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Thermodynamics of the Earth and Planets

This textbook provides an intuitive yet mathematically rigorous introduction to ther-
modynamics and thermal physics focused on the rich variety of planetary processes. It
demonstrates how the workings of planetary bodies can be understood in depth by reducing
them to fundamental physics and chemistry.
The book is based on two courses that the author has taught for many years at the

University of Georgia. It offers a strong “first-principles” theoretical foundation in classical
thermodynamics, yet it also provides many examples of numerical calculations, including a
large number ofMaple procedures that the reader can use and modify, limited only by their
interests and imagination. The book assumes that the reader is proficient in calculus and
introductory college physics, chemistry and Earth science. All required material beyond
this is introduced in the book. The book also includes a large number of bibliographic
references and suggestions for further study. There are many “Worked Example” boxes
interspersed in the text, and end-of-chapter exercises, which in many cases expand upon
the topics covered in the worked examples. Worked solutions to the problems are provided
online. The book also includes Software Boxes, which show the reader how to implement
numerical solutions to many of the problems, usingMaple.
As well as being an ideal textbook on planetary thermodynamics for advanced students

in the Earth and planetary sciences, it also provides an innovative and quantitative comple-
ment to more traditional courses in geological thermodynamics, igneous and metamorphic
petrology, chemical oceanography, mineral deposits, planetary geology and planetary atmo-
spheres. In addition to its use as a textbook, it is also of great interest to researchers looking
for a “one-stop” source of concepts and techniques that they can apply to their research
problems.

• Ties together the physics and chemistry of planetary systems into a single textbook.
• Emphasizes first principles and foundations.
• Contains rigorous mathematical derivation of ALL results.
• Applications and examples are drawn frommanydifferent branches ofEarth and planetary
sciences.

• Contains many worked numerical examples and end-of-chapter problems.
• Includes many downloadable Maple routines, explained in Software Boxes.

alberto patiño douce is a Professor in the Department of Geology at the University
of Georgia, where he has been for over 20 years. He has very wide research interests,
which include the origin of Earth’s continents, the nature of the early terrestrial atmosphere,
the volatile contents of the Martian mantle and of meteorite parent bodies, the origin of
life, foundational issues in classical and non-equilibrium thermodynamics, applications of
statistical physics to human societies, and the reasonswhy human cultures repeatedly ignore
the finiteness of natural resources, overreach and self-destroy. His teaching in geology,
planetary sciences and thermodynamics at all levels is recognized as beingunusually intense,



quantitative, energetic, demanding and uncompromising, but despite this he is a frequent
recipient of his Department’s “Professor of the Year” award, chosen by student vote. His
former Ph.D. students are pursuing a wide range of careers in academia, at NASA, and
in national security. He is an Associate Editor for the journal Lithos and formerly for
Mineralogy & Petrology.
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Preface

My first words when meeting a new class at the beginning of every semester, whether an
introductory physical geology course or a graduate seminar, are always more or less the
same: “Geology does not exist !”. Some students start frantically going over their schedules,
wondering whether they are in the right room, but most of them just stare at me, wondering
whether I am a lunatic. While they do this I explain that what I meant was that the Earth
and other planets are complex systems in which every process can, and must, be dismantled
until we can understand it in terms of the simplest possible physics and chemistry. This
does little to put them at ease, but over the course of the first few weeks of class many of
them come to understand what I mean, and even to agree with it.
This bringsme to the several reasonswhy I decided towrite this book. First, although a few

good textbooks on thermodynamics applied to Earth systems are available, I find that none
of them goes into the fundamentals of thermodynamics with the depth that I am convinced
is necessary. Rather, they tend to discuss the foundational principles of thermodynamics on
a “need to know” basis. My approach is exactly the opposite: build a solid understanding
of the foundations of thermodynamics first, and explain everything else in terms of this
understanding. Second, many students in Earth and Planetary Sciences have a tendency
to think of our science as standing in splendid isolation of the fundamental sciences, and
of the laws of nature that they have painstakingly codified. Yet ultimately everything is
physics, and must be understood as such. Third, there is too much of a terrestrial emphasis
in all current books on thermodynamics for Earth and Planetary scientists. The diversity
of bodies and environments in the Solar System provides a wealth of opportunities to
demonstrate the unifying explanatory power of thermodynamics. To name just a few, why
not look at cryolavas in Triton and brines on the Martian surface as examples of eutectic
melting? At methane–ethane fractionation in Titan’s atmosphere and Fe–Ni fractionation
during crystallization of planetary cores as examples of binary T –X loops?At the conditions
in the Martian mantle to discuss equations of state for solids and the concept of thermal
pressure? Or at the evolution of atmospheric composition while making atmospheric mass
and gravitational acceleration, and therefore pressure, adjustable parameters? You will find
these and other unusual examples in this book. Finally, I think that in order to be complete
and useful, a textbook must not only cover the fundamental principles but also show the full
details of how those fundamental principles and mathematical relationships are converted
to numerical results. In this book I show the derivation of every single equation that is used
to obtain numerical estimates, and in those cases in which the equations cannot be solved
by hand I include open Maple procedures that you are free to use, modify and expand as
far as your interests and abilities will take you.
Throughout the book I try to emphasize the importance of physical intuition and math-

ematical rigor, and of striking a balance between the two. The book is organized in 14
chapters, some of them more orthodox than others. The table of contents is fairly self-
explanatory, but I wish to highlight some points. The First Law is introduced in Chapter 1,

ix



x Preface

but only after a lengthy discussion of conservation laws in general, and other associated con-
cepts.At the end of Chapter 1 there is a discussion of the nature of planetary materials that I
believe can be found nowhere else. The Second and Third Laws must wait until Chapter 4,
as Chapter 2 focuses on energy conservation, and the discussions of energy dissipation and
thermodynamic cycles in Chapter 3 lead more or less naturally to the need for the Second
Law. Thermodynamic potentials, including Gibbs free energy, are introduced in Chapter 4
in a mathematically formal way, i.e. I first demonstrate (rigorously) the properties of the
Legendre transform, and only then apply it to derive the various thermodynamic potentials.
There is no other way that makes sense. Chapter 2 is a thorough quantitative presentation
of all sources of planetary internal energy. I know of no comparable treatment anywhere
else. Chapter 3 covers heat diffusion and advection in planetary bodies; it is not intended to
substitute the various excellent textbooks that are available on this topic (cited in Chapter 3),
but rather as a complement that may add some new twists to this fundamental field. The
way I define activity in Chapter 5 is unusual, and owes not a small amount to Guggenheim’s
unique insight, but it is in my view the most mathematically appealing way of doing it (you
may feel Guggenheim’s presence in this statement too). Discussion of non-ideal activity is
focused chiefly on the concept itself, and on the computational difficulties associated with
its mathematical representation. There is simply no space to delve in detail into the huge
fields of solution theory in crystals (Chapter 5), fluids (Chapter 9), melts (Chapter 10) and
electrolyte solutions (Chapter 11), but I hope that I provide enough background for students
to be able to jump directly into the relevant research literature. The equations needed to cal-
culate phase boundaries are developed in full and implemented in a series of progressively
more completeMaple procedures (Chapters 1, 5, 6, 7, 8 and 9). Feel free to use “black box
software” if you wish, but first make sure that you understand where those results come
from. I have tried to emphasize the concept of universality of critical behavior by highlight-
ing the similarities among critical mixing phenomena (Chapter 7), lambda phase transitions
(Chapter 7) and the critical point of fluids (Chapter 9), without using theword “universality”
nor introducing the concept of critical exponents. The interested students should be able to
pick it up from here. I emphasize the use of non-dimensional variables as much as possi-
ble, including in unusual contexts such as discussion of critical mixing and solvi (Chapter
7), high pressure and temperature behavior of solids (Chapter 8), critical phenomena in
fluids (Chapter 9), concentration of non-equilibrium atmospheric species (Chapter 12) and
energy dissipation by planetary differentiation (Chapter 2). I have done my best to lay out
in simple yet rigorous mathematical terms the sometimes confusing topics of equations of
state for solids and thermal pressure (Chapter 8); again, I know of no comparable treatment
elsewhere. There is a full discussion of the calculation of species distribution in fluids, both
by chemical equilibrium and by Gibbs free energy minimization, including the derivation
of all necessary equations and the accompanying implementation in Maple (Chapter 9) –
I hope that this will demystify what is no more than relatively simple algebra. Chapter 10
is a somewhat unusual take on igneous petrology. My debt to the work of M. Hirschmann,
P. Asimow and E. Stolper should be evident here, but I hope to have added some new
insights especially with regards to volatile-fluxed melting. I present “toy models” of ozone
depletion (Chapter 12) and greenhouse warming (Chapter 13) as applications of chemical
kinetics and radiative heat transfer, respectively. Chapter 12 also contains an introduction
to non-equilibrium thermodynamics, that I hope to be able to expand upon in the not too
distant future. Finally, there is a simplistic but, I believe, fundamental discussion of the
origin of life in Chapter 14.



xi Preface

All chapters containWorked Examples. These are also a fundamental part of the text. Do
not skip them, or youwill miss explanations and discussions that are not repeated elsewhere.
There are also Boxes that contain accessory material that may be skipped without loss of
continuity, but to which you should return at some point to clarify the contents of the main
text. Finally, there are Software Boxes that contain generally succinct documentation for the
Maple procedures that can be downloaded from the book’s website. I plan on updating and
adding to these procedures periodically, and any additional documentation or (inevitable)
corrections will also be posted on the website. Please feel free to contact me with suggested
changes or additions to the Maple library. If you use any of these procedures in published
work please cite this book as reference. All figures in this book are my original artwork,
and were designed to match specifically the associated content in the text – in fact, in not
a few occasions the text was written around the figure. I think that this makes the content
much more understandable.
Mike Roden read some of the text and made perceptive comments that I did my best

to incorporate. Matt Lloyd at Cambridge was instrumental in getting this project started.
I wish to express my gratitude to him and all his staff for their support, encouragement,
patience and understanding in the face of missed deadlines. In particular, I wish to thank
Assistant Editor Laura Clark, Production Editor, Emma Walker and Copy-editor Beverley
Lawrence.MywifeMarta has beenmore patient throughout this project than I have any right
to expect, and our son Javier has contributed to it more than he knows – all my love to both
of you! Writing this book took about three years and would have been impossible without
the company and encouragement offered by our cats, Kali and Watson (to the memory of
both of whom I dedicate this book), Ajax, Marx and Engels, and Leonidas and Dottie.





1
Energy in planetary processes and the

First Law of Thermodynamics

This book is about the physical chemistry of planetary processes. Although in detail each
planetary body in the Solar System looks very different, all of the planets and moons have
reached their current states as a result of the same fundamental laws of nature, which
are codified into the sciences that we know as physics and chemistry. A real understand-
ing of the nature and evolution of the bodies that make up the Solar System requires
that we immerse ourselves in physics and chemistry, and that we come to think of plane-
tary processes as specific applications of these sciences. These applications can be more
complex, in the sense of the number of variables involved, than those that physicists and
chemists deal with when working under controlled laboratory conditions. Perhaps for this
reason students of geological and planetary sciences tend to view these sciences as sepa-
rate or “stand alone”. This is not so, however. Using an analogy that most of us are likely
to be familiar with (and that, admittedly, may be a bit stretched), the sciences that we
know as geology and planetary science (and their “sub-fields” such as petrology, miner-
alogy, or oceanography, to name just a few) are the “user interface”, the set of graphics
and icons and mnemonics that we see on our computer screens. This user interface is
supported and made possible by a rich and complex operating system (e.g. Linux, Win-
dows, Mac, according to our tastes). The “operating system” of geology and planetary
sciences consists of physics and chemistry. By immersing ourselves in the “operating sys-
tem” we will be able to see connections among planetary processes that we might not
have suspected, and we will be able to better understand what makes each planetary body
unique.
We have talked about planetary processes – but exactly what is a planetary process? Sim-

ply stated, anything in a planet, physical or chemical, that changes with time (“geological”,
and also “biological”, are specific instances of “physical or chemical”). Planetary pro-
cesses must be driven by some source of energy, otherwise they would stop and cease
to be processes. We can furthermore make the general statement that, the higher the
rate of energy supply, the more active a planetary process, and the system in which
it occurs, are. Our first task, then, is to formalize our understanding of energy and to
lay out the mathematical framework that makes it possible to track energy conversion
processes.
In this chapter we will examine the ways in which energy is manifested in planetary

processes. Along the way, we shall introduce a number of fundamental physical concepts
and tools that must become part of our physical intuition and operating practice as we
attack problems in planetary sciences. The chapter culminates with a formal development
of the First Law of Thermodynamics and a discussion of some of the relationships between
macroscopic phenomena and their microscopic underpinnings.

1



2 Energy in planetary processes

1.1 Some necessary definitions

It is customary to start books on thermodynamics by devoting several sections to defining
much of the terminology that will be used throughout the work. It is my experience that if
one defines all terms at the beginning but some of those terms are not used until much later,
the meaning of many of these “deferred” terms does not become clear until they are applied
in a specific example. Some backtracking necessarily ensues, with some loss of efficiency
(energy dissipation, if we were defining that term here!) and, worse, with a tendency to
forget the rigorous meaning of the terms. I have thus chosen to define terms as their need is
first encountered, so that definitions will always be given in specific contexts that will make
their meaning clear and easy to assimilate. There is, however, a minimum set of definitions
that we must consider at this point.
Thermodynamics is the subset of physics that studies energy transformation processes,

and in particular processes in which thermal energy is involved. As we shall see, some of
the manifestations of thermal energy may not entail changes in temperature or exchanges
of heat, so the meaning of thermodynamics is more subtle than what this definition may
suggest.

In order to make problems mathematically tractable, it is customary when studying ther-
modynamics to subdivide the universe into systems. We will then call that part of the
universe that we are studying the system, and the surrounding parts of the universe with
which our system may be able to interact becomes the environment. We are usually free
to define our system in any way we please, so that we can tailor it to the problem that we
are trying to understand. For example, our system may be a mineral assemblage within a
thin section, a parcel of volcanic gas expanding during an eruption, a magma chamber, a
planetary atmosphere or a planetary core. Systems may be open or closed, depending on
whether or not matter can move across their boundaries. Of course, most systems in nature
are open to some extent. The basic thermodynamic relationships, however, are most easily
introduced and developed for closed systems. Throughout this book, unless we explicitly
state that we are considering an open system, it must be understood that we are dealing
with closed systems. The terms “open” and “closed” refer only to mass transfer and not
to energy transfer. Energy transfer can take place across the boundaries of both closed and
open systems.
Classical thermodynamics concerns itself with systems that are at equilibrium.Arigorous

definition of thermodynamic equilibrium is necessary, but cannot be implemented until
we have developed much of the mathematical formalism of thermodynamics. For now,
we will state that, in order for a closed system in which gravity can be ignored to be at
equilibrium, its temperature and pressure must be uniform and if, in addition, there is no
energy transfer across its boundaries, then the amounts and compositions of physically
distinguishable subsets of the system (that we will call phases) must not change with
time. The effect of gravity cannot be ignored over planetary length-scales, however, and is
discussed in Chapters 2, 3 and 13. This definition is not complete but it is consistent with
the formal definition of chemical equilibrium and will allow us to “feel our way” around
thermodynamics until we can construct that formal definition (in Chapter 4). An example
may clarify our intuitive definition. Suppose that our system consists of a certain amount
of liquid water and a certain amount of ice, each of which is a different phase, held in a
container that is a perfect thermal insulator. This is an example of a heterogeneous system,
because it has more than one distinguishable part or phase. If the pressure and temperature
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everywhere in the system are 1 bar and 0 ◦C, then the system is at equilibrium because
the relative amounts of ice and water will not change with time. If the temperature and
the pressure are any other combination of values, then the system is not at equilibrium,
because as time goes by the amount of one of the phases will increase at the expense of the
other. If the temperatures of the phases are different (e.g. we open the container and dump
ice at −20 ◦C into water at 20 ◦C, then close the container), then the system is also not at
equilibrium because one of the phases will grow at the expense of the other. Let us assume
that the relative amounts of ice and water are such that all of the water in the container
freezes. We now have a homogeneous system, i.e., one that consists of a single phase. This
system will be at equilibrium only once its temperature is uniform and heat flow within the
system ceases. In general, a homogeneous system is at equilibrium if there are no gradients
in temperature, pressure nor composition (Chapters 4 and 12), although in the presence of an
external field, such as a gravitational field, this requirement must be relaxed (Chapter 13).
We will often make reference to the state of a system. The implication when we do

so, unless we say otherwise, is that we refer to the state of a system at equilibrium. The
state of a system at equilibrium can be fully characterized by the values of a small number
of variables, of which pressure and temperature are the most familiar ones. If we have a
homogeneous system, for example a given amount of liquid water, then the state of the
system is fully characterized once we specify its pressure, P, and temperature, T. For every
combination of pressure and temperature liquid water has a single and well defined set
of values for its physical properties, such as density, ρ (or its inverse, molar volume, V ),
refractive index or dielectric constant. What this says is that we only need to specify P and
T to specify the state of the system. In principle, we can specify the state of the system
equally well by choosing another pair of variables, such as molar volume and refractive
index. Thermodynamics allows us to do this (the reasons will become clear in Chapter 6),
even if it may not be the most sensible choice. For more complex systems we may need
additional variables, but whether this is the case, and how many more variables we need,
is not intuitively obvious (again, we will develop this formally in Chapter 6). For now, we
note that if we go back to the system consisting of ice and water in an insulated container,
we need just two variables (P and T ) to specify the state of that system. The proportion
of the two phases does not affect the thermodynamic state of the system as long as it is at
equilibrium, even though it may be important in other contexts.
One final subject that must be covered in this introductory section is that of the thermo-

dynamic temperature scale. Temperature is a fundamental physical quantity, in the sense
that it is irreducible to a combination of simpler quantities. Other fundamental quantities
are length, mass, time, and electric charge. The units in which these quantities are measured
are defined in terms of conventional values such as the meter, kilogram and second. The
absolute nature of these units is immediately evident because it is easy to grasp, at least in
principle, what we mean by zero length, zero mass or zero time, and because it is also self
evident that these three fundamental dimensions cannot take negative values. Temperature
is different, because the temperature scales that are used in everyday life, and in many
engineering applications, are based on arbitrary references which do not establish absolute
values and, in particular, give no special meaning to the value of zero. In the Celsius or
centigrade scale, zero is the temperature at which ice and water are at equilibrium at 1
bar pressure, and in this scale negative temperatures are obviously possible. An absolute
temperature scale exists but is not easy to define until we have studied thermodynamics
in some depth. We shall not worry here about how absolute thermodynamic temperatures
are defined, but good discussions can be found, for example, in the classic textbooks by
Lewis and Randall (1961), Glasstone (1946) and Guggenheim (1967). What we will do is
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emphasize that all thermodynamic calculations must be carried out in this absolute temper-
ature scale, in which temperatures are measured in kelvins (symbolized K). Conversion is
accomplished by adding 273.15 to the temperature in ◦C in order to obtain the temperature
in K (note no “◦” in K!).

1.2 Conservation of energy and different manifestations of energy

Conservation of energy (or, more accurately, mass-energy) is an example of a law of nature.
By a “law of nature” we mean a statement that summarizes a large number of empirical
observations (large enough thatwe are confident thatwewill not come across a contradictory
observation) and that cannot be derived from simpler concepts, principles or laws. It is just a
statement of a specific way in which our universe works. Whether or not it may be possible
to understand why our universe works as it does is the subject of considerable argument
among physicist working at the frontiers of knowledge, but it is a topic that is beyond the
scope of this book. One possible statement of the law of conservation of energy is that any
change in the total energy content of a system must equal the amount of energy received
by the system minus the amount of energy extracted from the system. In order to be useful,
however, a law of nature must be expressed as a mathematical statement. Why? Because
mathematics is the only unambiguous and universally intelligible language. The language of
mathematics has the additional advantages of being economical (i.e. concepts are expressed
with theminimumpossible number of symbols) and of being accompanied by awell-defined
set of operation and manipulation rules. The First Law of Thermodynamics, which we will
introduce in Section 1.10, is themathematical statement of the law of conservation of energy
and the starting point for our thermodynamic exploration of planetary processes.

Implicit in the law of conservation of energy is the concept that there are different kinds of
energy that are equivalent to each other. Equivalence, however, does not mean unrestricted
convertibility, leading to the concept that there are two fundamentally different manifes-
tations of energy. There are those kinds of energy that can be fully and freely converted
to other kinds. This category comprises all types of energy but one. Examples include:
mechanical energy (in its various manifestations), electric energy, electromagnetic energy,
and relativistic rest mass. Thermal energy is the one type of energy that belongs in a different
category because it cannot be freely nor fully converted to other types of energy although
unrestricted conversion of other types of energy to thermal energy is always possible. This
distinction between thermal and other types of energy is at the root of another law of nature,
called the Second Law of Thermodynamics. In Chapter 4 we will examine this law, which
is perhaps one of the most fundamental, and mysterious, laws of nature. In the meantime,
we need to formalize the definitions and mathematical formulations of the various types of
energy that are important in planetary processes.

1.3 Mechanical energy. An introduction to dissipative and
non-dissipative transformations

Although we all have an intuitive knowledge of what energy is, it is a concept that is
notoriously difficult to define. For example, in elementary classical physics we learn that
“energy is the capability to do work”. You will have to make up your own mind on whether
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or not this definition is useful (or, indeed, whether it is a definition at all!). The concept of
work, in contrast, has a unique and simple mathematical definition which, in differential
form, is:

dW = f̄ · dx̄, (1.1)

where W is work, f̄ is force and dx̄ is the distance over which the point of application
of the force moves. The use of lowercase bold symbols with an overstrike for f̄ and dx̄
means that these two quantities are vectors, and the dot between the two vectors represents a
mathematical operation called “inner product” or “dot product” (Box 1.1). The inner product
of two vectors yields a scalar quantity (W in this case), according to equation (1.1.1).

Box 1.1 Vectors, fields and the inner product

Physical magnitudes that have orientation, such as force and distance, are represented by geometric objects
that are loosely called vectors. There are, in fact, two distinct types of vectors. Distance is an example of
what is called a contravariant vector, and force is an example of a covariant vector. In modern mathematical
language, distance is a vector and force is a one-form. Although both are oriented geometrical objects, one
difference between the two is that one-forms are gradients of scalar fields, and vectors are not. A field is a
mathematical function that gives the value of a variable as a function of space and time. If the variable is
a scalar, such as temperature or density, the field is called a scalar field and the function returns a single
number at each point in space and time. Suppose now that we keep time fixed. We can then determine
the rate of change of the field intensity (e.g. temperature) relative to each of the three orthogonal spatial
directions (see also Box 1.3). The set of the three derivatives (∂T/∂x, ∂T/∂y, ∂T/∂z) is the gradient of the
temperature field. This geometrical object is a one-form. Just as a vector, it has orientation (which is the
direction of maximum rate of change) but it differs from a vector, among other things, in that its magnitude
is given not by a length but by the separation between contour lines. The more closely spaced the contour
lines are, the greater the magnitude of the one-form is. Force is the gradient of a potential energy field. In
particular, the gravitational force is the gradient of the gravitational potential energy field. The more steeply
gravitational potential energy varies, the stronger the gravitational force is. Excellent and comprehensive
introductions to these concepts are given in the first chapters of the massive text Gravitation by Misner,
Thorne and Wheeler (1973), and in Burke (1985). A classical and very accessible exposition (using the
terminology of contravariant and covariant vectors, rather than vectors and one-forms) is given by Kreyszig
(1991).

The magnitude of a vector or a one-form is a scalar that measures its “intensity” and is symbolized by |x|,
where x̄ is the vector or one-form. The magnitude of a vector corresponds to the intuitive concept of length,
but, as I mentioned above, the magnitude of a one-form is better thought of as the spacing between contour
lines – the more closely spaced the contour lines are, the greater the magnitude of the one-form (i.e. the
steeper the gradient). The inner product is an operation that combines a vector and a one-form and returns a
scalar. Geometrically, the inner product of x̄ and ȳ is the scalar A defined by:

A= x̄ · ȳ ≡ |x||y| cosθ , (1.1.1)

where θ is the angle between the two objects. Thus, if x̄ is a vector oriented perpendicular (θ = π /2) to
the gradient of a scalar field (= the one-form ȳ), the inner product vanishes. The inner product attains its
maximum absolute value if the vector points in the direction of the field gradient (θ = 0) or exactly opposite
(θ = π ). It is positive if 0≤ θ <π /2 and negative forπ /2<θ ≤π .
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We can use the concept of work to turn the definition of energy on its head and in the
process make it clearer. Whenever work is performed, there is a force interaction between a
system and its environment, or between different parts of a system. Work is responsible for
energy transfer between the objects that interact, so some of these objects give up energy,
and the same amount of energy,measured by the magnitude of the work performed , is stored
in others. This statement may not be a definition of energy, but at least it tells us how to
calculate changes in energy content. From this statement we also rescue the fact that energy
has the same dimension as work (Box 1.2).

Box 1.2 Dimensional analysis

The dimension of a physical quantity is a fundamental and immutable property that defines what the
quantity is. Thus, distance has dimension of length, inertia has dimension of mass, and duration has
dimension of time. Units are arbitrary scales that are used to measure the magnitude of a physical quantity,
for instance, distance can be measured in meters, kilometers, parsecs, etc. These are different units that
measure the dimension length. Some physical quantities are fundamental in the sense that their dimension
cannot be reduced to combinations of other dimensions. Examples are length, mass, electric charge, time
and temperature. The key idea of dimensional analysis is that in any equation relating physical quantities the
identity applies to dimension as well. The fundamental dimensions length, mass, electric charge, time and
temperature are labeled [L], [M], [Q], [T ] and [Θ ], respectively. Dimensions of derived physical quantities
are reduced to combinations of these fundamental dimensions. For instance, acceleration has dimension
[L]×[T ]−2, and force has dimension [M]×[L]×[T ]−2.

In the notation of dimensional analysis, enclosing the name or symbol of a quantity in square brackets
means that we are referring to the dimension of the quantity. From equation (1.1) we have:

[work]= [force]× [distance] (1.2.1)

or:

[work]= [M]× [L]2× [T ]−2 . (1.2.2)

The units of the fundamental dimensions in the SI system are meter (m, length), kilogram (kg, mass),
coulomb (C, electric charge), second (s, time) and kelvin (K, temperature). The SI unit of force is the newton
(N), and from dimensional analysis we see that 1 N= 1 kg m s−2. Similarly, the SI unit of work, or energy, is
the joule (J) and 1 J= 1 Nm= 1 kgm2 s−2. Note the subtle but important difference between the concepts
of dimension and units. The dimension of a quantity is unique and universal, for instance, [M]×[L]2×[T ]−2

for work or energy. The units can be anything we agree upon, as long as they conform to the required
dimensional equation, such as (1.2.2). In general I will use SI units throughout this book, with one important
exception, which is that I use bars and its multiples and submultiples (kbar, Mbar, mbar, etc.) as the unit of
pressure, instead of pascal (Pa), which is the SI unit. The conversion factor is 1 bar= 105 Pa.

Just as it is difficult to define energy, it is also somewhat unsatisfactory to try to
pigeonhole different types of energy into strict categories. In this and subsequent chapters
we will come across examples that will highlight this difficulty.As a matter of convenience
and tradition, however, we will include in our discussion of mechanical energy only the
energy associated with motion (kinetic energy) and that one associated with position in
a gravitational field (gravitational potential energy). Both of these types of energy play
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crucial roles in planetary processes. We must keep in mind, however, that many other types
of energy, such as the energy associated with a change in shape or size of an object, the
energy associated with a magnetic or electrostatic field, or the energy contained in a crys-
talline lattice, can ultimately be reduced to specific manifestations of mechanical energy.
The one type of energy that is distinct is heat, and in this section we will begin our journey
towards our understanding of the reasons for, and consequences of, this difference – this is,
indeed, what much of thermodynamics is all about.

1.3.1 Gravitational potential energy

Gravitational potential energy is perhaps the most familiar kind of mechanical energy – it
is responsible, for instance, for the fact that it is harder to hike up a mountain than down.
Gravitational potential energy arises from the existence of a gravitational attractive force
that acts between objects with mass. The magnitude of the gravitational force |f̄g | between
two bodies with masses m1 and m2 separated by a distance x is given by Newton’s law of
universal gravitation:

|f̄g| =
Gm1m2

x2
, (1.2)

where G is the universal gravitational constant (physical constants and other important
numerical data are given in Appendix 1). Force is a vector (more precisely, a covariant
vector or one-form,Box 1.1) and this expression yields only itsmagnitude.The gravitational
attraction caused by a body is described by a vector field, which is a function that assigns
a vector to each point of space. The magnitude of the vector, called the field intensity, is
the gravitational force per unit mass, i.e. the gravitational acceleration. The orientation of
the vector depends on the distribution of mass in the body that generates the field. For a
point-like mass it is oriented towards the mass.
Let us consider an object of mass m, say a rock, in the gravitational field of another

object, for instance a planet, of mass M . If the rock experiences a displacement dx̄, the
gravitational force f̄g performs an amount of work given by equation (1.1). Gravitational
potential energy, Ug, depends only on the position of an object in a gravitational field.
The work performed by the gravitational force represents energy that is extracted from
the object’s gravitational potential energy. Because of the law of conservation of energy
the changes in the two variables must balance out, which in differential form we write as
follows:

dUg + f̄g · dx̄ = 0. (1.3)

We consider a displacement that is directed radially outwards from the planet with massM
(Fig. 1.1). If we define the direction away from the planet as being the positive orientation,

dxfg

M
mm

x

Fig. 1.1 Work performed by the gravitational force f̄g between two bodies with massesM andm,when bodymmoves a
distance dx̄ towards infinity.
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then f̄g always has a negative orientation – this is themathematical expression of the fact that
gravity is always an attractive force. We can then write the inner product in equation (1.3)
as:

f̄g · dx̄ =−
GMm

x2
dx, (1.4)

where the negative sign arises from the fact that we are calculating the inner product
between a vector and a one-form that subtend an angle of 180 ◦ (Box 1.1). This is the work
performed by the gravitational force (the general three-dimensional case requires more
complex notation, but the physics are well summarized in (1.4)). The change in gravitational
potential energy that corresponds to a finite displacement between two positions, xa and xb
can be obtained by substituting (1.4) into (1.3) and integrating:

Ug,b−Ug,a =−
∫ b

a

f̄g · dx̄ =GMm

∫ b

a

dx

x2
=−GMm

(
1

xb
− 1

xa

)
. (1.5)

By convention, we define gravitational potential energy as being 0 when the objects are
separated by an infinite distance, i.e. wemakeUg,a = 0 as xa→∞.With this conventionwe
then define the gravitational potential energy of an object with mass m in the gravitational
field of a planet with massM as:

Ug =−GMm

r
, (1.6)

where r is the distance between the centers of mass of the two bodies. For any finite value
of r, Ug is negative, and Ug approaches a maximum value of 0 as the separation between
the two bodies approaches infinity. When writing equation (1.4) I justified the negative
sign on purely mathematical grounds, as arising from the inner product of two oppositely
pointing vectors, but we can now see the physical meaning of this negative sign. Suppose
mass m is moved away fromM (�r > 0). In order for this to occur an external agent must
perform work. By conservation of energy this work becomes stored as potential energy in
the gravitational field. Therefore it must be �Ug > 0, which is what results from equation
(1.6) with�r > 0. Conversely, if�r < 0 the gravitational field gives up energy (�Ug < 0)
which is transferred to mass m and appears, for example, as kinetic energy.

I will introduce here two other equations that we use in the analysis of gravitationally
driven planetary heating in Chapter 2. First, we can see from equation (1.2) that the gravi-
tational acceleration, g, due to a body of mass M at a distance r from its center of mass is
given by:

g =−GM
r2

, (1.7)

where the negative sign expresses the fact that gravitational acceleration is always attractive
(directed towards the mass that causes it, where r is positive away from the mass). Recall
that the numerical value of g is the intensity of the gravitational field. We also define the
gravitational potential, Φg , as the gravitational potential energy per unit mass:

Φg =−GM
r

. (1.8)
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Gravitational potential is a scalar field (Box 1.1). Gravitational acceleration is a one-form
(or covariant vector) that is the gradient of the potential field. Themagnitude of the one-form
is given by:

g =−dΦg

dr
. (1.9)

Force is another one-form, that is the product of a scalar (mass) times acceleration (Newton’s
second law ofmotion). Mass, or inertia, is the scaling factor between force and acceleration;
this is the origin of the term scalar.
We are generally concerned with differences in gravitational potential energy between

different states of a system. For example, when tectonic processes elevate amountain range,
or when lava flows build a volcano, gravitational potential energy is stored in the rocks.
How much potential energy is stored in a mountain range? This depends on the distance
that the rocks can move towards the center of the planet before they get to a level below
which they can move no further. How do we define such a level? Sea level may be a
good first approximation, but we can give a more general answer, that will also hold for
planets without oceans. We begin by looking at two additional questions. First, where did
this gravitational potential energy associated with topography come from? Conservation of
energy requires that we identify an energy source, which in this case entails conversion of
some of the planet’s internal heat to gravitational potential energy (more on this in Chapter
3). Second, what happens to this potential energy as the mountain loses elevation? The short
answer is that this gravitational potential energy ultimately becomes heat and is dissipated to
space, but the pathwaymay entail some intermediate steps, depending on how the mountain
loses elevation. In general, elevation is lost by a combination of three processes: erosion,
isostatic adjustment and tectonic collapse. During erosion, potential energy becomes heat
as a result of friction during sediment transport and also when particles come to their
final resting place in a sedimentary basin. Isostatic adjustment may return gravitational
potential energy to the mantle, either as heat or as mechanical energy. Tectonic collapse
results in gravitational potential energy either being dissipated directly as heat during ductile
deformation, or being stored as elastic energy (another type of mechanical energy that we
will discuss) to be eventually dissipated, ultimately as heat too, during earthquakes. All of
these processes drive towards converting the surface of the planet to one over which there
are no differences in gravitational potential energy. Such a surface is called an equipotential
surface.Awell-defined reference level for potential energy on Earth is thus the geoid, which
is defined as the equipotential surface that is as close as possible (e.g. in a least square sense)
to mean sea level (see Worked Example 1.1). In planets without oceans, we may choose
as our reference the equipotential surface that is as close as possible to the mean planetary
radius (and, if we were to follow the same convention used for Earth, we should call such
surfaces: areoid, aphrodoid, hermoid, selenoid, etc.). We will generally be concerned with
differences between the value of Ug at the geoid and its value at any other level that we
may be interested in.

