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PREFACE

The initiative to put together this volume came from Zvi Ruder, senior

editor of physical sciences at Academic Press. He observed that porous media
had been an active area of research in condensed-matter physics in the last

two decades, yet there has not been an introductory text for physics students

at the undergraduate level, nor has there been a more advanced text that

gives an overview of the frontiers of research. When we discussed his ideas

of meeting these needs, my immediate reaction was that these would be

formidable challenges for one or two authors to take on. The difficulty is

partly due to the intrinsic breadth of any interdisciplinary field, but more

importantly, despite the progress made on many fronts, the amount of

fundamental physical understanding is still far from mature and there is a

wealth of unexplained empirical data. As a result, most people engaged in

porous media research rely on a collection of monographs [1—8], hand-

books [9—11], and conference proceedings [12—17] as sources for reference.

A more concise text would be useful not only for students entering the field,

but for seasoned researchers as well. One way of achieving the goal is to

have a dozen or so chapters that cover different aspects of porous media. If

each chapter were written by someone experienced in that topic, it would

break down the difficult task into more manageable pieces. As we explored

this model for a text further, we were also drawn to the idea of having an

experimental emphasis, as it would best complement other existing mono-

graphs; the readers would gain a better sense of what is actually done in the

research. All too often, we take for granted that the equations and data we

see in books are proven truths, but for a field that is still developing, having

some knowledge of the experimental details would help us make more

critical judgments and identify opportunities for further work. With these

considerations in mind, the Experimental Methods in the Physical Sciences
series seemed like a natural place for a volume such as this.

As the editor, my role was to construct the table of contents, solicit

contributors for each chapter, and add some coherence to the largely

independent writings. The interdisciplinary nature of the field is reflected in

the diverse backgrounds of the authors: They come from academia and

industry as well as government laboratories. While many would describe

themselves as physicists, others consider themselves as engineers, chemists,

or applied scientists. The experimental emphasis is reflected in the fact that

xvii



they are predominantly experimentalists and each chapter is devoted to a

particular class of experiments. The authors were specifically asked to

include some description of the experimental methods in addition to the

usual presentation of theoretical principles and illustrative data. To make

this volume viable as an introductory text, the length of each chapter is

limited to about 35 pages. A comprehensive bibliography at the end of each

chapter serves as a road map for readers who want to have a more thorough

understanding of the topic or delve into the most recent literature. The

principal guideline I gave to the authors was to consider how they would

introduce the topic to students or nonexperts in three to four lectures.

Clearly, each author approached the task somewhat differently. But collec-

tively, the eleven chapters contained in this volume may be thought of as

the lecture notes of a one-semester course taught by eleven guest lecturers.

Their different backgrounds and emphases ensure that the audience is

exposed to a broad spectrum of perspectives, which is essential in learning

about any interdisciplinary subject. At the same time, efforts were made to

have the chapters organized in a logical and coherent fashion so that the

basic concepts are introduced in the early chapters and applied in the later

ones.

The first chapter by Edward Garboczi, Dale Bentz, and Nicos Martys

deals with the applications of digital imaging techniques. As thin sections

have always been widely used to give visual and intuitive information of

pore structure, the arrival of the computer age has made it possible to

extract quantitative information conveniently. Several important concepts,

such as correlation functions, self-similar fractals, and the percolation model

are introduced to describe the microgeometry. The authors do not stop at

just quantifying 2-D images; they show how such images can be used to

build representative 3-D structures on the computer and use them to

compute macroscopic properties to compare with experiments. Several

theoretical models used for computation are discussed. Continuing on the

theme of imaging, Roland Lenormand discusses in Chapter 2 how video

imaging is used to study multiphase fluid flow phenomena in artificially

constructed 2-D micromodels. This offers a natural platform to explain the

competing roles of wetting properties, surface tension, viscosity, gravity, and

diffusion in determining the flow pattern and dynamics, including the central

ideas of viscous fingering, invasion percolation, and interface pinning.

Although the focal point of this chapter is on the difference between drainage
(nonwetting fluid invasion) and imbibition (wetting fluid invasion) in two-

phase capillary displacement, highlights of several other types of more

complicated flow problems are given. These include three-phase flow, foam

flow, flow in fractures, critical (or almost miscible) flow, and tracer disper-

sion in miscible flow.
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Chapters 3 to 5 address several traditional types of experiments used to

characterize porous media. Continuing along the ideas introduced in the

first two chapters, Yanis Yortsos discusses in Chapter 3 how the adsorp-

tion—desorption of gases and the injection of mercury are used to probe the

pore structure. The definitions of pore size and throat size are given, and

the concept of self-affine fractal surfaces is introduced. The main emphases

of this chapter are on the effects of fractal surface roughness within a

single pore and the overall connectivity of the pore network. In the

latter, the invasion percolation model is used to understand both the

desorption and mercury injection experiments because both involve the

displacement of a wetting fluid by a nonwetting one. In Chapter 4, I give

an integrated discussion of electrical conductivity, hydraulic permeability,

and electrokinetic measurements. Several key concepts such as tortuos-

ity, pressure diffusion, and viscous relaxation are introduced in the context

of bulk conductivity and permeability measurements, which prepare the

readers for the next chapter on acoustic and ultrasonic wave propagation.

One of my main emphases is the important roles of the surface counter-

ions in causing surface conductivity, induced polarization, and electro-

kinetic phenomena. I show that, despite the highly disordered nature of

the pore network, transport phenomena are governed by a character-

istic pore radius. While other techniques such as image analysis and mercury

injection can give estimates of this radius, electrokinetic measurements

can determine it exactly and give a simple relationship between the con-

ductivity and permeability of brine-saturated porous media. For two-

phase flow systems, the drainage-imbibition hysteresis discussed in the

preceding chapters is demonstrated in conductivity measurements with

simultaneous x-ray imaging. In Chapter 5, on acoustic and ultrasonic

waves, Peter Nagy reviews the basics of bulk, surface, interfacial, and guided

waves before introducing the important concept of Biot slow waves that

correspond to out-of-phase motions of the pore fluid and the solid matrix.

Results of reflection and transmission measurements on air-filled and water-

filled samples are used to compare with the Biot theory in the

limits of rigid frame and elastic frame. They are shown to be useful in

determining bulk material properties such as porosity, tortuosity, and

permeability. Using collimated and focused beams of ultrasonic waves,

spatial variations of these properties in thin slabs can be imaged. Guided

waves along planar surfaces and cylindrical boreholes can be exploited in

geophysical applications.

Scattering experiments are among the most powerful tools for determin-

ing microscopic structures. The wavelength of the radiation sets the length

scale of investigation. In Chapter 6, Sunil Sinha discusses how small-angle

scattering of x rays and thermal neutrons are used to study structures
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between 1 and 100 nm, a range inaccessible by imaging. Because the

scattering is very weak and almost completely elastic, the scattered intensity

is directly proportional to the Fourier transform of the geometric correla-

tion function introduced in Chapter 1. Sinha reviews the scattering theory

with particular emphasis on probing pore structures with either a spatial

modulation or random fractal geometry. He shows that neutron scattering

is particularly useful for studying the behavior of two fluids inside the pores.

By suitable substitution of hydrogen by deuterium in one of the fluids, its

scattering power can be made to match the solid so that the three-phase

system (two fluids and one solid) looks like a two-phase system. This

simplifies the data interpretation. For example, it is possible to observe the

preferential adsorption of certain molecules on the pore surface out of a

uniformly mixed fluid that is matched to the solid. Similar contrast matching
techniques are essential in using light to probe porous media, because light

is strongly scattered even for a small difference in refractive index between

the pore fluid and the solid matrix. In Chapter 7, Kenneth Langley and

Iwao Teraoka discuss the principles and applications of several optical

techniques. In index-matched systems, they show that dynamic light scatter-

ing, fluorescence, interferometry, and forced Rayleigh scattering can be used

to study a variety of dynamical phenomena in the pore space; for example,

diffusion of macromolecules and phase separation of binary fluids. In

unmatched systems where multiple scattering dominates, they show how the

technique of diffusion-wave spectroscopy can be used to study the dynamics

of foam, colloids, and flowing granular materials.

A large part of the physics of porous media occurs at macroscopic length

scales that cannot be probed by scattering. While Chapters 1 and 2 deal with

imaging of 2-D samples, there is really no substitute for nondestructive 3-D

imaging for obtaining the full structural information. In Chapter 8, Mary

Coles gives a concise review of x-ray imaging with emphasis on petro-

physical applications. Unlike scattering experiments that use low-energy

monochromatic x rays, radiography and tomographic imaging typically

utilize high-energy polychromatic x rays that can penetrate solid samples

several centimeters in thickness. The image is essentially a spatial map of the

attenuation coefficient of the sample. Coles describes the basic principles and

many practical considerations that are critical in getting the best image

quality. Average properties such as porosity and density can be easily

extracted from the images. In multiphase flow studies, doping one fluid with

heavy ions to increase attenuation can discriminate it from the other fluid.

A quantitative knowledge of how the fluids are distributed can be used to

understand other experiments; for example, electrical conductivity as de-

scribed in Chapter 4. Even the qualitative images are useful for identifying

heterogeneities such as geological bedding planes and fractures in the
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sample. State-of-the-art microtomography performed at national synchro-

tron facilities can now achieve spatial resolutions of a few microns.

The other powerful 3-D imaging technique is magnetic resonance imaging

(MRI). It utilizes nuclear magnetic resonance (NMR) of hydrogen or other

light elements. This feature makes NMR and MRI most useful for studying

the behavior of pore fluids such as water and hydrocarbons. In Chapter 9,

Robert Kleinberg explains that the amplitude of the NMR signal is useful

for determining fluid saturation, but the relaxation times for fluid molecules

are shortened inside small pores due to interactions with the pore surface.

The latter makes the measurement sensitive to the specific area and pore size

distribution of the sample. Comparing the results to other measurements

such as nitrogen adsorption and mercury injection (as described in Chapter

3) determines the strengths of the fluid—solid interactions. A number of

materials processing and petrophysical applications are described. Instru-

mental considerations specific to the study of porous media and implemen-

tation for field measurements in boreholes are discussed. Following this

introduction to NMR, Philip Chang, Ted Watson, and Carl Edwards

describe how it is used in 3-D imaging and applied to the study of porous

media. After explaining how a spatially varying but unidirectional magnetic

field is used to mark the positions inside the sample, the authors discuss the

complications caused by the fluid—solid interactions and various ways to

discriminate one pore fluid from another. In addition to obtaining static

information such as porosity and saturation, pulsed field-gradient (PFG)
methods are shown to be useful for obtaining velocity maps of the different

fluids. Examples of using this information to study multiphase flow are

given.

In the final chapter, Jean-Pierre Hulin and Dominique Salin focus on

issues related to the mixing of flowing fluids in porous media and show how

some of the techniques described in the earlier chapters can be applied. They

begin by describing the phenomenology of passive tracer dispersion and the

basic mechanisms involved. This is followed by a discussion of the different

techniques that are used to study dispersion at microscopic and macro-

scopic length scales, with particular emphases on PFG—NMR, elec-

trochemical, acoustic, and conductivity echo techniques. Experiments aimed

at understanding the origin of non-Gaussian dispersion and the effects of

large viscosity or density contrast between the mixing fluids are discussed.

Although these eleven chapters cover a wide range of the research

activities on porous media in recent years, they are by no means complete.

Nevertheless, it is my hope that some will find this compilation useful as the

basis for a one-semester course in which physics students will be exposed to

practical applications, engineering students will learn about the fundamental

physics, and all will develop an appreciation of the role of experimentation.
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The bibliographies given below and in each chapter offer additional sources

of information.

I owe much to my friends and former colleagues at Schlumberger—Doll

Research for introducing me to the physics of porous media. It has been a

wonderful learning experience to work on this volume and interact with all

the authors. They have been most gracious and accommodating to my

suggestions in their writings. I am also indebted to several anonymous

referees who helped in reviewing the early drafts and offered their thoughtful

comments.

Po-zen Wong
Amherst, Massachusetts
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1. DIGITAL IMAGES AND COMPUTER MODELING

Edward J. Garboczi, Dale P. Bentz, and Nicos S. Martys
National Institute of Standards and Technology

Building Materials Division
Building and Fire Research Laboratory

Gaithersburg, Maryland

Abstract

This chapter describes how digital images of porous materials can be

analyzed to give information about the structure and properties of the

material and the various ways 3-D digital-image-based models can be

generated to help understand real porous materials.

1.1 Introduction to Porous Materials and Digital Images

Holes in objects may be desirable or undesirable. For instance, when we

unwrap a piece of clothing that was ordered from an expensive mail-order

catalog, and find that there are unwanted holes in it, we usually send it right

back, with a more or less polite demand for a refund or an exchange. And

everyone knows the effect of holes in bicycle or automobile tires. However,

holes in the middle of records (remember records?) enable them to be played

on a phonograph, and holes in the middle of bagels and doughnuts not only

eliminate the hard-to-cook part, but also allow ease of handling by clumsy

fingers. So holes can indeed sometimes be useful.

A porous material is simply some kind of solid material that has holes in

it. The holes are also called pores. However, if asked, most people would

make a distinction between a pair of socks with three holes in the toes, an

empty closed cardboard box, and a household sponge. The socks and the

box would not generally be considered to be porous materials, while the

sponge would be. To call a material a porous material, there is usually some

kind of implicit assumption of homogenization and length scale.

Attempting to state this intuitive feeling more quantitatively is difficult.

We might in general say that the holes must be small enough, compared to

the typical size of the piece of material that is considered, so that it is

reasonable to consider the material as a mixture of solid framework and

1

EXPERIMENTAL METHODS IN THE PHYSICAL SCIENCES This contribution is a US government

Vol. 35 work not subject to copyright.

ISBN 0-12-475982-3 ISSN 1079-4042/99 $30.00



pores. Also, the holes must be distributed fairly evenly throughout the

material. Therefore, if the length scale of the sample is large compared to

the typical pore size, and the pores are distributed reasonably uniformly

throughout the material, then the material is a porous material. We use

these qualitative ideas as a working definition of most porous materials in

this and later chapters.

Common porous materials, some of which are considered in the chapters

of this book, include concrete [1]; paper [2]; ceramics (with natural [3] or

artificially created pores [4]); clays [5]; porous semiconductors [6]; chro-

motography materials [7]; and natural materials such as coral, bone,

sponges, rocks, and shells. Porous materials can also be reactive, such as in

charcoal gasification, acid rock dissolution, catalyst deactivation [8], and

concrete [1].

The purpose of this chapter is to describe a ‘‘tool kit’’ of mathematical and

computational tools that are available for use on digital images, in general,

and digital images of porous materials, in particular. These include tools for

measuring geometrical and morphological quantities, tools for computing

physical properties of various kinds, and tools for generating 3-D images,

either from 2-D images or using models of various kinds. There are many

standard review papers and monographs in this area. Sahimi’s book, in

particular, is a good overall reference that covers some of the same material

as this chapter [9].

1.1.1 Porous Materials

Consider a sample of total volume V. Define the volume of the solid phase

to be V
�
, and the volume of the pore phase (the holes) to be V

�
, with V �

V
�

� V
�
. The volume fraction is a normalized variable that is generally more

useful. The volume fraction of the pore phase is commonly called the

porosity, and is denoted � � V
�
/V. The solid volume fraction is then (1 � �).

Since a porous material is a two-phase material (at least), a surface

separating the pore phase from the solid phase can be defined, with its area

denoted S
�
. This quantity is often called the pore surface area. A normalized

variable common for this quantity is called the specific surface area,

s
�

� S
�
/V. Note that the dimension of 1/s

�
is length, so that sometimes it is

thought of as a length that characterizes the length scale of the pores. A

simple example would be a collection of N mono-sized nonoverlapping

spherical pores of radius r. The inverse of the specific surface area, 1/s
�

�

V /S
�
, would be r/(3�), which is obviously a length characteristic of the

pores. Other ways to form a length scale from pore space characteristics are

covered later in this chapter and in other chapters of this book dealing with

the transport properties of porous materials.
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Fig. 1. Two-dimensional picture of (left) isolated circular pores and (right) connec-

ted pores (gray � solid, white � pores).

In thinking about the microgeometry of porous materials, a common

approach is to consider them to be two-phase solid—pore composites, even

though the solid phase can be heterogeneous. Properties such as elastic

moduli are essentially functions of the solid phase, but are reduced and

modified by the presence of the pores. If there is a fluid that fills the pore

space, which can modify the dynamic elastic response, then both solid and

pore characteristics must be dealt with in understanding the elastic proper-

ties [10]. Elastic moduli decrease as the porosity increases. Properties such

as diffusivity and permeability are functions of pore size, shape, and

connectivity and increase as the porosity increases.

The topology of the pore space of a porous material is very important in

determining the properties of the material, and even in properly formulating

ideas about the pore space in the first place. By topology we mean how the

pores are connected, if at all. If the pores are completely isolated from each

other, then clearly one can discuss the shape and size of individual pores.

The left side of Fig. 1 shows an example of this case, in two dimensions,

where the pores are random-size, nonoverlapping circular holes. It is clear

in this case how to define the pore size distribution, a quantity that gives

the number or volume of pores of a given size.

If the pores are fully connected to each other, as shown in the right side

of Fig. 1, then there is really only one multiply connected ‘‘pore’’ in the

material. The number of pores is no longer a meaningful quantity, and it

becomes difficult to talk about the shape and size of the ‘‘pores.’’ However,

in this case, the idea of ‘‘throats’’ can be important. If the pore space in many

areas is shaped like the cartoon shown in Fig. 2, then the idea of a throat

shape and size can be loosely defined. The size of the ‘‘throat’’ limits the
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Fig. 2. Schematic picture defining a throat and pore in the pore space of a porous

material.

accessibility of the larger ‘‘pore’’ and is then the size of importance for many

properties of the material.

If there is such a throat structure, then a pore throat size distribution,

usually but erroneously called the pore-size distribution, can be defined.

Techniques such as nitrogen BET and mercury intrusion porosimetry (see
Chapter 3) measure a pore throat size distribution that is convolved with

the cross-sectional throat shape and the topology of the pore—throat

network [7, 11]. These techniques measure an equivalent circular cross-

sectional throat diameter [7, 11]. In practice, pore—throat combinations can

only really be separated in terms of grossly simplified geometrical models of

the pore microgeometry.

In most cases, porous materials are random materials, with random pore

sizes, shapes, and topology. Because of this fact, most porous materials tend

to be isotropic. This is not always the case, however. Many rocks have

anisotropy built into them from how they were formed due to deposition of

sediment [12]. When looking at a slice of a porous material, one must of

course be aware whether the material is or is not isotropic. We assume

isotropy in the remainder of this chapter.

1.1.2 Digital Images

To our eye’s perception, an artist painting a watercolor or oil picture

makes an analog picture, although it is actually finely divided at the scale

of individual, overlapping paint pigment particles. A digital image is a

collection of individual, nonoverlapping elements or pixels that have distinct

intensities (gray scale or color) indicating the solid and pore phases of the

material. The spatial resolution of the image indicates the size of the pixels,

with high resolution meaning a small pixel is used. As the pixel size

decreases, the number of pixels per unit length increases, hence the designa-

tion ‘‘high.’’ A digital image can be a gray-scale image, where the intensity

of each pixel ranges from black (0) to white (N). For many imaging systems

(microscopes etc.), N � 255, corresponding to 8 bits of intensity resolution.

4 DIGITAL IMAGES AND COMPUTER MODELING



A digital image can also be a color image, where each pixel contains three

values, say from 0 to 255, for red, green, and blue, forming 24 bits of color

resolution. For porous materials, if the solid part is a uniform material, all

a digital image requires is 1 bit per pixel, where pore is black (0) and solid

is white (1), or vice versa. The importance of digital images in science, as

opposed to analog paintings, is that digital images enable quantitative

analysis. Old-fashioned photographs and videos also must be digitized

before analysis. Modern digital cameras and scanning and transmission

electron microscopes can produce digital images directly.

Usually a rectangular array of square pixels is used in two dimensions,

although other shapes, such as a triangular lattice of hexagonal pixels, are

also possible and can be useful for special applications [13]. Actually any

area-filling collection of random shapes, on a random lattice, could be used

to make a digital image. Requiring that the pixels have uniform shape

restricts us to having them be a unit cell of one of the five Bravais lattices

in two dimensions [14]. The further requirement that the pixels be equi-

lateral forces the choice of square lattices of square pixels and triangular

lattices of hexagonal pixels. For the rest of this chapter, we discuss only

digital images made from square pixels, and in 3-D cubic lattices made up

of cubic pixels.

In two dimensions, digital images at sufficient spatial resolution portray

areas well. Figure 3 shows the same physical size circle, but digitized at

higher and higher resolutions. The real circle is centered on the middle of a

pixel. If the circles were to be centered on a pixel corner, the digitized image

would look slightly different, with no significant changes. The image appears

more circular as the resolution increases. Simple calculations show that

when 15 or more pixels are used per circle diameter, the error in the area is

always less than 1% [15].

However, the perimeter of a curved surface is usually off by a large

amount, no matter what the resolution. In Fig. 3, it is easy to see that the

perimeter of a digital circle P, obtained by counting pixel edges, is given by

P � 8r, not P � 2�r [16]. In the same way, for a 3-D digital image, where

the pixels (or voxels) are now cubes, volumes are well represented at high

resolutions, but the surface area of a sphere, obtained by counting pixel

faces, is always approximately 6�r�, not 4�r�. These corrections must be

kept in mind when trying to analyze pore surfaces based on digital images

[17].

Another important issue in analyzing digital images of random porous

materials is the ratio of image size to pore size. To get statistically

meaningful results, the image must sample a representative area of the

porous material. A more rigorous way of stating this can be formulated

using the porosity. For a random porous material, the measured porosity
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Fig. 3. Example of the effect of digital resolution on how a circle of diameter d is

represented (top: pixel length � d/3, lower left: pixel length � d/7, lower right: pixel

length � d/17).

will vary from image to image due to the randomness of the material. The

smaller the image compared to the average length scale of the pores, the

greater this fluctuation will be [18]. If the size of the images used is such that

this fluctuation from image to image is small enough, then the image is

considered to be large enough to be representative [18]. The terms ‘‘small

enough’’ and ‘‘large enough’’ are defined for the application at hand. A rough

rule of thumb is that the image should be 5—10 times the typical pore size.

1.2 Geometrical and Topological Analysis

Assume a digital image of a cut through a porous material has been

obtained, in the form of a gray-scale image. Often the first step is to make

it into a two-phase black and white image. There are many ways this can

be done, based on analysis of the gray-scale histogram (distribution) of the

image [19]. This histogram simply tells what fraction of the pixels have

which gray-scale value. If the density of the solid phase is known, then the

porosity can also be directly measured from some kind of physical bulk

density measurement. If �
�

is the solid density, and � is the measured
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Fig. 4. Top left: an artificial gray-scale image generated from a Gaussian convol-

ution process; middle top: the same image thresholded at a gray level of 93, so that

all pixels with a gray level less than or equal to 93 are turned black and all others

are turned white; black area fraction� 22%. Right top: the same image thresholded

at a gray level of 110, with black area fraction of 41%. Bottom: gray-scale histogram

of the original image. The y-axis is the area fraction of the image having a given gray

scale, and the gray scale runs from 0 to 255. The values of 93 and 110 are marked

by dashed lines.

empty-pore or bulk density, then the porosity is simply � � 1 � �/�
�
. A

threshold gray scale can then be chosen, so that all pixels with gray levels

above this threshold are white (solid) and all below are black (porosity),
such that the correct porosity is achieved. Once a correct binary image has

been made, further analysis can be carried out. Often, one will want to

remove isolated pixels due to noise in the image acquisition process. Median

filtering or other image processing algorithms can be utilized for this

purpose [19].

The top left of Fig. 4 shows an example of a random image generated by

convolving a Gaussian function with a random noise image (see Section
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1.5.2). The bottom of Fig. 4 shows the gray-scale histogram for this image,

with dashed lines marking the gray scales of 93 and 110. In the graph, there is

a single maximum at a gray scale of about 125, out of 255. Many porous

material images would have two peaks in the gray-scale histogram, one for

each phase. The middle top image of Fig. 4 shows the result of choosing a

threshold gray level of 93, where every pixel with a gray scale lower than this

is turned to black, and every other pixel is turned to white. The resulting

porosity (black phase) is about 22%. If the threshold is chosen to be 110, in

the top right part of Fig. 4, then the porosity turns out to be about 41%. In

these 2-D sections, the pore phase is isolated and the solid phase is connected.

The isolated islands of solid trapped within the pore phase are 2-D artifacts.

1.2.1 Stereology, Mathematical Morphology, and Fractal Analysis

There are several bodies of mathematical knowledge and techniques that

have been developed and that are actively used to mathematically analyze

and characterize the microstructure of porous materials, or indeed any

material.

Stereology is the mathematical science of predicting 3-D quantities by

measuring 2-D quantities. Books are available on this topic [20, 21], with

many new articles produced each year. Stereology, combined with image

analysis [22, 23], can be a powerful tool for inferring quantities such as �
and s

�
that are the same in two as in three dimensions. Stereology cannot,

however, analyze quantities that change between dimensions, such as

percolation quantities (see Section 1.2.3). Mathematical morphology is a

related and powerful tool for studying images of porous materials [24].

Another body of knowledge available for analyzing and characterizing

random materials is that of fractal mathematics. Making use of the tech-

niques of stereology, mathematical morphology, and image analysis, ques-

tions of fractal geometry [25—29] can be explored in digital images of

porous materials, whether these images are 2-D or 3-D. For an object to be

fractal, it must display scale invariance over a range of length scales. A given

digital image must have enough resolution so that it can display a reason-

able range of length scales, in order that its potential fractal character can

be analyzed. A rough rule of thumb is that scale invariance must be

displayed over at least one order of magnitude of length scale for an object

to be considered to have fractal character. Therefore the image must contain

at least that much resolution. In a digital image of a porous material, the

size of the image is L � L , and the pixel length is p. Clearly then we must

have L � 10p, since looking at length scales too close to the digital

resolution will bring in the digital ‘‘graininess,’’ and looking at length scales

too close to L will bring in finite size effects.
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Assuming that the image is adequate in terms of length scales and

resolution, one way to examine the possible fractal nature of an object in a

digital image is to measure how the object fills Euclidean space as a function

of the size of the region being examined. Such a property is characterized

by the mass fractal dimension d
�
. In the case of a digital image, we can

count the number of pixels that are contained within a given radius. The

number of points M(r) � r�
�
. Certainly, the range of r over which this

relationship could hold would be for p� r� L . If the object did fill space

uniformly, then d
�

� d, the Euclidean dimension. As an example of fractal

objects, objects built up in three dimensions by diffusion-limited aggregation

or percolation networks at the percolation threshold have d
�
� 2.54.

Another way of determining d
�

is to construct a grid that covers the

digital image, of box size l. It would be easiest, in the case of a digital image,

to choose l to be an integer number times p. By counting the number of

boxes that included part of the object, as a function of grid spacing l, one

obtains the box dimension, d
�

� d
�
, from the relation M(l) � l��

�
. Once

again, the range of grid spacing that would produce such a relation would

be between the pixel size p and the image size L .
A surface can be rough in a way such that it can also be characterized by

a fractal dimension, this time a surface fractal dimension. In a 2-D digital

image, a ‘‘compass’’ of opening t can be used to step around the surface

(perimeter) and measure its apparent length S(t). If the surface fractal

dimension is d
�
, then S(t) � t��

�
. A grid method can also be used, similar to

the determination of the mass fractal dimension, which is defined for a 2-D

or 3-D digital image. One counts how many grid boxes have surface within

them, S(l), for various grid sizes l. If the surface is fractal, then S(l) � l��
�
,

where d
�
is again the fractal dimension of the surface.

Experimentally, one can directly determine the fractal dimension by use

of small angle scattering, whether neutron or x-ray scattering. Further

details can be found in Chapter 6.

For porous materials, the pore space itself, if it has pores over a wide

range of length scales, can be a mass fractal [30—33]. If the pore surface is

very rough, which would be the case for a high-surface-area material, then

the pore surface could form a surface fractal [30—33]. Studies of fractal

geometry have been carried out for rocks [26, 34], aerogels [35], and

cement-based materials [36]. The transport properties of fractal pore spaces

have also been studied theoretically [37, 38].

1.2.2 Correlation Functions and Bounds

Beyond the empirical characterization of pore and throat sizes, the pore

geometry can be characterized in a rigorous way mathematically using
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correlation functions, which can be measured using image analysis. Since

they are used for bounds and the reconstruction of images, topics that are

covered later in this chapter, we review them in some detail.

In 2-D, we define a function f (i, j), where (i, j) indicates the location of a

pixel in the M�N image, i � 1, . . . , M and j � 1, . . . , N, and f (i, j) � 0 for

solids, and f (i, j) � 1 for pores. Then the first-order pore correlation

function is S
�

�� f (i, j)�� �, where

� f (i, j)� �
1

A
�
	�


f (i, j), (1)

and where A � M�N is the number of pixels in the image. A similar

definition holds in d dimensions. The second-order correlation function,

S
�
(x, y), is defined similarly, by

S
�
(x, y) �� f (i, j) f (i � x, j � y)�. (2)

Writing the preceding equation in this way assumes that the system is

translation invariant, so that only the difference vector between two pixels

matters, and not the absolute location of the two pixels. If the image is also

isotropic, then with r � �(x,y)�, S
�
(x, y) � S

�
(r, �) � S

�
(r), so that S

�
is a

function of distance only.

The value of S
�
(r) carries information about how far away different parts

of the microstructure still ‘‘feel’’ each other. When r� 0, S
�
��, since

f (i, j)� � f (i, j). For nonzero values of r, one can think of f (i � x, j � y) as

a weighting probability factor for f (i, j). At a given value of (i, j), such that

f (i, j) � 1, if there is a correlation in the system up to a distance r
�
, and if

r � �x� � y�� r
�
, then f (i � x, j � y) has a better than average (��)

chance of also having the value of 1. The overall integral will still be less

than �, however. As r ��, there is no causal connection between the points

(i, j) and (i � x, j � y), as long as there is no long-range order, so the

probability associated with the pixel at (i � x, j � y) being equal to unity is

just �, independent of (i, j). Therefore S
�
��� in this limit. A simple

physical way of understanding S
�

is to think of it as the probability of

finding two randomly selected points that are both in the pore space. This

probability turns out to depend on the distance between the two points.

Clearly, S
�

� � when r � 0 and decays to the value �� as r��. The decay

length is a measure of the pore size. Because digital images have a finite size

(M�N), the actual evaluation of the two-point correlation function can be

achieved using

S
�
(x, y) �

��
�
		�

���
�

	�

f (i, j) f (i � x, j � y)

(M � x)(N � y)
. (3)
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Fig. 5. Two-point correlation function for overlapping spheres (exact theoretical

result). The sphere radius is R � 1, and the number density of spheres was 0.29, so

the volume fraction of pore space �, which is the space surrounding the solid spheres,

is approximately 0.3.

A simple mathematical exercise is the case of overlapping spheres, where

each identical sphere is randomly placed in three dimensions without regard

to any of the other spheres. The volume outside the solid spheres is the pore

space. This case has been solved analytically [39, 40]. If � is the number of

overlapping spheres per unit volume, and R is the radius of the spheres, then

� � exp ���
4�R


3 � , (4)

S
�
(r) � exp ���

4�

3 �R
 �
3rR�

4
�

r


16�� r� 2R, (5)

S
�
(r) � exp ���

8�

3
R
� r� 2R. (6)

Figure 5 shows S
�
(r) plotted as a function of r, where R � 1 is the radius of

the spheres and � � 0.29, so that S
�
(0) � � � 0.3. One can see that S

�
decreases as r increases from zero, and is always monotonically decreasing.

For systems where there are distinct grains, there are usually oscillations

after the first large decrease in S
�
. In this exactly solvable case, S

�
actually

reaches the value ��, as can be seen in Eq. (6) and comparing with Eq. (4).
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For any random isotropic pore space with smooth surfaces, the slope of the

two-point correlation function at r � 0 is given exactly by [41—43]

	S
�

	r
�
���

�
�S

�
4V

� �4s
�
. (7)

Therefore S
�

is always a decreasing function of r for small r, because of this

negative initial slope.

Note that S
�
(r) also contains additional information when fractal geom-

etry is present [29]. In the case where the material phase considered is a

mass fractal, S
�
(r) � r�

�
�
 when r is in the fractal limit (less than the image

size and greater than the pixel size), where d
�

is the mass fractal dimension

(see Section 1.2.1).
When the material phase is Euclidean, but its surface is fractal, with

dimension d
�
, the small r limit is given in terms of the surface fractal

dimension: S
�
(r) ��Br
��

�
� �, where B is a constant [29]. When the

material phase is a mass fractal with a fractal surface, then other mathemat-

ical forms must be considered [29].

Higher-order correlation functions are defined similarly. Although in

practice, two-point functions are most used, three-point functions are fairly

common, but correlations past three-point are rarely used. For an isotropic

translationally invariant material, the three-point correlation function, S


, is

a function of three variables, r
�
, r

�
, and � where these can be thought of as

defining a triangle with two sides of length of r
�

and r
�
, with � being the

angle between these two sides. Then S


(r

�
, r

�
, �) is the probability of finding

the three vertices of this triangle all in the pore phase [39].

When computing correlation functions from digital images, it is important

to correctly handle certain technical issues such as converting to polar

coordinates, especially at small r, and to consider the limitations of digital

images, such as digitizing curved surfaces, which were mentioned earlier.

References [40, 44, 45] give explanations of the methods that must be used,

the pitfalls of which to be wary, and the sources and magnitudes of possible

errors.

Other than characterizing pore geometry, one of the principal uses of

correlation functions is in the area of computing bounds for the effective

properties of composite materials [46, 47]. Bounds are analytical formulas

that, for some particular property such as elastic moduli or electrical

conductivity, give the upper and lower limits for what the effective com-

posite property can be.

Bounds are classified by their order. An nth-order bound usually includes

information from the nth order correlation function [46, 47]. Of course, if

there are more than two phases, there will be more than one nth-order cor-

relation function. However, the second-order bounds for elastic moduli and
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electrical—thermal conductivity, commonly called the Hashin—Strichkman

bounds [47], are unusual in that they do not explicitly contain information

from S
�
, the second-order correlation function, other than S

�
(0) � �. But

the third-order bounds for these properties do have parameters computed

from S


. The first-order bounds are simply the parallel (Voigt) upper bound

and series (Reuss) lower bounds, for which the phases are arranged in a

parallel or series microstructure. These use the same information as the

second-order bounds, the volume fraction and properties of each phase, but

are wider apart than the Hashin—Strichkman bounds.

As bounds incorporate higher and higher correlation functions, they are

known to become tighter and tighter, increasing their usefulness at the

expense of a great increase of computational difficulty. In fact, it is known

that the isotropic and anisotropic electrical conductivity [46, 48] and

isotropic elastic moduli [49] of a random isotropic two-phase composite can

be written down exactly in powers of the difference of the properties of the

two phases. The coefficients in the power series are functions of all the

correlation functions of any order for the composite. So, in general, the

properties of a porous material will depend on all order correlation

functions.

Bounds are most useful for composite materials where none of the phases

have zero properties. They are less useful for air-filled porous materials. This

is because in the array of nth-order bounds, the lower bound always has

something of a series character and the upper bound always has something

of a parallel character. For air-filled porous materials, this means that the

lower bound is always close to zero, because air approximates a zero-

property phase. So there is really only an upper bound for air-filled porous

materials, which may or may not be very close to the actual effective

properties. For a liquid-filled porous media, a meaningful lower bound can

exist. However, for elastic properties, a zero shear modulus in the liquid

phase causes both the lower shear modulus and Young’s modulus bounds

to be zero.

There has been much work in the past decade or so on bounding the

permeability, which is a more difficult problem than that of bounding the

effective electrical conductivity or elastic moduli [46, 50—53]. Permeability is

different from quantities like electrical conductivity and elastic moduli. The

conductivity, for example, is defined at every point of the material, and the

overall effective conductivity is found by solving Laplace’s equation [Eq.

(9)], for the composite and averaging over this solution and the microscopic

conductivities. However, there is no microscopic permeability, because

permeability cannot be defined at a point, even in the pore space, but is

defined instead by averaging over solutions of the Navier—Stokes equations

in a porous material.
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1.2.3 Pore Connectivity

Assessing the connectivity of any phase is simple in a digital image of a

porous material. Usually, we want to know this for the pore phase, as the

solid phase must be connected to have mechanical integrity of the sample.

A simple method to use on a digital image is called a ‘‘burning algorithm’’

[54, 55]. In two dimensions, only one phase at a time in a porous material

can be percolated [54, 56]. In three dimensions, several phases can simulta-

neously percolate. This fact reduces, but does not eliminate, the usefulness

of the burning algorithm in two dimensions.

The burning algorithm is a way of identifying all members of a cluster of

connected pixels that span the image. Starting on one side of an image,

‘‘burn’’ one pore pixel by setting its gray scale to another number that is not

in the existing range; for example, not in the range 0—255. Then any pore

pixel that touches this pixel is also set to the same number. Continue this

process until there are no more ‘‘unburned’’ pore pixels left that are touching

the last burned pixels. The process is similar to classifying all pixels of a

certain gray value as being combustible, and then touching a match to one

of them. If the ‘‘fire’’ burns from one side of the image to the opposite side,

then the burned pixels are said to form a spanning cluster, or percolate. This

process can be repeated by starting the fire at any unburned pixel to identify

all connected clusters, and all nonspanning clusters as well. This is an

efficient way to determine if the pore space percolates through the digital

image.

In performing the burning algorithm, one issue to consider is which pixels

constitute a neighboring pixel for propagation of the ‘‘fire.’’ The most

common case is to consider the immediate nearest neighbors (4 in two

dimensions, 6 in three dimensions). Alternately, the second nearest neigh-

bors (4 in two dimensions), or the second and third nearest neighbors (20

in three dimensions) can also be considered. The connectivity of a phase in

a digital image with square or cubic pixels has this degree of uncertainty.

We note, however, that using only the first nearest neighbors in two

dimensions resulted in good agreement of percolation thresholds, deter-

mined on digital images, with their continuum counterparts [15]. Different

numerical techniques for discretizing continuum equations on a digital

image have natural definitions of connectivity connected with them, as we

see in the next section.

It is important to note that percolation thresholds are usually larger in

two than in three dimensions. For instance, if one carries out site percolation

on a square lattice digital image, considering only nearest neighbor connec-

tions, where a random fraction x of the pixels are white and (1 � x) are

black, then the white pixels will percolate only when x�x
�
, where x

�
� 0.59
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in two dimensions, but x
�

� 0.31 in a 3-D simple cubic lattice [56]. If the

pore space of a real material followed these site percolation statistics, and

had a porosity of 35%, it would have a percolated pore space, but, seen in

the microscope, a 2-D slice would appear to have a disconnected pore space,

as a porosity of 35% is much less than x
�

� 0.59. Thus it is incorrect to study

3-D percolation quantities using 2-D images. Stereology breaks down in this

instance, as the connectivity in three dimensions and two dimensions is

fundamentally different. Real pore spaces, which generally have different

kinds of percolation statistics, will also show difference. Since the connect-

ivity of the pore space has a critical influence on transport properties such

as permeability [57], its quantification can be critical for understanding

microstructure—transport property relationships.

1.3 Computing Material Properties from Images

By the fact that it is already divided into pixels, a digital image is easily

adapted to discrete computational methods, such as finite difference, finite

element, and lattice Boltzmann methods. Since there is an underlying lattice,

any known algorithm for lattice problems can be applied. A manual

available through the Internet describes a collection of various programs

[58] that apply finite difference and finite element methods to any 2-D or

3-D digital images. These programs can be used to compute a variety of

material properties to compare with experiment. Later in the chapter we

discuss how the different methods can be applied to two-phase pore—solid

images, representing materials in which either the solid or the pores have a

uniform property, and the other is zero. An example of the case where the

solid is insulating and the pores are filled with a conductive fluid is Vycor�

glass filled with a liquid metal [59]. On the other hand, we could have a

conducting granular backbone and insulating pores [60]. Similarly for

elastic properties, the solid is assumed to have a uniform elastic modulus

tensor, while the pores have zero elastic modulus. For hydraulic permeabil-

ity, the fluid can only flow in the pores.

Both finite element and finite difference methods are simply means of

converting partial differential equations into a set of approximate algebraic

equations. At this point, however, it is worth noting some of the differences

between the finite element and finite difference methods discussed in this

chapter. The linear electrical conduction and linear elasticity problems can

be formulated either directly as a set of linear partial differential equations

or, indirectly, as an energy functional of partial derivatives that obeys a

variational principle. We present finite difference methods for the electrical

conduction case, and finite element methods for the elasticity case. The full

15COMPUTING MATERIAL PROPERTIES FROM IMAGES



Navier—Stokes equations are nonlinear and do not have an associated

variational principle [61]. The linearized forms of these equations, the

Stokes equations, do have a variational formulation [62]. However, we

present only finite difference methods for the fluid flow case.

In the various methods presented in this chapter, there also can be

differences in node placement. In a digital image, we want to use no more

than one node per pixel, if possible, to conserve memory. Philosophically,

this is also desirable since having more than one node per pixel would seem

to imply that more information is available than is really present in the pixel

structure. In a digital image, there are as many pixel corners as there are

pixels or pixel centers, so a reasonable choice of node location would be

either pixel corners or pixel centers. Of course, just as one can use any

coordinate system to solve a physical problem, the node placement can be

arbitrary as well. However, for example, one would not choose parabolic

coordinates to solve a problem involving the surface of an ellipsoid, because

ellipsoidal coordinates result in algebra that is much easier to work with

than parabolic coordinates in this case. In the same way, for the finite

difference and finite element methods, certain ways of choosing the node

placement result in much simpler equations.

1.3.1 Steady-State Conduction

The important problem of steady-state conduction is a good case in which

to see the differences between finite difference and finite element methods.

The partial differential equation to solve is


 · j� � 0, (8)

where j� � �E� is the current flux, and E� � �
V, with V being the potential

of the problem, and � the local conductivity. Inside a constant conductivity

material phase, this equation becomes the same as Laplace’s equation,


�V � 0. (9)

Between phases with different values of �, the normal flux, along with the

potential, must be continuous at a phase boundary. The energy functional

that obeys a variational principle is given as

1

2 � j� · E�d
r. (10)

When this functional is extremized, the preceding differential equation

results, with the correct boundary conditions.

In a digital image, all phase boundaries are also pixel boundaries. Having

a square array (in two dimensions) or a cubic array (in three dimensions)
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Fig. 6. Finite difference grid for a piece of a digital image. The gray area has nonzero

conductivity, and the white area is insulating. The nodes are at pixel centers, and the

lines connecting the nodes indicate mathematical ‘‘bonds.’’

of pixels means that locally all boundaries are oriented in one of the

principal directions. Since in a direct finite difference formulation of the

partial derivatives of the problem, the derivatives are thought of as being

between the nodes, it makes sense in the finite difference formulation to

place the nodes at pixel centers, so that the boundaries are always located

exactly between nodes. To get a finite difference form of Eq. (8), we simply

expand the partial derivatives of the potential around the center of the pixel

of interest, pixel m, to obtain

�


S
��


(V


� V

�
) � 0, (11)

where S
��


is the conductance connecting pixels m and j, and V
�

is the

voltage at pixel m. For a porous two-phase material, if pixels m and j are

both conductors, then S
��


is just the conductance of one conducting pixel.

Otherwise, S
��


� 0. For an electrolyte-filled rock, in the case of electrical

conductivity, the pore phase is the conductor and the solid phase is the

insulator. In the case of steady-state thermal conduction of a rock with

empty pores, the solid phase becomes the conductor and the pore phase

becomes the insulator. When there are two types of conductors, the finite

difference formulation implies that S
��


becomes a series combination of the

conductances of one-half of pixel m and one-half of pixel j [58, 63]. Figure 6

shows a piece of a finite difference network superimposed on a random

image, where the gray pixels are conducting and the white pixels are

insulating. The bonds indicate conducting connections between nodes.

A finite element solution of Laplace’s equation can also be generated

using the variational principle that the correct solution gives the minimum

energy dissipated, averaged over the random structure [58]. Now the finite
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Fig. 7. Finite element grid for the same digital image as shown in Fig. 6. The nodes

are now at pixel corners, where variables such as voltages and elastic displacements

are evaluated. Both gray and white regions can have nonzero elastic moduli.

element nodes are placed on the corners of the pixels, with the voltages given

at the pixel corners instead of at the pixel centers. The voltage at the interior

of the pixel is found by linear interpolation of the corner voltages. Equation

(10) is then approximately computed, pixel by pixel, by integrating over

each pixel and then summing over all pixels. This converts the energy

functional into a quadratic form that involves the nodal voltages. This

functional is minimized to solve for the nodal voltages and the approximate

solution to the conduction problem. In many cases, the finite difference

method is simpler and gives results that are just as accurate. For the case

where two or more phases have a nonzero conductivity, sometimes the finite

element method can be more accurate [58]. Figure 7 shows some of the

finite element nodes superimposed on the same digital image as was shown

in Fig. 6. Again, the gray phase is the conducting phase.

As mentioned earlier, the connectivity of a digital image can vary when

different sets of neighbors are defined to be connected [64]. This can affect

the result of computations. In the finite difference cases already described,

the only mathematical connections are between nearest neighbor pixels. In

the finite element method, however, since the nodes are at the corners of a

pixel, and all the nodes on the corners of a given pixel are mathematically

connected in the quadratic form, the result is that in two dimensions, each

node is mathematically connected to nine different nodes, itself and its four

nearest and four second nearest neighbors, which are the nodes in the

corners of the four pixels that share a corner. In three dimensions, each node

is mathematically connected to 26 other nodes plus itself. Therefore a

conducting structure that is physically made up of pixels connected only by

corners would be connected electrically when using finite elements but

18 DIGITAL IMAGES AND COMPUTER MODELING



disconnected electrically when using finite differences. There is not much

difference when the image resolution is high enough so that even the

smallest feature is made up of many pixels. However, for low-resolution

digital images, there can be a difference between the answer that these two

methods give, with generally no way of distinguishing which is preferred. If

the real pixel-to-pixel connections are defined beforehand in some way, so

that only certain neighbors are ‘‘really’’ connected, this will give insight into

which method to use. Otherwise, the choice is arbitary. However, exact

solutions for various nontrivial systems can be used to check the accuracy

of these different methods [58], in some cases distinguishing between them

in a quantitative way.

1.3.2 Fluid Flow

Fluid flow in porous materials is of great interest for many practical

reasons, including the service life of building materials, petroleum recovery,

waste containment, catalysis, and filtering [7, 26, 65]. The continuum equa-

tion for calculating flow properties is the Navier—Stokes equation [65]. The

Stokes equation is the slow-flow linearized version of the full Navier—Stokes

equations. For flow through porous materials, in almost all cases, one is just

interested in this slow-flow limit. The Stokes equation, in the steady-state

limit, is given by [65]


�v� (r� ) �
1

�

P(r� ), (12)

where v� (r� ) is the fluid velocity at the point r�, P(r� ) is the pressure at the point

r�, and � is the fluid viscosity. For incompressible fluids, an additional

condition,


 · v�(r� ) � 0, (13)

applies.

There are many different ways to solve the Stokes equations [66],

including both the finite difference and finite element methods. One way of

solving the Stokes equation that is well adapted to a digital image uses a

‘‘marker-and-cell’’ (MAC) mesh [66]. Figure 8 shows the same image as in

Figs. 6 and 7, where gray is the pore phase through which the fluid flows.

The nodes indicate where the pressures are determined, and arrows show

where the fluid velocities are determined, in the middle of pixel sides [16].

All fluid velocities right at a gray—white (pore—solid) boundary are set to

zero, so no arrows are shown at these points in Fig. 8. This algorithm is

similarly constructed in three dimensions [57].
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Fig. 8. Part of the MAC mesh for the same digital image as was used in Figs. 6 and

7. The pressure is evaluated at the nodes, and the fluid velocities are evaluated at

the arrow tips, at pixel boundaries. The gray area is pore space and contains fluid,

and the white areas are solid. Fluid velocities are forced to be zero (no arrows

shown) at fluid—solid boundaries.

Darcy’s law [65] is found to describe macroscopic flow through porous

media:

v� � �v�(r� )� �
k�P

�L
, (14)

where k, the permeability, has dimensions of length squared, v� is the average

fluid velocity in the entire volume of the sample (not just the pores), and �P
is the pressure drop over the sample length L . Darcy’s law is a macroscopic

equation, obtainable from the Stokes equation [67], which treats the porous

material as a homogeneous material defined by a certain bulk resistance to

fluid flow through it. Darcy’s law is mathematically analogous to Ohm’s

law, with �/k playing the role of the resistivity.

Since permeability has units of length squared, and the conductivity,

normalized by the conductivity of the conducting phase, is something like a

dimensionless tortuosity, there have been many attempts to generate a

length scale from the pore space that can relate the two quantities. The most

widely used of these length scales are based on the specific surface area [65],

an electrically weighted specific surface area that comes from solutions of

Laplace’s equation in the conducting pore phase [68] and a length scale

based on mercury injection [69]. A common idea has been to find a length

scale that correctly weights the parts of the pore space where the fluid

actually goes. These length scales are all reviewed and compared on the

same set of digital images in Ref. [16].

20 DIGITAL IMAGES AND COMPUTER MODELING



1.3.3 Linear Elasticity

The linear elastic properties of porous media can be computed by finite

difference or a finite element methods applied to digital images. Expressed

in terms of the elastic vector displacement, u�(r� ), the Poisson’s ratio � of an

isotropic solid, and ignoring the effect of gravity, the vector equation to be

solved is [70]

(1 � 2�)
�u� �
�(
� · u� ) � 0. (15)

For a two-phase image (solid and pores), where the solid has a uniform

elastic moduli tensor and both elastic moduli are zero in the pore space, a

finite difference approach can be used [71]. The boundary condition of zero

normal force at a solid—pore boundary is automatically satisfied in the finite

difference formulation [71]. When there are two or more kinds of solid

materials, or when the pore space is filled with an incompressible fluid, it is

difficult to incorporate into a finite difference formulation the boundary

conditions of continuity of elastic displacement and normal stress at

boundaries between different elastic moduli regions. It is easier to use a finite

element formulation, which makes use of the variational principle that the

correct displacement solution minimizes the elastic energy under an applied

strain [58, 72]. The finite difference method would use a grid just like that

shown in Fig. 6 with elastic displacements determined at the nodes in the

pixel centers, while the finite element method would use a grid like that in

Fig. 7 with elastic displacements determined at the pixel corners. In the

displacement formulation [73] of the finite element method, continuity of

displacement is satisfied automatically, but continuity of normal stresses is

only approximate.

Figure 9 shows the component �
��

of the computed stress tensor

throughout the 22% porosity microstructure shown in Fig. 4, where the

solid (white) phase was fully connected with a Poisson ratio of 0.2 and a

Young’s modulus of 1.0 in arbitrary units. A horizontal strain (	
��

) of 0.01

has been applied across the sample. Figure 9 was obtained using a finite

element method [58]. The brighter the gray scale, the higher the stress. The

pores are shown in black, and the compressed regions are shown in an

uniform dark gray. Because of the randomness of the porous material, even

though the average strain is tensile, there will still be regions of compressive

stress. Notice that the areas of compressive stress are always near a pore.

On the other hand, the areas of high tensile stress are almost always at the

bottom or top of a pore, due to the stress concentration effects of a cavity

in a tensile strain field [74]. Figure 10 shows the corresponding stress

histogram. The area under the histogram has been adjusted to be 1, rather

than 1� porosity, because the zero stresses in the (empty) pores have been
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Fig. 9. The horizontal tensile stresses (�
��

) for the 22% porosity microstructure

shown in Fig. 4, where the solid phase (white in Fig. 4) has a Poisson’s ratio of 0.2.

The brightness is proportional to the tensile stress magnitude, with pores shown in

black. Areas of compressive stress are in dark gray.

ignored. The effective Young’s modulus of this porous material was about

�


. The effective moduli are easily determined by computing the average

stress tensor and then extracting the effective moduli using the applied strain

and well-known composite theory [46, 47]. Reference [75] describes a

successful comparison with experiment using the finite element elastic

technique to compute the effective elastic and shrinkage properties of porous

Vycor� glass.

1.3.4 Nonwetting Fluid Injection

A simple simulation of injection of a nonwetting fluid has been developed

in two dimensions [76] and three dimensions [77, 78]. The results can be

compared with mercury porosimetry experiments. The idea is to apply the

‘‘equivalent sphere’’ concept to digital images in the following way [79]. For
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Fig. 10. Showing a stress histogram for the computed stress fields shown in Fig. 9.

The applied strain was 0.01, and Young’s modulus of the solid phase was 1.0 in

arbitrary units.

a given injection pressure P, there is a corresponding pore radius R, P�1/R.

In three dimensions, a sphere with radius R is put into the image from the

outside, and moved around to cover as much volume as possible without

overlapping the solid. As the injection pressure is increased, the size of the

sphere is decreased. The amount of additional volume swept out at each

progressively smaller value of R is the pore space assigned to that pore size

or to its equivalent pressure [11, 76], just as in mercury injection poros-

imetry. In two dimensions, this technique is fairly accurate, as there is only

one radius of curvature for a meniscus, and it is reasonably approximated by

a circular arc. In three dimensions, however, there are two principal radii of

curvature at any point on the surface of a liquid meniscus. Thus using a

sphere to simulate the meniscus is much less reliable. Mathematical mor-

phology techniques can also be utilized in simulating these processes in

porous media [80].

Figure 11 shows a simulation of mercury intrusion (gray) in a material in

which the solid frame (white) is made up of randomly placed, rigid

overlapping monosize circles (white) [76]. The uninvaded pores are in black.

The left-hand side is for a lower pressure, where only surface intrusion has

occurred. The right-hand side shows the intrusion that occurs at higher

injection pressure, where the nonwetting fluid can get into smaller pores.

Clearly, there are large pores that are not invaded because they are only

accessible by small throats. This is the well-known ‘‘ink bottle’’ effect [81].
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Fig. 11. Example of the intrusion of a nonwetting fluid (gray) into the empty pore

space (black) around the solid (fixed) circles (white). Left: low-pressure intrusion;

right: high-pressure intrusion.

Moisture absorption is important in the study and use of porous

materials in atmospheric conditions (see Chapter 3). A typical quantity

measured is the sorption isotherm, which is the amount of moisture

absorbed as a function of the partial pressure of the absorbing vapor, at a

fixed temperature. A simple variation of the mercury injection simulation

can be made so as to simulate the moisture absorption—desorption pro-

cesses in any digital image of a porous material in two or three dimensions

[75, 78, 80].

1.3.5 Cellular Automaton Fluid Methods

Two additional computational fluid dynamics algorithms, originally

based on cellular automaton ideas, that are alternative to the direct finite

difference solution of the Stokes equation are the lattice gas [82] and lattice

Boltzmann methods [82—84], as applied to porous materials. These

methods, in contrast to the finite difference and finite element methods, do

not directly discretize the continuum Navier—Stokes equations but rather

operate at the ‘‘fluid particle’’ level.

The lattice gas method tracks the motion of particles moving on a lattice

that are subject to collison rules that guarantee conservation of mass and

momentum. Macroscopic variables such as density and flow velocity are

obtained from statistical analysis of the particle motions.

In contrast, the lattice Boltzmann method solves for the time evolution of
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Fig. 12. A 3-D lattice Boltzmann simulation of the phase separation of two

immiscible fluids in a porous material, where one fluid wets the solid phase

(solid � white, dark gray � wetting fluid) and the other does not (light

gray � nonwetting fluid).

the fluid particle velocity distribution function, which evolves due to the

‘‘collision’’ of fluid particles. Quantities such as fluid density and velocity can

be easily obtained from moments of the distribution function. The method

can be applied to any digital image of a porous material, and the resulting

fluid behavior proves to satisfy the Navier—Stokes equations. Due to ease

of implementation, the lattice Boltzmann method is much more frequently

used than the lattice gas method.

For a given digital image and the simple problem of saturated single-fluid

flow driven by a small pressure gradient, it may be easier to use a finite

difference code for the Stokes equations. However, the lattice Boltzmann

method is much more useful in treating multiphase flow problems because

interfacial forces between liquid, gas, and solid phases can be more easily

incorporated. Thus flow and wetting properties in partially saturated porous

materials can be obtained in two or three dimensions [82—84].

One example is shown in Fig. 12, which depicts a 3-D computation of the

phase separation of two immiscible fluids inside a model porous material.

One fluid (dark gray) wets the solid (white), and one does not (light gray).
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The simulation starts with the fluids homogeneously mixed and present

everywhere in the pore space. The lattice Boltzmann algorithm causes the

two fluids to phase separate, with the wetting fluid preferentially moving to

the solid surface.

1.4 Creating Isotropic 3-D Structures from 2-D Images

There are various ways to obtain 3-D images from 2-D images. Experi-

mentally, 3-D images may be built up from a set of 2-D serial sections [85].

This is a tedious and time-consuming task, even with an automated system.

X-ray tomography offers one possibility for rapidly obtaining a 3-D image of

a microstructure. Resolution limits of several micrometers per pixel can be

achieved. This is adequate for many porous materials [86—88] (see Chapter

8). Sample sizes of a few millimeters or centimeters can be accommodated,

depending on the needed resolution. The acquisition and processing of such

images are rapid because no physical slicing of the sample is involved. The

rest of this section describes a method for generating 3-D images from 2-D

images in cases where 3-D images are not readily or directly obtainable.

1.4.1 Quiblier Method

An interesting theoretical approach to generating 3-D images is to

generate a representative 3-D porous medium from a single 2-D view of the

system, such as that provided by a conventional micrograph illustrating the

pore system. Based on the work of Joshi [89], Quiblier developed a

computational technique for creating a 3-D microstructure based on two-

point correlation function (S
�
) analysis of a 2-D image [90]. The main

principle is that a 3-D image is produced that has the same one-point and

two-point correlation functions as did the real material, as determined in the

2-D image. In essence, S
�

obtained from the 2-D image is introduced into a

3-D image by convoluting an initial image consisting of Gaussian noise. The

resulting image is then filtered so as to have the same S
�

as the original

image. This involves solving a large number of nonlinear equations [90]. In

his original paper, Quiblier performed some stress calculations on a slice of

the generated 3-D medium. Adler et al. [91] utilized this technique to

generate 3-D images of Fontainebleau sandstones. They computed per-

meabilities [91] and conductivities [92], but the results were consistently

lower than measurements on real samples. This is probably due to differen-

ces in the pore space connectivity since S
�

does not contain such informa-

tion. The evidence of this weakness is the difference in percolation

thresholds. Pores in sandstone are known to become disconnected at a few
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Fig. 13. A starting 2-D SEM image of the clinker brick (left) and a thresholded

binary image showing pore regions in black (right). Each image is about 500 �m

wide.

percent porosity, but the 3-D generated images tend to have percolation

thresholds near 10% porosity [91].

1.4.2 Simplified Method

A simplified version of the approach outlined by Quiblier has been

developed that modifies the generated 3-D structure based on analysis of the

hydraulic radius of the pore space [93, 94]. Transport properties such as

permeability and conductivity and the critical pore diameter can be com-

puted to evaluate the merit of the generated 3-D microstructure. An example

in Fig. 13 shows the original scanning electron micrograph (SEM) of a

porous clinker brick, along with a thresholded and two-phase view of solid

plus pores [94]. In the modified generation procedure, S
�

is calculated using

Fig. 13 (right) and then used to generate a 3-D microstructure. The value

of s
�
for this structure is not equal to the original value. The hydraulic radius

of the 3-D structure is then modified so as to force its value of s
�

to match

that of the real image [93], which also makes the two-point correlation

function approximately match the real one as well. A 3-D view of the final

generated brick microstructure is shown in Fig. 14, with the pores in black.

As pointed out earlier in Section 1.2.3, while the pores appear discontinuous

in the 2-D image, they are actually connected in the generated 3-D image.

1.4.3 Limitations of 2-D to 3-D Image Generation Methods

There are advantages and drawbacks to generating 3-D porous micro-

structures from 2-D images. If the geometrical characteristics of a porous
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Fig. 14. A cutaway view of a 3-D reconstructed image of the clinker brick with the

same porosity (black) as the original 2-D image.

material are well captured by S
�
, then the generated image can be used to

compute other properties as well. If the geometrical information in S


, S

�
, . . .

or the connectivity of the pore space is important for the computed

properties, then there is no substitute for the real 3-D image [75].

1.5 Microstructure Models in Three Dimensions

Besides using digital images of real materials to compute their various

physical properties, it is often useful to construct artificial models to

elucidate the essential physics. There are three broad classes of 3-D models

for porous materials.

The first kind of model is called a percolation-type model. Here, one builds

up a structure using randomly or regularly deposited shapes of various

kinds within a finite imaging field; for example, overlapping ellipsoids,

lattices of overlapping spheres, or a random or regular lattice of tubes. The

result is a 3-D structure that bears some similarities to real materials and is

easy to generate on a computer. They can give real insight into parameters

such as percolation thresholds, transport properties, and their interrelation-
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ships. However, the values of parameters in the models are not to be

compared with real materials.

The second type of model is usually based on smoothing of a random

noise image. A random noise image is first created, and then mathematical

operations are carried out to transform it into something that resembles a

real material. There is no attempt to simulate the actual physical and

chemical processes that create the porous material. Cellular automaton

methods can also be used to generate images that look like the ‘‘real thing’’

without attempting to duplicate the actual physics and chemistry [95].

The third kind of model is a microstructure development model that tries

to simulate the actual processes by which the material is made. Examples,

to be discussed further later in the chapter, include models for the formation

of cement-based materials, sintered ceramic materials, and sedimentary

rocks. These kinds of models are usually harder to create than the first two

kinds, requiring insights into the physical and chemical processes, and the

algorithms are more complicated. However, their output can be compared

directly to images of the real materials and their measured properties. An

image of the actual starting materials, as we shall see, can often be used as

the starting point for these kinds of models. The outcome of a microstruc-

ture development model can be visually compared to images of the real

material. At the crudest level, this is the ‘‘duck’’ test: If it looks like a duck,

then it is a duck. However, using the tools developed in Sections 1.2 and 1.3,

more quantitative tests can be conducted; for example, various correlation

functions can be compared and other properties can be computed and com-

pared against experimental data. Good agreement validates the assumed

physical and chemical processes contained in the model.

1.5.1 Percolation-type Models

Percolation theory is a well-studied topic, with many excellent reviews

[54, 56, 96—98]. The early studies of percolative structures and their effects

on bulk physical properties were made on random lattice structures, thus

making them relevant to structures seen in digital images, which are

typically square or cubic lattice structures. A digital image approximates a

continuum structure when the geometric features of interest each occupy

many pixels. In this sense, a useful digital image is a lattice structure with

spatial correlations among the pixels [99, 100].

There has been less, but still substantial work, on generating 3-D

continuum models using continuum objects placed at random or regular

positions within the image frame. Many references can be found in the

reviews cited earlier. One example is to build microstructures out of

overlapping, randomly placed and oriented ellipsoids [101]. Figure 15
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Fig. 15. Slice through a 3-D model of overlapping prolate ellipsoids (white) having

an aspect ratio of 10. The volume fraction of ellipsoids is 7%.

shows a 2-D section of such a 3-D model. The prolate ellipsoids used were

of the same size with an aspect ratio of 10. The volume fraction of ellipsoids

in Fig. 15 is approximately 7%. Even though in the image, the ellipsoids

appear to be mostly isolated, over half of them are connected in three

dimensions and form a spanning cluster. Note that a similar model with

ellipses in two dimensions having the same aspect ratio would percolate at

an area fraction of about 30% [102].

Building continuum models with other objects in three dimensions was

reviewed by Balberg [103] and they are relevant to real processes. Cubes

were used to study percolation processes in the combustion of carbon [104],

and regular lattice packings of spheres have been used to study capillary

condensation hysteresis loops [105]. A regular lattice packing of spheres

that can consequently grow and overlap, called the grain consolidation

model, has been used to gain insight into transport processes in sedimentary
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rocks [106]. Two-dimensional lattices of disks that can rub against each

other have been used to simulate the elastic properties of sandstone [107].

Other discussions of percolative-type models can be found in Ref. [46].

A subset of this approach, mostly used for simulating fluid flow in porous

materials, is the use of tube networks, both regular [108] and random [109].

In some sense, this is similar to using discrete conductor networks to solve

the continuum Laplace equation [100]. However, setting up a finite differ-

ence solution of the continuum Stokes equation in a porous material does

not result mathematically in equations that resemble those for a network of

tubes. Nevertheless, a great deal can be found about flow in porous

materials from this approach [110]. More details can be found in Chapter 2.

1.5.2 Artificial Image Models

The second set of models are what we call artificial image models. In

Section 1.4, the measured two-point correlation function, S
�
, measured on a

2-D digital image of a real material, was used to convolve a random noise

image to obtain an artificial 3-D microstructure that had approximately the

same porosity and functional form of S
�

as did the 2-D image. There are

other ways of operating directly on random images to produce artificial

structures. These methods are not based on the actual formation processes

of the real material, and they may not even use a real image in the

convolution algorithm. They are, however, useful because they can be easily

generated and often bear reasonable resemblances to real microstructures.

One method is to take a random white noise image, convolve it with some

other function, and then threshold it to solid and pore phases to give the

desired porosity. This has been done using a Gaussian convolution function

and, remarkably, provided images that resembled thin sections of carbonate

rock [111]. If the convolution function is the Laplacian of a Gaussian, the

resulting images exhibit features of Vycor� [111, 112]. The microstructures

in Fig. 4 are from Gaussian convolutions of a white noise image.

A variation of the preceding method uses two thresholds, x
�

and x
�
. All

pixels with values of x, 0�x� 1, below x
�

and above x
�

are designated

pores, and pixels with x
�
�x�x

�
are designated as solid. This algorithm

turned out to generate images that resembled foam-like and aerogel-like

structures [113, 114]. The conductivity of these structures has been com-

puted along with the two- and three-point correlation functions and

resulting three-point bounds, and showed reasonable agreement with experi-

mental measurements [113, 115].

This kind of model shows that as long as the correlation functions are

similar to the real materials, artificial image models can be used productive-

ly to understand other material properties.
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1.5.3 Microstructure Development Models

It is desirable to generate porous microstructures based on actual physical

and chemical processes. This is often very difficult because of the complexity

of these processes. Natural materials such as sandstone are not made under

a controlled laboratory environment, so our quantitative knowledge of the

processes involved is weak. However, man-made materials such as concrete

(5 billion tonnes per year worldwide) and ceramics (including bricks) and

various gels are manufactured according to well-defined processes, so in

principle, it should be possible to simulate these processes by a 3-D

microstructure model. The success of the model is, in fact, a test of our

understanding of the processes.

Consider the case of the porous material concrete. It is made up of

cement, water, sand, and pebbles (aggregates). It is formed by the hydration

of cement, the most common variant of which, known as portland cement,

consists of mainly calcium silicates with minor amounts of aluminate,

sulphate, and ferrite phases [116]. When water is mixed with the cement, the

various phases of the cement undergo hydration reactions, each at a

different rate and interacting with each other. The initial viscous mixture of

liquid and particulates grows into a rigid solid that keeps increasing its

strength as the hydration progresses, which can continue for months. The

cement paste (cement plus water) turns into a solid matrix, in which the

sand and pebbles are embedded.

The main geometrical feature that must be understood about concrete

microstructure to be able to optimize concrete properties is the development

of the cement paste microstructure during hydration, because the cement

paste matrix governs the properties of concrete. This is a microstructure

made up of unhydrated cement grains, reaction products, and water-filled

pore space. The starting cement grains have an average size of about

20—50�m, so that the length scale that initially characterizes the primary

cement paste pores is of the order of micrometers. These pores do, however,

become as small as a tenth of a micrometer as hydration progresses. There

are smaller secondary pores present, called gel pores, inherent in the main

reaction product, amorphous calcium silicate hydrate. Their diameters are

of the order of tens of nanometers [78, 116], but we ignore them in con-

sidering the primary cement paste microstructure. Cement paste is thus a por-

ous material whose solid phase is not uniform. This has a sensitive effect on

many concrete properties such as elastic moduli and thermal conductivity.

Models have been made to simulate the evolution of the cement paste

microstructure from a mixture of water and cement grains to the final

hydrated product [55, 117, 118]. These models incorporate only some of the

relevant cement chemistry and physics. The amounts and volume of reac-

32 DIGITAL IMAGES AND COMPUTER MODELING



Fig. 16. A real hydrated cement paste (right) and its model equivalent (left). The

different gray levels indicate the principal different solid phases of unhydrated cement

and its reaction products. Porosity is black. The darkest gray level contains minor

phases that are not shown.

tants and products are correctly handled. The randomness of the original

multiphase composite cement particles is realistically taken into account by

using 2-D scanning electron microscope digital images of real particles as a

basis for constructing 3-D particles [118]. The randomness in the growth

process and the topology of the various reaction products are also realisti-

cally simulated.

Figure 16 (right) shows an SEM micrograph of a real cement paste,

compared to the model equivalent in Fig. 16 (left) [55, 117]. The gray scales

indicate the different phases. The darkest gray pixels contain other minority

phases, including gel pores, which are not shown. The pores are black. For

calculating composite properties such as elastic moduli, the different phases

in the solid framework must be identified, as they all have different elastic

moduli. Color pictures that reveal more details of the various stages of

cement hydration can be found in Refs. [117—119].

Properties that have been computed using the various methods described in

Section 1.3 of this chapter include the connectivity of both the solid and pore

phases of hydrated cement [55], diffusivity of the pore space [63], and how the

cement pastematrix in concrete ismodified by the nearbypresence of aggregates

[119, 120]. Comparison with experimental data has been quite favorable.

Another example of a microstructural development model has to do with

the high-temperature sintering of powders into ceramics and metals. The

powder particles change shape, and the powder compact densifies to

minimize surface energy [121]. This process has been simulated by a cellular
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Fig. 17. The circular template algorithm in two dimensions. Thick black lines denote

solid pixels, and thin black lines denote pore pixels. The circular template is shown

in gray.

automaton model that minimizes the surface area of a digital image of

particles [122, 123]. A simple algorithm that transfers pixels from areas of

high curvature to areas of low curvature captures the essence of the process.

It is clear that by moving mountains to fill valleys, surface area is reduced,

which is the main driving force for sintering. To implement the model on a

digital image requires a simple algorithm to measure curvature, which is

illustrated in Fig. 17. The solid pixels in this figure are shown with heavy

black lines and the pore space pixels with thin black lines. A circular

template (shown in gray) is centered at the point of interest on the surface.

The local curvature is estimated by counting the number of pore pixels in

the circular template. It is intuitively obvious that a flat surface would have

50% pore pixels in the circle, with less than 50% for negative curvature, and

more than 50% for positive curvature. It can be proved mathematically

[123] that this procedure is asymptotically exact, in the limit where the

template radius is much smaller than the local radius of curvature. Other

ways of measuring curvature in a digital image are described in Ref. [124].

The algorithm is applicable in three dimensions as well, but it gives only the

average of the two principal radii of curvature [123].

Figure 18 shows the evolution (from left to right) of a collection of

circular grains as the curvature and therefore surface area is reduced by the

algorithm. The collection of grains is gradually becoming a circle, which has
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Fig. 18. The evolution of a collection of circular particles (left to right) under the

sintering algorithm described in the text.

the minimum perimeter of a given surface area of any finite area shape in

two dimensions [125]. This growth model can be applied directly to a

digital image that has been acquired experimentally.

The sintering model described does not contain all of the relevant

dynamics. When material is removed from a high-curvature surface, it must

be transported to the low-curvature surface by either vapor transport

through the pores, surface diffusion, volume diffusion, or diffusion through

any grain boundaries. There are also elastic forces that arise from the

tendency of the particles to coalesce to minimize surface area [126, 127].

1.5.4 Summary

With the rapid advance in computing and imaging tools, 2-D and 3-D

digital images of porous materials can be readily obtained by a variety of

techniques. Mathematical and computational techniques have been adapted

to work with these images. In this chapter, we surveyed many of the

techniques that have been applied to porous materials and showed the

results. Although this is a rapidly advancing field, the essence is that a digital

image converts a continuum picture into a lattice of discrete pixels, so that

all lattice computational techniques are applicable.

The rapid growth of computing power will lead to more realistic models,

and more 3-D experimental data, using x-ray tomography, nuclear magnetic

resonance (NMR) imaging, and other methods. The improved characteriz-

ation of pore geometry will result in more accurate calculation and predic-

tion of material properties, which ultimately will aid in materials engineering

via microstructural design.
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2. VISUALIZATION OF FLOW PATTERNS IN 2-D MODEL
NETWORKS

Roland Lenormand
Institut Franc5ais du Pétrole, Rueil Malmaison, France

This chapter is devoted to the visualization of fluid displacements in two-

dimensional porous media. The different techniques are presented, but the

main objective of the chapter is to show how pore-scale visualizations have

contributed to the understanding of the mechanisms involved in fluid

displacements.

The chapter is organized as follows. I first describe the different tech-

niques for making the micromodels used for two-dimensional visualizations.

I then present some examples where visualizations have contributed to the

understanding of the mechanisms: immiscible displacements, tracer flow,

critical flows (nucleation, condensation), etc.

2.1 Visualization Tools

Various transparent models have been used to study the properties of flow

in porous media, from 1-D capillary tubes of different shapes to 2-D networks

of capillaries made by glass etching or resin molding and 3-D visualizations

using transparent media, and more recently high-resolution x-ray tomography.

The 2-D micromodels are most useful in identifying microscopic mechanisms

that are essential in interpreting 3-D data in practical applications.

2.1.1 Capillary Tubes

A circular capillary tube is the simplest model of a porous medium. It

enables the observation of phenomena including the displacement of a

meniscus between two immiscible fluids, the measurement of the effects of

velocity on the contact angle, the hysteresis between advancing and receding

contact angles, and the spreading of a tracer (Taylor dispersion [1]).
Roof [2] studied the snap-off of a nonwetting fluid displacing a wetting fluid

in a capillary tube with periodic variable cross section. He showed that snap-off

occurs when the ratio between large and small sections is larger than 1.5.
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Fig. 1. Flow of two immiscible fluids in a square capillary tube. The nonwetting
fluid flows in the center part and the wetting fluid along the corners of the capillary
tube.

A capillary tube with a square cross section allows the simultaneous flow

of two immiscible fluids, with the nonwetting fluid flowing in the center part

and the wetting fluid in the corners of the duct (Fig. 1). The technique used

by Legait et al. [3] consists in molding a Pyrex tube around a square

stainless-steel stem that is then dissolved by acid. The smallest size is of the

order of 1 mm. To obtain a smaller internal diameter, the square capillary

is heated and stretched, but the shape of the cross section is no longer well

defined. This square tube has also been used by Kalaydjian and Legait [4]

to study the viscous coupling between two fluids flowing in the same

capillary. Li and Wardlaw [5] studied the collapse of wetting films in a

rectangular throat for different wettabilities.

A ‘‘doublet’’ of two connected capillaries of different sizes (Fig. 2) was used

by Engoy et al. [6] to study the drying of a fluid. In this simple geometry,

there is a competition between viscous flow in the tubes, capillary forces due

to the difference of diameter, and molecular diffusion in the gas phase.

These 1-D models cannot account for the interconnection of the pore

structure leading not only to fluid bypassing and trapping but also to

original cooperative mechanisms. For this purpose, 2-D models have been

developed. Among the more often used techniques, I describe glass and resin

micromodels and monolayers of glass beads.

2.1.2 Glass Micromodels

In 1961, Mattax and Kyte [7] used chemical etching of glass plates. A

glass plate is coated with a thin layer of wax and lines are scribed on the

wax with a stylus. Then the glass is etched with hydrofluoric acid. The
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Fig. 2. Doublet of two capillary tubes used for studies of drying in porous media.

drawing is a square grid with 350� 350 lines. Intermediate wettability was

obtained by saturating the model with crude oil and it was left in contact

for several hours. The authors made several observations on the effect of

wettability, especially, flow of oil by films in the case of mixed wettability

and large-scale fingering. They also measured relative permeabilities and

found that the curves were similar to those of real rocks.

Davis and Jones [8] made 2-D networks using a photosensitive resist

that enables the reproduction of any network pattern made from a photo-

graph or generated by computer. The technique, which was improved by

McKellar and Wardlaw [9] and is still in use, is as follows:

· A piece of mirror is placed in a hot solution of NaOH to remove the

backing protection.

· A photoresist coating (photosensitive polymer) is applied to the copper

backing.

· A film of the pattern is applied on the photoresist and exposed to

ultraviolet light. The channels are in black and are not exposed.

· The image is developed (the unexposed photoresist is removed).
· Exposed copper is removed by a nitric acid solution (channels).
· The exposed portion of the glass is then etched by hydrofluoric acid.

· The remaining copper and photoresist are removed.

· A cover is fused on the top of the etched plate.

The etching has a V shape with a typical size in the range 10—100 �m and

separation of 0.1 to 1 mm.

One of the main problems when flowing oil and water is cleaning and the

restoration of wettability properties. Trygstad et al. [10] took apart the

plates of their model and cleaned them with a solution of saturated NaOH.

The plates were also made oil-wet using a chemical treatment.

Payatakes and coworkers have worked on two-layer glass micromodels

[11]. Two etched plates are separated by a thin glass plate and interconnec-

ted with small holes drilled at the node positions. The main conclusion of a

study in micromodel containing 24 � 20 nodes and 120 perpendicular

0.7-mm-diameter throats is that the nonplanarity of the medium has small
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qualitative but significant quantitative effects on displacements, especially

on relative permeabilities. These results confirm that topological effects lead

to different results in three dimensions than in two dimensions.

Glass micromodels are also used at a high pressure (around 100 bar) for

studies of miscible flooding [12]. They are placed in a high-pressure

chamber and surrounded by a transparent confining fluid.

An updated version of glass etching and the references for the chemical

products can be found in Wan et al. [13]. These authors also developed an

original method to visualize and measure the velocity of fluorescent colloid

particles.

2.1.3 Silicon Wafer Micromodels

Two-dimensional micromodels with very fine structure, down to 1 �m,

have been successfully prepared by Hornbrook et al. [14] using a silicon

wafer instead of glass. With their technique, the pore size in the micromodels

is comparable to the pores of a real rock. In addition, the etching process

oxidizes the silicon, producing a surface that is uniformly wettable, but not

strongly water-wet. In addition, the cross section is rectangular, almost

perfect. The cover plate is attached by anodic bonding.

2.1.4 Resin Micromodels

The resin technique developed by Bonnet and Lenormand [15] provides

much better control of the shape and size of the channels. This is important

when experiments are compared to computer simulations. The principle of

this technique is as follows:

· A negative film is made of a computer-generated network (the black parts

will be the micromodel channels).
· A photosensitive plastic plate used for making printing plates is il-

luminated by ultraviolet light through the negative. The plastic under the

transparent parts of the negative polymerizes and becomes hard.

· The soft part of the plate is washed out by a chemical solution.

· The plate is not transparent. Thus, a transparent replica made of polyester

resin is cast in a rubber mold of the plate.

· The channels are filled with paraffin wax in a vacuum, and the surface is

carefully cleaned.

· A thick layer of polyester resin is cast on this polyester plate to make the

cover. After polymerization, a block of transparent resin is obtained, with

the inside of the channels filled with paraffin wax.

· The paraffin is removed by heating and rinsing with toluene.
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One advantage of this technique is the well-controlled shape of the

channels: a rectangular cross section with a constant depth of 1 mm and a

minimum width of 0.2 mm. Another advantage is that the relatively large

thickness (1 mm) enables easy visualization, even with a low concentration

of dye in the fluids. Dawe and Wright [16] obtained a channel depth of

50 �m by choosing a different kind of photosensitive plate. Oxaal [17]

directly used polymer etching without the replica. The process of sealing

with a transparent plate is accomplished using a Mylar membrane and

compressed air.

The main drawback of using resin is the wettability hysteresis when oil

and water are used together. Thus, the application is mainly limited to oil

and gas or oil and mercury.

2.1.5 Glass Bead Monolayers

Several authors have developed models containing a monolayer of glass

beads between two glass plates (for instance, Chatenever [18] and Moulu

[19]). Generally, the main problem is a bypass between the plates and the

beads. Even if the beads are well packed, the average pore diameter between

the beads and the plates is larger than that between the beads. This problem

was solved by Feder et al. [20] and Oxall et al. [21] who used a thin plastic

sheet pressurized by compressed air. This sheet made contact with all the

beads and kept them in place. A very large sample (of the order of 1 m) was

achieved.

2.1.6 Image Analysis

As described in Chapter 1, digital image analysis is used to study the

fluid distribution inside micromodels. For instance, Soll et al. [22] were able

to measure three-phase saturations from video images taken from the

micromodels. Water and oil were dyed respectively with ethylene glycol-

based blue food coloring for water and Oil Red O dye for oil. Using image

analysis they were able not only to calculate the fluid saturations but also

to identify and analyze the size distribution of the trapped phases.

2.2 Capillary Displacements

This section shows how the simple physical effect of capillarity at the pore

level can explain the complicated flow patterns observed in porous media.

First, the main properties of capillarity and wettability are reviewed.
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Fig. 3. Capillary rise in a tube.

2.2.1 Notion of Capillarity

A key element in considering immiscible fluids in a pore is the presence

of a curved meniscus between the fluids. This leads to a pressure difference

between the fluids related to the curvature across the interface. This pressure

difference, called capillary pressure Pc, is inversely proportional to the

radius of curvature r of the interface if the meniscus is spherical (Laplace’s

law): Pc � 2
/r. The surface tension 
 is a physical parameter that charac-

terizes the interactions between the fluids. A typical value for surface tension

at the water—air interface at standard temperature and pressure is

0.072 N · m��.

When the meniscus is in contact with a solid surface, there is a contact

angle � that depends on the balance of molecular forces between the two

liquids and the solid. In a circular capillary tube of radius R (Fig. 3), the

radius of curvature is R/cos � and therefore the capillary pressure Pc � (2

cos �)/R. The solid is generally preferentially wetted by one of the fluids,

called the ‘‘wetting fluid,’’ for which the contact angle is less than 90°.

Wettability depends on the two fluids and the solid. For example,

· With air and water, most solids are wetted by water, except Teflon

(Goretex membranes for raincoats).
· Mercury is a nonwetting fluid on glass with air or water.

· ‘‘Clean’’ sedimentary rocks are preferentially wetted by water in presence

of oil and water. After being in contact with crude oil for a few weeks,

however, they can become of intermediate wettability ( � around 90°).
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Laplace’s law also explains the capillary rise of a liquid in a capillary tube

(Fig. 3). In this simple experiment, the hydrostatic pressure balances the

capillary pressure:

�gh �
2
 cos �

R
,

where � is the liquid density and g is the gravitational acceleration.

In porous media, capillary forces are relatively large because of the small

size of the pores. In many cases, especially in oil reservoirs, capillary forces

between oil and water control the displacement. For instance, for a 1-�m

pore the capillary pressure is around 1 atm (�10� Pa). In a tube of 1-�m

diameter, the capillary rise of a wetting fluid would be of 10 m.

During fluid displacements, capillary forces are generally in competition

with viscous and gravitational forces. Two dimensionless numbers are used

to characterize the relative importance of the different forces. The capillary

number Ca is the ratio between viscous forces (acting at the pore level) and

capillary forces:

Ca �
�V




where � is the fluid viscosity and V is the mean velocity inside a pore.

The Bond number B is the ratio between gravity forces acting at the pore

level and capillary forces:

B �
��gD�



,

where D is a mean pore diameter and �� the difference of density between

the fluids.

In addition to the displacements taking place in the bulk of the pores, the

wetting fluid can also flow along the roughness of the solid grains. This

mechanism, generally called ‘‘film flow,’’ has been studied experimentally in

square capillaries [23] and theoretically for rough surfaces [24] and fractal

media [25, 26].

2.2.2 Drainage: Invasion of the Nonwetting Fluid

A typical situation of two immiscible fluids in a micromodel is shown in

Fig. 4. The picture represents a cluster of air surrounded by water. The size

of the ‘‘grains’’ is about 1 mm. The displacement mechanism depends on the

wettability of the fluid that is pushing the other.

The displacement of a wetting fluid by a nonwetting fluid is generally

called ‘‘drainage.’’ The displacement of the meniscus is very simple in
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Fig. 4. Distribution of oil and air in the pores of an etched micromodel.

Fig. 5. Fluid invasion in a simple pore.

drainage (Lenormand et al. [27], Mahers and Dawe [28], Chen [29]). The

nonwetting fluid is stopped by a throat (Fig. 5) until the pressure exceeds

the threshold value (given by Laplace’s law). After passing this throat, the

nonwetting fluid spontaneously invades all the adjacent pores (intersections

of the channels) and other throats larger than the original throat.

This sequential pore-by-pore invasion is known as invasion percolation.

In essence, capillary forces prevent the nonwetting fluid from spontaneously
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Fig. 6. Experimental invasion percolation cluster. Reprinted with permission from
R. Lenormand, Physica 140A, 114 (1986).

entering a porous medium. It can enter only a throat with diameter D when

the pressure in the fluid exceeds the threshold pressure. If P
�

is the pressure,

the threshold corresponds to D
�

and the fluid can enter all the throats that

are larger than D
�
.

To make an analogy with a percolation network, we can consider a

throat with D�D
�

as a conductive bond and a throat with D�D
�

an

insulating bond. The fraction p of conductive bonds at a given pressure P
�

can easily be deduced from the throat size distribution. At that pressure, the

injected fluid invades the cluster formed by the connected conductive bonds.

This is standard percolation except that the clusters must be connected to

the inlet to be invaded. Hence, this model of invasion has been called

invasion percolation [30, 31]. In Fig. 6 (after Lenormand [32]) where air

displaces oil, the pattern shows the ramified structure of the air cluster and

also the trapped oil clusters, which span a wide range of sizes.

Invasion percolation can be studied by computer simulations using

simple rules. The throats of the network are numbered acccording to their

size (1 is the largest). The numbers are randomly generated and distributed

on the network. The invading fluid is injected from one side of the network

(or at any node to simulate a local injection) and the invasion is simulated

channel by channel. The largest accessible throat, which corresponds to the
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Fig. 7. Network simulation of invasion percolation. Reprinted with permission from
R. Lenormand and S. Bories, C. R. Acad. Sci. Paris, B291, 279 (1980).

smallest number, is invaded until the exit is reached. The bold line in Fig. 7

shows the continuous path between the inlet and the outlet on a computer

simulation.

Invasion percolation has been shown to have some properties in common

with standard percolation, especially the fractal structure of the infinite

cluster at the percolation threshold. We evaluated this property with

micromodels [33] using a large network containing 250,000 channels with

seven classes of widths (from 0.27 to 0.51 mm). The wetting fluid was a

paraffin oil (viscosity 0.020 N · m) displaced by air at three different flow

rates. Photographs were taken at the end of displacement (Fig. 8). The

fractal dimension was obtained by counting the number N of filled channels

in boxes of different sizes L (in lattice spacing unit) using the relation

N� L�, where D is the fractal dimension (Fig. 9). The results show that, on

a log-log scale, the plot of N vs L was linear over 1 decade and the slope

was 1.82. This value agrees with the result of numerical simulations [34].

The difference from standard percolation (D � 1.89) is believed to be a

finite-size effect.

2.2.3 Imbibition: Invasion of the Wetting Fluid

For this reverse displacement (called imbibition), the pore-scale mechan-

isms are more complicated than in drainage. There are two additional effects

due to pore geometry and also to the flow by films along the roughness of
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Fig. 8. Displacement of the wetting fluid (black) by the nonwetting fluid (white) in
a large network (Ref. [33]). Copyright 1985 by the American Physical Society.

the solid. The first obervations were made with oil displacing air in resin

micromodels of large size with various heterogeneities and pore topologies

[35]. Chen [29] used a small network containing only 16 pores and

accurately measured all the throat dimensions and followed the displace-

ments at various flow rates. Wardlaw and coworkers [5, 36, 37] studied

mercury withdrawal in glass micromodels. Liquid mercury is the non-

wetting fluid when in equilibrium with its vapor or with any gas. Billiotte et
al. [38] studied in detail the role of film flow for trapping during gas—water

injection and withdrawal. The results of the different studies can be sum-

marized as follows.

There are mainly two kinds of displacement at the pore level.

Pore invasion (Fig. 10a). Initially, the wetting fluid occupies two adjacent

channels. During invasion of the wetting fluid, the capillary pressure

decreases, and consequently the radius of curvature of the meniscus

increases in the pore. At a given pressure P
�
, the meniscus touches the
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Fig. 9. A log-log plot of the number of invaded pores as function of the size of the
box. (Ref. [33]). Copyright 1985 by the American Physical Society.

wall (point A), and the wetting fluid then invades the whole pore (the

intersection of the four channels) and the two other adjacent channels.

Collapse in a channel (Fig. 10b). The wetting fluid can flow along the

roughness of the walls and surround the solid grains. At a given pressure

P
�
, the fluid that accumulates on the walls of a channel becomes unstable

and fills the channel (snap-off).

At the scale of a micromodel, the invaded patterns depend on the details of

the pore geometry, contrary to the drainage displacement.

During imbibition, the wetting fluid is injected and the capillary pressure

decreases. Consequently the dominant displacement mechanism corre-

sponds to the higher of P
�

and P
�
; that is, the displacement mechanism that

occurs first as the capillary pressure is decreased. For simple geometries,

these pressures P
�

and P
�

can be calculated if the contact angle is known.

Generally, due to broad pore size distribution, both mechanisms occur

during imbibition in real porous media. With micromodels, we can control

the pore geometry to demonstrate the two idealized cases. The key par-
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Fig. 11. Capillary imbibition with a triangular mesh. Reprinted with permission
from R. Lenormand, J. Phys. Condens. Matter 2, SA79 (1990).

Fig. 10. Two mechanisms of pore invasion during imbibition. Reprinted with
permission from R. Lenormand, Physica 140A, 114 (1986).

ameter is the pore-to-throat-size ratio, or aspect ratio. Figure 10a represents

the limiting case where the pores and throats are of the same size (aspect

ratio of the order of unity). In Fig. 10b, the aspect ratio is larger than unity.

Small aspect ratio. With no flow by films, when the size of the pore is small

compared with channel diameters, the meniscus touches the wall very

quickly and P
�

is higher than P
�
. Imbibition takes place by a succession

of pore invasions (as previously described). This leads to a kind of faceted
crystal growth developing at the point of injection [39]. The compact

shape of the crystal is related to the network mesh: rectangular for a

square mesh or triangular for a triangular mesh (Fig. 11).
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Fig. 12. Formation of compact oil clusters during imbibition with flow by film (Ref.
[33]). Copyright 1985 by the American Physical Society.

With flow through films, the same mechanism occurs anywhere in the

network, without any apparent connectivity with the injection face. The

result is a set of compact clusters [40] (Fig. 12) for a square network. The

process can be simulated by a mechanism similar to nucleation. When two

clusters are in contact, they grow until they form only one rectangular

cluster. However, the critical fraction for forming an infinite cluster of

collapsed channels (which is around 0.12 in Fig. 13) decreases with the size

of the network and the threshold is zero in the limit of an infinite network.

L arge aspect ratio. Now P
�

is larger than P
�

and the collapse inside a

channel is the dominant mechanism. The injected fluid invades the

network by a succession of collapses in the channels. Due to pressure

effects, the smallest channel is filled first. This channel is a bond between

two grains. Consequently, imbibition is related to a bond percolation

process but, contrary to drainage, it takes place in the network of grains

and not in the network of pores (dual network) [41].

Without flow through films, the need for continuity requires that the

filled channel is adjacent to the interface: The process is invasion bond
percolation in the dual network. With flow through films, the collapse can

occur anywhere in the network, and the process is bond percolation in the
dual network.

For micromodels with a broad pore size distribution, both mechanisms take

place at the same time in different pores. The result is a ramified cluster, like

that in percolation but with a much more compact shape due to the effect

of local faceted growth. The different mechanisms are shown in Table I.
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Table I. Various imbibition mechanisms.

Small aspect ratio Large aspect ratio

No flow by films Compact growth (faceted) Invasion percolation in dual
network

Flow by films Faceted clusters Bond percolation in dual
network

Fig. 13. Computer simulation of compact cluster growth. Reprinted from R.
Lenormand and C. Zarcone, in Kinetics of Aggregation and Gelation, F. Family and
D. P. Landau, eds., � 1984, with permission of Elsevier Science.

Cieplak and Robbins [42] studied the crossover between drainage and

imbibition by varying the contact angle in a pore-scale simulation. In the

nonwetting limit, the structures formed by the injected fluid are fractal as in

invasion percolation. As the injected fluid becomes more wetting, the

cooperative mechanisms lead to more compact structures. Below a given

critical contact angle, the structure is compact.

2.2.4 Effects of Viscous Forces in Drainage

During a displacement in an aquifer or oil reservoir, there is always the

interplay of viscous and capillary forces. I discuss only the case of drainage,
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Fig. 14. Crossover between invasion percolation and DLA by changing the injection
flow rate during experiments in a radial micromodel. Reprinted with permission
from R. Lenormand, Physica 140A, 114 (1986).

when a nonwetting fluid is displacing a wetting fluid. Two different effects

can be observed, depending on the value of the viscosity ratio M, defined as

viscosity of displaced fluid over viscosity of displacing fluid [43].

M	 1. An example is air displacing a viscous oil (viscosity ratio

M 10��). Figure 14 shows the experimental (not computer simulation)
patterns for radial drainage at three different flow rates. The lower flow

rate is a capillary displacement and corresponds to invasion percolation.
The highest one, dominated by viscous forces, shows viscous fingering,
which can be modeled by a statistical process called diffusion-limited
aggregation (DLA) [44]. This statistical mechanism is linked to the shape

of a growing interface in a Laplacian field, which is the case for the

pressure field during displacement of a viscous fluid by an inviscid one in

porous media. Figure 15b shows a similar displacement with a linear

injection.

M� 1. An example is mercury displacing air. Here viscosity has a stabiliz-

ing effect. At low flow rates, the pattern corresponds to invasion perco-
lation (Fig. 15a). At higher rates, the displacement is more stable (Fig.

15c). This process can be modeled by a statistical process called anti-DLA

[43]. This model is the reverse of DLA. The inviscid fluid filling the
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Fig. 15. Various kinds of drainage in a micromodel with linear injection (a)
percolation (no viscous effect), (b) DLA (less viscous fluid injected), and (c)
anti-DLA (more viscous fluid injected) (Ref. [43]). Copyright 1989 Cambridge

University Press.

medium is represented by particles placed at each node of the network.

The injected viscous fluid is represented by ‘‘antiparticles,’’ which are

released one by one at the inlet. Each antiparticle moves at random and,

when it reaches a particle, both are removed. The similarity in the

mechanisms comes from the diffusion of the antiparticles, which leads to

a Laplacian probability field analogous to the pressure field in the viscous

fluid.

2.2.5 Dynamics of Imbibition

The rise of a wetting fluid in a vertical capillary tube of radius R is

derived by writing the balance between viscous, capillary, and gravitational

forces on the liquid column at any time t. The rate of advance of the
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Fig. 16. Spreading of a tracer in a tube.

meniscus is then given by the following Washburn equation [45, 46]:

dh

dt
�

1

8�h �
2


R
� ��h� R�.

Experiments in 2-D media such as paper sheets [47] or 3-D beads packs

[48] show that the data are well described by the Washburn equation at

early times. At late times, the kinetics are governed by the randomness of

the capillary pressure. The rate of rise can be interpreted in terms of critical

pinning, similar to a phase transition. The velocity of the meniscus is then

proportional to (P � Pt)�, where P is capillary pressure, Pt is the critical

pressure, and � is a critical exponent larger than 1.

In a more classical approach, capillary rise in a porous medium can be

interpreted using the standard concepts of capillary pressure curves and

relative permeabilities [45].

2.3 Tracer Dispersion

A tracer is a soluble chemical product that does not change the fluid

properties and is not adsorbed on the solid walls of the porous medium. The

simplest example of tracer spreading is a dye in a straight capillary tube. A

fluid (say water) is flowing at a constant rate and at time t � 0, a spike of

tracer is injected at the inlet, uniformly over the cross section. Without any

molecular diffusion, the tracer is transported by the flowing fluid (pure

convection or advection). The velocity profile is parabolic with zero velocity

at the walls. Consequently, the tracer near the walls will not be displaced

(Fig. 16a). In the opposite limit, if molecular diffusion is dominant, the tracer

concentration will be uniform across the tube (Taylor’s regime, Fig. 16b).
The relative importance of convective to diffusive transport is characterized
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Fig. 17. Detail of tracer flow in a micromodel. Reprinted with permission from R.
Lenormand, in Fractals and Functional Calculus in Continuum Mechanics, A.
Carpinteri and F. Mainardi eds., Springer Wien, New York. Copyright 1997
Springer Wien.

by the Péclet number

Pe � V R/D
�
,

where V is the fluid velocity, R, is a characteristic length, and D
�

is the

molecular diffusion coefficient.

