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Preface

The first International Meeting of Advances in Robot Kinematics, ARK, occurred
in September 1988, by invitation to Ljubljana, Slovenia, of a group of 20 inter-
nationally recognized researchers, representing six different countries from three
continents. There were 22 lectures and approximately 150 attendees. This success
of bringing together excellent research and the international community, led to the
formation of a Scientific Committee and the decision to repeat the event biannually.
The meeting was made open to all individuals with a critical peer review process
of submitted papers. The meetings have since been continuously supported by the
Jožef Stefan Institute and since 1992 have come under patronage of the Interna-
tional Federation for the Promotion of Mechanism and Machine Science (IFToMM).
Springer published the first book of the series in 1991 and since 1994 Kluwer and
Springer have published a book of the presented papers every two years.

The papers in this book present the latest topics and methods in the kinemat-
ics, control and design of robotic manipulators. They consider the full range of ro-
botic systems, including serial, parallel and cable driven manipulators, both planar
and spatial. The systems range from being less than fully mobile to kinematically
redundant to overconstrained. The meeting included recent advances in emerging
areas such as the design and control of humanoids and humanoid subsystems, the
analysis, modeling and simulation of human body motion, the mobility analysis of
protein molecules and the development of systems which integrate man and ma-
chine.

We are grateful to the authors for their contributions and to a large team of re-
viewers for their critical and insightful recommendations. We are indebted to the
staff of Springer and to Ms. Jolanda Karada (Karada Publishing Services) who
brought this book together.

Jadran Lenarčič and Michael Stanišić, editors
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Calibration and Validation of a Rigid Body
Kinematic Model of Flexure Hinges

R.J. Ellwood, D. Schütz, Annika Raatz and J. Hesselbach

Institute of Machine Tools and Production Technology, Braunschweig, Germany;
e-mail: {j.ellwood, d.schuetz, a.raatz, j.hesselbach}@tu-bs.de

Abstract. In order to improve the precision of rigid body based kinematic models of flexure
hinges, a review of applicable models is conducted. From these, a modification of the method pro-
posed by Kimball and Tsai is proposed to decrease the number of calibration parameters while
maintaining its versatility. The new model’s validity is tested by first calibrating it using data ob-
tained from a flexure hinge test bench. It is then shown that this modified method is able to replicate
the actual path traversed by a flexure hinge, while decreasing the model and calibration complexity.
A chart of the four methods is then used to allow a qualitative and quantitative comparison of the
four different rigid body kinematic models of flexure hinges.

Key words: Kinematic model, flexure hinge, compliant mechanism, calibration.

1 Introduction

In order to tackle the complex tasks within precision engineering, the field of robot-
ics is in a constant state of growth. One method to improve the precision of robots is

achieved through the introduction of compliant mechanisms such as flexure hinges.
Although extensive research has been done on the design of such elements, this
research often overlooks the effects on the resulting kinematic model.

In most cases the kinematic model is either achieved using an idealized rigid
body model or in a complex deflection model. In the case of the idealized rigid
body model, it has been shown that this model is acceptable for small angles [1].
As can be seen in Figure 1(a), the error r increases as a function of the magnitude
of the deflection angle. Here the error is found to be the difference between the
two dimensional path x of the model and the actual system. In comparison to these,
complexer mechanics based models have been shown to produce acceptable models,
such as that shown in [2, 3]. Although these models are more accurate at larger
angles, they are dependent on the material properties, manufacturing tolerances,
and are substantially more complex.

through the elimination of the joint play found in typical passive joints. This can be

Machine, DOI 10.1007/978-90-481-9262-5_1, © Springer Science+Business Media B.V. 2010 
3 J. Lenarčič and M.M. Stanišić (eds.), Advances in Robot Kinematics: Motion in Man and 
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Fig. 1 The deflection of a flexure hinge shown with the magnitude of the simplified model error.

r = xmodel −xactual . (1)

The goal of this paper is thus to find a rigid body kinematic model of a flexure
hinge, which is simple yet still offers minimal error at large deflections. Here the
emphasis is made on a simple flexure hinge model, as it is intended to be incorpor-
ated into the kinematic model of a robot. To accomplish this, a review of different
rigid body models of compliant mechanisms which can be applied to the given flex-
ure hinges is performed. This starts with an idealized model, then that of a leaf
spring, followed by a method proposed by Kimball and Tsai [4], and ultimately a

presented with respect to the x and z displacements.
It is then argued that although the original Kimball–Tsai method is able to pro-

duce acceptable results in the desired range, the introduction of 2 parameters per 1
degree of freedom (DOF) joint substantially increase the calibration task for larger
models. In order to overcome this, the modified model holds one of the two para-
meters constant, reducing the calibration task by 1 parameter per flexure hinge. The
validation of this model is then achieved by first calibrating the model using data
obtained from the flexure hinge test bench. These optimized parameters within the
modified model are then shown to improve the kinematic model without a substan-
tial increase in calibration parameters.

The flexure hinges within the scope of this paper have a typical notched design
[5], and are made from a memory shape alloy composed of a copper aluminum
nickel iron (CuAlNiFe) alloy. These joints have a maximal deflection of ±30◦, and
testing has shown an average of 1.5× 105 cycles to failure [6]. Each flexure hinge
has a length of 15 mm, with a radius of 15 mm notch cut so that the axis of rotation
is as close to the middle of the beam as possible. The thinest portion of this notch
has a cross section of 0.15 mm.

4

modified version of the method proposed by Kimball and Tsai. For each of the given
methods, the kinematic equations which represent the end of a single mechanism are
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2 Rigid Body Kinematic Models of Flexure Hinges

The simplest kinematic representation of a flexure hinge can be achieved through an
idealized rotation about the center of rotation of a compliant mechanism. Although
these equations have been shown to give acceptable results in cases where there is
a small angular deflection [1], the accuracy fades as the deflection angles increase.
For completeness it is said that the path that the end of the hinge will traverse is

x = l1 + l2 cos(θ ), (2)

z = l2 sin(θ ). (3)

Within these equations, the end effector is a function of the angle of the joint θ , and
the lengths l1 and l2 which correspond with the parameters depicted in Figure 1(a).
As can be seen in Figure 1(b), this model losses accuracy at larger angles. In a typical
calibration process, both of these lengths need to be found. As all of the following
methods have these lengths, or two comparable lengths, they will be considered the
minimal amount of parameters needed for a calibration process. Throughout the rest
of the paper, a comparison with regards to how many additional parameters to these
two parameters will be used.

2.1 Leaf Spring Model

Another method which stems from flat or leaf springs, has been shown to better
approximate fillet type flexure hinges which are characterized by a large thin sec-
tion [7]. This model acts similar to two balls rolling against each other, with the
angle representing the point of tangential interaction. Extending the model of the
interaction presented in [8], results in

x =
le
θ 2 (1− cos(θ ))+ l2 cos(θ )+ l1, (4)

z =
le
θ 2 (θ − sin(θ ))+ l2 sin(θ ). (5)

Within this equation, the length of the elastic region is said to be le. The length l1
represents the region before the joint, while l2 the region after the joint. Here the
optimal length of the elastic portion of the model can be found as an additional
parameter in the calibration process.

5
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Fig. 2 Kimball–Tsai kinematic model.

2.2 Kimball–Tsai Method

Another method has been proposed by Kimball and Tsai, in which an ‘equivalent’
rigid body mechanism has been developed [4]. When this model (Figure 2) is com-
pared to that of the initial model, there are two main differences. First, there is an
additional length which is depicted in Figure 2 as l2, which is the result of an addi-
tional pivot. In conjunction with this, the angles of the middle length l2 and the end
length l3 are coupled by an angular correction factor k. This in turn causes the total
angle θ to be a function of this factor and the intermediate angle α , as can be seen
in Figure 2.

θ = (1 + k)α. (6)

The resulting kinematic model of the end effector of the flexure hinge are

x = l1 + l2 cos(α)+ l3 cos(θ ), (7)

z = l2 sin(α)+ l3 sin(θ ). (8)

Although it is possible to extend this concept to the kinematic model of a robot,
the additional length and angular correction factor must be found through a calibra-
tion process. In the case of a 1 DOF joint, the application of this method will result
in 2 additional parameters, 1 length and 1 angular correction values, per joint. In
the 2 DOF case, there will still be 1 length but 2 angular correction values. It can
be seen that applying this method to a robot with many different passive joints, will
cause a substantial increase in the number of parameters which need to be found
through the calibration process.

2.3 Modified Kimball–Tsai Method

In order to limit the number of calibration parameters, a modification of the method
proposed by Kimball has been developed in which the angular correction factor is

6
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assumed to be k = 1. This modification reduces the overall parameters of the calib-
ration process to one length parameter per joint, which is independent of number of
DOF the joint has. This reduced model can then be said to be

x = l1 + l2 cos(α)+ l3 cos(θ ), (9)

z = l2 cos(α)+ l3 sin(θ ), (10)

where
θ = 2α. (11)

Although this modification decreases the number of calibration parameters, there
is a decrease in the equations flexibility in comparison to the original equations. In
order to quantitatively say how well this modified method is able to model the actual
system, it will be verified against data obtained from a flexure hinge test bench. This
is accomplished by first calibrating the model, then comparing the results. With
a calibrated model, a quantitative comparison of how well each model is able to
follow the system can be performed. As both the flat spring model and Kimball–
Tsai method have already been validated, this process will not be repeated [4, 7].

3 Flexure Hinge Test Bench

Collecting explicit kinematic data of a flexure hinge is no trivial task, as their de-
flection is dependent on the applied moment and loads. Such data is collected using
the test bench designed within the institute, which can be seen in Figure 3. Here the
flexure hinge is clamped in place while a triangular member applies a force perpen-
dicular to the joint (Figure 3(a)). The task of keeping the applied force perpendicular
to the hinge is achieved by a four bar linkage, with the joint of one member being
placed as close to the middle of the flexure hinge as possible (Figure 3(b)). In the
configuration shown, it is possible to flex the hinge in a cyclic manor between 0 and
30 degrees. Driving this four bar linkage is a stepper motor, which is attached the
circular member in the bottom right corner in Figure 3(b).

As the joint is flexed, motion data is obtained from a machine vision system OPC
(Optical Position Control) which has been developed at the Institute for Production
Measurement Technology (IPROM) at the Technische Universität Braunschweig.
With a camera placed perpendicularly above the joint, the 782×582 pixel sensor in
conjunction with the OPC software is able to obtain a resolution of 0.1 µm [9].

4 Parameter Calibration of a Flexure Hinge

With the modified Kimball–Tsai model as well as motion data of the flexure hinge
between 0 and 30 degrees, it is now possible to find the length parameter needed to

7

test the models validity. This is achieved by first defining the parameter vector k as
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(a) Close up of flexure hinge being actuated (b) Test bench linkage

Fig. 3 The flexure hinge test bench.

k =
[
l1, l2, l3

]T
. (12)

Next the residuum r(k) between the modeled data as a function of the parameter
vector and the actual data is defined in equation (13). The cost function F is then
developed as a function of the residuum, as seen in equation (14).

r(k) = xmodel(k)−xactual , (13)

F = rT · r. (14)

In order to find the optimized parameters, the cost function is minimized, which is
achieved using the well documented Levenberg-Marquardt method [10].

5 Validation and Model Comparison

The parameters of the simplified rigid body model presented in Section 2.3 are cal-
culated using the above mentioned calibration process. This resulted in l1 being
6.5969 mm, l2 being 1.8437 mm, and l3 being 6.5594 mm. The error between the
actual data and the model is found and can be seen in Figure 4(a). Within the error
plot it can be seen that there is a proportionally large error at the beginning. Upon
further investigation of this abnormality, it can be seen that there is a slight bump in
the data found using the test bench. This can best be seen in the plot in Figure 4(b),
in which both the modeled and actual paths have been plotted together. Other than
this first peak, the error is on the order of the optical measurement system, 0.1 µm.

8
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Fig. 4 Error between the modified Kimball–Tsai method and actual data.

Table 1 Comparing the rigid body kinematic models.

Models Simp. Flat-Spring Kimb. Tsai Mod. Kimb.

Complexity ++ - - - +
Calib. k

1 DOF Joint 0 1 2 1
2 DOF Joint 0 1 3 1

Error r 5◦ 31 µm 17 µm ≤ 0.1 µm ≤ 0.1 µm
Error r 20◦ 128 µm 72 µm ≤ 0.1 µm ≤ 0.1 µm
Error r 30◦ 192 µm 117 µm ≤ 0.1 µm ≤ 0.1 µm

A comparison of the presented rigid body kinematic models can be seen in
Table 1, in which a qualitative as well as quantitative comparison is conducted.
For the qualitative comparison, ++ is considered advantageous, while −− is con-
sidered less favorable. This table also shows the number of additional parameters
needed within the calibration process, where it is said that at least two length para-
meters are needed.

6 Conclusion and Outlook

From the four presented kinematic models of flexure hinges, it is shown that the
method proposed by Kimball and Tsai can be modified so that the angular correc-
tion value is assumed to be constant. This modified model reduces the number of
additional parameters required in its calibration from 2 to 1 for a 1 DOF joint, and
from 3 to 1 in a 2 DOF joint. This model is then calibrated with the Levenberg-
Marquardt method using hinge data obtained from the flexure hinge test bench.

9
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Lastly, the calibrated model along with the other models are compared to data from
the actual system. It is thus shown that the reduced order model is able to reduce the
error of the model for both small to large displacements. During model validation,
it is shown that the model error is less then that of the sensor resolution of 0.1µm.

The validation of the single flexure hinge model using the modified Kimball–
Tsai method has shed some light on what has often been an overlooked topic. This
validation thus opens the door to applying this modified model to more complex
systems. It is also important to mention that the chosen force loading shown within
this paper is rather ideal. Although this is not the case within an actual robot system
in which the loads and moments will be changing as a function of time, it is foreseen
that an improvement in the calibrated kinematic model at increased angular deflec-
tions can be obtained. It is also anticipated that the resilience of the modified model
to different loading scenarios will be dependent on the hinge stiffness.

Acknowledgements The research reported here has been supported by the German Research
Foundation (DFG) within the scope of both the Collaborative Research Center SFB 516 and 562.
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Dynamic Jacobian Inverses of Mobile
Manipulator Kinematics

K. Tchoń, J. Jakubiak and Ł. Małek

Institute of Computer Engineering, Control and Robotics,
Wrocław University of Technology, Wrocław, Poland;
e-mail: {krzysztof.tchon, janusz.jakubiak, lukasz.malek}@pwr.wroc.pl

Abstract. We derive a class of dynamic Jacobian inverses of mobile manipulator kinematics based
on the Ważewski inequality. It is shown that all right Jacobian inverses, as well as the adjoint
Jacobian, the adjugate dexterity matrix, and the singularity robust Jacobian inverse belong to this
class. Performance of example Jacobian algorithms is illustrated by computer simulations.

Key words: Mobile manipulator, inverse kinematics, Jacobian, dynamic inverse.

1 Introduction

The idea of using a dynamic system in order to solve various problems in control
theory is well known, to mention only dynamic observers or dynamic inverters of
linear control systems. An extension of this idea to the inversion of nonlinear maps
using state observers has been made in [1, 2]. A complementary approach, focused
on the trajectory tracking in nonlinear control systems, and the continuous inverse
kinematic problem in holonomic manipulators is set forth in [3]. An inspiring pos-
sibility of applying dynamical systems for solving problems of “discrete” nature has
been discovered in [4], and developed in [5]. The dynamic Jacobian pseudo inverse
has been used for motion planning of nonholonomic systems in [6] and [7].

This paper develops a construction of dynamic Jacobian inverses of kinematics
of mobile manipulators, based on the Ważewski inequality [8]. The continuation
method approach is taken as a point of departure. It is shown that not only the clas-
sical right Jacobian, but also the adjoint Jacobian, the adjugate dexterity matrix, and
the singularity robust inverse Jacobian inverses belong to this class. The existence
of global dynamic inverses, and the error convergence have been considered.

The paper is composed as follows. Section 2 defines the basic concepts in-
cluding the kinematics, the Jacobian and the adjoint Jacobian, regular and singular
configuration, and the continuation method. The concept of the dynamic Jacobian
inverse is introduced in Section 3. Section 4 provides examples of the dynamic
inverses. Computer simulations are included in Section 5. Section 6 contains con-
clusions.

11
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2 Basic Concepts

We shall assume that a mobile manipulator consists of a nonholonomic mobile plat-
form carrying on board a holonomic manipulator. The motion of the mobile platform
is described by coordinates q ∈ Rn, and subject to nonholonomic phase constraints
in the Pfaffian form. The joint positions of the on board manipulator are denoted
by x ∈ Rp, and the end effector position and orientation are given by y ∈ Rr. In con-
sequence, the kinematics of the mobile manipulator will be represented by a driftless
control system with outputs

{
q̇ = G(q)u = ∑m

i=1 gi(q)ui,

y = k(q,x) = (k1(q,x), . . . ,kr(q,x)).
(1)

2.1 Kinematics

The inputs (u(·),x) driving the system (1) include platform velocities u(t)∈ Rm, and
joint positions x ∈ Rp of the on board manipulator. The platform control functions
are chosen Lebesgue square integrable on an interval [0,T ]; the joint positions are
constant vectors. The control space X = L2

m[0,T ]×Rp equipped with inner product

〈(u1(·),x1),(u2(·),x2)〉RW =
∫ T

0
uT

1 (t)R(t)u2(t)dt + xT
1 Wx2, (2)

where R(t) = RT (t) > 0 and W = W T > 0 are symmetric, positive definite weight
matrices, becomes a Hilbert space called the endogenous configuration space of
the mobile manipulator [9]. In what follows, wherever convenient, we shall use the
notation x = (u(·),x).

The output map of (1) takes values in the task space of the mobile manipulator,
identified with Rr, and endowed with inner product

〈y1,y2〉Q = yT
1 Qy2, (3)

where Q denotes a symmetric, positive definite matrix QT = Q, Q > 0. The norm
induced by (3) will be denoted by || · ||Q.

Given an initial platform posture q0 ∈ Rn, and an endogenous configuration x =
(u(·),x) ∈ X , we compute the trajectory q(t) = ϕq0,t(u(·)) of the platform, and the
task space trajectory y(t) = k(q(t),x). The end point map Kq0,T : X −→ Rr of the
control system (1), defined as

Kq0,T (x) = y(T ) = k(ϕq0,T (u(·)),x), (4)

will be identified with the kinematics of the mobile manipulator.

12
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2.2 Jacobian

The differential kinematics are constituted by the mobile manipulator’s Jacobian
Jq0,T (x) : X −→ Rr, defined as

Jq0,T (x)(v(·),w) =
d

dα

∣
∣∣
∣
α=0

Kq0,T (u(·)+ αv(·),x + αw)

= C(T,x)
∫ T

0
Φ(T,s)B(s)v(s)ds+ D(T,x)w. (5)

The matrices appearing in the Jacobian result from the linear approximation of the
kinematics representation (1) along the pair (input, trajectory) (u(t),x,q(t)), so that

A(t) =
∂
(
G(q(t))u(t)

)

∂q
, B(t) = G(q(t)),

C(t,x) =
∂k(q(t),x)

∂q
, D(t,x) =

∂k(q(t),x)
∂x

, (6)

while Φ(t,s) denotes the transition matrix satisfying the evolution equation
∂
∂ t Φ(t,s) = A(t)Φ(t,s), Φ(s,s) = In. The linear, time dependent control system

ξ̇ = A(t)ξ + B(t)v, η = C(t,x)ξ + D(t,x)w (7)

determined by the data (6) will be referred to as the variational system associated
with (1). It is easily seen that the Jacobian (5) corresponds to the input-output map
of the variational system initialized at ξ0 = 0.

2.3 Adjoint Jacobian

The dual map J∗q0,T (x) : X ∗ → (Rr)∗ to the Jacobian is called the adjoint Jacobian
of the mobile manipulator. Having identified the original linear spaces with their
duals, and using the inner products (2) and (3), we obtain

(
J∗q0,T (x)η

)
(t) =

[
R−1(t)BT (t)ΦT (T,t)CT (T,x), W−1DT (T,x)

]
Qη . (8)

2.4 Regular and Singular Configurations

An endogenous configuration x = (u(·),x) ∈ X of the mobile manipulator will be
called regular, if the Jacobian (5) is surjective, otherwise the configuration is singu-
lar. The surjectivity of the Jacobian is equivalent to the output controllability of the

13
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variational system (7), and implies that the original system (1) is locally output con-
trollable. A necessary and sufficient condition for the regularity of a configuration
is that the Gram matrix

Dq0,T (x) = Jq0,T (x)J∗q0,T
(x) = D(T,x)W−1DT (T,x)

+C(T,x)
∫ T

0
Φ(T,s)B(s)R−1(s)BT (s)ΦT (T,s)dsCT (T,x) (9)

of the variational system has rank r. In robotic terminology the matrix (9) is called
the dexterity matrix of the mobile manipulator.

2.5 Continuation Method

Given a desirable output yd , the inverse kinematic problem consists in determining
an endogenous configuration xd = (ud(·),xd), such that Kq0,T (xd) = yd . A con-
venient way of solving inverse problems comes from the continuation method
[6, 10]. In accordance with this method, for a parameter θ ∈ R and a γ > 0, we
compose a homotopy map

H(θ ,x) = (1− exp(−γθ ))
(
Kq0,T (x)− yd

)
+ exp(−γθ )

(
Kq0,T (x)−Kq0,T

(x0)
)

= Kq0,T (x)− exp(−γθ )Kq0,T (x0)− (1− exp(−γθ ))yd , (10)

between the original problem (associated with θ = +∞) and a trivial problem: given
x0, find x such that Kq0,T (x) = Kq0,T (x0) (assigned to θ = 0). By equating the homo-
topy map to 0, we get an implicitly defined curve xθ of endogenous configurations,
passing at θ = 0 through x0, that satisfies the following Ważewski–Davidenko dif-
ferential equation [11, 12]

Jq0,T (xθ )
dxθ
dθ

= −γ exp(−γθ )
(
Kq0,T (x0)− yd

)
= −γ

(
Kq0,T (xθ )− yd

)
. (11)

Let J#
q0,T

(x) denote any right inverse of the Jacobian, i.e. Jq0,T (x)J#
q0,T (x)= Ir. Then,

the equation (11) transforms into a Jacobian inverse kinematics algorithm with the
underlying dynamics

dxθ
dθ

= −γJ#
q0,T

(xθ )
(
Kq0,T (xθ )− yd

)
. (12)

A solution to the inverse kinematic problem is obtained as the limit

xd = (ud(·),xd) = lim
θ→+∞

xθ . (13)

Having defined the error as

14
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e(θ ) = Kq0,T (xθ )− yd, (14)

it is easily seen that the Ważewski–Davidenko equation results in the error equation

de(θ )
dθ

= −γe(θ ), (15)

and implies that the error converges to 0 exponentially with the rate γ .

3 Dynamic Inverses

Taking (15) as a point of departure, we shall request that the error dynamics obey a
more general differential equation

d e(θ )
dθ

= −γS(θ )e(θ ), (16)

containing a certain r × r matrix S(θ ) whose properties will be specified later. By
differentiating the error formula (14), we get the Ważewski–Davidenko equation

Jq0,T
(xθ )

dxθ
dθ

= −γS(θ )e(θ ). (17)

Now, let us choose an operator J#S
q0,T

(x) : Rr → X , and define the dynamic system

dxθ
dθ

= −γJ#S
q0,T

(xθ )e(θ ). (18)

A substitution of (18) into the Ważewski–Davidenko equation yields the identity

S(θ ) = Jq0,T (xθ )J#S
q0,T

(xθ ). (19)

Whenever a trajectory xθ of (18) exists, the solution of the error equation (16) sat-
isfies the Ważewski inequality [8]

||e(0)||Q exp

(∫ θ

0
λ M(θ)ds

)
≤ ||e(θ )||Q ≤ ||e(0)||Q exp

(∫ θ

0
λ M(θ)ds

)
, (20)

with λ M and λ M denoting, respectively, the minimum and the maximum eigenvalue
of the matrix

M(θ ) = −1
2

γ
(
Q−1/2(QS(θ )+ ST(θ )Q)Q−1/2). (21)

It is easily seen that, if xθ is defined for every θ ≥ 0, and
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lim
θ→+∞

∫ θ

0
λ M(s)ds = −∞,

then the error e(θ ) vanishes asymptotically. When these conditions are met, the
operator J#S

q0,T (x) will be called a dynamic inverse of the mobile manipulator’s
Jacobian. After plugging the dynamic inverse into the dynamic system (18), we
transform this system into an inverse kinematics algorithm producing in the limit
(13) a solution to the inverse kinematic problem.

By design, the dynamic inverse transforms an initial endogenous configuration
x0 = (u0(·),x0) into a solution xd = (ud(·),xd) of the inverse kinematic problem,
exploiting as a vehicle the dynamics (18). In general, the dynamic inverse is defined
only locally, for those endogenous configurations whose trajectories exist for all
θ ≥ 0. This being so, a fundamental design problem of dynamic inverses consists
in guaranteeing the completeness of (18), i.e. the existence of its solutions for every
initial configuration x0 and every θ ∈ R.

4 Example Jacobian Inverses

In this section we present a collection of Jacobian dynamic inverses applicable to
mobile manipulators, and demonstrate that diverse tools used for solving the inverse
kinematic problem for mobile manipulators can be unified within the same concept
of the dynamic Jacobian inverse. For the sake of space limitations we shall confine
here only to very basic theoretical aspects of these inverses. Various computational
issues have been addressed in [13–15].

4.1 Right Inverses

It has been established in [14] that every right inverse of the mobile manipulator
Jacobian should have the following structure

J#
q0,T

(x) = Lq0,T (x)R−1
q0,T

(x), (22)

where Lq0,T (x) : Rr →X is a linear map, while Rq0,T
(x) = Jq0,T (x)Lq0,T (x) denotes

an r× r matrix. An endogenous configuration for which the matrix Rq0,T
(x) has full

rank will be referred to as an algorithmically regular configuration; when Rq0,T (x)
becomes rank deficient, the corresponding configuration represents an algorithmic
singularity. By design, every right Jacobian inverse is a dynamic inverse associated
with the unit matrix S(θ ), that is well defined outside algorithmic singularities. The
convergence of the corresponding inverse kinematics algorithm is exponential.

Specifically, the Jacobian pseudo inverse J#P
q0,T (x) : Rr → X is defined as [9]
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(
J#P

q0,T
(x)η

)
(t) =

[
R−1(t)BT (t)ΦT (T,t)CT (T,x),W−1DT (T,x)

]
D−1

q0,T (x)η . (23)

It is easily checked that the map Lq0,T (x) = J∗q0,T
(x), see (8). Consequently, Rq0,T (x)

= Dq0,T (x), therefore the algorithmic singularities of the Jacobian pseudo inverse
coincide with Jacobian singularities. Only in a few specific cases the Jacobian
pseudo inverse has been proved to be a global dynamic inverse [7]. Notice that
all extended Jacobian inverses [13] also belong to the class of right inverses defined
by (22).

4.2 Non-Right Inverses

4.2.1 Adjoint Jacobian

The adjoint Jacobian dynamic inverse J#∗
q0,T

(x) = J∗q0,T (x) : Rr → X has been

defined by (8). Its associated matrix S(θ ) = Jq0,T (x)J∗q0,T
(x) = Dq0,T (x)Q, and the

convergence condition of the corresponding inverse kinematics algorithm can be
formulated as

lim
θ→+∞

∫ θ

0
λ Dq0,T (xα )Q dα = +∞.

The adjoint Jacobian inverse can operate at singular configurations. A number of
particular cases when the adjoint Jacobian becomes a global dynamic inverse have
been examined in [15].

4.2.2 Adjugate Dexterity Matrix Inverse

This inverse comes from a generalization of the Newton method [16], and relies
on the assumption that the kinematics (4) remain transverse to a ray in the task
space [9]. The resulting dynamic inverse J#ADM

q0,T (x) : Rr → X takes the form

(
J#ADM

q0,T (x)η
)
(t) =

[
R−1(t)BT (t)ΦT (T,t)CT (T,x),W−1DT (T,x)

]
adjDq0,T (x)η ,

where for an n × n matrix M, adjM denotes the adjugate (or adjoint) matrix,
such that adjM M = M adjM = In det M. The matrix S(θ ) = Jq0,T (xθ )J#ADM

q0,T (xθ ) =
Ir detDq0,T (xθ ), whereas the error (14) converges, if

lim
θ→+∞

∫ θ

0
detDq0,T (xα)dα = +∞.

It can be shown that the adjugate dexterity matrix dynamic inverse vanishes at sin-
gular endogenous configurations. So far no globality conditions for this inverse are
available.
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Fig. 1 Mobile manipulator.

4.2.3 Singularity Robust Inverse

The singularity robust Jacobian inverse J#SRI
q0,T

(x) : Rr −→ X , is defined as

(
J#SRI

q0,T (x)η
)
(t) =

[
R−1(t)BT (t)ΦT (T,t)CT (T,x),W−1DT (T,x)

]
Q(κIr +Dq0,T

(x)Q)−1η ,

where κ > 0 plays the role of a small regularizing parameter [9]. This inverse is
well defined both at regular and at singular configurations. The associated matrix
S(θ ) = Jq0,T

(xθ ))J#SRI
q0,T (xθ ) = Dq0,T (xθ )Q(κIr +Dq0,T (xθ )Q)−1. The error conver-

gence condition takes the following form:

lim
θ→+∞

∫ θ

0

λDq0,T (xα )Qdα

κ + λDq0,T (xα )Q
= +∞.

Recently, it has been proved that the singularity robust inverse is a global dynamic
Jacobian inverse [17, 18].

5 Computer Simulations

For illustration of theoretical developments, below we shall show sample results of
solving an inverse kinematic problem for the mobile manipulator composed of kine-
matic car platform and RTR on-board manipulator, studied in [18], and displayed in
Fig. 1.

Variable q = (x,y,ϕ ,ψ)∈ R4 describes the platform position, orientation, and the
heading angle of its front wheels. Variables x = (x1,x2,x3)∈R3 and y =(y1,y2,y3)∈
R3 refer to the joint and to the end effector position of the on board manipulator.
Under assumption l = l2 = l3 = 1 the control system (1) takes the following form
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{
q̇1 = u1 cosq3 cosq4, q̇2 = u1 sinq3 cosq4, q̇3 = u1 sinq4, q̇4 = u2

y = (q1 +(1 + cosx3)cos(x1 + q3),q2 +(1 + cosx3)sin(x1 + q3),x2 + sinx3).

The Jacobian pseudo inverse, the singularity robust Jacobian inverse, and the adjoint
Jacobian algorithms will be used. The inverse kinematic problem consists in reach-
ing yd = (0,0,0) from initial platform’s state q0 = (0,10,0,0) at initial configuration
x0 = (1,1,1) of the on board manipulator, and over the time horizon T = 1. The con-
trol u(t) = (u1(t),u2(t)) has been synthesized from 500 element basis consisting of
piecewise constant functions. Parameter γ is set to 0.1 for Jacobian pseudo inverse
and singularity robust Jacobian inverse, and 0.0001 for adjoint Jacobian. Where ap-
plicable, κ = 10−6 is adopted. Results of computations are displayed in Figs. 2–7.

6 Conclusions

This paper deduces a collection of Jacobian inverse kinematics algorithms for
mobile manipulators from a common root of the dynamic Jacobian inverse. The
presented results make a contribution to the theory of motion planning for mo-
bile manipulators. Computer simulations illustrate performance and convergence
of example algorithms based on right and non-right Jacobian inverses. In the pa-
per we have defined the dynamic inverse by reference to the Ważewski inequality
that provides a sufficient condition for the convergence of the inverse kinematics
algorithms. It is a challenge of future research to seek for alternative, more general
conditions.
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Abstract. The standard forward kinematics analysis of 3-RPR planar parallel platforms boils down
to computing the roots of a sextic polynomial. There are many different ways to obtain this poly-
nomial but all of them include exceptions for which the formulation is not valid. Unfortunately,
near these exceptions the corresponding polynomial exhibits numerical instabilities. In this paper,
we provide a way around this inconvenience by translating the forward kinematics problem to be
solved into an equivalent problem fully stated in terms of distances. Using constructive geometric
arguments, an alternative sextic – which is not linked to a particular reference frame – is obtained
in a straightforward manner without the need of variable eliminations nor tangent-half-angle sub-
stitutions. The presented formulation is valid, without any modification, for any planar 3-RPR
parallel platform, including the special architectures and configurations – which ultimately lead to
numerical instabilities – that cannot be directly handled by previous formulations.

Key words: 3-RPR parallel robots, coordinate-free formulations, Cayley–Menger determinants,

bilateration, numerical stability.

1 Introduction

Much has been written about the 3-RPR planar parallel robot because of its prac-
tical interest, mechanical simplicity, and rich mathematical properties [1]. Such a
robot consist of a moving platform connected to the ground through three revolute-
prismatic-revolute kinematic chains. The prismatic joint of each chain is actuated
and the forward kinematics problem consists in, given the prismatic joint lengths,
calculating the Cartesian pose of the moving platform. This problem has at most
six different solutions which are usually computed by solving a system of three
non-linear equations in three unknowns [2, 3]. The major step in this resolution pro-
cess is to find a so-called univariate characteristic equation in θ (the orientation
of the moving platform), i.e., to eliminate all other variables from the system until
an equation is obtained that contains only θ . Finally, a tangent-half-angle substitu-
tion is applied to translate sine and cosine functions of θ into rational polynomial
expressions in a new variable t = tan(θ/2). Merlet was probably one of the first
researchers to observe that the computation of the roots of this 6th-degree leads,
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in some cases, to numerical instabilities and he also observed that the numerical
robustness is improved by using a higher order polynomial [4].

The tangent-half-angle substitution poses two well-known problems. One results
from the fact that tan(θ/2) is undefined for ±π . Moreover, it can become difficult
to reconstruct other roots, occurring in conjunction with the root θ = ±π [5]. The
other problem is the introduction of extraneous roots. Both problems are well known
and can be handled but it complicates notably subsequent calculations [6]. The use
of the kinematic mapping, as in [7], avoids this substitution but the problem with ±π

turns still remains if the used homogeneous coordinates are normalized to obtain the
sextic polynomial. Other sources of numerical problems, specifically arising in 3-
RPR parallel robots, are discussed in [8].

In order to simplify as much as possible the coefficients of the resulting 6th-
degree polynomial, it is possible to express the coordinates of the base attachments
according to a specific coordinate frame. For example, by making one coordinate
axis to coincide with the baseline between two base attachments and/or locating the
origin at one base attachment. Nevertheless, this kind of simplifications has an im-
portant drawback: the numerical conditioning of the resulting formulation depends
on the chosen reference frame. This is why those formulations which are not linked
to a particular reference frame – or coordinate-free formulations – are preferable.

In this paper, we provide a way around the above difficulties by casting the prob-
lem into an equivalent problem fully stated in terms of distances which is solved by a
sequence of bilaterations. As a result, a 6th-degree characteristic polynomial, which
is not linked to any particular reference frame, is obtained in a straightforward man-
ner without variable eliminations nor tangent-half-angle substitutions. Moreover,
the obtained polynomial is mathematically more tractable than the one obtained us-
ing other approaches because its coefficients are the result of operating with Cayley–
Menger determinants with geometric meaning.

This paper is organized as follows. A coordinate-free formula for bilateration
expressed in terms of Cayley–Menger determinants is presented in Section 2. It is
the basic formula, used in Section 3, to derive a coordinate-free characteristic poly-
nomial for the general 3-RPR planar parallel robot. Section 4 analyzes a numerical
example in which the standard formulations miss a solution. Finally, Section 5 sum-
marizes the main points and gives prospects for further research.

2 Cayley–Menger Determinants and Bilateration

Let Pi and pi denote a point and its position vector in a given reference frame,
respectively. Then, let us define

D(i1, . . . , in; j1, . . . , jn) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 . . . 1
1 si1,j1 . . . si1,jn

...
...

. . .
...

1 sin,j1 . . . sin,jn

∣
∣
∣
∣
∣
∣
∣
∣
∣

, (1)
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with si,j = ‖pi − pj‖2, which is independent from the chosen reference frame.
This determinant is known as the Cayley–Menger bi-determinant of the point se-
quences Pi1 , . . . , Pin , and Pj1 , . . . , Pjn . When the two point sequences are the same,
it will be convenient to abbreviate D(i1, . . . , in; i1, . . . , in) by D(i1, . . . , in), which
is simply called the Cayley–Menger determinant of the involved points.

x

y
PP1

P2

P3

p1 p2

p3

p

h
θ

Fig. 1 The bilateration problem in R
2.

In terms of Cayley–Menger determ-
inants, the squared distance between Pi

and Pj can be expressed as D(i, j) and
the signed area1 of the triangle PiPjPk ,
as ± 1

2

√
D(i, j, k). For a brief review

of the properties of Cayley–Menger de-
terminants, see [9].

The bilateration problem in R
2 con-

sists of finding the feasible locations of
a point, say P3, given its distances to
two other points, say P1 and P2, whose
locations are known. Then, according
to Fig. 1, the position vector of the or-
thogonal projection of P3 onto the line
P1P2 can be expressed as:

p = p1 +
√

D(1, 3)

D(1, 2)
cos θ(p2 − p1) = p1 + D(1, 2; 1, 3)

D(1, 2)
(p2 − p1). (2)

Moreover, the position vector of P3 can be expressed as:

p3 = p ±
√

D(1, 2, 3)

D(1, 2)
S(p2 − p1), (3)

where the ± sign accounts for the two mirror symmetric locations of P3 with respect
to the line defined by P1P2, and S = [

0 −1
1 0

]

. Then, substituting (2) in (3) and
expressing the result in matrix form, we obtain

p3 = p1 + Z(p2 − p1) (4)

where

Z = 1

D(1, 2)

[

D(1, 2; 1, 3) ∓√
D(1, 2, 3)

±√
D(1, 2, 3) D(1, 2; 1, 3)

]

1 For a triangle PiPjPk in the Euclidean plane with area A, the signed area is defined as +A

(respectively, −A) if the point Pj is to the right (respectively to the left) of the line PiPk , when
going from Pi to Pk .
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P1

P2

P3

P4

P5

P6

l1

l2

l3

L1

L2

L3

α

β

ρ1

ρ2

ρ3

Fig. 2 A general planar 3-RPR parallel platform.

Figure 2 shows a general 3-RPR planar
parallel robot. The center of the three
grounded passive revolute joints define
the base triangle P1P2P3 and the three
moving passive revolute joints centers,
the moving triangle P4P5P6. The active
prismatic joint variables are the lengths
ρ1, ρ2, and ρ3.

Next, we derive a coordinate-free
formula for the forward kinemat-
ics of this parallel platform. To this
end, instead of directly computing the
Cartesian pose of the moving platform,
first we will compute the set of values
of T = ‖p4 −p2‖2 compatible with ρ1,
ρ2, and ρ3 and the base and the mov-
ing platform side lengths, l1, l2, l3, L1,
L2, and L3. Thus, this step is enterally
posed in terms of distances.

Let us take P1 and P2 as reference points. Then, by bilateration

1. p3 can be computed from p1 and p2. This has only one solution because the
oriented area of triangle P1P2P3 is constant and its sign is determined by the
sign of α.

2. p4 can be computed from p1 and p2. This has two possible solutions which in-
volve the unknown squared distance T .

3. p5 can be computed from p4 and p2. This also has two possible solutions which
also involve the unknown squared distance T .

4. p6 can be computed from p4 and p5. This has only one solution because the
oriented area of triangle P4P5P6 is constant and its sign is determined by the
sign of β.

Translating the above four bilaterations into algebraic terms using (4), the following
system of vector linear equations is obtained:

p3 = p1 + A(p2 − p1)

p4 = p1 + B(p2 − p1)

p5 = p4 + C(p2 − p4)

p6 = p5 + D(p4 − p5)

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

, (5)

where
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A = 1

D(1, 2)

[

D(1, 2; 1, 3) −sign(α)
√

D(1, 2, 3)

sign(α)
√

D(1, 2, 3) D(1, 2; 1, 3)

]

,

B = 1

D(1, 2)

[

D(1, 2; 1, 4) ∓√
D(1, 2, 4)

±√
D(1, 2, 4) D(1, 2; 1, 4)

]

,

C = 1

D(4, 2)

[

D(4, 2; 4, 5) ∓√
D(4, 2, 5)

±√
D(4, 2, 5) D(4, 2; 4, 5)

]

,

D = 1

D(5, 4)

[

D(5, 4; 5, 6) sign(β)
√

D(5, 4, 6)

−sign(β)
√

D(5, 4, 6) D(5, 4; 5, 6)

]

.

Now, by properly manipulating the equations in the above linear system, it is pos-
sible to conclude that

(p6 − p3) = �(p2 − p1) (6)

where � = −A + B + C − DC− CB + DCB. This matrix, when expanded in terms
of Cayley–Menger determinants, leads to:

� = 1

D(5, 4)D(4, 2)D(1, 2)

[

w1 −w2
w2 w1

]

(7)

where

w1 =D(4, 6; 4, 5)
(

±√

D(1, 2, 4)
) (

±√

D(4, 2, 5)
)

+ D(4, 2; 4, 5)
(

sign(β)
√

D(5, 4, 6)
) (

±√

D(1, 2, 4)
)

− D(2, 4; 2, 1)
(

sign(β)
√

D(5, 4, 6)
) (

±√

D(4, 2, 5)
)

+ D(4, 6; 4, 5)D(2, 4; 2, 1)D(4, 2; 4, 5)

+ D(5, 4)D(4, 2) (D(1, 2; 1, 4) − D(1, 2; 1, 3)) ,

and

w2 =
(

sign(β)
√

D(5, 4, 6)
) (

±√

D(1, 2, 4)
) (

±√

D(4, 2, 5)
)

+ D(4, 6; 4, 5)D(2, 4; 2, 1)
(

±√

D(4, 2, 5)
)

+ D(4, 2; 4, 5)D(2, 4; 2, 1)
(

sign(β)
√

D(5, 4, 6)
)

− D(5, 4)D(4, 2)
(

sign(α)
√

D(1, 2, 3)
)

+ D(5, 4)D(4, 2)
(

±√

D(1, 2, 4)
)

− D(4, 2; 4, 5)D(4, 6; 4, 5)
(

±√

D(1, 2, 4)
)

.
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Now, it can be checked that

‖p6 − p3‖2

‖p2 − p1‖2 = det(�).

Thus,
D(6, 3)

D(1, 2)
= w2

1 + w2
2

D2(5, 4)D2(4, 2)D2(1, 2)
, (8)

which is a scalar equation in one unknown: T . Finally, by expanding all the involved
Cayley–Menger determinants in the above equation in terms of distances, we obtain

�a + �bA124 + �cA425 + �dA124A425 = 0 (9)

where

A124 = ±1

2

√
(

(L2 + ρ1)
2 − T

) (

T − (L2 − ρ1)
2)

and

A425 = ±1

2

√
(

(l2 + ρ2)
2 − T

) (

T − (l2 − ρ2)
2)

are the signed areas of the triangles P1P2P4 and P4P2P5, respectively. �a , �b, �c,
and �d are polynomials in T whose expressions can be found in the Appendix.

By properly twice squaring equation (9) to eliminate the two squared roots in-
volving T , a 6th-degree polynomial in T is finally obtained. The roots of this poly-
nomial determine the assembly-modes of the analyzed robot. Given the position
vectors p1 and p2 in a particular reference frame, each root of this polynomial
determines up to four possible values for p6 that can be obtained through a se-
quence of bilaterations. At least one of the values obtained from each of these se-
quences must satisfy, by construction, the distance constraint between P3 and P6
(i.e., D(3, 6) = ρ3

2). Observe that the sequence of bilaterations is not the same de-
pending on whether the root is at the origin or not. Actually, it is important to realize
that the obtained sextic permits to compute the solutions in which T = 0.

The presented formulation is coordinate-free because it is independent from the
chosen reference frame. It is valid, without any modifications, for any planar 3-RPR
parallel platform, including the special architectures discussed in [3] and [8] that
cannot be directly solved by the formulation presented in [2], or that have been
solved on an ad hoc basis [10].

4 Numerical Example

Let us study the planar 3-RPR parallel platform defined by l2
1 = 25, l2

2 = 36,
l2
3 = 25, L2

1 = 73, L2
2 = 16, L2

3 = 65, α > 0, and β > 0, with input variables
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ρ2
1 = 1, ρ2

2 = 121, and ρ2
3 = 169. If p1 = (0, 0)T , p2 = (4, 0)T , and p3 = (1, 8)T ,

it can be verified that the characteristic polynomial of this mechanism, using the
formulation derived in [2], reduces to:

1469440 �4 + 1755136 �3 + 4261376 �2 + 1140736 � + 219136 = 0 (10)

with

sin(θ) = 2�

1 + �2 and cos(θ) = 1 − �2

1 + �2 ,

θ being the angle between the lines defined by P1P2 and P4P5. The solutions of
equation (10), obtained using 32 decimal digits in the computations, are −0.4573 −
1.5419i, −0.4573 + 1.5419i, −0.1399 − 0.1952i, and −0.1399 + 0.1952i. Since
none of them is real, it can be erroneously concluded that the platform under study
cannot be assembled with the given leg lengths.

Alternately, using the formulation derived in [10], the following characteristic
polynomial is obtained:

4408320Y 4 − 1744896Y 3 + 7788032Y 2 − 1464320Y + 3564544 = 0 (11)

where

sin(ψ) = 2Y

1 + Y 2 and cos(ψ) = 1 − Y 2

1 + Y 2 ,

ψ being the angle between the lines defined by P1P4 and P1P2. The solutions of
this equation obtained using 32 decimal digits in the computations, are −0.0363 −
0.9243i, −0.0363+0.9243i, 0.2342−0.9435i, and 0.2342+0.9435i. Again, since
none of them is real, it can be erroneously concluded that the platform under study
cannot be assembled with the given leg lengths thus confirming the results obtained
using the formulation proposed in [2]. The formulation described in [7] leads to an
analogous situation when one of the homogeneous coordinates is normalized to 1.
Using the implementation for this formulation reported in [12], and choosing the
moving reference frame such that p4 = (0, 0)T and p5 = (6, 0)T in it, the resulting
polynomial is:

1469440 x1
4 + 1755136 x1

3 + 4261376 x1
2 + 1140736 x1 + 219136 = 0

where x1 is a component of the kinematic image space coordinates. The roots of
this equation are −0.4573 − 1.5419i, −0.4573 + 1.5419i, −0.1399 − 0.1952i,
and −0.1399 + 0.1952i. Again, none of them is real. Nevertheless, substituting the
parameters of the mechanism under study and the values of the input variables given
above in the coordinate-free equation (9), the following characteristic polynomial is
obtained:

B6T
6 + B5T

5 + B4T
4 + B3T

3 + B2T
2 + B1T

1 + B0 = 0, (12)

where
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B6 = −3445000, B5 = −185454160, B4 = 304547661,

B3 = 416912277408, B2 = −32392769185400,

B1 = 121165627563000, and B0 = −15097679553125000.

Fig. 3 This solution for the analyzed ex-
ample cannot be obtained using the formulations
presented in [2, 10, 12].

The roots of this equation, calcu-
lated with the same numerical precision
as above, are −65.0725 − 41.0946i,
−65.0725 + 41.0946i, 13.1561
−31.7921i, 13.1561 + 31.7921i,
and a double root at 25.0000. It can
be checked that the obtained double
real root corresponds to a valid con-
figuration of the analyzed 3-RPR
parallel platform, in clear contradiction
with what was concluded using the
formulations proposed in [2, 10, 12].
In the platform pose associated with
this double root, θ = 0, ψ = π , and
p4 = (−1, 0)T . Figure 3 depicts this
configuration.

The obtained results confirm that the
formulation of Gosselin et al. [2] and
that of Kong and Gosselin [10] are not,
in general, robust. Moreover, depend-
ing on the location of the chosen reference frames, the formulation of Husty [7]
would also fail to provide all solutions. This is a highly relevant fact for the kin-
ematic analysis and non-singular assembly-mode change studies of 3-RPR parallel
manipulators [7, 11]. The presented coordinate-free formulation does not exhibit
this kind of undesirable behavior.

5 Conclusions

Stating the forward kinematics analysis of 3-RPR parallel platforms directly in
terms of poses introduces two major disadvantages: (a) a reference frame has to be
introduced, and (b) all formulas involve translations and rotations simultaneously.
This paper proposes a different approach in which, instead of directly computing the
sought Cartesian poses, a problem fully posed in terms of distances is first solved.
Then, the original problem can be trivially solved by sequences of bilaterations.

All proposed previous formulations have exceptions which translate into numer-
ical instabilities when close to them. The approach proposed in this paper has no
exceptions and, since all coefficients involved in the associated formulation are the
result of operating with Cayley–Menger determinants with geometric meaning, it
opens the door to a rational and exhaustive classification of all 3-RPR planar plat-
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forms whose characteristic polynomials can be simplified either because they can
be factorized or because their degrees are lower than six. This is certainly a point
that deserves further attention.

Appendix

The polynomials �a , �b, �c, and �d in equation (9) can be expressed as:

�a = aT 2 + bT + c, �b = dT + e, �c = f T + g, and �d = h,

where

a = −l2
3L2

1 + 3l2
3L2

2 − 3l2
1L2

2 − l2
1L2

3 + l2
3L2

3 + l2
1L2

1 − 3l2
2L2

3 − l2
2L2

2 + 3l2
2L2

1

+ sign(α)sign(β)A123A546,

b = −3l2
2ρ2

1L2
2 + l4

2L2
3 − 5L2

2l
2
2 l2

3 + l2
2ρ2

2L2
1 − 3L2

2l
2
3ρ2

2 + 3L2
2l

2
1ρ2

2

− 3l2
2L2

2ρ
2
2 − ρ2

1L2
2l

2
1 − l4

2L2
1 + 3l4

2L2
2 − 5l2

2L2
2L

2
1 − 3l2

2L2
2L

2
3

+ L2
2l

2
1L2

1 − L2
2l

2
1L2

3 + l2
1 l2

2L2
1 − l2

1 l2
2L2

3 − L4
2l

2
3 + 3l2

2ρ2
1L2

3 + l2
1ρ2

2L2
3

− 3L2
2l

2
1 l2

2 − L2
2l

2
3L2

1 + L2
2l

2
3L2

3 − l2
2 l2

3L2
1 + l2

2 l2
3L2

3 + 8l2
2L2

2ρ
2
3

+ L4
2l

2
1 − 3l2

2ρ2
1L2

1 + l2
3ρ2

1L2
1 − l2

2ρ2
2L2

3 + ρ2
1L2

2l
2
3 − l2

1ρ2
1L2

1 − l2
1ρ2

2L2
1

+ l2
1ρ2

1L2
3 − l2

3ρ2
1L2

3 + 3l2
2L4

2 + l2
3ρ2

2L2
1 − l2

3ρ2
2L2

3

+
(

−ρ2
2 + l2

2 + L2
2 − ρ2

1

)

sign(α)sign(β)A123A546

c = −(l2 − ρ2)(l2 + ρ2)(L2 − ρ1)(L2 + ρ1)
[ −

(

l2
2 + l2

3 − l2
1

) (

L2
1 + L2

2 − L2
3

)

+ sign(α)sign(β)A1,2,3A5,4,6
]

,

d = 2
(

−l2
3 + l2

1 + 3l2
2

)

sign(α)A123 + 2
(

−L2
2 − L2

1 + L2
3

)

sign(β)A546,

e = 2 (l2 − ρ2) (l2 + ρ2)
[(

−l2
2 l2

3 + l2
1

)

sign(α)A123 +
(

−L2
2 − L2

1 + L2
3

)

sign(β)A546

]

,

f = 2
(

−l2
3 + l2

1 − l2
2

)

sign(α)A123 + 2
(

3L2
2 − L2

1 + L2
3

)

sign(β)A546,

g = 2 (L2 − ρ1) (L2 + ρ1)
[(

−l2
2 l2

3 + l2
1

)

sign(α)A123 +
(

−L2
2 − L2

1 + L2
3

)

sign(β)A546

]

,

h = 4
(

l2
2 + l2

3 − l2
1

) (

L2
1 + L2

2 − L2
3

)

− 4sign(α)sign(β)A123A546.
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Abstract. We introduce a novel hierarchical model to partition a kinematic system into a set of
nested subsystems. This is framed in a mixed real/virtual context, where some joints and links
may exist in simulation only. We then use this capability to build a precise form of kinematic
abstraction, where a potentially complex subsystem can be virtually replaced by a simpler “inter-
face.” Hierarchy and abstraction are interesting because they can help manage complexity in large
(100+ DoF) mixed real/virtual mechanisms. We prove that checking if an abstraction is proper is
PSPACE-hard, but show that even improper abstractions can be useful. Topological algorithms are
presented for decomposing a hierarchical or abstracted kinematic system into subsystems that can
be treated in isolation, thus speeding up kinematic computations. We demonstrate on a simulation
of a hybrid serial/parallel modular tower with over 100 revolute joints.

Key words: Kinematic graphs, virtual joints, topological decomposition.

1 Introduction

Abstractions, where a complex implementation is hidden behind a simpler interface,
are well known for managing complexity in computation. Is there any correlate in
the domain of kinematics? We demonstrate the affirmative by introducing structure
abstraction (Section 3). This novel and concrete technique can be used to effectively
hide a complex kinematic subsystem behind a simpler “interface mechanism.” Our
approach is built on two foundations: mixed real/virtual models, where some links
and joints are virtual; and hierarchical linkages.1 By closing chains, virtual ele-
ments can be used to specify constraints (Fig. 3 gives an example). They also make
structure abstraction more practical, as the interface mechanism can be virtual. We
introduce hierarchical linkages, the second foundational technique, in Section 2.

Hierarchy and abstraction are interesting because they can help manage com-
plexity in large systems, just as in other domains of computing and engineering. In
particular, we are interested in high-DoF redundant mechanisms with 100+ DoF.
Our original motivation arose from the study of kinematic simulation and control of

1 We use “linkage” in this work to mean any kinematic system composed of links and joints.
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linkage-type modular robots, where many modules can assemble in arbitrary topo-
logies. One use for abstraction here is to help design virtual kinematic constraints
– as chain-closing virtual joints – which guide a desired motion. Constraints can
be defined for each subsystem and then placed below abstraction barriers. This is
particularly useful given that high-DoF constructions often contain repeated sub-
structure.

Abstractions can also lead to faster kinematic computation, e.g. numeric IK, by
treating interface mechanisms as stand-in replacements for their more complex “im-
plementations.” The resulting motion can then be imposed on each implementation
in isolation. We give the necessary algorithms in Section 4 to partition a hierarchical
kinematic graph according to both (1) its biconnected components (a well-known
decomposition) and (2) the imposed hierarchy. The latter ensures that interfaces are
solved before implementations, as desired.

We implemented these algorithms as part of a general mixed real/virtual spatial
kinematic simulation environment [1]. Section 5 demonstrates an example of inter-
active IK for a hybrid serial/parallel tower structure with over 100 revolute joints.

We find relatively little prior work in the area of kinematic abstraction. Davis [2]
explored the idea of geometric abstraction, including a one-paragraph mention of
“kinematic device as black box.” Zanganeh and Angeles [3] studied partitioning of
topologically large kinematic graphs, but did not separate interface from implement-
ation. In [4], Williams and Mahew presented a tower structure similar to ours, but
smaller in topological scale. More significantly, they developed an IK solving optim-
ization related to structure abstraction, but only for one hand-decomposed instance.
Our algorithms apply in the general case with no manual intervention.

2 Hierarchical Linkages

Figure 1 shows a kinematic graph L where the vertices are links (rigid bodies) and
the edges are joints. Our implementation supports 12 different joint types. Cycles
(closed chains) are allowed, but we always identify a spanning tree and distinct clos-
ure joints. The parent link of a joint is generally the one closer to the tree root. We
allow the designer to identify this spanning tree by marking one closure joint in each
cycle; it could also be automatically found. The pose of each link l is considered to
be defined by the path of joint transforms from l to the tree root.

Such a flat graph L can be turned into a hierarchical kinematic graph L by
imposing a properly nested set of disjoint edge cuts as shown in Fig. 2. We call
each such demarcated subgraph a sublinkage. Further, we propose that a disposition
of “driving,” “driven,” or “simultaneous” is assigned to each sublinkage. If P is
the parent sublinkage immediately enclosing child sublinkage C, the disposition of
C determines whether it is considered rigid with respect to P (driving), vice-versa
(driven), or whether they are both mobile in the same context (simultaneous).
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Fig. 1 The edges in a kinematic graph (left) correspond to joints and the vertices to links. We allow
closed chains but always distinguish a spanning tree (dark edges). Twelve spatial joint types are
available in our implementation (right), including all lower pairs except helical. Strongly connected
components (circled, edge direction ignored) in the graph can be solved independently.

Fig. 2 To add hierarchy, partition a kinematic graph into a proper nesting of subgraphs. Each is
specified as driving (e.g. L1), driven (L3), or simultaneous (L2). The strongly connected compon-
ents (circled) of a directed meta-graph of the subgraphs (right) are solvable independently.

For real linkages, such relationships may only be enforceable if fully actuated.
For mixed real/virtual models, we can assume all virtual joints are actuatable; the
real joints can be driven accordingly, again assuming no physical underactuation.

We do not actually remove the crossing joints in the edge cuts defining L . Since
the edge cuts are all disjoint, any crossing joint is cut by exactly one sublinkage
boundary. Again assuming P to be the parent sublinkage of C, an outcrossing joint
connects its child link in C to a parent link in P, and vice-versa for an incrossing
joint. In the algorithms it is sometimes necessary find the innermost sublinkage
containing a given joint or link. This is unambiguous except for crossing joints; we
simply define them to be members of the inner of the crossed sublinkages.

Two additional topological restrictions are also imposed on crossing tree joints
(there are no constraints on crossing closures): First, each sublinkage C always has
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Fig. 3 In structure abstraction (left), an implementation linkage A is made a driven sublinkage of
a new virtual interface linkage I. I replaces A in-context. The primary motion of interest in this
example is the end-to-end stretching of A (1). Details, such as virtual prismatic joints (3) added to
constrain an unwanted postural freedom (2), can be hidden underneath I. (4) shows a shorthand
using a Cartesian-2 joint that achieves the same effect as the virtual prismatic assembly in (3).

exactly one outcrossing tree joint (except at the top level) connecting the root of its
spanning tree to a link in the parent sublinkage P. This ensures that each sublinkage
has its own well-defined spanning tree. Second, incrossing tree joints are disallowed
for a driven sublinkage C. Otherwise, changing the relative pose of links in C could
change the relative pose of other links in the parent sublinkage P, violating the
specified semantics that P should be rigid with respect to C.

3 Structure Abstraction

Structure abstraction is achieved by (a) encapsulating a connected part A of a link-
age L s.t. A becomes demarcated as a simultaneous sublinkage of of L, and (b)
substituting a virtual linkage I for A in L, with I simultaneous in L and A a driven
sub-linkage of I. Figure 3 shows an example. The concept parallels traditional ab-
straction in computing: I can be simpler than A, but it should capture all of the
behavior of A that would be relevant to the surrounding mechanism.

Making A a driven sub-linkage of I is not the only possible way to define abstrac-
tion in kinematics. For example, keeping A simultaneous could also make sense.
However, the design choice to make A driven creates a fairly strong form of abstrac-
tion: motion of L, with I substituting for A, is independent of the motion of A. This
can be helpful both (1) as a simplifying design aid (e.g. to allow virtual constraints
as in Fig. 3 to to be abstracted away) and (2) to allow decomposition of the overall
kinematic system into independently solvable subsystems, e.g. for IK computation.

This decoupling power comes with a trade-off: there is no built-in constraint to
ensure that A can reach every configuration to which it may be driven by I. We
say that I is a proper abstraction of A if all of the reachable configurations of I,
when embedded in the surrounding linkage L, drive reachable configurations of A.
It would be desirable to have an efficient algorithm that could determine, for any L,
I, and A, whether I is a proper abstraction. This may be possible in some special
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cases, but unfortunately, the general case is easily shown to be hard.

Theorem 1 Determining whether an abstraction is proper is PSPACE-hard.
Proof. By reduction from the reachability problem for 2D revolute linkages.

Kempe’s theorem [5] establishes that I could be constructed s.t. the links which
drive A could move to arbitrary poses. But the problem of determining the reach-
ability of arbitrary configurations of A from a starting configuration is known to be
PSPACE-hard even for the restricted case of 2D revolute linkages [6, 7].

Thus, if a proper abstraction is required, it is up to the designer of that abstraction
to ensure it. Sometimes this is easily done by construction. However, even improper
abstractions can be useful when combined with task-priority IK (e.g. [8]) – if the
kinematic constraints in A are given higher priority than those of, say, the crossing
joints between I and A, then the motion of A will remain feasible. It will not exactly
match the driving links in I, but because they are virtual, this can be acceptable.

4 Decomposition Algorithms

Practical algorithms for simulation and kinematic control of arbitrary topology link-
ages have polynomial runtime per iteration; e.g. least-squares IK with the SVD is
typically quadratic in the number of DoF [1]. Thus it can be faster to run algorithms
on disjoint subsystems, provided that their motion is actually independent. The over-
all motion is then the union of the motions of all sublinkages.

One well-known decomposition [9] finds biconnected components of the kin-
ematic graph (Fig. 1), on the intuition that overlapping closed chains must be solved
simultaneously. Our hierarchical model permits this, but also imposes additional
lines of decomposition. Specifically, a driving sublinkage is solved before its parent,
and vice-versa for a driven sublinkage. In fact, this ordering is one way to enforce
the imposed driving/driven relationship. Because we also allow simultaneous sub-
linkages, this decomposition is not necessarily the same as the edge cuts defining
the hierarchy. We must rather consider the strongly connected components of a dir-
ected meta-graph whose vertices correspond to the sublinkages and whose edges are
directed according to sublinkage disposition. Figure 2 shows an example. (Note that
a simultaneous sublinkage is connected to its parent with a bi-directional edge.)

In this section we present algorithms which decompose a given hierarchical link-
age L into a set of disjoint components respecting both the biconnected components
of the flattening of L (i.e. the underlying kinematic graph disregarding edge cuts)
and also the strongly connected components of the associated meta-graph. The top-
level call, DECOMPOSE (Alg. 1), has three phases. First, ASSIGNROUNDS (Alg. 2),
labels the strongly connected components in L and also assigns a solve round to
every SCC in O(|L |). (SCC and solve round labels are considered “inherited” by
both the sublinkages within an SCC as well as the individual joints within them.) A
sort by increasing round, performed at the end of DECOMPOSE in O(|L | log |L |),
gives a solve ordering respecting all driving/driven relations.
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The second phase of DECOMPOSE calls TRACESUPPORTS (Alg. 5) to identify
the set of tree joints whose motion can affect the state of each closure joint. TRACE-
SUPPORTS is O(|T ∪C|+ |T ||C|) where T is the set of tree joints and C the set of
closures in the flattening of L . The helper function LOCKEDWRT(t,c) (Alg. 6) is
key here, as it will ensure that tree joints will be considered locked with respect to
closures unless both are in the same SCC.

The final phase calls FINDCOMPONENT (Alg. 7) to extract independent com-
ponents by tracing transitive overlaps of closure supports. This phase is O(|T ||C|)
because the O(|T |) support of each closure is traversed once, and likewise for the
O(|C|) set of supported-closures for each of the O(|T |) supporting tree joints.

Algorithm 1: DECOMPOSE(L )
Input: hierarchical linkage L with top-level sub-linkage L0
Output: ordered partition C of closure joints

corresponding ordered set T of sets of unlocked supporting tree joints
unlocked support chains S↓c,S↑c for each closure

ASSIGNROUNDS(L );
let T,C be the tree/closure partition of the joints in the flattening of L ;
foreach j ∈C do S↓c ← /0, S↑c ← /0, mark j unassigned;
foreach j ∈ T do let supported-closures j ← /0, mark j unassigned;
let U ← /0 �the closures will be collected here
;
U ← TRACESUPPORTS(g0,U) �g0 is the ground link in L0
;
let C ← /0, T ← /0;
while U �= /0 do

let c be the first element of U , C ← /0, T ← /0;
FINDCOMPONENT(c,U,C,T );
add (C,T ) to (C ,T );

sort (C,T ) ∈ (C ,T ) in order of increasing solve round of C;
return (C ,T )

Algorithm 2: ASSIGNROUNDS(L )
Input: hierarchical linkage L with top-level sub-linkage L0
Output: each sub-linkage is marked with its solve round and its SCC in L
foreach sub-linkage L ∈ L do roundL ←−1, sccL ←−1;
let set of source sub-linkages U ← /0, next SCC id n ← 0;
FINDSOURCESFROM(L0,U);
foreach L ∈U do n ← ASSIGNROUNDSFROM(L,0,n,n+1);

The full DECOMPOSE algorithm is thus O(|T ∪C|+ |T ||C|+ |L | log |L |). A
classical result in graph theory [10] is that biconnected components can be found
in O(|T ∪C|); DECOMPOSE is asymptotically slower, but also supports hierarchical
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Algorithm 3: FINDSOURCESFROM(L,U)
Input: sub-linkage L, collected source sub-linkages U
Output: true if L drives its parent, updated U
let dbd ← false �driven by descendant
;
foreach child sub-linkage M of L do

if FINDSOURCESFROM(M,U) then dbd ← true ;
if ¬dbd and ((L = L0) or (L is driving)) then add L to U ;
return (L is driving) or (dbd and (L is simultaneous));

Algorithm 4: ASSIGNROUNDSFROM(L,r, i,n)
Input: sub-linkage L, solve round r, id i of SCC containing L, next unused SCC id n
Output: the new next unused SCC id
roundL ← r, sccL ← i;
foreach child sub-linkage M of L do

if (roundM < 0) and (M not driving) then
if M driven then n ← ASSIGNROUNDSFROM(M, r +1,n,n+1);
else n ← ASSIGNROUNDSFROM(M, r, i,n) �M is simultaneous
;
;

if (L �= L0) and (roundparentL
< 0) and (L not driven) then

if L driving then n ← ASSIGNROUNDSFROM(parentL, r +1,n,n+1);
else n ← ASSIGNROUNDSFROM(parentL, r, i,n+1) �L is simultaneous
;

return n

Algorithm 5: TRACESUPPORTS(l,U)
Input: start link l, collected closures U
Output: U updated with newly found closures, and support chains for such
foreach j s.t. parent j = l do

let breadcrumbl ← j, i ← child j;
if TREE?( j) then U ← TRACESUPPORTS(i,U);
else � j is a closure joint

add j to U ;
repeat � trace down to least common ancestor

p ← parenti, i ← parentp;
if ¬LOCKEDWRT?(p, j) then append p to S↓ j, add j to supported-closures p

until breadcrumbi �= /0;
�i is now the LCA of child j and parent j

;
repeat � trace up from LCA

c ← breadcrumbi, i ← childc;
if ¬LOCKEDWRT?(c, j) then append c to S↑ j , add j to supported-closuresc

until c = j;
breadcrumbl ← /0;
return U , support chains as side-effect
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Algorithm 6: LOCKEDWRT?(t,c)
Input: tree joint t in sub-linkage Lt , closure joint c in sub-linkage Lc

Output: whether t is to be considered locked with respect to c
if t is explicitly locked then return true;
let i ← sccLc

;
if CROSSING?(c) and (Lc driving) then i ← sccparentLc

;

return (i �= sccLt
);

Algorithm 7: FINDCOMPONENT(c,U,Ci,Ti)

Input: closure c to add to Ci, unexplored closures U
sets Ci and Ti of coupled closures and supporting unlocked tree joints

Output: updated U , Ci, and Ti
remove c from U , add c to Ci, mark c assigned;
foreach unlocked supporting tree joint t in (S↓c,S↑c) do

if t unassigned then
add t to Ti, mark t assigned;
foreach unassigned closure u in supported-closurest do
FINDCOMPONENT(u,U,Ci,Ti);

decomposition. Also, since many iterative numerical algorithms are at least quad-
ratic in the number of DoF (which is at worst proportional to |T |), DECOMPOSE

does not typically increase the overall computational complexity.

5 Scaling Results

We have implemented these algorithms as part of a new mixed real/virtual spatial
kinematic simulator [1]. This environment supports general open- and closed-chain
models using joints selected from the catalog in Fig. 1, and includes an interactive
constraint solver based on task-priority iterative damped least-squares. Model topo-
logy can change on-line, and DECOMPOSE is automatically invoked as necessary.

In this section we demonstrate the scalability of our approach by showing inter-
active IK control of a simulated hybrid serial/parallel tower with 120 revolute joints
and over 150 additional virtual joints (Fig. 4). Two layers of structure abstraction
are applied, breaking up the operator’s motion specification task and also enabling
hierarchical decomposition to speed IK solving. We initially explored such a tower
in [11], but that work was hand-coded and did not use the DECOMPOSE algorithm.

The tower is constructed of a chain of self-similar blocks. The actual joints com-
prising each block are redundant and can move in a variety of ways, but the operator
intends only a subset of this motion. Extrinsically, the block should only have two
DoF: it should be able to tilt left and right and to expand up and down. This forms
the highest-level abstraction (C in the figure). Within this, a secondary constraint
is that each 4-bar leg should effectively act like a piston, with the middle link re-
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Fig. 4 Simulated interactive IK of a large (> 100 joint) hybrid serial/parallel tower is greatly
accelerated by the introduction of two levels of abstraction (and hence hierarchy) for each block.
The block legs A are virtually constrained and abstracted as in Fig. 3, producing an intermediate
virtual model B. An additional level of abstraction covers B as a limited-travel RP chain C. An
operator may drag any joint or link in the “backbone” chain of level-C interface mechanisms; the
system interactively computes a corresponding motion for the tower respecting all constraints.

maining parallel to the axis of the piston. Virtual joints are added to enforce this
local posture constraint, and then abstracted below a 3DoF RPR virtual interface
(B). Fig. 3 shows the same construction. In this case, the abstractions can be kept
proper by limiting the range of motion of the joints in the interfaces B and C.

These particular motion constraints, and this particular set of abstractions, are
merely the designs of the operator. Other constraints and abstractions are possible:
the idea is that the operator may express a desired set of motion constraints by
designing constraints and structure abstractions.
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Blocks can be strung together for towers of varying height. This final assembly
is done at abstraction level C, so that the top-level linkage is simply a linear chain
along the “backbone” of the tower (cf. [12]). The operator can then interactively
specify a motion, e.g. by click-and-drag interaction, for any C-level link or joint.

To check the speedup afforded by hierarchical decomposition, we conducted an
experiment with towers of varying heights (up to 15 blocks). Each was tested either
as a flat linkage or structured with the above two levels of abstraction. The resulting
measured computation times (on a typically loaded workstation) are comparatively
plotted in Fig. 4. The hierarchical models remain at about 20 ms per iteration, which
is acceptable for interactive response. But performance degrades to over 100 ms for
a 15 block non-hierarchical tower, which results in very sluggish behavior.

These timings of course depend on the speed of the workstation. Furthermore, the
hierarchical decomposition does not change the asymptotic cost of the IK computa-
tion, which is still quadratic in the number of joints solved in any single system (and
the number of DoF in the level-C backbone still scales linearly with tower height).
But lower constant factors for the hierarchical case mean that larger systems can be
handled in practice before reaching the limits of interactivity.

6 Conclusions

In this paper we introduced a new hierarchical way to structure mixed real/virtual
kinematic systems, and used it to define a novel form of abstraction for kinematics.
As in other areas of computing and engineering, hierarchy and abstraction can help
deal with large systems. We demonstrated our approach in a simulation of a tower
structure with over 100 DoF. However, our algorithms and their implementation [1]
are general across a broad class of spatial open- and closed-chain mechanisms.
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Abstract. It is known that cuspidality phenomenon appears in some parallel manipulators, called
cuspidal manipulators, being able to perform non-singular transitions between different assembly
modes. In this paper, the authors will present a methodology for obtaining the locus of cusp points
in the joint space, which will be applied to generic 3-RPR planar parallel manipulators. This will
permit analyzing non-singular transitions in a slice of the joint space and in the 3-dimensional
joint space. It will be shown that as well as encircling a cusp point, analyzing the coalescence of
solutions in the singular curves will be necessary so as to perform non-singular transitions.

Key words: Parallel manipulator, assembly mode, non-singular transition, cusp point.

1 Introduction

The workspace in parallel manipulators is usually complex and internally divided
by the Direct Kinematic Problem (DKP) singularity locus. Additionally, the singu-
larities produced by the Inverse Kinematic Problem (IKP) establish the boundary of
the workspace. Hence many researches deal with obtaining both size and shape of
the workspace, as well as the spatial distribution of the singularity loci [1, 2].

In general, parallel manipulators have multiple DKP and IKP solutions, called
assembly modes and working modes respectively. In [3], the authors showed that it
is feasible to perform transitions between different DKP solutions without crossing
any singularity, hence guaranteeing the control of the robot all along the trajectory.
Other authors have proved that it is possible to join different DKP solutions via
paths totally free of singularities [4–8]. This fact suggests the possibility of a wider
use of the workspace.

In [4], it was shown that when a DKP singularity is reached, several DKP solu-
tions coalesce at the same pose. They demonstrated that some special singularit-
ies exist where three DKP solutions coalesce simultaneously. For three-degree-of-
freedom (DoF) parallel manipulators, those special positions appear as cusp points
in the DKP singular curves represented in the joint space for a constant value of one
input. Performing non-singular transitions by surrounding cusp points has been ex-
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Fig. 1 3-RPR parallel manipulator.

tensively studied by several authors [7,9,10]. In [10], a new class of 3-RPR analytic
manipulator was found that contrary to the four type of analytic manipulators stud-
ied in [11], this aforementioned manipulator is able to perform non-singular trans-
itions. In [12], the authors obtained analytically the conditions for the existence of
cusp points in the joint space for the RPR-2PRR planar parallel manipulator.

In this paper, the locus of cusp points for the general 3-RPR planar parallel ma-
nipulator will be obtained in a numeric way in the 3-dimensional joint space basing
on the conditions developed in [12]. This way, it will be feasible to plan non-singular
trajectories between assembly modes by varying the three input variables. Besides,
it will be shown that not any path encircling a cusp point enables non-singular as-
sembly mode change but that additional information about the singular curves which
are crossed along the path is required.

2 Kinematic Problems

The 3-DoF parallel manipulator represented in Fig. 1 will be studied. It is a gen-
eral 3-RPR planar parallel manipulator, having three limbs and a triangular moving
platform. The three input variables correspond to prismatic joints that establish the
limbs’ lengths, named ρi for i = 1,2,3. The output variables are the coordinates
(x,y) of the moving platform’s point P, which is the joining-node with limb 1, and
the orientation ϕ of the moving platform with respect to the fixed frame. Point A1
is located at the origin of the fixed frame, the x-axis passing through point A2. The
geometric parameters a, b and angle β define the moving platform’s characteristics.
The three constraint equations are established as follows:

ρ2
1 = x2 + y2 (1)
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ρ2
2 = [x + bcos(ϕ)− c2]

2 +[y + bsin(ϕ)]2 (2)

ρ2
3 = [x + acos(ϕ + β )− c3]

2 +[y + asin(ϕ + β )−d3]
2 (3)

A system of two linear equations in variables x and y can be obtained as proposed
in [13], by subtracting Eq. (1) from Eqs. (2) and (3), hence obtaining:

Rx + Sy + Q = 0 (4)

Ux +Vy +W = 0 (5)

where

R = 2bcos(ϕ)−2c2, S = 2bsin(ϕ)

Q = ρ2
1 + ρ2

2 + c2
2 + b2 −2bc2 cos(ϕ)

U = 2acos(ϕ + β )−2c3, V = 2asin(ϕ + β )−2d3

W = ρ2
1 + ρ2

3 + c2
3 + d2

3 + a2 −2a[c3 cos(ϕ + β )+ d3 sin(ϕ + β )]

Using Cramer’s rule, x and y can be solved when the determinant ∆ = RV − SU
is different from zero. The conditions under which this determinant ∆ vanishes are
studied in detail in [10, 13]. A new class of an analytic manipulator was found in
[10] by studying these aforementioned conditions, this type of analytic manipulator
possessing the cuspidality phenomenon.

In this paper, the authors focus on the general case in which determinant ∆ does
not vanish. Then, substituting the corresponding values of x and y into Eq. (1), the
characteristic polynomial is obtained, named g(ρ1,ρ2,ρ3,ϕ) = 0. The expression of
g is given by:

(SW −VQ)2 +(QU −RW)2 −∆ 2ρ2
1 = 0 (6)

Performing the substitution t = tan(ϕ/2) into the characteristic polynomial in
Eq. (6) yields a sixth-degree polynomial in t, meaning that general 3-RPR planar
parallel manipulators have a maximum of six real DKP solutions.

2.1 Case Study

The 3-RPR planar parallel manipulator with the following design parameters will
be used. The parameters of the fixed points Ai are: c2 = 2, c3 = 8, d3 = 5, and
the moving platform’s geometry is defined by parameters: a = 2, b = 1 and angle
β = 60◦. The manipulator defined by these geometric parameters has at most six
real DKP solutions. The DKP singularity surface represented in the joint space is
depicted in Fig. 2(a), and a section of the joint space correspondent to ρ1 = 2 is
shown in Fig. 2(b). The different regions associated with 2, 4 or 6 DKP solutions
can be differentiated in Fig. 2(b), the location of the six cusp points being clearly
identified.
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(a) (b)

Fig. 2 (a) DKP singularity locus in the joint space. (b) Joint space section for ρ1 = 2.

3 Locus of Cusp Points

The conditions for obtaining the cusp points in the joint space have been developed
in [12]. These latter conditions are the following:

g = 0, h =
∂g
∂ϕ

= 0,
∂h
∂ϕ

=
∂ 2g
∂ϕ2 = 0 (7)

The first condition, g = 0, establishes that cusp points belong to the workspace, that
is, they are DKP solutions of the manipulator and thus, they verify the expression of
the characteristic polynomial. The second requirement, states that cusp points must
belong to the DKP singularity surface, which implies verifying that at these points
the expression h = ∂g/∂ϕ vanishes. Finally, the third condition establishes that a
cusp point is a triple root of the characteristic polynomial.

Solving numerically the system formed by the three aforementioned conditions
yields the locus of cusp points in the joint space entity, which is depicted in red color
in Fig. 3(a). Intersecting the locus of cusps with a plane associated with one input
constant, e.g. ρ1, enables obtaining the number of cusp points and their location in a
section of the joint space, i.e., the 2-dimensional slice (ρ2,ρ3). For very small values
of input ρ1 its associated plane does not intersect the locus of cusps at any point,
while increasing input ρ1 varies the number of intersection points, in the case of the
manipulator under study, starting with four cusp points, increasing to six cusps and

48



Researching into Non-Singular Transitions in the Joint Space

(a) (b)

Fig. 3 (a) Locus of cusp points and loops encircling C1. (b) Loops in the planar joint space (ρ2,ρ3).

finally stabilizes to four cusp points. These results coincide with the ones obtained
by Zein et al. in [14], where the different patterns that acquire the singular curves
associated with different slices of the joint space were investigated for a manipulator
with another values of the dimensional parameters which has a maximum of eight
cusps.

4 Non-Singular Transitions in the Joint Space

The locus of cusp points in the joint space permits performing non-singular trans-
itions between different DKP solutions by changing the three inputs. For example,
a plane associated with input ρ1 = 2 intersects the locus of cusps at six cusp points,
the ones shown in Fig. 2(b). Starting at a point in the joint space belonging to the
region of six DKP solutions, point P represented in Figs. 3(a) and 3(b) (coordinates
ρ1P = 2, ρ2P = 3 and ρ3P = 9), we will carry out two different loops belonging to the
plane ρ1 = 2 by surrounding one of the curves of the locus of cusps, which is equi-
valent to encircle the cusp at the intersection of the plane with the locus of cusps.
Performing a trajectory around cusp C1, the green loop represented in Figs. 3(a)

and 3(b), enables making up a non-singular transition from solution S5 to S3, as it
is shown in Fig. 4(a). The evolution of the six solutions along the trajectory is de-
picted in Fig. 4(a), starting with 6 solutions, decreasing to 4 and 2, and then again
increasing to 4 and 6. This means that the executed trajectory crosses the regions
with six, four and two solutions of the DKP, as can be observed in Fig. 3(b).
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(a) (b)

Fig. 4 Evolution of roots encircling C1 along the green loop (a) and along the blue loop (b).

Nevertheless, let us make the loop, also contained in plane ρ1 = 2, depicted in
blue shown in Figs. 3(a) and 3(b). Since cusp C1 is inside the loop it is supposed
that a non-singular assembly mode change will occur. However, in the evolution of
the roots shown in Fig. 4(b), it can be observed that none of the solutions performs
a non-singular transition as all the paths that join two different solutions cross a
singularity. In Fig. 4(b), the points where two DKP solutions coalesce, which means
that the path crosses a singularity (the tangent to the curve is vertical), are marked
with a red circle together with the numbering of both coalescing solutions.

This fact means that more information is required so as to plan a non-singular
trajectory. This information is given by researching into the singular curves of the
planar joint space depicted in Fig. 3(b). Each one of the singular curves produces
the coalescence between two DKP solutions associated with a different sign of the
DKP Jacobian. In a cusp point (see cusps C1 and C2 in Fig. 3(b)), two singular
curves with a common solution join, thus coalescing three solutions. So as to per-
form a non-singular transition between two solutions i and j, the trajectory made
must encircle a cusp point and all along the trajectory it can only cross singular
curves which are joined together in that cusp or the ones that do not produce the
coalescence of solutions i and j with another solution. In our example, starting at
point P in Fig. 3(b), the green loop which is valid to make a non-singular transition
between solutions S5 and S3, crosses the two singular curves that join in cusp C1
and the singular curve which makes the coalescence between solutions 6− 1. On
the contrary, it is not possible to perform a non-singular transition from S5 to S3 by
carrying out the blue loop as we are crossing the singular curves that produce the
coalescence of solutions 2–3 and 5–6.

Our interest focuses on planning non-singular transitions in the 3-dimensional
joint space, hence having the ability of varying the three input variables. It will be
executed the 3D trajectory depicted in pink color in Fig. 5(a), which corresponds to
the following input variations:
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(a) (b)

Fig. 5 (a) Loop varying the three inputs. (b) Evolution of the roots along the 3D loop.

ρ1 = ρ1P +[r sin(α)sin(γ)− r(1− cos(α))cos(β )cos(γ)] (8)

ρ2 = ρ2P +[r sin(α)cos(γ)+ r(1− cos(α))cos(β )sin(γ)] (9)

ρ2 = ρ3P +[r(1− cos(α))sin(β )] (10)

where ρiP for i = 1,2,3, correspond to the coordinates of point P, r = 0.8 is th e ra-
dius of the loop, the angles β = π/2 and γ = 2π/3 are the angles of the loop’s plane
with respect to the horizontal and vertical plane respectively, and angle α varies
from 0 to 2π . The trajectory obtained with these aforementioned expressions of the
three inputs surrounds two curves contained in the locus of cusp points, as shown in
Fig. 5(a), and it can be observed in Fig. 5(b) that a non-singular transition has been
made from S2 to S4 (the path joining S3 to S1 crosses a singularity surface as two
points with vertical tangent can be observed). However, not all 3D trajectories sur-
rounding one or more curves of the locus of cusp points will allow us performing a
non-singular transition because, as it has been explained for the 2-dimensional slice
of the joint space, the coalescence of DKP solutions in the singular curves (which
will be singularity surfaces in the 3-dimensional joint space) must be analyzed in
order to characterize the singularity surfaces.

5 Conclusions

In this paper the locus of cusp points has been numerically obtained for the 3-RPR
parallel manipulator. This allows us performing non-singular transitions in both 2D
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and 3D joint space by surrounding one or more curves of the locus of cusps. Never-
theless, it has been demonstrated for the 2D joint space, that not any path encircling
a cusp point permits making a non-singular transition, but that additional informa-
tion related to the singular curves is required. The next step will be characterizing
the singularity surfaces in the 3D joint space in order to assess which trajectories
enable assembly mode changing.
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Abstract. We present several prototypes of wire-driven parallel robots that we have recently de-
signed and which use two different actuation schemes. Two of them have been completed and
submitted to extensive tests. These tests have allowed to determine interesting open problems re-
lated to kinematics that are presented.

Key words: Kinematics, wire-driven parallel robots.

1 Introduction

Major drawbacks of parallel robots are the limited workspace and difficulty in ad-
apting the robot to the tasks at hand. Using wires instead of rigid legs is a natural
solution to the workspace problem. Indeed major limitations for the workspace of
parallel robots are due to the limited stroke of linear actuators and to the limited
range of motion allowed by the passive joints that are used. For a wire system the
amount of possible leg length change may be very large while passive joints may be
avoided or an appropriate mechanical design may push their influence much farther
than classical mechanical joints.

After the pioneering work of Landsberger [11] wire-driven parallel robots have
been extensively studied with various applications in mind. Without claiming to be
extensive we may mention: crane [1, 8], motion tracking [2, 6] and metrology [18],
haptic interface [3,5], surgery [7], rehabilitation [9,13,14] and sport training [12,17],
telescope [15] and rescue robotics [4, 16].

However they are still various unsolved issues regarding wire-driven robots:

• accuracy: wire elasticity and sag, unmodeled wire deformation of the wires at
the platform anchor points and measurement errors in the wire length induce
inaccuracy in the platform location

• kinematics and statics: although it is sometimes claimed that parallel robot may
be fully constrained, provided that they have at least n + 1 wires for controlling
n d.o.f. of the platform, this is true only if all wires are in tension. But being

J. Lenarčič and M.M. Stanišić (eds.), Advances in Robot Kinematics: Motion in Man and 53
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given the wire lengths a fully constrained robot may perfectly end up in a pose
in which not all of its wires are under tension. Conversely although a solution
of the inverse kinematics with positive tension may have been computed there
is no guarantee that the platform will reach the desired pose when applying this
solution to the robot. Hence direct kinematics remains to be investigated first by
determining all possible poses satisfying the mechanical equilibrium condition
that can be reached with 1 to n wires under tension, and then determining the
current pose which is among all the solutions

• modularity management: wire-driven robot may be designed so that changing
their geometry (i.e. the location of the anchor points of the wires) is an easy task.
But determining the possible location of the anchor points so that the robot will
fulfill a set of requirements is still an open problem.

To investigate these issues both theoretically and experimental we have decided
to design and build a whole family of parallel wire-driven robots, based on two
different actuation schemes.

2 Actuation Scheme

Classically wire-driven robots use drums that are actuated by a rotary motor. The
wires coil on the drum and the measurements of the motors rotations allows theoret-
ically to determine the wire lengths. Although implementing this actuation scheme
is easy (and is used in some of our robots) it has various drawbacks, especially re-
garding the determination of the wire lengths. We may indeed calculate this length
from the motor rotation under the following assumptions: the wires coil on the drum
always in the same manner so that we can exactly determine the number of layers
and the wire diameter is constant. In practice both assumptions have to be verified
or a better measurement method has to be designed. This actuation scheme will be
denoted Drum/Rotary Motor (DRM).

In order to improve the wire length measurement we have investigated another
approach that is based on the use of a linear actuator and a pulleys system. One
extremity of the wire is fixed to the ground and from this extremity the wire goes
alternatively to a pulley on the mobile part of the actuator and then to a pulley on the
fixed part of the actuator. The last pulley is fixed and the wire get out of the system
through a hole whose location is also fixed with respect to the ground (Fig. 1).

The pulleys system is designed in such way that all wire strands in the system are
parallel. The pulleys system allows to produce a length change of the wire that is a
multiple of the stroke of the actuator: a system with m pulleys has a multiplication
factor of m. Such actuation scheme will be called Linear Actuator/Pulleys System
(LAPS). The LAPS principle has several advantages compared to DRM:

• the measurement of the motion of the linear actuators allows to measure the wire
length with an error that is at most m time the error on the actuator measurement.

• the velocity of the wire is m times the velocity of the actuator
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Fig. 1 Using a linear actuator to change wire length.

• the system may be designed in such way that the number of pulleys may be
changed, hence allowing to adapt the multiplication factor. This offers an addi-
tional flexibility

LAPS has however some drawbacks: the maximal tension available in the wire is
equal to the maximal force of the actuator divided by m and consequently there is a
limit on the maximal number of pulleys as each additional pulley add a small amount
of friction that decreases the available tension in the wire. Hence LAPS allows only
limited length changes compared to the virtually unlimited range provided by DRM
(however we will see that the motion range of LAPS is still large). Consequently
LAPS should be used for fast and accurate robots with limited load and relatively
limited workspace while DRM should be preferred for large load and workspace
and for tasks for which accuracy is not a major issue.

3 The MARIONET family

The MARIONET family is a set of four wire-driven robots with different size, actu-
ation scheme and applicative purposes:

• MARIONET-REHAB (MR): a 2.2 m × 1.2 m × 2 m robot using LAPS that is
intended to be used for rehabilitation tasks and fast pick-and place operation

• MARIONET-CRANE (MC): a 15 m × 15 m × 15 m robot using DRM that is
intended to be used for rescue operations and the manipulation of large load in a
large workspace

• MARIONET-ASSIST (MA): a 3 m × 5 m × 3 m robot using DRM whose main
task will be to act as a at-home lifting crane for assistance robotics, especially for
elderly and handicapped people

• MARIONET-VR (MV): a 6 m × 5 m × 3 m robot using LAPS that will be used
in a virtual reality environment as a motion provider and haptic device

Currently MARIONET-REHAB and MARIONET-CRANE have been built and are
fully functional, while MARIONET-ASSIST and MARIONET-VR are at the design
stage and will be available at the end of 2010.
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Fig. 2 Trajectory followed by a patient during a rehabilitation test: he should move in a straight
line between the successive location of the square mark.

3.1 MARIONET-REHAB

The development of this robot with 7 wires (Fig. 3) started in 2004 and is the major
test bed for the study of LAPS. It uses Copley Motion linear actuator with a stroke
of 40 cm, a maximum force of 48 N, a positioning accuracy of 1 µm and a maximal
velocity of 10 m/s. The LAPS may use up to 10 pulleys: with a maximal wire velo-
city of 100 m/s the platform velocity may theoretically exceed the speed of sound
at some poses of its workspace, although we have tested it only up to 8 m/s. Our
accuracy tests have shown that this robot was very accurate with a positioning error
less than 0.1 mm.

We have recently tested MR for a rehabilitation task. After a coronary stroke
patient may suffer a loss of arm coordination. A classical protocol to correct this co-
ordination problem is to ask the patient to extend his arm and to draw with his finger
the straight line between the successive location of a colored mark that is moving on
a computer screen. The pratician then evaluates visually the arm coordination. We
have first used MR in a passive mode where the robot just records the patient mo-
tion, thereby allowing an objective assessment of the quality of the motion (Fig. 2).
It has then be observed that this protocol is very demanding for the patient as work-
ing with an extended arm leads quickly to arm fatigue. We have therefore used MR
in a semi-active mode where the robot is still passive except in the vertical direction
where it exerts a vertical force to relieve the patient from the weight of his arm (the
apparent weight of the arm is reduced to approximately 15% of the real weight),
allowing for longer rehabilitation session.

We intend now to use MR to measure precisely human joint motion. For that
purpose we will use the 7 wires of the robot, together with several 3D accelerometers
(Fig. 3).

3.2 MARIONET-CRANE

MARIONET-CRANE (MC) is a very large DRM 6 d.o.f. robot that is intended to be
used for rescue operations. Our motivation to develop this robot may be illustrated
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Fig. 3 MARIONET-REHAB used in rehabilitation tasks. The wires and the 3D accelerometers will
be used to precisely measure human joint motion during a rehabilitation task.

Fig. 4 The outdoor implementation of MARIONET-CRANE.

by quoting Skynews after the 5/15/2008 earthquake in China: The Chinese govern-
ment has made an emergency appeal for cranes and heavy lifting equipment amid
warnings that time is running out for survivors of Monday’s 7.9-magnitude quake.
Hence we have designed the robot as a portable, fully autonomous device. It has 6
wire systems whose weight is about 10 kg with a drum capacity of between 50 and
100 m. Each wire may sustain up to a 1.5 tons load, leading to a robot that may lift
up to 2 tons in most of its workspace. Optional tripods may be used to increase the
height of the wire systems. MC has been deployed outdoor during 3 months at the
end of 2009. The 6 tripods have been installed on top of three buildings, surmount-
ing a 20 m × 20 m × 12 m work area (Fig. 4).

One role of MC is to free victims from the rumbles: this may require the use of all
d.o.f. of the robot. To identify the necessary freeing motion we use a small mobile
robot with a web cam so that these wires may be attached to the most appropriate
anchor points (Fig. 5).

Then the victim may be lifted toward the surface (Fig. 4). An originality of this
experiment is that the mobile robot is lifted with the victim so that the medical team
on the surface may get physiological information during the transfer. Furthermore
a small smart communicating object allows to get other measurements such as tem-
perature and heart rate.
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Fig. 5 MARIONET-CRANE used from freeing a victim from rumbles.

3.3 MARIONET-ASSIST and MARIONET-VR

MARIONET-ASSIST (MA) is a reduced version of MC that is intended to be used
in a flat as a low-cost lifting crane and walking aid for elderly and handicapped
people. At rest it lies on the ceiling of the room and is almost invisible. It is deployed
on request and is designed to provide a lifting capacity of 150 kg. MARIONET-VR
(MV) is a LAPS robot using linear drives with toothed belt whose stroke is 2 m
and a pulleys system. It will be deployed in front of a 5 m immersive wall for
rehabilitation, motion training and entertainment.

4 Lessons Learned

4.1 Improving the DRM

A major issue with large parallel robot is the determination of the ground anchor
points of the wire system. We have successfully solved this problem by using a laser
distance meter that measure the distances between a mark close to the anchor points
and (1) the origin of the reference frame and (2) two points located on the x,y axis of
the reference frame. A simple triangulation method allows then to determine quite
accurately the location of the anchor points. We have then measured the accuracy
of the robot when performing a vertical motion by using a plumb-line that allows
one to determine the deviation of the robot center along the x,y axis. For a vertical
motion of 8m the maximum deviation on these axis was less than 2cm, which is
quite acceptable.

But the extensive tests of MC have shown that a major problem for DRM is the
inaccuracy of the wire length measurement. Although MC has a guiding system
for coiling the wires we have observed changes in the coiling process after several
hours of use, leading to an error in the wire lengths that may exceed 50 cm. Hence
on a regular basis it was necessary (especially for steel wire) to completely uncoil
the wires and then coil them in a controlled manner. To overcome this drawback
we will test a method that will allow to measure from time to time the wire lengths
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almost exactly. We are currently being investigating two methods based on the same
principle but using different sensors:

• magnetic: small strips of magnetic tape are glued at known distance on the wire.
A Hall sensor in the wire system is able to detect the presence of one strip, al-
lowing to determine the current wire length

• optical: colored marks that may be detected by an IR optical sensor

Between two marks we may interpolate the measurement using the drum rotation.
Preliminary tests have shown that both type of marks are detectable. The magnetic
method seems to offer a better resolution but is more difficult to implement and may
disturb the coiling process.

4.2 Kinematics

Tests of both MC and MR have shown that kinematics is the most important issue for
an efficient control of wire-driven parallel robot. Although all of our robots are so-
called fully constrained one we have noticed discrepancies between our solution of
both the direct and inverse kinematics and the observed robot pose. For the 6-wires
MC the direct kinematics is equivalent to solving the one of a classical parallel ro-
bot and to retain the solution(s) that satisfies the mechanical equilibrium condition
with positive tension in the wires. To the best of the author’s knowledge there is no
known bound on the maximum number of such solution. But even if such a solu-
tion exists the current robot pose may be different. Indeed let us consider the set of
robots derived from the MC by suppressing from one up to five wires and compute
their forward kinematic solutions. For a robot with m wires we have m constraint
equations that relate the wire lengths to the pose parameters and 6 equilibrium equa-
tions for 6 + m unknowns (6 pose parameters and m tensions in the wires). Among
all these solutions we retain only the one such that the length(s) of the disconnected
wire(s) is at least equal to the distance(s) between their anchor points. After this
process we get a set of possible solutions, one of them being the current pose of
the platform. But nothing guarantee that the current pose will be the solution of the
fully-constrained robot. Hence even for a fully-constrained robot we have to invest-
igate the forward kinematics of under-constrained robots. A similar study has to be
performed for the inverse kinematics. These studies will be even more complex if
elasticity and sagging of the wires [10] are taken into account.

4.3 Singularity

Singularity is related in depth to the static analysis of wire robot. Indeed the mech-
anical equilibrium constraint is equivalent to having the lines associated to the wires
and the vertical line going through the platform center spanning a linear complex.
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As linear complexes may be characterized geometrically such formulation allows
one to write the equilibrium constraint without involving the wire tensions.

Using wires also allows the robot to move from one aspect to another one more
easily than for parallel robots with rigid legs, because of the flexibility of the wires.
We have been fortunate to observe and record such phenomena. Going through a
singularity with a wire driven robot is also an interesting open problem.

5 Conclusion

Experimental tests allow to discover new theoretical open problems. Our large ex-
perimental effort with the development of 4 new wire-driven robots have shown that
the kinematics of such robots is still an open issue. They have especially shown that
for fully constrained robots the kinematics cannot be restricted to the case where all
wires are under tension as the kinematics of all under-constrained systems have also
to be solved.
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Abstract. Analyzing the biomechanics of human or animal motion requires a kinematical char-
acterization of the motion of body segments as a function of time. Common noninvasive tech-
niques for motion tracking involve placing markers on the skin of the body part and using a motion
capturing system to track the marker positions. Determining the underlying joint motion requires
processing the acquired marker coordinates. This is typically done using the assumption of rigid
body motion of the segment even though soft tissues deform and marker acquisition is imperfect.
In this paper, a new method is presented based on a continuum mechanics approach to estimate
motion of body segments while assuming a non-rigid body transformation. The new method, based
on the theory of a Cosserat Point, explicitly accounts for the fact that the marker kinematics in-
clude not only translation and rotation but also the associated and possibly large deformation of the
body part. The method was validated with an experimental setup and the results were compared to
ground truth results also obtained during the experiment.

Key words: Non-rigid body deformation, Cosserat point, motion estimation, soft-tissue deforma-

tion.

1 Introduction

Typical joint movement during normal gait involves a complex set of coupled trans-
lation and rotation. Consequently, in order to monitor and measure joint motion
one needs to estimate the three-dimensional (3D) motion, composed of position and
orientation of bone segments. Stereo-photogrammetry is one of the most popular,
non-invasive methods used for gait analysis. During measurement, markers are at-
tached to the skin surface of the body segment that is being tracked. A tracking
system composed of a set of cameras detects the light which is reflected from the
markers and reconstructs their 3D trajectories. These trajectories are used to calcu-
late the pose of the underlying bone, with the erroneous assumption that markers
and bone segments are rigidly connected, while it is well-known that markers on
the surface (i.e., skin) of the body move with respect to the underlying bones, and
the motion is task dependent [1–5]. It was also observed that attempts to remove
soft-tissue artifacts through traditional filtering techniques can result in loss of in-
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formation [1, 5, 6]. Consequently, the soft-tissue artifact has been recognized as the
major source of error in human motion analysis and is the primary factor limiting
the resolution of detailed joint movement using skin-based systems.

The majority of studies describing three dimensional in vivo segment motions
do not account for errors associated with non-rigid body movement. Several invest-
igators have described methods that were designed to reduce the associated errors,
however, these techniques in general model the limb segment as a rigid body, and
then apply various estimation algorithms to obtain an optimal estimate of underly-
ing skeletal motion, subject to a rigid body constraint [7,8]. For example, the motion
of the skin markers can be minimized by the least squares methods [9–12], or the
state function of the rigid body motion can be estimated using numerical differen-
tiation [13] or Kalman filtering [14]. However, an exact solution has not yet been
developed.

The objective of this work is to develop an alternative approach for character-
izing the kinematics of a body segment by taking a non-rigid body deformation
approach. Using the theory of a Cosserat point [15, 16], the presented method ex-
plicitly accounts for the fact that the marker kinematics include not only translation
and rotation, but also the associated and possibly large deformation of the body part.

2 Motion and Deformation of a Tetrahedron

The main idea behind the proposed approach is to separate the collection of M
markers into N groups of four makers that are used to define the four nodes of
N tetrahedrons. Figure 1 shows a sketch of the I-th tetrahedron which is defined by
the four vectors Ixi(t) (i = 0,1,2,3) which locate the positions of the nodes of the
tetrahedron as a function of time t relative to a fixed position in space. For simplicity,
the reference configuration of the tetrahedron will be characterized by the vectors

IXi(t) (i = 0,1,2,3) which are the values of Ixi(t) at the initial time t = 0.
Treating the tetrahedron as a Cosserat point [15–17], it is possible to define

the reference director vectors IDi and current configuration director vectors Idi(t)
through the following equations:

ID0 = IX0, IDi = IXi − IX0, i = 1,2,3

Id0 = Ix0, Idi = Ixi − Ix0, i = 1,2,3 (1)

where the nodes have been specified so that IDi (i = 0,1,2,3) and Idi (i = 0,1,2,3)
each form a right-handed triad of linearly independent vectors such that:

ID
1/2 = ID1 × ID2 · ID3 > 0, Id

1/2 = Id1 × Id2 · Id3 > 0 (2)

In order to define rotation and deformation of the tetrahedron, it is convenient to
introduce the reciprocal vectors ID

i and Id
i (i = 1,2,3) through the expressions:
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Fig. 1 Sketch of the present configuration of the I-th tetrahedron.

ID
1 = ID

−1/2(ID2 × ID3), ID
2 = ID

−1/2(ID3 × ID1), ID
3 = ID

−1/2(ID1 × ID2),

Id
1 = Id

−1/2(Id2 × Id3), Id
2 = Id

−1/2(Id3 × Id1), Id
3 = Id

−1/2(Id1 × Id2) (3)

which can be used to show that:

ID
i · ID j = δ i

j, Id
i · Id j = δ i

j, i, j = 1,2,3 (4)

where δ i
j is the Kronecker delta symbol. Moreover, it is convenient to introduce the

deformation tensor IF by:

IF =
3

∑
i=1

Idi ⊗ ID
i (5)

where a⊗b denotes the tensor product between two vectors a and b. By definition

IF is a nonsingular deformation tensor which includes both rotation and stretch. In
continuum mechanics, the polar decomposition theorem [18,19] is used to introduce
the proper orthogonal rotational tensor IR and the positive definite symmetric stretch
tensor IM, such that:

IF = IRIM, IR
T

IR = I, det(IR) = +1, IM
T = IM (6)

where I is the second order unity tensor. Moreover, the associated symmetric de-
formation IC and Lagrangian strain tensors IE are defined by

IC =I FT
IF, IE =

1
2
(IC− I) (7)

Specifically, given IF, it is easy to calculate IC. The stretch tensor IM can be ob-
tained as the matrix square root of IC and then its inverse is used to determine the
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Fig. 2 Experimental setup.

rotation tensor IR = IFIM
−1. For the case of markers placed on an ideal rigid body,

the rotation tensors, IR, are equal and represent the rotational motion of the body,
while the strains IE vanish. For a deformable body, the resulting rotation tensors
represent an ‘average’ rotational motion of the deforming tetrahedra.

3 Experimental Setup

A series of experiments were conducted with a pendulum consisting of a heavy
rigid mass oscillating on a spring, with the spring deforming perpendicular to the
pendulum axis of rotation. During the experiments, the positions of five markers
(Fig. 2b: M1,..,5) were measured using a Vicon Motion Capture System (Mx13) [20].
As well, a number of stationary markers were affixed to the pendulum including
one at the pendulum hinge (Fig. 2a,c: P1). The reported capture system error is
0.1 pixels, which is equivalent to 0.1–0.2 mm (in 3D) [20]. Moreover, the joint
rotation angle was measured by an encoder (Fig. 2c) whose readings were collected
simultaneously with the marker positions.

Although this system (Fig. 2) does not completely simulate the mechanical prop-
erties of the human body, it can be used to examine the effectiveness and accuracy
of the proposed method with respect to measurements of pure rigid body motion,
i.e., the pendulum motion.

4 Results

For the analysis of the measurements and validation of the suggested method, the
markers are divided into two groups:
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Fig. 3 Rigid tetrahedra results (a) rotation angles; (b) strain profile (‖E‖) for one tetrahedron.

Group 1 Results in the first group are obtained with tetrahedra formed from the
markers placed on the rigid mass only, i.e., four out of M1–M5. Therefore, these
tetrahedra do not experience any deformation during motion (within the rigid-
body assumption and the accuracy of the position measurement system). Since
there were five markers available on the mass, five different tetrahedra could be
formed. One of these however, is nearly planar and fails to produce reasonable
results, leaving four rigid tetrahedra to be used.

Group 2 For the results in the second group, one of the tetrahedron vertices was
the fixed marker at the pendulum hinge (P1) and the other three vertices were
formed from the markers on the rigid mass (three of M1–M5). Therefore, the
resulting tetrahedra undergo deformation during the pendulum/mass motion. In
this case, a total of 10 tetrahedra could be formed with the available markers.

The measured positions of the vertices of the tetrahedra defined in the two groups
above were processed using the Cosserat point algorithm presented in Section 2. In
particular, the rotation tensor R and the Lagrangian strain tensor E were calculated
for each tetrahedron, at each sample time of the measured pendulum motion. For the
tetrahedra in group 1 above, the rotation tensors were used to calculate the associ-
ated rotation angles, ϕ(R) [21], to be compared to the rotation angle measurements
from the encoder. For the deformable tetrahedra in group 2, the rotation difference
measure is defined as ϕ(RT Rencod) where Rencod is the rotation tensor defined by
the encoded angle. This angular measure combines errors due to both the rotation
angle and rotation axis predicted by the Cosserat point algorithm. As a measure
of strain, use has been made of the tensor norm of the Lagrangian strain tensor E
computed with the Cosserat point algorithm.
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Fig. 4 Flexible tetrahedron results: (a) ‖E‖ and (b) ϕ .

4.1 Group 1 Results (Rigid Tetrahedra)

Figure 3 displays the time histories of the 4 angles for the first 8 seconds of motion
(calculated with the four tetrahedra) and the angle measured by the encoder, which
is considered to be accurate. As one can see, the rotation angles of the pendulum
obtained with these tetrahedra are in excellent agreement with each other (correl-
ation 1.0000) and with the encoder angle (correlation 0.9982). The magnitude of
the strain from one of the rigid tetrahedra is plotted in Figure 3b. As can be seen,
the magnitudes of the Lagrangian strain tensor E do not exceed 4% (similar results
are obtained for other tetrahedra) and are on average 1.5%. The average rotation
vectors were calculated using the Riemannian averaging procedure [21], over the
four tetrahedra at every time instant, and they show the rotation axis to be primarily
aligned with Y-direction (as expected). Finally, a measure of error of the peak angle
was calculated. This was done for the average rotation angle obtained by averaging
rotations of the four tetrahedra. The error measure gives the percentage relative error
between the peaks of the encoded angle and those of the averaged estimates. The
calculated error was 1.6% (maximum value).

4.2 Group 2 Results (Deformable Tetrahedra)

Results from one deformable tetrahedron are shown in Figure 4 which displays the
magnitude of the strain and the rotation difference measure ϕ(RT Rencod) defined
earlier. The two profiles in Figure 4 are in excellent correlation, indicating that the
magnitude of the strain can be used to identify those tetrahedra which produce ac-
curate estimation of the underlying rigid-body motion of the segment.

Analysis of the experimental data produced four “good” tetrahedra with mag-
nitudes of the strain below 15%. In all four, there is a very good correlation between
the rotation difference measure ϕ and the magnitude of the strain (correlation coef-
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ficients of 0.7996, 0.9848, 0.9743, 0.9867 respectively for the four tetrahedra). Most
importantly, when the magnitude of the strain is small, the rotation difference pre-
dicted by the proposed algorithm is also small. In this regard, it is interesting to note
that even though the deformation of the spring in the experiments is uniaxial the
deformation states in the tetrahedral elements are not given by uniaxial strain.

5 Conclusions

The algorithm presented in this paper performs very well in terms of predicting
the rotation in experimental data for a pendulum with an oscillating mass when
the tetrahedra are formed from the markers on the rigid mass. In the mass-spring
experiments where deformable tetrahedra are used, it has been shown that the error
in the estimate of rigid-body rotation is small when the magnitude of the strain is
small. Consequently, the magnitude of the strain can be used to identify when the
body part is moving nearly as a rigid body and when the deformations are too large
to treat the part as rigid. Future work will focus on the application of the algorithm
for determining joint motions and soft-tissue deformations in the context of human
biomechanics investigations.

Acknowledgements The assistance of M. Mor in generating the experimental results is gratefully
acknowledged.
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Mechanical Generators of 2-DoF Translation
along a Ruled Surface
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Abstract. The theorem that any subset of translations is normal or invariant by conjugation in the
group of a spatial 3-DoF translation is applied to the synthesis of a novel type of parallel manipu-
lators, which generate 2-DoF translation along a ruled helicoid. A parallel manipulator generating
2-DoF translation along a revolute hyperboloid of one sheet is a special case. The revolute one-
sheet hyperboloid is a doubly ruled surface. The double geometric generation of that hyperboloid
by the rotation of a straight line is further exploited and leads to more architectural types of parallel
manipulators, which produce 2-DoF translation of the end-effector.

Key words: Group conjugation, 2-DoF translation, ruled helicoid, revolute hyperboloid of one

sheet, parallel mechanism, doubly ruled surface.

1 Introduction

Parallel manipulators, which generate 3-degree-of-freedom (3-DoF) translation of
the end-effector have attracted researchers for a long time [1–9]. However, the syn-
thesis of parallel generators of 2-DoF translation along a surface that is neither a
plane nor a sphere is a novel topic. In [10], a theorem derived from the group-
algebraic properties of the 6-dimensional (6D) set of displacements is stated: any
subset of translations is normal or invariant by conjugation in the commutative (or
Abelian) Lie 3D group T of translations. By virtue of that theorem, any 2-DoF
translation along a surface that may be a ruled helicoid or a hyperboloid of one
sheet is normal in the group T . Using the theorem, a novel parallel generator of 2-
DoF translation along a ruled helicoid is synthesized. From a special case, parallel
generators of 2-DoF translation along a revolute hyperboloid of one sheet are also
obtained.

In the first step of the synthesis, we introduce a single-closed-loop chain, which
includes a rigid body and moves by translation along the surface of a ruled helicoid.
Hereinafter, P and H designate respectively a prismatic pair and a helical pair (screw
joint) and the underline indicates the parallelism of H axes. The closed-loop chain
can be considered to be the parallel arrangement of a PPP chain generating the group
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T and a HPH open chain with parallel screw axes. The HPH chain generates a 3D
sub-manifold of a 4D group X of Schoenflies (or Schönflies) motions. A vector
calculation is done for verification. In the second step, we add a second HPH-‖-PPP
chain, which is conjugate or congruent by translation, to the first HPH-‖-PPP chain.
In the third step, we rigidly connect the two end-effectors and remove the superflu-
ous PPP sub-chains. Finally, we obtain a HPH-‖-HPH parallel manipulator whose
end-effector translates along a surface, which is generally a ruled helicoid. In a spe-
cial case, the surface is a doubly ruled hyperboloid and more parallel manipulators
are derived.

2 2-DoF Translation along a Ruled Helicoid

The parallel layout of a PPP generator of the group T with a HPH open chain
makes up a HPH-‖-PPP mechanism, which is depicted in Figure 1. (i, j, k) is an
orthonormal vector base. The points A and B are located on the H axes, which are
both parallel to k. H (A,k, p1) denotes the 1D group of helical motions with the
axis (A,k) and the pitch p1; T (s) is the 1D group of rectilinear translations par-
allel to s. The parallel kinematic chain embodies H (A,k, p1)T (s)H (B,k, p2)∩
T (j)T (i)T (k). The chain is movable with two DoFs. As a matter of fact, it is a
trivial chain associated with the 4D Schoenflies group X (k) [11] and it is made up
of six 1-DoF pairs; 6−4 = 2. The displacement set H (A,k, p1)T (s)H (B,k, p2)∩
T (j)T (i)T (k) is equal to H (A,k, p1)T (s)H (B,k, p2)∩T and is a 2D sub-
manifold of T . In a 2-DoF translation, any point of the translating body moves on
a surface that is a 2D submanifold of the 3D Euclidean affine space. Two points
belonging to the same translating body move on two surfaces that are congruent
through the translation that transforms one of the two points into the other one.