Worked Example 1.1 Gravitational potential energy and topography

(a) Consider a mass m of rock initially located on Earth’s geoid. Let R be the geoid’s mean
radius. The rock is then moved to an elevation h above the geoid, such that h�R, i.e. we
stay close to the planet’s surface. The initial distance between the two centers of mass (the
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rock’s and the Earth’s) is R, and the final distance, after the rock is raised, is R + h. We
first use equation (1.6) to show that the gravitational potential energy of the rock in its final
state, relative to the geoid, is given by mgh, the equation that you probably remember from
introductory physics.
Calling the gravitational potential energies at the geoid and at an elevation h above the

geoid Ug,geoid and Ug,h, we have:

Ug,h−U g,geoid =−GMm

R+h −
(
−GMm

R

)
= GMmh

R(R+h) . (1.10)

Ifwe stay close to the planet’s surface, thenR(R+h)≈R2.We can also consider the planet’s
gravitational acceleration to be constant over the interval R to R + h. Using equation (1.7)
to calculate gravitational acceleration at the geoid and substituting in (1.10):

U g,h−U g,geoid ≈ GMmh

R2
=−mgh=m|g|h. (1.11)

With our sign convention g is always a negative quantity. The “g” in mgh is thus the
magnitude of g, as shown in the last term of equation (1.11).
(b) The Sierra Nevada of California is the largest uninterrupted mountain range in the

United States. It is roughly 600 km long, 100 km wide and has a mean elevation of 1.5 km
(averaged over this horizontal extent). Assuming that this average elevation represents the
center of mass of the mountain range, and that the rocks making up the Sierra Nevada have
an average density of 2800 kg m−3, what is the potential energy stored in the Sierra Nevada
relative to the geoid? At the geoid, g ≈ 9.8 m s−2. Plugging in these values into equation
(1.11) we find that the Sierra Nevada stores approximately 3.7× 1021 J of gravitational
potential energy, approximately equivalent to an explosive yield of one million megatons
(see Section 1.12.2).
(c) Uplift of the Sierra Nevada has occurred over the past 5 million years. Assuming a

constant rate of uplift over that time interval, the energy flux (energy per unit area per unit
time) that went into elevating the Sierra Nevada is approximately 3.9× 10−4 W m−2 =
0.39 mW m−2, where 1 W(Watt) = 1 J s−1. Typical terrestrial heat fluxes are of the order
of 50–100 mW m−2, i.e. two orders of magnitude greater. There is plenty of energy in the
Earth to elevate mountain ranges.

1.3.2 Kinetic energy

Bodies in motion have kinetic energy, Uk , that arises from their speed and is given by:

U k = 1

2
mv2, (1.12)

where v is the magnitude of the body’s velocity, i.e. its speed. Kinetic energy is a function
of the relative speed between a body and an observer. For example, if we observe, from
a location at rest on the Earth, an asteroid of mass m moving towards Earth with speed
v, the kinetic energy of the asteroid in our reference frame is given by equation (1.12)
and the Earth has no kinetic energy in our reference frame. Measured from a reference
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frame attached to the asteroid, on the other hand, the asteroid has no kinetic energy, and
the Earth has kinetic energy given by equation (1.12), but with m in this case being the
mass of the Earth. Although the two values of kinetic energy are very different, if the
two bodies collide the result is unique: conversion to heat of an amount of energy equiva-
lent to most of the kinetic energy of the asteroid, as measured from the Earth’s reference
frame (Worked Example 1.2). In order to see why this is the case we need to introduce
the law of conservation of momentum, which is a law of nature that, in classical physics,
is distinct from energy conservation. In reality, energy and momentum conservation are
different manifestations of a single conservation law that arises from the geometrical
properties of spacetime, but this becomes an issue only for objects moving at relativistic
speeds.
Momentum, p̄, is a vector quantity, and is given by:

p̄ =mv̄, (1.13)

where v̄ is the velocity vector. The law of conservation of momentum states that the total
momentum of a system is conserved. In contrast to energy, that has many different mani-
festations, momentum is unique and is always conserved; it cannot be converted to other
“types” of momentum. In a perfectly elastic collision both momentum and kinetic energy
are conserved, i.e., there is no conversion of kinetic energy into other types of energy.
The concept of elastic collisions will enter into our discussion of a thermodynamic vari-
able known as internal energy, later in this chapter. In an inelastic collision, in contrast,
momentum is conserved (as it must always be) but kinetic energy is not. Of course, the total
energy of the system must be conserved, so that during an inelastic collision some kinetic
energy is converted to other types of energy (ultimately heat). Conversion of kinetic energy
to heat during inelastic collisions takes place, for example, when celestial bodies collide.
This process was responsible for accretionary heating during the Solar System’s formative
period (Chapter 2). On a very different scale, inelastic collisions of subatomic particles with
atoms in a crystal are the cause of radioactive heating, one of the key sources of energy in
terrestrial planets (Chapter 2).

Worked Example 1.2 Dissipation of kinetic energy during collisions of celestial bodies

(a) An asteroid of mass ma moves directly towards Earth (mass M ) with velocity v̄a , as
measured from Earth. Consider a reference frame relative to which the Earth is initially at
rest (i.e. the Earth’s initial velocity is zero), but that will remain fixed even if the state of
motion of the Earth were to change. Figure 1.2a shows the initial situation as seen from this
reference frame, choosing a leftward-directed velocity as positive.We consider the collision
of the two bodies as being perfectly inelastic, meaning that momentum, p̄, is conserved,
but kinetic energy is not. After the collision, the Earth and the asteroid merge into a single
body of mass (ma +M), moving with velocity v̄f relative to the same reference frame
as before, which has not been affected by the collision. We seek the magnitude and the
direction (leftwards or rightwards) of v̄f , the change in the velocity of the Earth relative
to the external reference frame, and the change in kinetic energy of the Earth + asteroid
system resulting from the collision.
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Fig. 1.2 Asteroid (massm) colliding with Earth (massM), as seen from Earth (a) and from the asteroid (b).

The final velocity is calculated from momentum conservation:

p̄initial = mv̄a = p̄final = (m+M)v̄f

v̄f = m

m+M v̄a .
(1.14)

The change in the Earth’s velocity is simply vf , as its initial velocity in the chosen frame of
reference is zero. The amount of kinetic energy that is converted to other forms of energy
(chiefly heat) is given by:

U k , final −U k , initial = 1

2

[
(m+M)|v̄f |2−m|v̄a|2

]
=−1

2
m|v̄a|2

(
M

m+M
)
. (1.15)

If the asteroid is small compared to Earth, then the expression in parentheses ≈ 1, and the
heat dissipated is essentially equal to the kinetic energy of the asteroid before the collision.
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(b) We repeat the calculation from the point of view of a reference frame that is initially
at rest relative to the asteroid, and that, as before, is not affected by the collision (Fig. 1.2b).
In this case the Earth’s initial velocity is −v̄a and the asteroid’s initial velocity is zero.

Conservation of momentum is in this instance:

p̄initial = M(−v̄a)= p̄final = (m+M)v̄∗f

v̄∗f =
M

m+M (−v̄a),
(1.16)

where the asterisk is used to remind ourselves that the final velocity in this case is measured
relative to a different reference frame, initially fixed to the asteroid. The change in the
Earth’s velocity is then given by:

�v̄Earth =− M

m+M (v̄a)− (−v̄a)= m

m+M v̄a , (1.17)

which is the same as the change calculated in part (a), compare equation (1.14). Note
carefully the meaning of the signs: equation (1.16) shows that after the collision the Earth
is still moving towards the right, but at a lower speed than before the collision. Equation
(1.17) shows that the velocity change is positive, i.e. leftwards. As seen from the asteroid’s
reference frame, the Earth has slowed down by the same amount as the Earth has speeded
up (from rest) when seen from the Earth’s reference frame. You should verify that the loss
of kinetic energy as calculated from the asteroid reference frame also agrees with the loss
calculated from the Earth’s reference frame, equation (1.15).

1.3.3 Energy dissipation

Energy dissipation is the conversion of any kind of non-thermal energy to heat. A process
that accomplishes this conversion is called a dissipative transformation. In the example of
an asteroid colliding with Earth kinetic energy is dissipated, i.e. it is converted to heat. The
full import of this definition will become clear in Chapter 4. For now, it is important to
realize that, although energy is conserved during a dissipative process (this is the First Law
of Thermodynamics), a full reversal of a dissipative transformation is impossible. In other
words, it may be possible to reconvert some of the heat back to mechanical energy, but
there is always a fraction of the heat generated by dissipation that can never be converted
back to non-thermal energy (this is the Second Law of Thermodynamics). Transformations
between different types of non-thermal energy are called non-dissipative, meaning that the
inverse transformation is, in principle, possible.

1.4 Expansion work. Introduction to equations of state

1.4.1 The concept of expansion work

Change in volume of any substance entails an energy transfer, in other words, a system that
undergoes a volume change either absorbs or releases energy. Energy transfer mediated by a
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change in volume is called expansionwork. If a substance expands, it is performingmechan-
ical work on its environment and, by the law of conservation of energy, this energy must
come from somewhere. Expansion of volcanic gas during a pyroclastic eruption is a process
in which a large amount of energy is transferred from a magmatic system to the atmosphere
by performing expansion work on the latter. Other examples are perhaps less eye-catching
but not less important: discontinuous phase transitions, such as vaporization and freezing
of water, are accompanied by expansion work, as are many mineral reactions. For instance,
consider the difference in density between theAl2SiO5 polymorphs kyanite and sillimanite.
When kyanite transforms to sillimanite the volume of a fixed amount ofAl2SiO5 increases,
because its density decreases. This mineral transformation performs expansion work on its
environment. The converse is also true, when a system is compressed it absorbs mechanical
energy from its environment and this energy is stored in the substance. Transformation of
sillimanite to kyanite absorbs mechanical energy from the environment, and this energy is
stored as chemical energy in the crystal of kyanite (the expression “chemical energy” is for
the time being quite vague, it will take on a more precise meaning in subsequent sections
and chapters).
Dissipative compressions are an important source of heat in a wide range of planetary

processes. For example, air masses that descend rapidly in the atmosphere and protostellar
clouds of gas (such as the one that gave rise to our Solar System over 4.55 Ga) that contract
under their own gravitational pull, heat up as a result of compression, i.e. compression trans-
forms mechanical energy into thermal energy. In contrast, elastic materials, such as rocks
at relatively low temperatures, are able to undergo approximately non-dissipative changes
in volume, storing compression work (= negative expansion work) as elastic energy.

Expansion work, then, plays an important role in many planetary processes, but how do
wemeasure it? Figure 1.3 shows a system of arbitrary shape expanding into an environment
that exerts a uniform pressure P. If the system’s surface area isA, then as the system expands
it must overcome a total force PA over its entire surface. Although PA is an oriented object
we are not using vector notation to represent it. This is careless notation, that we can justify
informally by noting that during uniform expansion pressure and force have the same
orientation as displacement, so that the inner product of the two objects equals the scalar
product of their magnitudes (Box 1.1).
Consider an infinitesimal expansion that causes the surface of the system to move out-

wards by an amount dx (Figure 1.3).Then the total amount of work performed by the system
during this infinitesimal transformation is:

dW = PAdx. (1.18)

The product Adx is the change in volume of the system, dV (because this is an infinitesimal
expansion, the total surface area can be considered to remain constant). The differential
expression for expansion work is then:

dW = PdV . (1.19)

The SI unit of pressure is the pascal (Pa), defined as a pressure of 1Nm−2, so that a volume
change of 1m3 against a pressure of 1 Pa performs 1 J of work. Another unit of pressure
that I find much preferable is the bar, where 1 bar = 105 Pa. One good reason to prefer the
bar over the pascal is that atmospheric pressure on Earth at sea level is approximately 1 bar,
so it is easy to develop an intuitive feeling for the magnitude of a pressure expressed in bar,
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Fig. 1.3 Expansion work. The shell defined by the two spheres is the increase in volume dv= Adx.

kbar or mbar. A convenient unit of volume is, then, J bar−1, where 1 J bar−1 = 10−5 m3

= 10 cm3. Expressing volume in J bar−1 and pressure in bar, W comes out in J.

1.4.2 Quasi-static, reversible and irreversible processes

In the derivation of the expansion work formula I have been rather sloppy with the sign
convention, and this sloppiness must be corrected before we can advance any further. In
order to do so, we need to address another issue which is often the source of much confusion
and consternation when encountering thermodynamics for the first time. I stated that the
system expands “into an environment that exerts a uniform pressure P” – but what is the
pressure inside the system? Classical thermodynamics is concerned only with states of
equilibrium. Because of this constraint, the only situation that can be rigorously addressed
with classical thermodynamics is one in which the pressure inside the system equals the
external pressure. But if the two pressures are the same, then why is the system expanding
at all? Here lies the problem, if the two pressures are the same then the system is static,
and there is no work being performed. Classical thermodynamics deals with this riddle by
inventing an idealized type of transformation called a quasi-static transformation. This is
a process that takes a system from an initial equilibrium state to a final equilibrium state by
means of an infinite number of intermediate equilibrium states that are infinitesimally close
to one another. Such a transformation is, of course, physically impossible. In our example of
an expanding system, we could visualize a situation in which the pressure inside the system
is always greater than the external pressure by an infinitesimal amount, dP.By this wemean
that the internal pressure is barely higher than the external pressure, so that the system does
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expand, but not so much higher as to make any difference in the amount of expansion work
given by equation (1.19), i.e. we would get the same numerical result whether we used the
internal or the external pressure in our calculations.
A concept that is distinct to that of a quasi-static transformation, but is sometimes con-

fused with it, is that of a reversible transformation. By definition this is a process during
which there is no energy dissipation. A reversible transformation must be quasi-static, but
the converse is not true: a quasi-static transformation may dissipate energy, and thus be
irreversible. An example of this would be infinitesimally slow expansion of a gas (i.e. a
quasi-static process) accomplished by displacing a piston that slides inside a cylinder with
friction. The irreversibility arises from frictional heating. We will come across other exam-
ples that will gradually make the concepts of dissipation and irreversibility clear, and will
define these concepts rigorously using the Second Law of Thermodynamics (Chapters 4
and 12).
In contrast, the concept of a quasi-static transformation can be clarified by means of an

example. A gas is a collection of moving molecules. Consider what happens at the micro-
scopic level when a gas is subjected to an increase in pressure. The gas is at equilibrium if,
as a result of interactions among its molecules (i.e. collisions), the distribution of molecular
kinetic energies (or, equivalently, molecular speeds) is smooth, with a unique peak value
(Fig. 1.4) that specifies the most probable value of kinetic energy. The temperature of the
gas is a measure of this most probable kinetic energy value. Equilibrium in the gas is pos-
sible only if there has been sufficient time to allow its molecules to exchange information
throughout the entire volume occupied by the gas, so that all molecules “know” what the
most probable kinetic energy is. Information is transported by molecular collisions, so that
it travels at a rate comparable to molecular speeds. If the gas is now compressed at a rate
that is very slow relative to most molecular speeds then the gas will remain at equilib-
rium throughout the compression, because information about perturbations in one part of
the system reach the entire system before the magnitude of the perturbations can change
significantly. This is an example of a quasi-static transformation. In contrast, if the gas is
compressed at a rate that is much faster than the speed with which most molecules move,
then the gas cannot be at equilibrium. In this case a perturbation in one part of the system
can grow significantly before the rest of the system “knows” about it. Molecules in different
parts of the system will have different speed distributions, so that the speed distribution for
the entire volume of gas will not display a unique maximum value (dashed curve in Fig.
1.4). The fast compression is not quasi-static and, therefore, it is an irreversible transforma-
tion. During such an irreversible transformation it is not possible to define the temperature
nor the pressure of the gas, as there is no unique most probable molecular kinetic energy
(Fig. 1.4). Sonic booms, which occur when air is compressed at a rate that is faster than
characteristic molecular speeds, are examples of irreversible transformations of this type.

1.4.3 Measuring expansion work. Material properties and equations of state

We are now able to come to a rigorous definition of the sign of the expansion work. If the
pressure exerted by the system, P (we assume a quasi-static expansion), and the change in
volume, dV = Adx, have the same orientation, then PdV is a positive quantity. The work
performed by the system on the environment during expansion, dW , is a positive quantity.
This work represents energy transferred from the system to its environment, so that the
energy content of the environment changes by an amount dW , and the energy content of
the system that is expanding changes by an amount −dW . It is important to understand
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Fig. 1.4 Maxwell–Boltzmann probability density distribution for molecular speeds in N2 (assumed to be an ideal gas) in the
absence of a gravitational field. The areas under all the curves are unity. As temperature increases the probability
distribution becomes wider but there is always a unique most probable speed, that depends on temperature only
(arrows). The dashed line shows a hypothetical non-equilibrium distribution of molecular speeds – the most probable
speed, and hence the temperature, cannot be defined in this case.

exactly what equation (1.19) is measuring and how to interpret the sign of the expansion
work that one calculates upon integrating this equation. Because P is always a positive
quantity, a positive value of W means that the system has expanded and performed work
on its environment; the system’s energy content has therefore decreased. Compression, i.e.
a decrease in the system’s volume, results in a negative value of W which implies that
the system has gained energy. This energy was extracted from its environment. This sign
convention is not universally followed, but it leads to equations that represent physical
processes in an intuitively satisfying way.
The expansionwork associatedwith a finite change in volume is calculated by integrating

equation (1.19). Except for the special case of isobaric processes, volume and pressure are
not independent variables. In order to integrate equation (1.19), then, we need a function
that relates volume with pressure. One such function is the bulk modulus, K, which is a
material property, i.e. a parameter that has a well-defined value for every substance and is
independent of system size:

K =−V ∂P
∂V

. (1.20)
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The negative sign in equation (1.20) insures that K is a positive quantity, as volume always
decreases under an increase in the applied pressure. The symbol ∂ indicates partial differ-
entiation, and is used whenever a variable is a function of more than one other variable (see
Box 1.3). Equation (1.20) defines the dimension of bulkmodulus as being the same as that of
pressure. A substance has an infinite quantity of bulk moduli, depending on how one speci-
fies the volume change to take place, but the definition becomes precise if we specify which
variables are to be held constant during the transformation. For example, the bulk modulus
measured at constant temperature, called the isothermal bulk modulus, is defined as:

KT =−V
(
∂P

∂V

)
T

, (1.21)

where the subscript T denotes that temperature is held constant. We shall see that isother-
mal processes are not the only ones that we must consider, so that other bulk moduli will
eventually be introduced.

Box 1.3 Functions of several variables and partial derivatives

Manipulation of functions of several variables, and in particular some basic proficiency in multivariate
calculus, are essential requirements for working in thermodynamics and many other branches of physics and
chemistry. A good source for self-study is the textbook by Sokolnikoff and Redheffer (1966). Here I will cover
only some basic concepts. Consider a function of i variables, y= y( x1, x2,...,xi). The function y has i partial
derivatives, each of which is taken with respect to one of the independent variables, while holding all of the
other independent variables constant. A simple analogy is to think of the two-dimensional surface of the
Earth, and to consider the slope of the terrain along the N–S direction at constant longitude, and then along
the E–W direction at constant latitude. Partial derivatives are denoted with the symbol ∂ , and the partial
derivative of y relative to xn is written as follows:

∂y

∂xn
. (1.3.1)

From the operational point of view finding the value of (1.3.1) poses no problems: we just consider all of the
other variables, xi�=nto be constants, and calculate the derivative following the usual rules. The notation of
(1.3.1) is mathematically complete, but in thermodynamics it is customary to specify which are the variable
or variables that are held constant when performing a calculation. Thus, in thermodynamics (1.3.1) is usually
written as follows: (

∂y

∂xn

)
x1, x2, ..., xi �=n

, (1.3.2)

where the list of subscripts after the parenthesis specifies the variable or variables that are held constant
during differentiation. Whether or not this notation is strictly necessary is the subject of some contention, to
which I return in Box 1.4.

The total differential of a function of several variables, dy, is the sum of the changes in the value of y
arising from the change in each of the independent variables. It is defined as follows:

dy =
(
∂y

∂x1

)
x2, x3, ..., xi

dx1+
(
∂y

∂x2

)
x1, x3, ..., xi

dx2+·· ·+
(
∂y

∂xi

)
x1, x2, ..., xi−1

dxi . (1.3.3)
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Box 1.3 Continued

Recalling the example of the surface of the Earth, we can calculate the total change in elevation between two
points by first moving N–S at constant longitude, and then E–W at constant latitude. Or consider the volume
of a fixed amount of substance, V . This is generally a function of P and T , so V is a function of two variables,
V = V ( P,T ). If we change both pressure and temperature, the total change in volume is given by:

dV =
(
∂V

∂T

)
P
dT +

(
∂V

∂P

)
T
dP. (1.3.4)

There are a number of identities among partial derivatives that are useful in thermodynamic derivations.
Consider four independent variables, x, y, z andw , such that the following functions exist and are continuous
and differentiable:

w=w(x , z); z = z(x , y); thus, w=w(x , y), (1.3.5)

we can write two different equations for the total differential ofw, dw :

dw=
(
∂w

∂x

)
z
dx+

(
∂w

∂z

)
x
dz (1.3.6)

and:

dw=
(
∂w

∂x

)
y
dx+

(
∂w

∂y

)
x
dy. (1.3.7)

The total differential of z is given by:

dz =
(
∂z

∂x

)
y
dx+

(
∂z

∂y

)
x
dy. (1.3.8)

Substituting into the first equation for dw (1.3.6):

dw =
(
∂w

∂x

)
z
dx+

(
∂w

∂z

)
x

[(
∂z

∂x

)
y
dx+

(
∂z

∂y

)
x
dy

]
, (1.3.9)

which, collecting terms in dx, dy, becomes:

dw =
[(

∂w

∂x

)
z
+
(
∂w

∂z

)
x

(
∂z

∂x

)
y

]
dx+

(
∂w

∂z

)
x

(
∂z

∂y

)
x
dy. (1.3.10)

Now, because x and y are independent variables, the only way in which equations (1.3.7) and (1.3.10) can be
simultaneously true is if the coefficients of dx and dy are equal in each of the equations. In other words:(

∂w

∂y

)
x
=
(
∂w

∂z

)
x

(
∂z

∂y

)
x

(1.3.11)

and: (
∂w

∂x

)
y
=
(
∂w

∂x

)
z
+
(
∂w

∂z

)
x

(
∂z

∂x

)
y
. (1.3.12)
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Box 1.3 Continued

The first of these equations, (1.3.11), is known as the chain rule of partial differentiation and is easy to
remember. The second one has no name, and is harder to memorize – it is best to look it up every time that
one may want to use it. When dealing with equations of state that relate three variables (P, V, T ) one is
often faced with the following problem. Here we have three variables, x, y, z, and by virtue of the equation
of state we can write:

x = x(y, z); z = z(x , y), (1.3.13)

we then have the following total differentials:

dx =
(
∂x

∂y

)
z
dy+

(
∂x

∂z

)
y
dz (1.3.14)

dz =
(
∂z

∂x

)
y
dx+

(
∂z

∂y

)
x
dy. (1.3.15)

Substituting the second one into the first one:

dx =
(
∂x

∂y

)
z
dy+

(
∂x

∂z

)
y

[(
∂z

∂y

)
x
dy+

(
∂z

∂x

)
y
dx

]
(1.3.16)

collecting terms and rearranging:

dx =
[(

∂x

∂y

)
z
+
(
∂x

∂z

)
y

(
∂z

∂y

)
x

]
dy+

(
∂x

∂z

)
y

(
∂z

∂x

)
y
dx . (1.3.17)

Because x and y are independent variables, the coefficient of dx in the right-hand side of this equation must
be equal to 1, and the coefficient of dy must be 0, so:(

∂x

∂z

)
y
= 1(

∂z
∂x

)
y

(1.3.18)

and: (
∂x

∂y

)
z
=−

(
∂x

∂z

)
y

(
∂z

∂y

)
x
. (1.3.19)

An equation of state (EOS) is another type of function that relates volume with pressure
and temperature. EOS are of fundamental importance in many branches of planetary sci-
ences, and we will discuss different types of EOS in subsequent chapters. Every substance
has an EOS. This is just another way of saying that a fixed amount of any substance at equi-
librium at a given pressure and temperature has a unique and well defined volume. Some
EOS have physical fundament and at least their general form can be derived from first prin-
ciples. In other cases, EOS are more or less arbitrary best-fit equations to experimentally
measured P–V–T relationships. In some cases equations of state can be mathematically
very complex, or their explicit mathematical form may be unknown, so that experimental
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P–V–T data are summarized in tables. There is, however, one EOS that is mathematically
very simple, that can be derived from first principles, and that has important applications in
classical thermodynamics and some areas of planetary sciences. This is the ideal gas EOS:

PV =RT , (1.22)

where V is molar volume, i.e. the volume of one mol of gas, T is absolute temperature, and
R is the universal gas constant (seeAppendix 1). The behavior of real gases at low pressure
(≤1 bar) and temperatures well above their condensation temperatures is reasonably well
approximated by this EOS.Up to this pointwe have beenwriting volume in bold type,V , but
we have dropped the bold attribute in the ideal gas equation of state, (1.22).This is so because
we need to distinguish between situations in which we are referring to the total volume of a
system (V ) from those in which we are referring to a specific amount of matter, for instance,
1 mol (V ). For variables whose value depends on the amount of substance considered we
will use non-bold uppercase symbols to denote the value normalized to one mol (e.g. V for
molar volume) and bold uppercase symbols to denote the value of the variable for the entire
system (e.g. V for total volume). V is a material property, independent of system size, but
V is not. The scalar variables pressure and temperature, that do not depend on the size of
a system, will also be written with non-bold symbols, whereas other scalar quantities such
as various types of mechanical energy (e.g. Ug and U k , equations (1.6) and (1.12)) that
depend on system size are written in bold type.
In principle, it is always possible to derive the isothermal bulk modulus from the EOS.

This is particularly simple for the ideal gasEOS, as shown in the followingWorkedExample,
which compares themagnitudeof expansionwork associatedwith pressure changes in gases,
liquids and solids.

Worked Example 1.3 Expansion work of gases, liquids and solids

What is the isothermal bulk modulus of an ideal gas? From the ideal gas EOS:

P = RT

V
(1.23)

so: (
∂P

∂V

)
T

=−RT
V 2

. (1.24)

Inserting this expression into equation (1.21) and using the ideal gas EOS to simplify the
result yieldsKT=P . In contrast to gases, liquids and solids have bulkmoduli that are nearly
constant over restricted pressure ranges. For example, for pressures of the order of 1 bar,
KT for liquid water is approximately 104 bar and KT for quartz ≈ 4 × 105 bar. Compared
to KT for an ideal gas at 1 bar, these values mean that liquids and solids are several orders
of magnitude less compressible than gases, and quartz is somewhat less compressible than
water (greater pressure changes are needed to cause a given volume change). The energy
consequences of these differences are important. We seek to compare the expansion work
performed by an ideal gas, a liquid (water) and a solid (quartz) undergoing the same pressure
change.
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From the ideal gas EOS:

dV =−RT
P 2

dP (1.25)

substituting in equation (1.19):

dW = PdV =−RT dP
P

(1.26)

and integrating:

W =RT ln

(
P0

P

)
, (1.27)

where P0 is the initial pressure, and P the final pressure. For an expansion process, P0 > P

and hence W > 0, in agreement with our sign convention for expansion work (a positive
value of W means that the system is performing work on its environment, and hence that
the system’s energy content decreases). Equation (1.27) yields the amount of work for
expansion of 1 mol of ideal gas. For any other amount of gas, it must be multiplied by the
number of mols.
Calculating the expansionwork of an ideal gas is straightforward because of the simplicity

of the ideal gas EOS. The general expression for expansion work as a function of bulk
modulus, or, equivalently, for substances with an EOS more complicated than that for ideal
gases, is not that simple (Chapters 8 and 9). If the bulk modulus is large enough and we
are only interested in a rough approximation then the following simplifying assumption
becomes possible. We integrate equation (1.21) assuming constant bulk modulus:

V

V0
= exp

(
P0−P
KT

)
. (1.28)

This equation shows that, for a pressure drop of, say, two orders of magnitude, the volume
of water increases by a factor of∼ 1.01, and the volume of quartz by a factor of∼ 1.000 25.
For the same pressure change, an ideal gas increases in volume by a factor of 100.As a first
approximation, we may neglect the volume change of liquids and solids when integrating
equation (1.19), but the attentive reader will immediately notice a seeming contradiction
here: if volume is constant, then there should be no expansion work. The answer to this
riddle is that volume is not constant, but assuming that it is constant leads to a much simpler
mathematical expression that, under certain circumstances, yields a numerical answer that is
an acceptable approximation to the exact answer. The limits of applicability of the simplified
treatment that follows is explored in Exercise 1.9. We re-write equation (1.21) as follows:

dV =−V
K
dP (1.29)

and substitute into equation (1.19):

dW = PdV =−V
K
PdP. (1.30)
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Integrating this expression under the assumption of constant volume yields:

W ≈ V

2K

(
P0

2−P 2
)
, (1.31)

where expansion implies P0 > P, so that W > 0.
Consider expansion of 1mol of each substance fromP0= 10bar toP = 1bar, at a constant

temperature of 25 ◦C = 298 K. For water and quartz, we need their molar volumes, which
are 1.8 J bar−1 and 2.27 J bar −1, respectively. The values of expansion work areWwater ≈
8.9 × 10 −3 J mol −1 and Wquartz ≈ 2.8 × 10 −4 J mol −1. For an ideal gas, equation 1.27
yields W ≈ 5.7 × 10 3 Jmol −1. The difference between the amount of work performed
by an expanding gas and the work performed by an equivalent amount of expanding liquid
or solid is huge – six or seven orders of magnitude in the above example. This is a simple
mathematical statement of the greater destructive power of a pyroclastic eruption compared
to a lava flow. Condensed phases (solids and liquids) and non-condensed phases (gases)
differ in many aspects of their physico-chemical behaviors (Section 1.15). At the root of
many of these differences is the wide gap that exists between their respective abilities to
store or dispense energy in response to changes in pressure, which is expressed numerically
in their vastly different compressibilities.

1.5 Isothermal and adiabatic processes. Dissipative vs.
non-dissipative transformations redux

An isothermal volume change is a dissipative transformation. To see why, consider what
must happen in order for the temperature of a gas to remain constant as it is compressed. If
heat were not allowed to escape the system, then the temperature of the gas would increase
during compression. In order for the temperature to remain constant heat must be allowed
to leave the system, and energy dissipation takes place.
Let us repeat our thought experiment more carefully. First, we imagine a system that is

perfectly insulated to heat transfer, such that all of the mechanical energy that we transfer
into the system by compressing it is stored in the system, where it goes to increase its
internal energy. Internal energy is a thermodynamic variable of a kind called state function,
which we will define more precisely later in this chapter. I will symbolize it by E and,
as a first approximation, we may think of temperature as a measure of the internal energy
content of a system. The increase in temperature that we observe in the first part of our
thought experiment measures the increase in its internal energy, which, if the system’s
thermal insulation is perfect and the process is quasi-static, must exactly match the amount
of work that was performed on the system. As long as no heat leaves the system, no energy
dissipation takes place if the compression is quasi-static. Energy dissipation occurs only
when heat is exchanged between the system and its environment. A system that is perfectly
impervious to heat transfer is called an adiabatic system and a process that takes place
without exchange of heat is an adiabatic process. Although a perfectly adiabatic process is
an abstraction, many natural processes entail heat exchanges that are small enough that they
can be considered to be adiabatic to a good approximation. Examples include convection
(e.g. in a planet’s core, mantle, oceans and atmosphere) and mechanical wave propagation
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(seismic waves and sound).What is common to all of these processes is that the rate of heat
diffusion is negligible compared to the rate at which mechanical energy is exchanged – this
topic will be explored further in Chapter 3.

Returning to our thought experiment, we now repeat it with a system that allows heat
to move freely across its boundaries, and we compress it quasi-statically once again. In
order for the compression to be isothermal, the mechanical energy that we perform on the
system must be allowed to leave the system at the same rate as it is being added to it. This
energy leaves the system as heat, so that during an isothermal and quasi-static compression
all of the mechanical energy is dissipated as heat. As we shall see, this last statement is
in fact true only for ideal gases, for which internal energy is not a function of volume.
Internal energy varies with volume in real substances, but a slightly modified version of
that statement is true in general: isothermal processes are not just dissipative processes,
they are the processes that result in the maximum possible heat dissipation.

1.6 Elastic energy

The work associated with an adiabatic volume change is calculated by using the adiabatic
bulk modulus, KS, to integrate equation (1.19), where KS is defined as:

KS =−V
(
∂P

∂V

)
S

. (1.32)

The subscript S denotes a special type of adiabatic transformation during which a thermo-
dynamic variable known as entropy remains constant. The meaning of this, and the need to
distinguish between different types of adiabatic processes, will become clear in Chapter 4.
The adiabatic bulk modulus is one of a set of parameters that describe the elastic behavior

ofmaterials.Asubstance is said to deformelastically if: (i) themagnitude of the deformation,
or strain, is a linear function of the applied stress (force per unit area) and (ii) the deformation
is reversible, in the sense that the body recovers its initial shape and size once the stress
is removed. A perfectly elastic deformation is also reversible in the sense of being non-
dissipative: when stress is released the substance returns the same amount of mechanical
energy that was used to cause the deformation. If energy is dissipated then by the law of
energy conservation the amount of mechanical energy returned during the process of elastic
rebound will be less than the amount of mechanical energy used to cause the deformation.
The elastic behavior of a material in general is described by a parameter called the elastic

modulus, λ, defined as:

λ= stress

strain
. (1.33)

Stress is force per unit area and strain is the ratio of the change in the volume, length or
shape of a body (caused by stress), to the value of the corresponding variable in the original,
pre-strained state. Stress has dimension of pressure, and in fact pressure is one particular
type of stress (also called uniform or isotropic stress). Because strain is defined in such a
way as to be dimensionless, the dimension of λ is also that of pressure. Materials can have
three distinct elastic moduli, that measure different properties of a substance.All substances
(solids, liquids and gases) have an adiabatic bulkmodulus,KS , that relates adiabatic pressure
changes to the corresponding relative changes in volume. The ratio dV/V is the volumetric
strain, and dP is the stress responsible for this strain, so that the definition of adiabatic
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bulk modulus given by equations (1.32) is consistent with the general definition of elastic
modulus given in equation (1.33).
Fluids can undergo elastic volume changes, but they cannot stretch nor shear elastically

over time- and length-scales characteristic of planetary processes. The adiabatic bulkmodu-
lus is thus the only elastic modulus that can be defined for fluids. Solids, in contrast, are also
able to deform elastically by stretching and by shearing, in addition to undergoing elastic
volume changes. This fundamental difference between solids and fluids can be understood
on the basis of their microscopic structures. The atoms in a solid are arranged in a crystalline
lattice and are held in well-defined positions in the lattice by a balance of electrostatic forces
acting among neighboring atoms – these forces are what we call chemical bonds. When a
solid is stretched or sheared, the bonds are distorted but, up to a point, they can hold and
will bring back the atoms to their equilibrium positions if the stress is removed. Elastic
strain is the macroscopic expression of the microscopic behavior of the atomic bonds in
a crystal. For solids, then, one can define two other elastic moduli in addition to the bulk
modulus. Young’s modulus, E, measures relative elongation as a function of applied tensile
stress (i.e. stretching). Shear modulus, µ, relates shear stress to shear strain (defined as a
change of shape at constant volume). Fluids, in contrast, do not have crystalline structure
and interatomic attractive forces are weaker than in a crystal (and altogether nonexistent
in an ideal gas). When a fluid is sheared its atoms change position without preserving any
memory of where they were before the stress was applied, so that there is no restorative
force that would cause elastic rebound. The macroscopic expression of this behavior is that
fluids flow under shear, rather than deforming elastically. There are geological environ-
ments, however, in which the distinction between solids and fluids becomes blurred. For
example, mantle convection and glacier flow are two situations in which crystalline solids
flow under shear stress, rather than undergoing elastic strain.
Exact calculation of the energy stored during a generalized elastic deformation is math-

ematically complex and computationally intensive (see, for example, the classic text by
Malvern, 1969), but an order of magnitude estimate is straightforward and useful in many
planetary sciences applications. Consider an elastic body of characteristic linear dimension
x. Application of a force F causes this dimension to change by an amount δx � x. The
characteristic stress on the body is given by σ ≈ F/x2, and the strain by ε ≈ δx/x, so that:

λ= σ

ε
≈ F

xδx
. (1.34)

For a perfectly elastic material, i.e. one that can undergo non-dissipative deformation, the
stored elastic energy, Uc, must equal thework performed in accomplishing the deformation.
Thus:

dU c = Fd(δx)= λx δx d(δx) . (1.35)

Because δx� x we consider x to be constant and integrate with respect to δx, as follows:

U c = λx

∫
δx d(δx)= 1

2
λx (δx)2 = 1

2
λx3ε2. (1.36)

The elastic energy stored per unit volume, Uc, is then given by:

Uc ≈ 1

2
λε2. (1.37)

For stretching of a thin elastic body, such as a wire or spring, this formula is exact, with
λ=E (Young’s modulus). In the case of shear strain of elastic materials the formula yields
only an order of magnitude approximation with λ= µ, the shear modulus.
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Planetary lithospheres store vast amounts of elastic energy as they bend and buckle under
shear stress. A fraction of this energy is released as seismic waves during earthquakes, ulti-
mately to be dissipated as heat: seismic waves are adiabatic as a first approximation, but,
as all natural processes, they are not perfectly adiabatic and energy dissipation takes place.
Changes in ground elevation accompanying an earthquake represent the transformation of
another fraction of the stored elastic energy to gravitational potential energy. The source
of this energy is not the lithosphere itself, however, but the planet’s internal heat. Plane-
tary lithospheres act as energy storage and transfer mechanisms, much as enormous clock
springs. Elastic energy is also stored when a planetary body is deformed by tidal forces,
and its dissipation is in this case a potentially important source of planetary internal energy,
which we will discuss in Chapter 2.