In a more complicated geometry, such as a two-dimensional micro-

models, the flow lines separate at each grain and the velocity field is much

more complicated. Charlaix et al. [49] studied the effect of heterogeneities

in micromodels formed by a partially connected network. They have shown

that the tracer present in a channel follows different trajectories (in black in

Fig. 17, after Lenormand [50]). However, molecular diffusion enables the

transfer of tracer molecules across the flow lines.

At the scale of a large network, Maloy et al. [51] found that the dispersion

front has a fractal structure (Fig. 18). Using transparent 2-D models and a

radial injection, they calculated the fractal dimension of the interface. They

found that the contour of the concentration equal to 0.5 has a fractal

dimension of D � 1.42. The problem of interpreting this fractal dimension

and the corresponding statistical process remains an open question [52].

2.4 Three-phase Flow

A description of three-phase flow—oil, water, and gas in porous me-

dia— is required in several domains of oil production (production by
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Fig. 18. Fractal contour of a tracer front in a radial geometry. Reprinted with
permission from K. J. Maloy et al., Phys. Rev. L ett. 61, 2925. Copyright 1988 by the
American Physical Society.

solution gas drive, gas injection) and for studies related to pollution of

aquifers with organic liquids. Since real experiments are difficult to realize,

network simulations are often used to derive such macroscopic properties

as capillary pressure and the relative permeability curves. However, a

network simulator is based on a set of physical rules that must be inferred

from micromodel visualizations. The recent study by Pereira et al. [53]

presents a review of the various physical mechanisms and the capabilities of

network simulations.

In the case of two-phase flow, the pore-scale displacements are controlled

by ‘‘wettability’’ (the difference between wetting and nonwetting fluids). For

three-phase flow, the situation is more complicated: It concerns the relative

magnitudes of surface tension between the fluids and with respect to the

solid. If we assume that the solid is preferentially wetted by water, there are

two different cases:

1. Oil spreads on water (positive spreading coefficient).
2. Oil does not spread and forms a lens on the surface of water (negative

spreading coefficient).

The main purpose of micromodel observation was to establish the rules

for building a three-phase network simulator. These rules are a combination

of drainage and imbition events of the three different pairs of fluids,

depending of the respective values of interfacial tension, and wettability.

Kantzas et al. [54] andChatzis et al. [55] have usedmicromodels to explain

the good efficiency of oil recovery by gas injection. For strongly water-wet

reservoirs and positive spreading coefficients, oil forms a continuous film on

the water, which reconnects the trapped oil droplets. Pore-level mechanisms

for positive and negative spreading coefficients were also confirmed by Oren et
al. [56]. They concluded that oil recovery was higher for positive spreading.
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More recently, Dong et al. [57] observed that even nonspreading oil can

form films over water films in micromodels. The mechanism is capillary

imbibition of oil against gas and is linked to the curvature of the water film,

which follows the pore geometry.

Soll et al. [22] used glass micromodels for capillary pressure measure-

ments. Using image analysis, they were able to measure the fluid saturations

and identify the type of displacement (double drainage etc.) at the pore level

and then determined the statistics of the various events.

Keller et al. [58] also observed films of nonspreading oil in a silicon

micromodel (made using the technique developed by Hornbrook et al. [14]

with pore diameters in the range of 3—30 �m). They observed displacements

as double drainage (gas displacing oil displacing water) and double imbibi-

tion (a terminology introduced by Oren et al. [56]). However, they con-

cluded that the presence of a film of oil precludes any possibility of

simultaneous drainage and imbibition, regardless of the value of spreading

coefficient.

These observations have been used as inputs to numerical simulations.

For instance, Fenwick and Blunt [59] calculated relative permeabilities

similar to what is found experimentally. They also showed that relative

permeabilities for gas injection were different from water flooding.

2.5 Critical Flows

In petroleum engineering, there are often situations where fluids are near

critical conditions: when oil pressure decreases below the bubble point (gas

nucleation), when gas forms liquid condensates, or when the surface tension

becomes very low (transition from miscibility to immiscibility).
Modeling of gas production by pressure decline requires an accurate

description of the physical mechanisms involved in the appearance of gas

bubbles. The few existing models found in the petroleum literature are

contradictory. The classical model is derived from ‘‘homogeneous nu-

cleation’’ [60], whereas Firoozabadi and Kashiev [61] propose an approach

based on instantaneous nucleation.

To understand the mechanisms of nucleation by pressure decline, El

Yousfi et al. [62, 63] performed experiments in transparent glass and resin

micromodels with a CO
�
—water solution. The main results were the

following:

· The bubbles appear progressively with time during approximately 1 h.

After this time, no new bubbles are created.

· The final number of bubbles increases with supersaturation.

63CRITICAL FLOWS



· Results are reproducible. The first bubble and several of the following ones

always appear in the same pores when the same experiment is repeated.

In addition, the sites are also the same for different pressure drop values.

· The inverse of time of appearance of the first bubble 1/� is roughly

proportional to the dimensionless supersaturation �P/P and is similar for

glass and resin micromodels.

· There is a threshold in supersaturation for bubble appearance. For

�P� 0.4 bar for resin and �P� 0.8 bar for glass micromodels, there is

no bubble creation, even after waiting more than 1 week. Just beyond the

threshold, the time of appearance is of the order of 1 minute.

All these observations can be interpreted by a process that consists of the

following succession of steps:

1. Stabilized microbubbles (order of magnitude of 1 �m) are always present

before the pressure declines.

2. There is growth of the microbubbles by diffusion in a very large number

of sites and trapping by capillary forces in the roughness of the solid walls

of the pores (the microbubbles are much smaller than the pore).
3. Some of these sites are activated when pressure drawdown balances

capillary trapping. This step explains the observed threshold in super-

saturation.

4. Growth of these bubbles by gas diffusion reaches a size that enables

observation (around 30 �m).

The preceding process is similar to one found in the literature that explains

the boiling process on rough surfaces.

Micromodels have also been used to study the growth of bubbles inside the

pores. When the bubble is small compared to the pore, the growth is described

by molecular diffusion with some correction factors to account for the presence

of the porous medium [64]. Satik et al. [65] observed ramified patterns and a

transition from percolation to DLA patterns as the cluster size increased and

occupied several pores. Using these observations, they developed a general

theory for the scaling of bubble growth using numerical simulations.

For studies of near-critical conditions, Williams and Dawe [66, 67] and

Gray and Dawe [68] developed an original system of two partially miscible

liquids (2—6 lutinine and water) observed in micromodels. With this system,

it is possible to cross the phase boundary just by varying the temperature.

They showed that the appearance of a phase was strongly dependent on

wettability. For the wetting phase, the small droplets spread on the pore

walls, while nonwetting droplets grow by coalescence inside the wetting

liquid. They also showed that at low interfacial tension, the nonwetting

phase flows in ganglia and is not in hydraulic continuity below a given
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saturation (near 10%). Under the same conditions, the wetting phase coats

the matrix and can flow by films.

2.6 Flow in Fractured Media

Haghighi et al. [69] used a glass micromodel representing a porous matrix

with a highpermeability channel representing a fracture. Two-phase flows were

performed and the displacement of oil in thematrixwas studied. They observed

a critical rate in the fracture for displacement in thematrix. Themain conclusion

of the work is that observations can be modeled using macroscopic equations

(‘‘meanfield approach’’). The physics is similar to blob displacements; that is, a

balance between viscous pressure drop in the fracture and capillary forces in the

matrix. Good agreement with macroscopic laws was found.

2.7 Foam Flow in Porous Media

A foamed gel material is often used to plug high-permeability streaks.

Micromodels have contributed to the understanding of the physical mech-

anisms. Miller and Fogler [70] have shown that there is a percolation

threshold in pressure corresponding to the rupture of the gel into a larger

number of pores along a connected path through the micromodel.

Manlowe and Radke [71] studied the destabilizing effect of crude oil on

foams. Previous studies suggested several destabilizing mechanisms, includ-

ing the depletion of surfactant by formation of oil—water emulsion and oil

spreading at the gas—water interface. Observations in glass micromodels

have shown no difference for spreading and nonspreading oil. In fact, foam

stability is directly related to the stability of a film of water between oil and

gas (and is called a ‘‘pseudoemulsion film’’).
Hornbrook et al. [14] used an etched silicon micromodel with a pore size

of the same order as real sandstone (3—30 �m) and a low surfactant

concentration. Gas bubbles are separated by thick water lenses. The gas

occupied several pores and moved by invasion of the water filled throats

followed by reinvasion by water. Contrary to other observations in larger

micromodels, thin lamellae were rarely seen.

2.8 Conclusion

The main information gained from micromodel observations is that we

cannot forget that the porous medium has a granular structure and a

network structure. Even if the transport properties of porous media are
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described by ‘‘continuum’’ laws such as Darcy’s law, there is a strong

geometrical disorder at the pore scale. This ‘‘quenched disorder’’ leads to

very specific behavior. Using a macroscopic approach for capillary or

viscous fingering is misleading. For instance, percolation and DLA patterns

cannot be described by macroscopic equations.
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3. PROBING PORE STRUCTURES BY SORPTION ISOTHERMS
AND MERCURY POROSIMETRY

Yanis C. Yortsos
Department of Chemical Engineering and Petroleum Engineering Program

University of Southern California
Los Angeles, California

3.1 Introduction

The objective of this chapter is to provide a review of the use of

(physi)sorption isotherms and mercury porosimetry to identify geometric

and pore-structural parameters of porous media. Physisorption refers to the

reversible adsorption or desorption of a gas in a porous medium at constant

temperature, as a result of an incremental increase or decrease of its

pressure, respectively. Its origin is the binding of the gas molecules at the

solid surface, typically by van der Waals forces. Mercury porosimetry refers

to the process of the slow intrusion or extrusion of liquid mercury in the

porespace of a porous medium in response to an incremental increase or

decrease in the applied pressure, respectively. This process is also controlled

by interfacial (capillary) forces at the advancing or receding interface.

Adsorption and mercury extrusion conceptually correspond to the displace-

ment of a nonwetting phase (vapor or mercury, in the respective processes)
by a wetting phase (liquid or air, respectively). This is also known as an

imbibition process. Conversely, the processes of desorption and mercury

intrusion conceptually correspond to the displacement of a wetting by a

nonwetting phase, also known as drainage. The information on the pore

structure is obtained from the inversion of experimental isotherms and

measuring the mass or volume adsorbed or penetrated in sorption or

mercury porosimetry, respectively, as a function of the applied pressure. The

two methods have been widely used in the past and they constitute standard

surface science tools for porous media characterization [1—5].

In the absence of other information on the history of the pore-structure

evolution (whether chemical, biological, or geological), the task of providing

a complete representation of the pore structure is very complex. Typically,

two main variables are probed: the (accessible) pore surface and the

‘‘pore-size’’ distribution. Information on the pore surface can be provided by
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the adsorption of single-component gases at low pressures or by mercury

porosimetry at high pressures. Under these conditions, the surface may be

unfolded into an object that can be studied independently of the compli-

cated three-dimensional pore structure. Here, the key task is to relate the

experimental measurements to quantities such as the surface area per unit

mass, its roughness, or its fractal characteristics, if appropriate. In this

context, the surface is often modeled as a statistically self-affine object.

For the characterization of porous media containing mesopores or

macropores (see later in this chapter), sorption processes at relative pres-

sures in the capillary condensation regime or mercury porosimetry at

relatively low pressures, respectively, are used. The accurate interpretation

of these measurements, however, requires the representation of the pores-

pace in terms of a pore network. The latter is described by the size

distribution of pore bodies and pore throats, their connectivity, and their

spatial correlations. The use of network theories, such as percolation theory

[6] and its variants, can be quite beneficial in this context.

The information extracted from sorption or mercury porosimetry experi-

ments is based on the analysis of a few isotherms. A forward and an inverse

problem must be formulated. The forward problem involves the modeling

of the process assuming a certain representation of the porous medium. The

inverse problem involves identifying the assumed properties of the porous

medium by inverting the experimental measurements. Because the latter

reflect the integrated response of the system, which is also influenced by

heterogeneities in geometry, size, connectivity, and accessibility, the inver-

sion of the experimental isotherms is not unique. The corresponding

limitations are important and are addressed in this chapter. Even though

the information on the pore structure is not as detailed as one may desire,

sorption and mercury porosimetry methods can be quite useful for porous

media characterization, provided that their strengths and limitations are

properly recognized.

This chapter is organized as follows: First, background material is

provided on porous media description with a focus on the pore surface and

the pore network, and on the basic aspects of sorption isotherms and

mercury porosimetry. The next section deals with the characterization of the

pore surface and its chemical and geometric heterogeneity. We discuss

adsorption over a surface (or, equivalently, adsorption in a porous medium

at low relative pressures) and capillary invasion at high capillary pressures

to identify pore surface characteristics. Multilayer adsorption and conden-

sation are also reviewed. The next section involves sorption processes and

capillary invasion in single pores and pore networks. We review fundamen-

tals of capillary condensation in confined geometries and capillary equilibria

and discuss their applicability for infering pore-size distributions. The use of
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percolation approaches to interpret the effect of the pore network on

sorption isotherms and mercury porosimetry data is particularly empha-

sized. Various issues related to pore and throat size distributions and their

spatial correlations are also discussed.

3.2 Background

Understanding the macroscopic behavior of sorption isotherms and

capillary phenomena in porous media requires conceptual models of the

pore surface and the pore structure. In general, porous media and pore

surfaces are geometrically and chemically heterogeneous, as a result of their

formation and evolution history [7, 8]. For example, porous materials

prepared by methods such as coagulation, controlled growth, precipitation,

or aging have different geometric and chemical properties, in general. The

same is true for geologic porous media, the particular history of the

formation of which (sedimentation, compaction, diagenesis, etc.) leads to

specific pore-structural characteristics. Given the large diversity in these

media, an inclusive description, although desirable, is rather impractical.

Here, we comment instead on the representation of two key aspects of

porous media—the pore surface and the pore network—the identification

of some of the properties of which are the objectives of sorption isotherm

and mercury porosimetry methods. Following this description, basic experi-

mental procedures in adsorption—desorption processes and in mercury

porosimetry are reviewed.

3.2.1 Representation of Porous Media

Pore surfaces are, in general, rough with features in the form of cavities,

peaks, and pits at various scales. For the purposes of this section, we assume

that the surface can be unfolded into a topologically two-dimensional

object, so that its height z can be expressed as a function of local Cartesian

coordinates x and y (Fig. 1), namely,

z � h(x, y). (1)

The function h certainly depends on the history of the formation of the

surface. An increasing amount of evidence has accumulated (e.g., see reviews

by Barabasi and Stanley [9] and Halpin-Healy and Zhang [10]), suggesting

that surfaces evolving from various different processes (from molecular

beam epitaxy to displacements in random media) are actually self-affine

fractals (Fig. 1). Self-affinity is a generalization of self-similarity (which is

more commonly associated with a fractal description, see Mandelbrot [11]),
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Fig. 1. Schematic description of a pore surface as a self-affine surface of the fBm

(fractional Brownian motion type) with H � 0.7. Two different regimes correspond-

ing to two different scales are shown.

in that self-affine objects preserve statistical similarity only if their scaling

response is different in different directions. For example, a self-affine surface

of the type of Eq. (1) satisfies the anisotropic scaling

z�
1

b�
h(bx, by), (2)
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where b� 0 is the scale expansion (or reduction). The affine exponent,

H (0 �H� 1), is known as the Hurst or Hölder exponent [12] and reflects

the relative roughness, surfaces with higher values of H being smoother with

long-range trends. In the preceding, we implicitly assumed isotropy in the x
and y directions. Barabasi and Stanley [9] have reviewed the various

mechanisms, including ballistic deposition, solid-on-solid models, propaga-

tion of interfaces, that lead to the formation of self-affine surfaces.

An important characteristic of self-affine objects is that their scaling

behavior is different, depending on the range investigated [12—14] (Fig. 1).
In general, two limiting regimes exist: a local one at small length scales,

	 
��
, where the surface can be viewed as a self-similar fractal with fractal

dimension D � 1 � d � H, where d is the topological dimension (hence,

D � 3 � H for a surface); and a global one at large length scales,  � 
��

,

where the surface is not fractal (of dimension d, hence equal to 2 for a

surface). The crossover length 
��

demarcates the two regimes. Recall that in

real systems, fractal behavior is typically displayed in a finite region,

between upper and lower cutoff scales d
��

and d
��
, respectively. In this

region, the measured surface area is not a constant, but varies depending on

the ruler used for its measurement, according to the power law:

S() � ��� , d
��
� � d

��
. (3)

This is the behavior expected in the local regime of a self-affine surface.

Adamson [2] was among the first to recognize the relevance of a multiscale,

fractal description in the context of surface chemistry. Pioneering work in

the application of fractal concepts to porous media was also conducted by

Feder [12], Avnir [15], and de Gennes [16].

Neimark [14] investigated the characterization of self-affine surfaces in

the global regime and considered the scaling of the excess area S
�	

(namely,

that in excess over a reference planar surface), of smoothed surfaces,

obtained from the actual rough surface after small-scale fluctuations below

a smoothing scale �x
�

are eliminated. In particular, he considered the

scaling of S
�	

with the mean radius of curvature of the smooth surface 
�
and

demonstrated the scaling behavior

S
�	

� �

�


��
������� for  	 

��
and S

�	
��



��
�

���������������

for  � 
��

(4)

in the two limiting regimes of self-affinity, respectively. Note that the first

scaling is the same with that for a self-similar surface [Eq. (3)] in the local

regime (where D � 3 � H). However, the scaling of S
�	

in the global regime

is different. Neimark [14] noted that the latter exponent is more properly
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related to an ‘‘excess dimension,’’ 2 � [2(1 � H)] / (2 � H ), rather than to

a fractal dimension. Related are the observations of Pfeifer and Cole [17]

who argued that in the regime of self-similarity, any fractal dimension

obtained experimentally must be the local fractal dimension 3 � H and that

a different exponent should apply in the global regime (but see also Kardar

and Indekeu [18]).
The fact that self-affine objects involve power-law scalings in various

regimes makes self-affinity a good working model for surface roughness. Its

implications to sorption at low pressures and mercury porosimetry at high

pressures are discussed in the next section.

In addition to the pore surface, sorption and mercury intrusion are

significantly affected by the three-dimensional aspects of porous media,

specifically the characteristics of pores and throats: their size distributions,

connectivity, and spatial correlation (see the schematic in Fig. 2). For a

detailed geometrical description, consult references such as Dullien [4] and

Adler [19]. In the context of sorption, IUPAC has recommended the

following classification of pores based on their size:

· Micropores with sizes in the range �2 nm

· Mesopores with sizes in the range 2—50 nm

· Macropores with sizes in the range �50 nm

However, Balbuena and Gubbins [20] have argued in favor of a different

classification, which would also depend on the particular intermolecular

interaction between the adsorbed gas and the adsorbent solid, rather than

size alone.

For the purposes of this chapter, we model the local pore geometry in

terms of a converging—diverging cross section, which is the simplest model

for describing fundamental aspects of equilibrium and transport in porous

media [4, 21, 22] (Fig. 2). We define pores (also termed sites or cavities or

chambers) as the geometrical elements in which an inscribed sphere has the

locally largest radius; and throats (also termed bonds or windows or necks)
as the elements joining adjacent sites, and which are characterized by the

locally smallest radius of an inscribed sphere (Fig. 2). Pores contain most of

the information on volume (or capacity) and they are most important in

adsorption and extrusion (imbibition). Throats contain mostly information

on transport properties and they are important in desorption and mercury

intrusion (drainage). The statistical distributions of pore and throat sizes are

described by the two cumulative probability density functions

q ��
�

�

�
�
(r) dr and p ��

�

�

�
�
(r) dr, (5)
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Fig. 2. Schematic of a porous medium. Highlighted are the converging—diverging

geometry nature of the cross sections and the pore—network representation of the

porespace.

respectively, where �
	
(r) (i � s, b for site or bond) is the respective probabil-

ity density function. (We also ocasionally denote by r
�
or r

�
the correspond-

ing sizes.) In many applications, it is these two probability functions that are

needed for a basic formulation of forward and inverse problems. A variety

of other models have also been used in the literature [23—26]. Geometric,
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volume, transport, and capillary properties associated with these elements

can be distributed randomly or by spatial correlation.

In some applications, however, additional simplifications are introduced.

In the context of adsorption, for example, Seaton and coworkers [27—32]

take the porous medium to consist of pores of a slitlike (parallel plates)
geometry, which contain all the volume of the porous material, and which

join at junctions to form a pore network. In this approach, it is only the

throat size distribution �
�
(r) that characterizes the pore geometry. A slitlike

geometry has been proposed to model the pore structure of activated

carbon. On the other hand, Mason [33—36], Zhdanov et al. [37], and Parlar

and Yortsos [38, 39] consider both pores and throats, with all the volume

contained in the sites and throats controlling the onset of desorption. Two

size distributions are necessary in the latter models.

The graph that connects adjacent pores in the porous medium comprises

the pore network (Fig. 2). It is characterized by its coordination number Z
(which is the average number of neighboring pores adjacent to a given pore),
its dimension (two or three dimensions), and its linear size L (which

expresses the number of pores along a coordinate direction). The need for

a pore network representation to capture percolationlike processes, which

are associated with the onset of connectivity of a phase (and may be

controlling desorption and mercury intrusion), was recognized since the late

1950s by Fatt [40]. However, a systematic application of pore network

models, and specifically of percolation theory, to porous media processes

started only several years later [4, 41, 42]. Wall and Brown [43] were among

the first to recognize the importance of percolation theory in interpreting

adsorption—desorption curves. Regular lattices (2-D square, 3-D cubic, etc.),
but also the less realistic but analytically tractable Bethe lattices (which lack

reconnections), have been used in computational and analytical studies.

Having defined some key aspects of porous media, we next proceed with

a description of the basic characteristics of sorption isotherms and of

mercury porosimetry.

3.2.2 Sorption Isotherms and Their Classification

Sorption isotherms correspond to single-component gas (physi)sorption in a

porous medium. Physisorption is a result of long-range attractive interactions

and short-range repulsion between the molecules of the gas and the solid that

makes up the porous medium. For nonmetallic surfaces, a Lennard—Jones 6—12

intermolecular potential, which translates into a 3—9 potential for the interaction

between an atom and a flat surface, provides an often used model of this

combined interaction. When chemisorption or chemical reactions are important,

however, a different approach is necessary, as described in detail in Masel [44].
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The experimental procedure involves exposing the porous medium to a

single-component gas at constant temperature T and incrementally in-

creasing—decreasing its pressure until an equilibrium state is reached.

The quantity measured is the amount adsorbed (usually per unit vol-

ume of the adsorbent) as a function of pressure P, or more appropriately

of the relative pressure P/P�(T ), where P�(T ) is the bulk vapor pres-

sure. With increasing pressure, adsorption coverage of the surface proceeds

in the form of a submonolayer, first, followed by the formation of a

monolayer and then multilayer condensation. Over a flat surface, progres-

sively thicker liquid films would form as the bulk vapor pressure is

approached. In a porous medium, however, adsorption will give rise to the

filling of micropores, followed by capillary condensation in larger pores.

When the pressure is decreased, desorption occurs. Because of the lack of

reversibility in the capillary condensation regime, at both the single-pore

and the pore network levels, however, adsorption—desorption isotherms

show a characteristic hysteresis, the origin of which has been the subject of

numerous studies. A compilation of the adsorption behavior of various

gases in various media can be found in the review of Valenzuela and

Meyers [45].

It is conventional to classify sorption isotherms in porous media accord-

ing to their qualitative behavior, following the recommendations of the

IUPAC Commission on Colloid and Surface Chemistry [46], as shown in

Fig. 3. According to this classification, type I corresponds to monolayer

coverage (and filling of micropores). Types II and III are characteristic of

multilayer adsorption in nonporous materials (with type II corresponding

to strong and type III to weak gas—solid attractive forces, respectively).
Isotherms I—III are reversible. Isotherms of types IV and V occur when

multiple layers of gas adsorb in a porous solid containing mesopores, and

correspond to strong and weak fluid—solid interactions, respectively. These

types involve a reversible part at low pressures, where filling of micropores

occurs, and an irreversible part at higher pressures, due to capillary

condensation, which exhibits hysteresis. They are typical of many industrial

applications. Finally, type VI occurs in nonporous materials with strong

fluid—wall interactions at a temperature close to the melting point of the

adsorbed gas. Based on calculations in slit pores using nonlocal DFT

(density functional theory), Balbuena and Gubbins [20] proposed yet

another type corresponding to capillary evaporation.

To interpret the sorption isotherms, the adsorption—desorption behavior

over a surface in single pores and in a network of pores is analyzed in the

sections to follow. Under thermodynamic equilibrium conditions, all these

isotherms manifest the underlying equality of the chemical potential be-

tween adsorbed and bulk phases.
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Fig. 3. Schematics of adsorption isotherms according to the IUPAC classification

[46].
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Fig. 4. Characteristic mercury intrusion—extrusion curves (denoted as injection—
imbibition, respectively), for Dalton sandstone with the permeability and porosity

indicated. Reprinted with permission from J. J. Pickell et al., Soc. Pet. Eng. J., 55.

Copyright 1966 SPE.

3.2.3 Mercury Porosimetry Curves

Mercury porosimetry is an experimental tool for the characterization of

the pore structure of porous media containing macropores. It is routinely

used in the characterization of catalysts, soils, geologic porous media, etc.

The conventional experimental procedure consists of conducting cycles of

intrusion or extrusion of liquid mercury in an initially dry porous sample,

at constant temperature, by incrementally increasing or decreasing its

pressure. In these applications, mercury is the nonwetting phase. After

equilibrium is reached, the volume of mercury occupying the porespace at

equilibrium is plotted as a function of the pressure. Conventionally, the

results are presented in a capillary pressure—saturation diagram, where the

capillary pressure P
�

� P

�

� P
�

is the difference between the pressures of

nonwetting and wetting phases (namely, of mercury and air, respectively),
and the nonwetting saturation S


�
, is the volume fraction of the porespace

occupied by the nonwetting phase (namely, mercury, in the present applica-

tion). Repeated intrusion—extrusion cycles give rise to scanning curves, as

shown in Fig. 4. In analogy with sorption isotherms, the hysteresis exhibited

in mercury porosimetry has its origin both at the single-pore and at the pore

network levels, as discussed later in the chapter.
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During the primary cycle of mercury intrusion, significant penetration of

the porous sample occurs only after a certain threshold in the capillary

pressure is reached (Fig. 4). This threshold reflects the facts that mercury,

being a nonwetting phase, preferably invades larger pore throats and that

for a significant penetration, a connected pathway of these large pore

throats must exist. As pressure increases, mercury invades progressively

smaller pore throats, and at sufficiently large pressures, the penetration of

small cavities and other features of roughness at the pore surface will take

place. In this regime, the characteristics of the pore surface can be un-

covered. Note that because of its compressibility, the volume of air can be

constantly reduced, even when the latter becomes topologically discon-

nected by the advancing mercury. However, this is not the case during

extrusion, where liquid mercury—air menisci can become trapped as isolated

blobs (ganglia) of mercury. As a result, a significant residual, trapped

saturation of mercury (of the order of 15—20% in Fig. 4), will exist at the

termination of the extrusion process.

The preceding description pertains to constant pressure porosimetry. An

alternative method, known as APEX, was developed based on controlled-

volume porosimetry [48]. Here, it is the volume rate of intrusion that is held

constant. As a result of the constant rate invasion (or withdrawal) of menisci

in pores and throats, the pressure undergoes rapid fluctuations, which reflect

the characteristics of pore geometry [26]. The envelope of the pressure—
saturation curve in APEX is the mercury porosimetry curve in the conven-

tional approach. Thus, the information obtained from APEX includes, in

principle, that from the more conventional approach.

In the sections to follow, we discuss in sequence the behavior of sorption

and mercury intrusion—extrusion in pore surfaces, single pores, and pore

networks.

3.3 Probing Pore Surfaces

The identification of the characteristics of the pore surface by sorption

and mercury porosimetry methods is possible using adsorption at low

relative pressures and/or capillary invasion at high capillary pressures.

These two applications are discussed separately.

3.3.1 Langmuir Adsorption

Consider, first, adsorption over a flat, smooth surface at low pressures.

The resulting submonolayer coverage can be described by the well-known
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Langmuir’s model [5, 44]:

� �
K

�
(E )P

1 � K
�
(E )P

, (6)

which expresses the equilibrium between adsorption and desorption rates

under the conditions of submonolayer coverage. Here, � � V /V


is the

surface fractional coverage, V is the volume adsorbed, V


is the monolayer

volume, P denotes pressure, and the equilibrium constant K
�
(E) depends on

the binding energy E between adsorbate and adsorbent. Langmuir-type

models produce adsorption isotherms of type I. Langmuir’s equation

enables the estimation of the monolayer volume V


, which is best accom-

plished by rearranging the V, P data in the form

1

V
�

1

V
�

�
1

V


K
�
P

, (7)

and using linear regression. A direct estimation of the surface area of the

adsorbent follows, provided that the surface coverage � of the adsorbate

molecules per site is known (e.g., estimated [49] to be equal to 16.2 Å� for

N
�

at 77 K).
The Langmuir model and its modifications apply to noncompetitive,

nondissociative adsorption in chemically homogeneous surfaces [44]. When

the surface is chemically heterogeneous or has geometric roughness, how-

ever, the low-pressure adsorption data can be further analyzed as follows.

3.3.1.1 Chemical Heterogeneity. In the presence of chemical (ener-

getic) heterogeneity of the surface, the binding energy E, hence the equilib-

rium constant K
�
, is distributed, and adsorption models of the type of Eq.

(6) must be modified. A direct extension is to assume a linear superposition

of the effects of the various sites, in which case Langmuir’s model yields

� (P ) ��
�

�

K
�
(E )P

1 � K
�
(E )P

f (E ) dE. (8)

Here, the chemical heterogeneity of the surface is represented in terms of a

probability density function (pdf) f (E ), where f (E)dE expresses the fraction

of the surface area with binding energies in the interval (E, E � dE). The

basis of Eq. (8) is the assumption that effects of different sites are indepen-

dent of neighboring interactions.

The effect of the particular distribution f (E ) can be significant and may

change the qualitative features of the composite adsorption isotherm. In

fact, by combining the local Langmuir model with an assumed form of

heterogeneity, as expressed in Eq. (8), one can derive various empirical
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expressions [5] commonly used. These include the Freundlich isotherm

� � aP�, (9)

where a and n are fitting constants, obtained from Eq. (8) using an

exponential distribution, and the multisite model

� ��
�
	
K

�
(E

	
)P

1 � K
�
(E

	
)P

, (10)

where �
	
is the fraction of sites with constant K

�
(E

	
) obtained using patch

coverage. Equations of the type of Eqs. (9) and (10) are examples of the

forward problem in adsorption in heterogeneous surfaces.

Conversely, Eq. (8) can be inverted with respect to f (E ) to identify the

chemical heterogeneity of the surface. The problem posed is to find f (E ),

satisfying Eq. (8), given experimental data �(P ) and the kernel function

K
�
(E ). An extensive discussion of the various inversion techniques used can

be found in Jaroniec and Madey [8]. Similar inverse problems also arise in

the estimation of the pore-size distribution of micro-, meso-, and macro-

pores, as is shown later, as well as in other fields (for example, in the context

of identifying the permeability heterogeneity of porous media [50]). Equa-

tion (8) is a Volterra integral equation of the first kind (e.g., see Carrier et
al. [51]). Because of its ill-posedness, the inversion being sensitive to

experimental and numerical noise, however, some regularization method is

needed for its solution [52, 53]. Another approach is to assume an a priori

pdf (e.g., Gaussian, log-normal, etc.) with a few adjustable parameters, which

are then estimated by various best-fit routines. Figure 5 shows pdfs obtained

from the inversion of data for adsorption of nitrogen on Aerosil A at 78 K,

using two different algorithms.

3.3.1.2 Surface Roughness. Adsorption at low pressures will also be

affected by the geometric heterogeneity of the surface. Consider, in particular,

adsorption on a self-similar fractal surface, first discussed by Avnir et al.
[54, 55]. These authors reasoned that the size of the molecule of the adsorbate

 is effectively a ruler measuring the area of the self-similar surface. They found

experimentally that the monomolecular coverage (molecular tiling) of the

surface by various species of different molecular weight (and hence of presumed

different surface coverage per site, �� �) scales as a power law of , namely,

N


() ������ � ��, (11)

where N


() denotes the amount adsorbed at the end of monolecular

coverage. Because Eq. (11) can be interpreted as a power law between the

number N


of ‘‘spheres’’ that cover the surface (actually its active sites) and

their size , it also serves to define the box-counting fractal dimension of the
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Fig. 5. The pdf of the binding energy in a chemically heterogeneous surface obtained

from the inversion of adsorption data of nitrogen on Aerosil A at 78 K using two

different inversion algorithms. Reprinted from Jaroniec and Madey, Physical Adsorp-
tion on Heterogeneous Solids, � 1988, with permission from Elsevier Science.

surface (namely, we have D � n). A list of widely different surfaces were

probed and found to have a fractal dimension in the range between 2 and

3. In most of these experiments, however, the range of scales where fractal

behavior was identified was quite narrow (less than a decade in terms of ,

for example, for N
�
, d

��
� 0.2 nm and d

��
� 1 nm). The limitation of small

range is clearly important as far as a fractal characterization is concerned.

It must be also kept in mind that the fractal dimension thus identified may

well pertain to the local regime of a generally self-affine pore surface with

self-affine exponent H � 3 � D. In this context, the dimension D identified

would reflect the roughness of the various surfaces tested, which will

increase (lower H) as D increases. The molecular tiling approach for

estimating the fractal dimension of the surface was critically reviewed by

Drake et al. [56].
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An alternative approach for the determination of various characteristics

of the pore surface involves the use of an isotherm of a single species in the

multilayer region, rather than of multiple isotherms of different adsorbates.

This is discussed in the following section.

3.3.2 Multilayer Adsorption

In multilayer adsorption, adsorbate—adsorbate interactions cannot be

ignored and, in fact, control the adsorption process. Brunauer, Emmett, and

Teller [57] proposed the simple, but still widely used, BET model for

multilayer adsorption over a flat surface, based on which the pore surface

area can be estimated. The BET equation has the simple form

V

V


�
Cx

(1 � x) [1 � (C � 1)x]
, (12)

where x � P/P� is the relative pressure and C is a parameter depending on

temperature, the binding energy, and the latent heat. The approach follows

assumptions similar to Langmuir’s, namely, localized adsorption over a

homogeneous, flat surface and the absence of lateral interactions. Depending

on the value of C, the BET model can cover the range of adsorption

isotherms of types II (C� 1) and III (C� 1) (see Fig. 6). As in the

Langmuir model, the BET equation is reversible. By rearranging it in the

linear form,

x

V (1 � x)
�

1

CV


�
x(C � 1)

CV


, (13)

we can estimate the monolayer volume, V


(and C), by parameter fitting,

from which the pore surface area follows, as in the case of Langmuir

adsorption.

When multilayer adsorption occurs over a rough surface, models that

account for the potential energy of the adsorbate due to its attraction to the

rough surface are required. One such class makes use of the ‘‘equipotential’’

assumption, in which the potential of the interaction depends only on the

distance from the surface, while the film thickness remains the same

irrespective of surface curvature. We note that the thickness t of a liquid film

over a flat surface is obtained by a simple balance in the chemical potential

between adsorbed and bulk gas phases:

A
�

6�t

� �

kT

V
���

ln x��(t), (14)

where van de Waals attraction was assumed. Here A
�

is the Hamaker
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Fig. 6. Adsorption isotherms described by the BET model for different values of C.

constant, V
���

is the molar volume of the liquid, and we also introduce the

disjoining pressure � (t) for later use. The latter is the pressure of the

nonwetting phase in equilibrium over a flat wetting film of thickness t.
Under the equipotential assumption, adsorption over a rough surface of

area S can be described by generalizing Eq. (14):

�
t


� �RT ln x, (15)

where � is a constant. Then, multilayer adsorption of volume V over a

surface area S is expressed as

V

S
� �

A

��
���


(16)

where we have used the conventional notation, A � RT ln(P�/P), for the

adsorption potential.
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In practice, however, isotherms over rough surfaces display power laws

with an exponent in a range of values rather than the specific value of 3

suggested in Eq. (16). To account for such behavior, semiempirical iso-

therms of the type

V

V


� �
A

���
����

(17)

have been proposed, in which exponent n is now an adjustable parameter

(and �� is another constant). Equations of the type of Eq. (17) are known as

Frenkel—Halsey—Hill (FHH) equations. Other semiempirical models for

multilayer adsorption over rough surfaces have also been proposed, for

example, the Dubinin—Radushkevich (DR) equation,

V

V


� exp[�bA�], (18)

where b is another adjustable parameter [3] (although the latter is actually

more appropriate for the filling of micropores, see later).
Pfeifer et al. [58] combined the equipotential approach with van der

Waals attraction to describe adsorption over a self-similar fractal surface,

and derived the following result:

V � t
��� A���
����
�, (19)

for the volume V contained in cavities and pits of size less than t. The first

part of this equation reflects the surface self-similarity and was derived

previously by de Gennes [16] (see later). The second reflects equation Eq.

(14). Comparison with Eq. (17) shows that Eq. (19) has the form of an FHH

equation, now with exponent n � 3/(3 � D) , thus providing a possible

interpretation of the empirical FHH exponent in terms of the degree of

roughness. Indeed, according to this model, n � 3 is obtained in the

Euclidean limit of flat surfaces, D � 2. Pfeifer et al. [58] fitted Eq. (19) to

experimental results for the adsorption of N
�

on silver and reported a

surface fractal dimension of 2.3 in the range 0.8—4.5 nm. This range is larger

than that for the molecular tiling approach, giving confidence to the

estimated fractal dimension. However, the method neglects capillary con-

densation, which will likely occur in pores in the upper limit of the range

investigated, and the consideration of which will change the scaling behav-

ior, while the adsorbate—adsorbent interaction for this system may not

necessarily be of the van der Waals type [59]. In a subsequent paper, Pfeifer

and Cole [17] presented an extensive discussion of the adsorption and

capillary equilibria over a self-affine surface and discussed the various

regimes that may arise.
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3.3.3 Capillary Effects and Surface Roughness

In the previous sections, the intermolecular forces between bulk and

condensed phases (essentially the effect of the meniscus) were neglected. As

adsorption proceeds and films thicken, however, their contribution becomes

important. It is well known that across a macroscopic interface separating

two immiscible phases in equilibrium, the capillary pressure between the two

phases, P
�
� P


�
� P

�
, is related to the mean curvature, C
���, through the

Laplace equation

P
�

� 2C
���
 (20)

where 
 is the interfacial tension between the fluids. Here, we defined

C
��� � 1/2(1/R
�

� 1/R
�
), where R

�
and R

�
are the principal radii of

curvature measured from the side of the nonwetting phase. The interface is

stable provided that

dC
���

dV

�

� 0, (21)

namely, that C
��� increases with an increase in the volume V

�

. Equation

(20) contains the well-known result,

P
�

�
2

r

, (22)

for spherical interfaces of radius r. It is important to note the different

power-law dependences between the pressure (disjoining or capillary) and

the length scale (film thickness or radius of curvature) expressed in the two

Eqs. (14) and (20) [or (22)], respectively. In relating surface roughness with

adsorption data at higher relative pressures (which give rise to a capillary

condensation) or mercury porosimetry at high capillary pressures, therefore,

the different power law, Eq. (20) [or (22)] must also be considered.

This problem was considered by de Gennes [16], who studied the

displacement of a wetting fluid from the cavities of a self-similar fractal

surface. He derived the following scaling law for the wetting fluid saturation

(namely, the pore volume fraction occupied by the wetting phase) contained

in pits and cavities of radius less than r :

S
�
� �

r

r
��
�


��
, (23)

where D is the fractal dimension of the pore surface and r
��

is the upper

cutoff limiting the fractal behavior. We recognize Eq. (23) as the first part

of Eq. (19) of Pfeifer et al. [58]. Now, when macroscopic curvature effects

dominate over adsorbed films, the radius r is related to the capillary
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Fig. 7. Experimental data showing the power-law scaling of the capillary pressure

curve at low values of the wetting saturation. Reprinted with permission from J. C.

Melrose, SPE18331, 63rd SPE Annual Fall Meeting, Houston, TX (1988).

pressure P
�
via Eq. (22). Then, the following scaling law between S

�
and P

�
can be derived [60]

S
�
� P��

�
where n � 3 � D. (24)

This power law is consistent with the experimental data of Melrose [61] for

describing the dependence of the capillary pressure curve in the low S
�

regime (Fig. 7), where the exponent n was found to be in the range

0.38—0.46. From this analysis, Davis [60] concluded that the pore surface

in these experiments has a fractal dimension in the range 2.54—2.60.

Neimark [59] combined de Gennes’s approach with capillary condensa-

tion to interpret adsorption data at higher pressures. Using Kelvin’s

equation (see later) and neglecting the adsorbed film in comparison to the

capillary-condensed adsorbate, he obtained the following relation between

adsorbed volume and adsorption potential:

V �A��
���. (25)

Like Eq. (19), this is also an equation of the FHH type, but now with the

different exponent n � 1/(3 � D), reflecting the dominance of macroscopic

curvature over thin film effects. The same exponent was also derived by
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Avnir and Jaroniec [62] and Yin [63] (but for a different system), as

discussed in the next section.

A more general method for probing the characteristics of surfaces was

proposed by Neimark [59, 64]. The key to his approach is the following

general thermodynamic relation between the interfacial excess area S
�	

of an

adsorbate and the chemical potential [64], S
�	

� ���	
����

� dN, where N
�	

is

the maximum extent of adsorption. For the particular case of the capillary

condensation regime, where Kelvin’s equation is used, this reads as

S (N ) �
1


 �
��	

�

A dN. (26)

Implicit in Eq. (26) is the assumption of a spatially constant curvature and

negligible wall—adsorbate interactions. Now, assuming a fractal surface with

the properties of Eq. (3), use of Kelvin’s equation in Eq. (26) enables one to

calculate the fractal dimension from the adsorption (or desorption) data via

D � 2 �
d[ln ���	

�
A dN]

d ln A
or D � 2 �

d[ln ���	
�

��� �dN]

d ln ��� �
(27)

(note the generalization expressed in the second equality). From an analysis

of experimental data of sorption of nitrogen in an activated carbon sample,

Neimark reported the values 2.73 and 2.71 from the two respective branches,

adsorption and desorption, over a range covering about 2 decades in pore

sizes. He also remarked that because of its general validity [note the second

equality in Eq. (27)] this approach can also be applied to other processes,

for example, to mercury porosimetry in macropores (see later).
We conclude that adsorption or capillary pressure data in the appropri-

ate regimes can be inverted to yield information on surface roughness.

However, because surfaces are likely to be self-affine, power laws can be

interpreted as pertaining to either the local or the global regimes, and an

appropriate distinction is necessary. In particular, the exponent at small

scales would give the local fractal dimension D, namely, the growth

exponent H � 3 � D, while the probing of scales in the global regime can

also be expressed in terms of a power law, following Neimark’s approach

[14], except that now the apparent fractal dimension D would actually

reflect exponent H through the relationship H � (6 � 2D) /(4 � D). The

latter is derived by equating the exponent of the second part of Eq. (4) with

2 � D. Assuming a global regime, Neimark [14, 64] interpreted experimen-

tal data of low-temperature nitrogen adsorption on 1000-Å-thick silver film

and found a surface roughness with H � 0.36. This value is consistent with

the roughness exponent �



that characterizes the formation of self-affine

surfaces according to the Kardar—Parisi—Zhang (KPZ) model [65].
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We should add that the wetting of a rough (but not self-affine or

self-similar) surface by a liquid was considered by Sweeney et al. [66], who

used the augmented Laplace-Young equation,

P
�

� 2C���
 �
A�

�
t�

, (28)

to account for both macroscopic curvature effects as well as for adsorbed

films (and where A�
�

is a Hamaker constant). This is a composite expression

that patches two different limiting behaviors (macroscopic interfaces and

thin films) into a single expression. In Eq. (28), the disjoining pressure was

approximated by a power-law function of the film thickness, while C��� is the

mean curvature of the macroscopic gas— liquid interface (measured from the

side of the gas). At conditions of capillary equilibrium, where P
�
is constant,

the shape of the interface over the rough surface can be determined by

solving Eq. (28). Numerical results showed the existence of two regimes, one

in which the equilibrium shape is dominated by thin films (for example, over

surface peaks) and another in which it is dominated by pendular structures

(over valleys). In an earlier paper, Melrose [67] also considered separate

contributions from pendular rings and adsorbed films (which he modeled

using an FHH equation) to describe capillary equilibria in a model of

densely packed spheres.

3.4 Probing Porous Media

Sorption and capillary invasion—retraction in a porous medium is

complicated by the presence of pores of various sizes, shapes, and connect-

ivities. Sorption in micropores is affected by the confinement of the fluid in

a pore space of thickness of a few layers and the strong interaction between

pore walls and the fluid over the entire range of the pore. Sorption in

mesopores gives rise to capillary condensation and a characteristic hyster-

esis in the adsorption—desorption loop. Capillary invasion—withdrawal in

macropores is affected by the pore geometry, which also gives rise to

hysteresis. Finally, the connectivity of the pore network plays an important

role in the accessibility of the porespace and further contributes to the

macroscopic response. This section provides a description of these processes

first in single pores and subsequently in a network of pores and discusses

the identification of the various parameters by inverting the experimental

response. Sorption and capillary invasion—withdrawal are discussed separ-

ately. We begin with an analysis of sorption isotherms.
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3.4.1 Adsorption--Desorption in Single Pores

Adsorption—desorption processes in micropores occur at sufficiently low

relative pressures and they are reversible. This reversibility is due to the fact

that the fluid in the micropores is in a supercritical state as a result of the

lowering of its critical temperature by the confinement and the interaction

with the pore walls (the lowering increases with a decrease in the pore size).
Termination of micropore filling is signaled by the decrease of the slope of

the adsorption isotherm in the low-pressure regime. Adsorption—desorption

in larger pores (mesopores) involves capillary condensation.

Various semiempirical expressions, such as the DR Eq. (18), have been

proposed to describe micropore filling. However, a more exact description

can be obtained using recent advances in modeling based on DFT in

sufficiently small pores, to be discussed later. For the filling of mesopores,

where capillary condensation takes place, the contribution of the interfacial

energy of the gas— liquid meniscus must be also considered in the ther-

modynamic equilibrium. Two different approaches have been used for its

description.

Everett and Haynes [68] analyzed the thermodynamic equilibrium of a

vapor— liquid interface confined in a cylindrical pore by neglecting pore

wall—adsorbate interactions. For its description they used Laplace’s Eq. (20)
along with Kelvin’s equation:

ln x �
2
V

���
C���

RT
, (29)

where C��� is the mean curvature from the side of the liquid (note that in a

liquid film on the walls of a cylindrical pore, C��� is negative). Several pore

network studies [33—39, 69—72] are based on Kelvin’s equation, as dis-

cussed later in the chapter. The condition for interface stability is now

(dC���/dV
�
) � 0, where V

�
is the volume of the condensed liquid. Based on the

representation of the vapor— liquid interface by an unduloid inside a

cylindrical pore of size r (Fig. 8) and making use of Eqs. (20), (21), and (29),
Everett and Haynes [68] showed that as the pressure increases, the interface

remains stable until the unduloid takes the shape of a cylindrical surface

with curvature C��� � �1/(2r) (point A in Fig. 8). Following this point, the

gas— liquid interface is unstable to further increases in volume (path AB-

DHIJ in Fig. 8). In this scenario, therefore, pore-filling will occur at a

relative pressure corresponding to a cylindrical meniscus geometry:

ln
P
�

P�(T )
� �


V
���

rRT
. (30)

By similar arguments, the reverse process (pore-emptying or desorption) as
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Fig. 8. Single-pore hysteresis during adsorption—desorption in a cylindrical capil-

lary according to Everett and Haynes [68].

the relative pressure decreases, is stable for an interface configuration

involving semispherical menisci with curvature C��� � �1/r (at the pore

mouths, point I, and until the two menisci are in contact, point F, in Fig.

8). Following point F, however, the equilibrium is unstable (path FDBAP

in Fig. 8) and rapid pore-emptying will occur. In this scenario, therefore,

desorption will occur at a relative pressure corresponding to a spherical

meniscus geometry:

ln
P
�

P�(T )
� �

2
V
���

rRT
. (31)

The difference between the two expressions, Eqs. (30) and (31), shows that

capillary condensation in a single pore is hysteretic, with pore-filling

(adsorption) occuring at a higher relative pressure.
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In the preceding theory, the presence of pore walls, which is likely to

affect the interfacial tension and the molar volume, is not considered. An

improved modification [3], the so-called t-plot approach, makes use of the

effective radius r � t, instead of r, where t is the thickness of the adsorbed

layer. This thickness is independently measured as a function of the relative

pressure over a nonporous, flat surface with otherwise identical properties.

Although accounting for part of the wall—adsorbate interaction, however,

this method still fails to account for the interaction between the film and the

opposite wall.

Cole and Saam [73] proposed a different interpretation, which accounts

for the wall interaction, and it is based on the metastability of the

liquid—vapor coexistence in confined pores. In sufficiently small pores, the

proximity of the pore walls affects the vapor— liquid transition so that the

capillary can support metastable states in a manner analogous to the

superheating or supercooling of bulk fluids [74, 75]. Here, the interactions

with the walls are also accounted in the stability of the adsorbed film using

an ‘‘extended’’ Kelvin equation:

RT ln x � 2
V
���

C��� � U
�
(t), (32)

where the molar energy of the adsorbed condensed phase U
�
(t) depends on

the film thickness t. Pores with adsorbing walls effectively shift the liquid—
vapor coexistence curve to lower pressures. A stability analysis shows that

during adsorption the film becomes unstable at a critical thickness t
�
, which

depends on fluid—fluid and fluid—solid interactions and the interfacial

tension. In desorption, the liquid is in a metastable equilibrium with an

asymmetric meniscus, with the liquid film thickness t
�

now being larger,

t
�
� t

�
. This thickness also depends on the molecular interaction par-

ameters. Due to the difference between t
�

and t
�
, complete emptying

(desorption) of a filled pore occurs at a pressure lower than pore filling, thus

resulting in hysteresis. Due to the account of the liquid—solid interaction,

the onset of adsorption and desorption predicted by this theory is different

from that of Everett and Haynes [68].

More modern treatments make use of DFT and molecular dynamics

simulations. The significant advantage of the molecular models is that they

can cover the size distribution over a large range, including micropores

(which do not involve capillary condensation) and macropores (which

involve capillary condensation). Evans et al. [76] applied local DFT in slit

and cylindrical pore geometries. As in Cole and Saam [73], they attributed

hysteresis to the metastability of thick films and obtained hysteresis loops

for the amount adsorbed as a function of pressure. Their theory shows

explicitly how the vapor— liquid coexistence in confined geometries depends

on the pore radius. In effect, the constricted geometry leads to a lowering of
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the critical temperature of the fluid (T
��

), compared to the bulk (T
�
), which

in certain limiting cases can be described with the approximate expression

T
��

T
�

 1 �
1

�r
, (33)

where r is the pore size and 1/� is the decay length of the intermolecular

potential. Thus, for sufficiently small pores at a sufficiently high temperature,

the confined fluid is in a supercritical state, and the adsorption—desorption

process is reversible. This is the case of adsorption in micropores. Figure 9

shows experimental results for adsorption in porous media [77], which

clearly demonstrate the diminishing of the hysteresis loop as the tempera-

ture increases and the existence of a capillary critical point.

We conclude that the single-pore adsorption—desorption behavior in the

capillary condensation regime can be modeled only approximately with the

use of Kelvin’s equation and, more accurately, by molecular models. Use of

Kelvin’s equation, however, leads to simple analytical estimates for the

relative pressure at which a pore of size r fills (or empties). For example, one

has

ln(P/P�) � �
r
�
r

where r
�

�
2s
V

���
RT

, (34)

and the geometry-dependent index is equal to s � 1 in spherical pores for

either adsorption or desorption, while in cylindrical elements (throats), s � 1

for desorption, and s � 1/2 for adsorption. A number of single-pore studies

have been conducted using molecular models, an important by-product of

which has been the assessment of the validity of Kelvin’s equation.

Ball and Evans [74, 75] used local DFT, in which the adsorption branch

was assumed to ‘‘nucleate’’ at the limit of metastability (namely, at the

spinoidal pressure) and the transition from liquid to gas was assumed to

occur at the bulk equilibrium coexistence point. In a related study, Seaton

et al. [28] used local DFT in slitlike pores. To obtain expressions for the

intermolecular potential parameters they fitted their DFT results for large

pores (which effectively mimic a flat surface) to a t-plot-like curve. They

showed that Kelvin’s equation deviates significantly from the DFT predic-

tions for small pores, although the modified equation that includes the t
correction gives better agreement (with a deviation that does not exceed

10% in small pore sizes). Balbuena and Gubbins [20] applied nonlocal DFT

to slitlike pores to characterize adsorption—desorption isotherms in terms

of pressure, temperature, the pore width H, and the intermolecular (fluid—
fluid and solid—fluid) parameter ratios. Their results covered the range of
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Fig. 9. Experimental sorption isotherms of Xe on Vycor demonstrating the depend-

ence of hysteresis loops on temperature and the existence of a capillary critical

temperature. Solid circles denote adsorption and open circles denote desorption.

Reprinted with permission from Burgess et al., Pure Appl. Chem. 61, 1845 (1989).

the six IUPAC types of Fig. 3, all of which were found in the simulations.

They found that the classification of the various types correlated well with

the reduced thickness H* � H/�
��

, where �
��

is a characteristic length of

the Lennard—Jones potential, and they recommended specifying values of

H* rather than the IUPAC absolute size scale to classify pores in the

micropore, mesopore, and macropore classes. These authors also com-

mented on the inadequacy of Kelvin’s equation for micropores and in a

certain range of mesopores.
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Fig. 10. Predictions of single-pore isotherms for the adsorption of nitrogen in

carbon slit pores based on different approaches (dotted line, Kelvin equation;

dash-dotted line, modified Kelvin equation; dashed line, local DFT; and solid line,

nonlocal DFT). Here H* is a dimensionless pore width. Reprinted with permission

from Lastoskie et al., J. Phys. Chem. 97, 4786. Copyright 1993 American Chemical

Society.

Lastoskie et al. [78] applied nonlocal DFT theory to examine adsorption

in carbon slitlike pores. They particularly emphasized the filling of micro-

pores and identified various filling regimes. In a separate study, Lastoskie et
al. [79] compared the predictions of pore-filling with the various different

approaches (Kelvin, modified Kelvin, DFT, and nonlocal DFT). Their

results (reprinted in Fig. 10) show that the various forms of Kelvin’s

equation misrepresent pore-filling, particularly of micropores, although they

appear adequate for mesopores of larger size. Using lattice gas simulations,

Binder and Landau [80] also commented on the validity of Kelvin’s

equation in sufficiently large capillaries. Nonlocal DFT in cylindrical pores

was also used by Ravikovitch et al. [81]. Interestingly, however, adsorp-

tion—desorption processes in converging—diverging pore geometries, which

are typical of porous media, have not yet been simulated at the time of

writing this chapter.

Direct experimental determination of capillary condensation in slit geo-

metries was obtained by Christenson and coworkers [82—85] using the

surface force apparatus.
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3.4.2 Adsorption--Desorption in a Pore Network

Sorption isotherms in porous media reflect the overall response of the

multitude of pores comprising the porous medium. The pore structure gives

rise to issues of heterogeneity and accessibility. In formulating forward and

inverse problems in pore networks, the typical approach taken is to assign

local conditions for adsorption or desorption in a pore element, as described

earlier, and then to consider the composite behavior of the system subject

to various assumptions. In analyzing the composite response of porous

media, we consider adsorption and desorption separately.

As the relative pressure increases, multilayer adsorption proceeds uni-

formly over all surfaces. At some stage, the filling of micropores and

mesopores will commence. Assuming that pores fill independently of each

other, elements with smaller radii fill first, regardless of their accessibility.

Then, we can take the linear superposition [28]

N (P ) ��
��	

���


� (P,r) f (V ) dV (35)

to express the adsorbed amount N in terms of the molar density � (P, r) of

the fluid at pressure P in a pore of size r. Here f is the pdf of pores with

volume V (which can be related to the size distributions, depending on the

geometric model used). We recognize Eq. (35) as belonging to the same

class as Eq. (8), describing the effect of chemical and geometric heter-

ogeneity of the pore surface. To construct adsorption isotherms in the

forward problem, two additional items are required: relating the number

fraction of liquid-occupied sites to the throat statistics and assigning a

volume distribution.

Considerable attention has been paid to pdfs with power-law scaling.

Avnir and Jaroniec [62] considered the filling of micropores. They used

Dubinin’s approach for the liquid density, by taking

N� �
��	

��	

exp(�mr�A�) f (r) dr, (36)

and assumed that the pore-size distribution satisfies a power-law scaling,

namely, f (r) � r���, where f (r) dr is the volume fraction contributed by

pores with sizes in the interval (r, r � dr). Based on these assumptions, they

obtained the result

N �A��
���. (37)

Equation (37) is of the FHH type with exponent n � 1/ (3 � D), which is
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identical to Neimark’s Eq. (25). However, the two objects to which power-

law characteristics are attributed are different, with Neimark’s equation

pertaining to a fractal surface, while Avnir and Jaroniec’s was the micropore

size distribution. Yin [63] also used the same assumption for the power-law

scaling of f. However, instead of assuming micropore filling, he considered

a capillary condensation regime, in which pores fill when the Kelvin

threshold for adsorption is reached, and neglected any contributions from

the adsorbed film. His result is also an FHH equation of the same type as

Eq. (37). Later, Jaroniec [86] pointed out the equivalence of the two

approaches for deriving Eqs. (25) and (37).
When a pore network model representation of the porous medium is

used, formulating the forward and, most important, the inverse problems

depends on the assumptions made about the pore structure. As noted, a

basic element of the latter is the pore—throat converging—diverging geo-

metry. However, capillary condensation in a converging—diverging geo-

metry has not been rigorously analyzed. A plausible assumption is that

pore-filling in the latter occurs when the radius of curvature of the meniscus

becomes equal to the pore radius, as further condensation will lead to a

smaller radius of curvature, hence to a smaller (more negative) C���.

However, this presupposes that all throats adjacent to the pore under

consideration have already been filled. Given that cylindrical pore throats

fill at a higher relative pressure than spherical sites of the same radius

[compare with Eq. (34)], the filling of a pore could be delayed, in principle,

until its largest adjacent pore throat has been filled first [69—72]. For this

scenario to apply, the following constraint must hold, r
�
� 2r

���	
, where

r
���	

is the maximum size of the throat adjacent to a pore. Thus, the

pore—throat aspect ratio becomes an important parameter in the filling

sequence. Mayagoitia et al. [69—72] have discussed the possibility that such

pore—throat interactions may, in fact, have a long-range effect on the overall

adsorption pattern. Interactions of this type develop in imbibition, which is

the counterpart of adsorption, and drastically affect the displacement

patterns [87]. However, the two processes differ in at least one respect: that

imbibition has mainly invasion characteristics, in contrast to adsorption,

where condensation does not necessitate connectivity to an invading front.

The issue of pore—throat correlation appears again in the discussion of

desorption and mercury porosimetry.

Zhdanov et al. [37] proceeded with the assumption that pore filling is

only controlled by their own radius, and accounted for the density of the

adsorbed films using a t-plot approach. Then Eq. (35) can be used directly

to obtain the pore size distribution �
�
(r). Mason [33—36] (and, subsequent-

ly, Parlar and Yortsos [38, 39]), on the other hand, modeled adsorption

based on the premise that a pore is filled when its largest adjacent throat is
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filled. Then, the fraction of occupied sites X
�
is

X
�

� 1 � (1 � p)�, (38)

where p is implicitly related to the relative pressure via Eqs. (5) and (34) and

Z is the coordination number (the notation C, instead of Z, is also used in

the adsorption literature). The appearance of Z in modeling adsorption

makes this model qualitatively different from that of Zhdanov et al. [37]

(and also of Seaton et al. [28], see later). By further equating the pore-

volume fraction with the number fraction of liquid-occupied sites (in which

it is tacitly assumed that the site volume is uncorrelated with its radius r
�
),

a predictive model for the composite response during adsorption can be

obtained using Eq. (38). Given adsorption data and an assumed (or

estimated) value of Z, the pore-size distribution �
�
(r) can be thus estimated.

Mason further postulated that Eq. (38) actually serves to relate pore and

throat size distributions, namely,

q � 1 � (1 � p)�, (39)

from which the pore size distribution, �
�
(r), can be obtained given �

�
(r). In

a subsequent study, Parlar and Yortsos [39] analyzed the effect of relaxing

the assumption of Eq. (39). Although not explicitly accounted for in these

models, the contribution of the adsorbed film to the total volume can be

readily incorporated using the t-plot approach.

In studies where molecular models are used to describe the local

behavior, the density function � (P, r) is computed directly. Because the

single-pore geometries studied are of only two types (slitlike and cylindrical),
however, all volume is allocated to the throats, hence only the pore size

distribution of throats �
�
(r) is used (or inverted). Seaton et al. [28]

considered slitlike geometries and applied local DFT to obtain the pore size

distribution of porous carbons from nitrogen adsorption isotherms. Lastos-

kie et al. [78, 79] applied nonlocal DFT to slitlike geometries. Their results

showed that the former is generally better than DFT and that both are

preferred over Kelvin-type equations. A comparison of the different pdfs

obtained based on the different local models is shown in Fig. 11 (reprinted

from Lastoskie et al. [79]). Nonlocal DFT was also used by Ravikovitch et
al. [81] to study adsorption in distributed cylindrical pores of near uniform

sizes in the range 18—80 Å.

Adsorption terminates upon the complete filling of all pores (or of some

fraction q
	
, corresponding to fraction p

	
, if secondary desorption is to be

investigated). Desorption starts upon reversal of the pressure. Conventional-

ly [27, 33—38, 43, 88], nucleation is neglected (but see Ref. [39]), and

according to the single-pore analyses, largest-size elements (namely, pores)
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Fig. 11. Comparisons of the pdfs of the pore size obtained by inverting adsorption

data for noninteracting slitlike pores based on different approaches (dotted line,

Kelvin’s equation; dash-dotted line, modified Kelvin’s equation; dashed line, local

DFT; and solid line, nonlocal DFT). Reprinted with permission from Lastoskie et
al., J. Phys. Chem. 97, 4786. Copyright 1993 American Chemical Society.

empty first. However, unlike adsorption, desorption (emptying) of a pore

requires access to vapor-occupied sites. These can be sites at the outside

surface of the sample (the fraction of which can be significant for pore

networks of relatively small size), sites belonging to a cluster spanning the

sample, or sites that are not connected to bulk vapor, but contain vapor

either as a result of incomplete termination of adsorption (in the case of

secondary processes) or as a result of nucleation (Fig. 12). Thus, desorption

is affected by the network connectivity. The resulting hysteresis in the

adsorption—desorption curves is now due to the limited accessibility, rather

than the local geometry.

The requirement of accessibility to external (or internal) sources at-

tributes to desorption invasion percolation (IP) characteristics similar to the

extrusion part of mercury porosimetry (discussed later). The process is

mixed bond-site percolation, in which we are interested in the fraction of

vapor-occupied (empty) sites, the occupancy of which is controlled by

bonds. This brings about the important question of whether or not the

geometrical parameters of pores and throats are interrelated. Bond-perco-

lation or site-percolation models, where only throats or pores, respectively,

are considered, have also been suggested as desorption models. Most studies

in this area have used ordinary percolation (OP) rather than IP models (the

difference between the two in three dimensions being negligible, for practical
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Fig. 12. Schematic of the requirement for accessibility to bulk vapor or an internal

source before a site can empty during desorption. Two successive steps of desorption

are shown. Reprinted with permission from Parlar and Yortsos, J. Colloid Interface
Sci. 124, 162 (1988).

purposes). The implicit assumption in all percolation models is that the

pressure decreases in infinitesimally small intervals and that dynamic effects

during the process are absent. This issue appears again in mercury po-

rosimetry.

Whether of the site, bond, or mixed site—bond type, the application of

percolation theories results in a set of curves for the fraction of vapor-

occupied elements. The curves can be obtained by numerical simulation for

regular networks and analytically for Bethe lattices and also depend on the

pore network coordination number Z, its dimension, and the size L . Mason

[33] developed a differential description of such processes. Parlar and

Yortsos [38] solved Mason’s differential equations exactly and provided

various analytical solutions of different percolation problems (site-only,

bond-only, and mixed site—bond percolation) to model primary and second-

ary adsorption and desorption in a Bethe lattice, and presented numerical

solutions for a square lattice. Typical adsorption—desorption curves for the

condensed liquid saturation as a function of the relative pressure for a Bethe

lattice [38] are shown in Fig. 13. Similar results are obtained for regular

lattices [89] (the main differences are related to the behavior of the primary

desorption curve near the onset of connectivity).
In these percolation-type models, larger-scale hysteresis associated with

connectivity and topology is assumed to dominate over local, single-pore

hysteresis (earlier suggested as the reason for the hysteresis loops). Ball and

Evans [75] provided a comparative study to probe the origin of hysteresis.
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Fig. 13. Predictions of primary and secondary adsorption curves (left diagram) and desorption curves (right diagram) for the
adsorption of xenon in Vycor glass at 151 K based on a Bethe lattice model with Z � 4 and an assumed pore size distribution.

The numbers indicate the relative pressure values at the onset of secondary adsorption or desorption. Reprinted with permission

from Parlar and Yortsos, J. Colloid Interface Sci. 124, 162 (1988).

1
0
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They used a Gaussian pore size distribution and a Bethe lattice of coordina-

tion number 4 (similar to Refs. [33, 38]), to model desorption. Contrary to

the latter studies, however, they used results from DFT rather than Kelvin’s

equation. They showed that the percolation approach matched the qualitat-

ive behavior of the experimental data of Burgess et al. [77] much better than

the single-pore hysteresis models and concluded in favor of a percolation

approach. Nonetheless, approaches that do not recognize accessibility or

connectivity issues are still used. Essentially, these are equivalent to repre-

senting the pore network in terms of a bundle of parallel capillaries. Using

a percolation approach, Seaton [27] interpreted the various types of

hysteresis in the IUPAC classification.

By neglecting nucleation and spatial correlations (see also later), primary

desorption curves can be inverted as follows:

1. For fixed Z and L , obtain from simulations a percolation probability

curve P(p; L ) expressing the fraction of occupied sites in terms of the

percolation variable p and the size L . Such curves can, in fact, be

cataloged.

2. Convert desorption data into an equivalent liquid saturation vs pore

radius curve, S
�

vs r, using information on the pore volume of the sample

and Kelvin’s equation or other expressions.

3. Obtain p(r), thus, the cumulative distribution function (cdf)F
�
(r) �

��
�
�
�
(r) dr � 1 � p, by making the identification S

�
(r) � 1 � P(p ; L ). Dif-

ferentiation of this curve produces the desired pdf �
�
(r).

An essentially identical approach is used to infer the pore-size distribu-

tion from mercury intrusion porosimetry (see later). An example illustrating

the application of this algorithm using synthetic data is presented during the

discussion of mercury porosimetry. The success of this method, however,

relies on several assumptions, including the premise that pores are uncor-

related in space and that the coordination number Z and lattice size L are

known. Correlation issues are also discussed later in the chapter.

The coordination number affects the percolation probability curve, main-

ly through its effect on the bond percolation threshold p
�
, which for regular

lattices in three dimensions has the approximate dependence

p
�


1.5

Z
. (40)

Larger Z leads to a smaller p
�
, hence to a less sharp primary desorption

curve. Can the coordination number be obtained from adsorption—desorp-

tion data? If one assumes that Mason’s relation [Eq. (38)] is valid, then the

simultaneous use of both primary adsorption and desorption data can be

iteratively used to infer Z. In particular, Eq. (40) can be usefully employed
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to match the point where the knee in the primary desorption forms. An

alternative approach for estimating Z is based on secondary desorption

curves. Using a Bethe lattice, Parlar and Yortsos [38, 39] found that the

tangent of the local angle formed by secondary desorption (originating at

fractions q
	
and p

	
) and primary adsorption curves satisifies

dS
����

dS
���

� Z
dp

	
dq

	

(1 � q
	
)(q

	
� p

	
)

(1 � p
	
)�

(41)

for arbitrary pore and throat size distributions. In conjuction with available

adsorption—desorption scanning loops, Eq. (41) can then be used to

estimate Z, without the need to rely on the restrictive assumption of Eq.

(39). Du [89] performed simulations of primary adsorption and secondary

desorption in regular lattices and found that the value of Z estimated using

this approach (which is based on a Bethe lattice representation) is quite

close to that assumed for a variety of lattices and coordination numbers. An

analogous approach, but based on Mason’s [36] results, was proposed by

Rajniak and Yang [90].

Another method for the estimation of both Z and L makes use of the

finite-size scaling of percolation [27, 29—31]. Proceeding with the assump-

tion that industrially relevant porous particles are actually collections of

smaller porous agglomerates with the same Z and L , Seaton and coworkers

[27, 29—31] suggested that primary desorption data actually reflect finite-

size effects, and proposed the following relation:

ZP(p ; L ) � L���h[(Zp � 1.5) L���]. (42)

Here h is a crossover function, depending only on the dimensionality of the

lattice, D is the percolation cluster mass fractal dimension, d is the embed-

ding (Euclidean) dimension, and � is the correlation length exponent. Given

that in Seaton’s approach, the information on pore-size distribution is

already available from the primary adsorption data, P is available as a

function of p. Then the estimation of Z and L follows by matching

experimental results with Eq. (42), where the function h is obtained indepen-

dently from numerical simulations. Various estimates for Z (although some

unrealistically large) and L were obtained with this procedure.

The application of percolation approaches has been very useful for

elucidating the effect of connectivity during desorption in pore networks.

However, as discussed, the data interpretation still relies on several assump-

tions on the pore—throat size relationships and on the assumed lack of

spatial correlations. These issues are generic to mercury porosimetry, as

well, and are further discussed in the following.
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3.4.3 Mercury Intrusion--Extrusion

Mercury intrusion—extrusion in a pore network shares many common

aspects with sorption, capillary intrusion being analogous to desorption and

extrusion being analogous to adsorption, respectively. As in the case of

adsorption, to formulate forward and inverse problems in mercury po-

rosimetry, we must consider phenomena at the two different scales, the

single pore and the pore network. We also assume that capillary forces

dominate over other forces, such as viscous and buoyancy.

The advance of a meniscus at the single-pore scale is best captured by

considering a converging—diverging geometry of a circular cross section, as

shown in Fig. 14. At conditions of capillary equilibrium, the mercury—air

interface has a locally spherical shape with mean curvature

C��� �
cos(� � �)

r
, (43)

where � is the contact angle of the meniscus (measured from the air side),
� is the local angle formed by the tangent to the pore surface at the contact

line, and r is the radius of the cross section at the same point. As long as

� � ���/2, the interface curvature is positive. During drainage (depicted

on the right schematic of Fig. 14), the interface configuration is stable before

the meniscus reaches the pore throat (path AB in Fig. 14), since the

curvature increases with an increase of the volume of the displacing phase,

due to the decrease of both r and �, and the condition of Eq. (21) is satisfied.

At the point where the meniscus reaches the minimum pore throat radius r
�(point B in Fig. 14), however, further penetration leads to an unstable

interface (dashed lines in the menisci of Fig. 14) as the curvature now

decreases with increasing volume. As a result of this instability a nonequilib-

rium jump of the interface will ensue (path BCED in Fig. 14), until a new

stable equilibrium position is reached downstream of the throat (point D in

Fig. 14). This jump (B� D), known as Haines’s jump or a rheon event [1],

effectively corresponds to the penetration of the throat and the filling of the

adjacent pore. Thus, filling of the downstream pore by the nonwetting phase

occurs when the capillary pressure reaches the threshold

P
��

�
2
 cos �

r
�

. (44)

This step is the counterpart of pore-emptying in desorption.

Conversely, during imbibition in the same geometry (for example, by

reversing the displacement, see schematic on the left in Fig. 14), the interface

remains stable as long as withdrawal of the meniscus results in an increasing

radius of curvature (path DE in Fig. 14). At the point where the maximum
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Fig. 14. Schematic of single-pore hysteresis during drainage—imbibition in a pore

with converging—diverging geometry.

radius of the cross section is reached (point E in Fig. 14), however, further

retraction will result in an unstable configuration (path ECBA in Fig. 14)
and an interface jump (E�A) will occur. This Haines jump or hygron event

[1] is the analogue of the pore-filling step in adsorption. Thus, in the

geometry of Fig. 14, the emptying of the pore by the nonwetting phase is

dictated by the maximum pore body size

P
��

�
2
 cos �

r
�

. (45)

Comparison of Eqs. (44) and (45) shows that the process is hysteretic

(P
��
�P

��
) at the pore level. We recognize a close analogy with the

single-pore hysteresis in sorption processes depicted in Fig. 8.

The stability of menisci in capillary equilibria in a variety of pore

geometries has been studied by various authors [23—26, 87, 91]. Realistic

geometries, however, involve pore junctions (as shown schematically in Figs.

2 and 12). Thus, the retraction of the interface during imbibition will also

be affected by the interaction with other throats adjoining the pore. Indeed,
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the filling state of adjacent throats affects the value of the capillary pressure

at the point where the interface loses stability, leading to different with-

drawal mechanisms and affecting the overall imbibition pattern [87].

Furthermore, the receding interface is subject to snap-off instabilities during

retraction, the likelihood of which is primarily a function of the size aspect

ratio between pores and throats. Consideration of these different mechan-

isms will give rise to cooperative phenomena between pores, as analyzed for

the first time in square channel networks by Lenormand et al. [87]. These

mechanisms have been incorporated in various pore network models

developed since [24, 25, 92].

Consider, now, pore network effects during mercury intrusion. Early

models of the intrusion curve were based on the model of noninteracting

parallel capillaries (model of the bundle of tubes), where accessibility and

percolation phenomena were ignored. In fact, such models formally corre-

spond to pore networks with Z � �. Fatt [40] and Dullien [4] were among

the first to recognize the need for a pore network description. In parallel

with various numerical models [4, 24, 25, 92, 93], percolation-type ap-

proaches have also been proposed to model the forward and inverse

problems [4, 91, 94—97]. Both bond percolation [94, 95, 98, 99] and mixed

site—bond percolation [89, 91, 96] have been used. In these approaches, the

volume of the invading nonwetting phase is related to the applied capillary

pressure as follows. Assuming that all invaded elements (sites or bonds) have

the same volume, percolation probability curves relate the saturation to the

capillary pressure. For example, in simple bond-percolation models, we have

S

�

� P (p) and P
�

�
2
 cos �

r
, (46)

where P is the percolation probability curve (obtained by various authors

using ordinary percolation [98] or invasion percolation [99] without

trapping) and P
�

is related to p through Eqs. (44) and (45). The implicit

assumption is that of infinitesimally small pressure increments, such that

only one pore throat (in fact the largest one available) is invaded at a time.

Geometrical (but not kinetic) aspects of percolation during mercury in-

vasion were demonstrated by Thompson et al. [100, 101], who analyzed the

electrical resistance of invaded mercury as a function of the pressure step

size (see also Ref. [102]). These authors also found important effects of

gravity during the invasion and suggested that invasion percolation in a

gradient may be better suited as a model of the process.

Volume-controlled mercury porosimetry [48, 92] (the APEX method) is

also affected by pore network effects. This process can be connected to

invasion percolation in the theoretical limit where the injection rate is
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sufficiently small to allow for the resolution of the front as it advances one

pore at a time. During mercury intrusion, the capillary pressure fluctuates in

the form of bursts of variable size, the characteristics of which reflect

single-pore processes and have been analyzed in detail [48, 92]. We note

that the analogous problem of fluctuations in IP (where, however, the pore

is structureless) was analyzed by Roux and Guyon [103] (see also Maloy et
al. [104]), who related the pressure jumps to percolation exponents. Con-

stant pressure intrusion is, in principle, a subset of APEX in the sense that

the envelope of the pressure fluctuations of APEX is the intrusion curve of

constant-pressure porosimetry. An example of the use of a pore network

model to simulate mercury intrusion—withdrawal in the APEX method is

shown in Fig. 15 (from Ref. [92]). In addition to the intrusion part,

simulations of withdrawal and scanning loops are shown. The withdrawal

algorithm includes snap-off of the retracting interfaces and the entrapmemt

of mercury ganglia.

Inverting the intrusion data from porosimetry to obtain information on

the pore-size distribution was suggested early [105—107]. The use of

percolation theory facilitates this analysis, just as in the case of primary

desorption. As long as P
�
remains below a threshold level P

��
� 2
 cos �/r

�
,

corresponding through Laplace’s [Eq. (20)] to a bond radius r
�
, significant

(sample-spanning) penetration of the sample by mercury will not occur (see
Figs. 4 and 15). The threshold r

�
is related to the percolation threshold of

the pore network p
�
, here taken to be bond percolation

�
�

�
�

�
�
(r) dr � p

�
(47)

which for cubic lattices is approximately equal to 0.25. Clearly, larger values

of the coordination number lead to smaller p
�
, hence to larger r

�
, and to

smaller P
��

. Scaling the capillary pressure curve with the threshold P
��

has

been found to effectively collapse mercury-porosimetry data in many sand-

stones [91] and it is the basis (along with the relation between r
�
and the

medium permeability, e.g., see Ref. [108]) of the so-called Leverett function.

The subsequent filling of the pore space is dictated by its accessibility. As in

desorption, the algorithm for inverting mercury intrusion data is straight-

forward.

Given a lattice type and size, the fraction of the sites X
�
occupied during

percolation can be computed and stored as a function of p. Assuming that

pores are random and uncorrelated and that the volume of sites is unrelated

to their nominal size r
�
, the saturation of the invading phase can be

identified with the fraction of sites invaded. Using the relationship between

X
�
and r from the experimental data and the relationship between X

�
and
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Fig. 15. Pore network simulation of various scanning loops of the APEX process in

a cubic lattice with low-aspect ratio biconical pore segments. Reprinted with

permission from Toledo et al., SPE Form. Eval., 46. Copyright 1994 SPE.

p from the network model, the curve p(r) can then be reconstructed. Thus,

the pdf of the throat size distribution �
�
(r) can be obtained. As an example,

we have for the simple percolation model [Eq. (46)]:

�
�
(r) �

dS

�

dP
�

dp

dP

P�
�

2
 cos �
. (48)

The parallel tube model is included in Eq. (48) in the limit P � p. As in

desorption, however, effective use of this inversion algorithm necessitates

knowledge of Z. Typical results for the cdf of throat sizes from the inversion

of the intrusion part of a mercury porosimetry curve using mixed site—bond

percolation and Z � 5 are shown in Fig. 16. Results corresponding to the

common method of the bundle of capillary tubes are also plotted. It is clear

that the latter results in a narrower distribution, underestimating the width

of the true distribution [4]. This mismatch increases as the coordination

number decreases.

Information on the pore size distribution must be sought either by

assuming a certain relation between q and p (see also later) or by methods

other than constant-pressure mercury porosimetry. Inversion of the extru-
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Fig. 16. The cdf of pore throat sizes, F(r) � 1 � p(r), obtained by inverting a

simulated capillary pressure curve using 3-D mixed bond-site invasion percolation

in a 40� 40 � 40 lattice with average coordination number Z � 5. The solid line is

the input cdf. The inverted data for three different realizations of invasion practically

coincide with the assumed cdf, except near small sizes. The predictions of the

capillary tube model are also shown as a dashed line (reprinted from Du [89]).

sion curve is subject to the additional complications of size aspect ratio and

it is difficult to apply in practice. However, assuming a certain pore throat

geometry, Toledo et al. [92] simulated volume-controlled porosimetry.

Inversion of the pressure—saturation curve, which now involves pressure

fluctuations, was done by interpreting the fluctuations of pressure according

to local pore models. Both intrusion and withdrawal curves were analyzed

and led to the distributions shown in Fig. 17. This approach appears to have

considerable merit, compared to constant-pressure porosimetry, as it re-

quires less restrictive assumptions. On the other hand, important assump-

tions on the correlation between pores and throats and the lack of spatial

correlations still apply.

3.4.4 Some Additional Issues

The preceding inversion techniques are based on certain approximations.

These include the relation between pores and throats and the absence of

spatial correlations.

The question of the particular relation between the size distributions of

pores and throats has been repeatedly raised in the literature. Typically, the

following relations:

q� 1 � (1 � p)�, q�� p, q� p (49)
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Fig. 17. Actual and inferred pore size and volume distributions from the inversion

of simulated APEX in a cubic lattice with low-aspect-ratio biconical pore segments.

Reprinted with permission from Toledo et al., SPE Form. Eval., 46. Copyright 1994

SPE.

have been postulated by Mason [33], Chatzis and Dullien [91], and

Mayagoititia et al. [69—72] (their ‘‘first law’’), respectively. Actually, in a

pore network, two conditions are required: (i) a throat selected at random

must have a size smaller than its adjacent two pores and (ii) a pore selected

at random must have a size larger than its adjacent Z throats. These two

conditions can be expressed by the following two relations between the pore

size distributions:

�
�
(r) � 2 �

�

�

q (y) �
�
(y) g (y � r) dy, (50)

where g(x) � 0 is the pdf of the difference between the size of a throat and

its smallest adjacent pore, with the property g(x) � 0 for x� 0, and

�
�
(r) � Z �

�

�

[1 � p (y)]��� �
�
(y) k(r � y) dy, (51)

where k(x) � 0 is the pdf of the difference between the size of a pore and the

largest of its adjacent throats, with the same properties as g, namely,

k(x) � 0 for x� 0. Mason’s results follow by taking k(x) � (x) in Eq. (51),
while Chatzis and Dullien’s expression results by taking g(x) � (x) in Eq.
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(50), where (x) is the Dirac delta function. Specifying these two functions

will lead to different relations between the pore size distributions.

The behavior of the processes will also be influenced by possible spatial

correlations. These can develop either because adjacent pores and throats

have a certain correlation, which may then propagate to create large-range

spatial correlations in the network (e.g., see Zgrablich et al. [109] for

sorption and Li et al. [23], and Tsakiroglou and Payatakes [110] for

mercury porosimetry), or because spatial correlations exist as a result of the

history of the formation of the medium (for example, due to diagenesis,

chemical alteration, etc.). The effect of pore—throat correlations on mercury

porosimetry has been numerically simulated and found to be important

[110]. More generally, desorption and mercury intrusion in correlated

systems must be analyzed by correlated percolation [111—117]. Aspects of

this process have been studied by Renault [111] and Prakash et al. [112],

who found that percolation thresholds depend on the structure of the

correlation function. For example, for a correlation function with a slow

(algebraic) decay (scaling as � �� ���, H� 0), Prakash et al. [112] found

that the site percolation threshold in a square lattice decreases with H and

approaches the value of 0.5 at H � 0 (compared to its random value of 0.59).
For the case of growing spatial correlations, as is the case with self-affine

fields of the fBm type, percolation thresholds become random variables with

a variance that increases with the Hurst exponent [114—117]. Ensemble-

average percolation probability curves were computed as a function of the

Hurst exponent [117]. These curves have an effectively lower percolation

threshold and near the threshold display a behavior similar to a finite-size

effect in uncorrelated percolation. Given the stochastic aspects of this

problem and its similarity to a finite-size effect, the unmasking of long-range

correlations by inverting desorption or mercury intrusion data would be a

difficult undertaking.

3.5 Conclusions

Sorption isotherms and mercury porosimetry are quite useful tools for

the identification of key properties of pore surfaces and porous media in

general. Surface roughness, pore size distributions, and possibly pore net-

work connectivity can be probed by such methods. Given the nonunique-

ness in the inversion of the data in various cases and the use of various

assumptions in the forward modeling, however, interpretations using the

current methods must be done carefully. These include identifying the

various regimes for which a scaling behavior applies at low pressures in

sorption or at high capillary pressures in mercury porosimetry, assessing the
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relative volume contributions of pores and throats from the analysis of

adsorption data, and identifying throat size distributions and the connect-

ivity of the porous medium for desorption and mercury intrusion data.

Despite the significant progress that has been made, important issues still

remain open, including the particular interrelation in the sizes of pores and

throats and the identification of spatial correlations.
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4. CONDUCTIVITY, PERMEABILITY, AND ELECTROKINETICS

Po-zen Wong
Department of Physics and Astronomy

University of Massachusetts
Amherst, Massachusetts

4.1 Introduction

The flow of fluids and ions in porous media occur in many natural and

industrial processes; for example, filtration, catalytic reactions, and the

spreading of contaminants in ground water [1—9]. The electrical conductiv-

ity � and the hydraulic permeability k are defined by the usual Ohm’s law

and Darcy’s law, which are similar in form:

J
 

� ���� (1)

J
�

� �
k

�
�P. (2)

Here J
 

denotes the macroscopic electric current density, J
�

is the fluid-

volume current density and � is the fluid viscosity, � and P are the scalar

potential and pressure fields that drive the flow, and J
�

has the unit of

velocity and its magnitude is called the Darcy velocity v
�
. The real fluid

velocity in the pore v
�

is related to v
�

by v
�

� �v
�
, where � is the porosity.

In petroleum exploration, the conductivity and permeability of sedimentary

rock formations are routinely measured. Much of the discussion in this

chapter is given in this context, but the principles and techniques are

applicable to other systems.

In petrophysical studies, the rock conductivity � is used in conjunction

with other measurements to estimate the porosity � and the water satura-

tion S
�

of the formation. For brine-saturated rock, the solid matrix is

insulating and the pore fluid is conductive. The empirical correlation

between the conductivity and porosity is known as the Archie’s relation

[10]:

� ��
�
/FA�

�
��, (3)

where �
�

is the conductivity of the brine and the dimensionless constant F
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Fig. 1. The formation factor and porosity of fused-glass-bead samples follow the

empirical Archie’s relation [Eq. (3)] with m 2 (from Ref. [9]).

is called the formation factor. For sandstones, Archie found that m 2 and

A 1. This behavior is illustrated in Fig. 1 where the formation factors of

artificial rocks made by fused glass beads (FGBs) are plotted against their

porosities on log-log scales. We note that the data roughly follow the

straight line that represents m � 2, and the size of the beads used to make

the samples appears to have no effect [11]. Similar experiments using

mixtures of different size beads confirmed this finding [12]. Since hydrocar-

bons can also be present in the pores and they are electrically insulating like

the solid matrix, Archie suggested an extension of Eq. (3) for oil-bearing

rocks:

��� �/I�S�
�
, (4)

where S
�
� 1 is the water saturation (the oil saturation is S

!
� 1 � S

�
) and

n 2. The dimensionless constant I S��
�

is known as the resistivity index
[13]. The physical basis for this second relation is much less certain,

however. As we saw in Chapter 2, fluids can have very different spatial

distributions for a given saturation due to the displacement history, and the

conductivity should vary correspondingly. Nevertheless, these equations
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show that rock conductivity plays an important role in estimating petro-

leum reserves. This is why a great deal of effort has gone into improving the

measurements and studying the underlying physics.

For petroleum to be extracted, it must flow through the pores in the rock.

The economic feasibility of a well depends critically on the permeability k
of the formation. Oil shales, for example, have high oil contents that are

difficult to extract due to their extremely low permeability. The management

of the reservoirs would generally benefit from a good knowledge of the

formation permeability, yet there is no simple way to measure it directly in

the field. Permeability is usually inferred from other measurable quantities.

It is reasonable to expect that k and � are correlated because fluid and

electric currents flow through the same network of pores. Archie actually

suggested a correlation between k and � analogous to Eq. (3), but it was

not supported by his data and was never adopted in practice. How these

quantities should be related remained unclear for a long time. A long-

standing goal in the industry is to find a scientifically sound approach to

determine k through other measurements. A notable suggestion is to use

nuclear magnetic resonance (NMR) and porosity (or conductivity) [14, 15]

(see Chapter 9). Another new approach is to use electrokinetic measure-

ments (see Section 4.4) [16, 17]. These would not have been possible without

a basic understanding of the underlying physics.

Theoretical understanding aside, no genuine progress can be made

without good experimental data. Given the long history of conductivity and

permeability measurements, one might think that the experimental tech-

niques are standard affairs that require little discussion. This, however, is not

quite the case. If different laboratories were asked to determine the formation

factor of the same rock sample independently, chances are that the results

would vary much more than those for an ordinary resistor. Part of the

difficulty has to do with sample handling [18, 19]; for example, the pore fluid

may interact with the rock so that the fluid salinity and pore geometry can

change with time, and the sample may not be in a simple ideal shape. Some

problems are related to the measurement details such as sample cell design,

choice of electrode material, and driving frequency. Additionally, there are

issues related to the intrinsic physics of porous media. For example,

permeability measurements are made by applying a pressure gradient across

the sample, which inevitably distorts the pore geometry in a nonuniform

way. Section 4.5 shows that the conductivity of rocks with partial oil and

water saturations depends on the flow history. Taken together, one can see

that reliable measurements of � and k require considerable care.

This chapter describes some of the basic issues associated with both

experimental techniques and theoretical understanding, focusing mainly on

brine-saturated samples. Conductivity and permeability are separately ad-
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dressed in Sections 4.2 and 4.3. In addition to the steady-state (DC)
behavior, we discuss how AC measurements can give useful information.

Several theoretical models are used to provide an understanding of the

physical meaning of empirical parameters such as F and m. These models

enable us to see that relationships between � and k require additional

knowledge of either the pore size or grain size. Data obtained on FGB and

rock samples are used to illustrate the general idea. (Chapters 3 and 9

describe how mercury injection and NMR can be used to estimate the pore

size, respectively.) Section 4.4 shows that the effective pore size can be

determined exactly by electrokinetic measurements. Electrokinetic phenom-
ena arise from the coupling between charge and fluid flow due to the

presence of excess ions at the fluid—solid interface [20—23]. Using

nonequilibrium thermodynamics, the linear response coefficients, called

electrokinetic coefficients, can be used to relate k to � rigorously, indepen-

dent of any detail of the pore geometry. This theoretical prediction has been

borne out by experiments on real rock and FGB samples. This chapter

concludes with a discussion of the difficulties associated with multiphase

flow measurements due to the nonequilibrium nature of the problem. We

give an example of using x-ray imaging (see Chapter 8) in a conductivity

experiment to account for the history dependence and large-scale spatial

inhomogeneity in multiphase systems [24, 25]. Other examples of using

magnetic resonance and acoustic imaging to study fluid flow are given in

Chapters 10 and 11.

4.2 Electrical Conductivity

4.2.1 AC Technique

Conductivity measurements based on Ohm’s law are simple in principle.

However, when electrolytes are involved, they are somewhat more compli-

cated. Because the current is carried by ions, a DC measurement would

cause charge transfer across the interface that can only occur through redox

reactions at the electrodes. This is generally undesirable and hence AC

measurements are standard. On the other hand, AC impedance of the

metal—electrolyte interface has unusual characteristics of its own that are

not well understood [26]. In the standard two-terminal configuration, in

which the same pair of electrodes are used to send current through the

sample and sense the voltage drop, the applied voltage is kept well below

1 V to prevent electrolysis, but the interfacial impedance is in series with the

sample impedance and the two are unseparable in the measurement. Figure

2a shows the result of such a measurement on a Berea sandstone sample
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Fig. 2. Impedance measurements on a brine-saturated Berea sandstone using Ag/

AgCl electrodes show that a two-terminal configuration (a) would result in anomal-

ous frequency dependence due to electrode polarization. A four-terminal configur-

ation (b) would avoid this artifact and reveal the small but nonzero phase angle due

to the induced polarization (IP) of the sandstone. Why the phase angle is constant

over a wide range of frequency is not fully understood, but is probably due to

adsorption—desorption of counterions on the pore surface when an electric field is

applied.

saturated with 0.1-M NaCl brine. There is a strong frequency dependence

from 10 mHz to 100 kHz, which is caused by ions interacting with the

electrodes and not a property of the sample. This can be easily verified by

changing either the ion species or the electrode material. The electrodes used

to obtain the data here were made of Ag/AgCl, which is regarded as a good

reversible electrode that minimizes the interfacial polarization. The reason

is that AgCl is a conducting material and it does not block the passage of

charge. When an electrode has fine grains of silver and silver chloride on the

surface, the presence of excess Cl� or Ag" ions results in redox reactions

that convert one material into the other, thereby reducing the charge

accumulation, or electrode polarization. Indeed, we note that the magnitude

of the conductivity in Fig. 2a varies by less than 10% from 10 Hz to 10 kHz,

which covers the most commonly used frequencies. Suitable Ag/AgCl

electrodes can be prepared by different means. The simplest and quickest

approach we found was to apply household chlorine bleach on cleaned

silver plates until they turn dull and gray. These plates are stored in NaCl

solutions and kept electrically connected to each other. After a long time,
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Fig. 3. An example of a sample cell that can be used for making transport

measurements. The configuration on the left (a) has separate pairs of electrodes for

sensing the current and voltage, and a differential pressure transducer across the

sample. It can be used for AC conductivity, AC electroosmosis and DC permeability

measurements. By replacing one of the end pieces with the one on the right (b), an

oscillating pressure can be applied. This can be used for AC streaming potential and

AC permeability measurements. Reprinted from Wong and Pengra, in Access in
Nanoporous Materials, Pinnavaia and Thorpe, eds., � 1995, with permission of

Plenum Publishing.

the surface conditions of the two electrodes become quite similar and, if

disconnected, the DC voltage between them should be less than 50 mV.

The electrode polarization problem can be avoided by using a four-

terminal configuration, that is, separate pairs of electrodes for sending the

current and detecting the voltage drop. Figure 2b shows the data obtained

on the same sample as in Fig. 2a with this approach. We note that there is

only a very weak frequency dependence from 10 mHz to 10 kHz, which is

a true property of the sample and not an artifact due to the electrodes. A

small phase angle, roughly 0.2° in this case, remains constant below 1 kHz,

and is common among shaley sandstone. This has to do with excess ions at

the pore surface [27—30]. More concerning this is discussed in Section 4.2.3.

The construction of a typical sample cell is shown in Fig. 3a. The rock or

FGB samples are cut into cylinders about 4 cm in length and 2 cm in

diameter, mounted into a Lucite sleeve of outer diameter 1.25 in. (3.175 cm)
with epoxy cement [31]. After curing the epoxy, the sample is saturated with
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the desired brine and mounted into the cell. It is clamped between two

Lucite collars fitted with Ag/AgCl ring electrodes for sensing the voltage

across the sample. The collars are held in place by two rigid Lucite blocks,

each of which has a fluid cavity, and within it a Ag/AgCl disk electrode for

passing electric current. The diameters of the disks and the cavities closely

match that of the sample so that the electric current is uniformly distributed

over the circular cross-sectional area. Any deviation from a perfectly

cylindrical shape would result in error when the measured conductance is

converted to conductivity. In Fig. 3a, the distance between disk electrodes is

approximately 13 cm and each end cavity holds about 15 ml of brine. The

overall dimensions of the cell are approximately 25� 10� 10 cm
.

The circuit used for the measurement is shown in Fig. 4a. The AC voltage

between the ring electrodes and that across a current-sensing precision

resistor are sent to two isolation preamplifiers with unity gain. The pre-

amplifiers convert the differential voltage inputs to single-ended outputs,

referenced to a common ground. A digital frequency response analyzer

(FRA) (e.g., Solartron 1255 [32]) is used to compare the phase and

amplitude of the two voltages and to compute the sample impedance. The

digital lock-in circuit [33] used in the FRA can determine the magnitude to

better than 0.01% and the phase angle to better than 0.01° over a broad

frequency range. The electrode polarization effect is removed in this method

because the interfacial impedance of voltage electrodes are in series with the

much larger input impedance of the preamplifier (typically greater than

10��). Hence, the voltage drop due to the interfacial impedance is a

negligible part of the total signal. In addition, because the preamplifier is in

parallel with the sample, the current that passes through the voltage

electrodes is very small relative to what goes through the sample. This is the

main reason for using the four-terminal configuration. Even if the electrodes

were not carefully prepared or made of Ag/AgCl, the effect is minimal as

long as the polarization voltage is not so large as to cause the preamplifier

to overload and misbehave.

4.2.2 Tortuosity, Formation Factor, and Archie’s Exponent

Although the data in Fig. 2b show a very weak frequency dependence,

they give a sufficiently good approximation of the DC resistance of the

sample from which the formation factor F is computed. The usual assump-

tion is that F depends only on the porosity �. Figure 1 is a plot of F versus

� for a set of FGB samples made of different size beads [11]. It shows a

behavior similar to what Archie originally observed for a diverse suite of

sandstones, and is reasonably well represented by Eq. (3). Whether Eq. (3)
has a deep physical meaning has been a subject of much discussion. Initial
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Fig. 4. Schematic circuits for (a) AC conductivity and AC electroosmosis measure-

ments and (b) AC streaming potential and AC permeability measurements.
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attempts to explain this empirical relation involve the use of various effective

medium theories to calculate the complex dielectric constant of random

two-component systems [34]. This works well for dilute colloidal suspen-

sions in which the volume fraction of the insulating solid phase (1 � �) is

less than 40%, and m� 1.5 is observed [35]. However, they do not give a

satisfactory account of well-consolidated porous media that have �� 40%

and m 2. These theories are also unable to provide a clear physical picture

of the transport process. We describe here several models that have led to

an intuitive understanding of the empirical behavior. In Section 4.3.2, we

show that these models also enable us to establish simple relationships

between � and k.