In a HPH-‖-PPP manipulator, let M be any point belonging to the end-effector.
The parallel H axes have the reduced pitches k1 = p1/2π and k2 = p2/2π . p1 =
p2 = 0 is a possible special case and then the Hs are revolute R pairs. The PPP limb
is a generator of T . The 3D group T is the set of point transformations

M → M′ = M + a1i+ b1j+ c1k, (1)

which is also expressed by (MM′) = a1i + b1j + c1k where (MM′) = M′ −M is
the vector obtained from the points M and M′. The parameters a1, b1 and c1 are
the scalar values of the rectilinear translations produced by the P pairs where the
variables are unknown. In Figure 1, (AN) is perpendicular to (NB), which is parallel
to the unit vector s; (AN) = ri, (NB) = bs, s = sinαj + cosαk where the angle α
is a given constant. In order to facilitate the understanding, the point B does not
coincide with N and b is not zero in the figure. Because displacements (or rigid-
body motions) represent changes of rigid-body positions, the geometric description
of an initial home configuration of a mechanism is a datum that is necessary for
the characterization of all the relative motions. With no loss of generality and for
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Fig. 1 A HPH-‖-PPP generator of 2-DoF translation along a ruled helicoid: general configuration.

the sake of simple calculation, at the home configuration shown in Figure 2, the
position B0 of the end-effector point B is assumed to coincide with N. Hence, B0 =
N(�= B) in the following calculation. Moreover, the position of M is M0 at the home
configuration. The displacements produced by the HPH limb can be attained by a
succession of three 1-DoF motions. In the first stage, the second H moves with an
angle φ around the axis (B0, k) while the first H and the P do not move (θ = 0 and
b = 0); M0 becomes Mi, which is expressed as

M0 →Mi = B0+φk2k+exp(φk×)(B0M0) or (B0Mi)= φk2k+exp(φk×)(B0M0)
(2)

In the second stage, the second H is locked (angle φ keeps its value), the first H
keeps its home position (θ = 0) and the P provides a translation parallel to s, with
an amplitude b. Then, the point Mi becomes M′

i

Mi → M′
i = Mi + bs (3)

With (B0M′
i) = bs + φk2k + exp(φk×)(B0M0) and (NM′

i) = bs + φk2k +
exp(φk×)(B0M0) because of the choice B0 = N, we have

(NM′
i) = bsinαj +(bcosα + φk2)k+ exp(φk×)(NM0), (4)

In the third stage, the second H and the P are locked and, therefore, φ and b keep
their values. The first H moves with angle θ around the fixed axis (A,k) and M′

i is
transformed into M′

M′
i → M′ = A+θk1k+exp(θk×)(AM′

i)or(AM′) = θk1k+exp(θk×)(AM′
i) (5)
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Fig. 2 A HPH-‖-PPP generator of 2-DoF translation along a ruled helicoid:initial posture of para-
metrization

Using (AM′
i) = (AN) + (NM′

i) = ri + bsinαj + (bcosα + φk2)k +
exp(φk×)(B0M0) yields

(AM′) = θk1k+ exp(θk×)[ri+ bsinαj +(bcosα + φk2)k+ exp(φk×)(B0M0)]

= (θk1 + φk2 + bcosα)k + exp(θk×)(ri+ bsinαj)+ exp[(θ + φ)k×](B0M0)

Notice that exp(θk×)(ri) = r(cosθ i + sinθ j) and exp(θk×)(bsinαj) =
bsinα(−sinθ i+ cosθ j),

(AM′) = (θk1 + φk2 + bcosα)k+(r cosθ −bsinα sinθ )i

+(r sinθ + bsinα cosθ )j+ exp[(θ + φ)k×](B0M0) (6)

This is an expression of the product H(A,k, p1;θ )T (s;b)H(B,k, p2;φ), which is
an element of the set H (A,k, p1)T (s)H (B,k, p2). In the HPH-‖-PPP mechanism,
for any point M, the displacements of the moving platform have to satisfy Eq. (6)
and to be a translation. This is achieved for φ =−θ . As a matter of fact, (BM) must
keep unchanged, that is, (B′M′) = (B0M0). Then, Eq. (6) becomes

(AM′) = [θ (k1 − k2)+ bcosα]k+[r(cosθ −1)−bsinα sinθ ]i

+(r sinθ + bsinα cosθ )j+(AM0), (7)

It is straightforward to verify that the end-effector point B that coincides with B0
at the home configuration moves on a ruled helicoid with the reduced pitch (k1−k2)
and the axis (A,k). This helicoid has the parametric representation:

(AB′) = r(cosθ i+ sinθ )j + bsinα(−sin θ i+ cosθ j)+ bcosαk+ θ (k1 − k2)k

= (ANθ )+ bsθ + θ (k1 − k2)k (8)



Mechanical Generators of 2-DoF Translation along a Ruled Surface 77

Fig. 3 Two HPH-‖-PPP mechanisms generating translation along the same ruled helicoid.

where Nθ and sθ are respectively the outcomes of N and s by a rotation of angle θ
around the axis (A,k).

In the translation expressed by Eq. (7), any point of the end-effector moves on
a ruled helicoid, which is congruent by translation with the helicoid of B. In other
words, the end-effector moves by a 2-DoF translation along a ruled helicoid with
pitch p = p1− p2; in the general case p1 �= p2. In a special case, p1 = p2 = p. Then,
the end-effector translates along a ruled helicoid of pitch 0, which is a revolute
hyperboloid of one sheet. This hyperboloid is a doubly ruled surface. Each family
of straight lines of the hyperboloid is called a regulus. One can turn one regulus into
the other by reflecting in a plane that contains the axis of revolution.

3 Mechanical Generators of 2-DoF Translation along a Ruled
Helicoid

Two mechanical generators of 2-DoF translation, which are congruent by any given
translation, produce the same translational motion of their end effectors [10]. In the
two congruent manipulators, the two end-effectors move with the same motion and,
consequently, can be rigidly connected. More than two congruent limbs can connect
the fixed base to the end effector.

In Figure 3, two HPH-‖-PPP mechanisms produce the same ruled-helicoid trans-
lation with the pitch p1 − p2 = p3 − p4. That way, rigidly connecting the two end-
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Fig. 4 HPH-‖-HPH generator of 2-DoF translation along a ruled helicoid.

effectors and removing the PPP subchains lead to a parallel HPH-‖-HPH generator
of 2-DoF translation along the surface of a ruled helicoid, Figure 4. This is the gen-
eral case with p1 − p2 = p3 − p4. One may notice that locking one or two of the
two Ps, the 2-DoF mechanism becomes a Delassus HHHH parallelogram, which is
movable with one DoF [12].

4 Mechanical Generators of 2-DoF Translation along a Revolute
Hyperboloid

The HPH-‖-PPP chain with equal H pitches (p1 = p2 = p) is the special case. Then,
the ruled heloicoid degenerates into a revolute one-sheet hyperboloid. Two HPH-
‖-PPP mechanisms generating the translation along the same revolute one-sheet
hyperboloid are considered. The four H pitches have to satisfy p1 = p2 = p and
p3 = p4 = q. A new HPH-‖-HPH manipulator that is depicted in Figure 5 is syn-
thesized through the gluing of the end effectors and the removal of the superfluous
PPP limbs.

As any revolute surface, the revolute hyperboloid of one sheet is symmetric with
respect to any plane containing its axis of revolution. Consequently, that hyperboloid
is a doubly ruled surface. From that, the double mechanical generation of the 2-
DoF translation along a revolute hyperboloid of one sheet is derived and a new
architectural type of HPH-‖-HPH parallel manipulator is synthesized and shown
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Fig. 5 HPH-‖-HPH mechanism generating hyperboloidal 2-DoF translation.

Fig. 6 New type of HPH-‖-HPH generator of 2-DoF hyperboloidal translation.

in Figure 6. It is worth noticing that, in the new manipulator of Figure 6, the four
pitches satisfy p1 = p2 = p and p3 = p4 = q. In practical applications, the four H
pitches can be zero and we obtain a RPR-‖-RPR parallel manipulator. This 2-DoF
manipulator can be actuated in the two fixed R pairs whereas the manipulators of
Figures 4 and 5 cannot.
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5 Conclusions

A parallel HPH-‖-HPH manipulator generating, in the general case, 2-DoF trans-
lation along a ruled helicoid is synthesized via the invariance by conjugation of
any submanifold of translations in the commutative Lie group T . In a special case
of the screw pitches, a mechanical generator of 2-DoF translation along a revolute
hyperboloid of one sheet is found out. More new generators of 2-DoF translation
along a hyperboloid are synthesized using the double geometric generation of the
revolute one-sheet hyperboloid by the rotation of a straight line. In further work,
the mechanisms revealed in the paper will lead to a new derivation of the Delassus
plane-symmetric HPHP linkage, which is movable with one DoF.
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9. Lee, C.-C., Hervé, J. M.: On some applications of primitive Schönflies-motion generators.
Mech. Mach. Theory, 44, 2153–2163 (2009).
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Abstract. Miniature crawling robots for medical purposes have been the issue of many studies in
the past decade. The main challenge of this type of locomotion is the high flexibility of the tissue
of biological vessels combined with the usually low friction coefficients. However, little has been
done in the field of analyzing the interaction between the tissue and the robot. In a previous study,
we presented the influence of the local compliance effects on the locomotion and developed the
efficiency as a function of the number of cells, friction coefficients and tangential compliance. In
this study we include the influence of the structural compliance on the locomotion analysis of
two-cell worm robot.

Key words: Medical robotics, miniature worm robots, locomotion efficiency, local and structural

compliance.

1 Introduction

Over the past decade, several research groups around the world have worked on
developing small worm-like robots for medical purposes, for example [1–13]. The
robots are designed to crawl inside the gastrointestinal (GI) tract, blood vessels and
respiratory-system vessels. Due to the high compliance of the biological tissue, the
locomotion efficiency defined as the actual advance divided by the stroke of the
robot is substantially reduced.

Most studies propose a robot design and experimentally test its locomotion ef-
ficiency. Some, e.g. [3, 4, 8, 9, 11, 13], study the efficiency of locomotion based
on a simplified model of the mechanical properties of the environment, in particu-
lar, a homogeneous medium, without hysteresis and simple modeling of the elasti-
city. Dario et al. [3,4] calculate the overall efficiency by multiplying the individual
efficiencies of the main stages of locomotion. However, this analysis implies that
the different parts of the cycle are completely independant. The cumulative loss of
stroke is first addressed by Kwon et al. [7] who model the loss of stroke for a two
cell worm in linearly elastic environment. Zarrouk et al. [13] developed the theory of
locomotion of worms for multiple cells taking into account external resisting forces
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Fig. 1 Two-cell earthworm advancing in flexible environment.

and back sliding effects. However, both studies are based on local compliance ana-
lysis, i.e., the deformation of the tissue is local to every specific cell and does not
influence the other cells.

In this paper we introduce the locomotion efficiency of a two cell worm in struc-
tural analysis, that is, the deformation of the tissue is large enough to reach and
influence the deformation of the other cells.

2 Contact Compliance Analysis

In order to illustrate the problem of loss of efficiency of a worm when crawling in a
compliant surface, consider one cycle of motion of two-cell earthworm, moving in a
straight compliant environment. In this particular example, we assume that no back
sliding takes place (higher friction coefficient in the back direction). We also adopt
the linear tangential compliance model of the environment, which we write as:

Ft = ktδ (1)

where δ is the tangential deflection, Ft the tangential force and kt is the tangential
compliance. We also assume the Coulomb model of friction, where the maximum
static and sliding friction forces are given by:

Ft = µFn (2)

where µ is the friction coefficient and Fn is the normal force. The normal force Fn

may be determined from the mechanical properties of the robot and the environment
or by performing experiments. For typical earthworms whose diameter is smaller
than that of the environment, it is the weight per cell of the robot.

The locomotion cycle of a two-cell earthworm as illustrated in Fig. 1 is composed
of two main stages. Starting with the initial configuration (A) where L0 represents
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the initial distance between the two cells and the deflections are δ (1)
A

= −δ (2)
A

=
µFn/kt , we have:

Stage A-B: Robot extends its body to advance the fore-cells by Ls. Now we see
that the deflections have switched directions and caused a loss of efficiency. At
the end of configuration (B), the deflections are δ (2)

B
= −δ (1)

B
= µFn/kt .

Stage B-C: Robot retracts its body to advance the back cells by Ls. This position
is similar to configuration (A) but shifted right by a distance of Lcycle.

At the end of the cycle, the robot has effectively advanced through Lcycle = Ls −
2
∣∣δA

∣∣−2 |δB| . Since the deflections in this case are a function of the tangential con-
tact force only (the deflections are independent), then

∣
∣δA

∣
∣ = |δB| and the theoretical

advance is

η =
effective advance

theoretical advance
= 1− 4µFn

Lskt
(3)

For the general case, where the robot may partially clamp its moving cells, the
advance in a full cycle is [13]:

η ≈ Ls − nr = Ls −
2n

kt(n−m−1)

(
Fnµ f −

Fext + mFnµb

n−m

)
(4)

where n is the number of cells of the robot, m is the number of cells sliding back, Fext
is the external force acting on the robot, Fn is the normal contact force between the
cell and the surface, µb and µ f are respectively the backward and forward friction
coefficients. The value of m is defined as the smallest integer satisfying the following
inequality:

m >
−2δext + nδ f + nδb

δ f − δb
(5)

where δb = µb Fn/kt , δ f = µ f Fn/kt , and δext = Fext/kt .

3 Structural Compliance Analysis

In structural analysis, we assume that the tissue deformation associated with each
cell is not limited to the vicinity of that cell but can influence the deformations
associated with the other cells. Therefore, the environment of the robot deforms
as a continuous structure under the forces exerted by the robot. This problem is
encountered in crawling locomotion inside the intestines.

To proceed with the analysis applicable to the intestinal tract, we consider the
physical nature of the GI environment and distinguish between the intestinal walls
and the mesenteries of the GI tract (see Fig. 2). Similarly to the treatments in [12,
13], we assume that the elastic properties of the intestines are linear and we neglect
the effects of the normal deflections on the locomotion. Furthermore, we make use
of a discrete model of the environment where the intestines and mesenteries are
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Fig. 2 A robot inside the intestines.

Fig. 3 Modeling of the intestines and mesenteries as two sets of springs.

modeled as two sets of springs (see Fig. 3). The first set of springs, representing
the flexibility of the mesenteries, is connected on one end to a fixed rigid support,
while the other end is connected to a second set of springs representing the walls
of the intestines. The stiffness of the springs representing the mesenteries and the
intestinal wall are respectively km and kw.

3.1 Model of Intestines

We now develop a mathematical model of the intestine, specifically, a relationship
for the tangential deflection δ of the intestinal wall as a function of the applied
force F . For the analysis presented here, we employ X to denote the undeformed
coordinate along the intestine so that X locates points on the tissue when there is
no load or deformation; δi is the tangential deflection of the point at Xi and xi is
the deformed coordinate, i.e., the actual position of the tissue after deformation,
xi = Xi + δi (see Fig. 3).

Assuming that the force is applied at point i, the tangential deflection of point j
can be calculated as a function of the neighboring deflections by enforcing equilib-
rium at j as:
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−kmδ j − kw
(
δ j − δ j−1

)
+ kw

(
δ j+1 − δ j

)
= 0 (6)

In addition, the equilibrium of the whole structure requires that:

km ∑δ j = F (7)

To transition from the discrete model above to a continuous description of the
system, we observe that, the coefficient km can be calculated from:

km = Km∆X (8)

where Km is the elasticity/distance of the mesenteries. By analogy with the axially
loaded medium of sectional area A and Young modulus E , we can write the coeffi-
cient kw as:

kw =
AE
∆X

(9)

Inserting Eqs. (8) and (9) into (6) we obtain:

1
∆X

((
δ j+1 − δ j

∆X

)

−
(

δ−δ j−1

∆X

))

=
Km

AE
δ j (10)

and recognizing the expression on the left-hand side as a central difference approx-
imation of the second derivative of δ , we obtain the continuous form of (10):

∂ 2δ
∂X2 =

Km

AE
δ (X) (11)

The only physical solution of the above differential equation is:

δ (X) = Ce−
(

Km
AE

)1/2
|X | (12)

The continuous analogue of Eq. (7) becomes:
∫ ∞

−∞
Kmδ (X)dX = F (13)

from which, upon substitution for δ (X) from Eq. (12), the constant C can be extrac-
ted. This results in the final solution for the deformation as:

δ (X) =
(

1
AEKm

)1/2 F
2

e−
(

Km
AE

)1/2
|X | (14)

The above indicates that δ is a linear function of the force acting on the tissue and
the structural deformation is an exponentially decaying function of the distance.
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3.2 Superposition Principle

Since the developed model is linear, when more than one force is applied to the
structure, say Fi at location Xi, the principle of superposition is applied, i.e., the
tangential deflection is the sum of the tangential deflections caused by the individual
forces.

δ (Xj) = ∑
i

δ (Xi,Xj,Fi) (15)

4 Two-Cell Robot Example

We now apply the analysis of the previous section to determine the deflections of
and the forces acting on a two-cell crawling robot. This system, when moving quasi-
statically in a flexible environment is statically indeterminate; therefore, we must
combine the equilibrium relation for the system with the deformation “history” as
derived in Section 3.1.

4.1 Analysis

Consider now a robot with two cells only, moving freely on structurally flexible
environment where the tangential compliance of the surface is modeled as per Eq.
(15) but now rewritten in a more compact form:

δ (X) =
F e−β |X |

kt
(16)

with the corresponding definitions of β and kt . We also assume that the backward
friction coefficient is much larger than the forward friction coefficient. In quasi-
static analysis, the forces acting on the two cells, F(1) and F(2) are of opposite sign
but of equal magnitude: ∣

∣F (1)∣∣ =
∣
∣F (2)∣∣ = µ f Fn (17)

The positions of the two cells are constrained by the kinematics of the robot, that
is: (

X (1) + δ (1))−
(
X (2) + δ (2)) = L0 + Ls (18)

when the actuator is extended or

(
X (1) + δ (1))−

(
X (2) + δ (2)) = L0 (19)

when the actuator is contracted, respectively. The tangential deflections for the two
legs can then be evaluated from Eq. (17) and superimposing the effects of the two
forces. This gives the following two non-linear equations:
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[
δ (1)

δ (2)

]
=

1
kt

[
1 e−β |X |

e−β |X | 1

][
F (1)

−F(2)

]
(20)

which together with Eq. (18) (or Eq. (19)) can be solved numerically for the un-
knowns: δ (1), δ (2) and X (2) (X (1) can be arbitrarily set to zero).

4.2 Approximate Closed-Form Solution

To obtain an approximate but explicit value of the locomotion efficiency, we assume
that the difference of the undeformed coordinates of the two cells can be approxim-
ated from Eqs. (18) and (19), with the deflections of the two cells set to their “local

compliance” values,
∣
∣
∣δ (1)

∣
∣
∣ =

∣
∣
∣δ (2)

∣
∣
∣ = µ Fn/kt . Then for the two stages A and B (see

Fig. 1):

X (1)
A

−X (2)
A

= L0 +
2µ f Fn

kt

X (1)
A

−X (2)
A

= L0 + Ls −
2µ f Fn

kt
(21)

and substituting for the above into Eqs. (20) to compute the corresponding deflec-
tions, δA = |δ (1)

A
| = |δ (2)

A
| and δB = |δ (1)

B
| = |δ (2)

B
|, we obtain the distance traveled

during a cycle as:

Lcycle = Ls − 2δA − 2δB

≈ Ls − 4
µ f Fn

kt
+ 2

µ f Fn

kt

(

e−β
(

L0+2
µ f Fn

kt

)
+ e

−β
(

L0+Ls−2
µ f Fn

kt

))

(22)

The above analytical result shows that compared to the local compliance analysis,
which produces the first two terms in the expression on the right of Eq. (22), struc-
tural flexibility inmproves the efficiency of locomotion as it reduces the deflections
under the cells.

4.3 Comparison to Exact Solution

In Fig. 4, the approximate value of the locomotion efficiency is compared to the ex-
act solution based on Eqs. (17–20), as a function of β . As can be seen from Fig. 4,
the two are in excellent agreement, the maximum difference between the two being
0.4%. When β becomes small, the robot behaves as if there is no flexibility at all,
while when β increases, the locomotion efficiency approaches the value predicted
with the local compliance analysis. However, as already noted, the structural com-
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Fig. 4 Comparison between the exact solution of Eqs. (17–20) and the approximate solution (22).

pliance improves the efficiency of locomotion by reducing the deflections under the
cells.

5 Conclusions

The research described in the present paper focuses on the analysis of worm robotic
locomotion in a flexible environment. Differently from our previous analysis, we
considered the influence of the structural compliance, rather than, the local compli-
ance. The intestine-like environment (intestinal wall and mesentery) is modeled with
two sets of linear springs and the model is applied to the two-cell worm locomotion.

The efficiency of the locomotion including the influence of the structural com-
pliance is calculated. Interestingly, it was found that the structural compliance in-
creases the efficiency of locomotion compared to the case where only local com-
pliance is considered. An approximate closed form solution is also obtained and
compared to exact value of the locomotion efficiency. The authors’ future work will
be devoted to generalizing the analysis of the behavior of robotic worms for general
number of cells, under influence of external force and different friction coefficients.
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Abstract. In this paper a new actuation strategy is proposed and then applied to the 3-PRPR1 re-
dundant planar parallel manipulator. The actuation strategy consists of selecting adequate actuators
displacements such that the 2-norm of the joint space acceleration vector is minimised in each step
of a given trajectory. The method is based on the use of constrained local optimisation algorithms.
Given the redundant nature of the manipulator, in the optimisation routine three of the six pris-
matic actuator displacements are selected as design variables. Thus, in each step of the calculation,
velocities and accelerations of the three selected actuators can be calculated while the displace-
ments, velocities and accelerations of the remaining actuators are obtained by solving the inverse
problems. Some results are shown by comparing the joint acceleration history for the 3-PRPR
manipulator with a similar non-redundant manipulator (the 3-RPR).

Key words: Redundant parallel manipulator, optimisation, path planning, joint acceleration.

1 Introduction

Parallel manipulators are extensively studied due to their numerous advantages
in comparison to their serial counterparts. The advantages can be summarised in
high structural rigidity, high payload-to-weight ratio and relatively high accuracy,
amongst other. However, it is well know that they also have numerous drawbacks
such as complexity in the forward kinematic equations, relatively small workspace,
singularities inside their workspace, to name a few. Some of the cited drawbacks,
namely the singularities inside their workspace and a generally small workspace,
may be overcome by the use of redundancy. In parallel manipulators, there are three
basic types of redundancy: kinematic, actuation and branch redundancy. This paper
deals with kinematic redundancy (see [1–6]) which consists of adding extra active
joints and links to one or more branches of the mechanism.

In the case of kinematic redundancy, whether it is in serial or parallel manip-
ulators, the added mobility of the mechanism allows for an enlarged workspace
while helping avoid most singular configurations [1, 3, 7]. Conversely, the motion

1 P denotes an actuated prismatic joint and R denotes a passive revolute joints.
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planning problem of kinematically redundant manipulators increases significantly
in complexity. Indeed, in this case there are infinite number of solutions for the in-
verse displacement problem providing infinite number of combinations of actuators
displacements which guarantee a specific end-effector pose (i.e., position and ori-
entation). Therefore, when dealing with a trajectory, the choice of actuation strategy
can follow different criteria as examined in [2, 4, 8, 9], to name a few.

Redundancy in serial manipulators has been used, amongst others, to select tra-
jectories free of collisions (see for instance [8, 9]) or for avoiding singular config-
urations (see for instance [7]). In the context of parallel manipulators, both Cha et
al. [1] and Ebrahimi et al. [2] looked into selecting the best actuator displacements
for a manipulator to remain as far as possible from singular configurations.

In this paper, an alternative actuation strategy based on minimising the actuator
accelerations is proposed. Minimising the actuators’ accelerations provides some
bounds for the actuators forces without being required to develop a complete dy-
namic model of the manipulator which would be specific to predefined link geomet-
ries. The method consists in choosing a subset of actuator displacements as free vari-
ables for a numerical optimisation routine while the joint velocities, accelerations
and remaining joint displacements are calculated using the kinematic equations for
the manipulator. The numerical optimisation then seeks for the actuator displace-
ments which will minimise the actuators’ accelerations based on the displacement
history and the desired current end effector pose. The method is explained through
an example using the 3-PRPR redundant planar parallel manipulator for which the
acceleration model is shown next (Section 2). Then, in Section 3, the motion plan-
ning strategy is described in detail. Numerical examples are provided in Section 4
while conclusions are presented in Section 5.

2 Acceleration Model Formulation

The 3-PRPR kinematically redundant planar parallel manipulator consists of 3
identical legs each with a couple of PR pairs in series (Fig. 1). The symmetrical
version of the manipulator has the moving platform shaped as an equilateral triangle
and the direction of the prismatic joints attached to the base frame at angles of 2π/3
from each other. For simplicity, the first prismatic joint on the first leg is aligned
with the inertial Y axis. The acceleration model of the manipulator was obtained by
a vector mechanics approach [10, 11] and is briefly outlined here.

According to Fig. 1, the following vector-loop closure equation can be obtained
for leg i:

OBi = p+ ORPhi (1)

where p is the vector from the origin of frame {O} to the origin of frame {P}, ORP
is the rotation matrix representing the orientation of frame {P} relative to frame
{O} and hi is a vector from the origin of frame {P} to point Bi expressed in terms
of frame {P}. Denoting by OBi the position vector representing the position of point
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Fig. 1 The 3-PRPR redundant planar parallel manipulator

Bi relative to the origin of frame {O}, the following expression can be obtained

OBi = ai + li = aieai
+ lieli

(2)

where ‖ai‖ = ai and ‖li‖ = li while vectors eai
and eli

are the unit vectors in the
direction of ai and ei, respectively.

Taking the time derivative of equations (1) and (2) yields the linear velocity of
point Bi (i.e., vBi

):

vBi
= vP + φ̇z×ORPhi (3)

vBi
= ȧieai

+ l̇ieli
+(ωiz× lieli

) (4)

where vP is the linear velocity of point P, φ̇ is the angular velocity of the moving
platform relative to the base frame while ωi is the angular velocity of the direction
vector of the distal prismatic joint (i.e., the angular velocity of vector eli

which,

according to Fig. 1, would correspond to θ̇i). The angular velocity vector ωiz can be
obtained by cross-multiplying both sides of equation (4) by ei:

ωiz =
1
li
(ȧieai

× eli
−vBi

× eli
) (5)

Equation (5) can now be substituted into equation (4). By developing the triple vec-
tor product, a simplified expression can be easily obtained:

l̇ieli
+(ȧieli

· eai
)eli

− (eli
·vBi

)eli
= 0 (6)

It can be noted that all three vector terms in equation (6) are along eli
. Therefore,

equation (6) provides 3 scalar equations for the manipulator (one for each leg).
Equation (3) is now differentiated with respect to time to obtain aBi

(the linear
acceleration of point Bi) in terms of aP (the linear acceleration of point P). That is:

93



M. Ruggiu and J.A. Carretero

aBi
= aP +(φ̈z×ORPhi + φ̇z× (φ̇z×ORPhi)) (7)

Likewise, differentiating equation (4) with respect to time, aBi
can be expressed as:

aBi
= äieai

+(ω̇iz× lieli
)+ 2(ωiz× l̇ieli

)+ l̈ieli
+ ωiz× (ωiz× lieli

) (8)

The angular acceleration of the distal prismatic joint, i.e., ω̇iz, can be obtained by
cross-multiplying equation (8) by eli

resulting in:

ω̇iz =
1
li
(äieai

× eli
−2ωil̇iz−aBi

× eli
) (9)

This expression of ω̇iz is now substituted into equation (8). By developing the triple
vector product a simplified expression for the acceleration can be obtained, too:

(äieli
· eai

)eli
+ l̈ieli

− (eli
·aBi

)eli
−ω2

i lieli
= 0 (10)

Similar to the linear velocity case, all the terms in equation (10) are vectors in the
direction eli

thus providing 3 scalar equations for the manipulator (one for each leg).

3 Motion Planning

Here, a new motion planning strategy is proposed where actuator displacements
are optimised to reduce the actuators’ accelerations. The procedure can be briefly
summarised as follows:

1. Define search variables: For a manipulator with n actuators (with n > d), select
n−d as the ‘redundant actuators’ where d is the dimension of the task space. The
displacement of these redundant actuators will be used as the decision (design
variables) in the trajectory optimisation.

2. Define trajectory: The desired trajectory of the end effector is selected. Using the
inverse displacement solution [6], an arbitrary initial pose for the manipulator is
selected.

3. Define bounds: Based on the current manipulator pose, some user-defined max-
imum joint rates and a predefined update rate for the simulation, determine the
maximum and minimum displacement limits for the actuators which will act as
bounds while optimising actuator displacements.

4. Optimise next actuator move: A non-linear constrained optimisation is performed
using the 2-norm of the joint space acceleration vector as objective function.

a. For every optimisation step, the d non-optimised actuator displacements are
calculated from the trial values of the n − d optimised actuators using the
inverse displacement equations.
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b. Using a portion of the time history of the actuator displacements, estimate the
acceleration of each of the n−d redundant actuators.

c. Using the estimated redundant actuator accelerations, the acceleration model
for the manipulator and the end-effector velocity and acceleration, compute
the acceleration of the remaining d actuators.

d. Determine the objective function value as the 2-norm of the n-dimensional
actuator acceleration vector.

For the 3-PRPR manipulator described earlier, where n = 6 and d = 3, this pro-
cedure can be explained as follows. For a given end effector motion, the values
of six variables (i.e., ai, li, i = 1,2,3) are to be assigned amongst R

3 possibilities.
Therefore, three of them (i.e., n−d = 6−3) can be selected using an optimisation
procedure (i.e., search variables) whilst the others are obtained from the inverse dis-
placement problem (IDP) solution. The IDP can be solved combining equations (1)
and (2) (see [6] for details). At this time, for any selected value of the search vari-
ables (i.e., the displacement of the n− d redundant actuators), the joint rates (i.e.,
their time derivatives), are fixed, thus providing only one solution for the inverse ve-
locity and acceleration problems. Accelerations of the non-optimised actuators are
thus obtained from equation (10) with equation (5). Continuity of the accelerations
profiles was guaranteed by a polynomial fitting of the joints rates.

The objective function N for the 3-PRPR is given as:

N =

√
3

∑
i=1

(ä2
i + l̈2

i ) (11)

It may be observed that, for the the 3-PRPR manipulator, N is homogeneous in
dimension because of the prismatic nature of all its actuators. This property would
no longer be valid if a mixture of revolute and prismatic joints were used as vari-
ables since some arbitrary scaling factors would need to be added to the objective
function. Also, in general the use of passive prismatic joints is ill-advised as they
are often a source of error and failures due friction and even stick-slip phenomena.

4 Numerical Examples

The path planning strategy described in Section 3 was implemented in Matlab for
the 3-PRPR manipulator. In the current numerical examples, the displacements of
the proximal prismatic actuators of each leg, i.e., ai for i = 1,2,3, were used as the
redundant actuators while the distal actuators (i.e., li for i = 1,2,3) where considered
the non-redundant actuators. All actuators, redundant or not, were allowed to vary
in the range between 0.5 and 5[l.u.]2 with the actuator joint rates limit in the range
between −4.5 and +4.5 [actuator l.u.]/[path l.u.]. The path followed by the refer-
ence point P on the end effector is schematically shown in Fig. 2. More specifically

2 The abbreviation l.u. denotes length unit whereas t.u. denotes time unit.
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Fig. 2 Type of trajectories used in the numerical examples.
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Fig. 3 End effector total Cartesian acceleration aP in [l.u.]/[t.u.]2 as a function of the path dis-
placement δ in [l.u.]: trajectory 1 (−) and trajectory 2 (−−).
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Fig. 4 Distal actuator acceleration (l̈i) in [l.u.]/[t.u.]2 as a function of the path displacement δ in
[l.u.]: non-redundant case (−) and redundant case (−−) (trajectory 1).

and with reference to Fig. 2, the parameters for the two trajectories are: Trajectory 1:
b = 2[l.u.], rc = 0.1[l.u.]; Trajectory 2: b = 2[l.u.], rc = 0.5[l.u.]. Both trajectories
were followed at an arbitrary constant velocity vP = 11.2[l.u.]/[t.u.] while keeping
the moving platform with constant orientation (i.e., φ = 0.2 [rad]). Figure 3 shows
the magnitude of the Cartesian acceleration vector, i.e., aP =

√
ẍ2 + ÿ2, for the ref-

erence point of the end effector while performing trajectories 1 and 2 as function of
the path displacement δ . When performing trajectory 1 the maximum value reached
by aP is aPmax

= 1.25[l.u.]/[t.u.]2, while aPmax
= 0.25[l.u.]/[t.u.]2 for trajectory 2.

Figure 4 shows the comparison between l̈i values obtained from an optimisation
routine with ai as the optimised variables and from a non-redundant case with ai
fixed at a1 = a2 = a3 = 1. The comparison is made for trajectory 1. According to
Fig. 4, the redundant manipulator can travel the trajectory with actuator acceleration
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Fig. 5 Proximal actuator acceleration (äi) in [l.u.]/[t.u.]2 as a function of the path displacement δ
in [l.u.]: trajectory 1 (−) and trajectory 2 (−−) (redundant case).

values significantly lower than the non-redundant manipulator. In order to measure
the difference the joints accelerations vector containing the maximum of the abso-
lute value for each actuator is defined as:

q̈max|nr j
=

[
|l̈1|max |l̈3|max |l̈3|max

]
(12)

q̈max|r j
=

[
|ä1|max |ä2|max |ä3|max |l̈1|max |l̈2|max |l̈3|max

]
(13)

respectively for the non-redundant (sub-index nr) and redundant manipulators (sub-
index r). Subscript j in equations (12) and (13) indicates the trajectory number. In
the case of trajectory 1 the maximum values are:

q̈max|nr1
=

[
1.20 1.22 1.23

]
[l.u.]/[t.u.]2

q̈max|r1
=

[
0.52 0.60 0.63 0.58 1.08 0.63

]
[l.u.]/[t.u.]2

From comparison between q̈max|nr1
and q̈max|r1

, it can be seen that the optimisation

procedure can reduce the mean value of |l̈i|max of about 37%.
Figure 5 shows the comparison between the proximal actuators accelerations

when the end effector is travelling either trajectory 1 or trajectory 2 both in the
non-redundant and redundant cases. The ratio between the mean of the elements
of the vectors in equation (13) (denoted by an overline) is defined for the re-
dundant and non-redundant manipulators, such that: Gr = q̈max|r1

/ q̈max|r2
and

Gnr = q̈max|nr1
/ q̈max|nr2

. These ratios highlight the measure of the response of the
optimisation for different trajectories. In the present comparison, greater numbers
mean higher acceleration when smaller radii are used. For the current trajectories,
these ratios result in:

Gnr = 6.3, Gr = 4.6 (14)

It can be deduced from these ratios that the optimisation procedure in trajectory 1
provides a significantly better joint trajectory than in trajectory 2 (even though the
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latter already shows a significant improvement from the non-redundant case). Also
important to note is that there is a reduction of 24% in average acceleration when us-
ing the redundant manipulator in trajectory 2 whereas this reduction is significantly
higher (i.e., 44%) when the radius is smaller in trajectory 1.

5 Conclusions

As part of a research programme dedicate to propose and test different actuation
strategies for kinematically redundant parallel manipulator, in this paper a new ac-
tuation strategy for kinematically redundant parallel manipulators is proposed and
then applied to the 3-PRPR redundant planar parallel manipulator whose end ef-
fector travels at constant velocity two square trajectory with rounded corners. The
actuation strategy is based on the minimisation of the actuated joints’ acceleration.
More specifically, the 2-norm of the joints accelerations vector was chosen as the
objective function. Two important conclusions can be drawn from the work: a) The
optimisation procedure for the redundant architecture considered significantly re-
duces the actuated joint accelerations with respect to those calculated for a similar
non-redundant manipulator and, most importantly, b) The optimisation procedure
exhibits much greater impact when it is most important, i.e., whenever the end ef-
fector Cartesian accelerations are greater.
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Abstract. Robotic assisted surgery is a continuously developing field, as robots have proved their
utility in the operating rooms. Some of their advantages could be summed as follows: increased
precision, the possibility of reaching positions and places that could prove difficulty in reaching
using classical instruments, the replacement of medical personnel in the operating room, allowing
for more space and cost saving etc. Until now, the vast majority of robots used in surgery, had serial
structures. A new parallel hybrid architecture is proposed in this paper, the kinematics of this new
structure is determined, the singularities are discussed and the design of the robot is presented.

Key words: Parallel hybrid robot, minimally invasive surgery, kinematics, design.

1 Introduction

The latest advancements achieved in both medicine and science allowed the minim-
ization or elimination of the surgical incisions. The surgical methodology for min-
imal incision or minimally invasive surgery (MIS) greatly enhances the outcome
of surgery by shortening the recovery time and reducing the pain and trauma by
minimizing the tissue and muscle damages incurred from incision.

One of the first robots created for medical purposes is AESOP, produced by Com-
puter Motion. They have developed several versions of such a robot, until they fi-
nally developed ZEUS Robotic Surgical System with three robotic arms attached to
the side of the operating table [1]. The most known commercial robot is the daV-
inci, a highly versatile, but also large and very expensive robot [2]. A highly articu-
lated robot for minimally invasive surgery threading through tightly packed volumes
without disturbing the surrounding organs or tissues is presented in [3]. It is actually
a snake-like robot whose primarily use is for cardiac surgery. EndoAssist [4] is an-
other camera manipulator having four degrees of freedom produced by Armstrong
Healthcare Limited, UK and commercially available. The interesting fact about En-
doAssist is the control: the robot is programmed to detect and follow the movements
of the surgeon’s head. LAPMAN [5] is a dynamic laparoscope holder with three de-
grees of freedom, guided by a joystick clipped onto the laparoscopic instruments.
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Just like other camera holders, it confers an optimal control over the visual field, the
elimination of the human tremor, it helps to reduce the number of assistants in the
operating room. A camera manipulating robot with 3 degrees of freedom is presen-
ted in [6]. The KaLAR robot needs an endoscope holder in order to place and hold
the robot in a fixed place on the operating table. There are 2 degrees of freedom
used to bend the end of the endoscope: one for the left/right motion and one for the
up/down motion. The third degree of freedom is used to obtain the in/out motion of
the camera.

A hybrid surgical robot model with a ball joint was studied in [7]. The forward
kinematics was built using the Denavit-Hartenberg method combined with success-
ive rotation transformation, while for the inverse kinematics the geometry method
was used. In [8] the kinematics and concept designs of a reconfigurable 5 DOF
hybrid robot is presented. The robot is composed of a 2-DOF parallel spherical
mechanism that is serially connected with a 3-DOF open loop kinematic chain via
a prismatic joint. The kinematics of a 3-DOF parallel robot for camera guiding was
studied in [9]. The problems generated by this structure consists in the fact that the
laparoscope will put some pressure on the abdominal muscles and in order to reduce
the effects of this aspect, an orientation module with two degrees of freedom was
introduced for a better guiding of the camera inside the patient, as it is presented in
this paper.

2 The Surgical Parallel Robot

Among the main requirements surgeons impose for a surgical robot used for min-
imally invasive surgery are the following: the robot control has to be accurate, the
robot has to be stable and rigid in the operating room, the robot should have low
size, maximum speed 1 cm/s, robot precision 1 mm, maximum rotation (right/left):
90◦ etc. The robot presented in [9] had actually all of these characteristics, but from
practice it has been proved that there are situations when the abdominal wall is under
a lot of pressure in certain positions from the laparoscope, requiring a mechanism
that will hold the camera and release some of that pressure. In the same time, the
structure presented in this paper is a developing project, meaning that the camera
will be replaced by an active instrument used, among other, for cutting, suturing,
grasping.

The structure presented in this paper has five degrees of freedom: three degrees
of freedom for general positioning of the camera and an orientation module, so that
the camera will not have to rely on the abdominal wall. The robot structure is based
on an already registered patent [10]. The robot has a hybrid parallel mechanisms as-
suring high rigidity due to its closed chains. There is a restriction the mechanism has
to accomplish: the laparoscope will have to go through point B (XB,YB,ZB) repres-
enting the point of incision of the laparoscope in the abdomen. This restriction will
have important consequences on the control of the mechanism, as it will be seen. The
parallel mechanism has three rotational actuated joints. Through a ball-screw mech-
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a) The robot structure. b) The rotation angles ψ and θ .

Fig. 1 PARASURG 5M structure and rotation angles ψ and θ .

anism ((1) and (2)), the rotation motions are transformed into translation motions.
There are also the following passive joints: two cylindrical joints (between links (1)
and (3), respectively between links (2) and (3)), two prismatic joints (between links
(4) and (3), respectively (5) and (3)), three rotary joints (between links (4) and (6),
(5) and (7) respectively (6) and (7)). At the end of element (7) the PARASURG
5M (Fig. 1a) structure the motor (10) which represents the q4 active coordinate and
is mounted on element (9). At the end of motor (10), on the output shaft there is
mounted the element (12) on which there is mounted the motor (11), denoting the
q5 active coordinate. At the end of the element (12) there is mounted the element
(8). The geometrical parameters of the parallel robot are represented by b, h, XB, YB,
ZB. Angles ψ and θ are also presented in Fig. 1b. The laparoscope can be positioned
in any point of the surgical field using 5-DOF of the robot. The advantage of such a
structure as compared with the robots presented in [4] and [11] is a better guidance
of the camera and the avoidance of certain pressure on the abdominal wall. Through
its design, PARASURG 5M could be used either for laparoscope guidance or for
positioning and orientation of an active instrument.

3 The Geometric Model

To obtain the direct geometric model, a second, mobile frame AX’Y’Z’, attached to
the endoscope in the point A is necessary. As one can see from Fig. 1, rA has the
following form:

ra =
√

(2 ·b)2 − (q(2)−q(1))2, (1)
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where q1, q2, q3, q4, q5 are the active coordinates of the robot. There can be
defined a relation between some of these coordinates and the coordinates of point
A(XA,YA,ZA):

XA = rA · cos(q3),YA = rA · sin(q3),ZA = q1. (2)

The direct geometric model
The displacements in motor coordinates are known and according to these the end-
effector coordinates will be determined, meaning the coordinates of point G(XG, YG,
ZG) - the tip of the endoscope, and the two rotation angles ψ and θ . One must take
into consideration that the laparoscope must pass through the fixed point B. From
equations (1) and (1) the coordinates of point A(XA, YA, ZA) can be obtained. By
using Fig. 1, the angular rotation angles ψ and θ can be determined. Two cases are
yielding:

Case 1. If XA = XB and YA = YB, it yields:

XG = XA,YG = YA,ZG = ZA −h,ψ = 0,θ = 0. (3)

Case 2. If XA �=XB and YA �=YB, it yields:

XG = XA + h · sin(ψ) · cos(θ ),YG = YA + h · cos(ψ) · cos(θ ),ZG = ZA −h · cos(θ ),

ψ = arctan2(YB −YA,XB −XA),θ = arctan2
(√

(XB −XA)2 +(YB −YA)2,ZA −ZB

)
.

(4)
The inverse geometric model
In this case we have as inputs the position of the tip of the laparoscope (point
G(XG,YG,ZG)), having to find the active coordinates: q1, q2, q3, q4 and q5. As with
the direct geometric model, there are two cases to consider:

Case 1. If XA = XB and YA = YB, it yields:

XA = XG,YA = YG,ZA = ZG −h,ψ = 0,θ = 0. (5)

Case 2. If XA �= XB and YA �= YB, it yields:

XA = XG − h · sin(ψ) · cos(θ ),YA = YG + h · cos(ψ) · cos(θ ),ZA = ZG + h · cos(θ ),

ψ = arctan2(YB −YA,XB −XA),θ = arctan2
(√

(XB −XA)2 +(YB −YA)2,ZA −ZB

)
.

(6)
For both cases, from (1), and (2), the coordinates will be obtained:

q1 = ZA,q2 = q1 +
√

(2 ·b)2 − (X2
A +Y 2

A ),q3 = arctan2(YA,XA). (7)

For q4 and q5, we have:
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{
q4 = arctan2(cos(θ ),cos(ψ −q3) · sin(θ ))−α2,

q5 = arctan2(sin(q4 + α2) · sin(ψ −q3) · sin(θ ),cos(θ )),
(8)

where
α2 = arctan2

(
(q2 −q1),

√
(2 ·b)2 − (q2 −q1)2

)
. (9)

4 Kinematics

To obtain the kinematic equations, we have to start from the geometric model. For
PARASURG 5M, we have the following implicit equations defining the tip of the
endoscope:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1 = ZG + h · cos(θ )−q1,

f2 = XG − h · cos(ψ) · sin(θ )−
√

(2 ·b)2 − (q2 −q1)2 · cos(q3),
f3 = YG − h · sin(ψ) · sin(θ )−

√
(2 ·b)2 − (q2 −q1)2 · sin(q3),

f4 = sin(θ ) · cos(ψ −q3)− cos(q5 · cos(q4 + α2),
f5 = sin(θ ) · sin(ψ − q3)− sin(q5).

(10)

Using the matrix representation, the kinematic model is:

A · Ẋ + B · q̇ = 0, (11)

where q̇ = [q̇1 q̇2 q̇3 q̇4 q̇5]
T are the driving velocities and Ẋ = [ẊG ẎG ŻG ψ̇ θ̇ ]T

are the end-effector velocities and angular velocities. From relation (11), both the
direct kinematic model (DKM) and the inverse kinematic model (IKM) were determ-
ined. After the calculations were achieved, an analytical solution for both geometric
and kinematic model resulted due to its relatively simple mathematical model.

5 Singularity Analysis

The algorithm used for the singularity analysis is based on deriving the determinants
for the two Jacobian matrices obtained from the inverse and direct geometric model.

Type I singularities. First type of singularities occurs when the determinant of the
Jacobian matrix B is 0, case in which the robot loses one or more degrees of free-
dom. The determinant of the B matrix is:

det(B) = (q2 −q1) · (cos(q5))
2 · sin(q4 + α2). (12)

We have the following situations:
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Fig. 2 Singularity positions for PARASURG 5M.

1. If q2 − q1 = 0, it yields q2 = q1, situation when the two elements having the
lengths b and 2b are overlapped. Constructively, the mechanical structure of the
robot will impose q2 > q1.

2. If cos(q5) = 0, we have: θ = π
2 , case in which the laparoscope is situated in

a plane parallel with the XOY plane at point A. The robot loses one degree of
freedom.

3. If sin(q4 +α2) = 0, we have also: θ = π
2 and ψ = q3, which is a particularization

of the case discussed at point no. 2). The robot loses one degree of freedom.

Type II singularities. Second type of singularities occurs when the determinant of
the Jacobian matrix A is 0. The determinant of the A matrix is:

det(A) = −sin(θ ) · cos(θ ). (13)

1. The case when sin(θ ) = 0 was taken as a separate case in kinematics.
2. It was observed that cos(θ ) = cos(q5) · sin(q4 + α2), so when cos(θ ) = 0, we

obtain the same case discussed at type I singularities no. 2 and 3.

Type III singularities, so-called architectural singularities, take place when both
Jacobian determinants are 0. One can observe that the matrices A and B are both 0
when sin(q4 −α2) = 0 and/or cos(q5) = 0, cases that should be avoided since the
design stage. From Fig. 2 one can see that PARASURG 5M reaches the position of
singularity at the top of the operating field, as well when the robot arm is 90◦ from
the X axis.

6 Design of PARASURG 5M

All motors of the 5-DOF robot are rotation motors from MAXON [12], the transla-
tion motion being obtained by using two ball-screw mechanisms. In order to have a
rotation and translation along the Z axis, a secondary shaft along the main guiding
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Fig. 3 PARASURG 5M as laparoscope holder.

Fig. 4 PARASURG 5M as positioning module of an active surgical instrument.

shaft was added, as in Fig. 3. The three motors in the robot base have 60 W and
the gear planetary transmission has a ratio of 1:26 for the motors that actuate the
ball-screw mechanisms and 1:936 for the other. For the orientation mechanism, the
motors have 6 W and a planetary gear ratio of 1:4592. A worm-gear transmission
has been used in order to obtain a smoother motion. The overall dimensions of the
robot are: 1000 mm × 1000 mm × 300 mm. Figure 4 presents the case when instead
of the camera it is used an active surgical instrument.
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7 Conclusions

The contribution of this paper consists in the development of a new, simple, parallel
hybrid structure for minimally invasive surgery, aiming towards an active instrument
manipulator. The advantage of this new parallel structure from the kinematic point
of view is that its both direct and inverse kinematic models have been obtained
through an analytical approach. Code sequences and sensors could be implemented
in order to prevent the laparoscope to reach the positions of singularity. However, the
results obtained from kinematics of the robot can be successfully implemented into
a real-time control algorithm. Future work includes the study of the robot stiffness,
evaluating the costs as well as designing and building an active surgical instrument.
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Abstract. Parallel manipulators which are singular with respect to the Schönflies motion group
X(a) are called Schönflies-singular, or more precisely X(a)-singular, where a denotes the direc-
tion of the rotary axis. A special class of such manipulators are architecturally singular ones be-
cause they are singular with respect to any Schönflies group. Another remarkable set of Schönflies-
singular planar parallel manipulators of Stewart Gough type was already presented by the author.
In this paper we give the main theorem on X(a)-singular planar parallel manipulators.

Key words: Schönflies-singular, Schönflies motion group, Stewart Gough platform, singularity.

1 Introduction

The Schönflies motion group X(a) consists of three linearly independent translations
and all rotations about the infinity of axes with direction a. This 4-dimensional group
is of importance in practice because it is well adapted for pick-and-place operations.

The geometry of a planar parallel manipulator of Stewart Gough type (SG type)
is given by the six base anchor points Mi ∈ Σ0 with coordinates Mi := (Ai,Bi,0)T

and by the six platform anchor points mi ∈ Σ with coordinates mi := (ai,bi,0)T .
By using Euler Parameters (e0,e1,e2,e3) for the parametrization of the spherical
motion group SO(3) the coordinates m′

i of the platform anchor points with respect
to the fixed space can be written as m′

i = K−1Rmi + t with

R := (ri j) =

⎛

⎝
e2

0 + e2
1 − e2

2 − e2
3 2(e1e2 − e0e3) 2(e1e3 + e0e2)

2(e1e2 + e0e3) e2
0 − e2

1 + e2
2 − e2

3 2(e2e3 − e0e1)
2(e1e3 − e0e2) 2(e2e3 + e0e1) e2

0 − e2
1 − e2

2 + e2
3

⎞

⎠ , (1)

the translation vector t := (t1,t2,t3)
T and K := e2

0 + e2
1 + e2

2 + e2
3.

It is well known that a SG platform is singular if and only if the carrier lines of the
prismatic legs belong to a linear line complex, or analytically seen, if Q := det(Q)=
0 holds, where the ith row of the 6× 6 matrix Q equals the Plücker coordinates
li := (li, l̂i) := (m′

i −Mi,Mi× li) of the ith carrier line.
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1.1 Notation

Definition 1. Parallel manipulators which are singular with respect to the Schönflies
motion group X(a) are called Schönflies-singular, or more precisely X(a)-singular.

For proving the so-called main theorem on Schönflies-singular planar Stewart
Gough platforms we use the notation introduced in [1]. We denote the determinant
of certain j× j matrices as follows:

|X,y, . . . ,Xy|(i1,i2,...,i j)
:= det(X(i1,i2,...,i j)

,y(i1,i2,...,i j)
, . . . ,Xy(i1,i2,...,i j)

) (2)

with X(i1,i2,...,i j)
=

⎡

⎢
⎢
⎢
⎢
⎣

Xi1
Xi2
...

Xij

⎤

⎥
⎥
⎥
⎥
⎦

, y(i1,i2,...,i j)
=

⎡

⎢
⎢
⎢
⎢
⎣

yi1
yi2
...

yi j

⎤

⎥
⎥
⎥
⎥
⎦

, Xy(i1,i2,...,i j)
=

⎡

⎢
⎢
⎢
⎢
⎣

Xi1
yi1

Xi2
yi2
...

Xij
yi j

⎤

⎥
⎥
⎥
⎥
⎦

(3)

and (i1, i2, . . . , i j)∈ {1, . . . ,6} and pairwise distinct. Moreover it should be noted that

we write |X,y, . . . ,Xy|i j
i1

if i1 < i2 < .. . < i j with ik+1 = ik + 1 for k = 1, . . . , j − 1

hold. Moreover the algebraic condition that Mi,M j,Mk or mi,m j,mk are collinear is
denoted by C(i, j,k) := |1,A,B|(i, j,k) = 0 and c(i, j,k) := |1,a,b|(i, j,k) = 0, respectively.

It should also be said that in the later done case study we always factor out the
homogenizing factor K if possible. Moreover we give the number n of terms of not
explicitly given polynomials F in square brackets, i.e. F [n].

1.2 Related Work

Special Schönflies-singular manipulators are architecturally singular ones because
they are singular with respect to any Schönflies group. As architecturally singular
manipulators are already classified (see [2, 3, 4, 5, 6] for the planar case and [7, 8]
for the non-planar one) we are only interested in Schönflies-singular manipulators
which are not architecturally singular.

For the determination of X(a)-singular planar parallel manipulators we distin-
guish the following cases depending on the angle α ∈ [0,π/2] enclosed by a and the
carrier plane Φ of the base anchor points and the angle β ∈ [0,π/2] between a and
the carrier plane ϕ of the platform anchor points. Every X(a)-singular manipulator
belongs to one of the following 5 cases (after exchanging platform and base):

1. α �= β : (a) α = π/2, β ∈ [0,π/2[ (b) α,β ∈ [0,π/2[
2. α = β : (a) α = π/2 (b) α =]0,π/2[ (c) α = 0

According to [1] the solution set of case (1a) can be characterized as follows:

108



Main Theorem on Schönflies-Singular Planar Stewart Gough Platforms

Theorem 1. A non-architecturally singular planar manipulator is X(a)-singular,
where a is orthogonal to Φ and orthogonal to the x-axis of the moving frame if
and only if rk(1,A,B,Bb,a,b,Ab)6

1 = 4 holds.

For more details on the self-motional behavior of the solution set of case (1a) as
well as a geometric interpretation of the given rank condition we refer to [1].

In the following Sections 2 and 3 we prove that the manipulators of Theorem 1
are the only X(a)-singular ones with α �= β which are not architecturally singular.

2 Main Theorem for the General Case

Theorem 2. � non-architecturally singular planar SG platforms with no 4 collinear
anchor points which are X(a)-singular if α �= β and a not orthogonal to Φ or ϕ .

Proof. Without loss of generality (w.l.o.g.) we can assume that α > β and there-
fore Φ cannot be parallel to a. Then we can choose coordinate systems such that
a2A2B3B4B5c(3,4,5)(a3 − a4)(b3 −b4) �= 0 hold (cf. [2, 1]). Moreover, due to α > β
we can always rotate the platform about a such that the common line of Φ and ϕ is
parallel to [M1,M2]. This yields the following coordinatization: Mi = (Ai,Bi,0) and
mi = (ai,bi cosδ ,bi sinδ ) with A1 = B1 = B2 = a1 = b1 = 0 and sin δ �= 0.

As no four anchor points are collinear we can apply the elementary matrix
manipulations given by Karger [2] to the Jacobian Q. We end up with l6 :=
(v1,v2,v3,0,−w3,w2) with

vi := ri1K1 +(ri3 sinδ + ri2 cosδ )K2, wj := r j1K3 +(r j3 sinδ + r j2 cosδ )K4

and

K1 := |A,B,Ba,Bb,a|62, K3 := |A,B,Ba,Bb,Aa|62,
K2 := |A,B,Ba,Bb,b|62, K4 := |A,B,Ba,Bb,Ab|62.

(4)

Due to Lemma 2.1 given by Mick and Röschel [9] this manipulator must also be
X(s)-singular where s denotes the direction of the common line of Φ and ϕ .

In the first step we will use this property to show that K1 = K2 = 0 must hold.
Therefore we can set e2 = e3 = δ = 0 and compute Q[4224] in its general form.
The necessity of K1 = K2 = 0 follows immediately from Q42

101 + Q24
101 = K2 and

Q51
002 + Q33

002 + Q15
002 = K1, where Quv

i jk denotes the coefficient of ti
1t j

2
tk
3eu

0ev
1 of Q.

Now we go back to the general case. We replace the sixth line of the Jacobian
Q by (v1,v2,v3,0,−w3,w2) under consideration of K1 = K2 = 0. In the following
we prove by contradiction that also K3 = K4 = 0 must hold. This finishes the proof
because K1 = K2 = K3 = K4 = 0 are the 4 necessary and sufficient conditions for a
planar manipulators with no 4 points on a line to be architecturally singular (cf. [2]).

Part [A] e2 = 0

We set e1 = e4 cosµ and e3 = e4 sin µ , where e4 is the homogenizing factor.
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Moreover sin µ cos µ �= 0 must hold. Then we compute Q[35346] in dependency
of K3 and K4 and denote the coefficients of ti

1t j
2
tk
3eu

0ev
4 of Q by Quv

i jk.
First we prove by contradiction that K4 must also vanish. Assuming K4 �= 0 we

get b2 = 0 from Q80
100 = 0. Then the resultant of Q71

100 and Q51
200 with respect to B3

can only vanish without contradiction (w.c.) for:

1. bi = 0: Then Q51
200 = 0 implies B j = Bk (with i, j,k ∈ {3,4,5} and pairwise dis-

tinct) and Q33
200 = 0 yields the contradiction.

2. B4 = B5, b3b4b5 �= 0: Then Q51
200 = 0 can only vanish w.c. for B3 = B5 or b4 = b5.

a. B3 = B5: We get the contradiction from Q33
200 = 0.

b. b4 = b5, B3 �= B5: In this case Q71
100 = 0 yields the contradiction.

Now we can set K4 = 0 and compute Q = A2e4K3F [15090]. We distinguish between
the following two cases for proving that F cannot vanish w.c.:

1. b2 �= 0: W.l.o.g. we can compute a5 from F41
110 = 0 and A5 from F50

101 = 0.

a. Assuming b3 �= b5 �= b4 we can express A4 from F70
100 = 0. Then F61

100 = 0
yields the contradiction.

b. W.l.o.g. we set b4 = b5. Now F70
100 can only vanish w.c. for b5(b2 − b5) = 0.

In both cases F61
100 = 0 yields the contradiction.

2. b2 = 0: Now F61
100 can only vanish w.c. for b3b4b5C(3,4,5) = 0:

a. bi = 0: Then F32
200 = 0 implies B j = Bk and F52

100 = 0 yields A j = Ak (with

i, j,k ∈ {3,4,5} and pairwise distinct). Finally F43
100 cannot vanish w.c..

b. C(3,4,5) = 0, b3b4b5 �= 0: Assuming B3 �= B4 we can compute A5 from the

collinearity condition and a5 from F41
020 = 0. Now F32

200 can only vanish w.c. for
|B,b,Bb|53 = 0. W.l.o.g. we can compute b4 from this condition. Then F52

100 = 0
yields the contradiction. In the special case B3 = B4 = B5 we can compute A5
from F52

100 = 0 w.l.o.g.. Then F14
200 = 0 already yields the contradiction.

Part [B] e2 �= 0

We set e1 = e4 cos µ , e3 = e4 sin µ and e2 = e4n, where nsin µ �= 0 holds. Moreover
for ncosδ + sin µ sinδ = 0 we can assume cos µ �= 0 because otherwise a is ortho-
gonal to the platform. Again we prove by contradiction that K4 must vanish.

Assuming K4 �= 0 we get b2 = 0 from Q80
100 = 0. Then the resultant of Q60

110 and
Q80

020 with respect to B3 can only vanish w.c. in the following cases:

1. A2 = a2: In this case Q60
110 = 0 implies |b,B,Bb|53 = 0:

a. For the special case B3 = B4 = B5 we get µ = ζ with ζ := −arcsin(ncotδ )
from Q42

200 = 0. Then Q33
200 = 0 yields the contradiction.

b. W.l.o.g. we can solve |b,B,Bb|53 = 0 for b5. Due to Q42
200 = 0 we must distin-

guish the following two cases:
i. b4 = b3B4/B3: W.l.o.g. we can express a5 from the only non-contradicting

factor of Q60
020 = 0. Then Q51

020 = 0 implies a4 = A4 + B4(a3 −A3)/B3.
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Now we can solve K1 = K2 = 0 for A6 and b6 w.l.o.g.. Moreover, substi-
tution of these expressions into K4 shows that it is fulfilled identically.

ii. µ = ζ , b4 �= b3B4/B3: Then Q33
200 = 0 already implies the contradiction.

2. b3b4b5 = 0, A2 �= a2: W.l.o.g. we set b3 = 0. Now Q51
200 = 0 implies two cases:

a. B4 = B5: Then Q42
200 = 0 yields µ = ζ . Q33

200 = 0 yields the contradiction.
b. µ = ζ , B4 �= B5: Q60

020 = 0 yields A3 = a3A2/a2 and Q42
200 = 0 the contradiction.

3. B4 = B5, b3b4b5(A2 −a2) �= 0: Due to Q51
200 = 0 we must distinguish two cases:

a. B3 = B5: Now Q42
200 = 0 implies µ = ζ . Q33

200 = 0 yields the contradiction.
b. b4 = b5, B3 �= B5: Then Q80

010 = 0 cannot vanish w.c..
c. µ = ζ , (b4 − b5)(B3 −B5) �= 0: Q42

200 = 0 yields the contradiction.

Now we can set K4 = 0 and compute Q = A2e4K3F [57528]. We distinguish again
between the following two cases for proving that F cannot vanish w.c.:

1. b2 �= 0: Now we can solve F50
110 = 0 for a5. From F32

200 = 0 we can express a4. From
F50

020 = 0 we get A5. F41
020 = 0 yields an expression for A4. W.l.o.g. we can solve

K1 = K2 = 0 for A6 and b6. Then b2K3 −a2K4 = 0 holds. This is a contradiction
as K4 = 0 implies K3 = 0.

2. b2 = 0: Now F50
200 implies |b,B,Bb|53 = 0. Again we start with the special case:

a. B3 = B4 = B5: F41
110 = 0 already yields the contradiction.

b. W.l.o.g. we can compute b5 from |b,B,Bb|53 = 0. Now F32
200 can only vanish

w.c. in the following 2 cases:
i. b4 = b3B4/B3: An accurate case study shows that we only end up with

contradictions. For the detailed discussion we refer to [10]. Moreover it
should be noted that this case implies solutions for the the special case
α = β ∈]0,π/2[.

ii. µ = ζ , b4 �= b3B4/B3: Then F23
200 = 0 implies the contradiction. �

3 Main Theorem for the Special Case

Theorem 3. � non-architecturally singular planar SG platforms with 4 collinear
anchor points which are X(a)-singular if α �= β and a not orthogonal to Φ or ϕ .

Proof. In order to prove this theorem efficiently we need a good choice for the
coordinate systems in Σ and Σ0. Based on some geometric considerations such a
coordinatization can be done as follows: W.l.o.g. we can assume that the four col-
linear points are on the platform, i.e. m1, . . . ,m4 are situated on the line g. Now we
must distinguish again two cases, depending on the property if γ ≥ α or γ < α holds
with γ := ∠(g,a) ∈ [0,π/2].
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3.1 γ ≥ α

In this case we translate ϕ and Φ such that M1 = m1 holds. As γ ≥ α there exist
at least one position by rotating of ϕ about a such that g ∈ Φ holds. This is the
starting configuration of the following coordinatization: Mi = (Ai,Bi,0) and mi =
(ai,bi cosδ ,bi sin δ ) with A1 = B1 = a1 = b1 = b2 = b3 = b4 = 0 and sinδ �= 0.

Moreover we set e1 = e4 cos µ , e3 = e4 sin µ and e2 = e4n, where n = cos µ = 0,
n = sin µ = 0 or cos µ = ncosδ + sin µ sinδ = 0 yield contradictions.

Part [A] sin µ �= 0

Firstly, we show that we can assume M5 �= M6 and that no 5 platform anchor points
are collinear because these two cases yield a contradiction:

1. b5 = 0: We give those 5 coefficients which imply rk(A,a,B,Aa,Ba)5
2 ≤ 3. This

yields a contradiction due to [5]. We distinguish 3 cases:

a. n = 0: Four conditions are given by Q13
201 = Q15

200 = Q22
021 = Q24

020 = 0. For
B6 �= 0 we get the fifth condition from Q62

001 = 0. For B6 = 0 and A6 �= 0 we
get it from Q53

001 = 0. For the case M1 = M6 it is given by Q33
101 = 0.

b. n = ν := −sin µ tanδ : Four conditions are given by Q13
201 = Q24

200 = Q31
021 =

Q42
020 = 0. For B6 �= 0 we get the fifth condition from Q71

001 = 0. For B6 = 0 and
A6 �= 0 we get it from Q53

001 = 0. For the case M1 = M6 it is given by Q51
002 = 0.

c. ν �= n �= 0: Four conditions are given by Q22
201 = Q33

200 = Q31
021 = Q42

020 = 0. For
B6 �= 0 we get the fifth condition from Q71

001 = 0. For B6 = 0 and A6 �= 0 we get
it from Q62

001 = 0. For the case M1 = M6 and cosδ �= 0 it is given by Q51
002 = 0.

If additionally cosδ = 0 hold we get the last condition from Q42
101 = 0.

2. M5 = M6: We give the 4 necessary and sufficient conditions indicating the de-
generated cases of architecturally singular planar parallel manipulators (cf. [4]):

a. n = 0: Q22
021 = Q24

020 = Q13
201 = Q15

200 = 0.
b. n = ν: Q31

021 = Q42
020 = Q13

201 = Q24
200 = 0.

c. ν �= n �= 0: Q31
021 = Q42

020 = Q22
201 = Q33

200 = 0.

Moreover, w.l.o.g. we can assume that if 3 points of M1, . . . ,M4 are collinear and
pairwise distinct they are M1,M2,M3. We can also assume that if 2 points of
M1, . . . ,M4 coincide, they are M2 and M3.

Now Q40
111 = 0 and Q40

021 = 0 imply |a,A,B|42 = 0. W.l.o.g. we can express a2 from
this condition. In the next step we prove by contradiction that W must vanish with

W := a3(A2B4 −A4B2)(B2 −B3)+a4(A3B2 −A2B3)(B2 −B4).

From Q60
101 = 0 we get B5 = B6. Now Q42

200 can only vanish w.c. under consideration
of Q60

011 = 0 for n = 0 or n = ν . In both cases Q33
200 = 0 yields the contradiction.

Part [B] (B2 −B3)sin µ �= 0

Under this assumption we can express a3 from W = 0. Then Q22
102 = 0 together with

Q31
021 = 0 imply an expression for a5. Now Q71

100 can only vanish w.c. for:
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1. n = 0: Now Q62
100 = 0 implies B5 = B6 or B2B3B4 = 0.

a. B5 = B6: Assuming B2B3 �= 0 we can express A4 from Q42
101 = 0. From Q33

101 =
0 we get A6 and Q53

100 = 0 yields the contradiction. For the special case B2B3 =
0 we can set B2 = 0 w.l.o.g.. Then Q42

101 = 0 implies B3 = B4. From Q33
101 = 0

we get b5 = b6 and Q53
010 = 0 yields the contradiction.

b. B2B3B4 = 0, B5 �= B6: In all 3 cases we get the contradiction from Q51
101 = 0.

2. B5 �= B6, n �= 0: Now Q42
020 = 0 and Q42

110 = 0 can only hold if the common factor
G[48] vanishes or for H1[6] = H2[6] = 0. As the latter case yield easy contradic-
tions we set G = 0 and introduce the following notation:

R := A2B3B4(B4 −B3)(B2 −B6)−A3B2B4(B4 −B2)(B3 −B6)+A4B2B3(B3 −B2)(B4 −B6).

a. R �= 0: Now we can compute A6 from G = 0. Then Q62
100 can only vanish w.c.

for n = µ , but in this case Q53
100 = 0 yields the contradiction.

b. R = 0, B2B3(B6 −B4) �= 0: Under this assumption we can compute A4 from
R = 0. Now G = 0 can only vanish w.c. for b5 = b6. Then Q42

101 = 0 implies
n = ν and Q44

100 = 0 yields the contradiction.
c. R = 0, B2B3 = 0: W.l.o.g. we set B2 = 0. Then R = 0 can only vanish w.c. for:

i. B6 = 0: Due to Q53
100 = 0 we must distinguish two cases: For B3 = B4 we

get n = ν from Q62
010 = 0 and Q53

010 = 0 yields the contradiction. For the
second case n = ν , B3 �= B4 we get the contradiction from Q35

100 = 0.
ii. B3 = B4, B6 �= 0: Due to Q33

110 = 0 we must distinguish 3 cases: For the
cases b5 = b6 and B4 = B6 we get n = ν from Q51

011 = 0 and the contra-
diction from Q42

011 = 0. For the third case n = ν , (B4 −B6)(b5 −b6) �= 0
we get the contradiction from Q24

110 = 0.
d. R = 0, B4 = B6, B2B3 �= 0: Now R can only vanish w.c. for:

i. B6 = 0: Q53
100 = 0 implies n = ν and Q35

100 = 0 yields the contradiction.
ii. B2 = B6 �= 0: Q42

101 = 0 yields n = ν and Q24
101 = 0 the contradiction.

3. B4 = 0, n(B5 −B6) �= 0: We get the contradiction from Q51
110 = 0.

4. B2B3 = 0, nB4(B5 − B6) �= 0: W.l.o.g. we set B2 = 0. Now Q51
110 = 0 implies

B3 = B4 and then Q71
010 = 0 yields the contradiction.

Part [C] B2 = B3, sin µ �= 0

Now W can only vanish w.c. in the following 2 cases:

1. a4 = 0: Now Q22
102 = 0 and Q31

021 = 0 imply |a,b,A,B|63 = 0. W.l.o.g. we can solve
this condition for a5. Due to Q71

100 = 0 we must distinguish four cases:

a. n = 0: Then Q62
100 = 0 can only vanish w.c. in the following 2 cases: For B5 =

B6 we get B4 = 0 from Q42
101 = 0 and Q53

010 = 0 yields the contradiction. For the
2nd case Bi = 0, B5 �= B6 for i = 3,4 we get the contradiction from Q51

101 = 0.
b. B5 = B6, n �= 0: Now Q42

020 and Q42
110 can only vanish w.c. for:

i. B3 = B4: Due to Q51
011 = 0 we must distinguish 2 cases: For A4 = B4(A3−

a3)/B6 we get n = ν from Q42
101 = 0 and the contradiction from Q24

101 = 0.
In the second case n = µ we get the contradiction from Q42

011 = 0.
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ii. b6(A4B5−B4A5)+b5(A6B4 −A4B6) = 0, B3 �= B4: Assuming B4 �= 0 we
can express A6 from this condition. Then Q62

100 = 0 implies n = ν and
Q53

100 = 0 yields the contradiction. For the special case B4 = 0 the above
condition can only vanish w.c. for B6(b5−b6) = 0. In both cases Q51

011 = 0
implies n = ν and Q42

011 = 0 yields the contradiction.
c. B3 = 0, n(B5−B6) �= 0: We get immediately the contradiction from Q51

110 = 0.
d. B4 = 0, nB3(B5 −B6) �= 0: In this case Q42

110 = 0 implies n = ν and finally
Q33

110 = 0 yields the contradiction.

2. B3 = 0, a4 �= 0: Now Q22
102 = 0 and Q31

021 = 0 imply again |a,b,A,B|63 = 0. W.l.o.g.
we can solve this condition for a5. Then Q51

110 = 0 can only vanish w.c. for:

a. n = 0: Q51
101 = 0 implies B5 = B6 and Q42

101 = 0 yields the contradiction.
b. B5 = B6, n �= 0: Now Q42

110 = 0 implies an expression for A6. From Q62
100 = 0

we get n = ν and Q53
100 = 0 yields the contradiction.

Now only the discussion of the special case sin µ = 0 (⇔ Φ ‖ a) is missing. This
case study can exactly be done as the one for sin µ �= 0. The only differences are
that we always get cosδ = 0 instead of n = ν and that n = 0 yields a contradiction.

3.2 γ < α

In this case we translate ϕ and Φ such that M1 = m1 holds. As γ < α there exist
two positions by rotating of ϕ about a such that [M1,M2] ∈ ϕ holds. This reasons
the following coordinatization: Mi = (Ai,Bi,0) and mi = (ai,bi cosδ ,bi sinδ ) with
A1 = B1 = B2 = a1 = b1 = 0, ai = bia2/b2 for i = 3,4 and b2 sinδ �= 0.

We set e1 = e4 cos µ , e3 = e4 sin µ and e2 = e4n. As β ≤ γ < α holds, sin µ = 0
yields a contradiction as well as n = cos µ = 0 or cos µ = ncosδ + sin µ sinδ = 0.

Moreover, due to the result of Sec. 3.1 we can stop the case study if 4 base anchor
points are collinear or if b5 = b6 = bi = b j holds with i, j ∈ {1, . . . ,4} and i �= j.

In spite of all these assumptions the discussion of this case takes further 3 pages.
Due to the limitation of pages we refer to the corresponding technical report [11]. �

4 Conclusion

Theorems 2 and 3 can be summed up to the following main theorem on Schönflies-
singular planar SG platforms:

Main Theorem. X(a)-singular planar Stewart Gough platforms with α �= β and
where a is not orthogonal to Φ or ϕ are necessarily architecturally singular.

Consequences of this main theorem are as follows:
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• Mick and Röschel proved in Theorem 4.1 of [9] that a planar SG platform is archi-
tecturally singular if and only if it is singular with respect to a special 5-parametric
set of displacements. Due to the given main theorem for X(a)-singular manipu-
lators we can improve this statement even to 4-parametric sets of displacements
namely the Schönflies motion groups for which Theorem 2 and 3 hold.
The question remains open, if this statement can further be improved to an even
3-dimensional Lie subgroup of SE(3), which are SO(3) and H(d)�R

2. The latter
is composed of translations on a plane and a helical motion (with pitch p) along
the normal direction d of the plane. H(d)�R

2 also includes the Cartesian motion
group T(3) (p = ∞) and the planar motion group SE(2) (p = 0) as special cases.
Due to the presented main theorem and the results given in [1, 10] we can restrict
H(d)� R

2 to p ∈ [0,∞[ with ∠(Φ,d) �= ∠(ϕ ,d) and d not orthogonal to Φ or ϕ .
• The manipulators given in Theorem 1 are the only non-architecturally singular

planar SG platforms with α �= β which are Schönflies-singular.
Moreover it should be noted, that the missing special cases (i.e. α = β ) of
Schönflies-singular planar Stewart Gough platforms are given in [10]. Therefore
paper [10] also finishes the discussion of Schönflies-singular planar parallel ma-
nipulators which was started by Wohlhart [12] by giving an example for a X(a)-
singular planar SG platform of case (2a). The presented manipulator (polygon
platform) even possesses a Schönflies self-motion because it is a special case
of a parallel manipulator with Schönflies Borel-Bricard motions (cf. Husty and
Zsombor-Murray [13]) listed by Borel [14]. Moreover Husty and Karger proved
in [15] that Borel’s list is complete.
Therefore the only open problem in this context is the determination of all non-
planar Schönflies-singular Stewart Gough platforms.
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Abstract. Wearable robots, like prostheses, active orthoses and exoskeletons for human perform-
ance augmentations need a new breed of actuators, capable to exhibit a large number of desirable
features: high power/torque density, high efficiency, zero backlash, low reflected mechanical im-
pedance and high bandwidth. To fully meet these requirements, new basic actuation principles have
to be investigated. Nevertheless, there is still scope now to innovate the field by combining mature
components into new actuation schemes. This paper reports the development of an innovative ac-
tuator, expressly conceived as an actuation module for a fully powered whole body exoskeleton.
The main design objective has been the enhancement of the torque density and the mechanical
efficiency with respect to existing solutions. The final performances of the actuation module are:
continuous torque of 500Nm, mechanical efficiency of 85%, zero backlash and total weight of just
6 Kg comprising the structural case.

Key words: Advanced actuators for robotics, high torque density and mechanical efficiency, ad-

vanced robotics, exoskeletons for human performance augmentation.

1 Introduction

Wearable robots, like exoskeletons for human performance augmentation or for the
physical assistance/rehabilitation of the elderly/disabled, are emerging examples of
advanced robots that operate in direct and tight interaction with humans. However,
the less than ideal features/performances exhibited by commonly used actuation
solutions make clear the need for a long term investigation and development of new
basic actuation principles. On the other hand, innovative actuator schemes obtained
by combining mature mechanical solutions have been recently proposed by the re-
search community for improving features like force control accuracy, bandwidth of
the force control, shock tolerance and the reduction of the energy transferred to hu-
mans in case of collision. All these improvements have been achieved through the
purposely introduction of passive elastic elements in the mechanical transmission.

The first work about this solution has been carried at MIT [1]: the proposed ac-
tuator, dubbed Serial Elastic Actuator, demonstrates better stability and accuracy in
force control, at the expense of a lower bandwidth. In an attempt to overcome this
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Fig. 1 Fully actuated body extender developed at PERCRO.

disadvantage, in [2] a Distributed Macro-Mini (DM2) approach has been proposed.
In [3] an actuation solution able to store and release mechanical energy in accord-
ance with the gait phases has been proposed. Furthermore, to keep under safety
threshold the energy transferred during possible collisions with humans, Wolf and
Hirzinger [4] have introduced stiffness-variable elastic elements in the mechanical
transmission.

However, to the authors’ knowledge, the problem of increasing the torque dens-
ity, having at the meantime a relative intrinsic high back drivability and hence mech-
anical efficiency, has been poorly addressed. Indeed, higher actuator torque densit-
ies allow to achieve lighter robotic limbs and, hence, higher bandwidth as well as
a more slender design of the robotic structure, with clear benefit for the aesthetic
and user’s acceptability of the device. On the other hand, a higher mechanical ef-
ficiency allows better estimation of the force exerted on the external environment
also in case force sensors are not used, as well as to keep low the non linearity of
the force transmission that can prevent to achieve high tracking performances due to
the occurrence of instabilities. Due to the poor back drivability and force accuracy
and costly maintenance of pneumatic and hydraulic solutions, the preferred tech-
nology for the actuation of the robotic joints is the electromagnetic motor used in
combination with high reduction ratio speed reducers to increase the torque density.
Nevertheless, the performances of this type of actuators are seriously deteriorated
due to the friction, backlash, elasticity and transmission ripple introduced by the
speed reducers. In the recent years, the Harmonic Drive has been selected as the
preferred solution for speed reduction, by virtue of its compactness and lightness.
A good example of this kind of implementation is the integrated joint developed at
DLR [5] that uses last generation Harmonic Drive speed reducers with reduction
ratio of the order of 100 in combination with high performance DC torque motors.
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Fig. 2 Actuation scheme proposed in [6] (simplified).

In an attempt to go beyond the present actuation solutions, in [6] a lead screw is
used as main speed reducer in combination with two metallic tendons and a driven
and an idle pulleys to convert the linear motion into a rotation on the output axis
(see the simplified scheme of Fig. 2). The scheme is potentially interesting if a ball
lead screw is used, by virtue of its beneficial features in terms of high reduction
ratio, lightness, zero backlash, smoothness and high mechanical efficiency that are
not deteriorated by the use of the metallic tendons. Yet, it has the big drawback of
producing large encumbrances in the case of large angular stroke and torque require-
ments. Starting from this embodiment, a novel actuation module has been developed
at the Perceptual Robotics Laboratory, expressly conceived for being integrated in a
fully actuated whole body exoskeleton intended for material handling (Fig. 1). De-
tails about the design guidelines and the main features of the novel actuation module
are reported in the next sections.

2 Design of the Actuation Scheme

The new actuator has been expressly conceived for driving the joints of a whole
body exoskeleton. The main requirements for the mechanical design of the robotic
limbs of the device are the following:

• kinematics isomorphic to that of the human limbs and encumbrance of the mech-
anics adherent to that of the human limbs;

• actuation achieved through electric motors;
• mechanics of the robotic limbs conceived as a series of self contained 1 DoF

actuation modules connected together to form a serial chain.

Moreover, the new actuation scheme has been conceived for the implementation
of the transversal joint (for example the elbow flexion-extension joint). For these
joints, the ideal encumbrance distribution should have a major dimension in one of
the directions orthogonal to the actuated axis, while the other two, and in particular
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Fig. 3 First embodiment of the reversing mechanism.

the one aligned with the output axis, should be as small as possible, to keep the
mechanics more adherent to the human limb.

The solution of using an electric motor in combination with a geared speed re-
ducer mounted coaxially with the output axis, is poorly suitable because produces
relatively large axial and radial encumbrance.

These considerations together with the general requirement of reducing the
weight of the actuation module led us to select the ball lead screw as the main speed
reducer. Furthermore it allows to position the axis of the motor orthogonally to the
output axis and, hence, to have an encumbrance compatible to the requirement of
the transversal joint. To have a rotational output, a mechanism is required to convert
the linear motion of the screw. This can be simply achieved by directly connecting
the screw to the output link, with an heavy reduction of the maximum generable
torque near the angular limits, or by using a metallic tendon connected to the end-
point of the screw and wrapped to a driven pulley. Considering this case, to generate
bidirectional torques a second metallic tendon can be driven as proposed in [6], but
this solution produces very large encumbrance in the orthogonal direction. Indeed,
indicating with Θ , R and H, respectively the angular stroke, the radius of the driven
pulley and the axial dimension of the motor, the minimum theoretical encumbrance
L is L = 2R(Θ + 1)+ H.

To drastically decrease this drawback, we propose a new actuation scheme
(Fig. 3), that envisages the use of a mechanism, located between the motor reduc-
tion unit and the driven pulley, to drive the second tendon, in such a way that the
total length of the tendon circuit (from A to B) remains constant for the different
output angular positions of the driven pulley (also any given tendon preload re-
mains constant). According to this scheme the theoretical minimum encumbrance
is L = R(Θ + 1)+ H that is quite half the encumbrance of the previous scheme. It
is worth noting that, in general, the second line along which point B moves, can be
inclined with respect the screw axis. This is useful for reducing the transversal en-
cumbrance of the actuation module and increasing the angular stroke beyond 180 ◦.
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Fig. 4 Geometry of the pantograph mechanism.

3 Embodiments of the Reversing Mechanism

Three different embodiments have been identified for the implementation of the re-
versing mechanism envisaged in the new actuator scheme [7]. In this paper, only the
preferred embodiment is described, using a pantograph mechanism for reversing the
motion of the end point of the screw. Referring to Fig. 4, only the axis of rotational
pair O is fixed, while the other axes are moving. To ensure the required kinematics
property for the reversing mechanism, the following geometric conditions must be
satisfied: OC = OD, CA = DB, AE = CD and ED = AC.

The last two conditions ensure that the quadrilateral ACDE is a parallelogram
and hence BE is parallel to AC and the angles ÂCO and ÔDB are equal. Together
with the first two conditions this ensures that the triangles OCA and ODB are equal
and hence also Ya and Y b are equal. In conclusion if Ya varies of the quantity ∆Y ,
Y b varies of the same quantity but in the opposite direction. More in general the
points A, O and B lie on line and it is always OA = OB. Hence if point A (or B)
follows a planar trajectory, B (A) follows the same trajectory but rotated of 180 ◦

around the fixed point O. In particular if point A moves along a straight line, point
B moves along another straight line, resulting the rotation by 180 ◦ of the first line
around the fixed point O.

By applying the virtual work principle it can be easily demonstrated that, in the
case of negligible friction in the rotational pairs, if a force vector is applied in point
A (or B), point B (A) generates to the external world a force vector that is equal to
the force vector applied in A (B) and rotated of 180 ◦ around the fixed point O. In
particular if A moves along a straight line, then also B moves along a straight line
and if the force applied in B has null component in the direction normal to its straight
line, then point A transfers to the external work a force with a null component in the
direction normal to its straight line. Applied to the case of our actuation scheme, this
property ensures that the screw is not loaded with force having component normal to
its axis. Indeed, if the straight line followed by point B, when point A moves along
the axis of the screw, is tangent to the primitive of the driven pulley, then, due to
bending flexibility of the metallic tendon, the force applied by the tendon in B will
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Fig. 5 Variant of the pantograph mechanism.

Fig. 6 Second embodiment of the reversing mechanism.

have a negligible component normal to the straight line and hence this will produce
a negligible force component normal to the axis of the screw.

An interesting variant of this mechanism exhibits the same properties described
above but rotating trajectories and forces by an angle different from 180◦ (Fig. 5).
This can be easily achieved inserting an angle (α) between the 2 segments OC and
OD of the lever rotating around O, while always satisfying the same above geomet-
ric conditions. As anticipated this is convenient for reducing the transversal encum-
brance and increasing the angular stroke.

The second embodiment uses gears instead of the parallelogram to mirror the
angles ÂCO and ÔDA (Fig. 6). Gear I and gear III have equal radius and are integral,
respectively to lever CB and lever DA, while gear II is idle around fixed axis O. Also
this embodiment can produce rotations of the trajectories and forces different from
180 ◦. It is worth to note that any backlash existing in the engagement of the gears
can be canceled by a suitable preload on the two tendons.
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Fig. 7 Third embodiment of the reversing mechanism.

The third embodiment is somewhat different from the previous ones because the
reversion of the motion is generated directly from the rotation of the motor, using a
second lead screw whose nut is brought in rotation by a couple of gears with equal
radius (Fig. 7). Also in this case any backlash existing in the gears can be cancelled
by a suitable preload in the tendons. To prevent the rotation of the screw around
their axes, the end points of the screws have been connected together with a two
link mechanism, having three rotational pairs of which two in correspondence of
the endpoints of the screws and one for the relative articulation of the links.

Even if in principle this embodiment could have a variant that allows the in-
troduction of an angle between the two axes of the screws, in practice the imple-
mentation could be complex due to the need to use bevel gears and to possible
interferences of the second screw with the actuator’s body.

4 Features of the Actuation Module

The actuation module has been designed for delivering a maximum output continu-
ous torque of about 500 Nm at a maximum output speed of 60◦/s for an angular
stroke of 110◦. The mechanics of the motor/reduction unit has been expressly de-
signed and optimized for the application.

The core components of the unit, a frameless brushed DC torque motor with
rare earth permanent magnet (by AXYIS Technology Inc. USA) and a 16 mm dia-
meter/4 mm lead precision ball screw (by THK CO. LTD, Japan) have been selected
among the best commercially available. The torque motor is able to deliver up to
4.5–6 Nm continuous torque depending on the thermal resistance from the winding
to the environment and more that 7 Nm peak torque at a maximum speed of 1050
rpm, weighting only 1.4 Kg (stator + rotor). The ball screw has been specified to
withstand thrust forces up to 12000 N and weights only 300 g. A purposely de-
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Fig. 8 CAD view of the actuation module (without case).

Fig. 9 The integrated actuation module.

veloped incremental encoder with 1000 pulses/revolution has been integrated in the
mechanics.

The total mass of the motor reduction units is 2.4 Kg and is able to deliver more
than 8000 N of continuous thrust force. The levers of the pantograph have been
realized in high strength stainless steel (AISI 630 precipitation hardening stainless
steel), while for the rotational pairs metallic plain bearings have been used. The
4 mm metallic tendons with clamped terminals have been supplied by Carl Stahl
GmbH, Germany, according to the required length. The driven pulley, realized in
hard anodized 7075-T6 aluminum with a set of slots to reduce the mass, has a prim-
itive radius of 65 mm, setting the total reduction ratio at 102. It rotates on two ball
bearings and is directly flanged to the actuator’s output link. All the mechanics,
apart the motor body, is contained in case made in casting aluminum, that provides
structural strength for both the internal and external forces acting on the actuation
module. The resulting CAD assembly model is depicted in Fig. 8. The total weight
of the module is about 6 Kg and it is contained in an encumbrance envelope of about
370 × 140 × 70 mm. A picture of the integrated module with the boxes containing
the electronics is reported in Fig. 9. The theoretical mechanical efficiency is more
than 85% and this value is confirmed by preliminary experimental tests.
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5 Conclusions

A new actuation scheme using mature components has been proposed and a self
contained actuation module has been developed according to it. The module has a
very high torque density of the order of 80 Nm/Kg due to a combination of a state
of art torque DC torque motor with a very lightweight speed reducer consisting of
a ball screw, a reversing mechanism, a driven pulley and two metallic tendons. The
mechanical efficiency is more than 85%, even if the total reduction ratio is more
than 100. The backlash is zero and the functioning is smooth and with low noise. A
patent application has been submitted to the Italian patent office [7].
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Abstract. The potentialities of a manipulator concept based on isotropic translational parallel
mechanisms and agonistic-antagonistic dielectric elastomer actuation are investigated in the con-
text of human-machine interfaces. Static analysis reveals that this manipulator concept is well
suited to the development of novel generation of cost-effective interactive robots with low effect-
ive inertia and human-like performance and behaviour.

Key words: Interactive robot, dielectric elastomer, isotropic parallel manipulator.

1 Introduction

Several medical, training, social, working and entertainment activities or practices
require robots capable of interacting with users and with unknown environments
in a safe and human-like fashion. Potential benefits related to the availability of
such interactive robots include: (1) improvement, speed-up and cost-reduction of
rehabilitation and training protocols; (2) augmented interaction and communication
capabilities; (3) improvement of work quality (which are all very important for the
impaired). Desirable features of interactive robots comprise: (1) human matched
performance (for instance workspace and force ranges); (2) stability robustness;
(3) safety; (4) isotropy; (5) transparency (i.e. unitary ratio between transmitted
and desired impedance). All these specifications call for devices with small mov-
ing masses, effective inertia and back-drive friction, and with zero-backlash and
stiff mechanical transmissions. Several human-machine interaction devices (mainly
haptic interfaces) have been proposed in the literature which differ in the number (1
to 6) and type (translational or rotational) of Degrees Of Freedom (DOF), mechan-
ism architecture (serial or parallel), actuation (active, passive or hybrid) and control
(impedance or admittance). Among them, isotropic devices based on parallel mech-
anisms usually provide: (1) fairly regular workspace and output forces; (2) higher
and rather uniform rigidity; (3) lower and quite uniform effective inertia; (4) simple
gravitational counterbalancing; and (5) better actuator exploitation. However, they
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often suffer from reduced workspace-to-encumbrance ratios. A rather comprehens-
ive overview of parallel human-machine interface prototypes is provided in [1].

Despite the kinematic architecture, the major constraint to the development of
safe interactive robots with human matched performance, sufficient transparency
and stability robustness consists in the traditional actuation technology, which relies
on either gear-head or direct-drive electric motors. Such actuators indeed feature [2]
low power-to-mass (smaller than 40 W/kg) and torque/force-to-mass (smaller than
10 Nm/kg and 50 N/kg) ratios, which yield large effective inertia (larger for gear-
head than for direct-drive motors) and masses (larger for direct-drive than for gear-
head motors). Additionally, gear-head motors suffer from the series compliance,
friction and backlash which are introduced by the geared transmission, while direct-
drive motors suffer from force/torque ripples which are significant at the lower speed
ranges that are typical in human-machine interaction applications. Electric motors
are also rather expensive. To overcome this technological bottleneck, in recent years,
new actuation approaches such as series-elastic actuation (based on the in-series
connection of a motor with a linear spring [3]), distributed macro-mini actuation
(based on the in-parallel connection of a high-torque low-frequency series-elastic
motor and a low-torque high-frequency direct drive motor [4]), variable impedance
actuation (based on the agonist-antagonist placement of two series-elastic actuators
with non-linear spring stiffnesses [5]) and hybrid actuation (based on the in-parallel
connection of a motor and a series-elastic brake [6]) have been proposed. Despite
most of these attempts were successful, the developed solutions involve the use of
electric motors, performant transmissions and additional mechanical components
which make them rather complex, bulky and expensive.

Adequate but simpler, more compact and cheaper solutions may instead be
achieved by exploiting Dielectric Elastomer (DE) technology. Dielectric elastomers
are one of the best available multifunctional material for the development of solid-
state, capacitive, easy-to-shape/-accommodate actuation systems featuring large
force-to-weight (larger than 300 N/kg per unit of actuator length) and power-to-
weight (larger than 400 W/kg) ratios, low costs (roughly 200 ¤/kg), large shock-
insensitivity and silent operation [7]. Dielectric elastomers (like the pressure sensit-
ive tape VHB-4905 by 3M) are elastic capacitors that can undergo finite deforma-
tions when subjected to large electric fields (about 100 MV/m). For actuation usage,
DEs can be shaped in thin pre-tensioned films (about 50 µm, pre-tensioning is ne-
cessary to prevent wrinkling since DEs have negligible flexural rigidity), coated with
compliant electrodes and connected to the links of parallel mechanisms. The elec-
trical activation, obtained by placing the compliant electrodes to high voltage differ-
ences (1–10 kV), makes DEs expand in area. This yields forces on and motion of the
links the DE is connected to, which can be used to produce useful mechanical work
[8, 9]. Stacks of several DE films are required to obtain significant forces. DE actu-
ated 1-DOF devices up to 200 N output force and multi-layered DE membranes with
up to 400 films have been manufactured [10, 11]. Efficient and cheap driving elec-
tronics and effective closed-loop position regulators have also been demonstrated in
practice [12].
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Fig. 1 Kinematic architecture of the proposed manipulator concept.

In this paper, an isotropic 3-DOF Translational Parallel Mechanism (TPM) ac-
tuated by Agonistic Antagonistic pairs of DE actuators with Parallelogram shape
(AADEP) is presented as novel manipulator concept for safe interactive robots with
human-like performance.

2 The Manipulator Concept

The kinematic architecture of the proposed manipulator concept is schematized in
Fig. 1. A possible embodiment of the manipulator interacting with a human is drawn
in Fig. 2.

It consists of a 3-PPaPa-type over-constrained TPM (P and Pa standing for pris-
matic pair and planar parallelogram loop respectively) with P⊥Pa⊥⊥ Pa limb topo-
logy (i.e. the axis of the P pair and the normals to the Pa motion planes are mutually
orthogonal) which is similar to that presented in [13, p. 497, fig. 5.9a]. They differ
however since: (1) the TPM of Fig. 1 features grounded P pairs; (2) the common
normal to the axes of the revolute pairs mounted on the common link of Pa and P is
parallel (instead of orthogonal) to the direction of motion of P; (3) the two common
normals to the axes of the revolute pairs of the two Pa loops which share the same
intermediate link are parallel (instead of orthogonal). Such an arrangement provides
a more compact device which is suited to be placed in the upper corner of a room
with the three long rails of the P pairs fixed to the intersecting walls and ceiling
(note that the first Pa loop of each leg is parallel and adjacent to the wall/ceiling it is
connected to via the P pair). All Pa loops are identical, which yields a highly mod-
ular system that is simple to manufacture, assemble and maintain. The presence of
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Fig. 2 CAD drawing of the proposed manipulator concept interacting with a human.

Pa loops also grants good stiffness-to-weight ratios and enables simple gravitational
counterbalancing via linear springs [14]. The considered manipulator fits within a
cube with 1.05 m long edges (roughly equalling the identical P rail lengths) and
features a cubic workspace with 0.42 m long edges.

Each Pa loop accommodates within its interior a pre-tensioned multi-layered DE
membrane with Parallelogram shape (DEP) whose perimeter edges are attached to
the respective Pa links. This provides a rather simple means of actuation which does
not require the interposition of any additional transmission (which may degrade
mechanism stiffness and introduce sources of friction and backlash) and does not
increase overall system encumbrance. Owing to the chosen limb arrangement, the
six equal DEPs form three agonist-antagonist sets which actuate the TPM along
three uncoupled orthogonal directions. That is, referring to Fig. 1, the DEP sets
{2b,3a}, {1b,2a} and {1a,3b} act along the orthogonal directions of motion of the
P pairs of limbs 1, 2 and 3 (hereafter called x, y and z directions) respectively, the
first (second) DEP in each set providing a pushing force in the positive (negative)
axis direction.

3 Static Analysis of the Manipulator Concept

Owing to the modularity of the proposed concept, the static analysis of the overall
system founds on the solution of the basic DEP element shown in Fig. 3. In the lit-
erature, the statics of DE actuated mechanisms is usually solved via the d’Alembert
principle by also accounting for the distributed forces (stresses) of electric nature
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Fig. 3 DEP element (a), DEP with mechanism for stiffness adjustment (b).

that are induced in the elastomer as a result of electric field presence [8, 9]. Here, a
more compact solution is obtained via energetic principles. The balance of electro-
mechanical energy which flows through the DEP when a constant electric potential
difference V (hereafter also called voltage) is applied by a power supply between its
electrodes, is

dΨ + dU = Fhdh +Vdq (1)

where dΨ is the variation of the isochoric hyper-elastic DEP strain-energy function
Ψ [9], dU is the variation of the electrical energy U stored in the DEP (U = 0.5CV 2,
C being the DEP capacitance), dh is the variation of the DEP height h (see Fig. 3(a)),
Fh is the external force acting on the DEP in the direction of h (i.e. the only force
which can generate mechanical work on the DEP) and dq is the variation of the elec-
tric charge q (q = CV ) flowing between power supply and DEP electrodes (note that
Vdq is the variation of electrical work provided by the power supply). Among the
above quantities, Ψ and C depend on h. In fact, owing to the kinematic constraints
on its boundary, the DEP can undergo uniform deformations only which yield

Ψ = ν
2

∑
i=1

µi(λ
αi
1

+ λ αi
2

+ λ−αi
1

λ−αi
2

−3)/αi and C = εb2h2/ν (2)

where µ1 = 12.6 Pa, α1 = 6.06, µ2 = 26 kPa, α2 = 1.7 and ε = 4.5 ·8.85e−12 F/m
are material parameters of a typical DE (VHB-4905 by 3M); ν is the DEP volume
(ν = blt0/(λ1pλ2p), b and l being the lengths of the Pa base/coupler and of its
intermediate links, and t0 being the DE film thickness in its undeformed state);
λ1 and λ2 are the DEP principal stretches (λ1 = λ1p[1 + [1 − (h/l)2]0.5]0.5 and

λ2 = λ2p[1− [1− (h/l)2]0.5]0.5, λ1p and λ2p being DEP pre-stretches in the con-

figuration where the DEP is rectangle. Since dq = VdC and dU = 0.5V 2dC, then
from Eq. (1)

Fh =el Fh +em Fh, where elFh = dΨ/dh and emFh = −εb2V 2h/ν (3)
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elFh and emFh being the mechanical and electrical contributions to the external force
Fh which are due to DE elasticity and dielectricity respectively. Generally, the mech-
anical term elFh is non-linear in the DEP configuration h and can be either a pushing
or a pulling force. For a given DE material, the shape of elFh can be adjusted by
properly choosing the DE pre-stretches λ1p and λ2p. The electric term emFh is a
pushing force (i.e. it attempts to increase parallelogram area) which depends lin-
early by the parallelogram height h and quadratically by the applied voltage V . That
is, from a mechanical standpoint, DEP activation (via the regulation of the voltage
V ) is a means for actuating the Pa loop and is equivalent to the stiffness regula-
tion of a linear negative-stiffness spring placed in parallel to the Pa loop and acting
in the direction of the external force Fh. For a given DE material, such actuation
(i.e. stiffness regulation) possibilities are limited by DEP electrical and mechanical
failure. For instance, in every DEP working configuration: (1) the uniform elec-
tric field E (E = λ1λ2V/t0) acting across the DEP must not exceed the dielectric
breakdown strength El in order to prevent DE electrical breakdown; (2) the prin-
cipal elastic stresses elσ1 and elσ2 (elσi = λi∂Ψ/∂λi for i = 1,2) should be greater
than the “electric” stress emσ (emσ = εE2) in order to prevent DE wrinkling; (3)
the principal stretches λ1 and λ2 must be lower than the ultimate stretch λl in order
to prevent DE mechanical fracture (El = 130 MV/m and λl = 5.5 are characteristic
DE material parameters). Examples of feasible Force-Length (FL) curves (i.e. Fh−h
curves) of the DEPs mounted on the TPM of Fig. 1 are depicted in Fig. 4 for differ-
ent activation voltages (V = 0 in solid line and V = Vm in dashed line, Vm = 8 kV
and 7.5 kV for the cases in Figs. 4(a) and 4(b) respectively) and pre-stretch sets
({λ1p =3.2, λ2p =6.4} in Fig. 4(a) and {λ1p =3.9, λ2p =4.3} in Fig. 4(b)). The de-
picted solid and dashed lines represent the maximum and minimum forces which
can be generated by the DEP; all the forces lying between these lines can be pro-
duced by regulating the voltage V according to Eq. (3). For both Figs. 4(a) and
4(b), the DEP consists of a stack of 45 DE films whose geometrical parameters are
l = 0.7 m, b = l/4, t0 = 1 mm. Figure 4 shows that despite the non-linear elasticity
of the DE material (see Eq. (2)), different pre-stretch sets exist which make DEP
FL curves quasi-linear in a rather broad range of its motion (each pre-stretch set
yielding different DEP stiffness variation ranges).

Despite their quasi-linearity, FL curves like those of Fig. 4 are not ideal since
they are not parallel (i.e. the available thrust emFh is not constant) which is usually a
desirable feature providing uniform system behaviour, enabling optimal use of the
available output work and easing overall system control [9]. Adoption of two DEPs
in agonist-antagonist configuration for each DOF of the TPM makes it possible to
overcome this issue.

For instance, if the Agonist and Antagonist DEPs (AADEP) are connected so
that their heights h and h′ satisfy h′ = (l−h), AADEP reciprocal activation enables
generating parallel FL curves (i.e. constant thrusts) over the full range of actuator
motion (in this case a 420 mm stroke). This is shown in Figs. 5(a) and 5(b) which
report the FL curves (i.e. (Fh −Fh′), where Fh′ is expressed by Eq. (3) with h re-
placed by h′) of two different AADEP actuators based on the DEPs of Figs. 4(a)
and 4(b) respectively. The parallel solid and dashed lines correspond to the recip-
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Fig. 4 FL (Fh −h) curves of two DEPs (a and b) with different pre-stretch sets.

rocal activation sets {V =0,V ′ = Vm} and {V = Vm,V ′ =0}, V and V ′ being the
activation voltages of the two DEPs in the same AADEP actuator. All the forces
lying between these lines can be generated via proper selection of V and V ′. Along
with uniform graduation of force, AADEP actuators enable the simultaneous regula-
tion of their intrinsic stiffness. This is shown in Fig. 5 by the intersecting dotted and
dash-dotted lines which correspond to the AADEP co-activation sets {V =0,V ′ =0}
and {V = Vm, V ′ = Vm}. All the FL curves with varying slope lying within the pen-
cil spanned by these lines can be generated via equal activation (i.e. V = V ′) of the
AADEPs. Owing to the quasi-linearity of the FL curves shown in Fig. 5, the over-
all AADEP actuator force (Fh −Fh′ ) and its stiffness (dFh/dh− dFh′/dh) can be
approximated by F∗

h and K∗

F∗
h = K∗h +(V ′2 −V 2

m/2)lεb2/ν , K∗ = (V 2
m −V 2 −V ′2)εb2/ν, (4a)

F∗
h = K∗h +V ′2lεb2/ν , K∗ = (−V 2 +V ′2)εb2/ν, (4b)

where Eq. (4a) and (4b) hold for the cases of Figs. 5(a) and 5(b) respectively. The
linear approximates F∗

h related to the four different activation sets {V =0,V ′ =0},
{V = Vm, V ′ = Vm}, {V = Vm, V =0} and V =0, V = Vm} are reported in Fig.
5 with asterisks in order to show good agreement with the effective curves. The
maximal deviations of Eqs. (4a) and (4.b) from the effective FL characteristics are
±12 N and ±3.8 N respectively (i.e. ±6% and ±2.6% of the maximum/minimum
force, ±200 N, and of the averaged maximum/minimum force, ±146 N, which are
generated by the AADEPs considered in Figs. 5(a) and 5(b) respectively).

Considering the AADEP actuator as a linear spring, Eq. (4) shows that open-loop
control of V and V ′ enables mutual regulation of spring stiffness K∗ and dead-length
h∗ (i.e. the zero-force equilibrium point)

h∗ = l(V ′2 −V 2
m/2)/(V 2 +V ′2 −V 2

m), (5a)

h∗ = l(V ′2)/(V 2 +V ′2), (5b)
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Fig. 5 FL curves of two AADEPs (a and b) with different pre-stretch sets.

where Eqs. (5a) and (5b) hold for the cases of Figs. 5(a) and 5(b) respectively,
without requiring any feed-forward control law based on a position sensor measure
(as impedance control schemes do) which often introduces vibrations due to quant-
ization error, time-delays and low servo rates. The dead-length h∗ can be set at any
location h within the AADEP stroke. The open-loop regulation of K∗ is within the
range ±0.57 N/mm (i.e. a 1.14 N/mm span) for the case of Fig. 5(a) and from 0
to 0.83 N/mm for the case of Fig. 5(b). Force-Length curves with controllable neg-
ative stiffness (such as those of Fig. 5) enable easy generation and regulation of
unstable modes of interaction with the user, which are very important in rehabilit-
ation procedures and skills training (where users have to learn how to compensate
for instabilities [15]), but also in many haptic applications like the rendering of
convex surfaces. If negative stiffness is not needed/desired, the FL curves of Fig.
5(b) (and similarly those of Fig. 5(a)) can be adjusted to positive stiffness values
(i.e. stiffness variation from 0 to +0.83 N/mm) by adding in parallel to the AADEP
an elastic mechanism providing a linear FL curve with positive stiffness and dead-
length equalling 0.83 N/mm and l/2 respectively (an example of such a mechanism
is depicted in Fig. 3(b)).

Force and stiffness magnitudes (200 N and 0.83 N/mm) produced by the con-
sidered AADEPs are in the range of those humans generate at their arm ends during
either posture maintenance or movement execution in both stable and unstable en-
vironments [15, 16]. Owing to the chosen TPM architecture, the proposed manipu-
lator concept can generate decoupled FL profiles alike those of Fig. 5 along the x, y
and z directions. That is, the proposed manipulator concept enables easy generation
and regulation of end-effector force fields (and in particular of stiffness ellipsoids)
similar to those developed by humans for achieving stable, accurate, fast and robust
control of multi-joint posture and motion [15, 16]. Such a human-like behaviour is
expected to provide the proposed manipulator concept with improved safety and in-
teraction performances especially in association with biologically-inspired control
paradigms such as the “equilibrium point” hypothesis [17].
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4 Dielectric Elastomer vs. Traditional Actuation

Along with human matched workspace, forces and adjustable springiness, actuators
for safe interactive robots should also feature low mass and effective inertia, and
possibly low cost.

With regards to mass and inertia, owing to the very low density of DE ma-
terials (less than 1000 kg/m3), the AADEP with FL characteristics depicted in
Fig. 5(a) (having ±200N adjustable force) is expected to possess a mass M,
M ≈ 0.5 kg, and a variable effective inertia (reflected to the TPM platform) Meq,
Meq = [1/(1− (h/l)2)+1/(1− (1−h/l)2)M/3 (which can be obtained via the kin-
etic energy equivalence), ranging between 0.24 kg and 0.35 kg. These values are
less than one order of magnitude with respect to the masses and the reflected iner-
tias of conventional gear-head electric motors which could be employed to actuate
the same Pa loops in order to produce output forces similar to those of the con-
sidered AADEPs. For instance, a state-of-the-art gear-head brushless motor with
150 Nm nominal output torque, 2.5 kg weight, reduction ratio n, n = 150, and mo-
tor rotor inertia J, J = 0.8 kg/cm2, yields on the TPM platform a variable reflected
inertia M′

eq, M′
eq = Jn2/(l2 − h2), ranging between 4 kg and 10 kg (only the best

case in which the gear-head motor is fixed with respect to the manipulator base is
considered here). Furthermore, AADEP mass and reflected inertia are also one order
of magnitude lower than the stator and slider masses of direct-drive brushless linear
motors that are often used for actuating the P pairs of isotropic TPMs. For instance, a
state-of-the-art direct-drive brushless linear motor with 150 N nominal output force
and 400 mm stroke possesses stator and slider masses roughly equalling 2 kg and
3 kg respectively.

With regards to costs, owing to the low price of DE materials, the expected cost
of an AADEP is about 100 ¤ which is far less than the price of both gear-head and
linear electric motors with similar force performances (driving electronics are not
considered here since their costs are going to be quite similar, probably cheaper for
AADEPs [12]).

5 Conclusions

This paper has shown via static analysis that isotropic translational parallel mech-
anisms with agonist-antagonist dielectric elastomer actuators potentially provide an
adequate and cost effective solution concept for the development of novel genera-
tion of interactive robots with low effective inertia and human matched workspace,
forces and adjustable springiness. Future work will address the optimization and
development of a real prototype along with its experimental validation and control.
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Abstract. Path tracking using planar mechanisms with one degree of redundancy can be enhanced
by matching (when possible) or approximating second-order path properties with first-order joint
coordination. Second-order tracking can reduce the frequency of feedback for the desired accur-
acy, and since this paper provides analytical expressions for the joint speed ratios, this advantage
comes at no additional computational cost. Examples show that tracking solutions with this method
are locally more accurate compared to unweighted pseudoinverse solutions. Therefore, the feed-
back frequency for a desired tracking accuracy can be reduced, potentially resulting in a reduced
computational cost of path tracking.

Key words: Geometric tracking, speed-ratio control, redundancy resolution, planar mechanisms.

1 Introduction

Redundant manipulators are increasingly employed in useful practical tasks that are
specified in terms of a geometric path to be followed by the end-effector. Redundant
degrees of freedom make it possible to achieve objectives such as avoiding colli-
sions, joint limits and/or singular configurations. However, objective criteria need
to be specified to resolve the kinematic redundancy. Kinematic performance met-
rics, such as locally bounded joint-space velocities, involve computation of damped
least-squares solutions [1], although such pseudoinverse-based control cannot avoid
singular configurations [2]. Alternatively, time-optimal control uses the manipu-
lator dynamics to minimize the performance time, which is a solved problem for
non-redundant manipulators [3]. For kinematically redundant manipulators, numer-
ical procedures have been proposed in [4] to achieve path-constrained time-optimal
control. A computationally efficient feedback-control law is developed in [5] that
provides joint forces/torques for a redundant manipulator while minimizing the
output-space tracking error. These methods use information from the output-space
path up to the first-order only, whereas the definition of the desired output-space
path contains more geometric information in the form of higher order derivatives.
Effective utilization of this path information can reduce the required feedback fre-
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quency for a desired tracking accuracy and potentially, the computational cost of
path tracking.

In [6], a curvature-theory-based approach is developed that maps the first- and
second-order information of the output-space path onto the first- and second-order
geometric properties of the joint space path for non-redundant, planar mechan-
isms. This method is extended to using the third-order path properties of constant
curvature output-space paths in [7]. Recently, this approach has been generalized
to path tracking with spatial, non-redundant systems using the geometric properties
of the output-space path up to any order [8]. The present work illustrates how this
approach, termed speed-ratio (SR) control, can be effectively applied to redund-
ant, planar manipulators. It resolves kinematic redundancy by including higher-
order geometric information from the desired path into the problem formulation.
The resulting system of polynomial equations has analytical solutions for planar,
three-degree-of-freedom (DOF) mechanisms, making this method computationally
efficient.

The remainder of this paper is organized as follows. Section 2 describes the SR
paradigm. Section 3 develops the application of SR control to three-DOF planar
manipulators. Section 4 presents numerical examples. Section 5 gives conclusions.

2 Speed-Ratio Control for Non-Redundant Manipulators

The SR approach to control non-redundant mechanisms, developed in [8], is briefly
described here. A trailing subscript(s) for a quantity indicates derivative with respect
to the subscript(s), and a zero after the subscript(s) indicates that the derivative has
been evaluated in the zero position. For example,

rθ1
:=

dr
dθ1

, rθ1θ20 :=
d2r

dθ1dθ2

∣
∣
∣∣
0

.

The zero position is defined by the initial increments in the joint variables all being
zero.

The geometric path tracking approach involves a reparameterization of the for-
ward kinematic map of a tracking mechanism using the displacement of one joint,
called the leading joint, as the independent variable. Motion of the other joints are
related to that of the leading joint via Taylor series, the constants of which are called
speed ratios. The jth-order speed ratio relating the motion of joint i to that of the
leading joint when evaluated in the zero position is denoted by n( j)

i
. For j = 1, the

superscript is omitted. Therefore,

n(3)
3

:=
d3θ3

dθ 3
1

∣
∣
∣∣
0

and n(1)
2

:= n2 =
dθ2

dθ1

∣
∣
∣∣
0

.
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For a d-DOF, non-redundant mechanism (d = 2 for planar and 3 for spatial systems),
let θi denote the joint variables. Without loss of generality, the joint motions are
coordinated using θ1 as the leading joint:

θi = niθ1 +
1
2!

n(2)
i

θ 2
1 +

1
3!

n(3)
i

θ 3
1 + · · · i = 2, · · ·d. (1)

The path r generated by the controlled point on the end effector (EE) is expressed
as a function of θ1 as

r(θ1) = r0 + rθ10θ1 +
1
2!

rθ1θ10θ 2
1 +

1
3!

rθ1θ1θ10θ 3
1 + · · · , (2)

where r0 is the initial EE position, and rθ10 = r(ni), rθ1θ10 = r(ni,n
(2)
i

), and so on for
higher order derivatives. Equation (1) allows the forward kinematics of the manip-
ulator to be expressed as a curve in the output space parameterized in terms of θ1,
given by Eq. (2). The kinematics can be similarly characterized in terms of the arc
length. However, arc-length parameterization fails for singular poses of the mechan-
ism, whereas the present parameterization allows accurate geometric tracking even
for singular poses [6]. The generated path is described by a Frenet-Serret (FS) frame,
the components of which are defined by the vector terms in Eq. (2). For example,
the tangent of the frame is parallel to rθ10, and the normal is parallel to rθ1θ10. Note
that this description involves the unknown speed ratios. The geometry of the desired
path is also described using a FS frame, but in this case, all of the quantities defining
the frame are known. Control of the EE path geometry is achieved by matching the
geometric properties of the frames describing the generated and desired paths. For
example, matching the first-order geometric property means forcing the tangent of
r(θ1) to be parallel to the tangent of the desired path. The resulting coordination
equation is solved for the first-order speed ratios. Each higher order of geometry
matching yields coordination equations that can be solved for the speed ratios of the
corresponding order. The coordination equations for the first two orders are [8]

rθ10 × T̂ = 0, (3)

rθ1θ10 × T̂ + κd(rθ10 · rθ10)B̂ = 0, (4)

where T̂ and B̂ are the tangent and binormal of the FS frame and κd is the curvature.
Note that as control of path geometry is achieved, the corresponding geometric prop-
erties of the FS frames for the desired and generated paths become identical, and it
becomes unnecessary to explicitly distinguish between them. Equation (3) can be
solved for n2 and n3, Eq. (4) gives n(2)

2
and n(2)

3
, and so on. Matching pth-order

geometric properties yields the pth-order speed ratios. Equations (1) and (2) then
determine the motion of the EE.
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3 Speed-Ratio Control for Three-DOF, Planar Manipulators

For redundant mechanisms, assuming that the pose is non-singular, there will ex-
ist a family of joint-velocity solutions that achieve first-order tracking. A unique
solution from this set can be chosen based on higher-order geometric information
of the desired path. The order of the geometric properties that can be used to make
this choice is generally determined by the order of joint control and the degree of
redundancy in the system. For example, with first-order joint coordination, or joint-
velocity control as is assumed in this paper, a three-DOF system can use second-
order path properties, and a four-DOF system can use second- and third-order path
properties. By applying the coordination equations to the redundant system, a set of
polynomial equations is obtained that provide insight into the tracking capabilities
of the mechanism and, for a three-DOF mechanism, provide analytical solutions for
the best possible second-order tracking performance. In contrast, a non-redundant,
planar mechanism must use second-order joint coordination to track path curvature,
and accurate curvature tracking is ensured for non-singular mechanism poses.