1.7 Two complementary descriptions of nature: macroscopic
andmicroscopic

The definition of mechanical work, equation (1.1), makes no requirements as to the nature
of the force that is responsible for transfer of mechanical energy. In the present-day universe
there are four distinct forces: gravitational forces, electromagnetic forces, and strong and
weak nuclear forces. By “distinct” we mean that each of these forces arises from a different
property of matter, and each of them is described by its own physical law. The first two are
the most familiar ones. Gravity arises from an object’s mass and is described in classical
physics by equation (1.2); electromagnetic forces arise from an object’s electric charge and
also follow an inverse square law. There are good reasons to believe that, at very high energy
levels (think of this as extremely high temperatures, such as those that prevailed in the very
early Universe), the four forces may become indistinguishable, but this is something that
need not concern us as planetary scientists.
So far I have made explicit mention of the importance of gravitational forces in planetary

processes (e.g. Section 1.3), and I have hinted at the relevance of electrostatic forces as the
explanation for the elastic behavior of solids. There is a fundamental difference between
these two examples, and we must now place this discussion on firmer ground. We begin by
stating explicitly what is the difference between the ways in which we addressed gravita-
tional potential energy on the one hand, and elastic energy in a solid on the other. In the first
case, we used the actual gravitational force to define and calculate potential energy. In the
other case, we defined macroscopic properties of the material (the elastic moduli) and then
explained these properties in terms of electrostatic forces acting at the atomic level. The
description of elasticity in terms of atoms, crystalline structure and electrostatic forces may
be helpful, but is not required in order to have a full quantitative description of elastic strain.
The elastic modulus is an example of a macroscopic property. Macroscopic properties

provide a phenomenological description of the behavior of a system.By thiswemean thatwe
measure and understand the behavior of the system frommacroscopic observations (the phe-
nomena thatwecanobserve),without regard to theultimatephysicalmechanismthatexplains
theobservedbehavior. In thisexample, thephysicalmechanismcanonlybeunderstoodfroma
microscopicdescriptionofthesystemattheatomicormolecularlevel.Manynaturalprocesses
besideselasticitycanbeunderstoodfromthesetwodistinctandcomplementarypointsofview,
the macroscopic or phenomenological and the microscopic or atomic. Both descriptions are
correctanduseful, andcombiningbothviewsusuallyallowsus togainadeeperunderstanding
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of a process. The two descriptionsmust, of course, bemutually consistent. Thermodynamics
is the phenomenological description of energy conversion processes and of many of its con-
sequences, including chemical equilibrium. The complementary microscopic description is
providedbystatisticalmechanics.Althoughwewillnotencounter formalstatisticalmechanic
derivations in this book, I will introduce some of the key concepts of statistical mechanics
and use them to understand the physical foundation of some thermodynamic concepts and
relationships that may otherwise appear obscure or arbitrary.
In contrast to our discussion of elasticity, where complementary macroscopic and

microscopic descriptions are possible, our description of gravitational processes is purely
phenomenological and we do not seek a microscopic description of, for example, grav-
itational potential energy. Why this difference? The answer rests partly on the fact that
gravitational and electromagnetic forces have vastly different magnitudes. Physicists
describe this difference by stating that gravity is exceedingly weak (by about 40 orders
of magnitude) compared to electrostatic force. This is not to say that physicists are not
interested in a microscopic description of gravity – they are, but this is still one of the
major unresolved problems of physics.As planetary scientists, wemay recast the distinction
between gravitational and electrostatic forces by saying that there is commonly little overlap
between the respective scales of length and mass over which each of these two forces is the
dominant one.Gravity is negligible compared to electrostatic forces for distances andmasses
such as those characteristic of atomic and molecular structure (e.g. the structure of a crystal
or the behavior of a fluid at the molecular level), in other words, what we call the micro-
scopic description of nature. Conversely, gravity is the dominant force when we consider
masses and length scales such as those that are typical of our macroscopic view of nature.
This is certainly true of masses of the order of planetary bodies, but also of much smaller
systems, down to, for example, grains of sand in a clastic sediment – forwhat is the force that
drives sedimentation? There are macroscopic planetary environments in which electrostatic
forces are important, however. A simple example is that of flocculation of clay particles.
At length scales much smaller than those of individual atoms, such as those character-

istic of the atomic nucleus, both gravitational and electrostatic forces become negligible
compared to the strong nuclear force. Otherwise, how could a nucleus made up of a large
number of equally charged protons be stable? The strong nuclear force, which is responsible
for binding protons and neutrons in atomic nuclei, is involved in the liberation of energy by
nuclear processes. One example of this is the conversion of mass to electromagnetic energy
by nuclear fusion in stellar cores. Another example is spontaneous radioactive decay, in
which mass is converted to either kinetic energy of subatomic particles (during alpha and
beta decays) or electromagnetic energy (gamma radiation). Radioactive decay is of critical
importance in the energy budget of many planetary bodies.

1.8 Energy associated with electric andmagnetic fields

1.8.1 Electrostatic forces

The magnitude of the electrostatic force, |f̄e|, between two electric charges, q1 and q2,
separated by a distance x in vacuum is given by Coulomb’s law:

|f̄e| =
1

4πε0

|q1||q2|
x2

, (1.38)
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where ε0 is a constant called the permittivity of free space (Appendix 1), and the SI unit
of charge is the coulomb, symbolized C. The intensity of the electric field, E, is the force
exerted per unit of charge (e.g. in units of NC−1). For a point charge of magnitude q in
vacuum it is given by:

E = q

4πε0x2
. (1.39)

Coulomb’s law is formally identical to Newton’s law of gravitation. For instance, compare
the equations for the gravitational and electric field intensities, g and E (1.7) and (1.39).
Both field intensities decrease with the square of distance, and both are proportional to the
magnitudes of the property that generates the field (mass or electrical charge). A crucial
difference between the two physical laws is that gravity is always attractive, whereas elec-
trostatic force can be attractive or repulsive, depending on whether the charges are different
or alike, respectively. This is the reason why equation (1.38) uses the absolute value of
the charges, |q|, whereas no such specification is needed in Newton’s law of gravitation.
Another important difference is that all materials behave identically relative to gravity, so
that the universal gravitation constant, G, is unique. In contrast, different materials behave
differently in the presence of an electric charge, so that if the charges are separated by any
medium other than vacuum the constant ε0 must be replaced by ε, the permittivity of the
material in question. For all materials, ε > ε0, so that the force between electric charges is
maximum in vacuum.
Electrostatic and gravitational forces are also of vastly different magnitudes, as we

mentioned in the previous section. We quantify this statement in the following Worked
Example.

Worked Example 1.4 Relative magnitudes of gravitational and electrostatic forces

Let us compare the relative strengths of gravitational and electrostatic forces at atomic length
scales and planetary length scales. From Newton’s law, equation (1.2), and Coulomb’s law,
equation (1.38), we derive the ratio of the gravitational force |f̄g| to the electrostatic force
|f̄e| between two bodies with masses m1 and m2, carrying electric charges q1 and q2 and
immersed in a medium of permittivity ε:

|f̄g |
|f̄e|

= 4πεG
m1m2

|q1||q2| . (1.40)

Because gravitational and electrostatic forces are both described by inverse square laws this
ratio is independent of the separation between the objects. It depends only on their mass to
charge ratio and on the permittivity of the surrounding medium. Given that electrons are the
smallest stable charged particles (they carry the unit of electric charge) we can use the mass
and charge of the electron to get an idea of the intrinsic difference between gravitational
and electric forces. Substituting the appropriate values for the electron (Appendix 1), and
taking ε = ε0 (i.e. electrons in vacuum), we find:( |f̄g|

|f̄e|

)
electron

≈ 2.4× 10−43. (1.41)
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In other words, gravity is some 42 orders of magnitude weaker than the electrostatic force!
A major unsolved problem of physics is why this difference is so vast (see, for example,
Randall, 2007). As planetary scientists, we can use this result to reassure ourselves that
when we study planetary systems and materials at the microscopic level we can neglect
gravity.
But if gravity is so much weaker than electrostatic forces, then under what conditions

does gravity become the dominant force? Let us consider two bodies of identical mass,
m, carrying identical charges, q, and immersed in a medium of permittivity ε. We make
|f̄g| = |f̄e| and we obtain from equation (1.40):

q = (4πεG)1/2m. (1.42)

We seek an estimate of the characteristic size, λ, of a particle for which this equality is likely
to be satisfied. For particle diameters greater than λ gravity will prevail over electrostatic
forces (although of course the size has to be considerably greater than λ for the difference
to be significant). Let each of the bodies be a sphere of radius λ and density ρ. The mass of
each sphere is given by:

m= 4

3
πλ3ρ. (1.43)

The dielectric strength of a material is defined as the intensity of the electric field, E, under
which the material breaks down and starts conducting electricity. For example, lightning
occurs when the dielectric strength of air is exceeded. In our example, the dielectric strength
of the medium separating the spheres is what controls the maximum amount of charge that
can be stored in them. We next state without demonstration the following relationship
between the electric charge q in a sphere of radius λ and the intensity of the electric field,
E, at the surface of the sphere

E = q

4πελ2
. (1.44)

This result follows from a theorem of vector calculus known as Gauss’s theorem (see, for
example, Sokolnikoff & Redheffer, 1966, p. 397). It says that the charge behaves as if it
were concentrated in the center of the sphere (compare equation (1.39)). The electric field
is maximum at the surface of the sphere and falls off away from it following the inverse
square law. If the sphere is immersed in a medium of dielectric strength km, then it can
sustain a maximum electric field E = km, and can thus store a maximum q of:

q = 4πελ2km. (1.45)

Substituting equations (1.43) and (1.45) in equation (1.42) and solving for λ:

λ= 3ε

ρ (4πεG)1/2
km. (1.46)

Let us assume that the medium separating the spheres is a gas at low pressure ≤ 1 bar.
The permittivity of gases at low pressure does not differ significantly from the permit-
tivity of vacuum, so we make ε = ε0. Air at 1 bar has a dielectric strength km ≈ 3
× 106 N C −1. This value decreases with decreasing pressure, attains a minimum at
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pressures of about 0.01 bar, and then increases again approaching a value of ∼ 109 NC−1
for very rarerified gases, such as those in interplanetary space (see, for example,
https://commons.lbl.gov/display/ALSBL6/Dielectric+strength+of+air).Taking a character-
istic value of ρ for rocks of 3000 kg m−3, we get values for λ ranging from 300 m for air at
1 bar to 100 km for the interplanetary medium. In between, there is a range of gas pressures
(≈ 0.01 bar) for which λ becomes very small, perhaps of the order of millimeters.
These numbers mean that for planetary bodies larger than about 100 km electrostatic

forces can never be greater than gravitational forces, because the charges that would be
required to produce such forces would be dissipated in electrical discharges. For rock bod-
ies in an atmosphere such as Earth’s, the calculated size limit is about 300 m. In practice
the crossover lengths must be much smaller than these, perhaps by several orders of mag-
nitude, because even if the dielectric strength of the medium is not approached there are
few processes in planetary environments that can generate electrical charges of the high
magnitudes that would be required to compete with gravitational forces.

1.8.2 Atomic bonding

Electrostatic forces are responsible for atomic bonding. Charged particles in an electrostatic
field have electrostatic potential energy, U e, which accounts for interaction between two
oppositely charge particles separated by a distance r in vacuum that we write as:

U e = 1

4πε0

q1q2

r
. (1.47)

This equation is analogous to (1.6), for gravitational potential energy. As in that case we
set Ue = 0 at infinity, but the sign convention is opposite to that of gravitational potential.
This is convenient because electrostatic forces can be both attractive and repulsive (e.g.,
Griffiths, 1999, p. 90–96), but it makes no difference for the present discussion.

In an ionic compound, such as the mineral halite, the crystalline structure is held together
by electrostatic attraction between oppositely charged ions. The lattice energy of an ionic
crystal is defined as the energy released when the free ions in a gas phase come together to
form the solid (e.g., Holbrook et al., 1990). By “free ions” we mean an ideal situation in
which the ions are infinitely distant in vacuum. If only one ion each of sodium and chloride
were involved, the lattice energy of sodium chloride would be the electrostatic potential
energy Ue (given by equation (1.47)) for a Cl− anion and a Na+ cation separated by the
interatomic distance in halite, r. Note that because the ions have opposite charges Ue < 0.
This is the amount of electrostatic potential energy that was “lost” when the ions moved
from infinity (Ue = 0) to their equilibrium position. Of course, the energy is not lost but
converted to some other type of energy. In this case, the electrostatic potential energy of ions,
which is a microscopic property of the system, is dissipated as heat when the crystal forms.
This heat is what we call the lattice energy of the crystal, which is a macroscopic property.

In practice, a calculation based on equation (1.47) does not yield the correct value of
lattice energy because one must consider not just the force between individual ions (or, in
the language of physics, point charges) but rather interactions among electrostatic fields
arising from a distribution of point charges. Each anion and cation in the structure of halite
interacts electrostatically not just with one nearest neighbor of the opposite charge, but with
many ions of both equal and opposite charges, located at different distances. If the crystalline

http://https://commons.lbl.gov/display/ALSBL6/Dielectric+strength+of+air
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Fig. 1.5 Correlation of single-pair interatomic electrostatic potential energies (Ue) with melting points of alkali halides
(melting points from CRC Handbook of Chemistry and Physics).

structure of an ionic compound is well known, then its lattice energy can be calculated on the
basis of equation (1.47) and a set of geometric parameters known as Madelung constants,
that account for interactions among distant ions (see Moody & Thomas, 1965). A simpler
approach is Kapustinskii’s equation (Kapustinskii, 1956; Moody & Thomas, 1965), which
is based on equation (1.47) and a single constant that depends on the number of atoms
per formula unit and that essentially sums up the contributions of all significant Madelung
constants. Both of these approaches entail the calculation of a macroscopic property, the
lattice energy, from considerations of the microscopic structure of the system.
Even if equation (1.47) does not yield exact lattice energy values, the general validity of

this discussion can be gauged by comparing values of Ue calculated with equation (1.47)
to the melting points of simple ionic compounds (Fig. 1.5).As anions and cations get larger,
the value of r increases and the absolute value of Ue decreases. For example, given that
ionic radii of both halogens and alkali metals increase with increasing atomic number, the
electrostatic potential energy calculated with equation (1.47) should become a negative
number of smaller absolute magnitude for alkali halides of progressively higher atomic
number combinations. NaF has the shortest atomic bond among all the halides shown in
Fig. 1.5, so that its formation releases the greater amount of electrostatic potential energy.
NaF should thus have the strongest atomic bond, or, in other words, the highest melting
point. This is indeed the case (Fig 1.5). Melting points are negatively correlated with Ue ,
as we should expect from the fact that formation of shorter bonds releases a greater amount
of electrostatic potential energy, so that they require higher energy to be broken.
Pure ionic compounds are rare among planetary materials. In particular, silicates contain

a complex and variable combination of covalent, ionic and van derWaal’s bonds. Definition
of lattice energy in such compounds is less straightforward (e.g. Glasser & Brooke Jenkins,
2000; Yoder & Flora, 2005), but chemical bonding in them is nonetheless a consequence of
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the fact that, in order to break apart their crystalline structure, it is necessary to performwork
against electrostatic forces. Electrostatic forces are also responsible for the divergence of
the behavior of real gases from that predicted by the ideal gas EOS. For instance, real gases
are able to condense as liquids but ideal gases are not. Electrostatic forces are responsible
for this difference.

1.8.3 Magnetic forces

Coulomb’s law describes the force between static electric charges. If electric charges are in
motion, which is what we call an electric current, an additional force arises betweenmoving
charges. This is what we observe as a magnetic force. The magnetic field generated by an
electric current is described by amathematical equation known as Biot–Savart law, which is
more complicated than the equations that describe the gravitational and electrostatic fields.
I will not present this equation explicitly (see, for example, Griffiths, 1999), but I will state
two important properties of the magnetic field, symbolized by B. First, the intensity of the
field generated by a current flowing in an electrical conductor is directly proportional to the
intensity of the current (amount of charge moving per unit of time). Second, the orientation
of the magnetic field is perpendicular to the current direction.
Magnetic fields act only on moving electric charges. Stationary electric charges, or par-

ticles with no electric charge, do not interact with a magnetic field and are subject to no
magnetic force. A moving charge is subject to a magnetic force that has a magnitude pro-
portional to: the intensity of the magnetic field, the magnitude of the electric charge, and
the component of the charge’s velocity perpendicular to the field. The magnetic force,
described mathematically by the Lorentz force law, is oriented perpendicular to the direc-
tion of motion of the charge, i.e. the current direction (Fig. 1.6). If a charged particle moves
in a direction parallel to that of the magnetic field then there is no magnetic force.
Because of theway inwhichmagnetic forces act onmoving charges, a stationarymagnetic

field (one that does not change, in intensity nor orientationwith time) performs nowork.This
is so because the magnetic force is always perpendicular to the displacement of the particles
that feel the force (Box 1.1). In principle, then, no energy would appear to be required in
order to maintain a magnetic field, but there are some hidden liabilities here. In the first
place, the magnetic field exists as a result of an electric current and all electrical conductors

I
I

I
B B

FL = 0

B

FLFL

Fig. 1.6 Relationship between the magnetic field, B, the electric current, I, and the Lorentz force, FL. When B and I are parallel
FL = 0.
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have a finite resistance that dissipates some of the electrical energy in the current (kinetic
energy of moving charges). This particular type of energy conversion (electrical energy to
heat) is called ohmic heating (because Ohm’s law relates current intensity and electrical
resistance to energy dissipation). Sustaining a magnetic field requires a constant supply
of electrical energy that is dissipated as heat. Secondly, the Lorentz force is perpendicular
to the direction of motion of charges (a microscopic concept) but not necessarily to the
direction of motion of macroscopic parcels of the conductor that carries the charges. If the
conductor moves in response to the Lorentz force then work is certainly being performed.
The energy must come from the electric current that generates the magnetic field, i.e. the
intensity of the current must increase in order to balance the work performed by the Lorentz
force. The magnetic field acts as a transfer medium for this energy.
All planets in the Solar System with the exception of Venus and Mars have magnetic

fields (Pluto is not a planet). Even if a planetary magnetic field performed no work, and
as we shall see this is not the case, its existence implies that there must be a source of
energy that generates the electric current responsible for the magnetic field, and that at least
some of this energy is dissipated by ohmic heating. There are good reasons to hypothesize
that the origin of planetary magnetic fields is circulation of electrical currents in the deep
interiors of the planets, and that the currents are generated by a process that is described as
a self-excited planetary dynamo (Bullard & Gellman, 1954). The details of this process are
fiendishly complex and a full discussion is beyond the scope of this book – see for example
Buffett and Bloxham (2002), Jones et al. (1995), Kuang and Bloxham (1997), Olson et al.
(1999).
The existence of planetary dynamos is based on the fact that there is an inverse to Biot–

Savart law: if a material that contains free electric charges (e.g. electrons in an electrical
conductor) moves in a magnetic field, then an electric current will flow in the conductor,
with an intensity proportional to the intensity of the magnetic field. The energy that appears
as electrical energy does not come from the magnetic field, but from whatever is the source
of the force that moves the conductor in the magnetic field. The explanation for planetary
magnetic fields is that electrical conductors move in the planet’s magnetic field, inducing
electric currents which in turn generate the magnetic field – hence the term “self-excited”.
The nature of the electrical conductor varies among different planets. It is likely to be
molten metal in the Earth’s core, pressure-ionized hydrogen in Jupiter and Saturn and
electrolyte-rich aqueous solutions in Uranus and Neptune.
Planetary dynamos would come to a stop, and planetary magnetic fields would collapse,

in the absence of an energy source that keeps the electrical conductor moving. That energy
source is heat, so we must look for processes that can convert thermal energy to mechanical
energy.One such process, and the one that is thought to be responsible for planetarymagnetic
fields, is thermal convection. We discuss convection in Chapters 3 and 4. For now we
notice that one of the outcomes of convection is to transform thermal energy to kinetic
energy. In an electrically conductive layer, such as the Earth’s core, this kinetic energy is
dissipated by a combination of processes (Fig. 1.7). Some of it is dissipated as heat by
friction in the convecting medium – this process is called viscous heating and occurs in
any convecting material, whether or not it is electrically conductive. The rest of the kinetic
energy is converted to electric current (i.e. electric energy) and some of it is dissipated by
ohmic heating. The intensity of the current, and hence the rate of conversion of kinetic
energy that is required to sustain it, is a function of the magnitude of the work performed
by Lorentz forces. Some of this work is performed by the planet’s magnetic field outside
of the electrically conductive layer in which the magnetic field is generated, and dissipates
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Fig. 1.7 The energetics of planetary magnetic fields. The box is the conductive layer in which the field is generated. The layer
absorbs thermal energy (Qin) from sources such as crystallization and radioactive decay, and expels thermal energy
(Qout ) to the overlying cooler environment. Uk is kinetic energy of the moving conductor. This energy is dissipated by
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energy, for instance, by heating of conductive plasma in the planet’s atmosphere or in the
interplanetary environment. The fraction of energy that is dissipated in this way is probably
negligible. Most of the work done by Lorentz forces translates to motion of the conductive
material that generates the magnetic field and is ultimately dissipated by viscous heating.
Suppose that no energy is dissipated externally to the layer in which the magnetic field

originates, i.e. we somehow manage to eliminate viscous and ohmic heating in the atmo-
sphere and space environment (see Fig. 1.7). Then a combination of viscous and ohmic
dissipation would return all the kinetic energy of convection as heat to the same thermal
reservoir from which heat was derived to drive convection in the first place. This mecha-
nism would appear to be capable of operating indefinitely without influx of energy. There is
nothing in the law of conservation of energy that would prevent it. And yet such a perpetual
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motion machine is impossible. The Second Law of Thermodynamics requires a thermal
gradient in order for conversion of heat to mechanical energy to take place, which means
that the convective layer must lose heat to its environment, or convection will stop.

1.9 Thermal energy and heat capacity

Heat and thermal energy are not the same. The relationship between the two concepts
parallels that between mechanical energy and work. Heat is a quantity that measures the
exchange of thermal energy between systems, or parts of a system, that are at different
temperatures. I have taken for granted that thermal energy, and heat, are equivalent to other
types of energy, and that they are measured in the same units (Joules in the SI system). The
validity of this statement is not evident a priori, and is based on experimental observations,
beginning with those of James P. Joule in the mid nineteenth century.
Given that heat flows down a temperature gradient, and that heat flow is a transfer of

thermal energy, it follows that temperature is an indicator of the thermal energy content of
a system. It is important to emphasize: temperature is not energy, but it must vary directly
with thermal energy content. A somewhat imperfect analogy is the position of a body in
a gravitational field, e.g. elevation above the surface of a planet. Elevation is not energy,
but it is related in a direct way to potential energy (equation (1.6)). Left alone, a body will
fall to a lower elevation and transfer potential energy, via work of the gravitational force,
to kinetic energy. A body at high temperature relative to another one will transfer thermal
energy to the latter, via heat flow.
Quantifying the relationship between temperature and thermal energy begins with the

definition of heat capacity, symbolized by C. The heat capacity of a system is the ratio
of the heat absorbed by the system to its temperature increase. Because heat capacity is
generally not a constant, the definition is cast in differential form, i.e.:

C = dQ

dT
, (1.48)

where dQ symbolizes heat absorbed by the system. The sign convention is important and
must be emphasized: dQ> 0 means that the system absorbs heat. Heat capacity is therefore
always a positive quantity. Definition (1.48) is incomplete, because, unless one precisely
specifies under what conditions heat transfer takes place, the value ofC is not well defined.
Consider a systemmade up of a fixed amount of liquid water. If the system absorbs the same
amount of heat at constant volume (e.g. the water is held in a perfectly rigid container) and
at constant pressure (the container is perfectly flexible and transmits atmospheric pressure),
the temperature increase will be greater in the former case than in the latter. This is so
because, if the volume is not allowed to change, then all the heat becomes thermal energy.
On the other hand, volume increases at constant pressure, so that some of the heat becomes
expansion work. In this case the increase in thermal energy, and hence in temperature, will
be less than in the constant volume case. Consider now the same system in the flexible
container but at the liquid–gas phase transition temperature (i.e. the boiling point of water).
As long as both a liquid and a gas phase are present, the heat capacity is infinite, for in this
case dT= 0 for finite values of dQ.
We must specify the exact conditions under which the heat transfer process takes place.

This applies to all thermodynamic processes, and is known as imposing constraints. A
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possible constraint is that nowork be performed during heat transfer, so that all heat becomes
thermal energy. We symbolize the no work constraint with the subindex {W}, so that:

C{W } =
(
dQ

dT

)
{W }

(1.49)

means heat capacity measured under conditions such that no work is performed. If the only
kind of work that we are concernedwith is expansionwork then the constraint {W } becomes
simply a constant volume condition (equation (1.19)). We define the constant volume heat
capacity for a homogeneous system as follows:

CV =
(
dQ

dT

)
V

. (1.50)

If the system is able to perform other types of work, such as gravitational or electrostatic
work, elastic shear work or work by a Lorentz force in a magnetic field, then the {W }
constraint must be defined differently.
If a system absorbs heat under conditions such that no work is performed then its energy

content must increase by an amount equal to the heat absorbed. This energy content is
measured by the thermodynamic state variable (or state function) internal energy, which
we will symbolize by E (this symbol is not universally used; some authors use U for
internal energy but I reserve U for various types of mechanical energy). The meaning of
state variable is that, as long as a system is at equilibrium, the value of the variable depends
only on the state of the system (as defined, for example, by its pressure and temperature)
and not on the path that the system followed to reach that state. In other words, given P
and T, the value of the internal energy of a system at equilibrium is unique. State variables
preserve no memory of the system’s history.
Internal energy, as all other thermodynamic state variables, is a macroscopic property. Its

physical interpretation requires that we discuss the system from amicroscopic point of view
(Section 1.14), but its macroscopic definition is simple and follows from equation (1.50).
For systems for which the only possible type of work is expansion work, and in which no
phase transitions nor chemical reactions take place, the heat exchanged at constant volume
must be equal to the change in internal energy, so we can rewrite equation (1.50) as follows:

CV =
(
∂E

∂T

)
V

. (1.51)

This equation can be taken as the definition of either internal energy or constant volume
heat capacity. Which of the two we choose is not important. What matters is that it allows
us to calculate things – this is the essence of what an operational definition is. Note that this
is the definition of internal energy only if expansion work is the only possible type of work
for the system of interest. If other types of work are possible, then the general definition of
internal energy is the following:

C{W } =
(
∂E

∂T

)
{W }

. (1.52)

The derivative symbols in equation (1.50) have become partial derivative symbols in
equations (1.51) and (1.52). This is so becauseE is a state function whose value is fixed by
the values of the independent variables that define the state of the system. In other words,
E is a function of several variables (see Box 1.3) and the notation in equation (1.51) is
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an unambiguous indication: (i) that the two independent variables that we are using in this
particular case to define the state of the system are temperature and volume, and (ii) that
we want to measure the rate of change in internal energy with respect to temperature while
holding the system’s volume constant. Volume is the only variable that is constrained to be
constant. Other variables, such as pressure, vary during constant volume heating, but the
energetic consequences of changes in these other variables are implicitly built into equation
(1.51) (see also Box 1.4).

Box 1.4 Comments on the notation of thermodynamics

It has been pointed out that the notation: (
∂y

∂x

)
z

(1.4.1)

is unique to thermodynamics and is at odds with standard mathematical usage. Some authors (for
example, Truesdell, 1984) have called for the abolition of this supposed abomination, and a recasting of
thermodynamics in standard mathematical notation. This would be desirable from a formal point of view,
but in my opinion it ignores the physical essence of thermodynamics, or at least of its practical applications.
Although the state of a system is defined by the values of only a few intensive variables (at least two) there
are other quantities that do not vary independently.

Say that y = y(x , z) is a state function. Geometrically this is a two-dimensional surface that exists in a
space of at least three dimensions. In thermodynamics the number of dimensions of the embedding space
is always more than three, meaning that y is a function not only of x and z, but also of other variables, u,
v, w, etc. But once we specify that we are interested in the behavior of y as a function of x and z we lose
the freedom to choose the values of these other variables – they are determined by the intersection of the
y surface with the corresponding coordinates. The surface y = y(x , z) is only one of many possible surfaces
that determine the value of y. We could also have chosen y = y(v,w), and then the values of x and z
would be fixed by the intersections of this other surface. The expression:

dy =
(
∂y

∂x

)
z
dx +

(
∂y

∂z

)
x
dz (1.4.2)

tells us unequivocally which is the particular y surface that we are considering. The advantages of
thermodynamics’s peculiar notation will become clear in subsequent chapters.

The partial derivative notation was not used in equation (1.50) because Q is not neces-
sarily a function of any other variable. In fact, an equation such as (1.50) is mathematically
sloppy, though useful from a physical point of view. All this equation is saying is that we
want to track how absorption of an infinitesimal amount of heat changes the temperature
of a system, even if in general there is no function Q = Q(T,V) that we can differentiate
to obtain CV . This is not true of state variables: the function E = E(T,V) exists and is
differentiable. This distinction is commonly formulated as one between exact and inexact
differentials. The derivatives of state variables are exact differentials, which means that the
values of state variables are given by differentiable functions. In contrast, dQ and dW are
inexact differentials: they represent infinitesimal amounts of heat transferred or work per-
formed, but there may not exist a function of other thermodynamic variables that may allow
us to calculate derivatives of Q andW. A corollary of this statement is that Q andW cannot
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be state variables – they may not even be functions! This distinction is certainly correct
and has further mathematical implications (see, for example, Lewis & Randall, 1961, or
Glasstone, 1946) but these will not be pursued here, as they are not essential to our goals.
We now have a precise definition of heat capacity at constant volume. Another heat

capacity that is well defined is the heat capacity at constant pressure, CP , which is defined
in terms of heat transferred as:

CP =
(
dQ

dT

)
P

. (1.53)

As with CV , we wish to recast this expression in terms of a state variable in order for it to be
of use in thermodynamic calculations. Internal energy is not a convenient choice, because
when heat is absorbed at constant pressure there is a change in volume and hence expansion
work takes place. Some of the heat does not become internal energy, but it is not a priori
obvious how much.
In order to place this discussion on firm ground it is necessary to give a precisemathemat-

ical definition of the First Law of Thermodynamics. Before we do that in the next section,
there is one additional issue that needs to be clarified. Our definitions of heat capacity and
internal energy make no mention of the size of the system. Clearly, the amount of heat that
is required to change the temperature of a system by a certain amount depends both on some
intrinsic material property of the system and on the size of the system. In thermodynamic
calculations we commonly wish to do so independently of system size. One way to do that
is to work with material properties and other thermodynamic variables on a molar (per mol)
basis. Variables such as molar heat capacity, molar volume and bulk modulus are intrinsic
characteristics of a substance or system: they are material properties that are independent of
the system’s size. A thermodynamic variable or property that is independent of system size
is called an intensive variable. Molar heat capacity, molar volume, molar internal energy
and bulk modulus are examples of intensive variables, and are thus material properties. The
total heat capacity of a system, its total internal energy, or its total volume, are examples of
extensive variables, and are the product of an intensive variable times the size of the system.
Pressure and temperature are intensive variables too, but they are not material properties.
Intensive variables will be represented with uppercase non-bold symbols (e.g. CV , E, V )
and their extensive counterparts with uppercase bold symbols (e.g. CV , E, V ). The inten-
sive variables P and T, of course, have no extensive counterparts. In some applications we
will find it convenient to consider thermodynamic properties per unit mass. These are called
specific properties, and will be represented with lowercase non-bold symbols, e.g. cP for
the specific heat capacity or e for specific internal energy. Molar and specific properties are
simply related to one another by the molecular weight of the substance. For example, for
constant pressure heat capacities:

cP = CP

w
= CP

ρV
, (1.54)

where w is molecular weight, V is molar volume and ρ is density. I note in passing that
Guggenheim (1967) has pointed out the sloppiness of the term “molecular weight”, given,
among other things, that what this quantity actually refers to is mass. He suggested the more
precise term proper mass. Unfortunately, it does not appear that this suggestion has gained
much acceptance.
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1.10 The First Law of Thermodynamics

The First Law of Thermodynamics is the mathematical statement of the law of conservation
of energy. If we restrict ourselves to systems and processes in which work and heat are the
only pathways for energy transfer, then the statement of the First Law is simply:

dE = dQ− dW , (1.55)

where dE is an (infinitesimal) change in the internal energy of the system, dQ is the heat
absorbed by the system and dW is the work performed by the system. This sign convention
must be clearly understood and adhered-to rigorously. It is not universally used, but it is
the one that is most intuitively appealing. It is consistent with the various sign conventions
that we have established in previous sections. For example, if a system performs expansion
work on its environment in the absence of any heat exchange (dQ= 0), then dW > 0 and
its internal energy decreases. If the system loses heat without performing work (dW = 0),
then dQ< 0 and its internal energy also decreases.
The First Law as expressed by equation (1.55) is not specific about the type of work

represented by dW , but it excludes some types of energy. Processes in which there are
mass-energy conversions, such as radioactive decay and nuclear reactions, are not included
in (1.55). The First Law of Thermodynamics applies to such processes, but the equation
has to be modified in order to account for the mass-energy term. In systems that contain
non-negligible amounts of (macroscopic) kinetic energy this energy must also be added to
equation (1.51) as an extra term.
When solving an energy balance problem one starts by writing down the First Law of

Thermodynamics in a form that is appropriate to the nature of the problem at hand. For
example, if we restrict ourselves to chemical systems in which only expansion work is
possible, then equation (1.55) can be re-written as follows:

dE = dQ−PdV . (1.56)

Oncewehave chosen the appropriate expression for the First Law, the next step is to consider
whether the constraints of the problem allow any simplification. For example, for a constant
volume (isochoric) process dV = 0, so the First Law of Thermodynamics becomes:

dEV = dQV , (1.57)

where the subscript V reminds us of the constant volume constraint. One could then be
tempted to make the substitution dEV = CV dT , but before doing so the nature of the
system under study must be carefully considered. For a system that does not undergo a
phase transition (e.g. melting or vaporization), nor a chemical reaction, this substitution
is indeed valid, because in this case all of the heat that is exchanged is manifested as a
temperature change. This is called sensible heat. Heat associated with a phase transition or
with a chemical transformation is not reflected in a temperature change, and is sometimes
called latent heat. If latent heat is involved in the transformation then the substitution
dEV =CV dT is not valid.
The First Law applied to a constant pressure (isobaric) process:

dEP = dQP −PdV (1.58)
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leads to the definition of a new state variable. Using internal energy as a thermodynamic
state variable for isobaric processes leads to cumbersome equations, because isobaric heat
transfer is accompanied by a change in volume and internal energy is generally a function of
volume.To seewhy thismust be so, consider a system from themicroscopic point of view. In
general, there are electrostatic attractions and repulsions among the system’s microscopic
components (e.g. molecules in a gas, ions in a crystal) and any work performed against
those forces during a change in volume becomes electrostatic potential energy, which must
be part of the system’s internal energy. Internal energy would be independent of volume
only if there were no interatomic forces in the system. This is true only in ideal gases
(Section 1.14). For all real substances E is a function of V. Given the simplicity of equation
(1.57), however, we would like to obtain a similarly compact equation that states the First
Law of Thermodynamics for isobaric processes. In order to do this, we design a new state
variable with the desired properties. This new state variable, called enthalpy, is universally
symbolized by H , and is defined as follows:

H ≡E+PV . (1.59)

This trick – inventing new functions to make calculations easier – is a common one in
thermodynamics. It may not be a priori obvious why we would choose to define enthalpy
in this way. You can think of it initially as a useful mathematical device, but it will become
apparent that enthalpy has a clear physical meaning. Enthalpy has two important properties.
First, given that internal energy is a state variable, enthalpy is a state variable too, as pressure
and volume depend only on the equilibrium state of a system. Second, from the definition
of enthalpy it follows immediately that it has dimension of energy.
Applying the product rule for differentiation to (1.59) we see that an infinitesimal change

in enthalpy is given by:

dH = dE+PdV +V dP , (1.60)

which, for an isobaric process (dP= 0), simplifies to:

dHP = dEP +PdV . (1.61)

Substituting equation (1.58) in (1.61):

dHP = dQP (1.62)

shows that the physical meaning of enthalpy is heat exchanged at constant pressure. The
enthalpy change includes a contribution from a change in internal energy and a contribution
from expansion work (equation (1.61)). Recalling the definition of heat capacity at constant
pressure (equation (1.53)), we see that, for a process in which only sensible heat is involved:

Cp =
(
∂H

∂T

)
P

. (1.63)

1.11 Independent variables andmaterial properties

The state of a thermodynamic system is fully determined once we fix the values of a small
number of variables that we can think of as the independent variables, or control variables.
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In Chapter 6 we will prove that the state of a homogeneous system of fixed composition
at equilibrium is fully defined once we fix the values of two intensive variables. Thermo-
dynamics allows us remarkable freedom for choosing which intensive variables to use as
the independent variables. We can use this freedom to our advantage by choosing variable
combinations that are best suited to each specific problem. In chemical thermodynamics,
and especially in its applications to planetary sciences, pressure and temperature are the
two most “fundamental” independent variables, largely because they are the easiest ones
to measure, but also because understanding how a system changes as a function of these
variables, or how one of these variables changes as a function of the other (e.g. with depth
in a planetary body), tend to be some of our chief preoccupations. The molar volume of
a homogeneous systems is related to P and T through an equation of state (Section 1.4.3).
Given an EOS, we can always express one of the three variables, P – V – T, as a function
of the other two and substitute as needed in thermodynamic equations.
Equations of state arewell known for some substances but not formany others.Amaterial,

however, always has an equation of state, even if we don’t know what this equation is. This
is equivalent to saying that a given substance at a given pressure and temperature has a single
and well-defined molar volume, or, equivalently, that molar volume is a state variable. But
because EOS for many substances are either unknown or mathematically unwieldy, it is
also possible, and often advantageous, to express P – V – T relations as a set of material
properties. In practice, there are three material properties that are relatively straightforward
to measure and that show up repeatedly in thermodynamic calculations. In Chapters 4 and
8 we will see that this last attribute is not a coincidence. Two of these properties describe
the mechanical properties of the material. They are the bulk modulus K , or its inverse,
the compressibility, β, and the coefficient of thermal expansion at constant pressure, α.
Recall that K (and β) can be defined at either isothermal or adiabatic conditions (Section
1.4.3). In order to complete the thermodynamic characterization of a material we need to
describe its thermal properties as well, and this additional information is contained in the
heat capacity, either CV or CP . We have already given the mathematical definition of KT
(equation (1.21)). We repeat it here along with the definitions of molar heat capacity, CP ,
coefficient of thermal expansion, α, and isothermal compressibility, βT :

CP =
(
∂H

∂T

)
P

(1.64)

KT =−V
(
∂P

∂V

)
T

; βT =− 1

V

(
∂V

∂P

)
T

⇒KT = 1

βT
(1.65)

α = 1

V

(
∂V

∂T

)
P

. (1.66)

Material properties can be derived from the EOS (see Exercises 1.11 and 1.12) and they are
not independent of one another (Exercise 1.13).