The most primitive model for understanding transport phenomena in

porous media treats the pores as a collection of tiny nonintersecting

wormholes that meander through the solid matrix [36]. While this picture is

overly simplistic, it introduces the important concept of tortuosity. In this

model, we consider a slab of area A and thickness L , with N nonintersecting

winding tubes going through it. If each tube has an effective length L
 

and

uniform cross-sectional area A
 

� �r�
 
, the conductance is �

�
A

 
/L

 
. It is

straightforward to show that the formation factor, as defined by Eq. (3), is

F �
L
 
/NA

 
L /A

. (5)

The porosity of the slab is given by � � NL
 
A

 
/L A and the tortuosity � is

defined by

�� F� � (L
 
/L )�. (6)

Thus � is a measure of the tortuous nature of the flow paths. Since L
 
� L

is always true, it follows that �� 1. Using Eq. (3) for F, we can also write

�����. Hence, m� 1 is always true and larger values of m imply more

tortuous paths.

The parameters � and m take on quite different meanings if the pore

space is modeled as a random network. A simple model that has been

studied both numerically and analytically is known as the shrinking-tube
(ST) model [11]. It treats the pore space as a set of straight pipes that are

either connected in series in one dimension, or as a network on a square or

cubic lattice in two and three dimensions. The pipes have identical radius r
!

initially and they are reduced randomly by a multiplicative factor a� 1 to

lower the porosity. The conductivity was computed numerically and ana-

lytically as a function of porosity and it was found to obey Archie’s relation.

The physical reason for this is that the random reduction process
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resulted in a broad log-normal pore-size distribution. In the 1-D model, the

narrow pipes dominate the resistance due to the series connection, but the

wide pipes contribute more to the porosity. This is an explicit demonstration

of the different effects of throat size and pore size. Large values of � and m
indicate a large difference between the pore and throat sizes. We note that

while the qualitative idea of throat size and pore size are well recognized, this

model shows how they can affect the empirical parameters � and m. In the

2- and 3-D network models, it was found that Archie’s behavior was also

obeyed, but it resulted from the contrast between the most-probable radius

r
��

and the average radius r� of the random distribution. For a fully

connected network with a broad distribution, the most-probable conduc-

tance (�r�
��

) is a good estimate of the network conductance. In contrast,

the porosity is directly related to r� � because the average volume of the pipe

is �r� �l
�
, where l

�
is the length of the pipes (the lattice constant) in the

model. In real rock, l
�
is roughly given by the size of the grains. Large values

of m and � imply large differences between r
��

and r� in a skewed pore-size

distribution. Although the ST model is artificial, it shows that when the flow

paths are connected like a network, it is not necessary to think about the

tortuous nature of the flow paths. Instead, it is more useful to consider the

formation factor F as the fundamental quantity that contains information

about pore and grain sizes. The random simple cubic network can be

replaced by a uniform one consisting of identical building blocks of size l

�
,

each of which has a cylindrical pipe of radius r
��

along the flow direction.

With this simplification, we have

F � l�
�
/�r�

��
. (7)

Another noteworthy model, called the grain consolidation (GC) model
[37], treats a more realistic pore geometry than the ST model, but the main

conclusion is similar. This model creates a porous medium by forming a

dense random packing of uniform spheres on the computer and then

allowing the sphere diameter to increase uniformly to mimic grain growth.

The porosity is reduced by the growth. The conductivity � and porosity

� were calculated during the growth process and the results fit the FGB

data in Fig. 1 quite well. Like the ST model, the main conclusion is that the

Archie’s behavior results from the variations in the pore size. It is of interest

to note that although � was originally calculated by reducing the pore space

into a network, subsequently it was improved by digitizing the pore space

on a fine grid and performing random walk simulations [38]. The latter

yields a diffusion constant (D) for ions in the porous media that is lower

than the value in water (D
�

). Using Einstein’s relation, �� nD, where n is
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the density of the ions, we see that

� � �F � �
�
�

�
�

�n
�
D

�
nD

�
D

�
D

. (8)

Thus the random walk simulations not only provide an efficient and

accurate way to obtain the conductivity in arbitrary pore geometry, but they

also actually give a new meaning to � as a ratio of diffusion constants [39],

just as F is the ratio of the conductivities in Eq. (3). In this connection, we

can understand why � in Eq. (6) is the square of two lengths, but L
 
and L

should be interpreted as the diffusion lengths in bulk water and in water

saturated porous media.

4.2.3 Surface Conduction and Transport Radius �

An implicit assumption made in the preceding discussion is that the brine

conductivity in the pores is uniform, which requires the ion concentrations

to be uniform. This is generally not true because excess ions always

accumulate at the interface between dissimilar materials. The abundance of

internal surface area in porous media implies that the surface ions can

contribute significantly to the overall conductivity. In shaley sandstone, for

example, the clay minerals carry exchangeable cations on the surface and

some of them become solvated in the presence of water [40]. The solvated

ions are lifted off the surface to form a diffuse charge layer. They can move

within the layer, exchange position with ions in the bulk solution, and

respond to applied electric fields. For other solids without such exchange-

able ions, the free ions in the brine are attracted to the solid surface by

electrostatic forces. One of the ionic species (e.g., Cl�) can be chemically

adsorbed in a tightly bound layer, called the Stern layer. The other ionic

species (e.g., Na") then form a diffuse layer known as the Guoy—Chapman

layer. The combination is often referred to as the electrochemical double
layer [20—23]. The dividing plane between the two layers is known as the

outer Helmholtz plane (OHP). The details of the layer structure depend on

many factors, such as the adsorption energy on the surface, the solvation

energy in water, the temperature and the brine concentration. For our

purpose, it is useful to give a simple picture based on the Debye—Hückel

theory that treats only the diffuse layer. It assumes that the ions in the brine

are point particles that bear charge � q, and that the surface charge density

qN
�
is small enough to not cause a large potential change at the interface.

For a simple 1,1-valent electrolyte (e.g., NaCl) of concentration N
�
, the

thickness of the diffuse layer (the Debye—Hückel screening length �) for a
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planar surface is

� ��
	k

#
T

2q�N
�
�

���
, (9)

where 	 is the dielectric permittivity of the brine and T is the absolute

temperature. For a 0.2-M NaCl solution at room temperature

(N
�
 1.2�10�� m�
, T 300 K, 	 80	

�
 7.1� 10��� F/m, and q � e �

1.6� 10��� C), Eq. (9) gives � 7 Å. The electrostatic potential at the

hydrodynamic slipplane, called the zeta potential (�), obeys the relation [20]

2k
#
T

q
sinh�

q�
2k

#
T ��

qN
�
�

	
, (10)

which reduces to

� � qN
�
�/	 (11)

for � 	 2k
#
T /q. Since 2k

#
T /q 50 mV at room temperature, this requires

N
�
	 3.1� 10��m��, or less than one ion in an area of (18 Å)�. We note

that the amount of exchangeable cations in shaley sandstones are often

measured in milliequivalents per milliliter of pore volume (meq/ml), denoted

by Q
�
[41]. A shale sample with 10% porosity, specific area of 1 m�/cm
 and

Q
�
of 1meq/ml would have a surface charge density of 6 � 10��m��, about

200 times larger than the preceding estimate. Clearly, in many practical

situations, the assumptions of the Debye—Hückel theory are unrealistic. On

the other hand, Section 4.4 shows that � can be determined from elec-

trokinetic measurements and typical values are indeed below 50 mV

[16, 17]; � was also found to be quite insensitive to the total cation density

on the surface. This implies that only a small fraction of the surface ions are

solvated. The fraction is determined by the relative strength of the adsorp-

tion and solvation energies and the temperature. Thus Eqs. (9—11) are still

useful approximations to reality.

Experimentally, surface conduction manifests itself in two different ways.

Fig. 5 illustrates how the conductivity of a shaley sandstone � increases with

the conductivity �
�

of the brine that fills the pores [39]. We note that the

increases are nonlinear with brines of sodium chloride, but linear with

tetraethylammonium chloride. The reason is that Na" ions have a large

solvation energy, and some of the surface ions become mobile at room

temperature. In contrast, (C
�
H

�
)"
�

ions have negligible solvation energy and

they remain tightly bound to the surface [30]. The difference between the

two curves is generally attributed to surface conductivity �
�
. Since parallel

conductances add, the surface conduction paths are considered to be in

parallel with the bulk conduction paths. In reality, there are no clear
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Fig. 5. Conductivity of brine-saturated sandstone shows a large difference depending

on the cations in the solution. This is attributed to the mobility of the ions on the

pore surface (from Ref. [39]).

divisions between these paths. Every ion can travel partly along the surface

and partly in the interior of the pores as it moves through the sample. The

second manifestation of surface conduction is the small phase angle seen in

Fig. 2b, which remains roughly constant down to 10 mHz [27—30]. If the

Na" is replaced by (C
�
H

�
)"
�

, this angle would become immeasurably small

[30]. In samples with small surface charge densities such as fused glass

beads, the angle is also much smaller. These observations indicate that the

finite phase angle, or quadrature conductivity, is caused by the movement of

surface ions.

In electrochemical studies, constant-phase-angle behavior observed in

electrolytic cells has often been attributed to the geometric roughness of

electrode surfaces [42], and sedimentary rocks are known to have fractal

pore surfaces [43, 44]. Fractally rough surfaces are naturally associated with

a wide range of length and time scales, hence having a frequency dependence

that extends over several decades seem reasonable [39, 45]. However, more

recent studies show that the behavior may simply result from the adsorption

and desorption of ions on the surface [46, 47], that is, surface ions can go

between the Stern layer and the diffuse layer as the concentration of the

latter is disturbed by the flow of electric current. Since the adsorption—
desorption process is thermally activated, on a heterogenous surface where
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the variation in adsorption energy is large compared to k
#
T, a broad

frequency response is expected. Empirically, the complex rock conductivity

data in Fig. 2b can be represented as the sum of a DC term and an AC term:

� � ��� � ���
�

log(i��)

� ���
�

� ���
�

� ���
�

log �� � i����
�

/2. (12)

The DC term, as depicted in Fig. 5, can be separated into pore volume and

surface parts, ���
�

and ���
�

, respectively. The AC term is entirely due to the

surface ions, with a logarithmic real part and a constant imaginary part. The

phase angle of � shown in Figs. 2b is

� � tan��
����

�
2(���

�
� ���

�
� ���

�
log��)

 tan��
���
�

2(���
�

� ���
�

)
. (13)

That � is small implies that ���
�

����
�

in the brine saturated sandstone.

Thus � generally decreases with increasing water salinity, but its value also

depends on the ionic species [30]. The value of � is larger if part of the pore

space is filled with oil, because ���
�

would be reduced and charged layers

are present at the oil—water interfaces. If there are metallic minerals such as

pyrite (FeS) present, the effect would also be stronger because metal—
electrolyte interfaces are more highly charged [28]. The logarithmic change

in the real part of � is typically very weak and difficult to detect; for

example, it is less than 0.5%/decade in Fig. 2b. Historically, it was the

presence of an imaginary part in � at very low frequencies that drew

attention. It is commonly referred to as the induced polarization phenom-

enon and used in mineral exploration [28]. The physics of this phenomenon

is not fully understood, but we expect ionic diffusion and thermally activated

adsorption—desorption to occur when the charge density in the diffuse layer

is disturbed. Clearly, at low enough frequencies (��	 1) when all the

relaxation mechanisms are exhausted, the imaginary part must vanish and

the real part must tend to a constant.

The DC part of � in Eq. (12) is reasonably well understood. Within the

wormhole model, if we assume that each tube is coated with a thin layer of

conductor with surface conductivity �
�
, it simply adds a parallel conduc-

tance 2�r
 
�
�
/L

 
. The conductivity that results from having N such tubes in

parallel in a slab with area A and thickness L is

��� �
�
�
N

A/L �
�r�

 
L
 

�
2�r

 
�
�

L
 
��

�
�

F �1 �
2�

�
r
 
� , (14)

where we have used Eq. (5) for F. Despite the unrealistic nature of the

model, this turns out to have captured the essential physics and Eq. (16) is

consistent with empirical relations that had been widely used in the
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petroleum industry [41, 48]. For arbitrary pore geometry, Johnson et al.
[49] introduced a pore-size parameter � that plays the role of r

 
. The

parameter � is defined by

�� 2
� �E

!
�� dV

�
� �E

!
�� dS

�

, (15)

where E
!

is the electric field strength in the pores in the absence of any

interfacial charge (determined by solving the Laplace’s equation for the

given pore geometry), and the integrals are taken over the pore volume V
�

and the pore surface S
�
. In essence, this is a weighted average of the

volume—surface ratio. The narrow throats of the pore space, where the field

is strong and the current density is high, are weighted more strongly.

Intuitively, � can be regarded as an effective transport radius that controls

the current flow. Treating the surface layer as a perturbation, Johnson et al.
[49] showed that, in the limit of large �

�
,

���
�
�

F �1 �
2�

�
� � (16)

This result is identical to Eq. (14) except for a change from r
 

to �, and F
is defined by Eq. (3). It predicts that the slope of ��� versus �

�
is 1/F in the

high-salinity limit, which agrees with the NaCl data in Fig. 5. The theory

has been extended to explain the convex curvature seen in the NaCl data

[50]. The asymptotic behavior in the low-salinity limit has also been studied

with various models of surface roughness [51].

4.3 Hydraulic Permeability

4.3.1 DC Technique

Like conductivity measurements, measuring Darcy permeability is simple

in principle, but the data are often not very reproducible. There are many

factors that can cause complications, especially the chemical or physical

interactions between the fluid and solid; for example, water can cause certain

clays to swell, or hydrocarbons can have molecules that are not much

smaller than some of the pores [52]. Gas is sometimes used to speed up the

measurements as it is much less viscous than liquid, but flow with a high

Reynolds number has many complications. These include turbulent effects

and the fact that the density and viscosity of gas change with pressure

throughout the sample [6]. Despite the fact that there are schemes to correct

for some of these complications [53], permeability measured with gas and

liquid flow can disagree considerably [41]. These complications are beyond
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the scope of this chapter. We assume here that the measurements are made

in the low-Reynolds-number limit, with an inert liquid that has molecules

much smaller than the pore size, and that the liquid properties are uniform

everywhere in the pores. Even with this idealization, there is the fundamen-

tal problem that most porous media are quite soft (compressible). Since the

flow of liquid is driven by a pressure gradient, the sample is inevitably

deformed more at one end than the other [54, 55]. Although the viscous

pressure gradient in rock formation is very small, laboratory measurements

of core samples are typically made with much stronger gradients to achieve

a flow rate high enough to be measured accurately. The resulting distortion

of the pore geometry would depend on the rigidity of the rock matrix. For

example, we note that the typical figure for Darcy velocity in producing oil

fields is v
�

� 1 ft/day (about 1.3 cm/h or 3 �m/s). Clearly, it would take

many hours to collect enough fluid to determine the flow rate accurately. A

valid measurement of permeability requires applying several pressure gradi-

ents to generate different flow rates, and then using a linear regression to

verify the proportionality in Eq. (2) [56]. Quite often, however, when the

flow rate is plotted against pressure, the data do not fall on a straight line

through the origin; that is, Darcy’s law is not obeyed. Figure 6 illustrates

this problem in a Berea sandstone sample with k 0.4 D (1D � 1 darcy �

0.987 �m� 1 �m�). We note that even though the pressure difference

across the 4-cm-long sample was quite modest (less than 0.5 bar), v
�(�10� �m/s) is much larger than the 3�m/s reference figure given earlier. A

nonlinear behavior is evident in Fig. 6 where the slope of the plot varies by

about 30%. Only the data points in the lower half of the range fit a straight

line through the origin. In the upper half of the range, v
�

increases faster

than linearly, which implies that the applied fluid pressure opened up the

pores and made the sample more permeable [16].

The data in Fig. 6 were obtained using the cell design shown in Fig. 3a.

Contrary to the common practice of applying a pressure and measuring the

volume of fluid that passes through in a given time, we used a microproces-

sor-controlled syringe pump [57] that could be set to deliver fluid at precise

and constant flow rates. An Omega PX160 [58] piezoresistive transducer

was used to detect the differential pressure across the sample. It has a

sensitivity of 10 mV/psi (�1.5 �V/Pa) when powered by a 10-V DC voltage.

The pressure as a function of time P(t) was recorded by a computer during

the flow. We observed that even though the flow rate was held constant, it

took a finite amount of time after the flow started for the pressure to reach

a steady value. The reason is that a finite amount of fluid must be injected

to establish a compression that corresponds to the steady-state pressure. If

the fluid cavity shown in Fig. 3a is large and the injection rate is low, then

the waiting time can be very long. Since the speed of the syringe pump can

be set by the computer, it is possible to program it with a higher flow rate

134 CONDUCTIVITY, PERMEABILITY, AND ELECTROKINETICS



Fig. 6. In a typical laboratory measurement of brine permeability of of sandstone,

the flow rate and pressure gradient can deviate from a linear dependence even with

quite modest applied pressure. This plot, taken from Ref. [16], shows that the

nonlinear behavior is noticeable in a 400-mD Berea sandstone sample when the

pressure difference across a 4-cm sample is less than 0.5 bar. Copyright 1995 by the

American Physical Society.

initially to achieve the desired pressure and then reduce the speed to a lower

value for the actual measurement. It is important that the cell is constructed

with a minimal amount of compliant materials (e.g., gaskets and tubing) so

that a small volume of injected fluid can produce a large pressure change.

In our cell, we found that the effective bulk modulus of the cavity

(��V P/V ) was in the range of 10�—10� Pa, which is much smaller than

the bulk modulus for water (�
�
 2� 10� Pa). This means that to obtain a

pressure rise of 10� Pa in the 15-ml cavity, approximately 0.75 ml of fluid

should be injected quickly. Some of the compressed fluid must go into the

sample to establish a pressure gradient, and that also requires a finite

amount of time. In the low-frequency limit, the propagation of the pressure

field into the sample is known to be described by a diffusion equation

[59, 60]:

D
�

�P �

	P
	t

� 0, (17)

where D
�

is a diffusion constant. In the rigid frame limit where the rock is
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assumed to be incompressible compared to the water, D
�

� k�
�
/�� [61].

For the general case in which both the solid frame and the fluid are

compressible, the expression for D
�

is more complicated [62], but Eq. (17)
still holds. The time for building up the steady-state pressure gradient in a

sample of length L
$

may be estimated by the diffusion time

�
�

� L �
$
/D

�
. (18)

Here �
�

sets the minimum time for a real measurement. It cannot be

shortened significantly by using a computer because it is limited by how fast

fluid can flow into the sample. For a sample with L
$

� 4 cm, k � 100 mD,

and � � 0.2, using �
�

� 2 � 10� Pa and � � 0.01 for water, the rigid frame

limit gives D
�
 10� cm�/s and �

�
 1.6ms, which is short compared to

typical DC measurement times. However, if the sample and the cell are

compliant and the permeability is low, the equilibration can be much longer.

For our apparatus, 10 min is typical.

4.3.2 Pore Size, Grain Size, and Permeability

Since fluid and electric currents flow through the same pore space, and

Darcy’s law and Ohm’s law are similar in form, one would naturally expect

a simple relationship between permeability and conductivity. However, such

a relationship must involve the pore size. This can be seen most easily in the

wormhole model where the permeability is simply determined by the

Poiseuille flow in N parallel capillary tubes. Following the notation in

Section 4.2.2, if a pressure difference �P is applied across a slab of area A
and thickness L , the Darcy velocity is

v
�

�
1

A

dQ

dt
�

N

A
·
A�

 
8��

·
�P

L
 

�
N

A
·

A�
 
L

8��L
 

·
�P

L
. (19)

Using Eqs. (2) and (5), we have

k �
N

A
·
A�

 
L

8�L
 

�
A

 
8�F

�
r�
 

8F
. (20)

This shows that k has an explicit dependence on the effective pore radius. It

is also why the unit of permeability, darcy, has the dimension of length

squared, as opposed to F, which is a dimensionless number. For more

complicated pore geometry, as discussed in Section 4.3.3, Johnson et al. [49]

suggested that a good approximation is to replace r
 

by the effective

transport radius �:

k
��

8F
. (21)
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Fig. 7. The gas permeability of a large number of sandstones and carbonates show

a good correlation with values calculated from Eq. (23). The dashed lines indicate

departure from the calculated values by a factor of 2. Reprinted with permission

from Katz and Thompson, Phys. Rev. B 34, 8179. Copyright 1986 American Physical

Society.

This prediction has been tested out in several theoretical models, including

the GC model. Essentially the same result can be obtained in the ST model

[11], in which a random network is replaced by a uniform one where all the

tubes have the same length and radius. Letting A/N � l�
�
, A

 
� �r�

��
, and

L � L
 

in the first part of Eq. (20), we have

k � �r�
��

/8l�
�

� r�
��

/8F, (22)

where F is defined by Eq. (7).
A semiempirical approach was adopted by Katz and Thompson who

arrived at a similar conclusion [63, 64]. They performed mercury injection

(see Chapter 3) on rock samples and determined the critical pressure P
�
at

which the mercury first penetrated across each sample. Since mercury may

be regarded as a perfectly nonwetting fluid, this defines a critical throat

radius l
�
� 4
/P

�
, where 
 is the surface tension of mercury. Using perco-

lation theory, Katz and Thompson argued that

k
l�
�

226F
. (23)

Their data, shown in Fig. 7, follow this approximate relationship quite well,
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except that the correct prefactor given by percolation theory is actually 1/130

and not 1/226 [65]. The seemingly large difference in the numerical

prefactors in Eqs. (21) and (23) is due to the theoretical definition of � and

the empirical definition of l
�
. Since l

�
is a diameter, the ratio of the two

length scales is (2�/l
�
) � (32/226)��� � 0.38. That this value is of the order of

unity shows that the underlying physical pictures are qualitatively the same.

The common element in all the preceding models is that the random pore

space is represented by two quantities: the formation factor F and an

effective pore size. Although these quantities are defined differently in each

model, the resulting relationships between k and F in Eqs. (20—23) are of

the same form. The main difference is in the meaning of the pore-size

parameter that appears in the numerator. Since F is known from the

conductivity ratio in Eq. (3), any measure of the pore size could be used to

give an estimate of the permeability, provided that some empirical adjust-

ment is made in the prefactor. The good correlation seen in Fig. 7 is one

such example. The essential picture that emerges from various models allows

one to find other sensible empirical correlations. For example, if the grain

size instead of the pore size is known, we can substitute Eq. (7) into Eq. (22)
and write

k � l�
�
/8�F�. (24)

This has been tested out in FGB samples made with different bead diameters

D
�
. Figure 8 shows data that span over 5 decades of permeability and they

are well represented by the equation

kD�
�
/76F�, (25)

consistent with Eq. (24) [9]. Chapter 9 describes empirical correlations

between NMR relaxation time T
�

and k in real rocks, which are analogous

to Eqs. (23) and (25) [14, 15]. The success in fitting the data shows that,

despite the complicated geometry, the pore space can be conceptually

replaced by an equivalent uniform network of cylinders. The relationships

between k and F follow from the properties of a single cylinder in this

uniform network. Other than a change in the prefactor, these relationships

hold for real samples, provided that the pores are well connected. As

discussed in Chapter 1, k and F can be calculated numerically by solving

Laplace’s and Stokes’s equations using digital images of real materials. The

results are also in good agreement with these relationships

4.3.3 Viscous Relaxation and Dynamic Permeability

Although permeability is usually measured under steady-state flow con-

dition, AC measurements can yield useful information about the porous

138 CONDUCTIVITY, PERMEABILITY, AND ELECTROKINETICS



Fig. 8. Brine permeability of fused-glass-bead samples shows a good correlation

with values calculated from Eq. (25), as indicated by the solid line (from Ref. [9]).

media. The essence of such measurements is to apply an oscillating pressure

gradient (�Pe�	�%) on the sample and detect the corresponding flow current

(J
�
e�	�%), much like the AC conductivity measurement described in Section

4.2.1. The dynamic permeability k(�) is defined by the Darcy’s law in Eq.

(2). Various groups have used AC techniques to study flow in capillary tubes

[66]. Their techniques can be adapted quite straightforwardly for porous

media using the sample cell and circuits that have already been described.

Specifically, the cell in Fig. 3 may have one of the end pieces replaced by

another one that is sealed with a flexible latex membrane. A linear bearing

embedded in the Lucite block allows a push-rod to be placed against the

membrane from the outside. The rod is attached to a loudspeaker that is

driven by an audio power amplifier. This simple mechanism enables one to

conveniently apply a small oscillating pressure on one side of the sample.

The other side of the cell is connected in series to a small capillary tube of

known permeability. Two separate pressure transducers are used to detect

the pressure drops across the sample and the tube, the relative amplitude

and phase of which can be determined with the digital lock-in circuit shown

in Fig. 4a. There are two main cautions to observe in the measurement.

First, the connection between the cell and the capillary must be made of
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rigid materials, and the system should be free of trapped air bubbles. This

ensures that all the fluid that flows through the sample also flows through

the capillary; that is, the system is as close to being incompressible as

possible. In reality, any finite compressibility implies a nonzero pressure

diffusion time �
�

as given by Eq. (18). Thus the second caution is that the

angular frequency � must be small compared to 1/�
�

so that a linear

pressure drop is fully established inside the sample. (AC flow under more

general conditions is considered in Chapter 5.)
Within the limits already defined, the fluid flow is well described by the

Navier—Stokes equations:

� · � � 0 (26)

and

�P � ���� � �
��, (27)

where � is the fluid density and � is the vector velocity field. If the fluid is

at rest (� � 0), upon the application of a pressure gradient, the initial

response is governed by the inertial term ���� . After the flow reaches the

steady state, �� is zero and only the viscous term remains. For a finite

measurement frequency �, the fluid is on average accelerated in one

direction for a time � � 1/�. The velocity variation transverse to the flow

direction occurs over a distance called the viscous skin depth � . A dimen-

sional analysis of the two terms in Eq. (27) predicts [67, 68]

�/� � ��� �/��. (28)

As the frequency is decreased, the velocity field has enough time to reach

the steady-state configuration, � grows to the radius of the pore and k(�)
tends to a DC value k

!
. In the high-frequency limit, k(�) can be obtained

by ignoring the viscous term in Eq. (27). Using the wormhole model, we

note that the magnitude of �P in a fluid-filled winding tube is reduced from

the macroscopic value by the length ratio L /L
 
, and the real fluid velocity

inside the pore is related to the Darcy velocity by v � (v
�
/�)(L

 
/L ).

Substituting these in Eq. (27), and comparing it to Eq. (2), we can identify

�/k(�) with �i��(L
 
/L )�/�. Using Eq. (6), we have

lim
���

k(�) � i�/��F. (29)

Equating the magnitude of this high-frequency limit to k
!

(the low-frequency

limit) gives the characteristic relaxation frequency

�
�
� �/�k

!
F. (30)

This proved to be a useful general result, because Eq. (20) for the wormhole
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model is essentially the same as Eq. (21) for arbitrary porous media. The

viscous relaxation time is defined by �
�
� 1/�

�
.

Johnson et al. [68] suggested the complete viscous relaxation in k(�) can

be described by a simple function of the scaled frequency �� � �/�
�
:

k(�) �
k
!

(1 � iM�� /2)��� � i��
, (31)

where M� 8kF/��. Since Eq. (21) is a good approximation for most porous

media, M 1 holds true, and hence this function may be regarded as

universal. Charlaix et al. [69] confirmed this prediction by measuring k(�)
on several water saturated samples. Figure 9 shows their data on three bead

packs and two crushed glass samples with different particle sizes. A plot of

the scaled permeability k(�) /k
!

versus the scaled frequency �� collapses all

the data on to a universal curve. Fitting the individual data set to Eq. (31)
gave M between 0.99 and 1.25. However, it should be noted that all the

samples had high enough permeability so that the condition �	 1/�
�

was

satisfied; �
�

also fell within the measurement window so that the entire

relaxation behavior was revealed. Sheng et al. [70] studied several theoreti-

cal models and found that M 1 held if the pore size varied smoothly near

the throat region, but it failed if the throat size was defined by acute edges

such that the flow field had to undergo abrupt changes. This is understand-

able because the former can be approximated by the behavior of a capillary

tube and the latter cannot. According to Section 4.2.2, the pore space is

usually a well-connected network and its behavior is much like that of a

single capillary tube.

4.4 Electrokinetics

While we have emphasized the analogy between the flow of electric and

fluid currents in the preceding sections, there is actually a direct coupling

between the two currents due to the existence of the interfacial charge layer.

This gives rise to electrokinetic phenomena. Textbook discussions of elec-

trokinetics are usually given in the context of capillary tube geometry

[20—23], but many laboratory studies have been carried out for random

porous media [16, 17, 71—78]. It has also been proposed for use in large-

scale geological survey [79—81]. In this section, we focus on high-precision

laboratory measurements of the coupling constants and explain how they

are related to � and k. As we see, the coupling constants can be used to

determine the effective pore radius r
 
in Eq. (20) and � potential in Eq. (10).

From these quantities, we can obtain the permeability k and surface charge

density in the diffuse layer for any brine-saturated system.
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Fig. 9. AC permeability measurements made on three water saturated glass bead

packs (diameter � 0.5, 0.95 and 1.7 mm) and two crushed glass packs (size range

0.35—0.71 mm and 0.71—1.05 mm) show that both the real and imaginary parts are

well described by Eq. (31). Reprinted with permission from Charlaix et al., Phys. Rev.
L ett. 61, 1595. Copyright 1988 American Physical Society.
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Fig. 10. Illustrations of electrokinetic couplings in a capillary tube. The solid arrows

represent the fluid velocity field and the wiggly arrows represent the electric current

density. (a) The situation when a streaming potential is established in response to a

Poisueille flow of viscous fluid and (b) the situation when an electroosmotic

counterpressure is developed in response to an applied electric current. Reprinted

from Wong and Pengra, in Access in Nanoporous Materials, Pinnavaia and Thorpe,

eds., � 1995, with permission of Plenum Publishing.

4.4.1 Streaming Potential, Electroosmosis, and Onsager’s Relation

Since the ion densities in the diffuse charge layer are not uniform, the flow

of fluid can lead to an electric current along the surface, and vice versa.

Figure 10 illustrates the effect in a straight capillary, where the fluid velocity

profile is represented by the straight arrows, and electric current density by

the wiggly arrows. In Fig. 10a, a pressure difference �P
�
applied across the

tube drives the fluid to flow with a parabolic velocity profile. Assuming that

the diffuse layer has excess cations, the viscous drag causes them to migrate

in the same direction and results in a surface electric current, called the

streaming current. As the cations accumulate downstream and excess anions

are left upstream, a potential difference ��
�
, called the streaming potential

(STP), is developed and it drives a countercurrent in the bulk fluid. In the

steady state, the total electric current is zero. The net effect is that an applied

pressure generates a response voltage. The linear response coefficient K
$

is
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defined by

K
$
� ���

�
/�P

�
. (32)

Figure 10b shows the reciprocal process known as electroosmosis (ELO).
When a voltage ��

�
is applied across the tube, the excess cations in the

diffuse layer give rise to a higher electric current density near the surface,

and it drags along a fluid current, called the electroosmotic current. The flow

would continue until an opposing pressure difference �P
 
, called the

electroosmotic pressure, is established. The linear response coefficient K
&

is

defined by

K
&
� ��P

 
/��

�
. (33)

Similar effects exist in porous media due to their large internal surface area.

We can measure K
$

and K
&

using the experimental cell depicted in Fig. 3

for conductivity and permeability measurements. For STP, a pressure

difference �P
�
is applied and the resulting voltage difference ��

�
is detected.

For ELO, a voltage ��
�
is applied and the resulting pressure difference �P

 
is detected. We note that ELO measurements must be made in a closed cell

so that the induced fluid flow creates a compression in one cavity and a

decompression in the other, thereby generating a counterpressure.

The significance of K
$

and K
&

can be first understood by considering

Poiseuille flow in a uniform capillary tube, which can be extended to the

wormhole model of porous media. Assuming that the tube wall is smooth and

the tube radius is much larger than the screening length (r ��), it can be

shown that [20]

K��
$

� 	� /��
�

(34)

and

K��
&

� 8��/r�. (35)

These results are independent of the details of the potential and charge

density variations in the diffuse layer. From these equations, we can see that

by measuring two macroscopic coefficients, K��
$

and K��
&

, one can deter-

mine � and r for the tube. Adapting these results in the wormhole model for

porous media, we can define an effective zeta potential [16, 17]

�
 
���

�
K

$
/	 (36)

and an effective pore radius

r�
 
� 8��

�

K
$

K
&

. (37)
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According to Eq. (20), the permeabilty is

k �
r�
 

8F
�

��
�
K

$
FK

&

� ��
K

$
K

&

. (38)

Thus, within the wormhole model, the several macroscopic transport coeffi-

cients are directly related to each other. This result turns out to be a general

relationship that can be proven on the basis nonequilibrium ther-

modynamics. Consequently, it is appropriate to regard Eqs. (36) and (37) as

the definitions of the effective zeta potential and throat radius for random

porous media.

To prove that Eq. (38) is a general result, we note that the presence of

streaming current and electroosmotic current means that Eqs. (1) and (2)
must be generalized to

I
 

� �L
��
��� L

��
�P (39)

and

I
�

� �L
��
�� � L

��
�P, (40)

where I
 

and I
�

are the total electric and fluid currents. The L
��

term

represents the streaming current and the L
��

term represents the electro-

osmotic fluid current. Also, L
��

� A�
�
/L is the uniform-pressure conduc-

tance of the system, and L
��

� Ak
�
/L �, where k

�
is the zero-electric-field

permeability. The STP coefficient K
$

is obtained when there is only fluid

flow and no net electric current. Setting Eq. (39) to zero gives

K
$

� �
��
�P �

'
�
	�

�
L

��
L

�
�
A

. (41)

Similarly, K
&

is obtained when there is only electric current and no net fluid

current. Setting Eq. (40) to zero gives

K
&

� �
�P

�� �
'
�
	�

�
L

��
L �

k
�
A

. (42)

A celebrated result in nonequilibrium thermodynamics known as the

Onsager relation states that L
��

� L
��

in the steady state [82—84]. Using it

in Eqs. (41) and (42), we obtain

k
�

�
� �

�

K
$

K
&

, (43)

which is almost (but not exactly) the same as Eq. (38), because k
�

and �
�

do not have quite the same meanings as k and �. The former are theoretical

quantities for ideal situations with either �P � 0 or ��� 0, but the latter
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are measured quantities under the condition that both gradients are present.

Using Eqs. (41) and (42) to eliminate �� and L
��

in Eq. (40), we have

I
�

� �
k

�
� �1 �

L �
��

�

k
�
�

�
� �P � �

k
�

�
(1 � K

$
K

&
)�P. (44)

Similarly, using Eqs. (41) and (42) to eliminate 
P and L
��

in Eq. (39) gives

I
 

� ��
� �1 �

L �
��

�
k

�
�

�
� ��� ��

�
(1 � K

$
K

&
)��. (45)

Compared to Eqs. (1) and (2) that define � and k, we see that

k � k
�
(1 � K

$
K

&
) (46)

and

� � �
�
(1 � K

$
K

&
). (47)

Substituting Eqs. (46) and (47) into Eq. (43) recovers Eq. (38), proving that

it is a general property of the steady state, independent of any model. The

wormhole model was used only to give a simple and more concrete physical

picture. We should note that, using Eqs. (11), (34), and (35), the correction

factor (1 � K
$
K

&
) can be written as

1 � K
$
K

&
� 1 �

L
��

L
��

L
��

L
��

� 1 �
8q�N�

�
��

�
�
�

r
 
�

�
. (48)

Clearly, the deviation from unity is important only if the surface charge

density qN
�
is high and the pores radius r

 
is not much larger the screening

length �. In practice, this factor is close to unity for most situations, and

hence the distinction between (k
�
, �

�
) and (k, �) is not widely appreciated.

By the same token, this implies that K
$

and K
&

are small quantities that are

not easy to measure. This is why high-precision data of K
$

and K
&

are

scarce even though the existence of electrokinetic phenomena has been

known for more than a century [85].

4.4.2 Experimental Method and Results

The primary difficulty in measuring the electrokinetic coefficients is that

the induced voltage and pressure are quite small compared to typical

experimental errors. In Wyllie’s 1951 investigations of STP [86], fluid

pressure up to a few hundred pounds per square inch (psi) was used to

produce a voltage of about 10 mV, but the two signals are not linearly

proportional to each other. This implies that K
$

in Eq. (32) was not a

constant. This may be attributed to the problems discussed in the preceding

sections; for example, the pore structure can change with pressure and
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electrode polarization effect can overwhelm the STP signal. Clearly, to make

good measurements, one must keep the fluid pressure low and be able to

detect voltage signals that are masked by a large background. Both of these

goals can be accomplished with the cell and circuits shown in Figs. 3 and 4.

The key point is to make AC measurements [87, 88, 89] using a lock-in

technique [33]. In this method, the system is driven at a fixed frequency and

the detector is an amplifier that is phase and frequency locked to the drive

signal. By integrating the signal over enough cycles, noise that is uncor-

related with the driving signal is averaged out and a small signal hidden

under the noise can be measured. The high sensitivity of the technique, in

turn, enables one to drive the system with a small signal. The specifics given

next are based on Refs. [16] and [17].

In our experimental cell, room noise and temperature drift of the pressure

transducer give roughly 10 Pa pressure noise in the frequency window of the

transducer (�15 �V root-mean-square [rms] over the range of 0—10 Hz),
and electrode polarization produces broadband voltage noise at low fre-

quencies (�1 Hz) that varies by tens of millivolts. These have made

electrokinetic measurements unreliable historically because typical values of

K
$

and K
&

are of the order of 10�� V/Pa and 1Pa/V, respectively. Using

the lock-in technique, we can detect STP voltage oscillations below 1 �V and

ELO pressure oscillations below 1Pa, well below the noise level. The

measurements can be made over a spectrum of frequencies, as low as 1 mHz,

to determine the DC limit where Eq. (20) is valid. The conductivity—
permeability cell depicted in Fig. 3 can be used directly for ELO experi-

ments because it is already fitted with electrodes and a pressure transducer.

These can be used to measure the voltage and pressure across the sample

simultaneously. The circuit shown in Fig. 4a requires only one small change:

An AC current is still applied through the disk electrodes, but the FRA

compares the AC pressure against the AC voltage across the sample. To

achieve the necessary pressure sensitivity, the Wheatstone bridge built in to

the piezoresistive transducer is driven by a 200-Hz AC voltage in a separate

lock-in circuit. A lock-in amplifier (e.g., Stanford Research 850 [90]) is used

as the null detector of the bridge and its output, which oscillates at the much

lower frequency of the applied AC current, is sent to the FRA. This

two-stage lock-in approach can detect pressure down to 100 mPa rms (or

15 nV output from the PX160 transducer when it is driven by a 1-V rms AC

signal).
Figure 11b shows the ELO data for Berea sandstone saturated with

0.1-M NaCl brine. The frequency range of 1 mHz to 10 Hz is limited by the

practical integration time at the lower end and the mechanical response time

of the transducer at the upper end. A relaxation behavior is evident within

this range and it is not seen in the conductivity data in Fig. 11a. It arises
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Fig. 11. The complex frequency response (magnitude and phase) of a Berea

sandstone saturated with 0.1-M NaCl brine. (a) Conductivity �, (b) electroosmotic

coefficient K
&
, and (c) streaming potential coefficient K

$
(from Ref. [16]). Copyright

1995 by the American Institute of Physics.

from the fact that a finite amount of time is necessary to move enough fluid

across the sample to create the counterpressure. It can be shown that the

frequency response takes the form of a Debye relaxation [17]

K
&
(�) �

K
&

1 � i�/�
�

�B (�)e�	 , (49)

where �
�
is a characteristic angular relaxation frequency, or inverse relax-
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ation time. The phase angle  is given by

tan  � �/�
�
, (50)

and the magnitude B (�) is given by

B (�) �
K

&
�1 � (�/�

�
)�

. (51)

For our cell, which has cylindrical cavities with the same cross-sectional

area as the sample, it can be shown that

�
�
�

2�k

�L
$
L
(

. (52)

where � is the bulk modulus of the cavity (the fluid is assumed to be

incompressible) and L
$

and L
(

are the lengths of the sample (� 4 cm) and

the cavity (�4.5 cm), respectively. Thus �
�
can be made higher if the cavities

are smaller or more rigid, or if the sample is more permeable. As in AC

permeability measurements, it is important to avoid air bubbles trapped in

the fluid cavities because they would reduce the effective bulk modulus �;

that is, for a given amount of fluid movement, the pressure change would

be much less. The cell was designed to have fluid inlets and outlets for each

cavity so that air can be purged from the system. Figure 11b shows that the

DC value is reached when the measurement frequency is well below �
�
.

However, it is possible to measure  and B at a higher frequency and use

Eqs. (50) and (51) to solve for �
�
and K

&
. If multiple frequencies are used,

a least-squares fit can be made to improve the precision. It is of interest to

note that the data in Fig. 11b give �
�
 0.04 Hz and K

&
 6 Pa/V. Using

k 300 mD in Eq. (52), we find that � 10� Pa for our cell. With an

applied voltage of 1 V, about 0.1 �l of fluid moved across the sample. These

figures demonstrate the high sensitivity of the AC method in detecting fluid

flow.

For AC STP measurements, an oscillating pressure gradient must be

applied. This is accomplished by using the modified end cavity in Fig. 3 for

AC permeability measurements. We were able to achieve a pressure oscilla-

tion of 5 kPa rms (7.5 mV rms voltage output from the PX160 transducer)
over the 0—10 Hz range. Since this signal is sufficiently high compared to the

noise background, the transducer was driven with a 10-V DC power supply

without using a second lock-in amplifier. The resulting AC STP voltage is

detected by the ring electrodes. We obtain K
$

by comparing this voltage

against the applied pressure using the circuit shown in Fig. 4b. Just as in the

circuit in Fig. 4a, the two signals go through a pair of isolation preamplifiers

and then into an FRA (an HP3562A Dynamic Signal Analyzer [91] in this
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case) for phase and amplitude comparison. Figure 11c shows the data

obtained on Berea sandstone saturated with 0.1-M NaCl brine. Unlike the

ELO data, the response is flat below 10 Hz, so there is no need to go to

lower frequencies. The apparent relaxation above 10 Hz is due to the

mechanical behavior of the transducer and the cell, not a property of the

sample. The intrinsic STP relaxation is governed by the viscous relaxation

frequency �
�
. According to Eq. (30), a pore radius of 10 �m corresponds to

�
�
� 10� Hz for water. Thus the AC data in Fig. 11c are indeed the

steady-state property of the sample. It should also be noted that, unlike the

dynamic permeability measurement, the frequency does not have to be small

compared to 1/�
�
. Provided that the sample is uniform, because we measure

only the voltage difference across the sample, whether it decreases linearly

inside the sample is irrelevant. An important feature in Fig. 11 is that all

three measurements show a small but finite phase angle at the low

frequency. As discussed in Section 4.2.3, this is likely to be due to the

adsorption and desorption of surface ions when the nearby charge density

is disturbed. Some experiments have been done to investigate the effect by

changing salinity, temperature, and cation species [92], but more is needed

before a clear understanding can be reached.

For any sample, when K
&
, K

$
, and �, are known, Eqs. (36—38) enable us

to determine the effective zeta potential �
 
, throat radius r

 
, and permeabil-

ity k. We refer to the latter as the electrokinetic permeability and denote it

by k
 
, as opposed to the Darcy permeability k

�
obtained in the manner

described in Section 4.3.1. For example, the data in Fig. 11 give �
 

� 22 mV,

r
 

� 4.5 �m, and k
 

� 220 mD. Figure 12 shows a comparison between k
 

and k
�

for 12 samples with very different characteristics. Over 4 decades of

permeability, the agreement is excellent. The electrokinetic approach is

actually more reliable because it applies a much smaller pressure gradient

and the pore geometry would not be deformed in any significant way.

4.5 Multiphase Systems

In this chapter, we have focused on the transport properties of insulating

porous media saturated with conducting fluids, using mainly brine-saturated

rocks and glass bead packs as examples. In general, the measurements can

be done with high accuracy and the results are quite well understood.

Empirical observations can be explained in simple physical terms and new

quantitative predictions have been verified. The major puzzle that remains

to be solved is the constant-phase-angle behavior associated with surface

ions. To fully understand this phenomenon would require knowledge of the

dynamics of the surface ions at a microscopic level. We have avoided

discussion of multiphase systems— for example, rocks with partial oil and
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Fig. 12. A comparison between the electrokinetic permeability and the Darcy

permeability confirms the prediction of Eq. (38). All measurements were made on

samples saturated with 0.1-M NaCl brines (from Ref. [16]). Copyright 1995 by the

American Institute of Physics.

water saturations in the pores—even though such systems are of great

practical importance and measurements are routinely made. The reason is

that the fundamental physics is much more complicated and the significance

of the data is not easy to grasp. We offer here only a brief discussion of the

problems to illustrate the challenges for future studies.

There are two major problems associated with multiphase systems. The

first is the appearance of oil—water interfaces that are highly charged.

Sprunt et al. [79] have observed large STP signals and have attributed them

to the interfacial charge, but the physics is not fully understood. We can

expect large effects on the surface conductivity and ELO as well. The second

problem with multiphase systems is the difficulty of reproducing the experi-

mental results. As shown in Chapter 2, fluid distribution in immiscible flow

exhibits inhomogeneities on a wide range of length scales. It also depends

critically on the flow history of the sample, because the presence of

microscopic wetting films on the pore surface can have profound effects on
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the macroscopic flow pattern. In other words, the fluid distribution is always

out of equilibrium. There is no assurance that the data taken on a sample

is either reproducible or representative of even that sample. Although Eq.

(4) appears to be a logical extension of Eq. (3), the meaning of the resistivity

index I is far less certain than the formation factor F. Because of the

nonequilibrium nature of the system, one should not expect a simple

correlation between the conductivity and the water saturation S
�

without

some further specifications. Different fluid configurations for a given satura-

tion are expected to give rise to different conductivities. To understand such

systems, the experiments should include characterization of the large-scale

inhomogeneity as well as the flow history. The best way to approach such

a study is to include some form of imaging to complement the transport

measurements.

Figure 13 shows an apparatus that was developed to study vertical

drainage and imbition [24, 25]. A cylindrical cell, 20 cm in length and 4.4 cm

in diameter, filled with glass beads, has an array of voltage electrodes

implanted along its length and a pair of current electrodes placed at the two

ends. Using the four-terminal circuit shown in Fig. 4, the resistance of each

section of the sample could be measured and the spatial variation charac-

terized. 0.5-M potassium iodide solution was used as the wetting fluid and

air as the nonwetting fluid. Two syringe pumps were used to maintain a

constant flow rate in either direction. When one pump is injecting, the other

refills. A set of switching valves and pressure transducers are controlled by

a computer to ensure that the pressure changes smoothly. At any stage of

the process, the flow could be made to pause and x-ray imaging could be

carried out to determine the saturation profile along the cell (see Chapter

8). Figure 14a shows the data taken at 10-min intervals at a flow rate of

0.4 ml/min (v
�
 4.4 �m/s). The range of bead diameters is 210—297 �m,

which corresponds to a capillary number Ca�D�
�
�v

�
/
k 4.3� 10�� and

Bond number Bo�D�
�
�g/
 8.5� 10�
, where 
 is the surface tension.

The three panels from top to bottom correspond to the first drainage from

100% water saturation, imbibition from irreducible water saturation, and

second drainage from irreducible air saturation, respectively. The time

sequence of evolution is indicated by the arrows. Figure 14b shows the

resistance profiles that correspond to each of the saturations profiles. It is

evident that there are large spatial variations along the sample. However,

for a single section of the sample— for example, that indicated by the boxes

drawn in dashed lines— the variation is not too large and a meaningful

average value can be taken. Figure 15a shows how the resistivity index I
varies with S

�
for that section. A large hysteresis between drainage and

imbibition is evident but the first and second drainage yielded almost the

same result. The dotted line corresponds to n � 1.85 in Eq. (4), but offset
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Fig. 13. Schematic diagram for an experimental setup for performing conductivity

measurement during drainage and imbibition. Two syringe pumps and a set of valves

are used to maintain a constant flow rate. A uniformly spaced array of electrodes is

used to detect the variation in the sample along the flow direction. X-ray imaging

can be made simultaneously to detect the saturation gradient (from Ref. [24]).

from the data to show the slope. Without the offset, all the drainage data

points withS
�
� 0.2 would lie on the dotted line; that is, the empirical Eq.

(4) fits the data over much of the drainage cycle. This has also been observed

in studies on sandstones [13, 93]. However, deviation occurs at low satura-

tion. Figure 15b shows that if the drainage process did not pass the

threshold at S
�
 0.2, the imbibition data would follow Eq. (4) as well. This

example shows that it is important to explicitly take into account the

large-scale spatial variations and history dependence that invariably exist in

multiphase systems. Only with this additional information can we begin to

characterize the system in a meaningful way and search for a physical

understanding. X-ray imaging is used here for conductivity studies because

the presence of metallic electrodes preclude the use of magnetic resonance
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Fig. 14. (a) Saturation and (b) resistance profiles obtained on a column of glass

beads saturated with 0.5-M KI brine using the apparatus of Fig. 13. The profiles

were taken every 10 min and the distance z is measured from the top of the cell. The

three panels from the top down correspond to the first drainage, the reimbibition,

and the second drainage. The flow rate was 0.4 ml/min and the bead diameters were

in the range 210—297 �m. The total pore volume of the samples was 140 ml (from

Ref. [24]).

imaging (MRI). In Chapters 10 and 11, MRI and acoustic imaging are

shown to be useful for measuring fluid velocity distribution and relative

permeability.
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5. ACOUSTICS AND ULTRASONICS

Peter B. Nagy
Department of Aerospace Engineering and Engineering Mechanics

University of Cincinnati
Cincinnati, Ohio

5.1 The Role of Acoustics in Characterizing Porous Media

Acoustics is the science of mechanical waves, including their generation,

detection, propagation, and interaction with the elastic medium. Generally,

‘‘the term sound implies not only the phenomena in air responsible for the

sensation of hearing but also whatever else is governed by analogous

physical principles’’ [1]. Mechanical waves with frequencies below the

bottom (16 Hz) and above the top (20 kHz) of the audible range are

called infrasound and ultrasound, respectively. The main goal of this chapter

is to review the most important applications of acoustics and ultrasonics in

materials characterization for porous media. The larger the inspection

frequency, the shorter the length scale of the materials properties obtained

from these measurements. Infrasonic elastic wave propagation is used in the

closely related field of seismology, where material properties on very large

scales (hundreds of meters to hundreds of kilometers) are of interest. We

consider only relatively short-range and localized measurements ranging

from approximately 100 Hz to 1 MHz. These applications exploit the fact

that transmission of sound is strongly affected by the medium through

which it propagates. The other side of wave—material interaction—namely,

the physical effects of sound on the material— is not considered throughout

this chapter.

Originally, ultrasonic materials testing was used almost exclusively for

detecting macroscopic discontinuities in structures after they have been in

service for some time. It has become increasingly evident that it is practical

and cost effective to expand the role of ultrasonic nondestructive testing

(NDT) to include all aspects of materials production and application.

Research efforts are being directed at developing and perfecting NDT

capable of monitoring (i) material production processes; (ii) material integ-

rity following transport, storage, and fabrication; and (iii) the amount and

rate of degradation during service. In addition, efforts are underway to

develop techniques capable of quantitative discontinuity sizing, enabling
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determination of material response using fracture mechanics analysis, as

well as techniques for quantitative materials characterization to replace the

qualitative techniques used in the past. Ultrasonic techniques play a

prominent role in these developments because they afford useful and

versatile methods for evaluating microstructures and associated mechanical

properties as well as detecting microscopic and macroscopic discontinuities

in solid materials.

In homogeneous elastic solids, sound propagates either as a transversely

polarized shear wave or as a longitudinally polarized dilatational wave.

Since fluids cannot sustain elastic shear stress, only longitudinally polarized

dilatational waves can propagate in fluids. In a fluid-saturated porous solid,

there are three bulk modes: the shear wave supported by the rigidity of the

solid frame and the combined masses of the solid and the saturating fluid

and two dilatational waves, which are called the ‘‘fast’’ and ‘‘slow’’ compres-

sional waves.

Acoustic evaluation of porous materials can take advantage of some very

specific acoustic phenomena that occur only in fluid-saturated consolidated

solids of continuously connected pore strucure. Certain material properties

of the porous frame such as the degree of consolidation or grain size can be

readily evaluated from the velocity or attenuation of the shear and long-

itudinal waves in the dry skeleton or those of the fast compressional

wave in the fluid-saturated material. The common feature of these wave

modes is that the porous skeleton and the interstitial fluid move essen-

tially in phase— that is, the relative motion of the fluid within the pore

channels is relatively less important— therefore these modes are fairly

similar to the corresponding modes in nonpermeable solids. Other par-

ameters such as tortuosity; permeability; porosity; and pore size, shape,

and surface quality are inherently connected to the porous nature of the

material and can be evaluated much better from the propagation prop-

erties of the slow compressional wave and related wave phenomena.

In the slow compressional wave, the porous skeleton and the interstitial

fluid move essentially out of phase, therefore the relative motion of the fluid

within the pore channels is very important. Naturally, the slow compres-

sional wave is usually very weak due to high attenuation caused by viscous

drag between the fluid and the solid frame. In such cases, conventional

acoustic velocity and attenuation measurements of the relatively less affected

fast and shear modes can be used to characterize the porous material. In

this chapter, we focus on acoustic methods based on the primary effect

when, owing to the relatively high permeability of the porous frame, the

low-viscosity saturating fluid moves significantly within the porous skeleton

and the motion is restrained primarily by viscous forces between the two

constituents.
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5.2 Review of Acoustic Wave Propagation

Acoustics is the study of time-varying deformations or vibrations in

elastic media. It is concerned with material particles that are small but yet

contain many atoms. Within each particle, the atoms move in unison.

Therefore, acoustics deals with macroscopic phenomena and is formulated

as if matter were a continuum. Structure at the microscopic level is of

interest only insofar as it affects the medium’s macroscopic properties. When

the particles of a medium are displaced from their equilibrium positions,

internal restoring forces arise. It is these restoring forces between particles,

combined with the inertia of the particles, that lead to oscillatory motions

of the medium. To formulate a mathematical description of these vibrations,

which may be either traveling waves or localized oscillations, it is first

necessary to introduce quantitative definitions of particle displacement,

material deformation, and internal restoring forces. Detailed discussions of

the fundamental relationships governing wave propagation in elastic media

can be found in numerous textbooks (e.g., [2, 3]) and are only very briefly

summarized here.

The deformation of the continuum is described by the displacement—
strain relation. In a system of fixed rectangular Cartesian coordinates the

position vector is given as

x � e
�
x

�
� e

�
x

�
� e



x



� e

	
x
	
, (1)

where e
	
denotes the unit vector in the ith direction (in the indicial notation,

a repeated index implies summation over the values of i � 1, 2, 3). The strain

tensor 	
	


can be calculated from the displacement vector u � e
	
u
	
by the

symmetric gradient operator as follows:

	
	


� �
�
(u

	�

� u


�	
), (2)

where partial differentiation is denoted by a comma; that is, 	u
	
/	x
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	�

.

The restoring elastic forces produced by a given deformation can be

calculated from the constitutive equation describing the stress—strain rela-

tion. For a linear, homogeneous elastic material, the constitutive equation is

�
	


� C
	
)�

	
)�
, (3)

where C
	
)�

denotes the fourth-order stiffness tensor. For isotropic materials,

however, only two elements of the stiffness tensor are independent, and the

constitutive equation (Hooke’s law) simplifies to

�
	


� �	
))


	


� 2�	
	

, (4)

where � and � are the Lamé constants and 
	


is the so-called Kronecker
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delta (
	


� 1 if i � j and 
	


� 0 else). Newton’s second law states that

�
	
�


� �
	�

	t�
u
	
, (5)

where � denotes the density of the material. Here, we neglected body

force contributions to the balance of momentum as they are usually of

static nature and therefore irrelevant in acoustical problems. Finally, the

displacement—strain and stress—strain relations can be combined with the

balance of momentum equation to write the elastic wave equation as

(� � �)u

�
	

� �u
	�



� �
	�

	t�
u
	
. (6)

Plane wave solutions of the wave equation can be found in the general form

of

u � Ap exp[i(kx � �t)]. (7)

Here, A is the displacement amplitude; p denotes the polarization unit

vector; � is the angular frequency; and k denotes the wave vector, k � dk,

where d denotes the propagation unit vector. The magnitude of the wave

vector k, or wave number, is related to the phase velocity v via k � �/v.
Substitution of the preceding plane—wave solution into the wave equation

yields two different nontrivial solutions in the case of homogeneous iso-

tropic materials. These are frequency-independent (nondispersive) longitudi-

nal (dilatational) and transverse (shear) waves with phase velocities

v
�

��
� � 2�

�
(8)

and

v
�
��

�

�
, (9)

respectively. Of course, in a viscosity-free fluid (�� 0), only dilatational

waves can exist, which are also called compressional waves.

Pure longitudinal and shear plane waves are uncoupled vibrations of the

infinite elastic medium. The ratio between the shear and longitudinal wave

velocities can be expressed as

� �
v
�

v
�

��
1 � 2�

2(1 � �)�
���

, (10)
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Fig. 1. Longitudinal and shear wave modes.

where � denotes the Poisson ratio of the medium. For most materials

� 0.25—0.35 and the longitudinal velocity is roughly twice the shear wave

velocity. Propagation velocities depend on the material, and may range from

10
 to 10� m/s for most liquids and solids, while the sound velocity in air is

about 340 m/s. The basic natures of longitudinal and shear waves are shown

in Fig. 1. The longitudinal wave (also called dilatational, pressure, or

compressional wave) may exist in solids, liquids, and gases, and it is the

familiar wave of acoustic theory. We see that the particle motion is in the

same direction as the propagation direction. A shear wave (also called

transverse wave or equivoluminal wave), on the other hand, can exist only

in a solid. We see that the particle motion is at right angles, or transverse,

to the direction of propagation.

The ratio of the stress and velocity amplitudes is called the characteristic

impedance of the medium and can be expressed as the product of the density

and sound velocity; that is, Z � �v. Nearly all applications of acoustics and

ultrasonics involve the interaction of waves with boundaries. Even the most

basic studies of material properties, usually involving the velocity and

attenuation of waves, in the final analysis require accounting for boundary

interactions. The simplest situation of reflection and transmission occurs

when waves are impinging normal to the interface between two materials,

as shown in Fig. 2.
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Fig. 2. Reflection and transmission of an acoustic wave at normal incidence to a

plane boundary.

This situation can be described mathematically in terms of three

propagating waves:

u
	
� A

	
exp[i(k

�
x � �t)], (11)

u
�
� A

�
exp[i(�k

�
x � �t)], (12)

u
%
� A

%
exp[i(k

�
x � �t)]. (13)

The amplitude of the reflected and transmitted waves can be found by

noting that the displacements and stresses must be continuous at the

interface. Thus, for x � 0, it is required that

u
	
� u

�
� u

%
and �

	
� �

�
� �

%
. (14)

This leads directly to the result

R �
A

�
A

	

�
Z

�
� Z

�
Z

�
� Z

�

(15)

and

T �
A

%
A

	

�
2Z

�
Z

�
Z

�
� Z

�

. (16)

Here R and T are known as the displacement reflection and transmission

coefficients. We see that these results are in terms of the respective charac-

teristic impedances of the materials. A more general situation of reflection

and transmission of waves at an interface occurs when the incident wave

strikes at an oblique angle. A large number of possibilities exist, depending

on the combinations of solid, fluid, and ‘‘vacuum’’ for the two media and, if

the incident media is a solid, whether the incident wave is a longitudinal or
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Fig. 3. Vibration pattern produced by a Rayleigh wave propagating on the free

surface of a solid.

shear wave. Generally, mode conversion occurs; that is, an incident longi-

tudinal wave produces not only reflected and transmitted longitudinal

waves but also reflected and transmitted shear waves. A detailed discussion

of elastic wave interaction with a plane interface separating two media can

be found, for example, in Auld’s book [3].

The longitudinal and shear waves are the only two types of elastic waves

that can exist in an extended homogeneous isotropic medium. If a free

surface exists, a surface or Rayleigh wave may also propagate. Such a wave

has a complicated elliptical particle motion at the surface with an amplitude

that rapidly decays away from the surface; that is, the vibration is limited to

a shallow layer of approximately one wavelength below the surface. Figure 3

shows the vibration pattern produced by a Rayleigh wave propagating on

the free surface of a solid.

A detailed discussion of Rayleigh waves can be found, for example, in

Viktorov’s book [4]. The normalized Rayleigh wave velocity � � v
*
/v

�
can

be determined from the exact Rayleigh equation:

�� � 8�� � 8(3 � 2��)�� � 16(1 � ��) � 0. (17)

Figure 4 shows the normalized Rayleigh velocity as a function of the ratio

between the shear and longitudinal wave velocities, �. For most materials,

the Rayleigh wave velocity is between 92 and 94% of the shear velocity.

Since the Rayleigh characteristic equation cannot be explicitly solved for the

surface wave velocity, we often use the following approximate expression,

which gives the normalized surface wave velocity as a function of Poisson’s

ratio:

�
0.87 � 1.12�

1 � �
. (18)

Figure 4 also shows the results of this approximate formula.
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Fig. 4. Normalized Rayleigh velocity as a function of the ratio between the shear

and longitudinal wave velocities.

Two types of interface waves can propagate along the fluid-loaded surface

of an immersed solid; there is a true mode called a Scholte wave and a

pseudomode called a leaky Rayleigh wave. The true wave is always slower

than all the bulk waves in the solid and the fluid, and it produces evanescent

fields only as it propagates along the interface; that is, the vibration is

limited to a shallow layer on both sides of the interface. Typically, the

Scholte wave carries most of its energy on the fluid side and its velocity is

less than 1% below the compressional bulk wave velocity in the fluid. The

leaky Rayleigh wave is slightly faster than the true Rayleigh wave that

would propagate on the free surface of the same solid. This mode exists only

if the shear velocity of the solid is higher than the compressionl wave

velocity in the fluid, which is true for most ordinary solids, but not

necessarily for highly porous materials, for example, for numerous natural

rocks. The leaky Rayleigh wave velocity is lower than the shear velocity of

the solid, therefore it generates only evanescent vibrations on the solid side,

but it is higher than the compressional wave velocity in the fluid, therefore

it generates propagating waves in the fluid. Via these propagating waves, the

mode ‘‘leaks’’ energy into the fluid as it propagates along the interface

therefore it becomes strongly attenuated.

Only one true interface wave, the so-called Stoneley wave, can propagate

along the plane interface separating two solid half-spaces [5]. This mode

exists only for certain combinations of materials properties [6] and its
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velocity always lies between the Rayleigh and shear velocities of the denser

medium.

In ideal homogeneous, elastic media the already reviewed bulk, surface,

and interface waves are all dispersion free. Dispersion means that the

propagation velocity is frequency dependent. In the case of dispersive wave

propagation, the phase relation between the spectral components of a

broadband signal varies with distance, therefore the pulse shape becomes

distorted and generally widens as the propagation length increases. There

are two main causes for dispersive wave propagation of acoustic waves.

First is inherent material behavior such as relaxation in polymers, which is

best described by a characteristic time constant. In porous materials, viscous

fluid flow through the pore channels often results in such effects. In these

cases, the degree of dispersion is generally rather weak and the dispersion is

dependent on the ratio of the relaxation time constant to the time period of

the ultrasonic vibration. Second, geometrical and size effects can cause a

completely different type of dispersion even in specimens made of ideal

homogeneous, elastic materials. Guided waves in thin plates and rods are

typical examples of such geometrical dispersion. In this case, the degree of

dispersion can be very high and it is dependent on the ratio of the

specimen’s characteristic dimension (e.g., plate thickness or rod diameter) to

the acoustic wavelength.

Plates and rods are often used in laboratory tests to characterize porous

solids. In low-frequency vibration measurements, the resonance frequencies

and damping factors of the specimen can be accurately measured and

evaluated for the sought for materials properties. In high-frequency acoustic

and ultrasonic measurements, wave propagation properties such as disper-

sion and attenuation are measured and used to assess the same properties.

In this case, the measured dispersion is mainly determined by the smallest

characteristic dimension of the specimen.

Dispersive guided waves propagating in plates are called Lamb modes.

The modes are classified as symmetric or asymmetric depending on whether

the in-plane vibration components of the particles are identical or opposite

on the two sides of the plate. Figure 5 shows the vibration pattern produced

by the lowest-order symmetric (a) and asymmetric (b) Lamb waves in a

plate. Guided wave modes can also propagate in rods. There are three types

of modes that can propagate along a rod of circular cross section: (i) axially

symmetric longitudinal wave modes, which involve both radial and axial

displacements that do not depend on the azimuthal angle; (ii) torsional wave

modes, which involve circumferential displacement only that also does not

depend on the azimuthal angle; and (iii) flexural modes, which involve

radial, axial, and circumferential displacements that do depend on the

azimuthal angle. At low frequencies, when the acoustic wavelength is much
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Fig. 5. Symmetric (a) and asymmetric (b) Lamb waves in a thin plate.

higher than the rod radius, only the lowest-order of each mode can

propagate. The zeroth-order axisymmetric longitudinal wave propagates at

a phase velocity of v
�

� �E/�, where E denotes Young’s modulus. Due to

the Poisson effect, this velocity is significantly lower than the longitudinal

velocity in the same material and further decreases with increasing fre-

quency. The lowest-order torsional mode is not dispersive and propagates

with the shear wave velocity of the bulk material. The lowest-order flexural

mode propagates at a very low phase velocity that can be approximated as

v�a�v
�
/2. At low frequencies, the velocity of the lowest-order flexural

mode is also determined by Young’s modulus through v
�

and the mode is

strongly dispersive.

5.3 Acoustic Wave Propagation in Fluid-Saturated
Porous Materials

The previously reviewed laws of acoustic wave propagation were postu-

lated for homogeneous continua. Their adaptation to permeable porous

media is rather difficult because of three major complications. First, porous

media are inherently two-phase materials consisting of a solid skeleton and

a gas or liquid phase that can flow through the pore channels. Second,

fluid-saturated porous media are intrinsically composite in nature, where

coupling between the solid and fluid must be accounted for. In the simpler

case of air-saturated porous media, the density and stiffness differences

between the fluid and the solid phases are so large that this coupling might
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be neglected, but in the case of liquid-saturated porous solids, the effect is

usually very significant. Finally, most porous media are inherently highly

heterogeneous with a random structure that can be described only statisti-

cally. Modeling of acoustic wave propagation in porous materials must

always balance carefully between the rigor of the description and the

complexity of the resulting model. Only a couple of monographs are

dedicated solely to the problem of acoustics of porous media [7—10], while

most of the relevant literature is distributed in numerous research papers.

In the following, we review the most basic aspects of acoustic wave

propagation in fluid-saturated porous media.

The most interesting feature of acoustic wave propagation in fluid-

saturated porous media is the appearance of a second compressional wave,

the so-called slow wave. The existence of a slow compressional wave in an

isotropic and macroscopically homogeneous fluid-saturated porous medium

was predicted by Biot in 1956 [11, 12]. The main characteristic of this mode

is that its velocity is always lower than both the compressional wave velocity

in the fluid and the longitudinal velocity in the solid frame. Below a critical

frequency, which depends on the pore size in the frame and the viscosity of

the fluid, the slow compressional wave is highly dispersive and strongly

attenuated over a single wavelength. Above this critical frequency, it

becomes a dispersion-free propagating wave with increasing but fairly low

attenuation. The slow compressional wave represents a relative motion

between the fluid and the solid frame. This motion is very sensitive to the

viscosity of the fluid and the dynamic permeability of the porous formation.

Naturally, low-viscosity liquids such as water are the fluids most often used

in experimental studies of slow wave propagation. We see in this chapter,

however, that it also makes good sense to use gaseous fluids such as air to

saturate the porous specimens.

Since 1980, when Plona was able to observe slow wave propagation in

water-saturated porous ceramics [13], the question of why slow waves

cannot be detected in low-permeability materials such as natural rocks has

been one of the major issues in the acoustics of fluid-saturated porous

materials. Klimenatos and McCann [14] showed that this lack of perceiv-

able slow wave propagation is probably due to inherent internal impurities,

such as submicron clay particles, found in all types of natural rocks. These

clay particles, deposited both within the pore throats and on the surfaces of

the rock grains, greatly increase viscous drag between the fluid and solid

frame, which results in excessive attenuation and usually complete disap-

pearance of the slow wave. The excess viscous drag explains the difficulty in

detecting the slow wave in fluid-saturated rocks as well as the observed

correlation between ultrasonic attenuation and clay content in sandstones.

One way to reduce the excessive attenuation of slow waves in porous
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materials is to use special fluids of very low viscosity to saturate the

specimen. For instance, superfluid �He below 1.1 K has been shown to work

very well in fused glass bead samples [15], in superleak materials consisting

of compacted powders [16, 17], and in sandstones [18]. Compared to the

solid frame, liquids such as water usually have a lower, but still comparable

density �
�

and bulk modulus K
�
. Although their viscosity � is also relatively

high, which makes saturation of the porous sample somewhat troublesome,

their kinematic viscosity �/�
�

is fairly low. On the other hand, gaseous fluids

such as air have very low density, bulk modulus, and viscosity, while their

kinematic viscosity is usually rather high. Therefore, it is very simple to

saturate a porous sample by air, but the slow wave is expected to be highly

dispersive and strongly attenuated. In spite of these adverse effects, slow

waves can be readily observed in air-filled porous samples, including certain

natural rocks, using airborne ultrasonic waves [19].

5.3.1 Sound Propagation in Air-Filled Porous Materials with Rigid Frames

Generally, sound propagation in fluid-saturated porous materials is

strongly affected by acoustic coupling between the solid skeleton and the

interstitial fluid. In the case of air saturation, however, even highly flexible

materials such as fibrous polymers can be considered as rigid frames with

respect to the saturating fluid (rare exceptions are discussed in Chap. 6 of

Ref. [9]). Assuming viscous flow through the connected pores of a motion-

less skeleton greatly simplifies the acoustical problem, but there is also an

additional complication with respect to the case of liquid-filled porous

materials. In air-filled porous materials, thermal losses associated with heat

conduction between the saturating fluid and the solid frame are not entirely

negligible and must be incorporated into the wave propagation model.

Based on Kirchhoff’s theory of sound propagation in cylindrical tubes,

Zwikker and Kosten [7] developed a simple method in which viscous and

thermal effects are treated separately and incorporated in the frequency-

dependent complex density �� (�) and bulk modulus K� (�) of the fluid,

respectively. For the simple case of air-saturated permeable solids contain-

ing cylindrical pores of circular cross section, the equation of motion can be

exactly solved by assuming that the velocity of the fluid in contact with the

motionless cylindrical wall must vanish. The average fluid velocity v� within

a single pore satisfies the familiar equation of motion

�
	p
	x

� i��� v� , (19)
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where 	p/	x is the fluid pressure gradient and � is the angular frequency.

The complex density �� includes the effect of viscosity

�� (�) �
�
�

1 � t(�)
. (20)

Here, �
�

is the real-valued fluid density and t is a simple form function:

t(�) �
2J

�
(��i �)

��i �J
�
(��i �)

, (21)

where J
�

and J
�

are the zeroth- and first-order Bessel functions and

i���1 is the imaginary unit. The normalized pore size for circular cross

sections is

� � a[��
�
/�]���, (22)

where a denotes the actual pore radius and � is the viscosity of the fluid.

Similarly, the equation of thermal conduction can be also exactly solved

for cylindrical pores of circular cross section by requiring that the tempera-

ture of the fluid in contact with the frame be constant. The average

compression 	� in the pore fluid satisfies the familiar constitutive relation for

fluids:

	� K� � p. (23)

The complex bulk modulus K� includes the effect of heat conduction in air:

K� (�) �
K

�
1 � (
 � 1)t(P����)

. (24)

Here, K
�

is the real-valued bulk modulus of the fluid, 
 denotes the specific

heat ratio, and P is the Prandtl number. For air at room temperature,


 1.4 and P 0.74, while the adiabatic bulk modulus can be calculated

from the atmospheric pressure p
�
 1� 10� Pa as K

�
� 
p

�
 1.4� 10� Pa.

Zwikker and Kosten’s model can be used to determine both the complex

wave number k and the complex acoustic impedance Z in the fluid-saturated

porous solid as follows:

k(�) � �[�� (�)/K� (�)]��� (25)

and

Z(�) �
1

�
[�� (�)K� (�)]���, (26)

where � denotes the connected porosity.
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For the purposes of materials characterization, these acoustical param-

eters must be related to macroscopic properties of interest such as perme-

ability and porosity. For a porous material having n cylindrical pores of

radius a per unit area of cross section, the porosity is � � n�a� and the static

permeability can be calculated from

�
�

�
a��

8
. (27)

For parallel cylindrical holes, Eq. (22) can be rewritten as

� ��
8�

�
��

�
�� �

���
. (28)

In Eq. (28), we can recognize the flow resistivity � � �/�
�

of the permeable

solid for the given saturating fluid.

Very similar results can be obtained for porous materials having prismatic

pores of other regular geometries such as triangular, rectangular, and

hexagonal cross sections [20, 21]. In spite of the very different geometries of

these cross sections, the corresponding exact solutions can be shown to give

form functions with rather similar functional dependence on the principal

macroscopic material parameters and frequency. Therefore the preceding

results for cylindrical pores can be generalized by using the form function

given by Eq. (21) for arbitrary cross sections with an equivalent normalized

pore radius:

� � c �
8�

�
��

�
�� �

���
, (29)

where c is an appropriate shape factor. Of course, for a circular cross

section, c is unity. The advantage of the universal approximation of Eq. (29)
is that the shape factor turns out to be close to unity for a great number of

different geometries. For example, for a narrow slit, a square, and an

equilateral triangle, the shape factor is respectively 0.82, 1.07, and 1.14.

The preceding results can be further generalized for porous materials

having prismatic pores of oblique orientation. Let us denote the angle

between the axes of the pores and the pressure gradient producing the fluid

flow through the porous solid by �. For a porous material having n
cylindrical pores of radius a per unit area of cross section, the porosity is

� � n�a�/cos� ; that is, inversely proportional to the direction cosine of the

pores. Equation (19) can be used only if the complex density previously

given by Eq. (20) is also modified to account for the reduced pressure

gradient along the pore direction and the reduced flow velocity component
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parallel to the direction of the macroscopic pressure gradient:

�� (�) �
k
�
�
�

1 � t(�)
, (30)

where 1/cos� � � k
�

is called the structure form factor. The frequency-

dependent complex bulk modulus K� (�) can be still calculated from Eq. (24),
as the compressibility is not affected by the pore orientation. The static

permeability also decreases with respect to the case of pores aligned parallel

to the pressure gradient (� � 0) and Eq. (27) becomes

�
�

�
a��
8k

�

. (31)

With this generalization, Eq. (29) can be rewritten to calculate the equival-

ent normalized pore radius for oblique pore channels as follows:

� � c �
8k

�
�

�
��

�
�� �

���
. (32)

For real porous materials of random pore geometry, there are no

corresponding exact solutions. Based on the apparently universal nature of

Eqs. (24) and (30) combined with the equivalent normalized pore radius

of Eq. (32), Attenborough suggested that the same formulas could be

used to approximate the complex density and bulk modulus of porous

materials having random pore geometries with an appropriate choice of the

normalized pore size [22, 23]. The normalized pore radius should be

calculated as

� ��
2k

�
�

�
��

�
��s�

�
�

���
, (33)

where s
�

is the so-called pore shape factor ratio, which is usually between

0.1 and 0.5. Again, the complex density and bulk modulus can be calculated

from Eqs. (30) and (24), respectively. By comparing Eqs. (32) and (33) we

can verify that Attenborough’s approximate model for random porous

media gives identical results to those of the previously discussed generalized

model for prismatic pores of oblique orientation if the relevant pore shape

factors are related through c � 1/(2s
�
).

A more rigorous generalization of these analytical models can be achieved

by the so-called dynamic permeability model of Johnson et al. [24]. Equa-

tion (19) can be shown to be exactly valid for steady flow of inviscid fluids

(�� � k
�
�
�
):

�
	p
	x

� i�k
�
�
�
v� (34)
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in any porous material of random pore structure if the form factor is defined

as follows [24]:

k
�

�
�v�

�
�

�v
�
��

. (35)

Here v
�

denotes the microscopic velocity distribution in the pores and the

angle brackets indicate spatial averaging over a pore volume containing

several pores. Clearly, the structure form factor is a purely geometrical

parameter of the solid skeleton alone. For viscous fluids, Eq. (34) is valid

only at very high frequencies. However, this limitation can be formally

removed by introducing �� (�) � �� (�)�
�

as follows:

�
	p
	x

� i��
�
�� (�)v� , (36)

where �� (�) is called the frequency-dependent dynamic tortuosity. The

high-frequency asymptotic limit of the complex tortuosity is equal to the

structural form factor as defined in Eq. (35); that is,

lim


��
�� (�) � �

�
� k

�
. (37)

It has been shown that �
�

can be measured in permeable solids of random

pore structure by the electric conductance method [25]. The dynamic

permeability can be defined by

�v� � �
�� (�)

�

	p
	x

. (38)

A comparison with Eq. (36) reveals that �� (�) is related to the frequency-

dependent dynamic tortuosity �� (�) via

�� (�) �
��

i��
�
�� (�)

. (39)

The previously used static permeability �
�

is the real-valued low-frequency

limit of this dynamic permeability.

To simplify the relationship between the acoustic parameters of fluid-

saturated porous solids of rigid skeleton, Johnson et al. [24] introduced a

characteristic dimension � of the pore channels by using the microscopic

fluid velocity distribution without viscosity v
	
(r) as follows:

� �

2 �
+

v�
	
(r) dV

�
�

v�
	
(r) dA

. (40)
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The integrals in the numerator and the denominator are carried out over

the pore volume V and pore surface A, respectively. Thus, � is a character-

istic size calculated as the weighted volume-to-surface ratio of the pores,

which depends on the shape of the pore. Like the tortuosity �
�
, the

characteristic pore size � is independent of fluid properties and can be

deduced from the attenuation of the sound measured at very high frequen-

cies or, alternatively, using superfluid �He saturation.

The concept of viscous characteristic dimension was subsequently

adapted to the complex bulk modulus of air at high frequencies to account

for thermal losses by Champoux and Allard [26, 27]. At high frequencies,

the temperature is constant over the pore’s cross section except in a narrow

layer at the pore wall where it changes exponentially. The thermal charac-

teristic dimension �� is defined by

���
2V

A
, (41)

that is, ��/2 is the actual volume-to-surface ratio of the pores without any

weighting.

For cylindrical pores, both characteristc lengths are equal to the pore

radius. For other cross sections, the previously introduced shape factor c can

be used to relate the characteristic dimensions to macroscopic material

parameters such as porosity �, static permeability �
�
, and high-frequency

tortuosity �
�

. The viscous characteristic length can be written as

� �
1

c �
8�

�
�

�
� �

���
. (42)

Similarly, the thermal characteristic length can be given as

���
1

c� �
8�

�
�

�
� �

���
. (43)

where c� is a second shape factor that must be smaller or equal to c.
Johnson et al. [24] suggested a heuristic model for the dynamic density

in terms of the characteristic dimension

�� � �
�
�

� �1 �
��

i2�
�
�

�
�1 �

i8��
�
��

�
������

���

� , (44)

where  � (2�/�
�
�)��� is the viscous skin depth. In an analogous fashion,

the dynamic bulk modulus can be expressed with the thermal characteristic

dimension as [26]

K� �
K

�
� � (� � 1)/[1 � (4��/i���P)(1 � i���P/8��)���]

. (45)
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Fig. 6. Comparison between experimental results (symbols) and theoretical predic-

tions (solid lines) of the dynamic tortuosity and normalized dynamic bulk modulus

for a porous ceramic. The theoretical curves were calculated by using Eqs. (42)—(45).
Reprinted with permission from Y. Champoux and J. F. Allard, J. Appl. Phys. 70,

1975—1979 (1991).

Figure 6 shows a comparison between experimental results and theo-

retical predictions of the dynamic tortuosity �� (�) � �� (�)/�
�

and normalized

dynamic bulk modulus K� (�)/p
�

for a porous ceramic [26]. The experimen-

tal technique is described later in the next section.

The dynamic bulk modulus is normalized in this way to demonstrate that

its low-frequency limit is the isothermic rather than adiabatic bulk modulus

of air, that is, p
�
. The independently measured values of the physical
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Fig. 7. Schematic diagram of acoustic reflection measurement in the Kundt tube.

parameters used in the calculations were ��0.432, �
�

�1.7, and ���/�
�

�

44.500 N · s/m�. The shape factors were chosen as c � 1.563 and c�� 0.746

by best fitting the analytical results to the experimental data. The corre-

sponding characteristic dimensions are � 75 �m and �� 150 �m. The

significant difference between these dimensions is due to the fact that viscous

losses are dominated by the smallest cross sections (i.e., pore throats), while

thermal losses are associated with the largest pore dimensions.

5.3.1.1 Experimental Techniques. Acoustic characterization of mater-

ial properties of air-filled permeable porous materials is usually based on

impedance measurements in reflection mode. At ultrasonic frequencies,

through-transmission measurements are also feasible to determine the sound

velocity and attenuation in the material. These two techniques are discussed

separately.

5.3.1.2 Acoustic Impedance Measurements. The basic principle of

acoustic impedance measurement in a so-called Kundt tube is shown in

Fig. 7. A loudspeaker generates a plane wave in a tube that is terminated by

the porous specimen to be characterized. The reflection coefficient is

determined from the sound pressure measured at different points along the

tube with a moving probe or with several fixed ones [28—30]. The acoustic

impedance then can be easily calculated from the measured reflection

coefficient.

The acoustic pressure in the tube can be written as

p(x) � A exp(ik
�
x) � RA exp(�ik

�
x), (46)

where A is the complex amplitude of the incident wave, R denotes the

reflection coefficient of the specimen, k
�

� �/v
�

is the acoustic wave number

in air, and x denotes the distance from the surface of the specimen. By

measuring the pressure at two different distances from the surface, the
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Fig. 8. Schematic diagram of the modified system capable of simultaneous specific

impedance and transfer function measurements.

reflection coefficient can be obtained from

R �
p(x

�
) exp(ik

�
x

�
) � p(x

�
) exp(ik

�
x

�
)

p(x
�
) exp(�ik

�
x

�
) � p(x

�
) exp(�ik

�
x

�
)
. (47)

Assuming that the transmitted energy is absorbed in the porous material

without any significant reflection from the back wall of the specimen, this

reflection coefficient is determined by the characteristic impedance of the

specimen Z and that of air Z
�

� (
p
�
�
�
)���:

R �
Z � Z

�
Z � Z

�

. (48)

Equations (47) and (48) can be solved for the unknown impedance of the

specimen as

Z � iZ
�

p(x
�
) sin(k

�
x

�
) � p(x

�
) sin(k

�
x

�
)

p(x
�
) cos(k

�
x

�
) � p(x

�
) cos(k

�
x

�
)
. (49)

The thereby determined characteristic impedance of the porous specimen

is related to the frequency-dependent dynamic density and modulus via

Eq. (26).
The characteristic impedance and propagation constant become much

more difficult to measure for porous materials of high flow resistivity.

Ideally, the specific (surface) impedance of the sample as well as its transfer

function along its length must be measured. Figure 8 shows a schematic

diagram of the modified system capable of simultaneous specific impedance

and transfer function measurements [31].
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Assuming that the acoustic attenuation over the finite length l of the

specimen is not too high, the specific or surface impedance Z
�

of the

specimen is different from the characteristic impedance Z and can be

calculated according to the waveguide equation

Z
�

� Z
Z

�
� Z tanh(kl )

Z � Z
�
tanh(kl )

, (50)

where Z
�

denotes the input impedance of the backing cavity of length d :

Z
�

� �i�
�
v
�
cot(k

�
d). (51)

Here v
�
, �

�
, and k

�
denote the sound velocity, density, and wave number,

respectively, in air. The specific impedance is measured by the tube micro-

phones a and b in the previously described conventional way. The transfer

function H is measured by comparing the signal of microphone b directly in

front of the specimen to that of microphone c behind the specimen, that is,

H � p
�
/p

�
. After compensating for the phase shift caused by the inevitable

small distance between these microphones and the specimen, the character-

istic impedance Z and the wave number k can be separately determined

from Z
�

and H [31]. In practice, all three microphones will have slightly

different frequency responses, therefore they must be calibrated against each

other after removing the specimen. This method, which was used by

Champoux and Allard [26] to obtain the experimental data previously

shown in Fig. 6, works very well in the 100 Hz to 4 kHz frequency range on

as large as 8-cm-long specimens of higher than 50 darcy (D) permeability.

5.3.1.3 Ultrasonic Measurements. Impedance measurements based on

the described reflection technique are usually done in the 10-Hz to 10-kHz

frequency range. In low-permeability porous materials, the wave propaga-

tion is essentially diffuse and both the characteristic impedance and wave

number are determined by the same properties of the medium. Through-

transmission measurements are also feasible at higher frequencies where the

attenuation of the wave is low enough to enable penetration depths of many

wavelengths. Transmission measurements through porous specimens of

lower permeability such as natural rocks can be done in the 10-kHz to

1-MHz ultrasonic frequency range [19, 32]. Figure 9 shows a block diagram

of the experimental system used to characterize porous materials by acoustic

wave transmission in the ultrasonic frequency range between 10 kHz and

500 kHz. The transmitter is driven by a tone burst of a few cycles. The

received signals with and without the specimen placed between the trans-

ducers are digitally stored. The computer selects the first five cycles of the

signal, from which it determines the insertion loss L
	
and insertion delay t

	
.

The thickness of the specimen is usually varied between 1 and 5 mm to
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Fig. 9. Block diagram of the experimental system used to characterize porous

materials by acoustic wave transmission in the ultrasonic frequency range between

10 kHz and 500 kHz. Reprinted with permission from P. B. Nagy, J. Acoust. Soc.
Am. 93, 3224—3234 (1993).

accommodate different permeabilities over the widest possible frequency

range. Because of the very high attenuation in low-permeability specimens,

resonance peaks in the transmission are generally very weak but sometimes,

especially at lower frequencies, faintly visible.

Because of the tremendous acoustical mismatch between the incident

compressional wave and the porous solid, all the incident energy is either

reflected or transmitted via the slow wave without generating appreciable

fast compressional or shear transmitted waves. In spite of the excellent

coupling between the incident compressional wave and the transmitted slow

wave, slow waves cannot propagate in air-saturated porous samples as

easily as in water-saturated ones [33]. Since the kinematic viscosity of air is

so large and the velocity of sound so small, there is only a very narrow

frequency window where the attenuation coefficient is sufficiently low to

observe a more or less dispersion-free, scattering-free slow wave. This

‘‘window’’ is set by the conditions that the viscous skin depth �(2�/�
�
�)���

be less than the pore size a
�

and, simultneously, the wavelength � be larger

than the grain size a
�
. It can be shown that in typical air-filled porous

specimens there is usually no frequency window where more or less
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dispersion-free and attenuation-free slow wave propagation can be expected.

However, strongly dispersive and attenuated slow wave propagation can be

observed over a much larger ultrasonic frequency range [19].

In the low-frequency diffuse regime, where transmission-type measure-

ments are not feasible because of the very high attenuation coefficient, we

must determine the complex characteristic impedance from reflection-type

measurements. In the high-frequency propagating regime, we can use

through-transmission measurements to determine the velocity and attenu-

ation coefficient of the slow compressional wave. Even then, but especially

in the transition region between the diffuse and propagating regimes, one

must take into account the total transmission loss T
�

caused by the

significant acoustical impedance mismatch between the air and the air-filled

specimen:

T
�
(�) �

4

2 � Z(�)/Z
�

� Z
�
/Z(�)

. (52)

At very high frequencies, the dynamic density and bulk modulus given in

Eqs. (44) and (45) approach �� �
�
�

�
and K� K

�
, respectively. From Eqs.

(25) and (26) the sound velocity and characteristic impedance then can be

approximated respectively as v v
�
/��

�
and ZZ

�
��

�
/� so that the

total transmission loss can be written as follows:

T
�
 T

,
�

4

2 � ����
�

/� � �/����
�

. (53)

For example, for � � 0.3 and �
�

� 1.79, the transmission loss 20 log
��

T
�


�4.5 dB. By taking the high-frequency limits, we inevitably underestimate

the total transmission loss and, consequently, slightly overestimate the

attenuation coefficient. Also, because of the phase shift caused by the

complex nature of T
�
(�), we slightly underestimate the slow wave velocity

in samples of small thickness. To achieve better agreement between the

experimental measurements and theoretical calculations, we can correct our

analytical results for the difference between the actual transmission loss

T
�
(�) and its real valued asymptote T

,
[32]. The normalized velocity and

attenuation coefficient are then directly calculated from the actually mea-

sured insertion loss L
	
and insertion delay t

	
of airborne ultrasonic waves

through thin slabs of porous materials.

Figure 10 shows an example of the comparison between theoretical and

experimental results for a grade 55 porous glass specimen of �
�
 11 D [32].

Generally, there is a good agreement between the theoretically predicted and

experimentally measured slow wave velocities. For the attenuation coeffi-

cient, the agreement is less perfect. Figure 11 shows a comparison between
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Fig. 10. Example of the comparison between theoretical and experimental results

for a grade 55 porous glass specimen of �
�
 11 D. Reprinted with permission from

P. B. Nagy, J. Acoust. Soc. Am. 93, 3224—3234 (1993).

the theoretical and experimental results for grades 40 through 175. As the

pore size is gradually increased, viscous losses decrease, while scattering

losses become stronger. At first only at higher frequencies (grades 40 and

55), then throughout the whole frequency range (grades 90 and 175), the

experimentally observed attenuation coefficient significantly overshoots the

theoretical prediction and approaches a linear asymptote (dashed lines in

Fig. 11). Similar excess attenuation was also observed in a very high

porosity (98%) air-filled absorbent above 300 kHz by Leclaire et al. [34]. In

this frequency region, the scattering-induced attenuation plays an important

role in the total attenuation in these samples. For example, the diameter of

the sintered glass beads in porous glass grade 175 is d
�
 600 �m; that is,

kd
�
� 1 above 60 kHz.

The same ultrasonic technique can be also adapted to the characterization

of porous natural rocks of permeability between 100 mD and 1 D. Basically,

the results are fairly similar to those obtained for synthetic materials,

although the scatter of the data is usually larger due to inherent macro-

scopic inhomogeneities found in most natural rocks. Figure 12 shows the

normalized slow wave velocity and attenuation coefficient in a 2.1-mm-thick

Sunset Blush Massillon sandstone specimen of � � 15% porosity and

�
�

� 600 mD permeability [32]. The tortuosity was determined by best-

fitting the theoretical curve to the measured experimental velocity data as

�
�

� 2.8. Again, the experimentally measured velocity agrees quite well with

the analytical results, while the attenuation exhibits higher than predicted

attenuation and more of less linear frequency dependence.

5.3.1.4 Slow Wave Imaging. At ultrasonic frequencies, the observed

acoustic attenuation in porous materials is usually dominated by viscous

losses, but elastic scattering can also contribute. Probably the most basic
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Fig. 11. Slow wave attenuation coefficient as a function of frequency for four

different grades of air-filled cemented glass bean specimens. Symbols are experimen-

tal data, solid lines are theoretical curves, and dotted lines are linear asymptotes.

Reprinted with permission from P. B. Nagy, J. Acoust. Soc. Am. 93, 3224—3234

(1993).

difference between viscous and elastic scattering is exhibited through their

substantially different effect on the total acoustic energy carried by the slow

compressional field. Viscous and thermal losses directly reduce the total

acoustic energy by dissipation into heat. On the other hand, elastic or

geometrical scattering simply converts the well-collimated coherent acoustic

wave into a diffusely propagating incoherent wave without reducing the

total acoustic energy. One way to differentiate between viscous and elastic

scattering is by considering the frequency dependence of the total field at

any particular point. In the case of viscous scattering, a dark spot of higher

than average attenuation remains highly attenuated at all frequencies as the

signal becomes progressively weaker with increasing frequency. In compari-
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Fig. 12. Normalized slow wave velocity and attenuation coefficient in a 2.1-mm-

thick Sunset Blush Massillon sandstone specimen. Reprinted with permission from

P. B. Nagy, J. Acoust. Soc. Am. 93, 3224—3234 (1993).

son, in the case of elastic or geometrical scattering, a dark spot is generally

due to destructive interference between otherwise strong incoherent compo-

nents. The same spot often becomes brighter or less attenuated at higher

frequencies, where the previously destructive interference changes to con-

structive one, a clear sign of dominantly incoherent transmission, which

cannot happen in the case of viscous scattering. Whenever the attenuation

is dominated by viscous losses, localized attenuation measurements can be

used to obtain a map of the specimen, which corresponds to the perme-

ability distribution of the porous formation.

Such imaging experiments were conducted in a number of synthetic

materials and natural rocks [35, 36]. The irregularly shaped pore channels
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Fig. 13. Slow wave image of a 1- � 2-in., 1.1-mm-thick Berea sandstone sample of

400 mD average permeability at 210 kHz. Reprinted with permission from P. B.

Nagy, B. P. Bonner, and L. Adler, Geophys. Res. L ett. 22, 1053—1056 (1995).

and the macroscopic inhomogeneity of the porous frame result in a

highly uneven flow pattern, which increases the viscous losses and effec-

tively decreases the dynamic permeability of the material. In slow wave

imaging, both transmitter and receiver transducers must be equipped

with special Plexiglas lenses that focus the ultrasonic beams to the plane

of the thin specimen to be inspected to assure close to diffraction limited

lateral resolution. Figure 13 shows the slow wave image of a 1.1-mm-thick

Berea sandstone slice of 400 mD average permeability with a horizontal

crack (bright stripe) close to the bottom part. Figure 14 shows the slow

wave image of a 2.5-mm-thick Massillon sandstone sample of 600 mD

average permeability at 140 kHz. This specimen exhibits a rather uneven

attenuation distribution with a very distinct dark stripe running in a more

or less vertical direction on the left side of the picture. This feature was

identified as a highly consolidated streak of low-porosity material. This kind

of layered behavior is fairly typical to natural rock specimens. As a further

example, Fig. 15 shows the slow wave image of a Massillon sandstone

specimen of 600 mD permeability at 85 kHz with a characteristic stitching

pattern formed by low-permeability areas. Slow wave imaging directly

measures the transport properties of the permeable material and requires no

inherent postprocessing at all. Of course, the evaluation of these slow wave

images in terms of meaningful geophysical material parameters requires

further studies of the contrast mechanism as well as extensive comparison

of the acoustic pictures with other conventional images to better interpret

the data.
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Fig. 15. Slow wave image of a 2.4-� 2.4-in. Massillon sandstone sample of 600 mD

average permeability at 85 kHz. Reprinted with permission from P. B. Nagy, B. P.

Bonner, and L. Adler, Geophys. Res. L ett. 22, 1053—1056 (1995).

Fig. 14. Slow wave image of a 2.2-� 2.2-in., 2.5-mm-thick Massillon sandstone

sample of 600 mD average permeability at 140 kHz. Reprinted with permission from

P. B. Nagy, B. P. Bonner, and L. Adler, Geophys. Res. L ett. 22, 1053—1056 (1995).
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5.3.1.5 Pressure Dependence. The total attenuation of slow waves

through air-filled permeable solids can be attributed to absorption and

scattering effects. As we have seen before, the absorption loss is mainly due

to viscous friction and partly to thermal effects. Generally, the viscous loss

is a function of the pore size as measured by the viscous skin depth.

Similarly, the usually lower thermal loss is a function of the pore size, as

measured by the relevant yardstick: the diffusion length in the gas. In the

previously discussed models, these losses are separately accounted for in the

complex density and bulk modulus of the material. In most cases, the

inspection frequency is chosen to be low enough (below 5 kHz) to neglect

scattering losses. However, in pursuit of better imaging resolution, it is

usually necessary to increase the inspection frequency well above the

scattering limit, therefore we must either eliminate or account for the

additional scattering losses in our measurements. The scattering loss is

another function of the pore size, as measured by the relevant yardstick: the

acoustic wavelength. It is well known that the viscosity, thermal conductiv-

ity, and sound velocity of gases are all independent of pressure and are

functions of temperature only. Therefore, the viscous skin depth and

diffusion length are strongly pressure-dependent because they are inversely

proportional to the square root of density. In comparison, the acoustic

wavelength is independent of pressure. As a result, absorption losses are also

pressure-dependent, while scattering losses are not [37]. Although the exact

pressure dependence of the absorption loss is not known generally, certain

assumptions can be made. In a wide range of applications, both the low-

and high-frequency absorption coefficients are proportional to the square

root of the kinematic viscosity �/�
�

of the gas, therefore the absorption is

expected to be inversely proportional to the square root of pressure. The

pressure dependence of the total attenuation is then of the form �
����

�

�
�
p� � �

�
, where �

�
is the absorption loss at unit pressure, �

�
is the constant

scattering loss, and the power n is close to �0.5.

