ 1, i = 1, 2, in the plane,
and let A = (a1|a2) be an arbitrary nonsingular 2 × 2 matrix partitioned into two
columns. We identify each column with a vector in R

2. Prove that the following
inequality holds:

min
A

max
x∈�

∣∣
∣∣
〈a1, x〉〈a2, x〉

det A

∣
∣∣∣ = 1

2
,

where 〈x, y〉 = x1x2 + y1y2 is the usual scalar product.

Solution 3.47. Let f (A, x) be the function under minimax. Taking A0 = ( 1 1
−1 1

)
,

we obtain

max
x∈� |f (A0, x)| = 1

2
.

Thus it suffices to show that for general A, we have

max
x∈� |f (A, x)| ≥ 1

2
.

This is equivalent to showing that

| det A| ≤ 1, provided that max
x∈� |〈a1, x〉〈a2, x〉| = 1

2
.

Assume that the contrary holds, and so | detA| > 1. The set of points in the plane with
coordinates (〈a1, x〉, 〈a2, x〉) ∈ R

2, for x ranging in the square�, is a parallelogram
π centered at the origin O and having area 4| detA| > 4.

According to our claim, the parallelogram π is contained in the planar region
Z = {

(u, v) ∈ R
2; |uv| ≤ 1

2

}
. Let us consider the point P = (0, s), where s > 0, is a

boundary point of π , and letL ⊂ R
2 be the lattice generated by the vectors (1/s, s/2)

and (−1/s, s/2). The lattice has area 1
2 . Then, according to Minkowski’s theorem,

the interior of π contains at least one point of the lattice L, different from the origin.
Let this point be given by

m(1/s, s/2)+ n(−1/s, s/2) = ((m− n)/s, (m+ n)s/2),where m, n ∈ Z.

We can also suppose gcd(n,m) = 1. Since the interior of π is contained in Z, it
follows that |m2 − n2| < 1 and thus m2 = n2. The only possibilities are (0,±s) and
(±2/s, 0). The points (0,±s) are on the boundary of π and they are not convenient.
If Q = (2/s, 0) ∈ int(π), then the midpoint S of the segment |PQ| should also
belong to the interior of π . However, S = (1/s, s/2) belongs to the boundary curve
of equation |uv| = 1/2 of the region Z containing π , so it cannot lie within the
interior of π . This contradiction proves our claim.

Problem 3.48. We denote by δ(r) the minimal distance between a lattice point and
the circle C(O, r) of radius r centered at the originO of the coordinate system in the
plane. Prove that

lim
r→∞ δ(r) = 0.
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Solution 3.48. LetG be a lattice point on the axisOx such that |OG| = [r]. Draw a
perpendicular line atG toOx that intersects the circleC(O, r) at the pointC situated
between the lattice points A and B, in the upper half-plane. We choose B to be the
point that lies in the interior of the disk D(O, r) of radius r . Notice that |AB| = 1,
because these are neighboring lattice points on the same axis line.

Let us now draw BD⊥AB, where D is again a lattice point, |BD| = 1, and D is
situated outside the disk D(O, r).

Since the problem asks for the value at the limit of δ(r) when r → ∞, we can
assume that r > 4.

Let now consider the line CF that is tangent to the circle C(O, r) and such that
F ∈ BD. We show first that |BF | ≤ |BD|.

Assume the contrary, namely that |BF | > |BD|. Then ĈFB < ĈDB ≤ ÂDB =
π
4 . Furthermore,

sin ĈFB = sin ÔCG = sin

(
arcsin

[r]

r

)
>
r − 1

r
>

√
2

2
= sin

π

4
, if r > 4.

Thus ĈFB > π
4 , which is false.

Consequently, |BF | ≤ |BD| = 1. The triangles CBF andOCG are similar, and
therefore

|BC|
|OG| = |CG|

|OG| =
√
r2 − [r]2

2
<

√
r2 − (r − 1)2

r
<

√
2r

r
=

√
2√
r
.

Now it is clear that

δ(r) ≤ |BC| ≤ |BC|
|BF | =

√
2√
r
, for r > 4.

Thus limr→∞ δ(r) = 0.

Problem 3.49. Consider a curve C of length l that divides the surface of the unit
sphere into two parts of equal areas. Show that l ≥ 2π .

Solution 3.49. Let C′ be the symmetric (opposite, or antipodal) of C with respect to
the centerO of the sphere. If C∩C′ = ∅, then int C∩ int C′ = ∅ and thus the area of
the sphere is strictly greater than the sum of areas of int C and int C′. By hypothesis,
the latter is just the area of the sphere, which is a contradiction.

Therefore, C ∩C′ contains at least one point, say P . The point P ′, the symmetric
ofP with respect to the symmetry center ofC∩C′, should also belong toC∩C′, since
the later is symmetric. Finally, note that the shortest curve on the sphere that joins
two opposite points is an arc of a great circle, and since C is made of two different
arcs joining P and P ′, it follows that l ≥ 2π .

Comments 69 More generally, let K be a body with a symmetry center O and set
r = minP∈∂K |OP |, where ∂K denotes the boundary surface of K . If C ⊂ ∂K is
a curve that separates two regions on ∂K of the same area, then the length l of C
satisfies l ≥ 2πr .
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Problem 3.50. Let K be a planar closed curve of length 2π . Prove that K can be
inscribed in a rectangle of area 4.

Solution 3.50. Let bK(θ) be the width of the figure K in the direction θ , identified
with a vector θ ∈ S1. If R(K, θ) denotes the area of the rectangle circumscribing K
and having one side parallel to θ , then

R(K, θ) = bK(θ)bK

(
θ + π

2

)
.

Thus

min
θ
R(K, θ)

1
2 ≤ 1

2π

∫ 2π

0
bK(θ)

1
2 bK

(
θ + π

2

)1/2
dθ,

with equality holding iff bK(θ)bK
(
θ + π

2

)
is constant. From the Cauchy–Schwartz

inequality, one derives

min
θ
R(K, θ) ≤ 1

4π2

(∫ 2π

0
bK(θ) dθ

)2

,

the equality holding iff K is a curve of constant width. We are able now to apply the
following theorem of Cauchy, which expresses the length L(K) of the curve K in
terms of the integral of its width with respect to all directions:

L(K) = 1

2

∫ 2π

0
bK(θ) dθ.

This implies that

min
θ
R(K, θ) ≤ 1

π2L(K)
2 ≤ 4,

where the second inequality uses the hypothesis L(K) ≤ 2π .

Comments 70 We can consider the parallelograms with a given acute angleφ instead
of rectangles. The same argument shows that

min
θ
Rφ(K, θ) ≤ cosφ

π2 L(K)2.

See also:

• E. Lutwak: On isoperimetric inequalities related to a problem of Moser, Amer.
Math. Monthly 86 (1979), 476–477.

Problem 3.51. 1. Consider a family of plane convex sets with area a, perimeter p,
and diameter d. If the family covers the areaA, then there exists a subfamily with
pairwise disjoint interiors that covers at least area λA, where λ = a

a+pd+πd2 .
2. Assume that any two members of the family have nonempty intersection. Prove

that there exists then a subfamily with pairwise disjoint interiors that covers area
at least μA, where μ = a

πd2 .
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Solution 3.51. 1. If K is a member of the family and K(d) the set of points at dis-
tance less than d from K , then it is known that area(K(d)) = a + pd + πd2. Let
{K1,K2, . . . , Kn} be a maximal subfamily with disjoint interiors. Then every mem-
ber of the family intersects someKi , and thus it is contained in someKi(d). Thus the
family is contained within

⋃n
i=1Ki(d). Thus the area covered by all members of the

family is at most n · area(Ki(d)) ≤ A, while the subfamily above covers na ≥ λA.
2. The diameter of the union of all sets is at most 2d, by the assumption. Its area

is therefore at most πd2, by the well-known isoperimetric inequality. Thus λA ≤ a,
and one single set will cover at least λA.

Comments 71 It is still unknown whether the second claim holds without any addi-
tional assumption on the sets.

Problem 3.52. Let C be a regular polygon with k sides. Prove that for every n there
exists a planar set S(n) ⊂ R

2 such that any subset consisting of n points of S(n) can
be covered by C, but S(n) itself cannot be included in C.

Solution 3.52. Let r be the radius of the circle inscribed in C. For n ∈ Z+, let S(n)
be the circle of radius r sec(π/2kn).

1.C cannot cover S(n). In fact, there is no disk of radius greater than r that can be
included in C. Here is a proof for this somewhat obvious assertion. For a fixed radius
R, let X(R) be the set of centers of circles of radius R included in C. Then X(R) is
convex and invariant of rotations centered at the center O of C, of angle 2π/k. Thus
X(R) is either empty or contains O. Thus R ≤ r .

2. Let P1, . . . , Pn ⊂ S(n) be arbitrary points of S(n). We show that C can cover
P1, . . . , Pn. We fix a point Q in C at a distance of r sec π

2kn from O. We place C
such that their centers coincide and we rotate C around its centerO such thatQ runs
through S(n). While Q travels along the circle, some of the points Pi will be in the
interior of C and the others outside.

However, we see that Pi /∈ C if and only if Q ∈ ⋃n
j=1Aj , where each Aj is an

arc of a circle from outside C, which is of length π
kn

. More precisely, the arc Aj is
determined by the inequalities

2
πj

k
≤ P̂iOQ ≤ 2

πj

k
+ π

kn
.

Therefore
⋃n
j=1Aj is a set of arcs of total length smaller than nkπ/kn · π and thus

S −⋃n
j=1Aj has length π , and thus it is nonempty. Now rotate C untilQ lies inside

S − ⋃n
j=1Aj . Then all the Pj belong to C, as claimed.
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Problem 3.53. Let M be a convex polygon and let S1, . . . , Sn be pairwise disjoint
disks situated in the interior of M . Does there exist a partition M = D1 ∪ · · · ∪Dn
such thatDi are convex disjoint polygons, each of which contains precisely one disk?

Solution 3.53. Let Oi, ri be the center and the radius of the disk Si . For a point X in
the plane, let us define hi(X) = XO2

i − r2
i . We consider

Dk = {x ∈ M;hk(X) ≤ hi(X), for all i = 2, 3, . . . , n}.
We will prove that the Di are convex and Si ⊂ Di . Fix k, for instance k = 1. Define

Hi = {X ∈ R
2;hk(X) ≤ hi(X)}.

Then we claim that Hi are half-planes. Let i = 2 for simplicity. Choose the point
P ∈ |O1O2| such that |PO1|2 − r2

1 = |PO2|2 − r2
2 . Take for instance |PO1| =

|O1O2|2−(r2
1 −r2

2 )

2|O1O2| . If l is the line perpendicular to O1O2 at P and X ∈ l, then we have

|XO1|2 − r2
1 = |PO1|2 + |PX|2 − r2

1 = |PO2|2 + |PX|2 − r2
2 = |XO2|2 − r2

2 .
If H̃2 is the half-plane that contains O1, then |XO1|2 − r2

1 ≤ |XO2|2 − r2
2 , for all

X ∈ H̃2, |XO1|2 − r2
1 ≥ |XO2|2 − r2

2 for allX /∈ H̃2. Therefore,H2 is the half-plane
H̃2. Consequently,

Dk = M

n⋂

i=1,i �=k
Hn

is a convex set as an intersection of convex sets, and Sk ⊂ Dk . It is clear that⋃
Di = M.

Problem 3.54. Consider an inscribable n-gon partitioned by means of n − 2 nonin-
tersecting diagonals into n− 2 triangles. Prove that the sum of the radii of the circles
inscribed in these triangles does not depend on the particular partition.

Solution 3.54. If we have a triangle inscribed in a circle of centerO and radius R, of
inradius r , then the distances from O to the sides satisfy the well-known formula

∑

cyclic

d∗(O, side) = R + r.

Here d∗ is the signed distance, which is positive on one half-plane determined by the
side and negative on the other half-plane. We write the corresponding formulas for
each triangle of the partition and sum up all the terms. Let d1, . . . , dn be the distances
from O to the sides of the n-gon. When looking at the signed distances from O to
a diagonal, we observe that each signed distance is considered twice: once with the
plus sign and once with the opposite sign. When these terms are summed, they will
cancel. We then obtain

d1 + · · · + dn = (n− 2)R + r1 + · · · + rn,

and thus the sum of inradii r1 + r2 + · · · + rn does not depend on the partition.
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Problem 3.55. Prove that in an ellipse having semiaxes of lengths a and b and total
length L, we have L > π(a + b).

Solution 3.55. We cut the ellipse along the axes into four congruent pieces. We can
further rearrange the four pieces by adding a square of side length b − a as in the
figure below:

We want to use the well-known Bonnesen’s isoperimetric inequality, which states that

L2 ≥ 4πA

for any planar convex domain of perimeter L and area A.
The area of the new domain is A+ (b− a)2, where A was the area of the ellipse.

Moreover, one knows that the area of the ellipse isA = πab. Applying this inequality
to the domain pictured in the figure above, we obtain

L2 > 4π2ab + 4π(b − a)2 > π2(a + b)2,

whence the claim.

Problem 3.56. Let F be a convex planar domain and F ′ denote its image by a homo-
thety of ratio − 1

2 . Is it true that one can translate F ′ in order for it to be contained in
F ? Can the constant 1

2 be improved? Generalize to n dimensions.

Solution 3.56. Let ABC ⊂ F be a triangle of maximal area inscribed in F . Let O
denote the geometric centroid of ABC. We use the homothety of center O and ratio
− 1

2 that transformsF intoF ′ andABC intoA′B ′C′. SinceO is the centroid ofABC,
we find that A′ is the midpoint of the segment |BC|, B ′ is the midpoint of |CA|, and
C′ is the midpoint of |AB|.
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We will show that F ′ ⊂ ABC. Assume the contrary, namely that there exists a
point X of F ′ that does not belong to the triangle ABC. By symmetry, it suffices
to consider that X belongs to the half-plane determined by the line BC, which does
not contain A. Since BC and B ′C′ are parallel, it follows that the area of XB ′C′ is
strictly greater than the area of A′B ′C′. Let us consider the inverse image Y of X by
the homothety of center O and ratio − 1

2 . Then Y belongs to F and the area of YBC
is strictly greater than the area of ABC, which contradicts our assumptions.

This proves that F ′ ⊂ ABC ⊂ F . The constant 1
2 is sharp in the case that F is a

triangle.
The same proof shows that the image F ′ of a convex domain F in R

n by the
homothety of ratio − 1

n
can be translated in order to be contained in F . The constant

1
n

is sharp, with equality for the simplex.

Problem 3.57. A classical theorem, due to Cauchy, states that a strictly convex poly-
hedron in R

3 whose faces are rigid, must be globally rigid. Here, rigidity means
continuous rigidity, in the sense that any continuous deformation of the polyhedron
in R

3 that keeps the lengths of edges fixed is the restriction of a deformation of rigid
Euclidean motions of three-space. Prove that a 3-dimensional cube immersed in R

n

remains rigid for all n > 3.

Solution 3.57. Three sides are common to a vertex and determine a three-dimensional
space R

3 ⊂ R
n. The 3-dimensional spaces determined by two adjacent vertices have

two sides in common, and therefore they coincide. Thus, the entire cube is immersed
in a 3-dimensional subspace of R

n, and therefore it remains rigid.
The same argument shows that a rigid polyhedron with the property that exactly

three sides meet at any vertex remains rigid after immersion in R
n, for all n > 3.

Problem 3.58. Consider finitely many great circles on a sphere such that not all of
them pass through the same point. Show that there exists a point situated on exactly
two circles. Deduce that if we have a set of n points in the plane, not all of them lying
on the same line, then there must exist one line passing through precisely two points
of the given set.