1.12 Some applications of the First Law of Thermodynamics

1.12.1 Discontinuous phase transitions and latent heat

A phase transition is a change in the physical nature of a system that occurs in response
to a change in the values of some of the controlling intensive variables (e.g. temperature
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or pressure) but without a change in chemical composition. We will see in Chapter 7 that
there are different types of phase transitions. Themost familiar ones are discontinuous phase
transitions.As their name implies, these are phase transitions at which there is an observable
discontinuity in physical properties: melting, boiling and sublimation are familiar examples.
Latent heat is always absorbed or liberated during discontinuous phase transitions – in
fact, the existence of non-zero latent heat is the formal thermodynamic definition of a
discontinuous phase transition (Chapter 7).

Suppose that we want to know how much heat is required to convert, isobarically, 1 mol
of liquid H2O at a temperature T1 to 1 mol of H2O gas at a temperature T2 > Tvap > T1,
where Tvap is the temperature at which the liquid to gas phase transition for H2O takes place
for the pressure of interest. Because this is an isobaric transformation, the heat required to
effect this transformation equals the change in enthalpy between liquid H2O at T1 and H2O
gas at T2 (equation (1.62)). Calling this total enthalpy change�H we canwrite it as follows:

�H =�Hliquid,T1⇒Tvap +�Hliquid to gas+�Hgas,Tvap⇒T2 . (1.67)

The first and last terms on the right-hand side of the equation are, respectively, the enthalpy
changes of the liquid, from the initial temperature to the vaporization temperature, and
of the gas, from the vaporization temperature to the final temperature. They involve only
sensible heat, so we make dH = CP dT (equation (1.63)) and integrate:

�Hliquid,T1⇒Tvap =
∫ Tvap

T1

CP,liquiddT (1.68)

and:

�Hgas,Tvap⇒T2 =
∫ T2

Tvap

CP,gasdT . (1.69)

Note that if pressure were not constant, then the substitution dH=CPdTwould not be valid.
Heat capacities are not constant. They vary with temperature and, much less strongly, with
pressure. In order to integrate equations (1.68) and (1.69) it is necessary to express CP as
a function of temperature, and then integrate this function. This is discussed in Software
Box 1.1, and also in Chapter 5. The middle term on the right-hand side of equation (1.67),
�Hliquid to gas, is the energy associated with the phase transition, which for a liquid to gas
phase transition is called the enthalpy of vaporization, symbolized by �Hvap.

SoftwareBox 1.1 An introduction toMaple: calculation of heat capacity integrals and enthalpy
of reaction as a function of temperature
Thermodynamic calculations are not difficult, but they can be tedious. In my opin-
ion, there is no point in doing any calculations or routine algebraic manipulations
by hand if they can be accomplished much faster and with much less possibility of
errors creeping in by relying on symbolic algebra software. Of the several products
available, I use Maple. Throughout this book I rely on a number of Maple proce-
dures that I have written myself. All of the code is available in Windows format from
www.cambridge.org/patino_douce, from where the files can be downloaded and run.

http://www.cambridge.org/patinoprotect LY1	extunderscore douce


43 1.12 Some applications of the First Law

All you need to do is installMaple on your computer. The files can of course be opened
and edited. I am a self-taught programmer, however, so it is likely that many readers
will find better and more elegant ways of accomplishing the same tasks. If you prefer
different software, such as Mathematica or Matlab, and you are proficient in it, then it
will probably be very easy to translate theMaple code. If you have never used symbolic
algebra software before you may need to spend a few hours learning the basics of how
Maple works before you attempt to understand and run the procedures that accompany
this book. Maple can do many things. It can perform numeric calculations. It can per-
form algebraic manipulations. It can differentiate and integrate functions. It can solve
equations and systems of equations, linear and non-linear, algebraic and differential. It
can plot functions. It can read and write files. And it is a powerful programming lan-
guage, so that all of the things thatMaple does can be part of a program, which is called
a Maple procedure.
A good introduction to the use of Maple in thermodynamic calculations is to apply

it to solve the integral of the heat capacity function, which is needed to calculate the
enthalpy change of a chemical reaction at any arbitrary temperature (equation (1.100)).
The heat capacity of all substances varies with temperature but there is generally no
strong physical basis to predict the form of the function CP = CP (T). The approach that
is universally used is to measure heat capacity over a range of temperatures (see, for
example,Anderson, 2005) and fit the data empiricallywith apolynomial function.Differ-
ent functions are in use. The following, which is sometimes called the Shomate equation
(see Shomate, 1954; Shomate & Cohen, 1955), appears to work well for minerals and
fluids of geological interest:

CP = a0+ a1T + a2T −2+ a3T −1/2+ a4T 2, (S1.1.1)

where T is temperature in Kelvin and the ais are empirical best-fit coefficients. Two
geologically oriented data bases that use this equation are those ofRobie andHemingway
(1995) and Holland and Powell (1998). Many, but not all, species listed in the NIST
ChemistryWebBook also use this equation. Throughout much of this book I use Holland
and Powell’s data base, so equation (S1.1.1) is the one that we will initially implement
inMaple. Holland and Powell truncate the heat capacity function after the fourth term,
but there is no harm in programming the full equation and setting a4 = 0 in Holland and
Powell’s data.
The problem thatwewish to solve is to find the value of the following definite integral:∫ T

298
CP dT =

∫ T

298

[
a0+ a1T + a2T −2 + a3T

−1/2 + a4T
2
]
dT , (S1.1.2)

where T is the temperature of interest, and 298 stands for 298.15 K, the temperature at
which thermodynamic data are tabulated. The beauty of Maple is that we do not have
to deal with any cumbersome algebra and arithmetic. All we need to do is tell Maple
what is the function that we want to integrate and what the integration limits are, and
then ask it to integrate. Out pops a number.
The Maple procedure that performs the heat capacity integral is placed in a pack-

age, which is a file that contains a collection of Maple procedures that can be called
fromother procedures.The nameof this file isth_shomate.mw. The package contains
several procedures. The first one, named cp_sh, calculates the value of the heat
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Software Box 1.1 Continued
capacity, i.e., of function (S1.1.1). The second procedure is named intcp_sh and
calculates the definite integral of the heat capacity equation, i.e., function (S1.1.2). The
fourth procedure, named HT_sh, calculates the enthalpy at the temperature of interest
by adding the heat capacity integral to the enthalpy at 298.15 K (e.g. equation (1.100)).
Each of these procedures receives from the calling procedure an array that contains
the values of the thermodynamic properties, and a separate variable that contains the
temperature in K . The remaining procedures work in the same way but calculate other
thermodynamic functions. They will be introduced in later chapters. The procedures in
th_shomate.mw are placed in a table (one of the many Maple data structures – we
won’t get into that here), and this table is saved into a package, which is an executable
file that otherMaple procedures can call. The last line in th_shomate.mw takes care
of this, and here is a very important point: packages must be saved in a directory, or
library, that must be known by the calling procedure. The name of this directory can
be anything you want. I have chosen c:/thcalc, so you should create a directory
(or “folder”) with this name before attempting to run any of the Maple procedures
from the website. When you download th_shomate.mw you can put it in this or any
directory you wish. Then open the file and execute it (you can do this in the “Edit”
pull down menu). Execution of the file places the th_shomate executable package
in c:/thcalc, and the package is ready to be used by other procedures.
The file th_template_1.mw contains a number of commands and procedures that

are used by many of the thermodynamic calculation worksheets that we will discuss in
this and subsequent chapters. It is important to understand what each of these commands
does. I describe them in the order in which they appear in the Maple worksheet.

libname := ... tells Maple the location of the library where the packages are
stored. It must match the name used when the package was created (see above).

with (th_shomate) tells Maple to load the th_shomate package.
with (spread) tells Maple to load a standard package that enables spreadsheet
functions.

RefStateData := CreateSpreadsheet() creates a spreadsheet named
RefStateData, that is used to store standard state thermodynamic properties at
the reference conditions, 298.15 K and 1 bar. Each row in the spreadsheet contains
data for one chemical species. For now we will only use the first nine columns, but
more data columns will be occupied in later chapters. The first column contains
correlative numbers that will serve to identify the species (more on this below).
The second column stores the name of the species. Each additional column after the
second one corresponds to a thermodynamic property, generally at 298K and 1 bar.
Successive columns store the values of�fH

0
1,298, S

0
1,298 �fG

0
1,298 (the functions S

and G will be defined in later chapters) and the ai coefficients of the CP function.
Enthalpy and Gibbs free energy must be entered in kJoules, all other quantities
in Joules. The data can be entered directly in Maple, but I find it easier to store
the data (e.g. from Holland & Powell, 1998, or some other data base) in a regu-
lar spreadsheet such as QuattroPro and then copy whatever is needed to Maple.
Once you have all of the data that you will need for the calculations in the Maple
spreadsheet it is best to save it in Tab Delimited format by right-clicking anywhere
in the spreadsheet and then Export Data. It can then be imported directly into
Maple by performing the inverse operation. The data for this example are stored
in tab-delimited format in a file named spgrt.



45 1.12 Some applications of the First Law

The next block of statements is a procedure called load that loads a one-dimensional
array with the thermodynamic data for a species, identified by the number in the
first column of the spreadsheet. This is used by other procedures, for example the
following.

deltareax, that calculates�rH
0
1,298,�rS

0
1,298,�rG

0
1,298 and the�rai coefficients

that are used to integrate the �rCP equation (see equation (1.100)). These are the
differences in thermodynamic properties at the 298.15K reference temperature
(entropy and Gibbs free energy will be covered in later chapters).

Finally, procedure delH calculates the enthalpy of reaction at the temperature of
interest and 1 bar, �rH1,T (see equation (1.100)) simply by calling HT_sh in the
th_shomate package with the thermodynamic properties specific to the reaction
of interest.

All that remains now is to tellMaple what is the reaction that we want to calculate, and
where to find the data.We do this by creating a table with two columns. The first column
contains the stoichiometric coefficient of each chemical species in the reaction, positive
if it is a product, negative for a reactant. The second column contains the row number
that identifies the species in the spreadsheet that contains the data (i.e. the number in
the first column of the spreadsheet). The example given in th_template_1.mw is
for the reaction:

MgAl2O4+ 2Mg2Si2O6⇒Mg2SiO4+Mg3Al2Si3O12. (1.70)

Suppose we enter the properties for spinel in row 1, enstatite in row 2, forsterite in row
3 and pyrope in row 4. We name the table that identifies this reaction spgrt, and the
four entries in the table are: [1,3], [1,4], [-1,1], [-2,1]. All we need to do
now to calculate the enthalpy change for this reaction at any temperature we wish is to
run the procedure delH, providing it with the name of the reaction and the temperature
(see th_template_1.mw).

An isobaric discontinuous phase transition is associated with expansion work, as density
changes across discontinuous phase transition. Because pressure is constant, the magnitude
of this expansion work, Wtransition, is given by:

Wtransition = P�Vtransition. (1.70)

The molar volume of liquid H2O at 1 bar and 373 K is 1.88 J bar−1 mol−1 (convert this
number to density in kg m−3, so as to get a feeling for the relationship between density and
molar volume). The molar volume of H2O vapor at the same pressure and temperature is
3.05× 103 J bar−1 mol−1. The expansion work associated with the phase transition is thus
∼ 3 kJ mol−1. From equation (1.61) we have:

�Evap =�Hvap−Wtransition. (1.71)

The enthalpy of vaporization of H2O is 40.7 kJ mol−1. Thus, when H2O boils its internal
energy increases by∼37.7 kJ mol−1. This is about one order of magnitude greater than the
expansion work. The increase in internal energy reflects the fact that molecules in the gas
state carry significantly more translational kinetic energy than in the liquid state (Section
1.14). The increase in internal energy (i.e. molecular kinetic energy) is a microscopic
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contribution to the enthalpy of vaporization, that is distinct from themacroscopic expansion
work that is performed against the pressure exerted by the environment.
Let us define a variable �Tpot = �Hvap/CP with dimension of temperature. We can

call this variable a potential temperature, because it represents the temperature difference
that would be caused by full conversion of latent heat to sensible heat. The heat capacities
of liquid water and water vapor at temperatures in the neighborhood of the boiling point
are CP, liquid ≈ 75.9 J K−1 mol−1 and CP,gas ≈ 37.4 J K−1 mol−1. Thus, for vaporization
of water �Tpot is of order 100–1000K. This means that the first and last terms on the
right-hand side of equation (1.67) are negligible compared to the thermal effect of the
phase transition. Water vapor in the terrestrial atmosphere stores a large amount of thermal
energy, and is a major factor in driving the planet’s weather patterns (more on this in
Chapter 4). Enthalpies of crystallization are generally of smaller magnitude than enthalpies
of condensation, with�Tpot of order 10–100 K (Chapter 10). These values are nevertheless
large enough to have important effects on the energetics of planetary systems undergoing
melting or crystallization. For instance, enthalpy of crystallization of metallic Fe is almost
certainly the immediate source of heat that drives convection in the Earth’s core, and may
also drive convection in large silicate magma chambers (as an aside, I see no reason why a
partially molten metallic planetary core cannot be called a magma chamber, except perhaps
for tradition). Conversely, the large energy requirement of melting plays an important role
in the origin of planetary magmas (Chapter 10).

1.12.2 Adiabatic expansion of gases

The destructive power of pyroclastic eruptions, or of any conventional (i.e., chemical)
explosion, results from fast expansion of a gas driven by conversion of internal energy of
the gas to expansion work. Although in reality the very fast rate of expansion means that
the process is not an equilibrium one, we can at least get an idea of the magnitude of the
energy involved by treating the problem as a reversible adiabatic expansion. The First Law
of Thermodynamics for an adiabatic process (dQ= 0) is:

dE =−PdV . (1.72)

We equate the energy liberated by a pyroclastic eruption, Wpyroclastic, to the expansion
work of the volcanic gas. Because volume is not constant during this process we cannot
make the substitution: dE= CV dT, as in general internal energy is a function of volume as
well as temperature.We need to consider the total change in internal energy as a function of
the partial derivatives of E relative to the variables that we choose as independent variables
(Box 1.3). Choosing temperature and volume as the independent variables:

dE =
(
∂E

∂T

)
V

dT +
(
∂E

∂V

)
T

dV =CV dT +
(
∂E

∂V

)
T

dV . (1.73)

The energy liberated by a pyroclastic eruption is then given by:

Wpyroclastic = PdV =−
[∫ Ta

Te

CV dT +
∫ Va

Ve

(
∂E

∂V

)
T

dV

]
, (1.74)

where Te, Ve are the eruption temperature and the molar volume of the gas at that tem-
perature, and Ta , Va are atmospheric temperature and the molar volume of the gas at that
temperature. In order to solve the integrals we need explicit expressions for CV = CV (T )

and forE =E(V ). The problem is simplified enormously if we assume that volcanic gases
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behave as ideal gases, because for an ideal gas CV is constant and internal energy is a
function of temperature only, i.e. (∂E/∂V )T = 0. We derive these properties of ideal gases
in Section 1.14.1. For an ideal gas, then, but only for an ideal gas:

Wpyroclastic =−CV (Ta −Te). (1.75)

Because eruption temperature is greater than atmospheric temperature, W pyroclastic > 0.
According to our sign convention a positive valuemeans that the system (expanding volcanic
gas) performs work on its environment (hapless bystanders). Typical eruption temperatures
for silicic magmas are ∼850 ◦C, and we can take a typical atmospheric temperature to
be 15 ◦C. The major component of volcanic gases is H2O, which consists of polyatomic
molecules. In Section 1.14 we shall see that for such gases CV = 3R. Substituting these
numerical values we get an energy release per mol of erupted volcanic gas of:

Wpyroclastic ≈ 2.08× 104J mol−1. (1.76)

As an example, the 1980 eruption of Mt. St. Helen’s extruded∼ 1 km3 of tephra.Assuming
a pre-eruptive H2O content of 3 wt% and amagma density of 2700 kgm−3 we see that some
4.5 × 1012 mols of H2O were erupted. The estimated energy yield of the Mt. St. Helen’s
eruption is ∼9.36 × 1016 J.
The yield of nuclear weapons is measured in kilotons (kt), where 1 kt= 4.184 × 1012 J.

The 1980Mt. St. Helen’s eruptionwas thus equivalent (less the high energy electromagnetic
radiation and radioactive fallout) to a 22.4megaton nuclear device – or about fifteen hundred
times larger than the bomb that destroyed Hiroshima. This yield is also larger than that of
the largest thermonuclear weapon ever detonated by the USA (the ∼18 megaton Bravo
test), but less than half the size of the largest man made thermonuclear explosion: the 50
megaton Soviet “Tsar Bomba” (I don’t cease to be amazed by the fact that the pilots who
dropped this bomb, and the crews flying observer aircraft nearby, managed to survive).
You may have noticed that we calculated the magnitude of the mechanical energy liber-

ated by a pyroclastic eruption without actually integrating the expansion work term. Two
conditions made this possible: (i) our assumption that the expansion is adiabatic, and (ii) our
knowledge (or reasonable assumption) of the initial and final temperatures of the process.
Lacking this last piece of information, we would have had to derive the magnitude of the
expansion work by some other means, independent of temperature.

1.12.3 Frictional heating in faults and shear zones

When displacement occurs along a brittle fault or a ductile shear zone the frictional force
that opposes motion performs work. Frictional forces are dissipative, which means that the
work that they perform is converted to heat. What is the maximum temperature increase at
a fault as a result of this energy dissipation? Let us assume that frictional heat is distributed
uniformly throughout a finite volume ofwidth z, bracketing the fault or shear zone (Fig. 1.8).
The actual magnitude of z depends on the rate of dissipation of mechanical energy (i.e. the
strain rate) – more on this in Chapter 3. We consider the volume of rock enclosed within
width z to be an adiabatic system. The change in internal energy of the heated rock volume
is then given by (compare with equation (1.72)):

dE =−PdV − (−dW ) . (1.77)

In this equation we distinguish between expansion work arising from the change in tem-
perature of the rocks, and work performed by the frictional force. The work performed by
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A
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A

Fig. 1.8 Frictional heating of a volume Az by dissipation of frictional work on a fault plane of area A (grey).

the frictional force on the system is dW . The work performed by the system against the
frictional force is thus −dW . A fault or shear zone moves when the force generated by the
shear stress component, τ , equals the frictional force. If the total surface area of the fault
plane is A then the frictional force is τA. Calling the displacement along the fault dx, dW
is given by:

dW = τAdx, (1.78)

where, because frictional forces always act in the direction of displacement, I have been
sloppy and neglected the vector notation (see Box 1.1). Faulting can be treated as a constant
pressure process, because pressure inside a planet is determined by depth and themagnitude
of the instantaneous motion along a fault or shear zone is generally negligible compared to
depth. We thus write dE as follows:

dE = dH −PdV =CP dT −PdV (1.79)

so:

CP dT −PdV =−PdV − (−dW ) . (1.80)

Substituting in (1.78):

CP dT = τAdx. (1.81)

Note that CP in this equation is the extensive variable, i.e. the total heat capacity of the
mass of heated rock. Let V =Az be the total volume of heated rock (Fig. 1.8), and N be the
number of mols of substance contained in this volume. If we symbolize the molar volume
of the substance with V and its molar heat capacity with CP , then:

N = V
V
= Az

V
= CP
CP

. (1.82)

Substituting in (1.81) and rearrangingwearrive at an equation in termsof intensive variables:

dT = τV

zCP
dx, (1.83)
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from which we can also derive the rate of temperature increase, dT/dt (where t = time):

dT

dt
= τV

zCP

dx

dt
. (1.84)

The value of τ is determined either by the brittle shear strength for rocks (for a brittle fault)
or by the yield strength for a given ductile strain rate for a ductile shear zone; typical values
in both cases are of the order of 100 to a few 100 bar. Given that all three parameters: τ , V
and CP vary within fairly restricted ranges for planetary materials, the rate of temperature
increase is controlled primarily by thewidth of the heated rock volume, z. Because the length
scale z is controlled by heat diffusion (Chapter 3) we can expect that it varies inversely with
the strain rate,whichwe can represent by dx/dt.We can thus expect a very strong dependency
of dT/dt on dx/dt, because as strain rate increases, z decreases and both effects combine to
make dT/dt larger. The ductile behavior of rocks is strongly temperature-dependent, with
viscosity decreasing exponentially with increasing temperature (see for instance Turcotte
& Schubert, 2002, Chapter 7). A positive feedback mechanism results, that focuses ductile
deformation in relatively narrow shear zones, in which most of the temperature increase,
and consequent lowering of the viscosity, take place.
As a numerical example, consider “slickensides”, that probably form as a result of instan-

taneous heating at a fault during brittle failure (i.e. earthquakes). For a slickenside width z
= 5 mm, and fault motion during an earthquake x= 1 mwe obtain a maximum temperature
increase (for τ of a few hundred bars) �T ≈ 2000 K. Fault motions during earthquakes
may last for only a few seconds, so that the heating rate may be of the order of hundreds of
degrees per second.

1.13 Enthalpy associated with chemical reactions

1.13.1 Enthalpy of reaction and enthalpy of formation

Phenomena such as condensation of solids in the solar nebula, generation and crystallization
of magmas, metamorphism, weathering, diagenesis, precipitation of carbonate minerals
from seawater and crystallization of evaporites, are chemical reactions. The essence of
a chemical reaction is that atoms of certain elements are transferred among phases, or
rearrange themselves into different molecules inside a homogeneous phase (e.g. chemical
reactions between gas species in a homogeneous atmosphere). Atomic bonds are broken
and form during chemical reactions, as a result of which there is a net surplus or deficit
of energy that is exchanged with the environment. The macroscopic manifestation of these
microscopic energy transactions is the enthalpy change associated with a chemical reaction.
This enthalpy is called the enthalpy of reaction and is denoted by�rH. Enthalpy of reaction
is the amount of heat liberated or absorbed during a chemical reaction at constant pressure
and constant temperature. In Chapters 4 and 5 we will arrive at a precise and rigorous
definition of chemical equilibrium and we will see that enthalpy of reaction is an important
part of that definition and of the algebraic procedure by which we calculate the location of
chemical equilibria. Enthalpy of reaction behaves as latent heat: it is heat exchangedwithout
a change in temperature. You may think that this statement cannot possibly be correct, as
you are probably familiar with endothermic and exothermic reactions, during which the
temperature of the system decreases and increases, respectively. The answer to this puzzle
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is that these temperature changes are caused by the fact that the rate of heat transfer is much
slower than the rate of chemical reaction. For example, during an exothermic reaction
enthalpy is liberated at a rate faster than the rate at which heat can be carried away from the
site where the reaction takes place.As a result, latent heat (enthalpy of reaction) is converted
to sensible heat (temperature increase).
We can write the algebraic definition of enthalpy of reaction by considering a generic

chemical reaction between reactant A and product B:

A→ B. (1.85)

The enthalpy of reaction at a given T and P is the difference between the enthalpy of B and
the enthalpy of A at those conditions:

�rH =HB −HA. (1.86)

But what are the enthalpies of A and B? The First Law of Thermodynamics codifies the
law of energy conservation: it states that the total amount of energy is conserved, but says
nothing about the absolute magnitude of energy.Amore formal statement of this fact is that
the First Law of Thermodynamics (equation (1.55)) is a differential equation and, as such,
it admits an infinite number of solutions that differ by an additive constant (the integration
constant). This is not a problem, because all we care about is the difference in enthalpy
between different states of a system. This is true in general: even though we did not state
it explicitly, in all examples that we have discussed thus far we have calculated differences
in enthalpy, internal energy or other types of energy, and not their absolute values. In the
case of a chemical reaction, we are not interested in the absolute magnitudes of HA or
HB , all we are interested in is �rH . Because enthalpy is a state variable, the First Law of
Thermodynamics assures us that, as long as we define individual enthalpies relative to the
same reference level, the value of �rH at any given T and P is unique and well defined.
We need to define some arbitrary reference level relative to which we will measure

enthalpies – the integration constant, if you wish. We did just this when we defined poten-
tial energy = 0 at infinity (Section 1.3.1), or when we specified that we were measuring
kinetic energy relative to a reference frame fixed to the Earth (Section 1.3.2). The universal
convention for chemical systems is to set the enthalpy of all pure chemical elements in
their stable configuration at 298.15 K and 1 bar equal to zero. The “stable configuration”
requirement is important. We cannot define rigorously what this means until after we have
defined chemical equilibrium (Chapters 4 and 5), but we can study examples that make the
meaning clear. The enthalpy of diatomic oxygen at 298.15 K and 1 bar is zero, because O2

is the stable oxygen species at those conditions. In contrast, the enthalpies of atomic oxygen
(O) and of ozone (O3) at 298.15 K and 1 bar are not zero. For carbon, graphite has zero
enthalpy at 298.15 K and 1 bar. The enthalpy of pure elements in their stable configurations
at any other P–T combination is not zero either.
Wedefine the enthalpy of formation of a substance (compound or element) at the reference

pressure and temperature as the value of�r H for the reaction that forms the substance from
the elements (in their stable configurations) at 298.15K and 1 bar. In the thermodynamics
literature there are, unfortunately, different symbols in use for this quantity. In this book we
will symbolize the enthalpy of formation at the reference pressure (1 bar) and temperature
(298.15 K) by �fH

0
1,298. This notation is not in widespread use. Enthalpy of formation at

298.15K and 1 bar is one of the values that are listed in tables of thermodynamic properties
of substances, and is commonly symbolized �fH

0. The convenience of adding the actual
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values of the reference pressure and temperature, as I do here, will become clear in due
course, as will the meaning of the 0 superscript which appears in both notations.
We will not discuss in this book how enthalpies of formation are measured, as excellent

discussions are available in classical textbooks on chemical and geochemical thermody-
namics (see, for example, Anderson, 2005, Chapter 5), but we will look at some examples
to make the concept clear. The enthalpy of formation, �fH

0
1,298, of liquid H2O is equal to

�rH for the reaction:

H2+ 1

2
O2⇒H2Oliquid . (1.87)

at 298.15 K and 1 bar. Because this is a constant pressure process,�fH0
1,298 is simply the

heat liberated when 1 mol of liquid water forms from a stoichiometric mixture of hydrogen
and oxygen gas at 298.15Kand 1 bar (see equation (1.62)). Similarly,�fH0

1,298 of diamond
is the heat exchanged by the following polymorphic transformation at 298.15 K and 1 bar,
per mol of carbon:

Cgraphite⇒ Cdiamond . (1.88)

The enthalpy of formation of graphite is zero. Whether or not the formation reaction can
actually take place at 298.15 K and 1 bar, or whether or not the substance in question is
stable at those conditions, is not important. For example, we can define�fH0

1,298 for H2O
gas even though H2O gas is not stable at 298.15 K and 1 bar – although of course, the
enthalpy of formation of H2O gas at the reference conditions 298.15 K and 1 bar is different
from that of liquid H2O at the same conditions. Defining and evaluating �fH0

1,298 for a
substance that is not stable at 298.15 K and 1 bar is no more a problem than the fact that it
is not possible to locate a body at infinity, yet infinity provides a convenient reference level
for potential energy.
The quantity �fH0

1,298 is sometimes called the standard state enthalpy of formation.
Unfortunately, the phrase “standard state” applied to thermodynamic variables (including
enthalpy) can also have another, quite different, meaning.Wewill come across this alternate
meaning in Chapter 5 and we will see that the intended meaning is commonly (but not
always) evident from the context. I will make the meaning explicit whenever there is a
possibility of confusion (for an in-depth look at this and other terminology issues, see
Anderson, 2005). More trivially, why choose the reference conditions at a strange value
such as 298.15K? Because this temperature corresponds to 25 ◦C, which historically has
been considered “standard” room temperature (arbitrarily so, and uncomfortably warm in
the view of this writer). I usually abbreviate 298.15 as 298.

1.13.2 Enthalpy of reaction as a function of temperature

I will use this example to describe the procedure that is used to calculate �rH at any
arbitrary temperature and 1 bar. These calculation procedures will be used in later chapters
to calculate chemical equilibrium.
Consider the problem of condensation of solids in the solar nebula. During the forma-

tive period of planetary systems the chemical elements are progressively extracted from
a gas phase by formation of solid phases. Which phases and elements condense depends
on temperature. Refractory phases such as perovskite (CaTiO3) and corundum (Al2O3)
condense at temperatures of the order of 1600 K, whereas very volatile phases (generically
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called “ices”) in which the chief constituents are C, O, N and H condense at much lower
temperatures, 300 K or less. Water ice is one of the most abundant of planetary “ices”. If
condensation takes place at pressures lower than the pressure of the triple point of H2O
(∼ 0.006 bar), then the solid phase forms directly by reaction of chemical species in the gas
phase, because the liquid phase is not stable at those conditions (Chapter 6). Suppose that
we want to know the enthalpy change (heat released) during condensation of H2O ice from
gaseous H2 and O2 at 273 K and 10−4 bar. The strategy to calculate the enthalpy change
for this reaction is to break up the problem into two parts. First, we calculate the enthalpy
of reaction at the temperature of interest (273 K in this case) and the reference pressure
of 1 bar. Let us call this enthalpy of reaction �rH1,T. Then, we calculate how enthalpy of
reaction varies as a function of pressure at a constant temperature of 273 K, integrate this
function from 1 bar to the pressure of interest (in this case, 10−4 bar) and add the result to
�rH at 273 K and 1 bar. Symbolically:

�rHP ,T =�rH1,T +
∫ P

1

(
∂ (�rH)

∂P

)
T

dP , (1.89)

where, for the example that we are considering, T = 273 K and P = 10−4 bar. Here we
will look only at the first part of the problem, i.e. calculation of the enthalpy of reaction at
273 K and 1 bar: �rH1,273. The pressure integral (second term on the right-hand side of
equation (1.100)) will be discussed in Chapters 5, 8 and 9, because it relies on concepts that
we have not discussed yet. Here we will focus on the fact that, even though equilibrium
condensation of the solid from the gas does not occur at 1 bar (because liquid is stable at
that pressure), calculation of the enthalpy change at 1 bar is always possible.
Relative to �fH0

1,298 of liquid H2O (equation (1.87)), there are two differences in
�rH for the reaction that forms H2O ice from H2 and O2 gas at 273K: the temperature is
different and the H2O phase is different. In order to visualize how to proceed it is best to
draw a diagram (Fig. 1.9). Because enthalpy is a state variable its value is independent of

H2 + O2

1 bar, 298.15 K

H2O (liquid)

1 bar, 298.15 K

H2O (liquid)

1 bar, 273 K

H2O (ice)

1 bar, 273 K

H2 + O2

1 bar, 273 K

f H 0
1, 298

r H1, 273

H freezing

298

273

CP, H 2Oliquid
dT

298

273

[ CP,H 2
+ CP,O2

] dT

Fig. 1.9 Enthalpy of condensation of H2O ice from the elements at 273 K and 1 bar.
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the path that we use to calculate it, it only depends on the state of the system that we are
considering. In our case the state of interest is H2O ice at 273 K and 1 bar. The diagram
(Fig. 1.9) shows that, starting from an initial state consisting of hydrogen and oxygen gas
at 298 K and 1 bar (the reference conditions at which the enthalpies of the elements are
zero), there are two paths by which we can arrive at the desired final state. One way is to
form liquid H2O at 298 K and 1 bar, then cool the liquid to 273 K, then freeze the liquid at
273 K to ice at 273 K. The total enthalpy change along this path is:

�H1 =�fH
0
1,298+

∫ 273

298
CP, liquidH2O dT +�Hfreezing , (1.90)

where�fH0
1,298 is the enthalpy of formation of liquid H2O (equation (1.87)),�H freezing =

−�Hmelting is the heat given off whenwater freezes to ice at 273K and 1 bar, and the change
of enthalpy associated with an isobaric change in temperature, i.e. the middle term in the
right-hand side of equation (1.90), is given in general by:

H (T1)=H (T0)+
∫ T1

T0

(
∂H

∂T

)
P

dT =H (T0)+
∫ T1

T0

CP dT . (1.91)

Another way to arrive at ice at 273 K and 1 bar is to cool the gas mixture to 273 K and
then form ice directly by reaction between the gases at this temperature. This is the process
that takes place in the solar nebula, and the one that we want to calculate the enthalpy of
reaction for: �rH1,273. The enthalpy change along this path (Fig. 1.9) is:

�H2 =
∫ 273

298
CP ,H2 dT +

1

2

∫ 273

298
CP ,O2 dT +�rH1,273. (1.92)

The heat capacity integral for O2 is preceded by a factor of 1
2 , which is the stoichiometric

coefficient for O2 in the balanced chemical reaction – recall that Cp is the molar heat
capacity. Stoichiometric coefficients are always present, but they are 1 for H2 and H2O.
Now, because enthalpy is a state variable, it must be�H1 =�H2, and we see immediately
that:

�rH1,273 =�fH
0
1,298+�Hfreezing +

∫ 273

298

[
CP, liquidH2O−CP ,H2 −

1

2
CP ,O2

]
dT .