Figure 16 shows the slow wave attenuation coefficient as a function of air

pressure for four different grades of air-filled porous glass specimens at

350 kHz. The frequency-dependent attenuation of these specimens at ambient

pressure was previously shown in Fig. 11. Symbols are experimental data and

the solid lines are best-fitting polynomials of the form of �(p) � �
�
� �

�
p����.

There is a very good fit between the experimentally observed pressure

dependence of the slow wave attenuation and the best-fitting polynomial

with the inverse square root pressure term. If we fit the data by a more general

polynomial containing an arbitrary power of pressure the best fitting

parameter turns out to be ��
�

within the statistical error.

The �
�
of the best-fitting polynomial represents the experimentally deter-

mined absorption coefficient for p � 1 atm, that is, at atmospheric pressure.

On the other hand, �
�

can be regarded as the experimentally determined

189ACOUSTIC WAVE PROPAGATION IN FLUID-SATURATED POROUS MATERIALS



Fig. 16. Slow wave attenuation coefficient as a function of air pressure for four

different grades of air-filled cemented glass bead specimens at 350 kHz. Reprinted

with permission from P. B. Nagy and D. L. Johnson, Appl. Phys. L ett. 68, 3707—3709

(1996).

scattering coefficient, which is independent of pressure. Figure 17 shows the

total attenuation coefficient and its absorption component for four grades

of air-filled porous glass specimens as determined from the best-fitting

polynomial. For both low and high frequencies, the functional dependence

of the theoretical absorption coefficient on the principal material properties

can be summarized as �
�
� ���/�

�
�

�
, where �

�
denotes the static perme-

ability of the frame [32]. Without varying the air pressure, we must rely on
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Fig. 17. Comparison between measured and calculated attenuation coefficients for

four different grades of air-filled porous glass bead specimens at 350 kHz. Reprinted

with permission from P. B. Nagy and D. L. Johnson, Appl. Phys. L ett. 68, 3707—3709

(1996).

the measured total attenuation coefficient, which correlates very poorly with

the theoretical absorption coefficient calculated from the permeability of

the material. Clearly, the absorption coefficient, as determined from the

pressure-dependent component of the measured total attenuation, correlates

much better with the theoretical prediction. In coarse-grain materials, only

the thereby determined absorption coefficient can be regarded as a reliable

measure of dynamic permeability. The significant excess attenuation ob-

served in the two largest grades appears to be mainly due to scattering as

indicated by the weak pressure dependence of the total loss.

The already demonstrated pressure dependence can be exploited to

further enhance the slow wave inspection method for air-saturated porous

solids. In particular, using high-pressure air as the saturating fluid can

significantly expand the applicability of the technique. For slow wave

propagation, an ideal saturating fluid should really have physical properties

somewhere between those of water and air so that the viscous losses would

be low, but the fluid motion still would not cause significant vibrations in

the frame. Although there is no such natural fluid, ordinary high-pressure

air combines the best of both worlds. Figure 18 shows the measured slow

wave attenuation coefficient through a 2-mm-thick Berea sandstone sample

of 200 mD permeability at 350 kHz. This is a relatively low permeability

specimen that could not be inspected above 150—200 kHz at atmospheric

pressure since the insertion loss exceeded the 70-dB dynamic range of the

system. The slow wave attenuation in such low-permeability materials is

dominated by viscous absorption, which greatly decreases with increasing
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Fig. 18. Measured slow wave attenuation coefficient through a 2-mm-thick Berea

sandstone of 200 mD permeability at 350 kHz. Reprinted with permission from P. B.

Nagy and D. L. Johnson, Appl. Phys. L ett. 68, 3707—3709 (1996).

pressure. Above approximately 3 atm, the insertion loss drops into the

measurable dynamic range. Based on this method, a high-pressure slow

wave imaging technique can be developed in the future for very low

permeability specimens such as natural rocks.

5.3.2 Sound Propagation in Water-Filled Porous Materials with
Elastic Frame

In general, sound propagation in air-filled porous materials can be

modeled by assuming an ideal rigid frame without any significant loss of

accuracy. In contrast, sound propagation in water-saturated porous mater-

ials cannot be modeled without properly accounting for acoustic coupling

between the fluid and the elastic frame. The most widely used phenomeno-

logical acoustic model for fluid-saturated porous materials was developed

by Biot [11, 12]. In the following, we present a short summary of Biot’s

theory.

The stresses are defined as normal and tangential forces acting on the

frame or the fluid per unit area of the porous solid. In particular, the stress

in the fluid can be written as ��
	


� ��p
	

, where p denotes the pressure in

the fluid, � is the porosity, and 
	


is the so-called Kronecker delta. Biot

derived the following constitutive equations from the strain energy density

in the fluid-filled material:

��
	


� [(P � 2N)�� � Q��]
	


� 2N��
	


(54)
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and

��
		

� Q�� � R��. (55)

Here, �
	


denotes the strain tensor, � � 	
��

� 	
��

� 	




is the dilatation, the

superscripts s and f refer to the solid and fluid phases, respectively; P, N,

Q, and R are elastic constants that can be determined from independent

measurements [38]; and N is the shear modulus of the porous frame, which

is not affected by the fluid at all. The other three parmeters can be calculated

from

P �
(1 � �)(1 � � � K

�
/K

�
)K

�
� �(K

�
/K

�
)K

�
1 � � � K

�
/K

�
� �(K

�
/K

�
)

�
4

3
N, (56)

Q �
�(1 � � � K

�
/K

�
)K

�
1 � � � K

�
/K

�
� �(K

�
/K

�
)
, (57)

and

R �
��K

�
1 � � � K

�
/K

�
� �(K

�
/K

�
)
, (58)

where K
�
, K

�
, and K

�
are the bulk moduli of the porous frame, the solid,

and the fluid, respectively.

Biot showed that one shear wave and two compressional waves, namely

the fast and slow modes can propagate in a fluid-saturated porous medium

[11, 12]. The complex wave numbers of these three modes can be calculated

as follows:

k�
����

��
��(��

��
��

��
� �� �

��
)

N��
��

, (59)

k�
���

��
��(P��

��
� R��

��
� 2Q��

��
� S)

2(PR � Q�)
, (60)

k�
����

��
��(P��

��
� R��

��
� 2Q��

��
� S)

2(PR � Q�)
, (61)

where

S � �(P��
��

� R��
��

� 2Q��
��

)� � 4(PR � Q�)(��
��

��
��

� �� �
��

) (62)

The frequency-dependent complex densities are defined as ��
��

��
��

�iF(�),
��

��
� �

��
� iF(�), and ��

��
� �

��
� iF(�), where F(�) is a frequency-

dependent correction term representing viscous losses in the saturating fluid;

�
��

� �
��

� (1 � �)�
�

and �
��

� �
��

� ��
�

are the densities of the solid
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and fluid phases normalized according to their volume fractions, respec-

tively; and �
��

� �
�
�(1 � �

�
) is a frequency-independent inertia coupling

term determined by the tortuosity of the specimen. There are numerous

models that can be used to relate F(�) to macroscopic properties of the

permeable solid. For example, according to the previously discussed dy-

namic permeability model of Johnson et al. [24].

F(�) �
4�

�
��

�
c�

�

�� �1 � i
c���

8� �
���

. (63)

At sufficiently high frequencies when the viscous skin depth  becomes

negligible with respect to the relevant pore size �, F(�) diminishes, therefore

the three density terms become real and all three bulk modes become

nondispersive and attenuation free. Even when viscous losses are significant

and the waves, especially the slow compressional one, is strongly attenuated,

the actual dispersion is relatively small and the velocities can be well

estimated from Eqs. (59)—(61) by the real-valued high-frequency asymptotic

densities.

The most interesting feature of acoustic wave propagation in fluid-

saturated porous media is the appearance of a second compressional wave,

the so-called slow wave. The main characteristic of this mode is that its

velocity is always lower than both the compressional wave velocity in the

fluid and the longitudinal velocity in the solid frame. Below a critical

frequency, which depends on the pore size in the frame and the viscosity of

the fluid, the slow compressional wave is highly dispersive and strongly

attenuated over a single wavelength. Above this critical frequency, it

becomes a dispersion-free propagating wave with increasing but fairly low

attenuation. The transition point between low-frequency and high-frequency

behavior can be estimated as

�
�


2��

�
�
�

�
�

�

, (64)

which is typically around 1—10 kHz for water-saturated porous solids of

around 1 D permeability. The slow compressional wave represents a relative

motion between the fluid and the solid frame. This motion is very sensitive

to the viscosity of the fluid and the dynamic permeability of the porous

formation. Naturally, low-viscosity liquids such as water are the fluids most

often used in experimental studies of slow wave propagation. As mentioned

before, another way to reduce the excessive attenuation of slow waves in

porous materials is to use special fluids of very low viscosity to saturate the

specimen [15—18].
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Fig. 19. The experimental arrangement of Plona’s through-transmission immersion

measurement.

5.3.2.1 Ultrasonic Transmission Measurements in Immersion. Plona

was the first to observe slow wave propagation in water-saturated porous

ceramics at ultrasonic frequencies [13]. His simple approach is based on

acoustic refraction at a fluid—solid interface at the surface of an immersed

specimen. The experimental arrangement is shown in Fig. 19. The porous

solid is cut into a thin plate of parallel surfaces and placed between the

well-aligned transmitter and receiver operated in broadband pitch-catch

mode. Generally, the incident wave produces three bulk waves in the solid

with varying amplitudes, depending on the properties of the porous speci-

men and the angle of incidence. When these bulk waves hit the opposite side

of the solid plate they give rise to three separate through-transmitted

compressional pulses, which are recorded at different angles of incidence.

Figure 20 shows the slow, fast, and shear wave transmission coefficients

through a water-saturated porous glass plate. The physical parameters of

the glass bead specimen and details of the calculation are given in the paper

by Wu et al. [39]. At normal incidence, only fast and slow compressional

waves are generated in the porous solid, but the slow wave pulse is usually

overshadowed by multiple reflections of the stronger fast wave within the

plate. As the angle of incidence is increased, the first arriving pulse due to

the fast wave moves forward, while the slow one moves backward. However,

a shear component also appears, and it becomes stronger as the angle of

incidence is increased. The pulse train becomes much clearer above the first
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Fig. 20. Slow, fast, and shear transmission coefficients through a water-saturated

porous glass plate.

critical angle �
��

� sin��(v
�
/v

���
), where the fast compressional wave in the

fluid-saturated solid becomes evanescent and does not contribute to the

through-transmitted signal. In this range, the slow compressional wave

usually becomes separable from the shear component as it moves backward;

that is, it arrives later when the angle of incidence is increased. In many

porous solids, the shear velocity is also higher than the compressional

velocity in the fluid, therefore there exists a second critical angle �
��

�

sin��(v
�
/v

����
) above which the shear wave also becomes evanescent and

the slow wave becomes the sole vehicle for sound transmission through the

plate (in Fig. 20, the sharp minimum at about 34° corresponds to the first

critical angle and there is no second critical angle since the shear velocity is

lower than the compressional velocity in the fluid).
Plona’s experimental results [13] were immediately shown to be in

excellent agreement with the predictions of Biot’s theory as stated in Eqs.

(56)—(62). Figure 21 shows the comparison of theoretical predictions and

experimental results for the fast compressional, slow compressional, and

shear waves in sintered porous glass [40]. Both fast and shear wave

velocities decrease with increasing porosity, while the slow compressional

wave velocity increases. The main reason for the increasing slow wave

velocity is the decreasing tortuosity; that is, a purely geometrical effect. For

the sake of simplicity, let us assume a perfectly stiff frame. Then Eq. (61) can

be approximated as k�
����

�����
��

/R, where R�K
�
. At ultrasonic
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Fig. 21. Comparison of theoretical predictions and experimental results for the fast

compressional, slow compressional, and shear waves in sintered porous glass.

Reprinted with permission from J. G. Berryman, Appl. Phys. L ett. 37, 382—384

(1980).

frequencies where the viscosity-induced dispersion becomes negligible, the

complex density ��
��

�
��

� �
�

��
�

can be approximated by its real-valued

high-frequency asymptote, and the slow wave velocity becomes simply

v
����

� �/k�
����

 v
�
/��

�
. For cemented or slightly sintered spherical beads,

the tortuosity can be estimated from the porosity as �
�
 (1 � ���)/2

[40]. For relatively low levels of porosity, the combination of these approxi-

mations predicts that the slow compressional wave velocity is proportional

to the square root of porosity, as shown in Fig. 21.

The strength of the Biot theory lies in its predictive power, that is, that

the frequency-dependent acoustic properties (velocity, attenuation, reflec-

tion, and transmission coefficients) of a permeable solid saturated with a

Newtonian fluid can be calculated from 11 material parameters that can be

measured independently. These parameters are porosity (�), tortuosity (�
�

),
permeability (�

�
), viscous characteristic length (�), fluid density (�

�
), fluid

bulk modulus (K
�
), viscosity (�), solid density (�

�
), solid bulk modulus (K

�
),

frame bulk modulus (K
�
), and frame shear modulus (N). By measuring the

frequency dependence of the ultrasonic transmission through two slabs of

different thicknesses, Johnson et al. were able to separate bulk losses from

reflection and transmission losses and found excellent agreement between

theoretical predictions and experimental measurements without requiring

any adjustable parameters [41, 42].
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Fig. 22. Experimental slow wave attenuation spectra in porous solids made of

consolidated spherical beads. Reprinted with permission from T. J. Plona and K. W.

Winkler, Multiple Scattering of Waves in Random Media and Random Surfaces, pp.

341—356, The Pennsylvania State University, 1985.

The attenuation coefficient can be calculated from the imaginary part of

the complex wave number as follows:

�
����

� �Im k�
����

!
� Re F(�)!

2v
�
��

�
��

�

. (65)

From Eq. (63), the high-frequency asymptote of the viscous coupling term

is F(�)  (1 � i)�
�
��

�
/� and the viscosity-induced attenuation can be

approximated as

�
����


���

�


2v
�
�

��
���

�
2v�

�
���

�

. (66)

We can also express the viscous characteristic length � by the shape factor

c from Eq. (42) and rewrite the attenuation coefficient as follows:

�
����


c

4v
�
�

���

�
�
�
�

. (67)

The attenuation coefficient is proportional to the square root of frequency.

As for the crucial material parameters of the porous solid, the attenuation

coefficient is proportional to the shape factor and the square root of porosity

and inversely proportional to the square root of permeability.

As an example, Fig. 22 shows the experimental slow wave attenuation

spectra in porous solids made of consolidated spherical beads [43]. Biot’s
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theory proved to be very successful in predicting the velocity of the slow

compressional wave, but the slow wave attenuation was found generally

much higher than the theoretical value. For example, the viscosity-induced

attenuation in the 300-�m-diameter silica bead specimen is predicted by Eq.

(67) to be around 0.1 dB/cm at 500 kHz; that is, more than one order of

magnitude lower than the experimentally determined value. One obvious

reason why the measured attenuation coefficient is so high is excess loss due

to scattering. Plona and Winkler showed that the slow wave attenuation in

coarse-grained porous materials becomes proportional to the fourth power

of frequency, which is a clear indication of Rayleigh-type elastic scattering

[43]. The observed discrepancy in fine-grained materials is partly due to

irregular pore geometry and partly to pore-wall roughness, which substan-

tially reduce the high-frequency dynamic permeability of the specimens.

In comparison with the previously discussed air-saturation method, slow

wave propagation in water-saturated porous solids is generally more difficult

to adapt for materials characterization. Saturation must be done with

extreme care either in a centrifuge or in a vacuum, since even the lowest level

of residual air saturation can prevent slow wave propagation in the

specimen. Theoretically, the slow compressional wave in immersion experi-

ments is only 5—10 dB weaker than the fast compressional or shear modes,

but it is much more attenuated. Also, because of its lower velocity, it arrives

later than the other modes and it is often overshadowed by multiple

reflections and scattered components of these stronger signals. The only

exception is when the shear velocity is sufficiently high so that we can work

above the second critical angle where the slow compressional wave becomes

the only propagating mode in the fluid-saturated sample (unfortunately, this

does not happen in most natural rocks, where the shear velocity is rather

low). On the other hand, in the case of air saturation, the slow compressional

wave is at least 70 dB stronger than all other modes and, due to the very low

sound velocity in air, the shear critical angle drops below 15°, above which

only the slow wave is transmitted through the sample [32]. This means that

the highly attenuated slow wave will be submerged in electrical noise rather

than spurious signals so it can be easily recovered by simple time averaging.

In the case of air saturation, because of the tremendous acoustic mismatch

between the incident compressional wave and the porous solid, all of the

incident energy is either reflected or transmitted via the slow wave without

generating appreciable fast compressional or shear transmitted waves.

5.3.3 Guided Wave Propagation in Water-Filled Porous Materials

Our previous examples involved bulk acoustic wave propagation in

infinite fluid-saturated media. In the presence of a boundary separating two

half-spaces, interface wave propagation along this boundary can also occur.
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If the interface wave velocity is lower than any of the bulk velocities in the

neighboring media, only evanescent waves are generated and the acoustic

energy is concentrated into a narrow boundary layer around the interface.

Such waves are called true interface waves as they can propagate without

losing energy into the bulk of the material. If the interface wave velocity is

higher than at least one of the bulk velocities in the neighboring media,

propagating waves are also generated and the acoustic energy is not strictly

concentrated into the boundary layer. Such waves are called leaky interface

waves as they lose some of their energy to the bulk of the surrounding

material as they propagate along the interface. A special form of interface

waves occurs on the free (or essentially free, such as air-loaded) surface of

fluid-saturated solids. If the surface curvature is low, such interface and

surface waves follow the boundary contour, therefore they are also called

guided waves. Other types of guided waves are normal modes of thin rods

and plates, which exhibit additional strong dispersion due to structural

resonances in the specimens.

5.3.3.1 Surface and Interface Waves. Acoustic wave interaction with

a plane interface separating a superstrate fluid and a fluid-saturated porous

solid substrate is governed by four boundary conditions [44]. Three of

them—namely, the continuity of normal stress and displacement and the

disappearance of the transverse stress at the interface—are the usual

conditions required at ordinary fluid—solid interfaces. The only conceptual

difference in the case of permeable solids is that the continuity of the normal

displacement must be modified to express the conservation of fluid volume:

U�
�

� �U
�

� (1 � �)u
�
, (68)

where U�
�
, U

�
, and u

�
are the normal displacement components of the

superstrate fluid, and the substrate fluid and solid, respectively, and �
denotes the porosity. The fourth boundary condition is Darcy’s law applied

to the surface pores of the permeable solid. The surface impedance Z
�

is

defined as the ratio between the discontinuity in pressure and the relative

volume velocity of the fluid with respect to the frame below the interface

[44, 45]:

p � p�� i�Z
�
�(U

�
� u

�
), (69)

where p and p� denote the fluid pressure in the pore space below the surface

and in the superstrate fluid just above it, respectively, and � is the angular

frequency. Generally, Z
�
is complex and the definition of Eq. (69) must be

used. In the case of a fluid—fluid-saturated porous solid interface (e.g., in

borehole Stoneley wave experiments to be discussed later), the finite surface

impedance is due to the flow resistivity of the surface pores and its value

depends on the viscosity of the fluid. The surface impedance can be also high
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because of an elastic boundary layer such as the so-called mudcake in

geophysical inspection of natural rocks. It has been also shown that, due to

surface tension, practically closed-pore boundary conditions can prevail at

an interface between a nonwetting fluid (e.g., air) and a porous solid

saturated with a wetting fluid (e.g., water) [46]. In this case, the surface

impedance is very high because of the stiffness of the microscopic fluid

membranes extended by capillary forces over the otherwise open surface

pores. When the surface impedance is purely imaginary, it is advantageous

to introduce a surface stiffness parameter T
�

� i�Z
�
so that the discontinuity

in pressure is proportional to the average surface displacement of the fluid:

p � p�� T
�
�(U

�
� u

�
). (70)

In the case of ordinary solids, the previously mentioned three boundary

conditions can be satisfied by three bulk waves, namely, the reflected

compressional wave in the fluid and the longitudinal and shear transmitted

waves in the solid. In the case of a permeable solid, an additional boundary

condition is necessary to account for the presence of a fourth component;

that is, the slow compressional wave in the fluid-saturated solid. Naturally,

the most obvious effect of the increasing surface impedance is the sharp

decrease in the transmitted slow compressional wave [39, 42, 47]. Interest-

ingly, surface modes propagating along the interface are even more crucially

dependent on the surface impedance. Feng and Johnson showed that there

exists a new slow surface mode on a fluid—fluid-saturated porous solid

interface with closed surface pores [48, 49]. They found that a maximum of

three different types of surface modes can exist on a fluid—fluid-saturated

porous solid interface depending on (i) the shear velocity of the frame and

(ii) the surface conditions; that is, whether the pores are open or closed. In

most cases, however, the pores are open at the surface, therefore the slow

surface wave cannot be observed. The corresponding slow surface wave

propagating along the free surface of a fluid-saturated porous solid seems to

be easier to observe experimentally because the pores, which are naturally

open when fully submerged in a wetting fluid, are essentially closed by

capillary forces [46]. In the ideal case of completely closed surface pores and

viscosity-free fluid, two types of surface wave can propagate: There is a

pseudo-Rayleigh mode, which leaks its energy into the slow compressional

wave, and a ‘‘true’’ surface mode with velocity slightly below that of the slow

wave. The second mode is a simple form of the new interface mode predicted

by Feng and Johnson [48, 49] when the superstrate fluid is extremely rare

and highly compressible like air (theoretically, the slow interface mode also

becomes slightly leaky, since its velocity is higher than the sound velocity in

air, although the actual energy loss is negligible because of the large density

difference between the two fluids).
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Fig. 23. Surface wave velocity versus surface stiffness on the free surface of water-

saturated porous glass. Reprinted with permission from P. B. Nagy and G. Blaho,

J. Acoust. Soc. Am. 95, 828—835 (1994).

The effect of completely ‘‘open’’ (T
�
� 0) and completely ‘‘closed’’

(T
�

� �) surface pores on the interaction of an acoustic wave with the

fluid—fluid-saturated porous solid interface is quite easy to understand, but

intermediate cases are much more complicated. A question of great practical

importance is where and how the transition between these limiting cases

occurs. Figure 23 shows the calculated velocity of the ‘‘true’’ slow surface

wave and the leaky Rayleigh wave propagating on the surface of water-

saturated porous glass as functions of the surface stiffness [50]. The ‘‘true’’

slow surface wave appears only above T
�
 10� N/m
, where its velocity is

equal to that of the slow bulk velocity. The velocity of this mode slightly

decreases with increasing surface stiffness, but it flattens off above

T
�

� 10� N/m
, and the total change is only approximately 5%. The

Rayleigh velocity slightly increases as the surface stiffness increases and the

transition is also around T
�
� 10� N/m
. It should be mentioned that Wu et

al. obtained roughly the same transition value for the surface stiffness

between open- and closed-pore boundary conditions by analyzing the

reflection coefficient of a water—water-saturated porous glass interface at

normal incidence [39].

At a fluid—solid interface, surface waves are most commonly excited and

their velocities measured by simple immersion techniques. If the surface
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Fig. 24. Experimental arrangement for surface wave generation and detection on

fluid-saturated porous materials.

wave velocity is higher than the fluid bulk velocity, the so-called Rayleigh

angle phenomena occur due to mode conversion [51]. The excitation of the

leaky Rayleigh wave can be detected in different ways, such as observing the

Schoch displacement [52], beamsplitting [53, 54], or detecting increased

backscattering [55, 56]. The Rayleigh velocity is easily calculated from the

Rayleigh angle using Snell’s law.

Clearly, when the surface wave does not leak into the fluid (its velocity is

less than the fluid velocity), as in the case of the Scholte wave, other

techniques must be applied. One way to generate both Rayleigh- and

Stoneley-type surface modes on a liquid—solid interface is to make the

surface slightly corrugated so that these modes become leaky into both

media at particular frequencies where the periodicity of the corrugation is

an integer multiple of the surface wavelength. These resonances produce

sharp minima in the reflection coefficient of the interface, which can be used

to calculate the surface wave velocities [57, 58]. The advantage of this

technique over the conventional Rayleigh angle method is that it can be

used to generate surface modes of very low phase velocities, which do not

leak (or leak only at a very high angle) as they propagate along a smooth

liquid—solid interface. This technique was later adapted to studying sur-

face wave propagation on fluid-saturated porous materials by Mayes

et al. [59].

Surface and interface waves can be also generated by direct excitation

using conventional contact transducers [60]. This method is a modification

of the edge-excitation method [4] and also can be readily used to generate

and detect Scholte waves on a liquid—solid interface. Figure 24 shows the

experimental arrangement of the direct generation technique of surface
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Fig. 25. Measured surface wave velocity in water-saturated Massillon and Berea

sandstones between 100 and 600 mD. From L. Adler and P. B. Nagy, J. Geophys.
Res. Solid Earth, 99, 17863—17869 (1994).

waves. A vertically polarized shear transducer is mounted directly over the

corner region so that it can generate an interface wave along the boundary.

Saturation is achieved simply by soaking the specimen from below. Capil-

lary forces pull the wetting fluid in the pores and evaporation at the top

surface maintains a slow but continuous circulation of the fluid in the pore

channels. The transmitter is driven by a tone-burst of two to three cycles

between 100 and 300 kHz. Two detection techniques can be used. The

normal component of the surface vibration can be measured by a laser

interferometer at different locations or by a second vertically polarized shear

transducer mounted at the opposite edge of the specimen.

Figure 25 shows the measured surface wave velocity in water-saturated

Massillon and Berea sandstones between 100 and 600 mD [61]. The surface

wave velocity measured in the wet specimen was normalized to the shear

velocity in the dry specimen. The dashed line represents the overall trend in

the data. In natural rocks, from 2 to 5 days are necessary to achieve full

saturation with water at room temperature. It should be mentioned that

during saturation, the velocity and attenuation of the compressional bulk

wave both significantly increase. The shear velocity is basically unaffected

by water saturation, although it drops 2—3% as a result of the added inertia

of the liquid. In comparison, in the most permeable rocks, the surface wave

velocity drops as much as 40% due to the presence of the slow surface mode.

In low-permeability samples, below approximately 200 mD, the fluid is

essentially immobilized in the pores by viscous forces. Such rocks behave
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like ordinary solids; the surface wave velocity is only a few percent

lower than the shear velocity regardless whether the sample is saturated

or not.

These experimental results indicate that the primary relationship between

the slow surface wave and permeability is governed by the viscous drag

rather than by the surface stiffness. In low-permeability specimens, the fluid

is kept immobile by viscous forces, therefore the dominant surface mode is

the ordinary Rayleigh-type surface wave, while the slow surface mode is

badly attenuated. In high-permeability specimens, assuming that the surface

stiffness is still above the minimum required for closed-pore boundary

conditions, the dominant surface mode is the slow surface mode, while the

ordinary Rayleigh mode is strongly attenuated by leakage into the slow bulk

mode. Theoretically, both Rayleigh and slow surface modes contribute to

the detected surface vibration. Unfortunately, these two principal modes

cannot be clearly separated in spite of their rather different velocities. Better

separation could be achieved by either increasing the propagation time or

decreasing the pulse length, that is, by increasing the bandwidth of the

signal. Both avenues are essentially closed by the extremely high attenuation

of these modes. For example, in the case of a relatively less attenuating

porous glass specimen, roughly 100 mm of propagation distance is needed

to produce the 30 to 40-�s difference in the time of arrival required to

resolve the two principal modes. Such a long propagation distance would

produce an attenuation in excess of 100 dB. In reality, the propagation

distance is limited to 10—20 mm; that is, it is not longer than one or two

wavelengths. The resulting composite signal is a linear combination of both

modes and the average velocity measured from the phase of the pulse-train

is also a linear combination of the two velocities.

5.3.3.2 Rod and Plate Waves. Elastic wave propagation in cylindrical

rods was first studied by Pochhammer [62] and Chree [63] more than a

hundred years ago. In fluid-filled porous cylinders, Biot’s theory can be

adapted to account for the relative motion between the fluid and solid

phases. The attenuation of fluid-filled solids is usually extremely high

because of viscous losses between the saturating fluid and the solid frame,

therefore acoustic measurements are limited to relatively low frequencies.

Gardner used Biot’s theory to study long-wavelength extensional waves in

thin rods when the slow compressional mode is diffusive in nature [64].

Berryman extended this theory to high frequencies where the slow compres-

sional mode becomes propagatory and considered not only open but also

closed surface pores [65]. Generally, the dispersion of the fast extensional

mode does not differ significantly from that of the longitudinal mode in

isotropic cylinders. In addition, a slow extensional mode can propagate

when the surface pores are closed, but not when they are open. This slow
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mode is always slower than the bulk slow wave, although the difference is

usually small.

Gardner’s theory was experimentally verified by Mörig and Burkhardt,

who measured the attenuation in fluid-saturated porous rods of different

radii [66]. More recently, Johnson and Kostek showed that the Gardner

theory of extensional modes in porous fluid-saturated cylinders is not

exactly the low-frequency limit predicted by Biot’s theory [67]. The attenu-

ation is significantly underestimated by Gardner’s theory for permeabilities

above a critical value �
�
that depends on the radius b of the rod:

�
�

�
��bv

&
�8K

�

, (71)

where � and K
�

denote the viscosity and bulk modulus of the fluid,

respectively: � is the connected porosity; and v
&

denotes the velocity of the

extensional mode. For typical sizes of b � 1 cm, the critical frequency is

around 1 D, above which Biot’s full theory predicts orders of magnitude

higher attenuation than Gardner’s approximation.

In low-permeability specimens when the slow compressional wave is

badly attenuated, Plona’s immersion technique does not work since the

different pulses cannot be resolved if either the plate thickness is chosen to

be very thin or the inspection frequency is reduced. In an effort to overcome

this limitation, Xue et al. studied Lamb-type guided waves in thin fluid-

saturated porous plates [68]. First, the reflected signal from the plate is

recorded at different angles of incidence. Then, this signal is spectrum

analyzed to find the minima corresponding Lamb wave generation in the

plate. The phase velocity of these modes can be calculated from the angle

of incidence by using Snell’s law. By monitoring how the reflection minima

change as the angle of incidence is varied, a dispersion curve containing

numerous modes can be obtained. Xue et al. found that the lowest-order

mode exhibits a cutoff frequency determined by the slow wave velocity

therefore it can be used to detect the slow compressional mode and to assess

its velocity in thin plates. Although the Lamb wave technique can be used

to extend the range of slow wave studies to thinner plates than allowed by

Plona’s original immersion technique, the improvement is not sufficient to

adapt the technique to natural rocks where the first reflection minimum was

rendered too weak by excessive attenuation even through the otherwise very

thin plates.

5.3.3.3 Tube Waves. One of the most often used guided modes in

acoustic characterization of porous solids is the low-frequency fundamental

mode of a fluid-filled hole in a fluid-saturated permeable matrix. This wave

is known in the geophysics community as the tube wave or Stoneley wave
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(in general acoustics, the interface wave propagating along the plane

boundary between two elastic half-spaces is called a Stoneley wave). In the

low-frequency approximation, the tube wave speed for a circular bore in a

nonpermeable matrix reduces to v�K
�
/"

�
, where the effective stiffness

K
�

can be calculated from the bulk modulus K
�

of the fluid and the shear

modulus N of the elastic matrix surrounding the borehole [69]:

1

K
�

�
1

K
�

�
1

N
. (72)

In geophysical inspection, the fluid-filled bore often contains a logging tool,

which generally reduces the tube velocity [70]. In addition, the porous

matrix containing the fluid-filled bore is not infinite but rather a concentric

layer of finite thickness surrounded by a thin casing, usually made of steel,

which can further reduce the tube velocity [71].

The velocity of the tube wave is slightly reduced and, more important, it

is strongly attenuated by viscous losses when the elastic host is a fluid-filled

porous solid, which can be exploited to assess the formation permeability

[45, 72—77]. For a permeable matrix, the effective stiffness K
�

can be

calculated from

1

K
�

�
1

K
�

�
1

N
�

1

T
�

, (73)

where the previously introduced surface stiffness parameter T
�
is defined as

the ratio between the fluid pressure and the relative average radial fluid

displacement at the surface of the borehole with respect to the solid frame.

The generally complex surface stiffness can be calculated from

T
�
�

2b��

�
�
E

, (74)

where �
�

denotes the permeability of the formation, b is the bore radius, and

E(�) � 2i�
H���

�
(�i�)

H���
�

(�i�)
. (75)

Here, H���
�

and H���
�

are zeroth- and first-order Hankel functions of the first

kind and

� �
b��

C
, (76)

where C is a modified diffusion coefficient, which is slightly lower than the

standard diffusion coefficient C
�

� �K
�
/�� [76]. Assuming that the bore
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Fig. 26. Schematic diagram of the experimental arrangement used in tube wave

measurements.

radius is much larger than the diffusion depth in the permeable formation

(i.e., b��/C� 1), the complex velocity of the tube wave can be approximated

as

v v
��

N

N � K
�
�1 � ��

C
�

C

N

N � K
�
�

iC
�

b��� . (77)

If the slight dependence of C
�
/C on porosity is ignored, the imaginary part

of the tube velocity scales as ���/b�; that is, the attenuation of the tube

wave increases with porosity and permeability and decreases with bore

radius [76]. Of course, there is a parallel drop in the real part of the tube

velocity, which can be also exploited to assess the physical parameters of the

porous formation.

A schematic diagram of the experimental arrangement used in tube wave

measurements is shown in Fig. 26. In laboratory experiments, a scaled-down

specimen of approximately 20—30 cm in length can be used. The borehole

diameter is around 1 cm so that it can accommodate a small hydrophone

receiver, which is scanned up and down along the hole. The outside

diameter of the specimen must be large enough to model an infinite host.

The sample is saturated with a liquid and a transmitter is positioned at the
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Fig. 27. Tube wave velocity and attenuation versus frequency in a borehole filled

with silicon oil in Berea sandstone. Reprinted with permission from K. W. Winkler,

H. L. Lin, and D. L. Johnson, Geophys. 54, 66—75 (1989).

end of the borehole. First, a reference signal is recorded close to the

transmitter, then, the receiver is moved back and the signal is recorded again

at different distances from the transmitter. The recorded data is Fourier

analyzed to determine how its amplitude and phase change with distance at

different frequencies.

As an example, Fig. 27 shows the tube wave velocity and attenuation

versus frequency in a borehole filled with silicon oil in Berea sandstone [75].
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The porosity and permeability of the sandstone were � � 0.21 and �
�

�

220 mD, respectively, while the viscosity and sound velocity in the silicon oil

were � � 0.93 Ns/m� and v
�

� 999 m/s. The dashed line indicates the theo-

retical prediction without the effect of permeability. The velocity slightly

increases with frequency maintaining a more or less constant slope over the

whole frequency range up to 100 kHz. Of course, there is no attenuation

without permeability as the only source of loss considered here is due to

friction loss between the porous solid and the saturating fluid. The solid line

indicates the theoretical prediction with the added effect of formation

permeability. The diffusion depth of the fluid vibration in the porous host is

inversely proportional to the square root of frequency. At low frequencies,

where the penetration depth becomes very large, the tube velocity sharply

decreases while the normalized attenuation increases. The normalized atten-

uation or inverse quality factor is defined as the total loss over a distance

equal to the acoustic wavelength divided by �. Generally, at low frequencies,

the tube wave behaves similarly to the diffuse slow compressional bulk wave

in fluid-saturated permeable solids. However, the tube wave is much easier

to observe and study experimentally as the effect of viscous drag between

the fluid and the porous host can be controlled, and thereby kept under an

acceptable level, by changing the borehole diameter.

5.3.4 Ultrasonic Surface Stiffness Measurements

We have shown that acoustic wave interaction with fluid—fluid-saturated

solid interfaces is strongly affected by the boundary conditions, namely,

whether the surface pores are open or closed [39, 42, 47—49, 65, 67]. The

surface stiffness T
�

of a fluid-saturated porous solid can also be directly

measured to characterize the porous formation [50]. The geometrical

configuration of a single surface pore and the curved boundary between the

nonwetting superstrate fluid and the saturating substrate fluid are shown in

Fig. 28. The acoustic pressure changes the radius of the surface membrane

and thereby the fluid volume in the underlying pore. For the boundary

between a fluid-saturated solid and a nonwetting fluid, T
�

is the ratio

between a small change in capillary pressure and the average displacement

of the boundary due to the resulting rise or fall of the fluid level in the pore

channels. When the surface pores are structurally open, the surface stiffness

is entirely due to the stiffness of the microscopic fluid membranes extended

by capillary forces over the surface pores. Due to interfacial tension between

the immiscible wetting fluid in the pores and the nonwetting fluid (air)
above the surface, essentially closed-pore boundary conditions can prevail

at the interface. The surface stiffness of a porous material containing

cylindrical pores can be calculated simply as the surface tension � of the
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Fig. 28. Schematic diagram of the boundary between a nonwetting fluid and a

fluid-saturated porous solid with cylindrical pores.

saturating fluid divided by the static permeability �
�

of the porous solid;

that is, T
�

� �/�
�

[46].

The same simple relationship can be generalized for the surface stiffness

of fluid-saturated porous media containing parallel prismatic pore channels

of any number, size, or shape [78]. An immediate benefit of this result is the

convenience of directly calculating the surface stiffness of fluid-saturated

porous solids containing parallel prismatic pore channels from the static

permeability, which is well known for a large number of geometries [79].

Similar relationships for other regular formations, such as ordered spherical

beads, are much more difficult to obtain. As the pore shape becomes more

irregular in the axial direction, the permeability is determined by the

smallest cross sections, causing viscous friction while the surface stiffness

depends more on the largest dimensions dominating the compliance of the

surface membranes. Still, for a given pore shape, both the surface compli-

ance 1/T
�
and the static permeability �

�
are proportional to the square of

the characteristic pore size, and the surface stiffness can be expressed in the

general form

T
�
� s�/�

�
, (78)

where s denotes a shape factor [50].

A schematic diagram of the experimental arrangement for acoustic surface

stiffness measurement of fluid-saturated porous solids is shown in Fig. 29

[50]. The technique is based on the direct measurement of the average

surface displacement of the water-saturated specimen upon changing the
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Fig. 29. Schematic diagram of the experimental arrangement for static surface

stiffness measurements. Reprinted with permission from P. B. Nagy and G. Blaho,

J. Acoust. Soc. Am. 95, 828—835 (1994).

hydrostatic pressure in the capillary pores. The porous specimen is soaked

from below by water. The fluid level in the pores can rise to a maximum

capillary height of h
�

� p
�
/"

�
g, where p

�
denotes the maximum capillary

pressure accommodated by the given pore structure and the surface tension

of the wetting fluid, "
�

is the density of the fluid, and g denotes the

gravitational acceleration. The pressure difference between the air and the

water at the surface is changed by increasing and decreasing the water level

in the tank. This is achieved simply by moving an external water tank

mounted on a computer-controlled translation stage. This external reservoir

is connected to the measuring tank by a flexible rubber tube. The water level

in the tank is always kept at least a few millimeters below the surface of the

saturated specimen and never lowered more than one-third of the experi-

mentally determined maximum capillary height h
�
for a given specimen so

that full saturation of the specimen can be maintained throughout the

experiment. In this way, the microscopic interface membranes formed over

the surface pores are kept intact but are strained sufficiently to produce a

measurable surface displacement on the order of a few microns.

The average surface displacement is directly measured by an ultrasonic

transmitter—receiver pair working at f � 100 kHz. Because of the very high

acoustic impedance of water with respect to air, the top surface of the

porous skeleton and the capillary membranes present a continuous, essen-

tially rigid reflecting interface to the incident airborne ultrasonic pulse. Since

the acoustic wavelength � 3.3 mm is significantly larger than the com-

bined surface roughness of this interface, the received signal from the surface

appears to be reflected from a plane reflector positioned at the average

height of the slightly irregular surface. The porous solid is rigidly mounted

so that the changing buoyancy of the specimen cannot produce any

displacement of the skeleton (u
�

� 0) and the average surface displacement

212 ACOUSTICS AND ULTRASONICS



Fig. 30. Measured surface stiffness versus interstitial pore diameter in cemented

glass bead specimens. Reprinted with permission from P. B. Nagy and G. Blaho, J.
Acoust. Soc. Am. 95, 828—835 (1994).

�U is entirely due to the water level rising and falling in the surface pores

�U � �U
�
. The pressure difference between the air and the water at the

interface is periodically changed by �p � �h"
�
g. Finally, the surface stiffness

can be calculated from the measured average surface displacement as

T
�

��p/�U.

Figure 30 shows the measured surface stiffness as a function of interstitial

pore diameter in cemented glass bead specimens for five different grades. EP

Brand Porous Structures are porous engineering materials consisting of tiny,

precisely sized spherical particles rigidly bonded together. These samples

have an evenly distributed network of interstitial pores that are of uniform

size, completely open, and interconnected. This material is available in five

standard grades, which also denote the maximum interstitial pore diameter

in microns. Because of the self-similar nature of this material and the more

than one order of magnitude size range covered by the five standard grades,

it is especially suitable to test the validity of the general relationship between

surface stiffness and static permeability for a given pore geometry and to

find an empirical estimate for the shape factor in the case of spherical grains.

From theoretical considerations, one would expect that the surface stiffness

is inversely proportional to the square of the interstitial pore diameter.

Instead, the experimental data seem to indicate a significantly lower power

of 1.45. Interestingly, the same anomaly can also be observed in the

relationship between static permeability and pore size. As a result, the

surface stiffness is still inversely proportional to the static permeability, as

demonstrated in Fig. 31, where we plot the shape factor as a function of the

static permeability. The shape factor can be calculated from Eq. (78). Over
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Fig. 31. The product of the measured surface stiffness and the static permeability

versus permeability for different porous materials. Reprinted with permission from

P. B. Nagy and G. Blaho, J. Acoust. Soc. Am. 95, 828—835 (1994).

the wide permeability range of approximately 1�
�

decades represented by

these five standard grades, the shape factor is constant at s 2.7�10�


within �15%. In comparison, for a porous structure of cylindrical pores,

the shape factor was found to be s 0.51, somewhat lower than the

predicted unit value but almost two orders of magnitude higher than for

spherical beads.

Figure 31 also shows the surface stiffness of a water-saturated Berea

sandstone specimen of 450 mD static permeability. The surface stiffness was

found to be only 3� 10� N/m
, much less than expected based on the

permeability of the specimen. The measured value corresponds to a shape

factor of s 2� 10��; that is, roughly one order of magnitude lower than

the empirical value for spherical beads.

The shape factor, which is calculated from the measured surface stiffness

and static permeability, does indeed appear to be independent of pore size

for self-similar cemented glass bead specimens over more than one order of

magnitude, and it becomes less than one as the pore structure becomes more

irregular and random. In light of the analytical predictions [78], the

decreasing shape factor is mainly caused by the axial irregularity of the pore

channel (i.e., its changing cross section) rather than by its lateral irregularity

(i.e., the particular shape of the cross section). In addition, the assumption

that the fluid moves only in the pores while it is kept completely immobile

by its viscosity in the continuous thin layer covering the top of the solid

frame remains in question. Fluid motion in this layer can make a significant

contribution to the total surface compliance and might be responsible for

the observed reduction in surface stiffness. This effect is expected to be
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significant whenever the pore channels smoothly widen on the surface

instead of ending in a well-defined meniscus of sharp corners. The signifi-

cance of this very thin fluid layer covering the entire solid frame greatly

depends on frequency. This surface layer is so thin that dynamic motion in

it is effectively prevented by the viscosity of the wetting fluid but very slow

exchange with the pore fluid can occur. As a result, the quasi-static stiffness

of the surface can be much lower than the high-frequency dynamic stiffness.

5.4 Summary

In this chapter, we reviewed the most important applications of acoustics

and ultrasonics in materials characterization of porous media. We con-

sidered only measurements between 100 Hz to 1 MHz where individual

pores are not resolved and the obtained material properties represent

localized averages on the scale of the acoustic wavelength. We further

limited our review to specific acoustic phenomena that occur only in

fluid-saturated consolidated solids of continuously connected pore structure.

Our primary interest was to characterize certain material properties of the

porous frame—such as tortuosity, permeability, porosity, and pore size and

shape—that are inherently connected to the permeable nature of the

material. These properties are best evaluated from the propagation proper-

ties of the slow compressional wave and related phenomena. In the slow

compressional wave, the porous skeleton and the interstitial fluid move

essentially out of phase, therefore the relative motion of the fluid within the

pore channels is particularly sensitive to material parameters associated

with permeability. The price we pay for exploiting the relative fluid motion

within a porous solid as a sensitive probe to assess various aspects of

permeability is that the acoustical wave is inherently highly attenuated by

viscous drag between the fluid and the solid frame. In this chapter, we

focused on materials of relatively high permeability saturated with a

low-viscosity fluid that moves more or less freely within the pores. In

materials of relatively low permeability, such as natural rocks, other, more

conventional shear or fast compressional wave velocity and attenuation

measurements, which are much less affected by viscous losses than the slow

compressional mode, can be used to characterize the porous material within

certain limits.

Four major areas of acoustic wave propagation in fluid-saturated porous

media were reviewed. In Section 5.3.1, we considered sound propagation in

air-filled porous materials with rigid frame. Acoustic impedance measure-

ments made from 100 Hz to 10 kHz were shown to provide information on

the porosity, permeability, tortuosity, and characteristic thermal and viscous

215SUMMARY



pore sizes of the material. Ultrasonic velocity and attenuation measurements

made from 10 to 500 kHz can be used to obtain similar data with much

higher spatial resolution that can be exploited for slow wave imaging of the

permeable solid.

In Section 5.3.2, we reviewed the problem of sound propagation in

water-filled porous materials with elastic frame. In this case, there are three

bulk modes: the shear wave supported by the rigidity of the solid frame and

the combined masses of the solid and the saturating fluid and two dilata-

tional waves, which are called the ‘‘fast’’ and ‘‘slow’’ compressional waves.

Acoustic wave propagation in such media are well modeled by Biot’s theory

that can accurately predict the frequency-dependent acoustic properties of a

permeable solid saturated with a Newtonian fluid from a finite number of

material parameters that can be measured independently. By measuring the

frequency dependence of the ultrasonic transmission through slabs of

fluid-saturated solids material parameters such as tortuosity, permeability,

and viscous characteristic length can be assessed.

In Section 5.3.3, we considered guided wave propagation in water-filled

porous materials. Surface wave propagation on fluid filled permeable solids

was shown to be particularly sensitive to the interfacial stiffness of the

surface pores. One of the most often used guided modes in acoustic

characterization of porous solids is the low-frequency fundamental mode of

a fluid-filled hole in a fluid-saturated permeable matrix. The velocity of this

so-called tube wave is slightly reduced and, more important, its attenuation

is strongly increased by viscous losses when the elastic host is a fluid-filled

porous solid, which can be exploited to assess the formation permeability of

the material.

Finally, in Section 5.3.4, we reviewed the feasibility of using ultrasonic

surface stiffness measurements for materials characterization in permeable

solids. For relatively low permeability materials, the interfacial tension

between the wetting fluid inside the pores and the nonwetting fluid outside

can produce essentially closed pore boundary conditions. Direct acoustic

measurement of the resulting surface stiffness was shown to be strongly

related to the average interstitial pore size and also to be affected by the

shape of the pore channels. In conclusion, acoustic and ultrasonic tech-

niques play an important role along with other physical methods reviewed

elsewhere in this book in materials characterization of permeable solids and

are expected to find further applications in the future.
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6. SMALL-ANGLE SCATTERING FROM POROUS MATERIALS

Sunil K. Sinha
Advanced Photon Source

Argonne National Laboratory
Argonne, Illinois

Abstract

We review the basic theoretical methods used to treat small-angle

scattering from porous materials, treated as general two-phase systems, and

also the basic experimental techniques for carrying out such experiments.

We discuss the special forms of the scattering when the materials exhibit

mass or surface fractal behavior and review the results of recent experiments

on several types of porous media. Finally, we discuss SANS experiments

probing the phase behavior of binary fluid mixtures or polymer solutions

confined in porous materials.

6.1 Introduction

One of the conceptually simplest ways to study porous media is to carry

out small-angle scattering experiments, typically using neutrons or x rays as

the incident radiation. The technique can be applied in situ, under a wide

variety of environmental conditions, and does not usually require special

sample preparation techniques or optically transparent samples. Small-angle

scattering has thus been widely used to investigate the basic morphology of

the pore structure and of the internal pore surfaces. Because of finite

instrumental resolution effects, however, such experiments can reveal struc-

tural information only up to length scales of typically a few tens of

nanometers. Special high-resolution methods— for example, employing

multiple-bounce perfect crystal monochromators and analyzers— can be

used in certain cases to study length scales of up to microns. At these rather

large length scales, however, multiple scattering effects can sometimes cloud

the interpretation of the scattering data. A particular advantage of small-

angle neutron scattering (SANS), as opposed to small-angle x-ray scattering

(SAXS), is the ability to contrast-match selected portions of the sample, and

this has been exploited in several SANS studies of the properties of fluids

confined inside pores.
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Fig. 1. Schematic diagram of an x-ray scattering instrument. The incident beam is

provided by an x-ray tube or rotating anode source. Slits 1, 4, and 7 denote

collimating slits, while slits 2 and 5 are guard slits. Label 3 denotes the mono-

chromating crystal, 6 is the sample, and 8 is the x-ray detector.

The basic methodology of small-angle scattering has been discussed in a

variety of excellent reviews [1—4], and we simply review that part of the

formalism that is relevant to the study of porous materials. Neglecting any

inelasticity in the scattering (which is discussed in the next chapter), the

number of particles per second scattered by a sample into a detector is given

by

I � S(q�)(I
�
/A)(��), (1)

where I
�

is the number of particles per second in the incident beam of

cross-sectional area A, �� is the solid angle subtended at the sample by the

detector, S(q�) is the scattering function characterizing the sample, and q� is

the so-called wave vector transfer defined by

q� � k�
�

� k�
�
, (2)

where k�
�

and k�
�

are the wave vectors of the incident and scattered radiation,

respectively. The magnitude of q is given by q � 2k
�
sin �, where 2� is the

angle of scattering (see Fig. 1) and k
�

� 2�/�, where � is the wavelength of

the incident radiation. The small-angle regime is generally defined by q 	 k
�
.

In general, S(q�) is a function of the average of the instantaneous positions

of all the particles in the scattering system, but in the small-angle regime

(defined roughly by the range 0� q� 3 nm��) we can ignore the atomic

and molecular structure of the constituents and deal only with the spatial
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variations (on length scales from a few nanometers on up) of the scattering
length density (SLD) �( r� ) of the sample. For SANS experiments, �( r�) is

defined by

�( r�) � � b
	
n
	
(r�), (3)

where b
	
is the nuclear scattering length [5] of a type I nucleus, and n

	
( r�) is

the associated number density of such nuclei, while for SAXS experiments,

�(r� ) is defined by

�( r� ) � (e�/mc�)n
��
( r�), (4)

where the factor (e�/mc�) is the Thompson scattering length of the electron,

and n
��
( r� ) is the electron number density. Since a uniform scattering length

density does not scatter radiation (except in the forward direction), S(q�) will

depend only on the deviations of �( r�) about its mean, or what is referred to

as the contrast. The kinematic or Born approximation to the scattering [6],

where multiple scattering effects are neglected, then yields for the scattering

function S(q�) the expression

S(q�) ��� dr� dr�����( r�)�( r��)�e iq�(r���r�) ��� dr� dr��
(r� � r��)e iq�(r���r�) (5)

where the statistical average is taken over the whole system. (This statement

has to be modified if the incident radiation is highly coherent, as discussed

in the last section of this chapter.) It is commonly assumed that such an

average depends only on the magnitude of R� � r� � r��, for an isotropic and

translationally invariant random porous medium. In Eq. (5), �(r�) is defined

as the fluctuation from the average SLD, as already explained. If we are

dealing with a particulate system (or a system of random cavities) and these

are far enough apart that the interference effects between the scattering from

different particles (which will occur at values of q typically of order (2�/d),
where d is the average interparticle distance) is not important in the range

of q studied in the experiment, then Eq. (5) simplifies to

S(q) � (��)� �
	

v�
	
f �
	
(q�) (6)

where the sum is over all particles, v
	
is the volume of the ith particle, �� is

its SLD contrast with the average medium (assumed uniform throughout

the particle and the same for all particles), and f
	
is its form factor defined by

f
	
(q�) �

1

v
	
�
�
�

d r� e�iq� .r�, (7)

where the integral is over the particle volume. In general, one can make a

spherical average of f �
	
(q) and assume some law of polydispersity in size of
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the particles to carry out the weighted sum in Eq. (6). In such a restrictive

case (dilute system of random particles), by making an expansion for small

q�, one finds that

S(q) � S(0) � �


R�

�
q� � · · · , (8)

where

R�
�

� R�
�
�
	

(1/v
	
) �

�
�

d r� · r� (9)

is the average radius of gyration of the particles. Equation (8) suggests (at

least for small q) in this case the approximation

S(q) � S(0) exp(��


R�

�
q�), (10)

which is the famous Guinier approximation [1] for scaling from a dilute

system of uniform particles. As we see in Section 6.3, this is of limited

usefulness in the case of a real random porous medium.

6.2 Experimental Methods

A detailed description of instrumentation for small-angle scattering and

the methods of treating data is given in several books and review articles

[1—4]. Here we content ourselves with a much briefer description of the

experimental methods used to obtain SAXS and SANS data. With conven-

tional tube x-ray sources, due to intensity limitations, the usual configur-

ation is to use the so-called ‘‘slit geometry’’ in which the beam (usually after

reflection from a monochromating crystal to remove polychromatic radi-

ation components) is collimated by slits in one direction only (e.g., in the

plane of scattering) and similarly the beam scattered from the sample is also

collimated by slits in the same plane, as the detector scans across the

scattering angle 2�. The monochromating crystals usually used are perfect

silicon, germanium, or (for lower resolution) low-mosaic-spread pyrolytic

graphite crystals. A schematic diagram for such a setup is shown in Fig. 1.

Usually a pair of guard slits placed between the first slits and the sample is

used to reduce parasitic small-angle scattering contamination from the

collimating slits themselves. For higher resolution, especially with higher-

flux rotating anode sources, an analyzer crystal (usually a perfect silicon or

germanium crystal) is inserted in the scattered beam to Bragg reflect the

scattered beam into the detector. Higher-order contamination from �/2, �/3,

etc. components in the incident beam can be eliminated by choosing

monochromators such as Si (111) crystals, which have zero structure factors

for the second-order reflections, or appropriately adjusting the discriminator
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level for the pulse-height spectrum from the detector. For efficient data

collection, sometimes a position-sensitive detector is used so that I(q) at

many values of 2� are measured simultaneously. With slit geometry, one is

actually not measuring S(q�) but S(q�) integrated over the component of q�
perpendicular to the scattering plane (in principle, up to values determined

by the detector size, but effectively over all wave vectors in this direction for

the purposes of small-angle scattering), so that any model for S(q�) must be

so treated before fitting to the experimental data, or alternatively some

method of ‘‘unfolding’’ the resolution from the measured spectra must be

employed [2]. For many in-house x-ray sources, the so-called Kratky

camera [2] is one of the most popular pieces of apparatus used for

small-angle scattering. At higher brightness synchrotron sources, reactor

neutron sources and some rotating anode x-ray sources, so-called ‘‘pinhole’’

or ‘‘point geometry’’ is used, where the incident beam is collimated in both
perpendicular directions (usually by slits, but sometimes by slits in one

direction and multiple-slit Soller collimators in the perpendicular direction

[2]) so that what is measured is the true S(q) rather than its integral over

one direction. (Of course, in principle, this is still smeared with a finite

instrumental resolution function, but often this is so narrow in comparison

with the features in S(q) that it is ignored). Since we have the relation

q � (4�/�) sin �, by differentiation we can obtain the independent contribu-

tions of the wavelength and angular spread of the beam to the resolution

broadening in q. We have (since �	 1)

�q� � q�(���/��) � (4�/�)����. (11)

From this equation, we can see that the contribution of the wavelength

spread in the beam is not appreciable unless q itself becomes fairly large.

Thus, for intensity reasons, it is efficient to use a fairly broad bandpass

monochromator for small-angle scattering experiments. For synchrotron

x-ray sources and some neutron sources, multilayer monochromators or

supermirrors [7], which provide a fairly large (��/�), are often used. At

reactor sources, mechanical velocity selectors for the incident neutrons are

often employed, with (��/�) as large as 20%. One then collimates the beam

with pinhole geometry, as mentioned, with appropriate guard slits to protect

against slit scattering, and the scattered beam is usually collected in a

two-dimensional (2-D) area detector placed downstream from the sample.

The angular resolution of the scattered beam is determined by the detector

pixel size, illuminated sample-size and sample-detector distance, which is

consequently quite large (typically 2—20 m). A beam stop is positioned in

front of the center of the detector to protect the detector from damage from

the intense primary beam transmitted (but not scattered) by the sample. The
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Fig. 2. Schematic diagram of a SAXS setup at a synchrotron radiation source

(denoted by 1). Labels 2, 4, 5, and 6 denote collimating and guard slits; 3 is a double

crystal monochromator (typically in the vertical plane); 7 is the sample; 9 is a linear

or 2-D detector; and 8 is a beam stop to prevent the main transmitted beam hitting

its detector.

size of the beam stop determines q
��


and should be chosen consistent with

the instrumental resolution function, or just large enough to kill the primary

beam spot.

At most synchrotron x-ray sources and increasingly at reactor-based

neutron sources, the effect of the angular spread of the beam and the effect

of finite sample size can be mitigated and higher resolution obtained

(without sacrifice of intensity) by using a curved mirror (or a bent mono-

chromating crystal) to focus the incident beam at the detector. A schematic

setup of a small-angle beamline at a synchrotron x-ray source or a reactor

neutron source is indicated in Fig. 2. In general, in measuring small-angle

scattering, one must correct for the scattering from the container, which

itself is attenuated by the transmission of the sample when the latter is

placed in the container. In addition, one must correct for the ‘‘dark noise’’

or ‘‘room background’’ signal, and thus one has

I
��

� [(I
�
� I

�
)/T ] � (I

�
� I

�
), (12)

where I
��

is the true signal, I
�
is the measured signal with the sample present

in the container, I
�
is the measured signal from the empty container, I

�
is

the measured ‘‘dark current’’ signal, and T is the transmission of the sample

(measured in a subsidiary experiment).
In addition, one usually must calibrate the sensitivity of the 2-D detector

array, which may vary across the pixels, in a subsidiary measurement.

Typical ranges of q accessible with such small-angle beamlines are 0.02 to

2 nm��, corresponding to length scales (1/q) of roughly 0.5 to 50 nm. Larger

q values are simultaneously accessible at small-angle scattering instruments

at pulsed-neutron sources. In this kind of instrument, a pulsed white beam

is incident on the sample, scattered into a 2-D detector, and the counts in

each pixel are sorted by time of arrival relative to the pulse at the source.
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Fig. 3. Schematic of a Bonse—Hart camera: 1, x-ray source; 2, channel-cut multiple-

bounce perfect crystal monochromator; 3, sample; 4, multiple-bounce analyzer

(mounted nondispersively); and 5, detector.

The time of arrival of the neutron in a particular pixel determines its velocity

and thus its wavelength and the corresponding q of the scattering process.

By accumulating all such processes (and normalizing relative to the

wavelength spectrum in the incident pulse) one builds up the S(q) function.

Of course, pinhole collimation requirements still apply, but obviously no

monochromator is needed, and the shorter wavelengths present in the beam

can yield data at q values out to greater than 5 nm��.

To go to smaller q values— that is, to probe length scales of microns or

larger—one must use a special type of small-angle scattering instrument

based on Bonse—Hart multiple bounce monochromators [8] and analyzers,

as indicated schematically in Fig. 3. (The high resolution is typically

achieved only in the plane of scattering.) The monochromators and analyzer

crystals employed are channel-cut perfect crystals of Si or Ge employed in

the multiple-bounce mode (typically 2 to 3 bounces are employed) and

arranged in the nondispersive configuration relative to each other. The

typical Darwin width of the multiple bounce monochromators have their

‘‘tails’’ strongly clipped by the repeated reflections, and a small deviation of

the scattered beam from the incident direction can be detected by a slight

rotation of the analyzer crystal. Such Bonse—Hart-type small-angle beam-

lines exist at several current synchrotron x-ray and reactor neutron sources

and have been used to measure the small-angle scattering from structural

features of sizes as large as microns. While the increase of S(q) at small q for

large scattering features helps to make up for the loss of intensity due to the

multiple-bounce monochromation, one can sometimes run into the problem

of multiple scattering from the sample when S(q) becomes very large, unless

the sample is made very thin. In some experiments, this multiple scattering

from large pores, in the form of Gruneisen—Mie scattering has been

explicitly calculated to interpret the scattering from certain mesoporous

ceramics [9].
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Fig. 4. Transmission electron micrograph (TEM) of a thin section of Vycor glass.

Reprinted with permission from P. Levitz, G. Ehret, S. K. Sinha, and J. M. Drake,

J. Chem. Phys. 95, 6151. Copyright 1991, American Institute of Physics.

6.3 Scattering from Porous Media

Contrary to what one might think initially, it is rare to find a porous

material that consists of tiny isolated voids randomly embedded in a solid

material. For such a simple (but unrealistic) case, one can employ Babinet’s

principle and use the formula for scattering from a collection of particles and

include polydispersity to obtain the dependence of S(q) on the pore size

distribution, as discussed in the previous section. A more realistic represen-

tation for a porous solid is in terms of a two-phase random or bicontinuous

medium (see Fig. 4) where one phase is simply the pore space and the other

the solid phase, assumed to be of uniform scattering length density at least

for length scales �1/q
�	

. Since we can imagine the pore space being filled

with liquid in some cases, let us generally assume the SLD in these two
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phases to be �
�

and �
�
, respectively. Following Ref. [11], let the volume

fractions of the two phases be �
�

and �
�
, respectively, (�

�
� �

�
� 1). The

average SLD of the system �
�

is given by

�� � �
�
�

�
� �

�
�

�
. (13)

The effective SLD contrasts for phases 1 and 2 are given by

�
�

� �
�

� �� � �
�
(�

�
� �

�
) � �

�
��,

(14)
�

�
� �

�
� �� � ��

�
(�

�
� �

�
) � ��

�
��.

Let us pick at random two points (A, B) in the system separated by a

distance R�. Let P
��

(R�) be the conditional probability that if point A is in

phase 1, then point B is also in phase 1. The situation is similar for P
��

(R ),

P
��

(R ), and P
��

(R ). Obviously, by definition

P
��

(R�) � P
��

(R�) � 1

and

P
��

(R�) � P
��

(R�) � 1. (15)

The absolute probability that both points are in phase 1 can be called

P�
��

(R�) and must be given by

P�
��

(R�) � �
�
P

��
(R�). (16)

Similarly,

P�
��

(R�) � �
�
P

��
(R�) � P�

��
(R�) � �

�
P

��
(R�) (by symmetry) (17)

and

P�
��

(R�) � �
�
P

��
(R�). (18)

Let us define a function 

�
(R) such that

P
��

(R�) � �
�

� �
�



�
(R�). (19)

Then by Eq. (15),

P
��

(R�) � �
�

� �
�



�
(R�). (20)

By Eq. (17),

P
��

(R�) � �
�

� �
�



�
(R�), (21)

and again by Eqs. (20) and (15),

P
��

(R�) � �
�

� �
�



�
(R�). (22)
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From the preceding arguments, we have from Eq. (5),


(R) ���(r�)�(r�)� � ��(0)�(R�)�

� ��
�
P�

��
(R) � 2�

�
�

�
P�

��
(R) � ��

�
P�

��
(R), (23)

where R� � r� �� r� and we have assumed overall statistical translational

invariance.

By Eqs. (14)—(22), after some algebra, we thus have


(R) � (��)��
�
�

�



�
(R�), (24)

so that

S(q�) � V (��)��
�
�

� � dR��
�
(R�)e�iq� ·R�, (25)

where V is the sample volume.

Assuming 

�
(R�) to be isotropic, Eq. (25) can be simplified to

S(q) � V (��)��
�
�

� �
�

�

dR4�R�

�
(R) �

sin qR

qR � . (26)

Note that, by definition, P
��

(0) � P
��

(0) � 1 and P
��

(0) � P
��

(0) � 0,

which by Eqs. (19)—(22) implies that 

�
(0) � 1. Note also that by Eq. (26),

S(0) � V (��)��
�
�

�
v
�
, (27)

where

v
�
��

�

�

dR4�R�

�
(R) (28)

and is called the correlation volume. If this volume is larger than the finite

coherence volume of the radiation (typical neutron coherence lengths being

approximately a few tens of nanometers at best for such experiments), then

the integral in Eq. (28) is reduced to being over only the radiation coherence

volume. The inverse Fourier transform of Eq. (26) yields a way of obtaining



�
(R) directly from the measured S(q):



�
(R) �

1

2��V (��)��
�
�

�
�

�

�

dqq�S(q) �
sin qR

qR � . (29)

Using the relation 

�
(0) � 1, we obtain

Q ��
�

�

dqq�S(q) � 2��V (��)��
�
�

�
, (30)

where Q, proportional to the integral of S(q) over all q�, is called the Porod
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invariant [2] and does not depend on the detailed morphology of the pore

structure.

The correlation volume can be obtained from S(0) if it can be reliably

extrapolated from finite q values, and Q can be obtained from Eq. (30). Let

us now consider the small R expansion of 

�
(R). It can be proved [2, 10]

that for smooth internal surfaces,



�
(R) � 1 � R/l# � · · · , (31)

where

1

l#
�

1

4�
�
�

�

(S/V ), (32)

where l# is a mean chord length (averaged across the pores and the solid),
and S is the internal surface area of the pores. Then, substituting in Eq. (25)
for S(q), integrating by parts, and keeping the leading term as q�� (for

this purpose we neglect oscillatory terms in the integral, which average out

except for perfectly regular systems), we obtain the large q(q � 1/l# ) behavior

of S(q):

S(q)  2�(��)�S/q�, (33)

which is the famous Porod law for the asymptotic form of the scattering at

large q [2, 10] (see Fig. 5a). A useful relation using Eqs. (33) and (30) is

S/V � ��
�
�

�
/Q lim

-��
[q�S(q)]. (34)

Thus the internal surface-to-volume ratio for a porous material can be found

from scattering experiments alone (if �
�

and �
�

are known) and can be

checked for consistency against separate measurements of the internal

surface area and porosity (e.g., from vapor pressure isotherm and po-

rosimetry measurements). Porod’s law is not always obeyed in the sense that

for many porous materials, asymptotic power laws for S(q) � q�� have been

observed, where � varies between 3 and 4 (see Fig. 5b). This can be explained

in terms of a rough internal surface, which at these length scales (of order

q��) behaves like a self-similar fractal surface. This is discussed in the next

section. For such surfaces, S/V changes with 1/q in Eq. (34), reflecting the

fact that for a fractal surface the area depends on the length scale chosen.

Turning now to specific models for 

�
(R), one of the best-known expres-

sions is due to Debye, Anderson, and Brumberger [11], who basically used

a statistical model for the porous medium so that 

�
(R) was given by the

expression resulting from Poisson statistics:



�
(R) � e�*��, (35)
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Fig. 5. (a) Scaled S(q) for several silica gels on a log-log plot, showing asymptotic

q�� behavior (from Ref. [12]). (b) The S(q) for dry Vycor glass on a log-log plot

(open squares) showing a deviation from Porod’s law above 0.05 Å�� with q�
��

behavior (from Ref. [17]).
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Fig. 6. Electron micrograph of silica gel Si-4000 at 20,000� (from Ref. [12]).

where a is a length that can be taken as characterizing either the average

pore size or grain size (for a porous medium consisting of compacted

grains). This results in an expression for S(q) given by

S(q) � 8�V (��)��
�
�

�
a
/(1 � q�a�)�, (36)

which has the asymptotic form of Porod’s law (Eq. [33]) and is equivalent

to putting l# � a in Eqs. (31) and (32).
Figure 5(a) shows small-angle x-ray scattering from a series of silica gels

[12], which are porous materials produced by sintering aggregations of

silica particles, as exhibited in the micrograph in Fig. 6. The curves in Fig.

5(a) show superpositions of S(q) for several such gels (with appropriate

scaling for each of the axes) and are seen to collapse on a single curve,

showing that scattering from each member of this family of gels has the same

form, except for a single adjustable length scale, the size of the ‘‘building

block particles.’’ This length scale is obtained by fitting the intermediate to

large q parts of S(q) to the form of Eq. (36). (Porod’s law is obeyed quite

well here, indicating relatively smooth internal surfaces.) At small q, the S(q)
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rises according to a different power law, which is related to a mass-fractal

structure of inhomogeneities existing at large length scales (discussed later).
Vycor glass is extremely popular as a ‘‘model porous medium’’ for a

variety of experiments. It is produced by spinodal decomposition on

quenching a borosilicate melt from high temperature, resulting in a phase

separation of a boron-rich phase and a silica-rich phase. The former is then

removed by acid leaching leaving the pore space, and the material resembles

that shown in Fig. 4; that is, a bicontinuous two-phase system resulting from

the late stages of spinodal decomposition. As might be expected, a charac-

teristic quasi-periodicity exists in this structure (the distribution of distances

from an internal surface into a pore through the solid and to the next pore

surface is peaked around a characteristic length of �25 nm, the average

pore diameter being �8 nm and the porosity being typically 28%), and S(q)

for Vycor [13—15] shows a peak as illustrated in Fig. 5b (as measured by

SANS). Note that the asymptotic slope (on a log-log plot of S(q)) shows an

exponent of 3.5 instead of the Porod exponent of 4, indicating a fractally

rough surface at small length scales, as discussed in the next section.

(However, this deviation may also be due to compositional inhomogeneities

at the interface.)
A simple and intuitively appealing method of characterizing the morphol-

ogy of a two-phase porous medium is in terms of chord distributions across

each of the two phases (e.g., solid-occupied space and pore space), as

indicated schematically in Fig. 7; that is, the probability distribution of

lengths along a particular direction between one interface and the next. (For

an isotropic porous medium, these distributions will obviously be indepen-

dent of the direction chosen.) There are obvious similarities to the definition

of the Debye function 

�
(R�). It has not proved possible, however, to

rigorously express S(q�) in terms of such chord distributions without further

restrictive assumptions. For a random bicontinuous porous medium, the

most obvious assumption that suggests itself is that the probabilities of

intersecting successive solid—pore and pore—solid interfaces depend only on

the chord distributions and are otherwise totally uncorrelated with previous

or successive intersections. It is then possible to devise a formal expression

for 

�
(R�) [16], but writing down an explicit closed-form expression for S(q)

is difficult except in special cases. An explicit form for S(q) was devised by

Lin and Sinha [17] using a simple phenomenological model similar in spirit

to that of Mering and Tchoubar [16], but with more restrictive assump-

tions. The derivation of this is sketched in Appendix A.

The result obtained for S(q) is

S(q) � V (��)�
1

[�l
�
� ��l

�
�] �

2 � f
�
(q) � f

�
(q)

1 � f
�
(q) f

�
(q)

� c.c. � 2�
F(q)

q�
, (37)
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Fig. 7. Schematic of chord distribution model representing a bicontinuous medium

composed of media 1 and 2. L
�
, L



, L

�
are chords in medium 1 and L

�
, L

�
are chords

in medium 2.

where f
�
(q) and f

�
(q) are, respectively, the Fourier transforms of the pore

and solid chord distributions whose averages are (l
�
) and (l

�
), respectively,

and F(q) is an average shape factor for the interface between pore and solid.

We can now choose F(q) to give the correct asymptotic form to S(q) at large

q ; that is, depending on whether we have smooth or rough interfaces, since

f
�
(q) and f

�
(q) � 0 at large q.

Thus, for smooth interfaces where we must obtain Porod’s law in the

limit, we must have

F(q) � 2�/q�, (38)

whereas for fractally rough surfaces where S(q) � q��, F(q) must be chosen

appropriately. One can now parametrize the chord distributions through the

solids and pores respectively. This was done for Vycor glass by Lin and

Sinha [17], who chose the following forms for the real-space chord distribu-

tions

f
���

(z) � z�(A
�
e��z � B

�
e��z), (39)
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Fig. 8. Chord distribution derived by fitting Eq. (46) to the S(q) for dry Vycor (Fig.

5b): (a) pore chord distribution and (b) solid chord distribution (from Ref. [17]).

where for each phase the parameters �, A
�
, B

�
, �, and � are adjusted to fit

the data, one of them being determined by the normalization condition.

Figure 8 shows the deduced pore and solid chord distributions from

fitting to the observed S(q) of Vycor. An excellent fit is observed to the data.

The fitted parameters yield for the average pore size �l
�
� a value of 8.46 nm,

the average chord length through the solid �l
�
� is 17.76 nm, and the porosity

�
�

� �l
�
�/(�l

�
� ��l

�
�) � 0.32. These values are in good agreement with

the results of other measurements, such as nitrogen description. Because of

the approximations made in the theory that leads to Eq. (37), however, one

should perhaps think of such inferred quantities as semi-quantitative rather

than rigorous.

A more sophisticated model has been given by Berk [18] starting from

the so-called Cahn construction for an internal surface, resulting from

choosing contours of the function

F( r�) �
1

�N
�
	

cos(k�
	
· r� � �

	
), (40)

where k�
	
are a set of N vectors random in direction but having a narrow

distribution in length, and �
	
are a set of random phases. One then chooses

a cutoff value for this function, so that all points for which F( r� ) is smaller

than this cutoff can be called ‘‘pore space’’ and all points for which F( r�) is

greater can be called ‘‘solid.’’ For the special case of so-called isometric

topology, where this cutoff has the value zero and �
�

� �
�
, Berk proves the
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remarkably elegant result



�
(R) � (2/�) arcsin[ j

�
(kR)], (41)

while for the general case, he derives an expression for 

�
(R) in terms of a

power-series expansion of j
�
(kR). Here j

�
is the spherical Bessel function,

and k is the magnitude of the wave vectors k�
	
. In practice, one averages

j
�
(kR) over a narrow distribution of k centered about some mean value.

Using this formalism, Berk has calculated S(q) functions that remarkably

resemble the scattering from spinodally decomposed systems, such as Vycor,

as well as bicontinuous microemulsion phases [18]. These show the charac-

teristic peak at finite q seen in the scattering from such systems.

Another analytic form for S(q) for such systems has been given by

Teubner and Strey [19] based on Ginsburg—Landau free-energy theory and

can be written as

S(q) � V (8�/�)(��)�C
�
/(a

�
� C

�
q� � C

�
q�), (42)

where � is the correlation length and a
�
, C

�
, and C

�
are constants. This

corresponds to a Debye correlation function:



�
(R) �

d

2�R
e�R/� sin(2�R/d), (43)

where d is a typical domain size. The form of 

�
(R) reflects the quasi-

periodicity of the medium, and Eq. (42) has been successfully used to fit

bicontinuous microemulsion data. It possesses the characteristic peak (as

seen in Vycor, for instance).
Chen et al. [20] have introduced a modification of Berk’s model that

borrows some concepts also from the Teubner—Strey model. Their 

�
(R) is

obtained from an expression similar to Eq. (41) but with j
�
(kR), which in

Berk’s model is really the two-point autocorrelation function of F( r� ) in Eq.

(40), replaced by the Fourier transform of an inverse sixth-order polynomial

in k that contains three parameters a, b, and c. These authors also derive an

expression for the average Gaussian curvature of the interface in terms of

these parameters and are thus able to obtain values for this curvature by

fitting S(q) for an isometric bicontinuous microemulsion [20].

Another model for a spinodally decomposed system at late times has been

developed by Li and Ross [21]. These authors use arguments to show that

if magnitudes of allowed wave vectors have a very narrow range centered

on k
�
, then S(q�) can be written as

S(q) � C�F�(q�)�
1

qk
�

 �/[1 � (q � k
�
)���] � �/[1 � (q � k

�
)���]!, (44)

239SCATTERING FROM POROUS MEDIA



where C is a constant, F(q�) is a ‘‘pore form factor,’’ and � represents a

correlation length for the decay of the sinusoidal concentration fluctuations

associated with the spinodal decomposition. Using this form, Li and Ross

were able to get a remarkably good fit to the scattering from dry Vycor glass

[21].

It is to be noted that since all these forms are based on smooth internal

surfaces, they cannot reproduce anything except an asymptotic q�� behav-

ior for S(q), although the model of Ref. [17] gives a prescription for

modifying the S(q) in the case of roughness.

6.4 Scattering from Fractal Systems

We next consider porous solids produced by the rather tenuous aggrega-

tion of small or colloidal particles, which often have local mass-fractal

structure. Many types of silica gels, xerogels, and aerogels are of this type.

Scattering experiments can often provide valuable clues regarding the

process of formation of such porous solids. These materials can have

extremely high (up to �98%) porosity and still stay amazingly rigid. For

such systems, Eq. (5) can be written as

S(q) � Nf �(q)(��)� � dR�g(R�)e�iq� ·R�, (45)

where N is the total number of particles, f (q) is the average form factor (or

the Fourier transform of the shape function of the individual particles), ��
is the contrast between the SLD of the particle and that of the embedding

medium (usually vacuum or some solvent), and g(R�) is the pair-distribution

function for the centers of the particles; that is, the probability per unit

volume that given a particle center at the origin, another center can be found

at a distance R�. This is a function of the magnitude R only and, for a fractal

object, can be obtained from the definition that within a radius R there are

on the average CR� particles (where C is a constant and D is the mass

fractal dimension) [22]. By differentiating, we obtain

4�R�g(R) dR � DCR��� dR, (46)

or

g(R) � R��
. (47)

In general, 0�D� 3, so that the 3-D Fourier transform of g(R) yields an

S(q) that goes as q��. However, fractal correlations exist only up to a finite

length scale (a typical cluster size) and may also not be obeyed at short

length scales (e.g., nearest neighbor distances).
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Neglecting the latter effect (which affects only the large q behavior of

S(q)), we can take finite cluster sizes into account by choosing instead of Eq.

(47), a modified form for g(R); that is [23, 24],

g(R) � �(R) � ARD�3e�R/� � C�, (48)

where the delta function at the origin is due to the particle correlation ‘‘with

itself,’’ A and C� are constants, and � represents the correlation length of the

fractal. This expression can be Fourier transformed to yield for Eq. (45) the

expression (neglecting the forward scattering at q � 0),

S(q) � Nf �(q)��� �1�
A

(1�q���)���

(1�q���)���

q�

sin[(D�1) tan��(q�)]
D�1 � .

(49)

As expected, provided q is much less than the inverse of the particle size a,

S(q) behaves like q�� for q� ��� and saturates when q� ���. For q��

much less than the particle size, S(q) behaves like the square of the single

particle form factor f �(q) and eventually rolls off as q�� if the particles are

smooth (Fig. 9) or as q�� (3� �� 4) if the particles are fractally rough [25].

The preceding expression has been successfully used to fit the scattering

from a variety of fractal systems and to study the dependence of D and � on

porosity. Figure 9 shows S(q) for a series of acid-catalyzed aerogels by

Frisken et al. [26] fitted to the preceding expression and indicating the

corresponding values of the parameters D and �. We can see that there is a

slight tendency for both D and � to increase as the pH of the solution from

which these samples were grown decreases, at constant porosity. By studying

silica gels in situ during the formation process, the evolution of � with time

as the fractal clusters grow and saturate has also been studied [27].

As discussed in the previous section, the asymptotic form at large q of S(q)

for many porous solids in practice does not obey Porod’s law (q��) but

rather q��, where � is an exponent between 3 and 4. This was first explained

by Bale and Schmidt [25] in terms of an internal surface that is not smooth

(as assumed by the Porod theory) but is actually a self-similar fractal
surface [22]. From the ‘‘tiling’’ definition of such a surface [22], these

authors were able to show that the small R expansion of 

�
(R) in Eq. (31)

should be replaced by



�
(R) � 1 � CR
��

�
� · · · , (50)

where D
�
is the surface fractal dimension of the internal surface, and C is a

constant. Wong and Bray [30] have pointed out that Eq. (50) needs to be

considered more carefully as it gives completely the wrong result as D
�
� 3,

predicting vanishing small-angle scattering. In fact, they showed that the
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Fig. 9. The S(q) for a series of silica gels made in D
�
O at different pH, as indicated.

The silica volume fraction for each sample is also denoted on the graph. The solid

curves are fits of Eq. (49) to the data with D � 2.22, 2.13, and 2.03 for the pH 5.35,

5.45, and 5.99 samples, respectively. Reprinted with permission from B. J. Frisken,

F. Ferri, and D. S. Cannell, Phys. Rev. L ett. 66, 2754. Copyright 1991 by the

American Physical Society.

factor C contains 3 � D
�
in the denominator, and deduced for S(q) in the

asymptotically large q limit,

S(q) �
�(��)�S

�
l�

�
��

�
$(5 � D

�
) sin[�(3 � D

�
)/2]

(3 � D
�
)q���

�

(51)

which must replace Eq. (33). In this expression, S
�

is the ‘‘smooth’’ surface

area, measured at the length scale l
�
, where the surface fractal behavior cuts

off, and $ is the gamma function. Equation (51) yields finite scattering as

D
�
� 3, as it should. Measurements on porous media by Hurd et al. [32]

have found that inclusion of the 3 � D
�

factor in the prefactor to Eq. (51)
yields the correct (BET) surface area from scattering data.

Note that for a smooth surface, D
�

� 2 and Porod’s law is recovered. In

general 2�D
�
� 3 so that measurement of the exponent � can be used to
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obtain the surface fractal dimension. Schmidt and coworkers have shown

that a variety of porous systems particularly coals and charcoals [25, 28]

have fractal dimensions greater than 2. In a series of SANS experiments on

various rocks, Wong et al. [29] have shown that these also have surface

fractal dimensions larger than 2 (and often close to 3). Most measured

samples of Vycor [13—15] also exhibit a value of the exponent � close to

3.5, indicating a value of D
�
of �2.5.

Self-similar fractal surfaces are, however, only one possible kind of rough

surface. Another common form of roughness (typically seen in films and

other surfaces) is self-affine roughness, defined by [30, 31]

g(R) ��[z(R�) � z(0)]�� � CR�,, (52)

where h is the self-affine roughness exponent and has the range 0� h� 1 and

z(R�) is the height fluctuation above the average surface at lateral position R�.

The root-mean-square height deviation [g(R)]��� always becomes much less

thanR for large enoughR so that such surfaces lookflat at large enough length

scales, but at small length scales, R�C������,�, such surfaces approach

self-similar fractal surfaces. Their surface fractal dimensionD
�
is related to h by

D
�

� 3 � h. (53)

Wong [33] first showed that the asymptotic form of S(q) for an isotropic

average of such surfaces had the form

S(q) �A/q� � B/q
",. (54)

The first term is Porod’s law arising from the larger length scale (smooth)
behavior, while from Eq. (53), the second term is seen to be identical to the

Bale—Schmidt form in Eq. (51). Equation (54) was also derived by Sinha et
al. [31] using a different method. Clearly the second term will dominate the

asymptotic behavior at large enough q, although the q�� term may get

mixed up with other behavior at intermediate q, and thus it is often difficult

to decide whether an internal surface is self-similarly or self-affinely rough.

In any case, we have the general behavior for S(q) for a large class of

porous materials produced by aggregation (and sintering) of colloidal or

granular particles first sketched by Schaeffer and coworkers [32] and shown

schematically in Fig. 10. At large q, where we are sensitive only to the

shortest length scales (i.e., the internal surfaces), we see power-law behavior

characteristic of surface fractals (with Porod’s law being the limiting case of

D
�
� 2) and at intermediate q (q�� � the particle size), we cross over to the

power-law characteristic of the mass fractal behavior of the particle aggre-

gates, while at small q (q�� � aggregate cluster size), S(q) saturates.

In general, it is not possible to have a regime of length scales over which

nontrivial and different surface and mass fractal dimensions simultaneously

pertain to the solid, although the general form for S(q) in this regime has
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Fig. 10. Schematic diagram for S(q) of a system of fractal clusters, where % is the

cluster size and a is the size of a constituent solid particle in the cluster.

been derived by Ball and Sinha [34] and has the form

S(q) � 1/q����
�
. (55)

The proof of this result is sketched in Appendix B. In all known physically

realizable cases, however, this result reduces to those discussed earlier in the

chapter. For instance, for a fractal aggregate of particles of dimension D, at

length scales greater than the particle size D
�
� D, the surface area contained

inside a radius R is obviously proportional to the number of particles inside

this radius, and thus we obtain S(q) � q��. On the other hand, for length

scales smaller than the particle size, the particle looks solid and thus D � 3,

while D
�

is given by the particle surface fractal dimension and we recover

S(q) � q�����
�
�. A nontrivial limit occurs when D and D

�
� 3. This corre-

sponds to the case of a porous solid that is sufficiently compacted that both

the mass and the internal surface become uniformly space filling. Such solids

should yield a scaling law of S(q) � q�
, as also predicted by the theory of

Wong and Bray [30] but not the result of Bale and Schmidt [25]. Wong

and Cao [35] have discussed the result in Eq. (55) in more detail. They

correctly point out that Eq. (55) is derived under the assumption that the

surface of the material arises as the natural surface of the mass fractal (see
Appendix B). They have pointed out that if, however, a mass fractal is

truncated by an imposed and uncorrelated boundary that is a surface fractal

of a different and nontrivial fractal dimension D
�
, then the scattering should

consist of two terms, the first being the normal S(q) for a mass fractal and

the second having the form q��
"���
�
� If (qL ) � 1, where L � object size,
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then this term becomes negligible, unless D
�
approaches the value 3. These

authors point out the need for caution in general in evaluating mass and

surface fractal dimensions from scattering data if these are likely to be

different and close to the value 3.

It is to be noted that the surface fractal dimension for the internal pore

surface can in principle also be determined from the tiling definition of such

a dimension, namely, that the number of molecules of linear diameter d

adsorbed on such a surface is proportional to d��
�
assuming the adsorption

is determined only by geometrical constraints. This idea has been used by

Avnir and coworkers [36] to derive D
�

for a variety of porous materials

based on adsorption measurements. Unfortunately, as shown by Drake [37]

and others [38], this value of D
�
may be misleading (or even in some cases

greater than 3, which is clearly nonphysical) due to interaction effects

between the adsorbate molecules and between these molecules and the

surface. Scattering measurements of D
�
should be much more reliable since

they are determined by purely geometrical factors.

An interesting question is what happens when in the intermediate q
(fractal) regime a	 q�� 	 � (where f (q) � 1) when D � 3, but � remains

finite. In such a limit, Eq. (49) yields the Lorentzian-squared form of Eq.

(36) or q�� rather than q�
, as might be initially expected. In this limit,

however, the particles have formed a compact solid with an external surface

so that Porod’s law comes into play. Nevertheless, close to q�
 behavior is

actually observed for many porous solids, particularly porous rocks [29].

By comparing the expressions q�� for a mass fractal of dimension D and

q�����
�
� for a surface fractal of dimension D

�
, one can see that they tend to

the same scattering law as D� 3; that is, q�
. In fact, in this limit, there is

no difference between the mass and surface fractal regimes, and this situation

corresponds to the case where the internal surface has not disappeared but

the material is sufficiently compacted that both the mass and the internal

surface become uniformly space filling. Once compaction proceeds further

and the internal surface disappears, q�� behavior is recovered, as observed

in experiments on sintered aerogels [39].

6.5 Small-Angle Scattering Studies of Fluids
Confined in Porous Media

The behavior of fluids in confined pore spaces is of obvious interest and

most conveniently susceptible to study by SANS techniques. This is because

it is possible to fill the pores with a fluid whose SLD exactly matches that

of the solid, thus removing the scattering from the pore structure itself,

thereby reducing the two-phase system to a one-phase system. The only
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Fig. 11. The S(q) in arbitrary units for a contrast-matching binary lutidine—water

mixture near the critical concentration inside Vycor glass, as a function of tempera-

ture. Reprinted with permission from Lin et al., Phys. Rev. L ett. 72, 2207. Copyright

1994 by the American Physical Society.

fluctuations that will then scatter radiation are deviations from the average
density, which will be fluctuations in the fluid itself.

A problem that has been studied by several groups by both SANS and

light-scattering techniques is that of the phase separation of a binary fluid

mixture confined in a porous medium, such as Vycor glass or an aerogel

[40—49]. A convenient system for such studies is a mixture of water and

(2,6) lutidine, which in bulk has an inverted phase diagram (with a

homogeneous phase at low temperatures, and phase separation occurring at

higher temperatures). The critical concentration in the bulk mixture is 31.2%

lutidine, and the critical temperature is 33°C. In the vicinity of the critical

point in the single phase region, a bulk mixture shows critical fluctuations

obeying 3-D Ising-like behavior. The behavior in Vycor glass as seen by

light scattering [45, 49] is very different and indicative of the effects of

confinement and preferential wetting of the pores (typically 8 nm in diam-

eter), with weak or nonexistent critical fluctuations and long-time relaxation

and hysteresis effects with temperature in the two-phase region. SANS

data from such a system [44, 45] as a function of temperature are shown in

Fig. 11.

To study the concentration fluctuations in the fluid alone, without the

complications from the scattering due to the solid— liquid contrast, the

homogeneous phase was taken to be contrast-matched with the Vycor using

the appropriate mixture of H
�
O, D

�
O, and lutidine. (The fact that Vycor

preferentially absorbed lutidine from the supernatant solution complicated
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Fig. 12. Log-log plot of S(q) in arbitrary units for (a) dry Vycor glass, (b) Vycor

derivalized with a C
��

-alkylsiloxane surface layer and filled with contrast-matching

hexane—d-hexane mixture, and (c) Vycor with contrast-matching binary lutidine—
water mixture. Reprinted with permission from Lin et al., Phys. Rev. L ett. 72, 2207.

Copyright 1994 by the American Physical Society.

the task of ensuring that the final single-phase mixture inside the Vycor was

nominally critical and contrast-matched, but this was achieved by a system-

atic study of different initial mixtures [44]). The ‘‘Vycor peak’’ at q � 0.025

(see Fig. 5b) is absent due to the contrast-matching with the silica (see Fig.

11), but a peak at a larger value of q (�0.035 Å��) was observed in the data.

This peak was identified as due to a ‘‘skin’’ of lutidine-rich liquid adsorbed

on the internal pore surfaces, as proved by a complementary experiment in

which a similar layer of hydrocarbon chains was attached to the internal

pore surface of Vycor inside a contrast-matching solution of H/D toluene in

the pores. The peak at the same q was clearly observed (see Fig. 12) and

was used to subtract off the ‘‘skin’’ scattering from the observed S(q) from

the Vycor—water— lutidine mixture; that is, from the observed data in Fig.

11. The remaining scattering was fitted by the sum of a Lorentzian to

represent the critical fluctuations (which turned out to have a very small

amplitude) and a Lorentzian-squared term (with a different length scale) to

represent the formation of microdomains of phase-separated water-rich and

lutidine-rich phases in the two-phase region (see Eq. [36]).
The fitted curves are shown in Fig. 11. A good fit was obtained, with the

domain size saturating in the two-phase region at the 8-nm length-scale of
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Fig. 13. Phase diagram of the single-pore model of Liu et al. (Ref. [48]) for phase

separation inside a confined pore geometry. The arrow indicates the observed

behavior of the water— lutidine system in Vycor deduced from SANS data, t is the

reduced temperature, r
�

is the tube radius, and a is a molecular length.

the Vycor pores. This provided partial confirmation of the phase diagram

obtained theoretically by Liu et al. [48] for a fluid mixture phase separating

inside a finite tube. In their phase diagram (see Fig. 13), the system goes

from a ‘‘tube’’ phase (lutidine-rich ‘‘skin’’ lining the pore walls) to a

‘‘capsule’’-like phase (‘‘skin’’ and capsules of water-rich phase within the

tubes) as the temperature is raised into the two-phase region.

A similar study was carried out by Frisken et al. [47] in the much more

open structures of a series of silica gels using a D
�
O lutidine mixture. In this

case, the scattering was interpreted as that from a dispersed fractal structure

of the silica framework, together with the associated static concentration

variations induced in the fluid by the preference of the silica for wetting itself

with lutidine, in addition to spontaneous critical fluctuations in the fluid.

Thus this model is similar in spirit to the well-known ‘‘random field Ising

model,’’ which was initially proposed for such systems [40, 41].

Following Eq. (5), we can write

S(q) �
1

V
��(q�)�*(q�)�, (56)

where �(q�) is the Fourier transform of the SLD fluctuation �( r�). If �
�
(r),

�
�
(r), and �

�
(r) are, respectively, the local volume fractions of silica, lutidine,

and D
�
O and their fluctuations from the mean are �

�
, �

�
, and �

�
, then

�(q�) � �
�
�

�
(q�) � �

�
�

�
(q�) � �

�
�
�
(q�), (57)
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where �
�
, �

�
, and �

�
are the SLDs of silica, lutidine, and water, respectively.

Since

�
�

� �
�
� �

�
� 0, (58)

we obtain from Eq. (57)

�(q�) � (�
�
� �

�
)�

�
(q�) � (�

�
� �

�
)�

�
(q�). (59)

Let us ignore spontaneous critical concentration fluctuations in the liquid

for the moment and concentrate on the response of the lutidine concentra-

tion to the silica concentration via the ‘‘wetting’’ interaction. Assuming

linear response, this can be formally written as

�
�
(q�) � �(q�, T )�

�
(q�), (60)

where �(q�, T ) can be written in the Ornstein—Zernike form

�(q�, T ) � �
�#
�

�#
�
� �#

�

�
�

�
(T )

1 � q���
. (61)

(The constant term in Eq. (61) is there to account for the excluded volume

decrease of lutidine concentration due to the presence of the silica, even in

the absence of wetting, i.e., when �
�

� 0).
Using Eqs. (59)—(61) in Eq. (56), we obtain

S(q) �
1

V
[(�

�
� �

�
) � (�

�
� �

�
)�(q�, T )]���

�
(q�)�*

�
(q�)�. (62)

But the scattering from the silica gel itself in pure D
�
O can be written as

S
��

(q) �
1

V
[�

�
� �

�
]���

�
(q�)�*

�
(q�)�, (63)

so that the scattering from the binary fluid mixture can be expressed in

terms of S
��

(q) (measured in a separate experiment) and �(q�, T ) as

S(q�) ��1 �
�
�
� �

�
�
�
� �

�

�(q�, T )�
�
S
��
(q�). (64)

To this must be added the pure critical fluctuations in the fluid given by

S
����

(q�) � (�
�
� �

�
)��/(1 � q���) (65)

and a background term. Such an expression was found to provide an

extremely good fit (Fig. 14) to the data for a wide range of temperatures

and concentrations throughout the one-phase region of the pure system.

The four fitting parameters used were �, �, �
�
, and a constant background

term B.
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Fig. 14. Result of fitting the theoretical expression given in Eqs. (63) and (64) to the

measured S(q) (in absolute units) for a silica gel—water—lutidine sample containing

2.05% silica and 40 volume of lutidine at 26.80°C. The residuals in units of the

standard deviation of the data are shown in the bottom portion of the figure.

Reprinted with permission from Frisken et al., Phys. Rev. E 51, 5866. Copyright 1995

by the American Physical Society.

The results showed that � increased toward the critical temperature, as

did �
�

and �, although the accuracy was not sufficient to determine any

critical exponents (in addition to the fact that the concentration of the ‘‘free’’

fluid, that which is not ‘‘frozen’’ in the wetting layers, also changes with

temperature). This behavior appears to be different from the behavior

observed in Vycor. Note also that �
�

was found not to scale with &, which

would be expected from a simple linear response theory indicating that the

wetting response of the fluid near the silica surface is probably nonlinear, as

might be expected. In the two-phase region, S(q�) could be represented by

S(q) �
C

�
(1 � q���

�
)

� C
�
S
��

(q), (66)

plus a constant background term; that is, scattering due to the silica gel in

an effective uniform fluid plus scattering from domains (see Eq. [36]),
indicating that sharp interfaces between phase separated domains had
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formed. Equation (66) is similar in spirit to the model of Debye et al. [11],

and the models used by Wong et al. [50] and Lin et al. [44] to describe

frozen domains. The value of �
�
was too large to measure accurately. Within

the instrumental resolution, the first term in Eq. (66) effectively looked like

Porod scattering. These domains also appeared to coarsen with increasing

time, as observed by an increase in the amplitude of the q�� term

(proportional to the interfacial area by Eq. [33]).
In addition to binary fluid mixtures, the condensation of a single fluid into

a porous medium is also a subject of considerable interest that has been

studied with simultaneous vapor pressure adsorption isotherm and SANS

measurements. Li et al. [51, 52] used SANS to study the condensation of a

contrast-matched D
�
O/H

�
O mixture into Vycor glass, thus selecting the

scattering from only the network of unfilled pores. For adsorption, they

found an extra diffuse component in S(q) at small q, which seemed to

decrease as q����, while for the case of desorption they found a strong

power-law component in S(q), which behaved like q�����, initially increased

with increasing desorption and then decreased as desorption neared com-

pletion. This component was fitted rather well with a model for scattering

from a mass fractal (see Eq. [49]), and indeed it is tempting to associate this

mass fractal with the ‘‘percolation cluster’’ opened by the network of unfilled

pores. The fractal dimension 1.75 is problematic, however, since percolation

clusters in three dimensions are expected to have a fractal dimension of 2.4

[53]. The authors rationalize this as due to some as yet unclear influence of

the pore geometry in Vycor glass.