For a general, planar three-DOF system, let θ1, θ2, and θ3 be the joint variables.
The leading joint is θ1, and n2 and n3 are the two first-order speed ratios. Equation
(3) provides one linear equation, and Eq. (4) provides one quadratic equation in the
two unknown speed ratios.

A1n2 + A2n3 + A3 = 0, (5)

B1n2
2 + B2n2

3 + B3n2n3 + B4n2 + B5n3 + B6 = 0, (6)

where the coefficients Ai and Bi are functions of the desired path tangent and the
mechanism’s geometry and current pose. Since Eq. (4) is linear in the desired
curvature κd , a univariate polynomial can be obtained from Eqs. (5) and (6).

Ω(n2) := (a1κd + b1)n
2
2 +(a2κd + b2)n2 +(a3κd + b3) = 0, (7)

where the coefficients ai and bi are derived from Ai and Bi, and so they are also func-
tions of the desired tangent and the mechanism geometry and pose. The curvature
κd can be accurately matched if Eq. (7) has real solutions, the condition being,

∆ :=
(
a2

2 − 4a1a3

)
κ2

d +
(
2a2b2 −4a1b3 −4b1a3

)
κd +

(
b2

2 −4b1b3

)
≥ 0. (8)

By explicit calculation, it can be shown that for three-DOF planar mechanisms
of all possible morphologies, the function a2

2 −4a1a3 = 0. Therefore,

∆ = κdC + D, (9)

where C = 2a2b2 −4a1b3 −4b1a3, and D = b2
2 −4b1b3. Note that κd is positive by

definition. Therefore, if C and D are both positive, ∆ is also positive for any κd .
In this case, two solutions are obtained from Eqs. (7) and (5). The rate of change
in curvature of the desired path can be used to choose from these two solutions, as
illustrated in the numerical example in the following section. If ∆ < 0, the curvature
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cannot be matched exactly. In this case, the tracked curvature is treated as a variable,
denoted by κ . The discriminant in Eq. (9) is now a function of κ , and a value κ = κt
can be obtained from the condition in Eq. (8) such that Eq. (7) yields real roots for
n2. If C and D are not both negative, the solution to the equation ∆(κ) = 0 gives a
positive generated curvature κt =−D

C , such that the error |κt −κd | is minimum. The
minimality condition is ensured by the continuity and monotonicity of ∆(κ).

When C,D < 0, the range of κ for which the condition in Eq. (8) is satisfied
is given by −D

C ≥ κ . Only negative values for κ are possible, indicating that the
mechanism can only move along the desired tangent such that the normal vector
of the generated path is in the opposite direction of the normal of the desired path.
In this case, the generated path with the smallest curvature magnitude (the path
with the greatest radius) will be the most accurate. Therefore, the smallest negative
κt = −D

C that satisfies the condition in Eq. (8) is the solution.
In conclusion, with first-order joint coordination, a three-DOF mechanism can

track a desired path with a given curvature κd if the quantity ∆ in Eq. (9) is greater
than zero, and the speed ratios can be obtained from Eqs. (7) and (5). If ∆ < 0, the
best possible generated path has curvature κt := −D

C . This solution can be substi-
tuted into Eq. (7) to obtain n2, following which, Eq. (5) yields the value of n3.

The three-prismatic manipulator is an exception to the above scheme. For this
manipulator, C and D are zero, and the function Ω in Eq. (7) vanishes. This is a
(perhaps intuitive) result indicating that the EE cannot move along curved paths
with constant joint velocities for a three-DOF Cartesian robot, and therefore, path
curvature cannot be tracked with first-order joint control.

The technique described here is applicable in principle to larger planar systems as
well as spatial systems. However, the analyticity is quickly lost, since the size of the
polynomial equations becomes large. For example, for a four-DOF, planar system
employing first-order joint control, the first-, second-, and third-order coordination
equations will be linear, quadratic, and sextic equations in three variables, respect-
ively. A search algorithm must be employed to obtain real solutions for all three
equations. This is a limitation of the approach. However, a useful result will be the
characterization of the solution for the curvature-tracking problem before solving
the full system. This is a subject of future work.

4 Examples

A 3-revolute (3R) mechanism has link lengths li, and θi0 denote the initial values of
the joint variables that define the zero position. Joint angle θi0 is measured counter-
clockwise from link li−1 to link li. The joint angle θ10 is measured with respect to a
fixed reference axis. Two examples are provided, one with a positive value for the
discriminant ∆ , and the second with a negative value for ∆ .

Example 1: Positive ∆
The link lengths are l1 = 1.15, l2 = 1.5, and l3 = 1.8 in arbitrary length units. The ini-
tial pose, or zero position, is defined by θ10 = −14◦, θ20 =−10◦, and θ30 =−205◦.
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Fig. 1 The planar 3R mechanism is required to track the circular arc passing through point P.
The dashed curve is the geometric tracking solution. The solid curve is the pseudoinverse tracking
solution. Curvature centers for the three paths are shown. Only the curvature centers of the desired
path and the path generated with the geometric solution match.

The desired path is a circular arc passing through the controlled point on the EE,
point P. The desired tangent is T̂ = [0.8944 0.4472 0]T , and κd is 1. Also, the
rate of change of curvature is zero. The joint variable θ1 is chosen as the leading
joint variable. These system parameters yield constants Ai, ai and bi:

⎡

⎣
A1
A2
A3

⎤

⎦ =

⎡

⎣
0.2345
1.4247
0.0485

⎤

⎦ ,

⎡

⎣
a1
a2
a3

⎤

⎦ =

⎡

⎣
−6.4670
−26.3920
−26.9267

⎤

⎦ ,

⎡

⎣
b1
b2
b3

⎤

⎦ =

⎡

⎣
6.7015

27.8167
26.9752

⎤

⎦ .

This gives C = −48.6844, D = 50.6686, and ∆ = 1.9842. Therefore, Eqs. (5) and
(7) provide two solutions for the speed ratios: {n2 = −0.0343,n3 = 3.0319}, and
{n2 = −6.0402,n3 = −3.7154}. The first solution has a rate of change of curvature
of -0.8262, and the second solution has a rate of change of curvature of 0.4414.
Since the latter value is closer to the desired value 0, the second solution is chosen.

Alternative first-order speed ratios obtained as ratios of the joint velocities from
the Jacobian pseudoinverse are {n2 = 2.9052,n3 = 6.3343}. Note that the norm
of the pseudoinverse solution will be lower than the norm of the geometric solution
once the EE-velocity magnitudes for both solutions are made equal by proper choice
of the leading joint velocity. In Fig. 1, the EE paths generated by implementing the
chosen geometric solution and the pseudoinverse solution are plotted until the posi-
tion error, defined as the minimum distance of the EE from the desired path, reaches
0.025. Clearly, superior tracking accuracy is achieved by implementing speed-ratio
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Fig. 2 The planar 3R mechanism is required to track the circular arc passing through point P. The
dashed curve is the geometric tracking solution, and the solid curve is the pseudoinverse tracking
solution. The curvature centers of the three paths are shown.

control. The EE path obtained from the geometric solution follows the desired path
more closely and stays close to the desired path for a longer portion of the desired
path compared to the pseudoinverse solution.

Example 2: Negative ∆
The zero position of the mechanism in the previous example is redefined by θ10 =
−14◦, θ20 = −40◦, and θ30 = −205◦. The desired path is a circular arc passing
through point P with tangent T̂ = [0.9439 0.3304 0]T and κd is 1. The rate of
change in curvature is zero. The joint variable θ1 is chosen as the leading joint
variable. The constants Ai, ai and bi are

⎡

⎣
A1
A2
A3

⎤

⎦ =

⎡

⎣
−9.6866
−40.7486
−42.8541

⎤

⎦ ,

⎡

⎣
a1
a2
a3

⎤

⎦ =

⎡

⎣
−19.3305
−102.2244
−135.1469

⎤

⎦ ,

⎡

⎣
b1
b2
b3

⎤

⎦ =

⎡

⎣
3.4823
28.8917
49.2146

⎤

⎦ .

This gives C = −219.0375, D = 149.219, and ∆ = −69.8184, indicating that the
desired radius cannot be accurately matched. The tracked curvature is κt = −D

C =
0.6812, and the corresponding error is |κd −κt| = 0.3188. The geometric speed ra-
tios are obtained by using the computed value of κt in Eqs. (7) and (5). The geomet-
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ric and the pseudoinverse-based speed ratios, respectively, are {n2 = −2.1033,n3 =
−0.7671}, and {n2 = −0.7398,n3 = −4.3965}. Figure 2 plots the paths generated
by both solutions until the position error reaches 0.025. The curvature centers of
neither solution match the desired curvature center. However, the curvature center
obtained from the geometric solution is closer to the desired curvature center. Fur-
ther, with first-order coordination, the curvature center of the generated path cannot
be any closer to the desired curvature center given the tangent direction and the
mechanism’s pose. Therefore, the path obtained from the geometric solution is the
most locally accurate path that can be achieved with first-order coordination.

5 Conclusions

Speed-ratio control is applied to resolve redundancy in path tracking with three-
DOF planar mechanisms. Analytically obtained first-order joint motions minimize
the difference between the curvatures of the generated and the desired output-space
paths. Two examples are provided that compare the tracking performance of speed-
ratio control with pseudoinverse solutions. The use of higher-order path information
yields generated paths that track the desired path more closely. Less feedback will
be required to achieve the desired tracking accuracy, and therefore, this method has
the potential to reduce the computational cost of path tracking.
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Abstract. In this article, we consider wire-driven manipulators with instrumented truss structure
for cable tension evaluation. For such mechanisms, we propose to perform the structural analysis
using interval analysis. We introduce an algorithm to perform simultaneously kinematic and struc-
tural analysis. Examples are introduced to show the interest of the approach.

Key words: Wire-driven manipulator, interval analysis, structural analysis.

1 Introduction

Giving assistance to radiologists during percutaneous procedures [1] is currently
a great challenge for roboticists: MRI scanners are used for their very interesting
image details, however they introduce severe design constraints. The two principal
ones are the limited space to introduce a robotic system in the scanner ring, and the
presence of a strong permanent magnetic field. In that context, we propose to de-
velop a robotic assistance by means of a wire-driven manipulator (WDM): actuators
could then be removed from the MRI room to suppress artefacts and ensure MRI-
compatibility. Furthermore, a WDM can allow us to get a very compact, lightweight
robot for an easy integration in the MRI scanner, contrary to previously proposed
systems [2, 3].

Placing the actuators at a distance can be performed by using pulleys to guide
the cables connected to the end-effector (Fig. 1). The use of a truss for the structure
seems a natural choice to minimize the size and the weight of the manipulator: such
a structure has a very interesting stiffness/weight ratio. The cables are attached to
the nodes of the structure, and these nodes are connected to the ground in a way that
the structure is sensitive to the tension in the cables. The measurement of the truss
deformation can allow the evaluation of the cable tensions, which is necessary for
control purposes [4]. Even in presence of a magnetic field, deformation measure-
ment is feasible, using optical sensors [5]. Our approach is thus to develop a WDM
with instrumented truss.

J. Lenarčič and M.M. Stanišić (eds.), Advances in Robot Kinematics: Motion in Man and 
Machine, DOI 10.1007/978-90-481-9262-5_16, © Springer Science+Business Media B.V. 2010 
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Fig. 1 Example of wire-driven manipulator with 3-bar truss structure and discarded actuators.

In this paper, we consider the first step of a design methodology, which is the
development of an algorithm to characterize a given robot. We show that the struc-
ture and its instrumentation with strain sensors can be validated by using interval
analysis, simultaneously to the validation of other constraints associated to WDMs.
We illustrate the necessity to validate in the same time the parameters associated to
the structure of the mechanism and those associated to the mechanism itself.

In the next section, approaches for the analysis of WDMs are first detailed.
Foundations of structural analysis are then briefly recalled in Section 3. The pro-
posed algorithm is introduced in Section 4. In Section 5, two examples are developed
to outline the need of a simultaneous evaluation of structural and kinematic beha-
viour of the device. Finally, conclusions and future works are presented.

2 Related Work

Several constraints have been considered for the evaluation of the workspace of
WDMs. Interferences between wires may limit the reachable workspace and has
been analysed in [6–8] for parallel robots, with an approach that can be extended to
WDMs. Influence of collisions between wires and cylindrical platforms was studied
in [7]. Another workspace limitation comes from the unidirectional behaviour of
wires, which has been investigated in [9–12], in particular using interval analysis.
In this latter approach, the provided results are guaranteed, an asset that discretiza-
tion methods can not provide [13]. In this paper, we thus also consider an interval
analysis approach, and take into account the behaviour of the structure, a constraint
generally not considered [14].
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3 Structural Analysis Overview

A truss structure is composed of slight elements, called bars, connected by spher-
ical joints, the nodes. The nodes ensure that the bars are only submitted to tension
or compression. For many materials, an elastic deformation domain can be defined
with the Hooke’s law that links the deformation ε to the stress σ by the Young’s
modulus E: σ = Eε . The deformation of a bar is the ratio between the relative dis-
placement of its ends and its length. The truss behaviour can be estimated using
the direct stiffness method. This systematic approach allows the computation of the
vector u composed of the nodes displacements from the external load vector fe and
a structural stiffness matrix Ks: u = K−1

s fe. The matrix Ks can be evaluated from
the truss geometry and the bar properties. Deformations and stresses in the bars can
then easily be derived.

The elastic deformation domain is generally characterized by two thresholds.
During the truss analysis the following constraints have therefore to be fulfilled:

σc < σi < σt , i ∈ [1,b] (1)

with σi the stress in the bar i of a b-bar truss, σc and σt respectively defining the
limits in compression and tension. Buckling of the bars must also be avoided:

σi > σb , i ∈ [1,b] (2)

The stress σb is expressed using the Euler’s formula: σb = π2EIA/L2, where I is the
area moment of inertia, A is the cross sectional area of the bar and L its length.

4 The Proposed Algorithm

4.1 Criteria for Workspace Delineation

The workspace of a WDM is usually considered as the intersection between the
workspace for which cables are able to counterbalance any wrench applied to the
end-effector, called the Wrench-Feasible Workspace (WFW, [11]) and the (cable-
cable, cable-platform) collision-free workspace. The use of an instrumented truss
for cable tension evaluation induces novel constraints. Firstly, conditions (1) and (2)
have to be verified. Secondly, the measurement range ε0 of the strain sensors must
be respected. This constraint can be expressed as a condition on the stress, using
Hooke’s law, so that a maximum value σ0 must not be exceeded:

−σ0 ≤ σi ≤ σ0, i ∈ [1,b] (3)

Finally, no interference must occur between the bars and the cables or the platform.
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4.2 Structural Analysis Using Interval Analysis

In [11], the WFW is determined using interval analysis. The relationship between
the vector τ describing the tensions in the cables and the wrench f applied on the
end-effector is well-known:

Wτ = f (4)

where W is the wrench matrix, which is a function of the end-effector pose X. The
components of X, τ and f all belong to intervals, denoted in the following by the
superscript I, so that the WFW can be evaluated using interval analysis, starting
from the condition:

∀W ∈ WI, ∀f ∈ f I ,∃τ ∈ T such thatWτ = f (5)

with, for m cables, T =
{

τ |τi ∈ [τmin, τmax] , 1 ≤ i ≤ m
}

In Section 3, it has been outlined that the displacements at the truss nodes can
be expressed from the external load. In our context, this load is the tension of the
cables. Furthermore, stresses are linearly linked to deformations, and deformations
in the bars are a linear function of the node displacements. It then comes that a linear
relationship can be derived between the stresses in the bars and the tensions of the
cables:

σ = Tτ (6)

with σ a stress vector containing the stress in each bar: σ = [σ1, ...,σb]
T for a b-bar

truss. The matrix T, later called the stress matrix, depends on the pose X. Conditions
(1), (2) and (3) will create for a given structure an interval Σ . The components of
τ are also described by intervals. The structural analysis, including the validation
of the instrumentation, can as a consequence be treated with interval analysis tools.
This latter approach allows us to conclude on the truss behaviour over the whole
workspace.

It is important to note that we need to consider in the same time the problems
described by expressions (4) and (6). Combining the two equations would allow to
get a relationship between the applied wrench f and the stress vector σ . However,
some situations may be considered as admissible in terms of stresses whereas the
cable tensions exceed their maximum values.

4.3 Algorithm

We propose to estimate in a single algorithm the constraints associated to the mech-
anism, i.e. the limited range of admissible tensions in the cables, as well as the con-
straints associated to the intrumented truss structure: interferences with the struc-
ture and conditions (1), (2) and (3) defining an interval Σ . The global structure of
the algorithm is obtained by combining algorithms proposed in [7, 11], adding the
validation of stress constraints.
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Fig. 2 The proposed algorithm for workspace determination.

Let W be the prescribed workspace of dimension n to be analysed. The cor-
responding box is decomposed in boxes Bi , i ∈ [1, p] following the algorithm ex-
pressed in Fig 2.

The procedure Compute_DistanceVector performs the interval estimation of the
distance of cables and end-effector with respect to the bars of the truss. A security
distance ds is taken into account to determine the existence of an interference.

The procedure Compute_WrenchMatrix determines the interval wrench matrix
WI . In step 6, the function Out tests if f I is fully inside WIT . The procedure Feas-
ability contains the implementation of the Rohn theorem: the system WIτ = f I is
feasible if and only if the 2n systems of linear equations WY τ = fY are feasible,
where WY and fY are respectively the vertex matrix of WI and the vertex vector of
f I .

The procedure Compute_Structure is using the 2n solutions of τ obtained during
the feasability evaluation in step 7. These solutions are multiplied by the interval
evaluation TI of the stress matrix T to obtain 2n interval evaluations σ I of the stress
vector. If at least one of the 2n interval stress vectors is not included in the interval
Σ , the procedure Compute_Structure returns a null value in step 8.

4.4 Remarks

In the procedure Compute_Structure, an overestimation of the stress matrix can oc-
cur due to interval evaluation, and as a consequence a bisection of a box can be
needed. Such a problem is also encountered during for instance the computation of
the WFW [11].

A variant of the algorithm could be considered to analyse the structure. Since Σ
is known, the cable tensions that the structure is able to support can be computed by
inverting Eq. (6): τ I = VIΣ with V = T−1. It seems then possible to check the cable
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tensions τ needed to counterbalance the applied wrench by comparing the values of
τ to this interval τ I . This may induce into errors since τ I is overestimated.

The proposed algorithm includes a procedure to evaluate the distances between
the structure and other elements of the mechanism. It is well known that such dis-
tance evaluation is generally speaking a rather complex problem. In the following
examples, only structure-end-effector interferences are evaluated in the context of
planar mechanisms.

5 Examples

In the following, two examples are given to illustrate the method. The implement-
ation is performed using MATLAB software with the INTLAB [15] interval arith-
metic toolbox. On a Sony laptop (Intel CoreTM Duo Processor T8300, 2.4 GHz), the
computation time of the algorithm for the given examples is about 15 minutes.

5.1 A 2-DOF Planar Robot with a 3-Bar Truss

Let us consider a 2-DOF planar robot with a 3-bar truss (Fig. 1). The position of
the points Ai, i ∈ [1,3] is defined by the radius R. The platform is a disk of center
P. The bars are cylindrical elements of diameter D chosen identical to lighten the
analysis. We consider as an input the desired workspace W , the applied wrench to
the platform f I , the admissible cable tensions T and the parameters defining the
truss (Table 1).

With the first set of parameters, a portion of the workspace is not valid due to the
buckling of the structure (Fig. 3).

With a higher diameter of the bars (Set #2, Table 1, Fig. 4), no failure of the
structure occurs. We can only observe small limitations on the sides of the work-
space due to the maximum tension of the cables. Further analysis shows however
that the sensor measurement range ε0 = 6.10−3 is much larger than the maximum
encountered deformation ε = 3.10−3. In other words, the structure is not well ad-
apted to the sensor range, that depends on manufacturer specifications. It is indeed
logical to not be able to get simultaneously a satisfying deformation range and the
absence of buckling: we have only one parameter to tune, and two constraints.

In the third set of parameters (Set #3, Table 1, Fig. 5), the bar diameter D and the
mechanism radius R are modified. It allows to obtain a correct deformation range
for the measurement, with a maximum deformation equal to 5.4.10−3. No buckling
occurs, so the structure seems adequate for the application. However, the modific-
ation of the radius R induces higher tensions in the cables, and as can be seen on
Fig. 5-A, the admissible workspace is reduced with respect to the second case. This
shows that it is very important to consider in the same time the structural and kin-
ematic analysis: without modification of the radius R, it is not possible to obtain
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Table 1 First example – Mechanism parameters.

W (mm) T (N) f I (N) E (GPa) ε0 D R (mm)

Set #1

[
[−12.5,12.5]
[−12.5,12.5]

]
[1,100]

[
[−10,10]
[−10,10]

]
3 6.10−3 3 27.5

Set #2

[
[−12.5,12.5]
[−12.5,12.5]

]
[1,100]

[
[−10,10]
[−10,10]

]
3 6.10−3 3.8 27.5

Set #3

[
[−12.5,12.5]
[−12.5,12.5]

]
[1,100]

[
[−10,10]
[−10,10]

]
3 6.10−3 4.3 26

Set #4

[
[−12.5,12.5]
[−12.5,12.5]

]
[1,230]

[
[−10,10]
[−10,10]

]
3 6.10−3 4.3 26
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Fig. 3 First example – Workspace analysis with the first set of parameters.

an adequate deformation range, and modifying the value of R can lead to excessive
tensions of the cables. Figure 5-B shows that if the admissible tensions are modi-
fied (Set #4 in Table 1), the workspace is only limited by the interferences with the
structure.

5.2 A 2-DOF Planar Robot with a 9-Bar Truss

In this example, we still consider a 2-DOF planar robot but with a 9-bar truss as
illustrated in Fig. 6(a). Such a structure can be of great interest because, contrary
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Fig. 4 First example – Workspace analysis with the second set of parameters.
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Fig. 5 First example – Workspace analysis with the third and fourth sets of parameters.

to the previous structure, some bars are submitted to tension and not compression:
we can therefore use bars in tension to perform measurements, and reinforce bars in
compression to avoid buckling. We here focus on the importance of the evaluation
of interferences with the structure. The wires are considered to be in a plane above
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Fig. 6 (a) Second example – 2-DOF planar robot with 9-Bar truss, (b) Second example – Work-
space analysis.

or under the structure, and interferences between the end-effector and the structure
are determined.

The evaluation of the WFW only needs the position of the points Ai, i ∈ [1,3],
and is therefore independent from the number of bars in the truss. We can observe
here that we need to take into account the exact geometry of the truss during the
workspace evaluation, and thus to consider simultaneously structural and kinematic
analysis: In Fig. 6 (b) the workspace is limited on one side by the cable tensions but
on the other side only by the interferences between the truss and the end-effector.
Obviously, the selection of the truss has an influence on the mechanism analysis.

6 Conclusions

In this article, we have proposed to consider simultaneously structural and kinematic
analysis for WDMs, in the context of devices with instrumented truss structure. We
have shown that constraints associated to structural analysis can be treated using
interval analysis, and introduced an algorithm. Using two examples, we have shown
that it is indeed important to perform in the same time structural and kinematic ana-
lysis. The next step will now to develop a design methodology using this algorithm
to select and optimize a device for the considered application. The optimization pro-
cedure will visibly be time consuming, particulary if a large number of parameters
are to be taken into account. A more efficient implementation, using for instance the
BIAS/PROFIL C++ library [16], will therefore be considered.
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Abstract. Robots designed to operate in everyday domains have to move in environments designed
for the humans. Therefore, they will often have a humanoid kinematic structure. Simple and ef-
ficient kinematic models are needed for motion control of this class of robots. An algorithm is
presented to solve the inverse kinematics problem in the presence of a number of control points
arbitrarily located on the whole robot body, using an augmented Jacobian approach and including
posture control. Simulation experiments are reported, showing the effectiveness of the proposed
approach.

Key words: Multiple-point control, inverse kinematics, humanoid robot.

1 Introduction

Modelling and control issues for a humanoid robot with a high degree of redundancy
are addressed in this paper, considering a multiple-control point inverse kinematics
algorithm. The increasing attention of the robotics community towards humanoid
robotics [1, 2, 3] is not simply related to the ancestral ambition of building some-
thing that looks like a human, but has also an immediate and objective reason. In
particular, it arises from the apparently obvious fact that for all actions performed
daily by humans, the objects that they manipulate and the environment where they
live have been built or structured “on a human scale”. For instance, all the objects
that we manipulate have been conceived based on the shape of our hands.

If we really want to build machines able to cooperate with human beings, we
need to design robots that not only can move through environments designed for
humans, but can also handle objects particularly suited to our physical structure and
our behavior. For instance, bipedal robots could potentially move in the same space
where people work, such as an industrial plant with stairs and handrails specific-
ally designed for human use. In this way, these robots could cooperate with humans
and even collaborate with one another using already working ordinary tools or ma-
chinery. Further considerations can be made even under the aspect of human-robot
and robot-robot communication channels [4]; for instance humanoid robots could
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even be used in the therapy of some forms of mental disorders [5]. It is therefore
necessary to develop efficient models that allow us to accurately control the motion
of humanoid robots. On the other hand, it is also necessary to develop simulation
tools to study robots behavior in unstructured environments, considering the safety
issues arising from the interaction with humans.

The model of humanoid robot that will be described in the following sections
is also suitable for simulating the behavior of human beings in a virtual environ-
ment. This can be very useful for ergonomics analyses or even for manual processes
simulations.

Manufacturing companies, indeed, have now taken the concept of “man adapt-
ability” as a basic parameter of quality for their products, and thus they are giv-
ing an increasing attention to ergonomic analyses, even from the early stages of
design [6, 7, 8, 9]. The so-called virtual manikins, provided by many process simula-
tion software, are essentially virtual kinematic chains consisting of several segments
and joints. The length of their segments are derived from anthropometric databases,
which can be queried with respect to different percentiles in the population. How-
ever, these software tools are generally too much complicated to be handled and the
so-called “process simulation” often becomes a very time-consuming task, mainly
because of the difficulty in controlling the kinematic chain of the virtual humanoid.

Therefore, developing efficient algorithms aimed at controlling a high-articulated
chain, such as the human mechanical structure, is very interesting even for fields
apparently unrelated to robotics.

2 Kinematic Modelling

The basic idea in the described approach is to control the highly redundant kinematic
structure of a humanoid robot, by means of only few control points which can move
on the structure [10, 11, 12]. If one considers a serial manipulator and its direct
kinematics equation, changing the value of its Denavit–Hartenberg (DH) paramet-
ers results in the kinematics equations of another manipulator, whose end-effector
is located before the real one: that is equivalent to moving the control point of the
structure. If the DH values are described in a symbolic form, they are such to identify
an arbitrary point as a virtual end-effector of a smaller manipulator considered for
the control. An arbitrary number of such control points can be considered. It is then
possible to consider these control points as fixed or moving. Related to a humanoid,
different kinematic chains will be considered. In addition, during the carrying of a
certain task, the postures taken by our kinematic structure largely depend on bal-
ancing and mechanics issues, that are only partially related to the considered task.
This implies the need for an additional posture control.

For this purpose, the goal has been to develop an inverse kinematics algorithm
that allows concentrating only on a limited number of task-related control points,
without the need of specifying the Degrees of Freedom (DoFs) of the chain for
posture control. The position of the Center of Mass (CoM) of the humanoid has then
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been taken into account: it is calculated on-line and always kept consistent with the
balancing issues of the mechanical structure, by identifying the time-varying CoM
as an additional moving control point.

It is worth noticing that the selected control points on the humanoid can be also
selected automatically depending on the task and the environment, giving a very
powerful tool for simulation.

2.1 Hierarchical Model of Humanoid Robot

Firstly, in order to take advantage of the systematic approaches typical of serial ro-
bots, the humanoid has been modeled as the combination of four kinematic chains,
which share the same starting point, called root. The resulting model is the hierarch-
ical structure shown in Fig. 1. Starting from this graph, it is possible to build up the
DH model of the whole kinematic chain (Fig. 2).

Fig. 1 Hierarchical model of humanoid robot. Fig. 2 DH model of humanoid robot.

In particular, we can define a number of direct kinematics equations, with respect
to the root reference frame. One or more control points on the provided chains can
be selected, by considering the proper set of DH parameters that specify such points.

As we can see, the position and orientation of the root node with respect to the
reference frame is specified by introducing 6 virtual joints (see Section 2.2). Thus,
the considered kinematic structure has 39 DoFs in all.
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This kind of modeling has the advantage of simplicity, but generally it may cause
a physical consistency problem, since some links (as well as all the virtual links)
are shared among different kinematic chains. For instance the “back” of the virtual
humanoid is shared between its right and left arms. This issue and its solution are
discussed in Section 2.5.

2.2 Virtual Joints

Now, we must describe the position and orientation of the multi-legged kinematic
chain with respect to an inertial frame. For industrial robots identifying such a frame
is intuitive, because they have a fixed base. A humanoid robot, instead, is bound to
the ground by a one-way constraint, that is the current support plane, for instance
one foot.

However, this reference periodically changes during the walk, thus we apparently
cannot identify a fixed base starting from which the DH method can be applied
(Fig. 3).

Moreover, the presence of multiple end-effectors (two hands and two feet) im-
plies the need to describe the position and orientation of many frames, differently
from industrial robots, in which the kinematic chain has only one end-effector. This
problem has been overcome using the virtual joints approach [13]. Namely, the hu-
manoid robot has been conceived as connected to the ground plane through a virtual
manipulator consisting of three prismatic and three revolute joints, which character-
ize its position and orientation. The attaching point has been called root (Fig. 4).

Fig. 3 Which reference frame? Fig. 4 Virtual joints approach.

With this approach, the hands and the feet (and even any other control point)
are simply end-effectors that can be controlled with velocity references. In other
words, the posture of the virtual humanoid is completely specified by the following
parameters vector:
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q =
[
qr

T q1 q2 .. qn
]T

where qr = [po
r

T ωo
r

T]T identifies the root frame.
Moreover, virtual joints technique makes unnecessary the management of closed

kinematic chains during the phase of double support. Indeed, this condition becomes
merely equivalent, from a kinematic point of view, to imposing a null velocity ref-
erence to the feet.

2.3 Augmented Jacobian

Each chain has its own direct kinematic function, therefore a Jacobian matrix can
be computed for a generic control point of the structure. Generally, considering n
control points we can define the following set of equations:

v1 = J1q̇

v2 = J2q̇
... (1)

vn = Jnq̇

where the generic element Ji is the Jacobian matrix related to a specific control
point.

It is understood that, if the generic joint variable q j does not affect vn, it is
(Jn)i j = 0. This set of equations can be summarized as

v = JAU q̇ (2)

where JAU is the so-called Augmented Jacobian. On one hand, this approach allows
us to solve the inverse kinematic problem with only one Closed-Loop Inverse Kin-
ematics (CLIK) algorithm [14]. On the other hand, the trajectories defined for the
control points will be all treated as primary tasks, unlike other solution methods do,
such as null-space based approaches [15, 16].

In particular, in order to define the structure of JAU, the vector q̇ must be properly
sorted. Since the humanoid structure is composed by four kinematic chains, we can
write four different vectors of unknowns:

q̇1 =
[
q̇T

r q̇T
rl

]T
right leg

q̇2 =
[
q̇T

r q̇T
ll

]T
left leg

4pt]q̇3 =
[
q̇T

r q̇T
b q̇T

ra

]T
right arm

4pt]q̇4 =
[
q̇T

r q̇T
b q̇T

la

]T
left arm

where q̇r are the velocities of the virtual joints that are shared among four kinematic
chains. These vectors can be summarized in only one vector of unknowns
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q̇ =
[
q̇T

r q̇T
rl q̇T

ll q̇T
b q̇T

ra q̇T
la

]T

=
[
q̇1 q̇2 .. q̇39

]T
.

(3)

With this choice, the Augmented Jacobian takes on the following form

JAU =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

Jri
Jrli

0 0 0 0
Jri

0 Jlli
0 0 0

Jri
0 0 Jbi

0 0
Jri

0 0 Jbi
Jrai

0
Jri

0 0 Jbi
0 Jlai

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

. (4)

The matrix JAU, with the proposed humanoid model, has 39 columns, while the
number of its rows depends on the number of control points considered.

2.4 Center-of-Mass Jacobian

Unlike industrial manipulators and, more generally, non-ambulatory robots, bipedal
robots must concern about their balance while performing any task. If this does
not happen, obviously, the robot would lean over and fall. Moreover, humanoid
robots are inherently hyper-redundant, having a much higher number of joints than
traditional industrial robots. Consequently, there are many postures that achieve the
same position for its body terminals, corresponding to control points. Also, taking
into account the balancing issues allows the humanoid to attain more natural posture,
similar to those of human beings.

For this, the Virtual End-Effectors (VEEs) technique [10] has been implemented
also with respect to the center of mass (CoM) of the digital humanoid, which be-
comes a further control point for the kinematic chain. In particular, the trajectory
of the CoM can be defined in such a way that its vertical projection on the current
support plane (namely, the Center of Pressure, CoP) belongs to the stability polygon
formed by the feet (Fig. 5). It is worth noticing that the constraint about the CoP will
be treated as a primary task, as well as the other tasks.

The basic idea is to obtain a differential relationship like

vG = JGq̇, (5)

where JG is a 3× n matrix, called Center-of-Mass Jacobian. Then, Eq. (5) will be
inserted in Eq. (1) as a further control point.

For this purpose, we can define the CoM of a kinematic chain composed of n
links as

pG =
∑n

i=1 mipGi

∑n
i=1 mi

=
1
m

n

∑
i=1

mipGi
. (6)
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Fig. 5 Center of Pressure and support plane.

Equation (6) can be derived with respect to time

vG =
1
m

n

∑
i=1

mivGi
. (7)

Since the center of mass of each link can be considered as a Virtual End-Effector
(VEE), it is always possible to write the differential relationship

vGi
= JGi

q̇

where

JGi
=

⎡

⎣
γx,1 · · · γx,i 0 · · · 0
γy,1 · · · γy,i 0 · · · 0
γz,1 · · · γz,i 0 · · · 0

⎤

⎦ . (8)

Indeed, if the vector q̇ has been properly sorted, vGi
can be affected at most by the

first i links of the chain. Now, Equation (7) can be written as

vG =

[
1
m

n

∑
i=1

miJGi

]

q̇. (9)

By comparing Eqs. (5) and (9), we can finally assume

JG =
1
m

n

∑
i=1

miJGi
. (10)

Given JG, the velocity of CoM vG becomes a further control point for the kin-
ematic chain. Thus, we can insert the kinematic relation (5) in the equations set
(1). As a result, we will have an Augmented Jacobian matrix with two more rows,
that are related to the components of vG projected on the current support plane. As
mentioned above, the implemented inversion algorithm assures that a constraint on
CoM velocity becomes a high-priority task to be achieved, without using null-space
projection.
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Finally, it is worth emphasizing that the expression of JG suggests also the pos-
sibility to use the kinetostatic duality [14] to compute the joint torques correspond-
ing to forces applied to the structure.

2.5 Conflicting Tasks

As mentioned above, some tracts of the humanoid structure are shared among ap-
parently different kinematics chains. For instance, the right and left arms of the
humanoid share a common tract, namely the back. But, if actually the left and right
arms were modelled as independent chains, they could perform different or even
conflicting tasks.

For this, inverse kinematics algorithms for multi-legged robots generally provide
two different solutions for the left and right arm. In particular, for the back it will be

q̇bl �= q̇br, (11)

where q̇br and q̇bl are different solutions obtained considering the back belonging
respectively to the right and to the left arm. However, generally this issue is com-
monly solved with the following choice for the joints of the back:

q̇b =
1
2

(q̇br + q̇br). (12)

This guarantees a physical consistent solution, but in general none of the conflicting
tasks will be actually achieved.

The CLIK algorithm based on the Augmented Jacobian cleverly resolves also
this issue. Indeed, the vector of solution q̇ has been sorted in such a way that its
elements appear just once, thus the inversion algorithm provides only one solution
that is consistent with all the physical constraints.

On the other hand, the main problem related to the application of the Augmented
Jacobian method is the matrix inversion, due to its dimensions (JAU has 39 columns)
and consequently to the detection of its singularities.

3 Simulations in VR

In order to test the proposed inversion model, several VR simulations have been
carried out. First of all, a geometric model for the virtual humanoid has been built
up with a typical hierarchical approach. The result has been a VRML model used
for the simulations.

After that, the kinematic model of the virtual humanoid and its CLIK algorithm
have been implemented with MathWorks MATLAB–Simulink software. Since a
weighted pseudo-inverse has been adopted to compute the inverse kinematics, a
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Fig. 6 Standing up from a sitting position.

proper choice of weights and of some optimization criteria have granted quite nat-
ural and fluid movements for the virtual humanoid. As a result, despite the ease of
planning the movements of the digital humanoid, we can simulate quite complex
tasks, by planning the trajectory for only a limited number of control points. For
instance, the virtual humanoid can walk or even climb a ladder, as will be shown in
the following sections.

3.1 Standing up from a Sitting Position

In Fig. 6 different frames of a standing-up simulation are shown. This task has been
achieved just by imposing a null velocity to the feet of the virtual humanoid and
by giving a vertical velocity reference to its pelvis. As a further constraint, the CoP
must always belong to the support plane (balance control). As shown, the virtual
humanoid performs the assigned movement always keeping itself in balance.

In a similar way, it is possible to simulate the virtual humanoid sitting down from
a standing position.

3.2 Collision Avoidance

The approach can be used to take into account also possible obstacles in the hu-
manoid workspace. Figure 7 shows again the simulation of a standing up, but this
time there is a table. This task has been achieved by assigning to the control points
velocity references coming from repulsive potential fields.
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Fig. 7 Standing up from a sitting position near a table.

3.3 More Complex Tasks

In this section the results of the simulation of quite complex tasks are reported. The
CLIK algorithm has always taken into account the constraints about the CoP, as
mentioned above.

The results shown in figures can be quite interesting in the field of both computer
graphics and robotics.

Fig. 8 The humanoid lifts a weight.
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Fig. 9 The virtual humanoid grabbing an object on a table.

4 Conclusions and Future Work

The main contribution of the proposed approach is in the computation of an Aug-
mented Jacobian matrix to specify trajectories for different control points, including
the control of the center of mass of the kinematic structure. In fact, the definition of
the movements of the center of pressure as a primary task has granted natural move-
ments to the virtual humanoid, in spite of the limited number of considered control
points. Notice that these points can move on specified sections of the humanoid,
giving the possibility of controlling nominally every point on the kinematic struc-
ture. The symbolic implementation leads to a very fast response of the algorithm
with respect to complex simulations in the humanoid configuration space.

Moreover, the developed model lends itself to a very different set of applications,
even not strictly robotic. Firstly, it can be used for digital animation of virtual hu-
manoids in the field of ergonomics and process analysis. In fact, despite complexity
and cost of already existing software tools dedicated to this type of analysis, gener-
ally their simulation algorithms are still tied to “key-frame” animation techniques.
The developed model instead makes it possible to observe the resulting joint motion
simply by planning the trajectory of a limited number of control points.

Another field of application could be marker-based motion capture [17], where
the algorithm can be used in order to limit the number of markers needed to capture
human movements.

Finally, although the described model is advanced in terms of quality of analysis,
it is also computationally efficient. Specifically, a symbolic representation for the
kinematics of the digital humanoid has been derived. In this way, it is possible to
change in real-time several characteristic parameters of the chain, such as the ap-
plied loads, without further computational overload.
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Abstract. The need to drive a serial array of two robotic axes by means of two motors fixedly
mounted on a common base is the motivation behind the work reported here. An innovative two-
degree-of-freedom drive is proposed, which is based on a serial array of an epicyclic gear train
and a five-bar linkage. The ring and sun gears are driven by the two motors, its two outputs being
the angular velocity of the planet-carrier and the relative angular velocity of the planet gears w.r.t.
their carrier. The former is the pan rate, the latter the input to the five-bar linkage whose output is
the tilt rate. Optimization is used to determine the proportions of the various dimensions involved
so as to obtain a 2 × 2 Jacobian, mapping the motor rates into the pan and tilt rates, whose condi-
tion number, at a prescribed drive posture, is a minimum. Moreover, to improve the force-torque
transmission characteristics, the transmission defect of the mechanism, as introduced elsewhere,
is also minimized. To this end, a sequential-quadratic programming method using an orthogonal
decomposition of the space of design variables is implemented; the dimension ratios thus resulting
lead to a mechanism whose transmission defect is a minimum, while the condition number of its
Jacobian matrix is a minimum as well, at the posture where the transmission angle is 90◦.

Key words: Pan-tilt drive, condition number, transmission defect.

1 Introduction

Most commonly, parallel robots are designed with as many limbs as degrees-of-
freedom (dof) [1]. While this layout eases the design, it does so at the expense of
the robot footprint, which becomes correspondingly large because of the number
of limbs, and of the manipulability. We understand the latter as the capability to
accurately manipulate the end-link of a serial chain, the mobile platform (MP), from
an actuator mounted on the base.

Parallel robots with a limited number of limbs may offer advantages over their
many-limb counterparts. For example, a six-dof parallel robot with only three limbs,
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should offer a larger dextrous workspace – the region of the workspace on which its
MP can attain a given range of orientations1 – than its six-limb counterpart.

The motivation behind the work reported here is the ongoing work aimed at the
development of a two-limb Schönflies-motion generator (SMG) [3] at McGill Uni-
versity, in collaboration with the University of Ontario Institute of Technology. In a
nutshell, a SMG is a four-dof parallel robot capable of motions proper of SCARA
(Selective Compliance Assembly Robot Arm) systems: three independent transla-
tions and one rotation about an axis of fixed orientation, usually vertical. Currently,
only one parallel SMG, Adept’s Quattro, is out in the market. Other parallel robots
with four dof for Schönflies-motion generation feature a hybrid architecture, in that
they entail a fully parallel array of three identical limbs for three-dof translations,
in series with a fourth axis for rotations about a vertical axis, e.g., ABB Robotics’
Flexpicker and Fanuc’s M1-iA. The footprint of these robots could benefit from
a number of limbs reduced to the lowest possible, namely, two. Each limb of the
McGill SMG undergoes two rotations, one about a vertical axis, the other about a
horizontal axis. The first rotation is referred to as the pan, the second being called
the tilt. Pan and tilt motions are usually produced via a serial array of two orthogonal
revolutes; however, higher accuracy and stiffness can be achieved by exploiting par-
allel pan-tilt motion generators, a number of them being reported in [4], and then
ranked in terms of design complexity [5, 6]. The design complexity of a mechan-
ism is understood as a measure of diversity of its components serving as a selection
guide in the conceptual design phase, where no parametric model is available. In this
paper, the winning mechanism in [4] with the least design complexity is optimally
dimensioned.

The proposed mechanism is a two-dof drive for the production of pan and tilt by
means of two motors mounted on a common base. The drive consists of the serial
array of two mechanisms, one planar epicyclic gear train and one five-bar linkage,
composed of the base, the screw, the slider, the intermediate and the output link,
as shown in Fig. 1. One of the motors drives the sun gear, the other the ring gear
of the epicyclic train. The two outputs of the train are the angular velocity of the
planet-carrier and the relative angular velocity of the planets w.r.t. their carrier. The
former provides directly the pan rate, the latter the tilt rate via the linkage.

The mapping of the motor rates into the pan and tilt rates is described by the
2 × 2 drive Jacobian J. As it turns out, the latter is posture-dependent, in that it is a
function of the tilt angle θ . The objectives of the optimization procedure described
here are the minimization of both the condition number of J at a prescribed posture
and the transmission defect, an index of the force-torque transmission characteristics
[7]. To solve the optimization problem, a sequential-quadratic programming method
based on an orthogonal decomposition of the space of design variables [8] is applied.
The result is a set of optimum proportions of the various geometric parameters of
the drives.

1 Vijaykumar et al. [2] defined the dextrous workspace as that region of the positioning workspace
where the end-effector of a serial robot can attain an arbitrary orientation. Arbitrary orientations be-
ing quite challenging with parallel robots, this definition is adapted here to the mobility limitations
of the latter.
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Fig. 1 The two components of the pan-tilt drive.

2 Kinematics of the Pan-Tilt Mechanism

From kinematics, the relation between the pan and the tilt rates, ω1 = ωC and
ω2 = θ̇ , and the angular velocities of the sun and the ring gears, ωS and ωR , are
found as:

ωo = Jωi (1a)

where

ωo =
[

ω1
ω2

]

, ωi =
[

ωR

ωS

]

, J =
⎡

⎢
⎣

1

ν + 1

ν

ν + 1
k

1 − ν

−kν

1 − ν

⎤

⎥
⎦ , k = λ sin θ − σ

δ sin θ − σ cos θ
η

(1b)
in which λ = l2/l1, σ = s/ l1, δ = d/l1 and η = p/l2 are dimensionless para-
meters. Moreover, the pitch of the screw and the gear ratio between the sun and the
ring gears are denoted by p and ν, respectively, while θ , l1, l2, s and d are shown in
Fig. 1(b). The derivations leading to the above Jacobian matrix J are included in the
Appendix.

To determine the required input rates for producing the desired pan and tilt rates,
the above Jacobian should be inverted. However, to avoid round-off error amplific-
ations, the mechanism should be dimensioned such that the condition number of
the Jacobian attains a minimum. The square of this number based on the weighted
Frobenius norm is obtained below [9]:

κ2(J) =
[(

1 − ν4
)

4νk

(

1

(1 + ν)2 + k2

(1 − ν)2

)]2

(2)
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3 Optimization of the Pan-Tilt Mechanism

The condition number of the Jacobian matrix, expressed in Eq. (2), is a function of
two variables, namely, ν and k. However, unconstrained minimization [10] of the
condition number over these two variables leads to λ, and hence l2, unbounded. To
cope with this problem, the radius of the sun gear is assumed to be equal to the
diameter of the planet gear. The corresponding gear ratio ν = 0.5 is then substituted
into the expression for the condition number in Eq. (2), which leads to

κ2(J) = 0.0434(1 + 9k2)2

k2
(3)

Upon zeroing the derivative of the above expression w.r.t. k, its minimum is de-
termined as κmin(J) = 1.25, which occurs at |k| = 1/3; recalling the expression
for k from Eq. (1b) reveals that more information is still required to synthesize the
linkage.

In the realm of kinematic synthesis, a useful index called the transmission quality
Q, or its complement, the transmission defect D, with D =

√

1 − Q2, is used to
evaluate the force-torque transmission characteristics of the synthesized mechanism.
Denoting the transmission angle of the five-bar linkage with µ, the transmission
defect D of the linkage is defined as:

D =
√

1

	θ

∫ θ2

θ1

cos2 µdθ, 	θ = θ2 − θ1 (4)

where θ1 and θ2 are the extreme values of the angle of rotation of the output link,
which define the link mobility range.

For the five-bar linkage, the transmission angle is defined as the angle between
the output link and the connecting rod, as shown in Fig. 1b. From geometry, we
obtain

cφ = λcθ − δ, sφ = λsθ − σ (5)

where cx and sx denote the cosine and the sine of angle x, respectively.
Multiplying the two expressions in Eq. (5) by cθ and sθ , respectively, and adding

the results yield
cµ = λ − δcθ − σsθ , µ = φ − θ (6)

Moreover, sµ can be obtained via the sine law applied to the triangle OPQ in Fig. 1b
as:

sµ = δsθ − σcθ (7)

To eliminate the variable θ , Eqs. (6) and (7) are cast in vector form:
[

cθ −sθ
sθ cθ

] [

σ

δ

]

=
[ −sµ
λ − cµ

]

(8)
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θmax

θmin

(a) (b)

Fig. 2 The five-bar linkage: (a) at the extrema of the slider motion (b) at the optimum posture.

Since the matrix coefficient in Eq. (8) is a rotation, it preserves the Euclidean norm,
whence,

σ 2 + δ2 = 1 + λ2 − 2λcµ ⇒ cµ = 1 + λ2 − δ2 − σ 2

2λ
(9)

Upon substituting cµ from Eq. (9) into Eq. (4), the transmission defect D of the
linkage is found as:

D2 = 1

4λ2	σ

[(

1 + λ2 − δ2
)2

	σ − 2

3

(

1 + λ2 − δ2
)

	σ 3 + 1

5
	σ 5

]

,

	σk = σk
u − σk

l (10)

where σl and σu are the the lower and the upper bounds of σ = s/ l1. The right-hand
side of Eq. (10) can be streamlined, to yield

ζ = 1

X2

[

(1 − X1 + X2)
2 − 2

3
c1 (1 − X1 + X2) + 1

5
c2

]

, ζ = 4D2

c1 = σ 2
u + σuσl + σ 2

l

c2 = σ 4
u + σ 3

u σl + σ 2
u σ 2

l + σuσ 3
l + σ 4

l , X1 = δ2, X2 = λ2

(11)

3.1 Minimization of the Transmission Defect

Our objective is now to find the dimensions of the mechanism that minimize its
transmission defect. Since no feasible solution to the unconstrained optimization
problem exists, constraints stemming from our engineering insight into the require-
ments of the task at hand should be brought-in. For instance, the mechanism must
be capable of tilting in an interval which is larger than the prescribed [θmin, θmax].

Considering Fig. 2(a), the constraints sought are derived as:

δ − (1 + λ) cos θmax ≤ 0, λ cos θmin − δ − 1 ≤ 0 (12)
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Table 1 The local minima of the transmission defect.

Initial guess:[λ, δ, y1, y2]T λ δ y1 y2 ζ

1 [1, 1, 1, 1]T 1 1 0 1 0.8
2 [1, 1, 1, 0]T 1.9250 0.9250 0.7332 0 1.7779
3 [1, 1, 0, 0]T 3 2 0 0 1.8667

It is noteworthy that the reflection of the mechanism w.r.t. the horizontal line does
not alter the constraint relations expressed in Eq. (12). In our case, the tilt angle is
desired to vary in the interval [−60◦, 60◦]; thus, θmin and θmax are assigned 0◦ and
60◦, respectively.

The dimensionless bounds σl and σu corresponding to θmin and θmax are

σl = λ sin θmin, σu = (1 + λ) sin θmax (13)

The optimization problem can now be stated as: minimize ζ in Eq. (11) over λ

and δ subject to the two inequality constraints (12).
To solve the optimization problem, the inequality constraints are transformed

into equalities by introducing two slack variables y1 and y2:

δ − (1 + λ) cos θmax + y2
1 = 0, λ cos θmin − δ − 1 + y2

2 = 0 (14)

A numerical algorithm is utilized to solve the optimization problem; the algorithm
used is based on sequential-quadratic programming using an orthogonal decompos-
ition of the design-variable space with Gerschgorin stabilization [8]. Since the result
of the algorithm depends highly on the choice of initial guess, the computer code is
executed for several different initial guesses, mostly chosen on the boundaries of the
feasible region as a result of not achieving acceptable solutions to the unconstrained
minimization problem. Considering that both variables λ and δ are length ratios,
and hence, positive, the results which violate this condition are simply left out. The
feasible local minima of the problem are tabulated in Table 1.

Comparing the transmission defect values reported in Table 1, the first solution
with λ = δ = 1 is selected. The optimum five-bar linkage is displayed in Fig. 2(b)
at the posture where θ = 0, the transmission angle being 90◦.

The last parameter to be determined is the pitch of the screw. For this matter,
we require the five-bar linkage to produce the minimum condition number of the
Jacobian at the posture with the maximum transmission angle, i.e., θ = 0. As men-
tioned previously, the condition number of the Jacobian matrix attains a minimum
at |k| = 1/3.

Substituting Eq. (7) into Eq. (1b), and letting µ = 90◦, we obtain

k = cθη (15)

Since θ vanishes at the posture where µ = 90◦, the optimum value of η is found
as 1/3. The final optimum dimensions of the five-bar linkage satisfy the relations
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Fig. 3 The CAD model of an optimum pan-tilt mechanism.

below:

l1 = l2 = d, p = l1

3
(16)

These dimensions lead to a mechanism which has the minimum transmission defect
in its mobility range, while the condition number of its Jacobian matrix is a min-
imum at the posture with the maximum transmission angle, i.e., µ = 90◦. Finally,
the pitch obtained from Eq. (16) should be available in ball-screw catalogs, which
thus constrains l1 to yield a feasible p. The CAD model of the pan-tilt mechanism
with an optimum set of dimensions is illustrated in Fig. 3.

4 Conclusions

An innovative parallel pan-tilt drive was introduced, which consists of a two-dof
planetary gear train whose sun and ring gears are actuated by means of two motors
mounted on the same base platform, the outputs being the rotations of the planet-
carrier and the planet gears. The first rotation produces the pan motion, while the
rotation of each planet w.r.t. the planet-carrier is transmitted to a five-bar linkage so
as to obtain the tilt motion.

The optimum dimensioning of the mechanism was sought such that the condition
number of the Jacobian matrix becomes a minimum at an optimum posture – defined
by an angle θ – where the transmission angle of the mechanism is 90◦. Moreover,
to enhance the force-torque transmission characteristics of the mechanism, its trans-
mission defect was minimized. However, since the unconstrained optimization prob-
lem did not lead to a feasible solution, two geometric constraints guaranteeing a pre-
scribed mobility range were introduced to constrain the optimization problem. The
problem thus formulated was solved by resorting to a sequential-quadratic program-
ming method based on an orthogonal decomposition of the design-variable space.
The algorithm converged to three acceptable solutions, depending on various initial
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guesses chosen. Upon comparing the three results, the optimum mechanism with
the minimum transmission defect was found.

The downside of this mechanism is its size, as it requires, for the tilt axis sweep-
ing an angle of 120◦, a stroke 	s of the screw sliders, of 2

√
3l1 = 3.464l1, which

based on the assumption ν = 0.5, yields 	s = 2.598ds, with ds denoting the pitch
diameter of the sun gear. In the current design of the SMG, ds = 46 mm, which leads
to 	s = 119.508 mm. The stroke requirement is larger than the space available in
the current SMG prototype, which calls for some extra design work.

Appendix

From the kinematics of planetary gear trains, we have

ωC = 1

ν + 1
ωR + ν

ν + 1
ωS, ωP/C = 1

1 − ν
ωR − ν

1 − ν
ωS (17)

Adding the squares of the two relations in Eq. (5) and calculating the time derivat-
ives of the angles of interest from the equation thus resulting yields

θ̇ = λsθ − σ

λ(δsθ − σcθ)
σ̇ , σ̇ = p

l1
ωP/C (18)
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Abstract. Motion synthesis is a central question in humanoid robotics research. The present paper
proposes a generic approach exploiting a quadratic programming method for solving the problem
of motion coordination under physical constraints. Details about the problem formulation for deal-
ing with sequences of complex activities are given. The method is illustrated in several examples
using the iCub robot. We will show how whole-body control under multiple contact constraints
can be achieved. We will also discuss how it is possible to organize the priorities between the tasks
in this framework to balance multiple objectives.

Key words: Whole-body motion, environment interaction, LQP, hierarchy.

1 Introduction

This paper considers the problem of task/posture coordination of humanoid robots
interacting physically with their environment. It focuses on the design of an efficient
framework for solving the underlying control problem in a generic way. Controlling

problem which has received a limited number of contributions until now.
Task/posture coordination and whole-body motion are usually performed using

linear algebra methods (pseudo-inverses, orthogonal projectors) on the linearized
laws of motion [1–3]. These methods allow enforcing kinematic constraints and a
strong hierarchy between tasks. Although they do not provide a natural way to take
into account the inequalities that arise when modelling contacts and joint limits,
authors [4] used them successfully to control a humanoid system in contact with its
environment.

Keeping the robot in balance during dynamic motions is classically done us-
ing the zero moment point (ZMP) [5, 6] and the base of support, which are only
defined if all the contacts are coplanar. Several authors extended them to handle
three-dimensional contact configurations. For instance, Harada applied them to a
robot grasping its environment [7]. However many of these extensions suffer from
a lack of generality and physical meaning.

the postural balance when the robot realizes a complex task is a very challenging
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A notable exception is the work by Wieber [8, 9] where the problem, including
spatial contacts, is modelled and solved using a linear quadratic program (LQP). The
LQP formulation still requires a linearized model, but handles the linear inequalities
directly. Later works [10–13] also use LQP in similar ways for a range of humanoid
systems and motions. In this paper, we propose on validate a general framework for
the synthesis of dynamic whole-body complex activities of humanoid robots while
taking into account in passive or active way all the internal physical constraints and
external contacts acting on the various bodies of the humanoid.

In the first section, we will recall the mechanical model for constrained motions
of humanoid robot, as well as the task description with their related controllers. We
The second section introduces the design of the multi-task LQP-based controller
and the way we deal with task hierarchy for generating a whole-body motion satis-
fying postural stability and upper-limbs task constraints. The third section gives the
implementation of this general control framework on a virtual iCub robot [14] for
several scenarii including manipulation, rising up, walking, etc. Simulation results
are presented and discussed. Finally, conclusions and perspectives for further works
are given on the last section.

2 Modelling

2.1 Whole-Body Dynamics

The humanoid robot is a mechanical structure which can be viewed as an under-
actuated tree-structure of rigid bodies with a free-floating base (the trunk) on which
are articulated the upper and lower limbs. The robot has active joints equipped with
actuators that can generate bounded generalized forces (torques). The dynamic be-
havior of the system is described by its equation of motion, and the interaction forces
with the environment are usually acting on several locations of the limbs, sometimes
directly on the trunk.

The iCub robot is a humanoid robot sized as a three and half year-old child robot
made of 53 degrees of freedom (dof) including those integrated in the hands. We
do not model the hands in the present work, so the resulting virtual robot is left
with only 38 dof: 32 joint parameters which are concerned by the main movements
of the robot plus 6 additional parameters which are used to locate the trunk with a
reference frame. For this kind of mechanical system, the Euler-Lagrange equations
give the equation of motion of the robot Eq. (1), and the model is extended with its
physical limitations (joint torques Eq. (2), joint position limits Eq. (3), etc.).

M(q)q̈ + N(q, q̇)q̇ = g(q)+ Sτ + Jc(q)tfc (1)

τmin ≤ τ ≤ τmax (2)

qmin ≤ q ≤ qmax (3)
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M,N,g,q, q̇, q̈,S,τ,Jc, fc are respectively the generalized mass matrix, the Cori-
olis and non-linear effects matrix, the generalized gravity vector, the generalized
position, velocity and acceleration vectors, the actuation matrix, the robot torque
vector, the contact points Jacobian matrix and finally the contact forces vector. Ac-
tuation matrix S allows to actuate or not each degree of freedom. All the mechanical
properties of the iCub robot has been carefully identified for being integrated in the
simulation environment described in section 4.

2.2 Contact Model

For all the humanoid bodies interacting with the environment, the contacts are de-
scribed from a set of punctual contact with friction. Each contact point i has a ve-
locity vci = Jci(q)q̇ ∈ R

3, and each point develops a force denoted fci ∈ R
3. Four

cases may happen

• the contact is persistent, vci = 0 and fci lies inside the Coulomb cone,
• the contact is lifting, vci.n > 0 and fci = 0,
• there is no contact, vci ∈ R

3 and fci = 0.
• the contact is sliding vci ×n �= 0 and fci �= 0

where n is the normal vector of contact. In order to be integrated in the LQP-based
dynamic controller, we express the contact point constraints in terms of joint accel-
erations and forces constraints under linearized cones, which gives for the two first
cases for instance:

case 1 (vci = 0) : Jci(q)q̈ + J̇ci(q, q̇)q̇ = 0 (4)

Cfci ≤ 0 (5)

case 2 (vci.n > 0) :
(
Jci(q)q̈ + J̇ci(q, q̇)q̇

)
.n > 0 (6)

2.3 Task Description and Control

Basically, a task is described as an acceleration imposed to an element related to
the robot (joints, frame, free-floating base, center of mass, etc.). These tasks can
be transformed into a generalized acceleration through the Jacobian matrix of the
point, the frame, the joint, etc. involved in the task. The acceleration may result
from the action of a controller. Several kinds of controllers have been implemented,
as Proportional Derivative (PD) controller to reach a pose or a position, impedance
controller to monitor the contact force, and predictive controller in the particular
case of locomotion.

If we consider for instance the action of the PD controller, the desired accelera-
tion of the element related to the task T will be computed through the proportional
and derivative errors. If the related element of task T is a frame, the proportional
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error (here, the pose error) xerr
T between the controlled frame and the goal is the

concatenation of the position error δp = pdes −p and the attitude error δQ. We use
quaternion Qdes = (η ,θ ) ∈ R×R

3 to describe the attitude [15], and the error is
given by δQ = (η .ηdes + θ .θ des,η .θ des −ηdes.θ −θ ×θ des). Finally, the desired
acceleration of the frame related to the task T is obtained in the following equation
v̇des

T = Kpxerr
T −KdvT where vT = JTq̇ ∈ SE(3) is the velocity of the related ele-

ment with JT the Jacobian matrix of task T , Kp the stiffness and Kd the damping.
To perform locomotion, a predictive controller described on Kajita work [6]

is used. The controller predicts the future position of an approximate Zero Mo-
ment Point (ZMP) on a horizontal plane along a predefined horizon, and the pre-
diction is updated periodically to correct the trajectory during time. To compute
this approximation, the humanoid robot is modelled as an inverted pendulum,

˜zmpx,y = comx,y − ¨comx,y(comz/g) where g represents the gravity acceleration. It
generates a ZMP trajectory close to a reference, and applies the computed input.
This control is used for instance in example 4.3.

3 LQP-Based Controller Design

3.1 Designing LQP

The approach we have used for the synthesis of dynamic whole-body motions is
based on constrained optimization algorithm (quadratic program QP) exploiting a
multi-criteria weighted quadratic function reflecting the tasks to perform and their
relative importance. A QP has the following general form where Fopti(x) is a linear
quadratic function of x and represents the weighted criteria to minimize.

solve: x∗ = argmin(x)(Fopti(x))

subject to: Ax = b

Cx ≤ d

The problem here is to cast physical laws and desired motions into a suitable
LQP. Physical laws are defined by the equations Eqs. (1)–(6). Since they must be
respected, we set them as equality and inequality constraints in LQP. Eq. (1) is gen-
erally non-linear, so the linearized equations around (q, q̇) are used, and the problem
is solved at each time step. q̈,τ, fc are the LQP variables, and when a solution exists,
the optimal torque τ∗ found by LQP will finally be applied to the robot.

qmin ≤ q+ q̇h + q̈h2/2 ≤ qmax (7)

A basic LQP consists in minimizing τ2 to generate smooth motion, under the
constraints Eqs. (1)–(6). All these equations are functions of LQP variables, except
Eq. (3). This one will be replaced in the LQP formulation by an inequation which
constrains the predicted position of q. Let us consider that the acceleration q̈ is
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constant during a prediction horizon h. At time t, we can compute the future position
of q at time t + h, and inequation Eq. (3) becomes Eq. (7).

3.2 Performing Tasks

A task has to be converted into a form suitable for the LQP. The effective ac-
celeration of the element related to the task T is computed as v̇T = JTq̈+ J̇Tq̇
where JT, J̇T are the Jacobian and derivative Jacobian matrices of task T . The con-
trol is possible because the equation is function of q̈. Section 2.3 gives means to
compute desired acceleration v̇des

T at each time step. LQP has to find q̈ such as
JTq̈+ J̇Tq̇ = v̇des

T , so the task is defined as min(q̈)(∆T = (JT.q̈+ J̇T.q̇− v̇des
T )2).

To deal with several tasks simultaneously, the quadratic cost function is set as
the sum of the weighted tasks functions, min(q̈)(αI .∆I + αJ.∆J + · · ·) where αI ,αJ

represent respectively the importance coefficients of tasks I,J. Indeed, the tasks with
the highest coefficient cost more, and will be minimized better than the following
ones. Although this approach is not equivalent to a hierarchy, it may offer more
flexibility because tasks are not constant during the whole simulation: objectives
can move, the relative importance can change, and tasks may be active or not.

In order to avoid discontinuity in controlled task accelerations and consequently
in applied torques when a goal is replaced by another one, a smooth transition is
required. A solution to this problem is to create a new task T ′ which controls the
same element of the robot and to give it a new objective. If αT decreases to 0 during
a short period and αT ′ increases from 0 to the old value of αT during the same
period, a continuous change from an objective to another is insured. This will be
illustrated in example 4.2.

4 Application to the Virtual iCub

4.1 Managing Multi-Tasks

The method has been validated through various scenarii where numerous tasks are
performed. The simulator used to perform the simulations is Arboris [16], a robotic
simulator designed for the Matlab software, and LQP is solved at each time step
thanks to the Yalmip software [17]. The simulation time step used in the following
simulations is δ t = 2.5 ms and the prediction horizon used in Eq. (7) is h = 0.125s.
About task control, a proportional derivative control law is generally used. For all
tasks, the stiffness and the damping are set as Kp = 30I s−2 and Kd = 2(Kp)1/2 s−1,
where I represents the identity matrix.

In this simulation, several tasks are performed simultaneously. Figure 1 shows
what tasks are performed. The robot moves the two hands simultaneously at two
different locations, and after one second, the right hand goal changes and reaches the
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Fig. 1 Left: Controlled part of the robot; Right: Right arm joints velocities with (down) and without
(up) joint stop anticipation and smooth α change.

Fig. 2 Left: Sit-to-stand sequence; Right: ZMP and CoM trajectories while standing up.

left hand goal. the center of mass (αCoM = 1) is controlled in position, the pelvis and
the hands (αpelvis = αhands = 10−2) in position and attitude, and the spine (αspine =
10−2) and the general posture (αposture = 10−8) in angular position.

In Fig. 1, the graph shows the right arm joint trajectories. On the upper graph,
a sharp change occurs, due to goal changes without transition. Furthermore, at 1.2
seconds, one joint hits the stop, so its velocity falls down to 0. But joint limits
anticipation and smooth transitions avoid any big evolution in joint velocities, as
shown on the lower graph.

4.2 Sit-to-Stand on One Foot

In this simulation, the robot stands up from a sitting position. The CoM position is
controlled in the horizontal plane to reach the center of the base of support. When
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Fig. 3 Up: Walking sequence; Down: CoM (dotted) and filtered ZMP (solid) trajectories.

the CoM enters into the support polygon, its goal moves softly to the left foot, and
is also controlled in vertical position. Notice that the pelvis attitude is not controlled
in the sagittal plane while the robot rises. In Fig. 2, this sequence is shown: the robot
stands up, then moves its CoM toward left foot, and lifts right foot when ZMP enters
into left foot base of support. The CoM and ZMP trajectories are drawn in Fig. 2
from when CoM enters in the base of support to the end of the sequence.

4.3 Walking

In this experiment, the CoM is controlled trough the ZMP trajectory defined by a
predictive controller (see Section 2.3). Besides, we control pelvis attitude, spine and
general posture as before, and we add one task at each foot, to produce the foot
trajectories computed a priori (αtra jectory = 102). The CoM and approximated ZMP
trajectories are shown in Fig. 3.

5 Conclusion

This paper presents a new generic dynamic LQP-based controller which solves at
each time step a complex multi-tasks system, represented by weighted quadratic
functions, under linear constraints. A kind of hierarchy is established with import-
ance coefficients which allows to chaining up tasks. Several scenarii have been de-
veloped in simulation on a virtual robot inspired from a real iCub. From this paper,
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the genericity, robustness and efficiency of the framework designed in this paper will
be checked. Other simulations with more complex tasks and events will be carried
out, followed by applications on the real robot.

References

1. O. Khatib. Dynamic control of manipulators in operational space. In Sixth CISM-IFToMM
Congress on Theory of Machines and Mechanisms, pp. 1128–1131 (1983).

2. P. Baerlocher and R. Boulic. An inverse kinematics architecture enforcing an arbitrary number
of strict priority levels. Visual Computer, 20(6), 402–417 (2004).

3. L. Sentis. Synthesis and control of whole-body behaviors in humanoid systems. PhD thesis,
Stanford University (2007).

4. Jaeheung Park. Control strategies for robots in contact. PhD thesis, Stanford University (2006).
5. Ph. Sardain and G. Bessonnet. Forces acting on a biped robot. Center of pressure – zero mo-

ment point. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 34(5), 630–637
(2004).

6. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa. Biped
walking pattern generation by using preview control of zero-moment point. In Proceedings of
the 2003 IEEE International Conference on Robotics and Automation, Taipei, Taiwan (2003).

7. K. Harada, H. Hirukawa, F. Kanehiro, K. Fujiwara, K. Kaneko, S. Kajita, and M. Nakamura.
Dynamical balance of a humanoid robot grasping an environment. In Proceedings IEEE/RSJ
International Conference on Intelligent Robots and Systems, Sendai, Japan, pp. 1167–1173
(2004).

8. P.-B. Wieber. Constrained dynamics and parametrized control in biped walking. In Proceed-
ings International Symposium on Mathematical Theory of Networks and Systems, Perpignan
(2000).

9. P.-B. Wieber. On the stability of walking systems. In Proceedings International Workshop on
Humanoid and Human Friendly Robotics (2002).

10. F.-T. Cheng, T.H. Chen, and Y.-Y. Sun. Efficient algorithm for resolving manipulator redund-
ancy – The compact QP method. In Proceedings of the 1992 IEEE International Conference
on Robotics and Automation, Nice, France (1992).

11. Y. Abe, M. da Silva, and J. Popovic. Multiobjective control with frictional contacts. In Pro-
ceedings Symposium on Computer Animation (SCA) (2007).

12. C. Collette, A. Micaelli, C. Andriot, and P. Lemerle. Dynamic balance control of humanoids
for multiple grasps and non coplanar frictional contacts. In Proceedings of Humanoids’07
(2007).
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Abstract. In 1978, Hunt found a set of vector subspaces of screws that guarantee ‘full-cycle mobil-
ity’ of linkages and exhibit remarkable properties. They are subalgebras of the Lie algebra se(3) of
the Euclidean group and they are at the basis of most families of mechanisms with special motion
capabilities. This paper proves the existence of screw systems that, though not being subalgebras
of se(3), still exhibit important properties for full-cycle motions, namely the invariance of both the
space dimension and the pitch of the principal screws. Such systems are named persistent and they
are believed to play an important role in both mobility analysis and mechanism synthesis.

Key words: Screw theory, mobility analysis, mechanism synthesis.

1 Introduction

Screw systems, which are vector subspaces of the Lie algebra se(3) of the Euc-
lidean group SE(3), are fundamentals tools in the kinematics and statics of rigid-
body mechanisms and structures. In 1978, Hunt [1] found a set of screw systems
that guarantee ‘full-cycle mobility’ of linkages. These systems were proven to be
subalgebras of se(3) and labeled invariant in [2,3]. They exhibit remarkable invari-
ance properties and they are at the basis of most families of mechanisms with spe-
cial motion capabilities (planar, spherical, translational, Schoenflies, etc.). Indeed,
mechanisms of these sorts may be assembled from components picked more or less
at random from ‘kits’ of parts that meet simple and broad geometrical criteria, e.g.
parallelism of axes, equality of pitches, and the like.

This paper shows the existence of persistent screw systems (PSSs), which, though
not being subalgebras of se(3), still exhibit remarkable properties for full-cycle mo-
tions, namely the invariance of both the space dimension and the pitch of the prin-
cipal screws. A kinematic chain whose freedoms belong to a PSS in a reference
configuration generates, in any other nonsingular pose, a screw subspace that is
congruent to the reference one under a proper isometry. The concept of PSSs gen-
eralizes that of invariant systems, the latter emerging from the former when the
mentioned isometry is the identity mapping. PSSs are believed to play an important
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Fig. 1 Relative posture between two screws.
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role in both mobility analysis and the synthesis of mechanisms, particularly spatial
parallel manipulators.

In the following, n-dimensional subspaces of screws are referred to as n-systems
and they are denoted by capital italic letters. When required, their dimension is
specified by a lowercase subscript, i.e. Sn. Hunt’s classification of screw spaces is
adopted [1]. Accordingly, the locutions nG system and nR system, with R being a
Roman numeral, denote respectively a general n-system and a special n-system of
the Rth type. The subalgebras of se(3) are denoted by capital calligraphic letters,
followed by their characteristic geometric quantities in parentheses, e.g. Y (u,h). A
screw representing a relative twist between two bodies is designated by $. The axis
of the screw is denoted by x, with s being a unit vector along x. Given $i and $ j, ni j is
the common perpendicular between the axes of the screws; Pi j,i and Pi j, j are the feet
of ni j on xi and x j; ni j is a unit vector parallel to ni j and directed from Pi j,i to Pi j, j;
pi j and αi j are the shortest distance and the relative angle between xi and x j, with
αi j being evaluated according to the right-hand rule about ni j and being comprised
in the interval [−π/2,π/2] (Fig. 1). Once the relative posture between the axes of
two screws is assigned (by the parameters pi j and αi j), a rigid connection (or a link)
is said to be laid between them and the screws are said to be adjacent.

2 Definition

Consider an n-system S and let a set of n linearly independent screws $i, i = 1 . . .n,
belong to it, so that S = span{$1, . . . ,$n}. If the vectors of S represent instantaneous
relative freedoms of motion, the screws $i may be serially connected by an appro-
priate number of rigid connections, the link 0 being attached to the first kinematic
element of $1, the link n being attached to the second kinematic element of n and
the link i, i = 1 . . .n− 1, being laid between $i and $i+1. This operation is called a
serial composition of screws. The vectors of S represent all the admissible instant-
aneous motions of link n with respect to link 0, chosen as the reference frame. The
so-obtained chain represents an instantaneous kinematic generator of S.

After the serial composition has been accomplished, each $i may be thought of as
a kinematic pair, thus governing the finite relative motion between the axes of $i−1
and $i+1, with the corresponding Euclidean displacement Di(θi) depending on both
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the geometric parameters of $i (the axis xi and the pitch hi) and the amplitude θi
of the relative motion (the latter evaluated with respect to a reference configuration
and according to the right-hand rule about si). If S′ is the n-system spawned by the
kinematic generator in its reference pose, after a generic movement of the consti-
tuting screws (and out of singular configurations), a different n-system is generally
produced, namely S′′ = span{$′′1 , . . . ,$

′′
n}, with the generic displaced screw being

$′′i = ∏i−1
j=0 D j(θ j)$

′
i = ∏i

j=1 D j(θ j)$
′
i, where D0 is equal to the identity mapping I

and $′i = Di$
′
i = D−1

i $′i. It is evident that S′′ depends on the amplitudes of all relative
displacements with the exception of the last one, i.e. S′′ = S′′

(
θ1, . . . ,θn−1

)
.

S is said to be a persistent screw system (PSS) if it admits a kinematic gener-
ator such that, for arbitrary finite motions {D1(θ1), . . . ,Dn−1(θn−1)}, a Euclidean
displacement D(θ1, . . . ,θn−1) exists so that

S′′ = D
(
θ1, . . . ,θn−1

)
S′, (1)

namely, if S′′ is congruent to S′ under a proper isometry. This is equivalent to requir-
ing that, for any $′′ ∈ S′′, a screw $′ ∈ S′ exists such that $′′ = ∑n

i=1 α ′′
i $′′i = D$′ =

∑n
i=1 α ′

i D$′i, with α ′′
i and α ′

i , i = 1 . . .n, being real coefficients. Of course, if the Euc-
lidean displacement D transforms S′ into S′′, the same transformation super-imposes
the reciprocal system R′ of S′ to the reciprocal system R′′ of S′′. In order to lighten
the notation, we will often not distinguish between a PSS and its kinematic gener-
ator. Conversely, we will use primes to specify, when necessary, the vector subspace
generated by the kinematic generator in a specific configuration.

A PSS has persistent geometric properties, as the vector subspaces generated by
the associated kinematic generator in all its possible nonsingular configurations are
mutually congruent. It follows that a PSS is not only type-invariant (in the sense
that it preserves the ‘qualitative’ geometric pattern that gives reason for its classific-
ation as an nG or nR system), but it also preserves its relevant ‘quantitative’ features,
such as, in particular, the pitch of its principal screws (the principal pitches). Indeed,
any vector subspace of screws is characterized by a distinctive pattern of principal
screws that constitute a basis of it,1 so that a rigid transformation of the system
amounts to the rigid displacement of its principal screws. Accordingly, PSSs may
be also defined as screw systems that preserve their principal pitches for arbitrary
displacements of their associated kinematic generator. According to current termin-
ology [4], any mechanical system embodying the kinematic generator of a PSS is a
mechanical generator of it.2

It is worth observing that, since $′′ may be expressed as

$′′ = D1 ·
(
α ′′

1 $′1 + α ′′
2 $′2 + α ′′

3 D2$′3 + · · ·+ α ′′
n D2 . . .Dn−1$′n

)
, (2)

1 To be more precise, any screw system is characterized by a distinctive set of principal screws if
n = 1, 2 or 3 and by a distinctive set of principal reciprocal screws if n = 4 or 5, with the latter
being the principal screws of the reciprocal system [1].
2 Usually, there is not a one-to-one correspondence between kinematic and mechanical generators.
Indeed, it will be seen that PSSs may be generated by composing invariant screw systems and these
may be ordinarily produced by different arrangements of kinematic pairs.
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$′′ = D$′ if and only if

(
α ′′

1 $′1 + α ′′
2 $′2 + α ′′

3 D2$′3 + · · ·+ α ′′
n D2 . . .Dn−1$′n

)
= D−1

1 D$′. (3)

In other words, S is persistent if and only if a proper isometry D
(
θ2, . . . ,θn−1

)
exists

such that

span
{

$1,$2,D2$3, . . . ,D2 . . .Dn−1$n
}

= D
(
θ2, . . . ,θn−1

)
S′. (4)

Hence, the fulfillment of condition (1) only depends on the relative posture
between the screws of the kinematic generator and, thus, on the relative displace-
ments associated with its intermediate screws. As an immediate corollary, the per-
sistent properties of a system do not depend on the choice of the reference frame.
In fact, if an arbitrary displacement D0 �= I is assigned to link 0, the screw sub-
space that is obtained, namely S′′′ = D0S′′ = D0DS′, still satisfies Eq. (1). In par-
ticular, by choosing D0 = D−1

i . . .D−1
2 D−1

1 , the reference frame may be conveni-
ently set on whichever link of the kinematic generator, with S′′′ being in this case
span

{
D−1

i . . .D−1
2 $1, . . . ,D

−1
i $i−1,$i,$i+1,Di+1$i+2, . . . ,Di+1 . . .Dn−1$n

}
.

If, in Eq. (1), D
(
θ1, . . . ,θn−1

)
coincides with the identity mapping, S is called

an invariant or full-cycle screw system (ISS) [1–3]. Thus, ISSs are particular cases
of PSSs. They do not only preserve the value of the principal pitches for arbitrary
motions, but also the orientation and the position of the principal screws with respect
to any possible reference frame chosen on the kinematic generator. In this paper,
ISSs are denoted as follows: H (x,h) is the helicoid ISS of pitch h and axis x (if
h = 0 or ∞, H becomes, respectively, the revolute ISS R(x) or the linear-translation
ISS P(s)); C (x) is the cylindrical ISS along x; T2(u) is the planar-translation ISS
perpendicular to u; T3 is the spatial-translation ISS; S (O) is the spherical ISS about
O; Y (u,h) is the helicoid-planar ISS of pitch h and direction u (the planar-motion
ISS is obtained from Y (u,h) by letting h = 0, but it will not be distinguished from
it in this paper); X (u) is the Schoenflies ISS parallel to u.

It is well known that ISSs are subalgebras of se(3) and they are in one-to-one cor-
respondence with the subgroups of SE(3) [3, 4]. ISSs are symmetric under all finite
motions taking place about any screw belonging to the system itself. In other words,
if S is an ISS, S remains the image of itself under any displacement D belonging
to the associated subgroup of SE(3). Such a symmetry guarantees ISSs remarkable
properties. As mentioned in Section 1, kinematic generators of any ISS may be as-
sembled by choosing, more or less at random, from a ‘kit’ of screws meeting simple
and broad geometrical criteria (e.g. parallelism of axes, equality of pitches, etc.), the
number of these screws (equal to or greater than n) and the sequence by which they
are serially composed being irrelevant3 [1]. Such a latitude of choice is not shared
by PSSs that are not ISSs. Indeed, a generic PSS preserves its persistent character-

3 Relevance, in this case, is evaluated only with respect to the ability of the kinematic generator to
originate a specific screw system. The type, the number and the order of the screws do affect other
kinematic properties of the generator, such as, for instance, its singular configurations.
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istics (i.e. the pitch of its principal screws) only if a generally more restricted set of
requisites is met when building the proper kinematic generators (cf. Section 4).

3 Forms of Persistent Screw Systems

The kinematic generators of two screw systems, e.g. An = span
{

$1, . . . ,$n
}

and
Bm = span

{
$n+1, . . . ,$n+m

}
, may be serially composed by laying a rigid con-

nection between $n and $n+1. Such an operation generates, algebraically, a vec-
tor space Cl that is the sum of An and Bm, namely a space whose dimension is
m + n− dim(An ∩Bm) and whose elements represent the admissible instantaneous
motions of link n + m with respect to link 0, chosen as the reference frame.

If An and Bm are ISSs, the architecture according to which they are built is irrel-
evant and Cl only depends on the ‘shape’ of the connection between $n and $n+1.
The concept of serial composition may be thus extended to ISSs and denoted by the
symbol ◦ (a single screw is, indeed, a one-dimensional ISS). As there is a one-to-one
correspondence between any ISS and a subgroup of SE(3), there is also a one-to-
one correspondence between the serial composition of ISSs and the product of the
associated subgroups. In other words, if An and Bm are ISSs, the set of the admiss-
ible displacements between link n + m and link 0 is the kinematic bond stemming
from the product of the displacement subgroups associated with An and Bm [4].

Any PSS may be obtained as the composition of a convenient number of ISSs
(it suffices to observe that any screw system may be decomposed in a sequence of
1-systems and any 1-system is an ISS). A particular sequence of ISSs generating a
PSS S, namely S = A1 ◦ . . .◦Ah, and such that no two adjacent A j, j = 1 . . .h, may
be merged to originate an ISS, is referred to as a form of S, with h being named the
cardinality of the form. Of course, a PSS of dimension n cannot comprise ISSs of
dimensions greater than n (and if it contains one of dimension n, it coincides with
it). In general, any PSS admits several forms (with the 1-systems being an obvious
exception). A form is said to be unary if h = 1, binary if h = 2, and so on. The
cardinality c of a PSS is the smallest cardinality among all its possible forms, the
PSS being accordingly called unary, binary, etc. ISSs are the only unary PSSs. A
form A1◦ . . .◦Ah is respectively said to be conjoint or disjoint depending on whether
As ∩At �= 0 or As ∩At = 0 for all pairs of adjacent As and At therein; it is partially-
joint otherwise. As the vector space comprising the admissible instantaneous twists
between two rigid bodies does not depend on which one of them is chosen as the
reference frame, it is obvious that, if a PSS includes the form A1 ◦ . . . ◦Ah, it also
encompasses its reverse one, i.e. Ah ◦ . . . ◦A1. Sufficient conditions for generating
persistent screw systems are presented in the following.

The composition of two ISSs has been widely studied in the literature [4,5], as a
means to generate kinematically meaningful manifolds of SE(3). It is proven here
that the composition between two ISSs always yields a PSS (accordingly, any PSS
obtained as the composition of two ISSs is binary). Let An and Bm be kinematic
generators of ISSs and let Cl be their serial composition, i.e. Cl = An ◦Bm. In partic-
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ular, let An = span
{

$1, . . . ,$n
}

and Bm = span
{

$n+1, . . . ,$n+m

}
. For the properties

of the ISSs, for any α ′′
i ∈ R and θi ∈ R, i = 1 . . .n + m, suitable coefficients α ′

i ∈ R

exist so that, out of singularities,

α ′′
1 $′1 + α ′′

2 D1$′2 + · · ·+ α ′′
n D1 . . .Dn−1$′n =

n

∑
i=1

α ′
i $

′
i, (5)

α ′′
n+1$′n+1 + α ′′

n+2Dn+1$′n+2 + · · ·+ α ′′
n+mDn+1 . . .Dn+m−1$′n+m =

n+m

∑
i=n+1

α ′
i $

′
i. (6)

Hence, after an arbitrary displacement, C′′
l = A′

n + D1nB′
m, with D1n = ∏n

i=1 Di (θi).
Since D1n is a displacement of the subgroup associated with An, it is also A′

n = D1nA′
n

and hence C′′
l = D1n (A′

n + B′
m) = D1nC′

l . Consequently, Cl is persistent.
Since An and Bm are ISSs, their intersection is also an ISS (the intersection of

two subalgebras is also a subalgebra). It follows that, if Ih = An ∩Bm �= 0, then h
adjacent screws in both An and Bm may be suitably chosen in order to form persistent
kinematic generators of Ih. In this case, if A∗

n−h and B∗
m−h are the portions of An

and Bm that do not include Ih, then An = A∗
n−h ◦ Ih and Bm = Ih ◦B∗

m−h, so that, by
considering that Ih ◦ Ih = Ih,

Cl = A∗
n−h ◦ Ih ◦ Ih ◦B∗

m−h = A∗
n−h ◦Bm = An ◦B∗

m−h. (7)

If A∗
n−h and B∗

m−h are not ISSs, ‘subtracting’ Ih from the kinematic generator of
either An or Bm provides an easy procedure for obtaining non-binary disjoint forms
of Cl . It is worth observing that A∗

n−h and B∗
m−h are not necessarily PSSs. They

are so if their dimension is one or two, as all screw systems of such dimensions
are PSSs. However, they may not be so, if their dimension is equal to three (for
instance, ‘subtracting’ a 1-system from a Schoenflies subalgebra may leave three
parallel screws of distinct finite pitch, which form a non-persistent 3IX-system).

A dual procedure with respect to the one described above consists in ‘adding’,
between An and Bm, an ISS Ih which is ‘partitioned’ between them, namely an ISS
that, though included in neither An nor Bm, is comprised in An ◦Bm. In this case,
hA adjacent screws in An and hB in Bm may be suitably chosen so that hA + hB = h
and so as to form a kinematic generator of Ih. By letting A∗

n−hA and B∗
m−hB be the

portions of An and Bm that do not contain the screws of Ih, it is then

Cl = An ◦Bm = A∗
n−hA ◦ Ih ◦B∗

m−hB = An ◦ Ih ◦Bm. (8)

The described procedures are sufficient to generate non-binary PSSs, but they
are not necessary. Obviously, they may be applied any time a PSS exhibits a form
of arbitrary cardinality in which at least a pair of adjacent ISSs either has nonzero
intersection or it encompasses a partitioned ISS.

PSSs may play an important role in both mobility analysis and mechanism syn-
thesis. As far as mobility analysis is concerned, it is well known that mobility for-
mulas that only rely on the number of links and the number and type of joints (such
as the Kutzbach/Grübler equation) are applicable only if the dimension of the vector
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space generated at any instant by the screws associated with the mechanism joints
is invariant for arbitrary motions of the chain in a convenient finite neighborhood of
the reference configuration. For this reason, such formulas are reputed to hold only
for ‘trivial’ mechanisms, i.e. closed-loop linkages whose joints belong to mechan-
ical generators of ISSs [4]. Distinct formulas must be resorted to for ‘exceptional’
linkages [4–6], which are closed loops emerging from the serial composition of the
mechanical generators of two different ISSs.4 Indeed, the theory of PSSs allows
one to treat these two classes of mechanisms within a unified framework. The set
of screw systems that preserve their space dimension for full-cycle motions of their
kinematic generators is, in fact, much wider than that of ISSs. In particular, this
property is shared by all PSSs. Consequently, the mobility of all linkages whose
joints are assembled so as to form mechanical generators of PSSs (cf. Section 4)
may be certified to be computable by a Kutzbach/Grübler-type criterion. In this per-
spective, the difference between ‘trivial’ and ‘exceptional’ mechanisms fades away.
Since the composition of two ISSs always generates a PSS, ‘exceptional’ kinematic
chains are mechanical generators of binary PSSs and as such they may be studied.

In the field of robot design, one of the most successful approaches for the syn-
thesis of spatial parallel manipulators is based on the theory of constraint wrenches
[7]. These are the wrenches reciprocal to the screws associated with the joints of
the mechanism legs. Each leg generates a constraint system partially restraining the
output displacement, so that the overall motion space of the end-effector is that re-
ciprocal to the sum of the constraint spaces produced by all legs. The key issue to
generate a specific output consists in synthesizing legs able to produce, for finite
motions of the end-effector, predetermined and persistent constraint systems, typic-
ally convenient sets of forces and torques. In this perspective, PSSs are a valuable
tool, since a leg that is the mechanical generator of a PSS is guaranteed to generate a
constraint system that remains congruent to the reference one for full-cycle motions.
For this reason, many mechanical generators of PSSs, even though not recognized
as such, were widely used in the literature for the synthesis of innovative parallel
manipulators (cf. Section 4 and [7]). The exhaustive classification of all PSSs opens
up further possibilities.

4 Persistent Screw Systems of Dimension 3, 4 and 5

Figure 2 shows three examples of 5-dimensional PSS. The forms in Figs. 2(a)–(b)
emerge from the composition of two helicoid-planar ISSs. The former, i.e. Y (u,h)◦
Y (u′,h′), is binary and conjoint, whereas the latter, which is obtained from the
previous one by ‘subtracting’ the subalgebra Y (u,h)∩Y (u,h′) = P(u× u′), is

4 Hervé [4] classified mechanisms into ‘trivial’, ‘exceptional’ and ‘paradoxical’. The first two
classes group the most common mechanisms and they are believed to be the only ones for which
general mobility criteria may be contrived. ‘Paradoxical’ mechanisms, such as the Bennet one,
require ad-hoc mobility analyses, since their motion capabilities rely on very specific choices of
geometric parameters.
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Fig. 2 Examples of PSSs: (a) Y (u,h) ◦Y (u′,h′), 5I-PSS; (b) Y (u,h) ◦H (x4,h′) ◦H (x5,h′),
5I-PSS; (c) Y (u,0)◦S (O), 5G0-PSS.

ternary and disjoint. Both forms are, for full-cycle motions (and out of singular
configurations), reciprocal to an ∞-pitch screw parallel to u×u′ (i.e. a constraint
torque), thus originating a persistent special 5-system. While the direction u× u′

changes during motion, the screw system always preserves its dimension and prin-
cipal pitches. Hunt [8] described the special properties of these forms already in
1973. His observations are at the basis of the concepts developed in this paper. The
form in Fig. 2(c) is the result of the composition of a planar ISS with a spherical
one, namely Y (u,0)◦S (O). It is binary and conjoint. A ternary and disjoint form
may be obtained, for example, by replacing S (O) with two 0-pitch screws conver-
ging in O. The resulting PSS is always reciprocal to a 0-pitch screw (i.e. a constraint
force), thus originating a persistent 5-system of zero pitch (briefly labeled as 5G0-
PSS). Because of their invariant properties, the mechanical generators of all forms
in Fig. 2 have been widely used (mainly, with h = h′ = 0) in both mobility ana-
lysis [5,6] and mechanism synthesis [7–9]. For instance, the chains in Figs. 2(a)–(b)
played an important role in the design of homokinetic couplings and translational
parallel manipulators, whereas the chain in Fig. 2(c) has been used for the design of
orientational parallel robots. Further details and more application examples may be
found in [7].

Figure 3 shows three more examples of PSSs, less trivial than the ones in
Fig. 2. The forms in Figs. 3(a–b) are reciprocal to a screw of pitch −h for full-
cycle motions, thus generating 5-systems of the general type. In particular, the
form H (x,h)◦Y (u,h)◦H (x′,h) is ternary and disjoint, whereas the form C (x)◦
Y (u,h) ◦C (x′), with x ⊥ u ⊥ x′, is ternary and conjoint. Finally, Fig. 3(c) shows
a ternary and disjoint form of persistent 4-system of the general type, namely
C (x1) ◦R(x2) ◦H (x3,h3), with the geometric parameters complying with the re-
quisites † in Table 2.

Tables 1 and 2 list all possible forms of PSSs of dimension 3 and 4 (all screw sys-
tems of dimension 2 are obviously persistent). The derivation of such forms, as well
as the proof that the aforementioned lists are exhaustive, will be reported in a future
paper (together with geometrical details, here omitted due to space limitations).
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Fig. 3 Examples of PSSs: (a) H (x,h)◦Y (u,h)◦H (x′,h), 5G-PSS; (b) C (x)◦Y (u,h)◦C (x′),
5G-PSS; (c) C (x1)◦R(x2)◦H (x3,h3), 4G-PSS.

Table 1 3-dimensional persistent screw systems.

Type Forms Requisites Attributes

3I H (x1,h1)◦R(x2)◦H (x3,h3) ∗ Ternary, disjoint

3II S (O) – spherical ISS Invariant

3V Y (u,h) – helicoid-planar ISS Invariant

3VI T3 – spatial-traslation ISS Invariant

3VIII C (x1)◦H (x2,h2) x2 ∦ x1 Binary, disjoint
H (x1,h1)◦P(s2)◦H (x3,h3) x3 ∦ x1, s1 × s3 · s2 = 0 Ternary, disjoint

3IX T2(u1)◦H (x2,h2) x2 ∦ u1, s2 ·u1 �= 0 Binary, disjoint

3X C (x1)◦P(s2) s2 ∦ x1 Binary, disjoint
C (x1)◦H (x2,h2) x2 ‖ x1 Binary, disjoint
T2(u1)◦H (x2,h2) x2 ⊥ u1 Binary, disjoint
C (x1)◦C (x2) x1 ‖ x2 Binary, conjoint
T2(u1)◦C (x2) x2 ⊥ u1 Binary, conjoint

∗ P21,2 ≡ P23,2, h1 sin2 α23 = h3 sin2 α21, p2i = hi cotα2i, i = 1,3.

5 Conclusions

This paper presented the concept of persistent screw systems (PSSs), which gen-
eralize that of invariant screw systems. The latter are the subalgebras of the Lie
algebra se(3) of the Euclidean group. PSSs are not subalgebras of se(3), but they
still exhibit remarkable invariant properties for full-cycle motions, namely the space
dimension and the pitch of the principal screws. It has been shown that PSSs may
play an important role in both mobility analysis and mechanism synthesis. Suffi-
cient conditions for the generation of PSSs were presented. They provide a valuable
tool to easily obtain PSSs of arbitrary dimension. Deriving PSSs that do not comply
with such conditions is, on the contrary, a more complex task. The paper listed all
PSSs of dimensions 3 and 4, whereas the comprehensive classification of PSSs of
dimension 5 is the subject of current research.

193



M. Carricato and J.M. Rico Martı́nez

Table 2 4-dimensional persistent screw systems.

Type Forms Requisites Attributes

4G C (x1)◦R(x2)◦H (x3,h3) † Ternary, disjoint
H (x1,h1)◦R(x2)◦R(x3)◦H (x4,h4) ‡ Quater., disjoint

4I H (x1,h1)◦S (O), P(s1)◦S (O) Binary, disjoint
R(x1)◦S (O) O �∈ x1 Binary, disjoint
C (x1)◦S (O) O ∈ x1 Binary, conjoint
C (x1)◦R(x2)◦R(x3) O ∈ {x1,x2,x3} Ternary, disjoint

4II H (x1,h1)◦Y (u2,h2) x1 ∦ u2 Binary, disjoint
C (x1)◦Y (u2,h2) x1 ⊥ u2 Binary, conjoint
C (x1)◦H (x2,h2)◦H (x3,h3) x2 ⊥ x1,x3 ‖ x2,h3 = h2 Ternary, disjoint
C (x1)◦H (x2,h2)◦P(s3) x2 ⊥ x1, s3 ⊥ x2 Ternary, disjoint
C (x1)◦P(s2)◦H (x3,h3) s2 ∦ x1,x3 ⊥ x1,x3 ⊥ s2 Ternary, disjoint

4III X (u) – Schoenflies ISS Invariant

4IV H (x1,h1)◦T2(u2)◦H (x3,h3) x1 ∦ x3, (s1 × s3) ∦ u2 Ternary, disjoint
C (x1)◦P(s2)◦H (x3,h3) s2 ∦ x1 ∦ x3, s1 × s2 · s3 �= 0 Ternary, disjoint
C (x1)◦T2(u2)◦H (x3,h3) x3 ∦ x1 ⊥ u2, (s1 × s3) ∦ u2 Ternary, part.-joint

4V C (x1)◦C (x2) x1 ∦ x2 Binary, disjoint
H (x1,h1)◦T2(u2)◦H (x3,h3) x1 ∦ x3, (s1 × s3) ‖ u2 Ternary, disjoint
C (x1)◦P(s2)◦H (x3,h3) s2 ∦ x1 ∦ x3, s1 × s2 · s3 = 0 Ternary, disjoint
C (x1)◦T2(u2)◦H (x3,h3) x1 ∦ x3, (s1 × s3) ‖ u2 Ternary, part.-joint
C (x1)◦T2(u2)◦C (x3) x1 ∦ x3, (s1 × s3) ‖ u2 Ternary, conjoint

† P12,2 ≡ P23,2, p23 = h3 cot α23, p12 cosα23 sinα23 = p23 cosα12 sinα12.
‡ P12,2 ≡ P23,2, P23,3 ≡ P34,3, pi j = hj cotαi j, p23 cosαi j sinαi j = pi j sinα23, (i, j) = (2,1), (3,4).
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Localisation of the Instantaneous Axis of
Rotation in Human Joints
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Abstract. Many applications require to reconstruct the human movement from data with the
highest accuracy. The use of a robust method for the determination of the Instantaneous Axis
of Rotation (IAR) is needed for the development of a realistic biomechanics model of Human.
Current methods use markers attached to the skin in order to determine the motion kinematic. The
present study proposes a new method for the determination of the IAR during human movements.
Our specific aim is to provide an easy-to-implement method which works whatever the kind of
joint. The presented method was compared with a functional method (SCoRE) by way of simu-
lations then within the context of human movements. Results obtained are satisfactory and could
find direct applications for biomechanical modelling and human simulation.

Key words: Human instantaneous axis of rotation, motion capture.

1 Introduction

The location of the Instantaneous Axis of Rotation (IAR) is of primary importance
for the reconstruction of human movements. Indeed an accurate determination of
the IAR location is required for the development of a realistic biomechanics model,
for the determination of inertial parameters, for the success of a total joint prosthesis
placement, etc.

Many researchers have published on this subject [1–5]. The functional approach
allows a real personalisation of the model. Many methods such as Helical Axis
(HA) [4, 5], Symmetrical Center of Rotation Estimation (SCoRE) method [1, 2]
have been developed. These methods try to determine the constant location of the
Centre of Rotation (CR) with certitude, making the hypothesis that human joints are
rotoid or spherical. However some authors have shown that human joints cannot be
modelled in such a way [6].

The purpose of this paper is to present a simple and robust experimental method
to determine IAR between two human segments, which does not make any assump-
tion about the kind of joint that is modelled. The description of the SCoRE method
and the presented method will be detailed in Section 2. A comparison of these two
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methods will be made in Section 3 by the way of simulation then within the context
of human movements in Section 4.

2 Determination of the Instantaneous Axis of Rotation Location

The determination of IAR location is a recurrent subject in biomechanics. However
all these methods consider that human joints have a fixed joint centre like mechan-
ical joints such as rotoid or ball joints. The International Society of Biomechanics
(ISB) recommends using the HA method for most human joints [3]. Monnet shows
that the SCoRE and HA methods generate similar results for angular velocities su-
perior or equal to 0.25 rad/s [1]. However, all these methods model the IAR by a
constant point (CR) and a direction vector but, according to Graichen’s work [6],
such a point does not exist. Taking this remark into account, we have developed a
method which locates the IAR without hypothesis on the nature of the joint. Even
if the gain of precision is relatively slight in the case of dynamic modelling, it is
very important for the use of wearable orthesis. Because the SCoRE method is not
sensitive to low angular velocity [1], we have decided to compare the presented
method to the SCoRE method. In the first part of this section, the SCoRE method
will be succintly presented and in the second part, the method that we present will
be detailed.

2.1 The SCoRE Method

The SCoRE method determines a common fixed point between the distal segment
and the proximal segment of the joint. This point is the centre of rotation. The po-
sition of the joint centre is constant in the frame attached to the proximal segment
and in the frame attached to the distal segment, they are respectively noted

−→
PC and−→

DC. From the matrices
[

0RP

]
and

[
0RD

]
which respectively represent the rotation of

the frame RP(P,xP,yP,zp) and of the frame RD(D,xp,yp,zp) in the fixed reference
frame R0, the following equation can be written:

[−→
OP

]
+

[0RP

] [−→
PC

]
=

[−→
OD

]
+

[0Rd

] [−→
DC

]
(1)

The unknown variables can be determined in a 6×1 matrix, then (1) becomes:

[[
0Rd

] [
−0Rp

]]

︸ ︷︷ ︸
[A] (3×6)

[−→
DC
−→
PC

]

︸ ︷︷ ︸
6×1

=
[−→
OP− −→

OD
]

︸ ︷︷ ︸
[B] (3×1)

(2)

Grouping together all the recorded human movement data, the two vectors
−→
PC

and
−→
DC are estimated in a least square sense:
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[−→
DC
−→
PC

]

= ([A]T [A])−1 [A]T [B]

Having
−→
PC and

−→
DC, we can reconstruct the CR coordinates at each time using (1).

2.2 Our Method

Suppose an absolutely rigid body S. There is an axis ∆ = (M,
−→
Ω ) where the rigid

body S turns and translates relatively to a fixed frame R0 among this axis.
Let M be a point on ∆ , then:

−→
V (M∈S/R0) = λ .

−→
Ω S/R0

(3)

and: −→
V (A∈S/R0)

=
−→
V (M∈S/R0) +

−→
Ω S/R0

∧−→
MA (4)

Our method consists in determining the location of ∆ which represents the IAR.
Let us multiply (4) by

−→
Ω S/R0

, then (4) becomes:

−→
Ω S/R0

∧−→
V (A∈S/R0)

=
−→
Ω S/R0

∧ (
−→
Ω S/R0

∧−→
MA) (5)

with:
−→
Ω S/R0

∧−→
V M∈S/R0

= 0 because
−→
Ω S/R0

and
−→
V M∈S/R0

are colinear (3).

Let
−→
MA =

−−→
MA∗+

−−→
A∗A in (5) where A∗ is the orthogonal projection of A on ∆ , we

obtain:

−−→
A∗A =

−→
V (A∈S/R0)

∧−→
Ω S/R0∥

∥
∥
−→
Ω S/R0

∥
∥
∥

2 (6)

Let us apply this to the relative movement between two rigid bodies S1 and S2. Ai ∈
S1 and B j ∈ S2 are certain fixed points on the system and A∗

i and B∗
j are respectively

the orthogonal projections of Ai and B j points on the IAR between the two bodies
as illustrated in Fig. 1. For this example, Equation (6) becomes:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−−→
AiA

∗
i =

−→
V (Ai∈S1/S2)∧

−→
Ω S1/S2

∥
∥
∥
−→
Ω S1/S2

∥
∥
∥

2

−−→
B jB

∗
j =

−→
V (B j∈S2/S1)∧

−→
Ω S2/S1

∥
∥∥
−→
Ω S2/S1

∥
∥∥

2

(7)

−→
V (Ai∈S1/S2) could be determined using composition of movement:

−→
V (Ai∈S1/S2) =

−→
V (Ai∈S1/R0)

−−→
V (Ai∈S2/R0)

(8)
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Fig. 1 Relative motion between two rigid bodies S1 and S2. Ai and Bj are certain fixed points on
S1 and S2. The A∗

i and B∗
j points are respectively the orthogonal projections of the Ai and Bj points.

(∆) is defined by the alignment of the A∗
i and B∗

j points.

and property of the rigid body:

−→
V (Ai∈S2/R0)

=
−→
V (B j∈S2/R0)

+
−→
Ω S2/R0

∧−−→
B jAi (9)

Applying the same computation for
−→
V (B j∈S2/S1), (7) becomes:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−−→
AiA

∗
i =

(
−→
V (Ai∈S1/R0)−

−→
V (B j∈S1/R0)−

−→
Ω S2/R0

∧−−→B jAi)∧
−→
Ω S1/S2

∥
∥∥
−→
Ω S1/S2

∥
∥∥

2

−−→
B jB

∗
j =

(
−→
V (B j∈S2/R0)−

−→
V (Ai∈S2/R0)−

−→
Ω S1/R0

∧−−→AiB j)∧
−→
Ω S2/S1

∥
∥
∥
−→
Ω S2/S1

∥
∥
∥

2

(10)

We easily obtain the coordinates of each A∗
i and B∗

j points in the reference frame. All
A∗

i and B∗
j points should be aligned with each other and let us locate the IAR. Even

if the use of one orthogonal point is enough in classical mechanical engineering,
we compute the orthogonal projection of each marker. This ensures precision of the
IAR location given that data recorded from human movements are noisy.

3 Simulation

In order to check the ability of the proposed method to provide an accurate location
of the IAR, it is compared to the SCoRE method in the case of simulations.

3.1 Experimental Protocol

The ability of the proposed method is first evaluated through simulations by consid-
ering the case of the motion of two homogeneous rigid bodies linked by a different
joint. We have considered two different joints: rotoid and spherical joints. The re-
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Table 1 Regression coefficient r2.

Data r2 (x,y) r2 (x, z)

Simulation 1±0 1±0
Experiment 0.993±0.006 0.991±0.008

lative motion of these two bodies is simulated on Matlab. In order to check the
alignment of the orthogonal points obtained with the method presented in Section
2.2, the coordinates of the A∗

i and B∗
j points are fitted by 3D linear regression us-

ing principal component analysis. Regression coefficients r2 between the x and y
coordinates and between x and z are computed. In order to check that these two
methods locate the IAR at the same position, the rang of the following [M] matrix is
computed.

[M] = [A∗
i (t), B∗

j(t), s(t), −→n (t)] (11)

where s(t) and −→n (t) represent the CR and the direction vector determined with the
SCoRE method. If the subspace of this matrix is equal to 1 then both methods locate
the IAR at the same position.

3.2 Simulations Results

The 3D linear regression of the orthogonal projection points are resumed in Table 1.
As expected in the case of simulation, determination coefficients are equal to 1 and
indicate that A∗

i and B∗
j points are totally aligned.

Results of rotoid and spherical joints simulations are presented in Figs. 2 and
3. Results show that both methods (SCoRE and the presented method) have good
accuracy and find the same IAR location at all times whatever the kind of joint
(rotoid and spherical joint) indeed the matrix [M] is equal to 1 at all times for both
joint simulations. All the results show that the presented method is accurate for the
computation of the location of the IAR.

Fig. 2 Comparison of the presented method (a) and SCoRE method (b) during a motion of two
rigid bodies linked by a rotoid joint.
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Fig. 3 Comparison of the presented method (a) and SCoRE method (b) during a motion of two
rigid bodies linked by a spherical joint.

As these two methods find identical results in the case of simulations, they will
be tested and compared within the context of human movements.

4 Experimental Study on Human Subjects

4.1 Protocol and Apparatus

Ten male subjects participated in this study after giving written informed consent.
They were instructed to perform three series of ten flexion-extension cycles. Each
movement was separated by a 2 s rest period. The recorded movement was 5 s long.

A 3 cx1 units Codamotion system (Charnwood Dynamics Ltd., Rothley, United
Kingdom, http://www.codamotion.com)was used to collect kinematic data at 400 Hz.
Six active markers were used for determining the position of the IAR of the elbow
(3 on the forearm and 3 on the upper arm). In order to reduce the artefacts due to the
deformation of the soft tissues intervening between the bone and the markers, active
markers were positioned on the Medial Epicondyle, the Lateral Epicondyle and the
Deltoid Tuberosity for the upper arm and on the Ulnar Styloid Process, the Base of
the Olecranon and the Radial Styloid Process for the forearm [7].

4.2 Data Processing and Modelling

Firstly, kinematic data of the six active markers were filtered at 9 Hz using a 4th-
order zero-lag low-pass Butterworth filter. Then, in order to check the constant dis-
tance between each marker of the same body segment, a least square algorithm was
applied on the 3 active markers of each body segment. Finally the

−→
Ω and the IAR

location estimations were computed using respectively the relation [Ω ] = [R]t [Ṙ]
and the relation (10).
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Fig. 4 IAR cartography performed with (a) the presented method and (b) with the SCoRE method.

Fig. 5 Cross-sections of the IAR cartography performed with (a) the presented method and (b) the
SCoRE method.

4.3 Results

The 3D linear regression of the orthogonal projection points are resumed in Table 1.
The very high r2 and a very low standard deviation: 0.993±0.006 and 0.991±0.008
indicate that A∗

i and B∗
j points can be considered as totally aligned.

The IAR cartography of the elbow of one subject is illustrated in Fig. 4(a)
whereby the presented method was used, and in Fig. 4(b) where the SCoRE method
was used. These figures represent the evolution of the IAR in a 3D space. Results
show that even in the case of a flexion-extension movement (without a pronation-
supination movement), the elbow joint cannot be considered as a rotoid joint. Indeed
it is clear that the shape of the IAR cartography is a cone (Fig. 4).

Figure 5 represents the smallest (blue line) and the biggest (red line) cross-
sections of the IAR cartography performed with the presented method and the
SCoRE method, respectively. Concerning the biggest cross-section, its shape is rep-
resented by a semi-circle. These results confirmed the results of the previous para-
graph, the axis of rotation described during a flexion-extension movement cannot be
modelled as a fixed axis. Conversely, as expected, with a SCoRE method the smal-
lest cross-section is represented by a point. In the case of the presented method, the
smallest cross-section is not a point but rather a curved line. This result confirms
Graichen’s work [6]. Human joints cannot be modelled as an ICR.
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4.4 Discussion

Figure 4 and Table 1 show that both methods have similar results for the orientation
of the IAR however their locations are different. This results proves that the SCoRE
method simplify the modelisation of human joints as traditional joints. Figures 2, 3
and 4 show that the presented method is more robust because no hypothesis on the
nature of the joint is done and it is not limited to the modelisation of classical joints.

Moreover our method does not require pre-tests with conventional movements
as the method SCoRE needs. Our method requires a set of 3 markers per segment
whereas at least 5 markers per segment is required for the SCoRE method [1].

5 Conclusions and Future Work

This paper presented an experimental method to determine the IAR location in hu-
man joints. The presented method is simpler and more robust than the methods
in use today. Simulations and experiments have demonstrated its ease of imple-
mentation with low computational requirements and its ease of use with only three
markers per segment. No pre-test is needed to use this method and no hypothesis
on the nature of joint is required. The method will find direct applications for bio-
mechanical modelling and human simulation. To complete this issue, we will try
to generalise the IAR evolution in order to obtain a parametric model of the IAR
cartography.
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Abstract. The integration of traditional mechanism theory with biology and medicine at the mo-
lecular level enables the use of polypeptide chains to design, manipulate and fabricate biomimetic
artificial nano-machines. In this paper we establish a procedure to analyze the mobility of protein
molecules based on predicting the formation of hydrogen bonds, which, in turn, is the primary
cause for mobility reduction in proteins. We improved our graph-based approach by including side
chain and mixed chain hydrogen bond prediction capabilities as well as an energy analysis of these
interactions. This method has been emploied to evaluate the internal mobility and identify the rigid
and flexible segments of the protein molecules. This computational procedure has been used to
assess the stability and mobility of three specific candidate proteins to build a nanobiodevice. Our
simulations show that only one of these structures is capable of producing a stable nanoparticle,
which is in agreement with the experimental results.

Key words: Protein molecule, hydrogen bond, kinematics, mobility, peptide nanoparticle.

1 Introduction

Researchers are studying existing elements of nature in order to design and fabric-
ate intelligent bio-nano devices for various medical and nanotechnological applic-
ations. A novel approach in this field is the use of various biomolecular elements
(e.g. protein molecules, DNA strands, etc.) that are capable of generating motion,
exerting force, or producing a signal as fundamental machine components. In order
to bring these ideals into reality, a comprehensive understanding of these individual
biomolecular elements, which serve as building blocks for nanodevices, must be
carried out. Therefore, mathematical models and computational simulations play a
vital role in gaining an in-depth understanding of the structure, mobility and func-
tion of these potential nanodevices.

Proteins are recognized as fundamental components of biological machines.
They are built from series of up to 22 different amino acids. Each amino acid has
a common structural features, including an α carbon to which an amino group, a
carboxyl group, and a variable side chain are bonded. Once the protein chain is
held together by peptide bonds, the linked series of amino acids make an open loop
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Fig. 1 Core self-assembly domain. A monomer sequence composed of a trimeric coiled-coil
(blue), a linker segment (black), and a pentameric coiled-coil (green). The monomer (a), pentamer
and trimer (b), and 60mer icosahedron nanoparticle (c), are shown in the same orientation by the
red arrow. Residues in the black linker region are close enough to interact with each other. The
residues in the blue and green section are too far away from each other to interact.

serial chain. Proteins fold due to interatomic forces and during this process some
new bonds between atoms of the non-adjacent residues are created and form the
secondary structure of protein molecule [1]. Among the recent bonds, hydrogen
bonds are of particular importance due to their key role in determining the three
dimensional structure of proteins. Modeling protein molecules as kinematic chains
provides the foundation for developing powerful approaches to manipulate matter
at the molecular level.

In this paper we improved our newly released flexibility analysis method of pro-
tein molecule [2] by including side chain and mixed chain hydrogen bond prediction
capabilities as well as an energy analysis of these interactions. Furthermore, we use
these hydrogen bond prediction capabilities to predict the rigid regions of a peptide
nanoparticles.