(1.93)

We are also interested in �rH for reactions in which no pure elements take part. For
example, the following reaction among spinel (MgAl2O4), enstatite (Mg2Si2O6), forsterite
(Mg2SiO4) and pyrope (Mg3Al2Si3O12) is an end-member model for the transition between
spinel lherzolites and garnet lherzolites in the mantles of the Earth and other terrestrial
planets:

MgAl2O4+ 2Mg2Si2O6⇒Mg2SiO4+Mg3Al2Si3O12. (1.94)

Starting from the elements, we can reach the assemblage forsterite + pyrope at an arbitrary
temperature T (and P = 1 bar) by either (1) forming forsterite + pyrope at 298 K and then
heating this assemblage to T, or (2) forming spinel + 2 enstatite at 298 K, heating this
assemblage to T, and then reacting it to form forsterite + pyrope (Fig. 1.10). The enthalpy
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5 Mg + 2 Al
+ 4 Si + 8 O2

1 bar, 298.15 K

Fo + Prp
1 bar, 298.15 K
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( f H 0
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1, 298 )Prp

r H1, T Fo + Prp

298

T

[CP, Fo + CP,Prp] dT
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1 bar, 298.15 K

Sp + 2 En
1 bar, T

298

T

[CP, Sp + 2CP,En ] dT
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1, 298 )Sp + 2( f H 0

1, 298 )En

Fig. 1.10 Enthalpy of the reaction spinel + 4 estatite→ forsterite + pyrope, at T and 1 bar.

change along the first path is:

�H1 =
(
�fH

0
1,298

)
prp
+
(
�fH

0
1,298

)
f o
+
∫ T

298
CP,prp dT +

∫ T

298
CP, fo dT (1.95)

and along the second path (note the explicit stoichiometric coefficient of enstatite):

�H2 =
(
�fH

0
1,298

)
sp
+ 2
(
�fH

0
1,298

)
en
+
∫ T

298
CP,sp dT + 2

∫ T

298
CP ,en dT +�rH1,T .

(1.96)

As enthalpy is a state variable, �H1 =�H2, so:

�rH =
(
�fH

0
1,298

)
prp

+
(
�fH

0
1,298

)
f o
+
∫ T

298
CP,prp dT +

∫ T

298
CP, fo dT

−
[(
�fH

0
1,298

)
sp
+ 2
(
�fH

0
1,298

)
en
+
∫ T

298
CP,sp dT + 2

∫ T

298
CP,en dT

]
.

(1.97)

Let us now introduce some additional notation that will simplify this equation. The sum of
the four enthalpies of formation is simply the enthalpy of reaction at 298 K and 1 bar. Let
us call this sum �r H0

1,298:

�rH
0
1,298 =

(
�fH

0
1,298

)
prp
+
(
�fH

0
1,298

)
f o
−
[(
�fH

0
1,298

)
sp
+ 2
(
�fH

0
1,298

)
en

]
.

(1.98)

Because all the integrals are evaluated over the same temperature interval we can also
collect all the heat capacity functions (assuming that they are all described by the same
function) in a single function, which we call �rCP :

�rCP =CP,prp+CP, fo−
(
CP,sp+ 2CP,en

)
. (1.99)
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Finally, we call the enthalpy of reaction at the temperature and pressure of interest�r HP,T.
In this case P= 1 bar, so our equation for �rH1,T becomes:

�rH1,T =�rH
0
1,298+

∫ T

298
�rCP dT . (1.100)

This equation is completely general. It applies to any chemical reaction, as long as there are
no phase transitions along any of the paths. If phase transitions occur then their enthalpies are
simply added separately, as was done with�Hfreezing in equation (1.93), which is otherwise
identical to (1.100). These calculations will very quickly become second nature and youwill
be able to do away with the diagrams. When in doubt, however, sketching diagrams such
as Figs. 1.9 and 1.10 will always point you to the correct result. SimpleMaple procedures
to carry out the numerical calculations are described in Software Box 1.1.
Calculating the effect of pressure on�rH is less straightforward than calculating the effect

of temperature. This is so partly because the equation for (∂H/∂P )T is not a simple function
of other thermodynamic variables or material properties (compare to (∂H/∂T )P=CP). The
partial derivative (∂H/∂P )T is a function of molar volume, so that integating H =H(P )

requires an EOS. These are different for gases and condensed phases, and we defer their
discussion to later chapters.

1.14 Internal energy and the relationship betweenmacroscopic
thermodynamics and themicroscopic world

The internal energy of a system is the sum of energy contributions from translation, rotation
and vibration of molecules, their electronic configurations, their nuclear configurations,
and their electrostatic interactions (i.e. chemical bonding). If we do not consider nuclear
reactions, including radioactive decay, then the nuclear contribution to E stays constant.
If we also exclude chemical reactions and excitation of electronic shells by high-energy
electromagnetic radiation then the electronic and electrostatic contributions to E also stay
constant. With these restrictions, changes inE arise from changes in the translational, rota-
tional and vibrational energies of the molecules, in response to changes in the macroscopic
variables temperature and pressure. We seek a mathematical relationship between internal
energy and temperature as a first step towards understanding some of the ways in which the
macroscopic language of thermodynamics reflects processes that take place at the micro-
scopic scale. A simple derivation which relies on classical deterministic physics, called the
kinetic theory of gases, has been known since themid nineteenth century. The kinetic theory
of gases is only applicable to the simplest of systems: a gas made up of non-interacting
particles, i.e. an ideal gas. For all other systems, the link between phenomenological ther-
modynamics and microscopic processes can only be constructed on the basis of statistical
mechanics and must include considerations of quantum mechanics as well. This is beyond
the scope of this book.

1.14.1 Internal energy of a monatomic ideal gas

Consider a gas made up of non-interacting point-like particles, i.e. a monatomic ideal gas.
In such a substance, the only possible kind of energy that can exist at the microscopic level
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is the kinetic energy of motion, or translation, of the particles. The internal energy of such
a gas must therefore be equal to the sum of the translational kinetic energies of all of the
particles that make up the gas. In this case the link between the macroscopic state variable
E and the microscopic repository of energy admits no other possible interpretation, because
of the restrictions that we have imposed on the nature of the substance: non-interacting,
point-like particles.
Not all particles have the same kinetic energy. As we saw in Section 1.4.2, molecular

speeds follow a statistical distribution known as the Maxwell–Boltzmann distribution (Fig.
1.4). A consequence of this distribution of molecular speeds is that if a gas is at equilibrium
at a given pressure and temperature, then the average kinetic energy of the particles, 〈Uk〉,
is a well defined and unique value. This is the microscopic reason why E is a state variable.
The molar internal energy is then given by:

E =N〈Uk〉 =N
1

2
m〈c2〉, (1.101)

where N is Avogadro’s number, m is the particle mass and 〈c2〉 is the mean-square particle
speed. This is not the square of the mean, but the mean of the squares. The reason for this
is that we are averaging kinetic energy, which scales as the square of the speed.
The velocity of each particle can be written in terms of three independent components:

cx, cy, cz, along three orthogonal directions (Fig. 1.11) such that:

c2 = c2x + c2y + c2z . (1.102)

Now, by symmetry, it must be:

〈c2x〉 = 〈c2y〉 = 〈c2z 〉 = 〈u2〉 (1.103)

so that:

〈c2〉 = 3〈u2〉. (1.104)

x

z

y

c

cx

cz

cy

Fig. 1.11 Translational degrees of freedom of a particle.
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This result also arises from Maxwell’s principle of equipartition of energy. What the prin-
ciple states is that, in a collection of particles, energy is distributed evenly among all of the
degrees of freedom of the particles. By degrees of freedom we mean, in general, variables
that can vary independently of one another. We will come across different ways in which
this terminology is used, and the actual meaning will in every case be explained and then
become obvious from the context. When studying the behavior of particles in a micro-
scopic system, by degrees of freedom we mean independent ways in which particles can
carry energy. If particles only have translational kinetic energy, then they have three degrees
of freedom, corresponding to the three perpendicular directions in which they can move.
The principle of equipartition of energy then says that the average kinetic energy along each
of the three directions must be the same, for if particles are moving more slowly in one of
the three directions then collisions will eventually increase their speed in that direction at
the expense of the speed (= kinetic energy) in the other directions. This intuitive explana-
tion makes sense, but it does not prove the validity of the principle. Equipartition of energy
remains a principle, i.e. a statement whose truth is assumed a priori, and that is accepted
because it leads to results that agree with observations. The same is true, of course, of the
laws of thermodynamics, the principle of conservation of momentum, and all other physical
laws and principles.
Because of the principle of equipartition of energy, we can use equation (1.104) in order

to re-write equation (1.101) as follows:

E = 3

2
Nm〈u2〉. (1.105)

This equation says that the average kinetic energy of the particles for each degree of freedom
is 1

2m〈u2〉, and the internal energy, which equals the total kinetic energy of the particles,
equals this energy times three (one for each degree of freedom) times the total number of
particles.
We know that internal energy is a function of temperature and we want to find out what

this function is on the basis of the microscopic description of the system. It is a remarkable
fact that this is in principle always possible, no matter how complicated the system may be.
The formal method for doing this relies on finding a fundamental function that is defined
in statistical mechanics and is called the partition function (see, for example, the textbooks
by Hill, 1986, or Glazer & Wark, 2001).
All thermodynamic state variables can be derived from a substance’s partition function.

The problem is that it is seldom easy to find what the partition function for a given substance
is. For the simplest of cases, ideal gases, it is possible to derive the value of the state functions
both from the partition function and from the much simpler formalism of kinetic theory, as
we do here. This is not true in general, though.
We begin by working out an expression for the pressure of an ideal gas, which must arise

from collisions of the particles against the walls of the container. Pressure is force per unit
area, and we recall from elementary physics (Newton’s second law of motion) that force
equals the rate of change of momentum.We assume that the particles that make up the ideal
gas are perfectly elastic. Therefore, when a particle collides with a surface perpendicular to
any one of the three independent directions of translation it reverses direction but does not
lose speed, so that its momentum changes by:

mu− (−mu)= 2mu. (1.106)
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Choosing a surface perpendicular to one of the three axes that define the degrees of freedom
does not cause any loss of generality, because we can choose the orientation of the axes
(Fig. 1.11) any way we want, as long as they are mutually perpendicular. In other words,
pressure is isotropic.
If the molar volume of the gas is V then opposite walls are separated by a distance of

order V 1/3 and the time between consecutive collisions is (2V 1/3)/u, because the particle
must move to the opposite wall and back. The rate of change of momentum of a particle
when it collides with a wall, i.e. the force exerted by a particle on a wall, is then given by:

2mu

2V 1/3u−1
= mu2

V 1/3
. (1.107)

The total pressure must equal the average force per particle, times the number of particles,
divided by the surface area of the wall. In order to account for the average force per particle
we must use the mean-square speed, 〈u2〉, because we are averaging rates of change of
momentum, which scale as the square of speed (equation (1.107)). The surface area of the
wall is of order V 2/3, so that the pressure is given by:

P =N
m〈u2〉
V 1/3

1

V 2/3
= Nm〈u2〉

V
(1.108)

hence:

PV =Nm〈u2〉. (1.109)

Using the ideal gas EOS, PV= RT, we obtain:

T = Nm〈u2〉
R

= m〈u2〉
kB

, (1.110)

where kB =R/N is the gas constant per molecule, known as Boltzmann’s constant. We can
also write equation (1.110) as:

1

2
kBT = 1

2
m〈u2〉. (1.111)

This equation relates the temperature of the gas to the average kinetic energy of the particles
along each degree of freedom. It allows us to calculate a characteristic value for molecular

speeds, the root-mean-square speed (RMS) of the molecules, 〈c2〉 12 = (3〈u2〉) 12 . Molecular
speedswere first calculated in this fashion by James Joule in themid nineteenth century. The
root-mean-square speed is not the same as the most probable molecular speed mentioned in
Section 1.4.2. The relationship between the two quantities is shown in Fig. 1.12. The RMS
molecular speed is always greater than the most probable speed, reflecting the long tail on
the high speed end of the Maxwell–Boltzmann distribution. This long tail, which implies
that there always are a significant number of molecules that are moving with speeds that
are much faster (by a factor of 2–3) than the most probable value, plays an important role
in the escape of light gas species from planetary atmospheres. This is especially the case
for escape of hydrogen from primordial planetary atmospheres, and will be discussed in
Chapter 13.
Equations (1.105) and (1.111) each relates a microscopic variable (E or T) to the kinetic

energyof the particles.Wecan substitute one equation into the other to arrive at an expression
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for themolar internal energy of amonatomic ideal gas as a function of absolute temperature:

Emonatomic = 3

2
RT . (1.112)

This equation shows that the internal energy of an ideal gas is a function of temperature
only, so that for any ideal gas (∂E/∂P )T = (∂E/∂V )T = 0. For real substances these
derivatives do not vanish. They vanish for ideal gases only because of our assumptions:
non-interacting, perfectly elastic particles with no volume. Also, since CV = (∂E/∂T )V ,
we get CV = 3/2 R for a monatomic ideal gas.

Note what we have done here: from a simple hypothesis about the microscopic nature of
an ideal gas and the principle of equipartition of energy we have derived a mathematical
expression for the relationship between two macroscopic variables. The validity of our
assumptions can then be tested by comparing predicted internal energies of ideal gases
with measurements for real gases at conditions such that their behavior approaches that of
ideal gases. We will do this in the next section, using CV rather than E, because CV can be
obtained from direct experimental measurements whereas E cannot.
We could have derived these same results from statistical mechanics, with one crucial

difference. In our derivation using only kinetic theory we had to use the ideal gas EOS
(in equation (1.110)), which arises from macroscopic observations. Statistical mechanics
allows us to do away with this last piece of macroscopic physics – we can derive both
the expression for internal energy (equation (1.112)) and the ideal gas EOS solely from
the (microscopic) partition function. The importance of this is that the same principles and
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formalism of statistical mechanics that would allow us to do that for an ideal gas can be
used to derive equations of state for materials of planetary interest at very high pressures
and temperatures, that may be experimentally inaccessible.

1.14.2 Degrees of freedom and heat capacities of polyatomic gases

The internal energy function given by equation (1.112) is appropriate for a monatomic ideal
gas, but it must be modified for diatomic and polyatomic gases. This is so because, if the
molecule contains more than one atom, then additional degrees of freedom are possible,
and by the principle of equipartition of energy each of these additional degrees of freedom
carries an additional amount of energy. For example (Fig. 1.13), a diatomic molecule has
non-negligiblemoment of inertia relative to two orthogonal axes perpendicular to the atomic
bond, and a polyatomic molecule (unless the atoms are arranged in a straight line) has non-
negligible moment of inertia relative to three orthogonal axes. This means that diatomic and
polyatomic molecules have kinetic energy of rotation in addition to that of translation, and
each of the rotation axes adds a degree of freedom. As molecules collide with one another
kinetic energy is exchanged between translational and rotational degrees of freedom, and
by the principle of equipartition of energy all degrees of freedom carry the same amount of
energy: 1

2kBT . The corresponding internal energies are, thus:

Ediatomic = 3

2
RT (translational)+ 2

2
RT (rotational)= 5

2
RT

Epolyatomic = 3

2
RT (translational)+ 3

2
RT (rotational)= 6

2
RT .

(1.113)

The constant volume heat capacities of ideal gases are, therefore: 3/2R, 5/2R and 3R, for
monatomic, diatomic and non-linear polyatomic ideal gases, respectively. Heat capacities
can be determined directly by experiment and are a test of the predictions of themicroscopic
description of ideal gases. Figure 1.14 shows measured constant volumes heat capacities
at low pressure as a function of temperature, for a monatomic gas (neon), a diatomic gas
(nitrogen) and a polyatomic gas with a three-dimensional molecule (ammonia). The low
pressure constraint is what makes the behavior of the gases approach that of ideal gases,
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y

Fig. 1.13 Rotational degrees of freedom for a linear molecule and a non-linear molecule.
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non-linear molecules (NH3). Data from NIST Chemistry WebBook. The values expected from kinetic theory are 3/2 R,
7/2 R and 9 R, respectively. Heat capacity is plotted as the non-dimensional variable CV /R.

by keeping them far from their condensation conditions. The agreement of the measured
values with those predicted by kinetic theory is essentially perfect for neon. For nitrogen
the agreement is good at temperatures up to approximately room temperature (∼300K) but
then CV increases smoothly and reaches a plateau of approximately 7/2R. In the case of
ammonia there is good agreement at low temperature (200–300K), and then, as for nitrogen,
CV increase and reaches a plateau, in this case close to 9R.

Do these discrepancies mean that the premises that we used to calculate CV for gases
other than monatomic gas are incorrect?Well, no, what it means in this case is that they are
incomplete. In other words, gases that contain more than one atom in their molecules have
other degrees of freedom in addition to those corresponding to translation and rotation.These
are called vibrational degrees of freedom, and they arise from the fact that atomic bonds are
not rigid, but can stretch, contract and bend as an elastic material (e.g. a spring), and behave
like harmonic oscillators. These oscillations carry energy and thus represent additional
degrees of freedom. The principle of equipartition of energy applies to vibrational degrees
of freedom too, but there are two important differences with translational and rotational
degrees of freedom, which we can see by examining Fig. 1.14 in some detail.

First, vibrational degrees of freedom in gases are inactive at low temperature and begin
to carry energy only as temperature rises. In other words, gas molecules must have a
minimum amount of kinetic energy before collisions are able to transfer some of this energy
to vibrations of the atomic bonds (if you suspect a connection with quantummechanics here
you are right). The situation is different for solids and liquids, in which vibrational modes
are important at relatively low temperatures, simply because translational and rotational
degrees of freedom do not exist in them (although liquids have additional complexities).
Second, in the diatomic gas there is only one atomic bond, and thus there can only be

one vibrational degree of freedom, which corresponds to stretching of the atomic bond.
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Heat capacity for diatomic nitrogen levels off at a value of approximately 7/2R, suggesting
that the vibrational degree of freedom carries twice as much energy as the translational
and rotational ones, i.e. kBT. This is indeed the case, and the explanation is that harmonic
oscillators (such as an atomic bond that stretches and contracts, or a pendulum, which is
mathematically equivalent) carry both kinetic and potential energy, and equipartition of
energy causes each of these energy modes to have an energy content of 1

2kBT . In the case
of ammonia the difference between the measured high-temperature heat capacity (9R) and
the heat capacity predicted from translation and rotation only (3R) indicates that there are
six vibrational degrees of freedom, which include stretching of the N–H bonds, changes in
the angles between N–H bonds, and bending relative to a plane containing all four atoms.
The general rule for gases is that molecules have a total of 3n degrees of freedom, where

n is the number of atoms in the molecule. Of these, 3 degrees of freedom are always
translational, and either 2 or 3 are rotational, depending on whether the molecule is linear
or not (Fig. 1.13). Each of these degrees of freedom carries an energy equal to 1

2kBT . The
remaining 3n− 5 (linear molecule) or 3n− 6 (non-linear molecule) degrees of freedom
are vibrational and each carries an energy of kBT. Translational and rotational degrees of
freedom are always active, whereas vibrational degrees of freedom only become active (or
“excited”) above a certain temperature.
Constant volume heat capacities for ideal gases follow immediately from the generaliza-

tions given in the previous paragraph. In most planetary sciences applications, however, we
are interested in CP rather than CV ,and these are also easily derived. From the definition
of enthalpy we have:

CP =
(
∂H

∂T

)
P

=
(
∂E

∂T

)
P

+P
(
∂V

∂T

)
P

. (1.114)

Using identity (1.3.12) in Box 1.3 and the fact that, for an ideal gas, (∂E/∂V )T = 0, we see
that: (

∂E

∂T

)
P

=
(
∂E

∂T

)
V

+
(
∂E

∂V

)
T

(
∂V

∂T

)
P

=CV (1.115)

and from the ideal gas EOS:

P

(
∂V

∂T

)
P

= P
R

P
=R (1.116)

so, for an ideal gas:

CP =CV +R. (1.117)

The extra amount of energy, R per Kelvin per mol, is a macroscopic contribution from
expansion work and does not reflect a change in the microscopic state of the system.
For gases that cannot be assumed to behave ideally equation (1.117) is not valid, but the
appropriate equation can always be derived from the equation of state, starting fromequation
(1.114) which is true in general. Thus, with some important additional considerations, the
physical concepts developed in this section are the basis for understanding and quantifying
the behavior of real fluids at high pressures and temperatures, something that we will do in
Chapter 9.
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1.14.3 Heat capacities of solids

In a crystalline solid there are only vibrational degrees of freedom. The atoms have fixed
positions in the crystalline lattice. They vibrate about their equilibrium positions, but they
can neither translate not rotate. Each atom can vibrate in three independent directions. We
could thus expect the heat capacity of crystalline solids to be approximately 3R per gram
atom, reflecting the three vibrational degrees of freedom of each atom, and the fact that
each vibrational degree of freedom carries an energy of kBT per atom. The molar heat
capacity of a substance that contains n atoms in its molecule should thus be 3nR. This has
been empirically known to be the case since the nineteenth century. It is known as Dulong
and Petit’s law, but it works only for temperatures comparable to or greater than room
temperature.
Figure 1.15 shows constant pressure heat capacities for a few minerals (CP and CV for

solids differ by a very small amount, because of the incompressibility of solids, see Chapter
8). They all approach Dulong and Petit’s behavior at high temperature (∼103 K), but heat
capacities fall off fairly steeply with decreasing temperature. The data confirm the general
microscopic picture (atoms in a solid have vibrational degrees of freedom only) but also
show that some fundamental physics is missing from the picture. The missing ingredient is
quantummechanics, and although the details are beyond the scope of this book a qualitative
understanding of the behavior depicted in Fig. 1.15 will become important in subsequent
discussions. Atomic vibrations in a crystal are quantized, meaning that only some definite
energy levels are allowed. At low temperature the allowed energy levels are few and far
apart, and degenerate to a single energy level as absolute zero is approached. The number
of allowed energy levels increases with temperature, and as this happens so does the heat
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Fig. 1.15 Constant pressure heat capacities for pyrite, enstatite, forsterite, diopside and fluorapatite. Horizontal lines show
Dulong and Petit’s approximation, labeled next to the arrows: the number of atoms in the formula times the number
of vibrational degrees of freedom per atom (= 3). Measured heat capacity data from Robie and Hemingway (1995).
Heat capacity plotted as the non-dimensional variable CP/R.
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capacity. Above a certain temperature the quantum energy levels become so close together
that the classical continuous approximation – Dulong and Petit’s law – becomes valid. This
temperature is characteristic for each substance and is known as the Debye temperature,
θD. The Debye temperature for most minerals is of the order of several hundred to∼103 K.
Heat capacity becomes a weak function of temperature above θD, as shown by Fig. 1.15.
Interestingly,Dulong andPetit’s approximation alsoworks for some liquids. For example,

the heat capacity of water is ∼75 J K−1 mol−1 ≈ 9R, corresponding to 3R for each of the
three atoms in the H2O molecule.

1.15 An overview of the properties of matter and equations of state

Equations of state (EOS) are an essential component in the studyof the physics and chemistry
of planetary bodies.Wewill discuss different types of EOS in considerable detail inChapters
8 and 9. Here we define some concepts about the possible states of matter in planetary
environments. This will allow us to better define the P–V –T ranges over which different
types of EOS are applicable. Solids and liquids are condensed phases, whereas gases are
non-condensed phases. Both liquids and gases are fluids. Gases are non-condensed fluids,
which means that they expand indefinitely as pressure decreases, whereas we call liquids
condensed fluids because, as solids, they do not behave in this manner. These contrasting
macroscopic behaviors arise fromdifferences between condensed and non-condensed fluids
in the relative magnitudes of the intermolecular potentials (or forces), compared to thermal
energy. A vapor is a gas in equilibrium with its liquid, and a melt is a liquid in equilibrium
with its solid. For all substances it is an empirical observation that, as temperature increases,
the material properties of liquid and vapor at equilibrium approach each other, until the two
phases become indistinguishable at a temperature called the critical temperature. Above
the critical temperature a single fluid phase is stable, called a supercritical fluid.
Here we describe the behavior of matter in terms of temperature and density (i.e. the

inverse of volume). Density is a better choice than pressure for this exercise because we
can relate it directly to a description of the material at the atomic scale, something which is
not generally the case with pressure. The arguments and conclusions are summarized in a
density–temperature diagram, Fig. 1.16, which is rather busy andwill take some explaining.
The physical inspiration for this discussion comes from Shalom et al. (2002), who present
detailed mathematical arguments; I have added the planetary applications. A review of
recent developments in the high density region of the diagram is given by Drake (2010).
The horizontal coordinate in the diagram is temperature in Kelvin. Let the thermal energy of
microscopic particles (molecules, atoms, ions, etc.) be εT . From our discussion in Section
1.14 we conclude that εT is of order kBT, which we symbolize with the ∼ symbol, i.e.
εT . ∼ kBT. The justification for this statement is that particles carry an energy equal to
1
2kBT per degree of freedom, and the number of degrees of freedom is a small number, of
order 1–10.
At sufficiently high temperature atoms become ionized as a result of interatomic col-

lisions. This happens when their thermal energy is of the same order as their ionization
energy, i.e., the energy required to detach an electron from an atom. By equating the ion-
ization energy of an element to kBT we can estimate the temperature at which thermal
ionization takes place. Note, however, that because energies of individual atoms are not
all the same but follow a statistical distribution (e.g., Fig. 1.12), ionization actually takes
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place over a temperature range. The vertical lines labeled “H, O” and “Fe, Si, Mg, C” show
characteristic ionization temperatures for these most important of planet-forming elements.
Many other abundant elements plot within this range, the only important exception being
helium, which has an ionization energy almost twice that of hydrogen. Thermal ionization
occurs at temperatures of order 105 K, which are not attained in any planet in the Solar
System, but may be possible inside large extrasolar planets and brown dwarfs (failed stars).
Most of the solar interior is of course ionized.
Density is shown on the vertical axis as particle density, i.e. number of particles per unit

volume. This is simplyAvogadro’s number divided by molar volume, and has units of m−3.
Using these units we can compare the degree of packing independently of particle mass.
The figure shows some reference values.An ideal gas at 1 bar and 298 K (e.g., the terrestrial
atmosphere) has a particle density of ∼ 2.4× 1025 m−3. The variation of this number with
temperature at a constant pressure of 1 bar, i.e. the ideal gas law, is shown in the diagram
with a negatively sloping line. The ideal gas EOS reproduces P–V –T relations to a high
degree of accuracy for conditions below this line (P < 1 bar) and perhaps over a narrow
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interval above the line. With increasing particle density the behavior of real gases diverges
from the predictions of the ideal gas EOS, owing to the existence of interatomic potentials,
i.e. attractive and repulsive forces. Up to particle densities of∼1027–1028 m−3, substances
behave as non-condensed fluids (i.e., gases) even if their densities are higher than what we
typically associate with a gas.
Condensation occurs at particle densities of ∼ 1028 m−3, with overlapping ranges for

liquids and solids. Condensed matter is orders of magnitude less compressible than gases,
a fact that is expressed in Fig. 1.16 by the (apparent) proximity of a wide range of con-
densed planetary materials. The examples shown are: Mg1.8Fe0.2SiO4 at the conditions of
the Earth’s core–mantle boundary (Chapter 8), an H2O–CH4–NH3 mixture at conditions
thought to represent the deep interiors of Uranus and Neptune, Fe in the Earth’s inner core,
and H–He mixtures in Jupiter’s and Saturn’s deep interiors. These examples are representa-
tive of the upper density–temperature bounds likely to be encountered in the Solar System,
with the exception of the solar interior, which is also shown for comparison.
At particle densities somewhat above 1029 m−3 it is necessary to consider quantum

effects. We define the quantum energy, εq , for a particle of mass m and momentum p
as εq = p 2/ m. If particles are packed with a particle density n, then each particle occupies
a volume n−1, which means that there is an uncertainty in the position of the particle of
order n−1/3.According to the uncertainty principle the relationship between p and n is given
(approximately) by:

pn−1/3 ≈ h, (1.118)

where h is Planck’s constant. We then get for the quantum energy:

εq ≈ h2n2/3

2m
. (1.119)

For an electron with mass me, accounting for the fact that each volume element can be
occupied by atmost two electronswith opposite spins, and allowing for spherical symmetry,
the quantum energy becomes the Fermi energy, εF , given by:

εF = h2n2/3

8me

(
3

π

)2/3

. (1.120)

If the Fermi energy exceeds the ionization energy and εF > εT then the material undergoes
pressure ionization. This takes place even if the thermal energy of the material is lower than
its ionization energy, because bound electrons are excluded by the uncertainty principle from
occupying the same volume element. The resulting condition is termed electron degeneracy.
The horizontal lines labeled “H, O” and “Fe, Si, Mg, C” show the approximate densities
at which electron degeneracy can be expected to occur in planetary materials. Much of
Jupiter’s and Saturn’s interiors are likely to consist of pressure-ionized hydrogen, and some
degree of pressure ionization may also occur in the Earth’s deeper core. Most of the core, as
well as the Earth’s mantle, and the entire volume of the ice giants (Uranus and Neptune) are,
in contrast, composed of non-degenerate matter. Given that pressures in the other terrestrial
planets are lower than in the Earth’s interior this conclusion also applies to them. EOS for
degenerate matter are needed in order to model the interiors of the giant planets.
In contrast to “cold” dense matter, “hot” dense matter (εT > εF ) is not degenerate. This

includes the entire solar interior. At temperatures of order 107 K interatomic potentials are
negligible compared to thermal energy. Under such conditions matter consists of a highly
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ionized plasma that is accurately described as amonatomic ideal gas (more on this inChapter
2). We are left, as the figure shows, with a wide range of intermediate temperatures and
densities in which the behavior of matter is poorly understood and for which equations of
state are very complex, if they exist at all. Fortunately, these regions are of little interest to
planetary scientists. Focusing now on the range of conditions for non-degenerate matter in
planetary interiors (T< 104 K, n< 1029 m−3), which is what we will mostly be concerned
with, we can identify three regions that require distinct equations of state. At very low
densities the ideal gas EOS is all we need. At the other end, a class of EOS that will be
introduced in Chapter 8 is generally appropriate for the entire range of densities of non-
degenerate condensed matter, both solids and liquids. This leaves the intermediate density
range, roughly between 1026 and 1028 m−3, occupied by non-ideal gases. Equations of state
for non-ideal gases are discussed in Chapter 9.

Exercises for Chapter 1

1.1 Amass mi of ice at temperature Ti is added to a mass mw of water at temperature Tw

inside a perfectly isolated container. Let the heat capacities of ice and water be Cp,i
and Cp,w, and the enthalpy of fusion of ice be �fH > 0. Derive a set of criteria to
decide what the final equilibrium state of the system is, i.e. pure ice, pure water or
ice + water.

1.2 Calculate the gravitational potential energy stored in the Earth’s largest active volcano
(Mauna Loa) and in the Solar System’s largest volcano (Olympus Mons in Mars).
Assume that Mauna Loa is a cone with a basal radius (on the floor of the Pacific
Ocean) of 50 km, and an elevation of 10 km relative to the ocean floor, and Olympus
Mons a cone with a radius of 600 km and an elevation of 27 km. The gravitational
accelerations of Earth and Mars are 9.8 and 3.7m s−2. Assume that Mauna Loa is
2× 105 years old. Calculate the average power expended in building up Mauna Loa.
Assuming that this rate of storage of potential energy is characteristic of large basaltic
shield volcanoes, estimate how long the building of Olympus Mons may have taken.
How does this compare with the building time of Olympus Mons if you assume the
same mass supply rate as in Mauna Loa? Discuss the relative merits of extrapolating
terrestrial mass supply rate or energy supply rate to Mars. Compare the rate of storage
of potential energy in Mauna Loa with the power output of the Hawaiian hot spot,
∼1011 J s−1. Comment on your results.

1.3 What is the potential energy stored in a rod-shaped asteroid, 100× 50× 50 km, with
density = 3000 kg m−3? The stable shape of the asteroid is a sphere with the same
volume.

1.4 Derive the formula for kinetic energy (equation (1.12)) by considering conservation
of energy of a free-falling body in a uniform gravitational field.

1.5 Consider the asteroid–Earth collision (Worked Example 1.2).What is the relationship
between m and M that results in the greatest dissipation of kinetic energy? You can
do this formally, by maximizing the function in equation (1.15), or intuitively, from
symmetry considerations.

1.6 What is the maximum amount of power that can in principle be harvested from wind
with a velocity v, by a wind turbine with diameter d ? The actual power output of the
turbine must be less than this, why?
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1.7 Compare the expansion work associated with vaporization of 1 kg of water at 1 bar
to that of conversion of 1 kg of kyanite to sillimanite at 3 kbar. The molar volumes
in J bar−1 mol−1 are: liquid water = 1.807, sillimanite = 4.986, kyanite = 4.415.
Assume that water vapor at 373 K and 1 bar is an ideal gas.

1.8 Starting from equation (1.18), derive the complete equation for expansion work of
a sphere, and show why (1.19) is an acceptable approximation for an infinitesimal
expansion.

1.9 Derive the exact expression for the energy stored during a change in volume from V0
toV , caused by a change in pressure fromP0 toP, of an elastic solid with constant bulk
modulus Ks. (Hint: this is a good opportunity to practice your Maple.) Compare this
expression with equation (1.31), and discuss the conditions under which the constant
volume assumption is no longer tenable.