Similar SANS studies of capillary condensation in Vycor glass using

contrast-matched hexane were carried out by Lin et al. [54]. The behavior

of the scattering on adsorption was similar to that reported by Li et al.
[51, 52], but the desorption process was not studied.

The conformation of polymers confined inside pore spaces is also of

interest. At first thought it would appear difficult to get a polymer whose

equilibrium radius of gyration R
�

in solution is greater than a typical pore

size to enter the porous medium. However, it turns out, as predicted

theoretically [55] that from a sufficiently concentrated (semidilute or more

concentrated) polymer solution osmotic pressure will force the polymer

chains to enter the pores, the criterion being roughly that the correlation

length � in the semidilute solution be comparable to the pore size. This was

observed in SANS experiments by Lal et al. [56] where polystyrene (PS)
chains of equilibrium radius of gyration as large as 30 nm were imbibed into

cleaned Vycor glass from semidilute solutions in times ranging from hours

(for the smallest chains) to 65 days (for the largest chains). This was verified

by first studying the SANS from the virgin Vycor sample with a contrast-

matched solvent (deuterated dichloromethane) in the pores (which showed
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no characteristic ‘‘Vycor peak’’) and comparing it with the imbibed Vycor

in which the Vycor peak had reappeared, indicating that PS chains entering

the Vycor had destroyed the contrast-matching condition.

For the SANS experiments a mixture of hydrogenated and deuterated PS

chains of equal molecular weights (MW) (h-PS and d-PS respectively), and

hydrogenated and deuterated toluene solvent (h-toluene and d-toluene) was

used. The SANS experiment can be made sensitive to the conformation of

individual PS chains inside the Vycor if the following two conditions are

simultaneously met:

1. The h-, d-toluene mixture exactly contrast matches the silica of the Vycor.

(This was determined by careful subsidiary contrast matching experi-

ments using varying h-, and d-toluene concentrations.)
2. The concentration of h-PS and d-PS chains is chosen such that the

averaged SLD of the chains exactly matches that of the solvent.

Under these conditions it can be shown [56] that only single chain

fluctuations will contribute to the observed S(q), which thus measures the

form factor or conformation of simple chains. Experiments were done for a

variety of PS molecular weights. A typical S(q) curve for PS of MW 75K in

toluene in Vycor is shown in Fig. 15. The results were compared with the

S(q) for the same chains in dilute solution in toluene (i.e., ‘‘free’’ chains). A

Debye function fit (appropriate to free Gaussian chains in a good solvent)
[55] was made to both sets of data. Such a procedure is valid to obtain a

radius of gyration from the small q region where the fit is reasonably good,

although at large q, both curves deviate. The radius of gyration of the

confined chains were obtained to be always smaller than the radius of

gyration of the free chains in the equivalent bulk solution. The free chains

in dilute solution yield an S(q) that deviates from the 1/q� Debye-like

behavior due to excluded volume effects (yielding q�1/�, where � is the Flory

exponent [55]).
The chains in the Vycor deviate due to conformational changes arising

from confinement in the tubelike pores. These were interpreted in terms of

the theory developed by Daoud and de Gennes [57] and Brochard and de

Gennes [58]. Briefly, the theory takes into account four main effects that

govern the behavior of chains confined in nonadsorbing cylindrical pores.

These are the confinement of the chains by the cylinder walls, which

squeezes the chains laterally; the intrachain excluded volume effect, which

swells the chains and stretches them along the cylinder axis; the entropic

elasticity of the chains, which limits this stretching; and the interchain

interactions, which can also lead to segregation of the chains. Thus the

polymer chains are stretched out into ‘‘cigars’’ along the tubes, which may
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Fig. 15. The S(q) in arbitrary units for 75K MW polystyrene chains in dilute

solution (�) in toluene and in toluene in Vycor (�). The solid lines are correspond-

ing fits of the Debye function for ideal polymer chains (from Ref. [56]).

at high concentrations segregate from each other (strong confinement limit)
or overlap in an entangled manner (moderate confinement regime) and thus

no longer be stretched along the cylinder axis. In the latter cases R�
�.

� R�
�
/3,

where R
�.

is the radius of gyration along the cylinder axis, and R
�
is that of

the chain in bulk solution. One then has the relation

R�
��

� D�/8 � R�
�.

, (67)

where R
��

is the radius of gyration as measured in the Vycor pore space, and

D is the pore diameter of Vycor (known to be �7 nm). Thus Eq. (67)
provides a method for testing the relationship of the measured radii of

gyration of the individual chains in Vycor and in the bulk solution, and was

found to be satisfied extremely well for the different molecular weights

studied. Thus one can conclude that the chains were in the conformation of

ideal overlapping squeezed cigars. This conclusion was confirmed by also

fitting the S(q) of the individual chains in the regime D� q���R
�

to a

‘‘cylindrical’’ Guinier model.
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6.6 Conclusion

This chapter has discussed the experimental methods for studying small-

angle scattering from porous media and a variety of theoretical models for

understanding the observed S(q). Over the years these types of experiments

have yielded a great deal of insight into the morphology of various kinds of

porous media and the area and roughness of the internal pore surfaces,

including information about their fractal structure (if such structure is

present). In turn, this information has yielded insights into the ways in which

such porous media are formed. Small-angle scattering experiments have also

been used to probe the behavior of fluids (including wetting of the internal

pore surfaces and phase separation) and polymers inside porous media.

With the advent of third-generation synchrotron sources with bright-

nesses several orders of magnitude greater than achievable hitherto, one

may expect qualitatively new kinds of information to be available from such

experiments in the future. Thus, the fast kinetics of internal conformational

changes (e.g., wetting, phase separation, or gelation) can be expected to be

studied via SAXS experiments in real time, in which complete S(q) spectra

are obtained in milliseconds or less. In addition, the highly coherent

radiation from such sources, which is incident on the sample, should make

it possible to study equilibrium dynamics (e.g., of single molecules diffusing

through the pore spaces, or of dynamic concentration fluctuations of

phase-separating fluids inside porous media) using the techniques of photon

intensity correlation spectroscopy (cf. Ref. [59] also Ref. [60]. For static

SAXS measurements, the radiation may be coherent over most of the

sample, and thus one is no longer measuring a statistical average of the

density autocorrelation function as in Eq. (5), but the actual Fourier

transform of the actual correlation function over the whole sample. Without

going into details, this leads to at least the possibility of direct holographic

imaging of the porous medium down to the nanometer length scale, rather

than a measurement of S(q). Similar advances may be expected when

higher-brightness neutron sources are finally available.
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Appendix A

Let us assume we have a bicontinuous medium where each of the phases

(which we can characterize as ‘‘solid’’ and ‘‘pore,’’ respectively) is character-

ized by uniform SLD contrasts �
�

and �
�
, respectively (as in Eqs. [14]). We

can write

S(q) � (��)� �
�

d r� � �
�

d r� �eiq� (r���r�), (A1)

where v indicates the volume enclosing one of the phases (e.g., solid). This

is equivalent to Eq. [5] if one subtracts the scattering from a uniform SLD

equal to that of the other phase throughout the sample volume and uses

(�
�

� �
�
)� ����.

Since the medium is isotropic, we can choose an arbitrary direction of q�
and call it the z axis. Then carrying out the z integration explicitly in Eq.

(A1), we obtain

S(q) �
(��)�

q� �� dx dy �� dx� dy� �
	


e	-�.
�
�� �� ��.

	
������p

	
p


, (A2)

where z
	
(x

�
, y) is the intersection of the ith sheet of the interface with the

vertical (i.e., parallel to the z axis) line through the point (x, y), and p
	
� �1

if one goes from solid to pore through the interface as z increases, and equal

to �1 if one goes from pore to solid. Since, in general, these experiments are

not carried out with perfectly coherent radiation and thus represent an

average over many ‘‘coherence volumes’’ in the sample, we can make a

statistical average over the expression in Eq. (A2). Now z
	
(x�, y�) can be

written as z
	
(x, y) � [z

	
(x�, y�) � z

	
(x, y)], and we assume that these two

components (perpendicular and parallel to q) fluctuate independently and

that the expectation value of the latter on a single sheet of the interface

depends only on the relative separation (x, y) of (x, y) and (x�, y�). We can

then average independently over all possible initial points (x, y), which we

can call (0, 0) for convenience. Denoting this average by � �
�
, we may write

Eq. (A2) as

S(q) �
A(��)�

q�
�
	


p
	
p


�e	-�.

�
������.

	
������� �� dX dY �e	-�.

�
�/�0��.

�
�������

'
, (A3)

where A is the cross-sectional area of the sample, and the symbol � �
'
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denotes a statistical average over interfaces. In general, the integral over

(X, Y ) will have contributions only from those points on the interface

laterally within a persistence length of the interface from (0, 0). We write the

integral over (X, Y ) in Eq. (A3) as an average shape factor F(q) for the

interface. Then we have

S(q) �
���

q�
AF(q) �

	


p
	
p


�e	-�.

�
������.

	
�������

�
. (A4)

Now the quantity �e	-�.
�
������.	"��������

�
, where [z

	
(0, 0) � z

	"�
(0, 0)] is the

distance between successive intersections of the (i )th and (i � 1)th interfaces

with a line parallel to the z axis is equal to f
�
(q) or f

�
(q), depending on

whether i� i � 1 spans a ‘‘pore’’ phase or a ‘‘solid’’ phase and f
�
(q) and

f
�
(q) are defined by the Fourier transforms

f
���

(q) ��
�

�

dz e�	-.f
���

(z), (A5)

where f
�
(z) and f

�
(z) are the (normalized) pore and solid chord distribu-

tions, respectively. Let us choose i as some particular interface (say solid—
pore in the direction of z), and consider the sum over j as we include

successive interfaces along the z axis. The first item will be the next

pore—solid interface (with p



� �1), the next will be the following solid—
pore interface with p



� �1, etc., and dropping the argument (0, 0), which

is implicit in the average, we have

�

1	

p


�e	-�.

�
�.

	
�� � ��e�	-�.� 	"��.	��� ��e�	-�.	"��.
"�����e�	-�.	"��.	���� · · ·

(A6)

where (z
	"�

� z
	
)
�

and (z
	"�

� z
	"�

)
�
denote distances across pore and solid

spaces, respectively, using the definitions of Eq. (A5), we can write

�

1	

p


�e	-�.

�
�.

	
��� � f

�
(q) � f

�
(q) f

�
(q) � f

�
(q) f

�
(q) f

�
(q) � · · ·

� � f
�
(q)[1 � f

�
(q)][1 � f

�
(q) f

�
(q) � f �

�
(q) f �

�
(q) � · · ·]

�
� f

�
(q)[1 � f

�
(q)]

1 � f
�
(q) f

�
(q)

. (A7)

We now consider the sum over successive interfaces in the negative z
direction, which yields simply the complex conjugate of the preceding

expression:

�

2	

p


�e	-�.

�
�.

	
�� �

� f *
�

(q)[1 � f *
�

(q)]

1 � f *
�

(q) f *
�

(q)
. (A8)
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Finally, we add the term j � i, which gives unity. A little reflection shows

that if we had started with i at a pore—solid interface instead, we would have

obtained the above results with f
�
(q) and f

�
(q) interchanged. Thus, finally,

�
	�


p
	
p


�e	-�.

�
�.

	
�� �

N

2 �
2 � f

�
(q) � f

�
(q)

1 � f
�
(q) f

�
(q)

� c.c. � 2� . (A9)

Also if �l
�
� and �l

�
� are the expectation values of the chords through the

pore and solid phases respectively, and L is the sample dimension along the

direction of q�, we have

L �
N

2
[�l

�
���l

�
�], (A10)

so by Eq. (A4), we get the result in Eq. (37) of the main text.

Appendix B

Here we sketch the proof [34] of the result given in Eq. (55) for a system

with a hypothetical mass fractal dimension D and a different surface fractal

dimension D
�

(leaving aside the question of whether these can coexist at the

same length scales).
Assuming a constant SLD contrast �� within the particles of the system,

we have

S(q) � (��)� �
+
�
+

d r� d r� �eiq� ·(r��r��) , (B1)

where V is the volume, which defines the object. We have the vector identity

iq� �
+

d r�eiq� ·r� ��
$

dS�eiq� ·r�, (B2)

when S is the surface bounding volume V. Thus,

�
+
�
+

d r� d r� �eiq� ·(r��r��) �
1

q� �
$
�
$

(dS� · dS��)eiq� · (r��r��) (B3)

�
1

q� �
$
�
$

dS dS�[n� ( r�) · n��( r� �)]e iq� ·(r��r��), (B4)

where n�( r� ) is the unit vector normal to the surface S at r� . Let us assume

the scaling form

[n�( r�) · n��( r� �)] � �r� � r� ����, (B5)
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where � is an exponent to be determined. Then

S(q) �
1

q� �
$
�
$

dS dS� �r� � r� � ��� eiq� · (r��r��). (B6)

Since the integral depends only on ( r� � r� �), one integral over S can be done,

yielding a measure of the total (fractal) surface area. The other can be

reduced to dimensionless form by substituting

R� � q�r� � r� � �.

Then,

S(q) �
1

q�
q��

�
q� ��

$ 

d�R�
1

(R�) � ei*� cos �� , (B7)

where � is the angle between q� and ( r� � r� �), and we have used the fact that

the fractal surface elemental area dS scales as q�
�
dS under a length scale

transformation r�� qr. The last factor in square brackets in Eq. (B7) is

independent of q, so that

S(q) � 1/q��
�
�&. (B8)

To obtain �, consider a plane intersecting the object, the linear dimension

of this intersection being R (see Fig. 16). Consider the surface that encloses

this plane and the surface of the object that it intersects on one side of the

plane—that is, the surfaces (S
�

� S
�
) in Fig. 16 —we have

�
$�"$�

dS� � 0, (B9)

or

�
$�

dS� � ��
$�

dS� � n�
�
R���, (B10)

where n�
�

is the unit vector normal to the plane (surface S
�
), and we have

used the result that the area of intersection of a plane with an object of

fractal dimension D is an object of fractal dimension (D � 1) [22]. From Eq.

(B10),

�
$�
�
$�

dS� · dS�� ��
$�
�
$�

dS dS�
1

�r � r� � ��
�R����. (B11)
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Fig. 16. Schematic of a fractal object intersected by a plane surface with cross-

sectional area S
�
, where S

�
represents the surface area of the object on one side of

S
�
, and n�

�
n�
�
represents the normals to these respective surfaces.

Now consider length scale transformations r��r, r���r�. Then dS �

��
�
dS and dS����

�
dS� so that the left-hand side of Eq. (B11) is multiplied

by a factor ���
�
�&. The right side is multiplied by a factor �����. Thus,

� � 2D
�

� 2D � 2, (B12)

and hence by Eq. (B8),

S(q) � 1/q����
�
. (B13)
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and S. Spooner, Phys. Rev. B 39, 9742 (1989).

260 SMALL-ANGLE SCATTERING FROM POROUS MATERIALS



33. P.-z. Wong, Phys. Rev. B 32, 7417 (1985).

34. R. C. Ball and S. K. Sinha (1986, unpublished); S. K. Sinha, Phys. D 38, 310

(1989).

35. P.-z. Wong and Q.-z. Cao, Phys. Rev. B 45, 7627 (1992).

36. D. Avnir, D. Farin, and P. Peiffer, J. Chem. Phys. 79, 3566 (1983) and Nature

Lond. 308, 261 (1984).

37. J. M. Drake, P. Levitz, and J. Klafter, Israel J. Chem. 31, 135 (1991).

38. K. B. Gavrilov, A. G. Okiener, and Y. I. Aristov, Reaction Kim Catal. Lett. 58,

39 (1996).

39. S. K. Sinha and Z. Djordjevic (1988, unpublished).

40. F. Brochard and P. G. de Gennes, J. Phys. Lett. 44, L-785 (1983).

41. D. Andelman and J. F. Joanny, in Scaling Phenomena in Disordered Systems (R.

Rynn and A. Skjeltarp, Eds., Plenum, New York, 1985), p. 163.

42. W. I. Goldberg, in Scaling Phenomena in Disordered Systems (R. Pynn and A.

Skjeltorp, Eds., Plenum, New York, 1985), p. 151.

43. M. C. Goh, W. J. Goldburg, and C. M. Knobler, Phys. Rev. Lett. 58, 1008 (1987).

44. M. Y. Lin, S. K. Sinha, J. M. Drake, X. L. Wu, P. Thiyagarajan, and H. B.

Stanley, Phys. Rev. Lett. 72, 2207 (1994).

45. S. B. Dierker and P. Wiltzius, Phys. Rev. Lett. 58, 1865 (1987); ibid. 62, 804

(1989); ibid. 66, 1185 (1991).

46. B. J. Frisken and D. S. Cannell, Phys. Rev. Lett. 69, 632 (1992).

47. B. J. Frisken, D. S. Cannell, M. Y. Lin, and S. K. Sinha, Phys. Rev. E 51, 5866

(1995).

48. A. J. Liu and G. Grest, Phys. Rev. A 44, R7894 (1991); L. Monette, A. J. Liu,

and G. Grest, Phys. Rev. A 46, 7614 (1992); A. J. Liu, et al., Phys. Rev. Lett. 65,

1897 (1990).

49. J. V. Maher, W. I. Goldberg, D. W. Pohl, and M. Lenz, Phys. Rev. Lett. 53, 60

(1984).

50. P.-z. Wong, J. W. Cable, and P. Dimon, J. Appl. Phys. 55, 2377 (1984).

51. J.-C. Li, D. K. Ross, and M. J. Benham, J. Appl. Cryst. 24, 794 (1991).

52. J.-C. Li, L. D. Howe, M. J. Benham, D. K. Ross, J. P. A. Fairclough, and K. Ibel,

Phys. Rev. B 49, 5911 (1994).

53. D. Stauffer, Introduction to Percolation Theory (Taylor & Francis, London and

Philadelphia, 1985).

54. M. Y. Lin, S. K. Sinha, J. S. Huang, B. Abeles, J. W. Johnson, J. M. Drake, and

C. J. Glinka, Mat. Res. Soc. Symp. Proc. 166, 449 (1990).

55. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press,

Ithaca, NY, 1985), p. 95.

56. J. Lal, S. K. Sinha, and L. Auvray, J. Phys. II 7, 1597 (1997).

57. M. Daoud and P. G. de Gennes, J. Phys. 38, 85 (1977).
58. F. Brochard and P. G. de Gennes, J. Phys. 40, L-399 (1979).

261REFERENCES
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7. LIGHT SCATTERING AND OTHER OPTICAL METHODS
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7.1 Introduction

Initially it would seem that the application of optical methods or light

scattering to the study of porous materials is nearly impossible. With a few

important exceptions (such as optically transparent gels) porous materials

generally appear quite opaque. This results either from direct absorption or,

in a more transparent material, from the high concentration of discontinu-

ities in the index of refraction at the pore walls. Since these discontinuities

are abrupt over distances comparable to the wavelength of visible light,

incident light is scattered very strongly and the propagation of a well-

defined beam in the material is hopeless. Despite these difficulties, a number

of studies employing various optical techniques have been carried out in

porous materials in recent years. Generally these fall into two categories:

1. If the matrix material is transparent and uniform in index of refraction,

and the pore spaces can be filled with a fluid having an index of refraction

that closely matches that of the matrix material, the porous material is

rendered transparent. So-called ‘‘index matching’’ removes the discon-

tinuities at the pore—matrix boundaries to such an extent that the effects

of multiple scattering and attenuation can be essentially ignored. Conven-

tional imaging is employed and the detected light is considered as affected

only by single scattering. The most common example of this is the study

of macromolecular diffusion in optically transparent polymer gels in

which the fluid component of the gel (or solvent) is chosen to match the

index of the polymer. A second example is the measurement of diffusion

in porous glasses.
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2. In complete contrast to the first category, in systems that scatter light

strongly, the propagation of light can be described by a diffusion

approximation. The key idea is that light that reaches the detector has

been scattered within the medium so many times that the phases of the

scattered fields have been completely randomized and only the intensity

of the light reaching the detector must be considered. An equivalent

description is that the path of each scattered photon can be considered

to be a random walk through the medium. The statistics of these random

walks is well understood and can be used in the analysis of the scattered

light.

Dynamic light scattering (DLS), fluorescence recovery after photo-

bleaching (FRAP), forced Rayleigh scattering (FRS), and interferometric

methods belong to the first category. Diffusing-wave spectroscopy (DWS)
belongs to the second category, is relatively new to this field and will be

discussed in Section 7.5. The distinguishing characteristics of each method

are described briefly next; details are explained in the later sections of this

chapter.

DLS has been the most useful optical technique to investigate what is

occurring in a system of interest contained in the cavities of a porous

medium. DLS has been applied to studies of various diffusion processes of

polymer molecules in the interior of a porous medium, phase transitions in

a confining geometry, and dynamic modes of a nonrigid porous medium

itself. The diffusion coefficient obtained is the isotropic mean. The advan-

tages of DLS include: (1) DLS can selectively pick up a signal from the

system in the pore space, leaving signal components from the solid phase of

the porous medium in the background; (2) there is no need to chemically

modify the molecules or choose labeled species; (3) the system is not exposed

to an external field that may cause an unintended change to the system such

as a temperature increase; and (4) DLS enables measurement within a small

volume inside a porous medium. Furthermore, DLS reveals the tortuosity

of a given porous medium, a measure of resistivity for diffusional transport

of small molecules through the medium.

FRAP is a method of measuring the diffusion coefficient of fluorescent

molecules in reasonably transparent media, and hence its use has been

limited primarily to studies of the movement of macromolecules or particles

in polymers, polymer solutions or gels, and biological materials rather than

in rigid porous materials, which tend to be more opaque. The method

generally requires direct imaging of the scattering volume (in common with

DLS) or at least direct reception, without scattering, of the fluorescent light.

The diffusion modes detected are limited to those in the plane of focus

within the sample of interest. Improvements such as spatial Fourier analysis,
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modulation detection, and holographic pattern photobleaching have en-

abled the use of the method even in somewhat turbid materials.

FRS, also called holographic grating relaxation spectroscopy, is a power-

ful tool in the measurement of diffusive dynamics of condensed phases using

dye-molecules or dye-labeled molecules as a probe. The term FRS is due to

the fact that the light is scattered by the classical Rayleigh mechanism, but

the intensity is greatly enhanced by writing or ‘‘forcing’’ the modulation

pattern. FRS has been applied to study of dye diffusion in a swollen

cross-linked polymer gel and diffusion of dye-labeled polymer chains in

concentrated solutions and melts. More recently, FRS has been applied to

the study of probe diffusion in polyacrylamide gels and diffusion of dye

molecules in Vycor porous glass. FRS is sensitive only to the diffusion

component normal to the modulation pattern.

Interferometric methods utilize the difference in the refractive index

between a sample and a reference to create the fringe pattern. Analysis of

the distortion in the image provides information on the diffusivity of solutes

in the porous matrix. The methods have been used to study of the

partitioning of a solute with a porous medium and diffusion over the

interface between regions of different solute concentrations.

In the following discussion, each section opens with an introduction to

the basic theory and practice of a particular technique and is followed

by a few examples of what has been learned through application of the

method. The examples are intended to be illustrative and are by no means

exhaustive.

7.2 Dynamic Light Scattering

7.2.1 Discussion of the Method

As the name suggests, dynamic light scattering makes use of dynamics or

fluctuations in the intensity of scattered light to derive information about

physical processes occurring inside a scattering medium. In principle, any

process that causes the intensity of the scattered light to vary with time is a

possible candidate to be studied by DLS. In practice, however, diffusion or

some other structural relaxation modes are usually studied.

The method has been extensively reviewed [1—4], but for the sake of

completeness it is worthwhile to recall here essential features. Light from a

laser is brought to a focus in a small region (typically 100 �m in diameter)
at the center of a glass cell (see Fig. 1). Light scattered from a small region

(scattering volume) of the sample into a small range of angles near the

scattering angle � falls on a photodetector operated in the photon-counting

mode. The scattering volume is an intersection between the path of the
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Fig. 1. Configuration of a dynamic light scattering system for study of diffusion

processes in the interior of a porous silica bead.

incident beam and the solid angle determined by the pinholes or the two

slits.

The detected light intensity (photon count rate) fluctuates dramatically as

the electric field of the light wave scattered by each of the scattering particles

fluctuates relative to the electric field of the light wave scattered by other

particles. The fluctuations are due to the Brownian motion or other modes

of motion of the particles. Pulses from the photodetector are processed by

a digital correlator which computes the autocorrelation function of the

intensity of the scattered light. In this homodyne detection configuration, it

can be shown [3] that the autocorrelation function g
!"

(t), after normaliz-

ation by its long time limit, is related to the normalized electric-field

autocorrelation function g
#
(t) by

g
!"

(t) � 1 � b
!"

�g
#
(t)��, (1)

where t is time, and b
!"

is a constant of the apparatus, called a coherence

factor, related to the coherence of the scattered light over the aperture of the

detector. If the light scattering is by identical particles making independent

diffusional motions, then g
#
(t) is a decaying exponential:

�g
#
(t)� � exp(�$t), (2)

with the decay rate $ given by $� Dq�, where D is the diffusion coefficient

of the particles, and q is the scattering wave vector of the light. The latter is

related to the scattering angle � by q � (4�n/�) sin(�/2), where n is the index

of refraction of the solvent, and � is the vacuum wavelength of the light.

Equivalently, if the decay rate of �g
#
(t)� is proportional to q� in measure-
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ments at different scattering angles, then it can be said that the motion of

each particle follows the diffusion equation. An alternative way to think of

this situation is to consider the scattered light as selecting the Fourier

component of the thermal particle density fluctuations corresponding to the

wave vector q. The component experiences an almost negligible shift in the

wavelength when scattered (Doppler shift). This is why DLS is also called

quasi-elastic light scattering.

The hydrodynamic radius of a molecule or a particle in suspension R
!

is

defined as the radius of a sphere that has the same diffusion coefficient in a

given solvent. It is calculated from the Stokes—Einstein law:

D �
k

$
T

6��R
!

, (3)

where k
$

is the Boltzmann constant, T the temperature, and � the solvent

viscosity. When the scatterers are not rigid, rotational motions contribute to

the autocorrelation function. For the decay of g
#
(t) to be solely due to the

center of mass motion, the scattering angle must be sufficiently low; that is,

qR
!
	 1.

The single exponential decay in Eq. (2) is observed only for a system of

identical scatterers with negligible interactions between them. Otherwise, the

decay deviates from the single exponential and is expressed, in general, as a

superposition of exponential decays with different decay rates:

�g
#
(t)� � �

�

�

exp(�$t)G($) d$. (4)

Two analysis methods are commonly used to estimate the distribution

function G($). One is a cumulant expansion method in which a polynomial

fit of ln�g
#
(t)� (often second order) is used to calculate the average, variance,

and higher-order cumulants of $. The other is a direct deconvolution of

�g
#
(t)� with additional conditions on the shape of G($). Computer program

packages as represented by CONTIN [5] carry out the inverse-Laplace

transform.

7.2.2 Application of DLS to Diffusion of Polymers in Porous Silica

DLS was used to study various diffusion processes [6—14] of polymer

molecules in a solution filling controlled pore glass [15] that has a uniform,

bicontinuous network structure of the pore space. The solid phase of the

porous glass is amorphous silica. A typical configuration around the sample

cell is shown in Fig. 1. A porous silica bead immersed in a solution of the

polymer is fixed in a sample cell. A laser beam is focused inside or near the

silica bead. The scattering volume determined by the two pinholes is entirely
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Table I. Typical Solvents Isorefractive with Silica [77]

Solvent n��
�

Boiling point (°C)

Cyclohexanone 1.4500 155

Carbon tetrachloride 1.4600 76—77

Cycloheptanone 1.4610 179

Fluorobenzene 1.4650 85

Trans-decahydronaphthalene 1.4690 185

N-methyl pyrrolidone 1.4700 202

2-Fluorotoluene 1.4730 113—114

contained in the silica bead and consists of three components: silica, solvent,

and polymer. To minimize scattering by the silica, an organic solvent with

a refractive index close to that of silica (1.457) is selected. The porous silica

bead is then almost invisible, and the polymer is the only species that has

an index of refraction different from the rest. Table I is a partial list of

solvents that can be made isorefractive with silica. Depending on minority

components in the silica phase, the refractive index of the silica can vary

slightly. Fine-tuning of the index match can be accomplished by tempera-

ture adjustment.

Even at the best index match, however, spatial fluctuations in the

refractive index of the solid phase cause most of the scattering, much

stronger than the scattering from molecules of interest in the pore channels.

The static scattering by the solid phase creates an irregular speckle pattern

with spatially alternating bright and dark spots. Scattered light can be

collected within one of the bright spots. A darker region can be selected as

well; the decaying component of the autocorrelation function will be the

same except that a longer accumulation time is required.

The light scattered by a volume in the interior of the porous medium has

two components: elastic, static scattering by the immobile silica phase, and

quasielastic, fluctuating scattering by diffusants moving in the pore space.

The wavefronts of the two components are well matched in phase. Therefore

the first component serves as a local oscillator in this optical mixing

(heterodyne) configuration. Bishop et al. [6, 7] applied the theory of hetero-

dyne detection to derive the intensity autocorrelation function g
!#

(t),
normalized by its long time limit, as

g
!#

(t) � 1 � b
!#

�g
#
(t)� � O(�g

#
(t)��), (5)

where b
!#

(	1) is the coherence factor, and �g
#
(t)� is due to the scatterers in

the pore channels. Later a liquid-filled porous medium was treated more

generally as a nonergodic medium. See Section 7.2.3. [16, 17].
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Fig. 2. Normalized electric-field autocorrelation function �g
#
(t)� plotted as a function

of q�t, measured in the exterior solution (a) and in the porous silica bead at

qR
�

� 0.35 (b), 1.85 (c), and 5.3 (d). Adapted with permission from M. T. Bishop et
al., Macromolecules 22, 1220. Copyright 1989 American Chemical Society.

The porous medium has a characteristic wavenumber of �1/R
�
, where

R
�

is the average pore radius. For �g
#
(t)� to represent macroscopic diffusion

of polymer in the porous medium, another condition qR
�
	 1 must be

satisfied in addition to qR
!
	 1. Bishop et al. [7] studied diffusion of poly-

styrene in pieces of controlled pore glass with different pore radii to see how

�g
#
(t)� depends on qR

�
. At low scattering angles— for example, at qR

�
�

0.35 (see Fig. 2b), �g
#
(t)� decayed as a single exponential with a diffusion

coefficient D
%
smaller than the diffusion coefficient D

#
of the same polymer

in the exterior solution (see Fig. 2a). The D
%

represents diffusion over a

distance that smears out pore structure details. They also verified that, in

the range of qR
�
� 1, the decay rate in �g

#
(t)� is proportional to q�. At

qR
�

� 1.85, the decay showed a deviation from a single exponential (Fig.

2c). At qR
�

� 5.3, the initial decay rate was close to D
#
q�, signifying that

DLS explored diffusional motion of a polystyrene molecule within a single

pore channel before the molecule senses the presence of pore walls (Fig. 2d).
Bishop et al. [7] also explored the dependence of D

%
on the dimension of

polystyrene fractions for R
!
/R

�
� 0.2. For all combinations of R

!
and R

�
studied, D

%
/D

#
decreased as R

!
/R

�
increased. In the limit of R

!
/R

�
� 0,

D
%
/D

#
approached a value smaller than unity, a result ascribed to tortuosity

of the porous medium. The limiting value �
�

is the intrinsic conductivity

(reciprocal of the tortuosity) of the medium and depends on R
�

and the

structure of the medium. They showed that the data points lie on a master

curve when D
%
/(�

�
D

#
) was plotted as a function of R

!
/R

�
. Use of the

formula

D
%
/D

#
� �

�
F��
�

(R
!
/R

�
), (6)
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Fig. 3. Diffusion coefficient D
%
of polystyrene in a porous silica bead for different

molecular weights M of the polymer. Porous silica beads of two different pore radii

R
�

� 7.5 and 25 nm were used. Adapted with permission from Y. Guo et al.,
Macromolecules 23, 2022. Copyright 1990 American Chemical Society.

which separates a geometrical factor �
�

and the hydrodynamic drag [18, 19]

F��
�

for a molecule of R
!

in a single, straight pore channel of radius R
�

was

thus justified.

The range of R
!
/R

�
was subsequently extended to 1.4 [8, 9]. Figure 3 is

a plot of D
%
as a function of the molecular weight M of polystyrene fraction

for porous silica beads of R
�

� 27.5 and 7.5 nm. Toward the high end of the

molecular weight for each bead—that is, in the strong confinement,

R
!
/R

�
� 1 —D

%
decreased sharply as M increased. The entropy barrier

model [20, 21] that ascribes the decrease to the presence of bottlenecks of

the pore space in the network-structured porous medium was found to

explain the dependence.

The examples of DLS studies already shown are in dilute solution

conditions, or more precisely, the extrapolation to zero concentration. At

finite concentrations, interactions between solute molecule cause the diffu-

sion coefficient to be different. The diffusion mode explored by DLS for

solutions at nonzero concentrations is called mutual diffusion, as DLS

detects fluctuations in the total solute concentrations at a given wave vector.

It is often the case that repulsive interaction between solvated molecules

increases the mutual diffusion coefficient D
�

at higher concentrations. At

concentrations higher than the overlap concentration (semidilute regime),
monomer density fluctuates on a length scale shorter than the chain

dimension. The diffusion detected by DLS is called the cooperative (or
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Fig. 4. Diffusion coefficient D
%
of polystyrene (mutual diffusion) in a porous silica

bead of R
�

� 25 nm plotted as a function of polystyrene concentration in the

surrounding solution. The arrows in the figure indicate the overlap concentrations of

the three polystyrene fractions. Reprinted with permission from Teraoka et al.,
Macromolecules 26, 287. Copyright 1993 American Chemical Society.

collective) diffusion, and its coefficient is denoted by D
�
. Past studies show

that D
�
depends little on the molecular weight and rather is determined by

the total monomer concentration of the solution. The apparent hydro-

dynamic radius calculated from Eq. (3) gives the dynamic correlation length

� of the fluctuations:

D
�
�

k
$
T

6���
. (7)

Applying DLS to a porous silica bead immersed in a semidilute solution

of polystyrene, Teraoka et al. [14] found that D
�

increased in the porous

medium for each of the three fractions of the polymer (see Fig. 4) more

rapidly than in the surrounding solution. The arrows indicate the overlap

concentrations for the three fractions. A large difference in D
�

for polymer

fractions with different molecular weights at low concentrations almost

disappeared when the exterior concentration became semidilute. This obser-

vation was explained as a change in the partitioning of polymer molecules

with the porous medium. At low concentrations, each polymer chain is

partitioned independently according to the size exclusion principle. At

concentrations higher than the overlap concentration, however, the high

osmotic pressure of the polymer solution forces the chains to migrate into

the pores at a proportion much higher than at low concentrations. Thus as
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the surrounding solution becomes semidilute, the solution in the pore

channels also becomes semidilute. With the transition in the partitioning,

concentration fluctuations in the pore shows a crossover. Slow macroscopic

diffusion of long chains hindered by the pore tortuosity gives way to

concentration fluctuations with a length scale much shorter than R
�
.

7.2.3 Application of DLS to the Dynamics of Gels

A chemical gel that consists of crosslinked polymer chains is a type of

porous medium. Unlike solid porous materials such as silica gels, the

polymeric gel usually exists in a liquid. Depending on the interaction

between the solvent and the polymer, the gel is either swollen or shrunken.

The interaction can be manipulated by changing temperature, solvent

composition, and, in some gels, pH. When swollen, the volume fraction of

the polymer network is as small as 0.001, and the network consists of a

sparsely jointed thin thread locally fluctuating around the equilibrium

position. This mode of motion can be considered as overdamped phonons.

DLS has been vital to investigate the dynamics of the swollen gels at

equilibrium and the statics and kinetics of the volume phase transition

(between swollen and shrunken states). The technique has also been exten-

sively used to study motions of large molecules impregnated into the gel. A

brief review of applications of DLS to gels is given in the following.

According to Tanaka et al. [22], the electric-field autocorrelation function

of light scattered by the gel matrix is given as

�g
#
(t)� ��

	n�

	 ln(1 � �)�
� k

$
T

K � 4/3�
exp(�Dq�t), (8)

with a collective diffusion coefficient D given by D � (K � 4/3�)/ f, where n
is the refractive index of a whole gel, 1 � � is the volume fraction of the gel

matrix, K and � are the bulk and shear moduli (K � 4/3� is the longitudinal

modulus), and f is the friction coefficient. The collective diffusion is caused

by local concentration fluctuations of the matrix. In a UCST-type gel

(swollen at temperatures higher than a critical temperature T
�
), the longi-

tudinal modulus depends on the temperature T as

K � �


�� T � T

�
. (9)

Figure 5 shows the diffusion coefficient D and the intensity I of the light

scattered at 90° for 2.5% polyacrylamide gel in water, plotted as a function

of T [22]. As T approaches T
�

from above, I diverges, and D approaches

zero. Equation (9) was found to hold except near T
�
.

Later Tanaka et al. [23] used DLS to study critical dynamics of volume

phase transition in an isopropylacrylamide gel in water. This gel has an

LCST-type phase diagram. Figure 6 is a plot of the collective diffusion
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Fig. 6. Collective diffusion coefficient D of poly(isopropylacrylamide) gel determined

from DLS measurements. Reproduced with permission from T. Tanaka et al., Phys.
Rev. L ett. 55, 2455. Copyright 1985 American Physical Society.

Fig. 5. Intensity I and the diffusion coefficient D of collective diffusion in a 2.5%

polyacrylamide gel measured at temperatures above the volume phase transition

temperature. Adapted with permission from T. Tanaka et al., Phys. Rev. L ett. 38, 771.

Copyright 1977 American Physical Society.

coefficient obtained from the decay rate in �g
#
(t)�. The critical slowing down

is evident. The diffusion coefficient agreed with the one estimated from the

rate of change in the radius of the spherical gel, indicating that the collective

diffusion coefficient dictates also the motion of the network during the

volume change.

Gels are typical nonergodic media— the time averages of the scattering

intensity and its autocorrelation function measured at a specific solid angle

of scattering are not identical to their ensemble averages over all possible
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Fig. 7. Spatial fluctuations of the time-average scattering intensity �I�
�

measured at

different positions in a NIPA/Acc gel sample prepared with different acrylic acid

contents (indicated above each plot). Reprinted with permission from M. Shibayama

et al., Macromolecules 29, 6535. Copyright 1996 American Chemical Society.

configurations. Joosten et al. [16, 17] applied general discussion of light

scattering from nonergodic media, developed by Pusey and van Megen [24],

to the scattering from gels. They decomposed g
#
(t) into a fluctuating

component that arises from concentration fluctuations of the gel network

and a constant component due to macroscopic inhomogeneities of the

network. The latter serves as a local oscillator in this heterodyne configur-

ation. The apparent diffusion coefficient D
�
, obtained from the initial decay

rate of the total scattering intensity I by regarding it as purely homodyne,

is related to the diffusion coefficient D
&
, to be obtained from the initial decay

rate in the autocorrelation function of the fluctuating component I
'

by

D
&
/D

�
� 2 � �I

(
�

�
/�I�

�
, (10)

where �·�
�

denotes the time average. The ratio ranges between 1 (pure

homodyne) and 2 (heterodyne limit).
Shibayama et al. [25] used the preceding formulation to analyze the light

scattering from different speckles in a poly(isopropylacrylamide-co-acrylic

acid) (NIPA/AAc) gel. Figure 7 shows spatial fluctuations of �I�
�
, mea-

sured at different locations in a gel sample prepared with different acrylic

acid (AAc) contents. Apparently, the polyelectrolyte component suppresses

the inhomogeneity of the gel. To apply Eq. (10), they rewrote it as

�I�
�

D
�

�
2

D
&

�I�
�

�
�I

'
�

�
D

&

. (11)

Figure 8 shows D
�

as a function of �I�
�
, and the inset is a plot of �I�

�
/D

�
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Fig. 8. Apparent diffusion coefficient D
�
, obtained from the analysis of the scattering

intensity, as a function of �I�
�
. The inset is a plot of �I�

�
/D

�
as a function of �I�

�
.

Reprinted with permission from M. Shibayama et al., Macromolecules 29, 6535.

Copyright 1996 American Chemical Society.

as a function of �I�
�
. The linearity of the latter indicates that the formula-

tion by Joosten et al. correctly describes the nonergodic nature of the gel.

From the slope and the intercept, D
&

and �I
'
�

�
can be evaluated, as shown

in the figure.

Diffusion of probe polymers in a network of polymeric gel has been

studied extensively by applying DLS to the gel immersed in an index-

matching solvent. The swollen gels include a crosslinked polydimethyl-

siloxane (PDMS) gel in tetrahydrofuran [26] and a crosslinked poly(vinyl

methyl ether) gel in toluene [27]. The dependence of the tracer diffusion

coefficient on the matrix concentration and the probe molecular weight was

analyzed using the reptation model. In these studies, the light intensity

autocorrelation functions were not analyzed in the view of nonergodicity.

7.2.4 Application of DLS to Critical Phenomena in a Porous Medium

Typical DLS studies of critical phenomena in porous media include

liquid—vapor phase separation [28] and phase separation of binary liquid

mixtures. Most of the concern has been directed toward the effects of the

confinement on the phase diagram, and the appearance of different modes

of compositional fluctuations. Here we discuss some of the results observed

for confined binary mixtures.
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In binary liquid critical mixtures in confining geometry, the correlation

length � competes with the pore radius R
�
. When ��R

�
, preferential

wetting by one of the components dictates the state of the fluid. When

��R
�
, in contrast, the pore geometry and surface chemistry apply a

quenched random field (pinning) to the fluid that tries to separate into

domains larger than the pore size. The latter nature has been formulated in

the random-field Ising model [29]. DLS takes advantage of its unique

capability to measure � even when most of the scattering comes from the

solid phase of the porous medium, as explained in Section 7.2.2.

Dierker and Wiltzius [30] applied DLS to critical dynamics of a binary

mixture (lutidine and water) in porous Vycor with a pore diameter of 6 nm.

The fluid’s LCST was lower in Vycor compared with the bulk counterpart.

They analyzed �g
#
(t)� as a sum of nonactivated and activated relaxations and

found that the activated relaxation is explained in the random-field Ising

model [29].

Aliev et al. [31] studied critical dynamics of a carbon disulfide—nitro-

methane mixture in porous silica of pore diameter 100 nm. They took

advantage of the bulk critical mixture (60.1% of carbon disulfide by volume)
being nearly isorefractive with silica, whereas the two constituent liquids

have a greatly different indices. The UCST in the pore was lower than that

of the bulk T
�
. The DLS relaxation time measured at scattering angles of 15

and 90° showed critical slowing down as T approaches T
�
from either side.

A crossover from diffusional relaxation at large scattering angles to q-

independent relaxation at low angles was also observed. The latter was

explained as diffusional relaxation in a finite-size well [31].

7.3 Fluorescence Recovery after Photobleaching

7.3.1 Discussion of the Method

Photobleach recovery techniques have evolved considerably since the

original presentation by Poo and Cone [32] and Axelrod et al. [33], but the

basic idea remains the same. A small patch of sample containing naturally

fluorescent molecules (e.g., vitamin A) or dye (e.g., dansylchloride)-labeled

diffusant particles is illuminated by a low-intensity laser beam and the

fluorescence signal is monitored by a detector. The laser is then switched

briefly to an intensity sufficiently high to photobleach labeled particles in

the illuminated region. By using the attenuated laser beam, the subsequent

growth of the fluorescent signal from the bleached region is monitored as it

recovers to a significant fraction of its original level. The bleached region is

erased during recovery due to replenishment of intact fluorophore in the

illuminated region by diffusional transport from the surrounding region.
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Fig. 9. Schematic of spot photometric analysis FRAP by Axelrod et al. [33]. The

sample is a solution contained in a quartz cuvette of 100 �m path length. The barrier

filter is a saturated solution of potassium dichromate. Adapted with permission from

D. Axelrod et al., Biophys. J. 16, 1315. Copyright 1976 Biophysical Society.

Typical dimensions of the illuminated region over which diffusion is aver-

aged is tens or hundreds of micrometers, but as we shall see, the measured

diffusion coefficient can characterize diffusion on a length scale ranging from

hundreds of micrometers down to half the wavelength of light in the sample.

There are several possible variations on each aspect of this method. The

pattern of the photobleached region may be any one of several different

configurations such as a simple round spot or cylinder, an array of stripes,

or a holographically created grating. The recovery of the signal may be

monitored in a number of different ways: straightforward measurement of

the total fluorescence signal or detailed spatial Fourier analysis of the

sample image. The signal-to-noise improvement advantages of lock-in

detection techniques can be gained by bleaching a transient grating and then

scanning it with a spatially periodic illumination pattern to produce a

modulated signal.

7.3.2 ‘‘Spot’’ or Direct Photometric Analysis FRAP

Perhaps the most straightforward to understand of the photobleaching

techniques is the ‘‘spot’’ method originally used by Axelrod et al. [33] to

measure the two-dimensional lateral diffusion of a fluorescent probe asso-

ciated with a membrane (Fig. 9). In their approach, a laser beam is focused

in the sample. The collected fluorescent light from the small circular

illuminated area is monitored by a photodetector. Note that in this experi-

ment, the sample is a thin membrane that limits the scattering volume (the

illuminated region) to a small distance along the axis of the beam. In many

later applications to bulk samples, the optical system of a microscope is used
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to focus the laser beam to a small cylindrical region inside the sample. The

objective thus images the scattering volume and an aperture is used to

discriminate against fluorescent light not originating in the scattering

volume.

In either the thin membrane or the imaged volume case, only the diffusion

perpendicular to the axis of the beam is considered. The intensity of the

beam I(r) at radial distance r from the center axis has a Gaussian profile

I(r) � exp(�2r�/w�), where w is the radius at the e�� power point. Bleach-

ing to a nonfluorescent species is assumed to be a simple irreversible

first-order reaction occurring over a time short compared to characteristic

times of transport. Thus, during the bleach pulse, the concentration of

remaining fluorescent molecules, c(r, 0), is reduced to a fraction of the initial

uniform concentration. During recovery, the concentration c(r, t) of labeled

(fluorescing) molecules in the illuminated region at time t is governed by

Fick’s second law of diffusion with diffusion coefficient D. The total

fluorescence signal is given by

F(t) � (Q/A
��

) �
�

�

c(r, t)I(r)2�r dr. (12)

The prefactor is the product of the quantum efficiencies of light absorption,

emission, and detection, Q, divided by the attenuation factor of the laser

beam during recovery, A
��

. Substituting the solution of the diffusion

equation into Eq. (12), the following is obtained:

F(t) � F
	

�
�
�	�

(�K
�
)�

n !

1

1 � n(1 � t/t
�

)
, (13)

where F
	
is the measured value of F before photobleaching; t

�
and K

�
are

fitting parameters. These expressions assume that the signal recovers com-

pletely to its prebleach value after a sufficiently long time. The diffusion

coefficient is related to t
�

and the beam radius by t
�

� w�/(4D). Note that

the measured diffusion coefficient does depend on the beam radius, but the

prefactor Q/A
��

need not be known. In many experimental situations, the

fluorescence signal does not recover completely to the value before photo-

bleaching, indicative that only a fraction of the labeled macromolecules are

actually mobile.

7.3.3 Spatial Fourier Analysis

The spot fluorescence photobleaching method requires that the sample be

thin and without strong light scattering characteristics. Otherwise the image

will be contaminated by out-of-focus light and the effects of scattering and

absorption. If the method is carried out through the objective lens of a
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microscope, as is typical, the sample must be thin compared to the focal

depth of the microscope, a rather severe restriction. A modification to the

original spot FRAP technique has been demonstrated [34] in which the

diffusion coefficient is calculated from the decay of spatial Fourier coeffi-

cients in successive fluorescence images. The theory of image formation is

used to show that the decay rate of the observed fluorescent intensity is

identical to the decay rate of the concentration distribution in the sample

and hence the diffusion coefficient can be measured without explicit knowl-

edge of the optical distortion of the image or determination of the true spot

size or bleach depth. The technique also takes advantage of simplifications

to the solution of the diffusion equation in Fourier space and requires no

assumptions concerning the initial distribution of fluorescence.

Using the spatial Fourier analysis (SFA), Berk et al. [34] verified that, for

a range of labeled proteins and dextrans, the diffusion coefficients measured

in aqueous solution were in agreement with previous measurements by

other methods. In weakly scattering agarose gel, a direct comparison to

FRAP showed that the results were more accurate and were independent of

sample thickness. In the most stringent test, albumin was placed in a

simulated tissue consisting of a suspension of cancer and red blood cells in

agarose gel. Although the SFA results did exhibit some pathlength depend-

ence, the technique eliminated most of the image distortion and scattering

effects that would impair conventional photometric analysis FRAP.

7.3.4 Periodic Pattern Photobleaching and Modulation Detection

An elegant and simple improvement to the spot FRAP technique was

introduced by Smith and McConnell [35], who were concerned with the

very slow movement of particles associated with synthetic and biological

membranes [36—38]. The laser source shining through a mask and forming

the bleaching stripe pattern was switched to a much lower intensity after

photobleaching, thus providing spatially matched periodic illumination. In

this case, the total fluorescence signal grows in real time with the same time

constant as determined photographically. Anisotropic diffusion was studied

by projecting a two-dimensional grid instead of stripes [39].

In a later development, diffusion was measured in a polymer film cast on

the mask with a photolithography created pattern of stripes [40, 41]. This

method eliminates the possibility of a phase shift between the bleaching and

the reading patterns. In the Frank et al. experiment [41], diffusion coeffi-

cients in the range of 10��
 cm�/s were measured in films only a fraction of

a micrometer thick, which contained 1—10% labeled polymer.

While periodic pattern photobleach offers many advantages, particularly

the ability to detect anisotropic diffusion, it is still susceptible to problems
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common to DC detection schemes: low-frequency noise, long-term drift, and

further bleaching of the labeled species during the recovery. Lanni and Ware

[42] invented a method that overcomes the principal shortcomings of the

DC detection schemes. They devised a system in which the fluorescence

signal of interest is a sinusoid of decaying amplitude. A coarse striped mask

(a Ronchi ruling) was used as the fixed field stop in a fluorescence

microscope. The periodic set of alternating bright and dark bands of laser

light imaged in the sample was used to photobleach a striped pattern.

During the recovery, the same pattern, at reduced intensity, was scanned

across the bleached region in a direction perpendicular to the stripes by

translating the Ronchi ruling at a constant speed. A periodic signal is

generated as the illumination falls in and out of phase with the bleached

region in the sample. The theory of the method is reviewed in the following.

Immediately after photobleaching the concentration of fluorescence in the

sample, c(x, t), at x along the pattern can be described by a constant plus a

square-wave fluctuation:

c(x, 0) � c
�

� [�1 � f (x)]�c/2, (14)

where f (x) is a unit-amplitude square-wave of period d. Diffusion of

fluorescent molecules relaxes the contrast in c(x, t) as the sum of spatial

Fourier components each of which decays exponentially:

c(x, t) � c
�

�
�c

2 �1 �
4

�
�
�

�(����

1

n
exp(�Dq�n�t) sin(nqx)� , (15)

where q � 2�/d. The illumination pattern moving at the speed of � is also a

square-wave function. The detector output contains a DC component plus

a set of decaying AC components. A typical component of the signal is

F(t) � exp(�Dq�n�t) cos(nqvt). (16)

As long as the ratio of pattern speed to spatial period is large compared to

the decay constant (i.e., v/d�Dq�) each of the lowest frequency components

will be well separated (compared to its bandwidth) from the others as well

as from the DC component for easy analysis.

There are several distinct advantages to the modulation detection: The

ratio of the DC photodetector signal just after photobleach to that just prior

to the photobleach yields the actual extent of the photobleaching. The use

of high-gain, tuned amplification means that the extent of photobleaching

need not be great, minimizing photodamage to delicate sample material

such as proteins. The ratio of the mobile fluorescent probe fraction to the

immobile fraction may be determined from the ratio of the DC signal to the

amplitude of the decaying AC signal just after bleaching. Further bleaching
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Fig. 10. Pictorial representation of the holographic FRAP experiment. Adapted with

permission from M. T. Cicerone et al., Macromolecules 28, 8224. Copyright 1995

American Chemical Society.

due to illumination during the fluorescence recovery is not a problem if the

experiment is operated in the ‘‘ratio mode.’’ The DC as well as the oscillating

signal is reduced by illumination bleaching, and therefore by monitoring the

ratio of these two, the effect of bleaching is canceled out. The method has

been applied extensively to diffusion of probes in polymer solution [43, 44].

7.3.5 Holographic FRAP

Holographic FRAP, first practiced by Davoust et al. [45], combines many

aspects of pattern photobleaching and modulation detection, and indeed has

many features in common with forced Rayleigh scattering and other

transient grating techniques [46]. The principal difference is that the

periodic bleach and readout patterns are produced holographically by

crossed laser beams. The basic method is illustrated in Figs. 10 and 11 [47].

Two intense laser beams are crossed inside the sample to ‘‘write’’ a parallel

fringe pattern. The fluorescence of probe molecules located at regions of

constructive interference of the two beams is selectively destroyed during the

writing pulse. The same two beams, greatly attenuated, are used to ‘‘read’’

the periodic fluorescence pattern during recovery. The phase of one of the

reading beams is effectively swept so that the reading pattern advances

continuously across the bleached pattern at constant velocity. Maxima in

the fluorescence signal will occur whenever the reading and written gratings

are out of phase; that is, when maxima in the reading grating coincide with

the unbleached stripes of the written pattern. As the written grating fades

because of translational diffusion of the probe molecules, the modulated

fluorescence signal decays exponentially.
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Fig. 11. Schematic of holographic FRAP apparatus; BS, beamsplitter; P, polarizer;

S, shutter; M, mirror; ND, neutral density filter; EOM, electro-optic modulator;

PMT, photomultiplier tube; and PD, photodiode. Adapted with permission from M.

T. Cicerone et al., Macromolecules 28, 8224. Copyright 1995 American Chemical

Society.

In the earlier realizations of holographic FRAP, Davoust et al. [45] used

an oscillating mirror to effect a sinusoidal phase modulation. Cicerone et al.
[47] instead used an electro-optic modulator to repetitively ramp the phase

exactly from 0 to 2� at a rate of 10 kHz (Fig. 11), effecting a reading grating

that translates linearly at a constant velocity. The signal with the spatial

modulation frequency is concentrated in a very narrow frequency band at

the fundamental phase modulation frequency, unlike the situation with

sinusoidal modulation. Elimination of vibration effects from FRAP experi-

ments is the major advantage of this modulation scheme. Once again, if the

signal is taken as the grating contrast ratio, division by the DC signal

compensates the signal of interest for residual bleaching by the illuminating

light. If the translation of unbleached probe molecules is governed by

translational diffusion, the contrast ratio decays exponentially at a rate of

Dq�, where q � 4� sin(�/2)/� (� and � are both measured in the same

medium, either in air or in the sample). Cicerone et al. used holographic

FRAP to measure the diffusion of small probe molecules of rubrene and

tetracene in polystyrene. By using the counterpropagating beam configur-

ation, they reduced d to 0.153 �m and hence were able to measure diffusion

coefficients below the glass transition temperature as small as a few times

10��� cm�/s.

7.3.6 Application of FRAP to a Porous Gel

FRAP has been used extensively to measure diffusion coefficients of

labeled polymers, proteins, and particles in a wide variety of matrix

282 LIGHT SCATTERING AND OTHER OPTICAL METHODS



Fig. 12. Product of the partition coefficient K and the diffusion coefficient D��� in

the gel, for RNase, BSA, and two fractions of PEG, plotted as a function of the gel

volume fraction 1 � �. Solid lines represent the Ogsten-Brinkman model. Adapted

with permission from J. Tong and J. L. Anderson, Biophys. J. 70, 1505. Copyright

1996 Biophysical Society.

materials [44, 47, 48], but here we will use just one typical study to illustrate

the kind of information that can be learned about a porous material.

Tong and Anderson [49] measured the partition and diffusion coefficients

of globular proteins and linear polymers in cross-linked polyacrylamide gels

by using the classic ‘‘spot’’ FRAP technique. Slabs of 0.76-mm-thick trans-

parent gel were loaded either with (1) spherical proteins bovine serum

albumin (BSA) or ribonuclease-A (RNase) labeled with fluorescein-5-iso-

thiocyanate or (2) poly(ethylene glycol) (PEG) of two different molecular

weights labeled with 5-([4,6-dichlorotriazin-2-yl]amino)-fluorescein. The

partition coefficient K, the ratio of the concentration inside the gel to the

concentration in the surrounding solution, was determined by comparing

the intensities of the fluorescence signal from slabs of the loaded gels in

equilibrium with buffer solution and from the buffers alone. Partition

coefficients for the proteins as a function of polymer fiber volume fraction

1 � � of the gel were analyzed in terms of the theory of Ogston [50] which

models the medium as infinitely long fibers of radius a
�

placed randomly to

interact with a dilute diffusant of hard spheres of radius a
�
:

K � exp[�(1-�)(1 � a
�
/a

�
)� ] (17)

The solute permeability of a gel is proportional to the product of the

partition coefficient and the diffusion coefficient in the gel, D
���

. The

measured products KD
���

were compared to the theory (Fig. 12) using the

Ogston expression for the partition coefficient and a modified Brinkman
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Fig. 13. Schematic of FRS measurement system. Adapted with permission from L.

Léger et al., Macromolecules 14, 1732. Copyright 1981 American Chemical Society.

expression [48] for the diffusion coefficient. It was noted that, first, the gel

fiber volume fraction 1 � � has a striking effect on solute permeability,

amounting to two or three orders of magnitude and, second, there is a

significant effect of solute size. At a given concentration, the gel is much

more selective against BSA as compared to RNase, even though the

molecular radii differ only by a factor of 1.8. The first feature is mostly due

to a sharp decrease in the partition coefficient as 1 � � increases.

7.4 Forced Rayleigh Scattering

7.4.1 Discussion of the Method

The basic experimental layout is illustrated in Fig. 13 [51]. Coherent light

of wavelength � from the ‘‘writing’’ laser source is pulsed on briefly, often

by a mechanical shutter. The laser light is divided by a beamsplitter into

two beams of approximately equal intensity. These two beams are made to

cross at angle � in the sample where they form a spatial interference pattern

of fringe spacing d � �/[2 sin(�/2)]. The fringes are in planes perpendicular

to the plane of the two writing beams, and are separated by distance d in a

direction perpendicular to the bisector of the angle between the beams. Near

the maxima in the fringe pattern, the intense electric field induces a change

in the local index of refraction, thus ‘‘writing’’ an index of refraction grating.

This pattern can be detected in various ways. Typically a second laser beam

is incident on the sample in an appropriate direction such that its light is

Bragg-scattered from the planes of the spatial grating. This reading of the
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grating by diffraction, as opposed to monitoring the fluorescent emission, is

the distinguishing feature of the FRS technique. The intensity of the

Bragg-scattered light is monitored by a photodetector. The photodetector

output is the signal of interest; as the grating decays by diffusion, Bragg-

scattered light declines in intensity.

In general, FRS can utilize any process that alters the real or imaginary

part of the index of refraction. In cases of interest to us, the sample contains

a few percent of a photochromic dye or polymers labeled with such a dye.

Photons of the writing pulse cause a reaction to change the absorption of

light at the wavelength used in the Bragg-scattered beam, so the grating is

essentially an absorption grating, which provides relatively high contrast

and enables measurement of the diffusion of labeled molecules present in a

low concentration.

Several different optical configurations have been used to deliver the

intersecting beams to the sample and bring the Bragg-scattered light to the

photodetector. In one arrangement, the two writing beams converge on the

sample symmetrically with respect to the monitor beam, a helium-neon laser

beam incident parallel to the planes of the fringes [52]. Guo et al. [53],

following Amis, used a system of translating prisms and reflected the writing

beams from an off-axis parabolic mirror to accomplish convenient adjust-

ment of the beam-crossing angle. In any apparatus, the distance traveled by

the two writing beams from the laser to the sample must be identical to

within the coherence length of the laser, otherwise no interference pattern

will be formed. The reading beam can be a separate laser of wavelength

chosen near the region of strong absorption of the dye, as in Fig. 13, or can

be one of the writing beams attenuated by a factor of 1000 or so [54]. The

latter can be convenient because the writing beam automatically satisfies the

Bragg condition.

After the pattern is written, it relaxes by diffusion of the optically modified

molecules present in bright stripes at the moment of writing. Note this

situation is in contrast to the one in FRAP where the unbleached fluorescent

molecules are detected. The response of dye molecules to the writing light

may not be linear, and the grating may contain spatial Fourier components

at harmonics as well as the fundamental of the grating period. If the grating

decay is monitored by Bragg scattering, however, there will be a different

diffracted beam produced for each spatial frequency present and the inten-

sity of each diffracted beam will decay in time with a unique decay rate

I


(t) � I



(0) exp[�D(2�j/d)�t] ( j � 1, 2, 3, . . .), (18)

where D is the diffusion coefficient of the dye molecules. The preceding

assumes that there is no further chemical reaction after the writing pulse and

the only relaxation mechanism is the diffusion of photochemically altered
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molecules. In practice, if the lifetime of photochemical activation is �, then

the observed decay rate �
���

is instead

1/�
���

� D(2�j/d)� � 1/�. (19)

The actual experimentally observed signals are more complicated and

difficult to interpret. Often the model function

I(t) � [A exp(�t/�) � B]� � C� (20)

is used, where B and C are constants. Furthermore it often happens that

there is a short interval after the pump is switched off during which the

signal increases before it decays [55, 56].

7.4.2 Application of FRS to Polymer Diffusion in a Porous Material

A study of the diffusion of polymer in solution within a gel of fumed silica

is used to illustrate the application of FRS to dynamics in a porous material.

The rate of hindered diffusion was measured for two molecular weights of

polymer as a function of the silica volume fraction [53].

Gels were formed from mixtures of fumed silica, also called pyrogenic

silica. These silica powders are formed in the hydrolysis of silicon tetra-

chloride in a hydrogen—oxygen flame and have an extremely large surface

area. Basic 10—20-nm-diameter subunit ‘‘beads’’ are clustered into fractal

structures several hundred angstroms in characteristic dimension [57]. In

the FRS study, silica particles were modified by treatment with hexamethyl

disilazane to remove surface hydroxyl groups, which would otherwise tend

to bind the dye-labeled diffusant. Modified silica, placed in fluorobenzene

solution at concentrations above approximately 6% volume fraction, for-

med weak gels after several hours to days, depending on the concentration.

Two fractions of polystyrene were labeled at random sites (one per 1000

monomer units) along the polymer chain with 4-dimethylaminoazobenzene-

4�-isothiocyanate. Fluorobenzene was chosen as a solvent because it is a

good solvent for polystyrene and has an index of refraction close to that of

silica. Gels were formed by simply mixing a labeled polystyrene solution

with fumed silica on a test tube mixer and allowing the solutions to stand

until no appreciable flow was observed in a tilted tube over several minutes.

In the FRS apparatus, fringe spacing could be varied from 3 to 30 �m by

changing the beam convergence angle �. The transient diffracted optical

intensity from labeled polystyrene in a gel of modified silica is shown in Fig.

14. The transient signal begins to decay immediately after the writing beam

pulse and decays to the prewriting level baseline according to Eq. (20). In

contrast, the signal from the same polymer moving in a gel of unmodified

286 LIGHT SCATTERING AND OTHER OPTICAL METHODS



Fig. 14. Transient diffracted optical intensity after excitation by a writing beam

pulse. Labeled polystyrene is diffusing in a gel of surface-modified fumed silica.

Adapted with permission from Y. Guo et al., Phys. Rev. A 46, 3335. Copyright 1992

American Physical Society.

silica in which some surface adsorption is present, typically showed a rapid

rise after exposure to the writing beams, followed by slower relaxation to

the baseline.

The decay rate 1/� observed at different scattering wave vectors for the

same labeled polymer in free solution and in the modified silica was

proportional to q� (Fig. 15), characteristic of normal diffusion behavior. The

ratio of the diffusion coefficient in a silica matrix to that in free solution,

D/D
�
, often referred to as the hindrance factor, is plotted as a function of

volume fraction 1 � � of modified silica in Fig. 16 for the two fractions of

polystyrene. At low volume fractions, a gel did not form, and the hindrance

factor was measured in a uniform suspension. Lacking a truly appropriate

model for this system, the results were compared with the hydrodynamic

theory developed by Neale and Nader [58] for a much simpler system— a

homogeneous swarm of spherical particles of arbitrary size distribution, but

nonoverlapping range of hydrodynamic interactions. Assuming that each

particle experiences the remainder as a uniform fluid, the model predicts

that D/D
�

� 2�/(3 � �). At low volume fractions, the results are reasonably

consistent with the Neale—Nader theory (solid line in Fig. 16) probably

because the silica particles can be regarded as a collection of spherical

objects even though the spherical units are aggregated into ramified clusters.

At higher volume fractions, departure from the model becomes evident. The

results were also compared with a theory developed by Prager [59] for a

homogeneous and isotropic suspension of solid particles of arbitrary shape.

In Prager’s model the principle of minimum entropy production was applied
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Fig. 15. Decay rate 1/� plotted as a function of q�, square of the scattering wave

vector, for polystyrene in free solution (squares) and in modified fumed silica

(circles). Adapted with permission from Y. Guo et al., Phys. Rev. A 46, 3335.

Copyright 1992 American Physical Society.

Fig. 16. Hindrance to the diffusion of polystyrene in modified fumed silica gel of

different volume fractions 1 � �. The solid line is the prediction by the Neale—Nader

theory, and the dashed line is the upper limit of the hindrance factor in the Prager’s

model. Adapted with permission from Y. Guo et al., Phys. Rev. A 46, 3335. Copyright

1992 American Physical Society.
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to obtain an upper bound of the hindered diffusion rate: D/D
�
� (�/3)(2��)

(dashed line in Fig. 16). The data clearly satisfy the predicted inequality.

7.5 Diffusing-Wave Spectroscopy

7.5.1 Discussion of the Method

Diffusing-wave spectroscopy is a relatively recent development of dy-

namic light scattering (see Section 7.2), which extends the power of DLS

analysis to strongly scattering media such as concentrated suspensions [60],

foams [61, 62], and streams of flowing particles [63]. Because DWS is

sensitive to movement of the scatterers over distances small compared to the

wavelength of light, it also offers the opportunity to explore particle

dynamics and interaction at small length scales not previously attainable.

Another advantage of the technique arises from the fact that the light

arriving at the detector has been scattered repeatedly, sampling large spatial

regions of the sample. This means that events that are rare in time and

widely separated in space are nonetheless included into the data. While most

of the applications to date have been concerned with concentrated suspen-

sions of particles, and foams are the only materials studied that are

considered as conventional porous materials, the technique is relatively

early in its development. There is still the hope of useful application to many

more relatively opaque porous materials. DWS has been reviewed by Weitz

and Pine [64].

The experimental apparatus for DWS is very similar to that used in DLS:

Light from a laser impinges on a sample, where it is scattered (in this case

many times) before it arrives at a detector, which provides single-photon

pulses to a digital correlator for computation of the autocorrelation function

of the scattered light intensity. The collection optics is arranged such that

scattered light from approximately one single speckle is allowed to reach the

detector, a much stricter requirement than in DLS. In principle, the total

angle through which light is scattered between entering and leaving the

sample is not an important consideration, since there are many individual

scattering events along each photon path from source to detector. In fact,

theoretical understanding of the method demands that each photon experi-

ences a number of scattering events large enough so that the passage of the

light through the sample can be interpreted as a diffusion process. That is,

all knowledge of the scattering wave vector, polarization, structure factor,

etc. in each single scattering is lost, and a photon path can be considered to

be a large number of equivalent events, each making equal contributions to

the correlation function [65—67]. Indeed, there is a considerable latitude in

choosing the detector orientation in an experiment, but for simplicity of the
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Fig. 17. Transmission and backscattering setup for DWS measurements. After the

laser beam is spatially filtered and expanded, aperture A
�

selects the uniform part of

the beam to illuminate sample S. Apertures A



and A
�

select a single speckle for

transmission detection. Apertures A
�

and A
�

are used in the backscattering mode.

Adapted from D. A. Weitz and D. J. Pine, in Dynamic L ight Scattering, W. Brown,

Ed., by permission of Oxford University Press.

theory and other practical reasons, only two geometries are commonly used:

transmission (forward scattering) and backscattering (Fig. 17).
Transmission DWS (Fig. 17, apertures 3 and 4) offers several advantages

in the interpretation of the resulting autocorrelation functions, but obvi-

ously suffers due to great loss in light intensity in more opaque samples.

There is a somewhat delicate trade-off between making the sample thin

enough and laser power high enough (without sample heating) to obtain

sufficient light at the detector, and making the sample thick enough to

reduce the transmission of unscattered direct light to an acceptable level.

Eliminating unscattered direct light is extremely important, however, as only

then is it assured that all photon paths through the sample are long

compared with the transport mean free path, l*, defined as the length

scale over which the direction of light propagation is randomized. The

functional form of the correlation function for transmission DWS from a

collection of monodisperse scatterers with diffusion coefficient D in suspen-

sion is:

g
#
(t) �

L /l*4/3

z
�
/l* � 2/3 �sinh �

z
�

l*�
6t

� ��
2

3�
6t

�
cosh �

z
�

l*�
6t

� ��
�1 �

8t

3�� sinh �
L

l*�
6t

� ��
4

3�
6t

�
cosh �

L

l*�
6t

� �
, (21)

where L is the sample thickness, � � k�
�
D)�� with k

�
� 2�/�, z

�
is the

distance from the sample surface at which the propagation direction of the
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light is considered to be randomized (it turns out that the results are quite

insensitive to the value of z
�
), and l* can be determined experimentally from

the transmittance. This rather formidable expression is nearly an exponen-

tial decay of characteristic time �(l*/L )�, reflecting the fact that there is a

characteristic number of random steps (L /l*)� in a typical photon path.

Expressions have also been developed for illumination of the sample by a

point source and by a Gaussian beam. Since the time scale of the decay is

set by the time it takes a typical path length to change by one wavelength,

it can be shown that the expression for the autocorrelation function can be

expressed in terms of the root-mean-square displacement of the scattering

particles as approximately g
#
(t) � exp[�(L /l*)�k�

�
��r�(t)�]. This expres-

sion has been used to analyze DWS obtained from a stream of flowing sand

[63].

Backscatter geometry for DWS (Fig. 17, apertures 5 and 6) in principle

has several advantages: Independent knowledge of l* is not required for

interpretation of the autocorrelation function, access to the sample from

only one side is required (convenient for monitoring material in an indus-

trial process, for example), and many different photon path lengths are

probed at once. In practice, however, it turns out that because much of the

contribution to the correlation function comes from near the surface of the

sample where the path lengths are comparable to l*, the diffusion approxi-

mation is not well obeyed and correlation functions must be interpreted

with caution. The expression for g
#
(t) of light scattered in the backward

direction from a uniformly illuminated sample is

g
#
(t) �

sinh ��
6t

� �
L

l*
�

z
�

l*���
2

3�
6t

�
cosh ��

6t

� �
L

l*
�

z
�

l*��
�1 �

8t

3�� sinh �
L

l*�
6t

� ��
4

3�
6t

�
cosh �

L

l*�
6t

� �
, (22)

which reduces, in the case of an infinitely thick sample, to a simple stretched

exponential:

g
#
(t) ��1 �

2

3�
6t

� �
��

exp ��
z
�

l*�
6t

� � , (23)

which in turn can be well approximated by g
#
(t) � exp[�
(6t/�)���], where


 � z
�
/l* � 2/3. In practice, 
 varies by a factor of about 2 depending on

particle size and polarization state [68]. Presumably these variations are

due to different contributions of short paths under different experimental

conditions.
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Fig. 18. Average bubble diameter as a function of foam age: circles, DWS measure-

ments; solid curve, static light transmission. Dashed line has a slope of 0.5. Reprinted

with permission from D. J. Durian et al., Phys. Rev. A 44, R7902. Copyright 1991

American Physical Society.

7.5.2 Application of DWS

DWS has been used to study the coarsening of a foam [61] using both

the transmission and backscattering geometries. The decay times of g
#
(t)

were interpreted in a model of intermittent foam bubble rearrangement.

They showed that the temporal increase of average bubble diameter in a

coarsening foam could be followed by DWS as well as by static light

transmission (Fig. 18) because of the consistency between values of l*
derived from the two methods. The dashed line in the figure is the

t���-power-law growth of average bubble size predicted for an assumed

statistically self-similar distribution of densely packed bubbles.

Menon and Durian [63] used DWS to study the short time dynamics of

grains in the interior of a three-dimensional gravity-driven flow of sand.

Plots of the mean-square displacement of the particles ��r�� versus time

obtained in both the forward and the backward scattering geometries were

identical, verifying the validity of the method. Since the two geometries

measure grains in different spatial regions of the sample, it was also verified

that the short-term particle dynamics are identical in different parts of the

flowing stream. It was found that at short times, particle motion is

dominated by ballistic flight of grains from collision to collision, with a wide

range of random velocities (Fig. 19). Diffusional flow of particles in the long

time limit was confirmed by independent video microscopy.
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Fig. 19. Mean-square displacement of particles in a gravity-driven flow of sand. At

short times particle movement is ballistic; in the long time limit, the motion becomes

diffusional (dashed line). From N. Menon, unpublished, used with permission.

7.6 Other Optical Methods

7.6.1 Interferometry

Unlike other optical techniques reviewed in this chapter, the inter-

ferometry method discussed here images a porous medium as a whole. With

interferometry it is possible to measure the average porosity of the medium

[69, 70]. Its built-in spatial resolution provides information about in-

homogeneity of the medium [71]; that is, distribution of the porosity and

composition of the solid phase of the medium. When interferometry is

applied to a porous medium immersed in a solution, it enables us to

evaluate the solute concentration within the medium [69, 70, 72]. Imaging

of the porous medium at different times in a process that involves a change

of the medium gives us information on the kinetics of the process [71]. To

utilize the spatial resolution, the porous medium must have a simple shape

such as a sphere or a cylinder.

Sernetz et al. [69, 72] constructed a micro-Mach-Zehnder interferometer,

as illustrated in Fig. 20a. An example of the image of a hydrogel bead

immersed in an aqueous solution of linear polymer is shown in Fig. 20b.

For the bead portion of the image, the parallel fringe pattern is displaced

and distorted. The pattern depends on the geometry of the porous medium.

For a spherical gel, it is elliptic [70]. The maximum displacement �x
�

occurs for a fringe that passes through the center of the gel bead. It is related

to the difference n in the refractive index between the porous medium and

the surrounding solution by �x
�
/� � dn/�, where � is the fringe period,

and d the thickness of the gel bead.
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Fig. 20. (a) Micro-Mach-Zehnder interferometer constructed to find the porosity of

a hydrogel and the partition coefficient of polymer in the gel and (b) example of

interferogram of a hydrogel. From M. Sernetz et al., in T he Fractal Approach to
Heterogeneous Chemistry, D. Avnir, Ed., 1989. Copyright John Wiley & Sons

Limited. Reproduced with permission.

The refractive index of a solution at concentration c is expressed as

n
�

� (dn/dc) � c with n
�
being the index of the solvent; dn/dc is a differential

refractive index. When the porosity � is defined as the volume fraction of

the pore space in the entire porous medium, n is expressed as

n � (1 � �)(n
)

� n
�
) � ��n(c

%
) � �n(c

#
), (24)

where n
)

is the refractive index of the solid phase of the porous medium (or

the matrix of the gel bead), and c
%
and c

#
are the solute concentrations in

the pore channels and in the surrounding solution, respectively. The first

term in Eq. (24) can be estimated from the fringe pattern for the same

porous medium immersed in the pure solvent, which produces (�x
�
/�)

�
.

Thus, c
%
at a given c

#
can be estimated by using

(�/d)[(�x
�
/�) � (�x

�
/�)

�
] � ��n(c

%
) ��n(c

#
). (25)

Teraoka [70] constructed a Jamin interferometer (Fig. 21) to measure the

partition coefficient of polystyrene in a porous silica bead. A single crystal

of calcite was used as a beamsplitter, and another single crystal as a coupler.

The bottom beam illuminates the porous medium immersed in a solution,

and the top beam travels through the exterior solution. The interferometer

was used to measure the concentration c
%
of the polymer in the interior of a

porous silica bead (bead diameter� 2 mm; pore diameter� 50 nm) as a

function of the concentration c
#

in the surrounding solution. Figure 22

shows the partition coefficient K� c
%
/c

#
as a function of c

#
/c* for six

fractions of polystyrene standard, where c* is the overlap concentration of

the fraction. By using the same interferometer for the silica bead immersed

in mixtures of two liquids at different mixing ratios, the porosity of the bead

was also evaluated.
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Fig. 22. Partition coefficient K in a porous silica bead, plotted as a function of the

reduced polymer concentration c
#
/c* in the exterior solution for six fractions of

polystyrene standard. Adapted with permission from I. Teraoka, Macromolecules 29,

2430. Copyright 1996 American Chemical Society.

beam displacerpolarizer

laser

beam displacer

fluorometer cell

porous glass bead

screen

half-wave plate

polymer solution

Fig. 21. Jamin interferometer used to measure the partition coefficient of polymer

in a porous silica bead. Reprinted with permission from I. Teraoka, Macromolecules
29, 2430. Copyright 1996 American Chemical Society.

Spatial resolution of the interferometry was utilized to study infusion of

polymer into the silica bead [71]. Analysis of �x/� for all fringes along a

diameter of the bead image made it possible to obtain the radial distribution

of the polymer concentration within the bead at different times during the

infusion. A deviation of the profile from a semiellipse was translated into the

distribution of the solute polymer within the porous medium. Two distinct
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patterns were observed. When the polymer chain was larger than the pore

size, the profile increased in unison, a result indicating that the entrance of

polymer chains into the pore openings on the bead surface was rate-limiting.

When the polymer chain was smaller, in contrast, the profile increased

gradually from the bead edge and advanced toward the center. In the latter,

intrapore diffusion was the rate-limiting process. They also showed that the

spatial resolution is useful to find the origin of nonuniformness of the porous

medium itself.

7.6.2 Holographic Interferometry

There are many classical methods for determining the diffusion coefficient

of a solute in an optically transparent solution or gel by measuring the time

evolution of the boundary between two regions of different concentration.

In a typical arrangement, a flat, sharp interface is created, solute-containing

solution being on one side and solute-depleted solution on the other. Light

is passed through the sample parallel to the interface region and then

combined with reference light to form an interference pattern. The nature of

the pattern is determined by the characteristics of the light, how it is

combined with the reference beam, and, most important, the index of

refraction profile near the interface. In turn, the index of refraction distribu-

tion is directly related to the solute concentration profile. Hence, as the

spatial distribution of solute concentration evolves in time due to diffusion,

the light pattern also evolves and can be analyzed to extract the diffusion

coefficient. The holographic interferometry explained in the following has a

particular advantage in the details of the way light is used to form the

pattern.

In classic laser interferometry measurements of diffusion, a laser beam is

divided by a beamsplitter into a test beam, which passes through the sample,

and a reference beam, which does not. A series of interference fringes is

formed when the two beams are recombined. The diffusion coefficient is

determined from the fringe shape and spacing. In holographic inter-

ferometry, a holographic image of the diffusion cell is recorded at an initial

time. At each successive later time, the initial image is reconstructed to make

the reference needed to form interference fringes with the beam passing

through the diffusion cell. The primary advantage is that the test beam

passing through the sample at the later time is identical to the beam passing

through the cell at the initial time, except for changes in the optical path

distance that have occurred because of diffusion of the solute. Because the

fringes are essentially formed by comparing initial and later test beams,

which both travel along a single path, spurious fringe shifts due to slight

inhomogeneities in the glass or gel matrix are eliminated.
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Fig. 23. Apparatus for holographic interferometry. Reproduced with permission

from T. F. Kosar and R. J. Phillips, AIChE J. 41, 701. Copyright 1995 American

Institute of Chemical Engineers, all rights reserved.

Figure 23 illustrates the apparatus for holographic interferometry used by

Kosar and Phillips [73] to examine the effect of ionic strength, polymer

concentration, and polymer molecular weight on the diffusion of bovine

serum albumin in dextran solutions, and later, the diffusion of proteins and

nonionic micelles in agarose gels [74]. After exposure of the initial holo-

graphic image, the photographic plate is removed, developed, and then

replaced into its holder. The holder must return the plate precisely to its

original position. After the initial image is recorded, the reference beam is

tilted slightly in the horizontal direction so that each later image contains a

series of parallel fringes oriented perpendicular to the plane of the interface.

These fringes are straight lines far from the interface, but are displaced into

an S shape near the interface. The diffusion coefficient is determined simply

from the distance d between the extrema of the S shape and the time

between initial hologram at time t
�

and the later at time t
�

[75, 76]:

D � (d�/8)(t��
�

� t��
�

)[ln(t
�
/t

�
)]��. (26)

We can see that for an experiment of a few hours duration, practical

considerations establish a lower limit to diffusion coefficients that can be

measured by this method at about 10�� cm�/s.
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8. X-RAY IMAGING

Mary E. Coles
Mobil Exploration and Production Technical Center

Dallas, Texas

8.1 Introduction

X-ray imaging was originally developed within the medical sector [1—5]

and has since found wide applications within the petroleum [6—26] and

other [22, 23, 28, 29] industries. X-ray imaging has been shown to be a

valuable tool because it provides the ability to nondestructively identify and

evaluate internal structural characteristics and fluid distributions within

porous media systems. X-ray imagers offer researchers the capability of

rapid, nondestructive visualization and analysis of the internal structure of

porous materials and experiments involving porous material systems. With-

in petroleum industry, x-ray imaging is used to study porous rock samples

(cores) obtained from oil and gas reservoirs, with applications in both the

area of core analysis and petrophysics and multiphase fluid flow.

X-ray images of sleeved and preserved cores, are used to select represen-

tative samples as well as to identify and characterize fractures, inhomogenei-

ties, and zones of mud invasion [9, 11, 12, 17]. Bedding planes or other

depositional features, identified in x-ray scans, are often used to orient the

core for proper slabbing [9, 17]. X-ray scanning of core plugs for nonunifor-

mities or induced damage prior to special core analysis tests helps to ensure

the validity of results. The ability to spatially quantify the distribution of

fluids using x-ray imaging is utilized in a wide variety of fluid flow

experiments [7, 10, 13—15] and also to verify experimentally measured

quantities [16, 21, 22].

This chapter discusses the use of x rays to characterize porous media

systems and to quantify fluid distributions within these systems. The process

of x-ray attenuation within sample materials, which is the basis of all x-ray

imaging, is presented. This is followed with a description of one-dimensional

x-ray profile measurement and two-dimensional digital radiographic imag-

ing. Computed tomography (CT) scanning which provides three dimen-

sional information is also presented. Specific examples of x-ray imaging and

applications are presented.
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Fig. 1. X-ray attenuation measurement. During the x-ray imaging process, the

attenuation of an x-ray beam is measured as it passes through a sample material.

8.2 Nature and Attenuation of X Rays

As illustrated in Fig. 1, during the x-ray imaging process, the attenuation

of an x-ray beam is measured as it passes through a sample material. The

detector may be a single element, a linear array, a two-dimensional array,

or a charge-coupled device (CCD) with an image intensifier, depending on

the specific imaging system and application. X rays are a specific form of

electromagnetic radiation as are radio waves; microwaves; and infrared,

visible light, ultraviolet, and gamma rays [1, 30]. In the energy range typical

of the x rays utilized in most x-ray imaging systems (generally 50—150 keV),
there are two mechanisms by which x rays interact with and are attenuated

by matter. These mechanisms are the photoelectric effect and Compton

scattering [1, 30].

In photoelectric scattering, if the binding energy (energy that holds the

electron to the atom) of the photon is greater than the binding energy of the

electron, the photon may interact with the electron, giving up all of its

energy. During the interaction, the photon ceases to exist and the electron

acquires enough energy to escape from its shell around nucleus. The

probability of a photoelectric interaction varies inversly as the third power

of the energy in excess of the binding energy of the atom and is proportional

to the third power of the atomic number [1, 30]. This means that the

amount of attenuation that results from photoelectric absorption is very

dependent on the chemical composition of the material (higher atomic mass,

higher attenuation) as well as the energy of the x ray. As the energy is

lowered, photoelectric absorption increases. This is shown schematically in

Fig. 2a.
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Fig. 2. Components of x-ray attenuation. (a) The amount of x-ray attenuation that

may arise as a result of photoelectric interaction with the material is critically

dependent on the energy of the x-ray beam and is a function of both the atomic

number and the bulk density of the material. (b) The x-ray attenuation that results

from Compton scattering within the material is relatively independent of the

scanning energy of the x-ray beam and is primarily a function of the bulk density of

the material scanned. (c) With the relative contributions of photoelectric absorption

and Compton scattering, the total signal depends on the bulk density and atomic

number of the material and on the x-ray energy.

During Compton scattering, a photon strikes an electron, knocking the

electron out of the atom. The incident photon does not disappear, but is

deflected or scattered with some partial loss of energy and may interact with

subsequent atoms. The probability for a Compton interaction depends on

the electron density of the material and is relatively independent of the

atomic number [1, 30]. A Compton interaction is somewhat dependent on

energy but less so than with photoelectric interaction (Fig. 2b).
When a parallel monochromatic x-ray beam passes through a substance

of uniform density and atomic number, it is attenuated in an exponential

manner such that:

I/I
�

� exp��� (1)

where I/I
�

is the attenuation or the fractional decrease in x-ray intensity per

unit length of the specific material, x is the thickness of the material, and �
is defined as the total linear attenuation coefficient such that

� � �(�
��

� �
��

), (2)

where � is the number of atoms per unit length and �
��

and �
��

are the

photoelectric and Compton cross sections for the material. The total linear

attenuation coefficient � is governed by the extent to which both photo-

electric and Compton scattering occurs and is therefore a function of the

atomic number and bulk density of the material and the energy of the prob-
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ing x rays and can be calculated for a given material and photon energy

[31].

The attenuation of a beam of x rays through a mixture of different

materials is given by

A ��ln
I

I
�

��
	

� �
	
�
	
�
	� (3)

where �
	
and �

	
are the linear attenuation coefficient and path length of the

ith material, and �
	
is the volume fraction of the ith material in the path of

the x ray. The x-ray attenuation, as measured with a specific source, sample,

detector location, and x-ray energy is referred to as x-ray projection data.

For x-ray attenuation through a heterogeneous sample, an average

attenuation coefficient can be defined as

�� ��
	

�
	
�
	
, (4)

where �
	
is the volume fraction of the item material in the path of the x ray.

8.3 X-Ray Profile Measurement

One-dimensional, x-ray attenuation profiles can be obtained by translat-

ing the x-ray source and detector with respect to the sample material and

measuring the x-ray projection data as a function of distance (see Fig. 1).
Here, an x-ray attenuation profile can be obtained using a single element

detector and measuring the attenuation through the sample as the sample

is translated relative to the source and detectors. The x-ray radiation passes

a single time through the entire thickness of the sample and the x-ray

attenuation is recorded as a function of the position.

X-ray attenuation profiles provide rapid nondestructive, noninvasive, and

easily automated probing of core material systems. Porosity, bulk density

and in situ fluid saturation profiles (such as those shown in Chapter 4 of this

book) are easily obtained. Often, x-ray profiles are obtained in combination

with other experimental data to ensure the validity of experimental condi-

tions. For example, Potter and Groves [16] utilized x-ray attenuation

measurements to determine saturation profiles. This information was used

to decide when steady-state conditions had been reached and instigated

changing of fluid injection ratios in automated permeability measurements.

Maloney and Dogget [26] were able to identify and correct dehydration

occurring during desaturation of a core sample for resistivity measurements.

X-ray profiles obtained in conjunction with electrical resistivity experiments

revealed [22], under some conditions, nonuniform saturations along the
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length of the core that could be correlated to anomalies in the log— log

crossplot of resistivity vs water saturation.

8.4 Digital Radiographic Imaging

Two-dimensional radiographic imaging has long been in use within the

medical sector (chest radiographs) and the nondestructive testing arena

[28, 29]. Here, x-ray radiation is generated, passed through a test object, and

imaged on radiographic film. Differences in the attenuation of the x-ray

beam resulting from atomic number and density differences within the test

object are recorded on the radiographic film.

For many applications, it is more convenient to collect and store the

digital projection attenuation information using a moving linear array or

CCD array detector with an image intensifier, producing a two-dimensional

image, as shown in Fig. 1. This is referred to as digital radiographic imaging.

Digital radiographic imaging is a very rapid and, under some conditions, a

very accurate method of determining two-dimensional porosity and fluid

distributions within porous material [24, 25].

Although digital radiographic imaging is very rapid, true three-dimen-

sional internal spatial detail may at times be difficult to distinguish, as

separate features within the porous material may overlap in the projected

image, thereby reducing the effective resolution. Accuracy may also be

compromised if the size of the detector elements are not at least as small as

the features of interest [25]. Geometry effects, such as differences in the

thickness of the test object, may be significant and may obscure features of

interest.

8.5 Computed Tomography Imaging

Computed tomography imaging is a technique for obtaining cross-

sectional images of an object from multiple projections of a collimated beam

of radiation (x rays) passing through that object. Use of CT has increased

dramatically in recent years for a variety of applications within the petro-

leum industry. Computed tomography enables three-dimensional images to

be obtained of porous media systems in a nondestructive, noninvasive, and

rapid manner. Often medical scanners are utilized because of their availabil-

ity and ease of use.

As shown in Fig. 3, during the course of a single tomographic scan,

multiple x-ray projection data sets are obtained by measuring the x-ray

attenuation induced by the sample material for a multitude of locations

305COMPUTED TOMOGRAPHY IMAGING



Fig. 3. X-ray computed tomography. Projection data are obtained about a sample

in a plane perpendicular to the motion of the scan. A cross-sectional reconstructed

image is generated representing the x-ray attenuation in specific volume elements of

the material.

around the sample, within a plane perpendicular to the motion of the scan.

Using the x-ray projection profiles, a cross-sectional reconstructed image is

generated that represents the x-ray attenuation in specific voxels (three-

dimensional volume elements) of the material [32]. A computer system

controls the CT scanning, receives attenuation information, reconstructs the

CT image, and presents the image on a computer screen.

In the tomographic image shown in Fig. 4, light areas represent high

x-ray attenuation (high density or atomic number) and darker areas

represent low x-ray attenuation (low density or atomic number). Although

the tomographic image is represented as pixels, having no thickness, it is

important to recall that each attenuation value portrayed in the CT image

is associated with a specific cross-sectional pixel size and finite slice

thickness (creating the voxel). Slice thickness can vary from 1.5 to 10 mm.

For voxels that contain more than one component, the measured CT

number will depend on the volume fraction occupied by each component.

This partial volume effect [1] serves to limit the sensitivity and resolution

when scanning (Eq. [4]) many heterogeneous systems.

The geometrical scanning arrangement employed in obtaining x-ray

projection data at different angles is often referenced to one of five successive

generations of CT scanners [1]. Changes in successive generations have

been primarily driven by the need to reduce scan and exposure times for

medical applications and may not necessarily reflect sensitivity or resol-
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Fig. 4. A CT Image. Light indicates high density—atomic number areas (relatively

opaque to x rays), and dark indicates low density—atomic number areas (relatively

transparent to x rays). Information concerning scanning conditions is often placed

directly on the x-ray image. Knowledge of the scanning conditions is necessary for

a comparison of images.

utions enhancements for nonmedical applications. Schematic diagrams

representing the movements associated with different generational scanning

geometries are provided by Morgan [1].

Hard copy output is often x-ray film. Most systems now allow access to

an auxiliary image processing system for digital image manipulation and

processing. Often image processing is carried out on a separate system, after

transfer of the image data.

Most medical scanners can operate up to 140 keV (voltage on the x-ray

tube) with a lower limit established by the attenuation of the material to be

scanned. Access to high x-ray energies is important for petroleum applica-

tions, because core material is highly attenuative compared to samples for

which most medical scanners were designed. Some high-energy systems

(greater than 300 keV) are entering the market, but are relatively cost and

accessibility prohibitive.

Generally, the linear attenuation coefficient � is normalized to that of a

standard material (such as water). This is defined as the CT number of the
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Table I. Comparison of Tomographic and Digital Radiographic Scanning

Scanning

Mode Motion Image produced Notes

Slice Source Cross-sectional Obtains full spatial information;

detectors able to discern regions of low

move attenuation contrast

Digital Sample Traditional Rapid scan of entire core; often

radiography translates radiograph used to preview, locate position;

does not provide true 3-D

information, gives 2-D average

material:

CT number �
�
������

� �
��
���

·K

�
��
���

, (5)

where K is a scaling factor, set as a matter of convention to either 500 or

1000. This converts all the attenuation coefficients into integers, where the

baseline or reference value is assigned to the linear attenuation coefficient of

the standard for the specific x-ray voltage used. CT values that are less than

the CT value of the standard imply an attenuation value less that the

attenuation of the standard. CT values greater than the CT value of the

standard imply an attenuation value less that of the standard. This is

discussed in more detail by Morgan [1].

In addition to a tomographic or slice image, many scanners are enabled

to produce an x-ray digital radiographic image by holding the position of

the source and detectors constant and translating the sample with respect

to the plane containing the source and detectors. This (Fig. 1) is often

referred to as a preview or surview scan. As with all digital radiographic

imaging, the x-ray radiation passes a single time through the entire thickness

of the sample and the x-ray attenuation is recorded as a function of the

position. Medical scanners that are able to produce this type of projection

radiograph, in addition to the tomographic or slice type image, are called

‘‘full-body scanners.’’ With the digital radiographic mode, a large amount of

core material can be scanned and imaged very rapidly; however, the ability

to obtain spatial information or discern regions with small differences in

x-ray attenuation is greatly diminished.

Features of tomographic and digital radiographic images are compared

in Table I. Generally, both scanning modes are employed. Digital projection
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images are obtained to identify areas of interest or to view rapid processes;

tomograms (slices) are obtained for full spatial information or to view areas

of lower attenuation contrast.

8.6 X-Ray Imaging Techniques

8.6.1 Effect of X-Ray Energy

Core material is very attenuative compared with typical biological tissue

samples. The use of an x-ray beam that is too low in energy often results in

overattenuation of the x-ray beam, insufficient signal-to-noise level meas-

ured at the x-ray detector system, and a grainy image when scanning core

material. Generally, to optimize the image quality, it is helpful to use the

maximum voltage (creates highest energy) and current (creates maximum

photon flux) possible for a given imaging system. Use of lower-energy x rays

is necessary, however, when photoelectric attenuation must be optimized

(for example, in scanning for atomic energy differences or dual energy

scanning where differences in the Compton and photoelectric attenuation of

the material enables one to solve two simultaneous equations). Because

attenuation is highly dependent on the energy of the x rays utilized, this

information must always be provided.

8.6.2 Spatial and Contrast Resolution

X-ray images represent discrete x-ray attenuation information within

specific volume elements of a sample. Therefore, inherent in each image are

the concepts of spatial resolution and contrast resolution.

Spatial resolution refers to the ability to resolve as distinct two or more

closely spaced high contrast objects. This is illustrated in Fig. 5a. Objects

within the sample will not appear as resolved as separate features if the

distance between them is less than the resolution of the system. Separate

features present within the core material may not be identifiable as separate,

but will appear as a single, spatially averaged feature. The theoretical

resolution limit for any imaging system is controlled by the spatial specific-

ity and accuracy of ray paths through the sample. The uncertainty is

determined by the operative size of the source and detectors, their distance

from the sample, and the ability to obtain sufficient independent projection

information. In digital radiographic scanning, only one projection is ob-

tained; therefore, the attenuation represents the average along the x-ray

pathlength and the ability to separate overlapping features is significantly

reduced.
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Fig. 5. Spatial and contrast resolution and display contrast: (a) spatial resolution

refers to the ability to resolve as distinct two or more closely spaced high-contrast

objects, (b) contrast resolution refers to the ability of the imaging system to

distinguish small differences in contrast (linear attenuation coefficient) in relation to

a homogeneous background, and (c) display contrast or image gray-scale mapping

concerns different window (range) and center assignments. Notice that a given shade

of gray can represent different CT values with each mapping. Note also that a given

CT value can appear as different shades of gray with different mapping (range and

center) assignments.

The inability to maintain a sufficient signal-to-noise ratio at small source

and detector appatures (�0.25 �m) is what actually limits the resolution of

commercial medical imagers. Ultra-high-resolution imaging using a very

high flux source is described in Section 8.8. Reconstruction and display

resolution are generally chosen to match the theoretical limit to minimize

unnecessary cost and computation.