The nanoparticle shown in Fig. 1 has been designed and fabricated by the
Burkhard research group [3]. The device consists of 60 single self-assembled pep-
tide chains. The peptide nanoparticles have regular icosahedral symmetry, and a
diameter of about 20 nm. The synthetic peptide monomer sequence consists of a
pentameric coiled-coil domain at the N-terminus joined by a short linker segment to
a de novo designed minimal trimeric coiled-coil domain at the C-terminus (Fig. 1a).
Upon refolding, the monomers self-assemble to form peptide nanoparticles (Figs. 1b
and c). The linker segment (shown in black in Fig. 1) is crucial to the orientation of
the oligomerization domains and thus for the formation of the nanoparticle. These
peptide nanoparticles hold a great promise for their potential utilization in a num-
ber of biomedical applications. For example, the repetitive display of antigenic se-
quences at the nanoparticle surface may potentially be developed into a novel vac-
cine platform. Recently, they have been functionalized and used as vaccines for
SARS [4] and Malaria [5] and as a platform to elicit immune response against poor
antigens [6].
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Fig. 2 Geometric parameters.

Depending on the amino acid composition of the linker segment, the flexibility
between the two oligomerization domains is predicted to change. If the linker is too
flexible, it generates dissimilar primary elements (Fig. 1a), which, instead of a stable
homogenous nanoparticle, results in a nonhomogenous nanoparticle or even in some
cases an aggregation with no icosahedral structural arrangement. Therefore the best
choice to create this nanoparticle is a linker segment with the least flexibility. Of the
natural proteins having the desired structure, the mobility of three candidate proteins
to assemble into such nanoparticle has been studied and the one predicted through
our computational mobility analysis has further been validated using experimental
results.

2 Computational Model

2.1 Hydrogen Bond

A hydrogen bond, is the result of an interaction between a donor atom and an ac-
ceptor atom. Hydrogen bonds are not as strong as covalent bonds. However these
comparatively weak bonds are able to make proteins fold into stable conforma-
tions [7]. They transform the open loop linkage into closed kinematic loops. This
alteration significantly reduces the mobility of the protein chain. However the res-
ulting internal motion of the protein enables it to perform its function. Different
formation criteria have been developed to predict hydrogen bonds occurrence in the
protein molecules [2]. In this paper, in order to identify these interactions a set of
possible hydrogen bonds has been found based on meeting the suggested geomet-
ric criteria in Table 1. The energy threshold has further been used to define which
hydrogen bonds are to be included in the mobility analysis.

2.1.1 Geometry of Hydrogen Bonds

The study of protein chain geometry can lead to the prediction of the occurrence of
hydrogen bonds since the bonds form between atoms in particular configurations.
The relative placement (position and orientation) of the acceptor atom with respect
to the donor atom can be rigorously defined through a set of geometric parameters
as illustrated in Fig. 2.
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Fig. 3 Loop generated by a
hydrogen bond.

Table 1 Geometric criteria.

αo β o r(Å) l(Å)

α-helices [110,180] [110,180] < 2.5
β -sheets [120,180] [110,180] < 2.5
Overall main-chain [90,180] [100,180] < 2.5 < 3.5
Overall main-chain, side-chain and mixed [90,180] [90,180] < 2.5 < 3.5

The existing geometric criteria on the formation of hydrogen bonds in protein
molecules have been reviewed in [2]. It has been shown that the criteria reported
in Table 1 better correlate the number of predicted hydrogen bonds with those es-
tablished by biological principles comparing to other existing criteria. The atom
positions are required for detecting the potential hydrogen bonds. The initial co-
ordinates of the protein molecules can be retrieved from the Protein Data Bank
(PDB). A shortfall of these data files is that the position of hydrogen atoms are
usually not recorded. Therefore we used PROTOFOLD, our own protein simula-
tion software [12], to identify the spatial coordinates of all hydrogen atoms. Using
the atom coordinate data output by PROTOFOLD, all angular and linear parameters
were computed for potential donor and acceptor atoms. Geometric criteria presented
in Table 1 have been used to identify the set of possible hydrogen bonds.

2.1.2 Energy of Hydrogen Bonds

A predicted hydrogen bond solely based on geometric constraints is likely to lead
us to bonds with high level of energy. When a hydrogen and donor atom are too
close to one another, they don’t exert any attraction force and do not contribute to
stabilization and rigidity of protein molecule. Hence, they can not be considered in
the rigidity analysis of protein molecules. Energy analysis of these interactions is
therefore required to decide which bond should be included in the study of rigid
regions and mobility of protein molecule. The hydrogen bond energy depends on
the chemistry of the donor and acceptor atoms as well as their orientation [8–11].
The hydrogen bond energy can be obtained utilizing equation 1 [8]. In this equation:
d0 = 2.8 Å and V0 = 8 kcal/mol. The geometric parameters are shown in Fig. 2. The
φ angle is between the normals of two planes defined by the sp2 centers.
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EHB = v0[5(d0/d)12 − 6(d0/d)10)]g(β ,α,φ) (1)

g(β ,α,φ) = cos2 β cos2 (α − 109.5) f orsp3donor− sp3acceptor

g(β ,α,φ) = cos2 β cos2 α f orsp3donor− sp2acceptor

g(β ,α,φ) = cos4 β f orsp2donor− sp3acceptor

g(β ,α,φ) = cos2 β cos2 (max[α,φ ]) f orsp2donor− sp2acceptor

Once the energies of all possible hydrogen bonds are calculated, those who have
EHB < 0 have been labeled as actual hydrogen bonds.

2.2 Mobility Analysis

The identification of hydrogen bonds using geometric criteria presented in Table 1
and energetic criterion in Eq. (1) allows us to analyze the protein mobility. Con-
ceptually, these hydrogen bonds can transform an open loop kinematic chain into
a more complex chain that may contain multiple closed sub-chains, some of which
can become rigid due to the occurrence of hydrogen bonds. Once we find a hydro-
gen bond the connectivity matrix has to be updated by replacing two primary links
connected by hydrogen bond, by a new rigid link. The next step is converting the
reduced connectivity matrix into a graph in order to find the loops. This graph is
then parsed to find its cycles because every cycle in the graph will correspond to
a loop in the kinematic chain of the protein. Once the graph cycles or independent
loops are determined, we use the Grübler-Kutzbach criterion to identify the rigid
domains of all the closed loops. If the resulting degree of freedom of a closed loop
is zero or less, that particular loop is kinematically over-constrained, and it can be
an independent rigid body by itself. When such a loop is detected, we replace all
its links with a single link, and we update the connectivity matrix by removing the
corresponding rows and columns and by adding one row and one column for the
link replacing the loop. This repeats until we find no more over-constrained loops.
Figure 3 shows how a hydrogen bond will make a loop within protein structure.
Details of this work and some examples are presented in [2].

3 Design and Manipulation of a Peptide Nanoparticle

3.1 Computational Model of the Nanoparticle

Our computational procedure has been applied to the subsets of several proteins,
namely 2IC8, 1JIL and 2I88. These protein sequences are three candidates for cre-
ating the linker region of the monomer forming the nanoparticle. The primary goal
of mobility analysis of these proteins is to recognize which one can make a more
stable and uniform nanoparticle. The structural properties of each protein as well
as the detected number of hydrogen bonds are given in Table 2. In this table the
first column defines the protein PDB code and the residue numbers corresponding
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Table 2 Candidate proteins to build nanoparticle.

Protein (PDB code) Potential Hbonds Final Hbonds DOF Reduced DOF

M-M M-S S-S M-M M-S S-S

2IC8 (AA147-AA191) 35 1 1 26 1 0 87 11
1JIL (AA293-AA324) 24 2 2 19 0 2 61 9
2I88 (AA345-AA381) 28 2 1 24 2 0 73 7

Fig. 4 Mobility analysis of three candidate for nanobiodevice.

to the selected part of protein. The second column shows the potential hydrogen
bonds predicted by geometric criteria for main chain - main chain (M-M), main
chain - side chain (M-S) and side chain - side chain (S-S) bonds. The third column
shows the hydrogen bonds who meet the energy threshold and will be considered
in mobility analysis of the protein molecule. The fourth column shows the number
of degrees of freedom based on our kinematic model [12]. The number of reduced
numbers of degrees of freedom obtained as a result of the approach proposed in this
paper are given in the last column of Table 2. It should be observed that this mo-
bility analysis suggests a dramatic change in the original protein models that results
in kinematically equivalent protein models. The results are illustrated in Fig. 4. The
network of links connected by covalent or hydrogen bonds are shown in the third
column. Each of the nodes in these graphs represent a link and the lines show exist-
ing bonds between different links. The last column of this figure shows the reduced
number of links that results from our analysis. Note the different final DOF of each
protein. Our results show that for each protein α helices are rigid (as expected) and
they are connected by a flexible linkage in the middle. The only difference is in the
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Fig. 5 (a) Transmission electron microscopy image of T2i88 nanoparticle at 49 000X. The sample
was negatively stained with 1% uranyl acetate. (b) Same as (a) but at 150 000X.

flexibility of the linker. To get a stable and homogenous particle we need to have
less flexibility in the linker. Therefore since 2I88 is more rigid than 2IC8 and 1JIL,
it has more chance to self-assemble into a homogenous nanoparticle.

3.2 Experimental Method to Build the Nanoparticle

The recombinant protein T2I88 was produced mainly as previously described [4].
Briefly, the protein was expressed in Escherichia coli and purified by metal affinity
chromatography. After a multistep dialysis to remove urea the peptide nanoparticles
were formed. Transmission Electron Microscopy (TEM) was used to investigate
shape and size of the peptide nanoparticles. TEM sample preparation was done as
previously described [4] and electron micrographs were captured with a FEI Tecnai
Biotwin 120 kV transmission electron microscope equipped with an AMT2k. The
same experimental procedure was applied to 2IC8 and 1JIL and as predicted by
our model, homogeneous nanoparticles were not obtained. Instead the formation of
aggregation was observed (data not shown).

As seen in the electron micrograph (Fig. 5) the peptide chain containing the
segment 2I88 in its linker region forms homogeneous nanoparticles. These nano-
particles appeared spherical with a diameter of 36.5±3.5 nm (calculated using Im-
ageJ software). This is in good agreement with computational analysis as this linker
segment is more rigid and thus keeps the oligomerizations domains in place.

4 Conclusions

Analysis of a protein structure can indicate rigid and flexible regions likely to un-
dergo conformational changes as part of protein’s function. This makes predicting
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protein mobility an important class of problems in structural and computational bio-
logy. In this paper a novel approach is introduced for characterizing intrinsic mo-
bility of protein molecules that results from the formation of hydrogen bonds in the
protein kinematic model. Hydrogen bonds are located using geometric criteria as
well as a bond energy threshold. The underlying kinematic model has been imple-
mented in the PROTOFOLD computational platform. This method has been applied
to model several potential building blocks and determine their feasibility for creat-
ing a specific nanodevice. Our simulations suggest that 2I88 has a more rigid linker
than other proteins and that makes it the best candidate to create a homogeneous,
stable particle, which is in complete agreement with our experimental results.
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Abstract. This paper investigates the forward kinematic problem of five-degree-of-freedom paral-
lel mechanisms generating the 3T2R motion containing five identical legs of the PRUR type. The
general mechanism originates from the type synthesis performed for symmetrical 5-DOF parallel
mechanisms. The kinematic modeling of the mechanism is addressed using the so-called Study
parameters and Gröbner bases and the final system of equations is solved using homotopy con-
tinuation. Finally, it is shown that the mechanism may have more real solutions than the 6-DOF
Stewart–Gough platform.

Key words: Symmetrical 5-DOF parallel mechanisms, 3T2R motion pattern, Stewart–Gough

platform, forward kinematic problem (FKP), Study parameters, Gröbner base, homotopy continu-

ation.

1 Introduction

Five-degree-of-freedom (5-DOF) parallel mechanisms are a class of parallel mech-
anisms with reduced degrees of freedom which, according to their mobility, fall into
three classes: (1) three translational and two rotational freedoms (3T2R), (2) three
rotational and two planar translational freedoms (3R2Tp) and (3) three rotational
and two spherical translational freedoms (3R2Ts) [1]. Geometrically, the 3T2R mo-
tion can be made equivalent to guiding a combination of a directed line and a point
on it. Accordingly, the 3T2R mechanisms can be used in a wide range of applic-
ations for a point-line combination including, among others, 5-axis machine tools,
welding, conical spray-gun.

Recently, the type synthesis of symmetrical 5-DOF parallel mechanisms has been
revised [1–5] and some new architectures have been proposed. In the context of this
paper, the term symmetric refers to the limb type and not to the geometry, such as
centro-symmetrical simplifications. It is worth noticing that most existing 5-DOF
parallel manipulators are built using a 5-DOF passive leg which constrains some
actuated 6-DOF limbs [6].
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(a) CUR ≡ Γ = 1 (b) PRUR ≡ Γ = 0

Fig. 1 Kinematic representation of two possible arrangements for a PRUR limb.

To the best knowledge of the authors, up to now, very few kinematic studies have
been conducted on symmetrical 5-DOF parallel mechanisms and researchers have
mainly worked on the type synthesis. This is probably due to their short history.
Thus, in this research, the FKP of symmetrical 5-DOF parallel mechanisms, more
precisely 5-PRUR, is addressed which can be regarded as one of the most challen-
ging topics in the kinematics of parallel mechanisms. In this notation, P stands for
an actuated prismatic joint, R for a revolute joint and U for a universal joint.

In this paper, instead of the Cartesian coordinates and the Euler angles, the FKP
is explored in a 7-dimensional projective space, P7, called kinematic image space.
In this approach, the kinematic modeling of the mechanism is based on the so-called
Study parameters that map displacements of the three-dimensional Euclidean space
to points on a quadric, called the Study quadric, in a seven dimensional projective
space.

The remainder of this paper is organized as follows. The architecture and the gen-
eral kinematic properties of the 5-DOF parallel mechanism which originated from
the type synthesis performed in [1,5] are broadly outlined. The kinematic modeling
of the mechanism is explored by means of Study’s kinematic mapping. Then the
system of equations for the FKP in terms of Study’s parameters is solved via a ho-
motopy continuation algorithm. Finally, the mapping between Study’s parameters
and the three-dimensional kinematic space is addressed.

2 Architecture

Figures 1 and 2 provide respectively representations of two possible arrangements
for a PRUR limb and a CAD model for a 5-DOF parallel mechanism, called
Pentapteron [7], that can be used to produce all three translational DOFs, plus
two independent rotational DOFs (3T2R) of the end-effector, namely (x, y, z,φ , θ ).

212



Forward Kinematic Problem of 5-PRUR Parallel Mechanisms Using Study Parameters
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Fig. 2 Schematic representation of a 5-PRUR parallel mechanism called Pentapteron.

Throughout this paper i = 1, . . . ,5, unless otherwise specified. In the latter notation,
(x, y, z) represent the translational DOFs with respect of the fixed frame O, illus-
trated in Fig. 1, and (φ , θ ) stand respectively for the orientation DOFs around axes
x and y, respectively. The rotation from the fixed frame Oxyz to the moving frame
O′

x′y′z′ is defined as follows: a first rotation of angle φ is performed around the x-
axis followed by the second rotation about the y-axis by angle θ . The Pentapteron
is an orthogonal 5-DOF parallel mechanism arising from the type synthesis presen-
ted in [1, 5] and consists of 5 legs of the PRUR type linking the base to a common
platform. Pentapteron was first revealed in [7] where the corresponding kinematic
arrangement of the limbs is fully described. In addition, the axes of the first R joints
in all the legs are arranged to be parallel to the direction of a group of two of the
linear actuated joints. Therefore, two types of kinematic arrangements are possible,
as depicted in Fig. 1, for the legs: (a) the parallel type, Fig. 1(a), and the perpendic-
ular type, Fig. 1(b). In fact, Γ = 0 and Γ = 1 differ in some kinematic properties
such as constant-orientation workspace and IKP formulation. In a 5-PRUR parallel
mechanism, the axes of all the R joints are always parallel to a plane defined by its
normal vector e3 = e1 × e2 where e1 and e2 are unit vectors defining the direction
of R joints. From screw theory, it follows that the mechanism has no possibility to
perform a rotation about an axis which is orthogonal to a plane spanned by [e1,e2].

3 FKP Formulation Using Study’s Kinematic Mapping

3.1 Kinematic Modeling of the Principal Limb

Study’s kinematic mapping is a mapping of an element γ of the Euclidean displace-
ment group SE(3) into a 7-dimensional projective space, P7 [8]. The homogeneous
coordinate vector of a point in P7 is X = [x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3]

T . The
kinematic pre-image of X is the displacement α described by the transformation
matrix:
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Ω =
1
∆

⎡

⎢
⎢
⎣

∆ 0 0 0
p x2

0 + x2
1 − x2

2 − x2
3 2(x1x2 − x0x3) 2(x1x3 + x0x2)

q 2(x1x2 + x0x3) x2
0 − x2

1 + x2
2 − x2

3 2(x2x3 − x0x1)
r 2(x1x3 − x0x2) 2(x2x3 + x0x1) x2

0 − x2
1 − x2

2 + x2
3

⎤

⎥
⎥
⎦

p = 2(−x0y1 + x1y0 − x2y3 + x3y2),q = 2(−x0y2 + x1y3 + x2y0 − x3y1),

r = 2(−x0y3 − x1y2 + x2y1 + x3y0),

(1)

and ∆ = x2
0 + x2

1 + x2
2 + x2

3. Note that the lower right three by three sub-matrix is a
proper orthogonal matrix if

x0y0 + x1y1 + x2y2 + x3y3 = 0 (2)

and not all xi are zero. If these conditions are fulfilled then [x0 : · · · : y3]
T are called

Study parameters of the displacement α . Equation (2) defines a quadric S2
6⊂ P7 and

the range of the kinematic mapping κ is this quadric minus the three dimensional
subspace defined by E : x0 = x1 = x2 = x3 = 0. In the latter, S2

6is called Study quadric
and E is the exceptional or absolute generator. One can normalize the parameters
such that ∆ = 1, then the coordinate x0 represents the cosine of the half rotation
angle. Note that there are other possibilities to normalize, but these are not used
within this paper.

Now, we turn our attention to the kinematic modeling of a PRUR limb whose
fixed and mobile frames are respectively attached to the first and the last R joint
based on the Denavit–Hartenberg (D–H) convention. This limb is referred to as the
principal limb. All quantities related to the principal limb are noted with p as an
index. In this case, the first step toward representing the principal limb kinematic
model using Study parameters is to define the D–H parameters and the correspond-
ing transformation matrices of this limb . One can readily obtain the D–H para-
meters of the principal limb as: ai={1,2,3} = {l1p, 0, l2p},di={1,2,3} = 0,αi={1,2,3} =
{0, π

2 , 0}. Applying the D–H convention the two following transformations matrices
are obtained:

Σ i={1,2,3,4} =

⎡

⎢
⎢
⎣

1 0 0 0
0 cosui −sinui 0
0 sinui cosui 0
0 0 0 1

⎤

⎥
⎥
⎦ Γ i={1,2,3} =

⎡

⎢
⎢
⎣

1 0 0 0
ai 1 0 0
0 0 cosαi −sinαi
di 0 sinαi cosαi

⎤

⎥
⎥
⎦ (3)

where ui is the ith joint coordinate. Thus the FKP of the principal limb, Fp, with
respect to joint variables, vi = tan

( ui
2

)
, k = 1, . . . , 4, and the design variables can be

expressed as follows:

Fp =

(
3

∏
k=1

Σ kΓ k

)

Σ 4. (4)

Reaching this step, the so-called kinematic mapping should be applied to Fp =
[ fik]i,k=1,...,4 which amounts to computing the Study parameters, X = (x0 : x1 : x2 :
x3 : y0 : y1 : y2 : y3), from matrix Fp. For that, Study in [9] presented a singular-free
procedure in which the homogeneous quadruple x = (x0 : x1 : x2 : x3) can be obtained
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from at least one set of four proportions [8]. Here, among the four proportions the
following proportion is chosen:

x0 : x1 : x2 : x3 = 1 + f22 + f33 + f44 : f43 − f34 : f24 − f42 : f32 − f23. (5)

Then, the four remaining Study parameters y = (y0 : y1 : y2 : y3) can be computed
from:

2y0 = f21x1 + f31x2 + f41x3, 2y1 = − f21x0 + f41x2 − f31x3

2y2 = − f31x0 − f41x1 + f21x3, 2y3 = − f41x0 + f31x1 − f21x2.
(6)

Upon substituting the components of Fp into Eq. (5) and (6), it turns out that all
the computed Study parameters share a common factor which is:

1 + v1v2v3v4 − v3v4 − v2v4 − v1v4 − v1v2 − v1v3 − v2v3(
1 + v1

2
)(

1 + v2
2
)(

1 + v3
2
)(

1 + v4
2
) . (7)

Using the fact that Study parameters are homogeneous allows to omit this common
factor and one may obtain the following for the rotational part of the Study para-
meters:

x0 = 2(1 + v1v2v3v4 − v3v4 − v2v4 − v1v4 − v1v2 − v1v3 − v2v3) (8)

x1 = 2(1 + v1v2v3v4 + v1v3 − v1v2 + v1v4 + v2v3 + v2v4 − v3v4) (9)

x2 = 2(v1v2v4 + v1v2v3 + v1 − v1v3v4 + v2 − v3 − v4 − v2v3v4) (10)

x3 = 2(v1v2v4 − v1v2v3 + v1 − v1v3v4 + v2 + v3 + v4 − v2v3v4). (11)

The objective now is to combine the above expressions for x and y by eliminating
passive variables, i.e., vi, in order to obtain two independent expressions – since for
a fixed P the limb has two free-DOF – for the FKP of one limb with respect to
Study’s parameters. Before proceeding to the elimination of the passive variables,
matrix Fp is expanded and it reveals that f44 = 0 which amounts to Ω 44 = 0:

C = x2
0 − x2

1 − x2
2 + x2

3 = 0. (12)

Thus, before any elimination, a quadric, called constraint equation C , is found
which is free of any design parameters and can be regarded as the first constraint
equation. This leads to deduce that five PRUR limbs share a common rotational con-
straint as confirmed by the type synthesis performed for such a mechanism in [1]:
The mechanism has a rotational constraint about an axis defined by e1 × e2. Equa-
tion (12) is a statement equivalent to the latter written in terms of Study’s paramet-
ers and indicates that the rotational constraint of this mechanism lies on a quadric.
The existence of this quadric together with the homogeneous condition, ∆ = 1, res-
ults in two independent rotational parameters for the mechanism. Returning now to
the FKP and Eqs. (8-11), skipping mathematical details, upon applying a step by
step resultant method to Eqs. (8-11) and eliminating successively v3, v2, v4 and v1,
leads to three sixth degree polynomials, {T1,T2,T3}, with respect to the Study and
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design parameters. Expressions for {T1,T2,T3} are rather long and are not presen-
ted. In summary, the FKP of the principal limb can be defined by the following
ideal:

I =< T1,T2,T3,S
6
2,C > (13)

i.e., three sixth degree polynomials and two quadrics S6
2 and C , the Study and

the constraint quadric, respectively. The above formulation channels us to apply a
Gröbner base algorithm [10], a powerful algebraic geometry algorithm, to the ideal
I. From an algebraic geometry stand point, Gröbner bases can be viewed as an or-
ganized way to generate new polynomials in the ideal selecting a subset that retains
exactly the same solution set as the original polynomials, and determining a valid set
of monomial identities that complete the definition of an eigenvalue problem [10].
Upon computing the Gröbner basis of the ideal I with respect to the monomial order
x0 ≺ x1 ≺ x2 ≺ x3 ≺ y0 ≺ y1 ≺ y2 ≺ y3, and after several mathematical manipula-
tions, the following expression is found:

Fp(X) = −8(l2
1p + l2

2p)
(
y1 x1 + y2 x2

)2 + 8(l2
1p − l2

2p)
(
y1 x2 − y2 x1

)(
−x0 y3 + y0 x3

)

+ 16
(
y2

2 + y1
2)(

y0
2 + y3

2)+(l2
1p − l2

2p)
2 (

x2
2 + x1

2)2
= 0. (14)

Considering that both moving links have equal lengths, l1p = l2p = lp, leads to:

Fp(X) = (y2
2 + y2

1)(y
2
0 + y2

3)− l2
p(y1x1 + y2x2)

2 = 0. (15)

Equation (14) is of degree four, instead of six for Ti={1,2,3}, and could be regarded
as the simplest expression describing the FKP of the principal limb in terms of the
Study parameters, X . Thus, reaching this step, two expressions are in place, Eq. (14),
or Eq. (15) when l1i = l2i, and Eq. (12), which fully constrain the mechanism in
space.

3.2 FKP Formulation of the 5-PRUR, Extension from the
Principal Limb

In order to find the FKP corresponding to four other limbs, j = 2, . . . ,5, a trans-
formation in the Study parameters X should be made in both base and moving
frame and can be done by following the procedure described in [8]. Consider
b j = (b0 j : . . . : b7 j) and m j = (m0 j : . . . : m7 j) as the Study parameters describ-

ing the jth limb placement in the base (fixed frame) and in the moving platform
(mobile frame), respectively, which are attached to the principal limb. It should be
noted that depending on the direction of the prismatic axis, the input parameter for
the FKP for the P appears within different components of bi. Since the axes of
the R joints fixed to the base, e1, are all parallel, b j consists of a pure translation
which requires to have b0 j = b1 j = b2 j = b3 j = b4 j = 0 for its Study parameters.
The same follows for the axes of the R joints attached to the platform, e2, and leads
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to: m0 j = m1 j = m2 j = m3 j = m4 j = 0. Thus, based on the transformation matrices
presented in [8], one may obtain:

jTb =
[

I4×4 04×4
B j I4×4

]
, jTm =

[
I4×4 04×4
M j I4×4

]
(16)

so that B j and M j are the following skew-symmetric matrices:

B j =

⎡

⎢
⎢
⎣

0 −b5 j −b6 j −b7 j
b5 j 0 −b7 j b6 j
b6 j b7 j 0 −b5 j
b7 j −b6 j b5 j 0

⎤

⎥
⎥
⎦ , M j =

⎡

⎢
⎢
⎣

0 −m5 j −m6 j −m7 j
m5 j 0 m7 j −m6 j
m6 j −m7 j 0 m5 j
m7 j m6 j −m5 j 0

⎤

⎥
⎥
⎦ . (17)

Thus the transformation becomes:

Xj = ( jTm
jTb)

−1X (18)

and the FKP of the jth limb, F j, can be found by replacing X by Xj and the para-

meters corresponding to the principal limb, p, by the one of the jth limb:

F j = Fp

(
X �−→ Xj, p �−→ j

)
(19)

From Eq. (18) it follows that the Study rotational parameters, (x0 : x1 : x2 : x3),
remain the same for all limbs. In summary, the FKP for the mechanism is equivalent
to 8 equations in 8 unknowns:

G =
〈
Fp, F2, . . . , F5, S6

2, C , ∆ −1
〉

. (20)

For the FKP, the above system of equations should be solved for X with design val-
ues of: {b j,m j, l1 j, l2 j, l1p, l2p}. It should be noted that the input of the mechanism,
i.e., the elongation of the prismatic actuators are included in b j. Although the de-
gree of the FKP expressions is reduced from 6 to 4, Ti=1,2,3 versus Fp, the degree
is still too high to apply the resultant method to G in order to find a univariate ex-
pression for the FKP. This channels us to use numerical algebraic geometry which
consists of the intersection of algebraic geometry and numerical analysis. A number
of numerical algebraic algorithms have been implemented in Bertini [11]. Bertini
is a software for solving polynomial systems using the Homotopy Continuation ap-
proach. Using Bertini, numerous random examples in solving the set of Eqs. (20)
reveal that the FKP of this 5-DOF parallel mechanism admits up to 1680 finite solu-
tions (complex and real). Applying the so-called witness set method, Bertini has
the ability to detect positive dimensional solution sets. Using this feature of Bertini,
it can be confirmed that regardless of the inputs and geometric parameters of the
mechanism the following complex sets are always a solution of Eq. (20):
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(a) Two P ‖ x (b) Two P ‖ z

Di j

x

z

Ci j

(c) P‖ x+P‖ z

Fig. 3 Simplified kinematic arrangements with merged U joints.

{x0 = 0, x3 = 0, x1 = −ix2, y1 = −iy2}, {x0 = 0, x3 = 0, x1 = ix2, y1 = iy2}
{x1 = 0, x2 = 0, x0 = −ix3, y0 = −iy3}, {x1 = 0, x2 = 0, x0 = ix3, y0 = iy3}.

(21)
As the equations are linear, the dimension formula shows directly that each set rep-
resents a three dimensional complex space. In fact, 1680 is not the lowest upper
bound for the number of real solutions. By numerous random examples, a max-
imum of 208 real solutions were found. Providing an upper bound for number of
the real solutions requires the development of a univariate expression for the FKP
which is an extremely complicated task. It was generally believed that the 6-DOF
Gough–Stewart platform with up to 40 solutions for the FKP is the parallel mech-
anism which possesses the largest number of real solutions for its FKP. Obtain-
ing 208 real solutions leads to conclude that arriving at a univariate expression for
the FKP of this parallel mechanism should be extremely difficult especially con-
sidering the complexity of deriving a univariate expression for the forty solutions
of the FKP of the Gough–Stewart platform [12]. For a simplified design having a
pair of combined attachment points, Fig. (3), the FKP is explored using the three-
dimensional kinematic space, i.e., Cartesian coordinates, which is beyond the scope
of this paper. The latter study revealed that the univariate expression for the FKP
can be expressed in terms of angle θ and is of degree 220. Using Bertini for this
simplified design confirms that the mechanism has up to 220 finite solutions, i.e.,
complex and real. Finally, in order to ensure the validity of the solutions obtained
by Bertini, all the real solutions are substituted into the IKP expressed in terms of
the three-dimensional kinematic space. This test reveals that for all solutions con-
verted to Cartesian coordinates and Euler angles the same set of prismatic actuator
elongations can be found. The transformation of Study parameters into Cartesian
coordinates and Euler angles is elaborated in the last section of this paper.
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4 Cartesian Representation of Study Parameters

The first step is to compute the rotational DOFs (φ , θ ). To this end the lower three
by three sub matrix of Ω , noted as Ω t , should be made equivalent to Q, i.e., a one by
one component correspondence. Skipping mathematical derivations, the inspection
of the components of Q and those of Ω ′

t leads to a unique solution for θ and φ :

θ = arctan2(x1x3 + x0x2, x2x3 − x0x1), (22)

φ = arctan2(x2x3 + x0x1, x1x3 − x0x2) (23)

To compute the position of the platform, (x ,y ,z), for a given set of Study paramet-
ers, (x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3), one should rewrite Eq. (6) as follows:

2y0 = x1x + x2y + x3z, 2y1 = −x0x + x2z− x3y

2y2 = −x0y− x1z+ x3x 2y3 = −x0z+ x1y− x2x.
(24)

The above system of equations is of rank three, i.e., the equations are linearly de-
pendent. Thus taking three equations from the above leads to obtaining a unique set
of solutions for (x,y,z). Then, the position of the platform, p, with respect of the base
frame presented in Fig. 1 becomes:p = [y,z,x]T . Following the same procedure, one
can transform the vectors describing the geometry of the base and platform, written
in terms of Study’s parameters, bi and mi, respectively, into the vectors describing
them in the Cartesian coordinates, ri and si. Skipping the mathematical derivations
one obtains:

ri = [−2b6i, − 2b7i, −2b5i]
T , si = [−2m7i, 2m5i, −2m6i]

T . (25)

5 Study Parameters Representation of the Cartesian
Coordinates

Without loss of generality, assume the homogeneous condition to be ∆ = 1. Then,
skipping mathematical derivation, it follows that:

x3 = (−1)m1

√
1 + sin(θ + φ)

2
x0 = (−1)m2

√
1− sin(θ + φ)

2
. (26)

In the above m1 = {0,1} and m2 = {0,1} stand for the two distinct solutions. Hand-
ling the values for x0 and x3 leads to:

x1 = (x3 sin θ − x0 cosθ ), x2 = (x0 sinθ + x3 cosθ ). (27)

The transformation for the fixed parameters ri and si can be obtained readily us-
ing Eq. (25). Handling the value of rotational parameters, i.e, xi, i = 0, . . . ,3, trans-
lational parameters, yi, i = 0, . . . ,3 can be found by back substitution into Eq. (24).
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As it can be observed from the above, this mapping admits two distinct solutions for
x3 and x0 for a given pose of the platform in the Cartesian space. These two distinct
solutions can be classified as follows: θφ > 0 then m1 = m2 or θφ ≤ 0 then m1 	= m2.
Thus from the above it follows that the mapping from the Study parameters to the
Cartesian space is one to one and the converse, i.e., from Cartesian space to Study’s
parameters is two to one. This is called double covering of the Euclidean displace-
ment group (SE(3)). More precisely: the dual quaternions are a double covering of
SE(3).

6 Conclusion

This paper investigated the FKP of 5-DOF parallel mechanisms (3T2R) with a leg
kinematic arrangement of type PRUR. By means of Study’s kinematic mapping, the
FKP is explored in a seven-dimensional projective space. Study’s kinematic map-
ping leads to a simpler expression for the FKP of the so-called principal limb which
is of degree 4, Fp(X), instead of 24 in the case of three-dimensional kinematic
space, i.e., Cartesian coordinates. Using Bertini, a package for solving polynomial
systems using Homotopy continuation, the FKP was solved and revealed that for
a general design the degree of finite solutions is 1680, which provides some in-
sight into the degree of the univariate polynomial for the FKP. Then, by a random
numerical test, 208 real solutions were found. This example demonstrated that sym-
metrical 5-DOF parallel mechanisms admit more real solutions to their FKP than
the 6-DOF parallel mechanism, the Gough–Stewart platform, with forty solutions.
Future works include the solution of the FKP in a univariate form for a general
design and the study of the singular configurations.
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Abstract. Performing activities autonomously and independent of human interaction during the
production and handling process of goods is often achieved by robots. Since many of these hand-
ling tasks require a manipulator that reaches only a few points, a binary robot, such as the structure
presented in this contribution, is suitable. These parallel robots with binary actuation can be de-
signed at low cost and controlled by a simple programmable logic controller (PLC). Conformance
of a predetermined positioning task can be achieved through the development of a synthesis ap-
proach. Furthermore, a calibration strategy based on additional components is introduced. These
modules allow an adjustment of geometrical parameters to ensure positioning tasks with high ac-
curacy.

Key words: Binary robot, reconfigurable mechanism, reconfigurable robot, modular robot system,

mechanical calibration.

1 Introduction

Binary actuators are characterized by a simple design and high repeatability, since
their two states are based on mechanical end positions. Using these kind of actuators
in a kinematic structure allows the design of a cost-effective robot. The workspace of
these robots with n binary actuators is discretized to a total of 2n points. A position
control is not necessary and the restriction of the moving properties permits the use
of a rudimentary control scheme. Thus a simple PLC is more than adequate as the
vector of the drive coordinates q simply consist of a series of binary digits.

In the field of binary robots, research groups with different motivations for build-
ing binary robots exist. Plante et al. work with new lightweight actuators to reduce
the total weight of the entire manipulator [1]. The objective of this concept is the
establishment of binary robots for space activities, such as the manipulator from
Sujan and Dubowsky, which must be designed to minimize the total weight in spite
of redundant actuators [2]. Chirikjian has analyzed the kinematics of binary robots
using hybrid structures with large numbers of actuators (ca. 30), where it was shown
that the number of positions increase exponentially [3]. The objective is to realize
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a binary robot which is able to replace a continuous workspace manipulator. This
approach leads to a layout of a serial kinematic structure, including several basic
modules which consist of closed loops. Another example is the elastically aver-
aged parallel manipulator with bistable Dielectric Elastomer Actuators (DEA) for
MRI-guided prostate cancer therapy, which has been demonstrated by Plante and
Dubowsky [4].

The more binary actuators are incorporated inside a kinematic structure, given
that an application needs to reach plenty of points, the more the simplicity of binary
robot control can be reduced. However, parallel robots with binary actuators can
be used for handling tasks such as Pick-and-Place operations with few targets. The
motivation behind this work is the development of a parallel robot with a minimum
of binary actuators that is sufficient for a specific handling task. Furthermore, if the
handling task changes in the future, the binary robot should be designed in such
a way that a reconfiguration is possible and economical. Thus, a continuous sys-
tem can almost be replaced by a modular binary robot system built with low-cost
components such as pneumatic cylinders.

For easy and fast installation of these binary robots, a configuration software tool
is required which uses a synthesis approach to find the geometrical parameter set
which allows the structure to reach the positions of a specific task. Therefore the
single parts of the binary robot must have a modular design for a prompt installation
and increased reusability.

After installation of a robot, it is foreseen that there are differences between the
prescribed and attained positions. The reason of these differences are unavoidable
tolerances during the production of the robot parts and the assembly of the ma-
nipulator. Thus, there is a need for parameter calibration to enhance the absolute
positioning accuracy of the parallel robot [5, 6]. As there is no way to implement
an optimized parameter set inside the binary robot control, a method is presented
which allows the modification of the structure parameters themselves. In addition to
this, the specific calibration procedure is presented.

In this article a simple RPRPR Fivebar with three revolute joints (R) and two
actuated prismatic joints (P) is used as an example to demonstrate the techniques
for the synthesis and calibration procedure, which are needed for the installation of
a specific binary robot configuration. Furthermore, this structure can be used for a
four point task so that a prototype of the RPRPR Fivebar is planed to prove that four
points can be accurantly reached with only two digital singnals.

2 The Fivebar Structure

An example of a binary robot with a minimum number of parts and with more than
two possible positions is the RPRPR Fivebar. This manipulator consists of two linear
actuators, for example pneumatic cylinder, and three passive revolute joints. The tool
center point (TCP) can be located at the center of the revolute joint which joins the
two actuators. Figure 1 illustrates the four reachable positions of this manipulator,
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Pj

s1 s2

c1 c2

A1 A2

Fig. 1 The RPRPR Fivebar with binary actuators and its four possible positions.

Table 1 Geometrical parameters of the RPRPR Fivebar.

Description Parameter

Coordinates of the fixed revolute joints Ai =
(

xA,i;yA,i

)

Cylinder length ci
Stroke of the piston si

Coordinates of the TCP Pj =
(

xTCP, j;yTCP, j

)

which depend on the drive coordinates q representing the states of the both cylinders
(where 0 stands for retracted piston and 1 stands for an extended piston).

As the geometrical parameters are not obvious at first glance, a software tool for
synthesis can be used to assist in the configuration of this binary robot for a given
four point application. Such a tool can be used to find the parameters for the RPRPR
Fivebar (Table 1) to reach the points of a specific task.

3 Four Point Synthesis Approach

An analysis of a specific application is needed to set the geometrical parameters
of the RPRPR Fivebar, as the regarded reconfigurable binary robot can only reach
four points in total. The first step is to identify the minimal connection length of all
four task relevant points Pj with j = 1, . . . ,4 which leads to a quadrilateral. Thereby,
counter clockwise numbering simplifies further examination. In the constellation
illustrated in Fig. 2, intersection points Ai with i = 1,2 can be developed from the
perpendicular bisector of two opposite sides of the quadrilateral [7].

If these intersection points are not located inside the quadrilateral, they can be
further used as the positions of the fixed revolute joints of the RPRPR Fivebar struc-
ture. To calculate the parameters ci and si, the destination point Pj where the pistons

of the cylinders are retracted, q = [0,0]T , must be identified. This point will be re-
ferred to as T for the rest of the synthesis. Therefore, the relative position of the
joints Ai to the connection lines of the destination points is used to choose the point
of Pj as T .
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A1

A2

P1

P2

P3

P4

Fig. 2 Construction of the fixed joint positions Ai.

For example, to make a statement about the relative position of point A1 to −−→
P3P4,

the coordinates of all these points are first combined in a matrix M as shown in Eq.
(1) by the rule of Sarrus.

M =

⎡

⎣
xA,1 xP,3 xP,4
yA,1 yP,3 yP,4

1 1 1

⎤

⎦ (1)

The determinant of the matrix M can then be computed and the result gives valu-
able information about the location of A1. For a positive determinant, det(M) > 0,
A1 lies on the left side of −−→P3P4. If the determinant is negative, det(M) < 0, the point
lies on the right side of the vector −−→P3P4. The point is part of −−→P3P4 if the determinant is
zero. Hence, the identification of T is possible using knowledge about the location
of the fixed revolute joints relative to the counter clockwise vector loop of the quad-
rilateral. There are two of the four vectors where one point Ai lies on the right side.
The connecting point between these two vectors is point T . A function of the case
differentiation to identify point T from Pj has been implemented in the synthesis
algorithm.

The length from Ai to T represents the cylinder length ci, as the piston of each
cylinder is retracted. The distances of the fixed revolute joints to the other destina-
tion points Pj must either be equal to the respective cylinder length ci or equal to the
cylinder length plus the stroke si, the extended piston position of the cylinders.

For some quadrilaterals it is impossible to find locations of the fixed revolute
joints. For example, where the perpendicular bisector of two opposite sides of the
quadrilateral do not intersect. This occurs if these lines lie parallel to each other.
This case applies for quadrilaterals with a shape of a parallelogram or a rhombus
(Fig. 3(a)). For a symmetrical trapezoid (Fig. 3(b)) the two points Ai lie inside each
other and no suitable structure can be built.

In addition to restrictions such as installation space, joint angle, and singularities,
it is necessary to ensure that the regarded four points are part of one workspace con-
figuration. If one of the four points is part of the opposite workspace configuration
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P1

P2

P3

P4

(a) Parallelogram/Rhombus

A1 A2

P1

P2

P3

P4

(b) Symmetrical trapezoid

Fig. 3 Example quadrilaterals with no usable solution.

A1

A2P1

P2

P3

P4

(a) Unworkable solu-
tion as the des-
tination points lie
in both workspace
configurations.

A1

A2

Ã1

Ã2

P1

P2

P3

P4

P̃2

(b) Achimedean spiral algorithm:
P2 has been moved to a posi-
tion P̃2 of a suitable solution.

Fig. 4 Different workspace configurations and a strategy to get a suitable solution.

as shown in Fig 4(a), it cannot be reached, as the binary robot is not able to drive
through a singularity.

To find a solution, even though one of the described geometrical conditions is ap-
plied, one of the points Pj must be able to be moved freely. This strategy is possible
if the specific task position can be changed. Then the single point will be moved, for
example on an Archimedean spiral (Fig. 4(b)), until a suitable parameter set with Ãi
can be found.
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4 (Re-)Configuration of Binary Robots

Should the synthesis yield a suitable parameter set for the RPRPR Fivebar the cyl-
inders can be ordered with the computed strokes si. To build the binary robot in
the elaborated configuration, it is essential to support the installer with the first as-
sembly, as the discretized workspace of the binary robot must fulfill the accuracy
requirements of the destination points of the task. To use the same robot compon-
ents for different structures, the maximal possible forces for each part of the modu-
lar robot system must be taken into account. Moreover, the objective is to integrate
different pneumatic cylinders for different requirements such as high repeatability,
high dynamics or low costs [8].

4.1 Robot Components for (Re-)Configuration

Since the production and assembly are subjected to tolerances, it must be assured
that the four destination points will be reached with a sufficient accuracy. Therefore,
a parameter calibration is typically used to correct these deviations. The identifica-
tion of the parameter deviations can be done with well known optimization methods,
such as the Levenberg–Marquardt algorithm [9]. The simplified control of the bin-
ary robots makes it impossible to change the parameters within the controller. The
only way to change the values of the parameters is to modify the structure itself.
Additional components have been developed for a prototype of the RPRPR Fivebar,
which allow the adjustment of some of the coordinates of the fixed revolute joints Ai
and the length of the cylinders ci. The stroke of the pneumatic cylinders cannot be
modified after production, as they are designed with a damping system at their end
positions. The correction of the task points Pj have to be compensated by modifying
the other parameters.

4.2 Mechanical Calibration of Binary Robots

After the first assembly of the RPRPR Fivebar the actual points which the binary
robot can reach need to be measured. The difference between the actual points Pj,a
and the nominal points Pj,n (k) of the task depending on the parameter vector k,
including the coordinates of Ai and the lengths of ci, can be written in a residuum r j
as shown in Eq. (2).

r j(k) = Pj,a −Pj,n(k) (2)

Combining the deviations of all four points in one vector r and multiplying it
with its transposed rT results in a scalar F (Eq. 3).

F = rT · r (3)
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The cost function F can be minimized within an optimization procedure by modi-
fying the components of the parameter vector k, until F is within a predefined range.
The optimization function outputs a parameter vector kopt with modified parameter
values. The next step of a typical calibration procedure will now be the implement-
ation of these parameters inside of the control [10]. This will improve the robot’s
ability to reflect the actual system.

In the case of a binary robot, only the geometrical parameters of the structure
can be adjusted by the presented additional components. Hence, it is a matter of
a mechanical calibration. In order to reach the nominal destination points Pj,n, the
differences of Eq. (4) between the nominal and the optimized parameter values rep-
resent the relative parameter variation, which is necessary to improve the accuracy
of the binary robot.

∆k = k−kopt (4)

5 Operational Status

The presented methods have already been realized within a software tool that allows
the geometrical parameters of the RPRPR Fivebar to be synthesized. An algorithm
has been implemented that moves one point of the quadrilateral on an Archimedean
spiral until a suitable solution can also be found. After the structure has been con-
figured and installed for a specific task, the software supports the installer with the
required calibration of the binary robot. Here the reachable points Pj,a are used as an
input to calculate the relative parameter adjustments ∆k. To be able to use this soft-
ware tool, a prototype system should be developed on which the elaborated methods
can be tested and validated. Therefore, specific robot parts are designed such as re-
volute joints (Fig. 5) with the opportunity to build other kinematic structures with
the same parts by connecting different binary actuators or links. In addition to the
presented procedure for a mechanical calibration of parallel robots with binary ac-
tuators, components for parameter modification inside the structure are necessary.
Thus, these parts allow the adjustment of the coordinates of the fixed revolute joints
Ai and the correction of the cylinder alignment relative to these fixed revolute joints
which is represented by the parameter ci. With these parts it will be possible to
configure and reconfigure other parallel binary robots besides the RPRPR Fivebar.

6 Conclusions

Planar parallel robots with binary robots are suitable for simple handling tasks in
which only a few destination points need to be reached. As they feature a discrete
workspace, methods for their synthesis and their calibration are essential. In par-
ticular if the number of needed destination points is equal to the number of pos-
sible robots positions. To accomplish these tasks, this article introduces methods
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Fig. 5 Prototype of a revolute joint with pneumatic cylinder for a movement in z-direction and
vakuum gripper.

to synthesize and to calibrate a binary robot with the well known RPRPR Fivebar
structure. An approach for a four point synthesis is presented, which allows to set
the geometrical parameters of this structure such that a predefined four point con-
stellation can be realized. A modification of parameter calibration is introduced as
mechanical calibration for binary robots so that the actual point positions satisfy the
required accuracy. Due to the binary nature of the controller, additional components
are developed which allow for a modification of selective parameters.
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10. Last, P., Budde, C., Schütz, D., Hesselbach, J., Raatz, A.: Parallel robot calibration by working
mode change. In: Advances in Robot Kinematics: Analysis and Design, J. Lenarcic and P.
Wenger (Eds.), Springer, Dordrecht, pp. 371–380 (2008).

232



On the Design of 5R Serial Manipulators with
Isotropic Positioning
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École Polytechnique, Montréal, Canada; e-mail: luc.baron@polymtl.ca

Abstract. This paper study the serial composition of two isotropic serial chains aiming at isotropic
positioning tasks, and resulting in two new 5R serial manipulators. The operating point of manip-
ulator A can undergo the full surface of a sphere of near isotropic positioning, while maintaining
a low constant overall conditioning. The Gram–Schmidt procedure can orthogonalized the rows
of the positioning jacobian matrix arising from a selected point over that sphere. The resulting
manipulator B can reach isotropic positioning, while undergoing only the trivial circle.

Key words:

1 Introduction

This paper introduces two new 5-revolutes (5R) serial manipulators having isotropic
and near isotropic positioning capability. A manipulator is said isotropic if its Jac-
obian matrix can reach isotropic values – i.e. the minimum condition number of
unity – at least at a single posture within its workspace [1]. The design of manipulat-
ors able to reach isotropy is of particular interest because they exhibit their best kin-
ematic performances in such postures, namely isotropic postures [2]. Consequently,
many research works have been conducted toward finding architectures capable to
reach isotropy and their corresponding isotropic postures. When the concept of iso-
tropy is applied to serial manipulators, two basic properties have been pointed out
in the literature. First, the isotropy is not affected by a rotation of the first joint, and
hence, a point P of the end-effector (EE) can undergo a trivial path – a circle –
while being at the same isotropic posture [1]. Second, the isotropy of an orienting
serial chain is not affected by a rotation of the last joint [3].

For positioning tasks, a 2R, a 3R and a 4R planar serial manipulators have, re-
spectively, 2, 2 and 4 isotropic postures along a trivial path [4, 2]. A 4R spatial serial
manipulator has also isotropic postures along a trivial path [4]. For orienting tasks,
a 3R, 4R and 5R spherical serial manipulators have isotropic postures along a trivial
path [5, 6].

Isotropy, kinematic design, serial manipulator.
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Recently, a 6R spherical serial manipulator has been proposed [7], for which the
EE can undergo a non-trivial path – any EE orientation – while being at the same
isotropic posture. In fact, this manipulator is obtained from the serial composition of
two isotropic 3R orienting manipulators. The non-trival path comes from the trivial
path of the first joint together with the trivial path of the intermediate joints of the
two sub-chains, i.e., joints 3 and 4. Similarly, a 4R spatial serial manipulator has
been proposed [10], for which a point P can undergo a non-trivial path – the surface
of a sphere – while being at the same isotropic posture. Here again, this manipulator
is obtained from the serial composition of an isotropic 3R orienting manipulators
followed by an isotropic 2R planar manipulator with a shared intermediate revolute
joint, thus resulting in a 4R spatial serial manipulator with isotropic positioning.

For both positioning and orienting tasks, it is required to render dimensionless
the jacobian matrix by dividing both sides of the velocity equation of point P by a
characteristic length of the manipulator. This length is defined as that minimizing
the condition number of the dimensionless jacobian [4]. Resorting to this charac-
teristic length, the nR planar serial isotropic manipulators have isotropic postures
along a trival path [4]. Similarly, the 6R spatial serial manipulator, called diestro,
has also isotropic postures along a trival path [8].

In this paper, we study the serial composition of two isotropic serial manipulat-
ors, namely a 3R orienting manipulator followed by a planar 3R positioning ma-
nipulator. Since the last joint of the orienting manipulator and the first joint of the
positioning manipulator are both irrelevant to the isotropy of each individual ma-
nipulators, they could shared their intermediate joints, thus resulting in a 5R manip-
ulator that we will investigate its possible isotropy. The two proposed manipulators
have either near isotropic positioning postures along a non-trivial path – the surface
of a sphere – or isotropic positioning postures along a trival path. These manipulat-
ors are aimed at a class of tasks requiring only 5 degrees-of-freedom, i.e., the 3D
positioning of the EE together with two orientation angles – the pitch and yaw only,
while the roll around the last link is not feasible.

2 Kinematic Model

The Denavit–Hartenberg (DH) parameters of the two new 5R serial manipulators
are listed in Table 1 and depicted in Figs. 1 and 2. The angular velocity of the end-
effector (EE), namely ω, is given as

ω = Aθ̇ , θ̇ ≡ [θ̇1 θ̇2 θ̇3 θ̇4 θ̇5]T , (1)

in terms of the 3 × 5 orienting Jacobian matrix A defined as

A ≡ [e1 e2 e3 e4 e5], (2)

with ei being the unit vector along the joint axis i. Moreover, the velocity vector of
point P of the EE, namely ṗ, is given as

234



On the Design of 5R Serial Manipulators with Isotropic Positioning

Table 1 DH parameters of the dimensionless positioning 5R serial manipulator with arbitrary l,

arbitrary β1, and β5 = 1√
3

, where β2 = 0 for manipulator A and β2 =
√

2
2 − β5 for manipulator

B.

i θi ai bi αi

1 θ1 0 β1l
π
2

2 θ2 β2l 0 − π
2

3 θ3 l 0 0
4 θ4 l 0 0
5 θ5 β5l 0 0

ṗ = Bθ̇ , ṗ ≡ [ẋ ẏ ż]T , (3)

in terms of the 3 × 5 positioning Jacobian matrix B defined as

B ≡ [e1 × r1 e2 × r2 e3 × r3 e1e4 × r4 e5 × r5] (4)

with ri being the position of P relative to the origin of frame Fi expressed in frame
F1 [3, see Chap. 4]. Vectors ri are not provided here, but can be readily obtained
from the DH parameters. Manipulators A and B are dimensionless, since the lenght
l can be arbitrarly chosen. Moreover, the ratio β1 can also be arbitrarly chosen. The
other link lengths come from the geometry of the equilateral triangle corresponding
to the isotropic posture of the planar 3R manipulator, links 3 and 4 being along the
sides of the triangle of arbirary lenght l, while link 5 goes from the coner to the
center of the triangle, a length of a5 = β5l = 1√

3
l.

3 Isotropic Design

A m × n rectangular Jacobian matrix M is isotropic if [4]:

MMT = σ 21m×m m < n (5)

MT M = σ 21n×n m ≥ n (6)

for which the condition number is unity.

3.1 Manipulator A with Near Isotropic Positioning

For a positioning task, manipulator A has a near isotropic positioning Jacobian mat-
rix B such that

BBT ≈ σ 213×3 (7)

if
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e1

e2

e3

e4

e5

X1 Y1

X6

Z6

θ4 = 4π
6

θ5 = 5π
6

P

Fig. 1 Manipulator A with near isotropic posi-
tioning over a sphere of radius β5l with β2 = 0
and β5 = 1√

3
for ∀θ1, θ3 subject to θ2 = π

2 ,

θ4 = 4π
6 and θ5 = 5π

6 .

e1

e3

e2

e4

e5

X1 Y1

X6Z6

θ4 = 4π
6

θ5 = 5π
6

P

Fig. 2 Manipulator B with isotropic position-

ing with β2 =
√

2
2 − β5 and β5 = 1√

3
for ∀θ1

subject to θ2 = π
2 , θ3 = − π

6 , θ4 = 4π
6 and

θ5 = 5π
6 .

θ2 = π

2
, θ4 = 4π

6
, θ5 = 5π

6
, ∀θ1, θ3. (8)

Under the near isotropic conditions of Eq. (8), the condition number, namely
cond(·), of matrix B gives the minimum

cond(B) = √

3/2, ∀θ1, θ3. (9)

As shown in Fig. 1, manipulator A is able to reach the minimum condition number
of

√
3/2 along a non-trivial path, i.e., point P can undergo the surface of a sphere

of radius l/
√

3, while being at the same near isotropic positioning posture. The
manipulator is more likely to maintain good condition numbers, when P undergo an
arbitrary trajectory in the vicinity of this surface. For an orienting task, manipulator
A has an orienting Jacobian matrix A such that

AAT ≈ σ 213×3, (10)

which never reach isotropic values for the isotropic conditions of Eq. (8). In general,
matrix A takes the form
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A =
⎡

⎣

0 s1 c1s2 c1s2 c1s2
0 −c1 s1s2 s1s2 s1s2
1 0 −c2 −c2 −c2

⎤

⎦ . (11)

Apparently, matrix A is independent of θ3, θ4 and θ5. Upon substituting Eq. (8) into
(11), the condition number of matrix A gives the minimum

cond(A) = √
3, ∀θ1, θ3, θ4, θ5. (12)

Consequently, matrix A is very close to isotropy. It is independent of θ1, θ3, θ4 and
θ5, and hence, depends only on θ2.

3.2 Manipulator B with Isotropic Positioning

In order to obtain a manipulation capable to reach positioning isotropy at least in
some isolated postures, we need to render B isotropic in those postures. First, we
select a convenient position of point P over the sphere of near isotropic postures,
e.g.:

θ1 = 0, θ3 = −π

6
, (13)

which gives the following matrix B:

B =
⎡

⎢
⎣

0 − 1√
3

0 0 0

0 0 1√
3

− 1
2
√

3
− 1

2
√

3
0 0 0 − 1

2
1
2

⎤

⎥
⎦ l (14)

Second, we use the Gram–Schmidt orthogonalization procedure [9] in order to
render B isotropic. In 5-dimensional space, the three rows of B, namely bT

1 ,
bT

2 and bT
3 respectively, need to be orthogonal and of the same length. Appar-

ently from Eq. (14), the norm of the first row is different from the other two,
i.e., bT

1 b1 �= bT
2 b2 = bT

3 b3, while the three rows are already orthogonal, i.e.,
b1 ⊥ b2 ⊥ b3 ⊥ b1. Once b1 normalized, the resulting matrix, namely B′, is
given as:

B′ =
⎡

⎢
⎣

0 − 1√
2

0 0 0

0 0 1√
3

− 1
2
√

3
− 1

2
√

3
0 0 0 − 1

2
1
2

⎤

⎥
⎦ l, (15)

where B′ is now isotropic
BBT = σ 213×3 (16)

with σ 2 = 1
2 l2, and hence,

cond(B) = 1, ∀θ1. (17)
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Matrix A remains identical, with cond(A) = √
3. Finally, vectors r′

i are computed
from the columns of B′ and A, namely c′

i and ei , as:

r′
i = c′

i × ei , (18)

from which the DH parameters of manipulator B are readily found (as listed in
Table 1) and shown in Fig. 2.

3.3 Arbitrary 5R Manipulator with Isotropic Positioning

An arbitrary position over the sphere of near isotropic postures can be selected, e.g.,

θ1 = π

4
, θ3 = −π

4
, (19)

for which we obtain:

B =
⎡

⎣

0.1057 −0.3943 −0.3943 0.1057 0.2887
0.1057 −0.3943 0.3943 −0.1057 −0.2887

0 0 0.1494 −0.5577 0.4082

⎤

⎦ l, (20)

Apparently, bT
1 b1 �= bT

2 b2 = bT
3 b3 and b2 ⊥ b3 ⊥ b1, but b1 is not orthogonal to

b2, since bT
1 b2 �= 0. We can apply the Gram–Schmidt procedure on b1 as:

1. b′
1 = b1 − 1

bT
2 b2

b2bT
2 b1 (orthogonalization of b1);

2. b′
1 = ‖b3‖

‖b′
1‖b′

1, b′
2 = ‖b3‖‖b2‖ b2, b′

3 = b3 (normalization of b′
1 and b2 as b3);

or on b2 as:

1. b′
2 = b2 − 1

bT
1 b1

b1bT
1 b2 (orthogonalization of b2);

2. b′
2 = ‖b3‖

‖b′
2‖b′

2, b′
1 = ‖b3‖‖b1‖ b1, b′

3 = b3 (normalization of b′
2 and b1 as b3);

Once the Gram–Schmidt procedure applied on b1, we obtain

B′ =
⎡

⎣

0.1418 −0.5291 −0.3527 0.0945 0.2582
0.1157 −0.4320 0.4320 −0.1157 −0.3162

0 0 0.1494 −0.5577 0.4082

⎤

⎦ l, (21)

which is readily verified to be isotropic. Using the selected position of Eq. (19),
matrix A is given as

A =
⎡

⎣

0 0.7071 −0.7071 −0.7071 −0.7071
0 −0.7071 −0.7071 −0.7071 −0.7071
1 0 0 0 0

⎤

⎦ . (22)
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allowing the computation of matrix R′ (columns made of vectors r′
i) using Eq. (18)

as

R′ =
⎡

⎣

0.1157 0 0.1057 −0.3943 0.2887
−0.1418 0 −0.1057 0.3943 −0.2887

0.0 0.6796 0.5549 −0.1487 −0.4062

⎤

⎦ l, (23)

from which another set of DH parameters is found. Again here, the resulting ma-
nipulator is able to reach the positioning isotropy at the selected position over the
sphere, and undergo a trivial path with θ1.

4 Positioning and Orienting Tasks

For this kind of tasks, a dimensionless Jacobian matrix, namely J, is required, which
use a characteristic length L of the manipulator in order to normalize matrix B′, i.e.,

J =
[

A
1
L

B′
]

, L = 1

2
, ∀θ1, θ3 (24)

Upon substituting Eq. (24) into (6), and using any arbitrary position over the sphere,
e.g., Eq. (13) or Eq. (19), we have

cond(J) = √
3, ∀θ1, θ3, (25)

where the characteristic length L = 1
2 is the one allowing the minimum condition

number of Eq. (25).

5 Conclusions

New 5R serial manipulators have been proposed for isotropic positioning tasks. Al-
though manipulator A is not isotropic, its operating point can undergo the surface
of a sphere, while having cond(B) = √

3/2 and cond(A) = √
3 , yet a rather in-

teresting behavior. In order to effectively reach isotropic positioning, we proposed
to orthgonalize the three rows of B with the Gram–Schmidt procedure from an ar-
bitrary position over that sphere, thus resulting in manipulators, like manipulator B.
The latter reaches isotropic positioning at the selection position, i.e., cond(B) = 1
and cond(A) = √

3, making an overall cond(J) = √
3, again a rather interesting

behavior.
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Abstract. In this work we present a very systematic approach to control a humanoid robot head for
3-D object tracking. The proposed approach is based on the concept of virtual mechanism, where
the real head is enhanced with a virtual link that connects the eyes with a point in 3-D space. The
use of virtual mechanism results in a more systematic description of a task and allows us to use
“off the shelf” control algorithms. Additionally, it can be easily implemented on different types
of active humanoid heads. We implemented the proposed approach on a humanoid head with two
rigidly connected cameras in each eye (wide-angle and telescopic). The experimental results show
that the proposed control algorithm can be used to maintain the view of an observed object in
the foveal (telescopic) image using information from the peripheral view. Unlike other methods
proposed in the literature, our approach indicates how to exploit the redundancy of the robot head.

Key words: Active stereo vision, foveated vision, humanoid head, virtual mechanism, redundancy

resolution.

1 Introduction

Robots with humanoid heads are not only more social, but they also posses an active
vision system. Already in 1991, Ballard [1] described the implications of having a
visual system that could actively position the camera coordinates in response to
physical stimuli. Active vision is much more challenging, however, it is also much
more adaptable and flexible (e.g. using active vision wider field of view can be
achieved).

Human eye movements and gaze direction have a high communicative value [2,
3]. For example, gaze direction is a good indicator of the locus of visual attention.
For example, when an anthropomorphic robot moves its eyes and neck to fixate on
an object, an observer can conclude that the robot has become interested in that
object.

Many visual tasks require both high resolution and a wide field of view. High
acuity is needed for recognition tasks, while a wide field of view is needed for object
detection, for tracking multiple objects, etc. A common trade-off found in biological
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systems is to sample part of the visual field at a high enough resolution to support
the first set of tasks and to sample the rest of the field at an adequate level to support
the second set. This is seen in animals with foveated vision, where the density of
photoreceptors is highest at the center of the retina and falls off rapidly towards
the periphery. Designers of a number of humanoid robots (Cog [3, 4], Kismet [2],
Armar III [5], DB [6], etc.) attempted to mimic the foveated structure of the human
eye by using two rigidly connected cameras in each eye. Here, the optical axes of the
narrow- and wide-angle cameras are not aligned which makes the control problem
more complex. In this paper we discuss the control of such humanoid visual systems.

Metta et al. use learning methods to control the gaze direction of the eyes [7, 8].
The gaze direction is also affected by the head movement, therefore the eyes are
counter-rotated based on a reactive control using inertial sensor in the head [8].
Bernardino et al. [9] proposed a simplified decomposed controller, which restricts
the diversity of all possible movements. In [10] a tracking system with log-polar
cameras was proposed. The system is based on the estimation of redundant 2-D
motion parameters.

Ude et al. [11] proposed a similar decomposed controller, realized as a network of
PD controllers. They are based on simplified mappings between visual coordinates
and joint angles, rather than on a full kinematic model. Authors additionally imple-
mented a transformation which assures that the object, which needs to be tracked,
is kept in the center of the narrow-angle cameras, even though it is tracked by the
wide-angle cameras. However, this transformation is only valid if the object is suf-
ficiently far from the cameras.

A robotic head is an example of a mechanism that has some DOFs in one com-
mon kinematic chain (e.g. the neck) while some of DOFs are specific to each branch
of a system (e.g. each eye pan). This kind of systems can be treated as a branching
mechanism [12]. The most general way to control a branching mechanism is to treat
both branches equally so that the movement of the common DOFs is defined by
the tasks of both sub-branches equally, while the motion of a particular branch only
depends on a particular task. In the other case, one of the branches can be dominant
and can define the motion entirely, while the motion of the other branch adapt to
this motion.

A humanoid head is redundant with respect to the task of fixating on an object.
A redundant manipulator has more DOFs than what is required to solve the task and
has, therefore, the ability to move in the joint space without affecting the motion
in the task space. It is beneficial to exploit the redundancy of the robot head. For
example, when a robot neck is close to the joint limit the robot can use other joints
(e.g. the eyes) to accomplish the task (see joint limit avoidance in [13] or obstacle
avoidance in [14]). Similarly, joint torques can be optimized [15] and lower energy
consumption can be achieved (or low fatigue in case of a human). In order to de-
crease the error in the secondary task execution two approaches are proposed in [16].
Nevertheless, we can apply different voluntary head motions such as nodding and
still assure a stable gaze on the object.

In the paper we propose a very systematic approach for controlling a robot head.
The proposed controller assures that an object tracked by the wide-angle cameras
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is in the center of the narrow-angle ones regardless of the object/camera distance.
Additionally, we demonstrate how to exploit robot’s redundancy in such a way that
the robot can perform additional tasks which are typical for humans. The other ap-
proaches proposed in the literature [7–9] only limit the variety of human movements
by applying additional constraints.

2 Methods

The initial goal of our work is to obtain high resolution images of an object in the
robot’s environment. Because the peripheral cameras have a very wide field of view,
we cannot extract detailed object features from these images. Just like humans must
fixate on an object to discriminate fine detail, our foveal cameras must be pointed in
the direction of a given object in order to provide sufficient resolution. To accurately
track an object, we need to solve both perceptual and control problems:

• The perceptual problem deals with the estimation of location of a target object.
We estimate 3-D position of the object based on kinematics of the robot head and
stereo wide-angle camera image information.

• The control problem addresses the control of the head. It assures that an object is
kept in the center of the narrow- or wide-angle cameras using the estimated target
position. To solve the control problem, we have introduced a virtual mechanism.
Virtual mechanism is an auxiliary mechanism that points from both robot eyes
to a 3-D point in space. It allows us to properly define a task (the gaze direction)
and solve the control problem more systematically.

To evaluate our approach we carried out several experiments with a humanoid
head (Fig. 1) similar to the head used on Armar III humanoid robot [5]. The head
has seven mechanic degrees of freedom (DOFs) and two eyes. The eyes have a
common tilt and can pan independently. The visual system is mounted on a four
DOFs neck, which is realized as a Pitch-Roll-Yaw-Pitch mechanism. Each eye is
equipped with two cameras (wide- and narrow-angle) to allow visuomotor behaviors
such as tracking and saccadic motions. The head features human-like characteristics
in motion and response.

2.1 The Perceptual Problem – Acquiring 3-D Position of Object

The perception problem deals with the problem of acquiring 3-D position of an
object in space. The problem can be solved using two images from the wide-angle
stereo cameras and the head kinematics [17].

To define the 3-D object position a good intrinsic and extrinsic camera models
are crucial. Extrinsic camera parameters describe the position and orientation of the
cameras in space (kinematic model of the head). Here, we consider the poses of
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Wide-angle camera image

Narrow-angle camera image

Fig. 1 Humanoid robot head and snapshots of wide- and narrow-angle cameras.

the wide-angle cameras since those are used for object detection. The accuracy of
the head kinematics can be quite low on light weight humanoid robot head. The
intrinsic camera parameters such as focal length, resolution, optical center etc., can
be estimated using a chess board with a rather good accuracy.

Based on the assumption that the intrinsic and extrinsic camera parameters are
known and that we are able to detect the position of an object in both camera images
than the 3-D position of an object can be easily calculated using standard vision
techniques [17].

2.2 The Control Problem – Virtual Mechanism Approach

The task of the robot head is to keep an object in the center of the camera images.
The head has to assure proper gaze direction of both eyes (cameras).

Let us explain the problem and a solution on a simpler planar example. Figure 2
shows an example where the eyes are turned towards the object. When the head
moves the orientation of eyes has to change (ϕ) in order to keep the gaze on the
object, even if the object remains still. So the robot task can be defined as the angle
of the eye ϕ, which is a function of the object position and also the eye position.
Since the eye position is configuration dependent the task can be defined as:

task1 DOF = ϕ = f(head conf., object pos.).



Object Tracking with Humanoid Robot Head 245

xvm

Fig. 2 Gaze direction changes during head movement. Virtual mechanism touches the object.
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Fig. 3 Schematics of humanoid head enhanced with virtual mechanisms.

In the above task definition the head configuration is involved in the task defin-
ition. However, this is not the most common way to describe a task – in general,
a task is not a function of the robot configuration. Therefore, it is very complex to
implement well-known control approaches to control the robot head. To solve this
problem in a more systematic way, we propose the use of a virtual mechanism.

Let us expand our humanoid head with an additional virtual link (mechanism)
from the robot eye. This virtual link can be treated as an additional prismatic joint
which is fixed to the eye (see schematics in Fig. 3). By adding the virtual link we
add additional DOF to the system.

The task of the system can now be reconfigured. Instead of controlling the direc-
tion of the eye, we can now control the position of the end of the virtual link xvm.
It is required that the end of the eye’s virtual extension touches the object which is
to be tracked (see Fig. 2). The task can now be defined as a simple position tracking
problem and is not a function of the head position:

task2 DOFs = xvm = f(object pos.).

In the original task definition we used 1 DOF to describe the task (ϕ). By intro-
ducing the virtual mechanism we add one additional DOF to the system (the length
of the virtual mechanism); however, we also add one DOF to the description of the
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task (2 DOFs for the xvm position in plane). By introducing virtual mechanism the
degree of redundancy remains the same.

In the spatial 3-D case the circumstances are similar. In this case the task of the
robot head is to control the orientation of both cameras and point them directly
towards the object. Here, in the original task description the task had four DOFs
(two camera angles per eye) and the robot had seven DOF. After the introduction
of two virtual mechanisms (one per eye) the number of DOFs of the robot has been
increased by two; however, the degree of the task has also been increased by two
(positioning task needs three DOFs per eye). The degree of redundancy remains the
same.

The main purpose of the virtual mechanism is in the systematization and simpli-
fication of the task description. Instead of specifying the desired pointing direction,
we can consider the problem as a classic inverse kinematics task, which can be
solved by classic control approaches. Note that the angle of the cameras still have
to change during the head movement, however, the description of the task (xvm) is
not affected by the head movement.

2.3 Controller Design

Having additional virtual mechanism in each eye the kinematics of the head is given
by the following form:

xvm =
[

xvmL

xvmR

]

= f (qhead, lvirt.m.), (1)

where xvm() denotes the position of the end of the virtual link of the left and right
eye, while qhead and lvirt.m. denote the head joint angles and the lengths of the
virtual mechanisms, respectively. To simplify the notation we treat the lengths of
the virtual mechanisms as additional joint variables, such that q = [qhead, lvirt.m.].
Note, that some of the head joints only contribute to the left eye (left branch) and
some only to the right (it is a kind of branching mechanism).

The relation between the joint and the task velocities is given by the robot Jac-
obian J:

ẋvm = Jq̇. (2)

As already stated, the head has more DOFs than needed to accomplish a given
task. To achieve good tracking performance while exploiting the redundancy, the
following velocity controller can be applied:

q̇c = J#ẋvmc + Nq̇n, (3)

where q̇c denotes the vector of joint velocities, J# is the weighted generalized in-
verse of J, ẋvmc is the desired velocity in the task space, N is the projection onto the
null space of J, and q̇n is the desired joint velocity in the null space.
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To control the position of the virtual link, the following ẋvmc controller is pro-
posed:

ẋvmc =
[

ṙ + KpeL

ṙ + KpeR

]

,

where e(), e() = r−xvm(), is the task space tracking error for the corresponding eye
and r is the desired task space position, i.e. the position of the object that has to be
tracked and is acquired by the wide-angle cameras as indicated in Section 2.1.

The topology of the robot head is a tree-like structure with one main branch and
two subbranches (see Fig. 3). In this work both branches have the same priority,
which is also the case in humans. Similarly, the symmetry of the head indicates the
same priority of the subbranches. To control the branching mechanism the contoller
proposed in [12] has been used.

3 Results

The proposed approach has been verified on the real humanoid head described in
Section 2 and shown in Fig. 1. Since many visual tasks require both high resolution
and a wide field of view our system is equipped with two cameras per eye where
the wide-angle camera is placed above the narrow-angle one. Snapshots from both
cameras are shown in Fig. 1.

We performed a series of experiments in which a human demonstrator holds a
colored object in his hand and move it in front of the humanoid head. We demon-
strate the tracking of the narrow-angle cameras based on the wide angle images.
These tests have been performed on different distances from the object to demon-
strate robustness against changes in distance.

3.1 Object Tracking with Narrow-Angle Cameras

The object position was acquired using information from the wide-angle cameras,
while the object was tracked by the narrow-angle cameras. Since both cameras are
rigidly connected, the transformation from wide-angle to narrow-angle coordinate
frame is constant and was acquired in the cameras calibration process.

Since the optical axes of wide- and narrow-angle cameras are not aligned, it is not
trivial to assure that the object acquired by the wide-angle cameras is in the center of
the narrow-angle cameras. Here, the distance to the object is crucial. In the proposed
approach this is done systematically only by using the appropriate kinematic model
– i.e. wide-angle cameras model for the perception and the narrow-angle cameras
model for the tracking.

To demonstrate the tracking ability of the narrow-angle cameras, the demon-
strator was instructed to move an object on a rectangular trajectory in a plane as
shown in the table and Fig. 4:
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Time Object position
0–10 sec In front of the head

10–20 sec On the right side of the head
20–30 sec On the right and up side of the head
30–40 sec On the left and up side of the head
40–50 sec On the left side of the head
50–60 sec In front of the head
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z 
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m
]

Fig. 4 Movement of the object in front of the head.
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Fig. 5 Object position in narrow-angle images.
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Fig. 6 Object position in wide-angle images.

Using the proposed approach, the head was able to fixate the object in the narrow-
angle images (see Fig. 5). Here, the center of the image is at the pixel {320, 240}.
However, as expected, the object is not in the center of the wide-angle images as
shown in Fig. 6, due to the unaligned optical axes.

If the kinematic model of the wide-angle cameras would be used in the control
part, then the object would be in the center of wide-angle images instead of in the
center of narrow-angle images as can be seen in Figs. 7 and 8. It is only possible
to achieve that an object is in the center of both images at one point in space, i. e.
at the point where the optical axes of the narrow- and wide-angle cameras intersect.
This happens at infinity for systems where optical axes of narrow- and wide-angle
cameras are parallel.

To demonstrate the robustness against the distance of the object from the eyes,
we performed set of experiments with different distances of object from the cam-
eras. The table below shows the object position in the narrow-angle images. It is
clear that the object is in the center regardless of the distance of the object from the
cameras:

Obj.-cam. dist. (cm) 30 50 100 200 400
Horiz. obj. pos. 246 245 242 247 259
Vert. obj. pos. 317 316 327 311 318
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Fig. 7 Object position in narrow-angle images
using wide-angle camera kinematics.
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Fig. 8 Object position in wide-angle images
using wide-angle camera kinematics.

4 Conclusions

We presented an approach for controlling the gaze direction of a humanoid head.
The proposed approach uses wide-angle cameras to acquire 3-D position of an ob-
ject in space. This information is later used in order to bring an object in the center of
the narrow-angle images. To achieve that we introduced a virtual mechanism, that is
the main contribution of the paper. The virtual mechanism simplifies the description
of the task. This brings us essential simplification in the controller design and results
in better tracking performance and ability to exploit redundancy. Experiments on a
real robot head are very promising. They confirm simplicity of controller design and
show very good tracking performance regardless of the distance of the object from
the eyes.

There are many advantages of the proposed approach over the others described
in the literature and are listed below:

• Comparing to the decomposed controllers that control each joint individually
without considering the complete head kinematics (e.g. [11]), the proposed con-
troller results in a better head motion and brings the object to the image center in
a better path.

• Getting an object to the center of narrow-angle images even if it is tracked in
wide-angle images is simplified and does not depend on the precise placement of
the cameras or on the distance of the object from the cameras.

• The proposed approach indicates how to exploit the redundancy of the head in-
stead of only solving it.

• When using controllers that rely on image-based visual servoing it is more com-
plex to achieve that the desired object is in the center of the narrow-angle images,
since the object is sometimes visible only in wide angle images.

• It is a very systematical approach and can be easily implemented on different
types of active stereo vision mechanisms.
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5. T. Asfour, K. Regenstein, P. Azad, J. Schröder, A. Bierbaum, N. Vahrenkamp, and R. Dill-
mann. ARMAR-III: An integrated humanoid platform for sensory-motor control. In IEEE-
RAS Int. Conf. on Humanoid Robots (Humanoids 2006), Genoa, Italy (2006).

6. C. G. Atkeson, J. G. Hale, F. Pollick, M. Riley, S. Kotosaka, S. Schaal, T. Shibata, G. Tevatia,
A. Ude, S. Vijayakumar, and M. Kawato. Using humanoid robots to study human behavior.
IEEE Intelligent Systems, 15(4), 46–56 (2000).

7. G. Metta, A. Gasteratos, and G. Sandini. Learning to track colored objects with log-polar
vision. Mechatronics, 14, 989–1006 (2004).

8. F. Panerai, G. Metta, and G. Sandini. Visuo-inertial stabilization in space-variant binocular
systems. Robotics and Autonomous Systems, 30(1-2):195–214, 2000.

9. A. Bernardino and J. Santos-Victor. Binocular visual tracking: Integration of perception and
control. IEEE Transactions on Robotics and Automation, 15(6), 1080–1094, 1999.

10. A. Bernardino, J. Santos-Victor, and G. Sandini. Foveated active tracking with redundant 2D
motion parameters. Robotics and Autonomous Systems, 39, 205–221 (2002).

11. A. Ude, C. Gaskett, and G. Cheng. Foveated vision systems with two cameras per eye. In Pro-
ceedings IEEE International Conference on Robotics and Automation, Orlando, USA, 2006.

12. K.-S. Chang and O. Khatib. Operational space dynamics: Efficient algorithms for modeling
and control of branching mechanisms. In Proceedings International Conference on Robotics
and Automation (ICRA 2000), San Francisco, CA, pp. 850–856 (2000).

13. O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. The Interna-
tional Journal of Robotics Research, 5(1), 90–98 (1986).
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Tangent Space RRT with Lazy Projection:
An Efficient Planning Algorithm for
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Abstract. Rapidly-Exploring Random Trees (RRT) have been successfully used in motion plan-
ning problems involving a wide range of constraints. In this paper we develop a more robust and
efficient version of the constrained RRT planning algorithm of [1]. The key idea is based on first
constructing RRTs on tangent space approximations of constraint manifold, and performing lazy
projections to the constraint manifold when the deviation exceeds a prescribed threshold. Our al-
gorithm maintains the Voronoi bias property characteristic of RRT-based algorithms, while also
reducing the number of projections. Preliminary results of a numerical study, together with a dis-
cussion of the potential strengths and weaknesses of our algorithm, are presented.

Key words: Rapidly-exploring random tree, constrained motion planning, lazy projection.

1 Introduction

In order for robots to function autonomously in unstructured environments, they
must be able to perform a wide range of constrained motions, e.g., holding a
tray with two hands while maneuvering through a dynamically changing obstacle
cluttered environment, or pushing a heavy object through a narrow passageway with
intermittent gaps, all the while satisfying various constraints on, e.g., the velocities,
accelerations, forces and torques on the joints and the object being manipulated, as
well as various contact constraints among the robot, manipulated object, and the
environment.

A mathematical formulation of the constrained motion planning problem in its
most general form is highly complex, and its solution even more challenging. In this
paper we focus on a simpler and more tractable version of this problem that focuses
on holonomic constraints; the formulation is still reasonably general, and should
readily admit extensions to various nonholonomic and other input constraints not
explicitly considered here. The setup is as follows. Let M be configuration space of
the robot, with local coordinates q. Denote by N its task space, with local coordin-
ates X , and let f : M → N denote its forward kinematics; in local coordinates we
thus have X = f (q). Finally, let qinit ∈ M and q f inal ∈ M be the user-supplied ini-
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tial and final configurations, respectively. The objective then is to seek a continuous
path from qinit to q f inal that lies entirely on M, while satisfying a further set of task
constraints of the form

ψ(X) = 0, (1)

v(X) ≤ 0, (2)

where ψ : N →ℜp and v : N →ℜk are given and assumed differentiable. Note that
ψ(X)= c can also be expressed via the forward kinematics f as ψ( f (q)) = g(q)= 0.
The inequality constraints can be similarly expressed in the form v( f (q)) = h(q) ≤
0. Assuming the forward kinematics is differentiable everywhere, g(q)= 0 and those
elements of h(q) ≤ 0 that are active (that is, those elements of h(q) for which strict
equality holds) then constitute a set of holonomic constraints on M .

As an illustration, a planar six-bar linkage has a configuration space that can be
regarded as a three-dimensional surface embedded in ℜ6 (more accurately, a three-
dimensional surface embedded in a six-dimensional flat torus). If a large vertical
obstacle were present in the middle of the workspace, an inequality constraint can be
imposed requiring the robot to remain clear of this obstacle; such a constraint may,
e.g., separate the configuration space into two disjoint three-dimensional regions,
possibly connected by a two-dimensional surface. The resulting configuration space
taking into account all the task constraints may result in a highly complex subset of
M .

More generally, trying to determine a priori the set of configurations defined by
g(q) = 0 and h(q)≤ 0, especially for robots with a large number of degrees of free-
dom, is in most cases computationally prohibitive. Moreover, equality constraints of
the form g(q) = 0 define surfaces that we shall refer to as constraint manifolds; dis-
covering configurations that lie on constraint manifolds via random sampling of the
configuration space (e.g., with sampling based planners such as RRTs, or probabil-
istic road maps that directly sample the configuration space) is extremely unlikely.
As pointed out in [1], the lack of prior knowledge of the constraint manifold struc-
ture also precludes the use of task space control techniques of the type described
in [2] as a complete solution. Alternative approaches, such as first planning a path
in a lower-dimensional space (like the constraint manifold) and then attempting to
follow this reference path in the full configuration space of the robot [3, 4] suffers
from feasibility problems; the lower-dimensional path may not be trackable becuase
of joint limits or collisions.

In response to these difficulties, Berson et al. [1] have proposed a constrained
bi-directional RRT algorithm (CBiRRT) that addresses the problem of sampling on
constraint manifolds (we refer the reader to [5–7] and the references for a survey of
RRT methods, and randomized motion planning methods in general). The CBiRRT
algorithm first samples in the configuration space M , then uses projection opera-
tions to move samples onto constraint manifolds according to some criterion. The
projection step can be performed in a number of ways, e.g., the randomized gradient
descent method (RGD) [8] originally developed for closed chain motion planning
and its extension to general end-effector constraints [9], or the Jacobian pseudo-
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Fig. 1 Example of a target node whose projection contributes very little to extending the tree in
the constraint manifold.

inverse projection method of [10]. Whatever the choice of projection method, the
fact remains that the manner in which the random configuration is projected to the
constraint manifold is in most cases the computational bottleneck, particularly since
the Voronoi bias property of RRT algorithms – in a nutshell, the tendency of RRT
algorithms to seek out unexplored regions [11] – is considerably diminished. At a
more fundamental level, because the shape of the constraint manifold is not con-
sidered when generating random samples in the configuration space, performance
of the algorithm can be significantly degraded (see Fig. 1).

To address the shortcomings of current RRT-based algorithms for constrained
motion planning, in this paper we propose a new algorithm, the Tangent Space RRT
(TS-RRT) algorithm. Whereas the CBiRRT algorithm samples target nodes in the
configuration space, and projects this node to the constraint manifold, the key idea
in our approach is to first sample and construct an RRT in the tangent space of the
constraint manifold. When the RRT constructed in the tangent space deviates from
the constraint manifold by a certain prescribed threshold, we project to the con-
straint manifold, construct the tangent space approximation at the projected point,
and repeat the above sample-projection procedure. Three additional distinctive fea-
tures of our algorithm are as follows: (i) we develop a “lazy projection” procedure
to reduce the overall number of projections, inspired in part by the lazy collision
checking procedure [12] that attempts to reduce the number of collision tests; (ii)
we choose the initial direction for RRT construction in the tangent plane to maintain
the Voronoi bias toward unexplored regions; (iii) we use local curvature information
to scale the tangent space domain over which sampling is performed (for example,
nearly zero curvature indicates that the constraint manifold is close to being flat, so
that the tangent space approximation is valid over a larger region of the manifold).
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2 Tangent Space RRT Algorithm

For space reasons we omit a discussion of the basic RRT construction algorithm;
the reader is referred to [5,6] for a review. We shall take the basic RRT construction
algorithm as our point of departure, and describe the Tangent Space RRT (TS-RRT)
algorithm as an extension of the basic RRT algorithm. Let us first assume that the
given qinit and q f inal are already on M . Recall that the main distinguishing feature
of TS-RRT is that branches of exploring trees are constructed on the tangent planes
of the constraint manifold instead of in the configuration space. Two tangent planes
to the constraint manifold are initially constructed at qinit and q f inal. Starting with
qinit and q f inal as the root nodes, two trees are then grown on the tangent planes
via the basic RRT algorithm. We now discuss the basic components of the TS-RRT
algorithm.

Projection by Newton–Raphson Method

We regard M as a surface embedded in some higher dimensional normed Euclidean
space. Given a configuration q not on M , the natural way to compute the distance
between q and M is to find the point p ∈ M that minimizes the distance ‖p− q‖,
where ‖ ·‖ is a suitably chosen norm on the Euclidean space. Because this nonlinear
optimization problem is often difficult and computationally intensive, in practice
one settles for easily obtained solutions that approximately minimize the distance
function. If the constraint manifold is parametrized implicitly as g(q)= 0, one easily
implementable optimization procedure is to define the error vector e according to

e = g(q), (3)

i.e., if q lies on M then e is zero, and nonzero otherwise. For q sufficiently close
to M , ‖e‖2 is a valid distance function that can be easily minimized via a Newton–
Raphson root-finding procedure for g(q) (see Table 1.) Specifically, a first-order
Tayler expansion of (3) leads to

e + δe � g(q)+
∂g
∂q

(q)δq. (4)

Here we denote the Jacobian matrix ∂g/∂q by J(q). Setting the right-hand side of
(4) to zero and solving for δq, we obtain the update rule

qnew ← q− J(q)†δe, (5)

where J(q)† denotes the pseudo-inverse of J(q):

J(q)† = J(q)T [J(q)J(q)T ]−1. (6)
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Table 1 Projection by Newton–Raphson method.

Projection(q)

1 e ← g(q)
2 while( ‖e‖ < ε)
3 q ← q− J(q)†e
4 e ← g(q)
5 end
6 return q

Random Sampling on Tangent Planes

Given a root node qroot lying on M , a basis for the tangent space to M at qroot
can be obtained by applying a Gram–Schmidt procedure to the following projection
matrix P(qroot) ∈ ℜn×n:

P(qroot) = I− J(qroot)
†J(qroot), (7)

where n denotes the dimension of the the configuration space. The basis is used
to generate a random sample on the tangent plane; note that the basis needs to be
computed only once for each root node. To illustrate the procedure, suppose the
constraint equation g(q) = 0 consists of m independent equations; in this case the
tangent space is of dimension n−m, and an orthonormal basis {d1, . . . ,dn−m} can
be constructed at each point of M , where each di ∈ ℜn. A random sample qrand
on the tangent space can then be generated straightforwardly given qroot and the
orthonormal basis.

Given a random sample node qrand on the tangent plane, we find the nearest
neighbor node qnear on the same tangent plane, and extend the tree a fixed length
segment in the direction from qnear to qrand . The extended node is then tested to see if
the inequality constraints are satisfied. If it fails to satisfy the inequality constraints,
the node is then abandoned, and the algorithm samples another random node on the
tangent plane.

Determining the length of the fixed segment can be done in a number of ways.
One effective way uses the local curvature information of the constraint manifold;
the basic premise is that at points where the principal curvatures are nearly zero, the
manifold is nearly flat, and thus relatively larger steps can be taken in the principal
directions without deviating significantly from the manifold.

Creating a New Tangent Plane

When the distance ‖e‖ from the extended node qnew to M exceeds a certain
threshold, denoted EM , the tangent plane no longer approximates M with the de-
sired accuracy. In such cases we project the extended node onto M using our pre-
viously described projection algorithm in Table 1, and treat the projected point as
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Table 2 Create a tangent plane.

CreateTangentPlane(q)

1 q ← Projection(q)
2 P ← I − J(q)†J(q)
3 d ← q−qroot,parent

4 d ← P(q)∗d
5 TB ← GramSchmidt(P)
6 return (T B,q)

Fig. 2 In TS-RRT, tree branches are generated on tangent planes. When a newly sampled node
exceeds a certain prescribed distance from the constraint manifold, that node is projected onto the
manifold, and a new tangent plane is created.

a new root node for a new tangent plane generated via another Gram–Schmidt pro-
cedure. The process for generating a new root node and the accordant tangent plane
is shown in Table 2 and Fig. 2.

When a new tangent plane is created, it is important to ensure that the new tan-
gent plane not significantly overlap with the same area of M covered by the parent
tangent plane. To prevent such overlapping, we restrict the domain for sampling a
random node as follows. As described by the third and fourth lines of Table 2, we
compute the vector from the root node of the parent tangent plane to the projec-
ted node that will be the new root node; the projection of this vector onto the new
tangent plane is then used as the initial vector in the Gram–Schmidt process for
constructing the tangent basis. In the random sampling phase, only positive weights
are associated with this initial basis vector, to ensure that we do not “backtrack” to
already explored regions of M .

Selection Bias for Tangent Planes

The trees generated by the TS-RRT algorithm consist of multiple tangent planes and
branch nodes, such that every extended node belongs to one of the two trees, and
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also to one of the tangent planes. Thus, when we randomly sample nodes, we first
need to choose a tangent plane among all of the tangent planes created. To ensure
that the tangent planes created later are selected more often, one can use the number
of nodes that belong to the tangent plane; that is, if a certain tangent plane has fewer
nodes than the others, it has a greater chance of being selected.

Another means of biasing selection tangent planes created later is to use local
curvature information of M ; the greater the extrinsic curvature, the greater the error
in approximating the constraint manifold by the tangent plane (for example, the
mean curvature, given by the trace of the second fundamental form, can be used as
a bias factor).

Connection Test

Recall that our proposed TS-RRT algorithm is bidirectional, in the sense that two
trees – one each emanating from the initial and goal nodes – are simultaneously
generated. After every node extension on the constraint manifold, the TS-RRT al-
gorithm tries to connect the extended node to the nearest node on the opposite tree.
This is done by evaluating the inner product between the connecting line vector and
the rows of Jq (recall that the rows of J(q) are orthogonal to the surface); if the
inner products are sufficiently close to zero at both ends, the connecting segment is
deemed to be sufficiently close to the tangent planes. In this case uniformly spaced
points along the connecting segment are tested to see if the inequality constraints
are satisfied. If at any of these points the constraints are violated, or the error ‖e‖
exceeds the prescribed threshold, no connection is established.

Repeating the process described above, the resulting trees rapidly explore the
multiple tangent planes that are used to approximate M . Once a successful connec-
tion is established, the final path through the collection of tangent planes is extracted,
and the nodes in the final path projected to the constraint manifold (see Fig. 3). The
pseudo-code description of our TS-RRT algorithm is given in Table 3.

3 Case Study

3.1 Two-Arm Manipulation

In this example, we consider two arms being pulled from the inside of a drawer to
the outside, all the while maintaining a fixed distance between the hands. The task
constraint is of the form

g(X) = (ple f t − pright)
2 −d2 = 0, (8)
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Table 3 TS-RRT algorithm.

TS-RRT(qinit ,qf inal)

1 Tree[], TangentPlanes[]
2 Tree.AddNode(qinit), Tree.AddNode(qf inal)
3 TangentPlanes.Add(CreateTangentPlane(qinit))
4 TangentPlanes.Add(CreateTangentPlane(qf inal))
5 while i < Imax do i ← i +1
6 k ← SelectTangentPlane()
7 qrand ← RandomSampleOnTangentPlane(TangentPlanes[k])
8 qnear ← NearestNode(k,qrand)
9 qnew ← Extend(qnear,qrand)

10 if h( f (qnew)) > 0 then goto 3 end
11 if Connect(qnew) = Success then
12 Path ← ExtractPath()
13 return LazyProjection(Path)
14 else if qnew > EM then
15 TangentPlanes.Add(CreateTangentPlane(qnew))
16 end
17 Tree.AddNode(qnew), Tree.AddEdge(qnear,qnew)
18 end
19 return Fail

Fig. 3 The final path is extracted through multiple tangent planes. The actual path on the manifold
can be obtained by projecting the nodes on the final path.

where ple f t and pright denote the Cartesian positions of the left and right hands of
the robot, respectively. Collision avoidance between the robot arms and the drawer
are described by an appropriate set of inequality constraints.

Preliminary tests of the TS-RRT algorithm suggest that it works more reliably
and efficiently than the CBiRRT algorithm, but more extensive testing under a wider
range of scenarios needs to be performed before firmer conclusions can be drawn.
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Fig. 4 Constraint on distance between two hands.

4 Conclusions and Future Work

This paper has presented a new randomized algorithm for task constrained motion
planning, the TS-RRT algorithm, that is based upon the widely used concept of rap-
idly exploring random trees (RRT). Unlike existing RRT algorithms for constrained
motion planning, the distinguishing feature of the TS-RRT algorithm is that RRTs
are constructed in the tangent spaces of the constraint manifold, and projected to
the manifold only when the newly sampled nodes exceed a certain threshold dis-
tance. Our method can be contrasted with existing approaches that project randomly
sample in the configuration space, and project every sample back to the constraint
manifold; such a procedure can result in nodes that only extend the tree minimally,
possibly revisiting previously explored directions.

Preliminary numerical studies with our algorithm suggest that it is more reli-
able and computationally efficient than existing algorithms; more extensive testing
is currently underway to compare its performance with the existing CBiRRT and
other algorithms for constrained motion planning. More effective methods for ex-
ploiting local curvature information about the constraint manifold, as well as in-
vestigating ways to include, e.g., dynamics, nonholonomic constraints, and actuator
force-torque limits into the planning framework, are also being investigated.
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Abstract. In this paper, the equilibrium analysis of a passive tensegrity structure with elastic con-
necting ties is addressed. The problem is modeled as a constrained optimization of the total po-
tential energy of the system and the Lagrange multiplier method is used to deduce the equilibrium
equations. The homotopy continuation method is used to completely solve the resulting nonlin-
ear polynomial system and all the equilibrium positions are identified. Furthermore, the stabil-
ity analysis of the equilibrium configurations is carried out using the second order condition and
higher order condition for cases where the second order condition fails. One numerical example is
provided to demonstrate the analysis

Key words: Tensegrity, equilibrium, smart structures, mechanisms.

1 Introduction

Tensegrity structures are formed entirely by a combination of purely rigid (struts)
and purely flexible (ties) members. The struts are always in compression while the
ties (both elastic and inelastic) are in tension. The entire configuration stands by
itself and maintains its form solely because of the internal arrangements of the ties
and struts [1] which is such that no pair of struts touch and the end of each strut is
connected to three non-coplanar ties [2]. The word ”tensegrity” is a combination of
two words; tension and integrity [3, 4].

Their ability to be at equilibrium under several kinematic configurations has
made them a subject of interest to many researchers. Kenner [5] established the re-
lation that defines the configuration of regular tensegrity prisms. Tobie [1] presented
procedures for the generation of tensile structures by physical and graphical means.
Yin [2] obtained Kenner’s result using energy considerations and found the equilib-
rium position for the unloaded tensegrity prisms. Stern [6] developed generic design
equations to find the lengths of the struts and ties needed to create a desired geo-
metry. Correa et al. [7] used the principle of virtual work to address the problem of
the determination of the equilibrium position of a tensegrity structure when external
forces and external moments act on the structure and verified the results obtained
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Fig. 1 Five strut tensegrity structure with elastic connecting ties.

using a method based on Newton’s Third Law.

The stiffness of tensegrity structures has also been of interest to many re-
searchers. Roth and Whiteley [8] extended rigidity concepts of bar frameworks to
tensegrity. They also set up some important implications between tensegrity frame-
works and their equivalent bar frameworks. Their results were applied to both planar
and spatial tensegrity systems. Connelly [9] studied some important properties of ri-
gid tensegrity frameworks using an energy approach which led to a redefinition of
the rigidity concept based on positive definiteness of the stress matrix associated
with the stress vector. Further research in this area was carried out by Pellegrino,
Calladine, and Tibert [10–15] who developed an algebraic method to determine the
number of mechanisms and equilbrium configurations as well as a base for the sub-
spaces of mechanisms, self-stress states, resolvable, and non-resolvable forces. They
also presented a method to distinguish between first-order infinitesimal mechanisms
and higher order infinitesimal or finite mechanisms.

In this paper, the problem of determining the equilibrium positions for a passive
tensegrity structure with elastic connecting ties is examined. Fig. 1 shows a typical
five strut tensegrity structure with elastic connecting ties. The word passive is used
here to mean that no active forces or moments act on the structure. The system is
only passively maintained in equilibrium by internal spring forces. The problem is
modeled as a constrained optimization problem and the solution is advanced using
the Lagrange multiplier method. Moreover, the idea of rigidity as used here is the
propensity of a structure to return to its equilibrium state if subjected to a small
displacement away from the equilibrium configuration. The rigidity of the structure
at different equilibrium configurations is studied by examining the positive definite-
ness of the Hessian matrix of the Lagrangian function.
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Fig. 2 Tensegrity elements.

2 Problem Formulation

Figure 2 shows two neighboring top nodes j, j + 1 and the corresponding bottom
nodes.

Let
[Xj,Yj,Zj]

T , j = 1, . . . ,n be the coordinates of the top nodes
[x j,y j,z j]

T , j = 1, . . . ,n be the coordinates of the bottom nodes
A j be the length of the non-elastic top tie connecting the nodes j, j + 1
a j be the length of the non-elastic bottom tie connecting the nodes j, j + 1
k j be the spring constant of the spring j connecting top and bottom nodes j
s j+1 be the length of the strut connecting top node j and bottom node j + 1
P j = [Xj,Yj,Zj]

T be the position vector of top node j

p j = [x j,y j,z j]
T be the position vector of bottom node j

The following assumptions are also made without loss of generality:

• The struts are massless.
• No external wrench is acting on the system.
• All ties are in tension at an equilibrium position.
• All springs have zero free lengths. This assumption is valid because zero-free

length springs can be created by extending the actual springs beyond their equi-
librium attachment points [16–18].

In addition to the above constraints, there are constraints imposed on the geometry
of the problem due to the known lengths of the top and bottom ties as well as the
strut lengths. These are termed geometric constraints for the purpose of this paper.
Following the virtual work principle employed in [7] and the assumption that no
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external wrench acts on the system, it can be inferred that the equilibrium config-
uration of the structure is such that the potential energy function is stationary. The
following subsections details the formulation of the equilibrium configuration prob-
lem as an optimization problem.

2.1 Geometric Constraint

Connelly et al. [19] considered three connecting elements in their analysis of the ri-
gidity of tensegrity frameworks. According to them; cables impose an upper bound
constraint on the distance between the pair of points they connect, struts, with com-
plementary behavior to cables, impose lower bound constraints, and bars maintain
fixed lengths. However, here the idea of struts is the same as the bars used in [19]
and springs are used in place of their ties. Springs impose no constraints on the
distance between the nodes they connect but tend to keep them together as much
as possible by preventing any attempt to separate them with an opposition which is
dependent on their spring constant and the distance of separation.

From Fig. 2 these geometric constraints can be written as follows:

‖P j+1 −P j‖ ≤ A j

‖p j+1 −p j‖ ≤ a j

‖P j −p j+1‖ = s j+1

(1)

where ‖ · ‖ denotes the Euclidean norm operator, P j and P j+1 refer to the points at
the top of the tensegrity element shown in Fig. 1, and p j and p j+1 refer to points at
the bottom of the tenesegrity element shown in Fig. 1. Expanding (1) yields:

(Xj+1 −Xj)
2 +(Yj+1 −Yj)

2 +(Zj+1 −Zj)
2 ≤ A2

j (2)

(x j+1 − x j)
2 +(y j+1 − y j)

2 +(z j+1 − z j)
2 ≤ a2

j (3)

(Xj − x j+1)
2 +(Yj − y j+1)

2 +(Zj − z j+1)
2 = s2

j+1 (4)

2.2 Potential Energy

Since the struts are assumed massless, the effect of gravitational potential is neg-
lected and the total potential energy becomes the total energy stored in the springs
which is given by

u =
1
2

n

∑
j=1

k j‖P j −p j‖2 (5)

where n is the number of top and bottom nodes
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2.3 Problem Statement

The problem statement in optimization form is as follows:

Given: A j,a j,k j

Find: Xj,Yj,Zj,x j,y j,z j
such that:

u =
1
2

n

∑
j=1

k j((Xj − x j)
2 +(Yj − y j)

2 +(Zj − z j)
2)

is an extremum subject to:

g1
j = (Xj+1 −Xj)

2 +(Yj+1 −Yj)
2 +(Zj+1 −Zj)

2 −A2
j + M2

j = 0

g2
j = (x j+1 − x j)

2 +(y j+1 − y j)
2 +(z j+1 − z j)

2 −a2
j + m2

j = 0

g3
j = (Xj − x j+1)

2 +(Yj − y j+1)
2 +(Zj − z j+1)

2 − s2
j+1 = 0

j = 1,2, . . . ,n

where M2
j ,m

2
j ∈ ℜ are slack variables. One advantage of this formulation, apart

from being amendable to several optimization techniques, is that the need for the
substitution of tan-half angle [20] is eliminated.

3 Solution Approach

The solution method employed is the Lagrange multiplier method. By introducing
Lagrange multipliers λ 1

j , λ 2
j and λ 3

j , the weighted objective function becomes:

w =
n

∑
j=1

[
k j

2
((Xj − x j)

2 +(Yj − y j)
2 +(Zj − z j)

2)+ λ 1
j g1

j + λ 2
j g2

j + λ 3
j g3

j

]
(6)

The stationary values of (6) occur when

∂w
∂Xj

=
∂w
∂Yj

=
∂w
∂Zj

=
∂w
∂x j

=
∂w
∂y j

=
∂w
∂ z j

=
∂w

∂Mj
=

∂w
∂m j

= g1
j = g2

j = g3
j = 0 (7)

First, ∂w/∂Mj = ∂w/∂m j = 0 implies that

2λ 1
j Mj = 0

2λ 2
j m j = 0

(8)
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According to (8), either Mj,m j = 0 in which case the constraints g1
j and g2

j given

in (1) become strict equality constraints or λ 1
j ,λ 2

j = 0 in which case the constraints
become degenerate. The former, i.e. Mj,m j = 0, must in general be the case, except
in special circumstances which will not be considered here.

The partials ∂w/∂Xj, ∂w/∂Yj, and ∂w/∂Zj may now be written as

∂w
∂Xj

=
∂u
∂Xj

+ λ 1
j−1

∂g1
j−1

∂Xj
+ λ 1

j

∂g1
j

∂Xj
+ λ 3

j

∂g3
j

∂Xj
= 0

∂w
∂Yj

=
∂u
∂Yj

+ λ 1
j−1

∂g1
j−1

∂Yj
+ λ 1

j

∂g1
j

∂Yj
+ λ 3

j

∂g3
j

∂Yj
= 0

∂w
∂Zj

=
∂u
∂Zj

+ λ 1
j−1

∂g1
j−1

∂Zj
+ λ 1

j

∂g1
j

∂Zj
+ λ 3

j

∂g3
j

∂Zj
= 0

which yields

k j(Xj − x j)+ 2λ 1
j−1(Xj −Xj−1)−2λ 1

j (Xj+1 −Xj)+ 2λ 3
j (Xj − x j+1) = 0

k j(Yj − y j)+ 2λ 1
j−1(Yj −Yj−1)−2λ 1

j (Yj+1 −Yj)+ 2λ 3
j (Yj − y j+1) = 0

k j(Zj − z j)+ 2λ 1
j−1(Zj −Zj−1)−2λ 1

j (Zj+1 −Zj)+ 2λ 3
j (Zj − z j+1) = 0 (9)

Equation (9) can be expressed in matrix format as:

∆ j

⎡

⎣
−2λ 1

j−1
2λ 1

j
−2λ 3

j

⎤

⎦ = k jΛ j (10)

where

∆ j =

⎡

⎣
Xj −Xj−1 Xj+1 −Xj Xj − x j+1
Yj −Yj−1 Yj+1 −Yj Yj − y j+1
Zj −Zj−1 Zj+1 −Zj Z j − z j+1

⎤

⎦ (11)

and

Λ j =

⎡

⎣
Xj − x j
Yj − y j
Z j − z j

⎤

⎦ (12)

Using Cramer’s rule
⎡

⎣
−2λ 1

j−1
2λ 1

j
−2λ 3

j

⎤

⎦ =
k j

|∆ j|

⎡

⎢
⎣

|∆ 1
j |

|∆ 2
j |

|∆ 3
j |

⎤

⎥
⎦ (13)

∆ 1
j , ∆ 2

j and ∆ 3
j are obtained from ∆ j by replacing columns 1, 2 and 3 by Λ j respect-

ively and |A| is used to denote the determinant of a square matrix A. Increasing the
index j of (13) by 1 gives
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⎡

⎣
−2λ 1

j

2λ 1
j+1

−2λ 3
j+1

⎤

⎦ =
k j+1

|∆ j+1|

⎡

⎢
⎣

−|∆ 1
j+1|

|∆ 2
j+1|

|∆ 3
j+1|

⎤

⎥
⎦ (14)

Comparing (13) and (14)

−
k j+1|∆ 1

j+1|
|∆ j+1|

=
k j|∆ 2

j |
|∆ j|

or
k j|∆ 2

j | |∆ j+1|+ k j+1|∆
1
j+1| |∆ j| = 0 (16)

j = 1,2, . . . ,n.

It can be shown that for a particular choice of coordinate system, p j can be fully
determined for cases where n ≤ 4. Hence, (16) together with the geometric equal-
ity constraints (2) and (4) constitute a complete system of nonlinear polynomial
equations whose solutions define all possible equilibrium configurations for the
tensegrity structure. However, for cases where p j is not fully determined, it is neces-
sary to obtain additional equations to balance with the number of unknowns. This is
easily obtained by following a similar argument as (9) through (16) for the subset

∂w
∂x j

=
∂w
∂y j

=
∂w
∂ z j

= 0

of (7) where one obtains

k j|δ 3
j | |δ j+1|− k j+1|δ 2

j+1| |δ j| = 0 (17)

j = 1,2, . . . ,n

where

δ j =

⎡

⎢
⎣

Xj−1 − x j x j − x j−1 x j+1 − x j

Yj−1 − y j y j − y j−1 y j+1 − y j

Z j−1 − z j z j − z j−1 z j+1 − z j

⎤

⎥
⎦ (18)

and δ 1
j , δ 2

j and δ 3
j are obtained from δ j by replacing first, second and third columns

by Λ j respectively.

4 Numerical Example

Figure 3 shows a case where n = 3. The following numerical values are given, where
lengths are in units of cm and spring stiffness values are in units of N/cm:

a1 = 10,a2 = 12.3,a3 = 15,A1 = 11.5,A2 = 9,A3 = 10,
s1 = 20,s2 = 23,s3 = 19.5,
k1 = 3.8,k2 = 3,k3 = 4.3.
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Fig. 3 Numerical example.

Here, since all the bottom nodes have zero z-coordinates, their position vectors
are known. There are two possible configurations for the bottom nodes and the over-
all equilibrium configurations will be symmetric for the two cases. So picking either
of them is sufficient for this analysis. Thus

p1 =
[

x1 y1 z1

]T =
[

0 0 0
]T

p2 =
[

x2 y2 z2

]T =
[

a1 0 0
]T

p3 =
[

x3 y3 z3

]T =
[

a3 cosα1 a3 sinα1 0
]T

where α1 is the angle between ties 1–2 and 1–3 at node 1. The unknown coordinates

of the top nodes are written as: P j =
[

Xj Yj Z j

]T
, j = 1,2,3.

Thus for this case the matrix expression in (16) gives three equations in the nine
unknowns (the coordinates of the top points). The geometric constraints in Eqs. (2)
and (4) for the n = 3 case give another six equations in the nine unknowns. A ho-
motopy continuation method was used to solve the set of equations and a total of
10 different equilibrium equations were obtained. A second order stability analysis
was conducted on each of the ten cases to determine if each represented a stable
or unstable equilibrium case. Seven of the configurations have indefinite Hessians,
two of them are predominantly unstable with negative semidefinite Hessian, and
only one is predominantly stable with positive semidefinite Hessian. The numerical
values are not shown here due to length considerations.
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5 Conclusions

The equilibrium analysis of spatial tensegrity structures with elastic connecting ties
was considered. The solution was approached by writing a Lagrangian energy func-
tion for the constrained optimization model of the problem. Slack variable were
introduced to accommodate inequality constraints imposed by the cables. It was
shown that the equilibrium is achieved when all cables are fully stretched and the
corresponding equilibrium equations were deduced using the Lagrange multiplier
method. Next, the Continuation method was used to numerically evaluate all equi-
librium configurations for the system. Lastly, a stability study of the various equilib-
rium configurations was carried out using the second and higher order conditions,
although this work was not detailed here due to length considerations.
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Singularity Analysis of Lower-Mobility Parallel
Robots with an Articulated Nacelle

Semaan Amine, Daniel Kanaan, Stéphane Caro and Philippe Wenger

Institut de Recherche en Communications et Cybernétique de Nantes, France;
e-mail: {amine, kanaan, caro, wenger}@irccyn.ec-nantes.fr

Abstract. This paper presents a generic approach to analyze the singularity of robots with an
articulated nacelle like the H4 robot. Using screw theory, the concept of equivalent twist graph
is introduced in order to characterize the constraint wrenches and the actuation wrenches applied
to the moving platform. Using Grassmann–Cayley Algebra, the geometric conditions associated
with the dependency of six Plücker vectors of finite and infinite lines in the projective space P3 are
reformulated in the superbracket decomposition in order to characterize geometrically the parallel
singularities of the robot.

Key words: Grassmann–Cayley Algebra, superbracket, screw theory, parallel manipulators, sin-

gularities, twist graph, nacelle.

1 Introduction

Parallel singularities are critical configurations in which a parallel manipulator loses
its stiffness and gains one or more degrees of freedom (DOF). They can be found us-
ing either numerical, analytical or geometrical methods. For Gough Stewart parallel
manipulators, the rows of the inverse Jacobian matrix are Plücker coordinate vectors
of six finite lines that are six actuation forces applied by the actuators to the moving
platform. The parallel singularities of such manipulators that Merlet [1] analyzed
using Grassmann line geometry occur when those lines become linearly dependent.
Ben-Horin and Shoham analyzed the parallel singularities of 6-DOF parallel manip-
ulators using Grassmann-Cayley Algebra (GCA) [2, 3]. Contrary to 6-DOF parallel
manipulators, the legs of a lower-mobility parallel manipulator have a connectivity
smaller than six and, in turn, each leg constrains partly the motion of the moving
platform. When the legs lose their ability to constrain the moving platform, a so-
called constraint singularity occurs [4]. Kanaan et al. [5] enlarged the application
of GCA to lower-mobility manipulators, in which the rows of the 6×6 inverse Jac-
obian are not necessarily finite lines (zero pitch wrenches) but can be also infinite
lines (infinite pitch wrenches). These wrenches, also known as governing lines, are
actuation and constraint wrenches applied to the moving platform. Choi et al. [6]
analyzed the singularities of the H4 robot using screw theory, while Wu et al. [7]
analyzed them using line geometry.
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In this paper, we present a methodology for the singularity analysis of robots with
an articulated nacelle. This methodology is general and applied to the H4 robot. To
deal with robots with complex architectures like the H4 robot, we introduce the
concept of twist graph. Each leg of this robot contains a closed loop (the 4S parallel
linkage) and can be replaced by a virtual serial chain having the same twist system as
the leg in the equivalent twist graph of the robot. The twist graph of the H4 robot is
obtained in order to characterize the constraint and actuation wrenches applied to its
end effector. Then, the parallel singularity conditions of the robot are derived using
its wrench diagram in the projective space P3 and the superbracket decomposition.
Finally, some singularity configurations are illustrated geometrically.

2 Grassmann–Cayley Algebra in the Projective Space P3

The Grassmann–Cayley Algebra (GCA), also known as exterior algebra, was de-
veloped by Grassmann as a calculus for linear varieties operating on extensors with
the operators join and meet associated with the union and intersection of vector
spaces of extensors. The bracket is a determinant that satisfies special product rela-
tions called sygzygies. In the projective space P3, extensors could represent entities
such as points, lines or planes. Points are represented with their homogeneous co-
ordinates while lines and planes are represented with their Plücker coordinates. The
notion of extensor makes it possible to work at the symbolic level, and therefore,
to produce coordinate-free algebraic expressions for the geometric singularity con-
ditions of spatial parallel manipulators. For further details on GCA the reader is
referred to [2, 8].

3 Theory of Reciprocal Screws

Screw theory is suitable for the type synthesis and the study of the instantaneous
motion of parallel manipulators. The principle of reciprocal screws was studied
in [9–11] and then developed in [12–15]. The method deals with the reciprocity
condition between two screw systems to characterize for each leg-chain, the con-
straint wrench system reciprocal to its twist system as well as the actuation wrench
system obtained by locking actuators. In a non-singular configuration, constraint
wrenches and actuation wrenches form a 6-system.