Solution 3.58. Assume that the contrary holds. Consider the partition of the sphere
into (spherical) polygons, induced by the circles, and identify it with a polyhedron.
Each vertex will have degree at least 6, since at least three great circles pass through
each point. If V is the number of vertices, E the number of edges, and F the number
of faces of the spherical polyhedron, then Euler’s formula states that

V − E + F = 2.

Moreover, by counting the edges in each face and summing over the faces, we obtain

2E = 3F3 + 4F4 + · · · ≥ 3F,

where Fk is the number of faces with k sides. Finally, counting the edges adjacent to
each vertex and summing over the vertices, we get
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2E = 6V6 + 7V7 + · · · ≥ 6V,

where Vk is the number of vertices of degree k, because Vk = 0 when k ≤ 5. Thus
6(E + 2) = 6(V + F) ≤ 2E + 4E = 6E, which is absurd. Therefore, there exists a
vertex of valence smaller than 6 in which exactly two great circles intersect.

The second claim can be reformulated using projective duality: if we have n lines
in the projective plane, not all passing through the same point, then there exists a point
lying on exactly two of the lines. This is equivalent to the problem considered above.

Comments 72 The problem was posed by Sylvester in 1839, and it was not settled
until 1930, when T. Gallai gave a solution. The solution above is due to N. Steenrod.
Moreover, it can be proved that the number of points where exactly two circles intersect
is at least 3n/7; see for instance:

• H.S.M. Coxeter: The classification of zonohedra by means of projective diagrams,
J. Math. Pures Appl. (9) 41 (1962), 137–156.

• G.D. Chakerian, Sylvester problem on collinear points and a relative,Amer. Math.
Monthly 77 (1970), 164–167.

Problem 3.59. Given a finite set of points in the plane labeled with +1 or −1, and
not all of them collinear, show that there exists a line determined by two points in the
set such that all points of the set lying on that line are of the same sign.

Solution 3.59. We use projective duality as above and reformulate the question as
follows: given n great circles on a sphere, to each one being assigned either +1 or
−1, and not all passing through the same point, show that there exists a point lying
on at least two circles such that all circles containing that point have the same sign.

The circles determine a spherical polyhedron whose edges are labeled by +1 and
−1. Assume that the result is not true. Then the edges around each vertex must have
both the labels +1 and −1. By symmetry, the number of sign changes in the labels
of the edges that one meets when traveling-cyclically around each vertex is at least 4.

Denote by N the sum of all such sign changes over all vertices. Then N ≥ 4V .
On the other hand, by counting the sign changes as we travel around the faces

and summing over all faces, we should again obtain N . Further, the number of sign
changes in a k-sided face is even and at most k, so that

N ≤ 2F3 + 4F4 + 4F5 + 6F6 + 6F7 + · · · .
Moreover, using Euler’s formula and

2E = 3F3 + 4F4 + · · ·
we obtain

4V − 8 = 4E − 4F = 2(3F3 + 4F4 + 5F5 + · · · )− 4(F3 + F4 + · · · )
= 2F3 + 4F4 + 6F5 + · · · ≥ N ≥ 4V,

which is a contradiction. Thus our claim follows.
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Comments 73 The result concerning the sign changes is valid more generally when
some edges are allowed to be unlabeled, and as such it is known as Cauchy’s lemma.
This is an essential ingredient in proving the famous rigidity theorem of Cauchy, which
states that a convex polyhedron in R

3 whose faces are rigid is globally rigid.

Problem 3.60. If Q is a given rectangle and ε > 0, then Q can be covered by the
union of a finite collection S of rectangles with sides parallel to those of Q in such a
way that the union of every nonoverlapping subcollection of S has area less than ε.

Solution 3.60. Observe first that every rectangle Q has a subset H that is the union
of a finite collection � of rectangles with parallel sides such that:

1. any two members of � overlap;
2. area(H) > δ area(Q), where δ = exp(−1/ε);
3. area(A) < ε

2 area(H), for any A ∈ �.

If Q = [0, a] × [0, b], we consider rectangles Ai that are parallel and have one
vertex at (0, 0) and the other vertex on the curve of equation xy = δ area(Q). Thus
each rectangle has area δ. The curved triangle determined by the inequalities xy ≤
δ area(Q), x, y ≥ 0, will be denoted by T . Moreover, we consider a collection of such
rectangles such that their union H satisfies area(H) > 1+ε

ε
area(T ) = δ area(Q).

Further, area(A) = δ area(Q) < ε area(T ).
Set Q0 = Q, H0 = H , �0 = � and assume that area(Q) = 1, for simplicity.

Then Q0 −H0 is a finite union of parallel rectangles Qi,0 and

area(Q0 −H0) < (1 − δ).

Choose in each rectangle Qi a set of type Hi,0 as above. The union of all such Hi,0
and H0 will be denoted by H1, and the collection of rectangles will be denoted by
�1. Then Q−H1 is also a finite union of parallel rectangles Qi,1 and

area(Q−H1) < (1 − δ)2 area(Q).

We continue this process by defining the setsHj and the collections�j of rectangles
such that Q − Hj is a finite union of rectangles Qi,j whose complement has total
area

area(Q−Hj) < (1 − δ)j area(Q).

We stop this process at the stage n, where n is large enough that (1 − δ)n area(Q) <
ε/2. Consider then the union � of the collections �n obtained so far with the set of
rectangles in which Q−Hn decomposes.

If we consider a subfamily of disjoint rectangles from �, then there is at most
one element Ai from any collection �i,j covering Hi,j , because all elements in �i,j
overlap each other. Thus the total area covered by these Ai is at most

∑

i,j

ε

2
area(Hi,j ) <

ε

2
.

Since the rectangles from Q−Hn contribute at most ε2 , we are done.
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Problem 3.61. Prove that the 3-dimensional ball cannot be partitioned into three sets
of strictly smaller diameter.

Solution 3.61. Assume that we can divide the unit ball into three pieces of smaller
diameter and let X1, X2, X3 be the partition that it induces on the boundary sphere.
Thus the diameter of each piece Xi is smaller than 1 − 10h, for some h > 0. We
choose a very thin triangulation of the sphere with triangles that have edges smaller
than h. Denote byNj the union of those spherical triangles of the triangulation above
that intersect the set Xj nontrivially. It follows that N1, N2, N3 are closed subsets
of the sphere that are domains, i.e., they are closures of open subsets. In particular,
the boundary of each domain Nj is the union of several piecewise linear circles.
Moreover, the union N1 ∪N2 ∪N3 covers the sphere.

Since each triangle has a small size, the diameter of Nj is at most 1 − 8h < 1.
In particular, opposite points cannot belong simultaneously to the same set Nj . Let
us denote by x∗ the point of the sphere opposite the point x. We know that the set
N1 and its symmetric N∗

1 (which is the set of those points x∗ for which x ∈ N1)
should be disjoint; otherwise, there would exist in N1 a pair of points at distance
1. Consider the circles determined by the boundary circles of both N1 and N∗

1 . The
circles associated to Nj are disjoint and distinct from the circles associated to N∗

1 ,
because N1 ∩ N∗

1 = ∅. Thus, there is an even number of such circles. Observe that
k disjoint circles on the sphere divide the surface of the sphere into k + 1 connected
complementary regions. Thus, the collection of boundary circles associated to N1
and N∗

1 will split the surface of the sphere into an odd number of connected regions,
which we denote by R1, R2, . . . , R2m+1.

Consider the symmetric R∗
j of the region Rj . There are two possibilities: either

R∗
j is another connected regionRk that is disjoint fromRj , or elseR∗

j = Rj , meaning
that Rj is symmetric. The second case happens, for instance, when the region Rj is
bounded by two circles, one coming fromN1 and the other fromN∗

1 . If there were no
symmetric regions Rj , then the total number of regions would be even, which would
contradict our previous claim. Thus there must be at least one connected symmetric
region Rj .

We consider a point x ∈ Rj and its symmetric x∗, which must also belong to
Rj , since the region is symmetric. If x ∈ N1, then all points of the sphere that are
connected to x by a path not hitting a boundary circle of N1 must also belong to
N1. Thus, the connected component Rj will be contained in N1, and so N1 will
contain pairs of symmetric points, contradiction. This implies that x �∈ N1 and hence
x ∈ N2 ∪ N3. Let us assume that x ∈ N2. Then its symmetric x∗ is not in N2, since
N2 has diameter smaller than 1 and thus x∗ ∈ N3. Further, Rj is connected and thus
there exists a path γ within Rj that connects x to x∗. One knows that N2 and N3 are
domains covering the path γ . Moreover, there exists a point z ∈ γ that belongs to
both N2 and N3. In fact, consider the point z ∈ γ closest to x∗ and that belongs to
N2. There exists such a point sinceN2 is closed. If z = x∗, then both x and x∗ belong
to N2, contradiction. If z �= x∗, then the points on the right of z should belong to N3
and thus z belongs to the closure of N3 and thus to N3.
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Now z ∈ Rj and thus its symmetric z∗ also belongs to Rj . This means that
z, z∗ �∈ N1. But z∗ can belong neither to N2, since N2 does not contain opposite
points, nor to N3, for the same reason. This contradiction proves the claim.

Comments 74 More generally, it is known that the unit n-ball (or equivalently, the
(n−1)-sphere in R

n) cannot be partitioned into n pieces of strictly smaller diameter.
This is related to Borsuk’s problem discussed in comments to Problem 3.38. The result
was proved by Lusternik and Shnirelman in 1930 and, independently, by Borsuk in
1932, but the higher-dimensional case n ≥ 4 requires deeper methods from topology,
and this opened a new chapter in algebraic topology. The interested reader might
consult the survey of Steinlein, which presents both historical remarks and a large
number of references.

• K. Borsuk: Über die Zerlegung einer n-dimensionalen Vollkugel in n-Mengen,
Verh. International Math. Kongress Zürich 1932, 192.

• L.A. Lusternik and L.G. Shnirelman: Topological Methods for Variational Prob-
lems, Moscow, 1930.

• H. Steinlein: Borsuk’s antipodal theorem and its generalizations and applications:
a survey, Topological Methods in Nonlinear Analysis, 166–235, Sém. Math. Sup.,
95, Presses Univ. Montreal, Montreal, 1985.

• H. Steinlein: Spheres and symmetry: Borsuk’s antipodal theorem. Topol. Methods
Nonlinear Anal. 1 (1993), 1, 15–33.
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Problem 3.62. If a, b, c, r, R are the usual notations in the triangle, show that

1

2rR
≤ 1

3

(∑ 1

a

)2

≤
∑ 1

a2 ≤ 1

4r2 .

Solution 3.62. We derive from
∑
( 1
a

− 1
b
)2 ≥ 0 that

∑ 1

bc
≤ 1

3

(∑ 1

a

)2

≤
∑ 1

a2 .

Moreover, the usual Cauchy–Schwarz inequality shows that (p − a)(p − b) ≤ c2

4 ,
and its analogues. Then we have

1

2rR
= 2p

abc
= a + b + c

abc
= 1

ab
+ 1

bc
+ 1

ca
≤ 1

3

(∑ 1

a

)2

≤
∑ 1

a2

≤ 1

4

(∑ 1

(p − b)(p − c)

)
= p

4(p − a)(p − b)(p − c)
= 1

4r2 .

Problem 3.63. If a, b, c are the sides of a triangle, then prove that (b+c)
2

4bc ≤ ma
wa

and
b2+c2

2bc ≤ ma
ka

, wherema,wa, ka denotes the respective lengths of the median, bisector,
and altitude issued from A.
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Solution 3.63. We have the following formulas computing ma,wa , and ka :

ma = 1

2

√
2
(
b2 + c2

) − a2, wa =
√
bc

b + c

√
(b + c)2 − a2,

ka = bc

b2 + c2

√
2
(
b2 + c2

) − a2.

From the triangle inequality, we have a2 > (b− c)2, which implies furthermore that

(b + c)2 − a2 < 4bc
(b − c)2

4bc
≤ (b − c)2

(b + c)2 − a2 ,

with equality only if b = c. Adding 1 in both members yields

(b + c)2

4bc
≤ 2b2 + 2c2 − a2

(b + c)2 − a2 ; hence
b + c

2
√
bc

≤
√

2b2 + 2c2 − a2

(b + c)2 − a2 .

This leads to

(b + c)2

4bc
≤ b + c

2
√
bc

√
2(b2 + c2)− a2

(b + c)2
− a2 = ma

wa
.

For the second inequality, it suffices to observe that

ma

ha
≥ ma

ka
= b2 + c2

2bc
.

Notice that equality in the first case implies b = c, while for the second case either
b = c or a2 = b2 + c2.

Problem 3.64. If S(x, y, z) is the area of a triangle with sides x, y, z, prove that
√
S(a, b, c)+ √

S(a′, b′, c′) ≤ √
S(a + a′, b + b′, c + c′).

Solution 3.64. We make the following change of variables: s = (a + b + c)/2,
t = s− a, u = s− b, and v = s− c. Using Heron’s formula, the inequality becomes

4
√
stuv + 4

√
s′t ′u′v′ ≤ 4

√
(s + s′)(t + t ′)(u+ u′)(v + v′).

We prove first that for positive x, x′, y, y′, we have

√
xy + √

x′y′ ≤ √
(x + x′)(y + y′).

In fact, this follows from xy + x′y′ + 2
√
x′y · y′x ≤ xy + x′y′ + xy′ + yx′, and

equality holds when the geometric means of x′y and y′x are equal.
By applying the last inequality to x = √

st and y = √
uv twice, we obtain the

claim. Moreover, the equality is attained only when t/t ′ = u/u′ = v/v′ = s/s′,
which amounts to a/a′ = b/b′ = c/c′.
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Problem 3.65. It is known that in any triangle we have the inequalities

3
√

3r ≤ p ≤ 2R + (3
√

3 − 4)r,

where p denotes the semiperimeter. Prove that in an obtuse triangle, we have

(3 + 2
√

2)r < p < 2R + r.

Solution 3.65. We have
a + b

c
= cos A−B

2

sin C
2

.

Since C > π
2 , we have sin C

2 >
√

2
2 and thus c

√
2 > a + b. Therefore

2p
√

2 > (a + b)(
√

2 + 1) ⇒ 8p2

> (3 + 2
√

2)(a + b)2 > 4(3 + 2
√

2)ab

> 8(3 + 2
√

2)S,

where S is the area. This implies that

p >

(
3 + 2

√
2
)
S

p
= (

3 + 2
√

2
)
r.

Finally, recall that r = (p− c) tan C
2 > (p− c) and so p < c+ r = 2R sinC + r <

2R + r .

Problem 3.66. Prove the Euler inequality

R ≥ 2r.

Solution 3.66.
|OI |2 = R2 − 2Rr.

Problem 3.67. Prove that in a triangle we have the inequalities

36r2 ≤ a2 + b2 + c2 ≤ 9R2.

Solution 3.67. We have

p

3
= 1

3
(p − a + p − b + p − c) ≥ 3

√
(p − a)(p − b)(p − c) = 3

√
S2

p
= 3

√
r2p,

and hence p2 ≥ 27r2. Thus

a2 + b2 + c2 ≥ 4

3
p2 ≥ 36r2.

The second inequality is a consequence of the following identity:

|OH |2 = 9R2 − (
a2 + b2 + c2),

where O is the circumcenter and H the orthocenter.
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Problem 3.68. 1. Let ABC and A′B ′C′ be two triangles. Prove that

a2

a′ + b2

b′ + c2

c′
≤ R2 (a

′ + b′ + c′)2

a′b′c′
.