8.6.3 Contrast Resolution

Contrast resolution (also referred to as contrast sensitivity) is the capa-

bility of the x-ray scanning system to distinguish small differences in contrast

(linear attenuation coefficient) in relation to a homogeneous background.

This is illustrated in Fig. 5b. The intrinsic resolution in measuring the

intensity is a function of the size, shape, and characteristic attenuation of the

object; the collimation of the x-ray beam; and detector sensitivity. Contrast

resolution is typically expressed as either the smallest difference in x-ray
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attenuation that can be discriminated for an object of a particular diameter,

or as the smallest diameter of an object with a particular contrast that can

be detected. A low-contrast object can be identified if it is large, whereas

small objects can be identified if they have a large contrast relative to a

homogeneous background. This is due to the partial volume effect, wherein

the smaller object must be of significant attenuation contrast to affect the

volume or voxel average (Eq. [4]). Knowledge of the contrast resolution

(sensitivity) of a given x-ray imaging system enables one to estimate, for

example, the smallest difference in bulk density that can be identified with

a given instrument.

8.6.4 Display Contrast

The range of attenuation values or CT numbers displayed in a given

image is often referred to as the image ‘‘window.’’ This range is then mapped

to and represented by a discrete number of gray levels to create the image.

Generally, many attenuation values or CT numbers are ‘‘mapped’’ to each

gray level in an image. For example, in Fig. 4, the window is 831 CT units

wide, centered at 61 CT units (listed as ‘‘C1’’ and ‘‘W1’’). In this image, the

range is broken down into 16 bins (shades of gray), where each gray level

represents 831/16 � 52 CT units.

It is important to realize that the gray-scale mapping assignments in a

given image are usually optimized by the operator for each image and may

not be consistent for several images or image sets. Therefore (since the

mapping is rather arbitrary and different imagers have different attenuation

response profiles); a given shade of gray on one image may or may not

represent the same attenuation value as that same shade of gray in another

image. Conversely, a given attenuation value may appear as different colors

or shades of gray in different images. This is illustrated in Fig. 5c. This lack

of uniformity can make it difficult to compare or quantify images.

The display contrast is affected by the gray-scale-mapping window. As

the window of CT numbers (represented by a given number of gray-scale

bins) is increased or decreased, the actual number of CT values mapped to

the same shade of gray increases or decreases. If the range (window) is large,

two CT values that are slightly different in value may appear as the same

shade of gray. As the range of numbers (window) is decreased, a smaller

range of CT values is represented by a single shade of gray, and these same

two CT numbers may be represented by different shades of gray. Therefore,

the effective display contrast may be increased up to that allowed by the

intrinsic contrast resolution. With a small window, however, it is often

difficult to cover the entire range of CT values present in the image. The

optimal mapping assignment in any given image is generally a trade-off,
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wherein the entire dynamic range (total range of CT numbers of interest) is

represented with optimal display contrast (smallest range of CT numbers

per shade of gray). Additional mapping options, designed to expand the

dynamic range specifically the area of interest are available with external

image processing techniques.

Knowledge of the spatial and attenuation resolution of the specific

imaging system and of the x ray energy, scanning geometry and display

contrast mapping used is needed for proper assessment and analysis of the

image.

8.6.5 Beam Hardening

Equation (1) and (3) (in Section 8.2) describes the x-ray attenuation for

a monochromatic (single energy or wavelength) source of x rays. However,

the x rays produced in any commercially available x-ray scanner are

polychromatic (more than one energy). Recall from Section 8.2 that the

x-ray attenuation resulting from the photoelectric interaction with a given

material significantly increases as the energy decreases. Therefore, with a

polychromatic x-ray beam, attenuation (which is the sum of the photo-

electric effect and Compton scattering) is not constant for all energies of the

x-ray beam, but is higher for the lower energy components of the x-ray

beam. This preferential attenuation of the lower energy components of the

x-ray beam leads to an effect known as beam hardening. Beam hardening,

if not accounted for, results in incorrectly measured attenuation and CT

values, which can significantly decrease the accuracy of quantative results.

Beam hardening becomes especially pronounced when dealing with

higher attenuating samples such as core material. As the polychromatic

x-ray beam passes from the edge of the core material toward the center of

the sample, the lower energy components of the x-ray beam are preferen-

tially attenuated, changing the energy distribution of the x-ray beam. When

the x-ray beam reaches the center of the sample, the lower energy compo-

nent could be significantly decreased compared to the higher energy ones.

This is referred to as ‘‘hardening’’ of the beam. The net result of this

changing beam energy profile, as it passes through the sample, is an

increased attenuation at the edges (lower energy components present) with

an effectively larger attenuation coefficient and decreased attenuation at the

center (less lower energy components present) with a lower attenuation

coefficient. Beam hardening can be seen in CT images as a significantly

higher attenuation ring or ‘‘cupping’’ at the edges of a core material sample

(such an image is shown in Fig. 6).
Beam hardening can be compensated for with improved prereconstruc-

tion algorithms [9], or interpolation methods (see Chapter 4). It is often
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Fig. 6. The Beam hardening effect is seen as a higher attenuation ring or ‘‘cupping’’

at the edge of an imaged object. A profile of the values across the center of the image

is shown. Beam harden significantly affects the ability to obtain quantitative

information from an x-ray image.

easier to preharden the x-ray beam by surrounding the sample with sand,

an attenuating fluid [12], or aluminum when CT scanning. Aluminum rings

or an aluminum core holder have been found to adequately preharden the

beam and minimize beam-hardening effects [20].

For digital radiographic scanning it is important to maintain consistency

in the geometry through which the attenuating x-ray beam travels. Here,

differences in attenuation resulting from beam hardening can lead to

apparent and incorrect differences in measured x-ray attenuation.

8.6.6 Use of Attenuation Standards

Because of differences in x-ray sources, detectors, and scanning arrange-

ments, attenuation values obtained for a given sample using different

imagers will show variation [1]. Additionally, the x-ray source and detectors

are prone to day-to-day instrumental drift in their attenuation responses.

The effect of the drift on measured attenuation is not predictable and is itself

a function of the absolute attenuation measured (greater drift for greater

attenuation) [33—35]. This leads to inconsistent and unreliable attenuation

values, which, if not corrected, can result in significant errors when these

values are used in quantitative calculations. Calibration with attenuation
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standards is vital if calculation or comparisons are to be carried out with

x-ray attenuation data.

Conventionally, in medical x-ray attenuation measurements, a water

sample is used as an attenuation standard. However, this is not sufficient for

scanning of higher attenuating core material. Additional standards are

necessary for reference attenuating media. A method has been developed to

compensate for instrumental differences and drift utilizing secondary attenu-

ation standards to calibrate the attenuation data [33—35]. This method uses

secondary attenuation standards to identify and characterize the day-to-day

drift of the x-ray source and detectors. Compensating for the drift serves to

standardize all attenuation measurements taken in multiday experiments to

the same baseline attenuation.

The reference material must be of uniform density and composition and

should exhibit attenuation characteristics close to that of the material to be

measured. To compensate for differing beam-hardening effects, the standard

should be the same diameter as the sample material. Several laboratories

have previously used aluminum as a secondary reference because it is

uniform in composition and attenuates slightly more than most core

systems [11, 12, 20]. Fused quartz has also come to be utilized as a

secondary reference [11, 33, 35]. The density and x-ray attenuation charac-

teristics of fused quartz are close to those of many sandstones. Fused quartz

is uniform in composition and is readily available through optical supply

distributors.

The use of both fused quartz and aluminum provides us with standards

of attenuation both lower and higher than most core systems and enables

us to adequately compensate for instrumental differences and drift [33—35].

Correction is done prior to calculation of bulk density, porosity, or

saturation. Results show significant increases in the accuracy and precision

of calculated values when calibration with external attenuation standards is

employed [33—35].

Scans of the standards may indicate only a small drift over the period of

several days and therefore may require only a small correction, while other

sets of standard scans may indicate a rather large drift and require greater

correction to maintain accuracy. Calibration is especially important when

instrumental drift is large for a series of scans that are subsequently used as

a baseline to other scanning days, when the error induced by the instrumen-

tal drift is propagated through all subsequent calculations.

Uncorrected instrumental drift leads to inconsistent and unreliable values

and underestimation of the accuracy of the x-ray attenuation method.

Calibration with external attenuation standards has resulted in significant

increases in the accuracy and precision of quantitative values calculated

from x-ray attenuation data.
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Fig. 7. Dopant linearity: The typical attenuation response as a function of concen-

tration of dopant material for (a) CT number vs concentration of a typical dopant

solution and (b) CT number vs concentration of a typical dopant and core material

system with approximately 20% porosity. When doped solutions are used, care must

be taken to ensure that the system to be scanned falls within the working dynamic

range of the instrument and is linear in concentration of the dopant. Too low a

dopant level does not produce sufficient attenuation contrast, and too high a dopant

concentration may decrease the photon flux on the detector to below its detection

limits. Beam-hardening effects increase with dopant concentration.

8.6.7 Chemical Dopants

For experiments involving the calculation of fluid saturations, to increase

measurement sensitivity, chemical dopants (compounds highly attenuating

to x rays due to their high atomic number) are often added to one or more

phases or fluids to increase the x-ray attenuation of that phase. Examples of

commonly employed dopant materials are listed in Table II. An iodated

hydrocarbon can generally be used to dope the oil phase and a bromide or

iodide salt can be used to dope the aqueous phase. Xenon gas can be used

to tag the gas phase.

When doped solutions are used, care must be taken to ensure that the

system to be scanned falls within the working dynamic range of the

instrument and is linear in concentration of the dopant. A typical attenu-

ation response as a function of concentration of dopant as shown in Fig. 7.

Too low a dopant level does not produce sufficient attenuation contrast, and

too high a dopant concentration may decrease the photon flux on the

detector to below its detection limits. A nonlinear attenuation response

(common with high dopant concentrations) results in a significant error in

quantitative calculations.
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Table II. Common Dopants

Material CT Number

Barium bromide (10% solution) 295

Sodium bromide (10% solution) �249

Sodium tungstate (10% solution) 214

Iododecane—hexadexane (50—50) 806

Sodium iodide (saturated) 1477

Measurements made relative to water � �500 CT units.

High levels of dopant materials can significantly increase beam-hardening

effects (increased photoelectric attenuation). Any changes in beam harden-

ing induced by the dopant materials must be minimized or corrected if

accuracy is to be maintained.

8.7 Applications of X-Ray Imaging

X-ray scanning can be applied to obtain either qualitative (visual) or

quantitative (numerical) data. Historically, much of the information ob-

tained from x-ray scanners utilized in both the medical and other industries

has consisted primarily of a qualitative, or visual, assessment of the images.

In this capacity, the scanner has been utilized within the petroleum industry

to identify and evaluate internal structural characteristics and discontinui-

ties of core material and fluid distributions within core material systems.

Qualitative applications are those that require only a visual assessment

of the resulting x-ray images. Due to their availability and ease of use,

medical imagers are often utilized. The use of such scanners, if they have the

appropriate resolution is quite adequate for qualitative applications. Appli-

cations include evaluation of core for samples selection, evaluation of core

damage, establishment of bedding plane orientation, and plug screening.

8.7.1 Qualitative Application of X Ray Imaging

8.7.1.1 Sample Selection. Perhaps the most common application for

CT or radiographic scanning within the petroleum industry is screening of

the core prior to sample selection. If samples selected for core analysis tests

are not representative of the reservoir material, subsequent work to charac-
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Fig. 8. X-ray screening is often utilized to evaluate a core prior to sampling (a) and

to identify and avoid areas of damage (b). Samples need not be removed from rigid

PVC or fiberglass core barrel liners, as the x rays pass through the liners with

minimal attenuation. Screening for sampling locations is rapid and nondestructive.

(c) Pyrite inclusions are readily identifiable in these digital radiographic and

tomographic scans as intense white areas. Black areas appearing in the center of the

areas of white and streaking of the image in c is due to the intense attenuation of

the mineral inclusions.

terize the storage and flow properties of the reservoir utilizing the samples

may be of little value. X-ray screening is often utilized to evaluate core prior

to sampling (Fig. 8a) and to identify and avoid areas of damaged core (Fig.

8b), thereby facilitating the selection of appropriate sampling intervals.

X-ray scanning is also used to identify a core containing nonrepresentative

mineralogical inclusions (Fig. 8c), which might bias core analysis measure-

ments. Samples do not need to be removed from rigid PVC or fiberglass

core barrel liners as the x rays pass through the liners with minimal

attenuation. Screening for sampling locations is rapid and nondestructive.

8.7.1.2 Mud Invasion. Barite, contained in many drilling muds, is

highly attenuative to x rays due to the high atomic number of barium.

Invasion of drilling mud into porous core material samples is clearly

observable in the CT scans shown in Fig. 9. Figure 9a shows mud invaded

into the open pore structure of a carbonate sample, and Fig. 9b shows mud

invading predominately from lower right side of this image of a pebbly

coarse grained sandstone sample. X-ray scanning has been used to identify

areas of mud invasion and also to evaluate the utility of improved mud

systems, thereby improving core quality.
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Fig. 9. Mud invasion. Barite, contained in many drilling muds, is highly attenuative

to x rays. The presence of drilling mud invasion is clearly observable in these CT

images: (a) mud (white) invaded into the open pore structure (black) of a carbonate

sample and (b) mud invading predominantly from lower right side of this image of

a pebbly coarse grained sandstone sample. (c) and (d) Invasion of barite mud is

evident in these CT scans of unconsolidated core (areas of white). In (c), the invasion

of a mud filtrate is also evident as lighter areas around the core and across the

diagonal of the image.

CT slice images can be stacked together to provide full three-dimensional

characterization of core data. Figure 10 shows a image of a three-dimen-

sional data set created by stacking together 19 consecutive tomographic

images of a limestone. The open pore space appears as dark, while drilling

mud, which has invaded the open pore space, appears opaque white.

8.7.1.3 Core Damage in Unconsolidated Core. The x-ray scanning of

core samples has been shown to be particularly useful when dealing with

cores obtained from unconsolidated or friable formations, which are espec-

ially susceptible to damage or alteration imposed during the coring or
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Fig. 10. A 3-D CT. CT slice images can be stacked together to provide full

three-dimensional characterization of core data. Shown are images of a three-

dimensional data set created by stacking consecutive tomographic images of lime-

stone. The open pore space appears as dark, while drilling mud appears in opaque

white.

Fig. 11. Core damage. These digital radiographic (a) and CT scans (b and c) of an

unconsolidated core show clear evidence of fractures and can assist in the identifica-

tion of those processes that lead to damage and the minimization of subsequent

coring damage [17].

handling process [17, 27]. X-ray imaging can be utilized to provide clear

evidence of fractures (Fig. 11) and invasion of barite mud (Fig. 9c

and 9d). Evaluation of damage in fragile, unconsolidated core material

utilizing CT scans, has assisted in the identification of those processes

that are responsible for damage to the core material and therefore min-
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Fig. 12. Bedding planes and other depositional features are often apparent in x-ray

images. Density and atomic number differences in sand as opposed to shale give rise

to different x-ray attenuations and appear as alternating light and dark bands in

these digital radiographic images (a and b). Identification of depositional features

can be used to orient the core for the proper slab angle. (c) CT scanning can be used

to identify and evaluate plugging-induced damage. Here a fracture is clearly evident

down the length and across the face of a core plug, which could affect the validity

of special core analysis [17].

imization of core damage in subsequent coring and core-handling oper-

ations.

8.7.1.4 Bedding Plane Orientation. Bedding planes or other deposi-

tional features are often apparent in x-ray images (Figs. 12a and 12b). Here

density and atomic number differences in sand as opposed to shale gives rise

to different x-ray attenuations and appears as alternating light and dark

bands in the image. Special core analysis identification of depositional

features can be used to orient the core for the proper slab angle [11, 17],

thereby enhancing the prediction of reservoir performance from core analy-

sis data.

8.7.1.5 Plug Screening. The special core analysis of core plug samples

is relatively expensive. It is estimated that approximately 30% of core plugs

obtained from fragile, unconsolidated core material are severely damaged

during the plugging process. Damage is generally severe enough to invali-

date any special core analysis results. X-ray scanning can be used to identify

and evaluate plugging induced damage (see Fig. 12c) or any inhomogenie-
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ties in the sample, and therefore maintain the validity of special core analysis

results.

8.7.2 Quantitative Applications of X-Ray Imaging

X-ray images represent discrete x-ray attenuation information of the

material scanned. In addition to qualitative assessment of the x-ray images,

quantitative information such as density, atomic number, porosity, and

saturation values and distributions can be extracted from CT scan images

with appropriate processing and calculations [10, 11, 13, 17, 19, 20, 22—27,

33—39].

Quantitative applications may or may not be possible utilizing scanners

located within a medical facility and would depend on scan optimization

and consistency, the use of external reference attenuating media, and the

ability to access numerical values within the image.

To obtain quantitative (numerical) information, the scanning must be

carried out in a careful and consistent manner, followed by some amount of

external calculation or manipulation. Significant improvements in the accu-

racy and reliability of quantitative analysis have been achieved over the last

several years [17, 21, 22, 33—36].

As discussed in Section 8.6, to obtain accurate and reliable values, it is

necessary to minimize beam-hardening effects and ensure appropriate use of

attenuation standards and chemical dopants,

8.7.2.1 Calculation of Bulk Density. Bulk density values can be ob-

tained from x-ray attenuation measurements [9, 11, 20]. For sandstones,

bulk density is conveniently estimated utilizing a calibration curve that

defines the measured attenuation values for the fused quartz standard and

aluminum standards as a function of bulk density. A similar procedure, with

appropriate standards (for example, calcite and CaCl solutions), can be used

to calculate bulk density for carbonate samples. A fit of the calibration plot

can then be used to calculate the bulk density of a sample material from the

measured attenuation value. Examples of such calibration plots are shown

in Fig. 13. Here, two calibration plots are shown: one for sandstones and

one for carbonates. This approach is empirical and depends on the knowl-

edge and consistency of the mean atomic number of the sample material

(here one for carbonates, and one for sandstones). This method will not

work, for example, if the mean atomic number is different from the

standards used to create the calibration line (for example, excessive mineral-

ization of pyrite or hematite or saturation with a doped material).
Bulk density values obtained from CT scan data of several consolidated

samples agree well with values obtained utilizing conventional techniques

(see Table III). The ability to measure bulk density in specific undamaged
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Fig. 13. Bulk density calculations. Bulk density can be calculated from attenuation

values by comparison to known standards [33, 34].

Table III. Bulk Density Values Calculated from CT Data Compared to Values

Obtained with Conventional Techniques

Measured

Sample Calculated Bulk Density (g/cm
) Bulk Density (g/cm
)

Sandstone 2.17 2.11

Sandstone 2.17 2.12

Limestone 2.20 2.26

or noninvaded areas of a core is particularly useful in the area of uncon-

solidated core analysis. Specific areas of the image can be selected and

utilized to calculate bulk density values. In this manner, erroneous values

due to damage or mud invasion of the core material can be avoided. For

example, in Fig. 14 bulk density values can be calculated from the CT value

within any area of this CT image (see boxes labeled 1 and 2 in the figure).
Note the high attenuation of the mud-invaded area (567.6 CT units) verses

that of the noninvaded area (112.2 CT units).
As already discussed, if the mean atomic number or composition of the

core material system is unknown or highly variable, a simple calibration

may not be obtainable or appropriate. A more complicated technique,
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Fig. 14. Specific areas of the image can be selected and utilized to calculate bulk

density values. In this manner, erroneous values due to damage or mud invasion of

the core material can be avoided. For example, a bulk density value can be

calculated from the CT number from area 2 of this CT image. Note the high

attenuation of the mud-invaded area within box 1 (567.6 CT units) verses the

attenuation within box 2 (112.2 CT units).

involving attenuation measurements obtained at two different scanning

energies has been developed [32—34] and is successfully utilized. The use of

this method has been found to provide accuracy to within 0.06 g/cm
 and

does not require a priori knowledge of the composition or saturation of the

core material.

Bulk density values can be correlated to the density well log [9, 11] and

can be used to verify or supplement well log information. Bulk density

values were calculated from CT scans of unconsolidated core and were

found to agree with the density well log information (recognizing sampling

size differences) [11, 36—38].

8.7.2.2 Calculation of Porosity. For CT applications, the CT number

(CT
����

) of a volume element containing rock matrix material and a single

fluid can be expressed as a linear combination of the attenuation from each

component such that [13]

CT
����

� (1 � �)CT
�

� �CT
�

(6)

where � porosity of the rock, and CT
�
and CT

�
are the CT values for the
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rock and fluid. If two measurements are made, each with a different fluid

occupying the pore space of the rock, these can be described as

CT�
����

� (1 � �)CT�
�

� �CT�
�
, (7)

CT�
����

� (1 � �)CT�
�

� �CT�
�
, (8)

where the superscripts indicate the values obtained when saturated with

different fluids. If the x-ray source is assumed to be monochromatic (which

we know is an approximation), then the attenuation contributed by the rock

material, the (1 � �) CT
�
term, is the same in each case. Subtracting these

two equations and rearranging enables one to solve for porosity:

� �
CT�

����
� CT�

����
CT�

�
� CT�

�

. (8)

If one of the saturation states is the dry rock and the other is fully saturated,

Eq. (9) simplifies to

� �
CT

��
� CT

���
CT

�
� CT

���

. (10)

Using this equation, some error may be realized when dealing with extreme-

ly attenuating (very highly doped) fluids due to the differences in attenuation

imposed by the fluid within the core material, which are not accounted for

in the simplifying assumptions. Error will also be realized if the CT values

of the two saturated states are not significantly different (for example, low

porosity or insignificant attenuation differences of the fluids).
For digital radiography and x-ray attenuation profiling, an analogous

relation can be developed [24, 25]:

� � [(A
�

� A
�
)/(�

�
� �

�
)]/L , (11)

where A
�

and A
�

are the attenuations measured (defined in Eq. [3]) when

the sample is air and fluid filled, �
�

and �
�

are the linear attenuation

coefficients of the air and fluid, and L is the sample diameter. Here, A
�

and

A
�
are the (averaged) projected attenuation values measured at the detector

for a one-dimensional profile or a two-dimensional digital radiographic

image.

8.7.2.3 Calculation of Fluid Saturation. Using x-ray attenuation

measurements we can accurately determine the saturation and distribution

of fluids within a core sample [7, 10, 13—16, 18—25]. The spatial details of

fluid saturations can provide information about the effects of viscous

fingering, fluid segregation, and the relative permeability of fluids within

core materials. Accurate determination of the distribution of fluids is often

important when considering the effect on experimentally measured quanti-
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ties [16, 22, 26]. Prior to the advent of x-ray technology, this information

was determined gravimetrically or volumetrically assuming the saturations

were distributed uniformly throughout the test sample. Development of

x-ray techniques in recent years has enabled in situ determination of fluid

saturation distributions and, with appropriate standardization, accurate

quantitative saturation values for two- and three-phase systems.

8.7.2.3.1 Two-Phase Saturation. For CT applications, when two im-

miscible phases (for example oil and water) are present within a core sample,

the measured CT number at a given saturation can be described as [9, 11]

CT
��

� CT
!
S
!

� CT
�
S
�
, (12)

where S
!

and S
�

are the oil and water saturations and CT
!

and CT
�

represent the CT numbers for the core when it is fully saturated with oil or

with water. The entire pore volume is assumed to be totally filled with the

fluids, therefore,

1 � S
!

� S
�
. (13)

By combining Eqs. (12) and (13), the water saturation can be easily

calculated from x-ray attenuation data:

S
�

�
CT

��
� CT

!
CT

�
� CT

!

. (14)

For digital radiography and x-ray profile measurements, the analogous

equation is [24, 25]

S
�

�
A

��
� A

!
A

�
� A

!

, (15)

where A
��

, A
!
, and A

�
are the attenuation values obtained at a given

saturation and for the core fully saturationed with oil and water. Oil

saturation is calculated as

S
!

� 1 � S
�
. (16)

Note CT
��

, CT
!
, and CT

�
and the analogous, A

��
, and A

!
and A

�
, are

measurements obtained at different times. A displacement experiment to

change S
�

can be very slow, even though the images can be obtained very

quickly. Therefore even a moderate uncorrected drift would decrease the

accuracy of the calculated saturations [33]. Saturation values along the

length of a core, calculated using Eqs. (14) and (16), showed agreement

between volumetric and CT results to within one saturation percent when

attenuation standards are used [33—35].
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Fig. 15. Two- and three-phase saturation distributions can be obtained from x-ray

measurements: (a) two-phase saturations along the length of a core sample during a

porous plate desaturation process, where the different profiles were obtained at

subsequent times, [22] and (b) the results of dual-energy measurement of three-phase

saturation, showing residual oil and gas saturation distributions subsequent to a

water flood [35].

Accurate determination of the distribution of fluids is often important

when considering the effect on experimentally measured quantities. For

example, a primary assumption in obtaining electrical resistivity for calcu-

lation of fluid exponent is that the fluid saturation saturation is uniform

during electrical measurement. Under some conditions, CT scans have

revealed nonuniform saturation along the length of the core sample [22].

Saturation values at specific locations along the core length were calculated

using Eq. (14) during the desaturation process. The saturation profiles (see
Fig. 15a) showed the formation of a moving front that could be correlated

to nonlinearities in the log-log resistivity index—water saturation crossplot.

The use of x-ray imaging to characterize saturation distribution during

resistivity measurements is also discussed in Chapter 4 of this book.

8.7.2.3.2 Three-Phase Saturation. For CT applications, extending Eq.

(13) to a system containing three immiscible phases (gas, oil, and water), the

CT number at a given saturation can be described as [10, 39]

CT
��

� CT
!
S
!

� CT
�
S
�

� CT
�
S
�
, (17)

where S
!
, S

�
, and S

�
are the oil, water, and gas saturations, and CT

!
, CT

�
,

and CT
�
represent the CT number for the core when it is fully saturated with

oil, water, or gas. As in the two-phase system, the entire pore volume is
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assumed to be totally filled with the fluids, therefore,

1 � S
!

� S
�

� S
�
. (18)

Equations (17) and (18) describe a system that contains three unknowns. To

solve for all variables, an additional equation is needed and is generally

obtained by scanning the sample at an additional x-ray probing energy. For

x-ray scanning at energies 1 and 2, the CT number at each energy can be

described as [10]

CT
�

� CT
!�

S
!

� CT
��

S
�

� CT
��

S
�

(19)

and

CT
�

� CT
!�

S
!

� CT
��

S
�

� CT
��

S
�
, (20)

where S
�
, S

!
, and S

�
are the saturations of water, oil, and gas; CT

	

is the

measured CT number of sample fully saturated with fluid i for x-ray energy

j ; and CT


is the measured attenuation value (or CT number) of sample of

unknown saturation for x-ray energy j.
If we define CT�� CT � CT

�
, then the saturations are

S
�

�
CT�

!�
CT�

�
� CT�

!�
CT�

�
CT�

!�
CT�

��
� CT�

!�
CT�

��

, (21)

S
!

�
CT�

��
CT�

�
� CT�

��
CT�

�
CT�

!�
CT�

��
� CT�

!�
CT�

��

, (22)

S
�

� 1 � S
�

� S
!
. (23)

Analogously, three-phase saturation values can be calculated from x-ray

attenuation measurements obtained from x-ray profile or digital radio-

graphic information as [24, 25]

S
�

�
A�

!�
A�

�
� A�

!�
A�

�
A�

!�
A�

��
� A�

!�
A�

��

(24)

and

S
!

�
A�

��
A�

�
� A�

��
A�

�
A�

!�
A�

��
� A�

!�
A�

��

, (25)

A� is defined as A � A
�
and the subscripts o and w and 1 and 2 refer to the

fully saturated measurements at different energies.

Vinegar and Wellington [10] reported a technique for calculating satu-

ration distributions in a three-phase system using dual-energy scanning

techniques and discuss the dopant requirements for maximum sensitivity. As

shown in Fig. 15b, Sandor and Hove [39] have accomplished three-phase
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Fig. 16. Volume data set of three-phase distributions created by stacking together

subsequent CT slices [33]. Light, medium, and dark shades indicate oil, water, and

gas saturations. Notice the nonuniform saturation along the length and across the

face of the core. This spatial information concerning saturation distributions

facilitates quality control and understanding of experimental results.

saturation measurements to obtain residual oil and gas saturation distribu-

tions subsequent to a water flood. A brine doped with sodium tungstate and

oil doped with iododecane were utilized. Energies employed were 70 and

110 keV.

When obtaining three-phase information using these dual-energy satura-

tion techniques, dopant type and concentration levels and scanning energies

must be optimized for the relative saturation ranges of the fluids. As a

practical matter, it is not always possible to obtain maximum sensitivity for

all concentration ranges in a given three-phase system. Alternatively, a flow

strategy can be designed in which one of the fluid phases can be maintained

constant and immobile. Such a strategy has been employed by maintaining

irreducible water saturation constant and immobile within a Berea core

sample and flooding with gas, then with oil [21, 33]. The calculated

saturations compare well with volumetric measurements to within one

saturation unit.

Figure 16 shows a volume data set created by stacking together the CT

slices obtained of S
	�

subsequent to oil and gas flooding. Notice the

nonuniform saturation along the length and across the face of the core. This
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spatial information concerning saturation distributions was not available

before CT techniques and facilitates quality control and understanding of

experimental results.

8.8 Ultra-High-Resolution CT

Computed microtomography [40—43] (CMT) offers unique imaging

capabilities compared with conventional optical and electron microscopes

or nuclear magnetic resonance (NMR) imaging. CMT is analogous to

medical x-ray CT scanning and produces images with a much higher spatial

resolution. Synchrotron x rays, generated in a storage ring for relativistic

electrons, provide an x-ray beam of extremely high flux (about 10� times

higher than conventional x-ray tube sources). This high flux (in photons per

square centimeter) enables the operative size of the source and detector to

be very small (slit width of the order of a micron) and still maintain a

sufficient signal-to-noise ratio, making synchrotron x rays ideal for micro-

tomography. With synchrotron x-ray CMT, three-dimensional maps of

linear x-ray attenuation coefficients inside small samples can be obtained

with about 1% accuracy and resolution approaching 1 �m [40, 43].

There has been interest in using synchrotron x-ray CMT for the charac-

terization of porous media for geological applications [44—49]. Advantages

include very high spatial resolution (reported 5 �m), narrow energy band

(less artifacts), and tunability (increased sensitivity and mineralogical infor-

mation). CT and microtomographic images of three sandstones are shown

in Fig. 17. Histograms, showing the frequency of attenuation values con-

tained within the respective images are also presented. The CT spatial

resolution was 0.25� 0.25� 3 mm
 and the spatial resolution for the CMT

was 5� 5 � 5 �m
. The microtomograms clearly show pores, structural

features, and mineralogical distributions not visible with the resolution of

the CT scanner. The higher resolution of the CMT images are reflected in

their histograms, which show clearer feature separation than the CT

histograms. The high resolution offered by CMT enables porosity calcula-

tions directly from the histogram of a single microtomographic image.

Mineral distributions can be identified as different attenuation values

(different shades) in the microtomographic images of Fig. 17.

Three-dimensional characterization of core samples can be obtained by

stacking together multiple CMT slices or imaging using a high-resolution

CCD array [50, 51]. A volume data set, created from consecutive CMT

slices of a 3-mm-diameter sandstone sample is shown in Fig. 18a. A large

set of information useful in modeling properties of and processes in porous

media can be obtained from CMT data. Spatial correlation and pore space
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Fig. 17. CT scans and microtomograms of sandstone samples. CT samples were

2.54 cm and CMT samples were 2 mm in diameter. Note the greatly increased

resolution and measurement sensitivity in the CMTs. Arrows on ‘‘Sandstone �3’’

image indicate the effect of porosity arising from pores smaller than the resolution

of the microtomogram. Different minerals evident in the computed microtomograms

can be identified by comparing their attenuation coefficients represented in the image

to those obtained from microtomograms of known mineral samples [46, 47].

interconnectivity can be conveniently represented and characterized with

such volumetric tomographic data [52, 53]. For visualization of the pore

space using computer image processing, the rock matrix material can be set

to be transparent and the pore space can be represented as interconnecting

pathways. This is illustrated in Fig. 18b. Here, different shades correspond

to connected pathways of the pore network.

Simulation of capillary-dominated displacements is possible on arbitrar-

ily complex CMT pore systems using percolation and network modeling

concepts [52—54]. Microtomographic images of real rock can serve as

boundary conditions for rigorous fluid flow modeling [50, 54—56]. Pore

level images of endpoint saturations (Fig. 19) have been obtained with

microtomographic techniques [50, 55—56], providing for the first time three-

dimensional imaging and characterization of fluid transport through the

pore structure. Pore level images of endpoint saturations were found to
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Fig. 19. Endpoint saturation images following a displacement process obtained

using synchrotron x rays. This image was obtained after flooding to residual oil

under capillary-controlled conditions. Oil and water are clearly visible within the

core material (as indicated) in this 20 D sandstone [51].

Fig. 18. Volume computed microtomography. (a) A three-dimensional microtomo-

graphic image data set of a 3-mm-diameter 1 D (darcy) sandstone sample. Resol-

ution is 20� 20 � 20 'm. (b) The rock matrix has been made transparent and

interconnectivity is shown as the number of independent clusters of porosity

elements. Calculated permeabilities compare well with plug permeabilities [46, 47].

agree well with predictions using computational fluid dynamics and network

modeling techniques. With computed microtomography, opportunities

therefore exist to significantly impact the description and understanding of

fluid transport properties within core material systems.
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8.9 Summary

X-ray imaging is invaluable in providing information about the internal

structure and saturation distributions within porous materials. X-ray scan-

ning is versatile, rapid, and noninvasive and can be utilized to address

problems in the area of core analysis and petrophysics as well as fluid

displacement processes in reservoir core material. X-ray scans provide

qualitative (visual) assessment of core materials and with the proper use of

attenuation standards and dopant materials, quantitative information such

as bulk density, porosity, and fluid saturations can be calculated from x-ray

attenuation data. The development of ultra-high-resolution computed

microtomography provides three-dimensional, pore level characterization

and imaging of core material and fluid transport processes.
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9. NUCLEAR MAGNETIC RESONANCE

Robert L. Kleinberg
Schlumberger-Doll Research

Ridgefield, Connecticut

9.1 Introduction

Nuclear magnetic resonance (NMR) has long been used to charac-

terize condensed matter. Chemical shift spectroscopy, relaxation studies

of kinetic processes, and three-dimensional imaging are familiar ways

of using NMR to probe properties of gases, liquids, and solids. The use of

NMR to investigate porous media has primarily focused on measure-

ments of the fluids in the pore space. Because the common pore fluids are

rich in hydrogen, most applications are based on proton NMR measure-

ments.

The application of NMR to porous media has been accompanied by the

development of new measurement modalities, enabling the study of meso-

scopic properties that are difficult or impossible to determine by other

techniques. One of the most useful of these properties is the pore size or,

more generally, the pore size distribution. An NMR relaxation time

measurement can be used to determine a volumetrically weighted distribu-

tion of pore sizes spanning several orders of magnitude. Properties that have

been derived from the NMR-determined pore size distribution include

hydraulic permeability and the capillary pressure curve.

Quantitative measurement of signal amplitude plays a much more im-

portant role in the characterization of porous media than in most other

magnetic resonance investigations. Calibrated proton spin density measure-

ments can be the simplest and most accurate way to measure the volume

fraction of pore space (porosity). Processes such as freezing, drying, and

hydration are easily monitored by amplitude measurements.

This chapter reviews methods and applications of NMR measurements of

porous media. The emphasis is on amplitude and relaxation techniques

developed specifically for porous media. Other reviews cover magnetic

resonance imaging, pulsed field-gradient techniques, and characterization of

fluid flows by NMR [1—3]. Here, special attention is paid to sedimentary

rocks, which present a broad range of difficulties to the experimentalist and

are in many respects ‘‘worst-case’’ porous media. Measurements have been

made in the laboratory and, in some cases, by ‘‘inside-out’’ NMR equipment
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operating as much as 10 km underground for the purpose of measuring

properties of subsurface geological formations in situ.

A number of important porous systems are not discussed in this chapter.

Where the pore openings are on a molecular scale, such as in intercalation

compounds and zeolites, the guest phases behave as individual molecules

not as continuous fluids. Methods that are useful for characterizing these

materials are in some respects distinct from those presented here.

9.2 NMR Relaxation

There is a multitude of types of NMR measurements. In fact, one of the

main attractions of the technique is the variety of measurements that can be

made with basic apparatus. Measurements of magnetic relaxation have

proved particularly helpful in porous media studies. For details concerning

the relaxation measurement technique, the reader is urged to consult one of

many excellent books [4—7].

To make an NMR measurement, magnetic nuclei are first aligned by a

static magnetic field B
�
. Then they are irradiated by an antenna broadcast-

ing radio frequency pulses. The pulses reorient the magnetic moments of the

nuclei. The carrier (Larmor) frequency, f
�
, of the pulses is

f
�

�



2�
B

�
, (1)

where 
 is the gyromagnetic ratio of the nucleus. Each isotope has a unique

gyromagnetic ratio; for protons, 
/2� � 42.58 MHz/T. It is this frequency

selectivity that makes NMR a resonance technique.

The transverse relaxation (T
�
) measurement consists of a series of pulses.

The first is a 90° pulse, during which the nuclei are rotated 90° from the B
�

direction. This is followed by a long series of 180° pulses. The sequence is

called a CPMG after its inventors, Carr and Purcell [8] and Meiboom and

Gill [9]. When irradiated with this series of pulses, a nuclear spin system

will return a series of equally spaced spin echoes [10], one after each 180°

pulse. The echo spacing is called T
&

and is typically of the order of a

millisecond.

The transverse magnetization decay is monitored by measuring the

amplitudes of the echoes during the CPMG sequence. The entire decay

curve is acquired during one echo train, which makes this measurement a

very efficient one. The characteristic decay time for echo amplitude is called

T
�
, the transverse relaxation time. The amplitude of the nth echo, occurring
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at time t � n · T
#
, is

M(t) � M
�
exp ��

t

T
�
� . (2)

After the end of a CPMG acquisition sequence, the spins are free to return

to equilibrium along the static field B
�
. The process of realignment is often

relatively slow. It is characterized by a time constant T
�
, called the

longitudinal relaxation time. Methods of measuring T
�

have been reviewed

by Sezginer et al. [11].

Both T
�

and T
�

arise from molecular processes, but there is not necessarily

any relationship between them. For liquids measured in bulk, it is often the

case that T
�

� T
�
. For solids, it is often the case that T

�
�T

�
. It is always

true that T
�

is greater than or equal to T
�
. The relaxation processes of

greatest interest for porous media studies are described here. The references

should be consulted for a more complete overview [4—6, 12, 13].

Bulk Fluid Process: Magnetic relaxation occurs when a nucleus is

subjected to any magnetic disturbance that has an oscillating component at

the Larmor frequency. One such disturbance is the fluctuation of local

magnetic fields arising from the random motion of neighboring nuclei. This

mechanism is quite weak; for water, T
�

� T
�

� 3 s at room temperature.

Surface Relaxation: Brownian motion causes fluid molecules to diffuse

substantial distances during an NMR measurement. The equation for

diffusion is

�x��� 6Dt, (3)

where �x�� is the mean square distance a molecule diffuses in time t, and D
is the molecular diffusion coefficient. For water at room temperature,

D � 2� 10�� m�/s; in one second, the typical length of time for an NMR

measurement, a molecule can diffuse 110 �m. Diffusion gives a molecule the

opportunity to collide with nearby solid surfaces, and each collision of a

molecule with a surface provides an opportunity for spin relaxation. This

mechanism contributes to T
�

and T
�
, but not necessarily with the same

strength.

Diffusion in Magnetic Field Gradients: In the presence of gradients in the

static magnetic field, molecular diffusion causes transverse relaxation.

Longitudinal relaxation is not affected. For bulk liquids T
�

resulting from

this effect is [8]

�
1

T
�
�
�

�
D(
GT

&
)�

12
, (4)
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where D is the molecular diffusion coefficient, 
 is the gyromagnetic ratio of

the nucleus, and G is the gradient strength in Teslas per meter. The B
�

gradient can originate either in the apparatus or in the sample itself, as

explained in Section 9.3.5.

Summary: The relaxation processes act in parallel, and so the rates add:

�
1

T
�
�
����

��
1

T
�
�
$

� �
1

T
�
�
�

��
1

T
�
�
#

, (5)

where (1/T
�
)
$

is the surface contribution, (1/T
�
)
�

is the diffusion in field

gradient contribution, and (1/T
�
)
#

is the bulk contribution. The correspond-

ing equation for T
�

is

�
1

T
�
�
����

��
1

T
�
�
$

��
1

T
�
�
#

. (6)

Note there is no diffusion contribution to T
�
.

9.3 NMR Properties Peculiar to Porous Media

9.3.1 Fluid—Solid Interaction

Because bulk relaxation processes can be very inefficient in liquids and

gases, T
�

and T
�

of nuclear spins of fluids confined in porous media are

frequently controlled by the fluid—solid interaction at the surfaces of the

pore space [14, 15]. The macroscopic theory of magnetic relaxation at a

fluid—solid interface is now very well established. The basic concept is that

fluid molecules diffuse, eventually reaching a grain surface where there is a

finite probability they are relaxed. The rate-limiting step can either be the

relaxation process at the surface or the rate at which unrelaxed spins can be

transported to the surface [16—20].

If the rate-limiting step is relaxation at the surface, fluid molecules can

transit the pore several times before being relaxed. Then the magnetization

decay in an individual pore is spatially uniform and monoexponential and

depends not on pore shape but only on the surface-to-volume ratio. This is

referred to as the fast-diffusion or surface-limited regime. In the absence of

other relaxation mechanisms, the relaxation rates can be expressed by

�
1

T
�
�
$

� �
� �

S

V �
����

, (7a)

�
1

T
�
�
$

� �
� �

S

V �
����

, (7b)

where (S/V )
����

is the surface-to-volume ratio of the pore, and �
�

and �
�

are
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constants that depend on the strength of the interactions between fluid

nuclear spins and the solid surfaces they encounter.

In the opposite case, magnetic relaxation occurs at the grain surface, but

the decay of macroscopic magnetization is controlled by the transport of

molecules to the surface [17, 18]. This is likely to be the case when pores are

relatively large and/or surface relaxation is strong. Molecules usually will be

relaxed at their first encounter with the surface. This is called the slow-

diffusion or diffusion-limited regime. In this regime, there is a time-depend-

ent nonuniform spatial distribution of magnetization in the pore. This gives

rise to a magnetization decay, which in a single pore has a multiexponential

character and depends on the shape of the pore. As long as both longitudi-

nal and transverse relaxation are diffusion limited, their rates are equal, even

if the microscopic processes governing relaxation at the surface are different.

To lowest order,

�
1

T
�
�
$

��
1

T
�
�
$

� c
D

a�
, (8)

where a is the pore radius, D is the bulk diffusion coefficient of the fluid, and

c is a constant of order unity that depends on the shape of the pore. Spin

diffusion [4], by which nuclear magnetism is transported by magnetic

interactions between neighboring nuclei, is negligibly slow compared to

molecular transport in liquids.

Experimentally, surface- and diffusion-dominated regimes sometimes can

be distinguished by measuring the temperature dependence of the relaxation

rates. In the absence of strong temperature dependence, the relaxation

cannot be diffusion dominated, since the diffusion coefficient of the fluid,

which explicitly appears in Eq. (8), always depends strongly on temperature

[21]. However, an increase of relaxation rate with increasing temperature

could arise from either of two causes. The relaxation could either be

diffusion dominated or, if surface dominated, the surface relaxivity might be

strongly temperature dependent [12, 22].

There are several mechanisms by which fluid molecules can be relaxed by

solid surfaces. They are described in the following paragraphs.

Homonuclear Dipole—Dipole Coupling. This is the principal relaxation

mechanism in bulk fluids such as water. NMR relaxation rates of nuclei in

bulk fluids are typically low because inter- and intramolecular magnetic

interactions are modulated at the frequency of the molecular motions, which

is typically orders of magnitude higher than the Larmor frequency [23]. The

presence of a solid surface increases the rate of relaxation by reducing the

frequency of molecular motion [24, 25].
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Cross-Relaxation by Other Nuclear Spins. Nuclear spins residing in

molecules that are fixed at the surface have short relaxation times. The fixed

spins can then efficiently relax the spins on itinerant fluid molecules. All

nuclear spins can relax each other by this mechanism, but proton—proton

interactions are the strongest. A striking example of this effect was demon-

strated by Fung and McGaughy [26]. Surface coatings of silicone were

applied to glass beads for the purpose of making them hydrophobic and

therefore presumably less efficient at relaxing pore water. However, water

proton relaxation was accelerated because the fixed silicone protons were a

better relaxer than the silica surface.

Relaxation by Paramagnetic Ions. The magnetic moments of electron

spins are 10
 times larger than those of nuclear spins and therefore tend to

dominate nuclear relaxation [12, 13]. Even small concentrations of para-

magnetic ions at the solid surface can have a large effect on the relaxation

of pore fluids, but these ions must be immediately at the surface to be

effective [27]. Relaxivity depends linearly on the surface density of the ions

[28]. It also depends on their identity, oxidation state, and electron

relaxation time; these properties may be different at the surface than in the

bulk of the solid. Kenyon and Kolleeny [29] observed a saturation of

relaxivity at high concentrations of manganese on calcite surfaces. Roose et
al. [30] found that when Mn�" is adsorbed on silica, it retains its primary

hydration shell, thus behaving very much unlike a lattice ion.

Relaxation by Free Electrons. The paramagnetic relaxation mechanism

does not require the presence of a paramagnetic ion. A crystallographic

point defect is formed when an atom is lost from a solid surface. Such defects

are known to be relatively common on oxide surfaces. These defects can be

populated by localized unpaired electron spins that efficiently relax nuclear

spins of adsorbed fluid molecules [28].

Apparently, subtle differences in material preparation can substantially

affect the relaxivity of a surface. Gallegos et al. [31] measured the surface

relaxivities of a series of controlled-pore silica glasses and a series of silica

sphere packings. The longitudinal relaxation rates were linearly proportional

to surface-to-volume ratio for both series, but the relaxivities differed

considerably. Analogous results were found for two series of calcium silicates

that had been synthesized at high temperatures in different atmospheres

[28]. It was hypothesized that different processing conditions led to different

numbers and types of surface defects capable of trapping unpaired electrons.

9.3.2 Heterogeneity of Pore Space

In many synthetic materials, the pore space is uniform. Perhaps more

interesting are those materials whose pore sizes and shapes vary significantly
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within a sample. In many cases, relaxation is surface limited and Eqs. (7)
apply. Then, when the pores are isolated from each other, there will be a

one-to-one mapping from the distribution of pore sizes to a distribution of

relaxation times.

For open cell materials— those in which pores are not isolated from each

other— the term pore is more a semantic construct than a well-defined

volume. For materials having a fractal fluid—solid interface [32, 33], or even

simply a pitted one, the identity of a pore may depend on the size scale being

investigated. Because NMR is not a steady-state measurement, the measure-

ment itself introduces one or more length scales. Molecules sample only a

limited volume of pore space before they are relaxed. The radius of the

volume sampled cannot be larger than the root mean square distance the

molecule diffuses in the NMR relaxation time, �6DT
�

or �6DT
�
, where D,

the diffusion coefficient, is itself a function of observation time in porous

media [34] (see Section 9.3.4). If mixing occurs between pores of different

sizes on this time scale, the spectrum of relaxation times will narrow

[35—38].

In the limit that molecules are able to sample all pore sizes in the pore

space before relaxing, the relaxations become single exponential with the

decay rates

�
1

T
�
�
$

� �
� �

S

V �
�

, (9a)

�
1

T
�
�
$

� �
� �

S

V �
�

, (9b)

where (S/V )
�

is the surface to pore volume ratio of the whole sample. Note

that this limit does not imply that each molecule has sampled the entire pore

space. It is only required that, on average, molecules sample the entire range

of pore sizes before being relaxed [39]. Haranczyk et al. [40] report

transition from a single exponential decay to multiexponential decay as

water is evaporated from a controlled pore glass. They interpret this as a

transition from a regime in which water can sample the whole range of pore

sizes during the decay of magnetization to one in which water molecules are

effectively isolated in droplets.

The presence of pore coupling can be tested by varying the temperature

at which the NMR relaxation measurement is made. Pores are coupled by

means of molecular diffusion. If a broad distribution of relaxation times is

not narrowed as temperature is increased, then diffusion, which is strongly

temperature-dependent, cannot be a factor in the relaxation, and thus pore

coupling cannot be an important factor in spin relaxation.
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Porous sedimentary rocks are extreme examples of materials with hetero-

geneous pore spaces. In a typical sandstone rock, pore sizes vary over many

orders of magnitude. There is no typical pore shape in such materials. NMR

relaxation of fluids in rocks is characterized by broad distributions of

relaxation times that do not generally change with temperature [41]. Thus,

it can be concluded that water in the rocks investigated relaxed by a surface-

dominated process, that the surface relaxation process was temperature-

independent, and that pore coupling was not important.

9.3.3 Secular Alteration of Microgeometry

The pore space can be time varying as well as spatially heterogeneous.

The solid matrix is not always impervious to chemical attack, and the most

common pore fluid, water, is a good solvent, particularly at elevated

temperature. Therefore the experimenter should not assume that his sample

is unchanging over the course of time. There can be changes in the oxidation

state of the surface, which will affect, for example, the NMR relaxing

strength of paramagnetic ions at the fluid—solid interface.

Changes in the fine or gross geometry of the pore space are also possible.

In one experiment, ordinary spherical borosilicate glass beads were immer-

sed in water, sealed in an NMR tube, and stored at room temperature for

approximately 1 year. At the end of the year, the NMR relaxation time of

the water was found to be much shorter than it was originally. The tube was

broken open, and the beads were found welded together. Microscopy

showed the glass surface had been radically reworked by dissolution and

reprecipitation [C. Straley, private communication].

The rate of chemical processes depends on the nature of the surface. Glass,

which has a disordered structure, is unstable at room temperature. When

quartz, which is chemically identical but structurally distinct, is stored under

water in the laboratory, it appears to be stable, although even quartz will

undergo alteration in geological contexts. Grinding creates abundant high-

energy sites at the surface, and these sites are readily attacked by water. A

water-saturated packing of a ground mineral will therefore undergo struc-

tural changes at accelerated rates, as has been observed for freshly pul-

verized calcite (CaCO


) in the author’s laboratory.

9.3.4 Restriction of Diffusion

The diffusion coefficient can be defined as the ratio of the mean square

displacement of a particle to the time over which that displacement takes

place:

D � �x��/6T. (10)
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Fig. 1. Diffusion coefficient as a function of observation time; D
�

is the diffusion

coefficient of the bulk fluid. In open cell systems, the reduced diffusion coefficient

asymptotes to the tortuosity at long observation times; in closed cell systems, it goes

to zero in that limit. Sphere pack data from Latour et al. [34]. Parallel plate data

from Wayne and Cotts [48]. Reprinted with permission from Latour et al., J. Magn.
Reson. A101, 342—346 (1993) [39].

The observation time T is well defined in NMR measurements. The dif-

fusion coefficient can be determined by transverse relaxation measurements

[8, 10, 42] or by pulsed field-gradient measurements [7, 43, 44].

The presence of solid matter has an important effect on the diffusion of

fluid molecules. Two distinct cases are common. In one, the pore space is

connected over relevant length scales—an open cell material. In the

opposite case, the pores are isolated from each other—a closed cell

material.

Diffusion in open cell materials has been investigated theoretically [45]

and experimentally [34]. In the limit that the observation time goes to zero,

the diffusion coefficient attains its bulk fluid value. However, the diffusion

coefficient drops very rapidly as observation time is increased, asymptoti-

cally reaching a limit determined by the tortuosity of the pore space (see
Fig. 1). The tortuosity is defined as the ratio of the diffusion coefficient of a

fluid in bulk to the steady-state diffusion coefficient of that fluid in the

porous medium. It is related to a number of other transport properties, such

as electrical conductivity [46].

The asymptotic limit is approached only when variation in pore size and

connectivity is adequately sampled by each diffusing fluid molecule [39]. In
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a very heterogeneous material, such as natural rock, this limit may not be

reached in observation times experimentally accessible by NMR; that is, a

few times T
�
. In the presence of magnetization relaxation at grain surfaces,

the apparent diffusion coefficient is affected proportionately to the strength

of the surface relaxivity. Surprisingly, the effect can be either positive or

negative, depending on the geometry of the pore space [47].

The diffusion coefficient has a very different dependence on observation

time in closed cell materials [48—50]. As in the open cell case, in the limit

of zero diffusion time, the diffusion coefficient approaches its bulk value. As

observation time increases, the diffusion coefficient decreases; in the limit of

infinite observation time, the diffusion coefficient goes to zero, as shown in

Fig. 1.

9.3.5 Internal Magnetic Field Gradients

A further complication in performing and interpreting NMR experiments

in porous media is the presence of magnetic field gradients that are induced

by the granular nature of the material. The influence of magnetic field

gradients is mainly on T
�

relaxation.

If pores were spheres or ellipsoids, the field inside them might differ from

the applied field B
�
, but there would be no gradient of the magnetic field

within the pore. In real materials, however, the irregularity of the pore space

coupled with a contrast in magnetic susceptibility between grain solid and

pore fluid allows the existence of magnetic field gradients in the pore space.

The internal gradients produced by magnetic susceptibility contrasts can

be roughly estimated by [51]

G ���
�
B

�
/R, (11)

where B
�

is the applied static field, and ��
�

is the difference in volumetric

magnetic susceptibility between grain and pore substances. For water

�
�

� �9.26� 10�� in SI units. For magnetically dilute solids, �
�

depends

linearly on the content of paramagnetic ions. For 5000 ppm by weight Fe
"

in a typical metal oxide, �
�

� �30� 10�� in SI units [28]. Here R is a

characteristic length scale of the pore space, and R is usually rather

indefinite, and so this equation is generally useful only to indicate the scaling

of factors that contribute to the gradients.

The computation of the spatial distribution of gradients, or even their

statistical distribution, is a nontrivial problem for any real material. In an

irregular pore, the gradient will vary from point to point; thus there will be

a distribution of gradients. The gradients surrounding an isolated spherical

grain have been computed [52], as have the statistics of gradients in a dilute

solution of solid spheres in a uniform fluid background [53]. A detailed
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microscopic model has been treated by Brown and Fantazzini [54]. Le

Doussal and Sen [55] proposed a simplified but appealing model in which

the local field varies parabolically within each pore.

Magnetization decays of spins diffusing through a distribution of gradi-

ents can be distinctly nonexponential [56]. Several studies have shown how

pore size, diffusion coefficient, susceptibility contrast, and static magnetic

field strength influence the relaxation rates of fluids in porous media

[57—62].

9.4 Pore Size Distribution

9.4.1 NMR Relaxation Rate and Surface-to-Volume Ratio

One of the most important parameters characterizing a porous medium

is the pore size or, more generally, the pore size distribution. Pore size

distribution can be very difficult to measure by conventional means,

especially if the pore space is irregular or the grain surfaces are rough. NMR

provides a simple, fast, nondestructive, and volumetrically averaged method

of measuring pore sizes that range over several orders of magnitude. The

NMR measurement is made on fluid-saturated samples. This is an impor-

tant feature when measuring a material that is altered by drying. Most other

pore-sizing methods, such as mercury porosimetry, gas adsorption, or

electron microscopy, require a dry sample.

The basis of the measurement is the relaxation of pore fluid spins at the

solid surface. As explained in Section 9.3.1, the NMR relaxation rate is

proportional to the surface-to-volume ratio in the surface-limited relaxation

regime:

�
1

T
�
�
$

� �
� �

S

V �
����

, (12a)

�
1

T
�
�
$

� �
� �

S

V �
����

. (12b)

The connection between a surface—volume distribution and a pore size

distribution is poorly defined for some porous media. Pore spaces have been

modeled as spheres connected by throats, an interconnected network of

tubes, and an interconnected network of sheets. None of these models has

universal applicability. Thus the term ‘‘pore size’’ should be understood to

mean a quantity, inversely proportional to the local surface-to-volume ratio,

which measures the smallest dimension of a locality in the pore space [63].

For diffusion-limited situations, the magnetization decays are shape-

dependent and multiexponential [17], and therefore it is more difficult to
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relate NMR measurements to pore size. Fortunately, the diffusion-limited

case seems to be less common than the surface-limited case. In many

materials, the surface relaxation is sufficiently weak that diffusion-limited

relaxation can be expected only in large pores where bulk relaxation is a

competing, and often dominant, mechanism.

9.4.2 Limitations of the Measurement

There are limitations on the range of pore sizes that can be measured by

this technique. The minimum detectable pore size is determined by the

minimum detection time of the experiment, which is usually the spec-

trometer dead time. The largest pore that can be accurately sized depends

on the competition between surface-mediated relaxation and other relax-

ation mechanisms:

�
1

T
�
�
����

��
1

T
�
�
$

��
1

T
�
�
#

, (13a)

�
1

T
�
�
����

��
1

T
�
�
$

��
1

T
�
�
�

��
1

T
�
�
#

, (13b)

where S signifies surface relaxation, D signifies diffusion relaxation, and B
signifies bulk relaxation. There is no diffusion contribution to T

�
, because

that process is strictly a dephasing mechanism. Only the surface relaxation

mechanism depends directly on pore size.

Pore size can be determined only when the pore space is fully saturated

with the wetting phase fluid. If some liquid is removed, T
�

and T
�

are

typically shifted to shorter times: the volume of fluid in a pore is decreased

while the solid surface area remains the same. If two fluids are present in the

pore space, the wetting phase will be relaxed by the surface while the

nonwetting phase relaxes at its bulk relaxation rate: the fluid—fluid interface

is often an inefficient relaxer [64]. An example is shown in Section 9.9.3.

9.4.3 Distributions of Pore Sizes and Relaxation Times

Porous media with broad distributions of pore sizes have nonexponential

NMR magnetization decays. Timur [65] analyzed his nonexponential NMR

relaxation data in terms of a three-exponential decay. The three-exponential

fit suggests the pore space can be partitioned into volumes with distinctly

different surface-to-volume ratios.

Kenyon et al. [66] used the stretched exponential form [67—69] to

analyze inversion recovery longitudinal relaxation data:

1

2 �1 �
M(t)

M(�)�� exp ���
t

T
���

�

� . (14)
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This approach implicitly assumes a particular form of pore size distribution,

the width of which is measured by the stretching exponent �:

m
�
(T

�	
) � exp ���

T
�	
� �

�/(1��)

� , (15a)

where

��
T

�(

(
(1 � ()�(����( . (15b)

Here m
�
(T

�	
) is proportional to the number of spins relaxing with time

constant T
�	

. The stretched exponential form has an infinite slope at t � 0;

Peyron et al. [70] proposed a modification that circumvents this problem.

The most general way of analyzing relaxation data is to calculate a

spectrum of relaxation times [71]:

M(t) � �
	

m
�
(T

�	
) �1 � 2 exp ��

t

T
�	
�� (16a)

and

M(t) � �
	

m
�
(T

�	
) exp ��

t

T
�	
� (16b)

for longitudinal and transverse relaxation, respectively. Each m
�
(T

�	
) and

m
�
(T

�	
) is proportional to the number of spins with relaxation times T

�	
and

T
�	

, respectively.

Assuming the sample consists of a collection of disconnected pores and

relaxation is surface limited, this distribution of relaxation times corre-

sponds to a distribution of surface-to-volume ratios with the time constants

given by

1

T
�	

� �
� �

S

V �
	

(17a)

and

1

T
�	

� �
� �

S

V �
	

. (17b)

In this simple case (which is not uncommon), there is a direct mapping from

the spectrum of pore sizes or, more precisely, the spectrum of surface-to-

volume ratios to a spectrum of relaxation rates.

9.4.4 Pore Sizes from T1 versus T2

Either T
�

or T
�

can be used to determine pore size. Where there is a broad

distribution of pore sizes, T
�

is a much more efficient way of generating the
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Fig. 2. NMR transverse relaxation for a material characterized by a broad distribu-

tion of relaxation times: (a) multiexponential magnetization decay (solid line) and

single exponential decay (dashed line) and (b) corresponding distributions of

relaxation times, m
	
.

relaxation time distribution. This is because a single CPMG acquisition (see
Section 9.2) is sensitive to relaxation times that range from the echo spacing

T
&

to the total acquisition time NT
&
, where N is the number of echoes in

the sequence. There is in principle no limit to the size of N, and in the

author’s laboratory N is typically selected to be more than 4000.

Using T
�

has the advantage that it is unaffected by relaxation by diffusion

in magnetic field gradients (see Section 9.3.5). This is particularly important

when the internal gradients in porous media are large; that is, at a high

magnetic field or when there is a large magnetic susceptibility contrast

between solid and fluid phases. It has the disadvantage that it takes much

longer to vary the recovery time over the many orders of magnitude

necessary to measure a wide range of relaxation times [11].

An example of a T
�

magnetization decay for water in a porous rock is

shown in Fig. 2a. The measurements were made at an applied static
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magnetic field of 0.05 T (Larmor frequency of 2 MHz for protons). For the

CPMG measurement of T
�
, the echo spacing was 0.4 ms and 4095 echoes

were collected for an echo acquisition time of 1.64 s. Note the unusual way

of plotting the recovery: The signal M(t) is plotted linearly while echo time

is plotted logarithmically, the reverse of the usual practice. This is sensible

when relaxation times span orders of magnitude. The distribution of

transverse relaxation times derived from the data in Fig. 2a is shown in

Fig. 2b.

When the shapes of the T
�

and T
�

distributions are similar, a T
�
/T

�
ratio

can be determined from them. The cross correlation of two functions,

m
�
(T

�	
) and m

�
(T

�	
), with logarithmically spaced abscissas is

C(�) ��
	

m
�
(T

�	
) · m

�
(�T

�	
). (18)

When the two distributions have approximately the same shape but are

displaced from one another on the logarithmic abscissa, the cross-correla-

tion function is a maximum for a particular multiplier �, the T
�
/T

�
ratio. For

sedimentary rocks, a very wide class of porous media in itself, the T
�
/T

�
ratio is generally between 1 and 3 [72]. For a series of synthetic oxides

containing known quantities of iron or manganese, the ratio is in the range

1 to 4 [28].

The T
�
/T

�
ratios discussed here are derived from measurements made at

a static field strength of 0.05 T and an CPMG echo spacing of 0.16 ms. At

low fields and short echo spacings, both longitudinal and transverse

relaxation are dominated by the surface relaxation mechanism. At higher

fields or larger echo spacings, T
�

is increasingly controlled by relaxation by

molecular diffusion in the internal magnetic field gradients of rocks, and so

one expects the T
�

distributions to be significantly altered. For rocks,

significant effects of internal gradients have been noted at 0.25 T [73]. Long

echo spacings in even lower magnetic fields also have significant effects

[74, 75].

9.5 Determination of Surface Relaxivity

A number of mechanisms accelerate the magnetic relaxation of fluid spins

at solid surfaces, as detailed in Section 9.3.1. Regardless of the mechanism,

the surface relaxivity coefficients �
�

and �
�

are specific for each combination

of solid and fluid and are almost always difficult or impossible to calculate

ab initio. Therefore, relaxivities must be experimentally determined by

comparing NMR relaxation measurements to surface-to-volume measure-

ments made by other techniques on standard samples.
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Table I. Longitudinal Relaxivities of

Materials with Well-Defined Surface Areas

Material �
�
(�m/s) Reference

Fe
�
CaSiO



4—12 28

Mn
�
CaSiO



0.4—3 28

Quartz sand 3 76

Silica gel 1—13 77

Porcelain 4 78

Glass beads 5 79

Alumina 3 79

Glass beads 11 80

Quartz sand 3 81

9.5.1 Synthetic Materials

Numerous studies have been made of the relaxivity of solid surfaces in

contact with fluids. Most frequently, the fluid has been water. The measure-

ment of relaxivity requires a measurement of NMR relaxation time (T
�

or

T
�
) and a measurement of pore space surface-to-volume ratio. Artificial

packings of uniformly sized grains produce narrow pore size distributions.

Such porous media are generally characterized by single-exponential mag-

netization decays and a single surface-to-volume ratio that characterizes the

whole sample. Various methods of measuring S/V produce consistent

results. In imperfect packings, if diffusion allows fluid molecules to visit

pores of different sizes during the relaxation time, a distribution of pore sizes

can be averaged, resulting in a single-exponential decay (see Section 9.3.2).
This situation is most likely to occur in well-mixed synthetic materials.

Surface relaxivities have been determined for a number of synthetic

materials such as porcelain, powdered minerals, or packed glass beads,

which have uniform pore sizes and single-exponential NMR decays. Table I

reports relaxivity values in the literature [76—81]. Usually, the longitudinal

relaxivity �
�

is reported. This is because prior to the introduction of

low-field techniques, T
�

had limited value for estimating pore sizes, as

discussed in Section 9.4.4. Usually, little or no information has been given

about the exact compositions of the solids.

9.5.2 Natural Materials

It is much more difficult to determine �
�

and �
�

for natural materials.

Pore sizes can vary by orders of magnitude within a single sample, and while

nuclear magnetic resonance has the capability of measuring a broad
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distribution of relaxation times, there are few other techniques with a

comparable capability. It is therefore difficult to find a proper independent

determination of a spectrum of surface-to-volume ratios. While many

methods have been used to obtain the S/V distribution, or an interpretable

measure of it, none is completely adequate.

Optical and electron microscopy [82, 83] are limited to the examination of

surfaces or thin sections. Therefore, they lack the three-dimensional

information necessary for the characterization of irregular pore geomet-

ries. Furthermore, these techniques have a very limited dynamic range in

practice: It is not possible to quantitatively characterize porous materials

with a broad range of pore sizes that extends into the submicrometer

range.

Mercury porosimetry [84] is capable of measuring the volume associated

with pore openings over many orders of magnitude of the latter. However,

to derive information on the surface-to-volume ratio of the pore space, a

microgeometric model must be assumed. Typically, the model is one of a

well-connected network of cylindrical tubes, although this is not always

stated explicitly. A model-dependent cumulative surface area can be

defined at any value of injection pressure (e.g., 500 psi [3.4 MPa] or

30,000 psi [210 MPa]). Alternatively, a differential pore volume versus

pore opening spectrum can be computed and compared directly to the

NMR T
�

distribution.

Capillary pressure [85] measurements, based on draining water from a

porous medium by means of a porous plate or centrifuge, are closely

related to mercury porosimetry. While lacking the detail of mercury

injection porosimetry, water drainage measurements can provide a similar

connection between an NMR relaxation time distribution and volumes

associated with pore opening radii. Again, to obtain the relaxivity, a pore

space geometry must be assumed.

Adsorption isotherm [84] measurements, exemplified by the Brunauer, Em-

mett, and Teller (BET) [86] method, measure the total internal surface

area of a porous medium. To determine S/V, pore volume is measured by

conventional buoyancy porosity methods (see Section 9.7). The result is

a single surface-to-volume ratio for the entire pore space.

NMR pulsed field-gradient (PFG) [34, 45, 87—89] methods also provide a

single surface-to-volume ratio, rather than a volumetric distribution. The

result can differ from that obtained by the adsorption isotherm—buoyancy

porosity method in the presence of surfaces that are rough on a sub-

micrometer length scale. Adsorption isotherm methods measure surface

areas on a molecular scale, while NMR PFG has a measurement scale

length of the order of a micrometer.
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Fig. 3. The apparent relaxivity of natural materials depends on the method used to

determine the surface-to-volume ratio. Each bar represents the range of values of

longitudinal relaxivities found for sandstones. The determinations were made by

various laboratories on various samples. (a) Pore Image Analysis: Distributions of

three-dimensional surface-to-volume ratios are estimated from microscopic measure-

ments of two-dimensional areas and perimeters of individual pores viewed in thin

section. (b) PFG NMR: Mean S/V is determined from NMR pulsed field-gradient

measurements of the time-dependent diffusion coefficient. (c) Water Cap Pressure:

Volumes associated with pore radii are determined from the retention of water

during centrifugation. Hg Diff porosimetry: Volumes associated with pore radii are

determined from mercury injection. (d) 30,000-psi Hg Surface Area: Total internal

surface area is determined from the work expended in injecting mercury into the

porous medium; total pore volume is equal to volume of mercury injected. (e) BET

Gas Adsorption: Total internal surface area is determined from nitrogen adsorption

isotherms; total pore volume is found from the difference between dry and water-

saturated weights.

9.5.3 Case Study: Sandstones

Rock grain surfaces are unusually difficult to characterize because they

can have a rough or fractal character [32, 33]. That is, the apparent surface

area depends on the characteristic scale length of the measurement: Inde-

pendent methods of measuring the internal surface area give widely differing

results [90]. Accordingly, measurements of � for sedimentary rocks have

varied by orders of magnitude, depending on the method used (see Fig. 3).
The fractal nature of the rock grain surfaces is due to the presence of clay

[91]. Generically, clays are minerals that have a fibrous or platy structure.

For example, montmorillonite clay, commonly found in geologic forma-
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tions, is composed of platelets 1 nm thick. When exfoliated, the surface area

is as large as 750 m�/g; when dry, the surface area measured by nitrogen

absorption BET [84, 86] is one or two orders of magnitude smaller [92].

This can be compared to a quartz grain (the main constituent of sandstones)
which, at the fineness of silt (50-�m grain diameter) has a surface area of the

order of 0.1 m�/g. Thus, a problem arises when measuring relaxivities of

rocks having even modest clay content. The surface area as measured by the

nitrogen adsorption BET method is usually several square meters per gram,

which is dominated by the surface area of the clay and may have no relation

to pore size.

It is instructive to estimate relaxivity from the initial slope of the NMR

decay, the sample volume V
�

and the total internal surface area from BET

S
�
:

� � �
V

�
S

�
�

1

M

dM

dt �
%	�

. (19)

For CPMG measurements of transverse relaxation, M is the envelope of

echo amplitudes; for inversion recovery measurements of longitudinal relax-

ation, M is the function given on the left side of Eq. (14). Using this method,

�
�

of a number of sandstones is found to be in the range 0.1 to 0.8 �m/s [36].

This range of values is consistent with the Korringa—Seevers—Torrey [16]

expression �
�

� h/T
��

, where h is the thickness of the first fluid monolayer

on the surface, and T
��

is the longitudinal relaxation time of a fluid molecule

adsorbed on the surface. For h � 0.35 nm and T
��

in the range of 1 to 5 ms,

appropriate for water on a clay surface [93—95], �
�

of a few tenths of

micrometers per second is expected. Thus, when applied to sandstones, the

BET— initial decay method measures the relaxivity of water intimately

associated with clay.

Water in the interlayer spaces of clay packets appears not to communi-

cate with pore water, even though diffusion measurements suggest the two

populations should be in rapid exchange [96]. Published neutron diffraction

measurements report the surprising observation that clay-trapped water

exchanges with surrounding bulk water on a time scale of thousands of

seconds [96, 97]. Therefore, clay-trapped and pore water constitute distinct

populations on the NMR time scale.

Not all clay forms packets. Water on the surface of dispersed clay appears

to efficiently exchange with pore water (D. Allen, personal communication,

1998). In such cases water in even large pores relaxes relatively rapidly, and

NMR relaxation will be a poor estimator of pore size.

A good way to test the proposition that NMR measures pore size in rock

is to compare the NMR relaxation time distribution to an independent
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Fig. 4. Comparison of NMR T
�

distributions (solid lines) with differential mercury

porosimetry (dashed lines) for four sandstones. Although NMR relaxation measures

volume associated with pore body surface-to-volume ratio, and mercury porosimetry

measures volume associated with a pore throat diameter, the curves are often in

semiquantitative agreement (Schlumberger).

pore-sizing method that is relatively insensitive to the presence of clay.

Probably the best such method is mercury injection porosimetry. In many

sandstones there is a quantitative connection between T
�

relaxation time

distributions and differential mercury intrusion spectra [64, 79, 98—100] (see
Fig. 4). For sandstones, the mercury injection pressure P and the relaxation

time T
�

are usually related by P · T
�

� 10 psi-s � 70 kPa-s.

The NMR relaxivity parameter �
�

can be determined from a comparison

of NMR T
�

distributions and mercury injection porosimetry curves [101].

Consider an array of well-connected cylindrical tubes, which is the model

normally used to analyze mercury porosimetry data. (An analogous argu-

ment can be made for an array of slitlike pores.) The injection pressure P is

related to the tube radius r :

P �
2
 cos �

r
, (20)

where 
 is the surface tension, and � is the contact angle. The NMR
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transverse relaxation rate for cylindrical capillaries is

1

T
�

� �
�

S

V
� �

�

2

r
. (21)

Then,

�
�

�

 cos �

P · T
�

. (22)

For mercury displacing vacuum in sandstone, 
 � 0.4855 Pa-m, � � 140°,

P · T
�

� 10 psi-s, and 1 psi � 6895 Pa; we find �
�

� 5 �m/s.

The relaxivity can also be determined from centrifuge desaturation

measurements using Eq. (22). Straley et al. [102] found an air—brine

capillary pressure of 100 psi is associated with a T
�

of 0.033 s for many

sandstones. The parameters for air displacing water in sandstone are


 � 0.07172 Pa-m, � � 0°, and P · T
�

� (100 psi)(0.033 s), and so we find

�
�

� 3 �m/s. It is encouraging that similar values of �
�

are determined from

two very different capillary pressure measurements.

The value of �
�

depends on the relaxing strength of the surface and

therefore on the mineralogy of the porous medium [27, 28]. Iron-rich rocks

have higher values of �
�
. Moreover, the match between mercury porosi-

metry and NMR relaxation curves is not universal. In a pore-and-throat

model of the pore space, mercury porosimetry is sensitive to the throat

opening, whereas NMR relaxation measures the size of the pore body. These

techniques give the same information only when there is no distinction

between pores and throats or when there is a fixed multiplicative relation-

ship between their sizes. It appears that such a relation exists for many

sandstones. However, carbonate rocks subject to dissolution—reprecipita-

tion processes under geological conditions are less likely to have a predict-

able relationship between pore and throat sizes.

9.6 Multiexponential Decay Signal Processing

A multiexponential longitudinal magnetization decay can in general be

written

M(t) ��
	

m
�
(T

�	
) �1 � 2 exp ��

t

T
�	
�� , (23)

where m
�
(T

�	
) is proportional to volume of fluid relaxing at a rate 1/T

�	
and

is constrained to be nonnegative. This equation assumes perfect spin-tipping

pulses, but it can be easily generalized to account for experimental imper-
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fections. For transverse relaxation the equation is

M(t) � �
	

m
�
(T

�	
) exp ��

t

T
�	
� . (24)

All comments and equations that follow apply equally to T
�

and T
�
, with

the respective coefficients generically called m
	
.

Modern practice is to preselect values of T
�	

and find the corresponding

coefficients m
	
. Typically, 10 to 100 values of T

�	
are used, equally spaced on

either linear or logarithmic scales. How the T
�	

are chosen does more than

stretch or compress the horizontal axis of the relaxation time spectrum; it

also changes the values of the m
	
. On a linear scale the proportion of spins

with relaxation times between T
�	

and T
�	

� dT
�

is [m(linear)
	
]dT

�
. On a

logarithmic scale, the proportion of spins with relaxation times between

log T
�	

and logT
�	

� d log T
�

is [m(log)
	
]d log T

�
. Note that m(linear)

	
and

m(log)
	
are related because appropriate integrals over both quantities must

have the same value, proportional to the total fluid volume. Thus

V �� m(linear)
	
d(T

�	
) �� m(log)

	
d(log T

�	
). (25)

Since

d(log T
�
) �

dT
�

T
�

, (26)

then

m(linear)
	
�

m(log)
	

T
�	

. (27)

For materials whose pore sizes range over several orders of magnitude, the

logarithmic spacing is a more natural way to present the relaxation time

spectrum.

The relaxation time distribution can be obtained by using the least-

squares method. We find the m
	

that minimize the difference 	 between

measurement data M(t


) and the fit to the data. For a CPMG decay,

	 ��


�M(t



) � �

	

m
	
exp ��

t



T
�	
��

�
. (28)

In practice, the inversion of magnetization data M(t) to the spectrum m
	

poses significant mathematical problems. The functions exp(�t/T
�	

) span

the space of monotonically decaying functions, but they are not orthogonal.

Hence, the inversion is not unique when M(t) is noisy or when the

mathematical computation has finite precision; in practice, both are limita-

tions. In the past either the number of terms in Eq. (24) was limited to two
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or three— a sparse spectrum indeed— or many terms were used, which

resulted in spiky, nonphysical spectra.

Regularization is a mathematical technique that circumvents these prob-

lems [103, 104]. A functional is added to the right side of Eq. (28), which

adds a constraint to the distribution. A cost function that discriminates

against spikes in the distribution is

	 � �


�M(t



) ��




m
	
exp ��

t



T
�	
��

�
� � �

	

(m
	
)�. (29)

Similarly, a cost function that discriminates against jumps in the distribution

is

	 � �
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	"�

� m
	
)�. (30)

The variety of such cost functions is limited only by the imagination of

practitioners. There are now many papers on regularized inversion in the

literature; only a small sampling is cited here [71, 79, 105—110].

Regularization has the effect of smoothing the spectrum, which removes

spikes and makes the inversions reproducible in the presence of random

noise. The obvious disadvantages are that the distributions are artificially

broadened and that real, narrow features can be filtered out of the results.

When the regularization parameter � is very small, the multiexponential fit

is given great freedom to reduce the difference between the fit and the data.

This can result in fitting the noise, which results in spiky relaxation time

distributions that are not reproducible. When ( is large, the distributions are

forced to be very smooth, which can lead to rather poor fits to the data.

An insidious hazard of regularization is arbitrary selection of the regular-

ization parameter; that is, the amount of smoothing. If the same amount of

regularization is used for all experimental data sets, high-quality data will

be represented by unnecessarily broadened spectra or low-quality data will

not be inverted reproducibly. If a regularization parameter is arbitrarily

selected for each data set, it is possible the results will reflect the precon-

ceived notions of the analyst.

To avoid the problems of arbitrary smoothing, it is essential to use an

algorithm that selects the regularization parameter in a data-dependent but

objective manner. There are various sensible prescriptions for choosing �.

One is to select the largest � consistent with a preselected fit error; another

is to select an � such that d	/d� does not exceed a certain bound. Clearly

these criteria themselves introduce a certain arbitrariness into the proces-

sing, but they do at least ensure that all data sets are treated in a consistent

manner.
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Fig. 5. Computed relaxation time distributions depend on the magnitude of the

regularization parameter �. A noiseless model relaxation time distribution (heavy

line) is used to generate a model noiseless magnetization decay (not shown). The

decay is then inverted to a relaxation time distribution using various values of �
(light curves, foreground) (courtesy of A. Sezginer).

Unfortunately, there has been some overenthusiastic use of the multiex-

ponential decomposition algorithms, resulting in the publication of relax-

ation time distributions that lack credibility. One example of the pitfalls of

the technique is illustrated by Fig. 5. The noiseless model input relaxation

time distribution is shown as a heavy line; it consists of a sharp peak at long

T
�

and a low amplitude tail that extends to very short T
�
. This is a difficult

combination for the algorithm in use in the author’s laboratory. The

distributions computed for various values of � are shown as lighter curves.

Large values of � unduly broaden the spike, while at small values of �, the

long low-amplitude tail breaks up into discrete peaks. The incautious user

may overinterpret these features.

At a minimum, the stability of processing techniques should be checked

by numerical simulations. A manifestation of Gaussian white noise is added

to a model noiseless decay, and the result is inverted to give a relaxation

time distribution. This operation is then repeated many times at the same

signal-to-noise ratio. A properly tuned algorithm should give stable results

at a variety of noise levels, the computed distributions becoming progres-

sively smoother and more featureless as the signal-to-noise ratio decreases.
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Some tests of this type are documented in the literature [101, 111, 112].

Comparisons of the T
�

distributions from experiments and random walk

simulations are also instructive [113].

9.7 NMR Porosity

The simplest NMR measurement made on porous media is the fraction

of sample volume that consists of fluid-filled pore space, commonly referred

to as porosity.

A typical conventional measurement of porosity is based on the buoyancy

(Archimedes) principle. Porosity is determined by weighing a small sample

three times. First, the sample must be cleaned: Any material left in the pore

space that will not vaporize with water (e.g., tar) will contribute to the grain

space. Then, the sample is thoroughly dried in an oven and weighed. It is

weighed a second time after being fully saturated with water. Finally, the

saturated rock is weighed a third time while suspended in a water bath. The

density of the solid, the volume of water imbibed during saturation, and the

total volume of the sample can be determined. The ratio of the latter two

quantities is the buoyancy porosity. The method is simple and reliable, but

it is time consuming and can be performed only on samples available for

laboratory preparation and measurement.

The NMR porosity measurement depends on the fact that the amplitude

of a proton NMR measurement is directly proportional to the amount of

hydrogen in the material investigated. Protons are present in both water and

oils, in clay minerals, and in some solids such as gypsum (calcium sulfate

hydrate). However, the transverse relaxation time T
�

is sufficiently short in

solids, of the order of 10 �s, that the signal from those protons can be

eliminated from the measurement by ignoring very fast components of the

signal. On the other hand, the relaxation times of protons in pore fluids are

greater than 1 ms for many interesting materials, and so these protons are

visible in the signal. Relaxation times of water trapped in very small pores

or clays have intermediate values; such protons can be visible or invisible,

depending on hardware and signal processing choices.

To obtain absolute values of porosity it is necessary to calibrate the NMR

spectrometer. The usual method is to make a one-point calibration using a

standard sample of known proton density. Differences in proton concentra-

tions of the pore fluid and the calibration sample must be considered: Very

saline water and many oils have a significantly lower proton density than

pure water. Temperature control is also important, because signal amplitude

obeys the Curie law [4] and is therefore proportional to the inverse absolute

temperature, amounting to a variation of 0.3%/°C at room temperature.
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To the extent that B
�

and B
�

vary over the sample volume, it is useful for

the standard to be the same size and shape as the unknown to be measured

and for the standard and the unknown to be placed in the identical location

in the apparatus. Obviously, the provision of homogeneous fields reduces

the amount of care needed to match size, shape, and placement. For

example, it is helpful to use a B
�

coil substantially larger than the sample.

To ensure a quantitative amplitude measurement, it is essential that the

system gain be constant when measuring the standard and the unknown.

Differences in magnetic susceptibility (common in porous media) necessitate

Larmor frequency tuning. Resistive losses and capacitive coupling between

the RF coil and the sample can change the tuning characteristics and thus

the sensitivity of the coil. To minimize these effects, the Q of the coil should

be kept relatively low; in the author’s laboratory, a probe with Q � 30 is

used. A large RF coil is also helpful, since capacitive coupling between coil

and sample is reduced relative to a smaller coil.

The problems of calibration and probe tuning are linked and are best

considered together. One approach is to select a standard for which the

resistivity and capacitive coupling to the probe are nearly the same as that

for the unknown. If the unknown has a porosity in a given range and is

saturated with a saline solution of a certain electrical conductivity, a

standard having a known porosity in the same range, saturated with the

same solution, may be selected.

A second approach is to calibrate the apparatus with bulk water.

However, bulk water typically has a dielectric constant and conductivity

signficantly larger than that of a porous medium with which it is saturated.

The proton spin density of a bulk water sample can be adjusted with D
�
O,

and its relaxation time can be reduced to a convenient value by adding NiCl

or other soluble paramagnetic salt.

Some porous media have a significant magnetic susceptibility contrast

between grain material and pore fluid, which causes an inhomogeneous

broadening of the NMR line. The bandwidth of the transmitted pulse must

be large enough so that the entire line is resonated, or signal will be lost and

the porosity underestimated; a low-Q coil is helpful. This problem becomes

more severe at higher static magnetic fields [102, 114].

Sometimes excursions of antenna Q or amplifier sensitivity are unavoid-

able. An example is the borehole NMR instrument (Section 9.11), which is

required to measure signal amplitude with an absolute accuracy of 1% of

full scale while both the sensor and the electronic circuitry are subjected to

large temperature variations. The product of antenna and receiver gains is

monitored by injecting a known current at the Larmor frequency through

a test loop embedded in the antenna. The overall sensitivity of the receiver

system is proportional to the response to this fixed magnetic moment. The
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test loop is calibrated by comparing its magnetic moment to that of an

NMR signal of a standard sample at a stable, known temperature. When

changes of antenna Q are substantial, the pulse lengths may require

adjustment to maintain their nominal values.

Quantitative amplitude measurements can only be made when the nuclear

magnetism is completely polarized. Commonly, this is ensured by waiting

5T
�

between acquisition sequences. Because relaxation times of fluids in

porous media can be broadly distributed, it is necessary to wait five times

the longest expected relaxation time, not just five times the average relax-

ation time.

There have been many comparisons of NMR porosity with buoyancy

porosity. Often, excellent agreement between the methods is found when

care is taken in both measurements. In one example [115], not atypical, the

root-mean-square scatter of the measurements was less than 1% of full scale.

9.8 Materials Processing Applications

Nuclear magnetic resonance is very useful in following the fate of fluids

during the processing of porous materials. During drying, liquid is replaced

by vapor with a much lower spin density. Freezing and hydration are

accompanied by large changes in both T
�

and T
�
. Filtration is accompanied

by significant changes in surface-to-volume ratio and therefore relaxation

times. Physical alteration that changes the internal microgeometry, or

chemical alteration that changes the solid-fluid interaction, can be

monitored by NMR. These processes are important in industrial, chemical,

and civil engineering contexts. Numerous applications are described in a

review article [116].

9.8.1 Saturation and Desaturation

As a bulk property, the moisture content of a porous or granular material

is easily monitored by weight, electrical conductivity, dielectric constant, or

sound propagation. NMR has the advantage that it is noncontacting and

noninvasive. It can be performed on a batch basis or continuously on a

process stream by passing a nonmetallic pipe containing the material

through the magnet and RF coil [117]. The amplitude of the NMR signal

is directly proportional to liquid content; the technique is identical to that

used to determine fluid-filled porosity, as described in Section 9.7. The

amplitude method is readily combined with magnetic resonance imaging to

measure water saturation and drying profiles of porous media [118—121].

For example, NMR studies have shown that a porous medium can be
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saturated by vapor transport only to a vapor percolation limit. At that limit,

liquid water blocks the pore throats, with no further ingress of vapor

possible [122].

The sensitivity of NMR to the structure of the pore space means much

more powerful ways of monitoring fluid saturations are possible. As water

leaves, the surface-to-volume ratio of the remaining pore fluid increases and

the relaxation time decreases [25]. Deviations from the expected behavior

indicate material heterogeneities, which can be particularly significant in the

preparation of catalysts [119, 123]. A transition from a single-exponential

decay to a multiexponential decay has been interpreted as the loss of

continuity of the water phase as drying progressed [40]. Soga et al. [124]

pointed out that dissolution of iron from a glass surface can depend on the

degree of unsaturation, thereby affecting the water proton relaxation time.

In a material with a distribution of pore openings, one expects water to

preferentially leave the largest pores, where the capillary forces are the

weakest. If one measures the distribution of relaxation times (see Section

9.4) as a function of drying, the longest relaxation time components would

be expected to disappear first, followed subsequently by ever faster compo-

nents [122, 125]. This was demonstrated in the context of centrifuge

desaturation of rock samples, in which pore sizes range over several orders

of magnitude [64]. Rock specimens were fully saturated with water and the

spectrum of longitudinal relaxation times determined. Then, each rock was

centrifuged at a number of rotor speeds. At successively higher speeds, water

was progressively expelled from the samples as the centrifugal pressure

overcame the capillary pressure of successively smaller pore spaces. At each

step the NMR relaxation spectrum was remeasured. At low centrifuge speed,

the components with the longest T
�

disappeared from the spectrum, while

the short T
�

components were unaffected. As the centrifuge speed was

increased, progressively faster components disappeared.

9.8.2 Freezing

The freezing transition is marked by T
�

becoming very short, of the order

of 10�� s, while T
�

becomes very long, of the order of 10� s, making it easy

to monitor. In microporous materials, with pore sizes of the order of

nanometers, the freezing temperature depends on pore size and some water

appears not to freeze at all [126, 127]. Similar behavior has been observed

in coals [128]. This phenomenon can be used to determine the pore size

distribution [129].

9.8.3 Hydration

The process of hydration involves water being taken out of the liquid state

and being incorporated into a solid. From the standpoint of NMR, the
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process is akin to freezing. The most important, and probably the most

complicated, material of practical significance that undergoes hydration is

cement. The proton NMR signal arises from crystalline phases, a gel phase,

and from water in micropores, the proportions of which change over a

period of months. These phases have quite distinct relaxation times, and it

is possible to follow the curing of cement in a nondestructive time-lapse

fashion [130—132].

9.8.4 Filtration

Filtration is the process by which solids in suspension are separated from

a liquid when the latter is passed through a filter. The solids build up on

the upstream surface of the filter to form a filter cake. An internal filter cake

is created when the solid particles are smaller than the pores of the filter; the

smaller the particles, the farther they will invade. Because external and

internal filter cakes are generally the main impedance to subsequent fluid

flow through the filter, characterizing them is of great importance to the

chemical and water purification industries. They are also of interest to the

petroleum industry, since the formation of internal filter cakes causes

permeability reduction of oil-bearing rock formations.

A filter cake, aside from being formed adjacent to a porous medium, is

itself a porous medium, with the same relaxation processes. As the filter cake

is compressed by the continued pressure of liquid, it densifies, its surface-to-

volume ratio increases, and its NMR relaxation time decreases [133, 134].

Internal filter cakes can also be monitored by the changes they induce in the

NMR relaxation times of the porous medium. By finding a distribution of

relaxation times as a function of position in a rock core, Fordham et al.
[110] showed that an internal filter cake developed in a porous sandstone

invaded by clay fines.

9.8.5 Physical and Chemical Alterations

The dependence of NMR relaxation time on pore space surface-to-volume

ratio makes the technique a good one to quickly and nondestructively assess

a variety of materials processing operations. For example, the pore structure

of ceramics depends sensitively on firing temperature, an effect that can be

probed by measuring relaxation time distributions of subsequently imbibed

liquids [135].

Chemical alterations can also be detected. NMR relaxation mechanisms

are very short range and fluid relaxation has little if any sensitivity to the

solid past the first or second layer of atoms at the surface. It is therefore

possible to change the surface relaxivity by coating the surface with foreign

matter. Catalyst deactivation by coking has been imaged by this means
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[119]. Similarly, the relaxivity can be changed by altering the wettability of

the surface [136—138] or possibly by changing the oxidation state of

paramagnetic ions on grain surfaces.

9.9 Petrophysical Applications

Petrophysics is the study of physical properties of rocks. Because petro-

leum is found in porous sedimentary rock, there have been considerable

efforts to understand the relationships between porous rocks and the fluids

saturating their pore spaces. Nuclear magnetic resonance has some unique

capabilities in the study of these relationships. Several review articles

[73, 139—141] and extensive bibliographies [142, 143] are available.

9.9.1 Partitioning of Porosity

One of the principal strengths of the NMR measurement is its ability to

discriminate among waters of hydration bound in minerals, water trapped

in clay layers, and pore fluids.

Protons in the solid matrix are characterized by their very long longitudi-

nal relaxation times, of the order of 10� s, and very short transverse

relaxation times, typically in the range 10�� s. The signal from this popula-

tion can be suppressed by a short repetition time of the measurement cycle,

the small remainder being lost in the dead time of many NMR instruments.

Matrix protons are of no interest to petroleum engineers, and therefore there

is little motivation to use a machine capable of solids work for petrophysical

applications.

A second group of protons is associated with water trapped within clay

packets. Clays are fibrous or lamellar minerals with very large surface areas

[92, 144]. The molecular structures of clays typically carry a negative

charge, which must be balanced by associated cations, which are often

exchangeable. Clays are hydrophilic, and owing to their high surface area

can physisorb large amounts of water. This clay-trapped water has NMR

relaxation times of about 10�
 s [93—95, 102]. Clays are ubiquitous in

sandstones and, because of their affinity to water and mobile ions, have a

profound effect on the electrical conductivity and hydraulic permeability of

rocks. Surprisingly, clay-trapped water does not mix with other fractions of

pore water on the NMR time scale, as explained in Section 9.5.3. On the

other hand, water on the surface of dispersed clay is exchangeable with pore

water.

A third group of protons is associated with pore fluids. Protons in fluids

diffuse freely in the pore space, transported by the Brownian motion of the
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Fig. 6. Water occupies NMR-distinct sites in a sandstone pore. Rapidly relaxing

water at the pore-grain interface is in fast exchange with the rest of the pore water,

upon which bulk relaxation processes are acting; the resulting population-weighted

average relaxation time is generally in the range of 0.01 to 1 s. Water trapped in clay

packets relaxes rather rapidly, but does not exchange with pore water on the time

scale of the NMR measurement. Neighboring pores are relatively isolated from each

other.

molecules in which they reside. When molecules encounter solid surfaces,

they are momentarily attached, in which condition their nuclei can be

relaxed by magnetic interactions with spins in the solid, as discussed in

Section 9.3.1. Their relaxation times are related to pore size.

Relaxation in sandstones is summarized in Fig. 6. Each pore constitutes

a system of two rapidly exchanging populations: bulk water and water

adsorbed on magnetic sites at the surface. Thus, each pore is characterized

by a single relaxation time, which is a weighted average of the relaxation

times of the two populations. Pores are coupled weakly, if at all, to other

pores on the time scale of the NMR measurements. Water trapped in clay

packets constitutes a separate reservoir that is uncoupled from the pore

water, and therefore it has a distinct relaxation time.

Petrophysicists subdivide pore water into movable and irreducible frac-

tions. The irreducible water saturation is the fraction of water that cannot

be flushed from the rock at a given pressure gradient. An example of how

NMR discriminates between producible and nonproducible water is shown

in Fig. 7. Four rock samples are shown. In each case, the solid line shows

the distribution of relaxation times for the water-saturated rock. The dashed
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Fig. 7. NMR relaxation time distributions for four rocks. Solid curves are for fully

water saturated rocks. Dashed curves are for the same rocks after being centrifuged

at a capillary pressure of approximately 100 psi (700 kPa). Centrifuging expels water

from the largest pores, resulting in a decrease of magnetization relaxing with long

time constants (after Straley et al., reprinted with permission from [64]).

line shows the distributions after the samples were centrifuged at a capillary

pressure of 100 psi. In this case, the nonwetting phase is air. Water is

expelled from the largest pores, but it is held in the small pores by capillary

pressure. If one measures the full spectrum and applies a 33-ms cutoff, one

can predict the fraction of the porosity that contains movable water. This is

of great interest to the petroleum engineer, who normally will avoid an

oil-bearing zone if it will also produce large quantities of water.

9.9.2 Hydraulic Permeability

Permeability is defined by Darcy’s law [145, 146],

Q �
k

�

P, (31)

where Q is the volume rate of flow per unit cross-sectional area, k is the
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permeability, � is the viscosity of the fluid, and 
P is the pressure gradient

that drives the flow. A practical unit of permeability is the darcy (D), which

is approximately 10��� m�. Sedimentary rocks have permeabilities up to

10 D. It is usually not economic to produce oil from reservoirs with perme-

abilities smaller than about 0.01 D.

Since permeability has dimensions of length squared, it is obvious that k
cannot be reliably predicted from a knowledge of porosity, which is

dimensionless. Semiempirical formulas for permeability always incorporate

a length scale parameter. The best known of these is the Kozeny equation,

for which the permeability is inversely proportional to the square of the

surface-to-volume ratio [145, 146]. Since the NMR relaxation rate is pro-

portional to the surface-to-volume ratio, permeability is expected to be

proportional to relaxation time squared.

This hypothesis has been substantiated by a large body of measurements

[66, 76, 147]. A widely used equation has the form (66, 102)

k ���T �
�
, (32)

where � is the porosity, and T
�

is any convenient one parameter measure of

the relaxation time distribution.

Correlations such as Eq. (32) appear to depend on constancy of the

surface relaxivity across a wide variety of sandstones, a surprising con-

clusion in view of the varied concentration of paramagnetic ions in rocks.

Experiments on synthetic porous materials have shown that while the

surface relaxivity is linearly proportional to the concentration of paramag-

netic ions, as expected, there is a substantial relaxivity due to the oxide

surface itself, independent of paramagnetic concentration [28]. This may

explain the success of the correlations.

Attempts to establish similar correlations for carbonate rocks have been

less successful. The microgeometry of carbonates is much more diverse than

that of sandstones, as a result of dissolution and reprecipitation of calcium

carbonate in groundwater. Therefore the Kozeny equation is not expected

to be broadly applicable to carbonates. However, the versatility of the NMR

measurement has led to clever application-specific correlations of local

utility [148].

9.9.3 Oil—Water—Gas Discrimination

Many rock surfaces are hydrophilic: When water and nonpolar hydrocar-

bon coexist in the pore space, the water phase is relaxed at the grain surfaces

which are not accessible to the nonwetting phase.

The hydrocarbons of most interest to the petroleum industry have low

viscosities and therefore relatively long relaxation times: It is not unusual
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Fig. 8. Immiscible fluids in rock. (a) Relaxation of bulk kerosene, (b) relaxation of

kerosene after being imbibed into oven-dried rock, and (c)—(f) relaxation time

distributions for water-wet rock with various amounts of water and kerosene.