A twist is a screw representing the instantaneous motion of a rigid body, a wrench
is a screw representing a system of forces and moments acting on a rigid body. Let ε
denotes a twist and τ denotes a wrench. An infinite pitch twist ε∞ represents a pure
translation of a prismatic joint P and a zero pitch twist ε0 represents a pure rotation
of a revolute joint R. A pure force constrains the translation along its line direction
and is represented by a zero pitch wrench τ0. A pure moment constrains the rotation
about its direction and is represented by an infinite pitch wrench τ∞. A zero pitch
screw represents the Plücker coordinate vector of a finite line in P3. An infinite pitch
screw represents the Plücker coordinate vector of an infinite line in P3.
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A screw system of order n (0 ≤ n ≤ 6), also called n-system, comprises all the
screws that are linearly dependent on n given linearly independent screws. Any set
of linearly independent screws within a n-system forms a basis of this system. A n-
screw system can be replaced by another equivalent n-system by applying a linear
transformation to the basis of the first one [16]. The twist system Ti and the wrench
system Wi of a serial kinematic chain composed of f joints are given by:

Ti =
f
⊕
j=1

T j , Wi =
f⋂

j=1

W j (1)

The twist system T and the wrench system W of a parallel kinematic chain composed
of m serial chains are given by:

T =
m⋂

i=1

Ti , W =
m
⊕
i=1

Wi (2)

The twist system T and the wrench system W of a given kinematic chain are
reciprocal to each other: T= W⊥ and W= T⊥, the operator ⊥ denoting the reciprocity
of two screw systems. If t denotes the twist system order, then the wrench system
order is w = 6−t. Any twist in T is reciprocal to any wrench in W and vice versa [15].
Two screws are reciprocal to each other if their orthogonal product is equal to zero.
Two zero pitch screws are reciprocal to each other if and only if their axes are
coplanar. A zero pitch screw is reciprocal to an infinite pitch screw if their directions
are orthogonal to each other. Two infinite pitch screws are always reciprocal to each
other.

4 The H4 Constraint Analysis

bI

bII

(B)

(E)

(E)

l1
l2

l3

l4

RI
RII

Fig. 1 Prototype of the H4 robot.

The H4 robot shown in Fig. 1 belongs to a new
family of 4-DOF parallel robots designed for high-
speed pick and place operations [17, 18]. A kin-
ematic graph of the H4 robot was given in [19]. The
H4 robot is composed of four identical legs li = Ri–
(4S)i, (i = 1, . . . , 4), attached to a common base (B)
and linked to the end effector (E) by means of an ar-
ticulated nacelle. The nacelle is composed of three
bodies: (i) bI , connecting l1 and l2 in parallel and
giving a resulting chain l12; (ii) bII connecting l3
and l4 in parallel and giving a resulting chain l34;
and (iii) (E), linked to bI and bII with two revolute
joints RI and RII respectively, and carrying the end
effector of the robot. Finally, the H4 robot has two
compound legs: LI = l12–RI and LII = l34–RII .

275



S. Amine et al.
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∞1 ε̂ i
∞2
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ni × si
mp

ni

si
mn

si
mp

Fig. 2 (a) A (4S)i linkage; (b) Kinematic graph and twist graph of the (4S)i linkage.

4.1 Twist System and Wrench System of the 4S Parallel Linkage

A parallel linkage (4S)i of ith li is represented in Fig. 2a and its kinematic graph
is shown in Fig. 2b. In this graph, a segment denotes a kinematic joint and a circle
denotes a link. The (4S)i linkage is a parallel kinematic chain composed of two
serial chains Si

m–Si
p and Si

n–Si
q, where Si

m, Si
n, Si

p and Si
q are four spherical joints

centered at points m,n, p and q respectively. In a general configuration, a 4S linkage
is not a parallelogram. However, the H4 robot is designed in such a way that the
(4S)i is a parallelogram in all configurations [17], i.e., mn // pq and mp // nq. Note
that for the ith leg li, ri

p denotes the position vector of point p, si
mp denotes a unit

vector directed along line mp and ni denotes a unit vector normal to the plane of the
parallelogram linkage.

The wrench system of Si
m–Si

p includes all τ0 passing through m and p. It is
a 1-system: Wmp = span(τ̂01) where1 τ̂01 = (si

mp, ri
p × si

mp)
T . Similarly, the wrench

system of Si
n–Si

q is: Wnq = span(τ̂02) where τ̂02 = (si
nq, ri

q × si
nq)T . From Eq. (2),

the wrench system of the (4S)i linkage is W4S = Wmp ⊕Wnq = span(τ̂01, τ̂02). Since
si

mp and si
nq are parallel, W4S = span(τ̂01, τ̂∞1), where2 τ̂∞1 = τ̂02 − τ̂01 = (0, si

mp ×
si

mn)
T [16]. W4S is a 2-system, its twist system T4S = W⊥4S is a 4-system spanned by:

ε̂01 = (si
mp, ri

p × si
mp)

T , ε̂02 = (si
mn, ri

n × si
mn)

T , ε̂∞1 = (0, ni)T and ε̂∞2 = (0, si
mp ×

ni)T .
The (4S)i linkage provides two independent translations and two independent

rotations represented with the four independent twists ε̂01, ε̂02, ε̂∞1 and ε̂∞2 that
span its twist system. Its twist graph represents the joints associated with the twists
of a basis of its twist system. It is a virtual serial kinematic chain (Fig. 2b) composed
of two virtual revolute joints Ri

1 and Ri
2 associated with ε̂01 and ε̂02 and two virtual

prismatic joints Pi
1 and Pi

2 associated with ε̂∞1 and ε̂∞2. These virtual joints are
represented with dashed lines. Links 1, 2 and 3 are virtual links represented with
dashed circles.

1 τ̂ and ε̂ stand for unit wrench and unit twist, respectively.
2 By applying a linear transformation.
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4.2 Constraint Wrenches of the H4 Robot

Since the twist system of a (4S)i linkage is represented with a virtual chain com-
posed of two revolute joints and two prismatic joints, a twist graph of the H4
robot is obtained as shown in Fig. 3. The twist system Ti of the ith leg li = Ri–
(4S)i (Fig. 4a) is equivalent to the twist system of a serial chain Ri–Ri

1–Ri
2–Pi

1–Pi
2

spanned by: ε̂ i
01 = (si

1, ri
1 × si

1)
T , ε̂ i

02 = (si
mn, ri

n × si
mn)

T , ε̂ i
03 = (si

mp, ri
p × si

mp)
T ,

ε̂ i
∞1 = (0, ni)T and ε̂ i

∞2 = (0, si
mp × ni)T . Note that si

1 denotes a unit vector along

the direction of Ri joint axis. For the ith leg li, si
1 // si

mn // si
pq [17]. The constraint

wrench system Wi of li includes the wrenches that are reciprocal to all the twists
in Ti. Thus, the axis of a τ0 in Wi is coplanar to the axes of ε̂ i

01, ε̂ i
02 and ε̂ i

03 and or-
thogonal to the directions of ε̂ i

∞1 and ε̂ i
∞2. Therefore, Wi does not contain any τ0.

The direction of a τ∞ in Wi is orthogonal to si
mn, si

mp and si
1, the corresponding

direction is si
mn × si

mp = ni. Hence, Wi is a 1-system spanned by τ̂ i
∞ = (0, ni)T .

bI bII

E

B

RI RII

R1 R2 R3

R4

R1
1

R1
2

P1
1

P1
2

R2
1

R2
2

P2
1

P2
2

R3
1

R3
2

P3
1

P3
2

R4
1

R4
2

P4
1

P4
2

Fig. 3 Twist graph of the H4 ro-
bot.

The chain l12 being the connection of l1
and l2 in parallel, its wrench system W12 = W1 ⊕
W2=span(τ̂1

∞, τ̂2
∞). Thus, l12 provides translations in

any direction and cannot rotate about an axis of
direction n1 or n2. The direction of possible ro-
tation is independent of these two directions. This
rotation is represented with the twist ε̂012 whose
axis is directed along s12

m = n1 × n2. Therefore,
T12 = W⊥12 = span(ε̂∞x, ε̂∞y, ε̂∞z, ε̂012) where ε̂∞x, ε̂∞y

and ε̂∞z are the infinite pitch twists associated with
translations along directions x, y and z, respectively.
Similarly, the twist system of leg l34 is T34 = W⊥34 =
span(ε̂∞x, ε̂∞y, ε̂∞z, ε̂034) and the axis of ε̂034 is dir-
ected along s34

m = n3 ×n4.
The twist system of leg LI = l12–RI is TI = T12 ⊕

TRI
. RI is the rotation about axis ZI (Fig. 4c) rep-

resented with the twist ε̂0ZI
= (z, rc × z)T . Thus,

TI = span(ε̂∞x, ε̂∞y, ε̂∞z, ε̂012, ε̂0ZI
). Therefore, WI =

T⊥I = span(τ̂∞I) where τ̂∞I = (0, z×s12
m )T . Likewise,

WII = span(τ̂∞II) where τ̂∞II = (0, z× s34
m )T . Legs LI

and LII are mounted in parallel on the end effector of the H4 robot. Thus, its con-
straint wrench system is:

Wc
H4 = WI ⊕WII = span(τ̂∞I, τ̂∞II) (3)

The end effector of the H4 robot is constrained by two pure moments: τ̂∞I =
(0, z× s12

m )T and τ̂∞II = (0, z× s34
m )T . It provides a Schönflies motion, i.e., three

independent translations and one rotation about an axis of fixed direction z.
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4.3 Actuation Wrenches and Global Wrench System of the H4
Robot

The actuated joints of the H4 robot are the Ri joints of legs li, (i = 1, . . . , 4). Legs l1
and l2 (respectively l3 and l4) are connected with RI (respectively RII). The actuation
wrench system Wa

1 of l1 includes wrenches that are reciprocal to the twist of the RI

joint and all the twists in T1, except for the twist ε̂1
01 of R1. Thus, Wa

1 does not include
any infinite pitch wrench. It is a 1-system spanned by τ̂1

0 of axis parallel to s1
mp,

intersecting axis ZI and lying on the plane spanned by mn and mp. The actuation
wrench of l1 is, thus, τ̂1

0 = (s1
uv, r1

v × s1
uv)

T with s1
uv // s1

mp. Similarly, the actuation
wrenches of legs l2, l3 and l4 are τ̂ i

0 = (si
uv, ri

v × si
uv)T , (i = 2, 3, 4) with si

uv // si
mp.

In a non-singular configuration, the four actuation wrenches τ̂ i
0 are independ-

ent and span the actuation wrench system of the H4 robot: Wa
H4 = span(τ̂ i

0), (i =
1, . . . , 4). The global wrench system of the robot is:

WH4 = Wc
H4 ⊕Wa

H4 = span(τ̂∞I, τ̂∞II , τ̂1
0 , τ̂2

0 , τ̂3
0 , τ̂4

0 ) (4)

The legs of the H4 robot apply two constraint moments and four actuation forces to
its end effector. Its global wrench system is a 6-system. A parallel singularity occurs
when the wrenches in the 6-system become linearly dependent and span a k-system
with k < 6.

5 Singularity Analysis of the H4 Robot

5.1 Wrench Diagram of the H4 Robot in P3

A basis of the global wrench system WH4 is composed of two constraint moments τ̂∞I
and τ̂∞II , and four actuation forces τ̂ i

0 = (si
uv, ri

v × si
uv)T , (i = 1, . . . , 4). Those

wrenches are represented by two infinite lines and four finite lines in P3. To ob-
tain the six extensors of the H4 superbracket, we have to select twelve projective
points on the six projective lines, i.e., two points on each one. The extensor of an
infinite line is represented by two distinct infinite points. The extensor of a finite
line can be represented by either two distinct finite points or one finite point and
one infinite point, since any finite line has one point at infinity corresponding to its
direction.

We know that τ̂1
0 and τ̂2

0 intersect axis ZI . Likewise, τ̂3
0 and τ̂4

0 intersect axis ZII
(Fig. 4). Let a (respectively c) denote the intersection point of τ̂1

0 (respectively τ̂2
0 )

and ZI and let e (respectively g) denote the intersection point of τ̂3
0 (respectively τ̂4

0 )
and ZII . Besides, ZI and ZII are parallel, i.e., ac and eg are parallel lines. They
intersect in the infinite plane Π∞ at point j = (z, 0)T , which corresponds to the z
direction. Note that an underlined letter stands for an infinite point. The finite line
representing τ̂1

0 = (s1
uv, r1

v × s1
uv)T can be defined by any two points on this line.
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Fig. 4 (a) Twists of leg li; (b) Constraint and actuation wrenches; (c) Wrench diagram in P3 of the
H4 robot.

Therefore, let τ̂1
0 = ab with b = (s1

uv, 0)T the infinite point of τ̂1
0 representing its

direction. Likewise, τ̂2
0 = cd with d= (s2

uv, 0)T , τ̂3
0 = ef with f= (s3

uv, 0)T and τ̂4
0 =

gh with h = (s4
uv, 0)T .

The infinite line τ̂ i
∞ = (0, ni)T , (i = 1, . . . , 4) is the projection on Π∞ of a finite

plane Πi of normal ni. The intersection line of planes Π1 and Π2 is a finite line
orthogonal to n1 and n2. The infinite point of this line is expressed as: i = (n1 ×
n2, 0)T = (s12

m , 0)T and corresponds to the intersection point of τ̂1
∞ and τ̂2

∞. In the
same vein, the intersection point of τ̂3

∞ and τ̂4
∞ is expressed as: k = (n3 ×n4, 0)T =

(s34
m , 0)T .
Let us consider the constraint moment τ̂∞I = (0, z× s12

m )T . The vector z× s12
m is

normal to any finite plane spanned by the two vectors z and s12
m . The infinite point

of s12
m is i and the infinite point of z is j. Therefore, τ̂∞I = ij. Likewise, τ̂∞II = kj.

We have selected the twelve points of the H4 superbracket. The wrench diagram of
the H4 robot is represented in Fig. 4c.

5.2 Superbracket of the H4 Robot

The rows of the inverse Jacobian matrix of a parallel manipulator are Plücker co-
ordinates of six lines in P3. The superjoin of these six vectors in P5 corresponds
to the determinant of their six Plücker coordinate vectors up to a scalar multiple,
which is the superbracket in GCA Λ(V (2)) [8]. Thus, a singularity occurs when
these six Plücker coordinate vectors are dependent, which is equivalent to a super-
bracket equal to zero.
In [20], the theory of projective invariants has been used to decompose the super-
bracket into an expression having brackets involving 12 points selected on the axes
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of these lines. The expression of the H4 superbracket is [abcdefghijkj], it cor-
responds to twelve points selected in the robot wrench diagram. This expression can
be developed into a linear combination (sum) of 24 bracket monomials [2,20], each
one being the product of three brackets of four projective points. The bracket of any
four coplanar projective points is equal to zero. Hence, 19 amongst the 24 monomi-
als are null. As detailed in [21], the simplified expression of this superbracket is:

[abcdefghijkj] = [gikj]
(
[abdf][cghj]− [abdh][cgfj]

)

= [gikj][abd
•
f][cg

•
hj] (5)

where the dotted letters denote the permuted elements as mentioned in [8].

5.3 Geometric Conditions for the H4 Robot Singularities

From Eq. (5), a parallel singularity occurs when:

1. [gikj] = 0 ⇔ [ikj] = 0 ⇔ i, j and k belong to the same projective line. This
condition is expressed in vector form as follows:

(s12
m × s34

m )• z = 0 (6)

where s12
m = n1 ×n2 and s34

m = n3 ×n4. This condition corresponds to the con-
straint singularities of the robot that occur when the legs lose their ability to
constrain the motion of the end effector, which gains one or several DOFs. By
solving Eq. (6), we obtain the different cases for this type of singularity as fol-
lows:

(a) s12
m × s34

m = 0: s12
m and s34

m are parallel, which happens when the intersection
line of two amongst the four planes Πi, (i = 1, . . . 4), is parallel to the inter-
section line of the two other planes. For example, when n1 // n3 and n2 // n4

as shown in Fig. 5a.
(b) s12

m // z, i.e., when the two planes Π1 and Π2 are vertical, their normal vec-
tors n1 and n2 are in the horizontal plane and s12

m = n1 ×n2 is parallel to z.
A similar case happens when s34

m // z ;
(c) n1 // n2, i.e., the two planes Π1 and Π2 are parallel, and as a consequence

s12
m = 0. A similar case happens when n3 // n4 ;

(d) s12
m , s34

m and z are coplanar but not parallel to each other.
(e) s12

m // s34
m // z, i.e., when the four planes Πi, (i = 1, . . . 4), are vertical as

shown in Fig. 5b.

In cases (a), (b), (c) and (d), the two constraint moments τ̂ I
∞ and τ̂ II

∞ are identical
(z×s12

m // z×s34
m ) or one of these moments is null. The constraint wrench system

of the robot becomes a 1-system and its twist system a 5-system, and as a result,
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Fig. 5 Some singular configurations of the H4 robot.

the manipulator gains one DOF. In case (e), the two constraints moments τ̂ I
∞

and τ̂ II
∞ are null and the robot gains two DOFs.

2. [abd
•
f][cg

•
hj] = 0 ⇔

(
abd ∧ cgj

)
∧ fh = 0 ⇔ the projective line fh in-

tersects with the intersection line of planes abd and cgj. This condition is
expressed in vector form as follows:

(
[s1

uv × s2
uv]× [(rg − rc)× z]

)
• (s3

uv × s4
uv) = 0 (7)

This condition occurs when the legs cannot control the linear velocity of the
end effector. The different cases for this condition can be established by solving
Eq. (7). For example, when s1

uv // s2
uv and s3

uv // s4
uv (Fig. 5c).

6 Conclusions

In this paper, a general methodology was proposed to analyze the singularities of
parallel manipulators with an articulated nacelle. The methodology consists of two
main steps. First, the new concept of twist graph is used to simplify the constraint
analysis. This graph is obtained with the theory of reciprocal screws. Then, a wrench
diagram is obtained in order to derive a simplified expression of the superbracket de-
composition. This expression is analyzed to provide geometric conditions for singu-
lar configurations. The methodology was explained through the singularity analysis
of the H4 robot. It can be also applied to analyze the singularities of other complex
robots such as the Par43 [22].

3 The commercial name of the Par4 is Quattro (http://www.adept.com/).
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Abstract. Reconstructing human motion dynamics in real-time is a challenging problem since it
requires accurate motion sensing, subject specific models, and efficient reconstruction algorithms.
A promising approach is to construct accurate human models, and control them to behave the same
way the subject does. Here, we demonstrate that the whole-body control approach can efficiently
reconstruct a subject’s motion dynamics in real world task-space when given a scaled model and
marker based motion capture data. We scaled a biomechanically realistic musculoskeletal model to
a subject, captured motion with suitably placed markers, and used an operational space controller
to directly track the motion of the markers with the model. Our controller tracked the positions,
velocities, and accelerations of many markers in parallel by assigning them to tasks with different
priority levels based on how free their parent limbs were. We executed lower priority marker track-
ing tasks in the successive null spaces of the higher priority tasks to resolve their interdependencies.
The controller accurately reproduced the subject’s full body dynamics while executing a throwing
motion in near real time. Its reconstruction closely matched the marker data, and its performance
was consistent for the entire motion. Our findings suggest that the direct marker tracking approach
is an attractive tool to reconstruct and synthesize the dynamic motion of humans and other complex
articulated body systems in a computationally efficient manner.

Key words: Motion reconstruction, marker space control, musculoskeletal model, human motion

synthesis.

1 Introduction

The reconstruction of human motions is important to researchers who wish to un-
derstand the motor strategies skilled humans employ, predict clinical treatment out-
comes, or synthesize actor movement in virtual environments. Understanding hu-
man motor control involves studying the principles used to optimize movement, and
its improvement requires finding changes which make it more optimal. Predicting
clinical outcomes of specific biomechanics operations requires developing detailed
subject customized models to predict changes in the dynamics as parameters vary.
Finally, synthesizing motion involves mapping a subject’s motion to a model, over-
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coming differences in scale, and possibly modifying and mixing motions as they are
executed. Motion reconstruction’s many objectives make it a challenging task.

Existing reconstruction techniques are application specific, use approximate hu-
man models, and usually focus on animating virtual characters to execute tracked
motions. The inverse approach estimates the subject’s joint angles by imposing mo-
tion capture data’s spatial and timing constraints to a model and obtains the kin-
ematics or dynamics in joint space [1–7]. However, estimating joint space from the
real world task space translates motion sensing errors into unnatural joint constraints
which are further amplified by model imperfections. In addition, inverting motion
capture data is computationally expensive. Task space reconstruction [8, 9] over-
comes these difficulties by controlling a model to track task space motion capture
data directly and obviates the inversion to joint space. Controlling realistic mus-
culoskeletal models in task space to reconstruct motion is challenging due to the
many degrees of freedom, their novel singular configurations, and computational
efficiency constraints.

In this paper, we applied the task space reconstruction approach to track mul-
tiple markers with a detailed subject-customized biomechanical model. To ensure
biomechanical detail, we developed a controllable musculoskeletal model based on
existing biomechanical models of the upper and lower body [10,11]. We identified a
marker set that constrains the model sufficiently to make its motions match the sub-
ject’s. We chose a task space marker control hierarchy which tracks markers on the
root and leaves of the model’s branching structure with the highest priority, and sim-
ultaneously tracks intermediate constrained markers in successive null spaces. The
higher priority tasks track the motions of the end effectors and pelvis, and the lower
priority tasks ensure that the motion of the remaining limbs is consistent with their
marker trajectory constraints. Finally, we executed our reconstruction algorithms in
our simulation and control framework [12] in near real time.

2 Musculoskeletal Motion Reconstruction

For a given desired task, all motion patterns such as body segment location and
orientation, balance, posture, collision avoidance [13, 14] need to be specified and
controlled in a logical order. They also need to be consistent with physio-mechanical
constraints including joint range of motion, singularity avoidance, and muscular ef-
fort minimization [9]. To solve these problems, we extend the task-space control
framework to marker space, where the marker trajectories are tracked with an ac-
curate musculoskeletal model. The model is scaled to the human subject and is sim-
ulated in real-time. The reconstruction process starts with real-time data acquisition
using optical marker-based motion capture, and motion data filtering. The muscu-
loskeletal model is then scaled and used to directly track the marker trajectories to
obtain the motion dynamics which may be analyzed later.
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Fig. 1 The musculoskeletal model scaled and used as the basis for the human motion simulation
and reconstruction in our task-level dynamic framework. The 22 markers tracked by our motion
reconstruction controller are labeled on the model.

2.1 Experimental Procedure and Musculoskeletal Model

Experiments were conducted using an eight-camera Vicon motion capture system
(OMG plc, Oxford UK). A 25-year old healthy left-handed female athlete performed
maximum velocity (left-hand) throws of a tennis ball. The motion of the subject was
captured at a rate of 120Hz. Following the experiment, the collected position data
was processed in Vicon Nexus Software. The raw marker data were filtered using a
15Hz low pass 4th order Butterworth filter.

The musculoskeletal model used in this work combines existing upper [11] and
lower [10] body models. The upper body’s kinematics contain 15 degrees of free-
dom which represent the shoulder, elbow, forearm, wrist, and hand. The lower
body’s kinematics contain 17 degrees of freedom which represent the hip, knee,
ankle, subtalar, and metatarsophalangeal joints. The arms-torso, torso-pelvis, and
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Fig. 2 The topology of the skeletal model. Each block represents a body segment which is con-
nected to its parent body by the corresponding custom joint. The subscripts r and l denote the right
and left body parts, respectively. The levels correspond to Table 1.

pelvis-leg joints are represented by ball-and-socket joints. The remaining joints are
revolute.

The generic human model consists of 20 joints and has 32 degrees of freedom. It
was scaled based on body segment mass-center locations [15] to match the anthro-
pometry of the subject. Figure 1 illustrates the scaled musculoskeletal model used
in our control and simulation framework and Fig. 2 shows the body segments of the
model, each connected to its parent body via the corresponding custom joint. For
example, the right ulna is connected to its parent body, right humerus via the right
elbow custom joint.

2.2 Control Framework

2.2.1 Marker Space Control Formulation

The marker space formulation is constructed by applying an operational space con-
troller [16] to track marker trajectories. The formulation begins with the joint space
dynamics of the robot

A(q)q̈+ b(q, q̇)+ g(q) = Γ (1)
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where q is the vector of n generalized coordinates of the articulated system, A is the
n× n kinetic energy matrix, b is the vector of centrifugal and Coriolis generalized
forces, g is the vector of gravity forces, and Γ is the vector of generalized control
forces.

Task dynamic behavior is obtained by projecting (1) into the space associated
with the task, which can be done with the following operation

J
T
t [Aq̈+ b + g = Γ ] =⇒ Λt ẍt + µt + pt = J

T
t Γ (2)

Here, J
T
t is the dynamically-consistent generalized inverse of Jt , the Jacobian of the

task, Λt is the m×m kinetic energy matrix associated with the task, and µt and pt
are the associated centrifugal/Coriolis and gravity force vectors.

In the operational space framework, the task behavior is divided into a set of
independent task points, and the torque component for the task is determined in a
manner that compensates for the dynamics in task space. For a task behavior, xt ,
with decoupled dynamics and unit inertial properties ẍt = F∗

t , this torque is given
by the force transformation

Γtask = JT
t Ft (3)

where Jt is the Jacobian of the task and Ft is the operational space force. This oper-
ational space control is given by

Ft = ΛtF
∗

t + µt + pt (4)

where F∗
t is the desired force associated with the task.

In the application to marker space, the task is defined in terms of the markers po-
sition coordinates describing the motion capture. The marker space control structure
is established as

Fmi
= Λmi

F∗
mi

+ µmi
+ pmi

(5)

Here, F∗
mi

is the control force associated with ith marker task, and is defined by

F∗
mi

= ẍmid
− kv(ẋmi

− ẋmid
)− kp(xmi

− xmid
) (6)

where xmid
, ẋmid

, and ẍmid
denote the desired position, velocity, and acceleration,

respectively, associated with the marker tracking task. kp and kv are the position and
velocity gains. Thus, equation (5) represents the control structure for the trajectory
tracking in marker space.

However, the coordinates associated with the positions of markers placed on the
articulated body are not all independent. In order to address this dependency, we
start by selecting an independent set m1 of markers and a task, xm1

, associated with
this set. The control of the additional marker task is achieved by projecting the
associated control in the null space of the Jacobian matrix associated with xm1

.
Dynamic consistency between marker-set tasks is achieved by recursive projec-

tions of the associated control torques in the higher priority task null space [17]. For
a marker set mi, this is achieved by the dynamically consistent Jacobian Jmi|mi−1|···|m1
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Fig. 3 A sequence of the reconstructed left hand throwing motion. Note that the dots correspond
to the experimental markers attached to the subject.

defined as
Jmi|mi−1|···|m1

= Jmi
Nmi−1

· · ·Nm1
(7)

where Nmi
is the null space associated with the xmi

marker-set task. For n marker-set
tasks, the corresponding control torque vector is

Γ = JT
m1

Fm1
+ JT

m2|m1
Fm2|m1

+ · · ·+ JT
mn|mn−1|···|m1

Fmn|mn−1|···|m1
(8)

2.2.2 Human Motion Control Hierarchy

The implementation of the marker space control formulation, described in Sec-
tion 2.2.1, to the human model requires building a hierarchy of independent marker
sets. Our approach for assigning markers to these task-sets is based on the observa-
tion that two markers can be controlled independently if they are separated by three
degrees of freedom that span the space of motion. This principle is applied to the
human model following its natural tree-like branching structure. The first level in
the task hierarchy is formed by markers placed on the pelvis, its root, and on the
hands and feet, its leaves. The following levels are constructed with markers placed
on the intermediate links through assignments consistent with the above principle.
Additional tasks, such as postures and dissipative forces, are included in the lowest
level of the hierarchy.

Table 1 shows the resulting assignment for the human model. Note that the pel-
vis segment includes both RASI and LASI while the torso segment incorporates
C7, CLAV, Lacromion, and Racromion markers that are illustrated in Fig. 1. The
independent marker sets are then tracked through the entire movement sequence
using this prioritization order. The remaining redundancy is labeled as the posture
space of the marker tasks, containing all possible motions that do not affect marker
tasks performance. The direct marker control framework allows us to synthesize
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Table 1 The hierarchy of the controlled tasks in the marker space. See also Figs. 1 and 2.

Level 1 Level 2 Level 3 Level 4

Pelvis Torso Lupperarm Posture
Lhand Lthigh Rupperarm Additional Behaviors
Rhand Rthigh Ltibia
Lmt5 Lforearm Rtibia
Rmt5 Rforearm
LKnuckle Lcalcaneus
RKnuckle Rcalcaneus

any additional behavior by projecting its control into the marker task null-space and
establishing a new priority.

3 Results and Real-Time Simulation

The motion reconstruction algorithm presented in Section 2.2.1 was tested on a
sequence of human throwing motion described in Section 2.1 (Fig. 3). The recon-
struction was executed by controlling the tasks in three-level marker space (Table 1)
formed by independent sets of 22 experimental marker trajectories (see Fig. 1 and
Table 1).

Desired and reconstructed trajectories for the throwing (left) hand were recorded
during the simulation. Figure 4 illustrates the configurations of the throwing hand
together with the desired and reconstructed hand trajectories. Figure 5 shows the
reconstructed marker trajectories in time. Trajectory components (x, y and z) of the
desired and reconstructed motions were given for both throwing left hand and left
knuckle.

The results demonstrate the effectiveness of the reconstruction algorithm by
tracking the trajectories with little error (0–4 cm). Our principal error source is the
scapular elevation and depression of the left shoulder, which are not taken into ac-
count in the current human model. The error could be reduced by incorporating the
movement of the scapula into the model. Overall, the results show that fast dynamic
motions can be effectively reconstructed in near real-time.

4 Conclusions

We described our direct marker space control framework for reconstructing human
motions by tracking captured marker trajectories with a simulated musculoskeletal
model. The reconstruction was performed by successive projections into the null
spaces of all tasks that are above it in the hierarchy formed in marker space. A
control hierarchy which allows whole-body motion reconstruction was established
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Fig. 4 Marker trajectories in task space: The left hand and knuckle marker trajectories demonstrate
the effectiveness of the task space motion reconstruction algorithm. The markers are tracked while
executing a left hand throwing motion. The tracked motion closely follows the recorder marker
positions. Placing multiple markers on links (some hidden for clarity) enables the controller to
track the position and orientation of the hand well.

and tested on a sequence of human throwing motions. Our framework provides an
efficient way to map motion patterns to accurate musculoskeletal models without
the need for inverse kinematics computations. It also runs in real-time. Our fore-
most limitation is modeling inaccuracy. For instance, the elevation and depression
of the scapula, which enables the shoulder to translate, is not included in the model.
The missing scapula movement limits the freedom of the shoulder in fast motions,
and its absence dramatically degrades reconstruction near the limits of the arm’s
workspace.

Our marker space reconstruction methodology provides the full motion dynam-
ics by operating in marker space and automatically resolving the kinematic con-
straints of the markers. The framework has been used to analyze high performance
human motion such as that of athletes and martial art masters [9]. If we control a
subset of the limbs, our controller will predict optimal motions for the remaining
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Fig. 5 Marker trajectories in time: The left hand and knuckle marker trajectories are tracked with
little error, even when the motion is fast. While straight line motion is tracked with very low error
(1 cm), fast dynamic motions introduce small error overshoots (2–4 cm) since the system is mildly
underdamped.

limbs which can then be used to train subjects. Novel gaits that minimize the knee
adduction moment can be predicted by subject-specific musculoskeletal modeling
and trained using multi-modal feedback. Similarly, external knee loading that may
lead to a non-contact anterior cruciate ligament (ACL) injury during running and
cutting maneuvers can be estimated [18, 19], and new altered motion patterns with
decreased loads on the knee joint can be modeled in this framework.
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Abstract. Inspired by the study of polyhedral and spheroidal linkages that perform radial motions,
this paper uses the reciprocating motion of the PRRP chain to arrange a pentahedron and a cube
and presents four overconstrained mechanisms with radially reciprocating motion. Characterized
by the radial motion, the mechanisms developed in this paper may have potential use in robotic
grasping and space exploration.

Key words: Radially reciprocating motion, overconstrained mechanisms, PRRP-chain, kinemat-

ics, robotic grasping.

1 Introduction

Linkages of radial motion have drawn great interest from kinematicians and mech-
anical engineers. In the past two decades, polyhedral and spheroidal linkages that
perform radial motions aroused interests and had been applied to various fields in
the customer products, architectural applications and space technologies. A typical
representation is Wohlhart’s [1] overconstrained spatial mechanisms as the turning
tower, screwing tower and folding octoid. The study evolved into four new struc-
tures [2] of spheroid mechanisms including ‘star-cube’ which was then investigated
by Wei and Dai [3]. The mobility of these overconstrained mechanisms can be mod-
elled by examining order of the screw system in a similar relationship to a class of
plane symmetric five and six bars that were investigated by Waldron [4] in 1969. In
1998, Dai and Rees Jones [5] proposed a family of foldable/erectable mechanisms
in radial motion stemming from the study of origami cartons and reconfigurable
packaging [6]. In 2001, Agrawal et al. [7] developed a single-mobility structure of
a lattice of expanding polyhedral units. In 2004, Dai et al. [8] investigated a radially
expandable and contractible sphere by applying the screw system analysis [9]. In
2006, Kusakari [10] presented a linkage coined ‘radial trees’. In 2007, You [11] in-
vestigated the motion structure of the Hoberman flight ring and identified the motion
characteristics that could be used to develop new structures.
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Fig. 1 A PRRP chain and a spatial 2-PRRP mechanism and its constraint graph.

Inspired by the above development, it is found in this paper that by properly
arranging PRRP chains in the polyhedrons and removing the frames, new overcon-
strained mechanisms can be identified. These mechanisms are characterized by their
radially reciprocating motions and may have great potential applications in many
consumer products and in grasping, pressing machines, and antenna.

2 Characteristics of the PRRP Chain

Figure 1a gives a general PRRP chain. As is well known, this simple linkage can
provide a motion such that when slider A moves towards point O, slider B moves
away from point O and vice versa. This creates the reciprocating motion. To carry
out the kinematic analysis, coordinate frame {O;x,y,z} is established with origin
fixed at point O and x-axis collinear with the center of prismatic joint A. l is the
distance between two revolute joints A1 and B1, α is the angle between the central
lines of the two prismatic joints. AA1 is perpendicular to OA and b1 indicates the
distance between A and A1. Similarly, BB1 is perpendicular to OB and b2 denotes
the distance between B and B1. Thus, from Fig. 1 kinematics of the PRRP chain can
be derived as follows:

h2 sin α −b1 −b2 cosα = l sinθ (1)

h2 cosα + b2 sinα −h1 = l cosθ (2)

Taking squares of both sides of Eq. (1) and similar to Eq. (2) and adding the two
resultant equations, the following quadratic equation is given with respect to h1

h2
1 + Bh1 +C = 0 (3)

where, B = −2(h2 cosα + b2 sinα) and C = h2
2 + b2

1 + b2
2 − l2 − 2b1h2 sinα +

2b1b2 cosα .
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Thus, it follows that
h1 = −B±

√
B2 −4C (4)

For a given input h2, there are two possible values of the sliding variable h1. They
are, geometrically, the intersection of a circle of radius l centered at B1 with a line
through A1 parallel to the x-axis. This kinematic property contributes to develop-
ment of the overconstrained mechanisms with radially reciprocating motion pro-
posed in the following sections.

Further, taking the time derivative of Eqs. (1) and (2) and combining the equa-
tions yield

ḣ1 cosθ = ḣ2 cos(θ −α) (5)

The above equation indicates two singular configurations for the PRRP chain. One
is when θ = π/2 + α when prismatic joint B is the actuated joint and the other is
when θ = π/2 when prismatic joint A is the actuated joint.

3 Construction of the Radially Reciprocating Motion Mechanism

The above characteristics of the PRRP chain of reciprocating motion can be used to
construct the polyhedral and spheroidal mechanisms that have radially reciprocating
motion (RRM). The principle of generating such linkages can be summarized by the
following three steps.

Step 1: choose an appropriate polyhedron.

Step 2: place the PRRP chains with guides of two P joints in the polyhedron and
align the guides with the edges or diagonals of the polyhedron such that an n-PRRP-
combined chain is formed.

Step 3: remove the frame of the n-PRRP-combined chain, this actually removes P
joints of the PRRP chains, to construct an overconstrained linkage that performs
radially reciprocating motion.

It should be noted that in step 3, if an overconstrained linkage of mobility one can-
not be constructed directly, kinematic property of the PRRP chain presented in Eq.
(4) can be used such that relevant vertexes and corresponding links are added to the
uncompleted linkage to form an overconstrained linkage of mobility one. This ap-
proach can be illustrated by an 8-PRRP-evolved mechanism and a 12-PRRP-evolved
mechanism that are constructed by placing PRRP chains into a pentahedron and a
cube following the aforementioned method and steps.

As shown in Fig. 2a, in a pentahedron OABCD with angle α between two ad-
jacent edges a first PRRP chain is arranged in such a way that guides of the two
prismatic joints collinear with edges E1 and E2. Further a second PRRP chain is
introduced into the pentahedron with its two prismatic joints being aligned with
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Fig. 2 Construction of type I 8-PRRP-evolved radially reciprocating motion mechanism.

edges E2 and E3. If the sliders (vertexes) of the two prismatic joints of chain 1 and
chain 2 located at edge E2 are merged into one vertex as V2, a 2-PRRP-combined
chain can be formed in Fig. 2a. Taking the same procedure, and introducing two
more PRRP chains into the pentahedron, a 4-PRRP-combined chain with a frame
can be generated in Fig. 2b. Constructing in this way, it is evident that the 4-PRRP-
combined chain can perform a radially reciprocating motion such that when ver-
texes V1 and V3 move outwards center O, vertexes V2 and V4 will move towards
center O, and vice versa. This chain contains only triangle-shaped vertexes and it is
termed as type I 4-PRRP-combined chain. It should be noted that in this work, n-
PRRP-combined chains containing only triangle-shaped vertexes are termed as type
I N-PRRP-combined chains, those containing square-shaped are termed as type II
chains, and those containing pentadon-shaped as type III chains, and so on.

Now we try to remove the frame of the type I 4-PRRP-combined chain to see if
an overconstrained mechanism can be found. Removing the frame, it is found that
a normal eight-bar mechanism of mobility two is obtained. This indicates that re-
moving frame does not directly result in an overconstrained mechanism of mobility
one. As aforementioned, in order to construct an overconstrained mechanism from
the type I 4-PRRP-combined chain, kinematic property of the PRRP chain revealed
in Eq. (4) needs to be considered. Equation (4) reveals that for every one position
of V1 and V3, vertexes V2 and V4 may occupy two positions as shown in Fig. 2b.
Thus, adding two more vertexes V′

2 and V′
4 and corresponding links to the 4-PRRP-

combined chain and removing the frame, an 8-PRRP-evloved mechanism can be
generated in Fig. 2c as an overconstrained mechanism of mobility one with radially
reciprocating motion. This results in such a way that when vertexes V1 and V3 move
towards point O, vertexes V2 and V4 move away from point O accompanied with
vertexes V′

2 and V′
4 moving towards point O and vice versa. The motion property

of this mechanism enables it to have potential applications for robotic grasping and
other consumer products.

Further, based on the principle that one cube comprises six identical pentahed-
rons, taking vertex angle α = 70.53◦ and placing six type I 4-PRRP-combined
chains into a cube by aligning their edges and merging their vertexes at center point
O of the cube, a 12-PRRP-combined chain with a frame can be generated in Fig. 3a.

296



Overconstrained Mechanisms with Radially Reciprocating Motion

Fig. 3 Construction of a 12-PRRP-evolved radially reciprocating motion mechanism.

Fig. 4 Construction of a 16-PRRP-evolved radially reciprocating motion mechanism.

Removing the frame of the 12-PRRP-combined chain, a 12-PRRP-evolved mech-
anism is constructed. This is an overconstrained mechanism of mobility one that
performs radially reciprocating motion with vertexes V1, V2, V3 and V4 moving
towards central point O and vertexes V4, V5, V6 and V7 moving away from point O
and vice versa. However, it should point out that this 12-PRRP-evolved mechanism
is not a new mechanism. Using a different method, Wohlhart [2] has developed the
same mechanism and the geometry and kinematics of this mechanism have been
studied by Wei and Dai [3].

4 The New Radially Reciprocating Motion Mechanisms

Making use of the method presented in Section 3, two new overconstrained mech-
anisms are proposed below.
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Fig. 5 Construction of a 24-PRRP-evolved radially reciprocating motion mechanism.

In the type I 4-PRRP-combined chain in Fig. 2b, another prismatic joint is in-
troduced in such a way that the axis of the prismatic joint is perpendicular to the
base of the pentahedron and passes through central point O. Further introducing a
square-shaped vertex P located at this new prismatic joint and rearranging the PRRP
chains in a way as indicated in Fig. 4a, a further 4-PRRP-combined chain is formed.
Since this 4-PRRP-combined chain contains a square-shaped vertex, it is a type II
4-PRRP-combined chain. Adding four additional vertexes V′

1, V′
2, V′

3 and V′
4 and

corresponding links and removing the frame, a new mechanism is expected to be
generated. However, looking at Fig. 4a, it is evident that removing the frame does
not result in a mechanism because in this case links V1, V2, V3 and V4, and V′

1, V′
2,

V′
3 and V′

4 are not connected. In order to form a mechanism, in addition to adding
of vertexes V′

1, V′
2, V′

3 and V′
4, three square-shaped vertexes P1, P2 and P3 and

corresponding links are further added to the type-II 4-PRRP-combined chain that a
16-PRRP-evolved overconstrained mechanism with mobility of one is constructed
in Fig. 4b. The mechanism is a butterfly-shaped overconstrained mechanism with
radially reciprocating mechanism in which when vertexes P, P1, P2 and P3 move
away from central point O, vertexes V1, V2, V3, V4 move towards O and vertexes
V′

1, V′
2, V′

3 and V′
4 away from O and vice versa. It should point out that in the

mechanism, the angle α between the two prismatic joints in a single PRRP chain is
54.74◦ Considering the kinematic property of this mechanism, it can be used as a
multi-functional grasping robot.

Similar to construction of the 12-PRRP-evolved mechanism, integrating six of
the type II 4-PRRP-combined chains into a cube by aligning edges and merging
their vertexes at central point O of the cube, a 24-PRRP-combined chain with a
frame is developed in Fig. 5a.

Further, by removing the frame of the 24-PRRP-combined chain, a 24-PRRP-
evolved overconstrained mechanism is obtained in Fig. 5b. This is a mechanism
of mobility one and can produce radially reciprocating motion in such a way that
vertexes P1, P2, P3, P4, P5 and P6 move outwards point O, vertexes V1, V2, V3, V4,
V5, V6, V7 and V8 move towards point O and vice versa.
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The 24-PRRP-evolved mechanism is a new overconstrained mechanism based on
pure revolute joints that performs radially reciprocating motion. The kinematics of
this mechanism can be studied similar to that of the 12-PRRP-evolved mechanism
in [3]. Since vertexes P1, P2, P3, P4, P5 and P6 are symmetrically distributed around
a sphere centered at point O, once the position of one of the these vertexes pi is
given, the positions of the other vertexes p j can be calculated as

p j = j
i RT pi (i �= j) (6)

where j
i
RT denotes the transpose of the rotation matrix describing coordinate frame

of p j relative to coordinate frame of pi.
Similarly, as vertexes V1, V2, V3, V4, V5, V6, V7 and V8 are symmetrically

arranged around the same spherical, once the position of one of these vertexes pVk
are obtained, the position of the other vertexes pVl can be derived by Eq. (6). Further,
since the mechanism is evolved from the PRRP chain, the magnitudes of positions
of vertexes P1, P2, P3, P4, P5 and P6, and positions of vertexes V1, V2, V3, V4,
V5, V6, V7 and V8 must comply with Eq. (4). In addition, the magnitudes of the
velocities of vertexes P1, P2, P3, P4, P5 and P6and that of vertexes V1, V2, V3, V4,
V5, V6, V7 and V8 must satisfy

|ṗi|cosθ = |ṗV k|cos(θ −α) (7)

where θ is the rotation angle of the link in the mechanism, α is the angle as il-
lustrated in Fig. 5a, and i = 1,2, . . . ,6 and k = 1,2, . . . ,8. With the above equation,
singularity of the mechanism can be revealed.

From the above construction and analysis of the new overconstrained mechan-
isms obtained, one can find that these mechanisms are characterized by their radi-
ally reciprocating motion. This is interesting motion that the mechanisms presented
herein can be applied to whereever radial motion is required. Further, from Eq. (4),
by considering the kinematic property of a PRRP chain, adding eight vertexes V′

1,
V′

2, V′
3, V′

4, V′
5, V′

6, V′
7 and V′

8 and corresponding links to the mechanism to the 12-
PRRP-evolved mechanism, a manipulator with eight end-effectors driven by only
one actuator can be obtained. And so can be done to the 24-PRRP-evolved mechan-
ism to obtain another manipulator with multiple end-effectors.

5 Conclusions

From investigation of the polyhedral and spheroidal mechanisms, choosing a penta-
heraon and a cube as a frame base and utilizing the kinematic property of a PRRP
chain, a set of n-PRRP-evolved overconstrained mechanisms that perform radially
reciprocating motion were obtained in this paper. Using the method proposed in
this paper, a series of overconstrained mechanisms with radially reciprocating mo-
tion can be designed by selecting proper polyhedrons. The analysis of the n-PRRP-
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evolved mechanisms will have potential use for manipulators with multiple end-
effectors. The n-PRRP-evolved radially reciprocating mechanism proposed in the
paper may have potential applications in consumer products such as manipulators,
pressing machines, and antenna for space exploration.

References

1. Wohlhart, K.: Heureka octahedron and brussels folding cube as special cases of the turing
tower. In Proceedings of the 6th International Symposium on Teoria si Practica Mecanismelor,
Vol. 2, pp. 303–311 (1993).

2. Wohlhart, K.: New overconstrained spheroidal linkages. In Proceedings of the 9th World Con-
gress on the Theory of Machines and Mechanisms, Milano, Vol. 1, pp. 149–153 (1995).

3. Wei, G.W., Ding, X.L., and Dai, J.S.: Geometry and kinematic analysis of the Hoberman
switch-pitch ball and its variant. In Proceeding of Design Engineering Technical Conferences
& Computers and Information in Engineering Conference, DETC2009-87329 (2009).

4. Waldron, K.J.: Symmetric overconstrained linkages. Transactions of the ASME: Journal of
Engineering for Industry, 91(1), 158–164 (1969).

5. Dai, J.S. and Rees Jones, J.: Mobility in metamorphic mechanisms of foldable/erectable kinds.
Transactions of ASME: Journal of Mechanical Design, 121(3), 375–382 (1999).

6. Zhang, L. and Dai, J.S.: Reconfiguration of spatial metamorphic mechanisms. Transactions of
the ASME: Journal of Mechanisms and Robotics, 1(1), 011012 1-8 (2009).

7. Agrawal, S.K., Kumar, S., Yim, M., and Suh, J.W.: Polyhedral single degree-of-freedom ex-
panding structures. In Proceedings of IEEE International Conference on Robotics and Auto-
mation, Vol. 4, pp. 3338–3343 (2001).

8. Dai, J.S., Li, D., Zhang, Q., and Jin, G.: Mobility analysis of a complex structured ball based
on mechanism decomposition and equivalent screw system analysis. Mechanism and Machine
Theory, 39(4), 445–458 (2004).

9. Dai, J.S. and Rees Jones, J.: Null space construction using cofactors from a screw algebra
context. Proc. Royal Society, Lond. A: Mathematical, Physical and Engineering Sciences,
458(2024), 1845–1866 (2002).

10. KusaKari, Y.: On Reconfiguring radial trees. IEICE Trans. Fundamentals, Vol. E89-A, 5,
1207–1214 (2006).

11. You, Z.: Motion structures extend their reach. Materials Today, 10(12), 52–57 (2007).

300



Control of Bipedal Turning While Running

A.D. Perkins and K.J. Waldron

Stanford University, Stanford, CA, USA; e-mail: alexp2@stanford.edu

Abstract. There remain unsolved control problems for running bipedal robots. In this work, dy-
namic principles are used to develop a set of heuristics for executing running turns. A specific
system is then considered, with 17 DOF, 7 of which are active, a low inertia torso, and mechanical
coupling between the knee and ankle joints. For this system, the heuristics are distilled into con-
trol laws governing the active joint torques. These control laws are implemented in simulation to
achieve stable and smooth turning while running.

Key words: Running, turning, control, biped, robot.

1 Introduction

As the robotics revolution continues into the 21st century, legged robots are poised
to enter service in roles ranging from military transports to in-home servants to
search and rescue aids. In order to do this, they must be able to maneuver quickly. To
date, however, no robotics systems have been created which are both fast and robust.
Some, like the 230 g, 160 mm SPRAWL [1], maneuver well, but are too small to
be practically useful. Others, like Raibert’s biped [2], are quite dynamic, capable of
runs, jumps, and aerial maneuvers, but require very specific system parameters that
render them ineffective for general applications. Still others, like Boston Dynamics’
BigDog [3] and Honda’s ASIMO [4] are large and robust, but aren’t designed for
high speed locomotion.

High speed locomotion comprises many maneuvers. Perhaps the most funda-
mental is steady-state running, which has been studied extensively, including not-
able work with Raibert’s biped [2], ASIMO [4], HRP [5], and RABBIT [6]. Bey-
ond steady-state running, other useful dynamic maneuvers include accelerating and
decelerating, turning, and running jumps. These maneuvers have been studied for
application to the quadruped KOLT [7], but remain under-examined for bipedal sys-
tems. We have previously considered accelerating and decelerating [8]; here, we
will explore turning.
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The motivation for accelerating, by which we mean both changing speed and
changing direction, comes in the form of practical obstacles. Being constrained to
a fixed speed and direction is not incredibly useful. Eventually, it will become ne-
cessary to change speed, which we have discussed in [8], or direction, which we
discuss here. Indeed, it is difficult to imagine a realistic task which does not require
changing direction. Thus, the aim of this work is to develop a control strategy for
turning while running in bipedal systems.

Before proceeding, it is important to define some terminology. Consider a body-
fixed frame with its origin at the midpoint of the line connecting the hip centers.
Rotation about the lateral, longitudinal, and vertical axes are called “pitch,” “roll,”
and “yaw” respectively. The angle of a leg segment in the pitch plane is called
“swing” and the angle of a leg segment in the roll plane is called “spread”. “Foot-
strike” refers to the instant at which the foot first comes into contact with the ground
and “toe-off” refers to the instant at which the foot completely leaves contact with
the ground. The “system heading” refers to the orientation of the projection of the
longitudinal axis in the horizontal plane; i.e. the direction the system is facing. The
“path heading” refers to the direction of the line tangent to the motion of the mid-
point of the line connecting the hip centers (which is the origin of the machine
frame); i.e. the direction the system is moving. Thus, if the robot were running side-
ways, the system heading and path heading would be at right angles to one another.
In order to effectively turn, it is necessary to alter both the system heading and the
path heading identically, or said another way, to alter the path heading and keep the
system heading and path heading aligned.

The remainder of this work is organized as follows: Section 2 formulates a heur-
istic control method, Section 3 describes a specific system with 17 DOF, including
3-link articulated legs and a low inertia torso, Section 4 refines the heuristics into
specialized control laws for this system, Section 5 presents simulated results of this
system executing a variety of turns, and Section 6 concludes.

2 Heuristics

One approach to controlling legged robotics is heuristic control, in which a set of
heuristics, or rules, are developed to govern the desired maneuver. These can then
be translated into joint-specific control laws [2]. Heuristic control is less sensitive
to model inaccuracies than model-based control, does not require large training sets
of data like machine learning techniques, and is more robust to disturbances than
central pattern generators [8].

For heuristic control, very little needs to be known about the system a priori. It is
assumed here that the system being controlled holds to a few loose requirements: it
is bipedal and symmetric about the sagittal plane, it has articulated hips connecting
the torso to the legs, and the hips and the knees are fully actuated.

In order to develop the heuristics that form the top level of the hierarchy of our
controller, the dynamic principles that govern a running biped must be considered.
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The first consideration is the attitude of the torso. It is desirable to minimize the pitch
impulse on the torso to avoid violent, and potentially damaging, pitching during
contact. Thus, the net impulse in the sagittal plane should pass through the torso
COM. In legged systems, the ground reaction force has been shown to act on a
line from the point of ground contact through the hip [9]. Thus, ideally the COM
of the torso should be kept on this line. To do this, however, requires constantly
repositioning the torso during ground contact. As a simpler alternative, we propose:

TRN.1 Keep the torso upright.

As previously mentioned, it is desired to keep the system heading and path heading
aligned. As the leg thrusts are applied to the hip axis and not directly to the torso,
it is the hip axis that will yaw. For a system with the ability to turn its torso with
respect to the hip about the vertical axis, it is thus necessary to add a heuristic to
prevent just the path turning:

TRN.2 Keep the torso aligned with the hip axis in the horizontal plane.

In legged mechanical systems, the ground reaction forces during impact can be as
much as 3-5 times the weight of the system [10]. The shock associated with such
high impulses can be damaging to the delicate electronic systems required to sense
and control the system. Thus, it is vital that the jarring effects of the impact be
minimized. This leads to:

TRN.3 Land in a pose removed from the singularity of the leg.

If the inertia of the torso is very high, as it was in Raibert’s biped, then the torso can
be used to posture the leg prior to foot-strike [2]. If the inertia of the torso is low,
then any attempt to posture the legs will result in the immediate and severe tilting
of the torso while hardly moving the legs at all [11]. Since it is desirable for these
heuristics be applicable to a wide range of systems, it is conservative to assume a
low inertia torso. This leads to the third heuristics:

TRN.4 Position the leg that will next strike using the other leg.

As observed in [8], forward acceleration is a paired process; that is, it must be done
over the course of at least two successive strides. The first stride applies a thrust to
one hip, which in turn induces a yaw rate in the hip axis. This must then be countered
by applying a similar thrust during the next stride. A first attempt at turning can
therefore be made by accelerating with one foot while decelerating with the other,
which would cause a turn in the direction of the decelerating foot (that is, if the right
foot is decelerating, the biped will turn right). In a way, this is how most robotic
walkers turn, shuffling one foot backwards (deceleraing) and the other foot forward
(accelerating) [4, 5]. However, when the initial acceleration is applied, a yaw rate
is induced only in the system, while the path heading remains unchanged. Thus,
the first stance should do more than cause a forward acceleration; it should cause a
lateral acceleration as well, directed toward the center of the turn, which will cause
both the system and path to begin turning. This leads to the sequence shown in
Fig. 1. It is worth noting that the ordering of the steps in this sequence is arbitrary,
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Fig. 1 Appropriate force application for inducing a yaw rate. During the first (accelerating) stance,
the net force Fnet is pointed forward and toward the inside of the turn, while during the second
(decelerating) stance, the net force is pointed rearward and toward the inside of the turn.

meaning that a turn in either direction can commence on either foot, thus eliminating
the need for anticipation. The sequence in Fig. 1 leads to the next two heuristics,
which govern both the forward and lateral foot placement at foot-strike:

TRN.5 Swing the outside leg closer to vertical at foot-strike, and swing the inside
leg farther in front of the hip at foot-strike.

TRN.6 Spread both legs farther to the outside of the turn at foot-strike.

The final heuristic comes from the fact that all of the previous heuristics, especially
TRN.5 and TRN.6, combine to induce a turn. Thus, some consideration must be
made toward reducing the turn back to a straight run. In order to reduce a turn
in one direction, it is sufficient to induce a turn in the opposite direction of equal
magnitude. Thus:

TRN.7 To cease turning in one direction, perform a turn in the opposite direction
of equal magnitude.

3 Model

As mentioned previously, in order to convert the heuristics into realizable control
laws, the specific system for implementation must be considered. For this work, we
consider a system with 17 DOF, shown in Fig. 2. This system has 17 DOF: 6 DOF
for position and orientation of the medial-lateral hip axis, 1 DOF for rotation at the
pelvis of the HAT about the superior-inferior axis, and 5 DOF in each leg – 2 DOF
articulated hips, 1 DOF articulated knees, and 2 DOF articulated ankles. Of these,
the pelvis, hip, and knee joints are actively actuated, giving 7 actuated DOF.

There are two main aspects of this system which merit special consideration.
First, the model has mass and inertia values to match a mechanical system construc-
ted of commonly available materials. For example, the legs are constructed out of
aluminum square tubing with 3.2 mm wall thickness and 25 mm width. The full list
of parameters is given in Table 1. The important result is that the torso has relatively
low inertia compared to the legs, meaning that the torso cannot, in fact, be used to
position the legs during flight.
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Fig. 2 The articulated bipedal system under consideration, with 17 DOF (7 actuated), showing:
(left) the front view (forward motion out of the page); (center) the side view (forward motion to
the left); and (right) the actuator layout. As shown, the torso roll angle βtorso > 0, the hip spread
angles β right

hip
> 0 and β left

hip < 0, the torso pitch angle αtorso > 0, the left hip swing angle α left
hip < 0,

and the left knee swing angle α left
knee < 0.

Table 1 Model parameters for the second simulated system, which are taken from commonly
available mechanical materials.

Link Length (m) Mass (kg) Inertia (kg m2)
(lateral, longitudinal, vertical)

HAT 0.2 12 2, 2, 2
Quad 0.45 5.6 1.14, 1.14, 0.11
Shank 0.45 1.1 0.22, 0.22, 0.02
Foot 0.21 0.45 0.01, 0.01, 0.01

The second aspect of this system which merits special consideration is the ac-
tuation of the ankle. As noted in [11], the ankle plays a crucial role in running,
so control is necessary. However, placing an actuator at the ankle further increases
the leg inertia, which in turn increases the energetic cost of running [12]. Biologic
systems avoid this by using biarticular muscle/tendon groups, which provide mech-
anical coupling between multiple joints. Thus, an inelastic tendon is used to couple
the ankle and knee joints of the system, eliminating the need for an active actuator
at the ankle.

4 Control Laws

Given this system, the heuristics developed in Section 2 can now be converted into
specialized control laws. Given a desired path heading γdes

path and current path head-

ing γact
path, Eqs. (1–2), which give expressions for α fs,in

hip
and α fs,out

hip
, the target hip

swing angles at foot-strike for the inside and outside legs, are obtained by combin-
ing TRN.5 with proportional control.
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α fs,in
hip = α̃ fs

hip

(
1− kin

SW (γact
path − γdes

path)
)

(1)

α fs,out
hip = α̃ fs

hip

(
1 + kout

SW (γact
path − γdes

path)
)

(2)

where kin
SW and kout

SW are constants and α̃ fs
hip is the nominal hip swing angle at foot-

strike for steady-state running. Similarly, TRN.6 yields Eqs. (3–4), which give ex-
pressions for β fs,in

hip
and β fs,out

hip
, the target hip spread angles at foot-strike for the

inside and outside legs.

β fs,in
hip = β̃ fs

hip

(
1 + kin

SP(γact
path − γdes

path)
)

(3)

β fs,out
hip = β̃ fs

hip

(
1− kin

SP(γact
path − γdes

path)
)

(4)

where kin
SP and kout

SP are constants and β̃ fs
hip is the nominal hip spread angle at foot-

strike for steady-state running. The difference in sign between Eq.( 3) and Eq.( 4)
stems from the definition of the spread angle βhip as being positive under abduction.
Thus, to move both feet toward the outside of the turn, the inside foot needs to be
abducted further, while the outside foot needs to be adducted.

The individual joint torques can be derived from these control laws and the re-
maining heuristics using any of a variety of techniques; for the results presented
here, simple proportional-derivative (PD) control is used. For example, TRN.2 can
be used to specifiy the pelvic torque about the vertical axis τγ,pelvis as seen in Eq.( 5).

τγ,pelvis = PD
(

γtorso − γact
path

)
(5)

where γtorso is the heading of the torso.

5 Results

In order to test the heuristics and control laws developed above, a dynamic sim-
ulation of the system in Fig. 2 is created using the method outlined in [13]. The
symbolic manipulator AutoLev is used to create the equations of motion of the sys-
tem, and these equations are imported into a dynamic simulator in C++ which uses
a variable step Runge–Kutta–Merson algorithm for numerical integration (see [14]
for details).

For this simulation, two key assumptions were made. First, it was assumed that
the friction between the ground and the foot was sufficient at all times to prevent
slipping. This assumption is validated by the fact that the highest required coefficient
of friction for the results presented here was µmax < 1.8, while observed coefficients
of static friction between a rubber foot sole and steel ground plate fall in the range of
3–10 [15]. The other main assumption is that all collisions are inelastic. Collisions
are modeled using the generalized impulse-momentum method [16]. The decision
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Fig. 3 Top: System path in the horizontal plane. Bottom: Path heading (solid line) and system
heading (dashed line). The system starts out running along a 0◦, heading at 3 m/s. It then turns 45◦

to the right and resumes running straight along this new heading.

to model collisions as inelastic is based on the observation that, in biologic systems
performing dynamic gaits, the kinetic energy in the foot is deliberately sacrificed to
maintain inelastic collisions [17].

Figure 3 shows the system running at 3 m/s while executing a 45◦ turn at 22 deg/s.
The top plot demonstrates that the turn is successfully and smoothly executed. The
bottom plot reveals that the system and path headings both turn to the new heading.
Interestingly, the system executes the turn slightly ahead of the path. This indicates
that the lateral force generated by TRN.6 (and subsequently Eqs. (3–4)) is a little
too high relative to the forward force generated by TRN.5. Despite this, the system
neatly executes the commanded turn.
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6 Conclusion

A set of heuristics based on observations of physical principles was developed for
turning while running. These heuristics are simple and easily applied to bipedal
robots. These heuristics were then converted into simple proportional control laws to
determine relevant parameters, which were fed into proportional-derivative control
laws to determine appropriate joint torques. Using these control laws, stable turning
was achieved.
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Abstract. This paper studies the kinematics and statics of cable-driven parallel robots with less
than six cables, in crane configuration. A geometrico-static model is provided, together with a
general procedure aimed at effectively solving, in analytical form, the inverse and direct position
problems. The stability of equilibrium is assessed within the framework of a constrained optim-
ization problem, for which a purely algebraic formulation is provided. A spatial robot with three
cables is studied as an application example.

Key words: Under-constrained cable-driven parallel robots, geometric analysis, static analysis.

1 Introduction

Cable-driven parallel robots (CDPRs) are ordinarily referred to as fully-constrained
or under-constrained, depending on whether all six degrees of freedom (dofs) of the
moving platform are controlled or not [1]. It is well known that, in the general case,
fully-constrained CDPRs require at least seven cables, and only six in crane config-
uration, namely when gravity acts as an additional cable. The distinction between
the two aforementioned categories of robots is somewhat fictitious, since a theor-
etically fully-constrained CDPR is, in considerable parts of its workspace, actually
under-constrained, namely when a full restraint would require a negative tension
in one or more cables. Permanently under-constrained CDPRs with less than six
cables are furthermore used in a number of applications, such as rescue operations,
in which a limitation of dexterity is acceptable in order to decrease complexity, set-
up time, likelihood of cable interference, etc.

The above considerations motivate a careful study of under-constrained robots.
However, while fully-constrained CDPRs have been extensively investigated [2],
few studies have been dedicated to under-constrained ones [3–5]. A major challenge
in the study of these robots consists in the intrinsic coupling between kinematics
and statics (or dynamics). Indeed, while in a fully-constrained CDPR the platform
posture is determined in a purely geometric way by assigning the cable lengths
(provided that all cables are under tension), in an under-constrained CDPR the pose
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depends on both cable lengths and equilibrium equations. Consequently, kinematics
and statics must be dealt with simultaneously. Furthermore, as the platform posture
depends on the applied load, it may change due to external disturbances. Hence, it
is of great importance to investigate equilibrium stability [5, 6].

This paper presents a kinematic and static study of under-constrained nn-CDPRs,
in crane configuration. An under-constrainednn-CDPR is controlled by n cables and
it exhibits n distinct anchor points on both the base and the platform, with n < 6.
A geometrico-static model is presented, together with a general procedure aimed
at effectively solving, in analytical form, the inverse and direct position problems.
These consist in determining the overall robot configuration (and cable tensions)
once n configuration variables (e.g. platform posture coordinates or cable lengths)
are given. The problem of equilibrium stability is formulated as a constrained op-
timization problem, and a purely algebraic method, which rules out the need of
differentiation, is provided. The geometrico-static study of a general 33-CDPR is
outlined as an application example.

2 Geometrico-Static Model

Let a mobile platform be connected to a fixed base by n cables, with 2 ≤ n ≤ 5.
Ai and Bi are, respectively, the anchor points of the ith cable on the frame and
the platform, and si = Bi − Ai (Fig. 1(a)). The set C of theoretical geometrical
constraints imposed on the platform comprises the relations

|si | = √
si · si = ρi, i = 1 . . . n, (1)

where ρi is the length of the ith-cable, which is assumed, for apparent practical
reasons, strictly positive (so that, as a consequence, Bi �≡ Ai).

Since only n geometrical constraints are enforced, the platform preserves 6 − n

degrees of freedom, with its posture being determined by equilibrium laws. If Q$e,
with Q > 0, is an arbitrary external wrench acting on the platform (including inertia
forces, in the case of dynamic conditions) and (τi/ρi) $i is the force exerted by the
ith cable ($e and $i/ρi are assumed to be unit screws), then

n
∑

i=1

τi

ρi

$i + Q$e = 0, (2)

with
τi ≥ 0, i = 1 . . . n. (3)

Equations (1)–(2) amount to 6 + n scalar relations involving 6 + 2n variables,
namely, the cable tensions and lengths, and the variables parameterizing the plat-
form posture. In general, a finite set of system configurations may be determined if
n of such variables are assigned.
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In this paper, only static equilibrium is considered and Q$e is assumed to be a
constant force applied on a point G of the platform (e.g. the platform weight acting
through its center of mass). Hence, Eqs. (1)-(2) are algebraic, or may be easily
rendered so. If Eq. (2) is written as

[

$1 · · · $n $e

]

︸ ︷︷ ︸

M

⎡

⎢
⎢
⎢
⎣

(τ1/ρ1)
...

(τn/ρn)

Q

⎤

⎥
⎥
⎥
⎦

= 0, (4)

M is a 6 × (n + 1) matrix only depending on the platform posture and equilibrium
is possible only if

rank(M) ≤ n, (5)

namely, if the cables and the line of action of $e span the same n-dimensional sys-
tem of lines. Within the domain of rigid-body mechanics, the problem is statically
determinate if the equality holds, indeterminate otherwise. In the former case, it is
always possible to replace Eq. (4) with 6 − n scalar relations that do not contain the
unknowns τi , i = 1 . . . n. In fact, the linear dependence of $1, . . . , $n and $e is a
purely geometrical condition. A most straightforward strategy consists in computing
cable tensions by way of n linearly independent relations chosen within Eq. (4), then
substituting them back into the remaining ones. The resulting equations, however,
exhibit a remarkable complexity. A more convenient strategy consists in setting all
(n+1)×(n+1) minors of M equal to zero, which amounts to

( 6
n+1

)

scalar relations,
among which 6 − n linearly independent ones may be suitably chosen. By such an
approach, the resulting equations are significantly simpler. Furthermore, since they
do not comprise cable lengths, they lead to a partial decoupling of the system equa-
tions, with cable lengths only appearing in Eq. (1). Such an approach may also be
applied when the problem is statically indeterminate.

Depending on the variables designated as input, one may tackle an inverse geo-
metric problem (IGP), if n variables concerning the platform posture are assigned,
or a direct one (DGP), if cable lengths are given. The IGP takes particular advant-
age of the partial decoupling of system equations, since the platform configuration
may be computed by simply solving the 6 − n relations emerging from Eq. (5).
Cable lengths and tensions may be subsequently (and straightforwardly) computed
by Eq. (1) and a suitable set of linear independent relations chosen within Eq. (4).
The set of admissible solutions consists of all those for which cable tensions are
non-negative (cf. Eq. (3)) and the platform equilibrium is stable (cf. Section 3).
The DGP is remarkably more complex, since in this case the platform configuration
must be determined by simultaneously solving both the 6 − n relations emerging
from Eq. (5) and the n relations in Eq. (1).

It must be said that Eq. (1) represents a set of theoretical constraints, since the
actual constraint imposed by a generic cable consists in that

|si | = √
si · si ≤ ρi . (6)
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The above refinement causes no concern when the IGP is dealt with, for in this case
the theoretical values of cable lengths are conveniently computed by Eq. (1), after
the platform posture has been established. Conversely, when the DGP is tackled,
cable lengths are assigned as inputs, and a priori nothing ensures that all cables
are called upon to sustain the load. Indeed, if a subset W of cable indexes exists
such that card(W) < n and $e ∈ span{$j , j ∈ W}, equilibrium configurations
possibly exist such that |sk| < ρk , for all k �∈ W , and thus τk = 0. These are
legitimate solutions of the problem at hand. It follows that the overall solution set
is obtained by solving the DGP for all possible constraint sets {|sj | = ρj , j ∈ W},
with W ⊆ {1 . . . n} and card(W) ≤ n, and by retaining, for each corresponding
solution set, the solutions for which |sk| < ρk , k �∈ W . In general, this amounts to
solving

∑n−1
h=0

(
n

n−h

)

DGPs.
A caveat is worth being mentioned. Equation (5) is only a necessary condition for

equilibrium. In very special conditions, it may happen that equilibrium is not pos-
sible, in spite of Eq. (5) being fulfilled and irrespective of the sign of cable tensions.
In particular, this occurs if M loses its full rank because a subset of its n first columns
becomes linearly dependent, i.e. if the rank loss is ‘concentrated’ among the set of
screws associated with the cable lines. In this case, the rank of the block1 M1...6,1...n

is at most equal to n − 1 and Eq. (2) may be satisfied only if rank(M) ≤ n − 1.
Cases like the one described here, however, are sufficiently unlikely to occur not to
be, in practice, of particular concern. Nonetheless, a check of the rank of M1...6,1...n

is advisable before attempting to solve for cable tensions.
Throughout the text, the following notation is adopted (Fig. 1(a)). Oxyz is a

Cartesian coordinate frame fixed to the base, with i, j and k being unit vectors along
the coordinate axes. Gx ′y ′z′ is a Cartesian frame attached to the platform. e is a unit
vector directed as $e, x = G − O , ai = Ai − O , ri = Bi − G, si = Bi − Ai =
x + ri − ai , ui = (Ai − Bi)/ρi = −si/ρi and rij = ri − rj , with i, j = 1 . . . n,
i �= j . Without loss of generality, O is chosen to coincide with A1 (so that a1 = 0)
and k = e. If bi is the projection of Bi − G on Gx ′y ′z′, � is the array grouping
the variables parameterizing the platform orientation with respect to the fixed frame
and R(�) is the corresponding rotation matrix, then ri = R (�) bi . The platform
posture is described by the array X = (x; �), with the components of x in Oxyz

being denoted, for the sake of brevity, as x, y and z. If O is chosen as the reduction
pole of moments, $i and $e may be respectively expressed, in axis coordinates, as
$i = [si; ai × si ] and $e = [e; x × e]. Accordingly, M becomes

M =
[

x + r1 · · · x + ri − ai · · · e
0 · · · ai × (x + ri ) · · · x × e

]

, (7)

or, equivalently, after subtracting the first column from the columns 2 through n,

M′ =
[

x + r1 · · · ri1 − ai · · · e
0 · · · ai × (x + ri ) · · · x × e

]

. (8)

1 The notation Mhij,klm denotes the block matrix obtained from rows h, i and j , and columns k, l

and m of M. When all columns of M are used, the corresponding subscripts are omitted.
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3 The Stability of Equilibrium

Let an equilibrium configuration (X̄, ρ̄1 . . . ρ̄m) be considered, with m being the
number of active constraints (i.e. the number of cables contributing to supporting
the platform). By a convenient reordering of indexes, taut cables may be assumed to
be the first m, with m ≤ n. Since the platform preserves 6 − m dofs, it may displace
under the effect of a change in the external force acting on it, while cable lengths
remain unvaried (for the sake of simplicity, it is assumed that the number of cables
in tension does not change because of the perturbation, which is reasonable, but not
necessarily true). The problem of assessing equilibrium stability is, thus, in order.
In particular, G may generally move within a closed region of R

3 (in some cases, a
surface or a curve). If g is the frontier of this region, the equilibrium is stable any
time the potential energy U associated with the external force Q$e, namely −Qe ·x,
is at a minimum on g. Loosely speaking, the platform is at rest in all points Ḡ of g

in which the variety tangent to g is perpendicular to e, with the equilibrium being
stable if and only if a neighborhood WḠ of Ḡ exists such that (P − Ḡ) · e < 0, for
all P ∈ (g ∩ WḠ). In such a condition, when the platform displaces under the effect
of a perturbation, the original configuration is restored if the perturbation ceases.
Figure 1(b) helps to depict this concept. The figure shows the locus g of the positions
that G may assume for an exemplifying 22-CDPR, under the constraints (1) and with
m = n = 2. If the platform is thought of as the coupler of a four-bar linkage whose
grounded links are the cables (with assigned lengths), g is the coupler curve of G,
namely a bicursal sextic. The stationary configurations of G are the points of g in
which the tangent line is perpendicular to e, with U being at a minimum in Ḡ2 and
Ḡ4. These are the stable equilibrium poses (of course, since cable tensions must be
negative in the configurations lying above the base, and positive otherwise, Ḡ4 is de
facto the only feasible configuration for the example at hand). Finding the minima
of a constrained function is a classical issue in optimization theory. An efficient
algorithmic formalization is presented in the following.

At equilibrium, the variation of the global potential energy of the platform due
to a virtual displacement of it must be zero. Such a variation is the opposite of the
work carried out by all forces acting on the platform, namely

δL = −
m

∑

i=1

τiui · δBi − Qe · δG = 0. (9)

If δx and δ� are, respectively, the virtual displacement of G and the virtual
rotation of the platform, then δG = δx and δBi = δsi = δx + δ� × ri , so that

δL = −
(

m
∑

i=1

τiui + Qe

)

·δx−
(

m
∑

i=1

τiri × ui

)

·δ� = f ·δx+m ·δ� = 0. (10)

Equation (10), from which f and m are inferred to be zero, is clearly equivalent
to Eq. (2), by letting n = m. Since, for ρi = ρ̄i , δ (|si | − ρi) = δ|si | and
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Fig. 1 22-CDPR: (a) general model; (b) equilibrium configurations for the case a2 = (10, 0,−2),
b1 = (−0.5, 0,−0.5), b2 = (3, 0, 0), and ρ1 = ρ2 = 7.

δ|si | = si · δsi

ρi

= si · δx + ri × si · δ�

ρi

= − (ui · δx + ri × ui · δ�) , (11)

δL may be written as

δL = −Qe · δx +
m

∑

i=1

τiδ (|si | − ρi), (12)

i.e. as the virtual variation of the Lagrange function

L = −Qe · x +
m

∑

i=1

τi (|si | − ρi), (13)

with Lagrange multipliers coinciding with the cable tensions, namely, with the
forces necessary to impose the geometrical constraints [7].2 Such an observation is
useful, since it allows the stability characteristics of the equilibrium to be assessed
by evaluating the definiteness of the reduced Hessian Hr of L, i.e. the Hessian of
L taken with respect to the configuration variables, further projected on the tangent
space of the constraints C [7]. An algebraic expression of Hr is derived hereafter.

The second-order variation of δL is given by

2 Equation (9) plus the relations {τi > 0, |si | = ρi} for i = 1 . . . m and {τi = 0, |si | < ρi} for
i = m . . . n are equivalent to the Karush–Kuhn–Tucker conditions for the minimization of L under
the constraints (6), provided that $1, . . . , $m are linearly independent.
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δ2L = −Qe · δ2x +
m

∑

i=1

τi
δsi · δsi

ρi

+
m

∑

i=1

τi
si · δ2si

ρi

, (14)

with δ2si = δ2x + δ2� × ri + δ� × (δ� × ri ) . Enforcing f = m = 0 in Eq. (14)
yields

δ2L =
m

∑

i=1

τi

ρi

{δx · δx − 2δx · (ri × δ�) − (ri × δ�) · [(x − ai) × δ�]} (15)

or, in matrix notation,

δ2L =
m

∑

i=1

τi

ρi

[δxT δx − 2δxT r̃iδ� + δ�T r̃i

(

x̃ − ãi

)

δ�], (16)

where ñ denotes, for a generic vector n, the skew-symmetric matrix expressing the
operator n×. δ2L is a bilinear form in the twist space of the platform. If the plat-
form virtual displacement is expressed, in ray coordinates, as δt = [δx; δ�], and I3
denotes the 3 × 3 identity matrix, the symmetric matrix associated with this form is

Hp =
m

∑

i=1

τi

ρi

[
I3 −r̃i

r̃i
1
2

(

r̃i x̃ − r̃i ãi + x̃r̃i − ãi r̃i

)

]

, (17)

which represents the pseudo-Hessian of L (Hp is not a true and proper Hessian,
since δ� is not generally integrable).

The tangent space of C is obtained by setting Eq. (11) equal to zero for all values
of i. In matrix notation, this amounts to

Jpδt =
⎡

⎢
⎣

sT
1 (r1 × s1)

T

...
...

sT
m (rm × sm)T

⎤

⎥
⎦

[

δx
δ�

]

= 0, (18)

where the ith row of Jp coincides with $i , expressed in axis coordinates and assum-
ing G as the moment pole. Jp is the pseudo-Jacobian of the constraint equations.

If Np is any 6 × (6 − m) matrix whose columns generate the null space of Jp,
the reduced Hessian of C is the following (6 − m) × (6 − m) matrix:

Hr = NT
p HpNp. (19)

A sufficient condition for the equilibrium to be stable consists in Hr being positive
definite.

If the method described above is applied to the example portrayed in Fig. 1(b),
results that agree with those expected are obtained. The equilibrium configurations
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are the real solutions of the DGP of the robot,3 i.e. Ḡ1 = (1.94,−6.43), Ḡ2 =
(5.98,−2.89), Ḡ3 = (6.31,−0.42) and Ḡ4 = (4.18, 6.07). Since the problem is
planar, Hp and Jp are, respectively, 3 × 3 and 2 × 3 matrices, so that the reduced
Hessian is a scalar. Hr is positive in Ḡ2 and Ḡ4 and negative in Ḡ1 and Ḡ3, namely

Hr |Ḡ1
= −29589, Hr |Ḡ2

= 18709, Hr |Ḡ3
= −22875, Hr |Ḡ4

= 61650. (20)

If τ = (τ1, τ2), corresponding cable tensions are

τ Ḡ1
= −(8.6, 2.3), τ Ḡ2

= −(24.2, 22.7), τ Ḡ3
= (22.1, 24.5), τ Ḡ4

= (6.0, 5.6).

(21)

4 Application Example: The 33-CDPR

Due to space limitations, only a brief outline of the IGP and the DGP of the 33-
CDPR is sketched hereafter. Technical details and relevant discussions about empty
and nonzero-dimensional solution sets will be provided in future papers.

When n = 3, Eq. (5) is satisfied and rank(M) = 3 only if $1, $2, $3 and $e

belong to the same tridimensional subspace of lines [8]. Letting all 4 × 4 minors of
M′ vanish leads to 15 polynomial equations in x and � of the form pj = 0 . We
look for the variety V of the ideal generated by such equations. If three configuration
variables are known (as in the IGP), any three pj , say pl , ph, pk , may be chosen
and a corresponding (generally zero-dimensional) variety Vlhk is obtained. V is the
intersection of the five varieties that may be generated this way. Clearly, a primary
objective of the solving algorithm consists in limiting the number of varieties to be
computed to the lowest possible value, possibly to just one.

It is useful to observe that letting Bi ≡ Ai causes the ith column of M to vanish
(since si = ai × si = 0) and, hence, it causes all 4 × 4 minors of M (and thus of
M′) to be zero. It follows that a configuration for which Bi ≡ Ai always belongs
to V : we call it a trivial solution and we need to discard it (cf. Section 2). This
observation is particularly important for the IGP with assigned orientation. In this
case, in fact, it is always possible to displace the platform (with a given orientation)
so as to superimpose Bi onto Ai . Consequently, all varieties Vlhk necessarily contain
the trivial solutions corresponding to Bi ≡ Ai , namely x̄i = ai − ri , i = 1 . . . 3.

Inverse geometric problem. When the orientation is assigned, all vectors ri , i =
1 . . . 3, are known. If the equations

p1 := det M′
1236 = 0, p2 := det M′

1235 = 0, p3 := det M′
1234 = 0 (22)

are considered, it may be proven that V ≡ V123. Such equations comprise the
lowest-degree polynomials among all minors of M′. In particular, p1 is quadratic

3 The analytical solution of the DGP of the general 22-CDPR will be reported in a future paper.
As the class of a generic coupler curve is 12 [8], there are 12 lines tangent to it passing through the
point at infinity perpendicular to e, so that the DGP admits up to 12 complex solutions [5].
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in x and y, whereas p2 and p3 are quadratic in x, y and z. By eliminating z and y

from Eq. (22), a 4th-degree polynomial equation in x may be obtained, i.e. p123 = 0.
Since three roots of p123 necessarily correspond to trivial solutions, the fourth root
is real and it may be computed by Vieta’s formulas in closed form. The problem
admits, thus, a single solution. Of course, it is admissible only if the corresponding
cable tensions are nonnegative and the equilibrium is stable.

When the position x is assigned, r1, r2 and r3 are unknown. If the Rodrigues
parameters e1, e2 and e3 are chosen to describe the platform orientation, the relations
in Eq. (22) assume a particularly favorable structure. Indeed, after letting ri = Rbi ,
i = 1 . . . 3, p1, p2 and p3 become quartic polynomials in e1, e2 and e3. The minors
of M′ other than M′

1234, M′
1235 and M′

1236 yield, instead, sextic equations in the
Rodrigues parameters. Another useful quartic is obtained as follows. By setting the
minors M′

j456, j = 1 . . . 3, equal to zero, one has that (x + r1) det M′
456,234 = 0.

The variety defined by the above equation comprises the trivial solution x = −r1
and the set of all configurations for which

p8 := det M′
456,234 = 0. (23)

Equation (23) is, indeed, of degree four in e1, e2 and e3 (and it is quadratic in x, y,
z). It is well known that three polynomial equations of the same total degree always
admit a Sylvester-type resultant free from extraneous polynomial factors [9]. For
the case of three quartics, such a resultant is a univariate 64th-degree polynomial in
one of the unknowns, say e3. However, if an attempt is made compute the resultant
of p1, p2 and p3, it appears to be identically nought. Conversely, if any one among
p1, p2 and p3 is replaced by p8, the expected 64th-degree polynomial is obtained.
The problem admits, thus, at the most 64 solutions.

Direct geometric problem. When cable lengths are assigned, the platform con-
figuration has to be determined. Equation (5) provides up to 15 (non-independent)
polynomial equations in the platform posture variables. Among them, Eqs. (22) and
(23) are of degree four in e1, e2 and e3 and degree two in x, y, z.

Equation (1) provides three further relations in the platform posture variables. In
particular, one may conveniently consider

q1 := |s1|2 − ρ2
1 = 0, (24a)

q2 := |s2|2 − ρ2
2 − |s1|2 + ρ2

1 = 0, (24b)

q3 := |s3|2 − ρ2
3 − |s1|2 + ρ2

1 = 0, (24c)

which, after clearing the denominator 1 + e2
1 + e2

2 + e2
3, are quadratic in e1, e2 and

e3. q1 is also quadratic in the elements of x, whereas q2 and q3 are linear in these
variables.

The point-to-point distance relations in Eq. (24) represent the typical constraints
governing the forward kinematics of parallel manipulators with telescoping legs
connected to the base and the platform by ball-and-socket joints. In particular, the
DGP of the general Gough–Stewart manipulator depends on six equations of this
sort, one of which is equivalent to Eq. (24a) and five more to Eqs. (24b)-(24c).
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This problem is known to be very difficult and it has attracted the interest of re-
searchers for several years [10, 11]. The DGP of the 33-CDPR appears to be even
more complex. In fact, three equations analogous to Eqs. (24b)–(24c), namely lin-
ear in the components of x and quadratic in the components of �, are replaced
by relationships that are, at least, quadratic in the components of x and quartic in
the components of � (cf. Eqs. (22) and (23)). Possible simplifications may, indeed,
arise from the fact that some power-products of x, y and z are actually missing in
the equations emerging from Eq. (5). The redundancy of such equations may also
play a role. The problem appears to be a daunting task and it has not been solved
yet.

5 Conclusions

This paper studied the kinematics and statics of under-constrained cable-driven par-
allel robots with less than six cables, in crane configuration. In these robots, kin-
ematics and statics are intrinsically coupled and they must be dealt with simultan-
eously. This poses major challenges.

A geometrico-static model was presented, together with an original and general
procedure aimed at effectively solving the inverse and direct position problems in
analytical form. A spatial robot with three cables was considered as a case study,
in order to show the feasibility of the presented approach. It was shown that the
position problems that arise gain remarkable complexity with respect to those of
analogous rigid-link robots, such as the Gough–Stewart manipulator. The inverse
analysis may lead up to 64 solutions, when the platform position is assigned and the
its orientation and the cable lengths must be determined. The direct problem, with
the platform posture being unknown and the cable lengths being given, appears to
be a much more difficult task and it will be the subject of future research.

A purely algebraic method, based on a constrained optimization formulation, was
provided for the assessment of equilibrium stability. The method proposed in [5]
differs from the one presented here in that it determines the stability of equilibrium
by looking at the Hessian of an unconstrained potential, explicitly expressed as a
function of a number of independent coordinates equal to the number of tensioned
cables. Such a mapping is, generally, very difficult to obtain (indeed, Michael et
al. [5] apply important simplifications on the geometry of the robot) and extensive
differential symbolic computation is needed. The advantage of the method described
here consists in that it relies on a reduced Hessian of which a purely algebraic for-
mulation is provided, and it may be very simply applied to the most general cases,
with no need to perform any differentiation.
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The Inverse Kinematics of 3-D Towing

Qimi Jiang and Vijay Kumar

University of Pennsylvania, USA; e-mail: {qimi, kumar}@seas.upenn.edu

Abstract. This work addresses the kinematics of 3-D towing where multiple aerial robots are used
to cooperatively transport a payload using cables. In 3-D towing, it is important to determine the
relative positions of the robots for the desired position and orientation of the payload. This is
actually the inverse kinematics problem of the 3-D towing. In the case with three robots, when the
tensions are given, the inverse kinematics problem has finite number of solutions. In order to obtain
all possible solutions, an efficient analytic algorithm based on dialytic elimination is presented. An
example is used for illustration.

Key words: Inverse kinematics, 3-D towing, static equilibrium, dialytic elimination.

1 Introduction

Aerial towed-cable-body systems have been widely used in emergency response, in-
dustrial, and military applications for object transport to environments inaccessible
by other means [1–3]. For instance, in civil engineering, cranes or flying cranes are
usually used for payload transport. In rescue missions, individuals are lifted by heli-
copters from dangerous situations, and in humanitarian missions, food and medical
supplies have to be carried by helicopters to remote communities.

Because of so many potential applications, aerial towed-cable-body systems have
attracted a lot of attention [1–4]. For instance, some researchers developed the con-
trol model for this kind of systems [2, 3]. However, for a typical towing with one
single cable, the controllability of the payload is quite limited [4].

In order to improve the controllability, the manipulation and transportation with
three aerial robots permitting six-dimensional pose control was studied in [5]. Also,
the kinematics of such a system was analyzed in [5–7] based on screw theory and po-
tential energy minimization. For the inverse kinematics problem, the feasible work-
space was determined and represented using a normalized body-fixed coordinates.
However, such an abstract representation is very difficult to visualize and inconveni-
ent to use in practice. Also, the information about how the load is distributed among
the cables was neglected.
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This work addresses the inverse kinematics problem of 3-D towing with three
robots: Given the desired position and orientation of the payload, what are the pos-
sible positions of the robots during 3-D towing? Section 2 formulates the static equi-
librium condition. Section 3 formulates the inverse kinematics problem. Section 4
presents an efficient analytic algorithm based on dialytic elimination to solve the
inverse kinematics problem. Section 5 uses an example to demonstrate the proposed
algorithm. Finally, conclusions are drawn in Section 6.

2 The Static Equilibrium Condition

In order to formulate the inverse kinematics problem, the static equilibrium condi-
tion should be given first. Figure 1 shows the 3-D towing with n robots. Suppose that
the position of robot Qi in the reference frame is qi = [xqi,yqi,zqi]

T . The positions
of the attachment point Pi in the reference and body-fixed frames are respectively
pi = [xpi,ypi,zpi]

T and p̃i = [x̃pi, ỹpi, z̃pi]
T . The positions of the center of mass of

the payload in the reference and body-fixed frames are respectively r = [xc,yc,zc]T

and r̃ = [x̃c, ỹc, z̃c]T . The position and orientation of the payload can be represen-
ted by the position of the center of mass of the payload in the reference frame
r = [xc,yc,zc]T and the rotation matrix R determined by three rotation angles φ ,θ
and ψ . Referring to Fig. 1, when r and R are given, the position of the attachment
point Pi in the reference frame can be given as p1 = r−Rr̃ , p2 = p1 + Rp̃2 and
p3 = p1 + Rp̃3. If the length of cable i is given by li, the unit wrench wi of cable i
with respect to the origin O of the reference frame can be given as

wi =
1
li

[
qi −pi
pi ×qi

]
. (1)

The wrench G caused by the weight of the payload with respect to the origin O is

G = −mg

[
e3

r× e3

]
, (2)

where m is the mass of the payload and g is the acceleration due to gravity.
Hence, the static equilibrium condition can be given as

[w1 w2 . . . wn]

⎡

⎢⎢
⎢
⎣

λ1
λ2
...

λn

⎤

⎥⎥
⎥
⎦

+ G = 0. (3)

where λi (i = 1,2, . . . ,n) is the tension of cable i.
Also, the geometric constraints are given as

‖qi −pi‖ = li. (4)
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Fig. 1 3-D towing with multiple robots. Qi represents the position of robot i and Pi represents the
attachment point of cable i to the suspended object.

3 The Inverse Kinematics Problem

For the 3-D towing with three robots, the inverse kinematics problem can be formu-
lated as follows: Given the desired position and orientation of the payload (r,R),
find the positions of the robots (qi, i = 1,2,3) that satisfy Eqs. (3) and (4).

For a given set of tensions λi (i = 1,2,3), there are 9 unknowns (xqi,yqi,zqi, i =
1,2,3) in 9 equations given by Eqs. (3) and (4). Hence, finite number of solutions
should be found for the inverse kinematics problem.

From Eq. (3), one gets
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

s1x1 + s2x2 + s3x3 = 0,
s1y1 + s2y2 + s3y3 = 0,
s1z1 + s2z2 + s3z3 = mg,
−s6y1 + s5z1 − s9y2 + s8z2 − s12y3 + s11z3 = t1,
s6x1 − s4z1 + s9x2 − s7z2 + s12x3 − s10z3 = t2,
−s5x1 + s4y1 − s8x2 + s7y2 − s11x3 + s10y3 = 0.

(5)

From Eq. (4), one gets ⎧
⎨

⎩

x2
1 + y2

1 + z2
1 = l2

1 ,
x2

2 + y2
2 + z2

2 = l2
2 ,

x2
3 + y2

3 + z2
3 = l2

3 .
(6)

where coefficients s1,s2, . . . ,s12, t1,t2 are constants or functions of λi (i = 1,2,3).
And xi = xqi−xpi, yi = yqi−ypi and zi = zqi−zpi (i = 1,2,3). Hence, the problem be-
comes how to solve the 9 unknowns (xi,yi,zi, i = 1,2,3) using the 9 equations given
by Eqs. (5) and (6). When xi,yi,zi(i = 1,2,3) are available, the position coordinates
xqi, yqi, zqi ( i = 1,2,3) of the robots can be obtained.

As the six equations in Eq. (5) are linear independent in z1,y2,z2,x3,y3,z3, one
gets
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

z1 = T1x1 + T2y1 + T3x2 + T4,
y2 = T5x1 + T6y1 + T7x2,
z2 = T8x1 + T9y1 + T10x2 + T11,
x3 = −(s1x1 + s2x2)/s3,
y3 = T12x1 + T13y1 + T14x2
z3 = T15x1 + T16y1 + T17x2 + T18,

(7)

where coefficients T1,T2, . . . ,T18 are constants or functions of λi (i = 1,2,3). Then,
substituting Eq. (7) into Eq. (6), one gets

⎧
⎨

⎩

a1x2
1 + b1y2

1 + c1x2
2 + d1x1y1 + e1y1x2 + f1x2x1 + g1x1 + h1y1 + i1x2 + j1 = 0,

a2x2
1 + b2y2

1 + c2x2
2 + d2x1y1 + e2y1x2 + f2x2x1 + g2x1 + h2y1 + i2x2 + j2 = 0,

a3x2
1 + b3y2

1 + c3x2
2 + d3x1y1 + e3y1x2 + f3x2x1 + g3x1 + h3y1 + i3x2 + j3 = 0.

(8)
where coefficients ai,bi, . . . , ji (i = 1,2,3) are constants or functions of λi (i =
1,2,3).

The polynomial system given by Eq. (8) has 3 quadratic equations. The total
degree of this polynomial system is 8. According to Bezout’s theorem, this system
has at most 8 isolated solutions in the complex Euclidean space.

4 An Analytic Algorithm Based on Dialytic Elimination

In [8], Roth presented an dialytic elimination approach to eliminate two unknowns
without increasing the power products and without increasing the degree of the sys-
tem. Here, this approach is used to solve Eq. (8).

Suppose that x2 is suppressed, Eq. (8) can be written as

aix
2
1 + biy

2
1 + dix1y1 + kix1 + uiy1 + vi = 0 (i = 1,2,3). (9)

where ki = fix2 + gi, ui = eix2 + hi and vi = cix
2
2 + iix2 + ji.

Rewriting Eq. (9) into the form with homogeneous coordinates by substituting
x1 = X/T , y1 = Y/T and then multiplying by T 2, one gets

aiX
2 + biY

2 + diXY + kiXT + uiYT + viT
2 = 0 (i = 1,2,3). (10)

The Jacobian matrix of Eq. (10) with respect to X ,Y and T will be

J =

⎡

⎣
2a1X + d1Y + k1T 2b1Y + d1X + u1T k1X + u1Y + 2v1T
2a2X + d2Y + k2T 2b2Y + d2X + u2T k2X + u2Y + 2v2T
2a3X + d3Y + k3T 2b3Y + d3X + u3T k3X + u3Y + 2v3T

⎤

⎦ . (11)

The determinant of the above Jacobian matrix is

|J| = AX3 + BX2Y +CX2T + DXY2 + EXT 2 + FXYT + GY 3 + HY2T + IYT 2 + KT 3,
(12)
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where the coefficients A,B, . . . ,K are functions of x2.
Setting the derivatives of Eq. (12) with respect to the homogeneous coordinates

to zero, three new equations can be obtained:
⎧
⎪⎨

⎪⎩

∂ |J|
∂X = 3AX2 + 2BXY + 2CXT + DY2 + ET2 + FY T = 0,
∂ |J|
∂Y = BX2 + 2DXY + FXT + 3GY2 + 2HYT + IT2 = 0,
∂ |J|
∂T = CX2 + 2EXT + FXY + HY 2 + 2IYT + 3JT2 = 0.

(13)

The six equations in eqs.(10 ) and (13) can be written in the following matrix form:

MX = 0, (14)

where X = [X2,Y 2,XY,XT,YT,T 2]T . To make X be not a zero vector, the determ-
inant of matrix M should be zero. This determinant is an eight-degree polynomial
in x2. Hence, x2 can be easily solved with Matlab. For every real root x2 substituted
into Eq. (14), a solution of x1 and y1 can be obtained by solving a linear system.
When x1,y1 and x2 are available, the other six unknowns (z1, y2, z2, x3, y3, z3) can
be calculated with Eq. (7). Then, the position coordinates xqi, yqi and zqi (i = 1,2,3)
can be obtained.

5 An Example

In theory, the tension of every cable should be in a range from 0 to the payload ca-
pacity λimax of the robot, i.e., λi ∈ [0,λimax]. In the case with three robots, it seems
that any point in the cuboid with side length λimax (i = 1,2,3) as shown in Fig. 2
is a work point. However, this is not true, because the tensions of the three cables
should satisfy ∑3

i=1 λi ≥ mg. This condition shows that the possible work point for
the tensions should be in the region above the plane ABC with ∑3

i=1 λi = mg. How-
ever, even in this region, not any point can be used as a work point. For instance, any
point on the boundary FGHIJKF cannot be a work point if a desired orientation is
needed.

The contribution ration of robot Qi can be defined as cri = λi/λimax. During tow-
ing, all robots should cooperate. This means that every robot’s contribution λi should
be proportional to its payload capacity λimax. If the payload capacities λimax of the
robots are the same, their contributions λi should be the same. If the payload capa-
cities λimax of the robots are not the same, their contribution rations cri should be
the same. Otherwise, the robots are not cooperative. To illustrate this point, suppose
that the payload is 10N and the payload capacity λimax of every robot is 8N. If the
tension of cable 1 in the towing is 8N, the tension of cable 2 is 3N and the tension
of cable 3 is only 0.1N, we cannot say that this is cooperative towing. Obviously,
robots 2 and 3 do not cooperate in this case.

When cr1 = cr2 = cr3 = cr, a corresponding line DE can be obtained which is
inside the cuboid as shown in Fig. 2. D lies in the the plane ABC and represents
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Fig. 2 Possible workspace of the tensions.

Fig. 3 The six configurations with cr = 0.8 for the desired position and orientation of the payload.

the point with the minimal contribution ration, which should be the most interesting
point. E represents the point with the maximal contribution ration, cr = 1. When
the contribution ration cr is given, the tension of every cable will be available, i.e.,
λi = crλimax.

Suppose that the positions of P1, P2, P3 and the center of mass of the payload
in the body-fixed frame are p̃1 = [0,0,0]T , p̃2 = [1,0,0]T , p̃3 = [0.5,

√
3/2,0]T and

r̃ = [0.5,
√

3/6,0]T respectively. The lengths of three cables are l1 = l2 = l3 = 1.5m.
The weight of the payload is mg = 25N. The payload capacities of three robots
are λimax = 20N (i = 1,2,3). If the desired position and orientation of the payload

326



The Inverse Kinematics of 3-D Towing

Table 1 The six solutions with cr = 0.8 for the desired position and orientation of the payload.

No. xq1 yq1 zq1 xq2 yq2 zq2 xq3 yq3 zq3

1 -0.430 -0.347 1.424 1.045 1.447 1.996 2.385 1.900 1.924
2 1.907 0.646 1.399 0.277 0.052 1.466 0.816 2.302 2.479
3 -0.644 0.743 2.021 2.697 -0.091 0.849 0.946 2.348 2.473
4 -0.072 1.445 2.247 2.105 1.532 1.801 0.967 0.024 1.296
5 1.351 1.526 1.968 0.946 1.395 1.992 0.703 0.079 1.384
6 0.359 1.632 2.244 2.570 -0.271 0.787 0.071 1.638 2.312

(a) Sequence 1 (b) Sequence 2 (c) Sequence 3

(d) Sequence 4 (e) Sequence 5 (f) Sequence 6

Fig. 4 The six sequences of configurations for the desired position and orientation of the payload.

are given by r = [1,1,1]T and φ = 25◦,θ = 15◦,ψ = −5◦, for a given contribution
ration cr = 0.8, six solutions for the inverse kinematics problem are obtained and
listed in Table 1, which corresponds to six configurations as shown in Fig. 3.

Suppose that cr varies from 1 which corresponds to point E in Fig. 2 and gradu-
ally decreases with a small step size, say ∆cr = 0.05, along with the line ED in
Fig. 2, a sequence of every solution can be found. These sequences are shown in
Fig. 4 in which sequences 1 and 2 correspond to a range of cr ∈ [0.417,1] and se-
quences 3 to 6 correspond to a range of cr ∈ [0.675,1]. In other words, when the
contribution ration cr is less than 0.675, the inverse kinematics problem for this
case has only two solutions. The minimal contribution ration cr = 0.417 can be ob-
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tained with a numerical iteration algorithm by reducing the step size at a satisfactory
precision. When cr reaches 0.417, the tension in every cable is exactly one-third of
the weight of the payload. Also, the three cables lie in a vertical position as shown
by the dashed lines in Figs. 4(a) and 4(b).

6 Conclusions

In 3-D towing with multiple aerial robots, it is important to determine the relative
positions of the robots for a desired position and orientation of the payload. In order
to address this inverse kinematics problem with three robots, an efficient analytic
algorithm based on dialytic elimination is presented to obtain all possible solutions.
If the chosen tensions are valid, several real solutions can be found. This point is
demonstrated by an illustrated example.
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Abstract. This paper introduces a new method for workspace boundary determination on general
lower-pair multi-body systems. The method uses a branch-and-prune technique to isolate the set
of end effector singularities, and then classifies the points in such set according to whether they
correspond to actual motion impediments in the workspace. The method can deal with open- or
closed-chain systems, and is able to take joint limits into account. Advantages over other methods
of similar applicability include its completeness and a simpler algorithmic structure. Examples are
included that show its performance on benchmark problems documented in the literature.

Key words: Workspace determination, linear relaxation, closed-chain, multi-body system.

1 Introduction

A main problem of multi-body kinematics is workspace determination: for a multi-
body system of known geometry, determine the complete set of poses (positions and
orientations) that a selected body can adopt, as the system runs through all possible
configurations. This special body is also known as the end effector, and the set of its
poses as the workspace of the system. The issue has received substantial attention,
as the availability of a good solution finds many applications to mechanism design,
path planning, and task execution [1, 2].

Efficient solutions to this problem exist, but most of them are tailored to a par-
ticular robot architecture, or class of architectures. A large group of such methods
adopt a constructive geometric approach to the problem. Representative of them
is the work in [3], which computes the positional workspace of a spatial parallel
manipulator, the work in [4], which extends the approach to deal with other phys-
ical constraints, and that in [5], which provides methods for various planar parallel
manipulators. Other significant approaches include interval analysis techniques for
Gough-type manipulators [6], optimization-based algorithms for fully serial/parallel
robots [2], analytic methods for symmetrical spherical mechanisms [7], and topolo-
gic or algebraic-geometric studies for 3R manipulators [8, 9]. The literature on the
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topic is extensive, and we can only touch upon it briefly here. Elaborate surveys can
be found in [1, 2].

While specific solutions are desirable, because they tend to yield faster al-
gorithms, general solutions are required too, to analyze robots for which no specific
method exists. In this paper, we argue that a solution for lower-pair mechanisms of
general structure is possible, by extending a recent method for kinematic constraint
solving for systems of such generality [10, 11].

Up to the authors’ knowledge, only one approach of similar applicability is avail-
able in the literature, due to Haug and co-workers [12, and refs. therein]. Similarly
to [12], we provide a visualization of the workspace by extracting its boundary from
a set of end-effector singularities, but the strategy adopted here to formulate and
compute such singularities is substantially different. In [12] the authors slice the
singularity set into parallel curves, and a continuation scheme is then employed to
trace all of such curves in detail. Although elegant and robust to bifurcations, such
a procedure requires to be fed with at least one point for each connected component
of the boundary, but no satisfactory method has been given to compute such points
in general, as far as we know. In fact, the authors mention in [13] several situations
that could make the technique miss some boundary segments. On the contrary, the
method proposed in this paper is complete, in the sense that it is able to isolate all
boundary segments of the workspace, including any interior barriers and voids that
might be present. The method is based on formulating the equations of the singular-
ity set in an appropriate form, and then exploiting this form to compute all singular
points, using a numerical procedure based on linear relaxations [11].

2 Necessary Conditions

The allowable positions and orientations of all links in a multi-body system are
usually encoded in an nq-dimensional vector of generalized coordinates q, subject
to a system of ne ≤ nq equations of the form

Φ(q) = 0, (1)

that expresses the kinematic constraints imposed by the joints. Even if joint limits
are present, these can be modelled as equality constraints, as shown in Section 5.
Here Φ : Q→E is a smooth map, and Q and E are nq- and ne-dimensional manifolds,
respectively. In the specific formulation that we will adopt, Q = R

nq and E = R
ne ,

but they can be arbitrary manifolds in general. We focus on multi-body systems for
which the solution set C of Eq. (1) is a smooth manifold of dimension nq −ne. This
will be the case almost always, because the set of geometric parameters for which
C fails to be a manifold has measure zero in the total space of such parameters. It
is useful to consider the partition q = [vT,wT,uT]T, where v ∈ V is a vector of nv

input variables corresponding to the actuated degrees of freedom of the multi-body
system, u∈U is a vector of nu output variables encoding the pose of the end effector,
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(a) (b) (c)

C

A

S

Uπu(S)

q
q

q

u = πu(q)

Boundary barrier Interior barrier Non-barrier

Fig. 1 (a) Sets S and πu(S) when C is the sphere x2 + y2 + z2 = 1 and πu is the projection map
f (x,y, z) = (x,y). The “workspace” relative to the (x,y) variables is the projection of the sphere
onto the (x,y) plane, and the boundaries of such projection correspond to points on the sphere
where the tangent plane projects onto a line. (b) and (c): πu(S) can also lie in the interior of A.

and w ∈ W is a nw-dimensional vector encompassing the remaining intermediate
variables. By defining z = [v,w], Eq. (1) can be written as Φ(z,u) = 0, and the
workspace of the system can be defined as the set A of points u ∈ U for which
Φ(z,u) = 0 for some z. In general it is easier to obtain a description of the workspace
by computing its boundary, because such boundary is an object of lower dimension.
A point u ∈ A lies on the boundary of A, denoted ∂A, if every neighborhood of u
intersects A and the complement of A.

Let πu : Q → U denote the projection map from Q onto the u variables. That is,
πu(z,u) = u. Observe that A is exactly the image of C through πu. It is not difficult to
see, moreover, that the points q ∈ C that project onto some u ∈ ∂A must necessarily
be critical points of the projection of C onto U, i.e., points q ∈ C where the tangent
space to C projects on U as a linear space of dimension lower than nu. The set S

of all critical points of the projection of C on U will be called the singularity set
hereafter, and the notation πu(S) will be used to refer to the projection of S onto U.
The situation is illustrated in Fig. 1a with an example.

Kinematically, S is the set of configurations in which the end effector loses in-
stantaneous mobility [14, 15], which is the set of points q ∈ C for which the matrix

dΦz =
[
∂Φi/∂ z j

]
is rank deficient. This allows a simple algebraic characterization

of the points of S. They are the points q that satisfy

Φ(z,u) = 0
dΦz

Tξ = 0
ξ Tξ = 1

⎫
⎬

⎭
, (2)

for some ξ , where ξ is an ne-dimensional vector of unknowns. The first equation
in (2) constrains the solutions to points on C. The second and third equations impose
the rank deficiency of dΦz (the rows of this matrix are dependent whenever they
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1

2

3

θ1 = π
3 θ1 = − π

3

θ1 = 0

Fig. 2 Position workspace of a planar 3R manipulator, relative to the tip point of the last link,
assuming that the angle θ1 of the first revolute joint is restricted to the [−π/3,π/3] range. Points
corresponding to singularities are indicated in solid lines, and those relative to boundary and in-
terior barriers are indicated with normal vectors on the forbidden side. Configurations 1, 2, and 3,
are an example of a boundary barrier, an interior barrier, and a non-barrier singularity, respectively.

yield a vanishing linear combination with non-null coefficients). A preliminary idea
of how the workspace boundary would look like, thus, can be gained by computing
all points q that satisfy the previous system, and projecting them to the u variables,
in order to obtain πu(S).

3 Singularity Classification

Note that the criticality of q is a necessary but not sufficient condition for πu(q)
to lie in ∂A, as there can be critical points projecting on the interior of A too. In
fact, as illustrated in Fig. 1, points q satisfying Eqs. (2) can be classified into two
broad categories. They can be non-barrier or barrier singularities, depending on
whether there exists a trajectory in the neighborhood of q on C, passing through q,
whose projection on U traverses πu(S) or not, respectively. Points corresponding to
barrier singularities, in turn, can be classified as boundary or interior singularities,
according to whether they occur over ∂A or over the interior of A, respectively.
An example of each one of these singularity types is depicted in Fig. 2, for the
particular case of a planar 3R manipulator. We next provide additional criteria to
determine which of these singularity types occurs on a given q0 ∈ S.

Let q = q(v) be a parameterization of C in a neighborhood of q0, with q0 = q(v0).
Let n0 be the normal to πu(S) at u0, which can be computed as indicated in [12].
We can determine whether q0 corresponds to a boundary barrier by examining the
sign of

ψ(v) = n0
T(u(v)−u0), (3)
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for all local trajectories v = v(t) crossing v0 for some t = t0 whose corresponding
path u = u(t) is orthogonal to πu(S) at u0. This can be done by resorting to the
second-order Taylor expansion of ψ(v) around v0

ψ(v) � ψ(v0)+ δvTψv(v0)+
1
2

δvTψvv(v0)δv, (4)

where ψv and ψvv are the gradient and Hessian of ψ(v), and δv = (v−v0) is a small
displacement whose corresponding δu = (u−u0) is orthogonal to πu(S). Note here
that the first term of this expansion vanishes because ψ(v0) = n0

T(u0 −u0) = 0.
Moreover, the time derivative of Eq. (3) for v = v(t) is

ψ̇(t) = n0
Tu̇(t), (5)

which is the component of u̇(t) along n0. As shown in [12], ψ̇(t0) must vanish
irrespectively of the chosen v(t). Thus, since for t = t0 it is ψ̇ = ψvv̇ = 0 for all
v̇, we conclude that ψv(v0) = 0 too, meaning that the second term of the Taylor
expansion also vanishes.

In conclusion, the sign of ψ(v) is mostly determined by the definiteness prop-
erties of the quadratic form δvTψvv(v0)δv. If this form is positive- or negative-
definite, then all trajectories orthogonal to πu(S) lie on one side of πu(S) and q0 is
a barrier singularity. If this form is indefinite, there are trajectories in A that cross
πu(S) and q0 is a non-barrier singularity. Lastly, if this form is semi-definite, we
cannot deduce the singularity type unless we examine higher order terms of the
Taylor expansion. The latter case may only occur on zero-measure subsets of S,
however. The definiteness test just outlined can easily be implemented by checking
the eigenvalues of the matrix form of δvTψvv(v0)δv [12].

When q0 is classified as a barrier singularity, finally, it remains to determine
whether u0 lies on ∂A or in the interior of A. Note that a barrier singularity q0 will
project in the interior of A if there is some q /∈ S that projects onto u0 in U. This test
can be implemented by checking whether equation Φ(z,u) = 0 for u fixed to u0 has
a solution z for which dΦz is full rank.

4 Numerical Solution

We next show how Eq. (2) can be solved to determine S, and how the classification
scheme just given can be applied to selected points on S, to obtain a detailed picture
of the workspace.

As shown in [10, 11] it is always possible to write the first equation in Eq. (2) in
a canonical form in which all component functions of Φ(z,u) are quadratic polyno-
mials. By quadratic we mean here that if qi and q j refer to any two of their variables,

they involve monomials of linear, bilinear, or quadratic form only: qi, qiq j, or q2
i .

Note that if Φ(z,u) has this special quadratic form, then all equations in Sys-
tem (2) will also have this form, because the entries in dΦz will all be linear in their
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variables. It is thus possible to use the numerical method developed in [10, 11] for
systems of this kind, in order to isolate the solution set of Eqs. (2) to the desired
accuracy. To make the paper self-contained, this method is reviewed briefly next.

Assuming that Eqs. (2) have the aforementioned form, the method starts by intro-
ducing the changes of variables bk = qiq j and pi = q2

i for all bilinear and quadratic
monomials, in order to transform the system into the expanded form

L(x) = 0
B(x) = 0
Q(x) = 0

⎫
⎬

⎭
, (6)

where x is a nx-vector including the original q variables, and the newly-introduced
pi and bk ones. Here, L(x) = 0 is a system of linear equations in x, and B(x) = 0 and
Q(x) = 0 are systems of bilinear and quadratic equations of the form bk −qiq j = 0,

pi − q2
i = 0, respectively.

It is not difficult to see that, under the used formulation, each variable in x can
only take values within a prescribed interval [11], so that from the cartesian product
of all such intervals one can define an initial nx-dimensional box B which bounds
all solutions of Eqs. (2). The algorithm then isolates such solutions by recursively
applying two operations on B: box shrinking and box splitting.

Using box shrinking, portions of B containing no solution are eliminated by nar-
rowing some of its defining intervals. This process is repeated until either (1) the
box is reduced to an empty set, in which case it contains no solution, or (2) the box
is “sufficiently” small, in which case it is considered a solution box, or (3) the box
cannot be “significantly” reduced, in which case it is bisected into two sub-boxes via
box splitting – which simply bisects its largest interval. To converge to all solutions,
the whole process is recursively applied to the new sub-boxes, until one obtains a
collection of solution boxes whose side lengths are below a given threshold σ .

The crucial operation in this scheme is box shrinking, which Porta et al. [11]
implement as follows. Note first that the solutions falling in some sub-box Bc ⊆ B

must lie in the linear variety defined by L(x) = 0. Thus, we may shrink Bc to the
smallest possible box bounding this variety inside Bc. The limits of the shrunk box
along, say, dimension xi can be found by solving the two linear programs

LP1: Minimize xi, subject to: L(x) = 0,x ∈ Bc,

LP2: Maximize xi, subject to: L(x) = 0,x ∈ Bc.

However, note that the solutions must also lie on the parabolas pi = q2
i of Q(x) = 0,

and on the hyperbolic paraboloids bk = qiq j of B(x) = 0. The two facts can be taken

into account by noting that the portion of the parabola pi = q2
i lying inside Bc is

bounded by two half planes, and that the points of Bc verifying bk = qiq j neces-
sarily lie inside a tetrahedron defined by four points, obtained by clipping Bc with
bk = qiq j. Thus, the inequalities relative to such bounds can be added to LP1 and
LP2 above, in order to take these constraints into account, which usually produces
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a much larger reduction of Bc, or even its complete elimination, if one of the linear
programs is found unfeasible.