2. Derive that

a2 + b2 + c2 ≤ 9R2,

cosA cosB cosC ≤ 1

8
.

Solution 3.68. 1. The inequality from the statement is equivalent to

a′2 + b′2 + c′2 − 2(b′c′ cosA′′ + a′c′ cosB ′′ + b′a′ cosC′′) ≥ 0,

where A′′ = π − 2A,B ′′ = π − 2B,C′′ = π − 2C. Moreover, this can be written as

(a′ − b′ cosC′′ − c′ cosB ′′)2 + (b′ sinC′′ − c′ sinB ′′)2 ≥ 0.

A necessary condition for equality is the vanishing of the second square, i.e.,

a′

sinA′′ = b′

sinB ′′ = c′

sinC′′ .

But A′′ ∈ (−π, π); therefore A′′, B, C′′ are the angles of a triangle that is similar to
A′B ′C′. Therefore, we obtain equality if and only if ABC is an acute triangle and
A′B ′C′ is similar to the orthic triangle of the triangle ABC.

2. If A′B ′C′ is equilateral, then a2 + b2 + c2 ≤ 9R2, which is equivalent to
sin2 A+ sin2 B+ sin2 C ≤ 9

4 . Observe that
∑

sin2 A = 2 +2 cosA cosB cosC, and
therefore we obtain cosA cosB cosC ≤ 1

8 .

Problem 3.69. Prove that the following inequalities hold in a triangle:

4
∑

cyclic

hAhB ≤ 12S
√

3 ≤ 54Rr ≤ 3
∑

cyclic

ab ≤ 4
∑

cyclic

rArB.

Solution 3.69. 1. We have

4
∑

cyclic

rArB =
⎛

⎝
∑

cyclic

a

⎞

⎠

2

≥ 3
∑

cyclic

ab.

2. In order to prove that
18Rr ≤

∑

cyclic

ab,

we start from the identity
1

ha
+ 1

hb
+ 1

hc
= 1

r
.
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Thus

2
abc

4R

(
1

a
+ 1

b
+ 1

c

)
= 2S

(
1

a
+ 1

b
+ 1

c

)
= ha + hb + hc ≥ 9

∑ 1
ha

≥ 9r,

leading to the inequality we wanted.
3. Recall that Jensen’s inequality states that if f is a concave (i.e., f ′′(x) ≤ 0)

smooth real function on some interval J , then

λ1f (x1)+ λ2f (x2)+ · · · + λnf (xn) ≤ f (λ1x1 + λ2x2 + · · · + λn + xn)

for all xj ∈ J and λi ≥ 0 such that λ1 + λ2 + · · · + λn = 1.
Notice now that the function cos is concave on

[
0, π2

]
, and by Jensen’s inequality

we have

cos
A

2
+ cos

B

2
+ cos

C

2
≤ 3

√
3

2
.

Therefore, by the means inequality,

cos
A

2
cos

B

2
cos

C

2
≤

(
cos A2 + cos B2 + cos C2

3

)3

≤ 3
√

3

8
.

We have then

S = abc

4R
= 4rR cos

A

2
cos

B

2
cos

C

2
≤ 3

√
3

2
rR.

4. We have

∑

cyclic

hAhB = hAhBhC

(
1

ha
+ 1

hb
+ 1

hc

)
= 2S2

R

1

r
≤ 3

√
3S.

Problem 3.70. Prove that in an any triangle ABC, we have

√
1 + 8 cos2 B

sinA
+

√
1 + 8 cos2 C

sinB
+

√
1 + 8 cos2 A

sinC
≥ 6.

Solution 3.70. By applying the means inequality, the left-hand side is greater than

3

√√√√√3

⎛

⎝
∏

cyclic

(
√

1 + 8 cos2 A

⎞

⎠
∏

cyclic

3

√
1

sinA
,

and it is sufficient to prove that

F(A,B,C) =
∏

cyclic

1 + 8 cos2 A

sin2 A
≥ 64.
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Let us find the extremal points of F , that satisfy

∂F

∂A
= ∂F

∂B
= ∂F

∂C
.

We have
1

F
· ∂F
∂A

= − 18 cotA

1 + 8 cos2 A
,

and thus we have

sinB cosC(1 + 8 cos2 B) = sinC cosB(1 + 8 cos2 C).

This implies that sin(B − C)+ 4 cosB cosC(sin 2B − sin 2C) = 0 and hence

sin(B − C)(1 − 8 cosA cosB cosC) = 0.

We claim that this happens only if A = B = C. In fact, if the triangle is obtuse, then

cosA cosB cosC ≤ 0 <
1

8

and hence B = C = A.
Otherwise, cos is positive and

cosA+ cosB + cosC = 1 + 4 sin
A

2
sin

B

2
sin

C

2
= 1 + 4

∏

cyclic

√
(p − b)(p − c)bc

= 1 + r

R
≤ 3

2
,

and so by the means inequality,

cosA cosB cosC ≤
(

cosA+ cosB + cosC

3

)3

≤ 1

8
.

Equality holds above only if the triangle is equilateral.
This shows that the only extremal points are A = B = C = π

3 , and one verifies
that it corresponds to a minimum, so that F(A,B,C) ≥ 64, as claimed.

Problem 3.71. Let P be a point in the interior of the triangle ABC. We denote by
Ra,Rb, Rc the distances from P toA,B,C and by ra, rb, rc the distances to the sides
BC,CA,AB. Prove that

∑

cyclic

R2
a sin2 A ≤ 3

∑

cyclic

r2
a ,

with equality if and only if P is the Lemoine point (i.e., the symmedian point).
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Solution 3.71. Let G be the centroid of the poder triangle DEF of P , obtained by
projecting P to the sides of ABC. We have then

3
∑

cyclic

r2
a = 3(|DG|2 + |EG|2 + |FG|2 + 3|PG|2) ≥ 3(|DG|2 + |EG|2 + |FG|2)

= |DE|2 + |EF |2 + |FD|2 =
∑

cyclic

R2
a sin2 A.

We obtain equality when P is the centroid of its poder triangle. Therefore P is the
symmedian point.

Comments 75 We can generalize this type of inequality. We have, for instance,

xR2
1 + yR2

1 + zR2
1 ≥ a2yz+ b2xz+ c2xy

x + y + z

for every x, y, z ∈ R such that x+ y+ z > 0. The equality holds above if and only if

x

F1
= y

F2
= z

F3
,

where F1, F2, F3 denote the areas of BPC, APC, and APB, respectively.

Comments 76 With every inequality �(Ra,Rb, Rc, a, b, c) ≥ 0, valid for any tri-
angle of sides a, b, c, we can associate a dual inequality in a new set of variables,
�(ra, rb, rc, Ra sinA,Rb sinB,Rc sinC) ≥ 0, obtained by replacing the original
triangle by the poder triangle associated to P . Then the distances from P to the
vertices of the poder triangle are ra, rb, rc and the sides of the poder triangle are
Ra sinA,Rb sinB,Rc sinC.

For instance, the dual of the inequality from the previous remark is

xr2
a + yr2

b + zr2
c ≥ yzR2

a sin2 A+ xzR2
b sin2 B + xyR2

c sin2 C

x + y + z
.

If x = y = z, then this is the inequality of our problem. Applying the inequality from
the previous remark to the right-hand side, we also obtain

∑
yzR2

1 sin2 A

x + y + z
≥ 4S2

a2

x
+ b2

y
+ c2

z

.

Problem 3.72. Prove the inequalities

16Rr − 5r2 ≤ p2 ≤ 4R2 + 4Rr + 3r2.

Solution 3.72. Let I be the incenter of the triangle and H be the orthocenter. Direct
calculations show that

|IH |2 = 2r2 − 4R2 cosA cosB cosC,
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and replacing the term

4R2 cosA cosB cosC = p2 − (2R + r)2,

we find that
|IH |2 = 4R2 + 4Rr + 3r2 − p2.

The next step is to use Euler’s theorem, which states that O,G, and H are collinear
and |OG|

|GH | = 1

2
,

where G denotes the centroid of the triangle. We compute the length of |GI | using
the triangle HIO as follows:

|GI |2 = 2

3
|IO|2 + 1

3
|IH |2 + 2

9
|OH |2.

We substitute

|OI |2 = R2 − 2Rr, |OH |2 = 9R2 − (
a2 + b2 + c2)

and derive that

|GI |2 = r2 − 1

3
p2 + 2

9

(
a2 + b2 + c2).

Moreover, 4p2 = 2
(
a2 + b2 + c2

) + 16Rr + 4r2, and so

p2 − 16Rr + 5r2 = 8|GI |2.
Thus the inequality follows.

Comments 77 Using 2p2 = 2r(4R+ r)+ a2 + b2 + c2 and S = rp, we derive also
the inequalities

12r(2R − r) ≤ a2 + b2 + c2 ≤ 4r2 + 8R2,

r3(16R − 5r) ≤ S2 ≤ r2(3r2 + 4rR + 4R2).

• O. Bottema, R.Ž. Djordjević, R.R. Janić, D.S. Mitrinović, and P.M. Vasić: Geo-
metric Inequalities, Wolters–Noordhoff Publishing, Gröningen 1969.

Problem 3.73. Prove the following inequalities, due to Roché:

2R2 + 10Rr − r2 − 2(R − 2r)
√
R2 − 2Rr

≤ p2 ≤ 2R2 + 10Rr − r2 + 2(R − 2r)
√
R2 − 2Rr.

Solution 3.73. Suppose that a ≥ b ≥ c. By direct calculation, we compute the area
of this triangle as follows:

area(HIO) = 2R2 sin

(
B − C

2

)
sin

(
A− C

2

)
sin

(
A− B

2

)
= (b − c)(a − c)(a − b)

8r
.
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Expressing R and r in terms of a, b, c, we can conclude with the identity

(area(HIO))2 = −p4 + 2
(
2R2 + 10Rr − r2)p2 − r(4R + r)3.

Since this binomial in p2 is positive, the value of p2 lies between the two real roots
of the polynomial, which yields the claim.

Comments 78 W.J. Blundon gave another proof, using the following identity:

−p4 + 2
(
2R2 + 10Rr − r2)p2 − r(4R + r)3 = 1

4r2 (a − b)2(b − c)2(c − a)2.

• D.S. Mitrinović, J.E. Pečarić, V. Volenec: Recent Advances in Geometric Inequal-
ities, Math. Appl. (East European Series), 28, Kluwer Academic Publ., Dordrecht,
1989.
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Problem 4.1. Prove that z ∈ C satisfies |z| − �z ≤ 1
2 if and only if z = ac, where

|c − a| ≤ 1. We denote by �z the real part of the complex number z.

Solution 4.1. We have the identity

|ac| − � ac = 1

2
|c − a|2 − 1

2
(|c| − |a|)2,

and the “if” part follows. For the converse, we consider a, c such that |a| = |c| =
|z|1/2.

Problem 4.2. Let a, b, c ∈ R be such that a+2b+3c ≥ 14. Prove that a2+b2+c2 ≥
14.

Solution 4.2. From (a − 1)2 + (b − 2)2 + (c − 3)2 ≥ 0, we obtain a2 + b2 + c2 ≥
2(a + 2b + 3c)− 14 ≥ 14.

Comments 79 More generally, if wi ∈ R+ and ai ∈ R are such that
∑n
i=1 aiwi ≥∑n

i=1w
2
i , then

∑n
i=1 a

2
i ≥ ∑n

i=1w
2
i .

Problem 4.3. Let fn(x) denote the Fibonacci polynomial, which is defined by

f1 = 1, f2 = x, fn = xfn−1 + fn−2.

Prove that the inequality

f 2
n ≤ (

x2 + 1
)2(
x2 + 2

)n−3

holds for every real x and n ≥ 3.

Solution 4.3. Since f3(x) = x2 + 1, the inequality is trivially satisfied for n = 3. We
proceed by induction on n:
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f 2
n+1(x) = [xfn(x)+ fn−1(x)]

2

≤ [x(x2 + 1)(x2 + 2)(n−3)/2 + (x2 + 1)(x2 + 2)(n−4)/2]2

≤ (x2 + 1)2(x2 + 2)n−2[x(x2 + 2)−1/2 + (x2 + 2)−1]2

< (x2 + 1)2(x2 + 2)k−2.

We have used above that x
(
x2 + 2

)−1/2 + (
x2 + 2

)−1
< 1, which is a consequence

of x4 + 2x2 <
(
x2 + 1

)2.
Second proof. One proves by induction that

fn(x) = det

⎛

⎜⎜⎜
⎜⎜
⎝

x −1 0 0 · · · 0 0
1 x −1 0 · · · 0 0
0 1 x −1 · · · 0 0
...
...

...
...

...
...

0 0 0 0 · · · 1 x

⎞

⎟⎟⎟
⎟⎟
⎠

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

n− 1.

Let us recall now the Hadamard inequality, which gives an upper bound for the
determinant of an arbitrary k × k matrix, as follows:

(det(aij ))
2 ≤

k∏

j=1

(
k∑

i=1

a2
ij

)

.

This yields the claimed inequality.

Problem 4.4. Prove the inequality

min
(
(b − c)2, (c − a)2, (a − b)2

) ≤ 1

2

(
a2 + b2 + c2).

Generalize to min1≤k<i≤n(ak − ai)
2.

Solution 4.4. We will prove that for any real numbers ai , we have

min
i<j

(ai − aj )
2 ≤ μ2(a2

1 + · · · + a2
n

)
,where μ2 = 12

n(n2 − 1)
.

There is no loss of generality if we suppose that a1 ≤ · · · ≤ an and
∑n
i=1 a

2
i = 1.

Then
∑

1≤i<j≤n
(ai − aj )

2 = n

n∑

i=1

a2
i −

(
n∑

i=1

ai

)2

.

If ai+1 − ai > μ > 0 for all i ≤ n− 1, then (aj − ai)
2 > (i − j)2μ2 and hence

∑
(ai − aj )

2 > μ2
∑

1≤i<j≤n
(i − j)2 = μ2 n

2
(
n2 − 1

)

12
= n.
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This implies that

n < n

n∑

i=1

a2
i − ( n∑

i=1

ai
)2 ≤ n

n∑

i=1

a2
i = n,

which is absurd. Therefore, there exist i �= j such that (ai − aj )
2 ≤ μ2.

Problem 4.5. Let a1, . . . , an be the lengths of the sides of a polygon andP its perime-
ter. Then

a1

P − a1
+ a2

P − a2
+ · · · + an

P − an
≥ n

n− 1
.

Solution 4.5. Set P − ai = yi . Then
∑n
i=1 yi = nP − ∑n

i=1 ai = (n − 1)P . Now

we express ai = P − yi =
(

1
n−1

∑n
j=1 yj

)
− yi = 1

n−1

(∑
j �=i yj − (n− 2)yi

)
.

Thus we can write

n∑

i=1

ai

S − ai
= 1

n− 1

n∑

j=1

∑

j �=i

(
yj

yi
− n− 2

n− 1

)
.

Further,

n∑

j=1

∑

j �=i

(
yj

yi
− n− 2

n− 1

)
=

n∑

j=1

∑

i<j

(
yj

yi
+ yi

yj
− 2

n− 2

n− 1

)
≥ 2n

n− 1
,

where we have regrouped the terms with indices i, j together with those with indices
j, i and used the fact that

yj
yi

+ yi
yj

≥ 2.

Problem 4.6. Assume that a, b, and c are positive numbers that cannot be the sides
of a triangle. Then the following inequality holds

(abc)2(a + b + c)2(a + b − c)(a − b + c)(b − a + c)

≥ (
a2 + b2 + c2)3(

a2 + b2 − c2)(a2 − b2 + c2)(b2 − a2 + c2).