Relaxation of wetting fluids (kerosene in [b], water in [c]—(f)] is accelerated by grain

surfaces. When not in contact with grain surfaces, kerosene relaxes at its bulk rate

(compare [c]—[e] to [a]) (after Straley et al., reprinted with permission from [64]).

for a light hydrocarbon to have bulk relaxation times of several tenths of a

second or more [149]. Thus there can be a reasonable relaxation time

contrast between water in a rock with small pores and a low-viscosity oil

[64, 150].

Figure 8 shows how the T
�

distribution changes as the oil—water ratio in

a porous sandstone is varied [64]. As the proportion of kerosene in the pore

space increases (parts c— f, reading up), the kerosene peak grows in ampli-

tude but remains at the relaxation time of bulk kerosene (part a). Simulta-

neously, the water peak shrinks and moves to shorter values of T
�
, because

the solid surface area exposed to water remains the same but the volume of

water in each pore decreases.

This situation is complicated by two effects. First, crude oils tend to have

reasonably broad distributions of relaxation times in bulk [150]. This is

presumably because these oils are not pure substances but are complex

mixtures of aliphatic and aromatic species; however, the physical chemistry

has not been thoroughly explored.
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The second complicating effect is that low-viscosity fluids can have large

diffusion coefficients, and so molecular diffusion in magnetic field gradients

can contribute to transverse relaxation (see Sections 9.2 and 9.3.5). Because

the internal magnetic field gradients in rocks are unknown, vary spatially,

and are difficult to determine, this effect can be difficult to predict. When

instrument gradients are large compared to internal gradients, the situation

is considerably simplified.

Gas also exists in the pore space of rocks in the deep subsurface. Owing

to its high pressure, subsurface methane can have a proton density as much

as half that of liquid water. It is therefore a likely target for NMR

investigations. The longitudinal relaxation of gas is predominantly control-

led by bulk processes [151], although the high solubility of gas in water or

oil at high pressure also gives it access to the relaxing power of the grain

surfaces [152]. The transverse relaxation time is dominated by diffusion in

the magnetic field gradients of porous media. The very large diffusion

coefficient of gas at high pressure [153] implies the transverse relaxation

rate is sensitive to the pulse spacing in the CPMG pulse sequence. This

technique is used to distinguish gas from light oils [154]. Conversely, the

maximum internal gradient in a porous medium can be determined by

similar means [155].

9.10 Instrumental Requirements

There is abundant literature on the specification and construction of

NMR apparatus [6, 156—163]. Spectrometer requirements for studying

porous media are not particularly onerous, although there are some special

considerations. The nuclei investigated are in the liquid (or sometimes gas)
phase, and so the transverse relaxation is normally observable without

undue demands on the speed of receiver recovery after transmitter pulses.

Except where gases are used as long-lived spin probes, longitudinal relax-

ation times are usually shorter than their bulk values, which is convenient

for signal accumulation. Although the nuclei of interest are diluted by solid

material, the spin density is more than 10% of the bulk fluid value for many

materials of interest.

The presence of internal magnetic field gradients leads to special require-

ments. To measure transverse relaxation rates dominated by surface relax-

ation—and therefore carry interesting information on the microgeometry

of the pore space— it is necessary to minimize the relaxation due to

diffusion in a magnetic field gradient. Therefore, there has been a trend

toward measurements at magnetic fields as low as 0.01 to 0.05 T. In this

respect, NMR applied to porous media has moved in a direction opposite
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to other material science disciplines, which are probing matter in fields of

7 T and above.

Fields in the 10- to 100-mT range can be produced by arrays of

permanent magnets. These magnets are relatively inexpensive and require

no power or cooling systems. They should be thermostated, but this

requirement is not onerous because modern materials such as samarium

cobalt alloys have temperature coefficients of the order of 0.03%/°C. The

properties of permanent magnet materials have been reviewed [164].

Good static field homogeneity is in many cases unnecessary. The in-

homogeneous linewidth of a porous or granular material is of the order of

�B/B
�

� ���
�
�, (33)

where ��
�

is the magnetic susceptibility contrast between pore fluid and

solid matrix. The susceptibility used is the SI volumetric susceptibility,

which is dimensionless but 4� times larger than the cgs volumetric suscep-

tibility, which is also dimensionless. Note that modest levels of paramagnetic

impurities can significantly change the magnetic susceptibility of a solid or

liquid.

Tipping pulses are governed by

� � 
B
�
t
�
, (34)

where � is the tip angle in radians, 
 is the nuclear gyromagnetic constant,

B
�

is half the linearly polarized RF field strength, and t
�

is the length of the

tipping pulse. Normally, the experimenter is free to choose B
�

and t
�

for

convenience, as long as the product satisfies Eq. (34). However, in the

presence of large inhomogeneous broadening, the RF amplitude must be

large enough to satisfy B
�
��B

�
, which is the requirement if all the spins

are to be resonated. This becomes increasingly difficult at high fields [114].

The two most important problems associated with low fields are low

signal levels and long receiver dead times. Conventional analysis shows that

the signal-to-noise ratio goes as approximately the square of the field

[6, 159]. While this rule of thumb does not take into account all the

frequency variation in the efficiency of RF magnetic field reception, it

suggests the magnitude of the problem. Good receiver design is very

important [165]. The use of large samples and long averaging times are

other obvious ways to mitigate the problem of low signal levels.

At low fields, the proton resonance can be in or just above the commercial

AM radio band. Good RF shielding and grounding technique is sometimes

needed to avoid interference from cultural sources, and between various

parts of the NMR spectrometer [166, 167]. The coil should be impedance

matched to the transmission line [168, 169].
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For materials containing fine pores or in which strong relaxation pro-

cesses are operative, it is best to extend relaxation measurements to times as

short as possible. This means the dead time of the coil and receiver

combination must be minimized. This problem becomes more difficult as the

frequency is reduced. Amplifiers sensitive to low-frequency signals recover

more slowly than high-frequency components. When a large current is used

to generate the transmitted pulse, it must be removed from the coil before

the received signal can be detected; Q-switches [163, 170] or active damping

[171] have proved useful.

Diode detection has the undesirable effect of rectifying noise and thereby

generating an artificial voltage bias. Therefore, a standard feature of modern

NMR spectrometers is the provision for phase-sensitive detection [172]. In

the laboratory, a phase shifter is used to rotate the signal into one channel

of a dual phase-sensitive detector (PSD), while the other channel contains

noise. When manual tuning is not practical, the phase can be estimated in

real time and an appropriate mathematical rotation of the in-phase and

quadrature signals performed [108]. It is important to use only the in-phase

component. Squaring and summing the channels rectifies the noise and

produces a baseline signal that considerably complicates the extraction of

accurate multiexponential relaxation time fits.

9.11 Inside-Out NMR

NMR properties of porous media can be studied not only in the

laboratory, but in the field as well. Earth’s field ground-penetrating NMR

apparatus has detected aquifers [173, 174]. A large loop is laid on the

surface and after application of a 2-kHz pulse, which resonates protons in

the 0.05-mT field of the earth, the free induction decay is monitored. The

depth of investigation is at best comparable to the radius of the loop. Crude

depth profiling is possible. The technique works best in arid regions, since

the conductivity of the earth limits the penetration of the oscillating field.

Earth’s field NMR has been the subject of several other studies as well

[175—177].

A pulsed NMR device that reads a few centimeters below the surface uses

a horseshoe permanent magnet and an RF coil [178, 179]. The device

produces conventional spin echoes at 3 MHz, using 200-kW pulses. It was

used on a prototype basis to measure the moisture content of soils on farms.

It is also possible to make NMR measurements of subsurface formations

in situ, from within boreholes drilled deep into the earth. Instead of putting

a sample inside a magnet and a radio frequency coil, the apparatus is

mounted inside a cylindrical sonde, from which fields are projected to an
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exterior volume. The earliest such device dates from the 1950s [180].

Formation spins around the borehole were polarized by direct current in a

coil having several thousand turns. After the current was turned off, the

spins precessed around the earth’s field [4]. This device was commercialized

and used in oil fields in various parts of the world until the late 1980s.

More recently, a number of ‘‘inside-out’’ pulse NMR instruments have

been developed for borehole application [181—185]; these have been re-

viewed elsewhere [141]. The literature on stray field (STRAFI) measure-

ments can also be consulted [186—188]. At present, the most significant

commercial applications of inside-out NMR are to petroleum exploration.

Section 9.9 described ways in which NMR can provide economically

significant information about the pore space of rocks and the fluids residing

there. The methods described can be used to characterize samples of rock

brought to the surface and measured in the laboratory. However, the real

value of NMR is that the measurements can be made in situ deep within the

earth, using inside-out techniques. Geologists and petroleum engineers need

continuous measurements of physical properties of formations over hun-

dreds or thousands of meters of depth interval. Since these measurements

are performed at drilling rigs, which can cost as much as $100,000 per day

to operate, speed and efficiency are of the utmost importance. Rock samples

can be brought to the surface, but this process is time consuming and does

not provide the information in a depth-continuous or timely manner. The

use of inside-out NMR techniques (along with inside-out measurements of

electrical, acoustic, nuclear, and other properties [189, 190]) is the best way

to acquire detailed information about hydrocarbon reservoirs [141, 191].

The process of making these measurements is called well logging.

NMR well logging instruments are presently deployed worldwide, helping

to characterize oil and gas reservoirs. They output a well log, which records

processed data as a function of depth and is normally available in real time.

A portion of a typical well log is shown in Fig. 9. The depth scale (in feet)
is at the extreme left; the most significant digit has been replaced by an X.

The first panel is a mineralogical analysis of the rock formation determined

from a combination of neutron and 
-ray scattering techniques [190]. The

rock is primarily dolomite and illite clay, with streaks of other minerals.

In the fourth panel there are a series of T
�

distributions as a function of

depth. The horizontal scale is logarithmic and ranges from 1 to 3000 ms.

Below X410 almost all the weight in the distributions is at short values of

T
�
, indicating water-saturated rocks with very small pores. Above X410 the

weight is predominantly at long T
�
, which signals the presence of large pores

and possibly of light oil [191]. A geologist can look at the NMR data and

immediately recognize a change in rock texture at an unconformity in a

formation thousands of feet underground and thus normally hidden.
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Fig. 9. NMR well log. The depth scale (in feet) is at the extreme left; the most signif-

icant digit has been replaced by an X. First panel: Mineralogical analysis of the

formation, based on neutron and 
-ray scattering measurements. Second panel: Log

of NMR-derived permeability, plotted on a logarithmic scale in units of millidarcies

(1 mD� 10��� m�). Third panel: NMR porosity measurement, partitioned into

irreducible water (stipple) movable water (black), and light oil (gray). Fourth panel:

T
�

distributions; the horizontal scale is logarithmic and ranges from 1 to 3000 ms.

Reprinted with permission from Schlumberger Oilfield Review, Autumn 1995, p. 22.
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The third panel contains porosity information. The horizontal scale

ranges from 0 to 25%, plotted from right to left. The envelope (leftmost line

in the track) is the total porosity, found at each depth by integrating the

curves of the fourth panel. The porosity is partitioned into several fractions.

The stippled area is the irreducible water saturation described in Section

9.9.1. It is found by integrating the panel 4 curves from 1 to 100 ms (as is

appropriate for dolomite formations). The balance is the movable fluid

fraction, which is further subdivided into water (black) and hydrocarbon

(gray), as determined by a resistivity measurement. There is little oil below

X410 because oil cannot enter small pores of the water-wet rock.

A log of NMR-derived hydraulic permeability is shown in the second

panel. Permeability is plotted on a logarithmic scale and changes by orders

of magnitude in this section. In the fine-grained formation the permeability

is negligible, while in the upper section it is substantial. These results were

used by petroleum engineers to institute an efficient production program for

this well.

NMR is an excellent technique for noninvasively monitoring moisture

content, the progress of polymerization reactions, and the curing of mater-

ials such as cements and ceramics. Inside-out techniques enable these well-

established applications to move out of the laboratory and onto the factory

floor, food processing plant, or construction site. Large objects can be

efficiently inspected by noncontacting means, through piping or protective

coatings (which must be nonmetallic), and in remote and/or hostile environ-

ments. One such device [192] is simple and compact and appears to have

considerable potential in industrial and field applications.

9.12 Conclusion

Nuclear magnetic resonance is capable of providing quantitative, isotope-

specific, volumetrically averaged information about fluids imbibed in porous

media. Because NMR relaxation rates depend on the freedom of molecules

to move, they are a sensitive indicator of chemical or physical changes.

Interactions at the fluid—solid interface also influence relaxation rates,

thereby making the NMR decay curve a probe of scale length.

Rapidly growing numbers of academic and engineering publications have

shown how these capabilities can be exploited in industrially useful applica-

tions, such as measurements of moisture content and distribution, the

monitoring of drying and hydration, and the quantitation of immiscible

fluid phases residing in the pore space. Because NMR is a noncontacting

and reasonably rapid measurement, it can be used to monitor processes on

a continuous basis in a flowline.
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Nuclear magnetic resonance is used on a commercial basis only when its

value exceeds the cost of purchase, operation, and maintenance. That

threshold has been passed in the petroleum industry, where NMR measure-

ments routinely determine properties of hydrocarbon reservoirs in all parts

of the world. It is also being used as an analytical tool in many industrial

laboratories for development of processes and for quality control. The

availability of low-cost and easy-to-use benchtop and inside-out NMR

machines will contribute to more widespread use of the technique.
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10.1 Introduction

Many processes of interest to industry and society involve the flow of

fluids through porous media. For example, filtration is used to purify water

and treat sewage, membranes are used to separate gases, and chemical

reactions are carried out in reactors packed with porous catalyst supports.

Large-scale processes in nature include the flow of petroleum in under-

ground reservoirs and the flow of water in aquifers.

It is often desired to simulate the flow of fluids in porous media to design

processes or make decisions regarding operation and control. Such simula-

tions require suitable mathematical models that relate various fluid states,

as well as various porous media properties that may be defined within the

models. The considerable efforts that have been directed to such endeavors

have been significantly limited by the lack of means for observing fluid states

within porous media. Nuclear magnetic resonance (NMR) provides many

exciting new opportunities for probing fluid states and flow within porous

media. It is a noninvasive method that is sensitive to molecular-level events

within fluids, and with imaging, fluid states and properties can be resolved

spatially. While other techniques such as optical, ultrasonic, and x-ray

methods can be used to visualize fluid saturations and flow patterns, nuclear

magnetic resonance imaging (MRI) provides unique and effective methods

for obtaining quantitative information on the distribution and flow of fluids

within porous media.

MRI can image nuclear spin density, NMR relaxation processes, chemi-

cal compositions, and the fluid transport processes of diffusion and flow.
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This chapter deals with the application of these techniques to probe fluids

and flow in porous media, for which the imaging methods and interpreta-

tions of image data are often complicated due to the effects that the solid

matrix has on the fluid. We will assume that the reader has some familiarity

with NMR, but not imaging. For further information about the use of NMR

with porous media, we recommend Ch. 9 of this text, the text by Callaghan

[1], and the review article by Watson and Chang [2]. Of course, there are

many good texts on NMR principles and experimental methods, and we

recommend Farrar and Becker [3] and Fukushima and Roeder [4].

Mansfield and Morris [5] have written a monograph on the application of

NMR imaging in medicine and biology that provides a good description of

imaging.

Although the fundamental imaging principles used in biomedical imaging

are generally applicable to imaging fluid flow in porous media, obtaining

quantitative images sensitive to only one of the desired NMR parameters in

porous solids requires special considerations. The challenges as well as those

experimental techniques developed to probe fluids and flow in porous media

are covered in Section 10.2. Some applications of MRI to processes in

porous media are provided in Section 10.3.

10.2 Imaging in Porous Media

The general objectives of NMR imaging are to obtain a number of NMR

parameters, such as spin density and relaxation times, as functions of their

spatial positions. Most imaging methods use magnetic field gradients of one

sort or another to accomplish spatial discrimination. Various imaging

methods have been classified into three regimes—point, line, and plane—

according to the manner in which the spatial element of the image data is

acquired. Generally, it is advantageous from signal-to-noise considerations

to select a method in which the largest number of spins are detected at each

step of the data acquisition. The Fourier imaging method, which encodes

the spatial information in the phase of the NMR signal in a plane-by-plane

scan in Cartesian coordinates, has been shown to be optimal with respect

to signal-to-noise [6] and the data processing to form an image is straight-

forward. If the magnetization of the sample is perturbed by slice-selective

excitation, the image can be reconstructed in the two dimensions of the

plane of the slice.

Porous media are ubiquitous. Within living beings, for example, skin,

vessels, and bone as well as many organs are porous materials. For many

medical applications, the properties of the porous media need not be

explicitly considered or determined for diagnostic purposes. However,
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imaging within porous solids, such as sedimentary media that make up

petroleum reservoirs and aquifers, requires particular considerations. The

solid matrix material can have a profound effect on relaxation and can also

cause significant gradients of the magnetic field. This can limit the resolution

of standard imaging methods and complicate issues of quantification. Since

samples observed within the laboratory are not part of the actual process of

interest, which occurs underground, diagnostic analysis is of little value.

Instead, determination of understandings of the complex processes that may

occur, and properties useful for describing those processes, is important.

This necessitates the development of quantitative means for analyzing

measured NMR signals. Many processes of interest may involve multiple

fluid phases. For example, the recovery of fluids from petroleum reservoirs

may involve the flow of two fluid phases, such as oil and water, or three

fluid phases, such as oil, water, and gas, through porous media. Thus, an

important consideration is to be able to observe the fluid phases separately,

or to distinguish the portion of the measured signals corresponding to the

various fluid phases. In short, such porous materials provide many chal-

lenges to the effective use of MRI for noninvasive probes of the media and

flow processes.

In the first part of this section (Section 10.2.1), a brief overview of the

basic physical principles of NMR imaging is provided. The unique aspects

and challenges of imaging fluids in porous media are discussed in Section

10.2.2. The remainder of this section addresses the use of contrast techniques

to obtain maps of specific molecular species (Section 10.2.3), practical

techniques used for quantitative imaging (Section 10.2.4), and imaging of

molecular translational motion (Section 10.2.5).

10.2.1 Imaging Background

A typical Fourier imaging pulse sequence is shown in Fig. 1. It is a

variant of the spin-warp [7] pulse sequence. This particular sequence

generates a two-dimensional map of the spin density using two Fourier

transforms. It is composed of three building blocks that we discuss in detail:

(1) selective excitation, (2) frequency encoding, and (3) phase encoding.

These fundamental imaging concepts provide a foundation for understand-

ing many of the various NMR imaging methods.

The pulse sequence shown, which is composed of two radio-frequency

(RF) pulses, uses a spin echo to produce images. The RF pulses are selective

pulses. Their energy is distributed only over a limited range of frequencies,

which can be contrasted with nonselective pulses that distribute energy over

a large frequency range, usually much larger than the frequency range of

interest. When a selective RF pulse is applied simultaneously with a field
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Fig. 1. Example of a typical two-dimensional Fourier transform spin-echo imaging

pulse sequence, which is a variation of the spin-warp sequence. The top line

represents the time variation of both the applied RF and the received spin-echo

signal. When the spectral-selective pulses, also known as soft pulses, are applied in

the presence of the slice gradients, only those spins within a slice of the sample are

affected. The bottom three lines represent the time variation of three magnetic field

gradients. They are usually perpendicular to each other, although this is not

required.

gradient, the result is a slice-selective pulse. The gradient is used to generate

a distribution of Larmor frequencies that is much larger than the limited

frequency range of the selective pulse. The pulse then selectively excites

nuclei that have Larmor frequencies in the pulse’s frequency band. The

result is the excitation of spins in a plane normal to the direction of the

magnetic field gradient. For this reason, the gradient is commonly known

as the slice gradient and we denote it here by G
�����

. The thickness and

position of the plane depend on the details of the RF pulse and strength of

the field gradient.

The second important building block is the application of a magnetic

field gradient during data acquisition. This gradient, G
���

, is sometimes

referred to as the readout (or read) gradient. We refer to it as the

frequency-encoding gradient, which is precisely what it does. It encodes

spatial information in the Larmor frequency at which each spin in the

sample resonates. It is normally orthogonal to G
�����

. The frequency-encod-

ing gradient is applied for a time period that includes the spin echo (see
Fig. 1).

The third building block is the application of a pulsed field gradient that

is usually perpendicular to both the slice selective gradient and the fre-

quency-encoding gradient. The purpose of this gradient is to encode spatial
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information in the phase of the NMR signal. To acquire the data necessary

for a complete image, the sequence shown in Fig. 1 must be repeated many

times. A different amplitude of the phase-encoding gradient is applied each

time the sequence is repeated. This is shown by the cross-hatching in the

diagram.

A complete set of image data is comprised of m digitized spin echoes. If

each digitized echo has n complex points (quadrature detection), then the

data can be thought of as a 2-D matrix with rows corresponding to time

evolution of the signal in the presence of the read gradient G
���

and

columns corresponding to different values of the gradient amplitude G� . The

image is constructed by a 2-D discrete Fourier transform of the rows and

columns of this matrix.

These building blocks can be well described by the Bloch equations. In

fact, they can be adequately described neglecting the relaxation terms in the

Bloch equations, as shown in the following.

10.2.1.1 Precession of Nuclear Magnetization in a Magnetic Field
Gradient. While conventional NMR spectroscopy requires the use of a

homogeneous magnetic field B
�
, NMR imaging is accomplished by making

the magnetic field vary linearly across the sample space. This is accom-

plished by applying an additional small field B, which is in the direction of

B
�

and has a constant gradient, G �
B. The field gradient is switched on

and off in an imaging sequence. We use g(t) to denote the time-varying

gradient amplitude associated with the gradient pulses. When the gradient

pulse is on, g(t) � G, while g(t) � 0 when it is off. The field gradient gives

rise to a spatially dependent distribution of Larmour frequencies, )(r) �

�
(B
�

� g · r). Under the on-resonance condition—that is, the frequency

of the RF field � � �
B
�
—the magnetization is no longer static in the

rotating frame but precesses with a frequency

��(r) � �
g · r, (1)

depending on the position r. In the absence of relaxation and the RF

magnetic field, the Bloch equations for a volume element at r simplify to

dM
. 

dt
� 0,

dM
� 

dt
� 
M

� 
g · r,

dM
� 

dt
� �
M

� 
g · r, (2)

in the rotating frame, where M
	
are the components of the magnetization
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vector. These equations are immediately solved using the complex notation

M
"
(r, t) � M

� 
(r, t) � iM

� 
(r, t) � M

�
(r) exp(�i2�k · r), (3)

where the reciprocal space vector k is defined as

k � (2*)��
 �
%

�

g (t� ) dt�. (4)

The signal produced by the nuclear magnetization is a linear superposi-

tion of the signal from each elemental volume of the entire sample.

Accordingly, the detected signal is the integral of M
"

(r, t) over the whole

sample volume:

S(k) �� M
�
(r) exp(�i2�k · r) dr. (5)

The result forms the basis for understanding both frequency encoding and

phase encoding of spatial information in the NMR signal. In practice, S(k)
is sampled in the k-space by varying either the duration or amplitude of the

gradient pulse. The reconstruction of M
�
(r) can be obtained by Fourier

transforming the detected signal with respect to k. In a real experiment, an

additional phase factor resulting from the inhomogeneities in B
�

and other

instrumentation factors (e.g., the receiver phase) may contribute to the

integrand in Eq. (5). To obtain M
�
(r) free from this phase factor, one can

take the magnitude of each point in the Fourier transformed complex array.

In principle, the magnitude of M
�
(r) is proportional to the spin density �(r).

However, it is always affected by the contrast effects such as spin relaxations.

10.2.1.2 Selective Excitation. Selective excitation is a procedure

whereby the applied RF pulse is tailored so that only a well-specified range

of the NMR frequency spectrum is affected. When this is done in the

presence of a magnetic field gradient, the selective RF pulse excites only

those spins within a slice of the physical sample.

The width of the excited frequency band is inversely proportional to the

duration of the RF pulse. For a given tip angle, the duration of an RF pulse

determines the pulse intensity since the angle through which the magnetiz-

ation tips is 
B
�
t
�

for an RF pulse of duration t
�

and field amplitude B
�
. It

is easy to see that a broadband 90° pulse will have a larger B
�

than a

narrow-band pulse. For this reason, a nonselective broadband RF pulse is

called a hard pulse and a selective narrow-band pulse is termed a soft pulse.

A number of RF amplitude modulation and multiple-pulse schemes have

been used to accomplish the selective excitation. For example, a Gaussian

amplitude modulation pulse has been used in chemical shift-selective excita-

tions. In general, the corresponding frequency spectrum of an RF pulse is
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given by the Fourier transform of its time domain profile. A rectangular

frequency spectrum is required if a rectangular slice is to be excited. This

implies that the RF amplitude in the time domain should be modulated as

a sinc function, sin(ct)/(ct). Since the duration of a sinc function is infinite,

a truncated sinc pulse is actually used.

For a selective 90° RF pulse of duration t
�

applied in the presence of a

slice-selective gradient G
�����

taken to be in the z direction, the Bloch

equations in the rotating frame yield

dM
. 

dt
� 0,

dM
� 

dt
� 
M

� 
G

�����
z,

dM
� 

dt
� 
M

. 
B

�
(t) � 
M

� 
G

�����
z, (6)

where the RF field B
�
(t) defines the x� direction of the rotating frame. The

time evolution of the magnetization can be solved analytically [8] after

transforming Eq. (6) into another frame of reference that rotates about the

negative z direction at a frequency of 
G
�����

z with respect to the frame

(x�, y� z�). As a result, the signal contributed by the spins on a plane at z is

expressed as

M
"
(z) � i
M

�
(z) exp(�i
G

�����
zt

�
/2) �

%


��

�%


��

B
�
(t� ) exp(i
G

�����
zt� ) dt�. (7)

The integral in Eq. (7) is the Fourier transform of the RF field, which

represents the frequency spectrum of the RF pulse. For a sinc profile in the

time domain, the spectrum, which has a frequency variable of 
G
�����

z, is

rectangular. This means that only those spins within a slice of finite

thickness are affected. If the phase of the RF field is modulated with a

constant angular frequency �
�

—that is, the RF field becomes

B
�
(t) exp(i�

�
t) — then the conjugate variable of the Fourier transform of the

RF field in Eq. (7) becomes 
G
�����

z � �
�
. This procedure results in an offset

of the slice location by an amount �z � �
�
/
G

�����
. The z-dependent phase

twist, �
G
�����

zt
�
/2, in Eq. (7) is annoying but can easily be removed. In

Fig. 1, an inverted gradient of amplitude �G
�����

for a duration t
�
/2 is

applied following the slice-selective gradient pulse. Note that no additional

reversing gradient pulse is required for the selective 180° RF pulse because

it is self-rephasing.

Using the basic spatial encoding and slice selection principles, a number

of different techniques are available, both in terms of imaging schemes (e.g.,
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1-D, 2-D, or 3-D) and pulse sequences (e.g., spin-echo, stimulated-echo, or

gradient-echo) that enhance or suppress different contrast mechanisms and

produce images of NMR parameters that relate directly or indirectly to

parameters of interest in regard to fluid flow in porous media. An under-

standing of the basic physical principles and nomenclature of NMR imaging

is thus important in evaluating different imaging strategies and in appreci-

ating the advantages and limitations of these techniques.

10.2.2 Considerations for Imaging in Porous Media

The use of NMR imaging to investigate and characterize the properties of

fluids and flow in porous media is carried out by detecting the signals from

the fluid phase. Protons are the most commonly observed nuclei. The

primary challenge presented by fluid-saturated porous systems in terms of

NMR imaging is the fast transverse relaxation, which is sensitive to the pore

size and saturation. Imaging sequences have a certain minimum time from

excitation of the spin system to acquiring image data. Thus, some relaxation

will have occurred before data are acquired. This makes quantification of

porosity or fluid saturation difficult. Furthermore, some fluid may reside in

pores so small as to be unobservable by NMR imaging techniques, even at

an echo time as short as only a few milliseconds. But if due care is taken in

selecting samples and designing the experiment, useful NMR imaging

studies can be performed.

The enhancements in T
�

relaxation due to the surfaces and diffusion of

molecules in the presence of internal magnetic-susceptibility-derived gradi-

ents result in a more rapid dephasing of transverse magnetization and

therefore act as additional line-broadening mechanisms. The line broaden-

ing imposes a fundamental limitation to the spatial resolution �r in NMR

imaging [9]:

�r �
2�� f


G
, (8)

where G is either the strength of the readout gradient or the maximum

strength of the phase-encoding gradient, and � f is the NMR linewidth. The

image resolution employed in most studies of porous systems to date has

been considerably larger than the pore size.

The signal-to-noise ratio (S/N) provides another limitation to spatial

resolution in NMR imaging since the signal available from each volume

element (voxel) decreases as the voxel size is reduced. Moreover, the fluid

content for each voxel in porous media is usually less than 30% by volume

depending on the porosity, which makes the signal sensitivity even worse.

Since the S/N of an NMR imaging experiment increases with the strength
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of the applied magnetic field, it would seem desirable to perform at the

strongest possible static field. However, the internal gradients arising from

the magnetic susceptibility variations also increase with the strength of the

operating field. As a consequence, the choice of field strength for imaging

experiments is compromised between the signal sensitivity and imaging

resolution. Many imaging experiments on fluid-saturated porous media

have employed a field strength of 2 T, which corresponds to a proton

resonance frequency of 85 MHz.

Equation (8) suggests that the linewidth-limited resolution can be im-

proved by using higher gradient strengths. The field gradients are the most

essential elements of an NMR imaging system, in addition to the standard

NMR spectrometer design. Field gradients of sufficient strength and stabil-

ity are critical for effective performance of both conventional and pulsed

field-gradient NMR imaging experiments. The pulse sequences used for

imaging porous media often require rapid switching of gradient pulses so

that observations at shorter echo times with correspondingly greater signal-

to-noise are allowed. In principle, the switching speed is mainly determined

by the voltage and bandwidth of the power amplifier. However, the rapid

change of magnetic fields can induce eddy currents in the surrounding

conductors, such as the cylindrical tubes in superconducting magnets. These

currents can persist after the gradient pulses are turned off and produce

unwanted field gradients. It has always been a challenge in the design of

gradient coils and pulse circuitry to provide increased gradient strength

while switching the gradients on and off in a faster and squarer fashion.

Interested readers are referred to the book by Callaghan [1] for a discussion

on field gradient hardware.

A further effect of line broadening in porous media is to make the

discrimination of water and oil based on their chemical shift difference more

difficult. Indeed, the line broadening found in many porous media precludes

the use of simple chemical-shift-imaging methods when quantitative

measurements are desired. A number of discrimination approaches to

obtaining images from the different fluid components are introduced in the

following subsection, including methods using the contrasts in chemical

shift, relaxation time, diffusion, and nuclear species. Quantitative determina-

tion of porosity and saturation distributions requires consideration of the

spatial variation and saturation dependence of transverse relaxation, as well

as selection of an appropriate model for representation of the relaxation

process. These issues are addressed in Section 10.2.4. Pulsed field-gradient

NMR detects molecular displacement over a well-defined time scale and can

be an excellent approach to the characterization of structural features and

transport processes. Section 10.2.5 discusses the imaging of fluid molecular

translation using pulsed magnetic field-gradient techniques to encode the
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displacements of fluid molecules and their coupling with a suitable imaging

sequence.

10.2.3 Liquid Phase Discrimination

MRI has shown the potential to provide a means to determine the spatial

distribution of fluid saturations within porous media, with obvious applica-

tions in rock physics, fluid—solid interfacial processes, and porous media

fluid dynamics, especially liquid— liquid displacement mechanics. To study

multiphase flow, where several fluid phases may be present within the pore

space, it is necessary to distinguish between fluids of different chemical

compositions. Nuclear spins experience a variety of electric and magnetic

fields, which are sensitive to the physical and chemical differences of the

fluids. Several approaches for discrimination between oil and water phases

in porous rocks have been investigated based on the chemical or spin

relaxation contrasts. Separately imaging the individual fluids in rock cores

using chemical shift contrasts is challenging due to the resonance line

broadening of the NMR signal. Depending on the nature of the rock, the

broadening can be sufficient to prevent the spectral resolution of the NMR

signals for oil and water phases. For those samples for which the resonance

line broadening is moderate and spectral separation between oil and water

is still resolvable, a number of approaches utilizing the chemical shift

contrast can be used to obtain fluid-selective images. For those with severe

line broadening, substantial additional effort is required. In addition, other

contrast techniques such as spin relaxation, diffusion, or multinuclei can be

used if sufficient contrast is available.

10.2.3.1 Chemical Shift Contrast. The nuclei in fluids are surrounded

by molecular electrons that interact with the nuclear spin angular momen-

tum. The magnetic coupling of the orbital motion of electrons to the nucleus

gives rise to the so-called chemical shift. The chemical shift causes Larmor

frequencies to be slightly displaced in a manner that is characteristic of the

chemical environment. Chemical shifts depend strongly on the atomic

number and are of the order of a few parts per million in protons. The shift

of about 3.5 ppm between oil and water proton resonances is of particular

interest in NMR imaging. This separation represents 300 Hz at 85 MHz. In

samples where both oil and water contribute to the image, this offset in

frequency can enable separate images from the different molecular species to

be obtained. This facility has been termed chemical shift imaging. Chemical

shift imaging has several advantages over relaxation-weighted imaging for

fluid phase resolution in porous media studies because the chemical shift is

insensitive to bulk physical property variations (such as pore geometry,

magnetic susceptibility, temperature, and fluid phase interactions). There-
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fore, chemical shift imaging is well suited to the study of multiphase flow in

porous media and to even more complicated systems such as miscible or

chemically interacting fluid phases.

The various methods for chemical shift imaging can be classified into two

major categories. The first category consists of methods that selectively

excite or saturate water (or oil) protons before a conventional image pulse

sequence is applied. The second category involves methods of spectroscopic

chemical shift imaging, in which a chemical shift dimension is added to each

pixel and the chemical shift information can be frequency encoded or phase

encoded.

10.2.3.1.1 Spectrally Selective Methods. Selective excitation involves

applying an RF pulse that affects only a specific region of the NMR

frequency spectrum so that only nuclei of a certain chemical shift may be

disturbed. The simplest method to obtain chemically selective excitation in

the spin-echo imaging sequence is to make the 90° RF pulse a narrow-band

frequency-selective pulse (so-called soft pulse) while the 180° pulse is slice

selective. The chemical-shift-selective (CHESS) pulse has a low intensity and

long time profile in the time domain and is applied at some chosen

frequency in the NMR spectrum. Unlike slice-selective pulses, the chemically

selective pulse is applied in the absence of a magnetic field gradient. An

example of the use of selective excitation to obtain fluid-selective images for

two dolomite samples saturated with single fluid phases has been demon-

strated by Edelstein et al. [10].
Selective saturation, or selective suppression, represents an inverse ap-

proach to selective excitation in the imaging of chosen chemical species. This

method is very effective when all resonances in the spectrum except one are

to be observed. One approach of selective saturation to obtain water-

or oil-selective images is to add a CHESS pulse and a homospoil gradient

pulse to the beginning of any imaging pulse sequences to null the water or

oil NMR signal. The advantage of this method is that it involves only a

minor modification of the standard imaging pulse sequences. Dechter et al.
[11] have demonstrated the use of the selective saturation method to obtain

chemically selective, fluid-specific images of refined oil and aqueous brine in

carbonate and sandstone cores. The spectrally selective methods yield

images of only one fluid phase at a time, and sometimes suffer from low

sensitivity in the presence of short transverse relaxation times because the

necessarily long RF pulses lengthen the echo time T
&
.

10.2.3.1.2 Spectroscopic Methods. Full-scale spectroscopic imaging

involves an increase of dimensionality in the data acquisition process so that

the frequency spectrum becomes a fourth dimension in addition to the three

spatial dimensions. This is achieved by spatially encoding the signal with

phase-encoding magnetic field gradients after a nonselective RF pulse is
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used to excite the spins. All magnetic field gradients are turned off during

data acquisition to provide chemical shift information. Once acquired and

processed, the image data can be sliced to produce displays that show the

distribution of each individual chemical species in any defined plane. A

serious disadvantage of this four-dimensional method is that it requires

more imaging time. Unless one of the spatial dimensions is sacrificed, the

addition of a full spectral dimension to each pixel of the image is too time

consuming to be practically applied to many investigations.

A chemical-shift-imaging technique reported by Hall et al. [12] to obtain

the spatial mapping of water and dodecane in a composite Berea sandstone

sample involves a modification of the conventional spin-warp sequence. The

pulse sequence uses a slice-selective RF pulse followed by two perpendicular

phase-encoding gradients, and the spin-echo signal is collected after a 180°

pulse. After three-dimensional Fourier transformation of the acquired data

set, each chemical shift frequency corresponding to a selected fluid can be

displayed as a separate image. The number of spin echoes required for this

technique is m� n, where m and n are the number of pixels in the respective

spatial dimensions of the images. Experimental time considerations may

thus prohibit high-resolution measurements. Another drawback of this

method is that any magnetic field inhomogeneity can lead to a distortion in

the spectral dimension. The field inhomogeneity depends not only on the

magnet shimming but also on the magnetic susceptibility, shape, and

orientation of the sample in the magnet.

The experimental time can be reduced by phase encoding the chemical

shift and frequency encoding one of the spatial dimensions. This is because

each phase-encoding step involves a repetition of the entire pulse sequence,

whereas an increase in frequency-encoding resolution does not increase the

experimental time significantly. Since the generation of a spectral dimension

is only to resolve the different fluids, high spectral resolution is not

important. As demonstrated by Dixon [13], two steps of phase encoding the

spectral information may be adequate to resolve water and lipid in biologi-

cal systems. However, this simple method suffers from some limitations

[14, 15] with respect to quantitative accuracy when applied to fluids in

porous solids where the linewidths are typically broader than those in

biological systems.

In a conventional spin-echo imaging sequence, the phase is usually

encoded in the spectral dimension by varying the time of the 180° pulse

while keeping the time between excitation and acquisition constant (see
Fig. 2). As a result, a time delay � is introduced between the Hahn spin echo

and the gradient echo, allowing the nuclear magnetization vectors to evolve

out of phase with each other by an amount dependent on the spectral

frequency differences as well as the inhomogeneity in magnetic field. Assum-
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Fig. 2. Timing diagram for a phase-encoding chemical-shift-imaging pulse sequence.

A time delay � is introduced between the spin echo and the gradient echo to phase

encode the spectral information. Reprinted with permission from C. T. Chang and

C. M. Edwards, L og Anal. 34, 20 (1993).

ing that the imaging gradients are sufficiently strong so as to compress the

frequency separation within a single pixel, the image signal intensity for a

pixel at (x, y) can be written as [15]

I(x, y) � exp[i�
�
(x, y)] � �(x, y, �)exp i[� � ��

�
(x, y)] �! d�, (9)

where ��
�
(x, y) � 
�B

�
(x, y) is the frequency offset due to the magnetic

field inhomogeneity �B
�
(x, y), and �

�
(x, y) is the nonuniform phase delay

caused by instrumentation factors. The expression �(x, y, �) is the spin

density including the relaxation effects, where � is written explicitly to

specify that the image signal is subject to the linewidth and chemical shift

effects.

If the effect of field inhomogeneity can be ignored, I(x, y) is the Fourier

transform of the spin density �(x, y, �) which contains the spectral informa-

tion. Reconstruction of the spectral dimension from I(x, y) simply requires

calculating the inverse Fourier transform, provided that an image data set

with regularly incremented � is acquired. Majors et al. [16] reported the use
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of this technique to study the displacement of oil by water-flooding in a

dolomite core sample. They found that this spectroscopic imaging modality

is particularly useful for systems where T
�

is short but the chemical shift

separations are still large compared with the linewidths. The distortion in

the spectral dimension caused by the magnetic field inhomogeneity is

apparent in their images because no correction was made on the phase

errors ��
�
(x, y)�. Horsfield et al. [14] developed an estimation method to

separate oil and water images in porous rocks. This method uses at least

eight chemical-shift-encoded images with different values of � and requires

well-characterized spectra for the oil and water resonances and a large

amount of computation. The phase errors caused by magnetic field in-

homogeneities were corrected using an estimated inhomogeneity function

and a least-squares algorithm. The scheme aimed to provide an ability to

distinguish water and oil signals even when their spectral lines cannot easily

be resolved.

An improved technique for chemical shift imaging that provides the

capability to rapidly and easily quantify the oil and water distributions in

porous media has been presented by Chang and Edwards [15]. This

technique is applicable to separating oil and water signals even when their

spectral lines cannot be resolved. When a sample consists of only two

chemical components, Eq. (9) can be expressed in terms of their relative

chemical shift � and reduced to

I(x, y)�[h
�
(�)M

�
(x, y) � h

!
(�)M

!
(x, y) exp(i�+)] exp i[��

�
(x, y)� � �

�
]!,

(10)

where subscripts w and o refer to the water and oil components, respectively,

and h(�) is the Fourier transform of the lineshape function and represents a

signal decay factor during the period �. For a Lorentzian lineshape, h(�) is

simply an exponential decay. With this expression, the oil signal is regarded

as being a resultant magnetization vector M
!

shifted by a phase angle �+
from the water magnetization vector M

�
. Using the knowledge of the

chemical shift between oil and water �, any phase shifts of the respective

signals can be achieved by suitable adjustment of Hahn spin-echo time

relative to gradient echo time (i.e., the value of �). Four images with phase

shift �+� 0, �, and ��/2 are acquired. In the following discussion, the

signal intensity for a pixel at (x, y) is expressed as I(�+) to explicitly indicate

the phase shift between the water and oil magnetizations. The in-phase and

opposed-phase images are used to determine the position-dependent phase

factor caused by the field inhomogeneity. The in-phase signal is given by

setting � � 0 in Eq. (10),

I(0) � [h
�
(0)M

�
� h

!
(0) M

!
] exp(i�

�
), (11)
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and setting � � �/� yields the opposed-phase signal

I(�) � [h
�
(�/�)M

�
� h

!
(�/�)M

!
] exp[i(��

�
�/� � �

�
)]. (12)

A phase map of ��
�
(x, y)�/� can be produced from the argument of

I(�) /I(0) on a pixel-by-pixel basis. Since calculated phase values lie between

��/2 and ��/2, phase unwrapping is required in the case when the phase

factor is of such magnitude that the phase wraparound problem must be

confronted, which often occurs for images of large cross-sectional area or for

samples with large magnetic susceptibilities.

The separated water and oil images are calculated from the two images

with �+� ��/2 where the oil magnetization vector is shifted symmetrically

with respect to the water vector by ��/2:

I(��2) ��h� �
�
2��M

�
� ih

! �
�
2��M

!� exp�i����
�

�
2�

� �
��� . (13)

The images are first phase corrected to eliminate the phase factor

���
�
�/2� using the phase map obtained from the in-phase and opposed-

phase images. By complex addition and subtraction of the phase corrected

I(��/2), the final separated images of h
�
M

�
and h

!
M

!
can then be formed

in magnitude to remove the phase factor �
�
. The water and oil images are

now separated, but it should be noted that the signal intensity in these

images is subjected to the relaxation effects.

A cylindrical sample of carbonate rock (2.5 cm in diameter, 5.5 cm long)
was used to demonstrate the ability of this method to quantitatively map

water and oil distributions during a drainage process. Figure 3 shows

separated water and oil images when the oil front was approximately

halfway through the core. The water-saturated core was injected with

machine oil from the top. The peaks of the proton resonances for water and

oil are shifted by 3.5 ppm and the linewidth at half maximum for each

resonance was estimated to be approximately 2.8 ppm. Using only four

phase-encoded images, the water and oil images were correctly separated

even though their resonance lines overlap significantly.

10.2.3.2 Relaxation Contrast. Relaxation contrast is crucial to the

observation of structural features in medical MRI where the spin density

exhibits only a small variation between the various types of human tissue.

Relaxation-weighted imaging for fluid phase selection in porous media relies

on the difference in T
�

or T
�

values of the fluid phases to eliminate or reduce

the signal from one phase while detecting the signal from the other phase.

For a spin-echo imaging sequence, the signal intensity in a pixel is deter-

mined by the signal amplitude at the echo center for spins corresponding to

that pixel. With a 90° RF excitation pulse, and assuming the dephasing of
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Fig. 3. Proton chemical-shift images of water and oil in a carbonate rock sample

when the oil front was approximately halfway through the core in a primary

drainage experiment. Machine oil was injected from the top into the completely

water-saturated sample. The scale at left indicates image intensity in arbitrary units.

Reprinted with permission from C. T. Chang and C. M. Edwards, L og Anal. 34, 20

(1993).

the transverse magnetization by the read gradient is small, the signal

amplitude at the echo center measured in the xy plane can be expressed as:

M � M
�
 1 � 2 exp[�(T

*
� T

&
/2) /T

�
] � exp(�T

*
/T

�
)! exp(�T

&
/T

�
),

(14)

where M
�

represents the intrinsic magnetization. The T
�

and T
�

weighting

in images can be obtained by appropriate selections of T
*

and T
&

values.

For fluids in porous media, the single-exponential relaxation represented in

Eq. (14) should be used with caution because many systems exhibit multi-

exponential features.

10.2.3.2.1 T2 Contrast. For T
*
�T

�
, the signal intensity is propor-

tional to the number of protons and subject to the transverse relaxation

factor, exp(�T
&
/T

�
). The introduction of substances that enhance proton

relaxation contrast provides a useful means for differentiating liquid phases

if these substances are soluble in one phase but not in the other. Contrast
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agents such as transition metal or lanthanide cations, which contain

unpaired paramagnetic electrons, are commonly used in medical imaging.

An application to porous media has been reported by Baldwin and

Yamanashi [17] in which oil is distinguished from water in reservoir cores.

The water was doped with manganese ions (Mn�") to reduce its transverse

relaxation time, thereby enabling only the oil signal to be observed. In a

study of oil and water invasion in a model porous medium with MRI, Chen

et al. [18] used Ni�" ions to suppress the water signal so that the images

are sensitive only to the oil distribution.

In addition to the spin-echo sequence, a Carr—Purcell—Meiboom—Gill

(CPMG) sequence can be used to obtain a series of T
�

weighted images (see
Section 10.2.4). The spin-lattice recovery term exp[�(T

*
� T

&
/2) /T

�
] in Eq.

(14) is absent, and the influence of T
�

relaxation can be completely removed

by choosing T
*
�T

�
. A suitable relaxation model can then be used to

compute a T
�

distribution for each pixel by least-squares fitting to the decay

of the CPMG images. Oil and water are resolved on the basis of their T
�

values. An example of this is presented by Majors et al. [16] in an MRI

study of immiscible displacements in porous media for which a paramag-

netic dopant, CuSO
�
, was added to water to enhance the T

�
contrast of the

water and oil signals.

10.2.3.2.2 T
�

Contrast. The inversion—recovery sequence that is wide-

ly used for T
�

measurement can be used for the selective suppression of

unwanted spin signals as well. A unique feature of this method is the growth

of the longitudinal magnetization from a negative signal to a positive signal.

The crossover through zero magnetization occurs at a time T
�
ln 2 if the

spin— lattice relaxation behavior is exponential. When a difference in T
�

values exists for protons in different fluids, an inversion pulse can be applied

followed by a time delay to remove the magnetization of a particular

component before the imaging pulse sequence [19]. Several researchers have

reported separate oil and water images taking advantage of different T
�

values for the protons in the oil and water phases within porous rock

samples [10, 12, 20]. It should be noted that the fluids in porous media

usually exhibit a broad distribution of relaxation times that makes it very

difficult to remove either the oil or the water signal completely.

10.2.3.3 Diffusion Contrast. Diffusion imaging [21] is another tech-

nique that can be useful for separating the oil signal from the aqueous signal.

For many viscous oils, the diffusion contrast for distinguishing the oil from

water is available. When the diffusional motion is observed in a heterogen-

eous system such as interconnected pores in rocks, however, the degree of

mobility of fluid molecules depends on the length of the diffusion time, and

the observed diffusion coefficient is not always the same as that of the bulk

fluid. At short enough times, the diffusive motion is not restricted signifi-
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Fig. 4. The RF and displacement-encoding field gradient pulses in a typical

stimulated-echo imaging pulse sequence. The spatial encoding for imaging can be

performed in the usual ways and is not shown. The time � between the field-gradient

pulses is the time that fluid molecules are tracked.

cantly by the solid matrix and the observed motion is characteristic of the

fluid alone. At long enough diffusion times, a uniform average mobility

would be observed because the molecules have the opportunity to repeated-

ly sample all of the different environments, and the apparent diffusion

coefficient asymptotically approaches a new value that depends on the pore

geometry as well as the viscosity of the fluid.

The pulsed field-gradient stimulated-echo method has been used to

distinguish the aqueous and oil distributions in porous media [22]. The use

of stimulated echo enables the diffusion to be observed over a range of times

such that a considerable change in apparent diffusion coefficient can be

observed. A gradient pulse of amplitude G is applied in each of the two

transverse evolution periods of the stimulated echo sequence (see Fig. 4).
The molecular diffusion results in an additional attenuation of the echo

amplitude:

A � exp[�
�G��(�� /3) D
���

], (15)

where D
���

is the effective diffusion coefficient,  is the duration of each

gradient pulse, and the separation of the pulses � is the diffusion time. The

difference in the attenuation factors provides a contrast that can be used to

separate the water and oil signals. The successful use of this technique

depends on the availability of the contrast in the attenuation factor.

10.2.3.4 Multinuclear MRI. Another way to discriminate oil and water

in porous media is to detect the oil phase by regular proton MRI and to
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detect the aqueous phase by imaging the brine nuclei other than protons.

These nuclei include �
Na from the NaCl brine [23], �Li from LiCl brine

[24], and ��F from C
�
H

�
CF



[25]. The oil phase can also be detected by

�
C [26] or by ��F if fluorinated hydrocarbons are present [24]. Moreover,

the H
�
O phase can be replaced by D

�
O and one can use deuterium NMR

techniques to detect directly the aqueous phase while using proton to detect

the oil phase.

The intrinsic NMR S/N of a nucleus is related to its gyromagnetic ratio


 and spin quantum number I by the proportionality [5]:

�
�
� 
����I(I � 1), (16)

at constant field. Therefore, the S/N can be a critical concern for detecting

any nuclei other than protons because of the small 
 values involved. For

equal abundance and identical instrumental factors, the %
�

for protons is

about 65 times that for deuterons. In principle, one may have to spend

about 65� times more experimental time for deuteron NMR experiments as

compared to protons to achieve the same S/N. However, the sensitivity

penalty may be partially compensated in porous media due to other

advantages often available in nonproton NMR modalities [23, 24]. In any

imaging experiment, the actual S/N depends on the echo time T
&

as well as

the repetition time T
*
, and it increases with the square root of the number

of acquisitions. For a spin-echo imaging experiment with tip angle � and

total experimental time t, the S/N is

%(t) � %
�
exp��

T
&

T
�
��1 � exp��

T
*

T
�
���t/T

*
sin �. (17)

Under the conditions of identical tip angle � and T
*

being a constant

multiple of T
�
, the relative S/N for nuclear species a and b is

�
�

�
�

�
�

��
�

��

exp�T& �
1

T
��

�
1

T
��
���

T
��

T
��

. (18)

From a series of imaging experiments on sand packs and natural rocks [27],

it has been found that deuterons in D
�
O have shorter T

�
but longer T

�
than

those for protons in H
�
O. The shorter T

�
enables a faster repetition of the

data acquisition and the longer T
�

prevents rapid signal decay during T
&

from occurring. As a result, the deuteron S/N is smaller than the proton S/N

by a factor of only about 5 to 17, but not 65 as previously discussed.

10.2.4 Quantitative Imaging

One of the most important concerns for utilizing MRI techniques to

investigate fluid flow in porous media is the ability to obtain quantitative
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values for localized properties. Two important properties are the porosity

and the fluid saturation. When only a single fluid phase is present, the

porosity distribution can be determined by NMR imaging under static

conditions. When multiple fluid phases are present, the individual fluid

saturations can be determined provided that there are suitable methods to

discriminate the fluid phases, such as the methods described in Section

10.2.3. To obtain quantitative values of porosity and fluid saturation, it is

essential to remove all relaxation effects from the image as well as to

calibrate the NMR signal intensity of the fluid.

The use of NMR imaging techniques to determine fluid saturation is

based on the fact that the intrinsic image signal intensity M
�
(r) is propor-

tional to the spin density in the corresponding volume element of the

sample:

M
�
(r) � c�(r). (19)

The proportionality constant c depends on the apparatus and material

under study and may change during the experiment since the change of fluid

states may result in changes in the coil quality factor Q. For the purpose of

determining c, a reference material with a known number of nuclei can be

inserted into the receiver coil together with the sample to be studied [28].

The signals of the reference material and the studied sample are separated

on the basis of spatial location. The constant c can thus be determined by

comparing the image intensity and the number of nuclei in the reference

material. However, the observed image signal intensity is always subject to

T
�

relaxation. The extent of signal attenuation depends on the relative

lengths of T
�

and the echo time T
&
. In addition, T

�
effects will also be present

with T
�

weighting, depending on the ratio of T
*

to T
�
. The effects of T

�
relaxation can be readily eliminated if sufficiently long repetition time T

*
is

used. The effects of T
�

can be removed if T
&
	T

�
. But instrument limitations

on the shortest achievable T
&

often do not allow T
�

effects to be eliminated

completely in many imaging studies on porous media due to their short-T
�

characteristics.

To obtain a spin density map free of T
�

relaxation attenuation, a series

of progressively attenuated images can be collected and the signal intensity

at each pixel can be extrapolated back to its intrinsic value M
�
. Chen et al.

[29] have reported the use of a single spin-echo imaging sequence and the

involvement of repeated imaging with several echo times T
&

to obtain the

attenuated image set. Procedures are described in which the transverse

relaxation during T
&

is modeled to obtain accurate estimates of intrinsic

signal intensity and, hence porosity and saturation distributions. Another

quantitative technique [10, 20, 30] uses a CPMG multiple-spin-echo tech-
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nique to obtain a series of relaxation-attenuated images. An obvious

advantage of CPMG over the single-spin-echo technique is the shorter

imaging time for CPMG. An entire series of relaxation-attenuated CPMG

images is collected in about the same time as a single spin-echo image.

Another advantage is that CPMG technique allows for the acquisition of

transverse relaxation data with the molecular diffusion time controlled by

the experimentally selected value of echo spacing. The use of a short echo

spacing can minimize the diffusion attenuation rate and improve the

interpretation of fitting parameters with suitable relaxation models used.

There are a number of different approaches that have been used to model

the relaxation process. The accuracy of the estimates of the intrinsic signal

intensity, and hence the porosity and saturation, depends critically on the

manner in which the relaxation has been represented. Simple models that

have been used include the single exponential-model [31] and the stretched-

exponential model [32]. While estimates of the parameters within these

models are readily obtained, they generally do not provide for accurate

estimates of the intrinsic intensity [33]. A modified stretched exponential

has been reported [34]. However, results showing the precision with which

the relaxation process is represented were not provided.

A porous medium tends to have a broad distribution of pore sizes, and

therefore the magnetization decay of fluids in the porous medium is

expected to exhibit a distribution of relaxation times if the relaxation

process is controlled by the surface-relaxation mechanism. Methods to

estimate the intrinsic intensity can be based on the methods to estimate

relaxation distributions. A method using the multiexponential representa-

tion for the relaxation process has been reported by Chen et al. [33]. A more

convenient approach has been developed using the representation of relax-

ation with a continuous distribution [35]. This approach has considerable

computational advantages compared to the use of multiexponentials, and is

shown to compare favorably with the multiexponential method.

10.2.5 Imaging of Molecular Translational Motion

The methods described so far have been largely directed to spatially

resolving the various fluid phases within porous media, and determining the

amounts of those fluids. This provides important information regarding the

fluid states within porous media, which can specify the porosity and fluid

saturation distributions. However, these methods provide little direct infor-

mation about fluid transport. The transport of fluids in porous media is a

subject of considerable importance in many areas, including oil reservoir

characterization, perfusion in biological tissue, and the transport of con-

taminants in soil.
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NMR imaging methods can be extended to the measurement of molecu-

lar displacements within porous structures. The work reported in Refs.

[36—39] has yielded spatial maps of the fluid velocity in porous media.

Distribution functions of molecular displacements arising from self-diffusion

and externally driven flow in porous media have also been measured

[37, 40—43]. These measurements are dynamic rather than static in nature

and provide information about the mechanisms of fluid transport. A number

of different flow parameters could be characterized by these measurements.

For example, average fluid velocity is proportional to the permeability. Even

though the pressure drop is unmeasurable within a porous medium, it may

be possible to produce a three-dimensional map of permeability in a porous

sample using estimation procedures. The displacement distribution function

depends on the pore geometry in a complex way. Nevertheless it may be

possible to extract meaningful information about pore structures and

hydrodynamic dispersion from these measurements.

Two classes of MRI methods have been commonly employed to measure

the fluid molecular motion in porous media. They are broadly categorized

as time-of-flight and phase-encoding approaches [1]. There are a variety of

methods within each class due to the multitude of techniques that can be

used to acquire NMR data. The time-of-flight approach makes use of the

magnitude of the nuclear magnetization as a fluid tag and observes the

effects on the image intensity due to displacements of excited spins during

the time between excitation and signal acquisition. The phase-encoding

approach uses magnetic field gradients to phase encode the molecular

motion. Since the phase-encoding approach requires an additional dimen-

sion for displacement encoding, the imaging time may be longer than that

necessary for time-of-flight approach. However, it is more convenient to

obtain precise quantification of molecular displacements with the phase-

encoding approach. For this reason, the majority of the reports of NMR

dynamic imaging of flow in porous media have used the phase-encoding

approach.

10.2.5.1 Pulsed Field-Gradient NMR Imaging. The use of phase shifts

of nuclear magnetization to measure molecular motion has been inves-

tigated for decades [44] and its application to the spatially resolved

measurement of flow velocity was first proposed by Moran [45]. Nuclear

spins moving in the presence of a magnetic field gradient exhibit a phase

shift of the transverse magnetization. This phase shift results from changes

in the magnetic field and the associated resonance frequency seen by spins

that move in the direction of the magnetic field gradient. Equation (1)
indicates that in a field gradient g, the NMR signal for a spin at position r

oscillates at an angular frequency ��(r) � �
g · r. For a time-dependent
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gradient g(t� ), the phase of a spin with positional time dependence r(t� ) is

,(t) � �
 �
%

�

g(t� ) · r(t� ) dt�. (20)

The measurements of molecular translation involve two primary el-

ements. The first element is the use of magnetic field gradients to impose

spatial tags on the spins. The second is the use of spin echoes to detect the

effect of phase shifts on the NMR signals. It is conceivable that the

molecular motion for fluids in porous media is irregular spatially and

temporally. To obtain a measure of molecular displacements that is of

practical relevance to the processes described by the usual transport

parameters such as permeability and diffusion, the gradients are applied in

the form of intense pulses. It is instructive to discuss the so-called bipolar-

gradient method here, although other modifications such as multiple alter-

nating gradient pulse methods [46] are useful with porous media since they

serve to negate the background gradients arising from magnetic susceptibil-

ity heterogeneities. A bipolar gradient sequence is equivalent to two ident-

ical pulses that are applied during the dephasing and rephasing periods of

a spin-echo sequence [47]. For stimulated-echo experiments, the gradient

pulses are inserted in the transverse evolution periods. Figure 4 shows the

RF and field-gradient pulses in a typical stimulated-echo imaging pulse

sequence. The spatial encoding for imaging can be performed in usual ways

and is not shown. The time � between the field gradient pulses is the time

that fluid molecules are tracked. A remarkable feature of the stimulated echo

is that the relaxation decay has a T
�

dependence during the interval between

the second and third RF pulses. Longer observation time � can be achieved

without the usual signal attenuation due to T
�

relaxation, since T
�

is usually

longer than T
�

for fluids in porous media.

Now consider the effect of the two gradient pulses of amplitude G, pulse

width , and separation �. In the narrow-pulse approximation where 	�,

the pulse duration  is assumed short enough so that negligible molecular

displacement occurs during this period compared to that during �. The first

pulse imparts a phase shift �
�G · r
�

to a spin located at r
�
. This phase shift

is inverted by the 180° pulse in a spin-echo sequence or by the last two 90°

pulses in a stimulated-echo sequence. Suppose that the spin has moved to

position r
�

� R at the time of the second gradient pulse. Then, the net phase

shift for the spin is �
�G · R. A wave vector k was defined in Eq. (4), which

is used to describe the precession of magnetization in a spatial-encoding

gradient. Here we introduce another wave vector:

q � (2*)��
�G. (21)

409IMAGING IN POROUS MEDIA



While k is conjugate to the spin position r, q is conjugate to the spin

displacement R.

By combining the displacement encoding gradients and static imaging, it

is possible to obtain a distribution function of spin translation in individual

voxels of the sample. We generalize the spin density �(r) to a spatial-

displacement joint density function [45] defined as

�� (r, R) � �(r)P� (R, r), (22)

where P�(R, r) is the normalized distribution function of spin displacement

over a perod of time � for a voxel at location r, satisfying the normalization

condition, �P�(R, r) dR � 1. The relaxation effects are absorbed in the

definition of ��(r, R). The joint density function ��(r, R) is proportional to

the number of spins per unit spatial volume and per unit displacement

volume, at location r with displacement R during �. The measured NMR

signal is modulated by the two wave vectors, k and q, and can be written,

similarly to Eq. (5), as

S(k, q) � �� �� (r, R) exp(�i2�k · r) exp(�i2�q ·R) dr dR, (23)

and the inverse Fourier transformation yields

��(r, R) ��� S(k, q) exp(i2�k · r) exp(i2�q ·R) dq dk. (24)

Thus the joint density function for a voxel can be reconstructed. Various

analysis methods have been used to extract information about fluid motion

in porous media using pulsed field-gradient NMR data. These methods

include velocity imaging, diffusion, and dispersion measurements. We re-

strict our discussion to analysis methods for velocity imaging in the next

subsection.

10.2.5.2 Velocity Imaging. A number of researchers have reported

NMR imaging experiments in which a map of the fluid velocity is obtained

in a porous medium using the phase shift induced by spins moving in a

magnetic field gradient [36—39, 48, 49]. The key challenge for successful use

of NMR velocity-imaging techniques to characterize fluid flow properties is

the interpretation of the measured parameters. Different experimental stra-

tegies provide information about flow processes at different spatial and

dynamic scales in porous media. In principle, the flow velocity can be

probed either as a local quantity with an image resolution below the pore

level [48, 49], or as a macroscopic flow property corresponding to local

volume and temporal averages of fluid molecular displacements [37]. One
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must develop a suitable methodology to correctly measure the parameters

that best describe the properties of interest.

NMR velocity imaging provides a unique opportunity for estimating

permeabilities corresponding to local regions. From a theoretical point of

view, the permeability represents a macroscopic empiricism that cannot be

measured directly. It is a locally averaged quantity [50] representing tens or

hundreds of pores and may vary spatially throughout the media. To obtain

velocity-imaging data that represent macroscopic processes described by the

transport parameters, special considerations in terms of experimental and

data analysis methodologies are required. Due to the complex nature of

fluid molecular motion in the pore space, molecular velocities are not

constant during the measurement time. Moreover, the velocity field within

a voxel is not uniform when the spatial resolution is much larger than the

pore dimensions. In the following discussion, we illustrate that naı̈ve

assumptions about the interpretation of measurement process may lead to

incorrect characterization of the flow process.

In a pulsed field-gradient NMR imaging experiment, molecular displace-

ments over a predetermined observation time are measured, and these

measurements can then be interpreted as average velocities. Under the

condition of narrow gradient pulses, the time average of each spin’s velocity

in the direction of the gradient (e.g., z direction) is defined as

v� �
Z

�
, (25)

where Z � z(�) � z(0) is the displacement in the z direction. The NMR

signal for a voxel at position r is the Fourier transformation of Eq. (23) with

respect to k, and is calculated as

S�(r, q) � �(r) �
�

��

P�(Z, r) exp(�i2�qZ) dZ

� �(r) �
�

��

P� (v� , r) exp(�i2�qv� �) dv� , (26)

when the relationships in Eqs. (22) and (25) are used. The velocity distribu-

tion function P� (v� , r) is the probability density of spins that are moving

within the velocity range v� and v� � dv� . The mean velocity for a voxel is given

by

�v� �r ��
�

��

v� P� (v� , r) dv� . (27)

Two experimental methods can be used to estimate the mean velocity for

each voxel: (1) the measurement of the velocity distribution and (2) the
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measurement of the phase shift of the NMR signal. In the first, the velocity

distribution function P�(v� , r) is measured and Eq. (27) is used to calculate

�v� �r . The velocity distribution function is determined by performing the

inverse Fourier transform of the NMR signal in Eq. (26) with respect to q.

To do this, the NMR data set is acquired with regularly incremented

gradient amplitude G. A longer experimental time than in conventional

imaging is required because of the addition of a velocity dimension to each

voxel. The second method uses the phase of the measured NMR signal in

Eq. (26) to estimate the mean velocity. A key advantage of the latter method

is that fewer steps of phase encoding the velocity are needed and the

experimental time can be shorter. Despite the popularity of this method,

determination of �v� �r using the phase shift is not straightforward. As seen

in Eq. (26), the velocity distribution function plays an important role in the

phase as well as the amplitude of the measured NMR signal. The phase

spread associated with incoherent motion such as hydrodynamic dispersion

and self-diffusion causes signal attenuation whereas coherent flow velocity

gives rise to a mean phase shift. Unfortunately, the mean phase shift is not

always proportional to the mean velocity.

Several properties of P�(v� , r) are useful to know to interpret the results

of the phase measurement of NMR signal for fluids in porous media. The

measured P�(v� , r) depicts the dynamic displacement profile for flow super-

imposed on diffusion during �. For small �, velocity of each molecule will

undergo little averaging and P�(v� , r) will approach the instantaneous

velocity spectrum with a component at a maximum velocity corresponding

to fluid in the center of the pore throats and a component of zero velocity

corresponding to the pore—fluid boundary layer. In the limit of very long �
such that the molecules undergo significant displacements due to both flow

and diffusive motion in the pore space and experience different velocities,

P�(v� , r) will reflect aspects of the averaging of many velocity streamlines.

Figure 5 shows velocity distribution functions of water flowing through a

pack of 0.2-mm glass beads in a 20-mm i.d. cylinder at a flow rate of

16 ml/min, which is equivalent to a rate of 0.85 mm/s per unit cross-sectional

area of the sample. The voxel size is much larger than the pore dimensions.

Three sets of data were obtained at � � 0.1, 0.3, and 0.5 s. The data

represents P� (v� , r) in the mean flow direction. The velocity distribution

function is profoundly dependent on the observation time. At � � 0.1 s,

there is a significant component at zero velocity. As � increases, the

component at zero velocity disappears and the distribution becomes more

symmetric. The behavior of P�(v� , r) can be more complicated in natural

rocks [37] where the pore structure is heterogeneous and nonflowing pores

may exist.

Having examined the properties associated with the measured P�(v� , r), we

now turn to the analysis procedure involved in estimating �v� �r from the
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Fig. 5. Velocity distributions for water flow in a 0.2-mm glass bead pack at different

observation times �. The flow rate per unit cross-sectional area was fixed at

0.85 mm/s.

phase shift of NMR signal. In terms of �v� �r , Eq. (26) can be expressed as

S�(r, q) � �(r) exp(�i2�q�v� �r�) �
�

��

P� (v� , r) exp[�i2�q(v� � �v� �r )�] dv� .

(28)

The phase shift of the measured signal is proportional to the mean velocity

only if the integral in Eq. (28) is a real number. For this integral to be real,

the velocity distribution function must be symmetric about the mean

velocity [51]. This is generally not true for flow through porous media.

Failure to recognize this behavior may result in severe errors in the

determination of velocity.

The mean value as well as the variance of velocity in a voxel can be

estimated by expanding the phase factor of the integrand in Eq. (28) in a

power series and taking ensemble average (the integral) of each term [52]:

S�(r, q) � �(r) exp(�i2�q�v� �r�)

·	1 ��1

2
[2�q(v� � �v� �r)�]�� �O(�[2�q (v� � �v� �r)�]
�)
 . (29)
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If the condition

2�q(v� ��v� �r)�	 1 (30)

is satisfied so that the higher-order terms in Eq. (29) can be ignored, the

phase of the signal at location r is approximated as

,(r) � �2�q�v� �r�� �
G��v� �r , (31)

which is proportional to the mean velocity and the first moment of the

gradient, G�. The attenuation factor  1 � ��
�
[2�q(v� ��v� �r)�]��! is deter-

mined by the variance of the velocity, which provides a measure of fluid

dispersion. In cases where the voxel size is much smaller than the pore size,

Eq. (30) can be a good approximation because of small velocity spreads

within voxels. In general cases, the accuracy of this approximation depends

on the magnitude of the first moment of the gradient as well as the velocity

spread in voxels [37].

In velocity-imaging experiments via phase mapping, a reference phase

map at zero velocity is usually required to correct for the phase error caused

by inhomogeneities of the magnetic field. There are a number of sources of

field inhomogeneities in the velocity-imaging experiment, including the

magnet shimming, susceptibility effects, and eddy currents arising from

gradient switching. Figure 6 shows the corrected phase shift for a voxel,

which is much larger than the mean pore size, as a function of the first

moment of the gradient for water flow (1.6 ml/min) through the packing of

0.2-mm glass beads in a 20-mm i.d. cylinder. At small gradient amplitudes

where the condition in Eq. (30) is satisfied, the phase shift is linearly

proportional to the first moment of the gradient and the mean velocity can

be derived from the slope. It is apparent that the data obtained with the

shorter � deviate from the linearity earlier as the magnitude of G increases.

This is consistent with the P� (v� , r) measurements, which indicate a more

asymmetric P� (v� , r) for the shorter �, as illustrated in Fig. 5. The mean

velocity so determined is independent of �, although the shape of the

velocity distribution is dependent on �. The fluid velocity at each voxel is

expected to be proportional to the flow rate if Darcy’s law is satisfied. The

effect of changing the flow rate on the phase shift from a voxel is shown in

Fig. 7, in which the phase shift normalized to the flow rate for water flow

in a Bentheimer sandstone sample is plotted against the gradient amplitude.

The sandstone sample is 47 mm long and has a diameter of 25.4 mm. For

small gradient amplitudes (�3 G/cm) the phase shift is proportional to the

gradient amplitude, and the mean velocity determined from the slope is

proportional to the flow rate. From the preceding discussion, we conclude

that estimates of the mean velocity of flow in porous media using the phase

shift of NMR signal corresponding to a voxel much larger than the pore size
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Fig. 6. The phase shift of NMR signal from a voxel as a function of the first moment

of the magnetic field gradient G� for water flow in the 0.2-mm bead pack. The

linear region is wider for the data set with longer �.

depend in a complicated way on the magnitude and time scale of the

gradient pulses. To obtain a reliable measurement, special care must be

exercised. One must be certain that Eq. (30) is well satisfied, and it is also

necessary for the narrow pulse approximation to be valid.

The ability of NMR velocity imaging to make noninvasive measurements

probing spatially resolved flow processes makes it an invaluable tool for the

study of porous media. No other experimental technique provides such

information that can be useful to detect heterogeneities and analyze fluid

transport in porous media.

10.3 Applications

A number of papers have presented NMR images of fluids in various

porous solids [53]. In particular, experiments of fluid—fluid displacements

have been carried out by several groups [e.g., Refs. 18, 31, 32, 54, 55].

Imaging studies of porous media using pulsed field-gradient techniques have

been relatively limited despite the unique ability of these techniques to

characterize both structure and transport.
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Fig. 7. The phase shift from an image voxel normalized to the flow rate as a function

of the amplitude of the magnetic field gradient for water flow in the Bentheimer

sandstone sample. The measurements were made with  � 2 ms and �� 100 ms. The

mean flow velocity determined from the linear region is proportional to the flow rate.

Although NMR imaging has been applied to investigations of fluids in

porous media for more than a decade, the potential of using image data to

determine properties that are useful for modeling and simulating fluid flow

behavior has not been fully explored. We present here some applications of

NMR imaging techniques that have been used to study fluid flow in porous

media. We first give an example of how the imaging technique has been used

to estimate multiphase flow functions, and then we discuss some of more

recent applications of the pulsed field-gradient techniques to the study of

transport phenomena in porous media.

10.3.1 Estimation of Multiphase Flow Functions

Estimation of capillary pressure and relative permeability functions is an

important inverse problem in studies of multiphase flow through porous

media. The mathematical model for multiphase dynamic flow through

porous media is a set of coupled nonlinear partial differential equations [56]
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and the unknown properties are functions of fluid saturation, a state

variable. Conventional dynamic displacement experiments that utilize

measurements outside of the porous sample, such as pressure drop and

cumulative production, can be insufficient for accurate resolution of capil-

lary pressure and relative permeability functions. These measurements made

outside the sample do not allow for sufficient resolution of state variable

within the sample. The information about instantaneous distribution of a

state variable in the porous sample is very desirable for accurate estimates

of the flow functions.

Fluid saturation images provide additional information of fluid states

inside a porous sample. The use of NMR imaging measurements of

saturation profiles to estimate multiphase flow functions has been demon-

strated [57]. In the example presented here, a two-phase dynamic displace-

ment experiment was performed on a Texas Cream limestone sample.

Hexadecane was used as the oleic phase and D
�
O as the aqueous phase. Oil

was injected at a constant flow rate into the sample initially saturated with

the aqueous phase. The pressure drop and oil saturation profiles were

measured until the steady state was reached. Proton NMR was used to

measure the oil saturation profiles as well as the porosity profile. The water

saturation profiles could easily be determined because they are complements

to the oil saturation profiles. The pressure drop, saturation profile, and

water production data were used in a regression-based approach to estimate

the capillary pressure and relative permeability functions. Figure 8 shows

the measured and estimated water saturation data. The estimated capillary

pressure and relative permeability functions are shown in Figs. 9 and 10,

respectively. The simultaneous reconciliation of saturation profiles with

production and pressure drop data increases the confidence in the accuracy

of estimates of flow functions from the parameter estimation methods.

10.3.2 Evaluation of Flow and Transport

A brief survey of the applications of NMR imaging to fluid flow in porous

media using pulsed field-gradient techniques is included in this section.

These techniques provide spatial information about average flow velocity

and average propagator, which can be used to investigate transport proper-

ties such as the permeability, dispersion, and diffusion.

Gleeson and Woessner [36] used NMR imaging to examine the connect-

ivity of pores in a limestone. They showed by three-dimensional fluid

saturation imaging that the pores in this rock are well connected. However,

the flow sensitive image indicates that only part of the pores are effective in

conducting fluid flow. Merrill [38] has mapped the average flow velocity

inside a brine-filled sandstone sample using a pulsed field-gradient spin-echo
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Fig. 9. Capillary pressure function estimated from the two-phase displacement

experiment shown in Fig. 8. Reprinted with permission of ASME from Kulkarni, et
al., Proc. 2nd. Int. Conf. on Inverse Probl. Eng.: Theory and Practice, Le Croisic,

France, June 1996.

Fig. 8. Measured (dots) and estimated (lines) water (D
�
O) saturation profiles in a

limestone sample during a two-phase displacement experiment. Oil was injected from

the left at a constant flow rate into the sample, which was initially saturated with

the aqueous phase. Saturation profiles correspond to different times during the

experiment: (a) 4.5, (b) 9.5, (c) 19.5, (d) 29.5, (e) 39.5, (f) 49.5, and (g) 229.5 min.

Reprinted with permission of ASME from Kulkarni, et al., Proc. 2nd. Int. Conf. on

Inverse Probl. Eng.: Theory and Practice, Le Croisic, France, June 1996.
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Fig. 10. Relative permeability functions estimated from the two-phase displacement

experiment shown in Fig. 8. Reprinted with permission of ASME from Kulkarni, et
al., Proc. 2nd. Int. Conf. on Inverse Probl. Eng.: Theory and Practice, Le Croisic,

France, June 1996.

sequence. The data were statistically analyzed to find the variation of the

average velocity as a function of porosity. The results show that the velocity

is a linear function of porosity. Thus, higher porosity regions of the core are

better contacted by the displacement fluid. More recently, fluid velocity

maps of water flowing through a Bentheimer sandstone have been measured

using a modified echo-planar imaging (EPI) technique [39]. EPI is a high-

speed NMR imaging modality and is capable of measuring motion over very

short times, of the order of a tenth of a second. Their results showed that

the velocity profiles of the local pixel values are approximately Gaussian in

shape and centered about a mean value corresponding to Darcy’s law. They

also reported that when the same flow state is repeated, the velocity maps

change but the characteristics of the velocity profile remain the same. This

random nature of the velocity maps led them to propose a stochastic theory

of flow in porous media. The stochastic model was based on conservation

of energy and momentum over an assembly of voxels. This approach

predicts that the flow distribution variance is proportional to the mean flow

velocity. In a related work [58], a model for flow coupling between isolated

voxel pairs was proposed to provide a complementary explanation of the

Gaussian velocity distribution.

Measurements of the displacement (or velocity) distribution of fluid

molecules during a predetermined time � have also been reported by several

researchers. In their pioneer work, Edwards et al. [37] found that the
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measured velocity distribution in porous media is affected by the observa-

tion time. They performed a number of computer simulations to observe the

effect of diffusion on the velocity distribution function. In a more recent

study, Kutsovsky et al. [40] measured the velocity distribution functions of

water flow in bead packs. It was demonstrated that the velocity distribution

derived from a crude bundle-tube model accounts for the positive part of

their measured distributions. Packer and Tessier [42] reported the measure-

ments of the displacement distribution function of an aqueous phase in a

Fontainebleau sandstone sample. For displacements measured along the

mean flow direction, the shape of the distribution as a function of � was

modeled in terms of laminar flow within a set of randomly oriented

capillaries. The distribution functions for small � are asymmetric and

dominated by the orientational distribution of the capillaries. At long �, the

distribution function increasingly shows an evolution to a more Gaussian-

like shape. Using the capillary model, the evolution is reproduced only when

diffusion of molecules across the velocity gradients within the capillaries is

introduced, and when the transfer of spins between differently oriented

capillaries is allowed. The distributions for displacements perpendicular to

the mean flow direction are symmetric with respect to zero displacement.

They show an evolution from a Gaussian-like shape for small � to a shape

having some slight oscillatory character after longer times. The oscillatory

features are likely to arise from structural characteristics of the pore space.

Other interesting applications of pulsed field-gradient NMR imaging

include the studies of diffusion and dispersion in porous media. Molecular

diffusion is an important physical property carrying information about the

structure of porous media and dynamics of fluid flow. A determination of

the apparent diffusion coefficient as a function of the diffusion time allows

a qualitative probe of restricted diffusion as well as a quantitative detection

of pore sizes. Through diffusion imaging, spatial heterogeneities of structure

in porous media become accessible [59].

Dispersion has been treated as pseudo-diffusion or random flow, depend-

ing on the length scale of the measurement [1]. Despite different mechan-

isms that cause dispersion, a common feature of these processes is that the

dispersion is dependent on fluctuations in velocity. The knowledge of the

velocity distribution function enables a calculation of the variance in

velocity, a parameter that is directly related to the dispersion coefficient.

Therefore, the pulsed field-gradient NMR imaging methods allow not only

a map of average velocity to be determined but also a map of mean

dispersion for components both parallel and perpendicular to the mean flow

direction. Lebon et al. [41, 60] measured the velocity distribution of water

flow inside unconsolidated glass bead packs. The distribution of the velocity

component along the mean flow direction was determined and an exponen-
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tial decay of the velocity probability distribution was observed for short �.

The results are very similar to that obtained from simulations in which the

Stokes equation is solved in random sphere packings. At longer displace-

ments, of the order of the pore size, strong distortions of the overall shape

of the distribution were observed. The distortions were considered to be

related to the dispersion phenomenon. At mean displacements larger than

five bead diameters, the displacement distribution is Gaussian and the width

of the distribution corresponds to the macroscopic dispersion coefficient as

measured by other techniques. A generalized approach for the measurement

of flow and dispersion has recently been reported by Seymour and Cal-

laghan [43]. Various pulsed field-gradient NMR techniques have been

described in the context of standard theories of dispersion. These techniques

provide access not only to the average velocity and dispersion coefficient but

also to propagators relevant to spatial and temporal correlations and, thus,

provide the potential for studying complex flow properties involving the

interplay between hydrodynamic and structural characteristics of porous

media.
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11. ACOUSTICAL AND ELECTRICAL METHODS FOR THE
STUDY OF FLUID MIXING IN POROUS MEDIA

Jean-Pierre Hulin and Dominique Salin
Laboratoire FAST

Pierre et Marie Curie and Paris-Sud Universities and CNRS (UMR 7608)
Orsay, France

11.1 Static Mixing and Tracer Dispersion in Porous Media:
An Introduction

11.1.1 How Miscible Fluids Spread and Mix in Porous Media

Miscible fluids in direct contact never remain completely separated, even

if they do not flow and/or are localized in a free volume without solid walls.

Molecular diffusion always induces some mixing: However, this process is

effective only at small distances and quickly becomes extremely slow at

larger ones. On the other hand, to induce complete mixing over a significant

volume, it is necessary to stretch, fold, and intertwine filaments of the two

fluids. In an open geometry and for low-viscosity fluids, as for a drop of

cream in a coffee cup, it is generally sufficient to stir the fluids to induce very

efficient turbulent mixing. In porous media, on the contrary, flow is almost

never turbulent, particularly when the pore size is small. One can no longer

rely on flow velocity time variations to induce mixing but only on the spatial

disorder of the flow field due to the complex structure of the pore space.

A common example is the mixing of viscous fluids in chemical engineering

applications: Inducing turbulence would require a prohibitively large

amount of energy and might in addition destroy the internal structure of

many complex fluids. Similar processes are encountered in environmental

problems such as the spreading of aqueous or nonaqueous pollutants

following an accidental discharge; the mixing of these pollutants with

surrounding water flows generally includes underground porous layers.

Let us analyze the generic case of two fluids in contact flowing through a

porous medium: Mixing is then almost always associated to the random

walk of fluid (or tracer) particles through the disordered structure of the

pore volume, and thermal molecular agitation is dominant only at very low

mean flow velocities. The steps of the random walk are much larger than

those of thermal Brownian motion so that the corresponding spreading

scale and the width of the dispersion front is correspondingly increased. Of

course, the minimum size of heterogeneities of the mixture obtained in this
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way is also larger; however, if the medium is adequately homogeneous, this

size is of the order of the grain diameter so that molecular diffusion can

generally complete the mixing.

One generally characterizes the relative influence of the various spreading

mechanisms by the Péclet number:

Pe �
Ud

D
�

, (1)

where d is the characteristic size of the grains of the medium, U is the mean

flow velocity, and D
�

is the molecular diffusion coefficient for the species

considered; Pe characterizes the relative influence of convective spreading

effect due to the disorder of the medium and of molecular diffusion. For a

homogeneous porous packing in which the correlation length of the velocity

field is of the order of the grain size, the value Pe � 1 corresponds to the

boundary between dominant convective (Pe� 1) and diffusive (Pe� 1)
spreading mechanisms.

The mixing of two fluids flowing in a porous medium may be very

effective in some cases. Some static mixers contain a set of dividing plates;

in fact, they mimick in a simplified and more ordered way the internal

structure of porous materials. Two fluids injected side by side inside the

mixer flow out as small entangled filaments; if needed, molecular diffusion

can then complete the mixing at small length scales. Such devices are well

adapted to the mixing of viscous and/or complex fluids for which, as already

stated, turbulent mixing is not suitable; they find many applications in the

food or polymer industries when one deals with viscous pastes or polymer

solutions.

11.1.2 A Simple Mixing Experiment in a Porous Sample

Let us represent (Fig. 1) how a dot of passive, nonreactive tracer, initially

concentrated in a very small volume of fluid, will spread out as it is carried

through a porous medium by the main flow. If we were inside a fluid volume

of velocity v, the local concentration c(r, t) of tracer would satisfy the

classical convection—diffusion equation:

	c
	t

� v.grad c � D
�

�c. (2)

A dot of passive solute (dye, conducting salt, radioactive component, etc.)
would convect with the local velocity v and spread out in time evenly in all

directions over a distance of the order of �D
�
t. In porous media, one can

no longer use the local concentration as a variable due to its fast and

random changes. We therefore replace c by the macroscopic variable C(r, t),
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U
D⊥t

D//t
t = 0

Fig. 1. Schematic view of the spreading of an initially concentrated tracer dot

located in a porous medium where a steady uniform flow of velocity U has been

established.

which represents the average of c over a representative elementary volume

(REV) large enough compared to the pore size. If the medium is not too

heterogeneous, C satisfies the macroscopic equation [1—3]:

	c
	t

� U.grad C � D
��

	�C

	x�
��

� D
�

�
�
C, (3)

where U is the mean velocity through the medium (also averaged over a

large enough number of pore volumes); x
��

and x
�

represent the coordinates

respectively parallel and perpendicular to the flow, and 
�
�

is the 2-D

Laplacian operator associated with these coordinates. Let us note that Eq.

(2) remains valid at the local scale but that Eq. (3) is more useful for

practical purposes. The two coefficients D
��

and D
�

are respectively the

longitudinal and transverse dispersion coefficient; they are generally different

(D
��
�D

�
) so that a pointlike tracer injection will give rise to an elliptical

tracer spot. Generally, D
��

and D
�

are much larger than the molecular

diffusion coefficient D
�
; they become of the order of D

�
only if the Péclet

number Pe defined in Eq. (1) is lower than 1 so that molecular diffusion

processes become significant.

Figure 2 describes how longitudinal dispersion can be determined practi-

cally. We consider a cylindrical porous sample with an arbitrary cross

section and establish an evenly distributed flow through it using a low-

volume injector. At an initial time t � 0, we either induce a stepwise

variation of tracer concentration in the flow or perform a pulselike very

short injection of tracer. The subsequent tracer concentration variations can

be monitored along the flow (if the type of detection allows for it) or

detected at the outlet of the sample. For instance, in the latter approach

displayed in Fig. 2 with a stepwise tracer injection, concentration variations

at the outlet of the sample are shifted by a mean time T
�

reflecting the

porous volume of the sample and the initially abrupt concentration vari-

ation is spread out over an interval �t. If the sample is homogeneous
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Fig. 2. Schematic view of a typical transmission dispersion experiment through a

porous sample with tracer concentration variations induced at the inlet and detected

at the outlet under steady flow conditions through the medium.

enough, the dispersion coefficient D
��

can be determined by fitting the

concentration variation to solutions of the Gaussian convection—diffusion

Eq. (3). In other cases, other, more refined models are necessary to analyze

tracer spreading [4—5].

Many types of tracers and detection techniques can be used. Optical

techniques (UV absorption, fluorescence, and differential optical index

variations), radioactive tracers, acoustical detection techniques, electromag-

netic techniques (conductivity, nuclear magnetic resonance [NMR], and

polarography), etc. are all possibilities. Some of these techniques allow for

the analysis of spatial tracer distributions inside porous materials. Others

can be performed only at the inlet or outlet of the sample. The choice will

depend on the particular requirements of the experiments to be performed

and on the information being sought. This chapter describes a few of these

techniques.

11.1.3 Mixing or Separation

We noted that, for passive tracers, the mean transit time T
�

through the

sample is directly related to the porous volume V
�

(T
�

is equal to the ratio

of the total pore volume V
�

and the injection flow rate Q
%
). This is no longer

the case if the solute interacts physicochemically with the matrix of the

porous sample or if sterical exclusion effects prevent the tracer from

accessing the full pore volume.

Such properties are put to work by analytical chemists in the extremely

important applications of chromatography. Analytical or preparative liquid

chromatography, for instance, uses exactly the same type of procedure. One

generally performs a pulsewise injection of chemical tracer and uses a

suitable detector to monitor the concentration peaks corresponding to the

flow of the various mixture components out of the porous sample. The

different transit times for the various components may have a large diversity
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of origins, including the differences in their physicochemical interactions

with the matrix, the varying diffusions of the molecules into some small

pores of the sample, and the influence of the various sizes of the molecules.

The materials of the porous sample (the so-called ‘‘chromatographic col-

umn’’) are chosen according to the type of chemical species to be separated.

In this respect, dispersive mixing is a nuisance for analytical chemists. If the

dispersion coefficient D
��

is minimized, the width of the detection peaks is

reduced, and this improves the resolution of the technique. The example of

chromatography shows that similar experimental setups can be used for

mixing or separation, provided, of course, two essential parameters are

modified: the interaction between the solutes and the solid matrix, on one

hand, and the intrinsic dispersion of the tracer, on the other hand.

11.1.4 Large- and Small-Scale Mixing

Even in the case of passive tracers, the description of dispersion as a

mixing process must be complemented by the knowledge of the scale at

which mixing is realized. Consider, for instance, a sample that contains

large-scale heterogeneities such as strata of various permeabilities and

parallel to the flow: For a given pressure difference applied along the sample,

the flow velocity in each of the layers is different. Therefore the transit times

through the two types of layers will be markedly different. The shape of the

separation front between the two tracer volumes of different concentrations

will also be strongly distorted and extend over a much longer distance

parallel to the main flow. However, while the spatial extent of this mixing

front is increased, mixing is actually less uniform and large unmixed patches

of each fluid can surround each other. Thus, a good analysis requires not

only a measurement of the average solute concentration in a flow section

but also a mapping of the concentration variations across the flow.

Similar problems can occur (and are discussed later is this chapter) when

the displaced and displacing fluid have different densities and/or viscosities.

In some cases, fingering instabilities may appear. In other cases, the contrast

of fluid properties may stabilize the displacement front and compete with

other instabilities. Generally, hydrodynamic instabilities can create large-

scale structures of the displacement front, and a mapping, even an approxi-

mate one, of the concentrations may be extremely useful.

Tracer dispersion and miscible mixing are clearly extremely sensitive

tools for the analysis of permeability heterogeneities in porous media. We

see later in the chapter that monitoring evolutions of the concentration

variation front along the flow and visualizing concentration distributions

are extremely helpful for understanding the origin and distribution of heter-

ogeneities.

429STATIC MIXING AND TRACER DISPERSION IN POROUS MEDIA



11.1.5 Some Dispersion Measurement Problems in Porous Media

Tracer dispersion in porous media clearly includes a large variety of

problems related to many different mechanisms. Some mechanisms act at

the pore scale and are associated with the local structure and disorder of the

flow field even inside homogeneous porous media. Others correspond to

very large scale heterogeneities of the media such as those encountered in

stratified soils or natural rocks and in large-scale geological structures.

Some mechanisms result primarily from viscosity or density contrasts

between the invading and displaced fluids.

Depending on the type of displacement process to be studied, the

experimental tools involved can be quite different. We present first in

Section 11.2 the essential mechanisms involved in tracer dispersion in

porous media. Section 11.3 describes a few high-resolution techniques for

characterizing tracer transport and dispersion properties at the pore scale.

In contrast, Section 11.4 presents techniques suitable for the study of tracer

dispersion associated with large-scale heterogeneities. Examples of applica-

tions of such techniques to the study of the problem of anomalous,

non-Gaussian dispersion are discussed in Section 11.5. Finally, Section 11.6

presents special problems and techniques dealing with displacement pro-

cesses involving two fluids of different physical and rheological properties.

11.2 Mechanisms of Miscible Mixing

11.2.1 Main Solute Dispersion Mechanisms

As noted, pure molecular diffusion is dominant only at very low Péclet

numbers Pe � Ud/D
�
	 1. However, it is an important factor to comple-

ment mixing on small length scales at any velocity, and it can markedly

influence and modify other mechanisms. Finally, the dominant dispersion

mechanisms are quite dependent on the topology of the porous medium.

In classical porous media such as rocks or unconsolidated grain packings,

the major dispersion mechanism is the random changes of flow direction

and velocity associated with the random pore geometry. This process is

called geometrical dispersion [6—8]. It can be pictured as a random walk of

tracer particles superimposed over a drift velocity U associated to the mean

flow (Fig. 3). Let us call l the length of the individual steps, � their duration,

and u the typical fluctuation with respect to the mean velocity U during the

step; in the following, u is assumed to be of the same order of magnitude

as—although lower than—U so that lU�. From the laws of random

walks, the mean square deviation ��x� with respect to the mean displace-

ment Ut along the mean flow for a set of particles following different paths
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U

d

Fig. 3. Schematic view of the trajectories of tracer particles inside a porous medium;

these are pictured as a random walk with individual steps of length l and duration

+ superimposed over a global drift at the mean velocity U inside the sample.

increases as

��x��D
��
t, (4)

with

D
��
�U���Ul�

l�

�
. (5)

In homogeneously made media (packings of nonporous grains for in-

stance), one can assume that the step length is of the order of the grain size

d. Then,

D
��
�Ud. (6)

One therefore often introduces the dispersivity l
�

� D
��
/U, which represents

the characteristic length of the dispersion process. Experimental measure-

ments on homogeneous monodisperse bead packings report around Pe � 10

a minimum value of l
�

of about half the diameter, in qualitative agreement

with Eq. (6). For Pe � 1000, l
�
is about 50% higher [1, 9]. At very low Péclet

numbers, molecular diffusion is dominant and l
�

increases as D
�
/U.

More precisely, the dispersivity l
�

is equal to the Lagrangian correlation

length of the flow velocity field [7], with

D
��

���
%

�

V
��
(x(0), 0)V

��
(x(t�), t�) dt��, (7)

where V
��
x(t�), t�) and V

��
(x(0), 0) are the respective deviations V

��
� U at
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times t� and 0 of the velocity component V
��

along the mean velocity U for

a same given particle. The integral is taken along the 3-D particle trajectory

x(t) between times 0 and t, and D
��

is obtained from an ensemble average

over all particles. Therefore l
�

represents the pathlength over which a fluid

particle keeps track of an initial deviation from U. Equation (7) demon-

strates the nonlocal nature of dispersion since D
��

is determined by an

integral along the whole path of tracer particles and not by an average of

local values.

Often l
�

is much larger than the grain size in heterogeneous media and

rocks where a particle keeps a significant deviation from the mean velocity

for the whole time necessary to cross a block of given permeability. Very

large dispersivities are measured in stratified media [10] or in porous media

with large channels of varying permeabilities. Natural or artificial con-

solidated porous media also often give very broad dispersion curves,

particularly if there is a layered structure [11].

Another important issue in tracer dispersion is the case of porous media

with a significant fraction of the pore volume occupied by zero-velocity

zones [12]; for instance, this is the case for hydrodynamic dispersion in

partially saturated porous media (the flow velocity is kept low enough

during the dispersion measurement so that no variation of the saturation

occurs). During a dispersion experiment, tracer molecules move by convec-

tion along the backbone and by molecular diffusion on the dead ends. The

characteristic diffusion time �� over the dead zones is of the order of

�� � ��/D
�
, where � is the typical size of the dead zones, and D

�
is the

effective diffusion constant over these regions. From Eq. (5), the effective

dispersion coefficient is then

D
��

� U��� �
(U�)�

D
�

(8)

so that the dispersion coefficient D
��

varies in this case as U� instead of U.

In porous media with a low saturation close to the percolation threshold

[13], the effective diffusion coefficient D
�

may be much lower than D
�
.

Strong increases of the dispersion coefficient as well as non-Gaussian

dispersion curves are then observed.

11.2.2 Particular Case of Dispersion in Fractures

Fractured media are particularly important because pollutants spread

mostly underground by fluid transport through fractures. At the scale of a

single fracture, even with rough walls, the flow field differs greatly from that

of the flow through an ordinary 3-D porous medium. This is due to the large

permeability anisotropy between directions parallel and perpendicular to
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the fracture solid walls. Few flow lines penetrate from the fracture into the

bounding rock matrix. Also, flow lines remain in the same region of the

velocity profile across the aperture (close to the walls or in the maximum

velocity zone) throughout their path along the fracture.

As a result, dispersion in a single fracture is similar to that between

parallel planes or inside a continuous capillary tube. For such geometries,

dispersivity is due to the fluid velocity differences associated with the

Poiseuille parabolic profile. Spreading is limited by transverse molecular

diffusion across the flow section. In this so-called Taylor dispersion [14], D
��

verifies for a capillary tube of diameter d [15]:

D
��

�
d�U�

192D
�

� D
�
. (9)

Note that the characteristic molecular diffusion time across the capillary

tube section is �
�

� d�/D
�
. When the term D

�
is negligible in Eq. (9), the

diffusion time �
�
 d�/D

�
plays the part, in the case of Taylor dispersion, of

the characteristic velocity decorrelation time � introduced in Eq. (5).
For a fracture with smooth parallel walls [15—16], Eq. (9) remains valid

provided the factor 192 is replaced by 210 and the diameter d is replaced by

the distance a between the walls. Then the dispersivity l
�

� D
��
/U satisfies

l
�

�
D

��
U

�
U�

�
210

�
D

�
U

�
Ua�

210D
�

�
D

�
U

. (10)

If one or both walls are rough, there will be some disorder in the flow field,

particularly if the height of the asperities is comparable to the fracture

aperture. A dispersion mechanism analogous to geometrical dispersion due

to the random splitting of the flow tubes is then present. Roughness mostly

introduces a two-dimensional disorder in planes parallel to the fracture

surface but does not move tracer away from or toward the solid surfaces.