1.10 Derive an equation that relates elastic energy stored per unit volume (equation (1.37))
to change in gravitational potential per unit volume (mass stays constant, what changes
is elevation). The bulk modulus of silicate minerals is of order 1000 kbar, their density
∼ 3000 kgm−3, and g = 9.8 m s−2. Assume that an earthquake causes uplift of 1m.
Estimate the strain that was released (the non-dimensional quantity ε). How does this
value vary with bulk modulus? Comment on your results.

1.11 Derive KT, βT and α for an ideal gas, starting from the ideal gas EOS.
1.12 Bulk modulus and coefficient of thermal expansion are two ways of relating the three

variables, P ,V ,T . There is a third one, that is to take the derivative of P relative to
T at constant V. This gives rise to another material property known as the Grüneisen
parameter and symbolized by γ . The Grüneisen parameter measures the increase in
pressure caused by heating at constant volume. It can be defined as follows:

γ = V

CV

(
∂P

∂T

)
V

.

Show that the Grüneisen parameter of an ideal gas is a constant, and that it is related
to α and KT by:

γ = αKT V

CV
.

1.13 Derive a general equation that relates Cp to Cv in terms of material properties. Use it
to show that for an ideal gas Cp= Cv+ R. Discuss why for solids and liquids it is Cp
≈ Cv.

1.14 Estimate a possible range of heating rates (dT/dt) by viscous dissipation along sub-
duction zone megashears. Can this be a significant contribution to the origin of arc
magmatism?
For the following problems use standard state thermodynamic data from Holland and
Powell (1998).

1.15 Calculate the enthalpy of formation of diamond at 1 bar, 298.15K and at 1 bar, 1000K.
Do this by hand and using theMaple procedures described in Software Box 1.1.

1.16 Use the Maple procedures described in Software Box 1.1 to calculate the enthalpy
change of the spinel–garnet transition (reaction (1.94)) at 1 bar, 298.15 K and at 1 bar,
1000 K. You should get∼ 23.29 kJ and 11.76 kJ, respectively. If you don’t, you need
to practise your Maple.
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1.17 Calculate the enthalpy change of the oxidation of fayalite to hematite + quartz at 1
bar, 298.15 K. Is this reaction endothermic or exothermic?

1.18 Average terrestrial heat flux is 80 mW m−2. At what rate must a 1 m thick slab of
fayalite oxidize in order to supply energy at this rate? (Hint: you need the density
fayalite but Holland and Powell supply its molar volume.) Supposing that the energy
yield of fayalite oxidation is typical of silicate chemical reactions, what can you
conclude about the source of the Earth’s internal heat? You will need to develop some
scaling arguments, and to ignore for now heat transfer complications.



2 Energy sources in planetary bodies

Planetary bodies can be thought of as combinations of heat reservoirs and heat engines.
The heat reservoirs store internal energy, E, and the heat engines convert some of this
thermal energy into various types of mechanical, electrical and chemical energies. This
simple physical picture is true of all active planetary bodies, regardless of their composition
(rocks, gases or ices) or size. The details, however, varywidely throughout the Solar System.
In this chapter we discuss the storage of thermal energy in planetary bodies.
We begin by distinguishing internal from external heat reservoirs, and we define the

latter as those that derive their energy from solar electromagnetic radiation. External heat
reservoirs occur in surface and near-surface environments. Examples include the Earth’s
oceans and atmosphere. Internal heat reservoirs store energy at various depths, from near-
surface environments to the planet’s core. They are fed by dissipation of various types
of non-thermal energy but there is one unifying characteristic, which is that dissipation
takes place deep enough that the rate of heating exceeds the rate of heat transfer to the
planet’s surface (Chapter 3). The relative magnitudes of the energy fluxes from external and
internal reservoirs at a planet’s surface vary widely among the bodies of the Solar System.
In solid planetary bodies (rocky and icy) surface energy flux is typically dominated by solar
radiation, despite the fact that internal energy reservoirs in some of them are large enough
to make noticeable, perhaps dominant, contributions to the planet’s surface features. At the
present time the surfaces of Earth, Venus, Io, Europa, Ganymede, Titan, Enceladus and
Triton are being affected by processes fueled by internal energy reservoirs. In contrast,
internal energy reservoirs for Mars, Mercury, the Moon, most other satellites of the giant
planets and the asteroids appear to be negligible, but this was certainly not true at earlier
times, as shown for instance by the huge Martian volcanoes and the Lunar maria. Internal
energy reservoirs dominate surface energy fluxes in the fluid planets Jupiter, Saturn and
Neptune.The relentlessly violentweather patterns of Jupiter and Saturn are driven by energy
extracted from those planets’ internal heat reservoirs, in stark contrast with Earth’s weather,
which is driven by solar energy. The contributions of internal and external reservoirs may
be more or less evenly matched in Uranus.

Here we focus on the sources of planetary internal energy and on the pathways by which
non-thermal energy is dissipated. Ultimately, the possible sources of thermal energy are just
three: dissipation of gravitational potential energy, dissipation of nuclear binding energy,
and dissipation of electrical energy. Gravitation was the chief internal energy source in
the formative stages of all planets, and is still today the dominant internal energy source in
some of themoons of the giant planets, and perhaps in Saturn as well. Radioactive heating is
dissipation of nuclear binding energy.At present it is an important source of energy in some
rocky planets (notably Earth, almost certainly Venus as well), and was even more important
in the early Solar System, as a result of the greater abundances of long-lived radioactive
isotopes (40K, 232Th, 235U and 238U) and of the existence of short-lived radioisotopes that
are now extinct (chiefly, 26Al, 60Fe and 53Mn). Dissipation of electrical energy by ohmic
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heating occurs if a planet with an electrically conductive layer is immersed in a time-varying
magnetic field (Section 1.8.3). It may have been important in the early Solar System if the
magnetic field of the nascent Sun was orders of magnitude stronger than today’s.

2.1 Planetary heat flows

Planets are bathed by solar electromagnetic radiation with a spectrum that corresponds to
black body emission at the temperature of the solar photosphere, ∼6000 K (Section 12.2).
This spectrum peaks in the range of visible wavelengths (∼0.4–0.8µm) or, more accurately,
this is the range of visible wavelengths because we evolved on a planet in which most of
the energy that reaches us from the central star is in this range of wavelengths. Some of this
energy is immediately reflected back to space. The balance is thermalized, whichmeans that
it is absorbed by the planet’s atmosphere and solid or liquid surface (if the planet has one)
and eventually radiated back to space in the infrared part of the spectrum, with wavelengths
of the order of 5–200 µm.
Electromagnetic radiation is described by the Stefan–Boltzmann law, which we will

discuss in more detail in Chapter 13. The total amount of energy radiated per unit area and
per unit time (called the radiated energy flux, where flux means quantity per unit of area
per unit of time), also called the irradiance, is symbolized by F and given by:

F = εσT 4. (2.1)

In this equation σ is a constant known as the Stefan–Boltzmann constant (Appendix 1), T is
the absolute temperature and ε is a parameter (ε≤ 1), called emissivity, which describes the
efficiency with which the body radiates electromagnetic energy. For a perfect black body,
i.e. a body that emits radiation with equal efficiency at all wavelengths, ε= 1. If a planet
is in thermal equilibrium with solar radiation and the planet has no internal heat flow then
its energy output, Ft , would derive only from thermalized sunlight and would correspond
to emission from a black body at a temperature Teq , given by equation (2.1) and called the
planet’s equilibrium temperature (we will discuss this in detail in Section 13.2).The values
of Ft and Teq are calculated on the basis of the incident solar flux and the planet’s albedo,
A, which is the fraction of incident sunlight that is reflected back to space (see, for example,
Hubbard, 1984; de Pater & Lissauer, 2001).
Themeasured infrared emission of a planet, Fm, is not necessarily equal to the calculated

value of the equilibrium thermalized flux, Ft . The measured value of Fm yields the planet’s
effective temperature, Tef (equation (2.1)). If Tef > Teq then the planet liberates internal
heat. The internal heat flux, q, is given by (this equation is derived rigorously in Section
13.3.2, equation (13.35)):

q = Fm−Ft = εσ
(
T 4
ef −T 4

eq

)
. (2.2)

In practice, given the uncertainties in the measurements of Fm, in the albedo, A (which
enters in the calculation of Teq ), and in the emissivity ε, a planet’s internal heat flux can
be determined in this way only if q, Fm and Ft are of the same order of magnitude. This
is true for Jupiter, Saturn, Neptune and Io, and is how the average internal heat fluxes for
these bodies (given in Table 2.1) have been determined. For Uranus Tef appears to be only
slightly greater than Teq , so that Uranus’s internal heat flux remains somewhat uncertain.



72 Energy sources in planetary bodies

Table 2.1 Planetary heat flow parameters

Planet q(W m−2) qM (W kg−1) Teq (K) Tef (K)

Earth 0.08 6.40× 10−12 263
Moon 0.03 1.34× 10−11 277
Mars 0.04 9.00× 10−12 222
Io 2.50 1.17× 10−9 100 109
Jupiter 5.44 1.76× 10−10 113 124
Saturn 2.01 1.51× 10−10 83 95
Uranus 0.04 3.91× 10−12 58 59
Neptune 0.43 3.22× 10−11 48 59

Values of q from Lodders and Fegley (1998), except Mars, from Carr (1999).
Values of qM calculated from q and planetary data from Lodders and Fegley (1998).
Values of Teq and Tef from de Pater and Lissauer (2001), except Io from Hubbard (1984).

For all the terrestrial planets q�Fm, so that q must bemeasured directly (in Chapter 3we
will discuss how). Such direct measurements have only been carried in the Earth andMoon,
but whereas the terrestrial value listed in Table 2.1 is an average of hundreds of thousands
(if not millions) of measurements, the lunar value is an average of only two, at theApollo 15
and 17 landing sites, and thus of very uncertain significance. The Martian heat flux listed
in Table 2.1 (after Carr, 1999) is an estimate based on geochemistry (areochemistry?),
which we discuss further below and in Chapter 3. No numerical estimates are available
for the other terrestrial planets nor for the major moons of the giant planets (except Io),
but some qualitative statements are possible. Given Venus’s many active volcanoes and
similarity to Earth in size and density (probably reflecting a similarity in composition) it is
not unreasonable to suppose that its time-averaged heat flux may be comparable to that of
Earth – the reason for the qualifier “time-averaged” will become clear in Chapter 3. The
Jovian moons Europa and Ganymede, Saturn’s moons Titan and Enceladus and Neptune’s
moon Triton all display youthful surfaces, and in some cases visibly active processes of
internal origin as well, implying the existence of non-negligible internal heat flows.
The contributions of internal and external heat reservoirs in shaping a planet’s surface can

be gauged by comparing the equilibrium thermalized solar flux Ft , to its internal heat flux,
q (Fig 2.1). With the notable exception of Io, the thermalized solar flux on the surfaces of
the solid planets is 103–104 times greater than the internal heat flux. A way of interpreting
this difference is that, on average, the rate of external processes is a few orders of magni-
tude faster than that of internal processes. An equivalent statement for Earth is that active
mountain building and active volcanic areas affect a small fraction of the planet’s surface,
whereas climate, the hydrologic cycle and the biosphere cover the entire planet. In contrast,
the entire surface of Io is volcanically active (see, for example, Davies, 2001). Solar energy
fluxes in the giant planets are 2–3 orders of magnitude less than in the terrestrial planets.
The Dutch–American planetary astronomer Gerard Kuiper noted in the 1950’s that this
presented a problem in view of the weather systems observed in Jupiter and Saturn, which
are much more violent and constant than those of Earth. He inferred that these planets must
have a large internal energy output (Kuiper, 1952), and this is indeed the case. In the giant
planets (except perhaps Uranus) and Io internal heat flux is 10–100 times greater than in
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Fig. 2.1 Thermalized solar radiation compared to internal heat flux of some Solar System objects. Internal heat fluxes of Mars
and Moon are highly uncertain.

the terrestrial planets, and of the same order of magnitude as the thermalized solar flux
(Fig. 2.1).
A useful parameter when comparing planets and energy dissipation mechanisms is the

planetary heat flow per unit mass, qM , which is also listed in Table 2.1. Io is the largest
anomaly, with a heat flow per unit mass some three orders of magnitude greater than that
of Earth, and 1–2 orders of magnitude greater than those of the giant planets.

2.2 Dissipation of gravitational potential energy

Assembly of planets by coalescence of dust particles and gas molecules is accompanied
by liberation of gravitational potential energy (Section 1.3.1). Planetary growth almost
certainly takes place in different stages. The details of the various processes involved are
not fully understood and may have differed for rocky vs. fluid planets (see, for example,
Chambers, 2005). Regardless of the exact pathway, however, the gravitational potential
energy of the diffuse mass of nebular material that ends up being a planet is ultimately
dissipated as heat. Part of this heat is stored in the planet as internal energy, E. Dissipation
of gravitational potential energy is the most important source of internal energy during
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Accretion Contraction Differentiation

Fig. 2.2 Three pathways for dissipation of gravitational potential energy.

planetary formation, and is also responsible for heating of proto-stars up to the point at
which thermonuclear fusion begins and they become true stars.
For the sake ofmathematical clarity, we distinguish among threemechanisms that convert

gravitational potential energy to thermal energy: accretion, contraction and differentiation
(Fig. 2.2). I define accretion as a process during which planetary mass increases while
density and mass distribution remain constant. Contraction and differentiation entail mass
redistribution at constant total mass. The following is more specific.
Accretion corresponds to assemblage of the planet from particles that are initially con-

sidered to be gravitationally unbound to one another. Planetary mass grows with time and
the gravitational potential energy of the added matter is dissipated as heat. We will make
the simplifying assumption that the result of accretion is a planetary body of homogeneous
composition and density. Assembly of the terrestrial planets is probably best modeled as
accretion.
Contraction dissipates gravitational potential energy at constant mass as a result of

a decrease in planetary radius, and consequent increase in density (equation (1.6)). This
mechanism may be an appropriate model for the formation and early evolution of fluid
planets, and is also the mechanism responsible for heating proto-stars.
Differentiation of an initially homogeneous planet entails separation of a dense phase

that sinks towards the center of the planet relative to a less dense phase that comes to
occupy its outer layer. The mass redistribution that accompanies differentiation dissipates
gravitational potential energy. The resulting thermal energy is in this case deposited in the
deep planetary interior, so that this mechanism may be particularly efficient in augmenting
a planet’s internal energy content. It is thought to be of critical importance in the thermal
evolution of both solid and fluid planets.
Tidal dissipation is another source of internal energy that, ultimately, relies on gravita-

tional potential energy. The pathway by which mechanical energy is dissipated by tides is,
however, different from the other processes and will be discussed separately.
Accretion, contraction and differentiation may operate simultaneously or successively

during planetary evolution. The terrestrial planets almost certainly formed by accretion, but
it is less clear whether the fluid planets are chiefly the result of accretion or of contraction
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of a mass of diffuse nebular material, or a combination of both processes. The purpose of
the following sections is to develop the mathematical description of the various aspects of
gravitational heating, rather than to elucidate themode of formation of any particular planet.

2.3 Gravitational binding energy

The total amount of gravitational potential energy liberated during formation and subsequent
evolution of a planetary body to a given point in time is measured by its gravitational
binding energy, UB , at that time. The magnitude of a planet’s gravitational binding energy
provides clues and constraints about the planet’s thermal history and internal energy sources.
The concept of gravitational binding energy is analogous to that of lattice energy of a
crystal (Section 1.8.2), except that during formation of a crystal the potential energy that
is dissipated arises from work performed by electrostatic rather than gravitational forces.
Calculation of gravitational binding energy is generally much simpler than calculation of
lattice energies.
Consider the assembly of a self-gravitating celestial body by infinitesimal mass incre-

ments. Self-gravitating means that the body is held together only by gravitational forces
arising from the mass of the body itself. Planets and stars are obvious examples of self-
gravitating celestial bodies, and so are larger structures such as galaxies and galaxy clusters.
Consider a body with spherical symmetry and let m be the mass of the sphere of radius r
(Fig. 2.3). Addition of an infinitesimally thin shell, dr , results in a mass increment dm
and changes the gravitational binding energy of the planet by an amount dUB equal to the
gravitational potential energy of the added mass. From equation (1.6) we have:

r

m

dm

dr

Fig. 2.3 Calculation of gravitational binding energy. Each infinitesimal shell of thickness dr adds an amount of mass dm to the
planet.



76 Energy sources in planetary bodies

dUB =−Gmdm
r

. (2.3)

The gravitational binding energy of the fully assembled planet is obtained by integrating
this expression over the mass of the planet,M:

UB =−G
∫ M

0

m

r
dm. (2.4)

We assume initially that the planet is homogeneous and with mean density ρ. Radius is then
simply related to mass by:

r =
(

3m

4πρ

) 1
3

. (2.5)

Substituting into equation (2.4) and integrating:

UB =−3

5
G

(
4πρ

3

) 1
3

M
5
3 . (2.6)

Calling R the radius of the planet of mass M , we use equation (2.5) in order to simplify
equation (2.6) to:

UB =−3

5
G
M2

R
, (2.7)

which yields the gravitational binding energy UB of a homogeneous planet of massM and
radius R. In terms of R and ρ:

UB =−16

15
Gπ2R5ρ2. (2.8)

This is the total amount of gravitational potential energy that has been converted to other
types of energy in order to make a homogeneous planet with density ρ=M(4/3π)−1 R−3.
Gravitational binding energy may be transiently converted to kinetic energy of dust grains
or planetesimals, but it is ultimately dissipated as heat, when these particles stick together
following inelastic collisions (Section 1.3.2). Gravitational binding energy is always a
negative quantity (see equations (2.7) and (2.8)). An increase in its absolute magnitude
(�UB < 0) corresponds to energy dissipation and can be the result of an increase in mass
(accretion), a decrease in radius at constant mass (contraction) or redistribution of denser
material towards the center of the planet, also at constant mass (differentiation).
During formation and evolution of a planet gravitational binding energy may be either

stored as internal energy or radiated to space. The relative magnitude of these two terms
depends on the rate and mode of dissipation of mechanical energy and on the material
properties of the planet.Wewill examine thermal evolution during accretion and contraction
in Sections 2.4 and 2.5, respectively. Planetary differentiation leads to an additional release
of gravitational binding energy that is not included explicitly in equation (2.7), and that we
calculate in Section 2.6. Before refining our analysis, however, we will carry out a rough
estimate of the gravitational binding energies of planetary bodies on the basis of only their
sizes and mean densities, and draw some conclusions about their thermal histories and
possible energy sources.
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Worked Example 2.1 Gravitational binding energy and heat flow

Let us compare observed planetary heat flows (Section 2.1) with the heat flows that could
be expected if all the gravitational binding energy of a planet had been stored as internal
energy during formation of the planet and then released at a constant rate over the age of
the Solar System. If the average heat flux (energy per unit of area per unit of time) of a
planet of massM and radius R is q, the heat flow per unit mass qM (listed in Table 2.1) is
given by:

qm = 4πR2q

M
. (2.9)

The binding energy per unit mass is (from equation (2.7)):

uB =−3

5
G
M

R
. (2.10)

If this gravitational binding energy was dissipated at the beginning of the Solar System and
stored as internal energy, and the internal energy was then released at a constant rate since
then, we should observe an internal heat flow per unit mass of order qB ≈ uB/tS , where
tS = 4.55× 109 years = 1.44× 1017 s is the age of the Solar System. Values of qM and
qB for various planetary bodies are plotted in Fig. 2.4. Ignoring for a moment Mars and
theMoon (because heat fluxes for these two bodies are poorly constrained, see Section 2.1),
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divided by the age of the Solar System. Only Io emits more energy than can be accounted for from its gravitational
binding energy. Heat flow values for Mars and the Moon are highly uncertain.



78 Energy sources in planetary bodies

we see that, with one notable exception, planetary binding energies are one to two orders
of magnitude greater than the observed energy outputs or, in other words, observed heat
fluxes are significantly less than those that could be expected from steady release of all of
the gravitational binding energy over the age of the Solar System. This discrepancy can be
the result of a combination of at least three factors: (i) early in their histories the planets
cooled at rates that were much faster than today’s, (ii) heat transfer inside the planets is
very inefficient, so that a large fraction of the dissipated binding energy is still stored inside
the planets, and (iii) only a fraction of their gravitational binding energies were retained as
internal energy, with the balance being radiated to space during planet formation.
The one notable exception to these conclusions is Io, for which measured heat flow is

two orders of magnitude higher than what can be accounted for from gravitational binding
energy. The conclusion in this case is that Io, which is the most volcanically active planetary
body in the Solar System (see, for example, Davies, 2001) must have a major heat source
that is not active to any significant extent in any of the other bodies included in Fig. 2.4.

Focusing now on the planets that appear to show an excess of gravitational binding
energy, we see that there are some subtle differences. The ratio of binding energy to heat
flow for Earth, Jupiter and Neptune is almost exactly the same (qB/qM ≈ 40). Compared
to these three planets, Saturn puts out twice as much heat relative to its binding energy
(qB/qM ≈ 18), whereas Uranus radiates one sixth less heat (qB/qM ≈ 240). Saturn’s large
energy output is thought to reflect a process that is not significant at present in any other
planet (see Stevenson & Salpeter, 1977; Hubbard, 1980; see also Section 2.6).

Martian heat flow has not beenmeasured yet. The value quoted in Table 2.1 and plotted in
Fig. 2.4 is an estimate based on the bulk chemical composition ofMars, which appears to be
enriched in K relative to the Earth. Lunar heat flow was measured in two of theApollo land-
ing sites. If these values are representative of the entireMoon then, by comparisonwith other
terrestrial planets the Moon’s internal heat flux is greater than expected. This is rather sur-
prising, andmay be a relic of a short-lived extreme heating event in theMoon’s early history.

2.4 Accretion

It is virtually certain that the chief process in the assemblage of the terrestrial planets was
accretion of smaller bodies (called planetesimals), which in turn were the products of accre-
tion of yet smaller bodies, and so on down to the smallest particles of dust and ice which
formed by condensation of gaseous elements in the solar nebula (seeWeidenschilling, 1974,
1976, 1980, 2000;Wetherill, 1990, 1994).Although the details of the accretionary processes
that led from microscopic dust particles to Earth-size planets may not be fully understood
it is possible to place some constraints on its energetic aspects. The gravitational binding
energy of a planet is an upper bound to the amount of internal energy that can be derived from
dissipation of gravitational potential energy. The results of Worked Example 2.1 suggest,
however, that only a fraction of a planet’s gravitational binding energy may be converted to
internal energy. Some of the gravitational potential energy dissipated during accretion must
be radiated to space, however, and the radiated energy flux, given by the Stefan–Boltzmann
law (equation 2.1) is a very strong function of temperature, as it scales with the fourth-power
of T .
We want to find out what fraction of a planet’s gravitational binding energy is stored as

internal energy during accretion. Let us assume that a planetary body grows by accretion at
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a rate that is fast enough that no significant heat transfer occurs from the planetary interior to
its surface, so that heat is lost only by radiation from the material that makes up its surface at
any given instant.Wewill revisit this assumption in Chapter 3 and convince ourselves that it
is indeed a very goodmodel for planetary accretion.We consider an infinitesimal increment
in the planet’s mass, dm, taking place in an infinitesimal time dt . The gravitational binding
energy dissipated by accretion of thismass raises its temperature from the initial temperature
that it had in the solar nebula, T0, to the instantaneous temperature at the current planetary
surface, T . Our assumption about negligible heat transfer rate from the planet’s interior
means that once this surface layer is buried by continued accretion its temperature remains
constant. We describe energy balance during accretion with the general formulation of the
First Law of Thermodynamics:

dE = dQ− dW . (2.11)

The change in internal energy, dE, corresponds to the difference between the internal energy
of the added mass at the instantaneous temperature of the planet’s surface and its internal
energy at the background temperature of the solar nebula. We consider accretion to be a
constant pressure process for which P = 0, as it occurs at the surface of a planet with no
atmosphere. We need an expression for (∂E/∂T )P . The method to obtain this expression
is explained in Appendix 2, where we show that:(

∂E

∂T

)
P

=CP −PαV =CP , (2.12)

and the second identity results from setting P = 0. In terms of specific heat capacity
(equation (1.54)) and assuming that cP is constant between T and T0 we rewrite (2.12) as:

dE = cP (T −T0)dm. (2.13)

The change in gravitational binding energy,dUB , is balancedbymechanicalworkperformed
on the planet, −dW , i.e:

dUB + (−dW )= 0 (2.14)

so that the work performed by the system (i.e. the planet) is, from equation (2.3):

dW = dUB =−Gmdm
r

=−4

3
πGr2ρdm, (2.15)

where r is the instantaneous radius of the growing planet at the timewhen itsmass ism and its
surface temperature is T . Away of seeing why the signs must balance as in equation (2.14)
is to realize that the system always performs work against gravity. The work performed
by the system, dW , must then equal the change in gravitational potential energy. In order
for the gravitational potential energy to increase the system must perform (positive) work,
whereas negative work by the system corresponds to a decrease in gravitational potential
energy.
The planet loses thermal energy by radiation. The infalling mass would also radiate at

its nebular temperature T0, so that the heat loss that corresponds to dissipated gravitational
binding energy is the difference between the energy radiated at T and that radiated at
T0,F −F0 (equation (2.1)). The net thermal energy lost over the entire surface area of the
planet and over the time increment dt is thus given by:

dQ=−4πr2 (F −F0)dt =−4πr2εσ
(
T 4−T04

)
dt . (2.16)
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Substituting equations (2.13), (2.15) and (2.16) in (2.11) we obtain:

cP (T −T0)dm=−4πr2εσ
(
T 4−T04

)
dt + 4

3
πGr2ρdm. (2.17)

A slight rearrangement of this equation highlights its meaning: that the rate of dissipation
of gravitational binding energy equals the rate of increase in internal energy plus the rate
at which thermal energy is radiated from the planet’s surface:

4

3
πGr2ρ

dm

dt
= cP (T −T0) dm

dt
+ 4πr2εσ

(
T 4−T04

)
. (2.18)

This is a fourth-degree equation in T , the temperature at the surface of a body when its
radius is r and the mass accretion rate is dm/dt . We can use equation (2.18) to construct
the temperature profile of a planet resulting from accretion, T = T (r), by specifying an
accretionary growth model that gives dm/dt as a function of r , or, equivalently, of accreted
mass, m. We do this in the following Worked Example.

Worked Example 2.2 Energy dissipation, radiation and storage during planetary accretion

As an example of the application of equation (2.18), wewill use it to calculate possible initial
temperature profiles for the Earth, and to estimate what fraction of the Earth’s gravitational
binding energy might have been stored as internal energy during accretion. The problem
is solved numerically, by considering short time increments, calculating the mass, radius
and accretion rate at the end of each time increment, using those values to solve equation
(2.18), and iterating until the total mass of the planet has been accreted. AMaple procedure
that accomplishes this is described in Software Box 2.1.

Software Box 2.1 Calculation of temperature profile and internal energy storage during
planetary accretion
The calculations discussed inWorked Example 2.2 are implemented in theMaplework-
sheet accretion.mw, which contains several procedures. The first procedure sets the
values of physical constants and model parameters, except for the accretion time. Plan-
etary mass and density, nebular temperature (T0), specific heat and emissivity must be
changed in this procedure, if desired. Procedure solveT usesMaple’s numerical solver
to find a positive real value of T from equation (2.18). It requires the values of r and
dm/dt . These are calculated by one of the following procedures, linear_growth,
exponential_growthorsine_growth, that implement equations (2.20) through
(2.22) and pass the values of m and dm/dt to solveT via the utility procedure
calc_out. The three procedures iterate to the specified accretion time using a time
step that can be adjusted by modifying the total number of steps desired. Output is
sent to a text file which can be read and manipulated by plotting or spreadsheet pro-
grams. The name and format of the output file can be modified inside each of the
procedures that describe the growth models. When execution of a model is finished
Maple returns total gravitational binding energy, energy stored as internal energy, and
the ratio between these two quantities – this information is not saved in the output files.
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The first task is to specify an accretionary growth model so as to obtain numerical
values for the mass accretion rate, dm/dt as a function of radius, r . We will consider three
distinct models: (i) a linear model in which accretion rate is constant, (ii) a model in which
accretion rate decreases exponentially with time (see Wetherill, 1990), and (iii) a model
in which accretion rate increases rapidly, reaches a maximum and then decreases rapidly
to zero (Hanks & Anderson, 1969). The accretion models are best described in terms of
accretion rates normalized to the total mass of the assembled planet,M . The three models
are described by the following equations, where µ=m/M:(

dµ

dt

)
(i)

= C

M(
dµ

dt

)
(ii)

= C

M
e−kt

(
dµ

dt

)
(iii)

= C

M
t2 sinkt ,

(2.19)

where the dimension of dµ/dt is [T ]−1, and the constants C and k are functions of the
accretion time ta . In every case we set µ= 0 at t = 0 and µ=m at t = ta . For the linear
model we easily find: (

dµ

dt

)
(i)

= 1

ta

(µ)(i) =
t

ta
.

(2.20)

For the exponential model we set k = 1/ta , meaning that the accretion rate becomes
exponentially slow as the accretion time is reached. Integrating between 0 and ta we find:(

dµ

dt

)
(ii)

= 1

ta

e−t/ta(
1− e−1)

(µ)(ii) =
1− e−t/ta
1− e−1 .

(2.21)

For the sinusoidal model we make dm/dt = 0 at t = ta (see also Exercise 2.1) and we get:(
dµ

dt

)
(iii)

= 1

ta

π3

π2− 4

(
t

ta

)2
sin

(
π
t

ta

)

(µ)(iii) =
1

π2− 4

[
−π2

(
t

ta

)2

cos

(
π
t

ta

)
+ 2cos

(
π
t

ta

)
+ 2π

t

ta
sin

(
π
t

ta

)
− 2

]
.

(2.22)

Figure 2.5 shows dµ/dt and m/M as a function of time for the three accretion models,
for an accretion time ta = 10 million years. The function for planetary radius, r = r(t)

is obtained by substituting m = m(t) in equation (2.5), with the simplifying assumption
that the density of the planet remains constant during accretion – we will tackle density
inhomogeneities caused by contraction and differentiation in later sections.



82 Energy sources in planetary bodies

0 2*10 6 4*10 6 6*10 6 8*10 6 10 70

5*10 –8

10 –7

1.5*10 –7

2*10 –7

Time (yr)

A
cc

re
tio

n
ra

te
pe

r
un

it
m

as
s

(y
r–1

)

C

C e – kt

C t 2 sin (kt)

0 2*10 6 4*10 6 6*10 6 8*10 6 10 70

0.2

0.4

0.6

0.8

1

Time (yr)

F
ra

ct
io

n 
of

 p
la

ne
ta

ry
 m

as
s 

ac
cr

et
ed

C

C e– kt

C t 2 sin (kt)

Fig. 2.5 Specific accretion rates (per unit mass) and accretionary histories for linear, exponential and sinusoidal accretion
models. Accretion time is 10 million years.

Figure 2.6 shows accretion temperature profiles for the Earth for an accretion time of
10 million years and nebular temperature T0 = 100K, and assuming that the emissivity
of the accreting planet was 1. This means that the figure shows minimum tempera-
tures, as any value of ε < 1 will cause a larger fraction of the binding energy to be
stored as internal energy (equation (2.18)). Accretion models predict that the center of
the planet was initially much colder than its outer layers. This is to be expected from
the fact that gravitational binding energy varies as m2/r or, equivalently, as the fifth
power of the radius (equation (2.8)), so that little heating takes place during the initial
stages of growth. Thermal convection would not take place with these temperature profiles
(Chapter 3), even if the planet were fully molten (which at these temperatures an iron–
silicate planet would not). Linear and exponentially decaying growth predict a very steep
inverted temperature gradient out to a radius of∼1000 km, and relatively constant tempera-
tures from that depth to the planet’s surface. The differences between bothmodels areminor.
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Fig. 2.7 Fraction of gravitational binding energy that is converted to internal energy during accretion of the Earth. Model
parameters as in Figure 2.6.

The sinusoidal growth model results in a more gradual temperature increase outwards from
the planet’s center, and a marked temperature peak near the planet’s surface, which reflects
the late peak in mass accretion rate (compare Fig. 2.5, see also Hanks &Anderson, 1969).
If release of gravitational binding energy increases strongly with radius (equation

(2.8)), then why do accretionary temperatures flatten out and eventually decrease close
to the planet’s surface? The answer lies in the fact that thermal radiation varies as the
fourth power of temperature, so that as temperature increases a rapidly growing fraction
of the gravitational energy that is dissipated is radiated rather than converted to internal
energy. This can be seen in Fig. 2.7, which shows the fraction of binding energy
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that is converted to internal energy as a function of planetary radius. The balance is
radiated.
Integrating equation (2.13) along the accretionary history we obtain the total amount of

internal energy stored during accretion, and the ratio of this quantity to the total gravitational
binding energy (Software Box 2.1). This ratio is shown in Fig. 2.8 as a function of accretion
time,which for terrestrial planets is thought to be in the range 105–107 years (seeWetherill&
Inaba, 2000). For accretion times in this range only a very small fraction of the binding
energy, of the order of 10−2, is stored as internal energy. The rest is radiated to space. It is
thus not necessary to postulate exorbitant planetary heat flows in the early solar system to
explain the discrepancies noted in Fig. 2.4.

Internal energy varies by a factor of ∼3 over the two orders of magnitude range in
accretion times (Fig. 2.8). As the total planetary mass is the same in all cases, this must
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Fig. 2.8 Total fraction of binding energy converted to internal energy for the three Earth accretion models in Figure 2.7, but for
variable accretion times, 105–107 years.
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reflect a difference of comparable magnitude in planetary temperatures (equation (2.13)).
Figure 2.9 shows that even for very fast accretion (105 years), however, maximum temper-
atures attained in the absence of other energy sources (∼1500K) may not be sufficient to
melt an undifferentiated metal–silicate planet. Recall that these calculations assume ε = 1.
You can explore other parameter combinations in the end-of-chapter exercises.

A conclusion that we can draw from this example is that accretion may not in general be
an efficient means of converting gravitational binding energy to planetary internal energy,
unless proto-planetary material has an emissivity significantly lower than 1, but there is an
important exception to this statement, which we discuss in the following section.