Solution 4.6. Let us note the following identity:

(a + b + c)(a − b + c)(a + c − b)(−a + b + c) = −
∑

a4 + 2
∑

a2b2,

where all sums are cyclic sums over the three letters involved. One multiplies both
members of the identity by

∑
a2 and obtains

(
a2 + b2 − c2)(a + b + c)(a − b + c)(−a + b + c)(a + b − c)

= −
∑

a6 +
∑

a4b2 + 6a2b2c2

= (−a2 + b2 + c2)(a2 − b2 + c2)(a2 + b2 − c2).

This help us to write the inequality above in the following form:
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2p(2p − a)(2p − b)(2p − c)
(
(abc)2(2p)2 − (

a2 + b2 + c2)4
)

+ 8(abc)2
(
a2 + b2 + c2)3 ≥ 0,

where 2p = a + b+ c. Let us note that (abc)2(a + b+ c)2 − (
a2 + b2 + c2

)4 ≤ 0.
In fact,

abc(a + b + c) = a2bc + b2ca + c2ab ≤ 1

2

∑
a2(b2 + c2)

= 1

2

((∑
a2

)2

−
∑

a4

)

≤ (
a2 + b2 + c2)2

.

Finally, if a, b, c do not determine a triangle, then

2p(2p − a)(2p − b)(2p − c) ≤ 0,

and our inequality follows.

Problem 4.7. Prove that sin2 x < sin x2, for 0 < x ≤ √
π
2 .

Solution 4.7. For 1 ≤ x2 ≤ π
2 , the inequality is obvious. For 0 < x ≤ 1, we have

0 < t2 < t < 1 and hence 0 < cos t < cos t2. In particular, we have 2 sin t cos t <
2t cos t2. Integrating from 0 to x, we obtain the claimed inequality.

Problem 4.8. Let P(x) = a0 + a1x + · · · + anx
n be a real polynomial of degree

n ≥ 2 such that

0 < a0 < −
[
n
2

]
∑

j=1

1

2k + 1
a2k.

Show that P(x) has a real zero in (−1, 1).

Solution 4.8. The hypothesis implies that

∫ 1

−1
P(x) dx =

[
n
2

]
∑

j=0

1

2k + 1
a2k < 0.

Thus there exists x ∈ (−1, 1) with P(x) < 0. Since P(0) = a0 > 0, we can apply
the intermediate value theorem to find that P has a real zero in (−1, 1).

Problem 4.9. Find the minimum of β and the maximum of α for which

(
1 + 1

n

)n+α
≤ e ≤

(
1 + 1

n

)n+β

holds for all n ∈ Z+.
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Solution 4.9. Considering the logarithms, we have

αmax = inf
n

{
1

log(1 + 1/n)
− n

}
,

βmin = sup
n

{
1

log(1 + 1/n)− n

}
.

The function F(x) = 1
log(1+1/x) − x is monotonically increasing for positive x, since

the derivative F ′(x) is positive. Therefore

αmax = 1

log 2
− 1

and
βmin = lim

n→∞F(n).

Using the Maclaurin series for the function log(1 + 1/x), we obtain

F(n) = 1
1
n

− 1
2n2 + O( 1

n3 )
− n,

whence limn→∞ F(n) = 1
2 = βmin.

Problem 4.10. Prove that for nonnegative x, y, and z such that x + y + z = 1, the
following inequality holds:

0 ≤ xy + yz+ zx − 2xyz ≤ 7

27
.

Solution 4.10. We have x, y, z ∈ [0, 1] and thus 0 ≤ xyz ≤ 1, which turns into
xy + yz+ zx − 2xyz ≥ 3 3

√
x2y2z2 − 2xyz ≥ 3xyz− 2xyz = xyz ≥ 0. This yields

the first inequality.
Also, if one of the three variables x, y, z is at least 1

2 , then (1 − 2x)(1 − 2y)(1 −
2z) ≤ 0 < 1

27 . Observe that it is not possible for two among the three variables
to be greater than 1

2 , because this would imply that the third is negative. Further, if
x, y, z ≤ 1

2 , then, by the means inequality, (1 − 2x)(1 − 2y)(1 − 2z) ≤ 1
27 . This

implies that

1 − 2(x + y + z)+ 4(xy + yz+ zx)− 8xyz ≤ 1

27

and thus xy + yz+ zx − 2xyz ≤ 7
27 .

Second Solution:
Let f (x, y, z) = xy + yz+ zx − 2xyz and the associated Lagrange multiplier

F(x, y, z, λ) = f − λ(x + y + z− 1).
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The critical points of F are given by the formula

∂F

∂x
= ∂F

∂y
= ∂F

∂z
= ∂F

∂λ
= 0.

Therefore, we obtain the system of equations

x + y − 2xy − λ = 0,

x + z− 2xz− λ = 0,

y + z− 2yz− λ = 0,

x + y + z− 1 = 0.

If one variable, say z, is not equal to 1
2 , then x = z−λ

1−2z = y. If x = y �= 1
2 , then

x = z = y−λ
1−2y . Thus x = y = z = 1

3 .

If x = y = 1
2 , then z = 0. Therefore, we have the solutions

( 1
3 ,

1
3 ,

1
3

)
,
( 1

2 ,
1
2 , 0

)

and their circular permutations.
The Jacobian matrix reads

J (x, y, z) = det

⎛

⎜⎜
⎝

∂2F
∂x2

∂2F
∂x∂y

∂2F
∂x∂z

∂2F
∂y∂x

∂2F
∂y2

∂2F
∂y∂z

∂2F
∂z∂x

∂2F
∂z∂y

∂2F
∂z2

⎞

⎟⎟
⎠ = det

⎛

⎝
0 1 − 2z 1 − 2x

1 − 2z 0 1 − 2y
1 − 2y 1 − 2x 0

⎞

⎠ ,

and one computes

J

(
1

3
,

1

3
,

1

3

)
= 2

27
> 0, J

(
1

2
,

1

2
, 0

)
= 0.

Now f
( 1

2 ,
1
2 , 0

) = 1
4 < f

( 1
3 ,

1
3 ,

1
3

) = 7
27 , and so the only extremal point is a

maximum at
( 1

3 ,
1
3 ,

1
3

)
.

Problem 4.11. Consider the sequence of nonzero complex numbers a1, . . . , an, . . .

with the property that |ar − as | > 1 for r �= s. Prove that

∞∑

n=1

1

a3
n

converges.

Solution 4.11. Let Sk = {n ∈ Z+; k < |an| ≤ k+1}. The disksDn = {
z; |z−an| ≤

1/2
}

are pairwise disjoint, according to the hypothesis. If one considers those disks
Dn for which n ∈ Sk , then these disks are contained in the annulus

Ck =
{
z ∈ C; k − 1

2
≤ |z| ≤ k + 3

2

}
.

Thus the total area covered by these disks is bounded from above by the area of the
annulus, i.e.,



8 Analysis Solutions 191

card(Sk)
π

4
≤ π

((
k + 3

2

)2

−
(
k − 1

2

)2
)

= 2π(k + 1),

and thus card(Sk) ≤ 8(2k + 1) if k > 0. In the same way, for k = 0, we obtain
card(S0) ≤ 9:

∑

n∈Sk

1

|an|3 ≤ card(Sk)

k3 ≤ 8(2k + 1)

k3 ≤ 24

k2 ,

∞∑

n=1

1

|an|3 =
∞∑

k=0

∑

n∈Sk

1

|an|3 ≤
∑

n∈S0

1

|an|3 +
∞∑

k=1

24

k2 < ∞,

and the series converges absolutely.

Problem 4.12. Consider the sequence Sn given by

Sn = n+ 1

2n+1

n∑

i=1

2i

i
.

Find limn→∞ Sn.

Solution 4.12. We have

Sn+1 = n+ 2

2n+2

n+1∑

i=1

2i

i
= n+ 2

2(n+ 1)
(Sn + 1),

so that

Sn+2 − Sn+1 = (n+ 2)2(Sn+1 − Sn)− Sn+1 − 1

2(n+ 1)(n+ 2)
.

Since Sn ≥ 0, we obtain Sn+2−Sn+1 ≤ 0, and the sequence Sn is bounded decreasing,
thus convergent. If we set s for its limit, then s satisfies

s = lim
n→∞

n+ 2

2(n+ 1)
(Sn + 1) = 1

2
(s + 1)

and thus s = 1.

Comments 80 By integrating the geometric series formula, we obtain

lim
n→∞

n

an

n∑

i=1

ai−1

i
= 1

a − 1
.

For a = 2, we recover the previous problem.

Problem 4.13. Prove that whenever a, b > 0, we have
∫ 1

0

ta−1

1 + tb
dt = 1

a
− 1

a + b
+ 1

a + 2b
− 1

a + 3b
+ · · · .
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Solution 4.13. Consider the identity

ta−1

1 + tb
= ta−1

(
n−1∑

k=0

(−1)ktkb + (−1)ntbn

1 + tb

)

.

Integrating between 0 and 1 and using the fact that

lim
n→∞

∣∣
∣∣

∫ 1

0

tbn

1 + tb
dt

∣
∣∣∣ = 0,

we obtain the equality from the statement.

Problem 4.14. Let a, b, c, d ∈ Z
∗+, and r = 1 − a

b
− c

d
. If r > 0 and a + c ≤ 1982,

then r > 1
19833 .

Solution 4.14. We have three cases to analyze:
1. If b, d ≥ 1983, then r ≥ 1 − a+c

1983 ≥ 1 − 1982
1983 >

1
19833 .

2. If b, d ≤ 1983, then r = bd−ad−bc
bd

> 0, so that bd − ad − bc ≥ 1. Thus
r ≥ 1/bd > 1/19833.

3. Suppose now that b < 1983 < d. If d > 19832 and r < 1
19833 , then c

d
<

1982
19832 <

1
1983 ; thus 1− a

b
< 1

1983 . This implies that b > 1983(b−a) > 1983 because

a ≤ b + 1, which is absurd. If d ≤ 19832, then, as in the case 2 above, we have
r ≥ 1

bd
> 1

19833 .

Problem 4.15. Let ai ∈ R. Prove that

nmin(ai) ≤
n∑

i=1

ai − S ≤
n∑

i=1

ai + S ≤ nmax(ai),

where (n− 1)S2 = ∑
1≤i<j≤n(ai − aj )

2, with S �= 0, and with equality if and only
if a1 = · · · = an.

Solution 4.15. Let us assume a1 ≤ a2 ≤ a3 ≤ · · · ≤ an. Then

S2 = 1

n− 1

n∑

i=2

i−1∑

j=1

(ai − aj )
2

≤ 1

n− 1

n∑

i=2

(i − 1)(ai − a1)
2 ≤

n∑

i=2

(ai − a1)
2 ≤

(
n∑

i=1

(ai − a1)

)2

.

Extracting the radicals, we obtain na1 ≤ ∑n
i=1 ai − S. Similarly,

S2 ≤ 1

n− 1

n−1∑

j=1

(n− j)(an − aj )
2 ≤

⎛

⎝
n−1∑

j=1

(an − aj )

⎞

⎠

2

,

and thus
∑n
k=1 ak + S ≤ nan. It is now clear that equality above implies S = 0, and

therefore a1 = a2 = · · · = an.
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Problem 4.16. Consider a periodic function f : R → R, of period 1 that is nonneg-
ative, concave on (0, 1) and continuous at 0. Prove that for all real numbers x and
natural numbers n the following inequality f (nx) ≤ nf (x) is satisfied.

Solution 4.16. It is sufficient to discuss the case 0 < x < 1. Since f is concave, we
have f (ξ)

ξ
<

f (x)
x

for any ξ with x < ξ < 1. Thus f (ξ) < ξ
x
f (x). If 0 < ξ < x,

then similarly f (ξ) < 1−ξ
1−x f (x). Let ξ = {nx}, where the brackets {a} denote the

fractional part a − [a].
If ξ > x, then we apply the first inequality above, and use the periodicity and the

fact that ξ
x

≤ n in order to get the claim.
If ξ ≤ x, then we have two cases:
1. If x ≤ 1 − 1

n
, then 1−ξ

1−x ≤ 1
1/n = n, and we apply the second inequality above.

2. If x = 1− 1
n
+α for some 0 < α < 1

n
, then nx = n−1+nα, and so {nx} = nα.

Since 1−ξ
1−x = 1−nα

1
n
−α = n, we use the second inequality again and the claim follows.

Comments 81 Whenf (x) = | sin x|, we obtain the well-known inequality | sin nx| ≤
n| sin x|.
Problem 4.17. Let (an) be a sequence of positive numbers such that

lim
n→∞

(a1 + · · · + an)

n
< ∞, lim

n→∞
an

n
= 0.

Does this imply that limn→∞
a2

1+···+a2
n

n2 = 0?

Solution 4.17. The answer is yes. If the sequence an is bounded, it is obvious. If the
sequence is not bounded, consider the subsequence ank defined by the properties that
n1 is the smallest integer such that an1 > a1, and nk the smallest integer nk > nk−1
such that ank > ank−1 .

If nk ≤ n < nk+1, then we have

0 ≤ a2
1 + · · · + a2

n

n2 <

(
a1 + · · · + an

n

)
ank

nk
.

Passing to the limit, we find that the claim holds.

Problem 4.18. Show that for a fixed m ≥ 2, the following series converges for a
single value of x:

S(x) = 1 + ...+ 1

m− 1
− x

m
+ 1

m+ 1
+ · · · + 1

2m− 1
− x

2m

+ 1

2m+ 1
+ · · · + 1

3m− 1
− x

3m
+ · · · .

Solution 4.18. Let us denote by Sn(x) = ∑n
k=1(

1
(k−1)m+1 + · · · + 1

km−1 − x
km
) the

truncation of S(x). Assume that S(x) and S(y) are finite for two distinct values x
and y.
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We now observe that Sn(x)− Sn(y) = y−x
m

∑n
k=1

1
k

, and therefore

lim
n→∞ |Sn(x)− Sn(y)| = ∞,

which contradicts our assumptions.

Comments 82 If xm is the value for which S(x) converges, then S(xm) = logm.

Problem 4.19. Prove that if zi ∈ C, 0 < |zi | ≤ 1, then |z1 − z2| ≤ | log z1 − log z2|.
Solution 4.19. From Lagrange’s mean value theorem, we have | log r1 − log r2| =
1
ξ
|r1 + r2| for any 0 < r1, r2 < 1 and ξ ∈ [0, 1]. Thus | log r1 − log r2| ≤ |r1 − r2|.

Write zj = rj exp(iθj ). We have

(z1 − z2)
2 = r2

1 + r2
2 − 2r1r2 cos(θ1 − θ2) = (r1 − r2)

2 + 2r1r2(1 − cos(θ1 − θ2))

= (r1 − r2)
2 + 4r1r2 sin2 1

2
(θ1 − θ2) ≤ (r1 − r2)

2 + r1r2(θ1 − θ2)
2

≤ (r1 − r2)
2 + (θ1 − θ2)

2 ≤ (log r1 − log r2)
2 + (θ1 − θ2)

2

= | log z1 − log z2|2.

We have used above the inequality sin θ < |θ |, and its consequence 4 sin2 1
2 (θ1 −

θ2) ≤ (θ1 − θ2)
2.

Problem 4.20. The roots of the function of a complex variable

ζ4(s) = 1 + 2s + 3s + 4s

are simple.

Solution 4.20. Suppose that ζ4(s) and ζ ′
4(s) have common zeros. Let us set x = 2s .

Then we have

1 + x + x2 = −3s and x log 2 + x2 log 4 = −3s log 3,

so that
x2(log 3/2)+ x(log 3/2)+ log 3 = 0.