Thus, wall roughness does not suppress Taylor dispersion, but results in an

additional, geometrical type term [16].

11.3 Experimental Techniques for Studying Dispersion at
Microscopic Scale

11.3.1 Key Issues in the Dispersion Processes at Short Distances

Dispersion can be described by a classical convection—diffusion equation

when the spreading process is Gaussian. In this case, it corresponds to a

random walk superimposed over a mean drift associated with the global

flow through the sample. The process can be considered as Gaussian when
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the requirements for the central limit theorem to be valid are met. This

implies that a tracer particle has undergone a sufficient number of flow

redirections after which its velocity becomes decorrelated from its initial

value. In homogeneous media, each step corresponds to the displacement

from one pore to another. In heterogeneous media, which can be pictured

as an array of blocks of different permeabilities, an individual step corre-

sponds to the path through one block. Mesoscopic changes of velocity from

one block to another influence dispersion much more than smaller-scale

velocity variations from one pore to another. Reference [17] shows that the

dispersion magnitude is determined by a combination of the scale of the

heterogeneities and of the amplitude of the corresponding permeability or

flow velocity variations.

At very short times, on the contrary, spreading occurs only at the pore

scale, and it reflects the velocity probability distribution in the pore volume

and not its interpore correlation. These have a variety of origins: parabolic

velocity profiles in individual pores, velocity dependence on the orientation

of the flow channels with respect to the mean pressure gradient, or variability

of flow channel diameters. As the spreading time increases, the pathlength of

the tracer particles becomes of the order of the pore size. However, transition

toward Gaussian dispersion occurs only after moving through several pores.

Analyzing these different spreading regimes helps us to understand mass

transport processes at different length scales in porous media.

11.3.2 Particle Velocimetry and Path-Imaging Techniques

One obvious approach to analyzing tracer spreading at small distances is

to analyze directly the path of (supposedly) passive tracer particles and their

location at regular time intervals. This can be realized using particle image

velocimetry techniques [18]: Flow carrying solid particles is imaged using

multiple exposures, each obtained through a brief, intense illumination.

Since the time interval between exposures is known, the trajectory of

individual particles can be identified by the continuous dot sequences, and

the velocity can be calculated from the dot spacing. Obviously transparent

porous media saturated with fluids of the same optical index are required.

A few consecutive images with many particles enable us to determine

velocity distributions. Analysis of the early phase of dispersion requires

following particle trajectories over a long enough pathlength, which is rather

cumbersome. An additional difficulty is the inherently 3-D structure of the

flow pattern. Quite often, a plane illumination of the system is used to

discriminate particles located in the plane of interest. However, this also

makes it difficult to follow particles over a long distance, since they move in

and out of the illumination plane.
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11.3.3 Tracer Dispersion Analysis Using Pulsed Gradient NMR
Techniques

11.3.3.1 Pulsed Gradient NMR Techniques and Velocity Distribution
and Dispersion Measurements. NMR measurements provide an interest-

ing approach to the analysis of tracer dispersion at the pore scale. Pulsed

magnetic field gradient techniques enable us to determine the displacement

of the nuclei (for instance, protons in water) along a chosen direction during

a preset measurement time. This time can be varied over a broad range,

from a few to several hundred milliseconds [19].

For very short measurement times and low flow velocities, the displace-

ment of the fluid particles is small compared to the pore and the grain size.

In this case, these measurements provide the distribution of the velocity

component parallel to the field gradient. In the case of simple geometries

(monodisperse sphere packings for instance), these measurements can be

compared to numerical simulations in which Stokes equation is solved

numerically [19—23].

For long measurement times, the molecular displacements can be much

larger than the grain diameter d (displacements of up to 7d could be

obtained practically). This enables us to study the full transition of the

spreading mechanisms governing the displacement distribution from pure

convection to Gaussian dispersion. We note that in classical dispersion

experiments, tracer is injected at the inlet of the porous sample and the

concentration variations are monitored at the outlet. In pulsed gradient

NMR experiments, all water molecules in the sample are marked simulta-

neously and the distribution of their displacements can be determined after

a selectable time lapse. Compared to the classical technique, pulsed NMR

does not introduce any dead volume associated with a tracer injection

circuit. Moreover, the time interval and the pathlength can be varied to

enable investigations at the microscopic scale.

The principles and the practical implementation of NMR measurements

in porous media are described in detail in Chapters 9 and 10 of this book.

We present here only the features of these techniques directly related to

dispersion or velocity measurements. In particular, we do not discuss the

influence of magnetic flow field heterogeneities and relaxation processes due

to the complex geometrical and physicochemical structure of porous media.

These are important limitations in the use of such techniques in, for instance,

natural rock samples.

11.3.3.2 Practical Implementation of Pulsed Gradient Velocity Mea-
surements. Let us describe a typical experimental setup adapted to

measurements in small-diameter porous samples. The experiments described

here [19, 25] were performed with a 100-MHz Bruker CXP-100 pulsed
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Fig. 4. Experimental setup showing a superconducting magnet, the nuclear magnetic

resonance saddle coil for the radio-frequency pulse generation and signal detection

and the quadrupole gradient coil for the magnetic field generation parallel to the

flow in the porous sample.

NMR spectrometer using a vertical superconducting solenoid. The sample

is a nonconsolidated packing of spherical glass beads of diameters ranging

between 80 and 800 �m, contained in an 8 mm i.d. glass tube parallel to the

magnetic field (Fig. 4). The magnetic field gradient is also parallel to the

tube axis. A NMR saddle coil around the tube delivers the radio-frequency

pulses and detects the magnetization induction. The measurement volume

V is of the order of 1 cm
. The flow velocity is always low enough so that

the transit time through V is much larger than the longitudinal spin

relaxation time T
�
.

During the measurements, space is encoded by magnetic field-gradient

pulses of duration  with an intensity g up to 1 T/m. After a pulse, a

magnetization phase shift � � 
gz has been induced on fluid elements

located at a coordinate z in the direction parallel to the magnetic field

gradient (
 is the gyromagnetic ratio of the water molecules protons). The

sequences used in the experiments include two field-gradient pulses of same

duration  and amplitude g at an interval � and before the second magnetic

field pulse, a suitable RF pulse sequence is applied and flips the magnetiz-

ation so that the effective phase shift � is exactly reversed at all points. If

fluid particles did not move during �, the two phase shifts would exactly

cancel out after the second pulse. On the contrary, if the fluid particle has

moved by a distance �z in the time lapse between the two pulses, there will

be a resultant phase shift ��(�z) of the magnetization:

��(�z) � k�z � 
g�z, (11)

where k � 
g represents the wave number associated to the value g of the
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magnetic field gradient. The phase shift k�z clearly varies from one fluid

particle to another; thus, following Ref. [25], one introduces the probability

distribution P�(�z) of the displacements z during the time lapse �. Equation

(11) can then be rewritten as

M
�
(k) � M

�
�exp[i
g�z]�� M

� � P�(�z) exp[i
g�z]d�z. (12)

The amplitude M
�
(k) of the first echo is then the Fourier transform of the

propagation function P�(z) in which the wave number k � 
g is the

variable conjugate to the displacement �z. One first measures the complex

value of the magnetization M
�
(k) for a large number (typically 100) of

different evenly spaced magnetic field-gradient amplitudes. Then, P�(�z) is

obtained by inverse Fourier transform of M
�
(k). The technique can be

calibrated by analyzing the self-diffusion of water molecules without flow.

P�(�z) follows a Gaussian law from which the molecular diffusion coefficient

can be obtained. Each individual measurement for given � is very brief, but

global averaging times of order 10� s are necessary to obtain curves such as

those of Fig. 5. Various types of pulse sequences were used, including the

pulsed field-gradient Hahn sequence, the pulsed field-gradient stimulated-

echo sequence (PFG-SSE), and the Cotts sequence [24—25]. The most

elaborate ones can perform measurements for �z up to several grain sizes

and minimize the influence of transverse relaxation and magnetic field

heterogeneities during most of the pulse sequence.

An important test of the validity of the measurement is to compare

variations of the mean displacement �z�

��

determined from the experimen-

tal curves to the macroscopically controlled value �z�
��

� Q�/S� (Q is the

flow rate, � and S are the sample porosity and cross-sectional area).
Figure 6 displays the variation of �z�


��
as a function of �z�

��
for a series

of measurements. The two values coincide to within �10% up to very long

mean displacements of roughly 600 �m (three sets of experiments corre-

sponding to bead diameters of 80, 145, and 800 �m are superimposed on the

figure).
11.3.3.3 Velocity Distribution Measurements Using Pulsed Gradient

NMR in Glass Bead Packings. If one chooses a time interval � much

smaller than the decorrelation time �
�
for the velocity of the tracer particle,

then their displacement �z is small compared to the pore size and their

velocity remains roughly constant along �z. In the limit �� 0, �z � v
.
�,

and Eq. (12) becomes

M
�
(k) � M

�
�exp(i
g�v

.
)� � M

� � P�(v.) exp(i
�gv
.
) dv

.
, (13)

where P(v
.
) (often called the ‘‘velocity spectrum’’) is the probability distribu-
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Fig. 5. (a) Normalized velocity distribution P(v
.
/�v

.
� curves obtained with NMR

measurements using Hahn-type (H) and stimulated echo pulse sequences (SE) for

monodispersive sphere packing (d � 800 � 150 �m) and a Reynolds number

Re � 0.9 and for various measurement times � and mean displacements �z�: (�)
and () H, �� 15 ms, and �z�� 48.7 �m; (�) SE, � � 15 ms, and �z�� 64.6 �m;

and (
) SE, �� 20 ms, and �z�� 81.6 �m. The ratios of the mean displacement and

the grain diameter range between 0.06 and 0.1. The solid line is an exponential fit,

and the dashed line is a log-normal fit. (b) Shape of the velocity distribution

(logarithmic plot). Symbols are identical to those in (a).

tion of the velocity component along the field gradient. In practice, P(v
.
) is

determined by taking the inverse Fourier transform of the complex echo

amplitude M
�
(k), where k is varied by changing the field gradient g.
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Fig. 6. Variation of the experimental mean displacement �z� determined by the

pulsed gradient NMR technique as a function of the theoretical value Q�/SØ.

Such measurements have been reported in Refs. [19, 24—29]. In some

cases, only the overall probability distribution is determined. In others,

NMR imaging techniques are used to obtain spatial maps of the velocity

field when the resolution is good enough (less precise velocity determination

techniques are often used in this case).
Figure 5 compares experimental velocity distributions obtained with

different pulse sequences and for mean displacements between 49 and 82 �m.

The velocity v
.
is normalized by its mean �v

.
�: All curves coincide quite well

and normalization compensates for differences between the mean displace-

ments. Data are compared on linear (Fig. 5a) and logarithmic (Fig. 5b)
scales to exponential and log-normal distributions [26], as suggested by

various authors. Experimental data are consistent with a log-normal func-

tion near the peak but are better described by an exponential decay for

v
.
/�v

.
�� 0.5.

These results can also be compared to numerical simulations using

models constructed by dropping randomly, one at time, equal size spheres

into a parallelepipedic volume [19—21]. There is a good agreement and the

simulated velocity distribution also gives an exponential fall-off at large

velocity [19].

11.3.3.4 Dispersion Measurements Using Pulsed NMR Techniques.
When the displacement of the fluid particles is no longer small compared to

the pore size, the particle displacement is no longer proportional to the

velocity components. At the opposite limit, say �z � 5d, a Gaussian

dispersion regime has been reported using similar techniques [30].

Let us now discuss the transition between these two regimes on displace-

ment distributions measured on three different unconsolidated bead pack-
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Fig. 7. Normalized displacement probabilities P(�z/d ) as a function of the nor-

malized distance �z/d for (a) d � 800 �m, Re � 0.89, (solid line) �z/d � 0.1, (dashed

line) �z/d � 0.16, and (dotted line) �z/d � 0.3; (b) d � 80 �m, Re � 0.15—0.19, (solid

line) �z/d � 2.8, (dashed line) �z/d � 5.7, (dotted line) �z/d � 7.3, and (dash-dotted)
Gaussian fit of the second peak; and (c) d � 145 �m, Re � 0.22—0.24, (solid line)
�z/d � 1.5, (dashed line) �z/d � 2.1, (dotted line) �z/d � 3.2, and (dash-dotted line)
Gaussian fit of the second peak.
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ings of same external geometry as in the preceding [19, 25]. Grain diameters

are again d � 800, 145, and 80 �m and the mean displacement ��z� ranges

between 65 and 500 �m. Using three different grain diameters d enables us

to vary the ratio ��z�/d over a broad range from 0.08 to 7.3.

The mean fluid velocity U varies from 1.310�
 to 6.710�
 m/s (Reynolds

numbers Re � Ud/3v ranges from 0.89 for 800-�m-diameter beads to 0.16

for 80-�m-diameter beads). Smaller velocities are avoided to keep pure

longitudinal molecular diffusion negligible compared to convective disper-

sion. The physicochemical interaction with the grains can be ignored even

for the smallest beads and the packing geometry is assumed to be identical

for all sizes. Velocity distributions should therefore be the same for all

samples provided scale changes of the grain size d are taken into account.

Figures 7a to 7c show P(�z/d) for �z parallel to the mean flow velocity

through the sample; �z is normalized by the grain diameter d to enable

comparison of the three samples. For each bead size, experiments have been

performed [25] with different values of ��z�/d.

11.3.3.4.1 Mean Displacements Up to 0.3 Grain Diameters. Figure 7a

shows the data for the largest beads (d � 800 �m). The smallest displace-

ment ��z�/d � 0.1 reproduces the behavior seen in Fig. 5, and P(�z/d)
simply reflects the velocity component distribution parallel to the flow.

However, when ��z�/d increases to 0.16, the distribution is already strongly

distorted; and for ��z�/d � 0.3, a secondary peak can be seen. The latter

corresponds to the fastest particles, which have moved into another pore

and have changed velocity markedly. The peak position reflects the mean

velocity through the sample and its broadening is a precursor of the

dispersive displacement distribution occuring at long times. On the other

hand, the slower molecules have moved by only a small amount, and they

are represented by the peak near the origin.

11.3.3.4.2 Large Displacements from 2.8 to 7.3 Grain Diameters. This

second series of curves (Fig. 7b) was obtained for the sample with the

smallest beads (d � 80 �m). Since ��z� is large compared to the grain size,

fluid particles have explored a large enough number of pores for the central

limit theorem to apply. The spreading process reaches a steady dispersive

regime similar to that observed in macroscopic samples. A small anomaly

is barely noticeable near the origin for the two data sets with the smaller

��z�. The third data set is highly symmetrical and well fitted by a Gaussian

function.

As already stated, this measurement differs from a classical dispersion

experiment. Fluid particles are marked uniformly in the pores instead of

being injected at one end of the sample. Analyzing data in Fig. 7b by

assuming that the spreading process follows a Gaussian behavior gives a

normalized dispersion law D
��
/Ud 0.8, in good agreement with Eq. (3) and
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with experimental results obtained by classical techniques [31] for similar

samples in this range of Péclet numbers (Pe 400). This agreement implies

that the sample is homogeneous enough so that the different averages of the

two measurements give the same results.

11.3.3.4.3 Transition Regime: Distances from 1.5 to 3.2 Grain Diam-
eters. In this range of �z�/d values, obtained using the intermediate bead

size d � 145 �m, double-peaked distributions are observed (Fig. 7c). The

first peak corresponds to particles in low-velocity zones such that their

displacement during the measurement time is small compared to the pore

size. The second peak corresponds to fast particles, which have already

moved across one or more pores. Fits of the latter peaks by a Gaussian

variation give dispersion coefficients close to the previous ones. As expected,

the height of the second peak increases with �z� relative to the first; that is,

fewer particles remain trapped in slow zones after a long time. We note that

the shape of the curve �z�/d � 3.1 is very similar to the curve with �z�/d �

2.8 in Fig. 7b. This shows that after suitable normalization, the displacement

distribution depends mainly on �z�/d and not on the grain size d. The

observed behavior of P(z/d) is well reproduced by Monte Carlo simulations,

which model the porous medium by a random network of tubes [25].

These NMR results demonstrate the main features of tracer dispersion in

porous media. A large fraction of the fluid initially has a low-velocity

component in the direction parallel to the mean flow, but after flowing

through several pores, the probability density of the displacements displays

a Gaussian peak that corresponds to the mean velocity.

11.3.4 Electrochemical Techniques for Measuring Echo Dispersion at
Short Distances

11.3.4.1 Reversibility of Tracer Dispersion in Homogeneous Samples.
Another way to investigate the transition between convective spreading

associated with the local flow velocities and classical macroscopic dispersion

is to study the reversibility of the process by the following echo dispersion

technique [32]. A tracer concentration variation is introduced at time t � 0

at the inlet of the porous sample and carried by a flow. After a time t
	
, the

front has penetrated a mean distance L � t
	
/U into the sample. The flow

direction is then reversed and an ‘‘echo’’ of tracer concentration variation is

detected at the inlet of the sample at a time t � 2t
	
. From the shape of the

echo curves, one can obtain an effective echo dispersion coefficient D
����

.

This technique is described in more detail in Section 11.5.

For macroscopic measurements in which L is much larger than the

grain size and for homogeneous samples of simple geometry (glass bead

packings for instance), D
����

is equal to the transmission dispersion coeffi-
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cient. The case of heterogeneous media will be discussed later in the present

chapter. This result appears to contradict the reversibility for low Reynolds

number flows (Re	 1). When the mean flow velocity U is reversed

(U� �U), the local velocity v(r, t) is replaced by its opposite �v(r, t) at

every point in the fluid and one might expect the tracer to converge back

so that one should have D
����

	D
��
�������


.

This apparent contradiction can be resolved by considering the spreading

of an initially localized dot of tracer [33]. At small penetration depths (one

grain diameter or less), spreading is reversible. On the other hand, after

going through several pores, the spot splits into very thin filaments.

Molecular diffusion causes the particles to follow randomly different fila-

ments. Thus completely different paths are followed when the flow is

reversed. This filament division process is exponential and dispersion

becomes irreversible above a penetration depth l
3

of a few pore diameters.

Note that l
3

should depend weakly on the Peclet number, possibly as ln(Pe),
due to the exponential decrease of the filament size with distance.

This transition to irreversibility has been studied numerically and experi-

mentally on 2-D arrays of cylinders [34] using dye visualisations. In two

dimensions, the influence of molecular diffusion is very much amplified near

stagnation points where diffusion is most important. This is the major

source of irreversibility. Measurements on more realistic 3-D geometries

cannot be performed with standard chromatographic devices because valves

and injectors have significant dead volumes. Special measurement tech-

niques are needed to obtain spatial resolutions markedly lower than a grain

diameter.

11.3.4.2 Electrochemical Technique for High-Resolution Echo Tracer
Dispersion Measurements. Electrochemical techniques can achieve such

high spatial resolutions [33, 35]. The tracer is produced in situ by the

electrochemical oxidation of ferrocyanide Fe(CN)��
�

ions into ferricyanide

Fe(CN)
�
�

ions on a platinum grid placed against the inlet end of the

sample. This minimizes dead volume that limits the resolution. In Fig. 8, the

porous medium is an unconsolidated packing of monodisperse glass beads

(diameter 2 or 4 mm) contained in a 55-mm i.d. vertical cylinder.

Initially, the liquid contains only ferrocyanide ions and a steady constant

downward flow is established through the sample. Ferricyanide ions, which

act as the tracer species, are generated by passing an electrical current

between the platinum grid and a ground electrode. The number of tracer

ions generated per unit time is proportional to the current. A short current

pulse can create a thin homogenous plane of tracer about 1/10 mm thick.

After the tracer has penetrated the desired mean depth into the medium, the

flow is reversed. The grid is connected to a potentiostat circuit, which

measures a time-dependent current I
�

that corresponds to the reduction of
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Fig. 8. Experimental setup for the analysis of tracer dispersion reversibility using an

electrochemical technique for both the emission and the detection of tracer. The

platinum grid electrode used both for tracer emission and detection is made of

0.06-mm o.d. wires with a 0.33-mm mesh size; it is placed at a height of 1.5 mm above

the sample.

the ferricyanide tracer ions back into ferrocyanide ions on the grid. Figure 9

shows two experimental curves that correspond to penetration distances of

0.62 and 1.25 times the bead diameter.

The instrumental spatial resolution of the system is estimated by first

performing the experiments without the porous medium. In this configur-

ation, one obtains effective dispersion coefficient values as low as one to

three times the molecular diffusion coefficient. In all experiments with the

same flow velocity, the number of detected ions is independent of the

penetration distance and proportional to the injected charges. This confirms

that the detection system is linear and that the shapes of the experimental

curves are meaningful.

In this example, the main interest is to have a very sharp tracer pulse with

essentially no dead volume. It can be extended to obtain tracer injections

with arbitrary (for instance, sinusoidal) waveforms [35]. The full transfer

function of the system can be determined by changing the excitation

frequency and measuring the amplitude and phase shift of concentration

variations at the outlet.
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Fig. 9. Typical variations of the detection current in a 4-mm glass bead packing with

Pe � 785, Re � 0.57, and D
�

� 7.2 10�� cm�/s. Flow inversion times are t
	
� 50 and

100 s, corresponding to mean penetration distances respectively equal to 2.5 and

5 mm.

11.3.4.3 Transition to Irreversible Dispersion in Glass Sphere Packings.
Due to the small number of pores explored, curves such as those of Fig. 9

do not generally follow the convection—diffusion Eq. (3) since they are not

in the asymptotic limit. We can estimate the effective dispersivity length l
���

and the dispersion coefficient D
����

from the first moment t# and the mean

square width �t� of the transit time distribution by the expression

l
���

�
D

����
U

�
�t�U

2t#
. (14)

For a given velocity U, one can determine the effective dispersivities l
���

(L )

for different penetration depths L into the sample. Figure 10 shows how

l
���

(L ) varies with L /d for two different bead diameters d � 4 mm (Fig. 10a)
and d � 2 mm (Fig. 10b).

In both cases, l
���

(L ) reaches its limiting value at about L /d � 15. The

limit value (about 0.2 and 0.1 cm, respectively) is roughly half the bead

diameter, in good agreement with transmission (and other echo) measure-

ments in homogeneous samples [31, 32]. From the simple model, assuming

an exponential division of the tracer filaments, one expects l
���

(L /d) to

depend very weakly on the Péclet number, as observed (a logarithmic

dependence is predicted). We note that the l
���

(L /d) data follow the same

curve for the two bead diameters after l
���

has been normalized by the

diameter d. These results confirm that the transition to irreversibility occurs
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Fig. 10. Variation of the effective dispersivity l
�

as a function of the mean

penetration distance L normalized by the bead diameter d for (a) d � 4 mm, (■)
Pe � 1570 and Re � 1.13, (●) Pe � 785 and Re � 0.57, and (▲) Pe � 390 and

Re � 0.28, and (b) d � 2 mm, (■) Pe � 880 and Re � 0.64 and (●) Pe � 220 and

Re � 0.16.

over a small distance of the order of 10 grain layers. However, at short

distances (L /d	 1), l
���

is 20 to 80 times smaller than its limiting value; a

large part of the spreading is reversible.

11.3.5 Potential Developments of High-Resolution Techniques

In this section, we have studied high-resolution dispersion measurement

techniques such as pulsed gradient NMR, particle imaging and elec-
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trochemical techniques. We have shown that they can give irreplaceable

information concerning the mechanisms of tracer and solute transport at the

scale of one pore or less or of a small number of pores. Until now, however,

these techniques have been mostly used in homogeneous nonconsolidated

samples with simple and well-connected pore geometries. An important

issue is the extension of these techniques to consolidated porous materials

and natural rocks; in these, other features such as local flow reversals or

large-volume dead zones are to be expected. The coupling of such measure-

ments to imaging techniques, enabling us to identify these anomalous flow

regions should be an important step forward; however, some problems such

as the sensitivity of NMR measurements to magnetic impurities will have to

be overcome.

In the following sections we deal, on the contrary, with techniques for

analyzing transport or dispersion over distances corresponding to many

pore sizes.

11.4 Experimental Techniques for Analyzing Dispersion in
Large-Scale Heterogeneities

11.4.1 Acoustic Technique

Experimental studies of transport phenomena in porous media, such as

the mixing of miscible fluids or two-phase fluid flows, require a characteriz-

ation of not only the overall fluid saturations of the sample but also the

transient and spatial saturation of each fluid. Although microwave [36, 37],

gamma, and x-ray absorption [38, 39] techniques may appear old-fashioned

compared to porous media imaging through X rays or NMR computerized

tomography [40—42], these techniques, originally designed for medical

applications, may be unsuitable for fast-flow experiments and large samples

and they cannot be used when temperature and pressure conditions require

a metallic sample cell. By contrast, acoustic imaging can accommodate a

wide range of sample cell materials transparent to acoustic waves. In this

section, we describe in particular how a three-dimensional acoustic scanner

can be realized by using sound velocity variations to measure fluid satura-

tions [43—45]. Let us note that the wavelength � of acoustic waves is much

larger than the grain and pore sizes. Therefore this probe is macroscopic and

automatically performs volume element (REV), averaging on the porous

media at this scale. From a previous work [43, 44], we present the principle,

accuracy, and time and space resolutions of saturations determinations. We

then describe their application in visualizing saturation profiles and con-

structing a 3-D acoustic scanner. In both cases, imaging a flowing blob is

used as a test.
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Fig. 11. Sound velocity versus glycerol concentration in the glycerol—water mixture.

11.4.1.1 Acoustics of Porous Media. The classical Biot theory [46]

gives the best description of acoustic wave propagation in porous media

saturated with one fluid. Numerous consequences of this theory have been

experimentally verified [47], and it is described in Chapter 5. Here, we

report some measurements in porous media saturated with miscible fluids

(which is a single fluid phase), and extend Biot’s approach to two immiscible

phases saturating the medium; for example, oil and water in rocks.

11.4.1.2 Porous Media Saturated with One Fluid Phase. Figure 11

displays sound velocity measurement in a fireproof-brick porous medium

[48] saturated with a water—glycerol mixture of various concentrations c.
Note that a mixture of miscible fluids behaves as a single phase and that

Biot’s theory applies. This more or less linear calibration curve shows that

for c varying from 0 to 100%, the velocity variation is about 20%. Since our

acoustic device can detect relative velocity variations as small as 10��, the

corresponding concentration resolution in miscible fluid is about 0.2%. A

similar test has been performed on unconsolidated glass bead packs

saturated with water—ethanol mixtures [43].

11.4.1.3 Porous Medium Saturated with Two Fluid Phases. One of

most important problems in oil recovery and immiscible flows is to deter-

mine the local saturation of oil (S
!
) or water (S

�
). It is generally accepted

that acoustic methods are inappropriate for the determination of saturation

profiles in sandstones because the sound velocity in rocks fully saturated

with either oil or water are nearly the same. Figure 12 displays experimental

values of the sound velocity versus the brine saturation S
�
. The data clearly

show a strong dependence on the flow history of the sample. The right-hand
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Fig. 12. Sound velocity of a water-wet sandstone versus water saturation for (�)
drainage and (o) imbibition.

side curve (�) corresponds to the injection of oil (nonwetting fluid) into a

brine saturated sample (a drainage process). The line through the data is our

extension of Biot’s theory to two immiscible fluids. It combines the two fluids

into a single one using an effective medium theory that takes into account oil

and water densities and compressibilities (�
!
, �

�
, K

!
, K

�
). The left-hand

curve (o) corresponds to the injection of brine into a sample saturated with

oil (imbibition process). The decrease of the sound velocity with S
�

results

from the continuous decrease of the frame moduli due to the modification of

the grain contacts by the totally wettting fluid injection [44]. Using these

calibration curves with the aforementioned 10�� precision in sound velocity

measurements, we can achieve a saturation resolution of 0.5%.

11.4.1.4 Sound Velocity Variation Measurements. To measure sound

velocity accurately, we use an automated system whose principle is sketched

in Fig. 13. The key element of the system is the transducer probe. It consists

of uniformly spaced piezoelectric zirconate titanate (PZT) elements that

have been sawed and polished. Each PZT element is 5.6 mm wide, 10 mm

long, and 2 mm thick with a resonant frequency of about 350 kHz. The

bandwidth is quite narrow because there is no damped backing, which also

has the advantage of increasing the sensitivity. A pulse function generator

sends a sine-wave pulse (15 V peak to peak) to the transmitter at 350 kHz.

It is received by the opposite transducer after a time of flight �. The received

449ANALYZING DISPERSION IN LARGE-SCALE HETEROGENEITIES



ReceiverTransmitter Time of flight

C=1

C=0

Transducer Transducer

Fig. 13. Principle of sound velocity measurements.

signal, which has been attenuated by successive interfaces, diffraction, and

attenuation in the different media is amplified by 60 dB. Changes in the fluid

concentration inside the porous medium affect the sound velocity and

therefore the time of flight �. For a typical 2500 m s�� sound velocity and a

4-cm-thick porous medium, � � 16 �s. This � value is precisely measured by

a counter timer with an accuracy of better than 0.01 �s. All this equipment

is computer controlled. The accuracy in � measurements is limited by the

electronic fluctuations of the signal. A typical received signal has a voltage

U�500 mV with noise U��10 mV. Over a quarter period T /4�700 ns,

this gives a timing error � � �15 ns, and thus a precision in � (or velocity)
of 10�
. To obtain the 10�� resolution, the signal is averaged 100 times.

With a repetition rate of the transmitted pulse of 1 ms, this is achieved in

0.1 s. The lateral spatial resolution is typically 3 mm, close to the 2-mm

transducer thickness. We should emphasize that a large variety of sample

holder materials, such as metal and epoxy, are transparent to acoustic

waves. Thus, the acoustic technique is well suited for studies at various

temperature and pressures.

11.4.1.5 Concentration Profile Measurements. During a flow experi-

ment, fluid concentrations C(z, t) versus time at different z positions from

the inlet can be measured using sound velocity. We use a sample core

(sandstone) of typical size 4� 4 � 30 cm
 in an epoxy holder. Fluids flow

along the vertical z direction. Velocity measurements are performed using

10 transmitter—receiver pairs laid every 2.5 cm along the sample. The 10

pairs are scanned successively using a computer controlled system. This

automated procedure records C(z, t) for the 10 z values in less than 2 s.

In a dispersion experiment [48], one fluid in the porous medium is

displaced by another miscible one (water—ethanol or water—glycerol mix-

tures). Figure 14a gives the time dependence of C(z, t), in five cross sections
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Fig. 14. (a) Hydrodynamic dispersion profiles in five successive planes and (b) the

same plot in reduced variables to determine the dispersion coefficient.

of a sandstone for a constant 6 cm
/h flow rate. These profiles show the

typical dispersion characteristics, namely, the increase in the width of the

transition zone with distance z from the inlet, which is a feature of the

longitudinal dispersion effect. From left to right z � 1.5, 6.5, 11.5, 16.5, and

21.5 cm. A best fit to these data with solutions of Eq. (3) (Fig. 14b), leads to

the longitudinal dispersion coefficient.

Figure 15 shows concentration variations at nine spatial locations in a

flow experiment where a 1-cm
 miscible fluid blob, injected in the porous

medium through a small tubing, is displaced at a 3.2-cm/h constant flow

rate. Each profile shows the passing of the drop through a particular z plane;

the larger distance from the inlet (z varies from 3 to 27 cm in 3-cm steps),
the larger the width, the smaller the height of the profile, which is due to

both transverse and longitudinal dispersion. These data can be used to

determine the transverse dispersion coefficient [13, 48].

11.4.1.6 A 3-D Acoustic Scanner. The acoustic velocity measurement

can be used to design a 3-D acoustic scanner for determining the complete
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Fig. 15. Concentration variations with time induced by a 1-cm
 miscible fluid drop

moving upward through five measurement planes.

concentration distribution C(x, y, z, t) in the sample. The 3-D concentration

determination is realized in the same 4� 4� 30 cm
 sandstone core en-

cased in epoxy by an array of 10 � 10 pairs of transducers set up in the x-y
plane and swept along the z direction. This device enables us to obtain 3-D

images by a standard imaging reconstruction algorithm and is sketched in

Fig. 16. Transducers are laid every 4 mm with their thin dimension in the

x-y directions so that the spatial resolution in the x-y plane is 3� 3 mm�.

To improve measurement stability, the sample and the detection array are

immersed into a constant temperature water bath. The 20 transducer pairs

of the grid are scanned in less than 4 s. Displacement of the detector along

the vertical direction is accomplished by a stepping motor. It moves at a

velocity of 10 cm/s with a 0.05-mm positioning reproducibility. The z spatial

resolution is mainly due to the 10-mm length of the transducers in that

direction. Since it is possible to sweep as many z values as we need and

perform a deconvolution procedure, however, we can also reach a 4-mm

spatial resolution along z. The limiting voxel size of the scanner is then

4� 4 � 4 mm
. A scan of the 30-cm-long sample with 10 slices can be

accomplished in 2 min. The data are analyzed using an in-house computer

algorithm to determine the fluid saturation at each voxel of the sample.

Figure 17 displays the experimental results obtained when a 1-cm
 miscible

452 METHODS FOR THE STUDY OF FLUID MIXING IN POROUS MEDIA



x

y

z

Injection

Encoder

Emitter

Pump

Motor

Receiver

Emission

Reception

Fig. 16. (a) Sketch of the 3-D acoustic scanner and (b) sketch of the transducers

array in an x-y plane.

fluid blob is displaced at a constant flow rate. The contour maps in Fig. 17

show the distributions in a given x-y plane (z � 6 cm) at five successive

times. One clearly sees the blob moving up through the plane.

11.4.2 Other Techniques Applicable to the Analysis of Large-Scale
Heterogeneities

Besides acoustic imaging, other techniques can also be used to study

dispersion over large scales: NMR imaging is one option, though much

more costly. In Section 11.3.3 we showed that pulsed gradient NMR

techniques give velocity distributions at the pore scale and at very short

times. The NMR imaging apparatus can also be adapted to provide

qualitative ‘‘images’’ of the flow velocity.
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Fig. 17. Concentration maps obtained at five different times in the same horizontal

plane during the same blob displacement experiment as in Fig. 15.
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Fig. 18. Finite-size effects: concentration variation vs time at five equidistant

locations across the unsaturated millstone porous medium. Dashed lines correspond

to a Gaussian dispersion profile; at short distances from the inlet, profiles display a

long time tail; at a large distance, they tend toward a Gaussian profile.

Other types of measurements can also be performed with NMR imagers.

For example, one can use paramagnetic tracer ions such as Mn�" com-

plexes, which strongly shorten the paramagnetic relaxation times T
�

and T
�

[49], the NMR signal amplitude is then observed to have a maximum with

respect to the tracer concentration. Using ion concentrations always higher

than that corresponding to the maximum, the amplitude has a monotonous

dependence and one obtains either full 3-D images or 1-D profiles of the

concentration as needed. The former enables us to visualize large-scale

heterogeneities; the latter gives less noisy 1-D data that can be analyzed

more quantitatively. Radioactive tracers have also been used for concentra-

tion measurements but they have been limited to 1-D profiles so far [50, 51].

11.5 Experimental Analysis of Anomalous Dispersion and Finite
Size Effects

Contrary to the ideal data displayed in Fig. 14, anomalous dispersion is

often observed. In such experiments, the concentration variation C(t) at the

outlet of the sample exhibits a long time tail; an example is shown in Fig. 18,

where the dashed lines correspond to the Gaussian curve. Such a profile

cannot be fitted by solutions of Eq. (3), even with appropriate boundary
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conditions [13] because some tracer seems to remain trapped after the front

is passed. These effects are observed even with completely passive tracers,

which do not interact or become adsorbed on the porous matrix. Much

work has been done, mainly in petroleum engineering [4, 52—57], to explain

these long tails, including the well-known Coats—Smith [4], porous spheres

[53—54], and transverse matrix diffusion models.

The phenomenological Coats—Smith model, which lends itself to our

experimental analysis, assumes that a fraction of the pore volume is

occupied by stagnant fluid zones. Exchanges between flowing C and

stagnant C* fluids take place with a characteristic time �
�

via molecular

diffusion (assuming that adsorption on the pore walls is negligible). The

concentration variation C(L , t) at the outlet (x � L ) is characterized by

three parameters [4]: the flowing fraction f, a dispersion coefficient D
�

including only the effect the flowing zones, and the stagnation time �
�

(L
and U are generally known). Experimental curves can often be fitted

precisely by solutions of this capacitance model, especially for a single x/L
value, and it has been used intensively in petroleum and chemical engineer-

ing [5]. In cases where adsorption is present (as in chromatography), this

model can also be applied, but time constants associated to adsorption must

also be taken into account. In many porous media, on the other hand, the

characteristic time �
�

is flow dependent (��U��) and not constant as

would be expected for molecular diffusion. Moreover, the coefficient D
�

is

roughly proportional to U. Thus, the global dispersion coefficient combining

the influence of flowing and ‘‘dead’’ zones is proportional to U and not to

U�, as expected when a large fraction of the pore volume is occupied by

dead zones [12, 58]. In spite of these shortcomings, these models are a

convenient way to characterize dispersion at a finite distance L .

To account for these non-Gaussian profiles, one can think of either a

finite-size effect or anomalous dispersion. A finite-size effect means that the

number of steps involved in the random walk process leading to dispersion

is not large enough to lead to a Fickian behavior. For very long samples,

the three parameters in the capacitance model should, for instance, merge

into a single asymptotic Gaussian dispersion coefficient [11, 32, 59]. Direct

statistical calculations with characteristic lengths [60] or nonlocal disper-

sion approaches [61, 62] are required. The latter theory leads to predictions

in agreeement with experimental longitudinal and transverse diffusivity

measurements [63]. If a finite-size effect is the right answer, the profiles

C(x, t) must become more Gaussian as the distance x from the inlet

increases. A long enough sample should then give a spreading proportional

to �t.
An alternative hypothesis, in the absence of such a decisive test, is real

anomalous dispersion [64—66] due to long-range correlated heterogeneities.
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Depending on the behavior of the correlation length of the permeability

(and therefore of the velocity field), spreading may grow as t� with �� 1/2

(hyperdiffusion) or �� 1/2 (hypodiffusion) even for a long sample. For

instance, in a model medium consisting of strata of different permeabilities,

the value � � 

�

has been predicted [66], in reasonable agreement with

experimental results (see the references in Ref. [17]).

11.5.1 Acoustic Experiment on Non-Gaussian Dispersion

To clarify the problem of anomalous hydrodynamic dispersion in porous

media, we use an acoustic technique that enables us to measure the

concentration C(z, t) in 10 cross sections of the same sample at 10 distances

z values from the inlet; that is, we can test 10 sample lengths L simultaneous-

ly. This technique enables us to observe the long time tail along the sample

and to test the possibility of finite-size effects. Moreover, 10 concentration

profiles provide a sounder basis for comparisons with a semiphenomeno-

logical theory, particularly when three adjustable parameters are intro-

duced. Using the same millstone that leads to Gaussian dispersion at any

scale (Fig. 14), we turn it into an unsaturated medium by immiscible

displacement. First, we saturate the millstone competely with brine, which

serves as a totally wetting fluid. We then inject a nonwetting oil (hexane),
beginning at a small flow rate (capillary number Ca� 10��) and then

increasing step by step (up to Ca� 10��) to achieve a nearly constant

(acoustically tested) oil saturation So � 60% along the sample. The corre-

sponding water saturation (�40%) is close to the irreducible water satura-

tion. Such a procedure leads to a multiconnected network of oil entangled

with the one of water. The topology of this network can be visualized more

or less as a percolation network [67]. We perform the dispersion measure-

ments on the hexane network by injecting a second oil (nonane), miscible

with hexane. The flow rate is kept lower than for the initial hexane injection

so that the wetting fluid (brine) remains stationary. The set of five curves in

Fig. 18 correspond to the time-dependent concentration C(t) for five

different pairs of transducers at x � 1.5, 7.4, 10.8, 15.6, and 20.6 cm from the

inlet at a mean flow velocity, U � 3.6 cm/h. The increased noise in the data

as compared to Fig. 14 is due to the weaker velocity contrast between oil

and water saturated media when the fluid distribution is inhomogeneous on

a larger scale. Nevertheless, compared to Fig. 18 it is clear that C(x, t)
exhibits a long time tail, especially at small x values.

11.5.2. Characterization of the Observed Non-Gaussian Dispersion

One possible way to analyze these data is to compute the different moments

of the residence-time distribution from which one obtains the flow velocity
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(mean transit time) and the dispersion coefficient (mean-square transit time).
However, the noise in the data, especially in the long time tail, excludes this

possibility as well as other treatments that require Laplace or Fourier

transforms. Following other authors [53—57], we fit the data analytically

with appropriate models. The dashed lines in Fig. 18 are best fits of our data

with solutions of Eq. (3) of the type

C(x, t) �
1 � erf(x � �V �t)/2�D

��
t

2
, (15a)

where

erf(%) �
2

�* �
�

�

e����d� . (15b)

In this process, we have preferentially fitted early time data. There is a large

discrepancy for curves corresponding to small x values, but the disagree-

ment is reduced at higher ones; that is, dispersion becomes more Gaussian

at larger distances from the injection plane. From these fits, we obtain an

x-dependent dispersion coefficient D(x) but, for each x value, D(x) is

proportional to U over one and a half decades. The effective dispersion

length l
�

(x) � D
��
(x)/U is plotted versus x in Fig. 19. Note that l

�
increases

and becomes of the order of 1 cm at the largest distances, while the profiles

become Gaussian again. This value is much larger than in the fully saturated

sample, which is a reasonable result since the scale of heterogeneities is

much larger in the partially saturated sample. The dashed lines in Fig. 18

correspond to computations from Eq. (15) using l
�

values from Fig. 19. This

l
�

value corresponds to the dashed lines in Fig. 18 obtained from Eq. (15).
To characterize the long time tail, we use a semilogarithmic plot of C versus

t. Between C� 0.3 and 0 we find that C(x, t) � exp[ � t/�(x)]. The long

time tail of the non-Gaussian profiles at small distances can be described as

an exponential decay of characteristic time �(x) inversely proportional to U,

in agreement with other experiments. Our experiment shows that the long

time tail is due to the finite-size effect: The characteristic dispersion length

l
�

� 1 cm is not small enough compared to observation length x (1.5 to

21 cm). It is basically this transient effect that is described by the nonlocal

dispersion theory [61, 62]. From the basic mechanism responsible for

dispersion [7], these authors calculated the residence-time distribution

(RTD), which is the response P(x, t) of the medium to an impulse source at

x � 0 and t � 0. At a long distance from the inlet, they recovered a classical

Gaussian peak, whereas at a short distance, the transient RTD exhibits a

long time tail. The characteristic time depends on the mechanism involved

in the dispersion process: (i) For hold up dispersion (real dead ends), �
,

is
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Fig. 19. Dispersion length l
�

� D/U versus distance for the Gaussian fit of the

previous; l
�

increases toward a value l
�

� 0.9 cm at large enough distances from the

inlet.

velocity independent; (ii) for boundary layer dispersion, �
�

is velocity

dependent with �
�
�U���
 ; and (iii) for mechanical dispersion (convection

along different flow passages), �
�

is also flow dependent, but with �
�

�U��.

Our data agree with mechanical dispersion and give an asymptotic disper-

sion coefficient proportional to U(D � Ul
�

), as predicted by theory.

11.5.3 Reversibility of non-Gaussian Characteristics of Dispersion

As in the case of high-resolution measurements described in Section

11.3.4, the study of the reversibility of tracer dispersion at longth length

scales also provides important additional data. This will particularly be the

case when long time tails are present. The reversibility of the tail effect with

respect to a change of the flow direction provides information concerning

the convective or diffusive nature of tracer exchange with the slow zones.

11.5.3.1 Echo Dispersion Measurement Technique. In classical

transmission dispersion, one lets a tracer concentration front induced by a
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Fig. 20. Experimental echo dispersion curves (solid lines) for three different pene-

tration depths inside a Massilon sandstone porous sample. Dotted line is experimen-

tal transmission dispersion curve through the same sample (displays non-Gaussian

tail effect).

pulse- or steplike concentration variation at the inlet move all the way

through a porous sample, it is then detected at the outlet (Fig. 2). In echo

dispersion, the tracer concentration front first moves by a distance x into

the sample and the flow direction is reversed at a time T
�
: after a time 2T

�
an ‘‘echo’’ signal is obtained when the front moves back through a detector

placed this time at the inlet. Typical experimental curves corresponding to

various penetration distances (full lines) are displayed in Fig. 20. They are

compared to more classical transmission measurements (dotted line) for

which the detector is placed at the sample outlet and the flow is not

reversed. Let us note that, while the transmission curve displays a marked

tail effect, the echo curves are narrower and can be well fitted by the

functions of Eq. (15). Let us now compare echo dispersion measurements in

homogeneous samples giving Gaussian transmission dispersion curves and

heterogeneous samples displaying anomalous transmission dispersion surves

(such as those of Fig. 20).
11.5.3.2 Echo Dispersion in Homogeneous Samples. Figure 21 dis-

plays variations with the Péclet number Pe � Ud/D
�

of l
���

(dispersion

length from echo measurements) compared to the transmission dispersion

length l
�

in a sample packing of unconsolidated glass beads of diameter

d � 200 'm (lower sets of points) [32]. Values obtained using both tech-

niques are very similar and l
�

is of the order of half the grain size. As

discussed in Section 11.3.4, this reflects the fact that dispersion is irreversible
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Fig. 21. Dispersion length variations with the Péclet number Pe � Ud/D
�

in

transmission (l
�
, open squares) and echo (l

���
, solid squares) for two Gaussian

porous samples: unconsolidated 200 �m-diameter glass beads packing (lower set of

points) and Berea sandstone (upper set of points).

with respect to the flow direction after a pathlength of a few grain sizes. The

upper set of points corresponds to Berea sandstone samples; l
�

is also

almost equal to l
���

, but both dispersivities range between 1 and 2 mm, that

is, 20 times more than the typical grain size (70 �m). The reason is that

Berea sandstone has a slightly layered structure and both l
�

and l
���

are of

the order of magnitude of the layer thickness [68]. This shows that

dispersion remains Gaussian provided that heterogeneities are small enough

to be sampled over the tracer particle’s flow path. Note that the degree of

reversibility does not depend on the Péclet number, in agreement with the

results of Section 11.3.4.

Different results are obtained for the Massilon sandstone sample on

which the dispersion curves of Fig. 20 have been obtained. This rock

displayed visible colored layers with a thickness of a few millimeters. The

corresponding echo and transmission dispersivity variations are displayed

in Fig. 22. At high Péclet numbers, the transmission dispersivity is higher

than the echo one by a factor of 2 or 3; transmission dispersion curves are

highly non- Gaussian, while echo curves agree well with Eq. (15). At low

Péclet numbers, both dispersivity values become similar and the trans-

mission curves are nearly Gaussian. Similar results have been observed on

glass bead packings with layers of different permeabilities [10].

Dispersion anomalies (taillike features, for instance) in natural or artifi-

cial layered samples can therefore be identified from their partial reversibil-

ity in echo dispersion experiments; these give Gaussian curves with smaller

dispersivity values than transmision dispersion. Also, the dependence of the

relative values of the two types of dispersivities on the Péclet number is
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Fig. 22. Dispersion length variations with the Péclet number Pe � Ud/D
�

in

transmission (l
�
, open squares) and echo (l

���
, solid squares) for a non-Gaussian

Massilon sandstone sample.

related to the size of the heterogeneities. In this case, one deals with

heterogeneities of large sizes but with relatively small contrasts between

high- and low-velocity zones: Solute transport is generally convective in

both types of regions, which explains the reversibility of the tail effect.

11.5.3.3 Anomalous Tracer Dispersion in Porous Media with a Broad
Flow Velocity Distribution or in Double-Porosity Media. We shall now

analyze the different case of heterogeneities of smaller size but with a higher

permeability contrast between high- and low-velocity zones. In this case,

molecular diffusion can play a significant part in the exchange of solute

between high- and low-velocity regions. We shall particularly analyze these

effects in the case of double-porosity media.

We designate as double-porosity materials porous media where flow

may occur both in large connected pores and inside the solid matrix,

which is itself porous (but with smaller pores). This problem has applica-

tions in petroleum and chemical engineering. The two upper curves of

Fig. 23 display transmission dispersivity variations with the Péclet num-

ber for nonconsolidated packings of porous grains of internal porosities

�
�
�

� 30% and 19% [69]: The grains are made of sintered glass beads of

initial diameter d
�

� 55 �m. The mean grain size is d
�

� 550 �m.

At Péclet numbers Pe� 10, D
��
/U

�
increases more with Pe for both

double-porosity samples than for single-porosity ones (lower curve) due to

the large permeability contrast between the inside and the outside of the

grains. For Pe� 5, spreading is controlled locally by molecular diffusion

depending little on the width of flow channels, and D
��

is similar for single-

and double-porosity samples. For very large Péclet numbers, on the con-

trary, tracer transport is convective everywhere. From Eq. (5), one has

462 METHODS FOR THE STUDY OF FLUID MIXING IN POROUS MEDIA



Fig. 23. Variation of the normalized dispersivity l
�
/d

�
� D

��
/Ud

�
as a function of the

Péclet number Ud
�
/D

�
for three different porous samples: (�) single-porosity

packing of 200-�m-diameter beads; (�) double-porosity packing of grains with a

high internal porosity Ø
�
�

� 30% (d
�

� 550 �m and d
�

� 55 �m); (�) double-

porosity packing of grains with a lower internal porosity Ø
�
�

� 19% (d
�

� 550 �m

and d
�

� 55 �m).

D
��
 u��, where u is the order of the deviations of the fluid velocity with

respect to the mean U (in the present case uU), and � is the time during

which a tracer particle keeps memory of such a deviation. It is controlled

by the transit time through the slowest channels so that � d/(	U )(		 1 is

the velocity ratio between the inside and the outside of the grains). Thus,

D
��


Ud

	
� Ud. (16)

This limit value is reached when the internal velocity u � 	U is high enough

so that tracer transport inside the grains is convective with 	Ud
�
/D

�
� 1

(Pe � Ud
�
/D

�
� 1/	). At intermediate Pe values, D

��
/U increases until tracer

transport is fully convective [60, 70]. In Fig. 23, neither of the two double-

porosity curves reaches the plateau regime due to the small 	 value giving

exceedingly high values for the corresponding Péclet number. We observe,

however, that, as expected, the curve corresponding to �
�
�

� 30% is more

strongly curved downward than that for �
�
�

� 19%, for which 	 is still

smaller. A similar increase of the normalized dispersivity D
��
/d

�
has been

observed in porous media with a complex cellular structure such as fireproof

bricks [48].

Experimental concentration variation curves for �
�
�

� 30% are well

fitted by Eq. (15a). On the contrary, curves corresponding to �
�
�

� 19%

display clear non-Gaussian characteristics (Fig. 24a) at high flow velocities

(Pe � Ud
�
/D

�
� 430). At long times, the conductivity becomes much slower
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Fig. 24. Experimental tracer transmission dispersion curves showing the variation

of the normalized conductivity of the fluid at the outlet of a double-porosity sample

following an abrupt salt concentration variation at the inlet (Ø
�
�

� 19%,

d
�

� 550 �m, and d
�

� 55 �m): (a) Pe � Ud
�
/D

�
� 430, (b) Pe � 160, and (c)

Pe � 43. The continuous line represents the experimental variation, and the dotted

line corresponds to a fit of a Gaussian solution of Eq. (3) with the early part of the

curve.

toward its asymptotic value than the Gaussian solution fitted with the early

part of the curve (dotted line). On the other hand, at the lowest velocity

(Pe � 43), the curve follows the Gaussian variation. At an intermediate

velocity value (Pe � 160), a weaker deviation from the Gaussian behavior

is observed than for Pe � 430.
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Table I. Relative Orders of Magnitude of the Global Transit Time through the

Sample and of the Characteristic Exchange Times between the Main Flow and

Individual Grains

Pe U (cm/s) 	 (estimated) T
�

(s) �
��

� d�
�
/D

�
+
��

�
d
�

�U
�
	

(s)

430 0.11 0.00135 98 67 185 49

160 0.04 0.00135 250 67 497 59

43 0.011 0.00135 980 67 1850 64.5

Table I compares the diffusive (�
��

) and convective (�
��

) exchange times

between the inside and the outside of the grains to the mean transit time T
�

through the whole sample (the harmonic average �
	
representing an estima-

tion of the resulting exchange time is also indicated). Although figures

estimated for the various components of �
	

may differ from real ones by

factors of 3 or 4, �
	
is not very small for Pe � 430 compared to the mean

transit time. Since �
	
is the characteristic time for individual events in the

random spreading process, the central limit theorem no longer applies and

non-Gaussian curves are found. For Pe � 43, �
	

remains about the same

since molecular diffusion is the dominant exchange process at all velocities;

on the contrary, T
�

is much higher, so that one now has �
	
	T

�
and

dispersion is Gaussian again (Fig. 24c).
We verify in this way that dispersion tails appear when the exchange time

between the inside of individual grains and the main flow is not negligible

any more compared to the global transit time T
�

through the whole sample.
An important difference between these effects and those reported above for

large-scale heterogeneities in Section 11.5.3.2 is the fact that molecular

diffusion plays a more important part. Its influence controls the transition

between Gaussian and non-Gaussian dispersion as the Péclet number varies.

This difference also appears in echo dispersion experiments [69]: Long time

tails in Figs. 24a and 24b do not disappear when the flow is reversed, in

contrast with the curves of Fig. 20.

11.5.3.4 Echo Dispersion and the Identification of Heterogeneities.
Combining informations from echo and transmission dispersion measure-

ments, particularly in the case of non-Gaussian dispersion curves, provides

useful information concerning the various types of permeability heterogen-

eities in porous samples and their sizes. These measurements complement

other data obtained, for instance, using acoustical or nuclear resonance

imaging techniques.
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Non-Gaussian dispersion features appear when transit times through

some individual heterogeneous structures become of the order of magnitude

of the global transit time through the whole sample. This may be the case

when very large heterogeneities with a moderate velocity contrast with the

rest of the sample are present (for instance in stratified media); this is also

the case for smaller heterogeneities with a very large velocity contrast (for

instance double-porosity packings of grains with a very low internal

permeability acting as dead zones). In the first case, long-time-tail features

observed in the dispersion curves disappear when the flow is reversed in

echo dispersion experiments. In the second case, these features are not

suppressed by a flow reversal but give instead rise to both short and long

time deviations from the Gaussian dispersion shapes.

11.6 Mapping of Miscible Fluid Flow with Viscosity and Density
Contrasts

11.6.1 Mixing Modifies the Flow Field Itself

Dispersion of contaminants in porous aquifers, and various processes

related to oil recovery, require knowledge of the permeability field and

modeling of the associated displacement. In environmental contamination

problems, the contaminant is often a passive tracer (e.g., a trace chemical),
which is spread following the two modes of advection with the flow and

molecular diffusion. The resulting combined transport is the hydrodynamic

dispersion already described. However, when the dispersed species is suffi-

ciently concentrated to affect the viscosity and density of the mixture, the

flow field itself is modified as the displacement takes place. Understanding

the evolution of the flow field in such cases is one of the key issues for the

prediction of the fate of the contaminants, the displacement characteristics

of oil from oil reservoirs, etc. [10]. At sufficiently large viscosity and/or

density contrasts, the interrelation between fluid displacements and permea-

bility fields must be considered [71].

11.6.2 Miscible Flow in a Stratified Porous Media

Many simulation and experimental studies have been conducted to

address various aspects of these displacements [71]. Let us examine miscible

displacements in mutilayered porous media, in which the flow direction is

parallel to the layer planes for two- and four-layer systems. The process is

controlled by the mobility ratio, M � �
�

/�
"

, which here denotes the ratio

of the viscosity of the displaced fluid (subscript �) to that of the displacing

fluid (subscript �).
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Miscible displacement experiments were performed at different values of

the flow rate q in a layered pack of glass beads of length L � 30 cm, and of

a square cross section (4.5� 4.5 cm�), corresponding to an aspect ratio of

6.66. The layering was accomplished by first partitioning the system in

equally spaced layers, using very thin spacers, which were gently removed

after each layer was filled with glass beads of the appropriate size. For the

two-layer system, we used glass beads with mean diameters d
�

� 200 �m,

and d
�

� 100 �m respectively, leading to a layer permeability ratio of 4

(based on a permeability scaling as the square of the bead diameter [1—3]).
The four-layer medium was made of glass beads with respective mean

diameters of 160, 120, 80, and 32 �m, arranged in order of increasing size

from one boundary to the other. The sample was placed with the larger

dimension aligned with the direction of the gravity vector. The fluids used

consisted of mixtures of water and glycerol and/or water and sucrose (at

variable initial volume fraction). The variable composition allows for

various combinations of viscosity and density contrasts, including the

particular cases of equal density-different viscosity and equal viscosity-

different density mixtures. The concentration profile was determined acous-

tically; the overall accuracy in concentration was better than 0.1%. Here K
is the arithmetic average of the permeability, and q is the flow velocity. In

the experiments, the latter varied over one decade from 5 to 50 cm/h. In all

cases, however, the flow rate and the Péclet number were sufficiently large

for dispersion not to dominate the displacement. All experiments were

conducted at conditions such that the displacement is stable in each layer

(see later in the chapter [72]). A typical set of the obtained concentration

profiles versus reduced time (injected pore volume) in the five transducer

locations for the two-layer system are shown in Fig. 25 for the three different

values of the viscosity ratio, M � 1, 0.574, and 0.161, respectively, and in

absence of gravity effect. For this problem, the displacement is stable in all

layers [72]. At values of M near 1 (Fig. 25a), the two different layers are

clearly identified in the form of different fronts moving at different speeds.

As M decreases, however, this distinction becomes less apparent (Fig. 25b),
and at the smallest value of M tested, the two concentration profiles merge

into one (Fig. 25c), containing the features of miscible displacement in a

homogeneous (single-layer) system. A schematic of the layer arrangement

and the notation used is shown in the bottom right in Fig. 25. A similar

trend is observed for the four-layer sample. For a more quantitative

description, we studied the front velocity in each layer, U
	
, defined as the

velocity of the inflection point of each layer. Since the fluids have not had a

sufficiently long time to diffuse into one another, this velocity is representa-

tive of the ‘‘interface’’ separating the two fluids. Alternatively, we can view

each ‘‘apparent layer,’’ as implied by the concentration profiles, as a phase.
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Fig. 25. Concentration versus reduced time (pore volume) at five equidistant

locations across a two-layer porous medium with a permeability ratio k
�
/k

�
� 4.

Viscosity ratios are, respectively, (a) M � 1 (b) M � 1.74, and (c) M � 6.2 for these

isodensity fluids. The flow rate is q � 12 cm/h. The bottom right figure is a schematic

of the front velocity distributions.

Then, Fig. 25 can be viewed as successive phase transitions as the control

parameters vary. To construct the corresponding phase diagram, we plot the

front velocities, U
	
, in terms of the parameter M* � 1/M. Figure 26 (top)

shows the reduced (with q) velocities plotted versus M* for the two-layer

medium. The existence of two distinct layers is evident at sufficiently small

M*. As this parameter increases, the two velocity branches approach each

other, and at a specific value they coincide. The critical ‘‘bifurcation’’ point

is a function of the permeability contrast, as discussed in the following. A

similar figure can be constructed for the four-layer system (Fig. 26, bottom).
We note the successive transitions from four to two to one apparent layers

as the parameter M* increases. It should be noted that the particular

sequence shown reflects the specific combination of gravity and viscosity

effects in these experiments due to the particular method of preparing the
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Fig. 26. (Top) Phase diagram for a two-layer porous medium with reduced

velocities in each layer versus viscosity ratio M. Full lines are theorical predictions,

and � and o represent the velocities of the fronts U
�

and U
�

observed in Fig. 25.

(Bottom) Cut of the phase diagram for a four-layer medium with reduced velocities

in each layer versus viscosity ratio M. Full lines are the theoretical predictions; �,

�, o, and � represent respectively the velocities of the fronts U
�
, U

�
, U



, and U

�
;

and �� represents the reduced velocity of the front resulting from the merging of the

three latter fronts.

fluid mixtures of different concentrations. In a sense, therefore, Fig. 26,

bottom, is a specific cut of the 3-D phase diagram corresponding to the

particular experimental set, and does not imply that in such systems the

4—2—1 transition will always occur. Also shown in Fig. (26), are theoretical

predictions obtained as follows.

Assuming the transverse flow equilibrium analysis of Yortsos et al. [73],

the pressure is uniform in planes perpendicular to the flow direction (i.e., no

cross flows). Therefore Darcy’s law leads to the relationship between the

local pressure gradient and the local permeability and viscosity, depending

on where we are located in the layered system. For instance, in the two

layers porous medium of respective permeability k
�

and k
�
, k

�
� k

�
, (Fig.

25, bottom right), the ratio between the front u and v, respectively in media
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1 and 2 is found noting that due to fluid conservation the speed u is also

that of the more viscous fluid in the zone in Fig. 25a, whereas v is the

velocity of the less viscous zone in Fig. 25b:

u � q
�

� �
k

�
�
"

�
�
, (17a)

v � q
�

� �
k

�
�

�

�
�
, (17b)

leading to

u

v
�

k
�

Mk
�

. (18)

For M � 1, this ratio is the permeability ratio. Increasing M reduces the

velocity difference between the two layers and it vanishes for M
�

� k
�
/k

�
.

For a larger M value, a single front is observed: The medium behaves as if

it were homogeneous. Inversely, for M� 1, the velocity ratio is larger than

the permeability ratio and the permeability contrast looks as if it is

enhanced.

11.6.3 Mapping Heterogeneous Permeability Fields

One of the key issues with porous media is to determine the permeability

field to predict or prevent oil recovery, contamination by chemical or

nuclear waste, etc. Here we propose to take advantage of using acoustics to

follow the interface between two fluids to infer some properties of the

permeability field. As an illustration of this conjecture, we analyze two

examples in which the permeability heterogeneity leads to a measurable

signature in terms of response to flow: miscible fluid flow in a layered porous

medium parallel to the flow direction and immiscible fluid flow in a layered

porous medium perpendicular to the flow direction. The former case is

described in Section 11.6.2. The second one has been described elsewhere

[74, 75].

11.7 Discussion and Conclusions

In addition to their intrinsic interest, tracer dispersion and miscible fluid

displacements are powerful tools to characterize the heterogeneities of either

the structure of porous media or the fluid distribution inside them.

Their study benefits greatly from the development of new tools that

enable us not only to study concentration variations at the inlet and outlet

of a sample but also to determine the fluid spatial distribution inside it. For
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instance, acoustic velocity measurements enable us to obtain saturation

profiles along a sample and even 3-D saturation images. Pulse gradient

NMR methods can be used to analyze the mechanisms of tracer dispersion

and solute transport at the pore scale and below. Selective tracer injection

techniques (for instance, electrochemical tracers or selective electrodes)
enable us to realize precise dispersion measurements with a very good

spatial resolution.

The reversibility of miscible displacement processes is an important issue,

even at the very low Reynolds numbers for which Stokes flow reversibility

can be assumed to be valid. The degree of irreversibility of the miscible

displacement front distorsions with respect to a flow reversal and its

dependence with respect to the Péclet number is an important indicator of

the type and size of the heterogeneities of the medium.

The interest of dispersion measurements does not correspond only to the

case of passive tracers. Miscible displacements in which there is a density or

viscosity contrast between the displaced and displacing species are of

particular interest: Front displacement instabilities may appear together

with a subtle interplay of stabilizing and destabilizing effects and of their

interaction with the structural heterogeneities of the porous media. Other

important problems and new effects can also be expected by replacing

Newtonian fluids by fluids such as polymer solutions with nonlinear

characteristics. This will open a new domain of study of the interaction

between rheological nonlinearities and permeability heterogeneities.
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Fracturées, and the PNRN and PRNH programs; all these sources of

support are gratefully acknowlegded.

We finally wish to thank Prof. P.-z. Wong and the referees for their many

suggestions and thoughtful comments.

References

1. Bear, J., Dynamics of Fluids in Porous Media, Elsevier Publishing Corporation,

New York (1972).
2. Dullien, F. A. L., Porous Media, Fluid Transport and Pore Structure, Academic

Press, New York (1979).
3. Scheidegger, A. E., The Physics of Flow through Porous Media, Toronto

University Press, Toronto (1963).
4. Coats, K. H. and Smith, B. D., Soc. Petr. Eng. J. 231 (1964) 73—84.

5. Villermaux, J., in Percolation Processes: T heory and Applications, Proceedings of

the 1981 E33 NATO Advanced Studies Institute, edited by A. E. Rodrigues and

D. Tondeur, Sijthoff and Noordhoff, Dordrecht, the Netherlands (1981) 83—140.

6. Saffman, P. G., J. Fluid Mech. 6 (1959) 321—349; Saffman, P. G., J. Fluid Mech.
6 (1960) 194.

7. Koch, D. L. and Brady, J. F., J. Fluid. Mech. 154 (1985) 399—427.

8. Koplik, J., in Disorder and Mixing, Proceedings of the Nato Conference on

Disorder and Mixing edited by E. Guyon, Y. Pomeau, and J. P. Nadal, Kluwer,

Dordrecht, the Netherlands (1988) 235—248.

9. Pfannkuch, H. O., Rev. Inst. Fr. Pet. 18 (1963) 215—270.

10. Leroy, C., Hulin, J. P., and Lenormand, R., J. Cont. Hydro. 11 (1992) 51—68.

11. Charlaix, E., Hulin, J. P., and Plona, T. J., Phys. Fluids 30 (1987) 1690—1698.

12. De Gennes, P. G., J. Fluid. Mech. 136 (1983) 189—200.

13. Bacri, J. C., Rakotomalala, N., and Salin, D., Phys. Fluids A 2 (1990) 674—680.

14. Taylor, G. I., Proc. Roy. Soc. L ondon Ser. A 219 (1953) 186—203.

15. Aris, R., Proc. Roy. Soc. L ondon Ser. A 235 (1956) 67—77.

16. Ippolito, I., Daccord, G., Hinch, E. J., and Hulin, J. P., J. Cont. Hydro. 16 (1994)
87—108.

17. Gelhar, L. W., and Axness, C. L., Wat. Res. Res. 19 (1983) 161—180 and

references therein.

18. Cenedese, A., and Viotti, P., Water Res. Res., 32 (1996) 2329—2344.

19. Lebon, L., Oger, L., Leblond, J., Hulin, J. P., Martys, N. S., and Schwartz, L. M.

Phys. Fluids 8 (1996) 293—301.

20. Martys, N. and Garboczi, E. J., Phys. Rev. B 46 (1992) 6080—6090.

472 METHODS FOR THE STUDY OF FLUID MIXING IN POROUS MEDIA



21. Schwartz, L. M., Martys, N., Bentz, D. P., Garboczi, E. J., and Torquato, S.,

Phys. Rev. E 48 (1993) 4584—4591.

22. Adler, P. M., Jacquin, C. G., and Thovert, J. F., Wat. Res. Res. 28 (1992)
1571—1576.

23. Salles, J., Thovert, J. F., and Adler, P. M., J. Contam. Hydrol. 3 (1993) 3—22.

24. Lebon, L., Leblond, J., and Hulin, J. P., Phys. Fluids 9, (1997) 481—490.

25. Callaghan, P. T., Aust. J. Phys. 37 (1984) 359—387.

26. Georgiadis, J., Behringer, R., Shattuck, M., and Johnson, G. A., Interstitial
Velocity and Temperature Fields in Fully-Saturated Porous Media, Ninth Sympo-

sium of Energy Engineering Sciences, Fluid and Dynamical Systems (1991).

27. Shattuck, M., Behringer, R., Georgiadis, J., and Johnson, G. A., Proceedings of

Forum on Experimental Techniques in Multiphase Flows, ASME, Fed. 125

(1991) 39—45.

28. Kutsovsky, Y. E., Scriven, L. E., Davis, H. T., and Hammer, B. E., Phys. Fluids,
8 (1996) 863—871.

29. Kutsovsky, Y. E., Alvarado, V., Davis, H. T., Scriven, L. E., and Hammer, B. E.,

Magn. Reson. Imaging 16 (1998) 63—71.

30. Edwards, C. M., Chang, C. T., and Sarkar S., SCA Conference Paper Number

9310 (1993).

31. Fried, J. J., and Combarnous, M., Adv. Hydrosci. 7 (1971) 169—282.

32. Hulin, J. P., and Plona, T. J., Phys. Fluids A 1 (1989) 1341—1347.

33. Rigord, P., Calvo, A., and Hulin J. P., Phys. Fluids A 2 (1990) 681—687.

34. Oxaal, U., Flekkoy, E. G., and Feder, J., Phys. Rev. L ett. 72, (1994) 3514—3517.

35. Baudet, C., Hulin, J. P., and Deslouis, C., Exp. Fluids 7 (1989) 329—334.

36. Davis, L. A. SPE 12037, Annual Fall Technical Conference and Exhibition, San

Francisco (5—8 Oct. 1983).

37. Aggarwal, S. K., and Johnston, R. H., IEEE Instrum. Measure. 35 (1986) 60—67.

38. Boyer, R. L., Morgan, F., and Muskat, M., Petr. Trans. AIME 170 (1947) 15—33.

39. Laird, A. D. H., and Putnam, J. A., Petr. Trans. AIME 216 (1959) 216—220.

40. Cromwell, V., Kortum, D. J., and Bradley, D. J., SPE 130098, Annual Fall

Technical Conference and Exhibition, Houston (16—19 Sept. 1984).

41. Blackband, S., Mansfield, P., Barnes, J. R., Clague, A. D. H., and Rice, S. A., SPE

13401, Annual Fall Technical Conference and Exhibition, Houston (16—19 Sept.

1984).

42. Baldwin, B. A., and Yamanashi, W. S., SPE 14884, SPE/DOE Symposium on

Enhanced Oil Recovery, Tulsa (20—23 April, 1986).

43. Salin, D., and Schon, W., J. Phys. L ett. 42, (1981) L—477; Bacri, J.-C., Hoyos,

M., Lenormand, R., Rakotomalala, N., Soucemariadin, A., and Salin, D., J. Phys.
III, 1 (1991) 1455.

44. Bacri, J.-C., Salin, D., Geophys. Res. L ett. 13 (1986) 326—328.

473REFERENCES



45. Soucemarianadin, A., Bourlion, M., and Lenormand, R., SPE 16953, Annual Fall

Technical Conference and Exhibition, Dallas (27—30 Sept. 1987).

46. Biot, M. A., J. Acoust. Soc. Am. 28 (1956) 168—178.

47. Johnson, D. L., and Plona, T. J, J. Acoust. Soc. Am. 72 (1982) 556—565.

48. Bacri, J.-C., Rakotomalala, N., and Salin, D., Phys. Rev. L ett. 58 (1987)
2035—2038.

49. Guillot, G., Kassab, G., Hulin, J. P., and Rigord, P., J. Phys. D 24 (1991)
763—773.

50. Rosen, M., Grattoni, C., Chertcoff, R. and Bidner, M. S., Chem. Eng. Sci. 42

(1987) 2055—2059.

51. Gauthier, C., Borgotti, J. C., and Sadoudi, A., CRAS II 306 (1988) 1309—1312.

52. Brigham, E., Soc. Petr. Eng. J. Trans. AIME 257 (1974) 91.

53. Baker, L. E., Soc. Petr. Eng. J. Trans. AIME 263 (1975) 219.

54. Passioura, J. B., Soil Sci. 111 (1971) 339.

55. Rao, P. S. C., Rolston, D. E., Jessup, R. E., and Davidson, J. M., Soil. Sci. Soc.
Am. J. 44 (1980) 1139.

56. Correa, A. C., Pande, K. K., Ramey, H. J., Jr., and Brigham, W. E., Soc. Petr.
Eng. 16 (1987) 704.

57. Bretz, R. E., Specter, R. M., and Orr, F. M., Jr., in Reservoir Characterization,

edited by L. W. Lake and H. B. Carroll, Academic, New York (1986).

58. Montroll E. W., and Weiss, G. H., J. Math. Phys. 6 (1965) 167.

59. Hulin, J.-P., and Salin, D., in Proceedings of the Cargese NAT O School on
Mixing and Disorder, edited by E. Guyon, J. P. Nadal, and Y. Pomeau, Kluwer,

Dordrecht (1988).

60. Bouchaud, J. P., and Georges, A., C. R. Acad. Sci. Paris II 307, (1988) 1431.

61. Koch, D. L., and Brady, J. F., Chem. Eng. Sci. 42 (1987) 1377.

62. Koch, D. L., and Brady, J. F., J. Fluid. Mech. 180 (1987) 357.

63. Han, N., Bhakta, J., and Carbonell, R. G., AIChEJ 31 (1985) 277.

64. Koch, D. L., and Brady, J. F., Phys. Fluids 31, (1988) 965.

65. Bouchaud, J. P., Georges, A., and Le Doussal, P., J. Phys. (Paris) 48 (1987) 1855.

66. Matheron, G., and de Marsily, G., Water Res. Res. 16, (1980) 901.

67. Sahimi, M., Hughes, B. D., Heiba, A. L., Davis, H. T., and Scriven, L. E., Chem.
Eng. Sci. 41 (1986) 2103; 41 (1986) 2133.

68. Auzerais, F. M., Ellis, D. V., Luthi, S. M., Dussan, E. B. and Pinoteau, B. J., SPE

paper 20602, presented at the 65th annual conference and exhibition of the

Society of Petroleum Engineers, New Orleans, LA, 23—26 Sept. (1990).

69. Magnico, P., Leroy, C., Bouchaud, J. P., Gauthier, C., and Hulin, J. P., Phys.
Fluids. A 5 (1993) 46—57.

70. Bouchaud J. P. and Georges A., Phys. Rep. 195 (1990) 127.

474 METHODS FOR THE STUDY OF FLUID MIXING IN POROUS MEDIA



71. Waggoner, J. R., Castillo, J. L., and Lake, L. W., Soc. Petr. Eng. 21237 (1991);
Sorbie, K., Pickup, G. E., Ringrose, P. S., and Jensen, J. L., Soc. Petr. Eng. 24140

(1992); Tchelepi, H. A., Orr, F. M., Rakotomalala, N., Salin, D., and Woumeni,

R., Phys. Fluid A. 5, (1993) 1558; Kempers, L. J. T. M., and Haas, H., J. Fluids
Mech. 267 (1994) 299—324.

72. Loggia, D., Rakotomalala, N., Salin, D., and Yortsos, Y. C., Europhys. L ett. 32

(1995) 633.

73. Yortsos, Y. C., Transp. Porous Media 18 (1995) 107.

74. Chaouche, M., Rakotomalala, N., Salin, D., and Yortsos, Y. C., Europhys. L ett.
21 (1993) 19.

75. Chaouche, M., Rakotomalala, N., Salin, D., Xu, B., and Yortsos, Y. C., Chem.
Eng. Sci. 49 (1994) 2447.

475REFERENCES



a

This Page Intentionally Left Blank



Index

A

Absorption losses, pressure dependence of,

189—192

Acoustics

impedance measurements, 179—181

role in characterizing porous media, 161—
162

techniques for analyzing dispersion in

large-scale heterogeneities, 447—455

Acoustic wave propagation, fluid-saturated

porous materials and

guided wave propagation in water-filled

materials, 199—210

slow compressional wave appearance,

171—172

sound propagation in air-filled materials

with rigid frames, 172—192

sound propagation in water-filled materials

with elastic frames, 192—199

ultrasonic surface stiffness measurements,

210—215

Acoustic wave propagation, review of

characteristic impedance of the medium,

165—166

dispersion, 169

displacement- and stress-strain relations,

163—164

Lamb modes, 169—170

leaky Rayleigh waves, 168

longitudinal versus shear waves, 164—165

Rayleigh/surface waves, 167—169

Scholte waves, 168

Stoneley waves, 168—169

AC technique, conductivity and, 122—125

Adsorption

isotherm measurements, 353

Langmuir, 80—84

multilayer, 84—86

Adsorption-desorption

in pore network, 97—104

in single pores, 91—96

Air-filled materials with rigid frames, sound

propagation in

acoustic impedance measurements, 179—
181

characteristic pore size, 176—177

dynamic permeability model, 175—176

experimental techniques, 179

normalized pore radius, 175

pore shape factor ratio, 175

pressure dependence of absorption losses,

189—192

slow wave imaging, 184—188

structure form factor, 175

thermal characteristic dimension, 177

thermal losses, 172—173

ultrasonic measurements, 181—184

Anti-diffusion-limited aggregation (DLA),
58—59

APEX, 80, 107—108

Archie’s relation, 119—120, 125—129

Artificial image model, 29, 31

Attenuation standards, x-ray imaging and use

of, 313—314

B

Backscatter geometry for DWS, 291

Beam hardening, 312—313

Bedding plane orientation, 320

BET model

multilayer adsorption and, 84

pore throat size distribution and, 4

Bipolar-gradient method, 409

Bloch equations, 391

Bond percolation in dual network, 56

Bonse-Hart camera, 229

Bounds, 12—13

Burning algorithm, 14

477



C

Cahn construction, 238

Capillary

displacements, 47—60

effects and surface roughness, 87—90

pressure, 48, 353

tubes, 43—44

Capillary pressure-saturation diagram, 79

Cellular automaton fluid methods, 24—26, 29

Cement paste microstructure, 32—33

Chemical alterations, NMR and, 365—366

Chemical dopants, 315—316

Chemical heterogeneity, 81—82

Chemical shift contrast, 396—401

Chord distribution model, 236—238

Chromatography, 429

Coherence volume, 232

Compton scattering, 303

Computed microtomography (CMT), 329—
331

Computed tomography (CT), 305—309

Conductivity

importance of rock, 120—121

surface, 130—133

Conductivity, electrical

AC technique, 122—125

surface conduction and transport radius,

129—133

tortuosity, formation factor, and Archie’s

exponent, 125—129

Constant-phase-angle behavior, 131, 150

Contrast resolution/sensitivity, 310—311

Correlation functions, 9—12

Correlation volume, 232, 233

Coupling constants, 141

CPMG sequence, 338—339, 403

Critical flows, 63—65

D

Darcy’s law, 20, 66, 119, 134, 200

DC technique, permeability and, 133—136

Debye correlation function, 239

Debye-Hckel theory, 129—130

Debye relaxation, 148

DFT, 91, 93—96, 99

Diffusing-wave spectroscopy (DWS), 264

application of, 292

description of method, 289—291

Diffusion

contrast, 403—405

cooperative/collective, 270—271

lengths, 129

mutual, 270

NMR and restriction of, 344—346

Diffusion-limited aggregation (DLA), 58

Diffusion of polymers in porous media, FRS

and, 286—289

Diffusion of polymers in porous silica, DLS

and, 267—272

Digital images

background information, 4—6

cellular automaton fluid methods, 24—26

computing material properties from,

15—26

creating isotropic 3-D images from 2-D

images, 26—28

fluid flow, 19—20

geometrical and topological analysis, 6—15

linear elasticity, 21—22

nonwetting fluid injection, 22—24

steady-state conduction, 16—19

3-D models of porous materials, 28—35

Digital radiographic imaging, 305

Dirac delta function, 112

Disk electrode, use of, 125

Dispersion

electrochemical techniques for measuring

echo, 442—446

experimental analysis of anomalous

dispersion and finite size effects, 455—466

experimental techniques for analyzing

dispersion in large-scale heterogeneities,

447—455

non-Gaussian, 457—466

particle imaging velocimetry techniques,

434

pulsed gradient NMR techniques and,

435—442

short distances, 433—434

Display contrast, 311—312

DLS. See Dynamic light scattering

Double imbibition, 63

Drainage, 49—52

effects of viscous forces in, 57—59
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Dubinin-Radushkevich (DR) equation, 86,

91, 97

DWS. See Diffusing-wave spectroscopy

Dynamic light scattering (DLS)
advantages of, 264

application to critical phenomena in

porous media, 275—276

application to diffusion of polymers in

porous silica, 267—272

application to gels, 272—275

description of method, 265—267

E

Echo dispersion

electrochemical techniques for measuring,

442—446

in homogeneous samples, 460—462

measurement technique, 459—460

Elastic versus viscous scattering, 184—186

Electrical conductivity. See Conductivity,

electrical

Electrochemical double layer, 129

Electrochemical techniques for measuring

echo dispersion, 442—446

Electrokinetic permeability, defined, 150

Electrokinetics

coefficients, 122

experimental method and results,

146—150

streaming potential, electroosmosis, and

Onsager’s relation, 143—146

use of, 121, 141

Electron microscopy, 353

Electroosmosis (ELO), 143—146, 147

multiphase systems, 150—154

Electroosmotic current, 144

Electroosmotic pressure, 144

Euclidean space, 9, 12

F

Film flow, 49

Filtration, NMR and, 365

Finite element versus finite difference

methods, 15—16

cellular automaton fluid methods, 24—26

linear elasticity, 21—22

steady-state conduction, 16—19

Fluid flow, 19—20

NMR imaging and evaluation of, 417—421

Fluid mixing in porous media

experimental analysis of anomalous

dispersion and finite size effects, 455—466

experimental techniques for analyzing

dispersion in large-scale heterogeneities,

447—455

experimental techniques for studying

dispersion at microscopic scale,

433—447

mapping of miscible fluid flow with

viscosity and density contrasts, 466—470

mechanisms of miscible, 430—433

tracer dispersion and static, 425—430

Fluid-solid interaction, NMR and, 340—342

Fluorescence recovery after photo-bleaching

(FRAP)
advantages of, 264—265

application to gels, 282—284

description of method, 276—277

holographic, 281—282

periodic pattern, and modulation detection,

279—281

spatial Fourier analysis, 278—279

spot or direct photometric analysis, 277—
278

Foam flow in porous media, 65

Forced Rayleigh scattering (FRS), 264

advantages of, 265

application to diffusion of polymers in

porous media, 286—289

description of method, 284—286

Formation factor, 120

tortuosity, Archie’s exponent and, 125—129

Fractal mathematics, 8—9

Fractals, self-affine, 71—74

Fractured media

dispersion in, 432—433

flow in, 65

scattering from, 240—245

FRAP. See Fluorescence recovery after

photobleaching

Free electrons, relaxation by, 342

Freezing, NMR and, 364
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Frenkel-Halsey-Hill (FHH) equations, 86, 88,

90, 97—98

Frequency response analyzer (FRA), use of,

125

Freundlich isotherm, 82

Frick’s second law of diffusion, 278

FRS. See Forced Rayleigh scattering

G

Gels

DLS and, 272—275

FRAP and, 282—284

Geometrical and topological analysis, digital

images and, 6—7

correlation functions and bounds, 9—13

fractal mathematics, 8—9

mathematical morphology, 8

pore connectivity, 14—15

stereology, 8

Geometrical dispersion, 430

Ginsburg-Landau free-energy theory, 239

Glass bead monolayers, 47

Glass micromodels, 44—46

Grain consolidation model (GC), 30—31, 128

Grain size, permeability and, 136—138

Gray-scale histogram, use of, 6—8, 311

Gruneisen-Mie scattering, 229

Guided wave propagation in water-filled

materials, 199—210

rod and plate waves, 205—206

surface and interface waves, 200—205

tube/Stoneley waves, 206—210

Guinier approximation, 226

Guoy-Chapman layer, 129

H

Haines’s jump, 105, 106

Hashin-Strichkman bounds, 13

Holographic FRAP, 281—282

Holographic grating relaxation spectroscopy.

See Forced Rayleigh scattering (FRS)
Holographic interferometry, 296—297

Homonuclear dipole-dipole coupling, 341

Hooke’s law, 163

Hurst or Hölder exponent, 73, 112

Hydration, NMR and, 364—365

Hygron event, 106

Hysteresis, 77, 79, 93, 100, 101, 103

I

Image analysis, 47

Imbibition, 52

collapse in a channel, 54—55

double, 63

dynamics of, 59—60

large aspect ratio, 56, 57

pore invasion, 53—54

small aspect ratio, 55—56, 57

Index matching, 263

Induced polarization, 132

Infrasound, use of term, 161

Ink bottle effect, 23

Interface waves, 200—205

Interferometry, 293—296

holographic, 296—297

Invasion bond percolation in dual network,

56

Invasion percolation (IP), 50—52, 58, 100

J

Jamin interferometer, 294—296

K

Kardor-Paris-Zhang (KPZ) model, 89

Kelvin’s equation, 88, 89, 91, 94, 95

extended, 93

Kirchhoff’s theory, 172

Kratky camera, 227

Kronecker delta, 163—164, 192

Kundt tube, 179
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L

Lamb modes, 169—170

Lamb wave technique, 206

Lamé constants, 163

Langmuir adsorption, 80—84

Laplace’s equation, 16, 91

Laplace’s Law, 48, 49

Laplace-Young equation, 90

Lattice Boltzmann method, 24—25

Lattice gas method, 24

Leaky interface waves, 200

Leaky Rayleigh waves, 168

Lennard-Jones potential, 95

Leverett function, 108

Light scattering

diffusing-wave spectroscopy (DWS), 264,

289—292

diffusion approximation, 264

dynamic (DLS), 264, 265—276

fluorescence recovery after photo-bleaching

(FRAP), 264, 276—284

forced Rayleigh scattering (FRS), 264, 265,

284—289

index matching, 263

research on, 263—265

Linear elasticity, 21—22

Liquid phase discrimination, 396—405

Longitudinal versus shear waves, 164—165

M

Magnetic resonance imaging (MRI), 387

Marker-and-cell (MAC) mesh, use of, 19

Materials processing applications, NMR and,

363—366

Mathematical morphology, 8

Mercury intrusion-extrusion, 105—110

Mercury intrusion porosimetry, pore throat

size distribution and, 4

Mercury porosimetry, 353

curves, 79—80

defined, 69

volume-controlled, 107—108

Micro-Mach-Zehnder interferometer, 293—
294

Microstructure development model, 29, 32—
35

Miscible fluids

experiment using, 426—428

how they spread and mix, 425—426

large- versus small-scale mixing, 429

mixing versus separation, 428—429

Miscible mixing, mechanisms of

main solute dispersion, 430—432

particular case of dispersion in fractures,

432—433

Modulation detection, 279—281

Molecular dynamics simulations, 93—94

Molecular tiling, 82—83, 245

Molecular translational motion, imaging of,

407—415

Mud invasion, 317—318

Multiexponential decay signal processing,

357—361

Multilayer adsorption, 84—86

Multiphase flow functions, estimating, 416—
417

Multiphase systems, 150—154

N

Navier-Stokes equations, 13, 16, 19, 25, 140

Neimark’s equation, 88, 98

Newton’s second law, 164

Nitrogen BET, pore throat size distribution

and, 4

NMR. See Nuclear magnetic resonance

Node placement, 16

Non-Gaussian dispersion, 457—466

Nonwetting fluid injection, 22—24

snap-off, 43—44

nth-order bounds, 12

Nuclear magnetic resonance (NMR), 121

applications, 337, 363—371, 373—376

bulk fluid process, 339

diffusion in magnetic field gradients, 339—
340

discrimination between oil, water, gas,

369—371

field (inside-out) use of, 373—376

hydraulic permeability, 368—369

instrumental requirements, 371—373
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Nuclear magnetic resonance (Continued)
materials processing applications, 363—366

multiexponential decay signal processing,

357—361

petrophysical applications, 366—371

pore size distribution, 347—351

porosity, 361—363, 366—368

pulsed field-gradient (PFG), 353

relaxation, 338—340

surface relaxation, 339, 351—357

Nuclear magnetic resonance imaging in

porous media

applications, 415—421

frequency encoding gradient, 390

imaging background, 389—394

imaging of molecular translational motion,

407—415

line-broadening mechanisms, 394—396

liquid phase discrimination, 396—405

objectives of, 388

phase encoding, 390—391, 408

pulsed field-gradient NMR imaging, 408—
410, 435—442

quantitative imaging, 405—407

selective excitation, 389—390, 392—394

velocity imaging, 410—415

Nuclear magnetic resonance properties,

porous media and

changes in geometry of pore space, 344

fast-diffusion/surface-limited regime, 340

fluid-solid interaction, 340—342

heterogeneity of pore space, 342—344

magnetic field gradients, 346—347

rate-limiting step, 340

restriction of diffusion, 344—346

slow-diffusion/diffusion-limited regime,

341

Nuclear spins, cross-relaxation by, 341—342

Nucleation, homogeneous versus

instantaneous, 63

O

Ohm’s law, 20, 119, 122

Onsager relation, 145—146

Optical microscopy, 353

Ordinary percolation (OP), 100—101

Outer Helmholtz plane (OHP), 129

P

Parallel (Voigt) upper bounds, 13

Paramagnetic ions, relaxation by, 342

Particle imaging velocimetry techniques, 434

pdfs, 97, 99

Péclet number, 426

Percolation-type model, 28, 29—31, 137—138

Periodic pattern photobleaching, 279—281

Permeability, hydraulic

DC technique, 133—136

NMR and, 368—369

pore size, grain size and, 136—138

viscous relaxation and dynamic, 138—141

Permeability, use of, 121

Petrophysical applications, NMR and, 366—
371

Phase-encoding approach, 390—391, 408

Photobleaching. See Fluorescence recovery

after photobleaching (FRAP)
Photoelectric scattering, 302

Physisorption

defined, 69

sorption isotherms and their classification,

76—78

Plate waves, 205—206

Plug screening, 320—321

Point/pinhole geometry, 227

Poiseuille flow in capillary tube, 144

Poisson ratio, 21

Pores, 1

connectivity, 14—15

invasion, 53—54

radius, 144, 175

shape factor ratio, 175

sorption, 74

space, 238, 342—344

Pore size, permeability and, 136—138

Pore size distribution, 4, 128

NMR for measuring, 337, 347—351

Pore structure

introduction, 69—71

mercury porosimetry curves, 79—80

pore surfaces, probing, 80—90

porous media, description of, 71—76

porous media, probing of, 90—112

sorption isotherms and their classification,

76—78

Pore surface(s)
area, 2
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capillary effects and surface roughness,

87—90

chemical heterogeneity, 81—82

Langmuir adsorption, 80—84

multilayer adsorption, 84—86

Pore-throat correlation, 98, 110—112

Pore throat size distribution, 3—4, 74—76, 128

Porod’s law, 232—233, 241, 243, 245

Porosity, 2

NMR, 361—363, 366—368

Porous media

See also Fluid mixing in porous media;

Nuclear magnetic resonance imaging in

porous media

background information on, 2—4

common, 2

defined, 1—2

fluid flow, 19—20

foam flow in, 65

linear elasticity, 21—22

nonwetting fluid injection, 22—24

representation of, 71—76

scattering from, 230—240

small-angle scattering of fluids in, 245—253

3-D models of porous materials, 28—35

topology of pore space, 3

Porous media, probing of, 90

additional issues, 110—112

adsorption-desorption in pore network,

97—104

adsorption-desorption in single pores,

91—96

mercury intrusion-extrusion, 105—110

Power-law scaling, 97, 98

Pressure dependence of absorption losses,

189—192

Pseudoemulsion film, 65

Pulsed field-gradient NMR imaging, 408—410

tracer dispersion analysis using, 435—442

Q

Quantitative imaging, 405—407

Quasi-elastic light scattering. See Dynamic

light scattering (DLS)
Quiblier method, 26—27

R

Radius of gyration, 226

Random field Ising model, 248

Rayleigh angle phenomena, 203

Rayleigh/surface wave, 167—169

leaky, 168

Regularization, 359

Relaxation contrast, 401—403

Resin micromodels, 46—47

Resistivity index, 120

Rheon event, 105

Ring electrodes, use of, 125

Rod waves, 205—206

S

Saturation and desaturation, NMR and,

363—364

Scaling law, de Gennes, 87—88

Scattering

See also Light scattering; Small-angle

scattering

viscous versus elastic, 184—186

Scattering length density (SLD), 225

Scholte waves, 168, 203

Self-affine fractals, 71—74

Series (Reuss) lower bounds, 13

Shear waves, longitudinal versus, 164—165

Shrinking-tube (ST) model, 127—128

Silicon wafer micromodels, 46

Sintering model, 33—35

Slit geometry, 226—227

Slow compressional waves

appearance, 171—172, 194, 196—197

imaging, 184—188

Small-angle neutron scattering (SANS)
benefits of, 223

experimental methods, 226—229

scattering length density (SLD) for, 225

studies of fluids confined in porous media,

245—253

Small-angle scattering, 9

applications, 223

experimental methods, 226—229

from fractal systems, 240—245
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Small angle scattering (Continued)
from porous media, 230—240

review of, 224—226

studies of fluids confined in porous media,

245—253

Small-angle x-ray scattering (SAXS), 223

experimental methods, 226—229

scattering length density (SLD) for, 225

Snell’s law, 203

Sorption isotherms

adsorption-desorption in pore network,

97—104

adsorption-desorption in single pores,

91—96

description and classification of, 76—78

Sound propagation in air-filled materials with

rigid frames

acoustic impedancemeasurements, 179—181

characteristic pore size, 176—177

dynamic permeability model, 175—176

experimental techniques, 179

normalized pore radius, 175

pore shape factor ratio, 175

pressure dependence of absorption losses,

189—192

slow wave imaging, 184—188

structure form factor, 175

thermal characteristic dimension, 177

thermal losses, 172—173

ultrasonic measurements, 181—184

Sound propagation in water-filled materials

with elastic frames, 192—199

ultrasonic measurements, 195—199

Spatial Fourier analysis (SFA), 278—279

Spatial resolution, 309—310

Spot or direct photometric analysis FRAP,

277—278

Steady-state conduction, 16—19

Stereology, 8

Stern layer, 129

Stokes-Einstein law, 267

Stokes equations, 19, 20, 25

Stoneley waves, 168—169, 203, 206—210

Streaming current, 143

Streaming potential (STP), 143—146

lock-in technique, 147

multiphase systems, 150—154

Structure form factor, 175

Surface conduction and transport radius,

129—133

Surface relaxation, NMR and, 339, 351

natural materials, 352—353

sandstones, case example, 354—357

synthetic materials, 352

Surface stiffness measurements, 210—215

Surface waves, 200—205

T

3-D images from 2-D images, creating

isotropic, 26—28

3-D models of porous materials

artificial image model, 29, 31

microstructure development model, 29,

32—35

percolation-type model, 28, 29—31

Three-phase flow, 61—63

Throat radius, 145

Throat shape, 3—4

Throat size, 128

Tiling, molecular, 82—83, 245

Time-of-flight approach, 408

Tortuosity, 125—129

frequency-dependent dynamic, 176

Tracer dispersion, 60—61

analysis using pulsed gradient NMR

techniques, 435—442

problems with, 430

static mixing and, 425—430

Transport radius, 133

Transverse relaxation, 338

True interface waves, 200

2—D images, creating isotropic 3-D images

from, 26—28

Tube networks, 31

Tube waves, 206—210

U

Ultrasonic measurements

sound propagation in air-filled materials

with rigid frames and, 181—184

sound propagation in water-filled materials

with elastic frames and, 195—199
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Ultrasonic nondestructive testing (NDT),
161—162

Ultrasonic surface stiffness measurements,

210—215

Ultrasound, use of term, 161

V

van der Waals forces, 69, 86

Velocity imaging, 410—415

Viscous fingering, 58

Viscous forces and drainage, 57—59

Viscous relaxation, dynamic permeability

and, 138—141

Viscous scattering, elastic versus, 184—186

Viscous skin depth, 140

Visualization of flow patterns

capillary displacements, 47—60

critical flows, 63—65

flow in fractured media, 65

foam flow in porous media, 65

three-phase flow, 61—63

tracer dispersion, 60—61

Visualization tools

capillary tubes, 43—44

glass bead monolayers, 47

glass micromodels, 44—46

image analysis, 47

resin micromodels, 46—47

silicon wafer micromodels, 46

Volume-controlled mercury porosimetry

(APEX), 80, 107

Vycor� glass, 15, 22, 31, 236, 246—248,

251—253

W

Washburn equation, 60

Water-filled materials

guided wave propagation in, 199—210

sound propagation in, 192—199

ultrasonic measurements, 195—199

Wettability

drainage, 49—52

drainage, effects of viscous forces in, 57—59

imbibition, 52—57, 59—60

Wormhole model, 127, 132, 136, 140—141,

144—145, 146

X

X-ray imaging, 26

applications of, 301

Compton scattering, 303

computed microtomography, 329—331

computed tomography imaging, 305—309

development of, 301

digital radiographic imaging, 305

nature and attenuation of x rays, 302—304

photoelectric scattering, 302

x-ray profile measurement, 304—305

X-ray imaging applications, qualitative

bedding plane orientation, 320

core damage in unconsolidated/friable

formations, 318—320

mud invasion, 317—318

plug screening, 320—321

sample selection, 316—317

X-ray imaging applications, quantitative

bulk density calculations, 321—323

fluid saturation calculations, 324—329

porosity calculations, 323—324

X-ray imaging techniques

attenuation standards, use of, 313—314

beam hardening, 312—313

chemical dopants, 315—316

contrast resolution, 310—311

display contrast, 311—312

effect of x-ray energy, 309

spatial resolution, 309—310

Y

Young’s modulus, 21, 22

Z

Zeta potential, 130, 144, 145
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