2.4.1 The effect of large impacts

The picture of accretion as a quasi-static process, in which mass is added to the growing
planet in infinitesimal increments, ignores the possibility that catastrophic planet-sized
impacts may take place late in the assembly of planetary bodies (see Wetherill, 1985).
Such impacts can dissipate enormous amounts of kinetic energy virtually instantaneously.
Consider two celestial bodies that collide inelastically. Kinetic energy is dissipated and
becomes thermal energy, which is stored as a combination of sensible heat (increase in
temperature) and latent heat (melting). Assume that two bodies of masses m and M , and
moving with relative speed v, collide head on. In this one-dimensional geometry v is simply
the magnitude of the velocity vector va (Section 1.3.2). The kinetic energy dissipated is
given by equation (1.15):

�U k =−1

2
mv2

(
M

M +m
)
. (2.23)



86 Energy sources in planetary bodies

Because this process transforms kinetic energy to internal energy, we must add a kinetic
energy term to the First Law of Thermodynamics (equation (1.56)):

dE = dQ−PdV − dU k , (2.24)

where dU k is the change in the system’s kinetic energy. The impact is an adiabatic process,
so dQ = 0. If we also assume that the energetic consequences of volume changes are
negligible compared to the energy dissipated during a collision, we see that the change in
internal energy equals the kinetic energy that is dissipated:

dE =−dU k . (2.25)

The increase in internal energy per unit total mass of the system, �Em, is given by:

�Em = 1

2
mv2

(
M

M +m
)

1

M +m = v2

2

[
Mm

(M +m)2
]
. (2.26)

Let the ratio betweenM andm be k, such thatm= kM . Equation (2.26) can then be written
as follows:

�Em = v2

2

k

(k+ 1)2
. (2.27)

This equation shows that, for a given collision speed, the increase in internal energy per
unit mass, and therefore the average temperature increase, depends only on the ratio of
the masses of the colliding bodies, and not on the absolute values of M and m. �Em
vanishes as k→ 0, so that the average temperature increase is negligible when one of the
colliding bodies is much smaller than the other one. Of course, this is a global result that
ignores the local details: the K–T impact may have caused a negligible increase in the total
internal energy content of the Earth, but the local increase in temperature was certainly not
negligible. But this is also the point: accretion of a small body onto a much larger one does
not lead to a significant increase in the latter’s thermal budget. We then ask whether there
is a value of k for which�Em (and�T ) is maximum. On symmetry grounds, we can argue
that this must happen when the two bodies have the same mass, i.e. for k = 1. In order to
check this we look for the extrema of the function:

y = k

(k+ 1)2
. (2.28)

The first derivative of this function vanishes at k= 1, and the second derivative is negative
at k= 1, showing that this extremum is a maximum. The increase in internal energy per unit
mass is indeed maximum when the masses of the colliding bodies are equal. The maximum
value for a given collision speed is obtained by setting k = 1 in equation (2.27):

�Em,max = v2

8
. (2.29)

We must specify the relative speed of the collision. In general, the maximum speed for
an inelastic collision is of the order of the escape velocity at the surface of a body with
a mass equal to the combined masses of the impactors, M +m. The escape velocity of a
planet is the minimum velocity that a free-falling object must have in order to be able to
move away from the planet indefinitely. By “free falling” we mean that no other forces



87 2.4 Accretion

besides the gravitational attraction of the attracting planet act on the moving body. The
escape velocity is therefore the speed at which the kinetic energy of the body equals its
gravitational potential energy (Exercise 2.4). If two bodies collide with a relative speed that
is significantly greater than the escape velocity of their combined masses then gravity is
not capable of holding the mass together, and the impactors will tend to shatter rather than
merge. I will give a more quantitative demonstration of this in a moment. First, note that
the escape velocity at the surface of a body of massM and radius r is given (Exercise 2.4)
by Ve =√(2GM)/r , which we can write in terms of planetary radius and density as:

Ve =
(
8

3
πGρr2

)1/2
. (2.30)

Substituting in (2.29) we get the following expression for the increase in internal energy per
unit mass, for an impact at the escape velocity of the combined masses of the impactors:

�Em,Ve =
1

3
πGρr2. (2.31)

From equation (2.10) we write the binding energy per unit mass in terms of density and
radius:

uB =−4

5
πGρr2. (2.32)

We see that (2.31) and (2.32) are of the same order of magnitude. If the energy dissipated
were significantly greater than the binding energy then there would not be enough gravi-
tational attraction to hold the mass together during the collision. But (2.31) is the energy
dissipated by an impact at the escape velocity of the combined masses, showing that the
escape velocity is the approximate limiting velocity for an inelastic collision.
Because �Em,V e corresponds to a collision between two bodies of equal mass (and,

we will assume, equal density) we can write (2.31) in terms of the radius of each of the
impactors, ri , as follows:

�Em,Ve =
22/3

3
πGρr2i . (2.33)

This function is plotted in Fig. 2.10 for bodies of two compositions: silicate–metal mixtures
with ρ= 4500 kgm−3, corresponding to chondritic impactors (undifferentiated early Solar
System material), and ice bodies with ρ = 1000 kgm−3. We can compare these energy
values to the specific heat capacities and enthalpies of melting of planetary materials. The
composition of chondritic meteorites is roughly one third metal and two thirds silicate.
Specific heat capacities per unit mass of silicate minerals are of the order of 103 J K−1 kg−1
and of iron about 5×102 J K−1 kg−1, so that a typical value for chondritic material may be
0.85 kJ K−1 kg−1. The value for H2O at typical nebular temperatures of 200 K is ∼1.5 kJ
K−1 kg−1. The vertical scales on the left of the graph show characteristic temperature
increases for both types of materials, based on these heat capacities and the energy dissi-
pation per unit mass given in the vertical axis. We see that for bodies up to 100–200 km
in radius the kinetic energy dissipated by collisions is insignificant on a global scale, even
though local effects can be devastating.Aglobal temperature increase of the order of 100 K,
which may be important in ice-rich bodies at nebular temperatures as it may heat them to
their melting point, requires a collision between 1000-km sized bodies.
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Fig. 2.10 Maximum kinetic energy dissipated per unit mass during inelastic collisions as a function of impactor radius. Values
correspond to collision of two identical bodies of the given radius. The temperature scales show how these energies
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In order for the merged body that results from an inelastic collision to become completely
molten we can specify that the temperature increase must be of the order of 100 K (for
ice bodies) to a few 1000 K (for rock and metal bodies). We then need to add the specific
enthalpies ofmelting,which are of the order of 3.4×105 J kg−1 and5×105 J kg−1 for ice and
rock–metalmixtures, respectively.The result is that a collision between chondritic impactors
must dissipate∼2×106 J kg−1 in order for the resulting body to become completely molten,
whereas complete melting of an ice body requires some 5×105 J kg−1. Figure 2.10 shows
that for both types ofmaterials theminimum impactor radius that produces completemelting
is ∼2000 km.
The global thermal effects of collisions are generally less severe than what one is perhaps

prone to imagine on the basis of the unavoidably catastrophic local effects. This changes
as the colliding bodies approach planetary size (∼2000 km), so that the very last stages
of planetary accretion may have had global thermal consequences (see Wetherill, 1985).
The hypothesis for the formation of the Moon that best fits geochemical, geophysical and
astrophysical evidence is that it was the result of a collision between a Mars-sized body
and the proto-Earth (Hartmann & Davis, 1975; Cameron & Benz, 1991). Such a collision
would have dissipatedmore than enough energy to completelymelt the Earth–Moon system
(Fig. 2.10).



89 2.5 Contraction

2.5 Contraction

We define contraction as a constant-mass process in which the initial lengthscale of the
contracting body may take a finite value (it differs from accretion in both of these respects).
By equation (2.7), contraction (�R < 0) at constant mass lowers gravitational binding
energy (increases its absolute magnitude). We seek the relationship between the change in
gravitational binding energy and the change in the body’s internal energy content.
Consider a spherical shell in the interior of a planet, of infinitesimal thickness dr . Take a

sector of this shell of unit cross-sectional area.The difference in pressure between the bottom
and the top of the shell is given by dP =−gdm, where dm is the mass of the infinitesimally
thick sector of unit cross-sectional area, and the negative sign arises because, if r > 0moving
outwards then g points in the negative direction (see equation (1.7)). Now dm= ρdr , which
leads to the following relationship, known as the condition of hydrostatic equilibrium:

dP

dr
=−gρ=−Gm

r2
ρ, (2.34)

where m is the planetary mass contained inside a sphere of radius r (see Box 2.1). The
density, ρ, is in general a function of pressure and temperature, both of which vary with r .

Box 2.1 Gravitational potential of a solid sphere

The gravitational potential of spherical bodies turns up in many calculations of gravitational heating. In order
to derive the fundamental equations it is necessary to calculate: (a) the gravitational potential of a ring, (b)
the gravitational potential of a spherical shell (seen as an assemblage of infinitesimal rings – see Fig. 2.11)
and, finally, (c) the gravitational potential of a sphere, which is an assemblage of infinitesimal shells (Figure
2.12).

(a) Consider a ring of radius a and a point P at a distance r along the ring’s axis. The distance from P to an
infinitesimal element of a ring of mass dm is x . The gravitational potential at P due to this mass element is:

dΦ =−G

x
dm. (2.1.1)

Given the symmetry of the problem x is constant (Fig. 2.11), so the gravitational potential of the entire ring
must be:

Φ =−G

x

∫
dm=−GM

x
=− GM(

a2+ r2
) 1

2

, (2.1.2)

where M is the mass of the ring. As an exercise, show (i) that the gravitational acceleration vanishes at the
ring’s center (r = 0) but the gravitational potential does not and (ii) that the gravitational acceleration far
away from the ring (r →∞) is equivalent to the gravitational acceleration of a point mass located at the
ring’s center – see equation (1.11).

(b) A spherical shell is an assemblage of infinitesimally thin rings (Fig. 2.11). Now, r is the distance
between P and the center of the spherical shell, and a is the radius of the shell. The radius of the rings is,
z = a sinβ, and x is the distance between a ring element and P, as before. Let dx = adβ be the width of the
ring, andM the mass of the shell. The mass of the ring, dm, is given by the ratio between its surface area and
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Box 2.1 Continued
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Fig. 2.11 Gravitational potential of a ring (a) and a spherical shell (b), at points outside (b(i)) and inside (b(ii)) the shell.

that of the shell:

dm= 2πa sinβdx

4πa2
M= M sinβdx

2a
= 1

2
M sinβdβ (2.1.3)

and, from equation (2.1.2), the gravitational potential caused by the ring at P is:

dΦ =−GM sinβdβ

2x
. (2.1.4)
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Box 2.1 Continued
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Fig. 2.12 Gravitational potential inside a solid sphere.

From the law of cosines:

x2 = a2+ r2− 2ar cosβ. (2.1.5)

Differentiating (2.1.5) and solving for sinβdβ:

sinβdβ= xdx

ar
(2.1.6)

and substituting in (2.1.4):

dΦ =− GM

2ar
dx . (2.1.7)

We now need to decide on the integration limits, and these are different depending on whether P is located
inside or outside the spherical shell (Fig. 2.11). For P outside the shell, case b(i), the gravitational potential is
given by:

Φ =− GM

2ar

∫ r+a

r−a
dx =−GM

r
, (2.1.8)
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Box 2.1 Continued

which is the same as that caused by a point mass located at the center of the shell. At a point P inside the
shell, case b(ii):

Φ =− GM

2ar

∫ r+a

a−r
dx =−GM

a
. (2.1.9)

Thus, the gravitational potential anywhere inside a spherical shell is constant, and equal to the potential at
the surface of the shell (set r = a in equation (2.1.8)). What is the gravitational acceleration everywhere
inside a spherical shell?

(c) A solid sphere is an assemblage of infinitesimal shells. For a point located outside the sphere (r ≥ a)
the gravitational potential of each infinitesimal shell of mass dm is given by equation (2.1.8):

dΦ =−Gdm

r
(2.1.10)

so the gravitational potential of the sphere of massM is simply:

Φ =−G

r

∫
dm=−GM

r
, (2.1.11)

i.e. the same as that of a point mass located at the center of the sphere. We now seek the gravitational
potential at a point P inside a solid sphere of radius a, located at a distance r from the center of the sphere,
Fig. 2.12. The gravitational potential at P equals the sum of the gravitational potential of the sphere interior
to P,Φinside plus that of the spherical shell exterior to P,Φoutside . From (2.1.11), we have:

Φinside =−GMinside

r
=−G

r

(
r3

a3
M

)
=−GMr2

a3
. (2.1.12)

The external (finite) shell is an assemblage of infinitesimal shells, each of them of thickness dx and (variable)
radius x – see Fig. 2.12. The mass of each shell is given by:

dm= 4π x2dx
4
3πa3

M= 3M
a3

x2dx (2.1.13)

and its gravitational potential by equation (2.1.9):

dΦ =−G

x

(
3M
a3

x2dx

)
=−3GM

a3
xdx . (2.1.14)

The gravitational potential of the shell external to P is, then:

Φexternal =−3GM
a3

∫ a

r
xdx =−3GM

2a3
(
a2− r2

)
(2.1.15)

so that the gravitational potential at P,Φ =Φinside+Φoutside is:

Φ =− GM

2a3
(
3a2− r2

)
. (2.1.16)

As a final exercise, prove that the gravitational acceleration at P is derived only from the mass internal to P,
i.e. from the sphere of radius r in Fig. 2.12. Newton was the first one to prove this (oh, by the way, he had to
come up with calculus in the process).
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Planetary radius changes during contraction so it is more convenient to choose mass as the
independent variable and write our equations in terms of infinitesimal mass increments,
dm. In this way the integrals that describe the planetary interior are always taken between
zero, at the planet’s center, and the total (constant) planetary massM at the planet’s surface.
From equation (2.5) we obtain:

dr

dm
= 1

4πr2ρ
(2.35)

and, by the chain rule:

dP

dm
= dP

dr

dr

dm
=− Gm

4πr4
. (2.36)

Mass increments dm are positive outwards (i.e. towards the planet’s surface) and this
equation states that pressure decreases in the same direction, as expected. Equation (2.36)
was derived exclusively from the condition of hydrostatic equilibrium, but its right-hand
side contains the factorGm/r , which is the integrand in the equation for gravitational bind-
ing energy (equation (2.4)). Multiplying the right-hand side of equation (2.36) by 4πr3 and
integrating over the planetary mass we obtain:

−
∫ M

0

Gm

4πr4
4πr3dm=−

∫ M

0

Gm

r
dm=UB . (2.37)

Applying the same operations to the left-hand side of equation (2.36) yields the expression:∫ M

0
4πr3

dP

dm
dm, (2.38)

which can be integrated by parts. By the chain rule:

d

dm

(
4πr3

)
= 12πr2

dr

dm
(2.39)

so that: ∫ M

0
4πr3

dP

dm
dm=

[
4πr3P

]M
0
−
∫ M

0
12πr2P

dr

dm
dm. (2.40)

The first term on the right-hand side of this equation vanishes, because at the planet’s center
(m= 0) it is r = 0, and at the planet’s surface (m=M) it is P = 0. Using equation (2.35)
to eliminate dr/dm from the integrand in the second term we get:∫ M

0
4πr3

dP

dm
dm=−

∫ M

0
12πr2P

1

4πr2ρ
dm=−3

∫ M

0

P

ρ
dm (2.41)

which, by using (2.36) and (2.37), yields:

UB =−3
∫ M

0

P

ρ
dm. (2.42)

This is a fundamental result. It states that, in a self-gravitating body at hydrostatic equi-
librium, the gravitational binding energy and the body’s thermodynamic state are not
independent variables. Both pressure and density are thermodynamic state variables that
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are related to temperature, and hence to internal energy, by an equation of state. It is thus
always possible, at least in principle, to relate the body’s gravitational binding energy,
UB , to its internal energy, E. A special case of this result, known as the virial theorem
(Worked Example 2.3) was first derived by Clausius in the 1850s. Equation (2.42)
is applicable to the formation of celestial bodies, including planets, stars, gravitationally
bound star clusters and even galaxies, provided that they evolve by contraction at a rate such
that hydrostatic equilibrium is maintained throughout the entire process. If this is the case
then equation (2.42) determines how much of the gravitational binding energy dissipated
during contraction becomes internal energy and how much becomes thermal radiation that
is lost to space. This result does not apply to accretion, which is a non-equilibrium process.

Worked Example 2.3 Thermal evolution of a contracting self-gravitating sphere of ideal gas

In order to calculate the relationship between gravitational binding energy and internal
energy it is necessary to use an equation of state to express the ratio P/ρ as a function ofE.
This is very straightforward for an ideal gas, but is the ideal gas equation of state applicable
to any type of celestial bodies? It turns out that P–T conditions in many low mass stars
and proto-stellar clouds are such that the ideal gas equation of state is indeed a very good
description of their material properties, because the characteristic energy of particle interac-
tions is negligible compared to their thermal energy (Section 1.15). The fully ionized matter
inside a star with mass comparable to that of the Sun behaves likes a monatomic ideal gas.
The density of the gas is given by ρ = w/V , where w is its molecular weight (proper

mass!) and V the molar volume. We then have:

P

ρ
= PV

w
= RT

w
. (2.43)

From Section 1.14.2 we see that the molar internal energy of an ideal gas is given by:

E = f

2
RT (2.44)

and its molar heat capacities by:

CV = f

2
R; CP = f + 2

2
R, (2.45)

where f is the number of translational+ rotational degrees of freedom of the gasmolecules.
The ratio of the heat capacities is a variable that occurs often in thermodynamics so it is
given its own symbol, γ, which for ideal gases is:

γ= CP

CV
= 1+ 2

f
(2.46)

from which it follows that:

RT = (γ− 1)E. (2.47)

Substituting in (2.43) and then in (2.42) we arrive at:

UB =−3
∫ M

0

P

ρ
dm=−3(γ− 1)

∫ M

0
edm, (2.48)
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where e = E/w is the internal energy per unit mass. The integral is taken over the entire
mass of the body, so that even though e may vary for each mass increment, the value of the
integral is simply E, the total internal energy content of the self-gravitating body of ideal
gas. We thus arrive at the following simple yet very powerful result, which is known as the
virial theorem (see the classic textbook by Chandrasekhar, 1958, for a beautifully elegant
alternative derivation):

UB =−3(γ − 1)E. (2.49)

Any self-gravitating body of ideal gas at hydrostatic and thermodynamic equilibrium must
follow this relationship between its gravitational binding energy and its total internal energy.
The change in gravitational binding energy during contraction (�UB < 0) equals

the mechanical work performed by the planet (Exercise 2.5) so that the First Law of
Thermodynamics applied to a contracting planet can be written as follows:

dE = dQ− dUB , (2.50)

which, rearranging and substituting equation (2.49), becomes:

dQ= dE− 3(γ− 1)dE = (4− 3γ )dE. (2.51)

There is a strict relationship between the heat exchanged by the body, dQ, the change
in its internal energy, dE, and the change in its gravitational binding energy, dUB . For a
monatomic ideal gas we have γ = 5/3, so that in this case:

dQ=−dE = 1

2
dUB . (2.52)

This is a remarkable result. If a self-gravitating body of monatomic ideal gas radiates energy
to space (dQ< 0), then it must contract. The gravitational potential energy dissipated by
this contraction (dUB < 0) is split into two equal parts. One half balances the radiated
energy and the other half becomes internal energy (dE>0). As the surface of the body
radiates heat to space the temperature in its interior increases. This process is called Kelvin–
Helmholtz cooling and is responsible for heating proto-stars to the temperatures needed to
ignite thermonuclear fusion reactions in their cores.
It is important to realize that this specific result (equation (2.52)) rests on the assumption

that the self-gravitating body is composed of monatomic ideal gas, which is an excellent
approximation to the behavior of hot proto-stars (see Section 1.15) but not, for example, of
cold fluid planets. Consider for the sake of argument a cold body made up of polyatomic
molecules with translational+ rotational six degrees of freedom, for which γ= 4/3. In this
case:

dQ= 0, −dE = dUB . (2.53)

Such a body would not radiate any of the gravitational potential energy that would be dis-
sipated during contraction. Of course, if the surface temperature of the body is above 2.7K
(Chapter 13) then it will radiate heat to space and contract, but in this case all of the grav-
itational potential energy that is dissipated goes to raising the body’s internal temperature.
We will examine this topic again in Chapter 9, in the context of equations of state for fluid
planets.
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Kelvin–Helmholtz contraction may have been responsible for some fraction of the initial
internal energy budgets of the gas and ice giants, but their present day thermodynamic
states make this mechanism largely inoperable (Chapter 9). Contraction ceased, probably
shortly after formation of the Solar System, when the planets reached density–temperature
conditions such that the energies of particle interactionswere no longer negligible compared
to their thermal energies, and the planetary matter condensed. Present-day heat flows of the
fluid planets are thought to derive largely from slow escape of the internal energy stored
during the early stage of contraction, although ongoing differentiation may be a significant
additional heat source in some of them (Hubbard, 1970, 1980; Flasar, 1973; Graboske et al.,
1975; Stevenson, 1982b; Guillot, 2005).

2.6 Differentiation

Differentiation of a homogeneous planet releases gravitational potential energy, as the
denser material sinks in the planet’s gravitational field to form its core. Because dissi-
pation of mechanical energy takes place deep within the planet, core formation could be a
particularly efficient mechanism for raising a planet’s internal energy content. Consider an
undifferentiated planet of radius R and homogeneous density ρ0. The planet then differen-
tiates into a core of radius r and density ρc , sheathed by a mantle of density ρm extending
from r to the planet’s surface at R (Fig. 2.13). From mass balance we obtain the following
relationship between core radius and planetary radius:

r

R
=
(

ρ0− ρm

ρc− ρm

) 1
3

. (2.54)

We can visualize the core-forming process as follows. Assume that the undifferentiated
planet is composed of infinitesimal volume elements that can have a density of either ρc or
ρm. These elements are initially distributed homogeneously throughout the entire planet,
in a proportion that yields a mean density ρ0. Let x be the distance of an arbitrary volume
element from the planet’s center. During core formation, all volume elements of density ρc
located at x > r exchange places with elements of density ρm located at x < r . The result
of this process is a core or radius r made up of all volume elements of density ρc and a

0

R R

m

c

r

Fig. 2.13 Differentiation of a planet with initial homogeneous density ρ0 into a core with density ρc and a mantle of
density ρm.
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mantle that comprises all elements of density ρm. The total mass added to the core is then
given by:

�mc = 4

3
πr3 (ρc− ρm) . (2.55)

The loss in gravitational potential energy of this mass is the amount of mechanical energy
dissipated by core formation, and hence the increase in the planet’s internal energy, assum-
ing for now that none of it is radiated to space. Each volume element undergoes a different
displacement, ranging from R (for an element falling from the planet’s surface to its cen-
ter) to 0 (for an element initially located at r). A characteristic displacement during core
formation is thus given by the distance between the center of mass of the mantle, rm, and
the center of mass of the core, rc. The radii rm and rc are defined as the distances from the
planet’s center such that half of the mantle’s mass, and half of the core’s mass, are located
inside rm and rc, respectively (Fig. 2.14). From mass balance we find:

rc =
(
r3

2

) 1
3

; rm =
(
R3+ r3

2

) 1
3

. (2.56)

A reasonable estimate of the amount of mechanical energy dissipated by core formation is
then given by the change in the gravitational potential energy,�Ug , of a mass equal to the
mass added to the core, �mc, falling from rm to rc.

R

rm
rc

r

Characteristic
mass displacement

Fig. 2.14 During differentiation, a typical volume element of core material falls from the center of mass of the mantle at rm to
the center of mass of the core at rc , exchanging places with a volume element of mantle material.
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Gravitational potential energy inside a self-gravitating body is described by an equation
that is different from equation (1.6), because the gravitational force at a point inside the
body arises only from the mass internal to that point (this result, which was first derived by
Newton, is demonstrated inBox2.1).The equations are simpler ifweworkwith gravitational
potentials. If we call the gravitational potentials of a characteristic volume element (one that
falls from rm to rc) before and after differentiation Φg,i and Φg,f , respectively, we have:

�Ug =
(
Φg,f −Φg,i

) · 4
3
πr3 (ρc− ρm) . (2.57)

In the initial state the characteristic volume element is located at a radius rm inside a solid
sphere of radius R and homogeneous density ρ0. The gravitational potential at that point is
given by (Box 2.1):

Φg,i =−GM
2R3

(
3R2− rm2

)
=−2

3
πGρo

(
3R2− rm2

)
. (2.58)

In the final state the characteristic element is located at radius rc inside a homogeneous
sphere of radius r and density ρc, which is in turn enclosed by a shell of homogeneous
density ρm extending between radii r and R (Fig. 2.13). The value of Φg,f is obtained by
adding these two contributions and is given by:

Φg,f =−2

3
πGρc

(
3r2− rc2

)
− 2πGρm

(
3R2− rc2

)
, (2.59)

where the first term is the gravitational potential due to the inner sphere (the core), and the
second term is the gravitational potential arising from the spherical shell surrounding the
core (i.e. the mantle) – see Box 2.1.
The release of gravitational potential energy caused by differentiation increases the (abso-

lute magnitude) of the planet’s gravitational binding energy.Auseful measure of the amount
of energy dissipated during core formation is the non-dimensional ratio that compares this
energy to the gravitational binding energy of the undifferentiated planet:

D = �Ug

UB
, (2.60)

where UB is the binding energy of the undifferentiated planet, equation (2.8). Substituting
equations (2.58) and (2.59) in (2.60) and using (2.54) to eliminate the radii we arrive, after
some algebraic manipulations, at:

D = �Ug

UB
=− 5

2

(
ρ0− ρm

ρ0

)2[
1−
(

ρc− ρm

ρ0− ρm

) 1
3

]

− 5

6

ρ0− ρm

ρ02

[
ρc

(
ρ0− ρm

2(ρc− ρm)

) 2
3 − ρ0

(
1

2
+ ρ0− ρm

2(ρc− ρm)

) 2
3
]
.

(2.61)
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We canwrite this equation in terms of the ratios between the densities of the core andmantle
and the planet’s bulk density, ρ0. Defining the ratios ϕc = ρc/ρ0 and ϕm = ρm/ρ0, we get:

D = �Ug

UB
=− 5

2
(1−ϕm)

2

[
1−
(

ϕc−ϕm

1−ϕm

) 1
3
]

− 5

6
(1−ϕm)

[
ϕc

(
1−ϕm

2(ϕc−ϕm)

) 2
3 −
(
1

2
+ 1−ϕm

2(ϕc−ϕm)

) 2
3
] (2.62)

and also:

r

R
=
(

1−ϕm

ϕc−ϕm

) 1
3

. (2.63)

These two non-dimensional equations are plotted in Fig. 2.15. The curves are contours of
constant D, as defined by equation (2.62), and the straight lines are contours of constant
core radius relative to planetary radius, given by equation (2.63). The graph leads to two
conclusions that should be intuitively obvious. First, the thermal contribution that arises
from formation of a small core is relatively minor and not very sensitive to the density of
the core. The small size of the core limits the value of�mc (equation (2.55)) and hence the
available amount of gravitational potential energy. Note, however, that even for a planet like
Mars, which is likely to have a relatively small core, differentiation may dissipate a fraction
of order 10−2 of the planet’s binding energy, which may be comparable to the internal
energy stored by accretion (Worked Example 2.4). Second, in planets with a large core,
the thermal effect of core formation is strongly dependent on the density contrast between
mantle and core, because this is what ultimately determined the magnitude of �mc.

Worked Example 2.4 Thermal effect of core formation in the terrestrial planets

Typical values of specific heat capacity and enthalpy of fusion for rocky materials are
103 J kg−1 K−1 and 5× 105 J kg−1, respectively. The values for iron are approximately
one half of these (see also Section 1.14.3). Density values for Earth are ρ0 = 5500 kgm−3,
ρm ≈ 4500 kgm−3, and ρc ≈ 10700 kgm−3 (you should confirm that these values yield the
correct radius for the Earth’s core,∼3480 km). Plugging these densities into equation (2.62)
we get D = 0.118 (see also Fig. 2.15). From equation (2.10) we get the binding energy per
unit mass of the Earth, uB ≈ 3.75× 107 J kg−1. We can then conclude that formation of
the Earth’s core dissipated ∼4.43× 106 J kg−1. This is enough thermal energy to raise
the temperature of the entire Earth by over 4500 K, or to melt the entire Earth more than
10 times over! Upon formation, the core must have been completely molten, and perhaps
superheated above its liquidus temperature too. Part of the gravitational energy dissipated
was stored as enthalpy of melting. Metal solidification over the age of the Solar System,
that continues to this day, releases this enthalpy from the liquid metal thermal reservoir.
This is one of the sources of energy that powers convection in the Earth’s core and mantle
(Chapter 3).
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Fig. 2.15 Curves of constant D (equation (2.62)) and constant r/R (equation (2.63), straight lines) as a function of the density
ratiosϕc andϕm. The lower panel magnifies the region ofϕc values characteristic of terrestrial planets. Two different
locations are shown for Mercury and Mars, representing different assumed core and mantle density values (see text).

Core and mantle densities are far less well constrained for the other terrestrial planets.
Mercury appears to have the largest core among the terrestrial planets, with r/R ≈ 0.6–0.7
(this can be inferred from the planet’s high uncompressed density, see, for example, Strom,
1999). A core of this size allows relatively large D values (Fig. 2.15), which might be an
important point in understanding the planet’s thermal history given that Mercury appears
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to still have a partially molten core and a faint magnetic field (Strom, 1999; Purucker et al.,
2009). For example, if we assume ρm= 3700 kgm−3 and ρc = 9500 kgm−3, and given that
for Mercury ρ0= 5430 kgm−3, we get r/R= 0.67 andD≈ 0.20. If these values are correct
then formation of the Mercurian core may have liberated ∼1.1× 106 J kg−1, three times
what would be needed to melt the entire planet. Because of Mercury’s large core this result
is sensitive to core and mantle densities. However, even assuming ρm = 4000 kgm−3 and
ρc = 8300 kgm−3, which are probably extreme permissible values given what we know
about Mercury’s composition (e.g. a low-Fe crust, Strom, 1999; Taylor & Scott, 2005), we
getD≈ 0.15 (Fig. 2.15) and an energy dissipation of∼8.4×105 J kg−1, which is still twice
the amount of energy needed to melt the entire planet. Data from the Messenger mission
may allow a refinement of these calculations.
In contrast to Mercury, what we know about the composition of Mars, coupled to its

low bulk density, suggests that Mars has a relatively small core, with r/R ≈ 0.3− 0.4 (see
Wanke & Dreibus, 1988; Lodders & Fegley, 1997; Sanloup et al., 1999). Core and mantle
densities may be in the range ρm = 3600− 3800 kgm−3 and ρc = 8000− 10000 kgm−3,
respectively (McSween, 2005), which yield D ≈ 0.02− 0.06. The largest of these values
yields an energy dissipation during core formation of ∼4.5× 105 J kg−1, which may have
been just enough to melt the planet. The energy dissipated at the lower end of the range
may have been sufficient to melt the Martian core but not the entire planet.

Application of the results summarized in Fig. 2.15 to the giant planets is less straight-
forward because, in at least some of them, differentiation may have taken place on more
than one level. All giant planets are thought to have very dense cores composed of rocky
material and C–H–O–N compounds – “ices” in the terminology of planetary sciences (Guil-
lot, 1999, 2005). These cores, however, are almost certainly quite small (r/R ≈ 0.1–0.2),
so that, even if they formed by differentiation from initially homogeneous bodies, their
formation is unlikely to have made a large contribution to the internal energy contents of
the giant planets (Fig. 2.15). If the giant planets formed by collapse of gaseous material
around earlier accreted dense rocky cores (Thommes et al., 2003) then the rocky cores may
have undergone differentiation but the contribution of this process to the heat budget of
the full giant planets may still have been relatively minor, compared to the early stage of
Kelvin–Helmholtz contraction.
Amore important contribution of differentiation to the thermal budget of some of the giant

planets may arise from immiscibility between liquid metallic hydrogen and atomic helium
(Stevenson & Salpeter, 1977; Hubbard, 1980; Stevenson, 1982a; Hubbard et al., 1999;
Guillot, 1999; Fortney & Hubbard, 2004). Hydrogen and helium are the chief constituents
of Jupiter and Saturn and are also abundant in Uranus and Neptune, although the bulk
compositions of the two ice giants are not as well constrained as those of the two gas giants.
In their molecular or atomic forms, hydrogen and helium are miscible in all proportions.
Hydrogen, however, undergoes pressure ionization (Section 1.15) at lower pressure than
helium. Amiscibility gap exists between liquid metallic hydrogen and atomic helium, that
closes with increasing temperature (Stevenson & Salpeter, 1977; Chabrier et al., 1992;
Saumon et al., 1992, 1995; Morales et al., 2009; Lorenzen et al., 2009). The P–T slope
of the boundary that terminates the miscibility gap is poorly known, but it is possible that
a planet’s thermal gradient may cross it with increasing depth, as shown schematically in
Fig. 2.16.The twophases separate at the plasmaphase transition (where hydrogen undergoes
pressure ionization) and the denser helium “rains out” towards the planet’s center, down to
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a depth at which the temperature is high enough that the solvus disappears, at which depth
the helium raindrops redissolve in the liquid metallic hydrogen. Dissipation of gravitational
potential energy takes place by friction between the sinking helium drops and the metallic
hydrogen medium. This process is thought to be ongoing at the present day in Saturn, and to
be an important contributor to its observed heat flux (recall that Saturn’s heat flux per unit
mass is the highest relative to its binding energy per mass among all fluid planets, Fig. 2.4).
Because of Jupiter’s higher internal temperatures, the region of H–He immiscibility in it
may be much smaller than in Saturn, or altogether absent, so that He differentiation in
Jupiter may not be taking place at present.
We now seek an estimate of the helium sinking rate that would be needed to sustain

a given planetary heat flow. Let the top and bottom of the two-phase region lie at radii
r1 = z1R and r2 = z2R, where R is the planet’s radius (Fig. 2.16). As the planet ages and
cools we expect this region to move towards the planet’s center, effectively scavenging He
from its outer layers and concentrating it in the planet’s interior. As this happens, helium
raindrops form at the top of the two-phase layer and redissolve at the bottom, so that each
volume element of helium falls from r1 to r2, in the process exchanging places with an
equal volume of hydrogen. The difference in gravitational potential between the top and
bottom of the two-phase layer is given by (Box 2.1 and equation (2.58)):

�Φg =−GM
2R3

[(
3R2− r22

)
−
(
3R2− r12

)]
=−GM

2R

(
z1

2− z22
)
. (2.64)
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Fig. 2.16 Schematic diagram showing the behavior of H–He mixtures with temperature and pressure. Liquid molecular
hydrogen (H2) ionizes at the plasma phase transition and becomes liquid metallic hydrogen (H+), which is immiscible
with He at low temperature but becomes miscible at high temperature. Depending on the planet’s thermal gradient,
immiscibility may occur over a limited depth interval, leading to the behavior depicted in the figure, that is thought to
be a plausible model for Saturn’s interior. Jupiter’s interior may be hot enough to miss the miscibility gap. Pressures in
Uranus and Neptune are everywhere lower than the plasma phase transition. See also Fig. 1.16.
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The helium droplets probably attain their terminal velocity soon after forming, so that
we can assume that they fall through the two-phase region with constant velocity dz/dt .
Calling the difference in density between atomic helium and liquid metallic hydrogen �ρ,
the mass settling rate is given by (note that we take the absolute value of dz, as we just seek
a mass-flow rate):

dm

dt
= 4πr2�ρ

dr

dt
= 4π(zR)2�ρ

dr

dt
, (2.65)

where r is some average radius, r2 < r < r1. This could be the center of mass of the two-
phase layer, but if the layer is thin we can take r = (r1+ r2)/2. From equations (2.64) and
(2.65) we can calculate the rate of dissipation of gravitational potential energy:

dUg

dt
=�Φg

dm

dt
=−2πGMR�ρz2

(
z1

2− z22
) dr
dt

. (2.66)

Because dUg is the loss in gravitational potential energy, the work done by the gravitational
force on the planet is −dUg , and the work done by the system (i.e. the planet) is thus
−(−dUg). We seek the value of dr/dt that is needed to sustain a given planetary heat
flow, dQ/dt , without change in its internal energy (dE/dt = 0). For an average planetary
heat flux q the total heat flow is given by dQ/dt = 4πR2q, so that, from the First Law of
Thermodynamics with dE = 0:

dUg

dt
= dQ

dt
= 4πR2q, (2.67)

which upon substitution of equation (2.66) yields:

dr

dt
=− 2Rq

GM�ρz2
(
z12− z22

) . (2.68)

Saturn’s heat flux is q ≈ −2 Wm−2 (negative because the system loses heat). Part of
this heat loss almost certainly derives from a decrease in internal energy (dE/dt < 0)
that was stored during an early stage of gravitational contraction (Section 2.5). Setting
dE/dt = 0 thus yields a maximum helium sinking rate. According to Stevenson (1982b)
the two-phase region in Saturn extends from z1 ≈ 0.51 to z2 ≈ 0.44. Plugging in Saturn’s
mass (5.69× 1026 kg) and mean radius (58 250 km) and assuming �ρ= 1000 kgm−3 and
z= 0.47 we get dr/dt ≈ 4.2×10−10 m s−1≈ 1.3 cm yr−1. This estimate is almost certainly
an upper bound, but it translates to a displacement of the order of the planetary radius over
the age of the Solar System, which is reasonable because the process appears to be still
taking place today. Saturn’s atmosphere is depleted in helium, with a H2/He ratio (29.6 by
weight) that is higher than that in Jupiter’s atmosphere (6.3, data from Lodders & Fegley,
1998). This is qualitatively consistent with helium unmixing as the source of Saturn’s high
internal energy output (Fig. 2.16).