The discriminant of this quadratic equation is positive; hence the roots are real: 2s =
x ∈ R, 3s = −(1 + x + x2) ∈ R.

It is known that s cannot be real, since ζ4 has no real zeros. However, the reality
condition above shows that the (nonzero) imaginary part of s must be an integer
multiple of both πi

log 2 and πi
log 3 . This is impossible, because log 3/ log 2 �∈ Q.

Comments 83 A related function that generalizes the finite sum ζ4(s) is the Riemann
zeta function ζ defined by

ζ(s) =
∑

k≥1

k−s .
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It is not hard to see that ζ(s) is defined for all complex s with real part �(s) > 1 and
can be continued analytically in s. The function ζ(s) has zeros at the negative even
integers −2,−4, . . . and one usually refers to them as the trivial zeros.

One of the most important problems in mathematics today, known as the Riemann
hypothesis, is to decide whether all nontrivial zeros of ζ(s) in the complex plane lie on
the “critical line” consisting of points of real part 1

2 . The nontrivial zeros correspond
precisely to the zeros of the following even entire function:

ξ(t) = π−s/2s(s − 1)

2
�
( s

2

)
ζ(s),

where s = 1
2 + √−1t and � is the usual gamma function. This is known to hold true

for the first 1013 zeros and for 99 percent of the zeros. The validity of the conjecture
is equivalent to saying that

π(n)−
∫ n

0

dt

log t
= O(√

n log n
)
,

where π(n) counts the number of primes less than n.
The Riemann hypothesis was included as one of the seven Millennium Problems

(for which the Clay Mathematics Institute will award one million dollar for a solution).
The interested reader might consult:

• B. Conrey: The Riemann hypothesis, Notices Amer. Math. Soc. March, 2003,
341-353.

• E. Bombieri: Problems of the millennium: The Riemann Hypothesis, The Clay
Mathematics Institute, 2000.
http://www.claymath.org/millennium/Riemann_Hypothesis/

Problem 4.21. Compute

I =
∫ π/2

0
log sin x dx.

Solution 4.21. We have

I =
∫ π/2

0
log cos x dx =

∫ π

π/2
log sin x dx = 1

2

∫ π

0
log sin x dx

and thus

2I = 2
∫ π/2

0
log sin 2x dx

= 2

(∫ π/2

0
log 2 dx +

∫ π/2

0
log sin x dx +

∫ π/2

0
log cos x dx

)
= 4I + π log 2

and thus I = −π
2 log 2.
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Problem 4.22. Letf a be positive, monotonically decreasing function on [0, 1]. Prove
the following inequality:

∫ 1
0 xf

2(x)dx
∫ 1

0 xf (x)dx
≤

∫ 1
0 f

2(x)dx
∫ 1

0 f (x)dx
.

Solution 4.22. The above inequality is equivalent to

∫ 1

0
f 2(x) dx

∫ 1

0
yf (f ) dy −

∫ 1

0
yf 2(y) dy

∫ 1

0
f (x) dx ≥ 0,

which can be rewritten as follows:

I =
∫ 1

0

∫ 1

0
f (x)f (y)y(f (x)− f (y)) dx dy ≥ 0.

Interchanging the variables and the integration order, we obtain

2I =
∫ 1

0

∫ 1

0
f (x)f (y)(y − x)(f (x)− f (y)) dx dy ≥ 0.

Since f is decreasing, we have (y − x)(f (x) − f (y)) ≥ 0 and thus 2I ≥ 0, as
claimed.

Comments 84 It can be proven by the same method that

∫ 1

0
f (x)g(x)w(x) dx

∫ 1

0
w(x) dx ≤

∫ 1

0
f (x)w(x) dx

∫ 1

0
g(x)w(x) dx,

where f is decreasing, g is increasing, and w is nonnegative, with strict inequality if
f and g are not constant on the support of w.

Problem 4.23. Prove that every real number x such that 0 < x ≤ 1 can be represented
as an infinite sum

x =
∞∑

k=1

1

nk
,

where the nk are natural numbers such that nk+1
nk

∈ {2, 3, 4}.

Solution 4.23. We have two cases to consider, 1
3 ≤ x ≤ 1 and 0 < x < 1

3 .
In the first case, let us put n0 = 1 and x0 = x. We define the sequence xk =

nk
nk−1

xk−1 − 1, where

nk =

⎧
⎪⎨

⎪⎩

4nk−1, if 1
3 ≤ xk−1 <

1
2 ,

3nk−1, if 1
2 ≤ xk−1 <

2
3 ,

2nk−1, if 2
3 ≤ xk−1 < 1.
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If 1
3 ≤ xk−1 ≤ 1, then it is immediate that 1

3 ≤ xk ≤ 1 and so, 1
3 ≤ xk ≤ 1. Further,

the sequence {nk} is unbounded, which implies that

lim
k→∞

xk

nk
= 0.

The recurrence relation reads

xk

nk
= xk−1

nk−1
− 1

nk
,

and hence
xk

nk
= x0

n0
−

k∑

i=1

1

ni
= x −

k∑

i=1

1

ni
.

Thus by letting k go to infinity, x = ∑∞
i=1

1
ni

.

In the second case, 0 < x < 1
3 , we choose a natural number k ≥ 4 such that

1/k ≤ x < 1/(k − 1). Set N = 2(k − 1). Then the number x1 = Nx − 1 satisfies
1
3 < x1 < 1. From the above,

x1 =
∞∑

k=1

1

nk
,

where nk+1
nk

∈ {2, 3, 4}. Then we write

x = 1

N
+ x1

N
= 1

N
+

∞∑

k=1

1

Nnk
=

∞∑

k=1

1

mk
,

where mk = Nnk−1, for k ≥ 2, and m1 = N .

Comments 85 In general, the representation is not unique, since for example,

1

2
=

∞∑

k=2

1

3k
=

∞∑

k=1

1

2k
.

Moreover, the result of the problem holds as well for those x that belong to the interval[ 4
3 , 2

]
.

Problem 4.24. Let Sn denote the set of polynomials p(z) = zn + an−1z
n−1 + · · · +

a1z+ 1, with ai ∈ C. Find

Mn = min
p∈Sn

(
max|z|=1

|p(z)|
)
.

Solution 4.24. Let us show thatMn = 2 if n ≥ 2. We have firstMn ≤ max|z|=1 |zn+
1| = 2.

Suppose now that Mn < 2, for some n, so that there exists a polynomial p(z) =
zn + an−1z

n−1 + · · · + a1z + 1 with the property that max|z|=1 |p(z)| < 2. This
implies that



198 8 Analysis Solutions

−2 < �(p(z)) < 2, for z ∈ C, with |z| = 1.

Let ξj , j = 1, . . . , n be the nth roots of unity. Sum the inequalities above for z = ξj ,
and get

−2n < �
n∑

j=1

p(ξj ) < 2n.

On the other hand, an immediate computation shows that

n∑

j=1

p(ξj ) = 2n

for any p as above, which is a contradiction. Thus our claim follows.

Problem 4.25. Find an explicit formula for the value of Fn that is given by the recur-
rence Fn = (n+ 2)Fn−1 − (n− 1)Fn−2 and initial conditions F1 = a, F2 = b.

Solution 4.25. We will use the so-called Laplace method. Letϑ : R → R be a smooth
function such that

Fn =
∫ β

α

tn−1ϑ(t) dt.

The recurrence satisfied by Fn is then a consequence of the following differential
equation:

dϑ

ϑ
= 1 − 3t + t2

t − t2
dt.

This differential equation can be integrated, and one obtains the solutionϑ = e−t t (t−
1). Further, the integral’s limits α and β are among the roots of the equation

tn+1(t − 1)e−t = 0,

yielding t1 = 0, t2 = ∞, t3 = 1. The general solution is therefore

Fn = C1

∫ ∞

0
tn(t − 1)e−t dt + C2

∫ 1

0
tn(t − 1) e−tdt

= C1n!n+ C2

(

n!n

(

1 − 1

e

n∑

k=0

1

k!

)

− 1

e

)

= (3b − 11a)n!n+ (4a − b)

(

1 + n!n
n∑

k=0

1

k!

)

.

Problem 4.26. Find the positive functions f (x, y) and g(x, y) satisfying the follow-
ing inequalities:

( n∑

i=1

aibi
)2 ≤ ( n∑

i=1

f (ai, bi)
)( n∑

i=1

g(ai, bi)
) ≤ ( n∑

i=1

a2
i

)( n∑

i=1

b2
i

)

for all ai, bi ∈ R and n ∈ Z+.
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Solution 4.26.
(ab)2 ≤ f (a, b)g(a, b) ≤ a2b2

and thus
(1) f (a, b)g(a, b) = a2b2.

For n = 2, use the hypothesis

2a1b1a2b2 ≤ f (a1, b1)g(a2, b2)+ f (a2, b2)g(a1, b1) ≤ a2
1b

2
2 + a2

2b
2
1

and the identity (1) to find that

(2) 2 ≤ f (a1, b1)

f (a2, b2)

a2b2

a1b1
+ f (a2, b2)

f (a1, b1)

a1b1

a2b2
≤ a1b2

a2b1
+ a2b1

a1b2
.

We replace (a1, b1) = (a, b) and (a2, b2) = (λa, λb); then

2 ≤ f (a, b)

f (λa, λb)
λ2 + f (λa, λb)

f (a, b)
λ−2 ≤ 2,

from which we derive
f (λa, λb) = λ2f (a, b).

Set f (a) = f (a, 1), and so f (a, b) = b2f (a/b). Then (2) becomes

(3) 2 ≤ f (a)/a

f (b)/b
+ f (b)/b

f (a)/a
≤ a

b
+ b

a
.

This implies that when a ≥ b, we have f (a)b
f (b)a

≤ a
b

and f (b)a
f (a)b

≤ a
b

. This yields

(4) f (b) ≤ f (a),
f (a)

a2 ≤ f (b)

b2 , (a ≥ b).

Conversely, if f, g satisfy (1) and (4), then by applying the inequality (2) for all
pairs of indices i �= j ≤ n, we find that

2
∑

aibiaj bj ≤
∑

i,j

[f (ai, bi)g(aj , bj )+f (aj , bj )g(ai, bi)] ≤
∑

i,j

(
a2
i b

2
j +a2

j b
2
i

)
,

and the inequality from the statement follows.

Comments 86 If f (x, y) = x2 + y2, g(x, y) = x2y2/(x2 + y2), then we obtain an
inequality due to Hardy, Littlewood, and Pólya. By choosing f (x, y) = x1+αy1−α ,
g(x, y) = x1−αy1+α , we obtain the Calderbank inequality.

Problem 4.27. Let g ∈ C1(R) be a smooth function such that g(0) = 0 and |g′(x)| ≤
|g(x)|. Prove that g(x) = 0.



200 8 Analysis Solutions

Solution 4.27. Let x ≥ 0. We have

|g(x)| ≤
∣∣
∣∣

∫ x

0
g′(t) dt

∣∣
∣∣ ≤

∫ x

0
|g′(t)| dt ≤

∫ x

0
|g(t)| dt.

Let a > 0 be arbitrary. Since g ∈ C1(R), g is bounded on any bounded interval and
thus there exists k, such that |g(x)| ≤ k, for 0 ≤ x ≤ a.

If 0 ≤ t ≤ x ≤ a, then |g(t)| ≤ k, and so

|g(x)| ≤
∫ x

0
k dt = kx

for every x with 0 ≤ x ≤ a. Now the condition |g(t)| ≤ kt , for 0 ≤ t ≤ x ≤ a,
implies that

|g(x)| ≤
∫ x

0
kt dt = 1

2
kx2, for 0 ≤ x ≤ a.

Continuing this way, we prove by induction that

|g(x)| ≤ 1

n!
kxn, provided that 0 ≤ x ≤ a.

Putting x = a and passing to the limit n → ∞, we obtain

|g(a)| ≤ lim
n→∞

1

n!
kan = 0.

Since a was arbitrary, we have g(x) = 0 for all x ∈ [0,∞). A similar argument
settles the case x ∈ (−∞, 0].

Problem 4.28. Let a1, b1, c1 ∈ R+ such that a1 + b1 + c1 = 1 and define

an+1 = a2
n + 2bncn, bn+1 = b2

n + 2ancn, cn+1 = c2
n + 2anbn.

Prove that the sequences (an), (bn), (cn) have the same limit and find that limit.

Solution 4.28. Let

un = an + bn + cn, vn = an + ωbn + ω2cn, wn = an + ω2bn + ωcn,

where ω3 = 1 is a third root of unity. The given recurrence for an, bn, cn induces the
following recurrence relations:

un+1 = u2
n = 1, vn+1 = w2

n, wn+1 = v2
n.

Thus wn+1 equals either v2n
1 or w2n

1 , depending on the parity of n (and similarly
for vn+1). Since v1 and w1 are convex combinations with positive coefficients of
the complex points 1, ω, ω2, it follows that |v1|, |w1| < 1. But then we derive that
limn→∞ vn = limn→∞wn = 0. Since un is constant, we obtain
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lim
n→∞ an = lim

n→∞
1

3
(un + vn + wn) = 1

3
,

lim
n→∞ bn = lim

n→∞
1

3
(un + ω2vn + ωwn) = 1

3
,

lim
n→∞ cn = lim

n→∞
1

3
(un + ωvn + ω2wn) = 1

3
.

Problem 4.29. Consider the sequence (an), given by a1 = 0, a2n+1 = a2n = n− an.
Prove that an = n

3 , for infinitely many values of n. Does there exist an n such that
|an − n

3 | > 2005? Also, prove that

lim
n→

an

n
= 1

3
.

Solution 4.29. 1. We have an = [
n
2

] − a[ n
2

], and thus

an =
[n

2

]
−

[n
4

]
+

[n
8

]
−

[ n
10

]
+ · · · .

If n = 3 · 2k , then we have

a3·2k = 3 · 2k

2
− 3 · 2k

4
+ · · · + 3 · 2k

2k
−

[
3

2

]

= 3(2k−1 + (−2k−2)+ 2k−3 + (−2k−4) · · · )− 1

= 3 · 2k + 1

3
− 1 = 2k,

and therefore an = n
3 .

2. Set nk = 4k−1
3 . Then nk is odd and satisfies the recurrence nk − 1 = 4nk−1.

This implies that

ank = ank−1 = a4nk−1 = 2nk−1 − a2nk−1 = 2nk−1 − nk−1 + ank−1 = nk−1 + ank−1

and thus

ank = nk−1 + nk−2 + · · · + n1 + a1 = 1

3

(
4k − 1

3
− k

)
.

Thus
∣∣ank − nk

3

∣∣ = k
3 , and so

∣∣ank − nk
3

∣∣ can be arbitrarily large.

3. Use the fact that n
2k

− 1 ≤
[
n
2k

]
≤ n

2k
and find that

⎛

⎝
[log n]∑

k=1

(−1)k
n

2k

⎞

⎠ − [log n] ≤ an ≤
⎛

⎝
[log n]∑

k=1

(−1)k
n

2k

⎞

⎠ + [log n] + 1,

and after dividing by n and letting n go to infinity, we obtain the claim.
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Problem 4.30. Compute the integral

f (a) =
∫ 1

0

log(x2 − 2x cos a + 1)

x
dx.

Solution 4.30.

f
(a

2

)
+ f

(
π − a

2

)
=

∫ 1

0

log(x2 − 2x cos( a2 )+ 1)(x2 + 2x cos(π − a
2 )+ 1)

x
dx

=
∫ 1

0

log(x4 − 2x2 cos a + 1)

x
dx.

Make the variable change x = √
t and find that the last integral equals

1

2

∫ 1

0

(log t2 − 2t cos a + 1)

t
dt = f (a)

2
, for a ∈ [0, 2π ].