Upon termination, this algorithm will deliver a collection of ns boxes contain-
ing all points in S, forming a discrete envelope of this set whose accuracy can be
adjusted through the σ parameter (next section illustrates such kind of output on a
particular example). Finally, a point q0 ∈ S is computed for each one of the returned
boxes, by solving Eq. (2) using a Newton method starting anywhere in the box, to
be able to apply the classification method described in Section 3. Note that σ can
always be chosen small enough so as to allow a rapid computation of q0.

5 A Comparative Example

The proposed technique has been implemented in C, using the libraries of the
CUIK platform [11]. We next illustrate the performance of this implementation, on

1
1

1 11

φ

x

y

l1 l2 l3

P

Fig. 3 A 3-RPR planar parallel mechanism.

computing the position workspace of
the mechanism in Fig. 3, i.e., the set
of locations for point P, as the mech-
anism runs through all of its configur-
ations. This mechanism is particularly
useful to compare the results of the
proposed approach with those of the
continuation technique in [12], pub-
lished in [16]. It was used in [2] too,
as a means of verification.

The method in [12] starts shooting
a ray through an initial point ui ∈ A,
corresponding to an assembled config-
uration of the mechanism, and tracks
this ray using continuation, until a point ub ∈ ∂A is found (Fig. 4a). A second con-
tinuation process is then launched to track the connected component of πu(S) that is
reachable from ub (Fig. 4b), whose points are finally classified into barrier and non-
barrier singularities using the criteria of Section 3 (Fig. 4c). Note that this scheme is
only able to detect the boundaries of the connected component of the workspace to
which ui belongs, while the algorithm we propose detects all components, as shown
in Fig. 4, bottom row. To apply the presented approach, we first write Eq. (1) in the
canonical form required in Section 4. For this, being [x,y]T the coordinates of P, the
slider variables li can be written as

l2
1 = y2 −2ys+ s2 + x2 + 2x−2xc−2c + c2+ 1,

l2
2 = y2 −2ys+ s2 + x2 −2x−2xc + 2c + c2+ 1,

l2
3 = y2 + 2ys+ s2 + x2 −4x + 2xc−4c + c2+ 4,

(7)

where c and s refer to the sine and cosine of φ , respectively, and thus must satisfy
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Fig. 4 Progress of the continuation algorithm in [12] (top row) compared to that of the proposed
algorithm (bottom row) on computing the position workspace of the mechanism in Fig. 3. Note
that the continuation algorithm is only able to isolate one connected component of the workspace,
whereas the proposed one isolates them all. Figs. c and f follow the same convention as Fig. 2.

c2 + s2 = 1. (8)

In this particular case, the slider variables li are only allowed to take values within
prescribed ranges [ai,bi], where a1 = a2 =

√
2, a3 = 1, b1 = b2 = 2, and b3 = 3. By

defining mi = bi+ai
2 and hi = bi−ai

2 , these constraints can be formulated using the
slack variable technique of Optimization as

li = mi + hisi,
c2

i + s2
i = 1,

(9)

for i = 1,2,3, which allows to integrate them readily into Eq. (7) as equalities. Thus,
Eq. (1) is the system formed by equations (7), (8) and (9) in this case.
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Fig. 5 A trajectory in which point P crosses the segment 8’-8”.

The boundaries of the position workspace correspond to critical points of the
projection of C onto the xy plane, i.e., to the solutions of Eq. (2) with u = [x,y]T,
and z = [c1,c2,c3,c,s,s1,s2,s3]

T. Equation (2), thus, constitutes a polynomial sys-
tem of 19 equations in 20 variables in this example, with a one-dimensional solution
set. The progress of the proposed algorithm on isolating this set is shown in Fig. 4,
bottom row. Figures 4d and 4e show intermediate approximations of πu(S) after
27 and 49 seconds, containing 1282 and 4846 boxes, respectively. Figure 4f dis-
plays the final result, which contains 152082 boxes (the boxes are too small to be
appreciated). The overall computation was done using σ = 0.01, and it took 780
seconds on a parallelized version of the CUIK platform, on a grid of eight DELL
Poweredge computers equipped with two Intel Quadcore Xeon E5310 processors
and 4Gb of RAM each one. Figure 4f also shows the results of the classification
process given in Section 3 applied to one point for each one of the returned boxes.
It is worth mentioning that the segment 8′-8′′ was erroneously marked as an interior
barrier in [16], while we detect it as a singularity of type non-barrier. This segment
corresponds to point P tracing a circle around point B, when l1 is fixed to its lowest
value

√
2, while keeping the platform aligned with leg 1. The result in [16] must

be erroneous, because P can really cross this segment from any of its two sides, as
shown in Fig. 5. The platform can start from a position where P is to the right of the
segment (Fig. 5a), then slide down along line L until it hits the segment (Fig. 5b),
and, locking l1 and l2 to their values in this configuration, finally perform a rotation
about point A by actuating l3 (Fig. 5c).

6 Conclusions

This paper has introduced a new approach to compute workspace boundaries of
general multi-body systems. A principal advantage of the method is its ability to
converge to all boundary points, as discussed in the paper. Previous methods for
the same purpose cannot ensure this property, since they are based on continuation,
which requires the availability of one point for each connected component of the
sought boundary, and no previous work on workspace analysis has shown how to
compute all of such points in general, to the authors’ knowledge.
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The computation of an exhaustive representation of the workspace boundary be-
comes feasible when the workspace of the end effector is of dimension three or
lower. However, for workspaces of larger dimension it turns out a difficult task,
independently of the methodology used, as the curse of dimensionality must inev-
itably be faced. In order to visualize such workspaces, several authors introduce
lower-dimensional representations of the workspace which are easier to compute
and meaningful to the robot designer, like the reachable workspace, the constant
orientation workspace, or the constant position workspace [6]. It is worth noting
that all of these workspaces can be computed by the technique herein proposed, us-
ing a proper choice of the u variables, and fixing them to given values, if necessary.
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1Jožef Stefan Institute, Slovenia; e-mail: {jan.babic, jadran.lenarcic}@ijs.si
2ATR Computational Neuroscience Laboratories, JST-ICORP Computational
Brain Project, NICT Biological ICT Group, Japan; e-mail: erhan@atr.jp

Abstract. To achieve human-like motion of the humanoid robots we propose an approach for
robot skill-synthesis that exploits human visuo-motor learning capacity. The conceptual idea is to
consider the target robot platform as a tool that can be intuitively controlled by a human. Once the
robot is effortlessly controlled, the target behaviour of the robot is obtained by the human through
practice. Subsequently we build the appropriate mapping between the human and the humanoid
robot that is used for autonomous control of the humanoid robot. We demonstrate this idea by
presenting humanoid-robot reaching obtained with the proposed approach.

Key words: Humanoid robot, reaching, visuo-motor learning, radial basis functions.

1 Introduction

If robots were able to imitate human motion demonstrated to them, acquiring com-
plex robot motions and skills would become very straightforward. One can capture
the desired motion of a human subject and map this motion to the kinematical struc-
ture of the robot. Due to the different dynamical properties of the humanoid robot
and the human demonstrator, the success of this approach with regard to the sta-
bility of the humanoid robot depends on the ad-hoc mapping implemented by the
researcher [1]. This approach can be considered as an open-loop control method and
is illustrated in Fig. 1.

Majority of everyday human movements are not statically stable slow motions
but are fast dynamically stable motions. To transfer such motions to the humanoid
robot we have to consider, besides kinematics of the motion, some other import-
ant parameters that are crucial for balancing and dynamic stability of the robot. As
it is usually the case, the researcher works out the details of the mapping so that
the transferred action is stable on the robot. Here we propose a very different ap-
proach. Our approach uses the human demonstrator’s real-time action to control the
humanoid robot and to consecutively build an appropriate mapping between the hu-
man and the humanoid robot. This effectively creates a closed loop system where
the human subject actively controls the humanoid robot motion in real time with the
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Fig. 1 Open-loop control of the humanoid robot. Motion of the human is transfered to the robot
where a local controller takes care of the robot’s postural stability.

Fig. 2 Closed-loop control of the humanoid robot. Motion of the human is transfered to the robot
while the robot’s stability is presented to the human by a visual feedback.

requirement that the robot stays stable. This requirement can be easily satisfied by
the human subject because of the human brain ability to control novel tools [2, 3].
The robot that is controlled by the demonstrator can be considered as a tool such as
a car or a snowboard when one uses it for the first time. This setup requires the hu-
manoid robot’s state to be transferred to the human as the feedback information. We
envision different types of visual feedback to provide the demonstrator either with
the humanoid robot’s view or with the view of the humanoid robot in the isometric
projection. Closed-loop approach that was used in our study is illustrated in Fig. 2.

The purpose of our research is to exploit the human capability of learning to use
novel tools in order to obtain a motor controller for reaching of the humanoid robot
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without falling over. The construction of the motor controller has two phases. In the
first phase a human demonstrator performs the reaching task on the humanoid robot
via an intuitive interface. Subsequently in the second phase the obtained motions
are acquired through machine learning to yield an independent motor controller.

2 Closed Loop Motion Transfer and Data Acquisition

The proposed approach can be considered as a closed loop approach where the
human demonstrator is actively included in the main control loop as shown in Fig. 2.
The motion of the human demonstrator was acquired by the contact-less motion
capture system. By attaching an arbitrary number of optical markers to all segments
of the demonstrator’s body, the contact-less motion capture system together with the
algorithms determines in real-time the states of the demonstrator’s inner coordinate
frames namely the angles in the demonstrator’s joints. The role of the algorithms is
to identify the kinematic model of the demonstrator’s body and to calculate the joint
angles of his body in accordance with the kinematical structure of the humanoid
robot. The joint angles of the demonstrator were fed forward to the humanoid robot
in real-time. In effect, the human acted as an adaptive component of the control
system. During such control, a partial state of the robot needs to be fed back to
the human subject. For statically balanced reaching skill, the feedback we used was
the rendering of the position of the robot’s centre of mass superimposed on the
support polygon of the robot which was presented to the demonstrator by means of a
graphical display. During the experiment the demonstrator did not see the humanoid
robot.

The demonstrator’s task was to keep the center of mass of the humanoid robot
within the support polygon while performing the reaching movements with his right
hand as directed by the experimenter. With a short practice session of about 15
minutes the demonstrator was able to move his body and limbs with the constraint
that the robot’s center of mass was within the support polygon. Hence the robot was
statically stable when the demonstrator generated motions were either imitated by
the robot in real-time or played back later on the robot. The robot used in the study
was Fujitsu HOAP-II small humanoid robot.

Motion of the humanoid robot was constrained to the two dimensions; only the
vertical axis and the axis normal to the trunk were considered. The curve in Fig. 3
shows the robot end-effector position data which was generated by the demonstrator.
Together with the curve in Fig. 3 one can imagine the humanoid robot from its left
side standing with the tips of the feet at the coordinates (0, 0) and reaching out
outwards with its right hand gliding over the curve. The long straight segment of the
curve connects the beginning and the end of the reaching motion.
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Fig. 3 The obtained trajectory of the humanoid robot’s end-effector during the motion transfer.

3 Statically Stable Inverse Kinematics Determination

For each data point making up the curve in Fig. 3, the robot joint angles were recor-
ded. Assuming m rows of the humanoid robot end-effector position X is formed by
the data points taken from the curve in Fig. 3 and the robot joint angles Q is formed
by the corresponding joint angles we get a non-linear relation of the form

Q = �(X) W. (1)

By performing a non-linear data fit and solving for W we can afterwards make
prediction with

qpred = �(xdes) W (2)

where qpred is a vector of the predicted joint angles and xdes is a vector of the
desired end-effector position. Using the prediction we can afterwards ask the hu-
manoid robot to reach out for a desired position without falling over.

For non-linear data fitting the recorded positions X are mapped into an N dimen-
sional space using the Gaussian basis functions given by

ϕi(x) = e
x−µi

σ2 (3)
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where µi and σ 2 are open parameters to be determined. Each row of X in converted
into an N dimensional vector forming a data matrix

Z = �(X) =

⎡

⎢
⎢
⎢
⎣

ϕ1(x1) ϕ2(x1) . . . ϕN(x1)

ϕ1(x2) ϕ2(x2) . . . ϕN(x2)
...

...
. . .

...

ϕ1(xm) ϕ2(xm) . . . ϕN(xm)

⎤

⎥
⎥
⎥
⎦

. (4)

Assuming we have a linear relation between the rows of Z and Q, we can solve Eq.
(2) for W in the sense of the minimum least squares by

W = X+ Q (5)

where X+ represents the pseudo-inverse of X. The residual error is given by

tr
(

(XW − Q) (XW − Q)T
)

. (6)

In effect, this establishes a non-linear data fit; given a desired end-effector position
x, the joint angles that would achieve this position are given by

qpred = (

ϕ1(xdes) ϕ2(xdes) . . . ϕN(xdes)
)

W. (7)

The open parameters are N as the number of basis functions which implicitly de-
termines µi and the variance σ 2. They were determined using cross-validation. We
prepared a Cartesian desired trajectory that was not a part of the recording data set
and converted it into a joint trajectory with the current set values of (N, σ 2). The
joint trajectory was simulated on a kinematical model of the humanoid robot pro-
ducing an end-effector trajectory. The deviation of the resultant trajectory from the
desired trajectory was used as a measure to choose the values of the open para-
meters. The values of N and σ for the experiments reported here were 20 and 60,
consecutively.

The results we obtained by using Gaussian basis functions to form the non-linear
mapping between Q and X are very satisfactory. Figure 4 shows the desired end-
effector trajectory and the generated end-effector trajectory obtained by playing
back the predicted joint angle trajectories on the humanoid robot. The light wig-
gly curve in Fig. 4 represents the end-effector trajectory that was generated by the
human demonstrator in the first phase and subsequently used to determine the map-
ping W between the joint angles and the end-effector position.

The desired trajectory was generated by the parametric curve

x(ti) =
[

cosα −sinα

sinα cosα

] [

3 sin(ti) − 9
15 cos(ti) + 26

]

, (8)

where ti = 0, 1/20, 1/10, . . . , 2 π and α = 10 π/180. For the robot implementation
the desired trajectory x(ti) was mapped to qpred(ti ) using Eq. (2). Afterwards a
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Fig. 4 The obtained end-effector trajectory generated by the demonstrator (light wiggly curve)
with the desired end-effector trajectory that was used as the input for the joint angle prediction and
the generated end-effector trajectory obtained by playing back the predicted joint angle trajectories
on the humanoid robot.

smooth continuous q(t) function was obtained by cubic spline interpolation of the
data points (ti, qpred).

4 Statically Stable Motion Generation of the Humanoid Robot

The reaching skill of the humanoid robot we obtained was statically stable which
means that the robot’s centre of mass was inside the robot’s support polygon. How-
ever, when the robot was asked to track a trajectory at speeds significantly higher
than the speed of the demonstrator, the dynamics played a non-negligible effect.
This can be seen from Fig. 5 where the upper plot shows the stability when the
circular trajectory tracking was performed at 1/10 Hz. When the motion was per-
formed at twice speed, the robot became unstable as shown in the lower panel of
Fig. 5. The robot could still track the desired trajectory without falling over, but just
barely.
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Fig. 5 The stability of the humanoid robot when the circular trajectory shown in Fig. 4 is played
back at different speeds. When the robot moved fast, the dynamics effects are no longer negligible
as underlined by the ditch below 0 at around 4 seconds in the lower plot.

5 Conclusions

A goal of imitation of motion from demonstration is to remove the burden of ro-
bot programming from the experts by letting non-experts to teach robots. The most
basic method to transfer a certain motion from a demonstrator to a robot would be
to directly copy the motor commands of the demonstrator to the robot [4]. This ap-
proach proved to be very efficient for certain open-loop tasks. However, this simple
approach is generally not possible to implement. Either the motor commands may
not be available to the robot or the differences between the demonstrator’s body
and the robot are so big that a direct transfer of motor commands is not possible.
One way of solving this problem is to modify the motor commands produced by
the demonstrator with a sort of a local controller or by on-line learning [5]. The
situation in our approach is different because the correct motor commands for the
robot are produced by the human demonstrator. For this convenience, the price one
has to pay is the necessity of training to control the robot to achieve the desired
action. Basically, instead of expert robot programming our method relies on human
visuo-motor learning ability to produce the appropriate motor commands on the ro-
bot, which can be played back later or used to obtain controllers through machine
learning methods as in our case of reaching.

The main result of our study is the establishment of the methods to synthesize the
robot motion using human visuo-motor learning. To demonstrate the effectiveness of
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Fig. 6 Video frames representing the statically stable reaching motion of the humanoid robot ob-
tained with the proposed approach.

the proposed approach, statically stable reaching was implemented on a humanoid
robot using the introduced paradigm. A sequence of video frames representing the
statically stable autonomous trajectory tracking obtained with our method is shown
in Fig. 6.
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Abstract. Forearm rotation (pro-supination) involves a non-trivial combination of rotation and
translation of two bones, namely, radius and ulna, relatively to each other. Early works regarded
this relative motion as a rotation about a fixed (skew) axis. However, this assumption turns out
not to be exact. This paper regards a spatial-loop surrogate mechanism involving two degrees
of freedom with an elastic coupling for better forearm motion prediction. The model parameters
are not measured directly from the anatomical components, but are fitted by reducing the errors
between predicted and measured values in an optimization loop. For non-invasive measurement of
bone position, magnetic resonance imaging (MRI) imaging is employed. We present a method to
self-calibrate the arm position in the MRI scanning tube and fitting the model parameters from a
few, coarse MRI scans. Results show a good concordance between measurement and simulation.

Key words: Forearm kinematics, surrogate mechanism, MRI motion fitting.

1 Introduction

Performance of forearm pro- and supination motion (i.e., forearm rotation from
palm down to palm up and vice versa), is one of the crucial functional motions of
the upper extremity, which is used in everyday tasks such as turning a door handle
or fixing a screw with a screw-driver. This motion is of particular interest in practice
due to an increasing number of surgery treatments of the forearm. According to stat-
istical data, for children, 20% of all recorded fractures occur in the forearm, making
this the most frequent form of extremity fractures [1]. Therefore, there is a need for
a clear description of forearm motion, especially under variable physiologic loading
conditions and at different rotational positions of the forearm.

Forearm motion research began in the early 20th century. Fick in 1904 presented
the first kinematic model describing forearm motion, which stated that the forearm
rotated around the ulna around a constant axis of rotation [2] (see Fig. 1a). How-
ever, such a simplified model renders an unrealistic strong tilting in the maximal
pronation. Based on MRI findings, more comprehensive kinematic models were de-
veloped that include the motion of the ulna. Kapandji and Nakamura et al. stated

349
Machine, DOI 10.1007/978-90-481-9262-5_37, © Springer Science+Business Media B.V. 2010 
J. Lenarčič and M.M. Stanišić (eds.), Advances in Robot Kinematics: Motion in Man and 



J. Xu et al.

that rotational motion of the forearm does not occur around a constant axis, but
that a complex motion comprising rotation and translation of radius relative to ulna
takes place [3–5]. Robbin showed in a study that the axis of rotation is a variable
screw axis [6]. This means that the ulna has an evasive motion of forearm rotation.
Kasten et al. have proved that in a cadaveric study a lateral swaying rotation of ulna
with respect to humerus takes place [7]. They introduced a surrogate mechanism
for the pro- and supination, where the joints were taken into account by a simpli-
fied mechanical analogy [8]. Using this model, it was possible to predict rotational
impairments based on angular deformities.

Kecskeméthy and Weinberg later extended this basic model by introducing a
two-degree-of-freedom surrogate mechanism including virtual springs to incorpor-
ate elastic components, for instance ligaments [9]. This model features an elast-
okinematic coupling between axial displacement and lateral swaying of the humero-
ulna (elbow) articulation and behaves, due to the strong elastic coupling, with re-
spect to external loads as a mechanism with virtually a single degree of freedom.
Recent publications have verified the lateral swaying motion predicted by this model
[10], and are using it for external surrogate mechanisms design [11].

This paper is concerned with the problem of determining automatically the model
parameters of the surrogate mechanism as well as the relative location of the bone
geometry with respect to the mechanism links by use of MRI measurements at a
few configurations of the forearm. In Section 2, the details of the proposed surrogate
mechanism are summarized for better reference. Section 3 describes the proposed
fitting procedure based on MRI slices at different rotational configurations. Finally,
Section 4 presents some results of the method for a sequence of measurements made
with and without external load. The results show a good agreement between meas-
urement and simulation, suggesting that the model is suitable for forearm rotation
prediction.

2 Forearm Elastokinematic Surrogate Mechanism

The forearm bony structure resembles a parallel mechanism containing two bones,
the radius and ulna, which are coupled at their two ends by the elbow (proximal
side) and the wrist (distal side). The rotation of the hand about the longitudinal
axis brings the hand from supination (palm up) to pronation (palm down) and vice
versa. Ulna and radius are coupled at the proximal end to the humerus (upper arm)
at the elbow via the radial head (a spherical pit rotation on a spherical condyle of
the humerus) and the humero-ulnar connection resembling a rotational axis. At the
distal end, ulna and radius are connected by a radio-ulnar joint containing a sliding
and rotating relative motion. All bones are tightly fixed together at the joints by
ligaments, and ulna and radius are additionally bonded together under stress by the
membrana interossea. Figure 1 shows the basic difference between early and recent
forearm rotation models. In the early models, it was assumed that ulna remains fixed
with respect to the elbow and that radius rotates about the axis interconnecting the
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(a) Fixed-axis model (b) 2-DOF model

Fig. 1 Simple and extended model of forearm pose at supination and pronation (right hand).
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(a) supination (b) tilting of hand in pronation (c) compensation of tilting

Fig. 2 Deficiencies of the fixed-axis model.

radial head and the radio-ulnar joint [2]. However, newer findings show that the
ulna performs a lateral swaying rotation with respect to the elbow (lateral motion of
point B in Fig. 1b), which means that the humero-ulnar (elbow) joint is not a perfect
revolute joint but allows some tilting and dislocation.

The main effects are shown in Fig. 2. In the fixed-axis model, the hand would be
tilted unrealistically to the inside in the pronation position. In order to compensate
this tilting, a small penetration and a small lateral swaying rotation of ulna at the
elbow joint is required (Fig. 2c). This requires that an additional revolute joint and
an additional prismatic joint are placed between elbow and ulna at point A, and an
additional revolute joint is placed between radius and wrist at point C. In such a
way, a parallel mechanism arises which has two degrees of freedom.

Figure 3 shows a corresponding surrogate mechanism that allows one to model
the effects described above [9]. The mechanism is assumed to operate at a fixed flex-
ural position of the elbow, thus the proper elbow joint is not shown. The surrogate
mechanism consists of a closed kinematic chain with four joints and two degrees
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Fig. 3 Two degrees of freedom surrogate mechanism for pro- and supination.

of freedom. The prismatic joint P and the revolute R on the proximal end of ulna,
represent a small dislocation s and and a small lateral swaying ϑ of the ulna with
respect to the humerus. The Hooke joint H represents the distal radio-ulnar joint,
consisting of the actual pro-supination angle ϕ and the torsional angle ψ1. The joint
R2 describes the aperture ψ2 between ulna and radius, and the spherical joint S
represents the radial head at the proximal end of radius. The vectors r1, r2, r3, r4
represent the corresponding link lengths. At the humero-ulnar joints, two virtual
springs with corresponding spring stiffnesses cs, cϑ , respectively, are placed which
summarize all elastic effects at these joints, including ligaments, capsules, etc.

As global home system, the inertial frame K0 is introduced. In this system, MRI
data is collected. For the forearm description, we introduce an elbow frame K1
which may move with respect to the inertial frame from measurement to meas-
urement with corresponding radius vector 0r1 and relative rotation matrix 0R1. The
frames K2 and K3 are bone-fixed and are placed at the origin of the corresponding
links. However, bone geometry and bone axes (not shown in Fig. 3) will be offset
with respect to these links (see Section 3).

The kinematics of the skeleton model can be described by the loop closure con-
dition:

Rot [x,ψ1]◦Rot [z,ψ2]◦Trans[r3]◦Rot[y,γ1]◦Rot[z,γ2]◦Rot [x,γ3]
= Trans [−r2]◦Rot [y,−(ϕ + π/2)]◦Trans[−r1]◦Rot [z,−ϑ ]

◦Trans [y,−s]◦Trans[−r4] . (1)

Assuming all vectors to be coplanar at the supination position, the translation
vectors of the model can be arranged as follows:
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r1 =

⎡

⎣
0

−r1
0

⎤

⎦ ; r2 =

⎡

⎣
−r2

0
0

⎤

⎦ ; r3 =

⎡

⎣
0
r3
0

⎤

⎦ ; r4 =

⎡

⎣
r4
0
0

⎤

⎦ . (2)

Due to the particular geometry of the loop, the variables can be determined in
closed-form as functions of the two degrees of freedom s and ϕ as follows [9]:

ϑ(s,ϕ) = ϑ ∗ ± cos−1(C/C), where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A = 2(r2 r4 sinϕ − r1 s)

B = 2(r2 s sinϕ − r1 r4)

C = r2
1 + r2

2 + r2
4 + s2 − r2

3

C =
√

A2 + B2, tanϑ ∗ = B
A

(3)

sinψ2 = − r2 + sinϕ (r4 cosϑ + s sinϑ)
r3

, (4)

tanψ1 = −cosϕ (r4 cosϑ + s sinϑ )
r1 + r4 sinϑ − s cosϑ

. (5)

Static equilibrium involves two conditions (corresponding to the two degrees of
freedom), for example

cϕ (ϕ −ϕ∗ ) = Jϕ cϑ ϑ , (6)

cs s = Js cϑ ϑ , (7)

where cϑ and cs are the virtual stiffnesses of the two input joints, and Js and Jϕ
denote the Jacobian coefficients arising from the kinematical transmission

ϑ̇ = [Js , Jϕ ] [ṡ , ϕ̇ ]T . (8)

Using Eq. (6), one can “operate” the loop by setting an arbitrary pro-supination
stiffness coefficient cϕ and “sliding” the spring offset ϕ∗ to user-prescribed values.
The loop will then move to its new equilibrium position and for the user it seems
that she is operating a single input.

3 Model Parameter Fitting from MRI Measurements

The geometric and elastic parameters of the surrogate mechanism can not be de-
termined directly from the image data, but need to be fitted so that the computed
positions coincide with the measurements. The measurements consist in scanning
bone cross sections of the forearm at different pro-supination angles ϕ1, . . . ,ϕN . For
each pro-supination angle, a reduced set of MRI slices S1, . . . ,SM is scanned in order
to insure a small measurement time. In our case, we chose M = 5 so that scanning
time for one pro-supination angle is approximately 10 sec. This ensures that all
slices for one position correspond roughly to the same forearm position.
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Fig. 4 Computed and measured bone marrow centroid line.

For model fitting, we regard as characteristic curves associated to the bones the
centroids of the bone marrow cross sections. Let rm

i, j denote the radius vector of the
measured centroid at the j-th slice of the i-th measurement (corresponding to a new
pro-supination angle), and let rc

i, j denote the corresponding computed radius vector
to the same target point. Both vectors are assumed to be decomposed in K0. An
additional index U or R shall be included for denoting the corresponding slices for
the ulna and radius bones, respectively. The minimization target function is

f =
N

∑
i=1

M

∑
j=1

{
|| rm

U,i, j − rc
U,i, j ||2 + || rm

R,i, j − rc
R,i, j ||2

}
. (9)

In the minimization, four sets of design variables arise: (1) the mechanism proper
parameters r1,r2,r3,r4,cs,cϑ ; (2) the rigid-body motion of the elbow, for each meas-
urement, represented by three translations x j

0
,y j

0
,z j

0
and three rotations χ j

1
,χ j

2
,χ j

3
; (3)

the relative location of bone geometry frame KB with respect to the link reference
frame, involving three constant translations κ1,κ2,κ3 and three constant rotations
ε1,ε2,ε3 for each bone; and (4) the pro-supination angle offset (ϕ∗) j, which rotates
the mechanism to the optimal configuration. All design variables must be determ-
ined simultaneously, as they are highly coupled, totalling 18 + 7N design variables
for N measurements.

In order to allow for the forearm to change position from measurement to meas-
urement, a self-calibrating procedure for determining the material points of the fore-
arm bones at a set of scan slices is proposed. Prior to the motion scan, a fine MRI
scan with numerous slices is performed as reference scan. Such a reference scan is
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Fig. 5 Cross-sectional area for ulna and radius (supination angle ϕ = 90◦).

needed anyway for smooth bone geometry rendering in subsequent applications of
the simulation package in clinical practice and thus does not represent an additional
effort. From the reference scan, one can obtain, using automatic segmenting, a quite
smooth distribution of the bone marrow centroid lines and the cross sectional areas
along the MRI axial direction. An example of corresponding measured profiles for
cross sectional areas is shown in Fig. 5. As the change of cross sections is rather
smooth and significant, it is easy to fit in longitudinal direction a reduced set of
scans into this curve, yielding the axial offset s∗ to the first slice of the reduced set
of scans with respect to the bone origin. This defines the material point on which
each slice of the coarse scan cuts the bone (shown in Fig. 5 as circles), yielding
quite an accurate matching of cross sectional areas (Fig. 5). At this point, the tilting
of the forearm with respect to the MRI axial direction was not regarded. However,
this will be further analyzed in future papers.

Once the material points are identified, the bone-fixed coordinates of the bone
marrow centers can be determined by linear interpolation of the reference bone mar-
row centroid line of the reference scan, yielding corresponding bone-fixed vectors

B
Bξ

i, j
. The corresponding computed bone marrow centers then become

rC
i, j = r2/3 + 0R2/3 ( 2/3

2/3
rB + 2/3RB

B
Bξ

i, j
) , (10)

where the indexes 2 and 3 correspond to ulna and radius, respectively, and the index
B stands for the corresponding bone reference frame (ulna or radius). The notation
i
ibB denotes a vector from the origin of frame Ki to the origin of frame KB in co-
ordinates of frame Ki, and iR j denotes the orthogonal rotation matrix transforming

coordinates with respect to frame K j to coordinates with respect to Ki. Here, 2/3
2/3

rB

and 2/3RB are the (unknown) design parameters describing the constant pose of the
bone geometry with respect to the corresponding mechanism link.
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Table 1 Numerical data and stiffness coefficients.

Radius Ulna Elbow Wrist cs cϑ ratio ϑmax smax

(mm) (mm) (mm) (mm) N/mm Nmm cs/cϑ (◦) (mm)

without torque 252.7 252.6 23.3 23.2 0.0763 12.97 169.98 7.98 0.595
pron. torque 252.5 252.4 23.4 23.2 0.0716 12.25 171.09 7.91 0.594
supin. torque 252.6 252.5 23.1 23.4 0.0727 12.41 170.71 7.88 0.601

4 Simulation Results

The described procedure was applied to a trial of three runs of five pro-supination
angles each with the same test person. The reference scan was performed with 42
slices at 10 mm distance and the motion scans were performed with 5 slices at
37 mm distance. The hand was rotated from vertical palm (ϕ = 0◦) in two steps of
45◦ to supination, i.e., palm up (ϕ =−90◦), and in two steps to pronation, i.e., palm
down (ϕ = 90◦). The angles were prescribed by a simple plastic device featuring
a rotatable handle on a box placed at the end of the MRI tube (not shown here for
lack of space). The device allowed us also to produce, via a Bungee cord, a resisting
torque while operating the handle. The three runs corresponded to (1) no resistive
torque, (2) torque of 4.2 Nm against pronation, and (3) torque of 4.2 Nm against
supination.

Optimization was performed with the built-in Matlab function fmincon. The
typical computational times were 30 min for one optimization run. The initial values
were chosen close to the anatomical lengths. The corresponding results are shown
in Table 1. It is seen that the mechanism parameters (including the stiffness of the
virtual springs) are quite stable and do not depend on the external torque (which
is quite high). Thus, deformations at the humero-ulnar joint (dislocation and sway-
ing angle) are basically decoupled from the external loads. Moreover, the resulting
translational dislocation is very small, so it does not impair the functionality of the
humero-ulnar joint, while allowing the important sway motion of the ulna to take
place by approximately 7◦ at full pronation.

Figure 6 shows the resulting plots for the swaying angle ϑ , the humero-ulnar
gap s, the aperture angle ψ1 and the radio-ulnar torsion angle ψ2 as a function of
the pronation angle ϕ , respectively. Each figure actually contains three plots, one
each for the three load cases. However, as seen in the figure, one can not recognize
any difference between them. Thus, the wrist load has no influence on the forearm
kinematics, and the virtual springs at the two degrees of freedom virtually operate
like a kinematical coupling between the two degrees of freedom of the surrogate
mechanism.

Table 2 shows the resulting errors between computed and measured bone marrow
centers. One can see that the maximal errors are achieved at maximum pronation
(palm down) and are below 2 mm. Moreover, the maximally achieved supination
and pronation angles agree well with the clinical study performed by Weinberg et
al. [12] (supination: 84.4± 5.49◦, pronation 66.4± 7.6◦). Also, the amplitude of
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Fig. 6 Histories of elbow variables with different load status.

Table 2 Matching errors of bone marrow centroids (elastokinematic model).

Error 
variance of computed marrow centroid from measured centroid on MRI 

(measurement without outer torque ) 

cross-section 1 cross-section 2 cross-section 3 cross-section 4 cross-section 5 

Pro-supination 
Angle 

φ 
(identified) 

radius ulna radius ulna radius ulna radius ulna radius ulna 

-82.01 0.74 0.67 0.93 0.14 0.52 0.16 0.48 0.25 0.83 1.19 
-45.26 1.17 0.47 0.84 0.23 0.16 0.44 0.32 0.13 0.69 1.01 
-3.03 0.81 0.89 0.22 0.77 0.10 0.89 0.52 0.94 1.19 1.11 
43.72 1.22 0.57 0.61 0.92 0.32 1.02 0.43 0.30 1.09 0.39 
71.67 1.74 1.19 1.58 0.31 1.43 0.95 1.19 1.47 1.14 1.63 

the lateral sway angle ϑ matches the value of the clinical study (min: 6◦, max 8◦).
Therefore, the results seem to indicate that the fitting procedure presented in this
paper is acceptable for clinical purposes.

5 Conclusions

By the presented surrogate mechanism, an elastokinematic device for simulation of
the pro-supination rotation of the forearm has been developed. By attaching two
virtual springs to the degrees of freedom, a mechanism with virtually one degree of
freedom is produced whose kinematical behaviour is basically independent of the
wrist moments. The identification of the model parameters as well as the relative
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location of bone geometry with respect to the mechanism links is achieved by a data
fitting procedure taking characteristic points of MRI slices and matching them with
simulated ones. The model is self calibrating in the sense that it can recognize small
axial arm motions within the MRI tube by the identifying the axial location of meas-
ured cross sectional area within a smooth reference distribution. The results render
good agreement between the observed motion and the simulated ones, indicating
that the method could be used in clinical practice. Future work shall include a better
self calibration procedure for motions within the MRI tube, a tool for surgery plan-
ning for broken and malaligned bones, as well as a study with several test persons
to validate the method.
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9. A. Kecskeméthy and A. Weinberg. An improved elasto-kinematic model of the human forearm
for biofidelic medical diagnosis. Multibody System Dynamics, 14, 1–21 (2005).

10. K. Nojiri, N. Matsunaga, and S. Kawaji. Modeling of pro-supination for forearm skeleton
based on MRI. In: Proceedings of the 17th Word Conference, the International Federation of
Automatic Control, Seoul (Korea), July 6–11, pp. 14767–14772 (2008).

11. S. Miyaguchi, K. Nojiri, N. Matsunaga, and S. Kawaji. Impedance control of pro-supination
based on the skeleton model of upper limbs. In: Proceedings International Conference on
Control, Automation and Systems, October 17–20, pp. 968–973 (2007).

12. A.-M. Weinberg, I.T. Pietsch, M. Krefft, H.C. Pape, M. van Griensven, M.B. Helm, H. Reil-
mann, and H. Tscherne. Die Pro- und Supination des Unterarms. Unfallchirurg, 104, 404–409
(2001).



Self-Motions of 6–3 Stewart–Gough Type
Parallel Manipulators

Adolf Karger

Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic;
e-mail: adolf.karger@mff.cuni.cz

Abstract. In the paper we show that every 6–3 Stewart–Gough (SG) platform has self-motions.
This yields an example of self-motions for a class of SG platforms which are not architecturally
singular. We present three types of self-motions, general self-motion if the platform is in some
sense congruent to the base, a butterfly type self motion and a spherical four-bar mechanism self-
motion. For the last two cases there is no restriction for the geometry of the platform. We believe
that this yields all possible self motions of the 6–3 platform, but we are not able to give the proof,
corresponding equations are too complex.

Key words: Parallel manipulators, self-motions, Borel–Bricard motions.

1 Introduction

Self-motions of parallel manipulators of Stewart–Gough type (SG platforms) de-
serve detailed study, as they can complicate the design and performance of such ma-
nipulators. If a manipulator is at a self-motion position, it will immediatelly colapse,
an unwanted phenomena. To describe all geometries of SG platforms which could
have self-motions at some position is a very complicated problem, which at the mo-
ment is very far from its solution. On the other side, SG platforms, which have a
self-motion at each possible position, are classified. They are known as architec-
turaly singular SG platforms. It is not difficult to avoid architecturally singular SG
platforms, as easy criteria exist for architectural singularity.

To describe SG platforms which have self-motion only at some positions is a
problem which is much more difficult than the description of architecturally sin-
gular SG platforms. Only very few results in this respect are known. One is given
in [1, 2], where the resulting class is a generalization of the original platform, pro-
posed by Stewart and Gough, see [3, 4]. There exist also some negative results. For
manipulators with affinely equivalent platform and base we have no self-motions
unless they are architecturally singular (with the exception of translatory motions),
see [5, 6]. This could suggest that non-trivial self-motions for non-architecturally
singular manipulators almost do not exist. It seems that this is not the case, the
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problem is that it is very difficult to find them. In this paper we discuss 6–3 ma-
nipulators, for which the problem of self-motions can be studied almost to the end.
Obtained self-motions are known as spatial motions, we give explicit fomulas for
them as self-motions of parallel manipulators. We also show that non-trivial 6–3
manipulators cannot be architecturally singular.

The geometry of 6–3 platforms is very special in comparison to the general case,
which makes all the computations relatively simple. Unfortunately, even in that case
we cannot prove that we have found all self-motions of this type of manipulators
because corresponding equations are very large.

Self-motions of a parallel manipulators are characterized as motions of the ma-
nipulator with constant length of its legs. This means that they belong to the category
of paradoxical motions, as in this case the manipulator should be a structure. They
are also connected to singular positions, they can be also characterized as motions
consisting from singular positions satisfying additional condition of fixed leg length.

2 Equations of Self-Motions

We shall study self-motions of 6–3 Stewart–Gough platforms with non-degenerated
platform and non-degenerated planar base. This means that we have

m1 = m2, m3 = m4, m5 = m6, (1)

where mi and Mi, i = 1, . . . ,6 are points of the platform and base, respectively.
In that case points m1,m3,m6 move on circles. We shall suppose that centers of

corresponding spheres lie on intersecting lines and therefore we may also suppose
that

M2 = M3, M4 = M5, M6 = M1. (2)

We choose coordinate systems in platform and base in such a way, that

m1 = [a1,b1], m3 = [0,0], m5 = [a5,0],

M1 = [0,0], M2 = [A2,0], M4 = [A4,B4], (3)

the third coordinte is supposed to be equal to zero. We suppose that triangles
�m1m3m5 and �M1M2M4 are non-degenerated, which means that a5b1A2B4 �= 0.
We shall use the Study representation of the displacement group in the denotation
of [7–9]. Details can be found also in [10, 11]. A self-motion of the SG platform
appears if the distance of corresponding points of the platform and base remains
fixed and the platform still can move with respect to the base.

As points of the base are fixed and points of the platform move on spherical
curves, we obtain at the same time a Borel–Bricard motion, see [12, 13]. During a
self-motion the manipulator must be at a singular position at each instant, which
means that lines miMi, i = 1, . . . ,6 belong to a linear complex and the Jacobian must
be singular, see [9, 11, 14, 15].
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Let m be a point in the space of the platform and M be in the space of the base.
Computations are based on the fact that during a self-motion the distance of points
mi and Mi, i = 1, . . . ,6 remains fixed. Condition for all motions of the moving space
which preserve the distance of the point m to M is given by equation h = 0 presented
below. This equation was derived by Husty in 1996 in [7] and all computational
details can be found also in [11].

h = Rκ + 4(y2
0 + y2

1 + y2
2 + y2

3)+ 2(x2
3 − x2

0)(Aa + Bb)+ 2(x2
2− x2

1)(Aa−Bb)

+ 4[x0x3(Ab−Ba)− x1x2(Ab + Ba)+ (x0y1 − y0x1)(A−a)

+ (x0y2 − y0x2)(B− b)− (x1y3 − y1x3)(B + b)+ (x2y3 − y2x3)(A + a)] = 0,
(4)

where R = A2 +B2 +a2 +b2−d(mM)2, and d(mM) is the distance of points M and
m, κ = x2

0 + x2
1 + x2

2 + x2
3. Parameters x0, . . . ,x3,y0, . . . ,y3 are Study parameters of

the motion, restricted to conditions κ = 1, U7 = x0y0 + x1y1 + x2y2 + x3y3 = 0.
Here we start our computations. Interested reader can use a computer session [16]

to facilitate computations. We substitute mi and Mi, i = 1, . . . ,6 into (4) and obtain
six equations

h1 = 0, . . . ,h6 = 0, (5)

we have denoted Si = Ri −R1, Ui = hi − h1, i = 2, . . . ,6. We solve equations U2 =
0,U3 = 0,U6 = 0,U7 = 0 for y0,y1,y2,y3 and substitute the result into remaining
ones. Three equations U5 = 0,U6 = 0,h1 = 0 remain. Here we have to suppose that
x0x2 + x1x3 �= 0, as this expression appears in the denominator of yi, i = 0,1,2,3.

3 The Butterfly Motion

At first we shall have a look at the special case x0x2 + x1x3 = 0. In that case we
can write x3 = −kx0,x2 = kx1, where k is an unknown function. We would like to
show that k is a constant. We solve equations U2 = 0,U4 = 0,U5 = 0,U7 = 0. The
denominator is equal to kx1 and we have to recognize several cases.

(a) Let kx1 �= 0. We express U3 and U6 and compute the resultant with respect to
x0. We obtain an equation of degree four in k and if k is not constant, this equation
must be identically satisfied. Computation shows that this is not possible. For this
reason k must have a constant nonzero value. U3−U6 = 0 is an equation of the form
f1x2

0 + f2x2
1 = 0, where f1 − f2 = 8kB4a5. This shows that we have no solution in

this case as both f1 and f2 cannot be equal to zero.
(b) Let kx1 = 0.
(b1) Let k = 0. We solve U2 = 0,U3 = 0,U4 = 0,U7 = 0 for y0,y1,y2,y3. The

determinant is in that case not equal to zero. Now U5,U6,h1 must be identically
equal to zero. We obtain the following solution (here s = S2 −2A2a1).

R1 = −s(s+ 4A2a1)/(4A2
2), S3 = s(A2 + a1)/(A + 2), S4 = s(A4 + a1)/(A2),

361



A. Karger

S5 = 2A4a5 +s(A4−a5 +a1), S6 = s(a1−a5)/(A2), t1 = s/(2A2), t2 = t3 = 0,
(6)

where t1,t2,t3 represent the translation vector of the motion. The solution is a “but-
terfly” like motion of the manipulator. In that case points M1,M2,m3,m5 lie in one
line, the point m1 rotates around that line. Let us notice that this motion exists for
all 6–3 manipulators, we have no restriction for the geometry of the platform.

(b2) Let x1 = 0. Then also x2 = 0 and we obtain the same solution as above.
Remark. Let us notice that the problem has many symetries, one is due to the fact

that the normal vector of the platform plane has two orientations, other ones come
from renumbering of the points. We do not distinguish corresponding solutions, as
they are geometrically the same.

4 The General Case

Let us continue with the general case again. Let us remark at first that in the case of
planar platform and base there is a linear combination of equations hi = 0 which is
quadratic in x j, j = 0,1,2,3 and does not contain y j, j = 0,1,2,3. It can be shown
that the manipulator is architecturally singular iff this quadratic equation is identic-
ally equal to zero, see for instance [17].

We see that from U = U4 −U5 we can factorize out κ and we are left with three
equations,

U = 0, U5 = 0, h1 = 0, (7)

with U [32],U5[164],h1[3282], where the number in square brackets means the num-
ber of terms (divided by plus or minus sign) in the expression. U = 0 is the quadratic
equation mentioned above.

Equations (7) represent three algebraic surfaces of degrees 2, 4, and 8 in the
projective space determined by homogeneous coordinates x0,x1,x2,x3. Self-motion
appears if these three surfaces have a curve in common. This is expressed by the
fact that common curves of any two surfaces in (7) have a common component. It
is easy to see that resulting equations are so complicated that they cannot give any
general result. Therefore we shall try to find some simpler possibilities which can
happen. The simplest case would be if U would be identically equal to zero, which
follows the architectural singularity. Let us study this possibility. U is of the form

U = r0(x
2
0 + x2

1)+ r2(x
2
2 + x2

3)+ r4x0x3 + r5x1x2, (8)

where r4 − r5 = b1A2.
This follows that a manipulator of this type cannot be architecturally singular,

because b1A2 �= 0 and therefore r4 and r5 cannot be equal to zero at the same time.
Another possibility we shall study is the case where U factorizes into two linear

factors. We can suppose that the equation of one of them has the form x0 = g1x1 +
g2x2 + g3x3, which means that the coefficient at x0 is not equal to zero, as the other
pssibility does not bring anything new. Substitution into U = 0 yields six equations
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r0g2
3 + r4g3 + r3 = 0, r0(g

2
1 + 1) = 0, r0g2

2 + r2 = 0,

g1(2r0g3 + r4) = 0, g2(2r0g3 + r4) = 0, 2r0g1g2 + r5 = 0, (9)

for three unknowns g1,g2,g3. The only solution is r0 = r2 = r5 = 0 and we obtain
U = x0x3 = 0. We can suppose x0 = 0, as the other possibility yields the same
solution. Substitution yields (see the demostration at Fig. 1)

S6 = S5+S3−S4−S2, A4 = a1A2/a5, B4 = b1A2/a5, r4 =−8A2b1 �= 0, r3 = 0.

This result can be expressed in a geometric way as follows:
The quadratic equation U = 0 factorizes into two linear ones iff triangle

�M1M2M4 is similar to the triangle �m3m5m1 (in the given order of points).
We continue with the factorization. U5 is an expression of the form

U5 = j3x3
1 + j2x2

1x2 + j1x1x2
3 + j0x2(x

2
2 + x2

3)+ j4x1x2
2. (10)

We have to discuss conditions under which curves given by U5 = 0 and h1 = 0 have
a common factor.

(A) The general possibility is that U5 is a qubic curve and it appears as a factor
in h1 = 0.

(A1) This is always the case if U5 disappears identically. The solution is

A2 = a5, B4 = B1, A4 = a1, R6 = R3, R5 = R2, R4 = R1.

This means that triangles �m3m5m1 and �M1M2M4 are congruent (in given order)
and this is the sufficient and necessary condition for the existence of self-motion of
this kind.

Remark. This does not mean that the upper platform is congruent to the lower
platform, because for that we need the same corresponding distances, for instance
the distance of m1m2 is zero, but the distance of M1M2 is equal to a1, which is
nonzero. The case of congruent platform and base yields no self-motions, see [5].

The motion curve in the space of Euler parameters is a planar curve of degree
six, its equation has 247 terms and therefore it is not presented.

5 The Four-Bar Self-Motion

(A2) The other possibility is that U5 is a nonzero factor in h1. As U5 is a cubic curve
with zero coefficient at x3

3, the highest coefficient at x3 in h1, which is of degree eight,
must be also zero. This yields S5 = S2a5/A2 + S4 − 2a1(A2 + a5) and substitution
into U5 shows that U5 factorizes, and so a factor of U5 must be contained in h1.

(B) Let us study the possibility that U5 factorizes into a linear and quadratic
factors. This means that it must contain a line. Let us suppose that it is given by
equation x3 = Ax1 + Bx2. Substitution into (10) yields four equations
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Fig. 1 6–3 manipulator with self-motion (left) and parts of three circular trajectories (right).

j3 + j1A2 = 0, j2 + j1AB+ j0A2 = 0, j1B2 +2 j0AB+ j4 = 0, j0(B
2 +1) = 0.

From the last equation we have j0 = 0, and U5 factorizes into

U5 = x1( j3x2
1 + j2x1x2 + j1x2

3 + j4x2
2). (11)

We express S5 from j0 = 0,

S5 = S2a5/A2 + S4 + 2a1(a5 −A2) (12)

and substitute the result into h1 = 0. We have to express condition under which the
quadratic factor of U5 is a factor in h1, the linear one was already considered. We
notice that x3 appears only in even powers in U5 and h1, we express x2

3 from U5 = 0
and substitute the result into h1. The coefficient at x2

3 in U5 must be nonzero, as
otherwise U5 ≡ 0 and we obtain a solution already known. After substitution of x3
into h1 we obtain

h1 = (a1x1 + b1x2)
2((a5 −a1)x1 −b1x2)

2(k2x2
2 + k1x1x2 + k0x2

1),
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where h1 must be identically equal to zero. We shall consider only the last factor, as
the other ones yield “butterfly” motions. We can suppose (A2 −a5)(a5 −2a1) �= 0,
as the opposite does not bring anything new. As the coefficient at R1 is not zero, we
express R1 from k1 = 0 and substitute the result into k0,k2. We obtain two equations,
k2 = 0,k0 = 0. Each of them splits into two factors, let us write k0 = k01k02,k2 =
k21k22, where k21 = (S2a5 −2A2

2a1).
We have to consider separate cases again.
(i) Let k21 = 0. Both factors in k0 yield

S2 = 2A2
2a1/a5, S4 = 2(A2

2 −a2
5)(a

2
1 + b2

1)/a2
5, R1 = −S4/2. (13)

(iia) k22 = 0,k01 = 0 yields again (13).
(iib) Let k02 = 0,k22 = 0. Equation k02 = 0 is linear in S4. If the coefficient at S4

is equal to zero, we obtain (13). Therefore we can suppose that this coefficient is not
zero. We express S4 and substitute the result into k22 = 0.

We obtain a quadratic equation for S3, we solve it and substitute both S4 and S3
into already computed x2

3. We obtain

x2
3 = −( f 2s2 + a2

1t2 ±2a1 f st)[x1b1( f −a1)− x2( f a1 + b2
1 + st)]2/(b4

1( f 2 −a2
1)

2),
(14)

where for simplicity we write

a5 − a1 = f ,
√

(a2
1 + b2

1) = s,
√

(b2
1 + f 2) = t.

As ( f 2s2 + a2
1t2)2 − 4a2

1 f 2s2t2 = b4
1( f 2 −a2

1)
2 > 0, we see that in this case there is

no real solution of the problem.
This shows that we are left with (13) as the only solution. Let us concentrate at the

geometrical meaning of (13). Substitution shows that the point m1 during the whole
motion coincides with the point M4. Points m3 and m5 run on circles with centers
in points M1 and M2. Let us recall that �M1M2M4 is similar to the �m3m5m1. We
see that the manipulator has self-motion which is a spherical four-bar mechanism.
Formulas connected with this motion are rather complicated and to simplify them
we shall choose a more suitable system of coordinates. At the same time we shall
have a look if there exist more general manipulators which can perform this four-bar
self-motion.

More generally let us look for self-motions for which the point m3 is during the
whole self-motion coincident with the point M1. As both points are origins of the
corresponding coordinate systems, we are looking for self-motion of the manipu-
lator, for which the translational part is identically equal to zero. This means that we
have to solve equations (5) with the suplementary condition y0 = y1 = y2 = y3 = 0.
Substitution yields R1 = S3 = S4 = S6 = 0. Three equations remain, U2 = 0,U5 =
0,κ = 1.

This is a solution, the motion is represented as the intersection curve of two quad-
rics in three-dimensional projective space, projected at the unit sphere. We obtain a
spherical four-bar motion.
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6 Conclusions

To describe all self-motions of manipulators of Stewart-Gough type seem to be a
very complicated problem. Even in the case of 6–3 manipulators we obtain com-
plicated formulas and we are not able to prove that we have described all possible
self-motions. The curve describing the self-motion is in general not parametrizable
and therefore it is not possible to visualize trajectories of such a motion in general.
Approximate parametrization could be the corresponding tool to do it.
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Abstract. In this paper, we present an iterative kinematics control law for redundant manipulators
overcoming some usual problems associated to cluttered environments (constraints violations, os-
cillations, environment dilatation). The Constraints Compliant Control approach relies on a passive
avoidance scheme (no motion generation for constraints avoidance) on a limited number of con-
straints selected from a vicinity analysis. A solution scaling based on the feasible motions with
respect to the constraints enables to reach the frontiers of the workspace. Two missions described
as sequences of key frames are simulated to compare the performances of the Constraint Compli-
ant Control with state of the art control laws. The obtained computation times remain acceptable
to consider a use in real time.

Key words: Redundancy resolution, inverse velocity kinematics, control.

1 Introduction

Industrial robotics manipulator missions have evolved from well defined tasks in
structured environments to missions where the tasks are more complex (involving
multiple objectives among which various constraints) and where the environments
are not always known in advance and can be harsh and cluttered. As an example,
the motivations of the presented work consider the use of a teleoperated manipulator
aimed at working in a tunnel boring machine cutter head (see Fig. 1 and [1]).

In such environments, the use of redundant manipulators enables to specify sim-
ultaneously various goals on different parts of the manipulator, explicitly or auto-
matically. It gives the possibility to fulfill different tasks while strictly satisfying a
certain amount of constraints (collision avoidance, joint position and velocity lim-
its). However, to our knowledge, there is no multi-objective method that guarantees
a safe behaviour whithout substantially reducing the motion capabilities, especially
when the manipulator is expected to get close to the constraints surfaces (which may
be operational surfaces). This is the problem tackled in this paper.

Consider a manipulator with n DOFs and a set of objectives (not necessarily
imposed to the same part of the manipulator) involving m operational displacements
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Fig. 1 Tunnel boring machine: manipulator in the excavation room.

δx. The relation between the operational and the joints displacements (considered
here as the actuators input signal, extension to torque controlled actuators is trivial)

δx = J δq (1)

where J is the Jacobian associated to the objectives. In order to satisfy the con-
straints, usual avoidance strategies rely on an avoidance term δxC derived from a
potential based on the inverse of the distance to the constraint [2]. This strategy
is called active, as a motion is generated to avoid the constraint. Thus, the expec-
ted behaviour will result from the combination of the operational tasks ((JT ,δxT ),
concatenation of the tasks) and the constraints ((JC , δxC), concatenation of the
constraints). In the particular cases of joints related constraints (joint position and
velocity limits), the constraint jacobian matrix is [0, . . . , 0,±1, 0, . . . , 0], the ±1
rank being at the joint number in the manipulator chain, the sign depending on the
limit type (maximum or minimum).

These motions can be strictly prioritized in a multiobjective control law (see [4])

δq = J #
1 δx1 + (J2PJ1)

#(δx2 − J2J
#
1 δx1) (2)

where indexes 1 and 2 can be replaced by C and T and conversely. The # is a
pseudoinversion operator (see [3]) and PJ1 is a projector on the kernel of J1 (details
about inversions and projectors are exposed in Section 3.1).

Maciejewski [4] and Chaumette [5] proposed to put the constraints avoidance at
the bottom of the task hierarchy (1 ← T , 2 ← C; referenced as control law A).
It enables to striclty fulfill the tasks, but in case of conflict between the tasks and
the constraints, the manipulator may violate the constraints. To avoid this, Sentis
[6] puts the constraints at the top of the hierarchy (1 ← C, 2 ← T ; referenced as
control law B). However, this choice has a bad impact on the reachability of the
manipulator as the avoidance motions need activation thresholds, which results in
oscillations on the functional parts of the manipulator. Moreover, as the constraints
are not homogeneous (obstacle avoidance involves body lengths that depends on the
obstacle position w.r.t. the robot, while joint limits do not), it is not possible to use
a bounded potential. It implies a consequent size of the threshold, as the potential
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should grow from zero to infinity along it, and also the possible presence of infinite
terms in the control law.

In order to avoid oscillations and infinite terms, Baerlocher uses in [7] an iterative
approach based on an activation matrix that pre-multiplies the Jacobian of the tasks.
The algorithm deactivates the joints which violate their boundaries, so they are not
included in the model inversion. However, this approach does not include other types
of constraints and it often resorts to iterations in cases for which usual approaches
find directly an admissible (i.e. constraints compliant) solution.

This paper presents a framework that extends the approach of Baerlocher to the
collisions avoidance and satisfies the joint velocity limits; in particular, when the
environment is not overconstrained (number of DOF sufficient to track the tasks
while complying to the constraints), the control law is equivalent to the classical
control law A. A particular attention has been paid to keep the computation times in
the range of the one obtained with control law A and B.

In Section 2, the Constraint Compliant Control (CCC), relying on the principle
of passive avoidance, is introduced. Then, Section 3 presents the simulations of two
missions and the comparative results of the control laws presented previously (A, B

and CCC). Finally, Section 4 gathers the conclusions and the work perspectives.

2 Constraint Compliant Control

This section exposes our contribution. First, the passive avoidance principle is de-
velopped, according to which the robot should not move to avoid static constraints.
Then, the control law expression is exposed; finally, the whole algorithm is presen-
ted.

2.1 Passive Avoidance

The approach of Baerlocher in [7] is equivalent to the insertion of a superior hier-
archical level in which operational displacement would be null (δxC = 0). It has
the advantage to satisfy the joint boundaries in all cases. The extension to every
static constraints (static obstacles, joint position and velocity limits) is done using
the following control law

δq = J #
C0 + (JT PJC )#(δxT − JT J #

C0) = (JT PJC )#δxT (3)

which ensures a strict compliance with each constraint in JC . This avoidance method
is passive as no motion is generated by the proximity to a constraint. As what is
described by the constraints expression is actually static in the physical world, no
arbitrary motion is needed to satisfy them. Anyway, it is not often mandatory to
forbid motions in all the constraints directions; it is not even desired, as it prevents
from getting closer to the constraints, but also from moving away from them. So,
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it is relevant to iterate on the constraints combinations to find the set of constraints
that must be passively avoided to obtain an appropriate solution δq, i.e. that minim-
izes the operational error while being admissible. Let JCC be a matrix containing a
combination of lines of JC . The control law then becomes

δq = (JT PJCC )#δxT (4)

Iterations are carried out to find the lines combination JCC which yields an appro-
priate δq. In particular, the admissibility test is performed using Eq. (7).

2.2 Active Avoidance in Additional Objective

The solutions admissibility can be increased by adding an extra term of active avoid-
ance on the constraints that are not avoided passively:

δq = (JT PJCC )#δxT
︸ ︷︷ ︸

Passive avoidance

+ (J
CC

P[
JCC
J

])#(δx
CC

− J
CC

(JT PJCC )#δxT )

︸ ︷︷ ︸

Active avoidance

(5)

where J
CC

is the complement of the lines of JCC in JC , δx
CC

is the desired opera-

tional avoidance displacement associated to J
CC

1 and P[
JCC
J

] is the projector on the

kernel of the concatenation of JCC and J . The extra term tends to move the manip-
ulator away from the constraints as long as the tasks are not impacted. In particular,
when JCC is empty, the control law behaves like control law A and a single itera-
tion is needed when the situation is not overconstrained. The avoidance coefficients
norm |δx

CC,i | can be limited to avoid values tending to infinity. Finally, there are
no oscillations on the functionnal part as the active avoidance term is under the task
related term in the hierarchy.

2.3 Particular Case of the Joint Velocity Limit – Scaling

The joint velocity limits should not be addressed with passive avoidance, as it would
stop a joint to prevent it from going too fast. If a joint displacement is too high, the
solution is scaled to reach the maximal admissible displacement. To keep the motion
coherency, the scaling is done in a way that preserves the operational direction

δq ← δq min
0≤i≤n

δqi,max

||δqi|| (6)

1 In a practical aspect, J
CC

(resp. δx
CC

) can be replaced by JC (resp. δxC , desired operational
avoidance displacement associated to JC) in Eq. (5) without any consequence on the result.

370



Constraint Compliant Control for a Redundant Manipulator in a Cluttered Environment

where δqi,max is the maximum displacement of joint i on one iteration. This step is
carried out only if a joint displacement δqi is higher than δqi,max .

The test of admissibility with respect to the constraints is performed through

JCδq ≤ l (7)

where l is the concatenation of the maximum instantaneous displacements. In order
to increase the validity of the solutions, the scaling is extended to all the solutions

δq ← δq min
0≤i≤m

(JCδq)i>0

(
li

(JCδq)i

)

(8)

The scaling is done only if Eq. (7) is not verified. This step enables to obtain an ad-
missible solution for each constraints combination in JCC . Actually, as all the con-
straints are in the form of Eq. (7), the solutions space is convex and contains the null
solution (no motion). So, in every direction of the joint displacement space, there
exists an admissible solution, which norm is null in the worst case. This method
enables to get as close as possible to the constraints if there is a persistent demand
in that way. The general algorithm of a control iteration is given by Algorithm 1.

Algorithm 1 : CCC
JC ← constraints under the active avoidance threshold
δqcomb ← 0 rad; δq ← 0 rad
Errcomb ← 0 m; Err ← 1 m; ε ← 10−2 m;
for all Lines Combinations JCC in JC do

δqcomb Computation - Eq. (5)
Admissibility Test - Eq. (7)
Scaling - Eq. (8)
Errcomb ← ||J δq − δxT ||
if Errcomb ≤ Err then

Err ← Errcomb; δq ← δqcomb
if Err ≤ ε then

break
end if

end if
end for
send δq

3 Implementation and Comparative Results

This section presents the results of control laws A, B and CCC on two missions in
the same environment. The proposed environment is composed of a column and a
wall; the manipulator has 7 DOFs, all the links being 1 DOF rotational joints. The
environment and the manipulator are represented in Fig. 2. The presented experi-
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Fig. 2 Views of the environment and the two trajectories to track; manipulator schemes.

ments simulate two inspection missions involving trajectories close to the obstacles.
For each mission, the manipulator must track a 3 coordinates trajectory: it is as-
sumed that the effector (camera) has the orientation DOFs needed to observe the
points to be inspected. For the sake of simplicity, the results presented here do not
integrate joint boundaries avoidance even though the proposed framework can deal
with this type of constraint without any specific difficulty.

• Mission 1: Go around the wall by the left side. The environment is barely con-
strained in that area, the manipulator tracks a trajectory (traj1, in Fig. 2) of 330
points on a single way of 3.50 m, so a displacement of 1.1 cm is expected for
each iteration. The mission is feasible, i.e. the number of DOFs of the manipu-
lator enables to fulfill the mission while avoiding the constraints.

• Mission 2: Reach a point behind the wall. The trajectory (traj2, in Fig. 2) has
560 points, for a go and come back trajectory (getting out of a very constrained
configuration can be a problem). The total distance is 5.20 m long, so the expec-
ted displacement is 0.9 cm at each iteration. The mission is not feasible as the
manipulator is not long enough to reach the furthest point.

3.1 Implementation

The implementation is done in C++, and uses KDL (see [8]) and Boost::ublas2 lib-
raries. We detail the following implementation elements:

• Desired displacement δxT : difference between the current position and the cur-
rent trajectory point.

• Pseudoinversion: in the control law Eq. (5), in order to avoid inversion problems
in the neighborhood of singularities, the pseudoinversions with exponent # are
done using the Damped Least Square (DLS) method (see [9]), where the damp-
ing factor λ is chosen as 0.50. A common way of computing PJ is given by

2 http://www.boost.org/doc/libs/1 41 0/libs/numeric/ublas/doc/index.htm
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PJ = (I − J #J ); in practice, the DLS method induces an error that distorts the
projection, making the influence of lower priority objectives on upper priority
objectives possible, which is not acceptable in our case. A safe way to compute
PJ can be obtained directly from the SVD of J which provides an access to the
projector on the kernel of J without requiring its inversion (as mentionned in
[10]). For the same reasons, a product (JaPJb)

# is always pre-multiplicated by
PJb .

• Active avoidance: for control laws A and B, the active avoidance threshold is
fixed to 15 cm, the gains are proportional (factor 2.5 10−3) to the inverse of the
distance to the constraint. For the CCC, the active avoidance is fixed to 4 cm,
the gains are the same than for control laws A and B but the maximum value
of the avoidance magnitude δxC is fixed to 0.25 (distance of 1 cm between the
manipulator closest point and the obstacle).

• Distance computation: the distance computation is provided by the collision de-
tection package SWIFT++.3 The information given by SWIFT++ is, for each
segment, the point of the segment that is the closest to the obstacle. The ap-
proach that consists in constraining only the closest point to the obstacle (based
on [4] for the whole manipulator and on [11] for convex segments) is valid in con-
tinuous time. In discrete time, progressive displacements can violate constraints
because of segment rotations. To our knowledge, no work has been carried out on
that topic; a contribution of Kanehiro et al. in [12] deals with not strictly convex
segments, in which the problems are similar to those encountered when getting
from continuous to discrete time. To avoid the effects of this phenomenon, an
envelope of 2 cm has been added around the environment.

• Joint instantaneous displacement limit: δqmax has been fixed to 0.02 rad.

3.2 Results and Analysis

Figures 3 and 4 present the results obtained on the 2 missions with control laws A,
B and CCC. The computation times are given comparatively as they depend on the
implementation and computing power.

• Mission 1: Go around the wall by the left side.

– Control law A. As the behavior is identical to the CCC on mission 1 (see 2.2),
it is not represented in Fig. 3.

– Control law B. The operational position mean error is 3.5 cm, the tracking
is not optimal especially at the end where the effector gets close to the wall:
oscillations are generated due to the thresholds (observable on both graphs)
and the operational error grows up to 13.1 cm.

– Control law CCC. The behavior is identical to control law A: as there is no
collisions when tracking the path with active avoidance at a lower level, the

3 http://gamma.cs.unc.edu/SWIFT++
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Fig. 3 Mission 1 results. Graphs of line 1 are obtained with control B, line 2 with control CCC.

Fig. 4 Mission 2 results. Graphs of line 1 are obtained with control A, line 2 with control B, line
3 with control CCC.
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passive avoidance is not used and the manipulator has the same tracking error
along the trajectory (operational position error inferior to 2.6 cm).

• Mission 2: Join a point behind the wall.

– Control law A. The operational position mean error is 3.8 cm and reaches 35
cm on peaks. When the situation gets overconstrained, collisions occur (the
distances to the obstacle reach 0 for DOFS 4, 5 and 7) as it is not possible
to satisfy tasks and constraints; the peaks on the operational positions comes
from avoidance terms tending to infinity.

– Control law B. The oscillation phenomenon is higher than for mission 1 and
the manipulator remains far from the path (operational position mean error
22.8 cm, max error 59.4 cm)

– Control law CCC. When the manipulator comes close to the environment
(enveloppe distance: 2 cm), the passive avoidance clamps the directions to the
obstacles (point A, B, C and D on the first column graph) and the concerned
segments moves along the orthogonal directions. When the manipulator seems
completely stuck (point E on the second column graph), the scaling step en-
ables little displacements to track as much as possible the desired displace-
ments. Finally, when the direction is inversed (point F on the 3rd column
graph), the manipulator is able to get away from the constraints directly. The
computation time grows up 6.7 times w.r.t. the ones obtained with control law
A on mission 1.

4 Conclusion and Perspectives

The CCC is an iterative control method that solves the hierarchical multi-objective
control problem while satisfying any number of fixed constraints: obstacles, joint
boundaries, joints velocity limits. The passive avoidance principle and the solutions
scaling enables to overcome the drawbacks of active avoidance at the top (optim-
ality loss, oscillations) or at the bottom (constraints violation, infinite terms) of the
hierarchy, while ensuring a computation time low enough to consider its use in real
time on classical manipulators.

The CCC performances can be compared to the one obtained with convex optim-
ization algorithms (even if the latter cannot ensure strict priorities between the hier-
archy levels). As an example, the algorithm QuadProg++4 satisfies the constraints
with a maximum computation time of 3 times the one of control law A. Never-
theless, the insufficiency of the avoidance method (see Section 3.1) added to the
algorithm trend to run along the constraints make the manipulator not able to get
away of the most constrained configuration: it does not track the second part of the
trajectory.

The work perspective includes:

4 http://sourceforge.net/projects/quadprog/
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• The velocity continuity can be handled by including the limits of joint accel-
eration constraints but they introduce incompatibilities with obstacles and joint
position limits; the use of virtual constraints (dampers) is under evaluation.

• Locally, the constraints combination choice can be guided by the constraints cri-
ticity or by favouring combinations retained for previous iterations, etc.

• In a more global scope, this choice can be adapted to the missions and it can
depend on the parts of the robot: active avoidance for better motion capabilities,
passive avoidance to work close to the constraints.
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Abstract. We discuss piecewise rational motions with first order geometric continuity. In addition
we describe an interpolation scheme generating rational spline motions of degree four matching
given positions which are partially complemented by associated tangent information. As the main
advantage of using geometric interpolation, it makes it possible to deal successfully with the un-
equal distribution of degrees of freedom between the trajectory of the origin and the rotation part
of the motion.

Key words: Motion design, geometric interpolation, rational spline motion, geometric continuity.

1 Introduction

Geometric interpolation techniques [1] generate spline curves from given geomet-
ric data, such as points, tangents, and perhaps even curvature information. As an
advantage, they generally require lower polynomial degrees than standard methods.
For instance, a polynomial cubic in the plane can match two points with associated
tangents and curvatures [2], while the interpolation of two points with associated
first and second derivatives needs curves of degree five.

Geometric interpolation techniques are closely related to the concept of geomet-
ric continuity, which generalizes the notion of derivative continuity by eliminating
the influence of the parameterization [3]. The present paper introduces the new no-
tion of geometrically continuous rational spline motions and describes a first geo-
metric interpolation method for motion design using piecewise quartic motions.

Bennett biarcs, which form another subset of the class of quartic rational spline
motions, have recently been used for geometrically interpolating two positions with
associated tangent information [4]. It was observed that the collisions between fixed
planes and moving points (and similar for fixed points and moving planes) can be
detected simply by solving quartic polynomials. However, as a disadvantage, the
class of motions described by Bennett biarcs cannot handle motions with changing
chirality (i.e., orientation of the instantaneous screw motions).
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The method described in this paper uses two segments of rational quartic motions
for interpolating three positions, two of which are complemented by associated tan-
gent information. Compared to Bennett biarcs, they can handle one additional posi-
tion, and no problems with the chirality of the motion are present. Still, the collision
between moving points and fixed planes leads simply to quartic polynomials, while
this is no longer true for collisions between moving planes and fixed points.

The remainder of this paper is organized as follows. In Section 2 geometrically
continuous rational spline motions are presented. The next section introduces the in-
terpolation problem for quartic rational spline motion, and Section 4 provides its ex-
plicit construction together with some numerical examples. The paper is concluded
by some ideas for the future work.

2 Geometrically Continuous Rational Spline Motions

A rigid body motion is described by the trajectory v(t) = (v1(t),v2(t),v3(t))
� of the

origin of the moving system and by the 3×3 rotation matrix R(t). Using quaternions
q = (q0,q1,q2,q3)

�, the rotation matrix R can be represented by

R =
1

q2
0 + q2

1 + q2
2 + q2

3

⎡

⎣
q2

0 + q2
1 −q2

2 −q2
3 2(q1q2 −q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 −q2

1 + q2
2 −q2

3 2(q2q3 −q0q1)
2(q1q3 −q0q2) 2(q2q3 + q0q1) q2

0 −q2
1−q2

2 + q2
3

⎤

⎦ ,

see [5]. The trajectory of an arbitrary point p̂ of the moving system is

p(t) = v(t)+ R(t) p̂. (1)

In particular we are interested in rational spline motions which are obtained by
choosing rational spline (i.e., piecewise rational) functions qi(t) and vi(t) represent-
ing the coordinates of the quaternion and of the trajectory.

Rational motions can be classified by the degree of their trajectories, which is
called the degree of the motion, see [6, 7]. In particular, by considering quadratic
polynomials qi(t) one obtains rational motions of degree four or higher. In order to
obtain rational motions of degree four, the three functions vi should be chosen as

vi =
wi

q2
0 + q2

1 + q2
2 + q2

3

, i = 1,2,3, (2)

where wi are quartic polynomials.
Note that there is a remarkable discrepancy in the number of degrees of freedom

(i.e., free coefficients) which can be used for specifying the rotation matrix and
the trajectory of the origin. The rotation matrix of a quartic motion of this type is
controlled by 11 free parameters (4 (number of qi) ×3 (number of coefficients per
quadratic polynomial qi) −1 (normalization)). On the other hand, the trajectory of
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the origin possesses 3× 5 = 15 degrees of freedom. Consequently, the trajectory of
the origin is far more flexible than the rotation part.

This discrepancy becomes even larger for motions of higher degree. In order
to obtain a motion of degree 2d, the quaternion can be chosen as a polynomial
of degree d with 4(d + 1) coefficients (where one of them can be eliminated by
a normalization). The trajectory of the origin, constructed according to (2), then
provides 3(2d + 1) = 6d + 3 degrees of freedom.

Consider a rational spline curve p(t) with domain I = [0,M], where M is the
number of segments of the curve, and knots (i.e., segment end points) at the integers.
This curve is said to be geometrically smooth of first order (also called G1 or tangent
continuous) if it is continuous (C0) and satisfies

∀s ∈ I◦ ∃λ (s) > 0 : lim
t↓s

p′(t) = λ (s) lim
t↑s

p′(t),

where I◦ denotes the interior of the parameter interval I. In other words, the curve
has a well-defined unit tangent vector everywhere. The proportionality factor λ is
equal to 1 everywhere, except for the knots, where it is assumed to be positive.

We say that a rational spline motion is G1 smooth if all its trajectories (1) are G1

continuous, where additionally the proportionality factors λ are independent of p̂.
This is the case if and only if the curve in 12-dimensional space which is defined
by the components of v(t) and R(t) is G1 continuous. This curve can be considered
as the image of the motion under the kinematic mapping studied in [8]. All point
trajectories are obtained as images of this curve under affine mappings.

3 Interpolation Problem

In the remainder of this paper we consider the following geometric interpolation
problem in motion design. For 2m + 1 given positions, each of which is represen-
ted by the coordinates C j of the origin of the coordinate system along with a nor-
malized quaternion Q j (considered as fourdimensional vector), j = 0, . . .2m, find

a G1 smooth rational spline motion which interpolates these positions. Moreover,
we assume that every second position (with an even index j) is complemented by
associated derivative information t j for the motion of the origin and by u j for the
quaternions. This additional derivative information is either specified by the user or
it can be estimated from the data, e.g., using the methods described in [9].

Note that each rotation can be represented by two normalized quaternions, which
differ by the sign of their components. We choose the signs so that the standard inner
product Q�

j Q j+1 in R
4 is positive.

More precisely, we are looking for seven continuous rational spline functions
v = (v1,v2,v3)

� and q = (q0,q1,q2,q3)
� with domain I = [0,2m] which satisfy the

position interpolation conditions

v( j) = C j, q( j) = ρ j Q j, j = 0, . . . ,2m, (3)
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the tangent interpolation conditions

lim
t↓2k

v′(t) = σk t2k, lim
t↓2k

q′(t) = σk ρ2k u2k, k = 0, . . . ,m, (4)

where for t = 2m the limits from the left must be used, and the G1 conditions

lim
t↓ j

v′(t) = λ j lim
t↑ j

v′(t), lim
t↓ j

q′(t) = λ j lim
t↑ j

q′(t), j = 1, . . . ,2m−1. (5)

The scaling factors ρ j, σk and λ j are unknown and should all be positive.

It should be noted that the G1 conditions are sufficient, but not necessary for
the motion to be smooth. Indeed, they guarantee that the quaternion curve q(t) is
G1, but also certain non-G1-smooth quaternion curves may give tangent continuous
rational motions. Currently we are not aware of any sensible use of these additional
degrees of freedom, and we therefore decided not to use them.

4 Construction of Quartic Rational Spline Motions

In this section, the technique of parabolic geometric interpolation in R
3 will be

used to construct quartic rational spline motions, see [10, 11] for the related dis-
cussion in the space of curves. Since geometric interpolation schemes depend on
the dimension of the space, the quaternion data will be transformed to a particular
three-dimensional subspace, without changing the geometric meaning.

Consider first the case with only two segments, i.e., m = 1. We start with the
construction of the spherical part of the motion. Recall that proportional quaternions
represent the same rotation. We choose ρ0 = ρ2 = 1. By the QR decomposition

[
u0, Q2 −Q0, u2

]
= F U, F :=

[
f1, f2, f3

]
∈ R

4×3, U ∈ R
3×3,

where F�F = I and U is an upper triangular matrix, we obtain an orthonormal basis
{fi}3

i=1 of the threedimensional hyperplane S spanned by u0, Q2 −Q0 and u2.
In order to work in this threedimensional hyperplane, we must choose ρ1 so that

ρ1 Q1 −Q0 ∈ S too. If Q1 −Q0 is already in S , then ρ1 = 1, otherwise

ρ1 =
det(f1, f2, f3,Q0)
det(f1, f2, f3,Q1)

. (6)

Obviously ρ1 will be positive if and only if both determinants in (6) have the same
sign.

In the next step, we construct a parabolic G1 polynomial spline q with knots
0,1,2 satisfying

q(2 j) = Q2 j, q′(2 j) = σ j u2 j, j = 0,1, (7)

380



Geometric Interpolation by Quartic Rational Spline Motions

and
q(1) = ρ1 Q1, lim

t↓1
q′(t) = λ1 lim

t↑1
q′(t). (8)

Clearly, the standard parabolic interpolation scheme in R
3 does not provide enough

freedom to solve this problem, thus the geometric interpolation technique must be
applied (for general geometric methods see e.g. [1]). Let q j := q|[ j, j+1], j = 0,1, be
the quadratic polynomial pieces of q (segments of parabolas). They can be written
in Bernstein–Bézier form as

q0(t) := Q0 B2,0 (t)+ Q01 B2,1 (t)+ ρ1 Q1 B2,2 (t) , (9)

q1(t) := ρ1 Q1 B2,0 (t −1)+ Q12 B2,1 (t −1)+ Q2 B2,2 (t −1) , (10)

where Bn,i(t)=
(n

i

)
ti(1−t)n−i are the Bernstein basis polynomials of degree n. Basic

properties of Bézier curves (see e.g. [3]) imply

q′
0(0) = 2(Q01 −Q0), q′

1(2) = 2(Q2 −Q12).

Now (9) and (10), along with the interpolation conditions (7), lead to

Q01 = Q0 +
1
2

σ0 u0, Q12 = Q2 −
1
2

σ2u2. (11)

The G1 condition (8) can be rewritten as

Q12 −ρ1 Q1 = λ1(ρ1 Q1 −Q01)

and (11) finally gives the nonlinear system

−1
2

λ1σ0u0 + λ1∆Q0 +
1
2

σ2u2 = ∆Q1

for σ0,σ1,λ1, where ∆Q0 := ρ1 Q1 −Q0 and ∆Q1 := Q2 −ρ1 Q1. Fortunately, this
system can be transformed into to the linear form

F� [
− 1

2 u0, ∆Q0,
1
2 u2

]
⎡

⎣
λ1 σ0

λ1
σ2

⎤

⎦ = F�∆Q1,

and Cramer’s rule yields

σ0 = 2
D1

D2
, σ2 = 2

D4

D3
, λ1 =

D2

D3
, (12)

where D := F� [
u0, ∆Q0, ∆Q1, u2

]
, and Di is the determinant of the submatrix of

D with i-th column omitted.
The sufficient and necessary conditions for σ0, σ2 and λ1 to be positive is that all

determinants Di, i = 1,2,3,4, have the same sign.
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Fig. 1 Geometric construction of control points Q01 and Q12 given by (11).

There is also a simple geometric interpretation of this solution (see Figure 1). Let
Σ0 be the plane spanned by ρ1 Q1 and the line �0 through Q0 in the direction of u0.
Further, let Σ1 be another plane defined by ρ1 Q1 and the line �1 through Q2 in the
direction of u2. This two planes determine the line which intersects �0 and �1 in Q01
and Q12, respectively. The solution is admissible if this two intersections lie on the
proper sides of the points Q0 and Q2.

We are now left to construct the trajectory v of the origin of the moving coordin-
ate system. Let v be composed of two quartic rational spline curves v j,

v j := v|[ j, j+1], v j =
w j

r j
, r j := ‖q j‖2, j = 0,1,

where w0, w1 are the unknown polynomial curves of degree ≤ 4, and q0,q1 are
obtained from the interpolation of the rotational part. Note that the parameters
σ0,σ1,λ1 are already fixed by (12). The interpolation conditions (3), (4) and (5)
clearly do not provide sufficiently many equations to uniquely determine w0,w1.
One way to use the additional freedom is to to restrict w j to a cubic polynomial and
prescribe also the tangent direction t1 at C1. Then a standard cubic interpolation
scheme can be applied to determine w j, j = 0,1, that satisfy

w j(k) = r j(k)Ck, k = j, j + 1, j = 0,1,

and

w′
0(0) = r0(0)σ0 t0 + r′0(0)C0, w′

0(1) = r0(1) t1 + r′0(1)C1,

w′
1(1) = λ1 r1(1) t1 + r′1(1)C1, w′

1(2) = σ2 r1(2) t2 + r′1(2)C2.
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Fig. 2 Motion of a cube with seven interpolated positions.

Fig. 3 Motion of a cube with seven interpolated positions (left) and the trajectories of corners of
one side of the cube (right).

The presented scheme for m = 1 is clearly entirely local. Consequently, for m > 1,
it can be applied on consecutive pairs of segments. This gives a G1 rational quartic
spline motion.

Let us demonstrate the performance of the presented interpolation scheme by
some numerical examples.

Figure 2 shows the motion of a cube with seven interpolated positions. The input
data were the positions of the center and the unit quaternions which corresponds
to the rotations. The directions t j were estimated using local parabolas (Bessel
scheme), and the quaternion directions u j were obtained as proposed in [9]. Fig-
ure 3 shows another motion of a cube together with the trajectory of corners of one
side of the cube.

5 Conclusion

This paper was devoted to piecewise rational motions with first order geometric
continuity. As an application of these motions we described an interpolation scheme
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which generates rational spline motions of degree four from a sequence of given
positions, some of which are complemented by associated tangent information. As
demonstrated by the results, the use of geometric interpolation makes it possible to
deal successfully with the uneven distribution of the degrees of freedom between
the trajectory of the origin and the rotation part of the rational motions.

Future work will focus on the asymptotic behaviour of the interpolation scheme,
where we plan to analyze the relation between the sampling density (i.e., the dis-
tance between the positions which are to be interpolated) and the behaviour and
existence of the interpolating motion, and on the extension of these concepts to mo-
tions with higher order of smoothness.
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7. Röschel, O.: Rational motion design – A survey. Comput. Aided Design 30(3), 169–178
(1998).

8. Rath, W.: A kinematic mapping for projective and affine motions and some applications.
In: Dillen, F. et al. (Eds.), Geometry and topology of submanifolds, VIII. World Scientific,
pp. 292–301 (1996).
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Abstract. Atlas is a novel six degree of freedom vehicle simulator motion platform where ori-
enting is decoupled from positioning, and unbounded rotation is possible about any axis. Angular
displacements are achieved by manipulating the spherical exterior of the cockpit with three omni-
wheel actuators. A significant challenge to practical implementation of the design is dynamic slip
at each omniwheel-sphere interface. The dynamic slip renders the velocity level constraints non-
holonomic, in turn meaning that the position level kinematics are undefined. This paper proposes a
numerical integration algorithm to provide an estimate of the platform orientation. The algorithm
is based on solving the associated quaternionic differential equation given constant omniwheel an-
gular rates. For sufficiently small time intervals of changing omniwheel rates, the algorithm can be
applied recursively to estimate the sphere position level kinematics given omniwheel angular velo-
city as input. Experimental results suggest that dynamic slip may be identified and compensated.

Key words: Unbounded angular displacement, position and velocity level kinematics, quaternionic

differential equation. nonholonomic constraints.

1 Introduction

The Atlas motion platform [1] was introduced as a practical alternative to the
Stewart–Gough hexapod [2, 3], used principally for motion simulator platforms. A
table top technology proof-of-concept demonstrator is illustrated in Fig. 1. The At-
las concept consists of a cockpit encased in a sphere which rests on three omni-
directional wheels. The three omnidirectional wheels are arranged on the edges of
an equilateral triangle giving an angular separation of 120◦ in the XY -plane, see
Fig. 2(b). The elevation angle of each omnidirectional wheel relative to the XY -
plane is 40◦. The reason for the equilateral configuration is to achieve even force
and torque distribution on the omnidirectional wheels, however the elevation angle
of 40◦ was selected for ease of manufacturing and assembly. The sphere/omniwheel
assembly is connected to three independent linear motion stages. The omniwheels
control the orientation of the sphere, while the linear stages provide for the transla-
tion of the platform along all three linear axes. This allows for a full six degree of
freedom (DOF) motion with unbounded rotation about any axis.

Department of Mechanical and Aerospace Engineering, Carleton University,
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Fig. 1 The Atlas table-top 6-DOF demonstrator highlighting the omnidirectional wheel actuation
concept.

The Atlas motion platform is not unique in its ability to provide unbounded angu-
lar displacement. For example, the Eclipse II architecture [4] possesses this ability.
However, uniqueness of the Atlas platform lies in its kinematic model, which leads
to remarkably simple, closed form velocity closure equations. Moreover, its orient-
ation workspace is not constrained by structural interferences, or rotation limits of
the spherical joints, compared to the Eclipse II.

One of the principal challenges for the Atlas concept is that the kinematics have
so far only been defined at the velocity level [5]. The position level kinematics are
undefined because the velocity constraints are nonholonomic due to the presence of
dynamic slip at the omniwheel-sphere interface [6]. This paper presents an approach
to estimate the Atlas platform orientation, starting from the velocity level kinemat-
ics derived in [5]. The approach consists of integrating the quaternionic differential
equation [7,8] assuming constant omniwheel angular velocity inputs. Measurements
obtained from experiments yield information on how well the the quaternion solu-
tion estimates the orientation of the sphere for constant omniwheel speeds. A simple
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Fig. 2 Configuration of the original Atlas spherical platform: (a) front view; (b) bottom view.

recursive algorithm for estimating orientation given nonconstant velocity inputs is
also put forward.

2 Atlas Velocity Level Kinematic Model

The velocity level kinematic model of the Atlas platform is derived in detail in [5],
and is briefly summarized in what follows. The translational displacements gener-
ated with the XYZ linear platform are completely decoupled from the rotational
displacements of the sphere. Modelling the linear velocity of the geometric centre
of the sphere is straightforward and typically represented as a simple linear term
which must be added to the more demanding spherical kinematic model. Therefore,
without loss in generality, only the spherical kinematics need be considered here.

It is convenient to perform velocity analysis of a manipulator with its Jacobian. It
is, by definition, a mapping between time rates of change. By convention, in robotics
it is the mapping between the time rates of change of the joint variables to the time
rates of change of the position and orientation of the end effector [9].

Changes in orientation of the Atlas motion platform are achieved with three act-
ive omnidirectional wheels arranged on the edges of an equilateral triangle giving
an angular separation of 120◦ in the XY -plane, see Fig. 2(b). The elevation angle of
each omnidirectional wheel relative to the XY -plane is θ = 40◦. The radius of the
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table top demonstrator sphere is R = 10.16 cm, while the radius of each omniwheel
is r = 2.00 cm.

For this configuration of omnidirectional wheels the resulting mapping between
the velocities in joint space and those in Cartesian space is:

� = Jω = r

3R

⎡

⎣

−2 csc θ csc θ csc θ

0
√

3 csc θ −√
3 csc θ

− sec θ − sec θ − sec θ

⎤

⎦

⎡

⎣

ω1
ω2
ω3

⎤

⎦ , (1)

where � is the angular velocity vector of the sphere expressed in the inertial sphere
coordinate system illustrated in Fig. 2, J is the Jacobian of the manipulator, and ω is
the array of angular rates of the three actuating omniwheels, r represents the radius
of the omniwheel (assuming all three to be equal), R is the external radius of the
sphere, and θ is the elevation angle of each omniwheel. Substituting the numerical
values for r , R, and θ leads to

J =
⎡

⎣

−0.2042 0.1021 0.1021
0 0.1768 −0.1768

−0.0856 −0.0856 −0.0856

⎤

⎦ . (2)

Inspection of the system Jacobian expressed by either Eq. (1) or Eq. (2) reveals
that, unlike typical manipulator Jacobians, J is time invariant and depends only on
design constants. These constants can be chosen such that the Jacobian will possess
full rank and that the orienting workspace of the sphere is configurationally singu-
larity free. Moreover, because the sphere can have any orientation about any point
within reach of the sphere centre, the reachable workspace is fully dexterous.

Because the Jacobian of the system is time invariant and constant, once the con-
figuration has been determined, acceleration-level kinematics can be obtained by
simple differentiation of the expression, yielding:

�̇ = Jω̇. (3)

3 Atlas Position Level Kinematic Model

Obtaining the expression for the orientation of the platform, however, is not as
simple. In this work quaternions are employed because the unbounded and singularity-
free nature of the design calls for a singularity-free representation. Integration of the
quaternionic differential equation is required [8]:

q̇ = 1

2
� ◦ q, (4)

where q is the unit quaternion describing the orientation of the system, and � ◦ q is
a quaternion product.

The quaternion product can be expressed as a matrix product [7]:
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dq
dt

= Fq(�)q, (5)

where Fq(�) is a skew symmetric matrix of the sphere angular velocities expressed
in the sphere inertial coordinate system, and is defined to be:

Fq(�) = 1

2

⎡

⎢
⎢
⎣

0 −�x −�y −�z

�x 0 �z −�y

�y −�z 0 �x

−�z −�y −�x 0

⎤

⎥
⎥
⎦

. (6)

Equation (5) yields a set of four simple ordinary differential equations. If the angular
velocity � is constant and the initial conditions q(t0) are known, then the solution
to Eq. (6) can be written as [10]

q(t) = φq(t0, t,�)q(t0), (7)

such that the transition matrix is

φq (t0, t,�) = eFq(�)�t = cos (‖�‖�t/2)I + 2
sin (‖�‖�t/2)

‖�‖ Fq(�), (8)

with �t = t − t0, and ‖�‖ =
√

�2
x + �2

y + �2
z .

The solution represented by Eq. (7) can be expressed as the quaternion product

q(t) = q(t0) ◦ φq(t0, t,�), (9)

or

q(t) =

⎡

⎢
⎢
⎣

q(t0)1 −q(t0)2 −q(t0)3 −q(t0)4
q(t0)2 q(t0)1 −q(t0)4 q(t0)3
q(t0)3 q(t0)4 q(t0)1 −q(t0)2
q(t0)4 −q(t0)3 q(t0)2 q(t0)1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cos ‖�‖t
2

�x

‖�‖ sin ‖�‖t
2

�y

‖�‖ sin ‖�‖t
2

�z

‖�‖ sin ‖�‖t
2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (10)

Given the magnitudes of the three omniwheel angular rates, the corresponding
angular velocity of the sphere is determined using Eq. (1). The subsequent orienta-
tion of the sphere at any time t after an initial time t0 is then estimated using Eq. (10),
ignoring the effects of dynamic slip.

4 Experimental Validation

To validate the solution provided by integrating the quaternionic differential equa-
tion, several simple cases were examined where omniwheel constant angular rates
were specified and the corresponding sphere angular velocity was measured. For the

389



R. Beranek and M.J.D. Hayes

first three, each angular velocity was selected such that it caused the sphere to spin
about one of its inertial axes according to Eq. (1). The resulting motion of the table
top demonstrator (Fig. 1) observed appeared to be consistent with the model.

To validate Eq. (10) an arbitrary axis for the rotation of the sphere was selected
using arbitrary constant angular velocities for each omniwheel. The sphere motion
predicted by Eq. (10) was compared to motion data recorded. The measurement sys-
tem consists of a three axis gyroscope (MicroStrain 3DM-GX1) mounted inside the
sphere and a camera-based external motion system that tracks the relative displace-
ment of markers on the surface of the sphere, see Fig. 3. Ideally, the nondeterministic
gyroscope drift is zeroed with data from the external camera-based system and the
internal sensor data are fused using unscented Kalman filter techniques [11]. How-
ever, the vision system is not functioning reliably yet and only gyroscope data is
currently available.

Several experiments were run where omniwheel angular rates were specified and
the resulting motion of the sphere was tracked and recorded as output from the three
axis gyroscope. The time history of the angular displacements about the sphere in-
ertial axes that was predicted is in the same ball park as those measured for all runs.
Results, comparing predicted and measured orientation about the inertial coordinate
system, from a run where the three omniwheel angular velocities were prescribed
as [ω1, ω2, ω3] = [5,−5, 5] rads/s are illustrated in Fig. 4. The relatively large
tracking drift in yaw, pitch, and roll is likely due to the nondeterministic drift of the
gyroscopes. However, it may also be partly due to random errors associated with
dynamic slip and variation in omniwheel angular velocities. Nevertheless, the res-
ults suggests that position level kinematics modelled by Eq. (10) are representative
of the physical system if the dynamic slip is identified with the measurement system
and compensated.

Fig. 3 Sphere orientation measurement system.
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Fig. 4 Predicted and measured sphere angular velocities.

5 Orientation Estimate for Nonconstant Velocity Inputs

The solution determined with the integration of the quaternionic differential equa-
tion is only valid for constant omniwheel angular velocities. Regardless, this solu-
tion can be used in a numerical integration algorithm to provide an estimate of the
sphere orientation for a general trajectory. The relation expressed by Eq. (9) can be
used to construct a recursive estimate. Consider

q(k) = q(k − 1) ◦ φq (�t,ω(k − 1)), (11)

where k is a time index and �t is the time interval between omniwheel velocity
measurements.

The solution is therefore a recursive estimate where the orientation is an ex-
trapolation given the previous angular velocities of the omniwheels and previous
orientation at time k − 1. For sufficiently small �t , the assumption that the motion
between time steps is linear may be used and a reasonable estimate of the sphere
orientation can be obtained for any general set of omniwheel angular velocities over
an arbitrary trajectory.

6 Conclusions

Because of the presence of dynamic slip at each sphere-omniwheel interface, the
velocity level kinematic constraints of the Atlas sphere are nonholonomic. The ori-
entation of the sphere at any time t given constant omniwheel angular velocity inputs
can be predicted using the solution to a quaternion based differential equation. The
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predicted time history of the change in orientation of the sphere possesses the same
tendencies as the measured change in orientation, however measured values tend
to drift, and there appears to be some bias about some inertial coordinate system
axes. The drift may give an indication of error imposed by the dynamic slip, and
could possibly be used for error correction, however the gyroscope drift must first
be zeroed.

This solution can also be adapted to a numerical integration algorithm which can
effectively be used as a general solution to the platform kinematics, providing an
estimate of the platform orientation for any set of varying omniwheel input. This
may allow for a good estimate of the orientation that could, in combination with the
measurement system, be used in the control algorithm for the platform. Future work
will focus on experimental validation of the constant angular velocity solution as
well as validation of the proposed numerical solution.
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Abstract. A path planning for the LARM clutched arm is presented. As a low-cost easy-operation
solution for humanoid robots, the LARM clutched arm is a novel robotic arm with only one ac-
tuator and a 3D workspace. An algorithm is proposed for path planning of the arm motion with
multi-objective criteria that takes into account the clutch and motor controlled motion capability.
Numerical examples are reported to show the feasibility of the proposed path planning and the
efficiency of the LARM clutched arm.

Key words: Humanoid robots, robotic arms, clutch systems, path planning.

1 Introduction

Nowadays, most of the robotic arms are designed as multi-actuator systems to mimic
the DOFs of human arms. They act quite flexibly and human likely, but they are
very expensive and complicated systems for no expert users. It is possible to design
robotic arms with less DOFs in order to reduce the cost and complexity of robotic
arms. Reduced number of actuators can be achieved with specific alternative design,
as the nonholonomic manipulators [1], or by using clutches, as attempted in [2].

Recently, a new robotic arm that has been named as LARM clutched arm, has
been proposed in [3, 4]. Karbasi’s design in [2] is a modular drive system as a tras-
mission solution rather than a robot system as it is the case for LARM arm, in which
all the clutches and actuator have been integrated in a small sized shoulder mech-
anism for humanoid robots. The key functionality of the clutches in the mechanical
design of LARM design is aimed to transmit a controlled rotation from the actuator,
while Karbasi’s design is aimed to regulate the output velocity with a constant input
rotation of the actuator by PWM controllers.

In this paper, the problem of path planning is formulated as based on a proper
operation for the actuator and clutches to obtain an optimum arm movement. The
proposed path planning algorithm takes into account the discrete motion features of
LARM clutched arm, which is different from the path planning of traditional robot
arms.
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Fig. 1 The proposed LARM clutched arm: (a) scheme; (b) dynamic mode; (c) prototype.

Fig. 2 The clutch system in the arm shoulder: (a) scheme; (b) prototype.

2 The LARM Clutched Arm

As shown in Fig. 1, the proposed new robotic arm has only one motor, but it can
move in a 3D space. The three rotations of the arm motion have been defined as R1
to R3 respectively. θ1 to θ3 are the corresponding joint angles. Li (i = 0–4) are the
link lengths of the arm structure. It is a gearing system consisting of spur gears, bevel
gears, belt wheels, worms and worm wheels. For details, see [1]. Electromagnetic
clutches Ci (i = 1–3), activate the gear train for R1, R2 and R3 rotations, respectively.
The self-locking feature of worm couplings is used for locking the rotations when
clutches are released.
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Table 1 The operation modes for LARM clutched arm.

Operation Mode Active Rotation C1 C2 C3

OP0 none 0 0 0
OP1 R1 1 0 0
OP2 R2 0 1 0
OP3 R3 0 0 1
OP4 R1&R2 1 1 0
OP5 R1&R3 1 0 1
OP6 R2&R3 0 1 1
OP7 R1&R2&R3 1 1 1

Table 1 lists the possible operation modes for the arm, where “0” means that a
clutch is disconnected and “1” a clutch is connected. OP1 to OP7 can give positive
and negative motions as depending on the rotating direction of the motor. Con-
sequently, in the path planning, operation modes can be indicated as OP = +i (i = 0
to 7), where the sign refers to the direction of the corresponding joint angles.

Thus, LARM clutched arm has the following novel characteristics:

• light-weight limb design, with low cost, low energy consumption, and easy-
operation;

• 1-DOF clutched design with seven operation modes in a 3D space;
• avoiding overheat of motor, since the motor works only for actuating the arm but

not for maintaining its posture once the arm stops.

3 Formulation for Path Planning

As a 1-DOF solution, the LARM clutched arm moves discretely. The seven oper-
ation modes OP1 to OP7 in Table 1 can be expressed as simple vectors to plan
motions in Joint-Space.

The kinematic model of LARM clutched arm can be considered as a two-
link planar manipulator rotating around the Y axis with the radial distance of L1,
Fig. 1(a). The rotating plane for upper arm and forearm is defined as S-plane with
coordinate frame XsYs as shown in Fig. 1(a). The coordinates of the manipulator
endpoint H can be formulated by using expressions as function of the kinematic
variables that require the FKP (Forward Kinematic Problem) and the IKP (Inverse
Kinematic Problem) for LARM clutched arm to be solved. Referring to the motion
range of the prototype, the LARM clutched arm has the following constraints as

θ1 ∈ [−50deg,130deg],θ2 ∈ [−150deg,90deg],θE ∈ [5deg,150deg], (1)

in which θE = θ3 −θ2 is the angle for elbow as shown in Fig. 1(a).
Figure 3 illustrates general characteristics for the movement of the LARM

clutched arm. The prescribed task is given by the start and end points of the tra-
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Fig. 3 Characteristics of the movement of LARM clutched arm.

jectory. Traditionally, the path planning task for a manipulator with nDOFs can be
described using n knots in the trajectory of each kth joint of the manipulator [5].
However, for the LARM clutched arm, the traditional way is not suitable, since it
has only one actuator.

In Fig. 3, the arm moves from start point to end point in three segments (SG1-
SG3). Used operation modes for this path are OP2, OP6 and OP3 sequentially as
shown in Fig. 3(b). When a certain operation mode has been set, the single motor
works to output a desired angular displacement for one segment. ts in Fig. 3(b) is
the so-called mode setting time for each segment, which is necessary to make sure
clutches have been set into the desired states before the motor runs. In order to have
a smooth motion for each segment, the motor is controlled with a cubic function for
angular speed.

Therefore, the path planning task for the LARM clutched arm is to seek a proper
sequence of segments with certain operation modes and angular displacements.
Consequently, variables of the path planning for LARM clutched arm are: OP, op-
eration mode; D, angular displacement; n, number of segment.

In order to reduce time and energy consumption in a path planning for the LARM
clutched arm minimum travelling time and minimum mechanical energy of actuator
can be considered together in a multi-objective function as

min f = w1Ttra + w2Wact

subject to constraints in Eq. (1), (2)

where Ttra is the travelling time and Wact is the mechanical energy of actuator, w1, w2
are weighting factors with the condition 0 ≤ w1 ≤ 1 and w1 +w2 = 1. The travelling
time Ttra can be formulated as

Ttra =
n

∑
k=1

tk (3)
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with tk = ts + 2
√

Dk/aAV , in which, tk is the travelling time for kth segment, Dk is
the displacement of motor for kth segment, aAV is the average acceleration for motor
speeding up.

Figure 1(b) illustrates a dynamic model for the LARM clutched arm, which con-
sists of link2, link2′, link3, link3′ and a payload. Mass centres of links can be iden-
tified as shown in Fig. 1(b). τ2, τ3 are actuating torques for rotations about θ2, θ3
respectively, which can be computed from

[
τ2
τ3

]
=

[
M11 M12
M21 M22

][
θ̈2
θ̈3

]
+

[
C1
C2

]
(4)

with

M11 = (m2/2 + m3 + mp)L2
2, M12 = J cos(θ3 −θ2)/4,

M21 = M12, M22 = m2L2
4 + m3(L3 + L4)

2 + m4L2
4/4 + mpL2

3,

C1 = −Jθ̇ 2
3 sin(θ3 −θ2)/4 +(m2 + m3 + mp)gL2 cosθ2,

C2 = Jθ̇ 2
2 sin (θ3 −θ2)/4− [m2L4 −m3(L3 −L4)+ m4L4 −2mpL3]gcosθ3/2,

J = −2m2L2L4 + m3(L3 −L4)L2 + 4mpL2L3, (5)

where m2 is the mass for link2 and link2′; m3, m4 and mp are masses for link3, link3′

and payload, respectively. L4 is the link length of link3′.
If energy losses in the joints and gear trains are assumed to be negligible, the

mechanical energy of actuator can be computed as the output mechanical energy in
the form

Wact =
n

∑
k=1

[∫ tk

0
(|τ2θ̇2|+ |τ3θ̇3|)dt

]
(6)

The LARM clutched arm does not move smoothly like those robotic arms with
multi-actuators, since it has limited operation modes. However, an optimum path
planning can be achieved by using limited options in a search reduced space. A*
search algorithm can be suitable to solve the path planning problem for LARM
clutched arm, since it solves the optimization path by using a heuristic function in
order to search among the path possibilities as few as possible [6].

A flowchart of the proposed path planning with A* algorithm is shown in Fig. 4,
where a node is a defined data structure with attributes of the coordinate in Joint
Space, the current operation mode, the current travelling time and the current energy
consumption. A father node is the selected node which can generate son nodes with
the proposed operation modes in Table 1.

4 Numerical Examples

Numerical simulations of the proposed path planning have been computed with dif-
ferent value of weight factors, as listed in Table 2. For these examples, the start point
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Fig. 4 A flowchart for the proposed path planning.

Table 2 Results of numerical simulations of the path planning in Fig. 4.

Objective Function Travelling Time (s) Work by Actuator (J)

f = Ttra 1.8130 27.4893
f = Wact 19.6518 1.6807
f = 0.5Ttra +0.5Wact 13.1050 3.0094
f = 0.9Ttra +0.1Wact 5.8556 3.0094

is (θ2 = −90 deg, θ3 = 0 deg) while the end point is (θ2 = −50 deg, θ3 = 30 deg).
Link lengths for L0 to L4, are 1.0, 0.15, 0.3, 0.25 and 0.05 m, respectively. Masses
for m2 to m4 and mp are 0.3, 0.3, 0.05 and 1.0 kg. aAV is 8,000 deg/s2.

The path with minimum travelling time and maximum work by actuator is ob-
tained when the objective function only considers travelling time. On the contrary,
the path with minimum work by actuator and minimum travelling time is obtained
when the objective function only takes into account the energy. It means that the
criteria of Ttra and Wact are competitive to each other. Thus, with the objective func-
tion considering simultaneously both the criteria, the path can be computed as a
compromising result. Moreover, the solution for the multi-objective function can
converge to a result with a minimum for Wact only. Therefore, in order to have
a good performance both in travelling time and energy consumption, the weight-
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Fig. 5 Planned path with f = Ttra (dotted line) and f = 0.9Ttra +0.1Wact (gross line): (a) in Joint-
Space; (b) in Cartesian Space.

Fig. 6 Time sequence in the path planning with f = T (dotted line) and f = 0.9Ttra + 0.1Wact

(gross line).

ing factor for Ttra should be bigger than that for Wact . As shown in Table 2, the
travelling time is optimized properly with f = 0.9Ttra + 0.1Wact more than with
f = 0.5Ttra +0.5Wact . Nevertheless, the two cases show the same work for the actu-
ator.

Figure 5 illustrates the computed optimum path both in Joint Space and in
Cartesian Space. The dotted line indicates the path with f = Ttra, while the gross
line indicates the path with f = 0.9Ttra + 0.1Wact . For a short travelling time, the
LARM clutched arm moves along the shortest path with large segments by using
few operation modes. Nevertheless, when the energy criterium is considered, the
LARM clutched arm moves with short segments by changing operation modes fre-
quently, as shown in the path with f = 0.9Ttra + 0.1Wact .
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Figure 6 illustrates the solved path planning, in which the time evolution of 2,
3, motor speed and operation modes have been reported. Similarly, the dotted lines
are for the procedure with f = Ttra, while the gross lines are for the procedure with
f = 0.9Ttra + 0.1Wact . The discrete motion feature of the LARM clutched arm can
be recognised from the time evolution of operation modes, where the integer num-
ber i indicates the implemented operation mode OP. Because of the smooth motor
speed with the cubic function, the evolution of 2 and 3 are still smooth enough for
anthropomorphic applications.

5 Conclusions

A formulation of point-to-point optimum path planning for LARM clutched arm
has been proposed as a multi-objective optimization problem with considerations
of both mechanical work of actuator and travelling time, by taking into account the
peculiar design and operation of the clutched system. Numerical results have shown
the engineering feasibility of the proposed formulation for practical applications.
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Abstract. We developed a simple kinematic model of a human body for real-time visualization
applications in graphical virtual environments. For practical reasons a reduced number of active
markers in optical measurements were employed to assess the values of joint variables, which
caused computational issues in the configurations of the model that involved kinematic singular-
ities. A method of handling the singularities by using simple algorithms is presented, enabling
smooth and natural-appearing movements of the virtual figure without significantly affecting the
natural ranges of human-like motion. The applicability of the model is demonstrated by a virtual
mirror – a virtual reality application for real-time visualization of body movements enabling a
visual feedback – which is useful in medical and performance studies.

Key words: Human modelling, virtual environment, kinematic singularity, motion visualization.

1 Introduction

Assessment, parameterization, and visualization of the human body movements are
of utmost importance in modern analysis and diagnosis of various structural and
functional pathologies, in rehabilitation, as well as in human movement science of
sporting activities, ergonomics, bionics, and humanoid robotics [1]. Computer-aided
modelling and simulation provide possibilities of novel approaches in the field of
human motion analysis and synthesis. Accurate computer models and simulations
enable the studies of motion patterns and parameters analytically as well as numer-
ically, that were not feasible with classic techniques (photometry, accelerometry).
Results are made readily accessible in cases where in vivo measurements and in-
vestigations are not possible.

Kinematic model can be used for visualization of the human body in the third-

parts of it is observed on the computer screen from an external point of view. The
figure can be placed into a three-dimensional virtual environment which is a model
of the real physical environment with various objects of varying complexity. The
concept of model visualization in virtual reality has recently entered the field of

person virtual environments where a virtual figure representing the whole body or
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rehabilitation with notable success where it enables safer therapy, increased motiv-
ation of the patients, and enhanced engagement and interaction with the therapists
[2]. Real-time functionality of the virtual environment is a critical feature since it
engages the patient’s biofeedback and provides augmented information that may be
included in the visual feedback loop, which can lead to improvement of the overall
rehabilitation outcome.

Computer model for visualizing the kinematical structure is based on a geo-
metrical model. Real-time visualization of the human body involves measurements
whose difficulty depends on the complexity of the model and accuracy requirements.
It is not uncommon in human modelling that acquiring the adequate measurements
and proper assessment turn out to be among the most challenging aspects of the
process. In biomechanics, the use of special cameras in conjunction with passive or
active markers is a well-established and commonly used technique. A large number
of markers are required for a mathematically complete description of the configur-
ation of kinematic structure as complex as human body; however, this number can
be significantly reduced by presuming a set of geometric constraints and introdu-
cing the corresponding simplifications while retaining the kinematic versatility of
the model. As a consequence, a complete description in certain configurations of
the kinematic structure is not computable – the problem occurs in singular poses of
the consecutive segments of the body.

In the paper we will present a kinematic model of the human body, a procedure to
assess the complete configuration of the structure from optical measurements using
a reduced set of markers, and a method to minimize the effects of indefiniteness in
the singular poses of consecutive segments by adaptively suppressing the redundant
degrees of freedom (DOF). The applicability of the model and the method will be
demonstrated in a real-time virtual environment.

2 Human Body Kinematics

The presented kinematic model is designed primarily for visualization of the human
figure in a virtual environment on a whole-body scale. The complexity is governed
by the requirements of real-time operation on one side, whereas preserving the ne-
cessary number of DOF for convincing representation of the natural human-like
motion on the other side. Proximal joints (hips and shoulders) are represented as
close approximations of the real joints, while distal joints (fingers, wrists, ankles)
are simplified accordingly. The model features hinge and spherical joints whose
configuration is given by one and three parameters, respectively.
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Fig. 1 Kinematic model (left), zero-configuration (middle), and marker placement (right).

2.1 Kinematic Model

Human body is represented as a mechanism with a tree-structured kinematic chain
shown in Fig. 1 (left), comprised of 13 rigid segments representing the feet, shanks,
thighs, pelvic segment, torso, upper arms, forearms, and head. The ankles, knees,
and elbows are represented by 1-DOF hinge joints. The hips, shoulders, and joints
connecting the pelvic segment with torso and torso with the head, respectively, are
represented by 3-DOF spherical joints. The base of the mechanism is represented
by the pelvic segment which can move in space freely and therefore has 6 DOF.
The kinematic model has 24 articulated rotational DOF in total, with addition of
the 3 rotational DOF and 3 translational DOF of the pelvic segment which define
the position and orientation of the body with regard to the reference coordinate
system. We used a method based on vector parameters to compute direct kinematics
of the presented mechanism [3]. The placement of the coordinate systems and zero-
configuration of the mechanism are shown in Fig. 1 (middle).

2.2 Motion Assessment

The assessment of angles of the adjoining segments must be provided in order to
transfer the motion of the body to the virtual environment. In theory, at least 3 fixed
points should be defined on each rigid segment determining its exact position and
orientation in space. By presuming the underlying kinematic structure, the number
of fixed points can be reduced substantially if chosen in accordance with geometric
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constraints of the model. 18 points were defined representing the anatomic land-
marks on the human body as shown in Fig. 1 (right), enabling the computation of
joint variables for all DOF of the model.

The positions of these points were determined by measuring the positions of
active markers placed accordingly, using the OPTOTRAK system (Northern Di-
gital Inc.) with a 70-Hz sample rate. The position and orientation of the pelvic
segment was determined from the three markers placed over the posterior superior
iliac spines (PSIS) and lower edge of the sacrum. In addition, the positions of the
PSIS and sacral markers were used to calculate the centers of the hip joints [4]. The
midpoint between the hip joints was considered as the base point. One marker was
placed on the skin at the approximate center of rotation of each metatarsophalangeal
(MTP) joint, knee, ankle, wrist, elbow, and shoulder in order to determine the posi-
tions of the underlying joints, respectively. Two markers were placed symmetrically
above the ears, determining the pose of the head.

The position of the body was represented by the position coordinates of the pelvic
base point. Vector cross-product operations were applied to the consecutive body-
segment vectors to obtain the segment coordinate systems, and the corresponding
axes and angles of joint rotations.

2.3 Singularity Handling

Using the proposed angle-determination method is applicable in most configurations
of the normal ranges of motion of human joints except in full extension of the elbow
and knee. Full extension of the joint corresponds to the singular pose of the model
which causes computational issues; the model behaves as having one articulated
DOF less. The direction of the vector product of two collinear vectors representing
consecutive segments in the singular pose is not defined unambiguously, making it
impossible to calculate the direction of the resulting rotation axis. Full extension
of the elbows and knees is common in the activities of daily living; hence, the issue
with singular poses should not be neglected. We will first demonstrate the procedure
for handling the singularity in the elbow joint which is simpler and then expand the
solution to knee and ankle joints. The calculations are presented for the left arm and
leg.

The elbow angle is defined by the coordinate vectors representing the upper arm
LA and forearm LH, determining the axis of rotation yLH via their vector product as
shown in Fig. 2 (left, top). The magnitude of this vector product is used as a measure
of proximity of the singular pose:

|zLH × zLA| = |zLH ||zLA|sinθ . (1)

Since both coordinate vectors are of magnitude 1 by definition, the magnitude of
their vector product amounts to sin θ . As the angle approaches the value kπ (singu-
larity) the magnitude of vector product approaches 0, whereas the maximal value of
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Fig. 2 Directions of rotation axes: arm (left) and leg (right).