Therefore, f satisfies the identity

f
(a

2

)
+ f

(
π − a

2

)
= f (a)

2
.

By differentiating twice (we have f is C2), we obtain

f ′′ (a
2

)
+ f ′′ (π − a

2

)
= 2f ′′(a).

Suppose that f ′′(a) has the maximumM and the minimumm, and let a0 be such that

f ′′(a0) = M, a0 ∈ [0, 2π ].

Putting a = a0 in the identity above we get

f ′′ (a0

2

)
+ f ′′ (π − a0

2

)
= 2f ′′(a0) = 2M,

from which we obtain f ′′(a0/2) = M . Iterating this procedure, we find that f ′′(a0) =
f ′′ ( a0

2n
) = M , for any M . From the continuity of f ′′, we find that

lim
n→0

f ′′ (a0

2n

)
= f ′′(0) = M.

But now a similar argument dealing with the minimum shows that f ′′(0) = m and
therefore M = m; hence f ′′ is constant. This implies that f (a) = αa2/2 + βa + γ .
Substituting in the identity above, we obtain the following identities in the coefficients:

−πα = β, π2α/2 + βπ + 2γ = γ /2.

Using now f ′(π2 ) = π
2 , it follows that πα/2 + β = π/2, therefore α = −1, β =

π, γ = −π2/3. Thus we obtain

f (a) = −a − 2

2
+ πa − π2

3
.
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Problem 4.31. Let −1 < a0 < 1, and define an = ( 1
2 (1 + an−1)

)1/2
for n ≥ 1. Find

the limits A,B, and C of the sequences

An = 4n(1 − an), Bn = a1 · · · an, Cn = 4n(B − a1a2 · · · an).
Solution 4.31. Let a0 = cos θ . By making use of the formula cos2 θ/2 = (1 +
cos θ)/2 and a recurrence on n, we derive that an = cos(θ/2n). Then

An = 4n(1−an) = 4n
(
θ2

2 · 4n
− θ4

24 · 42n + O(4−3n)

)
= θ2

2
− θ4

24 · 4n
+O(

4−2n).

Thus A = θ2

2 . Further, sin(θ/2n)Bn = cos(θ/2) cos(θ/22) · · · cos(θ/2n) sin(θ/2n)
and thus

Bn = sin θ

2n sin(θ/2n)
= sin θ

θ
+ sin θ

6 · 4n
+ O(4−2n)

and thus B = sin θ
θ

. Finally, Cn = −θ sin θ
6 + O(

4−n), and so C = −θ sin θ
6 .

Comments 87 The same method works when a0 > 1, by making use of the hyperbolic
trigonometric functions. If we put

θ = log
(
a0 +

√
a2

0 − 1
) = arccosh a0,

then A = −θ2/2, B = sinh θ
6 , C = −6 sinh θ

6 .

Problem 4.32. Consider the sequence given by the recurrence

a1 = a, an = a2
n−1 − 2.

Determine those a ∈ R for which (an) is convergent.

Solution 4.32. For |a| > 2, we have |an| > 2 and consequently an+1 > an for all
n ≥ 2. Since the sequence is increasing, it is either convergent or tends to ∞. If
we have a finite limit an → λ, then it satisfies λ = λ2 − 2 and thus λ ∈ {−1, 2},
contradicting our assumptions.

Therefore, we need |a| ≤ 2 for the convergence. Let α ∈ (−π
2 ,

π
2

)
be such that

2 cosα = a. By induction on n, we obtain

an = 2 cos 2nα.

Assume that α is not commensurable with π , that is, α
π
/∈ Q. Observe that the

function ϕ(x) = 2xα is continuous. Thus, the map ϕ : R/πZ → R/πZ sends the
dense subset {nα (modπ), n ∈ Z} into a dense subset, which is {2nα (modπ), n ∈ Z}.
Therefore, the image under cos, namely {cos 2nα; n ∈ Z}, is dense in [−1, 1], and
thus the sequence (an) cannot be convergent.

If α/π = p/q, where p, q ∈ Z, then the sequence (an) is periodic for n large
enough. Thus, in order for the sequence to be convergent it is necessary and sufficient
that it be constant for n large enough. This condition reads
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cos
(
2nα

) = cos
(
2n+1α

)
.

Thus
2nα = ±2n+1α + kπ, where k ∈ Z,

and so
α ∈

{ m

2n3
π, where m, n ∈ Z

}
.

One sees that an is convergent and constant for n ≥ m.

Problem 4.33. Let 0 < a < 1 and I = (0, a). Find all functions f : I → R

satisfying at least one of the conditions below:

1. f is continuous and f (xy) = xf (y)+ yf (x).
2. f (xy) = xf (x)+ yf (y).

Solution 4.33. 1. Let g(x) = f (x)
x

. Then g(exp(x)) is continuous and additive on
I . This implies that g(exp(x)) is linear and hence g(x) = C log x, which implies
f (x) = Cx log x for some constant C.

2. Give y the values x, x2, x3, and x4. We find therefore that

f
(
x2) = 2xf (x),

f
(
x3) = xf (x)+ x2f

(
x2) = (

x + 2x3)f (x),

f
(
x4) = xf (x)+ x3f

(
x3) = (

x + x4 + 2x6)f (x),

f
(
x4) = x2f (x)+ x2f

(
x2) = 4x3f (x).

From the last two lines, one derives that f (x) = 0 for all but those points x for which
x + x4 + 2x6 = 4x3. This means that f vanishes for all but finitely many (actually
6) values of x.

If t ∈ I is such that f (t) �= 0, then the first identity shows that f
(
t2
) �= 0.

By induction on n we obtain f (t2
n
) �= 0. This means that f does not vanish for

infinitely many values of the argument, which contradicts our former result. Thus f
is identically zero.

Problem 4.34. If a, b, c, d ∈ C, ac �= 0, prove that

max(|ac|, |ad + bc|, |bd|)
max(|a|, |b|)max(|c|, |d|) ≥ −1 + √

5

2
.

Solution 4.34. Set ab−1 = r, dc−1 = s, −1+√
5

2 = k, k2 = 1 − k, 0 < k < 1. The
inequality from the statement is equivalent to

μ = max(1, |r + s|, |rs|) ≥ kmax(1, |r|)max(1, |s|) = ν.

(i) If |r| ≥ 1, |s| ≥ 1, then

μ ≥ |rs| > k|s||r| = ν,
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proving our claim.
(ii) If |r| ≤ 1, |s| ≥ 1, then our inequality is equivalent to

max(1, |r + s|, |rs|) ≥ k|s|.
Moreover, if k|s| ≤ 1 or |r + s| ≥ k|s|, then this is obviously true.

Further, let us assume that k|s| > 1 and |r+s| < k|s|. We have then |r|+|r+s| ≥
|s| and consequently,

|r| ≥ |s| − |s + r| ≥ |s| − k|s| = (1 − k)|s| = k2|s|.
Furthermore, |rs| ≥ k2|s|2 > k|s| > 1; thus max(1, |r + s|, |rs|) ≥ k|s| holds.

(iii) If |r| ≥ 1, |s| ≤ 1, then the inequality is proved as in case (ii), by using the
obvious symmetry.

Problem 4.35. Let
∑∞
i=1 xi be a convergent series with decreasing terms x1 ≥ x2 ≥

· · · ≥ xn ≥ · · · > 0 and let P be the set of numbers which can be written in the form∑
i∈J xi for some subset J ∈ Z+. Prove that P is an interval if and only if

xn ≤
∞∑

i=n+1

xi for every n ∈ Z+.

Solution 4.35. 1. Suppose that there exists p such that xp >
∑∞
i=p+1 xi and consider

α such that
∑
i>p xi < α < xp. Set S(J ) = ∑

i∈J xi . We claim that there does
not exist any J ⊂ Z+ such that S(J ) = α. In fact, if J ∩ {1, 2, . . . , p} �= ∅, then∑
i∈J xi ≥ xp > α, becausexk is decreasing. On the other hand, ifJ∩{1, 2, . . . , p} =

∅, then
∑
i∈J xi ≤ ∑

i>p xi < α. Finally, P contains numbers smaller than α, for
instance

∑
i>p xi , as well as numbers bigger than α, such as xp. Thus P is not an

interval.
2. Assume now that the hypothesis of the problem is satisfied and choose any

element y from the interval (0, S], where S = ∑∞
i=1 xi . We will show that there

exists L such that S(L) = y.
Let n1 be the smallest index such that xn1 < y. There exists such a one because

limk→∞ xk = 0. By induction, we define nk to be the smallest integer with the
property that

xn1 + · · · + xnk < y.

Let L = {n1, . . . , nk, . . . }.
It is clear that S(L) ≤ y. If p ∈ Z+ \ L, then choose the smallest k with the

property that nk > p. Since p does not belong to L, we have

xn1 + · · · + xnk−1 + xp ≥ y.

This implies that ( ∞∑

i∈L
xi

)

+ xp ≥ y.
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(i) Assume that the set Z+ − L is finite. This set is empty only when y = S,
which obviously belongs to P . Now take p to be the maximal element of Z+ − L.
This implies that all elements bigger than p already belong to L and hence

L = {n1, . . . , nk−1} ∪ {p + 1, p + 2, . . . }.
Then

∑

i∈L
xi =

k−1∑

i=1

xn1 +
∞∑

j=p+1

xj ≥
k−1∑

i=1

xni + xp ≥ y,

from which we obtain that
∑
i∈L xi = y.

(ii) If Z+ − L is infinite, then for any ε > 0, one can choose some pε ∈ Z+ − L

such that xpε < ε. The inequality above for pε implies that

ε +
∑

i∈L
xi ≥ y.

This is true for any positive ε, and thus
∑
i∈L xi = y.

Problem 4.36. Does there exist a continuous function f : (0,∞) → R such that
f (x) = 0 if and only if f (2x) �= 0? What if we require only that f be continuous at
infinitely many points?

Solution 4.36. 1. There exists some real number α such that f (α) = 0, and thus
f (2α) �= 0. Let γ ∈ [α, 2α] be given by γ = sup{x ∈ [α, 2α] such that f (x) = 0}.
Since f is continuous, we find that f (γ ) = 0, and thus γ < 2α.

Moreover, if xn ∈ R is a sequence such that limn xn = γ , then f (xn) = 0 for n
large enough. In fact, otherwise there exists a subsequence f (xnk ) �= 0, which implies
that f (2xnk ) = 0, and thus limk f (2xnk ) = 0 �= f (2γ ).

Finally, recall that γ is the supremum of those x ∈ [α, 2α] for which f (x) = 0 and
γ < 2α. Thus for n large such that γ + 1

n
< 2α, there exists xn with γ < xn < γ + 1

n
for which f (xn) �= 0. This contradicts the previous claim. Thus there does not exist
a continuous f as in the statement.

2. The function

f (x) =
{

0, for 22k < x ≤ 22k+1,where k ∈ Z,

1, for 22k−1 < x < 22k,where k ∈ Z,

satisfies the claim and has a countable number of discontinuities.

Problem 4.37. Find the smallest number a such that for every real polynomial f (x)
of degree two with the property that |f (x)| ≤ 1 for all x ∈ [0, 1], we have |f ′(1)| ≤ a.
Find the analogous number b such that |f ′(0)| ≤ b.

Solution 4.37. Let f (x) = ux2 + vx + w. We have

|f ′(1)| = |2u+ v| = |3f (1)− 4f (1/2)+ f (0)| ≤ 3|f (1)| + 4|f (1/2)| + |f (0)|
≤ 3 + 4 + 1 = 8.
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Further, a = 8 because we have equality above for f (x) = 8x2 − 8x + 1.
For the second case, we observe that

|f ′(0)| = |v| = |4f (1/2)− 3f (0)− f (1)| ≤ 8

and thus b = 8 by taking f (x) = 8x2 − 8x + 1.

Problem 4.38. Let f : R → R be a function for which there exists some constant
M > 0 satisfying

|f (x + y)− f (x)− f (y)| ≤ M, for all x, y ∈ R.

Prove that there exists a unique additive function g : R → R such that

|f (x)− g(x)| ≤ M, for all x ∈ R.

Moreover, if f is continuous, then g is linear.

Solution 4.38. Let us show first the existence of the upper limit ϕ(x) =
lim supn→∞

f (nx)
n

.
In fact, using the hypothesis, one finds that f (nx) ≤ n(f (x) + M), and hence

the sequence f (nx)
n

is bounded from above, and thus ϕ(x) exists.
Furthermore,

∣∣∣∣
f (n(x + y))

n
− f (nx)

n
− f (ny)

n

∣∣∣∣ ≤ M

n
,

which yields ϕ(x)+ ϕ(y) = ϕ(x + y); thus ϕ is additive.
Next, observe that f (nx) ≤ n(f (x) +M) implies that

∣∣nx
n

− f (x)
∣∣ ≤ M , and

we can take g(x) = ϕ(x).
If f is continuous, then it is easy to see that the lower limit, lim infn→∞ f (nx)

n
,

coincides with ϕ(x), and moreover, ϕ(x) is continuous. An additive continuous func-
tion is therefore linear. In fact, we have f (nx) = nf (x) for n ∈ Z, which yields
f (rx) = rf (x) for any r ∈ Q. Since f is continuous and every real number r can
be approximated by a sequence of rational numbers, we find that f (rx) = rf (x) for
any r ∈ R, and hence the claim.

Let us prove the uniqueness of such additive functions. Assume that there exists
another additive function h satisfying

|f (x)− h(x)| ≤ M, for all x ∈ R.

This implies that
|g(x)− h(x)| ≤ M, for all x ∈ R.

However, an additive function is either zero or unbounded. Therefore, the additive
function g − h must vanish.
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Comments 88 Functions f satisfying the condition from the statement are called
quasimorphisms.

Notice that there exist additive functions ϕ : R → R that are not linear (not contin-
uous of course). Examples can be constructed by choosing a basis of R as a vector
space over Q and defining arbitrarily the values of the function on each vector of that
basis.

Problem 4.39. Show that if f is differentiable and if

lim
t→∞

(
f (t)+ f ′(t)

) = 1,

then
lim
t→∞ f (t) = 1.

Solution 4.39. Let us show first that if limt→∞(f ′(t) + αf (t)) = 0, where a =
�(α) > 0, then limt→∞ f (t) = 0. Let ε > 0 and c < ∞ be such that |f ′(t) +
αf (t)| ≤ aε whenever t ≥ c. Then

∣∣∣∣
d

dt

(
eαtf (t)

)
∣∣∣∣ = ∣∣eαt (f ′(t)+ αf (t))

∣∣ ≤ aεeat

for t ≥ c. Therefore, using the mean value theorem we have

|eαtf (t)− eacf (c)| ≤ ε
(
eαt − eac

)
, for t > c.

This yields
|f (t)| ≤ ea(c−t) · |f (c)| + ε

∣∣1 − ea(c−t)
∣∣.

In particular, for sufficiently large t , we have |f (t)| ≤ 2ε, as claimed. Now the
statement follows by applying this result to f − 1.

Comments 89 Let P(D) be a polynomial in the derivation operator D = d
dt . Let us

write
P(D) = (D − λ1)(D − λ2) · · · (D − λn).

The above result can be generalized as follows. Assume that �λi < 0, where � denotes
the real part; if the function f satisfies limt→∞ P(D)f (t) = 0, then limt→∞ f (t) =
0. This is proved by recurrence on the degree of P . The recurrence step follows from
the argument given above. In particular, the claim holds for P(D) = D2 + D + 1.

The condition �λi < 0 is necessary. In fact, we can consider f (t) = eλi t , which
satisfies limt→∞ P(D)f → 0. Also, one notices that P(D) = D0 + D1 + ... + Dn

does not fulfill this condition for n ≥ 3.

Problem 4.40. Let c be a real number and letf : R → R be a smooth function of class
C3 such that limx→∞ f (x) = c and limx→∞ f ′′′(x) = 0. Show that limn→∞ f ′(x) =
limx→∞ f ′′(x) = 0.
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Solution 4.40. According to Taylor’s formula, there exist ξx, ηx ∈ (0, 1) such that

f (x + 1) = f (x)+ f ′(x)+ 1

2
f ′′(x)+ 1

6
f ′′′(x + ξx),

f (x − 1) = f (x)− f ′(x)+ 1

2
f ′′(x)− 1

6
f ′′(x + ηx).

Suitable linear combinations of these yield

f ′′(x) = f (x + 1)− 2f (x)+ f (x − 1)− 1

6
f ′′′(x + ξx)+ 1

6
f ′′′(x − ηx),

2f ′(x) = f (x + 1)− f (x − 1)− 1

6
f ′′′(x + ξx)− 1

6
f ′′′(x − ηx).

Since x+ ξx → ∞ and x−ηx → ∞ as x → ∞, by passing to the limit, one obtains

lim
x→∞ f

′′(x) = c − 2c + c − 1

6
· 0 + 1

6
· 0 = 0,

lim
x→∞ f

′(x) = 1

2

(
c − c − 1

6
· 0 − 1

6
· 0

)
= 0.

Comments 90 It can be proved that if limx→∞ f (x) exists and if f (n) is bounded,
then limx→∞ f (k)(x) = 0 for any 1 ≤ k < n. See for instance:

• J. Littlewood: The converse of Abel’s theorem, Proc. London Math. Soc. (2) 9
(1910–11), 434–448.

Problem 4.41. Prove that the following integral equation has at most one continuous
solution on [0, 1] × [0, 1]:

f (x, y) = 1 +
∫ x

0

∫ y

0
f (u, v) du dv.

Solution 4.41. If f1, f2 are two solutions, then their difference g satisfies

g(x, y) =
∫ x

0

∫ y

0
g(u, v) du dv.

Since g is continuous, its absolute value is bounded by some constantM on the square
[0, 1] × [0, 1]. Thus

|g(x, y)| ≤
∫ x

0

∫ y

0
M du dv = Mxy.

By induction, we show that |g(x, y)| ≤ M
xnyn

(n!)2
. The induction step follows from

|g(x, y)| ≤
∫ x

0

∫ y

0

Munvn

(n!)2
du dv = M(xy)n+1

((n+ 1)!)2
.

If we fix x, y, then

0 ≤ |g(x, y)| ≤ lim
n→

Mxnyn

n!n!
= 0,

and thus g(x, y) ≡ 0.
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Comments 91 There exists a continuous solution of this equation, given by

f (x, y) = 1 + xy + x2y2

2!2!
+ x3y3

3!3!
+ · · · = J0

(√−4xy
) = J0

(
2i

√
xy

)
,

where J0 is the Bessel function of order zero.

Problem 4.42. Find those λ ∈ R for which the functional equation

∫ 1

0
min(x, y)f (y) dy = λf (x)

has a solution f that is nonzero and continuous on the interval [0, 1]. Find these
solutions.

Solution 4.42. The equation can be written in the form

λf (x) =
∫ x

0
yf (y) dy + x

∫ 1

x

f (y) dy.

If λ �= 0, then f is differentiable, and after derivation, we obtain

λf ′(x) = xf (x)− xf (x)+
∫ 1

x

f (y)dy =
∫ 1

x

f (y)dy.

Thus f ′ is differentiable and

λf ′′(x) = −f (x).
This implies that f (x) = A cosμx + B sinμx, where μ = λ−1/2 if λ > 0, and
f (x) = A cosh νx + B sinh νx, where ν = (−λ)−1/2 if λ < 0. According to the
hypothesis,

lim
n→0

f (x) = 0,

and hence A = 0 for any choice of λ. From the above, we also get

lim
n→0

f ′(x) = 0,

and thus Bμ cosμ = 0 and Bν cosh ν = 0. The last equation yields B = 0, and so
we do not have nonzero solutions. For λ > 0, if B �= 0, then cosμ = 0 and thus
μ = (2k + 1)π2 . Thus λ = μ−2 4

(2k+1)2π2 , where k ∈ Z, and

f (x) = B cos(2k + 1)
π

2
x, B ∈ R.

If λ = 0, the same method gives us f (x) = 0.
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Comments 92 We proved that the integral operator T : C0(0, 1) → C0(0, 1) defined
on the space C0(0, 1) of continuous functions on (0, 1) and given by the formula

(Tf )(x) =
∫ 1

0
min(x, y)f (y)dy

has the eigenvalues 4
(2k+1)2π2 and the eigenvectors cos(2k + 1)π2 x.

Problem 4.43. Let X be an unbounded subset of the real numbers R. Prove that the
set

AX = {t ∈ R; tX is dense modulo 1}
is dense in R.

Solution 4.43. Let {On}n∈Z+ be a countable base of (0, 1), On �= ∅. Let p be the
canonical projection p : R → R/Z. Define

An = {r ∈ R;p(rX) ∩On �= ∅}.
This amounts to

An =
⋃

x∈X−{0}

1

x
p−1({On}),

and thus An is open. If F is an interval of length f > 0, then there exists x ∈ X

such that xf > 1, which implies that p(xF) = R/Z and thus there exists r ∈ F with
p(rx) ∈ On. This proves that An is dense in R. Since

AX =
∞⋂

n=0

An,

we obtain that AX is also dense in R, as the intersection of open dense subsets.

Problem 4.44. ConsiderP(z) = zn+a1z
n−1 +· · ·+an, where ai ∈ C. If |P(z)| = 1

for all z satisfying |z| = 1, then a1 = · · · = an = 0.

Solution 4.44. Consider the polynomialQ(z) = 1 + a1z+ · · · + anzn, which can be
written as Q(z) = P(z), when |z| = 1. This implies that |Q(z)| = 1 for all z of unit
modulus. Moreover,Q(0) = 1, and soQ has a value in the interior of the disk whose
modulus is equal to its maximum on the boundary circle. According to the maximum
principle for holomorphic functions, Q has to be constant, Q(z) = 1, whence the
claim.

Comments 93 W. Blaschke has studied the complex analytic (i.e., holomorphic) func-
tions f : D → C on the unit disk D that are continuous on D and have |f (z)| = 1
for all z satisfying |z| = 1. He has shown that such a function has the form

f = σ

n∏

k=1

z− bk

1 − bkz
,

where σ is a constant of modulus one and bk ∈ C are such that |bk| < 1.



212 8 Analysis Solutions

Problem 4.45. Let I ⊂ R be an interval and u, v : I → R smooth functions satisfy-
ing the equations

u′′(x)+ A(x)u(x) = 0, v′′(x)+ B(x)v(x) = 0,

where A,B are continuous on I and A(x) ≥ B(x) for all x ∈ I . Assume that v is not
identically zero. If α < β are roots of v, then there exists a root of u that lies within
the interval (α, β), unless A(x) = B(x), in which case u and v are proportional for
α ≤ x ≤ β.

Solution 4.45. The roots of v are isolated and we can suppose that v|(α, β) > 0.
Assume that u|(α, β), so that after a possible sign change, u|(α, β) > 0. Also, we
have v′(α) ≥ 0, v(β) ≤ 0, and since v is not identically zero, then v and v′ do not
have common roots; thus v′(α) > 0 and v′(β) < 0. We consider

w(x) = u(x)v′(x)− u′(x)v(x).

We have

w′(x) = u(x)v′′(x)− u′′(x)v(x) = (A(x)− B(x))uv ≥ 0,

and therefore w is increasing; so w(α) ≤ w(β) and thus u(α)v′(α) ≤ u(β)v′(β).
Since u(α) ≥ 0, u(β) ≥ 0, v′(α) > 0, v′(β) < 0, we obtain u(α) = u(β) = 0, and
sow(α) = w(β) = 0. Noww is increasing and hencew ≡ 0 and thusw′ ≡ 0, which
yields A(x) = B(x). Moreover, for α < x < β we have w(x)

v2(x)
= ( u

v
)′, and hence u

v

is constant.

Comments 94 This result is known as Sturm’s comparison theorem in differential
equations.

Problem 4.46. Let V be a finite-dimensional real vector space and f : V → R a
continuous mapping. For any basis B = {b1, b2, . . . , bn} of V , consider the set

EB = {z1b1 + · · · + znbn, where zi ∈ Z}.
Show that if f is bounded on EB for any choice of the basis B, then f is bounded
on V .

Solution 4.46. We solve first the case n = 1. Given any pair of positive numbers
0 < a < b, there exists some r = r(a, b) (depending on a, b) such that for any
x > r , one can find m ∈ Z, with ma ≤ x ≤ mb. In fact, the intervals (ma,mb), for
integral m, will cover all of R but a compact set. Thus, for any x > r , one can find
an interval (c, d) containing x, and some m ∈ Z such that a < c

m
< d

m
< b.

Assume that f is unbounded. Let us consider an interval I1 = [a1, b1] with the
property that f (x) > 1, for x ∈ I1. Since f is unbounded, there exist x1 > r(a1, b1)

arbitrarily large such that f (x1) > 4 and m1 ∈ Z such that m1a1 < x1 < m1b1.
Moreover, f is continuous and so f (x) > 2 for any x ∈ [c1, d1], for some small
interval around x1, which can be chosen to be contained in (m1a1,m1b1). Set I2 =
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{x ∈ I1;m1x ∈ [c1, d1]}. Thus I2 ⊂ I1 is a compact nonempty interval with the
property that f (m1x) > 2 for any x ∈ I2.

We define in this way a nested sequence of compact intervals I1 ⊂ I2 ⊂ I3 ⊂
· · · Ik ⊂ · · · , and a sequence of integers m1 < m2 < m3 < · · · with the property
that f (x) > 2k for x ∈ mkIk . This nested sequence of nontrivial compact intervals
must have nontrivial intersection. Let a ∈ ∩∞

k=1Ik . Then the restriction of f to aZ is
unbounded, since for any k, there exists some mk with f (mka) > 2k , by making use
of the fact that a ∈ Ik .

Let now deal with the general case. Let zk ∈ V be a sequence for which f (zk) is
unbounded, e.g., f (zk) > 2k+1. Then zk is unbounded, because f is continuous.

Let B = {b1, . . . , bn} be a basis of B and write zk = ∑n
i=1 cikbi in the basis B.

There exists at least one i0 ∈ {1, 2, . . . , n} such that the sequence ci0k is unbounded;
otherwise, zk would be bounded. One can slightly modify the basis B so that this
condition is satisfied for all i. In fact, assume that cik is unbounded for 1 ≤ i ≤ m < n

and cik is bounded for m+ 1 ≤ i ≤ n. Take then the new basis vectors

b′
1 = b1 −

n∑

i=m+1

bi, b
′
i = bi, when i ≥ 2.

In the new basis, one can express the vector zk as

zk =
m∑

i=1

cikb
′
i +

n∑

i=m+1

(cik + c1k)b
′
i ,

and all components are now unbounded.
We consider now the intervals Jik with the property that Uk = {x; x =∑n
i=1 αikbi, with αik ∈ Jik} is a neighborhood of zk and f (x) > 2k , for all x ∈ Uk .
The argument for n = 1 shows that there exists a sequence of integers (mik) going

to infinity such that we have a nested sequence of nontrivial compact intervals

· · · ⊂ 1

mik+1
Jik+1 ⊂ 1

mik
Jik ⊂ · · · ⊂ Ji1.

Take

γi ∈
∞⋂

k=1

1

mik
Jik

and construct a new basis B̃ = {γibi, i ∈ {1, 2, . . . , n}}. It follows thatf is unbounded
on EB̃ .

Problem 4.47. It is known that if f, g : C → C are entire functions without common
zeros then there exist entire functionsa, b : C → C such thata(z)f (z)+b(z)g(z) = 1
for all z ∈ C.

1. Prove that we can choose a(z) without any zeros.
2. Is it possible to choose both a and b without zeros?
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Solution 4.47. 1. We know that Af + Bg = 1 for some entire functions A and B.
Therefore, for any entire function λ, we have also

(A+ λg)f + (B − λf )g = 1.

We now choose a = A+λg such thatA+λg = eh. If z0 is a zero of g, we need to have
eh(z0) = A(z0) (with the same multiplicity). This is possible from the interpolation
theorem for entire functions, because A(z0)f (z0) = 1.

2. Let f, g ∈ C[z] be nonconstant polynomials of different degrees. We will show
that there are no entire functions a, b such that af + bg = 1 and a, b have no zeros.
There are no integer nonconstant functions.

First, there exist nonzero polynomials A and B such that Af + Bg = 1. As
above, for any entire function λ : C → C, one can construct other solutions, namely
a = A − λg and b = B + λf . Let us now show that any pair a, b can be obtained
in this way. We have (A − a)f + (B − b)g = 0. Thus the set of zeros of (A − a)

contains the set of zeros of g (since f and g have no common zeros). In particular,
there exists an entire function λ such that A− a = λg. In a similar way, there exists
an entire function μ such that B − b = μf . The condition above shows that λ = μ,
as claimed.

If a, b do not have zeros, then the meromorphic function F = 1
λ

must be distinct
everywhere from the rational functions a1, a2, a3 given below:

a1(z) = 0, a2(z) = g(z)/A(z), a3(z) = −f (z)/B(z).
Consider the meromorphic function

G = F − a1

F − a2
· a3 − a2

a3 − a1
.

The points whereG(z) ∈ {0, 1,∞} are among those satisfying one of the conditions
a1(z) = a2(z), a1(z) = a3(z), a2(z) = a3(z), and therefore they are finitely many.
According to Picard’s theorem,G does not have an essential singularity at ∞ and thus
G is rational. This implies that F is rational; hence λf is a polynomial and thus a and
b are polynomials. But polynomials without zeros are constant, and this is impossible
since f and g have different degrees.

Problem 4.48. Consider a compact set X ⊂ R. Show that a necessary and sufficient
condition for the existence of a monic nonconstant polynomial with real coefficients
h ∈ R[x] such that |h(x)| < 1 for all x ∈ X is the existence of monic nonconstant
polynomial g(x) ∈ R[x] such that |g(x)| < 2 for all x ∈ X. Prove that 2 is the
maximal number with this property.

Solution 4.48. Let P(X) be the Banach space of real polynomials endowed with the
norm ‖θ‖ = supx∈X |θ(x)|. We define the nonlinear operator

A : P(x) → P(x)
given by
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(Af (x)) = f 2(x)− 1

2
‖f ‖2, for f ∈ P(X).

If f is monic, thenAf is also monic and we have ‖Af ‖ = 1
2‖f ‖2. An easy induction

implies that

‖Anf ‖ = 2‖f ‖2n

22n .

Moreover, if ‖f ‖ < 2, then there exists some n for which ‖Anf ‖ < 1. This proves
the first part.

Let X = [−2, 2]. The norm of p(x) = x on X is ‖p‖ = 2. We will prove that
any monic polynomial on X has norm at least 2. Assume the contrary, namely that
there exists f ∈ P(x), monic, with ‖f ‖ < 2. We have two intermediate results:

1. There exists an operator T : P(X) → P(X) that takes monic polynomials of
degree 2k to monic polynomials of degree k such that

‖T P ‖ < ‖P ‖.
2. Assuming the existence of a monic polynomial of norm ‖f ‖ < 2, there exists

n ∈ Z+ and a monic polynomial g, of degree 2n, with ‖g‖ < 2.
By points 1 and 2 above there exists a monic polynomial g of degree 2n with

‖g‖ < 2 on [−2, 2], which implies that there exists a monic polynomial of degree 1
such that ‖g‖ < 2 on [−2, 2], which is obviously false.