1 is reached at angle values of θ = kπ + π
2 . The direction of the y axis is therefore

indefinite in the singular poses. We define a new supplementary axis yLS:

xLS = yT × zLA, (2)

yLS = zLA ×xLS. (3)

The yLS axis points in the same direction as the y axis of the shoulder joint would
have, if the rotation about the zLA axis of the upper arm was not possible, i.e. in case
of only 2 DOF shoulder joint, as defined by the position of the elbow marker and the
orientation of the torso (yT ), shown in Fig. 2 (left, bottom). Next, two coefficients
are defined:

f LA1 = |yLA|, (4)

f LA2 = 1− fLA1. (5)

The coefficient fLA1 equals the magnitude of the vector product of the z coordinate
vectors of the upper arm and forearm, amounting to a value between 0 and 1. A value
of 1 indicates the best case where the angle is π/2, whereas value 0 indicates the
singularity. The two defined coefficients are then used as the weights to the vectors
yLA and yLS of which the first indicates the direction of rotation axis defined by the
upper arm and forearm, whereas the second indicates the direction axis defined by
the upper arm and torso. The new alternate y′LA axis is obtained as a weighed sum:

y′LA = fLA1ŷLA + fLA2ŷLS. (6)
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This new vector is then used both as the axis of y rotation of the shoulder and the y
rotation of the elbow since the arm itself, according to the model, is a planar mechan-
ism (yLH = yLA). In general it is not critical to use unit vectors of magnitude 1 when
calculating directions of the resulting vector products; however it is essential to use
unit vectors ŷLA and ŷLS in Eq. (6) in order to ensure that the weights bear proper
significance. The remaining directional vectors must only be normalized prior to
composing the rotational matrices.

The described procedure yields an alternate direction of rotation axis as a
weighed sum of two coordinate vectors; the first coordinate vector is weighed by
a factor inversely proportional with the proximity of the singularity, whereas the
second vector is weighed proportionately with it. In this way, the shoulder joint fea-
tures 3 DOF in regions of good definiteness while the significance of the third DOF
(rotation about the zLH ) decreases continuously nearing the singularity and disap-
pears completely in full extension of the elbow. The same approach is used for the
lower extremities, except that three joints instead of two can be used to calculate the
alternate direction of the rotation axes. The direction of the knee rotation axis (yLL)
is obtained by performing cross-product operations upon the thigh and shank unit
vectors as shown in Fig. 2 (right):

yLL = zLT × zLL. (7)

According to our simplified model, the direction of the ankle rotation axis is the
same as the knee axis, and is obtained from the shank and foot unit vectors:

yLF = zLL ×xLF . (8)

The third knee-axis calculation assumes that the hip joint has only two DOF, with
the longitudinal rotation about the thigh z axis omitted (yP is a unit vector connecting
both hip joints):

xLP = yP × zLT , (9)

yLP = zLT ×xLP. (10)

For each of the three y axis vectors, a weighting factor is considered:

fLL = |yLL|, (11)

fLF =

{
(1−|yLL|)|yLF | ; (1−|yLL|) > 0,

0 ; (1−|yLL|) ≤ 0,
(12)

fLP =

{
1− (fLL + fLF) ; (1− (fLL + fLF)) > 0,

0 ; (1− (fLL + fLF)) ≤ 0.
(13)

Finally, the new axis of knee and ankle rotation is obtained as a weighted sum of
unit vectors:

y′LL = fLLŷLL + fLF ŷLF + fLPŷLP. (14)
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Fig. 3 Virtual mirror (left) and virtual figure enlarged (right).

In poses where the knee rotation axis is well pronounced, the significance of the first
weighting factor is prevalent in Eq. (8). Near the singularity of the knee joint, the
first weighting factor moves towards zero whereas the second factor increases if the
ankle axis is well pronounced. In the worst case, when the ankle is also approaching
singularity (in the case of strong plantar flexion atop of the fully extended knee), the
third weighting factor gains significance. In this case, the hip joint is considered as
having only two DOF, thus preventing any longitudinal rotation about the thigh axis
zLT .

2.4 Virtual Mirror

Kinematic data, which were calculated from the OPTOTRAK measurements, were
used to animate the motion of the human model in VR shown in Fig. 3 (right).
The virtual environment was presented on a large screen in front of which the sub-
ject performed the desired movements and observed the virtual figure executing the
same movements in real-time, thereby creating the impression of a virtual mirror,
shown in Fig. 3 (left). The human figure matched the kinematic model, and imit-
ated the shape of the human body [5]. The ratios between the segment lengths were
based on statistical anthropometry [6]. The movements of the figure corresponded
to the movements of the subject in real time at a 35 Hz refresh rate without detect-
able lag. We used VRML 2.0 (Virtual Reality Modeling Language) to visualize the
movements of the figure.
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3 Conclusions

The presented kinematic model for use in VR visualization had 30 DOF. Simpli-
fications were made by omitting DOF of shorter distal body segments and repres-
enting the ankles, knees, and elbows as one DOF joints which is not uncommon
in human modeling [7]. As such, the motion of the virtual figure proved to be a
convincing representation of the actual movements on the whole-body scale. The
computational issues caused by the singular poses in the knee and elbow joints were
solved effectively by the singularity handling procedure, resulting in smooth and
natural-appearing motion. Without exploiting this simple procedure, the model ex-
hibited sudden knee-axis and elbow-axis shifts and inadequate poses in an unpre-
dictable manner when approaching singularities. On the down side, considering hips
and shoulders as 2-DOF joints generally results in unsatisfactory model behavior in
terms of the ability to realize the actual poses of the subjects in normal range of
motion. In our case, this limitation was reflected as inability to visualize the longit-
udinal rotation of arms or legs when fully stretched although this is anatomically
possible. Furthermore, the method does not resolve the case when all four (arm) or
five (leg) markers concerned are collinear. The complexity level of the presented
kinematic model incorporates compromise of the substantially reduced number of
markers, the desired fidelity of the motion and smooth real-time performance of the
VR model. As such it can be used in conjunction with the virtual mirror as a basic
platform in medical studies requiring visual feedback of body motion [8].
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On the Development of Low Mass Shaking Force
Balanced Manipulators
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Abstract. Whenever mechanisms have to run at high speeds, dynamic balancing (shaking force and
shaking moment balancing) becomes an important issue to reduce machine vibrations. This article
considers Fischer’s method of principal vectors for shaking force balancing with low mass addition.
A method based on linear momentum equations and Equivalent Linear Momentum Systems is
proposed to calculate the principal vectors for all mechanism elements having an arbitrary mass
distribution. A planar serial chain of three bodies, and a planar serial chain of four bodies are
studied. The theory is verified experimentally for a planar serial chain of five bodies.

Key words: Shaking force balancing, linear momentum, center of mass, machine dynamics.

1 Introduction

Whenever mechanisms (i.e. robots, manipulators) have to run at high speeds, dy-
namic balancing of the shaking forces and shaking moments becomes an important
issue. Due to mass and inertia of the moving elements, shaking forces and shaking
moments are exerted on the base. This results in vibrations which have a negative
effect on the level of noise, wear, and fatigue [1]. Dynamically balanced mech-
anisms do not exert vibrations on the base and environment, since both the linear
momentum and angular momentum of the moving components are constant for any
motion of the mechanism. Therefore dynamically balanced mechanisms can have
an increased accuracy and shorter cycle times since no waiting times are needed to
have vibrations die out [2]. For hand tools, dynamic balancing improves the ergo-
nomics and reduces the risks of injuries [3] while for moving objects (at the ground
or in space), dynamic balance is important for maintaining the orientation [4].

A general and serious problem with dynamic balancing is that often a consider-
able amount of mass and inertia is added [5, 6]. The addition of mass is mainly due
to the application of counter-masses, which are used to make the linear momentum
of the mechanism constant by having the center of mass (CoM) of the mechanism
be stationary [7].

This article studies Fischer’s method of principal vectors [1, 8] for physically
tracing the CoM of a collection of rigid bodies for the purpose of (shaking) force
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Fig. 1 Fischer’s mechanism to trace the CoM of three bodies S0 by additional links, source [8].

balancing. It will be shown that by using Fischer’s method, force balance is achieved
by the kinematic design of the mechanism instead of by adding counter-masses. This
reduces the addition of mass considerably.

Figure 1 shows Fischer’s method for a planar mechanism of three rigid bodies. By
additional parallelogram links with joints at H1, H2, and H3 (the principal points),
the CoM of bodies 1, 2, and 3 is traced by point S0. When point S0 is considered to
be a joint at the base, then the CoM is stationary with respect to the base and the
mechanism is force balanced. If this joint is the only connection with the base, then
the mechanisms is a two degrees of freedom (DoF) force balanced manipulator.

The idea of having S0 be a stationary point for the purpose of force balancing
was proposed by Fischer in [8]. To have S0 be a joint at the base and including also
the mass of the parallelogram links was first considered by Agrawal et al. in [9].
Although they demonstrated experimentally that including these masses is possible,
they did not solve it theoretically.

The purpose of this article is to provide a method, based on linear momentum
equations, to calculate the dimensions of the parallelogram links such that the CoM
of all moving bodies, including the added parallelogram links, can be made station-
ary with respect to the base.

It is assumed that every element has an arbitrary mass-distribution. The article
is limited to planar mechanisms. First the mechanism of Fig. 1 is studied, which is
referred to as a serial chain of three bodies. Consequently an extended serial chain
of four bodies is considered, followed by validation of the theory by a mechanism
model of a five-body serial chain.

2 Force Balanced Manipulator with Three Degrees of Freedom

Figure 2 shows Fischer’s mechanism of Fig. 1 in which each element has an arbitrary
mass distribution. The masses of the three bodies are m1, m2, and m3, and are located
at positions M1, M2, and M3, respectively. The masses mi j of the parallelogram links
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Fig. 2 S is the CoM of three bodies in series and additional links with arbitrary mass distribution.

are positioned at distance pi j from the indicated joint along the link, and at distance

qi j normal to the respective link. The angular velocities of the three bodies are θ̇1,

θ̇2, and θ̇3, respectively.
The purpose is to calculate the lengths of the parallelogram links which depend

on the positions of the principle points P1, P2, and P3, i.e. the points where the
parallelogram links are jointed to the mechanism. These points are determined by
distances a1, a3, b21, and b23, and angles α1 and α3.

For the calculation of these parameters each DoF is considered independently.
This means that each of the parallelograms is considered immovable once at a time.
First consider parallelogram A2P2Q23P3 to be immovable, which means that θ̇2 and
θ̇3 are zero and the other two parallelograms are movable with one DoF. To have
the CoM of the mechanism be at S at any time, the linear momentum of the moving
masses must be equal to the linear momentum of the total mass of the mechanism
mtot at S. For an instantaneous position of the mechanism, the directions of the linear
momentum L1x and L1y can be chosen to be perpendicular and parallel to the line
a1, respectively, as indicated in Fig. 2. Then the following two linear momentum
equations are obtained.

L1x = (m1s1 cosα1 +(m11 + m33)a1 + m12 p12 + m13 p13)θ̇1 = mtota1θ̇1 (1)

L1y = (m1s1 sinα1 −m12q12 −m13q13)θ̇1 = 0 (2)

with

mtot = m1 + m2 + m3 + m11 + m12 + m13 + m31 + m32 + m33 (3)

When the masses and their positions are known, from Eqs. (2) and (1), the equations
for α1 and a1 become, respectively
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α1 = sin−1
(

m12q12 + m13q13

m1s1

)
(4)

a1 =
m1s1 cosα1 + m12 p12 + m13 p13

mtot −m11 −m33
(5)

Similarly α3 and a3 are calculated. Therefore parallelogram A1P1Q12P2 is con-
sidered to be immovable, by which the other two parallelograms are movable with
one DoF (θ̇1 and θ̇2 are zero). When for an instantaneous position of the mechanism
the directions of the linear momentum L3x and L3y are chosen to be perpendicular
and parallel to line a3, respectively, as indicated in Fig. 2, the following equations
for the linear momentum are obtained.

L3x = (m3s3 cosα3 +(m31 + m13)a1 + m32 p32 + m33 p33)θ̇3 = mtota3θ̇3 (6)

L3y = (−m3s3 sinα3 + m32q32 + m33q33)θ̇3 = 0 (7)

which result for α3 and a3 in

α3 = sin−1
(

m32q32 + m33q33

m3s3

)
(8)

a3 =
m3s3 cosα3 + m32 p32 + m33 p33

mtot −m31 −m13
(9)

For the calculation of lengths b21 and b23, the parallelogram P2Q12SQ23 is con-
sidered immovable, while the other parallelograms are movable with one DoF. Bod-
ies 1 and 3 then have solely translational motion (θ̇1 and θ̇3 are zero) while body 2
solely rotates about P2. Since the CoM at S now is immovable, the linear momentum
of the mechanism with respect to P2 must be zero.

The linear momentum of the moving elements is calculated with respect to vari-
ous reference frames and summed. Three reference frames are defined. The linear
momentum of m1 and m11 is calculated with respect to a reference frame that is
perpendicular and parallel to line b21, which are L21x and L21y as shown in Fig. 2,
respectively. The linear momentum of m3 and m31 is calculated with respect to a
reference frame that is perpendicular and parallel to line b23, which are L23x and
L23y, respectively. The linear momentum of m2 is calculated with respect to a ref-
erence frame that is perpendicular and parallel to line c2, which are L2x and L2y,
respectively. The linear momentum equations in each reference frame result in

L21x = (m1b21 + m11 p11)θ̇2 L21y = (−m11q11)θ̇2

L23x = (m3b23 + m31 p31)θ̇2 L23y = (m31q31)θ̇2

L2x = (m2c2)θ̇2 L2y = 0

(10)

To facilitate the summing of the linear momentum equations, it is proposed to
project the moving masses on body 2 such that the linear momentum equations of
this projection are equal to the linear momentum equations of the mechanism. This
projection is referred to as the Equivalent Linear Momentum System (ELMS), and
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Fig. 3 Equivalent Linear Momentum System w.r.t. body 2 to find P2; This is the projection of the
moving masses on body 2 to result in equivalent linear momentum equations.

has the advantage that the relations among the reference frames do not need to be
formulated. The ELMS in this case is shown in Fig. 3 and has masses m1, m2, and
m3 positioned at A1, M2, and A2, respectively, a mass m11 positioned at both I1 and
J1, and a mass m31 positioned at both I2 and J2.

An useful feature of the ELMS is that, in order to have a zero linear momentum,
P2 must be the CoM of all the projected masses. When m11 and m31 are not zero, it is
difficult to find an algebraic equation for P2 because of the dependency of positions
I1, I2, J1, and J2 and lengths b21, b23, and c2 on P2. Numerically, P2 can be found
by solving the equations of the summed linear momentum −→

L , which can be written
from the ELMS of Fig. 3 in [x y z]T notation as

−→
L = (u1 ·

−−→
A1P2 × ẑ+ v1 ·

−−→
A1P2 + u2 ·

−−→
A2P2 × ẑ

− v2 ·
−−→
A2P2 + u3 ·

−−−→M2P2 × ẑ)θ̇2 = −→
0 (11)

with unit vector ẑ = [0 0 1 ]T and

u1 = m1 +
m11 p11

b21
u2 = m3 +

m31 p31

b23
u3 = m2

v1 =
m11q11

b21
v2 =

m31q31

b23

(12)

in which b21 = |−−→A1P2| and b23 = |−−→A2P2|. The only unknown in the equation is P2.
The cross product with unit vector ẑ is used to calculate perpendicular directions
within the xy-plane.

If distances q11 and q31 are zero and the ratios p11/b21 = λ1 and p31/b23 = λ2
are known, for instance if m11 is halfway length b21 by which λ1 = 1/2, an algebraic
solution for P2 can be found, which is

−→
P2 =

u1
−→
A1 + u2

−→
A2 + u3

−→
M2

u1 + u2 + u3
(13)

with

u1 = m1 + m11λ1 u2 = m3 + m31λ2 u3 = m2 (14)
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Fig. 4 S is the CoM of four bodies in series and additional links with arbitrary mass distribution.

In fact, this solution implies that P2 is the CoM of masses with values u1, u2, and u3
positioned at positions A1, A2, and M2, respectively.

3 Force Balanced Manipulator with Four Degrees of Freedom

In this section, the principal points are calculated of a planar serial chain of four
bodies and parallelogram links with arbitrary mass distribution. It will be shown that
the calculation of the principal points of extended serial chains is similar to the case
of three bodies in series and that each principle point can be obtained individually.

Figure 4 shows Fischer’s mechanism for four bodies in series, extended with an
arbitrary mass distribution for each element. The masses of the four bodies are m1,
m2, m3, and m4, located at positions M1, M2, M3, and M4, respectively. The masses
mi j of the parallelogram links are positioned at distance pi j from the indicated joint
along the link and at distance qi j normal to the respective link. The angular velocities

of the four bodies are θ̇1, θ̇2, θ̇3, and θ̇4, respectively.
P1 is found in an equivalent way as was done for three bodies in series. To find

P1, which is defined by a1 and α1, the parallelograms of which the motion does
not depend on θ̇1 (A2P2Q23P3, P3Q23R24Q34, and A3P3Q34P4) are considered to be
immovable. The other parallelograms then are movable with one DoF. The refer-
ence frame for the linear momentum L1x and L1y is chosen to be perpendicular and
parallel to line a1, respectively. To have S be the CoM of the mechanism, the linear
momentum of the moving masses must equal the linear momentum of the total mass
considered at S. The linear momentum equations in each direction are written as

L1x = (m1s1 cosα1 +(m11 + m32 + m44)a1 + m12 p12

+ m13p13 + m14 p14)θ̇1 = mtota1θ̇1 (15)

L1y = (m1s1 sin α1 −m12q12 −m13q13 −m14q14)θ̇1 = 0 (16)
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with

mtot = m1 + m2 + m3 + m4 + m11 + m12 + m13 + m14

+ m21 + m22 + m31 + m32 + m41 + m42 + m43 + m44 (17)

With the masses and their positions on the mechanism being known, the equations
for α1 and a1 become

α1 = sin−1
(

m12q12 + m13q13 + m14q14

m1s1

)
(18)

a1 =
m1s1 cosα1 + m12p12 + m13 p13 + m14p14

mtot −m11 −m32 −m44
(19)

Equivalently P4 is found, which is determined by a4 and α4. Therefore the par-
allelograms of which the motion does not depend on θ̇4 (A1P1Q12P2, P2Q12R13Q23,
and A2P2Q23P3) are considered to be immovable. For the reference frame of the lin-
ear momentum L4x and L4y being perpendicular and parallel to line a4, respectively,
the linear momentum equations become

L4x = (m4s4 cosα4 +(m41 + m22 + m14)a4 + m42 p42

+ m43 p43 + m44p44)θ̇4 = mtot a4θ̇4 (20)

L4y = (−m4s4 sinα4 + m42q42 + m43q43 + m44q44)θ̇4 = 0 (21)

The equations for α4 and a4 then become

α4 = sin−1
(

m42q42 + m43q43 + m44q44

m4s4

)
(22)

a4 =
m4s4 cosα1 + m42p42 + m43 p43 + m44p44

mtot −m41 −m22 −m14
(23)

For the calculations of P2 and P3 the ELMS with respect to bodies 2 and 3 are
used, which are shown in Fig. 5. To calculate P2, parallelograms P2Q12R13Q23 and
Q23R13SR24 are considered to be immovable, for which the mechanism is movable
with one DoF. Bodies 1, 3, and 4 then solely translate (θ̇1, θ̇3, and θ̇4 are zero) and
body 2 solely rotates. Figure 5a shows the ELMS with respect to body 2 in which
masses with values u1, u2, u3, v1, and v2 are placed at positions A1, A2, M2, J1, and
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J2 respectively. The values of these masses are

u1 = m1 +
m11 p11

b21
v1 = m11

u2 = m3 + m4 + m41 + m42 +
m21 p21 + m22p22

b23
v2 = m21 +

m22q22

q21
u3 = m2

(24)

and can be obtained, similarly as in Section 2, by calculating the linear momentum
with respect to various reference frames. The linear momentum of m1 and m11 is
calculated in directions L21x and L21y, the linear momentum of m2 is calculated in
directions L2x and L2y, and the linear momentum of m3, m4, m41, m42, m21, and m22,
is calculated in directions L23x and L23y. For the ease of drawing, all the masses that
are along the same line are scaled and concentrated in a single point. For instance
mass u1 at A1 is a combination of m1 located at A1 and m11 located along line
A1P2 at a distance p11 from P2. For an equivalent linear momentum of m11, a mass
m11 p11/b21 can be located at A1. To find P2, the equation of the summed linear
momentum must be solved which is

−→L = (u1 ·
−−→
A1P2 × ẑ+ v1 ·

−−→
A1P2 + u2 ·

−−→
A2P2 × ẑ

− v2 ·
−−→
A2P2 + u3 ·

−−−→M2P2 × ẑ)θ̇2 = −→
0 (25)

in which P2 is the only unknown.
For the calculation of P3, the parallelograms P3Q23R24Q34 and Q23R13SR24 are

considered to be immovable, for which the mechanism is movable with one DoF.
In this case bodies 1, 2, and 4 solely translate (θ̇1, θ̇2, and θ̇4 are zero) and body 3
solely rotates. Figure 5b shows the ELMS with respect to body 3 in which masses
with values u4, u5, u6, v4, and v5 are placed at positions A2, A3, M3, J4, and J5,
respectively. The values of these masses are

u4 = m1 + m2 + m11 + m12 +
m31 p31 + m32p32

b32
v4 = m31 +

m32q32

q31

u5 = m4 +
m41 p41

b34
v5 = m41

u6 = m3

(26)

and can be obtained from the calculations of the linear momentum of m1, m2, m11,
m12, m31, and m32 in directions L32x and L32y, the linear momentum of m3 in direc-
tions L3x and L3y and the linear momentum of m4, and m41 in directions L34x and
L34y. Hence to find P3, the equation of the summed linear momentum must be solved
which is written as

−→
L = (u4 ·

−−→
A2P3 × ẑ+ v4 ·

−−→
A2P3 + u5 ·

−−→
A3P3 × ẑ

− v5 ·
−−→
A3P3 + u6 ·

−−−→M3P3 × ẑ)θ̇3 = −→
0 (27)

in which P3 is the only unknown.
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Fig. 6 Experiment with a mechanism model of a planar chain of five bodies.

4 Evaluation and Experiments

To verify the calculations, the mechanism model of Fig. 6 was developed. This
mechanism has a serial chain of five bodies, of which the parameters are calcu-
lated equivalently to three or four bodies in series. The chain of five bodies consists
of triangular elements of 4 mm thick steel, connected together at 60 mm distance
from each other. For the ease of production, the parallelograms are made of Ø4 mm
welding rod and each axis is made of Ø2 mm welding rod. For each rod the mass is
then located halfway the joints.

The mass of each body 1 to 5 in Fig. 6a was chosen to be 120.61, 34.46, 17.23,
34.46 and 120.61 grams, respectively, but they were produced with errors of −1.27,
0.12, −0.12, −0.11, and −1.29 grams, respectively. Various mass values were
chosen for each body to keep the dimensions of the parallelograms practical (not
too small). For rigidity most of the rods are placed in couples (Fig. 6c).

The total mass of all moving elements is 428.21 grams. Since the five bodies
of the serial chain weigh together 327.37 grams, all the parallelogram links and all
axes then have increased the total mass by only 30%, which is remarkably low with
respect to conventional balancing techniques using counter-masses that easily lead
to an increase of at least 300% [5–7].

The mechanism remains steady in every pose. The stick-slip friction about the
axis at the base was determined with measurement weights, being 0.00045 Nm max-
imally. Since the mechanism is steady in every pose this means that the CoM has a
maximal error with the joint at the base of 0.00045 Nm/0.42821 kg/9.81 ms−2 =
0.11 mm. Since this error is relatively small, the CoM will be very near to being
stationary for which the mechanisms is force balanced. Figure 6b shows a selection
of mechanism poses.
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5 Conclusion

A method based on linear momentum equations and the use of Equivalent Linear
Momentum Systems was proposed for the calculations of the principal points of
planar serial chains with multiple bodies. Planar serial chains of three and four bod-
ies were studied theoretically. The theory was validated by a mechanism model of a
planar serial chain of five bodies that is steady in every pose. It was shown that the
mass addition for balancing with Fischer’s method is relatively low.
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Abstract. This work presents a necessary and sufficient condition to define a singularity-invariant
leg rearrangement, based on an affine relation between the squared leg lengths before and after the
rearrangement. This condition is then specified for four rigid components that can occur in Stewart–
Gough platforms, leading to the characterization of singularity-invariant leg rearrangements on all
of them.

Key words: Stewart–Gough platform, forward kinematics, singularities.

1 Introduction

The Stewart–Gough platform is defined as a 6-DoF parallel mechanism with six
identical SPS legs [1, 2]. It has remained one of the most widely studied because,
despite its geometric simplicity, its analysis translates into challenging mathemat-
ical problems. One important part of this analysis corresponds to the characteriza-
tion of its singularities, which has only been completely solved for some specializa-
tions (for example, designs in which some spherical joints coalesce to form multiple
spherical joints [3, 4]).

Finding leg rearrangements in a given Stewart–Gough platform that leave the
singularity locus invariant does not solve the problem of characterizing singularit-
ies, but it provides a lot of insight that proves useful in several ways. For example,
such leg rearrangements permit simplifying the platforms geometry to ease the task
of obtaining the sought characterization of its singularity locus. On the other hand,
if this locus is already characterized, modifying the placement of legs permits im-
proving some platform characteristics (such as stiffness, avoidance of leg collisions
or elimination of multiple spherical joints) without altering such locus. Eventually,
by analyzing all possible leg rearrangements, one could identify all equivalent plat-
forms.

In addition, singularity-invariant leg rearrangements provide a straightforward
characterization of architectural singularities, promising a common framework to
the extensive literature on this topic [5–9].
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Fig. 1 The four possible rigid components involving linear geometric elements in Stewart–Gough
platforms.

Now, let us suppose that we would like to apply a singularity-invariant leg re-
arrangement limited to a subset of legs. Clearly, this is only possible if this subset
of legs defines a rigid subassembly. Kong and Gosselin refer to these subassem-
blies as components [10]. The simplest component arises when two legs share an
attachment. The result is called the Point-Line component. Similarly, the three other
components involving linear geometric entities (points, lines and planes) are the
Point-Plane, Line-Line and Line-Plane components (Fig. 1).

Leg rearrangements were previously proposed by the authors for each of these
components [11–13]. In this work a common framework for them all is provided
in this way: all are shown to satisfy the same necessary and sufficient condi-
tion, confirming, through a unifying approach, that such rearrangements are indeed
singularity-invariant.

This paper is organized as follows: Section 2 introduces the condition for singu-
larity invariance. Then, in Sections 3 to 6, this condition is applied to each of the
components in Fig. 1. Finally, Section 7 summarizes the main results and points out
some future research directions.

2 Condition for Singularity Invariance

For a general Stewart–Gough platform, the linear actuators’ velocities, l̇1, l̇2, . . . , l̇6,
can be expressed in terms of the platform velocity vector (v,Ω) as follows:

diag(l1, . . . , l6)

⎛

⎜
⎜
⎜
⎝

l̇1
l̇2
...
l̇6

⎞

⎟
⎟
⎟
⎠

= J
(

v
Ω

)
, (1)

where J is the matrix of normalized Plücker coordinates of the six leg lines [1]. The
parallel singularities of the platform are those configurations in which det(J) = 0
[14].

Now, let us change the location of the leg attachments so that the lengths of the
legs in their new locations, say d1,d2, . . . ,d6, are related to those of the original legs,
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l1, l2, . . . , l6, through the relation:

⎛

⎜
⎜
⎜
⎝

d2
1

d2
2
...

d2
6

⎞

⎟
⎟
⎟
⎠

= A

⎛

⎜
⎜
⎜
⎝

l2
1

l2
2
...

l2
6

⎞

⎟
⎟
⎟
⎠

+ b (2)

where A and b are a constant matrix and a constant vector, respectively. Differenti-
ating this equation with respect to time and substituting (1) in the result, we get

diag(d1, . . . ,d6)

⎛

⎜
⎜
⎜
⎝

ḋ1
ḋ2
...

ḋ6

⎞

⎟
⎟
⎟
⎠

= AJ
(

v
Ω

)
. (3)

Then, the singularities of the platform after the leg rearrangement leading to (2) are
those configurations in which det(AJ) = det(A)det(J) = 0. If det(A) �= 0, the leg
rearrangement is said to be singularity-invariant. If det(A) = 0, the rearrangement
introduces an architectural singularity, i.e., the resulting platform is always in a
singularity independently of its leg lengths [5].

Since lengths are assumed to be positive magnitudes, Eq. (2) defines a one-to-
one relationship between leg lengths before and after a singularity-invariant leg re-
arrangement. As a consequence, this kind of transformations leaves not only the sin-
gularities of the platform unaltered, but also the nature and number of its assembly
modes.

3 Point-Line Component

A general leg rearrangement on the Point-Line component consists in the substitu-
tion of any leg by another one going from the point to the line (gray leg in Fig. 2,
left). Considering the new leg length d, the following relation was proved in [12]
using Heron’s tetrahedron volume formula:

d2 =
nl2

1 + ml2
2 −mn

m+ n
. (4)

As this is an affine relation, following Section 2 we can state that any leg rearrange-
ment within a Point-Line component leaves singularities invariant.
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Fig. 2 A Point-Line component (left) and a Point-Plane component (right).

4 Point-Plane Component

Proceeding similarly, let us substitute a leg of the Point-Plane component by another
one going from the vertex of the tripod to any point on the base plane (Fig. 2, right).
The tripod contains three Point-Line components, so Eq. (4) can be used twice to
obtain the following affine relation between the new leg length d and l1, l2 and l3:

d2 =
n2(n3 + n4)
n3(n1 + n2)

l2
1 −

n4

n3
l2
2 +

n1(n3 + n4)
n3(n1 + n2)

l2
3 −

n1n2(n3 + n4)
n3

+ n4(n3 + n4). (5)

As a result, we can state that any leg rearrangement within a Point-Plane component
leaves singularities invariant.

5 Line-Line Component

Following the notation introduced in Fig. 3 (left), suppose that we want to compute
the length of a new leg between a point on the base line a = (x,0,0) and a point on
the platform line b = p+ zi.

Taking the distance equations of the four legs l2
i = ‖bi − ai‖2, for i = 1, . . . ,4,

together with that of the new leg d2 = ‖b− a‖2, the subtraction of the equation
u2 + v2 + w2 = 1 cancels all quadratic terms in u, v and w, yielding

zi t − xipx − xipzu +
1
2
(p2

x + p2
y + p2

z + x2
i + z2

i − l2
i ) = 0, for i = 1, . . . ,4

z t − x px − x pzu +
1
2
(p2

x + p2
y + p2

z + x2 + z2 −d2) = 0,

where t = p · i. In addition, subtracting the first equation from the others, quadratic
terms in px, py and pz cancel too, and the system becomes linear:
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b4
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a5
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d

Fig. 3 On the base reference frame, local coordinates of the base attachments are ai = (xi,0,0) on
the Line-Line component (left), and ai = (xi,yi,0) on the Line-Plane component (right). In both
cases, the pose of the upper line with respect to the base plane can be described by the position
vector p = (px, py, pz)T and the unit director vector of the line i = (u,v,w)T . Thus, the coordinates
of the leg attachments in the platform line, expressed in the base reference frame, can be written as
bi = p+ zii, for i = 1, . . . ,4 (left) and i = 1, . . . ,5 (right).

⎛

⎜
⎜
⎝

z1 − z2 x2 − x1 x2z2 − x1z1 0
z1 − z3 x3 − x1 x3z3 − x1z1 0
z1 − z4 x4 − x1 x4z4 − x1z1 0
z1 − z x− x1 xz− x1z1

1
2

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

t
px

u
d2

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

N2
N3
N4
N

⎞

⎟
⎟
⎠ , (6)

where Ni = 1/2(x2
i + z2

i − l2
i −x2

1 − z2
1 + l2

1), i = 1, . . . ,4, and N = 1/2(x2 + z2 −x2
1 −

z2
1 + l2

1) are constant. Now the expression for d2 can be obtained by solving the
system using Cramer’s rule:

d2 =

∣
∣
∣
∣
∣∣
∣
∣
∣
∣

−z1 x1 x1z1 x2
1 + z2

1 − l2
1 1

−z2 x2 x2z2 x2
2 + z2

2 − l2
2 1

−z3 x3 x3z3 x2
3 + z2

3 − l2
3 1

−z4 x4 x4z4 x2
4 + z2

4 − l2
4 1

−z x xz x2 + z2 1

∣
∣
∣
∣
∣∣
∣
∣
∣
∣

∣
∣
∣
∣
∣∣

z1 − z2 x2 − x1 x2z2 − x1z1
z1 − z3 x3 − x1 x3z3 − x1z1
z1 − z4 x4 − x1 x4z4 − x1z1

∣
∣
∣
∣
∣∣

. (7)

For any non-architecturally singular Line-Line component, the denominator is dif-
ferent from zero (in accordance with the condition found in [11]). Expanding the
determinants involved in Eq. (7) leads to the affine relation

d2 = c1l2
1 + c2l2

2 + c3l2
3 + c4l2

4 + c0, (8)

where all the coefficients depend on known constant coordinates. Thus, we can also
state that any leg rearrangement within a Line-Line component leaves singularities
invariant.
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6 Line-Plane Component

Finally, let us consider the 5-legged parallel platform appearing in Fig. 3 (right). We
proceed in a similar way as for the Line-Line component following the notation on
the figure. The system derived from leg lengths has now 5 equations plus the one for
the additionally introduced leg. After the same simplifications, the following linear
system is obtained:

⎛

⎜
⎜
⎜⎜
⎝

x2 − x1 y2 − y1 x2z2 − x1z1 y2z2 − y1z1 0
x3 − x1 y3 − y1 x3z3 − x1z1 y3z3 − y1z1 0
x4 − x1 y4 − y1 x4z4 − x1z1 y4z4 − y1z1 0
x5 − x1 y5 − y1 x5z5 − x1z1 y5z5 − y1z1 0
x− x1 y− y1 xz− x1z1 yz− y1z1

1
2

⎞

⎟
⎟
⎟⎟
⎠

⎛

⎜
⎜
⎜⎜
⎝

px

py

u
v

d2

⎞

⎟
⎟
⎟⎟
⎠

=

⎛

⎜
⎜
⎜⎜
⎝

(z2 − z1)t + N2
(z3 − z1)t + N3
(z4 − z1)t + N4
(z5 − z1)t + N5
(z− z1)t + N

⎞

⎟
⎟
⎟⎟
⎠

, (9)

where now Ni = 1/2(x2
i + y2

i + z2
i − l2

i − x2
1 − y2

1 − z2
1 + l2

1), i = 1, . . . ,5, and N =
1/2(x2 + y2 + z2 − x2

1 − y2
1 − z2

1 + l2
1). We can always find a system matrix with a

non-zero determinant for any non-architecturally singular Line-Plane component
(see [13] for details).

Thus, using Cramer’s rule again yields

d2 =
2(rt + s)

C
(10)

where C is the determinant of the matrix in (9) and r and s are the determinants

r =

∣
∣∣
∣
∣
∣
∣
∣∣
∣

x2 − x1 y2 − y1 x2z2 − x1z1 y2z2 − y1z1 z2 − z1
x3 − x1 y3 − y1 x3z3 − x1z1 y3z3 − y1z1 z3 − z1
x4 − x1 y4 − y1 x4z4 − x1z1 y4z4 − y1z1 z4 − z1
x5 − x1 y5 − y1 x5z5 − x1z1 y5z5 − y1z1 z5 − z1
x− x1 y− y1 xz− x1z1 yz− y1z1 z− z1

∣
∣∣
∣
∣
∣
∣
∣∣
∣

, (11)

and

s =

∣
∣
∣
∣∣
∣
∣
∣
∣
∣

x2 − x1 y2 − y1 x2z2 − x1z1 y2z2 − y1z1 N2
x3 − x1 y3 − y1 x3z3 − x1z1 y3z3 − y1z1 N3
x4 − x1 y4 − y1 x4z4 − x1z1 y4z4 − y1z1 N4
x5 − x1 y5 − y1 x5z5 − x1z1 y5z5 − y1z1 N5
x− x1 y− y1 xz− x1z1 yz− y1z1 N

∣
∣
∣
∣∣
∣
∣
∣
∣
∣

. (12)

Note that this is not an affine relation because it depends on t. However, if we
impose r = 0, then the resulting expression can be rewritten as

d2 =
1
C

∣
∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣

x y xz yz x2 + y2 + z2 1
x1 y1 x1z1 y1z1 x2

1 + y2
1 + z2

1 − l2
1 1

x2 y2 x2z2 y2z2 x2
2 + y2

2 + z2
2 − l2

2 1
x3 y3 x3z3 y3z3 x2

3 + y2
3 + z2

3 − l2
3 1

x4 y4 x4z4 y4z4 x2
4 + y2

4 + z2
4 − l2

4 1
x5 y5 x5z5 y5z5 x2

5 + y2
5 + z2

5 − l2
5 1

∣
∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣

. (13)
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b3 b4

b5

Fig. 4 Singularity-invariant leg rearrangements in the Line-Plane component must satisfy equation
r = 0, where r is defined in Eq. (11).

After Laplace expansion by the elements of the 5th column, (13) leads to the affine
relation

d2 = c1l2
1 + c2l2

2 + c3l2
3 + c4l2

4 + c5l2
5 + c0, (14)

where again all the coefficients depend on known constant coordinates.
In conclusion, the Line-Plane component is the first for which a general leg re-

arrangement is not necessarily singularity-invariant. To be so, the new leg attach-
ments a = (x,y,0) and b = p+ zi must satisfy the equation r = 0.

Specific geometric rules to perform singularity-invariant leg rearrangements can
be obtained from the equation r = 0. Indeed, it defines a one-to-one correspondence
between points on the platform line and lines of a pencil on the base plane (Fig. 4).
Thus, base attachments can always be moved within their corresponding lines. Fur-
thermore, the vertex of the base pencil plays an important role in the characteriza-
tion of the kinematics and singularities of the Line-Plane component (see [13, 15]
for details).

7 Conclusions and Future Work

In this paper, a necessary and sufficient condition for a leg rearrangement in a
Stewart–Gough platform to preserve its singularity locus has been derived. As long
as an affine relation holds between the squared leg lengths before and after the re-
arrangement, the platform singularities remain unchanged. In other words, a leg
rearrangement is singularity-invariant if, and only if, it induces an affine mapping in
the joint space of the manipulator.

It has been shown that all leg rearrangements in the Point-Line, Point-Plane and
Line-Line components of a Stewart–Gough platform (excluding those leading to
an architecturally-singular configuration) satisfy this condition, therefore all being



428 J. Borràs et al.

singularity-invariant. In the case of the Line-Plane component, the condition holds
only for a subset of leg rearrangements that has a neat geometric interpretation as
previously shown. Thus, the present paper provides a common framework where
the different singularity-preserving leg transformations proposed by the authors in
previous works are viewed in a unified way.

As regards to future research, work on the double-planar Stewart–Gough plat-
form is currently under way, suggesting interesting results for the general classific-
ation of all Stewart–Gough platforms.

It has also been briefly shown how the condition det(A) = 0 in Section 2 can
characterize architectural singularities, thus work in this direction is in progress.
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Abstract. This paper applies Darboux frame method to developing geometric kinematics of
sliding-spin-rolling motion of rigid objects with point contact. For the first time, the geodesic
curvatures, normal curvatures and geodesic torsions of both the sliding motion and rolling motion
are derived in terms of known geometric entities. The geometric kinematics of the moving object
is represented with geometric invariants. Effect of the relative curvatures and torsion on sliding-
spin-rolling kinematics is explicitly presented.

Key words: Kinematics, point contact, sliding-spin-rolling motion, Darboux frame, coordinate-

invariant.

1 Introduction

A general point contact motion is a combination of sliding, spin, and rolling motion
which can be decomposed into a translational sliding motion at the contact point
and a rotational spin-rolling motion about the contact point. Kinematics of point
contact has attracted many kinematicians. Cai and Roth [1] investigated kinematics
of rigid objects in point contact in general spatial motion and concentrated on two
special motions including sliding and pure-rolling motion. Montana [2] studied the
kinematics of contact from a geometric point of view and derived the equations of
contact. Chen [3] developed a purely geometric form of motion representation. Gha-
foor, Dai, and Duffy [4] simplified kinematics of rolling contact to line contact. Cui
and Dai [5, 6] developed coordinate-invariant instantaneous kinematics of rolling
contact and discussed the implications for trajectory planning.

Previous literature on sliding-spin-rolling motion of rigid bodies with point con-
tact suffers from some drawbacks. First, previous formulations were local, which
means that once the origin or orientation of the coordinates changes, the whole for-
mulation has to be re-established. Secondly, there is a misconception about spin
motion. Though spin motion does not contribute to rolling contact trajectory curves,
it is subject to geometric constraints. Thirdly, the formulations can only be differen-
tiated to a certain order, usually one or two.
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Fig. 1 A Darboux frame at point M.

This paper starts with sliding motion and proceeds to sliding-spin-rolling motion.
The geometric entities of rolling and sliding motions are for the first time derived.
The paper does not take time into consideration, so that the paper can have a broader
scope. The proposed formulation is coordiante-invariant and can be differentiated to
any order.

2 Darboux Frame and Darboux Vector

Here a brief introduction is given concerning some basic concepts of differential
geometry. Details can be found in [7–9].

Let L be an oriented curve traced on an oriented surface S in E3, Darboux frame
{e1,e2,e3} is a right-handed orthonormal frame associated with each point M on
curve L, where e1 is the unit tangent vector to emphL; e3 is the unit normal to S; e2
is tangential to S as in Fig. 1.

The equations of motion of the Darboux frame are

dM
ds

= e1
⎛

⎝
e1
e2
e3

⎞

⎠ =

⎛

⎝
0 kg kn

−kg 0 τg

−kn −τg 0

⎞

⎠

⎛

⎝
e1
e2
e3

⎞

⎠ (1)

where kg, kn, and τg are called geodesic curvature, normal curvature, and geodesic
torsion respectively. The second equation in Eq. (1) can also be written in matrix
form as

dE
ds

= TE (2)

The three vectors e1, e2, e3 in Eq. (1) are contravariant vectors, or type (1, 0)
tensors. They do not have any intrinsic coordinate system. The components of these
contravariant vectors will transform in a certain way passing from one coordinate
system to another. The four scalars s, kg, kn and τg in Eq. (1) are geometric invariants
which remain identical regardless of coordinate transformations.
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Fig. 2 The sliding contact trajectory curve Ls on the surface S1.

3 Sliding Motion

Since this paper is to study the relative motion between rigid object A and object
B, Object A can be assumed to be fixed and object B to be moving. Set up fixed
coordinate frame {A} on surface S1 of object A and {B} on surface S2 of object B,
a pre-subscript A or B will be used to denote in which coordinate system a vector
is expressed. Sliding motion is a translational motion with two degrees of freedom.
It occurs in the common tangent plane of the two surfaces. Sliding motion between
two rigid bodies produces one sliding trajectory curve Ls on the fixed surface S1. Set
up a moving frame

{
Ae1s,

A e2s,
A e3s

}
at the contact point M of Ls with Ae1s being

the unit tangent vector to curve Ls and Ae3s the unit normal vector to surface S1 as
in Fig. 2.

Let ss denote the arc length of the sliding contact trajectory Ls, then it follows
from Eq. (1) that

dAM
dss

= Ae1s (3)

4 Spin-Rolling Motion

Kinematics of spin-rolling motion has been reported in [5, 6]. Some results are
presented here for the completeness of this paper. Spin-rolling motion produces
one contact trajectory curve L′

r on the surface S2 and one contact trajectory curve
Lr on the surface S1. Set up moving frame {Ae1r,

Ae2r,
Ae3r} of the curve Lr and

{Be1r,
Be2r,

Be3r} of the curve L′
r at the contact point M as in Fig. 3. Due to the

constraints of rolling contact, these two frames can be made to coincide at any time.
The geometric angular velocity of the moving object in terms of the arc length sr

can be obtained as
Aωr = −τ∗A

gr e1r + k∗A
nr e2r − k∗A

gr e3r (4)

where
k∗gr = k′gr − kgr, k∗nr = k′nr − knr, τ∗gr = τ ′gr − τgr (5)
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Fig. 3 Contact trajectory curves of spin-rolling motion.

Fig. 4 The contact curves of sliding-spin-rolling motion.

While k′gr, k′nr, τ ′gr are the respective geodesic curvature, normal curvature, and
geodesic torsion at point M of the contact trajectory curve L’r on the surface S2,
kgr, knr, τgr are the respective geodesic curvature, normal curvature, and geodesic
torsion at point M of the contact trajectory curve Lr on the surface S1.

5 Sliding-Spin-Rolling Motion

Sliding-spin-rolling motion is a general spatial motion of five degrees of freedom
subject to geometric constraints of point contact. The contact point M traces one
rolling trajectory curve L′

r on the moving surface S2 and one sliding-rolling contact
trajectory curve Lsr on the fixed surface S1 as in Fig. 4.

The trajectory curve Lsr is produced by both sliding and rolling motion. Hence
at any instant the curve Lsr can be regarded as a combination of one instantaneous
sliding curve Ls of sliding motion and one instantaneous rolling curve Lr of rolling
motion at point M of the surface S1 as in Fig. 5. Note that the two instantaneous
curves Ls and Lr do not exist globally, since the two curves meet at every contact
point M of curve Lsr.
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Fig. 5 Contact trajectory curves of sliding-spin-rolling motion on the surface S1.

The only known geometric entities are from the two known curves Lsr and L′
r,

for example, through using tactile sensors. It is necessary to derive other geomet-
ric entities of the two instantaneous curves Ls and Lr as in Fig. 5 from the known
entities.

To obtain the unknown geometric entities, set moving frame {Ae1sr,
Ae2sr,

Ae3sr}
of the curve Lsr and moving frame {Ae1s,

Ae2s,
Ae3s} of the curve Ls and moving

frame {Ae1r,
Ae2r,

Ae3r} of the curve Lr at the contact point M on the surface S1,
where the normal vectors Ae3sr,

Ae3r, and Ae3s are perpendicular to the surface S1
and thus they coincide. The vectors Ae1sr,

Ae1s and Ae1r are tangent to the respective
curve Lsr, Ls and Lr as in Fig. 5.

The rolling contact trajectory curve L′
r on the surface S2 is solely produced by

rolling motion. Set up moving frame {Be1r,
Be2r,

Be3r} at the contact point M of the
curve L′

r on the surface S2, where the vector Be3r is perpendicular to the surface S2
and Be1r is tangent to the curve L′

r as in Fig. 4.
Due to rolling constraints, the moving frame {Ae1r,

Ae2r,
Ae3r} of the instantan-

eous curve Lr on the surface S1 can be always made to coincide with the moving
frame {Be1r,

Be2r,
Be3r} of the curve L′

r on the surface S2. Since sliding motion and
rolling motion are independent, so there generally exists an angle ϕr between the
curves Lsr and L′

r, and subsequently between the vectors Ae1sr and Be1r as in Fig. 4.
It can be deduced that the angle between Ae1sr and Ae1r is also ϕr as in Fig. 5, since
moving frames {Ae1r,

Ae2r,
Ae3r} and {Be1r,

Be2r,
Be3r} coincide.

5.1 Derivation of Geometric Invariants of Rolling Motion

From Fig. 5, it can be seen that the moving frame {Ae1r,
Ae2r,

Ae3r} can be obtained
from {Ae1sr,

Ae2sr,
Ae3sr} by a rotation of angle ϕr about Ae3sr. It follows that
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Ae1r = cosϕA
r e1sr + sinϕA

r e2sr
Ae2r = −sinϕA

r e1sr + cosϕA
r e2sr (6)

Ae3r =A e3sr

Eq. (6) can be written in matrix form as

Er = RrEsr (7)

where

Er =

⎛

⎝
Ae1r
Ae2r
Ae3r

⎞

⎠ , Rr =

⎛

⎝
cosϕr sinϕr 0
−sinϕr cosϕr 0

0 0 1

⎞

⎠ , Esr =

⎛

⎝
Ae1sr
Ae2sr
Ae3sr

⎞

⎠ (8)

From Eq. (2), differentiating the left side of Eq. (7) with respect to sr yields

dEr

dsr
= TrEr = TrRrEsr (9)

where Tr contains unknown geometric entities kgr, knr, and τgr of the instantaneous
rolling curve Lr. Let ssr denote the arc length of the trajectory curve Lsr, differenti-
ating the right side of Eq. (7) with respect to sr yields

d
dsr

(RrEsr) = λ
(

dRr

dssr
+ RrTsr

)
Esr (10)

where λ = dssr/dsr is the sliding ratio and Tsr contains known geometric entities
kgsr, knsr, and τgsr of the contact curve Lsr. From Eqs. (9) and (10), it can be seen
that

TrRr = λ
(

dRr

dssr
+ RrTsr

)
(11)

Right-multiplying both the left and right side of Eq. (11) with R−1
r yields

Tr = λ
(

dRr

dssr
+ RrTsr

)
R−1

r (12)

The unknown geometric entities in Tr can be obtained by computing the right side
of Eq. (12) as

kgr = λ
(

dϕr

dssr
+ kgsr

)
, knr = λ (cosϕrknsr + sinϕrτgsr),

τgr = λ (−sinϕrknsr + cosϕrτgsr) (13)
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Fig. 6 Relationship between sliding motion and spin-rolling-sliding motion.

5.2 Derivation of Geometric Invariants of Sliding Motion

Let ss denote the arc length of the instantaneous sliding curve Ls. The variation of
arc lengths sr of Lr, ss of Ls, and ssr of Lsr satisfy the geometric constraint as in
Figure 6, where ϕs denote the angle between dssr and dss.

It follows that
dss = dssr −dsr (14)

The variation of arc length ss can be obtained as

dss =
√

ds2
sr + ds2

r −2dssrdsr cosϕr (15)

where ssr, sr and ϕr are known geometric entities. The sine rule from trigonometry
formulae gives the angle ϕs between dssr and dss as

ϕs = arcsin

(
dsr

dss
sinϕr

)
= arcsin

(
sinϕr√

λ 2 + 1−2λ cosϕr

)

(16)

The geometric invariants of Ls can be obtained in a similar way to the derivation of
the geometric invariants of the instantaneous rolling curve Lr.

5.3 Geometric Velocity of Sliding-Spin-Rolling Motion

After all the geometric entities are derived, the geometric velocity of sliding-spin-
rolling motion can be obtained in the frame {Ae1sr,

Ae2sr,
Ae3sr} on the fixed surface

S1. From Eq. (3) the sliding velocity of the contact point M in terms of arc length
ssr is

vM =
dAM
dssr

=
dss

dssr

dAM
dss

=

√
λ 2 + 1−2λ cosϕr

λ
(cosϕA

s e1sr − sinϕA
s e2sr) (17)
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The rolling motion gives the angular velocity, which can be obtained from Eq.
(4) as

ω = −τ∗gr(cosϕA
r e1sr + sinϕA

r e2sr)+ k∗nr(−sinϕr
Ae1sr + cosϕr

Ae2sr)− k∗nr
Ae3sr

= (−τ∗gr cosϕr − k∗nr sinϕr)Ae1sr +(−τ∗gr sinϕr + k∗nr cosϕr)Ae1sr − k∗gr
Ae3sr

(18)

The above two equations give the instantaneous geometric velocity of the moving
object with point contact. It can be seen that the velocity formulations are expressed
in contravariant vectors and scalars. Thus, the formulations are coordinate-invariant
and can be differentiated to any order.

6 Conclusions

This paper investigated geometric kinematics of sliding-spin-rolling motion of ri-
gid bodies with point contact. Without taking time into consideration, the paper
had a broader scope to discuss the effects of curvatures and torsions on sliding-
spin-rolling motion. For the first time geometric entities of sliding and rolling mo-
tion were derived in terms of arc lengths, curvatures, and torsions of two known
contact trajectory curves. Finally geometric velocity of the moving object was ex-
pressed in terms of geometric invariants and contravariant vectors. The results were
coordinate-invariant and can be generalized to arbitrary curves and surfaces.
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Abstract. This paper presents a new analytic expression for the singularity locus of 6–4 fully-
parallel manipulators (FPMs) with two double spherical pairs. The new expression allows the
separation of the geometric constant parameters from the configuration dependent ones, and it is
specially useful for designing manipulators referable to this architecture. The presented expression
is deduced from a singularity-locus expression previously proposed by the author for the general
Gough–Stewart platform, and it highlights that the shape of the singularity locus depends on the
properties of a 3×3 matrix.

Key words: Parallel manipulator, instantaneous kinematics, singular configuration, singularity

locus.

1 Introduction

Parallel manipulators (PMs) feature a mobile platform connected to the frame (base)
through a number of kinematic chains (limbs). Their architecture, when correctly
exploited, allows the design of fast, stiff and precise manipulators that control the
platform pose (position and orientation) in a workspace which, in general, is small
with respect to the overall size of the machine.

A particular family of six degrees-of-freedom (dof) PMs is constituted by fully-
parallel manipulators (FPMs) [1]. FPMs are characterized by six limbs of type UPS
(U, P, and S stand for universal joint, prismatic pair and spherical pair, respectively;
the underscoring indicates the actuated joint). The universal-joint (spherical-pair)
centers are fixed points of the base (of the platform), and, hereafter, they will be
called attachment points. In each limb, the actuated prismatic pair controls the dis-
tance between the limb’s attachment points, and the combined action of all the six
actuated pairs makes it possible to control the relative pose between platform and
base.

Different FPM architectures are obtained by making two or more attachment
points coincide either in the platform or in the base, and they can be collected into
subfamilies named n–m, where n and m stand for the number of distinct attachment

Machine, DOI 10.1007/978-90-481-9262-5_47, © Springer Science+Business Media B.V. 2010 
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Fig. 1 6–4 FPM architectures: (a) spherical Stewart platform, (b) architecture with two double and
two single spherical pairs.

points in the base and in the platform, respectively. The most general architecture
is the 6–6 one, also named the general Gough–Stewart platform [2]. All the ana-
lytic relationships that hold for 6–6 FPMs can be adapted for n–m FPMs by suit-
ably changing the geometric constant parameters that appear in them. Nevertheless,
in general, the simple variation of these parameters yields expressions that do not
highlight the peculiarities of the particular architecture, and specific analyses and/or
rearrangements of the deduced formulas are necessary to understand how the archi-
tecture behaves.

6–4 FPMs refer to two different architectures (Fig. 1). One architecture [3], also
named spherical Stewart platform [4], exhibits one triple and three single spherical
pairs (Fig. 1a), whereas the other [5,6] exhibits two double and two single spherical
pairs (Fig. 1b).

Designing PMs involves the solution of problems that are specific of closed-loop
mechanisms. The identification of the singular configurations (parallel singularities)
of direct instantaneous kinematics is one of these problems. Parallel singularities are
manipulator configurations where the platform can perform instantaneous motions
even though the actuators are locked, which involves that the platform pose can-
not be controlled. At a parallel singularity, infinite generalized torques applied by
the actuators are necessary to equilibrate some types of external loads exerted on
the platform (i.e., the manipulator breaks down). These control and static troubles
justify their identification during design and their avoidance during operation.

The singularity loci of FPMs have been studied by many researchers (see, for
instance [2, 4, 7–10]). Most of them refer to 6–6 FPMs [2, 8–10], others are devoted
to particular n–m FPMs [4, 7].

Regarding the two 6–4 FPM architectures, the singularity locus of the spherical
Stewart platform was presented in [4] and, successively, deduced from the general
expression of 6–6 FPMs’ singularity locus in [8]. The singularity locus of the other
6–4 architecture was not investigated in depth. It will be studied in this paper.

Here, a new analytic expression will be presented for this locus. This expres-
sion separates the geometric constant parameters from the configuration dependent
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Fig. 2 Notations: (a) 6–6 FPM, (b) 6–4 FPM with two double and two single spherical pairs.

ones, and it is specially useful for designing manipulators referable to this archi-
tecture. The analysis of this expression will show that the locus’ shape depends on
the properties of a 3×3 matrix. In Section 2, an intermediate expression is deduced
from a singularity-locus expression previously proposed by the author for the 6–6
FPMs [8]. In Section 3, the intermediate expression will be manipulated till to the
final expression. Finally, Sections 4 and 5 will discuss the deduced expression and
will offer the concluding remarks.

2 Notations and Preliminary Computations

Let Bi and Pi, i = 1, . . . ,6, be the attachment points of the ith limb in the base and
the platform, respectively (Fig. 2). Hereafter, the length of segment BiPi and the line
through Bi and Pi will be called limb length and limb axis, respectively, of the ith
limb.

The following vectors and scalars are defined:

ui = Pi −Bi, i = 1, . . . ,6; (1a)

vl = (Pl −P1)×ul, l = 2, . . . ,6; (1b)

ui jk = ui ·u j ×uk, i, j,k ∈ {1, . . . ,6}; (1c)

vlmn = vl ·vm × vn, l,m,n ∈ {2, . . . ,6}. (1d)

By using a suitable Laplace expansion [11] of the Jacobian determinant, these
notations and definitions made it possible (see [8]) to put the singularity-locus equa-
tion of 6–6 FPMs (Fig. 2a) in the form:

u123v456 − u124v356 + u125v346 −u126v345 + u134v256 −u135v246

+ u136v245 + u145v236 −u146v235 + u156v234 = 0. (2)
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Equation (2) can be used to deduce singularity-locus equations of particular n–m
FPMs by introducing the specific values of their geometric constant parameters.

6–4 FPMs with the architecture of Fig. 2b are characterized by the coincidence
of P1 with P2 and of P3 with P4. The coincidence of P1 with P2 makes v2 vanish. As
a consequence, all the vlmn with at least one of the right subscripts, l,m, and n, equal
to 2 vanish, too. The introduction of these values into Eq. (2) yields the following
singularity-locus equation, for 6–4 FPMs with two double and two single spherical
pairs:

det(J) = 0, (3)

with
det(J) = u123v456 −u124v356 + u125v346 −u126v345. (4)

3 New Expression of the Singularity-Locus Equation

All the four monomials that appear at the left-hand side, det(J), of Eq. (3) contain
a factor of type u12k, k ∈ {3,4,5,6}. This fact makes it possible to rearrange the
expression of det(J) as follows:

det(J) = n12 · s34 (5)

where

n12 = u1 ×u2, (6a)

s34 = u3v456 −u4v356 + u5v346 −u6v345. (6b)

Vector n12 is perpendicular to the plane the two intersecting axes of the limbs 1
and 2 (Fig. 2b) lie on, whereas s34 is a vector whose magnitude and direction depend
on the platform geometry and on the axes of the limbs 3,4,5, and 6. If either these
two vectors are perpendicular to one another, or at least one of them is a null vector,
Eq. (3) will be satisfied and the manipulator will be at a singularity.

Definition (6b) can be further elaborated to separate the effects of the platform
geometry and of the limb axes. The first two terms that appear in (6b) can be trans-
formed as follows (see Appendix A)

u3v456 −u4v356 = h×n34 (7)

with

h = (v5 × v6)× (P3 −P1) ≡ (v5 ×v6)× (P4 −P1), (8a)

n34 = u3 ×u4; (8b)

whereas the algebraic manipulation of the last two terms yields (see Appendix B)
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u5v346 −u6v345 = q [(P3 −P1) ·n34] ≡ q [(P4 −P1) ·n34] (9)

with

q = u5[v6 · (P3 −P1)]−u6[v5 · (P3 −P1)]
≡ u5[v6 · (P4 −P1)]−u6[v5 · (P4 −P1)].

(10)

The introduction of relationships (7) and (9) into relationship (5) yields

det(J) = n12 · {h×n34 + q [(P3 −P1) ·n34]}, (11)

which can be transformed in matrix form as follows (here, a vector symbol, say a,
denotes the associated 3×1 matrix, ã denotes the skew-symmetric matrix associated
to a, and aT denotes the transpose of a)

det(J) = nT
12 A n34 (12)

where A is the 3× 3 matrix

A = h̃+[q(P3 −P1)
T]. (13)

Matrix A depends only on the platform geometry and on the limb vectors u5 and
u6. The introduction either of relationship (11) or of relationship (12) into Eq. (3)
yields the sought-after new expression of the singularity-locus equation.

4 Discussion

The platform geometry of the studied 6–4 architecture is characterized by:

(i) (P2 −P1) = 0;
(ii) (P3 −P1) ≡ (P4 −P1);
(iii) (P3 −P1) �= 0;
(iv) (P5 −P1) �= 0 and (P5 −P1) �= (P3 −P1);
(v) (P6 −P1) �= 0 and (P6 −P1) �= (P3 −P1);
(vi) (P5 −P1) �= (P6 −P1).

Conditions (i) and (ii) have been already exploited during the deduction of expres-
sions (11) and (12). All the other conditions must be considered in this discussion.
In particular, condition (iii) implies that the coincidence of P3 and P1 must not be
considered among the ones that make matrix A become a null matrix. Condition
(iv) (condition (v)) implies that vector v5 (v6) becomes a null vector if and only if
u5 (u6) is a null vector, which implies that the leg length of the 5th (6th) limb van-
ishes. Eventually, condition (vi) practically implies that u5 = u6 is never sufficient
to make h and q simultaneously null vectors (i.e., to make matrix A a null matrix).

The geometric conditions that make expression (12) equal to zero (i.e., that make
the 6–4 architecture singular) can be exhaustively classified as follows: (a) the ones
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that make either n12 (n34) a null vector or matrix A a null matrix, and (b) the ones
that make expression (12) zero even though n12, n34, and A are not null.

Regarding the singularity conditions of type (a), vector n12 (n34), according to
definition (6a) (definition (8b)), becomes a null vector: (a.1) if either of u1 (u3) and
u2 (u4) is a null vector (i.e., at least one limb length of limbs 1 and 2 (3 and 4) van-
ishes), or (a.2) if the axes of limbs 1 and 2 (3 and 4) are parallel (i.e., with reference
to Fig. 2b, the triangle B1B2P1 (B3B4P3) degenerates into a segment). Matrix A, over
the conditions excluded by the platform geometry, becomes a null matrix (see defin-
itions (8a), (10), and (13)): (a.3) if either of u5 and u6 is a null vector (i.e., at least
one limb length of limbs 5 and 6 vanishes), or (a.4) if (P3 −P1) is perpendicular
both to v5 and to v6 (i.e., is parallel to (v5 ×v6)).

Singularities of type (b) can be identified by analyzing the eigenvalues and the
eigenvectors of matrix A. This matrix is so simple that its eigenvalues and eigen-
vectors can be analytically determined through an algebraic manipulator. The eigen-
values of A are

λ1 = 0,

λ2,3 =
1
2

{
(P3 −P1) ·q∓

√
[(P3 −P1) ·q]2 −4[(v5 ×v6)−q] · [(P3 −P1)×h]

}
.

(14)

The right (left) eigenvector, e1 (g1), associated to λ1 are

e1 = h (15a)

g1 = [q− (v5 ×v6)]× (P3 −P1), (15b)

whereas the right (left) eigenvectors, e2 and e3 (g2 and g3), associated to λ2 and λ3,
respectively, have more cumbersome analytic expressions that are not reported here
for the sake of brevity.

Since λ1 is zero, expression (12) is equal to zero: (b.1) if n34 is parallel to e1,
which is a special case of coplanarity of (P3 − P1), u3, and u4, or (b.2) if n12 is
parallel to g1, which is a special case of coplanarity of (P3 −P1), u1, and u2.

Moreover, since the two sets {e1,e2,e3} and {g1,g2,g3} constitute a bi-orthogonal
system, the two vectors n12 and n34 can always be put in the form

n12 = ∑
i=1,3

ci gi, n34 = ∑
i=1,3

di ei, (16)

where the scalar coefficients ci and di can be easily computed through simple for-
mulas of linear algebra.

The introduction of (16) into relationship (12), yields

det(J) = λ2c2d2 + λ3c3d3. (17)

Over the previously discussed zeroing conditions, expression (17) is equal to
zero: (b.3) if n12 has no component along g2 and n34 has no component along e3
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Table 1 Singularity conditions.

Type (a) conditions Type (b) conditions

(a.1), (a.3): ∃i ∈ {1, . . . ,6}|ui = 0 (b.1), (b.2): (n34‖e1) or (n12‖g1)
(a.2): (u1‖u2) or (u3‖u4) (b.3): (n34⊥g3) & (n12⊥e2)
(a.4): (P3 −P1)‖(v5 ×v6) (b.4): (n34⊥g2) & (n12⊥e3)

(b.5): n34 and n12 satisfy (18)

(i.e., c2 = d3 = 0 ⇔ (n34⊥g3) & (n12⊥e2)), or (b.4) if n12 has no component along
g3 and n34 has no component along e2 (i.e., c3 = d2 = 0 ⇔ (n34⊥g2) & (n12⊥e3)),
or, eventually, (b.5) if the following relationship among components is satisfied

λ2c2

λ3c3
= −d3

d2
· (18)

All the singularity conditions are summarized in Table 1.

5 Conclusions

A new analytic expression for the singularity locus of 6–4 fully-parallel manipulat-
ors with two double and two single spherical pairs has been presented. It has been
deduced from a singularity-locus expression previously proposed by the author for
the general Gough–Stewart platform.

The proposed expression contains a particular 3× 3 matrix. The role that this
matrix plays in the geometric identification of the singularity conditions has been
discussed till to give an exhaustive list of these conditions.

The proposed expression allows the separation of the geometric constant para-
meters from the configuration dependent ones, and it is specially useful for design-
ing manipulators referable to this architecture.

Appendix A

Definitions (1) and the coincidence of P3 and P4 (see Fig. 2b) make it possible to
write

u3v456 −u4v356 = u3{[(P3 −P1)×u4] · (v5 ×v6)}
−u4{[(P3 −P1)×u3] · (v5 ×v6)},

(A.1)

which, by using the identity a×b · c ≡ c×a ·b, becomes
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u3v456 −u4v356 = u3{[(v5 ×v6)× (P3 −P1)] ·u4}
−u4{[(v5 ×v6)× (P3 −P1)] ·u3}.

(A.2)

Eventually, the identity a× (b× c) ≡ [b(a · c)− c(a · b)] and definitions (8) allow
the transformation of formula (A.2) into relationship (7).

Appendix B

Definitions (1) and the coincidence of P3 and P4 (see Figure 2(b)) make it possible
to write

u5v346 −u6v345 = u5[v6 · (v3 ×v4)]−u6[v5 · (v3 ×v4)], (B.1)

where (the identities a× (b× c) ≡ [b(a · c)− c(a ·b)] and a×b · c ≡ a ·b× c have
been used to obtain the second and, then, the third expressions, respectively)

v3 ×v4 = [(P3 −P1)×u3]× [(P3 −P1)×u4]
= (P3 −P1){[(P3 −P1)×u3] ·u4}
= (P3 −P1)[(P3 −P1) · (u3 ×u4)],

(B.2)

The introduction of the third expression (B.2) into the right-hand side of relationship
(B.1) yields relationship (9) after the factor (P3 −P1) · (u3 ×u4) has been collected.
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Abstract. The general three-system is represented by a sphere through the origin. The highest- and
lowest-pitch screws meet it at two antipodes, defining the pitch axis. A line from the origin, parallel
to each screw, intersects the sphere at an image point. Its projection on the pitch axis measures the
screw’s pitch; a translation equal to the point’s velocity under unit clockwise rotation about the
pitch axis, positions it on the screw’s axis.

Key words: Screw systems, visualization, projective spaces, unilateral wrenches.

1 Introduction

In many robotic mechanisms, a rigid body is constrained to move with fewer than six
degrees of freedom or is subject to wrenches that span a less than six-space. Then,
the possible instantaneous motions of the body, or the systems of forces acting on it,
are described by a subspace of the six-dimensional vector space of twists, se(3), or
wrenches, se(3)∗. Such linear subspaces, or their underlying projective spaces, are
referred to as screw systems [1, 2, 5, 6].

It is useful not only to know the exact type of the system present in each case,
but to have an understanding and a visual reference of the geometric pattern of the
twists or wrenches it contains. For more complex systems, it is helpful to have a
geometric model of the system, i.e., a representation with a common geometric set,
identifying each screw with an element, enabling the visualization of a global image
of the system.

The perfect example is Ball’s representation of the general two-system with a
circle [1,5]. Unfortunately, this tool is not widely known, in part because it has been
unclear how to generalize it for systems of higher dimension.

In [8], which studied convex cones within various systems, some special three-
systems, with all screw parallel to a plane, were modeled by a pitch-to-elevation
coordinate plane, in which circles represent Ball diagrams of two-subsystems. The
present paper presents an analogous model for the more general three-systems,
where screws can have arbitrary directions.
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2 Screws and Projective Spaces

2.1 Physical and Geometrical Screws

With respect to a given reference frame, a twist (or a wrench) is given by a pair of
non-commensurate physical vectors, (ω, v) ∈ se(3), the body’s angular velocity and
the linear velocity at the origin (or (f, m) ∈ se(3)∗, the resultant force and moment
with respect to the origin).

A physical element of either se(3) or se(3)∗ is associated with a screw about
which the body twists or the wrench is applied. A screw is a line in space, �(ξ ) (the
screw axis of ξ ), with an associated metric quantity, h(ξ ) (the pitch). Infinite-pitch
screws are pure directions (free vectors).

The pitch, h, and the axis point, d, closest to the origin, of a finite-pitch screw
underlying a twist ξ = (ω, v) are given by

h = ω · v
ω · ω , d = ω × v

ω · ω (1)

Conversely, ξ = (ω, v) = (ω, hω + r × ω), for any r ∈ �(ξ ). An infinite-pitch
screw corresponds to a translation (0, v) (or a force couple, (0, m)).

The geometric screw becomes an element of a physical linear space when mul-
tiplied by a dimensioned scalar, such as the twist amplitude, ω, or the wrench in-
tensity, f . The directed geometric screw is a normalized twist, i.e., either it has
a unit angular-velocity component, |ω| = 1, or is a translation with unit velocity,
τ = (0, v), |v| = 1. Equivalently, each screw is identified with a class, [ξ ], of twists
obtained from each other by (real-number) scalar multiplication, i.e., it is an element
of the five-dimensional real projective space, [ξ ] ∈ P(se(3)), generated by se(3).

2.2 Models of Projective Space

Real projective n-space, P(Rn+1) = RP
n, is defined by imposing the equivalence

relation x ∼ λx, λ �= 0, on R
n+1 −{0}, identifying vectors that are scalar multiples.

An element of RP
n is a class [x] of equivalent (n+1)-vectors and can be represented

by interpreting the coordinate array of any one of them, x = (x1, . . . , xn+1), as
homogenous coordinates, [x] = (x1 : . . . : xn+1). This representation is sometimes
called the analytic model of RP

n [7].
The elements of RP

n can be thought of as lines through the origin in R
n+1.

(Lines in RP
n become 2-planes through the origin in R

n+1, etc.) This is called the
homogeneous model (or sometimes the vector-space model).

It is often desirable to visualize the elements of projective space as points of
an n-dimensional manifold. This can be done via geometric models obtained by
normalization, i.e., by selecting a representative point from each line.
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The familiar representation of RP
n by R

n augmented with the hyperplane at
infinity is called the straight model by Stolfi [7]. If we intersect each line through
the origin with the unit n-sphere in R

n+1, Sn, we can represent each element of RP
n

as a pair of antipodal points. This is the spherical model.
More generally a geometric model is obtained by projection on a quadric hyper-

surface from a point either away from the quadric (as above), or on it. Instead of a
sphere centered at the origin, we can use a sphere, Sn(s), with antipodal points O

and some s ∈ R
n+1. For a line through O not tangent to Sn(s), we take the second

intersection point as the image. The tangents at O comprise a copy of PR
n−1:

RP
n ∼= (

Sn(s) − {O}) � RP
n−1

[x] �→
⎧

⎨

⎩

(x · s)
x

‖x‖ if x · s �= 0

[x] if x · s = 0

(2)

The image is the sphere with a point removed and replaced by a copy of RP
n−1

in the tangent hyperplane. (This procedure is known as blowing up the point.) This
representation maps to the straight model via stereographic projection, hence we call
it the pre-stereographic model. It can be shown that the Ball circle diagram is such
an image of the general two-system. In this paper we construct a pre-stereographic
model of the general three system.

3 A Model of the General Three-System

3.1 The Pre-Stereographic Sphere

A general three-system, P2 = P(A3), is one generated by screws with different
finite pitches and mutually perpendicular concurrent axes. The coordinate axes are
chosen along the principal screws, ξx = (i, hx i), ξy = (j, hy j), ξz = (k, hyk), with
hx > hy > hz. For any ξ ∈ A3,

ξ = ωxξx + ωyξy + ωzξ z = (ωx i + ωy j + ωzk, hxωx i + hyωy j + hzωzk). (3)

We will assume throughout ω2 = ω2
x + ω2

y + ω2
z = 1. The pitch and the location of

ξ are obtained from (1) and (3):

p = Hxω
2
x − Hzω

2
z , d = −Hzωyωzi + Hωzωxj − Hxωxωyk . (4)

where relative pitch values are used: p = h − hy , Hx = hx − hy , Hz = hy − hz.
We denote by H = Hx + Hz = hx − hz the largest relative pitch.
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Fig. 1 The sphere, S , with the two planes: κ ′, normal to the pitch axis; and κ ′′, tangent to S at O.
The pencils, B′ and B′′, of hy -screws are visible in the planes.

We select s = sx i + szk, sx = √
HHx , sz = √

HHz, so |s| = H . We use the
sphere, S2(s), with antipodal points O and s, Fig. 1. First we translate all screws of
P2 to the origin, then we intersect their axes with S2(s):

P2 −→ RP
2 −→ {

S2(s) − {O}} � RP
1

[ξ ] �−→ [ω] �−→
{

(s · ω)ω if ω · s �= 0
[ω] if ω · s = 0

(5)

where (ω, v) is a normalized twist in [ξ ]. As in (2), the image is S2(s) with the origin
blown up and replaced by a copy of RP

1 in the tangent plane at O , κ ′′. We denote
the image set S = S2(s), and the image point w(ξ ) = ws(ξ ).

In the general three-system the hy -screws form two planar pencils in two planes
intersecting in ξy [5]. The sphere is constructed so that it is tangent to one of these
pencils, B′′ at Q′′ ∈ κ ′′, Fig. 1. The second pencil, B′, is in the plane κ ′ ⊥ ep at Q′.
(The coordinates of Q′ and Q′′ are (0,±H/2, 0).)

All [ξ ] /∈ B′′ are faithfully represented by their image points, w(ξ ) = (s · ω)ω ∈
S; elements of B′′ are only translated to O , they have the same image point w = 0
and so are represented by a line through O tangent to S.
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For a given set of principal axes and relative-pitch constants, there are four pos-
sible choices for S, corresponding to the four possible choices of the coordinate
directions of a right-handed frame along the given axes.

3.2 The Pitch Axis

The line from wz = szk to wx = sx i, is the pitch axis of S.

Proposition 1 The projection of the pre-stereographic image vector of any screw
on the pitch axis is equal to its relative pitch, p = h − hy = w · ep.

Proof. Indeed,

w · ep = (s · ω)ω · ep = [

(sx i + szk) · ω
]

ω · 1

H
(sx i − szk)

= 1

H
(sxωx + szωz)(sxωx − szωz) = 1

H

(

s2
xω2

x − s2
z ω2

z

) = Hxω
2
x − Hzω

2
z = p

This means that under w : P2 → S the screws of a given pitch h = hy + p,
p �= 0, map bijectively onto a circle σp = S ∩ πp, where πp ⊥ ep is a plane at
a distance p from O . In other words, the pitch isograms on S are the “parallels”
on the sphere. The “north” and “south” “poles” are wx and wz. (Indeed, it is well
known that

[

ξx

]

and
[

ξ z

]

are the only screws in the system with the extreme pitches
hx and hz, otherwise hz < h < hx .)

3.3 The Screw Axis Location

Here we relate “longitude” on S and screw-axis location.

Proposition 2 On the axis of any screw, [ξ ], there is a point, r, which is displaced
from the screw’s image point, w(ξ ), by a vector, r−w = ρ(w)n(w), with magnitude
the distance, ρ(w), between the image point and the pitch axis, and direction as the
oriented area of the triangle, wwxwz, with vertices the image points of the screw
and the principal screws of highest and lowest pitch.

Proof. It is sufficient to show that (r − d) × ω = 0. Using the expression r =
w + (w − wz) × ep = w + w × ep − √

HxHzj, as well as (4) for d, it is not difficult
to compute r × ω and d × ω and show that they are equal.

The vector r − w can be seen as the velocity of point w under unit clockwise
rotation about ep. It is along the tangent “due west” from w, Fig. 2.
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Fig. 2 The location of the screw axis for a given image point w. A square through w circumscribes
its “parallel”. The vertex, r, to the “west” of w is on the screw axis, �(ξ).

4 Possible Applications of the Pre-Stereographic Model

General three-systems arise commonly in robotics. Examples include the freedom
and constraint systems of 3-dof manipulators (e.g., some types of 3-RPS [4] and 3-
UPU, and more generally 3-RER [9] parallel mechanisms), as well as the wrenches
generated by varying the magnitudes of three forces applied to a body on three given
lines (e.g. by a three-finger grasp of a generic smooth surface, or by three skew
cables). Moreover, screw systems, and P2 in particular, can be used to describe
certain two-dimensional sets of finite displacements, such as those of the end link of
an RR-chain or the different ways to move a line between two given locations [3].

It is difficult to display P2 both accurately and clearly, as its screw axes pass
through every point in space and a direct visualization is impossible. Hence the de-
sire to model the system with a two-dimensional set. A representation using the
straight [1, 2] or spherical models of RP

2 conceals the pitch and location of the
screws. In contrast, modeling with S provides a simple and compact visual image
conveying readily accurate quantitative information. When studying a CAD model
of a 3-dof parallel manipulator it would be useful to see the possible instantaneous
motions of the end-effector at each simulated configuration. This can be accom-
plished by integrating into the CAE software a visualization algorithm able to gen-
erate a 3D plot of the pre-stereographic sphere, as in Fig. 2. (All figures have been
generated by parametric 3D plotting algorithms written in Maple.)
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Fig. 3 The convex cone generated by three skew forces, ϕ1 = (.4302418364i + .4590955140j +
.7772536724k, 7.314111219i + 3.672764112j − 6.218029379k), ϕ2 = (.009467261665i +
0.7070077476j + 0.7071424300k, .1609434483i + 5.656061981j − 5.657139440k), and ϕ3 =
(.2587986556i−.6287677134j+.7332628577k, 4.399577145i−5.030141707j−5.866102862k).
The image points of the screws in the cone form a triangle, w1w2w3, on S . The
corresponding screw-axis points form a triangle with vertices r1 = (1.385157564,
15.93045683, 11.03886818), r2 = (−7.944365468, 4.26855305, 4.041725896), r3 =
(−7.944365468, 4.26855305, 4.041725896) with elliptical sides on a spheroid.

Even more difficult to visualize than a screw system is a convex cone within it,
yet such sets are ubiquitous in grasping, fixturing, and cable robotics, where forces
can vary in intensity but not in direction. In the geometric model of the system, such
a cone is represented by a characteristic simplex [8]. For P2 the simplex can be
a spherical triangle on S. Figure 3 illustrates the resultant wrenches generated by
three unidirectional forces. These can be, the possible reaction wrenches generated
by three contact forces. Thus, it is evident from the figure that these three forces
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cannot keep in equilibrium an unconstrained body in a gravity field, as the resultant
cannot be a pure force. Algorithms creating such 3D plots can be useful in the design
and analysis of mechanical devices for the application of unidirectional wrenches.

5 Conclusions

As a basis for visualization techniques, the proposed pre-stereographic model of the
three-system can be helpful for analysis and design in a variety of areas of robotics,
such as grasping, fixturing, and cable-driven or parallel manipulators. The screws of
the general three-system, passing through every point in space, are much more diffi-
cult to envision than the cylindroid, which now can be drawn in 3D on every laptop.
Thus, a sophisticated representation, such as the one proposed, is arguably more
important in the three-dimensional case than for the general two-system, elegantly
represented by the Ball circle.
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Abstract. In this paper we consider the difficulty of finding tasks for kinematic synthesis that
result in usable constrained 6R planar serial chain. Kinematic synthesis consists of solving the
constraint equations for articulated systems to determine the dimensions of the device the reaches
a set of specified task positions. Our initial results show that the probability that an inventor finds
a task that yields a usable constrained nR chain is approximately P = (1/36)n−1. For a constrained
6R chain this is one out of 60 million randomly selected tasks. We consider this to be a difficult
kinematic synthesis problem.

Key words: Kinematic synthesis, robot design, constrained serial chains, planar 6R robot.

1 Introduction

In this paper, we study the synthesis procedure introduced by Soh and McCarthy [1]
to constrain a planar nR serial chain into a single degree-of-freedom 2n-bar linkage
that has 3n− 2 revolute joints. This procedure is equivalent to the kinematic syn-
thesis of a sequence of n−1 RR constraints. Soh and McCarthy used this procedure
to design a constrained 6R chain that guided its end-effector though five specified
task positions (Fig. 1).

An RR serial chain that is constrained by a second RR chain forms a four-bar
linkage with two assemblies. If we constrain an nR chain with n−1 RR chains, we
obtain a sequence of n− 1 four-bar chains, with 2n−1 assemblies (Fig. 2). In this
paper we determine experimentally the probability that all five of the task positions
of a constrained 2R chain lie on one assembly, and use this to estimate the equivalent
probability for a constrained 6R chain.
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Fig. 1 This 12-bar linkage is obtained by constraining the links of planar 6R serial chain so that it
guides the end-effector through the same five task positions as the unconstrained robot.

2 Literature Review

Kinematic synthesis computes the dimensions of a mechanical constraint, such as a
planar RR chain, such that the end-link of the chain passes through a specified set
of task positions – R refers to a revolute or hinged joint. Introduced by Burmester
[3], and developed further by Hartenberg and Denavit [2], research in kinematic
synthesis has extended the planar theory to spherical and spatial task positions [4–
6] for a wide variety of mechanical constraints. Also see the books by Suh and
Radcliffe [7], Sandor and Erdman [8], and McCarthy [9]. Recent results can be
found in [10, 11].

The addition of an RR chain to a linkage introduces two modes of assembly.
Failure of the task positions to lie on the same assembly is called a circuit, or branch,
defect. A linkage with this defect generates trajectories that pass through a portion
of the task positions in one assembly, and the remainder of the task positions in the
second assembly, and is not useful.

The elimination of branch defects in linkage synthesis was addressed by Waldron
[12] for kinematic synthesis of RR constraints defined by four task positions. Mirth
and Chase [13] studied the problem for six-bar linkages. However, no work has
considered the branching problem for RR synthesis through five task positions, and
there is little if any research on branching for other planar, spherical or spatial open
chains used as mechanical constraints.

Our work in the kinematic synthesis of constrained serial chains is inspired by
Krovi et al. [14], who derived synthesis equations for planar nR planar serial chains
in which the n joints are constrained by a cable drive. They obtained a “single
degree-of-freedom coupled serial chain” used to design an assistive device. Also
see [15] who developed a synthesis theory for 3R chains.
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Fig. 2 This shows our conventions for the analysis of a mechanically constrained nR serial chain.

Fig. 3 This shows the kinematic structure of mechanically constrained serial chains. The linkage
graph is on the left, which has each link as a node and each R joint as an edge. The contracted
graph on the right shows only links with three or four edges as nodes. This shows that the structure
extends to any length of nR robot.

3 Kinematics Equations of a Planar nR Chain

Let the configuration of an nR serial chain be defined by the coordinates, Ci =
(xi,yi), i = 1, . . . ,n, that locate its n revolute joints. The distances ai,i+1 = |Ci+1−Ci|
define the lengths of each link. Attach a frame Ai to each of these links so so its
origin is located at Ci and its x axis is directed toward Ci+1. The joints C1 and
Cn are the attachments to the base frame F = A0 and the moving frame M = An,
respectively, and we assume they are the origins of these frames. The joint angles θi
define the relative rotation about the joints Ci.
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Introduce a world frame G and task frame H so the kinematics equations of the
nR chain are given by

[D] = [G][Z(θ1)][X(a12)][Z(θ2)][X(a23)] . . . [X(an−1,n)[Z(θn)][H], (1)

where [Z(θi)] and [X(ai,i+1)] are the 3×3 homogeneous transforms that represent a
rotation about the z-axis by θi, and a translation along the x-axis by ai,i+1, respect-
ively. The transformation [G] defines the position of the base of the chain relative to
the world frame, and [H] locates the task frame relative to the end-effector frame.
The matrix [D] defines the coordinate transformation from the world frame G to the
task frame H.

Given five task positions [Tj], j = 1, . . . ,5 of the end-effector of this chain, we
can solve the equations

[D] = [Tj], j = 1, . . . ,5, (2)

to determine the joint parameter vectors θ j = (θ1, j,θ2, j, . . . ,θn, j). Because there are
three independent constraints in this equation, we have free parameters when n > 3.

We assume that the free configuration variables in the nR chain have been chosen
to provide the desired configuration of the nR chain in each task position. The result
is that alternating pairs of links have five specified relative task positions that can
be used to design an RR constraint, see Fig. 3. Soh [1] was able to solve these
constraints to obtain a working constrained 6R (Fig. 1).

4 Synthesis of RR Constraints

An RR constraint has five design parameters, the coordinates of the base pivot B =
(u,v) in the base frame, the coordinates of the moving pivot P = (x,y) in the moving
frame, and the length R of the link that connects the pivots. Five task positions yield
five quadratic constraint equations that can be solved to obtain these parameters.
This process can be applied to alternating pairs of links in an nR chain to obtain a
sequence of four-bar linkages (Fig. 2).

The inverse kinematics problem for an nR chain that reaches the five specified
task [Tj], j = 1, . . . ,5, yields the joint parameter vectors θ j for each task position.
This determines five positions for each link frame Ak+1 relative to the link frame
Ak−1. The result is n− 1 sets of five relative positions, each of which is used to
synthesize an RR chain that connects link Ak+1 to Ak−1.

Let [Vk, j], j = 1, . . . ,5 denote the five positions of Ak+1 relative to Ak−1. Then the
coordinates of the moving pivot Pk attached to Ak+1 and the fixed pivot Bk attached
to Ak−1 must satisfy the equations,

([Vk, j]Pk −Bk) · ([Vk, j]Pk −Bk) = Rk, j = 1, . . . ,5. (3)

These are the equations can be solved algebraically to determine as many as four
solutions for the coordinates of Pk and Bk, [8, 9]. It is important to note that the
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Fig. 4 The synthesis results for a four-bar linkage are used to compute the input and output angles
θi and ψi.

existing RR chain CkCk+1 satisfies these design equations, which guarantees the
existence of second real solution.

The RR design equations allow us to constrain an nR chain to reach five task
positions. Figure 3 lists the planar linkages that this procedure allows us to design.
Notice that in each case, we obtain a sequence of four-bar linkages extending from
the base G to the end-effector frame H. Furthermore, while the base and end-effector
frames are binary links having only two revolute joints, the links A1 and An−1 are
ternary links, and the remaining links are quaternary.

5 Identification of Usable Four-bar Linkages

In this section, we show how to determine if a four-bar linkage has a circuit defect,
and use this to test if the set of five task positions yield a usable four-bar linkage.

The constraint equations (3) are solved to obtain four sets of values σk =
(u,v,x,y,R)k, k = 1,2,3,4, which appear as: (i) four imaginary solutions; (ii) two
imaginary and two real solutions; or (iii) four real solutions. Two real solutions are
used to define the quadrilateral that forms a four-bar linkage, therefore case (ii)
yields one four-bar linkage, and case (iii) yields six four-bar linkages.

If the set of task positions results in four imaginary solutions to the design equa-
tions, case (i), then the task fails to yield a usable four bar linkage.

For cases (ii) and (iii), choose two real solutions, σk and σn, and use the segment
BkPk as the input crank and the segment BnPn as the output crank (see Fig. 4). In
each of the five task positions, we evaluate the input angles θ j and output angles ψ j
of the quadrilateral Qkm : (Bk,Pk,Pn,Bn) using the formulas,

θ j = arctan

(
det[Bn −Bk,P

j
k
−Bk]

(Bn −Bk) · (P j
k
−Bk)

)

,and

ψ j = arctan

(
det[Bn −Bk,P

j
n −Bn]

(Bn −Bk) · (P j
n −Bn)

)
, j = 1, . . . ,5, (4)
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where P j = [Vj]P are the five coordinate vectors defining the moving pivots in each
task position.

Position analysis of the four-bar quadrilateral Qkm yields an equation of the form
[9]:

A(θ )cosψ + B(θ )sinψ +C(θ ) = 0. (5)

This equation is solved to obtain

ψ(+,−) = arctan

(
B
A

)
± arccos

(
−C√

A2 + B2

)
. (6)

The plus and minus signs in (6) define the two modes of assembly of the quadrilat-
eral Qkm.

In order to determine if a given task, [Vj], j = 1, . . . ,5, yields a usable four-bar
linkage, we do the following:

1. Select pairs of real solutions σk and σn and construct a quadrilateral, or quadri-
laterals, Qkm;

2. Use the formulas (4) to evaluate the input angles Θ = (θ1,θ2, . . . ,θ5), and the
output angles Ψ = (ψ1,ψ2, . . . ,ψ5) for each Qkm;

3. Let mode(ψ j) = 1, if ψ j in Ψ equals ψ+
j obtained from (6), similarly let

mode(ψ j) = 0, if ψ jequals ψ−
j in (6), and evaluate the array µ = (mode(ψ1),

mode(ψ1), . . . , mode(ψ5));
4. Return the array µ .

If the array µ consists of all ones or all zeros then the four-bar linkage is usable
because all the task positions lie on a single assembly mode.

6 Probability of a Usable Four-bar Linkage

We can estimate the probability that a randomly selected set of five task positions
will yield a usable four-bar linkage via kinematic synthesis. To do this we assume
that the imaginary and real solutions to the kinematics equations are uniformly dis-
tributed among the four combinations: (1) four complex solutions, (2) two complex
solutions and two real solutions), (3) two real solution and two imaginary solutions,
and (4) four real solutions. This implies that 3/4 of randomly selected task positions
yield at least one real four-bar linkages.

The probability that a real four-bar linkage is usable can be estimated by consid-
ering the placement of 1 or 0 in five bins. There are 25 combinations, with two cases
that are useful. This yields P = 1/24. Thus, the probability that a randomly selected
task yields a usable linkage is P = (3/4)(1/24) = 0.047. Another way of saying this
is that 1 task out of 21.3 randomly selected tasks yields a usable four-bar linkage.

Table 1 presents five numerical experiments that evaluate the probability that a
random task yields usable four-bar linkages. We call these usable tasks. This table

460



Difficulty of Kinematic Synthesis of Usable Constrained Planar 6R Robots

Table 1 Results of numerical experiments to determine the distribution of randomly selected tasks
that yield usable four-bar linkages.

Random Tasks 10,000 50,000 50,000 100,000 1,000,000

Four complex solutions 2282 22642 11594 23083 230766
% of solutions 22.8 23.3 23.2 23.1 23.1
Two complex, Two real 5533 27442 27537 55281 551269
% of solutions 55.3 54.9 55.1 55.3 55.1
Four real solutions 2185 10916 10869 221636 217965
% of solutions 21.8 21.8 21.7 22.2 21.8

Tasks with usable four-bars 399 2080 2178 4262 42172
Tasks per usable task 25.1 24.0 23.0 23.5 23.7

shows that our assumption of uniform distributions are off slighly, and the probab-
ility is approximately 1 out of 24 tasks.

7 Probability of Usable Constrained 2R Robots

The synthesis procedure for a constrained nR chain presented by Soh and Mc-
Carthy [1] begins with five task configurations for the entire chain. Solution of the
synthesis equations yield an RR constraint for alternating pairs of links. This is a
generalization of the synthesis of an RR constraint for 2R robot.

A 2R robot that has its end-effector constrained by an RR crank forms a four-bar
linkage. When formulated in this way the synthesis equations always have a real
solution, because the pivots of the initial 2R robot satisfy the synthesis equations.

If we assume that the 2R linkage has its base pivot at the origin and we identify a
random value for its length, then we can identify a set of five random task positions
for its end-effector by identifying five random values for the pair of joint angles
(θ1,θ2). Each random task must have at least one real RR constraint that yields a
four-bar linkage. We expect the probability that a random task yields a usable four-
bar linkage to be P = 1/24 = 0.062. This suggests that one out of 16 random tasks
will yield a usable linkage, which we find is not the case.

Table 2 presents the results from 10 numerical experiments that evaluate 10,000
random tasks for a 2R chain with a randomly assigned length for each experiment.
We see that the probability of a usable task is approximately one out of 38 random
tasks.
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Table 2 Repeated evaluation of 10,000 random tasks to identify usable constrained 2R robots.

Test No. Usable tasks 2 Real 4 Real Tasks per usable task

1 227 5993 4007 36.1
2 227 6004 3996 44.0
3 264 5898 4102 37.9
4 264 6047 3953 37.9
5 280 5986 4014 35.7
6 276 6000 4000 36.2
7 263 5895 4105 38.0
8 242 5909 4091 41.3
9 256 5916 4091 39.1
10 281 5916 4084 35.6

Average 263 5956 4043 38.2
% of tasks 2.6 59.6 40.4

8 Probability of Usable Constrained 6R Robots

The mechanical constraint of a 6R planar robot to achieve a 12-bar one degree-of-
freedom system requires the design of five RR constraints. Each of these design
problems is independent and equivalent to the synthesis of a constrained 2R robot.
Thus, the probability that a randomly selected task yields a usable constrained 6R
robot is P5, where P is the probability that the task yields a usable constrained 2R
robot.

We compute the probability that a random task for a 6R chain yields a usable
12-bar linkage to be one in 385, or approximately one in 60 million.

9 Conclusions

This paper considers the difficulty of designing a constrained 6R robot such that it
moves smoothly through five task positions. We first derive the probability that a
randomly selected five position task will yield a four-bar linkage that has all five
positions on one assembly mode, and numerical experiments yield results close to
this value, though not exactly the same. We then consider the synthesis of a con-
strained 2R chain and find that the probabilities are almost one-fifth of what we
expect. The design of a constrained 6R is equivalent to the independent synthesis of
five constrained 2R chains, which yields the probability that a task yields a usable
constrained 6R robot to be approximately one in 60 million.

This is our initial work in the study of the relationship between a specified task
and the usefulness of the a linkage that is defined by solving the kinematic synthesis
equations. These results seem to show that finding usable task positions is difficult.
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Abstract. The paper presents a methodology for the enhanced stiffness analysis of parallel ma-
nipulators with internal preloading in passive joints. It also takes into account influence of the ex-
ternal loading and allows computing both the non-linear “load-deflection” relation and the stiffness
matrices for any given location of the end-platform or actuating drives. Using this methodology,
it is proposed the kinetostatic control algorithm that allows to improve accuracy of the classical
kinematic control and to compensate position errors caused by elastic deformations in links/joints
due to the external/internal loading. The results are illustrated by an example that deals with a
parallel manipulator of the Orthoglide family where the internal preloading allows to eliminate the
undesired buckling phenomena and to improve the stiffness in the neighborhood of its kinematic
singularities.

Key words: Modeling, parallel manipulators, external loading, internal preloading, passive joints.

1 Introduction

Parallel manipulators have become very popular in many industrial applications
due to their inherent advantages of providing better accuracy, lower mass/inertia
properties, and higher structural rigidity compared to their serial counterparts [1].
These features are induced by the specific kinematic structure, which eliminates
the cantilever-type loading and allows to minimize deflections caused by external
torques and forces. One recent development in this area, which is targeted at high-
precision manipulation, is a replacing the standard passive joints by preloaded ones,
which contain internal passive springs eliminating the backlash or ensure some de-
gree of static balancing [2,3]. This modification obviously improves the manipulator
performances but requires some revision of existing stiffness analysis techniques
that are in the focus of this paper.

In most of previous works, the manipulator stiffness analysis was based on
the linear modeling assumptions which ignore influence of the external or in-
ternal forces [4–8]. Consequently, relevant techniques are targeted at linearization of
the “force-deflection” relation in the neighborhood of the non-loaded equilibrium,
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which is perfectly described by the stiffness matrix [9, 10]. However, in the case of
non-negligible internal and/or external loading, the manipulator may demonstrate
essentially non-linear behaviour, which is not exposed in the unloaded case [11].
In particular, the loading may potentially lead to multiple equilibriums, to bifurc-
ations of the equilibriums or to static instability of certain manipulator configura-
tions [12, 13].

This paper presents an extension of our previous results [14] devoted to the stiff-
ness analysis of parallel manipulators by generalizing them for case of internal pre-
loading [15] in the passive joints. It implements the virtual joint method (VJM)
of Salisbary [16] and Gosselin [17] that describes the compliance of the manipu-
lator elements by a set of localized multi-dimensional springs separated by rigid
links and perfect joints. The proposed technique allows computing the loaded equi-
librium, finding the full-scale “load-deflection” relation and evaluating the corres-
ponding stiffness matrices for any given location of the end-platform or actuating
drives [18]. It is also developed a kinetostatic control algorithm that allows to im-
prove accuracy of the classical kinematic control and to compensate position errors
caused by elastic deformations in links/joints due to the external/internal loading.

The remainder of this paper is organized as follows. Section 2 defines the re-
search problem and basic assumptions. Section 3 deals with computing of the loaded
static equilibrium and corresponding “load-deflection” relation. Section 4 focuses
on its linearization and evaluation of the stiffness matrix. Section 5 presents the kin-
etostatic control algorithm. Section 6 contains an illustrative example. And finally,
Section 7 summarizes the main results and contributions.

2 Manipulator Model

Let us consider a general parallel manipulator that is composed of n serial kin-
ematic chains connecting a fixed base and a moving platform Fig. 1. It is assumed,
that the chain architecture ensures kinematic control of the manipulator but may
introduce some redundant constraints that improve the rigidity. Following the VJM-
concept [17], let us presents the manipulator chains as sequences of pseudo-rigid
links separated by rotational or translational joints of one of the following types:
(i) perfect passive joints; (ii) preloaded passive joints that include auxiliary flexible
elements; (iii) virtual flexible joints that describe compliance of the actuators and
manipulator links; (iv) actuating joints. Using this notation the geometrical model
of the chain may be written as

t = g(ρ, q,ϑ, θ), (1)

where the vector t = (p, ϕ)T includes the Cartesian position p = (x, y, z)T and
orientation ϕ = (ϕx, ϕy, ϕz)

T of the end-platform, ρ is the vector of actuated co-
ordinates (they are constant for static analysis), the vector q contains coordinates of
all perfect passive joints, the vector ϑ includes coordinates of the preloaded passive
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Fig. 1 Typical parallel manipulator and VJM-model of its kinematic chain.
(Ac – actuator; Ps – Passive joint)

Fig. 2 Examples of auxiliary springs in preloaded passive joints.

joints, and the vector θ collects coordinates of all virtual springs describing elasticity
of the links and joints.

The above mentioned elements of the kinematic chain differ in their static char-
acteristics. In particular, the joints (i) and (iii) are described by the standard expres-
sions [14]

τq = 0 and τ θ = Kθ · θ (2)

where τ q and τ θ are the generalized force/torque reactions corresponding to the
aggregated vectors of the passive joint coordinates q and virtual joint coordinates θ ;
Kθ is the generalized stiffness matrix of all virtual springs. However, the preloaded
passive joints (ii) may include both linear and non-linear auxiliary springs, some
examples of which are shown in Fig. 2. In this paper, we will describe statics of the
preloaded joints by a general expression

τϑ = Kϑ · h(ϑ − ϑ0) (3)

where τϑ is the generalized force/torque reactions corresponding to the aggregated
vectors of the preloaded joint coordinates ϑ ; ϑ0 defines the preloading value; Kϑ is
the generalized stiffness matrix of preloaded joints, and the vector function h(. . .)

is assumed to be piecewise-linear, such that each of its scalar components hi(. . .)

can be expresses either as the difference (ϑi − ϑi0), or its positive or negative part
[ϑi − ϑi0]+, [ϑi − ϑi0]− (see Fig. 2 for details).

Using these assumptions, let us derive the stiffness model of the considered ma-
nipulator and sequentially consider the following sub-problems: (i) computing the
loaded static equilibrium and obtaining the “load-deflection” relation; (ii) lineariz-
ation of this relations in the neighborhood of this equilibrium and computing the
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stiffness matrix; (iii) developing the kinetostatic control algorithm, which allows to
compensate position errors caused by the elastic deformations and preloading.

3 Static Equilibrium

Let us obtain first the configuration of each kinematic chain (q, θ ,ϑ) and external
force F that correspond to the static equilibrium with the end-point location t. Ob-
viously, it is a dual problem compared to the classical static analysis but it is more
reasonable here because of strictly parallel structure of the considered manipulator
(see Fig. 1). The latter allows applying the same technique to all kinematic chains
(with the same end-point location) and to compute the total external loading as the
sum of the partial loadings.

Taking into account the assumption on the piecewise-linear property of the func-
tion h(.), let us perform regrouping of the variables. In particular, for each current
configuration of the chain, the coordinates of the preloaded passive joints described
by the vector ϑ may be separated into two parts ϑθ and ϑq , where the first one
corresponds to the active state of the auxiliary springs and the second part describes
non-active springs (see Figure 2 for geometrical interpretation). This allows repla-
cing the original set of the configuration variables (q, θ ,ϑ) by a set of two vectors
(q̃, θ̃), where q̃ aggregates the joint coordinates (q,ϑq) that currently are passive
and the vector θ̃ collects all spring coordinates (θ ,ϑθ ) (both virtual and passive).

Using these notations and applying the virtual work technique, the static equilib-
rium equation of the kinematic chain may be written as

J̃T
θ · F = K̃θ · (θ̃ − θ̃0); J̃T

q · F = 0 (4)

where F is the external force applied at the end-point of the chain, the vector

θ̃
T

0 = [0T , ρT
0 ] aggregates the spring preloadings (which is obviously zero for

the virtual springs), K̃θ = diag(Kθ , Kϑ), and J̃θ , J̃q are the kinematic Jacobians
derived from (1) by differentiating it with respect to θ̃ , q̃. This system of Eq. (4)
combined with the geometrical model (1), which must be rewritten in terms of the
redefined variables

t = g̃(q̃, θ̃) (5)

This yields the desired joint coordinates of the static equilibrium for a separate kin-
ematic chain with given end-point location.

Since the derived system is highly nonlinear, in general case a desired solution
can be obtained only numerically. In this paper, it is proposed to use the following
iterative scheme
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[

Fi+1

q̃i+1

]

=
[

J̃θ (q̃i , θ̃ i ) · K̃−1
θ · J̃T

θ (q̃i , θ̃ i ) J̃q(q̃i , θ̃ i )

J̃T
q (q̃i , θ̃ i ) 0

]−1 [

εi

0

]

θ̃ i+1 = K̃−1
θ · J̃T

θ (q̃i , θ̃ i ) · Fi+1 + θ̃0

εi = t − g(q̃i , θ̃ i ) + J̃q(q̃i , θ̃ i ) · q̃i + J̃θ (q̃i , θ̃ i ) · (θ̃ i + θ̃0)

(6)

where the starting point (θ̃0, q̃0) is also computed iteratively, started from a nearest
unloaded configuration where the joint coordinates are easily obtained from the in-
verse kinematic model. On the following iterations, to improve convergence, the
system variables are slightly randomly disturbed. As follows from computational
experiments, the proposed iterative algorithm possesses rather good convergence
(3–5 iterations are usually enough).

4 Stiffness Matrix

To compute the desired stiffness matrix, let us consider the neighborhood of the
equilibrium configuration and assume that the external force and the end-effector
location are incremented by some small values δF, δt. Besides, let us assume that
a new configuration also satisfies the equilibrium conditions. Hence, it is necessary
to consider simultaneously two equilibriums corresponding to the manipulator state
variables (F, q, θ , t) and (F + δF, q + δq, θ + δθ , t + δt). Relevant equations of
statics may be written as

J̃θ
T

F = K̃θ (θ̃ − θ̃0); J̃q
T

F = 0;
(J̃θ + δJ̃θ )

T (F + δF) = K̃θ (θ̃ − θ̃0 + δθ̃); (J̃q + δJ̃q)T (F + δF) = 0
(7)

where δJ̃q(q̃, θ̃) and δJ̃θ (q̃, θ̃) are the differentials of the Jacobians due to changes
in (q̃, θ̃). Besides, in the neighborhood of (q̃, θ̃), the kinematic equation (5) may
be also presented in the linearized form:

δt = J̃θ (q̃, θ̃) · δθ + J̃q(q̃, θ) · δq̃ (8)

Hence, after neglecting the high-order small terms and expanding the differen-
tials via the Hessians of the function � = g̃(q̃, θ̃)T F

H̃
F

qq = ∂2�

∂ q̃2 ; H̃
F

θθ = ∂2�

∂ θ̃
2 ; H̃

F

qθ = (H̃
F

θq)T = ∂2�

∂ q̃ ∂ θ̃
(9)

Eqs. (7) may be rewritten as

J̃
T

θ (q̃, θ̃) · δF + H̃
F

θq(q̃, θ̃) · δq̃ + H̃
F

θθ (q̃, θ̃) · δθ̃ = K̃θ · δθ̃

J̃
T

q (q̃, θ̃) · δF + H̃
F

qq(q̃, θ̃) · δq̃ + H̃
F

qθ (q̃, θ̃) · δθ̃ = 0
(10)
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Besides, here the variable δθ̃ can be eliminated analytically: δθ̃ = k̃
F

θ · J̃
T

θ · δF +
k̃

F

θ ·H̃F

θq ·δq̃, where k̃
F

θ = (K̃θ − H̃
F
θθ )

−1
. This leads to a system of matrix equations

with unknowns δF and δq̃
⎡

⎣
J̃θ · k̃

F

θ · J̃
T

θ J̃q + J̃θ · k̃
F

θ · H̃
F

θq

J̃
T

q + H̃
F

qθ · k̃
F

θ · J̃
T

θ H̃
F

qq + H̃
F

qθ · k̃
F

θ · H̃
F

θq

⎤

⎦ ·
[

δF

δq̃

]

=
[

δt

0

]

(11)

from which the desired Cartesian stiffness matrix of the chain Kc may be obtained
by direct inversion of the the left-hand side and extracting from it the upper-left
sub-matrix of size 6 × 6:

[

Kc ∗
∗ ∗

]

=
⎡

⎣
J̃θ · k̃

F

θ · J̃
T

θ J̃q + J̃θ · k̃
F

θ · H̃
F

θq

J̃
T

q + H̃
F

qθ · k̃
F

θ · J̃
T

θ H̃
F

qq + H̃
F

qθ · k̃
F

θ · H̃
F

θq

⎤

⎦

−1

(12)

Finally, when the stiffness matrices for all kinematic chains are computed, the
stiffness of the entire multi-chain manipulator can be found by simple summation
K	 = ∑n

i=1 Kci . It should be noted that, because of presence of the passive joints,
the stiffness matrix of a separate serial kinematic chain is always singular, but ag-
gregation of all the manipulator chains of a parallel manipulator produce a non-
singular stiffness matrix.

5 Kinetostatic Control

In robotics, the manipulator motions are usually generated using the inverse kin-
ematic model that allows computing the input (reference) signals for actuators ρ

corresponding to the desired end-effector location t. However, for manipulators with
preloaded passive joints, the kinematic control becomes non-applicable because of
changes in the end-platform location due to the internal loading. Hence, in this case,
the control must be based on the inverse kinetostatic model that takes into account
both the manipulator geometry and elastic properties of its links and joints [12].

Using results from the previous sections, the desired inverse kinetostatic trans-
formation can be performed iteratively, in the following way:

Step#1. For given target location of the end-platform t, compute initial values of
the actuated coordinates ρ0 by applying the inverse kinematic transformation.

Step#2. For current values of the actuated coordinates ρi and target location of
the end-platform t, find the equilibrium configuration for each kinematic chain
and compute the corresponding total external loading Fi

	 required to achieve the
target location.

Step#3. If the computed external loading is less than the prescribed error, i.e.
∣
∣Fi

	

∣
∣ < εF , stop the algorithm, otherwise continue the next step

Step#4. Repeat Step#2 several times in the neighborhood of the current solution
ρi and evaluate numerically the matrix Si

Fρ = ∂Fi
	/∂ρi describing the sensitivity

of F with respect to ρ.
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Fig. 3 Architecture of the Orthoglide manipulator and its planar version.

Step#5. Compute new value of the actuated coordinates ρi+1 = ρi − Si
Fρ

−1 · Fi
	

and repeat the algorithm starting from Step#2.

As follows from simulation results, this algorithm demonstrates good conver-
gence and can be used both for on-line and off-line trajectory planning. It was suc-
cessfully applied to the case-study presented in the following section.

6 Application Example

Let us apply the proposed techniques to the stiffness analysis of the planar manipu-
lator of the Orthoglide family (Fig. 3). For illustration purposes, let us assume that
the only source of the manipulator elasticity is concentrated in actuated drives, while
the passive joints may be preloaded by (i) standard linear springs, or (ii) non-linear
springs with mechanical stop-limit (see Fig. 2 for details).

For this manipulator, the kinematic model includes a single parameter L (the
leg length) and the dexterous workspace was defined as the maximum square area
that provides the velocity (and force) transmission factors in the range [0.5, 2.0].
Using the critical point technique developed for this type of manipulators [19], it was
proved that the desired square vertices are located in the points Q1(−p, − p) and
Q2(p, p), where p = 0.45 L. Besides, the square centre Q0(0, 0) is isotropic with
respect to the velocity and force transmission. The parameters of the actuating drives
are also assumed identical and their linear stiffness is denoted as Kθ . The auxiliary
springs incorporated in the passive joints adjacent to the actuators are described
by two parameters: the angular stiffness coefficient Kϑ and the activation angle
ϑ0 that defines the preloading activation point. During simulation, the manipulator
end-point was displaced by value � in the direction Q0Q1 or Q0Q2, and it was
computed corresponding magnitude for external force F .

The stiffness analysis results are summarized in Figs. 4, 5 and in Table 1. As
follows from them, the original manipulator (without preloading in passive joints)
demonstrates rather low stiffness in the neighborhood of the point Q2, which is
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Fig. 4 Force-deflection relations F = f (�/L) in critical points:
(1) Kϑ = 0; (2) Kϑ = 0.01 Kθ L2; (3) Kϑ = 0.1 Kθ L2

(case of preloading with linear springs).

Fig. 5 Compliance maps for cases of: (a) manipulator without preloading;
(b) manipulator with preloading non-linear springs with Kϑ = 0.5 Kθ L2 and ϑ0 = π/12 (b).

roughly 4 times lower than in the isotropic point Q0. In contrast, the linear stiffness
in the point Q1 is twice higher than in the point Q0. Besides, in the point Q2, the
external loading may provoke the buckling phenomenon that is caused by a local
minimum of the force-deflection relation. In this case, the distance-to-singularity is
essentially lower that it is estimated from the kinematical model and the manipulator
may easily loose its structural stability.

To improve the manipulator stiffness and to avoid the buckling in the neigh-
borhood of Q2, the passive joints were first preloaded by linear springs with ac-
tivation angle ϑ0 = 0. As follows from Fig. 4, the preloading with parameter
Kϑ = 0.1 Kθ L2 allows completely eliminate buckling and improves the stiffness
by the factor of 2.3. On the other hand, the stiffness in the points Q0 and Q1 changes
non-essentially, by 10% and 5% respectively. Hence, with respect to the stiffness,
such preloading has positive impact.

The only negative consequence of such preloading is related to changes of the
actuator control strategy. In fact, instead of standard kinematic control, it is neces-
sary to apply the kinetostatic control algorithm presented in Section 5. It allows
compensating the position errors caused by elastic deformations due to the internal
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Table 1 Manipulator stiffness for different linear preloading.

Stiffness in preloaded joints Kϑ = 0 0.01 Kθ L2 0.05 Kθ L2 0.1 Kθ L2

Point Q0 (isotropic point)

Actuating joint coordinates ρ L L L L

Manipulator stiffness Kc Kθ 1.01 Kθ 1.05 Kθ 1.10 Kθ

Point Q1 (neighborhood of “bar” singularity)

Actuating joint coordinates ρ 0.437 L 0.433 L 0.419 L 0.402 L

Manipulator stiffness Kc 2.276 Kθ 2.286 Kθ 2.329 Kθ 2.382 Kθ

Point Q2 (neighborhood of “flat” singularity)

Actuating joint coordinates ρ 1.345 L 1.356 L 1.399 L 1.453 L

Manipulator stiffness Kc 0.24 Kθ 0.27 Kθ 0.39 Kθ 0.55 Kθ

Critical force Fcr 0.020 Kθ L 0.027 Kθ L — —

preloading and to achieve the target end-point location with modified values of the
actuated joint coordinates. As follows from Table 1, corresponding adjustments of
the joint coordinates may reach 0.1 L and are not negligible for most of applications.

The most efficient solution that eliminates this problem is using of non-linear
springs with mechanical stop-limits that are activated while approaching to Q2. For
instance, as follows from dedicated study, the preloading with the parameters Kϑ =
0.5 Kθ L2, ϑ0 = π/12 provides almost the same improvements in Q2 as the linear
spring while preserving usual control strategies if the preloading is not activated.
The efficiency of this approach is illustrated by the compliance maps presented in
Fig. 5.

7 Conclusions

Recent advances in mechanical design of robotic manipulators lead to new parallel
architectures that incorporates internal preloading in passive joints allowing to im-
prove accuracy but leading to revision of existing stiffness analysis techniques. This
paper presents new results in this area that allow simultaneously evaluate influence
of internal and external loading and compute both the non-linear “load-deflection”
relation and the stiffness matrices for any given location of the end-platform or
actuating drives. Using this methodology, it is proposed the kinetostatic control al-
gorithm that allows to improve accuracy of the classical kinematic control and to
compensate position errors caused by elastic deformations in links/joints due to the
external/internal loading. The efficiency of this technique is confirmed by an applic-
ation example that deals with a parallel manipulator of the Orthoglide family where
the internal preloading allows to eliminate the undesired buckling phenomena and
to improve the stiffness in the neighborhood of its kinematic singularities.
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In future, these results will be generalized to other types of preloading that may
be generated by external gravity-compensation mechanisms and also applied to mi-
cromanipulators with flexure joints.
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Abstract. The available wrench set is the set of wrenches that can be generated at the platform
of a parallel manipulator. In a given configuration, this set is known to be a convex polytope and,
recently, it has been pointed out that it is in fact a particular type of convex polytope called a
zonotope. This paper deals with the case of parallel manipulators having as many or more actuators
than degrees of freedom and discusses a characterization of the facets of the available wrench set.

Key words: Parallel manipulators, actuation redundancy, available wrench set.

1 Introduction

The determination of the available wrench set is a useful tool for parallel manipu-
lator analysis and design. Notably, in the case of parallel cable-driven manipulators,
the following relevant use of the available wrench set is proposed in [1]. Being given
a wrench set T that the cable-driven manipulator is required to generate in order to
achieve the tasks assigned to it, determine the available wrench set A and test if
T ⊆ A, in which case T is feasible. This methodology proposed for cable-driven
manipulator can obviously be applied to other types of parallel manipulator.

The available wrench set appears in numerous previous works and is known to
be a convex polytope [2, 3]. In the case of serial manipulators, a set with a similar
geometry is, for example, studied in [4] where it is called manipulability polytope.
Recently, Bouchard et al. [5] pointed out that the available wrench set is a particular
type of convex polytope called a zonotope. Based on specific properties of zono-
topes, a simple method referred to as the hyperplane shifting method is introduced
in [5]. This method provides a representation of the available wrench set as the set of
solutions to a finite system of linear inequalities. By means of such a representation,
it is usually straightforward to test whether or not a given required wrench set T is
fully included in the available wrench set A.

The contribution of this paper is to provide a proof (Section 4) which justifies
the hyperplane shifting method. This proof is mainly based on a characterization of
zonotope facets which appears in [6] but without details. This lack of details explains
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probably why this characterization of the facets of a zonotope seems to have been
overlooked in [5]. Moreover, the proof provided in the present paper leads directly to
an improved version of the hyperplane shifting method (Section 5). The contribution
of the paper is limited but it is nevertheless hoped to be useful in pointing out a clear
characterization of the available wrench set facets, thereby complementing the work
presented in [5].

2 Available Wrench Set Definition

Let us consider an n-degree-of-freedom parallel manipulator having m actuators
(m ≥ n). In a given configuration, the vector of actuator forces/torques τ is usually
mapped to the mobile platform wrenches f (combination of a force and a moment)
according to the following linear relationship [3]

Wτ = f (1)

where W is an n × m matrix called the wrench matrix in this paper. Its ith column
is denoted wi . Note that, in the remainder of the paper, the space of mobile platform
wrenches is considered to be an affine space. Hence, it may be judged necessary
to modify Eq. (1) so as to avoid physical inconsistencies, i.e., in order to avoid
adding variables with different physical units in the case of parallel manipulators
with mixed translational and rotational degrees of freedom.

The limited force/torque capabilities of the actuators imply that each component
τi of vector τ is to lie within an interval [τimin, τimax ] where τimin and τimax are the
minimum and maximum values of actuator i force/torque, respectively. Note that
usually τimin = −τimax but a more general case is considered here in order to include
parallel cable-driven manipulators for which 0 ≤ τimin < τimax (a nonnegativity
constraint due to the fact that cables can only pull and not push [1]). Let us also
define the box [τ ] (hypercube) of admissible actuator forces/torques as

[τ ] = {

τ | τi ∈ [τimin, τimax ], ∀ i, 1 ≤ i ≤ m
}

. (2)

The present work deals with the set of wrenches A defined as

A = {f | f = Wτ , τ ∈ [τ ]} (3)

which is, for a given configuration of a parallel manipulator, the set of platform
wrenches that can be generated by the actuators with each τi in its admissible range
[τimin, τimax ]. Following [1, 5], A is called the available wrench set.

This set is known to be a convex polytope. In fact, as pointed out in [5], since A

is the image of the box [τ ] under the linear map given by matrix W, A is affinely
isomorphic to a particular type of polytope called a zonotope [7]. In Fig. 2, a two-
dimensional zonotope is shown. It is the image of a three-dimensional box.
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H1

H2

P : a zonotope

(a) A two-dimensional zonotope P and
two parallel facet-defining hyperplanes
H1 and H1 of P .

H1

F = P ∩ H1

= P ∩ H2: a vertex

H2

F = P ∩ H3: a facet

P

H3

(b) A convex polygon P and three sup-
porting hyperplanes Hi (lines). Both H1
and H2 define a vertex of P whereas H3
is a facet-defining hyperplane (a facet of
a convex polygon being an edge).

Fig. 1 A two-dimensional zonotope and a two-dimensional convex polytope (polygon).

3 Faces and Representation of a Convex Polytope

Let P be an n-dimensional convex polytope. An inequality cT x ≤ d , where c is an
n-dimensional column vector and d a scalar, is said to be valid for P if it is satisfied
for all x ∈ P . Equivalently, cT x ≤ d is valid for P if P is fully included in the
halfspace H− = {x | cT x ≤ d}. An hyperplane H = {x | cT x = d} is said to be a
supporting hyperplane of P if cT x ≤ d is a valid inequality for P and P ∩ H is not
empty.

A face F of a convex polytope P is a subset of P which can be written as F =
P ∩ H for some supporting hyperplane H = {x | cT x = d} of P . The dimension
dim(F ) of a face F is defined as the dimension of its affine hull aff(F ), the affine
hull of F being the smallest affine set containing F or, equivalently, the intersection
of all the affine sets that contain F . Faces of dimension 0, 1 and n − 1 are called
vertices, edges and facets, respectively. A facet-defining hyperplane is a supporting
hyperplane H of P such that F = P ∩ H is a facet of P . Figure 2 illustrates these
definitions by means of a two-dimensional example (a convex polygon). Let us note
that if F is a face of a polytope P , F = P ∩ {x | cT x = d}, then

d = max
x∈P

cT x. (4)

It is a well-known fact [7, 8] that a convex polytope can be represented either as
the convex hull of a finite set of points or as the intersection of a finite set of closed
halfspaces. In fact, the facet-defining hyperplanes provide the latter representation
since a full dimensional polytope P is the intersection of the halfspaces bounded
by its facet-defining hyperplanes [7, 8]. Precisely, if {Fi, 1 ≤ i ≤ f } is the set of
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facets of P , Hi = {x | cT
i x = di} the facet-defining hyperplane supporting P along

Fi (Fi = P ∩ Hi) and H−
i = {x | cT

i x ≤ di} the closed halfspace bounded by Hi

that contains P , then

P =
f

⋂

i=1

H−
i . (5)

Defining the f × n matrix C by C = (c1, c2, . . . , cf )T and the f -dimensional
column vector d by d = (d1, d2, . . . , df )T , Eq. (5) gives P as the set of solutions
to a finite system of linear inequalities since it implies that P = {x | Cx ≤ d}. The
representation given in Eq. (5) is minimal in the sense that none of the facet-defining
hyperplanes H−

i , 1 ≤ i ≤ f , can be removed.

4 The Available Wrench Set as a System of Linear Inequalities

This section sketches a proof of the characterization stated below which enables
the representation of the available wrench set A as a system of finitely many linear
inequalities.

The wrench set A has been defined in Section 2 as the image of the box of ad-
missible actuator forces/torques [τ ] under W. In the remainder of this paper, the
wrench matrix W is assumed to have full rank n so that A is full dimensional, i.e.,
A is of dimension n.

Characterization of the available wrench set facet-defining hyperplanes

First assertion – A facet-defining hyperplane H = {x | cT x = d} of the available
wrench set A is such that c is orthogonal to n − 1 linearly independent column
vectors wi of W and

d =
∑

I+
τimaxcT wi +

∑

I−
τimincT wi (6)

where I− and I+ are index sets defined as

I+ = {i, 1 ≤ i ≤ m | cT wi > 0}, I− = {i, 1 ≤ i ≤ m | cT wi < 0}. (7)

Second assertion – Conversely, to any set of n − 1 linearly independent column
vectors wi of W, there correspond two facet-defining hyperplanes H1 = {x | cT

1 x =
d1} and H2 = {x | cT

2 x = d2} of A. These two hyperplanes are parallel (e.g. H1 and
H2 in Fig. 2) and such that c1 �= 0 is orthogonal to the n − 1 linearly independent
wi , c2 = −c1 and

d1 =
∑

I+
1

τimaxcT
1 wi +

∑

I−
1

τimincT
1 wi , d2 =

∑

I+
2

τimax cT
2 wi +

∑

I−
2

τimincT
2 wi (8)
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where I+
1 = {i | cT

1 wi > 0}, I−
1 = {i | cT

1 wi < 0}, I+
2 = {i | cT

2 wi > 0} and
I−

2 = {i | cT
2 wi < 0}. Note that I+

2 = I−
1 , I−

2 = I+
1 and H2 = {x | cT

1 x = −d2 =
∑

I−
1

τimaxcT
1 wi + ∑

I+
1

τimincT
1 wi}.

4.1 Proofs of the First and Second Assertions

Proof of the first assertion. Let H = {x | cT x = d} be a facet-defining hyperplane
of A and F = A∩H the corresponding facet. Consider an arbitrary point (a wrench)
xF of F . Since xF ∈ A, we have

xF =
m

∑

i=1

τiwi , τi ∈ [τimin, τimax ] (9)

and since xF ∈ H , according to Eq. (4), we have cT xF = d = maxx∈A cT x. Hence,
the τi which define xF in Eq. (9) are such that

m
∑

i=1

τicT wi = max
x∈A

cT x. (10)

Let us decompose the sum in Eq. (10) as follows

m
∑

i=1

τicT wi =
∑

I+
τicT wi +

∑

I−
τicT wi +

∑

I 0

τicT wi =
∑

I+
τicT wi +

∑

I−
τicT wi

(11)
where I 0 = {i, 1 ≤ i ≤ m | cT wi = 0} and I+ and I− are defined in Eq. (7).
According to Eq. (10), since the τi maximize the sum in Eq. (11), necessarily, τi =
τimax for all i ∈ I+ and τi = τimin for all i ∈ I−. In other words, xF is given by

xF =
∑

I+
τimax wi +

∑

I−
τimin wi +

∑

I 0

τiwi , τi ∈ [τimin, τimax ] for all i ∈ I 0. (12)

Consequently, by definition of the index set I 0, d = cT xF can be written as

d =
∑

I+
τimaxcT wi +

∑

I−
τimincT wi (13)

so that Eq. (6) is proved.
Note that any point x of A which can be written as xF in Eq. (12) belongs to

the facet-defining hyperplane H since cT x = d . Thus, such a point x belongs to the
facet F (since F = A ∩ H ) and we have
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F = {x | x =
∑

I+
τimaxwi+

∑

I−
τiminwi+

∑

I 0

τiwi , τi ∈ [τimin, τimax ] for all i ∈ I 0}.
(14)

Moreover, basic properties of affine sets imply that the affine hull aff(F ) of F is

aff(F ) = {x | x =
∑

I+
τimaxwi +

∑

I−
τiminwi +

∑

I 0

τiwi , τi ∈ R for all i ∈ I 0}
(15)

and that its dimension is

dim(aff(F )) = rank({wi | i ∈ I 0}) = rank({wi | cT wi = 0}). (16)

Finally, F being a facet of A, dim(aff(F )) = n−1 and hence Eq. (16) implies that
there exists n − 1 linearly independent wi among those of the set {wi | cT wi = 0}.
In other words, c is orthogonal to n−1 linearly independent wi completing the proof
of the first assertion.

Proof of the second assertion. Let us consider a set of n− 1 linearly independent
column vectors wi of W which, without loss of generality, can be assumed to be w1,
w2, . . ., wn−1. Let c1 be any nonzero vector orthogonal to w1, w2, . . ., wn−1, d1 be
given by Eq. (8) and H1 be the hyperplane H1 = {x | cT

1 x = d1}.
With arguments similar to those used above in the proof of the first assertion, it

can be shown that H1 is a supporting hyperplane of A and that the corresponding
face F1 = A∩H1 is given by Eq. (14) with I 0

1 = {i | cT
1 wi = 0} instead of I 0 and I+

1
and I−

1 instead of I+ and I−, respectively. Then, according to Eq. (16) (with F1, I 0
1

and c1 in place of F , I 0 and c, respectively) and since the n−1 linearly independent
w1, w2, . . ., wn−1 belong to {wi | i ∈ I 0

1 }, we have dim(aff(F1)) = n − 1 so that F1
is a facet of A. H1 is thus a facet-defining hyperplane of A.

Defining the vector c2 as c2 = −c1, the hyperplane H2 = {x | cT
2 x = d2} with

d2 defined in Eq. (8) is parallel to H1 and the same type of arguments as those used
above show that H2 is a facet-defining hyperplane of A which completes the proof.

4.2 A Finite System of Linear Inequalities

Referring to Section 3, the available wrench set A can be written as the intersec-
tion of the halfspaces bounded by its facet-defining hyperplanes which provides a
representation of A as the set of solutions to a system of linear inequalities.

Let C be a finite set of nonzero vectors cj , C = {cj , 1 ≤ j ≤ p}, such that, on
the one hand, each cj ∈ C is orthogonal to n − 1 linearly independent columns wi

of W and, on the other hand, for any set of n − 1 linearly independent columns wi ,
there exists one and only one cj ∈ C orthogonal to these n − 1 columns wi . Then,
according to the characterization of the facet-defining hyperplanes of A stated at the
beginning of Section 4, we have
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A =
p

⋂

j=1

(H−
j1 ∩ H−

j2) (17)

where H−
j1 = {x | cT

j x ≤ dj1} and H−
j2 = {x | (−cj )

T x ≤ dj2} are two closed
halfspaces such that cj ∈ C and dj1 and dj2 are defined similarly to d1 and d2 in
Eq. (8).

Moreover, in order to obtain a minimal representation, i.e., a representation in
which, to each facet of A, there corresponds one and only one halfspace H−

jk, k = 1
or 2, C must be such that no two of its vectors are collinear (i.e., ∀(cj , cl ) ∈ C × C,
cj �= cl , there does not exist α such that cl = αcj ). The number of facets f of A

is equal to 2p if and only if C satisfies this property. When C does not satisfy this
property, f < 2p. Finally, note that if no set of n columns wi of W is a linearly
dependent set then C necessarily satisfies the aforementioned property, i.e, f = 2p.
Note however that a minimal representation is not mandatory in order to test if a
required wrench set T is included in A.

5 Hyperplane Shifting Method

The characterization of the available wrench set A presented in the previous section
leads naturally to the following method that provides a representation of A as the
solution set of a system of linear inequalities. In [5], this method is referred to as the
hyperplane shifting method. Compared to the version introduced in [5], step 2 of the
one presented below avoids many useless computations. Moreover, it is pointed out
how to obtain a minimal representation of A.

This method consists in considering all the possible combinations of n − 1
columns of the wrench matrix W in turn. At the beginning of the method, j = 0.
For the current combination {wi | i ∈ I 0}, where I 0 is the current subset of n − 1
elements of {1, 2, . . . ,m}, do

Step 1: Test if the n − 1 column vectors wi , i ∈ I 0, are linearly independent. If
it is the case, j = j + 1, determine a nonzero vector cj orthogonal to these n − 1
columns wi and go to step 2.

Step 2: Let I+ and I− be the subsets of {1, 2, . . . ,m} defined as I+ = {i |
cT
j wi > 0} and I− = {i | cT

j wi < 0}. Compute dj1 and dj2 as follows

dj1 =
∑

I+
τimaxcT

j wi +
∑

I−
τimin cT

j wi , dj2 = −
∑

I−
τimax cT

j wi −
∑

I+
τimincT

j wi .

(18)
At the end of the method, j = p and the 2p halfspaces H−

j1 = {x | cT
j x ≤ dj1}

and H−
j2 = {x | (−cj )

T x ≤ dj2}, j = 1, . . . , p, provide a representation of A as
stated in Eq. (17). Gathering the vectors cj and −cj in a matrix C and the dj1 and dj2
in a vector d in an appropriate way, Eq. (17) gives A as the solution set of the system
of linear inequalities Cx ≤ d. For this representation of A to be minimal, in Step 1,
it must be ensured that cj is not collinear to any of the previously computed ones,
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i.e., not collinear to any of the ck , k = 1, . . . , j − 1. Indeed, if such a collinearity
exists, cj can be left out from consideration since it yields a redundant inequality.

Step 1 can be implemented as follows. Let WI 0 be the n × n − 1 matrix whose
columns are the current n − 1 column vectors wi , i ∈ I 0. Let d be the dimension
of the nullspace of WT

I 0 where d �= 0 since WT
I 0 has more columns than rows.

When d > 2, the current n − 1 column vectors wi , i ∈ I 0, are linearly dependent.
Otherwise, d = 1 and cj can be any nonzero vector in the nullspace of WT

I 0 since

then wT
i cj = 0 for all i ∈ I 0. Hence, with the help of a routine that determines

the nullspace of a matrix, the hyperplane shifting method is quite straightforward to
implement.

6 Conclusion

This paper has dealt with the characterization of the facet-defining hyperplanes of
the available wrench set of a parallel manipulator which enables to represent this set
as the set of solutions to a system of linear inequalities. With such a representation,
being given a wrench set T that the parallel manipulator is required to generate, it is
generally straightforward to test whether or not T is fully included in the available
wrench set, i.e., whether or not T is feasible.
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Abstract. This paper presents various limb arrangements of a 3-PUP parallel mechanism construc-
ted by special PUP limbs. The constraints of the PUP limb are studied using reciprocal screws,
which are used to describe the platform constraint system of the 3-PUP parallel mechanism that is
divided into a torque and a force constraint set. By analyzing the system orders of the two sets to
arrange the constraint screws in the three dimensional space, different types of constraint systems
are defined, leading to various limb arrangements of the 3-PUP parallel mechanism corresponding
to these constraint systems and their instantaneous mobility is given accordingly.

Key words: Parallel mechanism, limb arrangement, synthesis, constraint screw.

1 Introduction

Mathematics gives help to describe the nature and study its properties. In the kin-
ematics world of mechanism research, many mathematics methods [1] have been
used to describe geometrical constraints and spatial motions of mechanisms based
on concepts introduced by mathematicians and physicists. One of the most-used
methods is screw theory [2,3] which attracted more and more attention for the study
of parallel mechanisms as it provides naturally relationship of limbs and joints in

tion [6], stability [7] and Jacobian [8], with recent works on constraint [9], singular-
ity [10], mobility [11, 12], conceptual design [13] and so on. Much work has been
carried out in parallel mechanism synthesis using screws for rotational [14], transla-
tional [15], symmetrical [16], 3T1R [17] and the parallel mechanisms with multiple
operation modes [18] and with metamorphic property [19].

However, most synthesis focuses on obtaining new parallel mechanisms with
special mobility. In this paper, we present a study on screw systems by studying
the system order [20] of the constraint screws from the special PUP limb to ob-
tain different limb arrangement of a 3-PUP parallel mechanism. This gives a new
way to demonstrate all configurations of parallel mechanisms based on special limb
arrangements.

the mechanisms [4]. Application of screw theory covers kinematcis [5], configura-
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Fig. 1 The PUP limb.

2 The PUP Limb and Its Geometry Constraints

Figure 1 shows the PUP (P and U stand for prismatic and universal joints respect-
ively) limb studied in this paper. The limb consists of two prismatic joints used to
connect to a base and a platform respectively. For convenience, we call these two P
joints as platform P joint and base P joint. In the limb, the two P joints are connec-
ted by a Hooke joint, where two rotational axes of the joint are perpendicular to two
prismatic joints in both end of the joint.

In order to get the constraints that are applied to the platform connected to the
PUP limb, a OXYZ limb coordinate system is located at center of the U joint with
Y axis in line with the rotational axis of the U joint connected to the base joint and
Z axis along the base P joint as in Fig. 1. For a general configuration, assuming the
angle between the rotational axis connected to the platform P joint and Z axis as
α and the unit vector along the platform P joint is v=(v1, v2, v3)T , the limb-motion
screw system can be given as:

{
Slimb

}
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S1 =
[

0 0 0 0 0 1
]T

S2 =
[

0 1 0 0 0 0
]T

S3 =
[

sinα 0 cosα 0 0 0
]T

S4 =
[

0 0 0 v1 v2 v3

]T

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (1)

By calculating reciprocal screws to the limb-motion screw system, the constraint
screw system of the limb can be obtained:

{Sr
limb} =

{
Sr

1 =
[

0 0 0 −cosα 0 sinα
]T

Sr
1 =

[
−v2 v1 0 0 0 0

]T

}

. (2)
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Thus, the first constraint is a torque constraint perpendicular to two rotational
axes of the U joint and the second constraint is a force constraint perpendicular to
two P joints in the limb.

Using this PUP limb to assemble parallel mechanisms, a platform will be sub-
jected with a force and a moment by each limb. In this paper, we are discussing the
various limb arrangements of a 3-PUP parallel mechanism constructed by three of
this kind of PUP limbs, and there will be six constraints on the platform. As differ-
ent constraint structures in various mechanism configurations and the constraints in
screw forms can be expressed in the three dimensional space, this leads to exploring
different screw systems to obtain the corresponding mechanism limb arrangement.

In order to simplify analysis of various topologies of the 3-PUP parallel mech-
anism, an initial configuration of the limb has to be defined and is given as one
when the limb does not rotate about any axis of the U joint, leading to α = 0 and
v = (0,−1,0)T . Thus for this initial configuration, the limb constraint torque will
be along the base P joint and the force constraint is perpendicular to the torque
constraint, which will be used in the following analysis.

3 Constraint Screw Systems for the 3-PUP Parallel Mechanism

As aforementioned, there are six constraints supplied by three PUP limbs to the
platform of the 3-PUP parallel mechanism, each limb provides one force and one
torque constraint. The constraint system of the platform can be given as:

{
Sr

plat f orm

}
=

{
Sm1,S f 1,Sm2,S f 2,Sm3,S f 3

}
, (3)

where Smi and S f i (i = 1,2,3) denote the torque and force constraint in limb i re-
spectively.

In the three-dimensional space, screws that are linearly dependent on n given
linearly independent screws form an order n (0 ≤ n ≤ 6) screw system. In Eq. (3),
there are three force and three torque constraints, they form a system of order k,
where 2 ≤ kleq6. Systematically, discussion of different order systems from Eq. (3)
can be used to show various limb arrangements of the 3-PUP parallel mechanism.
Based on this method, the screws can be divided into two sets, one for torques and
the other for forces. Consider the initial configuration of the PUP limb defined in
the previous section, the force is perpendicular to the torque in a limb and the torque
is along the base P joint. By listing all structures of the torque screw set first, adding
the forces perpendicular to each torque will enumerate all screw order-systems for
the platform constraint system, this presents all limb arrangement of the 3-PUP
parallel mechanism.
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Fig. 2 Three types of torque screw systems.

3.1 Screw Systems Based on Torque Constraints

There are three torque constraint screws in the torque set. They can be arranged to
be either dependent or independent from each other, leading to three different orders
of screw systems corresponding to three types as in Fig. 2. When the three torque
screws are parallel to each other, they are dependent and the torque set has order one
which is denoted as type I. Two torques are parallel to each other and the third one
is independent to them in type II with order two while in type III all three torques
are independent and the order is three.

3.2 Screw Systems Including Force Constraints

Three types of torque-screw systems are presented in Fig. 2, based on which the final
various screw systems for the platform constraint screw system can be obtained by
further considering the force constraint set. In each limb, the force is perpendicular
to the torque, thus in type I torque-screw system, the three force constraints are on a
plane or different parallel planes as all the torque screws are parallel to each other.
Here we only consider the forces on a plane which presents the case that they are
on different parallel planes just by actuating the base P joints. Thus there will be
four basic structures of the screw system for type I torque screw system considering
force constraints as in Fig. 3 denoted as type Ii (ı = 1,2,3,4). In type I1 the three
forces are parallel to each other and the force constraint set has order one while the
order is two in type Ii (i = 2,3), three in type I4 and the three forces intersect at one
point or each other, or two parallel to each other and perpendicular to the third. In
this study, we only consider some basic configurations of the constraint screws as
they can also present the arbitrary cases, like two forces have an arbitrary angle.

Similarly, for type II torque constraint system, we can get three sub-types when
three force constraint screws in the force set form an order 1, 2 or 3 system while
they are parallel to each other, two are parallel to each other and perpendicular to
the third or the three point to three different orientations in the space as in Fig. 3,
where the sub-types are named as type IIi (i = 1,2,3).
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Fig. 3 Screw systems with force constraints.

Based on the torque screw configurations in type III torque constraint system,
there are two sub-systems when the force constraint set has order 3 or 2 in type III1
and type III2 as in Fig. 3.

4 Various Limb Arrangements of the 3-PUP Parallel Mechanism
and Their Instantaneous Mobility Corresponding to the Screw
Systems

Using the different types of constraint screw systems in Fig. 3 to arrange the PUP
limbs gives various configurations of the 3-PUP parallel mechanism.

4.1 Limb Arrangement Corresponding to Type I

In type I constraint screw systems, the torques are parallel to each other leading
to the three limbs being parallel. The force constraint is perpendicular to both P
joints in the limb. This can be used to arrange the platform P joints in the three
limbs as all three base P joints are parallel to each other along the limbs. Thus four
kinds of limb arrangement of the 3-PUP parallel mechanism can be obtained as in
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Fig. 4 Limb arrangement corresponding to type I

Fig. 4 according to four types of the screw systems in type I. In type I1 both torque
and force sets have order one, the platform constraint system has order 2 and the
platform is subject to one force and one torque constraint. Thus the 3-PUP parallel
mechanism in the initial configuration has mobility 4 with two rotations and two
translations. In type Ii (i = 2, 3, 4), the order of the torque set is still 1, the force
constraint set has order 2 in type I2 and type I3 and order 3 in type I4 with one screw
being redundant with the torque set, giving total order 3 to the platform constraint
system and mobility 3 to the 3-PUP parallel mechanism with two rotations and one
translation.

4.2 Limb Arrangement Corresponding to Type II

Using the same procedure above, there are three kinds of limb arrangement of the
3-PUP parallel mechanism corresponding to three types of screw systems in type
II as in Fig. 5. In type II system, the torque-constraint set has order two and the
force set has order 1, 2 and 3, leading to the platform constraint system to order 3,
4 and 5. Then the 3-PUP parallel mechanism will have mobility 3 in type II1 with
one rotation and two translations, mobility 2 in type II2 with one rotation and one
translation and mobility 1 in type II3 with one rotation only.

4.3 Limb Arrangement Corresponding to Type III

Similarly, two kinds of limb arrangement of the 3-PUP parallel mechanism can be
shown in Figure 6 by arranging the limbs based on two subtypes of screw systems
in type III system in Figure 3. In type III1 both torque and force constraint sets
have order three, leading to the platform constraint system of order 6 and the 3-PUP
parallel mechanism having mobility zero to become a structure. The force constraint
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Fig. 5 Limb arrangement corresponding to type II

Fig. 6 Limb arrangement corresponding to type III.

set has order of 2 in type III2 and the mechanism gains one translational degree of
freedom to have mobility 1.

5 Conclusions

This paper demonstrates various limb arrangements of a 3-PUP parallel mechanism
based on the special PUP limb. Screw analysis of the constraints of the PUP limb
shows that the limb can give a moment and a force constraint to the platforms con-
nected to it. Then the platform-constraint system of the 3-PUP parallel mechanism
will have six constraint screws with three torques and three forces that are divided
into two sets. By analyzing the system orders of two sets to arrange the constraint
screws in the three-dimensional-space, there are eight basic types of constraint sys-
tems, leading to eight kinds of limb arrangement of the 3-PUP parallel mechanism
with changeable instantaneous mobility from 0 through to 4.
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Abstract. Sets of finite displacement screws are considered, each set comprising all motions of a
chosen link in a mechanism from its location in a particular starting pose, as measured relative to
some fixed link. It is shown, if all screws of such a set have a perpendicularly intersecting nodal line
in common, then this situation applies in the set for every available pose adopted as starting pose
and implies the existence of a nodal line-symmetric image of the chosen link which is embedded
in the fixed link. It is also shown that, if every such set has the conformation of a 2-system, then
the sum of principal pitches is an invariant of all those 2-systems.

Key words: Kinematics, screw theory, finite displacement, finite displacement screw.

1 Introduction

Considerable advances in kinematic analysis, of the Bennett Mechanism in partic-
ular, have been made by considering the sets of displacement screws available to
individual links of the mechanism in its motion. Early progress was rapid because
the geometric structures in which these screws were found to occur conform with
the familiar geometry of the 3-system [1] or the 2-sytem [2–4], these screw-theoretic
systems having previously been elucidated by Hunt [5] and Phillips [6].

As Huang [1] has pointed out, the rule for composing two finite displacement
(screw)s, cited later in Eq. (4), takes the form of a real linear combination of three
basis screws – components of a 3-system – when the contributing finite displace-
ments are purely rotational; but when analysis is extended – for example, when gen-
eralised displacements are considered in that equation [7] – recognisable structures
are left behind and progress toward useful results is significantly slowed.

This paper attempts to assist that progress by establishing some provable struc-
tural properties of sets of finite displacement screws. Certain of these have been
published before [3], but they were at that time mixed together and telescoped into
the properties of the 2-system in the context of analysis of the Bennett Mechanism;
here they have been teased apart to reveal their logical independence in order to aid
their use in wider domains.
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2 Notation and Basic Geometry

We write a screw Ŝ as a 3-vector of dual numbers

Ŝ = |Ŝ|(1+ε p) ŝ, ŝ = l+ε M
ŝ2 = l2+ε 2 l ·M = 1+ε 0, l×M = R

}
(1)

in which ε is a quasi-scalar such that (a+ε b = c+ε d) ⇔ (a = c)∧ (b = d) for
all real a, b, c, and d, and satisfying ε2 = 0. |Ŝ| is the real magnitude and p is
the real pitch of the screw Ŝ, and ŝ (written in lower case) is its normalised line
which, regarded as a screw in its own right, has unit magnitude and zero pitch.
The line ŝ of the screw is spatially located by the direction 3-vector of direction
cosines l = (l, m, n), and by the moment 3-vector M = (P, Q, R) which determines
its origin-radius 3-vector R.

We say that two screws Ŝ1, Ŝ2 are perpendicular if l1 · l2 = 0, and orthogonal if
Ŝ1 · Ŝ2 = 0, which implies that each intersects the other at right angles. The cross
product screw Ŝ1 × Ŝ2 is sited in the common perpendicular of Ŝ1, Ŝ2 and has pitch

p1 + p2 + acot(φ) (2)

where, respectively, p1, p2 are the pitches of Ŝ1, Ŝ2 and a, φ are the distance and
angle between the lines of those screws.

3 Specification of a Finite Displacement Screw

We represent the general finite displacement of a body – comprising translation
through distance d and rotation through angle θ , −π < θ ≤ π , about the unit screw
axis ŝ (ŝ2 = 1) – by constructing the dual angle

1
2 θ̂ = 1

2 θ+ε 1
2 d, so that sin 1

2 θ̂ = sin 1
2 θ+ε 1

2 d cos 1
2 θ ,

and by then writing the sin-screw

Ŝ = sin 1
2 θ̂ ŝ = sin 1

2 θ (1+ε PS) ŝ where PS = 1
2 d/ tan 1

2 θ . (3)

The sin-screw resultant, Ŝ, of successively applying two such displacement screws,
first Ŝ1 = sin 1

2 θ̂1 ŝ1 and then Ŝ2 = sin 1
2 θ̂2 ŝ2, is conveniently written in the form

[
cos 1

2 θ̂
Ŝ

]
=

[
cos 1

2 θ̂1 cos 1
2 θ̂2 − Ŝ1 · Ŝ2

cos 1
2 θ̂2 Ŝ1 + cos 1

2 θ̂1 Ŝ2 − Ŝ1 × Ŝ2

]
, (4)

which is a dualisation of Rodrigues’s equations and comprises the biquaternion
product rule [8].
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4 Sets of Relocation Screws

Consider a mechanism which, among its links, has two which are especially iden-
tified as link Fix and, a coupler, link Cpl. Our interest lies in the set of finite dis-
placement screws – specified in a frame in which link Fix is fixed – which describe
displacements of the coupler Cpl from its location in some particular pose (or con-
figuration) of the mechanism, A, to its location in every general pose G available to
the mechanism.

Since, for the present purpose, we shall not be concerned with alternation of
links but only with alternation of poses, it will suffice to omit the names of the links
from our symbolism and to write the typical such displacement of the coupler Cpl,
relative to the fixed link Fix, as the sin-screw

ŜA→G = sin 1
2 θ̂A→GŝA→G where θ̂A→G = θA→G + εdA→G. (5)

We intend that the set of screws ŜA→G should comprise the complete set of motions
available to the coupler Cpl as the mechanism moves from pose A to any one of the
poses G generally available to it. We illustrate the comprehensive nature of this de-
scription by showing that, from this set for pose A, we may derive the corresponding
set of screws ŜB→G appropriate to any other available pose, B, of the mechanism.

We observe, firstly, that the screw ŜB→A = −ŜA→B, which carries the coupler
from its location in pose B to that in pose A, is a member of the latter set just as its
negative, ŜA→B, is a member of the former set; the common line of these equal and
opposite screws is present in both sets.

Now the displacement ŜB→G of the coupler from its location in pose B to that in
some general pose G may be achieved by, firstly, moving it from its location in pose
B to that in pose A by use of the screw −ŜA→B and, subsequently, from there to its
location in pose G by use of ŜA→G, We compose the displacements of this sequence,
both drawn from the set for pose A, by use of eqn. (4) to obtain

[
cos 1

2 θ̂B→G
ŜB→G

]
=

[
cos 1

2 θ̂A→B cos 1
2 θ̂A→G + ŜA→B · ŜA→G

−cos 1
2 θ̂A→G ŜA→B + cos 1

2 θ̂A→B ŜA→G + ŜA→B × ŜA→G

]
(6)

where, respectively, 1
2 θ̂B→G, 1

2 θ̂A→B, 1
2 θ̂A→G are the dual half-angles inherent in the

sinusoids of the screws ŜB→G, ŜA→B, ŜA→G.
Using this expression for ŜB→G, we find a useful constant relationship:

(
ŜB→A × ŜB→G

)2
= cos2 1

2 θ̂A→B

(
ŜA→B × ŜA→G

)2
+

[
ŜA→B ×

(
ŜA→B × ŜA→G

)]2

=
(

cos2 1
2 θ̂A→B + Ŝ2

A→B

)(
ŜA→B × ŜA→G

)2

=
(

ŜA→B × ŜA→G

)2
(7)
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since Ŝ2
A→B = sin2 1

2 θ̂A→B; this will later be found to be useful in indicating the
equality of pitches of the cross-product screws.

5 Presence of a Nodal Line

Consider that the screws ŜA→G associated with the arbitrarily chosen pose A enjoy
the special property that each is orthogonal to – i.e. intersects at right angles – a par-
ticular line which we shall refer to as the nodal line of the set. We shall demonstrate
that the set of screws associated with any other available pose, B, enjoys the same
property.

Let n̂A, such that n̂2
A = 1, be the unit nodal line of the set of screws for pose A so

that, by its definition,
ŜA→G · n̂A = 0

for every available pose G. For any available pose B, we will show that the unit line

n̂B = cos 1
2 θ̂A→B n̂A + ŜA→B × n̂A

is orthogonal to every screw ŜB→G of the set for pose B and is, therefore, a nodal
line for that set. Using the expression for ŜB→G provided by eqn. (6), we evaluate,
for every available pose G,

ŜB→G · n̂B = −cos 1
2 θ̂A→B cos 1

2 θ̂A→G ŜA→B · n̂A + cos2 1
2 θ̂A→B ŜA→G · n̂A

+ cos 1
2 θ̂A→B ŜA→B × ŜA→G · n̂A − cos 1

2 θ̂A→G ŜA→B · ŜA→B × n̂A

+ cos 1
2 θ̂A→B ŜA→G · ŜA→B × n̂A + ŜA→B × ŜA→G · ŜA→B × n̂A

so that, since the first, second and sixth terms vanish under the nodal line property
of n̂A, and the fourth vanishes under a standard screw identity,

ŜB→G · n̂B = cos 1
2 θ̂A→B

(
ŜA→B × ŜA→G + ŜA→G × ŜA→B

)
· n̂A

= 0

since the remaining terms cancel, being negatives, the one of the other. It follows
that n̂B is a nodal line for the set of screws ŜB→G associated with pose B.

Since n̂2
A = 1 and ŜA→B · n̂A = 0, we observe that

n̂A × n̂B = ŜA→B − ŜA→B · n̂A n̂A

= ŜA→B

which indicates that the screw ŜA→B lies on the common perpendicular of the nodal
lines n̂A, n̂B. We deduce, also, that the nodal line n̂B is translated and rotated about
the screw ŜA→B from the location of the nodal line n̂A by exactly half of the distance
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Fig. 1 The screw triangle.

and angle through which the coupler Cpl displaces about ŜA→B in passing from its
location in pose A to that in pose B.

We may summarise the results of this section in the following theorem: if the set
of relocation screws for a given pose has a nodal line, orthogonal to all members,
then the set for every pose does so; and the cross product of the unit nodal lines
for the sets of any two poses is exactly the relocation sin-screw which carries the
coupler from its location in one of those poses to the other.1

6 Interpretation

For a geometric interpretation we refer to the screw triangle [8] depicted in Fig. 1
with attached symbols appropriate to the previous discussion. The figure shows an
imaginary image I of a displacing body – such as the coupler Cpl introduced earlier
– which has been reflected into three actual instances of the body, namely A, B, G,
by three line-mirrors, respectively n̂A, n̂B, n̂G; it is well established that for three ar-
bitrarily disposed locations of a body, such as A, B, G, suitable locations can always
be found for the body-image I and the three line-mirrors.

The equalities of distance and angle established by the actions of the line mirrors
ensure that the Mozzi–Chasles axis for displacement of the body from A to B, for
example, lies on the common perpendicular of the corresponding line-mirrors n̂A
and n̂B; in fact, if those mirror lines are of unit magnitude, the sin-screw for that
displacement is given by

ŜA→B = n̂A × n̂B, (8)

1 If there is no unique nodal line, the theorem applies equally in every subset of screws for which
a common perpendicularly intersecting line exists; limitations of space do not permit this aspect to
be developed here.
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Fig. 2 Adding a further location H, generated by reflection of I in n̂H .

and correspondingly for the other displacements.
We see that the results of the preceding section apply in Figure 1: the mirror lines

act as nodal lines, there being one such present in the set of screws for displacement
away from each of the locations A, B, and G.

Consider, that we now add to the situation a further location, H, of the body: for
H generally disposed, the construction of a screw triangle to encompass locations
A, B, and H will generally require creation of a new body-image, differently located
from I and, as well as a new mirror n̂H , will require the addition of new mirrors,
different from n̂A and n̂B which can reflect this new body-image into A and B.

However, as depicted in Fig. 2, more specialised locations for H are clearly avail-
able which can be obtained from the original body-image I by suitable placement of
a new line-mirror n̂H ; such arrangement preserves the uniqueness of the body-image
I and the 1-to-1 relationship between each body location and the line-mirror which
creates it by reflection of I.

7 Mechanism with Explicit Line Symmetry

Consider that the body-image of the preceding section is made explicit in the mech-
anism of interest so that, in every pose, there exists a line-mirror axis which reflects
the fixed link Fix into the coupler Cpl (and vice versa); that is to say that the link Fix
can be carried into identity with Cpl by a pure half-turn rotation, without translation,
about that axis.

Since, by the definition of Eq. (3), the sin-screw for such a displacement is a
unit line, we may conveniently represent both the location of the line-mirror, and
its action, by a unit line; e.g. in arbitrarily chosen poses A and B, by unit lines n̂A

and n̂B. Now, as measured relative to link Fix, the displacement ŜA→B suffered by
link Cpl as the mechanism moves from pose A to pose B may be composed from,
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firstly, a negative half-turn about n̂A (into the fixed location of Fix) followed by a
positive half-turn about n̂B. Composing the resultant of these displacements by use
of Eq. (4), we find, since the cosine terms vanish,

ŜA→B = n̂A × n̂B. (9)

It follows, since B is an arbitrarily chosen pose, that the line-mirror axis of the Cpl,
Fix pair is an orthogonal nodal line for all screws ŜA→B for displacement of the link
Cpl from pose A to another pose; and since A is an arbitrarily chosen pose, that this
is so in every pose.

8 Conformation with a 2-System

Consider that each displacement screw ŜA→G in the set associated with pose A can
be expressed as a linear combination

ŜA→G = β ŜA→B + γ ŜA→C (10)

where ŜA→B, ŜA→C are particular members of that set and β , γ are real coefficients.
We examine the possibility that this property holds in the set of displacement screws
of other poses, in particular, of pose B. By the use of Eq. (6) we obtain

ŜB→G =
[
cos 1

2 θ̂A→G −β cos 1
2 θ̂A→B − γ cos 1

2 θ̂A→C

]
ŜB→A + γ ŜB→C (11)

in which, by use of the same Eq. (6),

ŜB→C = −cos 1
2 θ̂A→C ŜA→B + cos 1

2 θ̂A→B ŜA→C + ŜA→B × ŜA→C.

We observe in eqn. (11) that, while the screws associated with pose B can be ex-
pressed as a combination of two of their number, the coefficients of combination
– specifically, the quantity in square brackets – are not generally real numbers, but
dual.

Nevertheless, it is known [2–4] that there are mechanisms in which displacement
screws occur as linearly combinations of a pair of basis screws, combined with real
coefficients, in each of a succession of poses; for such we may make the following
useful observation.

It is well-established [5] that any such set of screws contains a pair of principal
screws which intersect one another at right angles and which can serve as basis
screws for the set. If, then, in the set of screws associated with pose A we were to
name these principal screws X̂ and Ŷ, we can write

ŜA→B = α X̂+ β Ŷ ŜA→G = γ X̂+ δ Ŷ (12)

where α , β , γ , δ are real coefficients. We derive
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ŜA→B × ŜA→G = (α δ −β γ)X̂× Ŷ (13)

which indicates, through Eq. (2), that the pitch of the screw on the left is equal to the
sum of pitches of the principal screws X̂ and Ŷ. But Eq. (7) shows the pitch of the
screw-form on the left to be invariant between poses A and B: so we see the sum of
pitches of the principal screws to be an invariant throughout the linearly combined
screw sets associated with all poses.

9 Conclusion

A number of structural properties of sets of finite displacement screws have been
elucidated, each set comprising all motions of some chosen link in a mechanism
from its location in a particular pose.

Acknowledgements The author acknowledges the assistance of the School of Information Tech-
nologies, the University of Sydney, in preparation of this paper.
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Abstract. This article is concerned with the homing of parallel kinematic five-bar manipulators
that have non-absolute position sensors. A strategy for joint-based homing is proposed which re-
quires simple homing switches only. This strategy allows the drives of a five-bar mechanism to
be referenced without user interaction. Though well established for single drives its application to
coupled kinematics is quite challenging, due to the risk of workspace violation and uncontrollable
approaching of singularities. Mathematical relations are presented which are necessary to place
the home position in such a way that homing can be accomplished safely from any starting point.
Under consideration of the results presented, an autonomous and safe homing procedure can be
implemented on five-bar manipulators with the help of simple homing switches.

Key words: Five-bar mechanism, parallel kinematic, homing, incremental position encoders.

1 Introduction

The power-up sequence of a parallel kinematic manipulator [1] is challenging if
the position encoders attached to the joints do not provide the absolute position.
Then a homing procedure is required to find a predefined reference position. During
homing of a parallel kinematic manipulator, singularities and violation of the work-
space borders must be avoided, just as during normal operation. But unfortunately
any monitoring of these properties (e.g. singularity avoidance [2]) requires absolute
position information which is not available until the homing procedure has been fin-
ished successfully. For this reason the homing of many parallel manipulators cannot
be executed autonomously but must be supervised by a trained operator.

Package size is one of the reasons why absolute encoders might not be favorable.
For example, the miniaturized five-bar manipulator PARVUS has been put into oper-
ation successfully, having incremental encoders attached to the motor side of strain
wave gears [3]. There, the decision to use incremental encoders in combination with
strain wave gears results in high position resolution. The five-bar manipulator of the
Collaborative Research Center 562 is a non-miniaturized example, which is also
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equipped with incremental encoders [4]. This manipulator features 4-zone homing
switches which already allow autonomous execution of the homing routine.

This article focusses on the homing procedure of the five-bar mechanism with
2-zone homing switches. An autonomous homing strategy is investigated that only
needs simple homing switches. It will be shown that the successful implementation
of this strategy is tied to suitable placement of the reference point.

1.1 The Five-Bar Mechanism

In this article a planar five-bar mechanism is considered as depicted in Fig. 1. A
miniaturized realization of this mechanism can be found in [5]. It possesses two
drives A1, A2 which means that it is neither redundant nor under-actuated. The ma-
nipulator is equipped with incremental position encoders that indicate the angles
of the actuated joints φ1, φ2 of A1, A2. Additionally A1 and A2 feature the homing
switches H1 and H2, respectively. A homing switch H is defined similarly to [6]:

H(φ) =

{
−1, φ + α ∈ [0◦,180◦]
1, else

(1)

The angles φ1, φ2 where H switches yield the absolute home position. Hence the
offset α is available to choose the placement of the home position. Based on Eq. (1)
the homing vector HHH is defined, having four possible values:

HHH =
[
H(φ1),H(φ2)

]T = [H1,H2]
T , (2)

HHH1 =
[
1,1

]T
, HHH2 =

[
1,−1

]T
, HHH3 =

[
−1,1

]T
, HHH4 =

[
−1,−1

]T
. (3)

2 A Strategy for Autonomous Homing

HHH indicates the direction in which the home position is located in joint space relat-
ively to the actual position. Hence the following strategy is proposed:

Phase 1: “Move both drives simultaneously, each of them towards its individual
home position. Move both drives with the same constant velocity.”

Switch Condition: “Proceed to Phase 2 when one homing switch value changes.”
Phase 2: “ Stop the drive which reached its home position. Keep on moving the

other drive with the same velocity.”
End Condition: “Exit when the second home value switches.”

This joint-based homing strategy is well established in linear stages and rotary po-
sitioning systems that are commercially available. But this strategy does not in-
herently work with coupled kinematics due to singularities and possible workspace
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Fig. 1 Exemplary homing sequence of a five-bar mechanism.

violations during the homing procedure [7]. Figure 1 exemplarily shows such a hom-
ing movement. The mechanism is drawn in an arbitrary start position (x = 60mm,
y = 17mm) and in a predefined home position (x = 0mm, y = 68mm). The tra-
jectory on which the end-effector travels during homing can be seen. The trajectory
changes apruptly when phase 2 begins. The end-effector enters a circular trajectory
at this point.

3 Analysis of the Homing Strategy Proposed

Under practical considerations the following two questions arise:

1. Is there a home position within the workspace which can be reached safely from
every location in the workspace?

2. If such a home position exists, where is it located? If multiple of them exist, how
can the set of home positions be determined?
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At the five-bar no singularities are present within the workspace.1 Hence unintended
situations only occur when the end-effector violates the border of the workspace.
This means that a homing strategy for the five-bar must ensure that the end-effector
remains within the workspace.

3.1 Segmentation into Two Phases

The following analysis considers the two phases in reverse order which can be stated
in the following question: Is every point in the workspace reachable from the home
position?

3.1.1 Analysis of the Second Phase

In the second phase the end-effector moves on a circular trajectory which is centered
around B1 or B2 (dependendent on which homing switch is reached first). The
circular trajectories represent borders which divide the workspace into four sub-
workspaces. The following text will refer to them as the north, the east, the west and
the south sub-workspace (above, right, left and below the home position in Fig. 1,
respectively). Based on the way the sub-workspaces are defined each sub-workspace
has its specific homing vector.

Once phase 2 is reached, the end-effector will safely arrive at the home position.
This can be seen in Fig. 1: It is not possible to place the home position at a location
where one of the circular trajectories violates the workspace between the border of
the workspace and the home position. Hence, phase 2 can be considered to be safe.

3.1.2 Analysis of the First Phase

The analysis of the first phase can be reduced to the analysis of the outer workspace
border. This results due to the definition of the workspace which excludes all singu-
larities (type 1 and type 2) from the workspace. Hence it is sufficient to ensure the
safety of the positions which are located on the outer workspace border (all inner
points are safe by definition). These positions are safe if the corresponding velocity
vector which results from the homing movement does not point outside the work-
space. If this property can be garantueed the end-effector will eventually move along
the border of the workspace but will sooner or later turn back towards the interior of
the workspace.

A velocity vector ẋxx(xxx) that corresponds to an arbitrary end-effector position xxx
is defined valid if it does not drive the end-effector into an unintended situation
after infinitesimal time dt. This means that all velocity vectors which correspond

1 It is not assumed that the five-bar is operated on both sides of the type-2-singularity.
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to positions inside the workspace are valid, except for the velocity vectors which
correspond to positions on the border of the workspace. The validity of the velocity
vectors in the inner of the workspace results from the definition of the workspace
which excludes all singularities (type 1 and type 2) from the workspace. Based on
this definition a sub-workspace is defined valid if all velocity vectors that belong to
it are valid (including the section of the border of the workspace affected).

For practical analysis the border of the workspace is discretized. Then the Jac-
obian JJJ [8] is calculated for each point of the discretized border of the workspace:

JJJ =
∂ ẋxx
∂ q̇qq

. (4)

Afterwards the normalized velocity vectors which may occur for all homing vectors
are calculated for each point:

ẋxxi(xxx,HHHi) = JJJ(xxx) ·HHHi i = 1 . . .4. (5)

Figure 2 shows the discretized border of the workspace and some of the velocity
vectors which correspond to these points.

3.2 Choice of Workspace Partitioning and its Restrictions

It can be seen from Fig. 2 that there are velocity vectors that point outwards the
workspace. There is only one suitable set of homing vectors which can be used for
the five-bar: In the northern sub-workspace HHH3 is the only suitable homing vector,
in the eastern sub-workspace this is HHH1, in the western HHH4 and in the southern sub-
workspace HHH2.

Consequently the restrictions for the placement of the home position are elabor-
ated: If HHH3 is used for the northern sub-workspace, its validity is always given.2 The
southern sub-workspace is also always valid, because when using HHH2 the whole
lower edge of the workspace is valid. Regarding the eastern and western sub-
workspace the situation is different: Consider the lower edge of the eastern sub-
workspace (HHH1, Fig. 2a). Towards x = 0 there are points on the workspace border
that are invalid. Hence the eastern sub-workspace may cover the outermost bow seg-
ment of the lower edge of the workspace but not the inner ones. The same applies
to the western workspace due to symmetry.

On this basis the set of valid home positions is determined. Figure 1 contains
the special case where the area of the eastern and the western sub-workspaces are
maximized. The home position must be located on the circular trajectories drawn,
or above both of them. Hence the set of valid home positions is equivalent to the
northern sub-workspace in Fig. 1.

2 In this case the whole upper edge of the workspace is valid.
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Fig. 2 Velocity vectors corresponding to homing vectors.
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Fig. 3 A non-symmetric five-bar, the borders of the four sub-workspaces and an exemplary homing
trajectory.

4 Generalization for the Non-Symmetric Five-Bar

Now the results concerning the symmetrical five-bar shall be generalized to arbit-
rary bar lengths. Just as with the symmetric case the northern sub-workspace must
be found for the non-symmetric case. This area can be obtained geometrically, as
shown in Fig. 3. The following steps yield the solution and have to be repeated for
both, the left and right arm set (index j = 1;2): Bring C to point Pj, representing the
inner end of the outermost bow segment. This defines the position of joint B j. Draw
a cirular sub-workspace border around the joint B j, which is fixed. The set of valid
home positions is equivalent to the northern sub-workspace.

5 Conclusions

This article is concerned with finding a valid set of home positions for a five-bar
manipulator which is equipped with incremental encoders and homing sensors. It
is proposed to employ a joint-based search strategy which is already well estab-
lished in linear and rotary drive technology in non-coupled kinematics. The homing
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strategy proposed relies on homing switches on each drive which determine the dir-
ection in which the home position must be sought.

The conditions that ensure that a home position can be found safely from every
point within the workspace were presented. It was found that the velocity vectors
must not point outside the workspace to ensure successful homing. Consequently the
velocity vectors of an exemplary structure were analyzed. Therefrom a geometrical
method for the determination of the set of valid home positions was derived. This
method was generalized for non-symmetric geometries of the five-bar manipulator.

In order to avoid the need for assistance by an operator during the power-up
phase of the machine it is common to equip a five-bar either with absolute encoders
or with multiple homing switches. If not, a manual homing procedure must be car-
ried out by a trained operator. With the knowledge obtained in this article such a
manipulator may be designed in such a way that autonomous homing becomes pos-
sible even though the mechanical and electrical design is kept simple. Only very
simple sensors are required which may be realized and integrated cheaply. On top
of that there are many off-the-shelf servo drive amplifiers which feature the joint-
based homing functionality proposed. With these products its implementation be-
comes straightforward. In summary this article contributes to the simplification of
the design and the operation of planar five-bar manipulators.
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Abstract. The workspace singularities of 3R regional manipulators have been much analyzed. The
presence of cusps in the singularity locus is known to admit singularity-avoiding posture change.
Cusps arise in singularity theory as second-order phenomena – specifically they are �1,1 Thom–
Boardman singularities. The occurrence of such singularities requires that the kinematic mapping
be generic (in the sense of Pai and Leu [1]). Genericity and the occurrence of higher-order singu-
larities in families of regional manipulators are investigated using Lie-theoretic properties of the
Euclidean group.

Key words: Regional manipulator, cusp, Thom–Boardman singularity, genericity.

1 Introduction

A spatial serial 3-link manipulator is frequently termed a regional manipulator in
recognition of its use as the positioning component for the wrist-centre of a wrist-
partitioned 6-dof industrial manipulator. An example is illustrated in Fig. 1. The
importance of such a design is that the inverse kinematics reduces to solving a de-
gree 4 polynomial [2]. Hsu and Kohli [3] used this to show that there are, for a
typical regional manipulator, surfaces in the joint space that divide it into regions
corresponding to different numbers of poses. These regions were also studied, in a
more general setting, by Burdick [4]. Taking a different perspective, Stanis̆ić and
Engelberth [5] demonstrated, using screw systems, that the wrist-positioning sub-
assembly gives rise to a singularity of the whole manipulator when the wrist centre
lies on a certain surface, dependent on the subassembly configuration. This was re-
ferred to as an instantaneous singular set in [6] and was subsequently used as the
basis for a singularity metric [7].

A number of researchers have used ideas from the mathematical theory of singu-
larities in the study of manipulators [1,8,9]. Pai and Leu examined the stratification
of the singularity locus by the corank of the singularity, that is, the instantaneous
loss of degrees of freedom (dofs). In particular, they introduced the concept of gen-
eric manipulator, to describe one whose kinematic mapping has a nice singularity
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Fig. 1 (a) Ortho-parallel regional manipulator [10], (b) Visualisation of cusp singularities.

locus. In singularity theory, the term ’generic’ is used to describe a property that
pertains for a topologically large set (for example, open and dense, residual, or hav-
ing complement of measure zero) in a given parametrised family of mappings. In
this setting, the family could be the set of 3R manipulators, or it could be the set of
wrist-centres for a given manipulator, or the entire family with both the serial struc-
ture and wrist-centre as parameters. Generic properties are typically realised via
transversality to a given family of manifolds – an intersection condition satisfied
when certain vectors span a given space. In this case, the given family of manifolds
can be interpreted as the sets �r of Jacobian matrices of fixed corank r .

In much of the literature on this subject, the term ‘generic’ is used to describe
a manipulator for which the transversality condition holds rather than the property
itself. A more accurate term is transverse-regular [11]. There is, as pointed out
by Tchoń [8], no certainty that the transversality condition will indeed hold for
most manipulators in a given class. Regardless of whether the condition holds for
most manipulators, whenever it does hold it guarantees that the singular loci �rf ,
corresponding to singularities of fixed rank, are themselves manifolds in the joint
space of the kinematic mapping f . On the other hand, the singular image in the
workspace can exhibit singularities, such as cusps. For further details of genericity
and concepts of singularity theory, see [11–15].

In the context of regional manipulators, algebraic conditions for genericity (i.e.
transversality) were obtained in [1, 9]. In particular, they showed that it is not
possible to encounter �2 transversely, so that rank 1 singularities are ruled out.
Burdick [16] gave an alternative geometric criterion to the algebraic equations
of [3]: when a 3R regional manipulator is in a singular configuration there exists
a screw of pitch zero whose axis passes through the wrist centre and intersects the
axes of each joint screw. He observed that for an open set of 3R regional manipu-
lators, there exist trajectories in joint space that do not intersect the singular locus,
yet effect a change of posture. Such manipulators have been termed cuspidal and



Singularities of Regional Manipulators Revisited 511

have been explored in detail by Wenger et al. [17–19]. Smith and Lipkin [20, 21]
showed that the inverse kinematics of a given wrist-centre for a 3R regional manip-
ulator can be encoded by a pencil of conics. Exceptional pencils in which the conics
possess some tangency correspond to singular configurations, while high-order tan-
gency (3rd or 4th order or paired) correspond to higher-order singularities, including
cusps. Recent classifications focus on specific classes of manipulator, for example
orthogonal [22], where a closed form expression for the Jacobian can be found, and
on workspace topologies [10].

Selig [23] analysed the kinematics and singularities of 3R manipulators using
product-of-exponentials formulation for the kinematics and results of Lie theory. It
is this approach that we pursue. A cusp arises as a singular point of the restriction
of the kinematic mapping to the singular locus: in the notation of Thom–Boardman
singularities [24] it is �1,1. Our aim is to develop the singularity analysis of regional
manipulators in a reasonably broad context, provisionally allowing for 1-dof joints
of any sort, and deriving local descriptions of singular loci using methods of Lie
groups and Lie algebras. In this setting the two different aspects of the singularity
problem for regional manipulators – choice of the underlying serial manipulator
structure and of the wrist centre – can be developed together.

2 The Kinematic Mapping

The motion associated with each 1-dof joint of a manipulator can be represented
by a non-zero twist X – an element of the Lie algebra se(3) of the group SE(3)

of Euclidean isometries. The motion itself is given by the exponential exp(qX),
a path in the group of transformations, where q is the joint variable. The twist is
relative to a given choice of coordinates in the link and the ambient space; under a
change of coordinates represented by an isometry g ∈ SE(3), the twist transforms
by conjugacy and this is the adjoint action of the Lie group on its Lie algebra:

X �→ Ad (g)(X) = gXg−1, (1)

where the elements of the group and twists can be written in matrix form. In a given
coordinate frame, the twist may be replaced by any non-zero multiple, a twist of the
same pitch, the joint variable being scaled by the inverse of the multiple. In other
words the joint is really represented by a screw. The kinematic mapping of a serial
manipulator with k 1-dof joints can then be written as a product of exponentials

f (q1, . . . , qk) = exp(q1X1) · · · exp(qkXk), (2)

where Xi , i = 1, . . . , k, is the twist representing the ith joint, in a chosen home
configuration with respect to given space (or base) coordinates, and qi ∈ R is the
joint variable. Again, exponentials can be evaluated as matrices via the standard
series formula. The image of each exponential map is the one-parameter subgroup of
Euclidean transformations in SE(3), parametrised by the joint variable. The twists
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Xi can be equivalently represented by either: a 6-vector (ωi , vi ) comprised of two
3-vectors corresponding to infinitesimal rotation and translation, or a 4 × 4 matrix
partitioned as

(
ω̃ v

0t 0

)

, (3)

where the identification of ω ∈ R
3 and the 3 skew-symmetric matrix ω̃ proceeds

with

ω =
⎛

⎝

ω1
ω2
ω3

⎞

⎠ ↔ ω̃ =
⎛

⎝

0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

⎞

⎠ . (4)

If the joint Xi is revolute then ωi · vi = 0, while if it is prismatic then ωi = 0. A
priori, there is no need to assume that the joints are either of these types, that is,
they may have pitch ωi · vi/ωi · ωi �= 0,∞. While the exponential map is defined
independent of the representation used for the Lie algebra, in the matrix form it can
be computed by the usual exponential series.

For a regional manipulator k = 3, and there is a choice of wrist-centre c ∈ R
3

(in body coordinates for the third link). The kinematic mapping for the wrist centre
is the function

fc : R
3 → R

3; fc(q1, q2, q3) = exp(q1X1) exp(q2X2) exp(q3X3) · c. (5)

The ‘evaluation’ map εc : SE(3) → R
3 is given by the action of the group on the

wrist-centre c, that is for g ∈ SE(3), εc(g) = g · c. Then fc is the composition of εc
with the manipulator kinematic mapping f in (2).

3 Jacobian Matrices

A kinematic mapping f has a singularity at q when the rank of its derivative Df (q)

drops below its maximum possible value, which is the minimum of the dimensions
of the joint-space and the configuration space. The derivative is represented by the
(analytic) Jacobian matrix of partial derivatives. This represents a linear mapping
into the tangent space at the image f (q) ∈ SE(3) rather than into the Lie algebra, so
that the columns are not themselves, in general, twists. However the group structure
can be used to ‘pull back’ the tangent space to the identity by either left multiplica-
tion (corresponding to body coordinates) or right translation (space coordinates) to
give a more familiar geometric Jacobian. For the manipulator mapping f in (2) with
k = 3 the matrix is therefore 6 × 3. To find an explicit form requires the derivative
of an exponential:

d

dq
exp(qX) = X · exp(qX) = exp(qX) · X, (6)
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where the operations between the transformation exp(qX) and the twist X can be
realised by matrix multiplication. Following [23], if g ∈ SE(3) can be written as
g = (R, t) ∈ SO(3) ×s R

3 (where ×s denotes semi-direct product), then g is
represented by the 6 × 6 partitioned matrix

(
R O

t̃R R

)

(7)

with the skew-symmetric matrix t̃ defined in (4). Note that the exponential mapping
commutes with its defining twist. However, it does not commute with a general twist
and we require:

Y exp(qX) = exp(qX) exp(−qX)Y exp(qX) = exp(qX)Ad (exp(−qX))(Y ).

(8)
Differentiating Ad as in (1) with respect to g ∈ SE(3) gives the adjoint representa-
tion of the Lie algebra se(3) on itself. This also determines the Lie bracket operation
in the Lie algebra:

ad (Y )(X) = [Y,X] (9)

In matrix terms [Y,X] = YX − XY , while in screw coordinates

[(ω1, v1), (ω2, v2)] = (ω1 × ω2,ω1 × v2 + v1 × ω2) . (10)

It is a theorem of matrix Lie groups that

Ad (exp(qX)) = Exp(q ad (X)) =
∞∑

n=0

qn

n! ( ad X)n, (11)

where the exponential Exp is an operator on the Lie algebra. We obtain the analytic
Jacobian of f as follows (where vertical dots separate column vectors):

Jf (q) =
(

exp(q1X1)X1 exp(q2X2) exp(q3X3)
... exp(q1X1) exp(q2X2)X2 exp(q3X3)

...

exp(q1X1) exp(q2X2) exp(q3X3)X3

)

(12a)

=
(

f (q1, q2, q3) · Exp(−q3 ad X3)Exp(−q2 ad X2)X1
...

f (q1, q2, q3) · Exp(−q3 ad X3)X2
... f (q1, q2, q3) · X3

)

.

(12b)

The second expression is obtained by applying (8) and the effect of f (q1, q2, q3) on
each term is to translate the twists in the tangent space at the identity (the Lie algebra
se(3)) to the tangent space at the given configuration. The corresponding geometric
Jacobian, consisting of the instantaneous joint screws in end-effector coordinates, is
therefore:
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Jgeom =
(

X′
1

... X′
2

... X′
3

)

(13)

where X′
1 := Exp(−q3 ad X3)Exp(−q2 ad X2)X1, X′

2 := Exp(−q3 ad X3)X2,
X′

3 := X3.
An important object for establishing transversality of the kinematic mapping at

a given configuration is the Lie subalgebra generated by the joint screws Xi since
it contains the the subspace spanned by Xi at any configuration. Assuming that we
are interested in the configuration q = 0 then (12b) reduces to (13). Expanding (13)
as a series in q1, q2, q3 by means of (11) gives:

X′
1 = X1 + q2[X1,X2] + q3[X1,X3] + O(2)

= (ω1, v1) + q2(ω1 × ω2, r12) + q3(ω1 × ω3, r13) + O(2) (14a)

X′
2 = X2 + q3[X2,X3] + O(2)

= (ω2, v2) + q3(ω2 × ω3, r23) (14b)

X′
3 = X3 = (ω3, v3), (14c)

where rij = ωi × vj + vi × ωj .

4 The Singular Locus

For the wrist-centre kinematic mapping fc in (5), the Jacobian is 3 × 3. Its columns
are the result of applying the columns of (12b), considered as elements of SE(3), to
c. However, recalling that fc = εc ◦ f = f · c, and applying the chain rule to get
Dfc = Dεc ◦ Df , it is clear that the rank of the derivative of fc is less than 3, i.e.
fc has a singularity, if and only if one of the following occurs [6]:

i. f itself has a singularity;
ii. the kernel of the derivative of the evaluation map εc has non-trivial intersection

with the image of the derivative of f .

Case (i) corresponds to Burdick’s ‘extra branch singularities’ [16]. Here, the defin-
ing screws X1,X2,X3 are linearly dependent in the Lie algebra. We assume none
are zero and no two adjacent joint screws are permanently linearly dependent (since
then the manipulator effectively only has 2 dof). In particular the screws must span
a 2-dimensional subspace so correspond to a �1 singularity. It follows from The-
orem 3.1 in [13] that the singularity occurs transversely so long as the the subspace
is not a subalgebra (i.e. closed under the Lie bracket), in which case that manipulator
would have 2 dof only. The 2-dimensional subalgebras are the algebra of cylindrical
motion and pure 2 dof translations.

In case (ii), the kernel of the derivative of εc at the identity is precisely the set of
pitch-zero twists whose axes pass through c: in the terminology of the Klein quadric,
this is an α-plane. This provides the principle for determining the instantaneous
singular sets in terms of the screw system in [5, 6]: a singularity can be detected
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when the determinant of the 6 × 6 matrix, whose columns are 3 twists spanning the
α-plane and 3 from the Jacobian of f , vanishes.

This can be exploited by choosing coordinates in the end-effector so that c is the
origin. Then the twists spanning the α-plane can be taken as infinitesimal rotations
about the coordinate axes and the Jacobian has the partitioned form

(
I Jωf (q)

O Jvf (q)

)

, (15)

where Jωf (q), Jvf (q) denote the projections of the Jacobian Jf (q) onto the sub-
spaces of infinitesimal rotations about the origin and infinitesimal translations, re-
spectively. The determinant is simply equal to that of the lower right 3 × 3 block
coming from the ‘translational’ part of f . Expanding this as a triple scalar product
of its columns and using (14) gives the following expression for det Jvf (q):

h(q) := v1 · (v2 ×v3)+q2v2 · (v3 ×r12)+q3v3 · (v1 ×r23 +v2 ×r13)+O(2) (16)

The condition v1 · (v2 ×v3) = 0 (equivalently, v1, v2, v3 linearly dependent) affirms
that q = 0 itself is a singular point of fc. Indeed, if v lie in the orthogonal com-
plement to the subspace spanned by v1, v2, v3 then the twist (v, 0) passes through
the wrist centre and is clearly reciprocal to each joint. In particular, if the joints are
revolute then the line intersects their axes [25], giving Burdick’s geometric criterion
mentioned in Section 1.

The form (16) gives an equation h(q) = 0 for the singularity locus in a neigh-
bourhood of q = 0. By the Implicit Function Theorem, if either of the coefficients
of the qi , i = 2, 3 in (16) is non-zero, then the singular locus is a 2-dimensional
submanifold of the joint space in a neighbourhood of 0. Since each coefficient is
a polynomial in the screw coordinates of the three joints, their zero sets are closed
subspaces (affine varieties) and so there is an open set of 3 dof (not necessarily 3R)
manipulators for which a given wrist centre has a smooth singular locus. In other
words, this family is generic with respect to transverse regularity.

5 Cusps

The defining equation for the singular locus enables us to deduce a criterion for the
wrist centre to be a cusp point in the case that the locus is a manifold. In the notation
of the Thom–Boardman singularities [24, 26] a cusp point is a point of �1,1fc; that
is, a point in the joint space at which the restriction of the kinematic mapping fc to
its singular locus itself has a corank 1 singularity. Computationally, this is similar to
a Lagrange multiplier problem – find the singular points of a function constrained to
a given submanifold. In Section 4 we have not produced a closed form expression for
the singular locus – it is only known as a series expansion up to first-order, though in
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principle more terms can be calculated and indeed there are closed form expressions
for exp(q ad X) [27]. However this is sufficient for the criterion we seek.

The required condition is that the derivative (or Jacobian matrix) for the aug-
mented map (fc, h) : R

3 → R
4 should have corank 1, in addition to the underlying

requirement that Dfc(q) itself has corank 1. Since we have only expanded the sin-
gular locus about q = 0, it is only possible to apply this criterion at that point, where
we have enough information to determine the Jacobian of (fc, h). The 4 × 3 matrix
arising from differentiating (5) and (16) is:

⎛

⎜
⎜
⎝

v11 v21 v31
v12 v22 v32
v13 v23 v33
0 v2 · (v3 × r12) v3 · (v1 × r23 + v2 × r31)

⎞

⎟
⎟
⎠

(17)

where vi = (vi1, vi2, vi3)
T for i = 1, 2, 3, and a sufficient condition for this to have

rank 2 is that all 3×3 submatrices have determinant zero. Taking the first three rows
automatically ensures that q = 0 ∈ �1fc. While there are three further submatrices,
only one condition is algebraically independent: if the kinematic mapping is well
behaved (satisfies an appropriate transversality condition) then �1,1fc will be a 1-
dimensional submanifold (curve) in joint space.

6 Example: Ortho-Parallel Manipulator

For an ortho-parallel manipulator, take as home configuration the one shown in
Fig. 1, where the parallel joints and the wrist centre all lie in a plane orthogonal
to the axis of the first joint. Then with the wrist-centre as origin of coordinates and
suitable choice of axes, the kinematics (5) can be defined using the following screw
coordinates (ωi , vi ), i = 1, 2, 3 for the joints:

X1 = (0, 0, 1,−(a1 + a2 + a3), d2 + d3, 0)

X2 = (1, 0, 0, 0, 0, a2 + a3)

X3 = (1, 0, 0, 0, 0, a3), (18)

where the ai, di are DH parameters (see, for example, [10]). In the home configur-
ation the joints are linearly independent. However v1 · (v2 × v3) = 0 so this is a
singular configuration. Locally, the singular locus is defined by

h(q) = −a2a3(a1 + a2 + a3)q3 + O(2) (19)

Thus, the singular locus is locally a surface for non-trivial DH parameters unless
a1 + a2 + a3 = 0. The condition for a cusp is that the matrix
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⎛

⎜
⎜
⎝

−(a1 + a2 + a3) 0 0
d2 + d3 0 0

0 a2 + a3 a3
0 0 −a2a3(a1 + a2 + a3)

⎞

⎟
⎟
⎠

(20)

has rank 2, which is clearly not the case provided the conditions above hold. Notice
that for the manipulator in Fig. 1 we have a1 = d2 = 0. While it is of limited
practical value, such a local singularity analysis remains straightforward for general
screw joints of non-zero pitch.

It is also possible to analyse the effect of varying the wrist centre to a point
c = (c1, c2, c3)

T . One way to do this is to transform coordinates by means of a
translation so that the wrist centre remains the origin. The joint twist Xi = (ωi , vi )

transforms to Xi = (ωi ,−ωi ×i c + vi). The linear part of the equation for the
singularity locus of an ortho-parallel manipulator becomes:

(a1 + a2+a3 − c2)c3a2 + c2
3a2q2

−
[

(a2 + a3 − c2)c
2
3 − (a3 − c2)((a1 + a2 + a3 − c2)a2 + c2

3)
]

q3.

(21)

In particular, a shift of wrist centre parallel to the base axis (c3-direction) moves the
wrist centre off the singular locus.

7 Conclusions

Traditionally kinematic singularities of robotic manipulators have mostly been stud-
ied as a first order phenomenon in the sense of the Thom–Boardman singularity the-
ory. It was realized that a 3R regional manipulator can change its posture without
meeting a singularity if it exhibits cusp singularities (a second-order phenomena).
Therefore, and because the 3 dof manipulator kinematics is accessible to symbolic
manipulations, cusp singularities of 3R regional manipulators have been the subject
of extensive studies. Today much is known in the most important cases employed in
industrial manipulators, in particular for orthogonal and, to some extent, for ortho-
parallel manipulators. The significance of higher order singularities of general ma-
nipulators remains an open question. Here we have revisited the general problem
for regional manipulators in terms of the manipulator screw system using the ad-
joint action of the Euclidean group and the Thom–Boardman singularity theory.
This provides the basis for exploring genericity conditions of regional manipulat-
ors without resorting to DH parameters. With the approach taken here it shall be
possible to derive geometrically interpretable second order genericity conditions for
regional manipulators with general screw joints (ensuring that �1,1 is a manifold).
Eventually we shall be able to determine second order genericity of general manip-
ulators.
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Robot-Based HiL Test of Joint Endoprostheses
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Abstract. To simulate the dislocation behavior of total hip endoprostheses in their anatomical
environment a novel Hardware-in-the-Loop (HiL) simulator is built up. It couples a real endopros-
thesis with a numerical simulation of its environment by means of an industrial robot as actuator
system. The simulation model describes the dynamics of the biomechanical motions including
the tissue and muscle forces. The motion and joint constraint forces are calculated by the simu-
lation model and applied to the endoprosthesis by the robot under hybrid position/force control.
The actual position of the endoprosthesis in the constrained directions and torques in the uncon-
strained directions are measured and fed back into the simulation model closing the control loop.
To demonstrate the functional principle of the HiL simulator the dynamic behavior of a test setup
is numerically simulated.

Key words: Hardware-in-the-loop, position/force control, endoprosthesis, biomechanics.

1 Introduction

A relatively frequent and serious complication of total hip replacement is subluxa-
tion and dislocation of the artificial joint (Fig. 1) [1]. Typical mechanisms of dislo-

bone structures, but dislocation may even occur under dynamic forces in conjunc-
tion with damaged muscles without an impingement event. Despite increasing clin-
ical experiences the dislocation rate has not been reduced significantly during the
last years. There are still numerous open questions about influence parameters like
implant design, implant position, actual loads as well as anatomic conditions like
muscles, ligaments, and capsule structures.

Therefore the objective is to investigate and compare actual joint endoprostheses
with respect to their dynamic behavior under realistic motion and load conditions.
As in vivo measurements of failure scenarios are not possible, the anatomical envir-
onment of the endoprosthesis is transferred into a numerical simulation. For this pur-
pose a novel robot-based Hardware-in-the-Loop (HiL) joint simulator is developed
[2]. In a HiL simulation physical components of a system are tested with a numerical
simulation of their environment running on a computer in real time [3]. The physical

cation are so-called impingements between prosthetic components or surrounding
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Fig. 1 (a) Dislocated hip
endoprosthesis. (b) Prosthetic
impingement possibly causing
dislocation.

impingement

femoral
rotationa) b)

component and the numerical simulation process mutually interact in a closed con-
trol loop. HiL simulations are particularly advantageous if the real environment of
the physical component is not accessible as in the case of joint endoprostheses. To
include a mechanical component into a HiL control loop sensors and actuators are
used for the interaction between the mechanical component and the simulation com-
puter leading to a mechatronic HiL simulator. A six-axis industrial robot is used as
actuator system in order to realize the large range of motion of hip and knee joints.
By comparison a force-controlled hexapod platform with pneumatic actuators is un-
der development for testing of cervical vertebrae pairs [4].

2 HiL Simulator for Testing of Endoprostheses

The HiL simulator for testing of joint endoprostheses is shown in Fig. 2. The hip
endoprosthesis is moved and loaded by an industrial robot (STÄUBLI TX 200).
The femoral component of the endoprosthesis is attached to the end-effector. The
acetabular cup is implanted into an artificial pelvis structure. The pelvis support is
elastically compliant in all three translational directions. The compliance is used for
force control of the robot. The forces and torques in the endoprosthesis are measured
by a 6D force-torque sensor (FTS).

The overall functional principle of the HiL simulator is shown in Fig. 3. The
mechanical setup of Fig. 2 is linked with a simulation computer running a biomech-
anical multibody model of the anatomic environment of the hip joint. The simplified
representations of the robot and the biomechanical multibody model in Fig. 3 show
in-plane motions and forces only while spatial motions and forces are actually con-
sidered. Further the biomechanical model briefly addressed in Section 4 is more
complex and has additional bodies.

The HiL concept is based on complementary sets of free and constrained spatial
directions of the biomechanical multibody system. In the planar multibody model
shown in Fig. 3 the free direction is the rotation of the femur with the angle q while
the constrained directions are the displacements q̄r

y, q̄r
z of the joint center P̄. For an

actual time instant t with given state variables q and q̇ the equations of motion de-
liver the acceleration q̈ in the free direction and reaction forces f r

y , f r
z in the two con-

strained directions. The muscle and soft tissue forces fM as well as gravity forces fG
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a) Overall setup  b) Compliant support of the implant

FTS

Fig. 2 HiL simulator for testing of joint endoprostheses.

Fig. 3 Functional principle of the HiL joint simulator.

and inertial forces are taken into account. The acceleration q̈ is used for numerical
integration of the equations of motion in order to update the state variables q, q̇.

The values of the coordinate q and of the reaction forces f r
y , f r

z are transferred to
the robot controller making the robot rotate the endoprosthesis into the position q̄
and to apply the reaction forces f̄ r

y , f̄ r
z onto the endoprosthesis. In the ideal case the

robot values q̄, f̄ r
y , f̄ r

z are identical with the corresponding values q, f r
y , f r

z of the
multibody model. In reality differences occur due to the limited dynamic bandwidth
of the controlled robot, signal delay times, and other errors.
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Fig. 4 Mechanical test system to illustrate
the dynamics of the HiL simulator.
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Force control is realized by means of the compliant support [5]. Basically the
robot moves in direction of the desired force until the desired force value is achieved
whereby the actual force value is measured by the FTS.

The robot is able to apply the reaction forces f̄ r
y , f̄ r

z if the endoprosthesis with-
stands these loads in the corresponding directions. Then no dislocation will occur,
i.e., the position of the joint center P relative to the acetabular cup, described by
the distances qr

y, qr
z, remains constant. If the endoprosthesis does not withstand the

applied forces in a certain direction, it dislocates in that direction, i.e., the distances
qr

y, qr
z change.

To close the HiL control loop the actual values of qr
y, qr

z are measured and fed
back into the multibody model. Another loop closure is achieved by the forces in
the unconstrained directions, here the torque τ along the coordinate q, that are also
measured and fed back into the multibody model. The torque τ may be caused by
friction forces in the endoprosthesis, but also by prosthetic or bone impingements.
Again disturbances of the measurements and the signal transmissions cause differ-
ences between the actual robot values τ , qr

y, qr
z and the corresponding values τ̄ , q̄r

y,
q̄r

z fed back into the numerical model.

3 Simplified Mathematical Model of the HiL Simulator

The dynamic behavior of the HiL simulator is illustrated by means of a simple
mechanical test system. It consists of a planar pendulum with its end point P moving
in a vertical slot of a bearing block according to Fig. 4. As long as P is kept in its
home position P0 by a pre-loaded spring (stiffness cM), the bearing is equivalent to
a revolute joint in P0. Due to the forces acting on the pendulum during its motion
with the rotation angle q(t), a displacement q̄r

z of the end point P may occur that
corresponds to the dislocation of the hip joint. Thus the spring force stands for the
muscle and tissue forces holding the joint together against the other forces.

The HiL control loop with this test system is seen in Fig. 5. In the following
a simplified mathematical model is established in order to illustrate the dynamic
behavior of the HiL simulation and to demonstrate a dislocation scenario. For the
actual time t with the position of point P̄ the equations of motion of the pendulum
are (mass center C, distance CP̄ = �, mass m, inertia IP̄ with respect to P̄)
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Fig. 5 HiL setup for the mechanical test system of Fig. 4.

I
P̄

q̈ = −mg� sinq + τ̄ (1)

or in state-space form with the state variables q and ω = q̇

q̇ = ω , (2)

ω̇ =
1
I
P̄

(τ̄ −mg� sinq) . (3)

The reaction forces in point P̄ are obtained from the law of momentum under consid-
eration of the accelerations ÿC, z̈C of C and the “muscle” spring force fM expressed
by the stiffness cM and the prestress extension sz for q̄r

z = 0,

f r
y = mÿC with ÿC = �cosqω̇ − �sinqω2 , (4)

f r
z = mz̈C + cM (q̄r

z + sz)−mg with z̈C = −�sinqω̇ − �cosqω2 . (5)

The reaction forces f r
y , f r

z and the position q (the velocity q̇ can be used as an ad-
ditional control input for the robot) are transferred to the corresponding robot vari-
ables f̄ r

y , f̄ r
z , and q̄, whereby first-order transfer functions are used to approximate

the dynamics of the controlled robot (time constants T r
f y , T r

f z , Tq),

f r
i → f̄ r

i : T r
f i

˙̄f r
i + f̄ r

i = f r
i , i = y,z , (6)

q → q̄ : Tq ˙̄q + q̄ = q . (7)
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The robot applies the forces f̄ r
y , f̄ r

z by means of a force controller. As addressed in
Section 2 force control is realized by means of the stiffnesses cc

y, cc
z of the compliant

support and the forces acting on the robot point P. The force controller generates
velocity components ẏP, żP of the robot point P that are proportional to the differ-
ences between the force components f̄ r

y , f̄ r
z to be applied and the actual forces f FTS

y ,
f FTS
z measured by the FTS, respectively, according to (gain factor Kf)

ẏP = −Kf ( f̄ r
y − f FTS

y ) , (8)

żP = −Kf ( f̄ r
z − f FTS

z ) . (9)

In the numerical simulation model addressed here the actual forces f FTS
y , f FTS

z are
calculated by means of the stiffnesses cc

y, cc
z according to

f FTS
y = −cc

y(yP − y0) (no dislocation admitted) , (10)

f FTS
z =

{
0 for qr

z > 0 (dislocation)

−cc
z(zP − z0) for qr

z = 0 (no dislocation).
(11)

In order to detect the actual dislocations qr
y, qr

z the displacements y0, z0 of the
compliant support are measured. The dislocations then are obtained from

qr
y = yP − y0 , qr

z = zP − z0 . (12)

In the considered example the horizontal dislocation qr
y is always zero as the vertical

slot of the bearing block does not admit a dislocation in y-direction. However a
dislocation qr

z in vertical direction occurs if the reaction force f̄ r
z becomes negative.

In the direction of the coordinate q̄ of the free motion a torque τ may occur for
example due to dry friction,

τ = with f̄ r =
√

( f̄ r
y)2 +( f̄ r

z )2 , (13)

with the frictional coefficient µ and the absolute value of the reaction force f̄ r. The
actual torque τ is measured by the FTS.

The dislocations qr
y, qr

z and the torque τ are fed back to the simulation model. The
transitions into the corresponding values q̄r

y, q̄r
z, τ̄ are again modeled by first-order

transfer functions (time constants T r
qy , T r

qz , Tτ ),

qr
i → q̄r

i : T r
qi

˙̄qr
i + q̄r

i = qr
i , i = y,z , (14)

τ → τ̄ : Tτ ˙̄τ + τ̄ = τ . (15)

Results for the numerical integration of the system of differential equations (2),
(3), (6), (7), (8), (9), (14), (15) are shown in Fig. 6. The mechanical system is sim-
ulated by means of the multibody program SIMPACK as it will be done for the
actual biomechanical models. The results show the oscillation q(t) of the pendu-
lum slightly damped by the friction torque from Eq. (13). The robot motion q̄(t)
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Fig. 6 Simulation for the test system of Fig. 5: (a) SIMPACK model. (b) Pendulum angle q(t) of
the multibody model and q̄(t) of the robot. (c) Reaction force f r

z (t) of the multibody model and
f̄ r
z (t) of the robot. (d) Dislocation qr

z(t) and displacement zP(t) of the robot point P.

is delayed because of the time constant Tq from Eq. (7). Accordingly the reaction
forces f r

z (t) of the multibody model and f̄ r
z (t)) of the robot slightly differ. In z-

direction the robot point P dislocates, indicated by qr
z(t) > 0, if its displacement

zP(t) is positive.

4 Biomechanical Multibody Model

At present the described procedure is transferred to the HiL simulation of endopros-
theses by means of the setups in Figs. 2 and 3. The biomechanical simulation is
based on a SIMPACK multibody system model of the lower extremity. The scalable
model consists of five bodies linked by four joints (Fig. 7). In a first approach the
ankle joint, the patella-femoral joint and the tibio-femoral joint are simplified by
revolute joints. The soft tissue is represented by capsule, ligament and muscle struc-
tures mainly based on the data provided by [6]. The muscle forces are obtained by
means of inverse dynamics. The redundancy of the muscular actuation is resolved
by means of optimization approaches.

5 Conclusion

The functional principle of a HiL simulator for testing of joint endoprostheses is
demonstrated by means of a simplified model. The specific property of the HiL
concept are two types of control loops being applied in complementary spatial dir-
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Fig. 7 Musculoskeletal SIMPACK-
model of the right leg.

Femur

Pelvis

Patella

Tibia

Foot

ections of the joint. In the unconstrained directions of the joint the biomechanical
model calculates motions to be applied by the robot on the endoprosthesis, and
forces/torques are fed back. Vice versa in the constrained directions of the joint the
biomechanical model calculates reaction forces to be applied by the robot on the en-
doprosthesis, and displacements representing possible dislocations are fed back. The
relative comparison of different implants under physiological conditions represents
a fundamental leap beyond existing testing methods for joint endoprostheses.
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An Algorithm for Real-Time Forward
Kinematics of Cable-Driven Parallel Robots

Andreas Pott

Fraunhofer Institute for Manufacturing Engineering and Automation IPA,
Stuttgart, Germany; e-mail: andreas.pott@ipa.fraunhofer.de

Abstract. To operate and control a cable-driven parallel robot in practice one has to solve the
kinematic transformation in real-time. Therefore, an algorithm is needed which can find a solution
within a strictly bounded time period. Since no closed-form solution is known for parallel robots
of general geometry, a combination of interval techniques and an iterative solver is proposed and
implemented into the real-time control of a cable robot. Experimental results with the cable robot
IPAnema are presented.

Key words: Cable-driven parallel robot, forward kinematics, controller, real-time.

1 Introduction

In the last decade, a lot of research has been carried out to study both, theory (see
e.g. [1–3]) and implementation [4] of cable-driven parallel robots.

For a mobile platform with n degrees-of-freedom, in general, at least m = n + 1
cables are required to fully control the motion [5]. Therefore, many cable robots
are under-determined with respect to distribution of forces in the cables and over-
determined with respect to forward kinematics (Fig. 1a). As a consequence of the
latter, it is challenging to calculate the forward kinematics of the cable robot in real-
time. Thus, one has to estimate the pose of the mobile platform from given length of
the cables. In the literature, different approaches for that problem were suggested.
In general, the forward kinematics of parallel robots can have up to 40 solutions
and the algorithm by Husty [6] gives deep insight into the number of solutions and
their mathematical structure. Unfortunately it seems inadequate for real-time imple-
mentation. Additional cables in general do not necessarily reduces the number of
solutions and special geometries maintain this maximum solution set [7]. An incre-
mental forward kinematics to follow a trajectory was presented [8]. Merlet [9] used
interval analysis to calculate the forward kinematics of Stewart–Gough platforms
in a robust and guaranteed way. A more specialized method for cable robots with
linear drives and elastic deformation in the cables was recently presented [10]. A
closed-form kinematic code for the so-called 3-2-1 configuration is well suitable for
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Fig. 1 (a) CAD draft of the spatial cable-driven parallel robot IPAnema with eight cables and six
degrees-of-freedom. (b) Geometry and kinematics of a general cable robot.

real-time application [11, 12] but relies on a special non-generic geometry. Bruck-
mann [13] presented a method to cope with winches using pulley mechanisms to
guide the cables.

2 Forward Kinematics of Cable-Driven Parallel Robots

For better reference, the kinematic foundation of cable robots are briefly reviewed.
Figure 1b shows the kinematic structure of a spatial cable robot, where the vectors ai
denote the proximal anchor points on the robot base, the vectors bi are the relative
positions of the distal anchor points on the movable platform, and li denote the
vector of the cables. The length of the cables is abbreviated by li = ||li||2. Applying
a vector loop, the closure-constraint reads

ai − r−Rbi − li = 0 for i = 1, . . . ,m , (1)

where the vector r is the Cartesian position of the platform and the rotation matrix
R represents the orientation of the platform. We denote the full pose composed from
position and orientation of the mobile platform by y.

This paper presents an algorithm for forward kinematics to be used rather for
real-time control of a well designed robot than for analysis of possibly ill-conditions
or architecturally singular robots. The following assumptions were made taking into
account practical needs:

• The pose y of the mobile platform to be estimated belongs to the workspace (pos-
itive tension in the cables) and the control error measured by the length sensors
is moderate. If the cable lengths are too short it may cause either overloading
the motors or breaking the cables. If the cable lengths are too long, we loose
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the control on the platform. In both cases, the control system must perform an
emergency stop.

• The cables of the robot are elastic allowing for small changes in length around the
given length li. Nevertheless, the presented algorithm does not take into account
changes in the length due to the actual tension.

• The geometry of the mobile platform bi was chosen such that the rotation matrix
R = I3 is in the workspace or close to the workspace. This is a minor restriction
since cable robots allow only for relatively small orientation workspace.

• The cable robot has more cables m than degrees-of-freedom n, i.e. it is kinemat-
ically over-constrained.

• The size of the mobile platform is small compared to the machine frame, i.e.
||bi −b j||2 � ||ai −a j||2 for i, j = 1, . . . ,m i �= j.

The algorithm should satisfy the following requirements:

• Real-time capability: the computation time of the algorithm must be strictly
bounded and in the range of milliseconds on available real-time hardware.

• The geometry of the robot is generic i.e. no special constraints like linearity,
planarity, etc. are assumed for the mobile platform bi or the machine frame ai.
Nevertheless, it is assumed that the robot geometry was designed to avoid archi-
tectural singularities and the like.

• Errors have to be reported reliably e.g. if no solution was found because it does
not exist. Note that for the control system such conditions are exceptions requir-
ing an emergency stop of the robot.

From Eq. (1) we receive m nonlinear equations for forward kinematics

Ψi(l,r,R) = ||ai − r−Rbi||2 − l2
i = 0 for i = 1, . . . ,m (2)

that form an over-constrained system. Here, we consider the cables to be linear
springs. In general we cannot expect to solve the above equations exactly, but we
can minimize the error which can be interpreted as minimizing the potential energy
in pre-tensed cables which yields the function for forward kinematics

φ(l) = min
r,R

m

∑
i

Ψi(l,r,R), (3)

where the given vector l = [l1, . . . , lm]T is the vector containing the cable lengths.
Then the function φ(l) yields the values r∗,R∗ that minimize the right hand side of
Eq. (3).

3 Real-Time Algorithm

In the literature, iterative schemes [8, 13] as well as interval methods [9, 10] were
proposed for forward kinematics where the former methods may suffer from not
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converging, while the latter does not fulfill real-time constraints. In this contribution,
it is proposed to combine both approaches in a two-step process. Firstly, an initial
solution for the pose of the platform y0 is estimated together with guaranteed bounds
through an interval analysis inspired technique. Secondly, a Levenberg–Marquardt
algorithm is used to iterate the platform pose from this initial estimate through a
least square approach of the over-constrained nonlinear equations.

In the first step of the proposed algorithm an estimate of the pose y0 is determ-
ined. To estimate the initial position of the platform an interval analysis inspired
approach is adopted. Although inspired by interval analysis, the implementation
performs the computation with standard arithmetics since interval libraries are not
available on all real-time systems. The basic idea is to strictly bound the position of
the TCP. This can be done by axis-aligned bounding boxes that are placed around
the winches. For cable-driven parallel robots the anchor points ai are distributed
around the workspace. Therefore, the region of intersection of these boxes is relat-
ively small and can be used as an initial estimate for the position.

The vector loop Eq. (1) can be rewritten to

ai − r = li + Rbi (4)

and applying the triangle inequality removed the rotation matrix R to receive

||ai − r||2 ≤ li + ||bi||2. (5)

Thus, the TCP lies inside a sphere with radius li + ||bi||2 around anchor point ai.
Using an interval estimation for this sphere by enclosing the sphere with a box, one
receives the bounds

rlow
i = ai − (li + ||bi||2)[1,1,1]T

rhigh
i

= ai +(li + ||bi||2)[1,1,1]T

}

. (6)

Then we can calculate the intersection of all m bounding boxes from

rlow = max
i

rlow
i and rhigh = min

i
rhigh

i . (7)

The center r0 = 1
2(rlow + rhigh) of this bounding box is used as initial estimate.

If rlow > rhigh then no solutions exist. Note that the equations above are trivial to
implement on a computer.

In Fig. 2 a simplified example of a planar cable robot with three winches is illus-
trated. The dashed circles are centered around the anchor points ai and have a radius
of li + ||bi||2. The rectangles represent the interval estimate of these circles. The
light gray rectangle is the intersection of the boxes and is guaranteed to contain the
TCP. The dark gray region can be computed from the intersection of circles which
typically gives a better estimate, but is also more complex to determine. For example
using interval consistency methods one can shrink the box to contain only the dark
gray region [14]. However, here we simply use the center of the light gray box
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Fig. 2 Bounding of solution with axis aligned boxes.

to start the iteration with the Levenberg–Marquardt method. Note that this bound-
ing technique exploits the over-constrained equations since more equations impose
more restrictions on the box and thus produce more accurate estimates.

To determine the pose y of the cable robot, a Levenberg–Marquardt method is
applied [15]. Given a function φ : IRn → IRm with m ≥ n, the Levenberg–Marquardt
algorithm can be used for obtaining the argument y that minimizes ||φ(y)||2. This
is done by an iterative procedure yi+1 = yi + h where a step h of the Levenberg–
Marquardt algorithm is determined by solving the linear system

[
J(yi)J

T(yi)+ µI
]

h = JT(yi)φ (y), (8)

where µ is the damping parameter and J(yi) is the Jacobian of φ (yi). The procedure
is terminated if the improvement from the current step is small ||hi||2 < ε2(||y||2 +
ε2) or if ||J(yi)φ (yi)||2 < ε1.

The computational effort for the bounding procedure is constant and negligibly
small. The effort for each iteration step is constant and a maximum number of it-
erative steps can be defined. Thus, the algorithm can be integrated into a real-time
environment, given that a reasonable small number of steps is needed. In Section 4
the convergency of the algorithms is investigated.

Remark: The efficiency of this estimation procedure can be improved by per-
forming a rigid body transformation to the platform anchor points bi. Firstly, the
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Fig. 3 Cable-driven parallel robot IPAnema in seven-cable setup.

TCP should be translated to the geometric center of platform bc = 1
m ∑m

i bi. Then
the platform anchor points are transformed by b′

i = bi −bc. Secondly, a rotation Rc

is applied to the anchor points b′′
i = Rcb′

i such that the orientation R = I3 is in-
side the workspace. Clearly, the determined pose has to be transformed back to the
original coordinate system by rotating with RT

C and translating along bc.

4 Implementation and Experimental Results

The cable-driven parallel robot IPAnema (Fig. 3) is currently under investigation at
the laboratories of Fraunhofer IPA. This robot provides a six degrees-of-freedom
end-effector with seven or eight cables and focuses on industrial applications in the
field of material handling as well as fast pick-and-place applications. The winches
are equipped with multi-turn absolute encoders allowing to obtain the absolute cable
length at any time with a resolution of 50 µm. The control system is based on the
PC-based real-time extension RTX and an adopted NC-controller by ISG (Stuttgart,
Germany). The robot can be programmed by G-Code (DIN 66025) similar to ma-
chine tools. On the industrial PC the interpolation cycle time of the trajectory gen-
erator is 2 ms. The kinematic code for inverse and forward kinematics described in
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Table 1 IPAnema’s geometrical parameters: platform vectors b and base vectors a.

cable i platform vector bi base vector ai

1 [−1.8,1.5,2.0]T [−0.1,0.1,0.0]T

2 [1.8,1.5,2.0]T [0.1,0.1,0.0]T

3 [1.8,−1.5,2.0]T [0.1,−0.1,0.0]T

4 [−1.8,−1.5,2.0]T [−0.1,−0.1,0.0]T

5 [−2.0,1.3,0.0]T [−0.1,0.1,0.2]T

6 [2.0,1.3,0.0]T [0.1,0.1,0.2]T

7 [2.0,−1.3,0.0]T [0.1,−0.1,0.2]T

8 [−2.0,−1.3,0.0]T [−0.1,−0.1,0.2]T
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Fig. 4 Histogram of number of iterations for forward kinematics with Levenberg–Marquardt al-
gorithm for noise 0.1 mm, 0.5 mm, 1 mm on the cable length.

Section 2 is implemented into that control system in C language, where the imple-
mentation of the Levenberg–Marquardt algorithm is based on [16].

The computation time was determined both on a standard PC (Intel Core 2 Duo,
2.26 GHz) and on the PC-based real-time controller system (Intel Core 2 Duo,
2.4 GHz). For testing the geometry of the IPAnema system was used (Table 1).
Totally 5000 randomly chosen poses yi within the workspace of the robot were
tested and different magnitudes of noise were added to the cable length simulating
measurement and control errors. The thresholds for termination of the Levenberg–
Marquardt algorithm were chosen to be ε1,ε2 = 10−17. The maximum number of
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Fig. 5 Histogram of position error for forward kinematics with Levenberg–Marquardt algorithm
for noise 0.1 mm, 0.5 mm, 1 mm on the cable length.

iterations was set to 100 which was never reached in practice. On the desktop PC
the average computation time per evaluation was determined to be 97 µs. Since the
used Windows operating system lacks a high-precision timer with reliable resol-
utions less than one milliseconds, the worst case computation time could not be
determined. However, the measured average time and the distribution of needed it-
erations (Fig. 4) were encouraging. The number of iterations was between 7 and 20
for all poses tested where a typical number of ten iterations is needed. The determ-
ined error between the nominal pose yi and the determined pose were correlated to
the noise in the cable length (Fig. 5). One can see that the average error of the poses
is almost equal to the errors in cable length.

On the real-time controller system it is not possible to measure the exact time
which was consumed for the kinematic transformation but one can only measure
the overall time consumed by the transformation and all other controller codes for
each cycle. During some hours of operations no violations of the cycle-time were
reported by the real-time system and the computation time for the whole NC-kernel
including the kinematic transformation while moving along smooth trajectories was
always less than 1 ms.
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5 Conclusions

In this paper an algorithm for real-time forward kinematics of cable-driven parallel
robots is presented. The algorithm was designed for usage in a NC-based robot con-
troller. To solve the over-constrained forward kinematics an optimization approach
was proposed. In a first step, the solution is bounded using simple interval consider-
ations, which work well with the typical structure of over-constrained cable robots.
In the second step, a Levenberg–Marquardt algorithm was used to iterate the sought
pose of the cable robot. Experimental evaluation demonstrate a robust behaviour un-
der moderate noise. The successful implementation and operation in the real-time
controller system proves the applicability. Ongoing work address the extension of
the kinematic equations for forward kinematics to consider pulley mechanisms.
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Abstract. An approach for the synthesis of overconstrained single-loop mechanisms with helical
joints using screw theory is presented. By expressing higher-order derivatives of the screw axes
with respect to the joint coordinates a local approximation of the closure conditions is obtained. The
approximation is used to define conditions for the finite mobility of overconstrained mechanisms.

Key words: Overconstrained mechanism, screw system, mechanism synthesis, loop closure.

1 Introduction

In general the degree of freedom (DOF) of closed single-loop mechanisms can be
determined by means of the Grübler–Kutzbach Criterion (GKC). In the GKC the
number of links as well as the degree of freedom of the joints are used. Curiously
several single-loop mechanisms are known which have the mobility fM = 1 al-
though their DOF is fGKC < 1 because of their special geometry [1, 2]. These
mechanisms are called overconstrained and are often investigated especially with
respect to kinematical analysis [3–5].

In recent years general analysis methods based on group theory have been ap-
plied [6] but in the field of synthesis special methods are often used [7,8]. Until now
there exists no uniform approach to synthesise spatial overconstrained single-loop
mechanisms because of their complexity. In the present paper a numerical synthesis
method for overconstrained single-loop mechanisms with helical joints is presented.
The well-known principle of transference is used to transfer relations from spherical
geometry to spatial line geometry.

Sections 2 and 3 contain fundamentals of screw theory for the analysis of open
kinematical chains as well as closed single-loop mechanisms with helical joints. A
new synthesis method for overconstrained single-loop mechanisms is described in
Section 4. Finally the numerical synthesis algorithm is presented.
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Fig. 1 Open kinematical chain with helical joints.

2 Open Kinematical Chains with Helical Joints

An open kinematic chain with bodies 1 to n connected by helical joints according
to Fig. 1 is considered.

2.1 Screw System of the Helical Joints

The actual position of the screw axes of the helical joints is described by unit screws
here written in the form

âi ≡
[

ai

aεi

]

=
[

ai

r i × ai + hiai

]

, i = 1, . . . , n, (1)

with the unit vectors ai of the screw axes, the moments r i × ai of the vectors ai

with respect to a common reference point, here point On on body n, and the pitches
hi of the helical joints. In dual-number notation the vectors ai and aεi are the real
and the dual parts of a dual vector âi = ai + εaεi, ε2 = 0.

For given angular velocities q̇i = dqi

dt
of the helical joints the velocity of the

coordinate system Kn on body n, consisting of the angular velocity ωn of Kn and
the velocity vn of the origin On with respect to the fixed system, is given by

[

ωn

vn

]

=
n

∑

i=1

[

ai

aεi

]

q̇i or ω̂n =
n

∑

i=1

âi q̇i . (2)

The screws âi , i = 1, . . . , n, span a p-system of screws (twists) where p is the rank
of the (6, n) Jacobian matrix J = [

â1 . . . ân

]

, thus p = rank (J ) ≤ n. There exist
6 − p linearly independent wrenches
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k̂j =
[

f j

τ j

]

, j = 1, . . . , 6 − p, (3)

comprising force vectors f j with action lines passing through point On and torques

τ j with respect to On. If applied to body n the wrenches k̂j do not perform work

along the twists âi , thus aT
i τ j + aT

εi f j = 0 or in matrix notation

0 = â
T
i � k̂j , i = 1, . . . , n; j = 1, . . . , 6 − p; with � ≡

[

0 I

I 0

]

. (4)

Here � is a permutation matrix. The (6−p)-system of screws k̂j , j = 1, . . . , 6−p,
is called reciprocal to the p-system of screws âi , i = 1, . . . , n.

2.2 Differential Displacement of the Screw Axes

In the actual position of the kinematic chain of Fig. 1 relative differential rotations
of the helical joints expressed by the joint angles dqi, i = 1, . . . , n, are applied.
The resulting differential displacement of the joint axis dâk then depends on the
rotations dqi, i = 1, . . . , k − 1, of the joints between the base 0 and the joint axis
âk . Transferring the differential rotations of a vector to line geometry by means of
the principle of transference dâk can be expressed by means of a sum of the dual
vector products [9] according to

dâk =
k−1
∑

i=1

âi × âk dqi. (5)

With the matrix notation of Eq. (1) this expression can be written as

dâk =
k−1∑

i=1

˜̂ai âk dqi with ˜̂a ≡
[

ã 0
ãε ã

]

, (6)

where the tilde operator ˜ transforms a vector a to the skew-symmetric tensor ã,
thus ãb = a × b.

3 Single Loop Spatial Mechanisms with Helical Joints

Connecting body n of the open kinematic chain of Fig. 1 with the base body 0 leads
to a closed loop mechanism with n helical joints (nH mechanism).
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3.1 Closure Condition at the Velocity Level

From Eq. (2) the loop closure conditions for the joint velocities q̇i in the actual
position are given by

0 =
n∑

i=1

âi q̇i . (7)

In the following overconstrained mechanisms with n ≤ 6 and one degree of free-
dom are considered. Without loss of generality the helical joint axes â1 and ân are
assumed to be fixed and the joint angle qn is defined as the independent coordinate.

The closure condition (7) can be written as

ân(qn) = [

â1 . . . ân−1

]

⎡

⎢
⎣

λ1
...

λn−1

⎤

⎥
⎦ ≡ A(qn) λ(qn) with λi = − q̇i

q̇n

. (8)

From Eq. (8) a necessary condition results for the global mobility of a nH mechan-
ism (n ≤ 6) in the actual position qn = qn0: The screw axes âi , i = 1, . . . , n, must
be linearly dependent.

3.2 Differential Displacement of the Screw Axes

To define conditions for finite mobility a Taylor series expansion of the screw axes âi

with respect to the independent coordinate qn will be needed in Section 4. With the
differential displacements of the screw axes âi given by

dâ1 = 0,

dâ2 = ˜̂a1 â2 dq1,
...

dân−1 = ˜̂a1 ân−1 dq1 + ˜̂a2 ân−1 dq2 + · · · + ˜̂an−2 ân−1 dqn−2,

dân = 0

(9)

the derivatives â
′
i = dâi

dqn
are expressed with λi = − dqi

dqn
by

â
′
1 = 0,

â
′
2 = −˜̂a1 â2 λ1,

...

â
′
n−1 = −˜̂a1 ân−1 λ1 − ˜̂a2 ân−1 λ2 − · · · − ˜̂an−2 ân−1 λn−2,

â
′
n = 0.

(10)
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Thus the derivative of the matrix A from Eq. (8) with respect to qn is given by
A′ (qn,λ (qn)) = [ â′

1 . . . â
′
n−1 ]. The second-order derivative of A is obtained by

means of the chain rule,

A′′ (qn,λ (qn)) = ∂A′

∂qn
+

n−1
∑

i=1

∂A′

∂λi
λ′

i .

4 Synthesis of Overconstrained Spatial Mechanisms

In the following a numerical algorithm for synthesising overconstrained single-loop
mechanisms with n ≤ 6 helical joints is described for the example of mechanisms
with n = 6 helical joints.

The independent joint variable is q6, and the actual position is q60. The axes â1
and â6 are assumed to be fixed. With n = 6 the loop closure condition (8) in the
actual position reads â6 = A(q60)λ(q60). For the mobility of the mechanism it is
necessary, that the joint axes in the actual position form a 5-system of twists, thus
rank([A(q60) â6 ]) = 5. According to Eq. (4) there exists a reciprocal 1-system of

wrenches k̂(q60) for which the reciprocity condition

[

A (q60) â6

]T
� k̂ (q60) = 0 (11)

holds. In the considered case of a 6H mechanism the six twist axes belong to a linear
line complex with the main axis k̂. For the global mobility it is sufficient that the
global dimension of the configuration space is greater than zero [10]. Equivalently
this means that every possible configuration in the neighbourhood of q60 has infin-
itesimal mobility. Thus the closure condition (8) must be valid for any q6 near q60

â6 = A(q6) λ(q6). (12)

To prove this theorem Eq. (12) is locally approximated. The Taylor series expansion
of the joint axes (twists) â1, . . . , â5 in matrix A for the variable q6 = q60 + δq6
around the actual position q60 is given by

A(q6) = A0 + A′
0

1! δq6 + A′′
0

2! δq2
6 + A′′′

0

3! δq3
6 + · · · (13)

and for the ratios of the angular velocities

λ(q6) = λ0 + λ′
0

1! δq6 + λ′′
0

2! δq2
6 + λ′′′

0

3! δq3
6 + · · · , (14)

where all values at the actual position q60 are expressed according to A|q60 = A0.
Inserting Eqs. (13) and (14) into the closure condition (12) yields
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â6 =
(

A0 + A′
0

1! δq6 + A′′
0

2! δq2
6 + · · ·

) (

λ0 + λ′
0

1! δq6 + λ′′
0

2! δq2
6 + · · ·

)

. (15)

Carrying out the multiplications in Eq. (15) leads to a polynomial in δq6. As Eq. (15)
must hold for arbitrary values of δq6 the comparison of coefficients of the powers
of δq6 yields independent conditions. The first conditions are

coeff. of δq0
6 : â6 = A0 λ0 (16)

coeff. of δq1
6 : 0 = A′

0 λ0 + A0 λ′
0, (17)

coeff. of δq2
6 : 0 = 1

2

(

A′′
0 λ0 + 2A′

0 λ′
0 + A0 λ′′

0

)

. (18)

...

These equations are the higher-order closure conditions at the actual position q60.
Since the derivatives of the screw axes in A0 can be expressed algebraically accord-
ing to Eq. (10) the derivatives of λ with respect to q6 at q60 can be determined. For
example the first-order derivative of λ at q60 is obtained from the overdetermined
inhomogeneous system of linear equations (17) in λ′

0. If this system is solvable the
solution can be written as

λ′
0 = −A+

0 A′
0 λ0. (19)

If Eq. (17) is not solvable the Moore–Penrose-pseudoinverseA+
0 minimizes the least

squares of the residuals of the system of equations.
Additionally the reciprocity condition (11) must hold for the Taylor series expan-

sion of the closure condition (15)

0 = λT
0 A′T

0 � k̂0 δq6 + 1

2

(

λT
0A′′T

0 + 2λ0
′TA′T

0

)

� k̂0 δq2
6 + · · · . (20)

The individually vanishing coefficients of the polynomial in δq6 are the following
implicit scalar equations,

0 = λT
0 A′T

0 � k̂0,

0 = (

2λ′T
0 A′T

0 + λT
0 A′′T

0

)

� k̂0,
... .

(21)

With the derivatives of λ at q60 from the higher order closure conditions (17), (18),
etc., the conditions (21) can be converted into

0 = λT
0A′T

0 � k̂0 ≡ g1

(

k̂0,λ0,A
′
0

)

0 = λT
0

(

−2A′T
0 A+T

0 A′T
0 + A′′T

0

)

� k̂0 ≡ g2

(

k̂0,A
+
0 ,λ0,A

′
0,λ

′
0,A

′′
0

)

...

0 = . . . ≡ gm

(

k̂0,A
+
0 , . . . ,λ

(m−1)
0 ,A

(m)
0

)

,

(22)

544



Numerical Synthesis of Overconstrained Mechanisms

with the order m of the Taylor series expansion which corresponds to the κ = (m +
1)th order closure condition of the mechanism. These are m implicit conditions for
the determination of the six screw axes âi0, i = 1, . . . , 6.

It can be shown that the same results are obtained from the approximations of the
reciprocity condition (4) around the actual position q60. In every way it is necessary
to fulfil the higher-order closure conditions.

But which order κ of fulfilled closure conditions is sufficient for the finite mo-
bility of the mechanism? For the local analysis of overconstrained mechanisms this
question has been answered [11]: Sufficient for the local analysis is a Taylor series
expansion of the closure conditions with a maximal order κmax = 4.

5 Numerical Synthesis Algorithm

The numerical search algorithm is described for the example of a 6H mechanism.
The five linear independent joint screws are each given by their six screw coordin-
ates âi0 = [aix0 aiy0 aiz0 aεix0 aεiy0 aεiz0 ]T, i = 1, . . . , 5. Without loss of gen-
erality the screw â10 coincides with the x-axis of the reference coordinate frame,
thus â10 = [ 1 0 0 h1 0 0 ]T. With five independent screw coordinates for each of
the screws â20, . . . , â50 there are altogether 21 unknowns. Additional unknowns are
the five ratios of the rotational velocities λ0. For these altogether 26 unknowns ran-
domized start values are generated. With the five screws â10, . . . , â50 and λ0 the
first-order loop closure conditions (12) yield a screw â60 = A0 λ0 . The next steps
are listed in the following scheme:

→ A0 = [

â10 â20 â30 â40 â50

]

initialization of A0

→ k̂0 = � null
(

AT
0

)

reciprocity condition

→ A+
0 = (

AT
0 A0

)−1
AT

0 pseudo inverse
→ A′

0 = [

â
′
10 â

′
20 â

′
30 â

′
40 â

′
50

]

differential screw displ.

⇒ g1

(

k̂0,λ0,A
′
0

)

1st implicit cond. residual

→ λ′
0 = −A+

0 A′
0 λ0

→ A′′
0 = ∂A′

0
∂q

+ ∑

i

∂A′
0

∂λi
λ′

i0

⇒ g2

(

k̂0,A
+
0 ,λ0,A

′
0,λ

′
0,A

′′
0

)

2nd implicit cond. residual

→ ...

→ λ
(m−1)
0 = . . .

→ A
(m)
0 = . . .

⇒ gm

(

k̂0,A
+
0 ,λ0,A

′
0, . . . ,λ

(m−1)
0 ,A

(m)
0

)

mth implicit cond. residual

The aim of the algorithm is to find numerical values for â10 to â50 and λ0 in such a
way that the residuals g1, . . . , gm are zero. This is achieved by minimizing the norm
of the residuals, whereby for example the Levenberg–Marquardt method is applied.
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6 Results and Outlook

The described algorithm converges in over 80% of the randomized start values. With
the algorithm any numerical configurations are found which represent movable nH
mechanisms. As a next step the geometrical properties has to be derived from the
numerical results for instance by using sensitivity analysis.

In the special case of revolute joints the empirical results have shown that the
closure conditions up to the 2nd order (in sum three equations) are sufficient to
find mobile 4R configurations. The closure conditions up to the 4th order (in sum
six equations) are sufficient to find mobile 5R configurations. With the described
algorithm the well known Bennett 4R and Goldberg 5R mechanisms have been
already found.
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Schütz, D., 3, 225
Schmiedeler, J.P., 137
Shahbazi, Z., 203
Sharf, I., 63, 81
Shoham, M., 81
Siciliano, B., 157
Souffrant, R., 521
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