Proof of claim 1. If h ∈ P(x), let us consider h̃(x) = 1
2 (h(x) + h(−x)), which

is even and thus can be written as a polynomial in x2. Thus h̃(x) = Q
(
x2

)
, where

now Q : [0, 4] → R. Define T (h)(x) = Q(x + 2). It is clear that T has the desired
properties.

Proof of claim 2. If f has degree 2mp, where p is odd, then t = T mf is monic of
degreep, ‖t‖ < 2. There existsn ∈ Z+ such thatp divides 2n−1, and so 2n−1 = pq.
We define g ∈ P(x) by means of g = t (x)qx. It is immediate that ‖g‖ < 2, and the
proof is complete.
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Glossary

9.1 Compendium of Triangle Basic Terminology and Formulas

9.1.1 Lengths in a Triangle

We used the standard notation for the important features of a triangle, as follows:

• a, b, c the sides lengths
• A,B,C the angles
• ma,mb,mc the medians
• ha, hb, hc the altitudes
• wa,wb,wc the angle bisectors
• R the radius of the circumcircle
• r the radius of the incircle
• ra, rb, rc the radii of the extrinsic circles
• S the area
• p the semiperimeter

We collect below some useful identities between these quantities:

• S = 1
2bc sinA = (p(p − a)(p − b)(p − c))1/2 = 4Rr cos A2 cos B2 cos C2 ,

• S = rp,
• 4RS = abc,
• ra(p − a) = rp = S, ra = p tan A

2 ,
• 4R + r = ra + rb + rc,
• aha = 2S,
• hahbhc = 8S3

abc
= 2S2

R
,

• 1
ha

+ 1
hb

+ 1
hc

= 1
ra

+ 1
rb

+ 1
rc

= 1
r
,

• m2
a +m2

b +m2
c = 3

4

(
a2 + b2 + c2

)
,

• wa = 2
√
bc

b+c
√
p(p − a),

• ra =
√
p(p−b)(p−c)

p−a ,



218 9 Glossary

• a2 + b2 + c2 = 8R2(1 + cosA cosB cosC),

• sin A
2 =

√
(p−b)(p−c)

bc
,

• cosA+ cosB + cosC = 1 + 4 sin A
2 sin B

2 sin C
2 = 1 + r

R
,

• tan A
2 =

√
(p−b)(p−c)
p(p−a) ,

• R = a
2 sinA = b

2 sinB = c
2 sinC ,

• 4m2
a = 2b2 + 2c2 − a2 .

9.1.2 Important Points and Lines in a Triangle

• The circumcenter O is the center of the triangle’s circumcircle. It can be found
as the intersection of the perpendicular bisectors of the sides.

• The incenter I is the center of the incircle and thus the intersection of the angle
bisectors.

• The orthocenter H is the intersection of the three altitudes of the triangle.
• The centroid G is the intersection of the three medians.
• The excenter JA is the center of the excircle lying in the angle B̂AC, outside the

triangleABC and tangent to the lines AB,AC and to the segment BC. There are
three excenters, JA, JB, JC , using similar definitions.

• If MA,MB,MC are the midpoints of BC,CA,AB respectively, then the three
lines MAJA,MBJB,MCJC are concurrent, and their intersection point is called
the mittenpunkt.

• If SA, SB, SC are the contact points of the excircles with BC,CA,AB respec-
tively, then ASA,BSB,CSC are concurrent and their intersection is called the
Nagel point Na.

• Let TA, TB, TC be the contact points of the incircle with sides BC,CA,AB re-
spectively. Then the lines ATA,BTB,CTC are concurrent, and their intersection
point is called the Gergonne point Ge.

• The isogonal conjugate of the point X is the intersection of the three concurrent
lines that are the reflections ofAX,BX,CX about the angle bisectors ofA,B,C
respectively.

• The intersection point of the symmedians is called the symmedian point (or the
Lemoine point). It is the isogonal conjugate of the centroid G.

• Two lines passing through the vertex A of a triangle ABC are called isotomic if
they cut the side BC in points symmetric with respect to the midpoint of BC.
Given a point P , the isotomic lines of the Cevians AP , BP , and CP meet at a
point P ′ called the isotomic point of P .

• The Fermat point F of an acute triangle is the point that minimizes the sum of the
distances to the vertices. If we draw equilateral triangles BCA′, ABC′, ACB ′ on
the outside of the triangleABC, then the three linesAA′, BB ′, CC′ are concurrent
at F .

• The Euler line: the points O,G,H are collinear and |HG| : |GO| = 2 : 1.
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• The Gergonne point Ge, the triangle centroid G, and the mittenpunkt M are
collinear, with |Ge G| : |GM| = 2 : 1.

• The Nagel line: the points I,G,Na are collinear and |Na G| : |GI | = 2 : 1.

Kimberling tabulated and enumerated properties of more than 1477 centers in a trian-
gle (later Brisse extended the list to 2001 items). The interested reader might consult
his updated web page:

• C. Kimberling: see
http://faculty.evansville.edu/ck6/encyclopedia/ETC.html

9.1.3 Coordinates in a Triangle

We are given a reference triangle ABC.

Barycentric coordinates. The barycentric coordinates of the point P are given by
an ordered triple FP = (tA, tB, tC) (up to nonzero scalar multiplication) such that P
is the centroid of the system consisting of the three masses tA, tB, tC located at the
respective verticesA,B,C of the triangle, i.e., the mass tA is located atA, etc. These
coordinates were introduced by Möbius in 1827. The coordinates tA are proportional
to the areas area(PBC). If they are actually equal to these areas, they are called
homogeneous barycentric coordinates.

Here are the coordinates of the principal points in a triangle.

• FG = (1, 1, 1)
• FO = (

a2
(
b2 + c2 − a2

)
, b2

(
a2 + c2 − b2

)
, c2

(
a2 + b2 − c2

))

• FJA = (−a, b, c), FI = (a, b, c)

• FGe = ((p − b)(p − c), (p − c)(p − a), (p − a)(p − b))

• FNa = (p − a, p − b, p − c)

• FH = ((
a2 + c2 − b2

)(
a2 + b2 − c2

)
,
(
a2 + b2 − c2

)(
b2 + c2 − a2

)
,(

a2 + c2 − b2
)(
b2 + c2 − a2

))

• FK = (
a2, b2, c2

)

The line determined by the points (s1, s2, s2) and (t1, t2, t3) has the equation

det

⎛

⎝
s1 s2 s3
t1 t2 t3
x1 x2 x3

⎞

⎠ = 0.

Trilinear coordinates. The trilinear coordinates of a point P are given by an ordered
triple of numbers proportional to the directed distance from P to the sides, up to
multiplication by a nonzero scalar. If we normalize them so that they give the distances
to the sides, then these are called the exact trilinear coordinates. Trilinear coordinates
are also known as homogeneous coordinates. They were introduced by Plücker in
1835. For instance, the vertices have trilinear coordinates (1 : 0 : 0), (0 : 1 : 0), and
(0 : 0 : 1).
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For most important points in a triangle, the trilinear coordinates are given by
triples of the form (f (a, b, c) : f (b, c, a) : f (c, a, b)), for some function f on
the sides a, b, c. For instance, we have fH (a, b, c) = cosB cosC, fG(a, b, c) = 1

a
,

fO(a, b, c) = cosA, fI (a, b, c) = 1. For the Fermat point, we can take fF (a, b, c) =
sin(A+ π

3 ).
The homogeneous barycentric coordinates corresponding to (x : y : z) are

(ax, by, cz). The trilinear coordinates of the isogonal conjugate of (x : y : z) are( 1
x
, 1
y
, 1
z

)
.

9.2 Appendix: Pell’s Equation

Pell’s equation is the Diophantine equation

x2 − dy2 = 1.

The first treatment of this equation was actually given by Lord William Brouncker
in 1657, but his solution was erroneously ascribed to John Pell by Euler. Lagrange
developed the theory of continued fractions, which gives the actual method of finding
the minimal solution, and published the first proof in 1766. However, some methods
(the cyclic method) were already known to the Indian mathematicians Brahmagupta
and Bhaskara in the twelfth century.
General solutions. Pell’s equation has infinitely many solutions if d is not a perfect
square and none otherwise. If (x0, y0) denotes its minimal solution (called also the
fundamental solution) different from (1, 0), then all solutions (xn, yn) are obtained
from it by means of the recurrence relations

xn+1 = x0xn + dy0yn, yn+1 = y0xn + x0yn, x1 = x0, y1 = y0.

The fundamental solution. Thus the main point is finding the fundamental solution.
This can be achieved using continued fractions. According to Lagrange, the continued
fraction of a quadratic irrational number (i.e., a real number satisfying a quadratic
equation with rational coefficients that is not rational itself) is periodic after some
point; in our case, even more can be obtained, namely

√
d =

[
a0, a1, . . . , am, 2a0

]
.

The numbersaj can be calculated recursively, as follows. Seta0 = [√
d
]

and construct
the sequences

P0 = 0, Q0 = 1,
P1 = a0, Q1 = d − a2

0,

Pn = an−1Qn−1 − Pn−1, Qn = d−P 2
n

Qn−1
.

Then

an =
[
a0 + Pn

Qn

]
.
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Furthermore, consider the sequences

p0 = a0, q0 = 1,
p1 = a0a1 + 1, q1 = a1,

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2.

Then we have the identities

p2
n − dq2

n = (−1)n+1Qn+1,

which permit one to construct solutions to the Pell-type equations.
If am+1 = 2a0, as happens for a quadratic irrational, thenQm+1 = 1. In particular,

we find that the fundamental solution is determined by the parity of m, as follows:

x0 = pm, y0 = qm, if m is odd,

x0 = p2m+1, y0 = q2m+1, if m is even.

Observe that pr/qr = [a0, a1, . . . , ar ]. The general solution (xn, yn) is obtained by
means of the trick

x2 − dy2 = (x2
0 − dy2

0 )
n = 1,

and setting

x + √
dy = (

x0 + √
dy0

)n
, x − √

dy = (
x0 − √

dy0
)n
,

we obtain the family of solutions

xn =
(
x0 + √

dy0
)n + (

x0 − √
dy0

)n

2
, yn =

(
x0 + √

dy0
)n − (

x0 − √
dy0

)n

2
.

The negative Pell equation. The Pell-like equation

x2 − dy2 = −1

can also be solved, but it does not always have solutions. When it has one, then it has
infinitely many. A necessary condition for this equation to be solvable is that all odd
prime factors of d be of the form 4k + 1, and that d �≡ 0 (mod 4). However, these
conditions are not sufficient, as can be seen from the equation for d = 34, which has
no solutions. The method of continued fractions works for these equations as well. In
fact, for this Pell-type equation, we have the fundamental solution

x0 = pm, y0 = qm, if m is even.

The equation does not have solutions if m is odd. Furthermore, the general solution
is given again by

xn =
(
x0 + √

dy0
)n + (

x0 − √
dy0

)n

2
, yn =

(
x0 + √

dy0
)n − (

x0 − √
dy0

)n

2
,
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but only for odd n.

Pell-like equations. The Pell-like equation

x2 − dy2 = c

can be solved using the same ideas. If |c| < √
d, then the equation has solutions if

and only if

c ∈
{
Q0,−Q1, . . . , (−1)m+1Qm+1

}
.

Moreover, if c >
√
d , then the procedure is significantly more complicated. See for

instance the comments of Dickson on this subject. It is clear that using the solutions
(xn, yn) to the companion Pell equation x2 −dy2 = 1 and a particular solution (u, v)
of the general Pell-type equation from above, we are able to find infinitely many
solutions by means of the recurrence

un = xnu± dynv, vn = xnv ± ynu.

However, even if we start with the minimal solution, we cannot always obtain all
solutions of the equation using this recurrence. The reason is that we might well have
several fundamental solutions. For instance, if d = 10 and c = 9, then we have the
fundamental solutions (7, 2), (13, 4) and (57, 18).

The general equation
ax2 − by2 = c

can be reduced to the former equation by setting d = ab, x′ = ax, c′ = ac and
looking for those solutions where x′ is divisible by a.

The degree-two equation in two unknowns. Moreover, the general degree-two equa-
tion

ax2 + bxy + cy2 + dx + cy + f = 0

where a, b, c, d, e, f ∈ Z, can be reduced to either Pell-type equations or elliptic
equations.

1. The case � = b2 − 4ac < 0. The equation represents an ellipse in the plane,
and therefore it has only finitely many integer solutions. These equations were solved
by Gauss and earlier considered by Euler. According to Dickson one can find all its
solutions using the solutions to Pell’s equations.

2. If � = 0, the parabolic-type equation becomes

1

4a

(
(2ax + by + d)2 + 2(ae − bd)y + 4af − d2

)
= 0.

If 2ae− bd = 0, then the equation is equivalent, through a linear transformation,
to

(2ax + by + d)2 = d2 − 4af ;
hence the parabola degenerates into two lines. If d2 − 4af is a perfect square, then
we have two infinite families of solutions 2ax + by + d = ±√

d2 − 4af ; otherwise,
there are no integer solutions.
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If 2ae−bd �= 0, then we have to solve the equation 2(ae−bd)y = −t2+d2−4af ,
for an arbitrary parameter t ∈ Z. This depends only on computing the residues modulo
2(ae − bd) of the perfect squares, and yields infinitely many solutions if one exists.
Furthermore, 2ax = t − d − by determines x.

3. If � > 0, then the hyperbolic-type equation becomes:

a(�x − 2cd + bc)2 + b(�x − 2cd + bc)(�y + 2ac + bd)+ c(�y − 2ac + bd)2

= −�(
ac2 + cd2 + ef 2 − bdc − 4acf

)
,

which, through a transformation u = �x − 2cd + bc, v = �y − 2ac+ bd, becomes

au2 + buv + cv2 = h.

This equation can be reduced to a Pell equation. It will have then either zero or
infinitely many solutions.

The Ankeny–Artin–Chowla Conjecture. Although the Pell equation seems to be
well understood, there are many subtle questions concerning its solutions. Here is a
problem that has resisted to all efforts until now.

1. If p is a prime p ≡ 1 (mod 4) and y0 is the smallest positive value of y such that

x2 − py2 = −4,

then y0 �≡ 0 (mod p).
2. If p is a prime p ≡ 3 (mod 4) and y0 is the smallest positive value of y such that

x2 − py2 = 1,

then y0 �≡ 0 (mod p).

The first conjecture is due to Ankeny, Artin, and Chowla, and the second to Mordell.

The Thue theorem for higher degree. The situation of equations of higher degree
is completely different. Let

f (x, y) = a0x
n + a1x

n−1y + a2x
n−2y2 + · · · + any

n

be a homogeneous form of degree n. If n ≥ 3 and f is irreducible over Q, then the
equation

f (x, y) = g(x, y),

where g(x, y) is an arbitrary form of degree n − 2 (not necessarily homogeneous),
has only finitely many solutions. This is a celebrated theorem due to Thue and based
on results of Siegel and Roth. Later A. Baker gave explicit bounds on the size of the
solutions for a wide class of such f .

• L.E. Dickson: Pell equation: ax2 + by2 + c made square, Chapter 12 in History
of the Theory of Numbers, Vol. 2: Diophantine Analysis, New York, Chelsea,
341–400, 1952.

• H.W. Lenstra, Jr.: Solving the Pell equation, Notices Amer. Math. Soc. 49 (2002),
2, 182–192.
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