2.7 Tidal dissipation of mechanical energy

Consider two celestial bodies orbiting their common center of mass. We wish to study
the effects of tides on one of them, which we will call the “secondary”, caused by the
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Fig. 2.17 The geometry of tides. Tidal deformation is grossly exaggerated. The secondary’s radius has a magnitude | r |, so that
the distance from the planet’s center to its surface is± r , as shown.

gravitational pull of the other, which we will call the “primary”. The gravitational force
between the two bodies is given by equation (1.2), with x = R, the distance between
their centers of mass (Fig. 2.17). Real objects have finite extent, so that the gravitational
attraction of the primary varies over the diameter of the secondary, 2r , where in general
r � R. If we call the gravitational acceleration of the primary gp its mass Mp we have
from equation (1.7):

gp =−GMp

R2
, (2.69)

where the negative sign expresses the fact that gravitational force is an attractive force. For
example, if R is positive towards the right, then gp, which points towards the left, must be
negative (Fig. 2.17). This is the gravitational acceleration at the location of the center of
mass of the secondary, but not at its surface. The change in gp with R is given by:

dgp

dR
= 2GMp

R3
. (2.70)

Because the secondary’s radius is much smaller than the distance between the objects any
distance�r of order r is equivalent to a very small but finite change inR. We call the small
but finite change in gravitational acceleration over this distance the tidal acceleration,
gtidal , i.e.:

gtidal ≈ 2GMp

R3
�r . (2.71)

At the point on the surface of the secondary located closest to the primary�r =−r (because
we are moving towards the primary), so gtidal is negative, i.e. directed towards the primary.
Conversely, at the point furthest away from the primary, �r = +r and in this case gtidal
is positive and directed away from the primary. As a result of these tidal accelerations the
surface of the secondary is subject to tidal forces that, unless the body is perfectly rigid,
give rise to two tidal bulges on opposite sides of the planet, as shown in Fig. 2.17. On
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the two points on the planet’s surface located at 90 degrees from the tidal bulges the tidal
force is directed towards the planet’s center. This result is not included in equation (2.71)
because this is a one-dimensional equation, but it follows immediately from the generalized
three-dimensional version of the equation.
If the relative positions of the primary and secondary are fixed, i.e. if the periods of rotation

and revolution are the same and if the distance between the two bodies remains fixed, then
the tidal deformation of the secondary is constant and there is no energy dissipation. If
any of these conditions is relaxed, however, tidal deformation will change with time. Tidal
flexing then performs work against frictional forces in the planet’s interior, resulting in
energy dissipation. The planet heats up as it constantly stretches and squashes.
Consider for instance the case in which rotation of the secondary is faster than revolution

of the primary – an example of this situation is motion of the Moon (primary) around
the Earth (secondary). The tidal bulge travels over the surface of the Earth as it rotates.
If the planet were made up of a perfectly inviscid material (i.e. with no internal friction)
then there would be no energy dissipation and, moreover, the tidal bulge would always be
exactly aligned with the primary. In reality planets are composed of materials with finite
(and commonly large) viscosities. Raising of the tidal bulge takes a finite amount of time,
and as a result the tidal bulge is located ahead of the point on the secondary that lies directly
below the primary, or in other words at a point that corresponds to an earlier position of the
primary, as shown in Fig. 2.18. Because in this case there is internal friction, as the tidal
bulgemoves over the surface of the planet it performs viscouswork,which dissipates kinetic
energy of rotation. Angular momentum, however, is conserved, so it must be transferred
from the secondary to the primary (if you have trouble visualizing how this happens, note
that because the tidal bulge is ahead of the primary it exerts on it a gravitational force
that accelerates the primary on its orbit). Over geologic time, the length of the Earth’s day
increases and the Moon moves faster in its orbit and hence moves away from the Earth. The

Primary’s
center of mass

Secondary

ωrotation

δ

ωrotationωrevolution <

Fig. 2.18 Tidal lag in a body with finite viscosity. The secondary’s period of rotation (2π/ωrotation) is shorter than the primary’s
period of revolution (2π/ωrevolution). The tidal bulge peaks at a point that was located below the primary at an earlier
time. The angle δ, greatly exaggerated in the figure, depends on the material properties of the satellite. No scale.
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rotation of the secondary is eventually slowed to become synchronized, or tidally locked,
with revolution of the primary. The tidal bulge is now fixed on the surface of the secondary
and tidal dissipation due to the secondary’s rotation ends. The time needed to achieve
tidal locking is called the characteristic time for tidal despinning (Kaula, 1964; Hubbard,
1984). For the Earth as secondary and the Moon as primary it is of the order of 1011 years,
which explains why the Earth’s day is still much shorter than its month, although it has
lengthened from about 10 hours in the Archean to the current 24 hours. If we consider the
Moon as secondary to the Earth as primary the despinning time is of the order of 107 years,
which means that the Moon’s rotation became tidally locked to the Earth very soon after its
accretion. The tidal despinning times for the major satellites of the giant planets are much
shorter, probably on the order of 105 years.

For our purposes there are two important points here. First, when a secondary becomes
tidally locked to its primary tidal dissipation from rotation does not take place. At present
there is no rotationally induced tidal heating of the Moon but there is a small amount of
tidal heating of the Earth. This is, however, insignificant because of the relatively small
mass of the Moon, which gives rise to small tidal forces (equation (2.71)). Second, if tidal
despinning of the Moon and of the satellites of the giant planets was fast enough, it is
possible that they underwent major, but transient, tidal heating events very early in their
histories.
If rotation of a secondary is tidally locked to its primary tidal heating is still possible, as

long as orbital motion is eccentric. Tidal force varies inversely with the cube of the orbital
radius (equation (2.71)) so that as the secondary’s distance to the primary changes along
an eccentric orbit the tidal bulge grows and shrinks and energy dissipation takes place. The
three innermost Jovian satellites, Io, Europa and Ganymede, are locked into orbits with
resonant periods in the ratios 1:2:4. This causes their orbits to be eccentric, which could
cause potentially important tidal heating in the satellites.
Calculation of the amount of energy dissipated by tidal flexing requires detailed knowl-

edge of the planet’s internal structure, chemical composition and physical conditions, and
is far from trivial (see Hubbard, 1984, for a detailed discussion). It is possible, however,
to derive a simplified equation that contains the essential physics of tidal heating and that
yields order of magnitude estimates for the expected energy output. Let the rate at which
tidal energy is dissipated by performing work on a planet be dW tidal/dt . The work per-
formed by the planet is the negative of this value, so that the rate at which internal energy
is added to the planet is dE/dt = dW tidal/dt (equation (1.55)). On physical grounds we
can expect that dW tidal/dt must vary directly with: the rate of change of the tidal force,
the amount of energy that is stored by tidal deformation in response to the changing tidal
force, and the magnitude of the dissipative frictional force.We can express these statements
algebraically as follows:

dW tidal

dt
= ω

U s,o

Qd

. (2.72)

In this equation ω is the rate of change of the tidal perturbation and U s,o is the amount
of elastic energy stored by tidal deformation. Clearly, the more elastic energy that can
be stored, the more energy will be available for dissipation. If the planet were perfectly
elastic, however, this elastic energy would constantly travel with the tidal bulge but no
energy dissipation would take place. This would be the case if the material that makes up
the planet were inviscid, i.e if it had no internal friction. In reality this is not the case and
we account for the behavior of real planetary materials with the dimensionless parameter
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Qd , called the planet’s dissipation factor. For an inviscid material Qd = ∞, and there
is no tidal heating, regardless of how much elastic energy is stored. Materials with high
internal friction are characterized by small values of the dissipation factor and can thus give
rise to high rates of tidal heating. Note very carefully that there is an important difference
between the capability of a material for storing elastic energy, ultimately determined by
its elastic modulus (equation (1.37)), versus how much energy is dissipated when storing
or releasing elastic energy. The latter is a function of the material’s internal friction, or
viscosity, which in turn depends on several variables, including temperature and the rate at
which elastic deformation proceeds. In general, the dissipation factor cannot be calculated
from first principles andmust be approximated on the basis of the known or inferred internal
structure of the planet, including its chemical and physical layering and thermal gradient.
We recall that there are two separate components of tidal heating, one due to rotation

(which vanishes if the secondary is tidally locked) and the other one due to orbital eccen-
tricity (which vanishes if orbital motion is circular). We can then break down the tidal work
as follows:

dW tidal

dt
= dW tidal,r

dt
+ dW tidal,e

dt
. (2.73)

We seek the equations that describe each of these components, tidal dissipation by rotation
(dWtidal,r/dt) and tidal dissipation due to eccentricity (dWtidal,e/dt).
The elastic energy stored per unit volume by tidally induced shear deformation is given

approximately by: 1
2µε2, where µ is the effective shear modulus of the planet, and ε is the

strain caused by the tidal forces (equation (1.37)). The elastic energy per unit mass is then
given by:

us,o ≈ 1

2

µε2

ρ
. (2.74)

If tidal forces cause the radius of the planet to change by an amount δr � r , then we can
approximate the strain as ε≈ δr/r .We now seek to relate δr to the secondary’s gravitational
attraction, which resists deformation, and to the tidal effect of the primary, which drives
deformation. Gravitational acceleration is the gravitational potential gradient (equation
(1.9)), so we can write the gravitational potential due to tidal acceleration at the surface of
the secondary as:

Φtidal ≈ GMp

R3
r2. (2.75)

Note that the derivative of (2.75) relative to r is (2.71). The ratio between gravitational
potential and gravitational acceleration has dimension of length. Thus, on dimensional
grounds (see Box 1.2) we can write:

δr ∝ Φtidal

gs
, (2.76)

where gs is the gravitational acceleration due to the secondary. The size of the tidal bulge
must vary directly with the ratio between the tidal effect of the primary (Φtidal) and the
secondary’s own gravitational acceleration, gs , so this equation is reasonable on physical
grounds too. We can then define a non-dimensional parameter, h, such that:

δr = h
Φtidal

gs
. (2.77)
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The parameter h is one among various non-dimesional parameters that are used to describe
tides, called Love numbers (in honor of an early twentieth-century British physicist and
mathematician who studied tides). The tidal shear strain is then approximately given by:

ε≈ δr

r
= h

r

Φtidal

gs
. (2.78)

The rotational component of tidal dissipation arises from displacement of the tidal bulge
on the secondary’s surface, but the magnitude of Φtidal remains constant. Substituting
expressions for Φtidal and gs (equations (2.75) and (1.7)) and noticing that we are only
interested in absolute values we get:

ε ≈ hMpr
3

MsR3
, (2.79)

where Ms is the mass of the secondary, and all of the other symbols have already been
defined. We now substitute this equation for the shear strain in equation (2.74), and the
latter in (2.72), and get the following equation for the rate of dissipation of tidal energy by
rotation, per unit mass:

dwtidal,r
dt

≈ ωtidesµh
2

2ρQd

(
MP

Ms

)2( r
R

)6
, (2.80)

where ωtides is the characteristic rate with which the tidal bulge travels over the surface of
the secondary. For a body whose rotation is tidally locked to the primary, for instance the
Moon,ωtides= 0 and there is no tidal heating from rotation. Otherwiseωtides= 2π/τ , where
τ is the time elapsed between two consecutive maxima of the tidal bulge on the same point
on the secondary and on the same side relative to the primary (i.e. approximately 24 hours
and 50 minutes for the Earth’s tides).

So far we have considered a situation in which the tidal shear strain remains constant
in magnitude, but the locus of this strain moves in response to the secondary’s rotation. If
the orbit is eccentric we must also consider tidal dissipation as a result of time-dependent
variation in the magnitude of the tidal shear strain ε. This arises because the orbital radius
changes with time, and hence so does the tidal gravitational potential Φtidal . The absolute
value of the change in Φtidal with changes in the distance between secondary and primary
is given by:

dΦtidal

dR
≈ 3GMp

R4 r2, (2.81)

so that for a small but finite change in the orbital radius, �R, we have:

�Φtidal ≈ 3GMp

R4
r2�R = 3Φtidal

�R

R
≈ 3EΦtidal , (2.82)

where E ≈ �R/R is the eccentricity of the orbit. The magnitude of the time-dependent
component of the tidal strain is then given by:

ε ≈ h

r

�Φtidal

gs
= 3E

h

r

Φtidal

gs
= 3E

hMpr
3

MsR3
, (2.83)
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which leads to the following rate of dissipation of tidal energy due to eccentricity, per unit
mass (you should work out the algebra to see where this comes from):

dwtidal,e
dt

≈ 9ωorbitalE2µh2

2ρQd

(
MP

Ms

)2( r
R

)6
. (2.84)

The parameter ωorbital is the rate of orbital motion = 2π/τ , where τ is in this case the
orbital period of the secondary. This expression of course vanishes for a circular orbit
(E= 0). Substituting (2.80) and (2.84) in (2.73) we find the total rate of supply of internal
energy by tidal dissipation, per unit mass:

de

dt
≈ µh2

2ρQd

(
MP

Ms

)2( r
R

)6(
ωtides+ 9E2ωorbital

)
. (2.85)

In order to obtain numerical estimates for tidal heating we need to substitute appropriate
values in this equation. All of the basic planetary properties (Mp, Ms , ρ,r) and orbital
parameters (R,E,ωtides and ωorbital) are well known for the present-day Solar System,
although for the early Solar System only educated guesses are possible for the orbital
parameters. Much of the uncertainty in the physics of tidal heating is thus contained in the
shear modulus, µ, the dissipation factor Qd and the Love number h. We can get estimates
of the possible ranges within which these parameters are likely to vary.
Mean parameter values for the bulk Earth are fairly well known (see Hubbard, 1984;

Kaula, 1964; Stacey, 1992; Turcotte & Schubert, 2002; Meyer &Wisdom, 2008). The bulk
shear modulus for the Earth is ≈ 7× 105 bar (= 7× 1010 Pa), which can be taken to be
a characteristic value for solid rocky planets. Icy satellites, and rocky planets with greater
melt contents than the Earth (such as Io ?) are less rigid than the Earth and thus have lower
values of µ, of the order of 104 bar (109 Pa). A range in µ of 109 to 1011 Pa may cover
most solid bodies in the Solar System (rocky and icy planets, satellites and minor bodies).
A characteristic value of the dissipation factor for rocky planets is 100, whereas for icy
planets the value may be of order 10. The effective Qd for Earth is also 10, but this low
value is due to the fact that much of the Earth’s tidal dissipation takes place by turbulent
motion in shallow oceans and by friction between ocean water and land. The dissipation
factor for the solid Earth is of order 100. We will thus assume that Qd for solid bodies in
the Solar System is in the range 10–100. The dissipation factor for the giant planets, which
we do not consider in this section, is much greater, of the order of 104–105, reflecting their
low internal friction.
The Love number h is in fact not independent of a planet’s shear modulus. For Earth,

h≈ 0.6. For rigid bodies smaller than Earth, h is given approximately by:

h≈ 10GMsρ

38µr
. (2.86)

Derivation of this formula from first principles is beyond the scope of this book (see for
example Hubbard, 1984, Chapter 4), but we can give a justification of its plausibility a
posteriori. Substituting this expression into equation (2.77) and then into equation (2.78)
we get:

ε≈ 10

38

ρΦtidal

µ
. (2.87)
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The product in the numerator, ρFtidal, has dimension of stress (force per unit area) and can
thus be interpreted as the stress arising from the tidal acceleration. This stress varies directly
with the magnitude of the tidal gravitational potential and, because gravity acts on mass,
with the mass contained in unit volume. Equation (2.87) therefore says that shear strain
is directly proportional to the tidal stress and inversely proportional to the planet’s shear
modulus, which agrees with equation (1.33).
Substituting equation (2.86) into (2.85) and simplifying we get:

de

dt
≈ 0.035G2ρMp

2r4

µQdR6

(
ωtides+ 9E2ωorbital

)
, (2.88)

in which the only uncertain value is the product µQd . From our previous discussion of
likely values of µ and Qd we see that this product may be in the range 1010–1013 Pa for
most solid bodies in the Solar System. Figure 2.19 shows possible ranges of tidal heat
generation for various satellites of Jupiter and Saturn, calculated with equation (2.88). The
vertical lines, extending over three orders of magnitude, correspond to the three order of
magnitude uncertainty in the product µQd . Tidal heating values for the Earth and Moon,
in contrast, were calculated with equation (2.85) using the better constrained values of µ,
Qd and h for these two bodies. The horizontal dashed lines show measured heat outputs
per unit mass for Io and Earth.
What can we conclude from this diagram? Focusing first on the Earth–Moon system,

we see that present day tidal heating in these bodies (arising from rotation of the Earth
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Fig. 2.19 Possible ranges in tidal heating for various planetary bodies. See text for discussion.
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and eccentricity of the lunar orbit, respectively) is negligible. The same may not have been
true in the early Solar System. The symbols labeled “Hadean Earth” and “Hadean Moon”
represent a hypothetical early stage in which theMoon’s rotation was already tidally locked
to the Earth, but in which its orbit was only 10 times the Earth’s radius (compared to the
present day’s ∼60) and the Earth’s day was only 10 hours long. Tidal dissipation in the
Earth resulted from the planet’s rotation, whereas that in the Moon was a result of orbital
eccentricity, assumed to have had its present day value of 0.055. The diagram suggests
that tidal dissipation may have been an important component of the Hadean internal heat
budgets for the two bodies. These calculations, however, assume present-day shear moduli,
dissipation factors and Love numbers, all of which may have been radically different if,
as seems likely, the Hadean Earth and Moon contained much greater proportions of melt
than today. Tidal heat generation in the Moon during tidal despinning may have been
horrendous, perhaps one order of magnitude greater than in present day Io (Schultz et al.,
1976; Turcotte et al., 1977; Peale & Cassen, 1978; see also Fig. 2.19). The possibility exists
that the Moon, and perhaps all satellites of the major planets (and Mercury?) may have had
extreme heating episodes of very short duration as their fast initial spins were braked by
the tidal pull of their planets (akin to the red-hot glowing brakes in Formula 1 race cars!).
The apparently anomalous lunar heat flow relative to its binding energy (Fig. 2.4) may be
a relic of this event. Direct observational evidence for this extreme heating event could
come if we managed to catch a glimpse of a young extrasolar planetary system at the right
evolutionary stage, which may be difficult, given the very short tidal despinning times,
∼105–107 years.
The Jovian satellites Io, Europa andGanymede are locked in a 1:2:4 orbital resonance. Io’s

observed heat output is at the higher end of possible tidal dissipation for the satellite. This
means that Io’s anomalously large heat flow (Fig. 2.4) may be entirely of tidal origin (Peale
et al., 1979; Segatz et al., 1988), but it does not prove that this is the case. Depending on the
still poorly known details of Io’s interior, tidal heating could be two orders ofmagnitude less
than observed heat output, in which case other explanations would be needed to account for
themissing energy flow.The case for Europa,which has a very young and tectonically active
crust composed of water ice, is similar. Tidal heating of Europa could provide energy at a
rate comparable to the observed terrestrial heat output, which would certainly be sufficient
to fuel Europa’s tectonism and cryovolcanism (Ruiz, 2005). Whether this would also be
possible at the lower end of the calculated range is, however, not clear. Ganymede shows
some recent tectonic activity, but the satellite is clearly nowhere near as active as Europa. Is
the energy supply at the higher end of Ganymede’s range sufficient to explain its relatively
young surface?
The moons of Saturn are a deeper enigma than the Jovian satellites. The hydrocarbon

content of Titan’s atmosphere requires an active supply of methane from the satellite’s
interior, because the fast rate at which hydrocarbons are destroyed by solar ultraviolet
radiation would otherwise render the atmosphere free of hydrocarbons over a time scale of
107 years. The Cassini–Huyghens mission has shown that cryovolcanoes may account, at
least in part, for themethane supplymechanism and has also revealed that Titan has a young,
tectonically active surface (see Lopes et al., 2010). Under the right circumstances, Titan’s
supply of tidal heat could be comparable to Europa’s and perhaps close to the terrestrial heat
output. As for Io, however, this does not prove that tidal heating is the chief energy source,
given the large uncertainties in the physics of Titan’s interior. A bigger problem arises from
the contrast between the smaller moons, Mimas and Enceladus. The latter is known to have
considerable internal activity, as shown by the presence of active water plumes near the
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satellite’s south pole (Hansen et al., 2008). Mimas, in contrast, appears to be geologically
dead. Possible tidal heating of both satellites is comparable, with Mimas actually having a
greater potential for tidal heating than Enceladus, because of its greater orbital eccentricity
and smaller distance to Saturn (Fig. 2.17). Explanations that have been advanced for the
paradox include (see Ross & Schubert, 1988; Nimmo et al., 2007; Meyer &Wisdom, 2007,
2008; Schubert et al., 2007): non-steady state thermal histories (i.e. Enceladus’s present-day
activity may be driven by heat stored during an earlier epoch of greater tidal dissipation
resulting from different orbital parameters), tidal dissipation localized in narrow high-strain
domains (i.e. faults), and sources of heat other than tidal.
We can draw the conclusion that tidal dissipation of mechanical (kinetic) energy can

be an important, perhaps even dominant, source of planetary internal energy. However,
in the absence of accurate knowledge of a body’s physical parameters, in particular its
rheological properties, it is very hard to be certain that tidal heating is responsible for most
of its internal activity. Mercury and Triton could be cases in which more definitive answers
appear possible (see end-of-chapter problems).

2.8 Dissipation of electrical energy

A variable magnetic field induces an electric field, and the latter will drive an electric
current across a conductive material. Dissipation of electric currents called ohmic heating,
see Section 1.8.3) results from friction between moving charges, and takes place in any
materialwith finite electrical conductivity.Because theSolar System is awashwithmagnetic
fields, originating both in the Sun and in the various planets with active internal dynamos,
it is in principle possible that ohmic heating may make non-negligible contributions to
planetary internal energies. In particular, the process has been invoked in order to explain
fast melting and differentiation of asteroids in the early Solar System, but there is no
agreement on whether or not ohmic heating was ever a significant planetary heat source.
This is so because of large uncertainties in the values of the parameters that control ohmic
heating.
There are two ways in which electric currents can be generated in a planetary body by

electromagnetic induction. A time-variable magnetic field that permeates a planet gener-
ates electric currents that circulate entirely inside the planet. These are called eddy currents.
Ohmic heating derived from eddy currents is thought to be negligible for all reasonable
ranges of parameters in the Solar System (Colburn, 1980). The other way in which electro-
magnetic induction can occur is more promising and arises from relative motion between
a conductive planet and a steady magnetic field. The currents induced in this case are not
confined to the planet, and circulate through the interplanetary medium in order for the
electric circuit to close (Fig. 2.20).
The chief contributor to interplanetary magnetic fields is the solar wind, which is a

stream of charged particles (protons and electrons, with some heavier ions as well) that
move radially away from the Sun at hypersonic speeds (102–103 km s−1). The origin of the
solar wind is expansion of the solar corona. The solar wind is a low-density plasma which
is able to conduct currents induced in planetary bodies (Fig. 2.20). An important property
of the solar wind for our purposes is that it carries with it the interplanetary magnetic field,
which is also rooted in the Sun.As the solar wind streams past a planet the relative velocity
between planet and magnetic field is essentially equal to the velocity of the solar wind,
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Fig. 2.20 Electromagnetic induction in a planetary body. The interplanetary magnetic field, with intensity B, is directed towards
the reader, perpendicular to the page. The solar wind carries the interplanetary magnetic field and moves from left to
right, so that the electrical conductor (planet) moves towards the left of the page with velocity v relative to the
magnetic field. The induced current J moves upwards across the planet, and the circuit closes via the interplanetary
plasma.

given that orbital velocities are typically one order of magnitude smaller. Electromagnetic
induction arises because of this relative velocity, but only if the interplanetary magnetic
field is able to penetrate the planetary body. This imposes an important limitation on the
type of body that can be a candidate for ohmic heating. It must not have an intrinsicmagnetic
field, for if it does then the solar wind and the interplanetary magnetic field are deflected
around the planet. If the planetary body has an atmosphere then there is an additional
limitation on ohmic heating, which is that ionization of the outermost atmospheric layers
by solar ultraviolet radiation generates an electrically conductive ionosphere. Ionospheric
conductivity is typically much greater than that of solid planetary materials, so that most of
the induced current is in this case carried by the ionosphere and ohmic heating is shorted
out. Given these two limitations – no intrinsic magnetic field and no atmosphere – we
can expect that only small airless planetary bodies, such as asteroids, are candidates for
electromagnetic induction heating.
An exact solution of the electromagnetic induction equations and the resulting ohmic

heating is mathematically quite complex and beyond the scope of this book. A simpli-
fied treatment, however, allows us to identify which are the crucial controlling parameters
and to analyze the possible magnitude of this heat source. The intensity of the electric
field, ε, induced by motion with velocity v relative to a magnetic field of intensity B is
given by:

ε = vB sinα, (2.89)

where α is the angle between the velocity vector and the magnetic field vector (this is a
slightly disguised version of the Lorentz force equation, see Section 1.8.3). The induced
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electric field is maximum if motion is perpendicular to the magnetic field, and van-
ishes if motion is parallel to the magnetic field – we will assume for simplicity that the
former is always the case (α = π/2, see Fig. 2.20). An electric field acting across a mate-
rial with conductivity σ causes an electric current to flow, with the current density, J ,
given by:

J = σε = σvB sinα. (2.90)

The current density equals the intensity of the electric current (I , measured in Amperes
in the SI system) per unit of cross-sectional area perpendicular to the current flow. We
recall from introductory physics that the power dissipated by ohmic heating, W , is given
by I2R, where R is the total resistance of the material through which the current flows.
The resistance is in turn given by R = z/aσ, where a is the cross-sectional area of the
current-carrying conductor (so that J = I/a) and z is the length of conductor over which
the current flows. If I is the total current that flows through the planet then ohmic dissipa-
tion of this current must equal the rate of increase of the planet’s internal energy, dE/dt ,
so that:

dE

dt
= I 2R = a2J 2 z

aσ
= J 2 az

σ
. (2.91)

The product az is the volume of material heated by ohmic dissipation, therefore the rate of
increase of internal energy per unit mass, de/dt , is given by:

de

dt
= J

2

ρσ
= σv2B2sin2α

ρ
, (2.92)

where ρ is, as usual, the density of the material. The SI unit for the intensity of the mag-
netic field is called the Tesla (the intensity of the Earth’s magnetic field at the planet’s
equator is approximately 3× 10−5 Tesla), and conductivity in SI units is measured in
mho m−1. Using these units and the standard kg–m–s for density and velocity we obtain
de/dt in J s−1 kg−1.
The magnitudes of v, the velocity of the solar wind, and B, the strength of the inter-

planetary magnetic field, are well known in the present-day solar system. Typical values
at the radius of the Earth’s orbit are v = 500 km s−1 and B = 5× 10−9 Tesla. Electrical
conductivity of rocks is widely variable and is an exponential function of temperature.
For example, the conductivity of carbonaceous chondrites may be given approximately by
σ = 10−9 exp(0.014T ) – see Herbert and Sonett (1979). From 100 K to 1000 K, σ for car-
bonaceous chondrites varies by almost 6 orders of magnitude, from∼4×10−9 mho m−1 to
∼10−3 mho m−1. Assuming a density of 3000 kg m−3, ohmic heating of a cold chondritic
asteroid at the Earth’s orbit could account for∼10−17 J s−1 kg−1, which is 6 orders of mag-
nitude less than the present day terrestrial heat output, and 2–3 orders of magnitude less
than present day tidal heating in the Earth–Moon system (Fig. 2.19). Heating rate would
increase to ∼10−12 J s−1 kg−1 if the temperature of the asteroid were raised to 1000K.
The conclusion appears to be that, starting with cold material, ohmic dissipation by itself
is unlikely to cause a temperature increase of that magnitude.
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Worked Example 2.5

It was noticed by Gradie and Tedesco (1982) that the distribution of asteroid types suggests
that there was a gradient in maximum temperatures across the asteroid belt. Asteroids that
appear to be composed of strongly metamorphosed or melted materials are concentrated in
the inner part of the belt (at heliocentric distances smaller than ∼2.7 A.U.), whereas those
that appear to be composed of undifferentiated early Solar System material, including a
significant proportion of ices, dominate the outer part of the belt (distances greater than
∼3.4A.U.). The concentration of asteroids that have undergone relatively low-temperature
hydrothermal alteration peaks in between these two distances. Meteorite ages show that
thermal processing of asteroidal bodies was a very early event in the history of the Solar
System, and was probably completed within the first 107 years. Electromagnetic induction
heating is in principle consistent with these observations because (a) the interplanetarymag-
netic field, and hence ohmic heating, varies inversely with heliocentric distance and (b) it
is known that, during the transition from gravitational collapse to thermonuclear burning,
Sun-like stars go through a brief stage of increased solar wind activity known as the T-
Tauri phase. Can early thermal processing of asteroids be a consequence of electromagnetic
induction heating during the T-Tauri phase?
Accretionary heating of small planetary bodies is negligible (Section 2.4), so we will

assume that the initial temperature of the asteroidswas100K.We first calculate themean rate
of supply of heat necessary to melt an asteroid, assuming a uniform melting temperature of
1500K and values for the specific heat capacities and enthalpy of fusion of cP = 103 J kg−1
K−1 and�hf = 5×105 J kg−1, respectively. Melting the asteroid in 10 million years then
requires a mean heat supply rate of ∼6× 10−9 J s−1 kg−1. This is somewhat higher than
Io’s present day heat output (Fig. 2.19). It is also a minimum estimate because we have
ignored heat loss to space, but on the other hand initial temperature in the solar nebula may
have been higher than 100 K, so that the two sources of uncertainty may partly cancel each
other out.
Let us assume a density of 3000 kgm−3 and a conductivity of 10−8 mho m−1, consistent

with a low initial temperature. If ohmic dissipation was the only source of heat, then it
requires that the product vB be∼40 Tesla m s−1 (equation (2.92)). Observation of present-
day T-Tauri stage stars, and models, suggest that the velocity of the T-Tauri wind was not
significantly different from present-day solar wind velocity, 102–103 km s−1 (although the
plasma density was of course much higher). The required magnetic field was then of the
order of 10−4 Tesla at the orbital radius of the asteroid belt. This value is tantalizingly similar
to what little is known about the possible intensity of the interplanetary magnetic field in
the early Solar System. Magnetic paleointensities measured in a wide range of meteorites
are consistent with inducing fields of the order of 10−4–10−6 Tesla (Stacey, 1976; Acton
et al., 2007). Direct observations suggest magnetic fields of ∼0.1 Tesla in the cores of
protostellar disks, and comparable values are obtained from proto-star modeling (Donati
et al., 2005; Machida et al., 2007). Because the intensity of the magnetic field falls with the
square of the distance, the ratio between field intensity at the asteroid belt (∼3A.U.) and at
the proto-solar surface (∼0.01 A.U.) would be ∼10−5, which is generally consistent with
paleointensities measured inmeteorites (see also Herbert, 1989). Electromagnetic induction
could have contributed to early heating of asteroids, and might even have been capable of
causing large-scale melting, if magnetic field intensities in the early Solar System were
at the upper end of the likely ranges and/or if planetesimal conductivities were greater
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than the 10−8 mho m−1 assumed in this calculation. This highlights the problem with the
hypothesis of planetesimal melting by ohmic heating: it is in principle possible, but the
controlling parameters can vary over such wide ranges that it is very difficult to test (see
Grimm & McSween, 1989). And there is another nagging problem, which is that the ratio
between field intensity at 3.4 A.U. and 2.7 A.U. is ∼0.63, i.e. not too different from 1.
Explaining the large difference in the degree of thermal processing of asteroids across the
asteroid belt would require an uncomfortably fine parameter tuning.

2.9 Radioactive heating

Decay of radioactive isotopes converts nuclear binding energy to kinetic energy, chiefly
of subatomic particles, that is dissipated as the particles collide with atoms, slow down
and eventually come to a stop. The energy released by decay of one nucleus of radioactive
parent, called the decay energy, εd , is given by the difference between the total rest mass
of the decay products (daughter nucleus plus subatomic particles) and the rest mass of the
parent nucleus (this difference is also called the Q value of the decay). This is the mass
equivalent of the amount of nuclear binding energy liberated by the decay. The decay rate
is given by:

dN

dt
=−λN , (2.93)

whereN is the number of atoms of parent isotope and λ is the decay constant, which is equal
to ln 2 divided by the half life of the isotope. The rate at which decay energy is liberated is
then given by:

εd
dN

dt
=−λNεd , (2.94)

so that the rate of heat production per kg of isotope, ηi , is:

ηi = 6.02× 1026
λiεd

wi

, (2.95)

where wi is the proper mass of the nucleus of decay constant λi , and I have dropped
the negative sign because this is heat absorbed by the system (equation (1.55)). In many
cases decay from the parent nucleus to the stable daughter nucleus occurs via a number of
intermediate steps, called a radioactive decay series. The decay series consists of isotopes
with half lives much shorter than that of the initial isotope, so that their concentrations at
equilibrium are negligible compared to the concentration of the initial parent isotope. The
decay energies of the intermediate decay products, however, are not negligible. The energies
liberated by all of the members of the decay series add up so that the general expression for
the total rate of radioactive heat production per kg of the initial parent isotope is:

ηi = 6.02× 1026
λi

wi

∑
k

εd,k, (2.96)
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Table 2.2 Important heat-generating radioisotopes

ηi λi Half life Isotopic abundance Isotopic abundance
Isotope (J s−1 kg−1) (s−1) (yrs) (present) (4.56 Ga)

238U 9.46× 10−5 4.19× 10−18 4.47× 109 0.992 75 —
235U 5.69× 10−4 3.12× 10−17 7.04× 108 0.007 20 —
232Th 2.64× 10−5 1.56× 10−18 1.41× 1010 1 —
40K 2.92× 10−5 1.72× 10−17 1.28× 109 1.17× 10−4 —
26Al 4.55× 10−1 3.06× 10−14 7.17× 105 0 5.8× 10−5
60Fe 7.19× 10−2 1.46× 10−14 1.50× 106 0 7× 10−7
53Mn 6.38× 10−3 5.87× 10−15 3.74× 106 0 9× 10−6

where λi and wi are the decay constant and proper mass of the initial (longer-lived) parent
isotope in the series, εd,k is the decay energy of the kth isotope in the decay series, and
we assume that the decay series is in secular equilibrium (Chapter 12). Table 2.2 lists the
values of ηi and λi (as well as the corresponding half lives) for a number of isotopes that are
important planetary heat sources. The isotopes 235U, 238U, 232Th and 40K, with half lives
of the order of 109–1010 years, have been important heat producers throughout the entire
history of the Solar System, and are still important today. In contrast, 26Al, 60Fe and 53Mn,
with half lives of approximately 0.72, 1.5 and 3.75 million years, respectively, have been
extinct for most of the age of the Solar System but could have had dramatic thermal effects
during the first 5 million years or so. There are two reasons for this. First, owing in part
to their short half lives, the rates of heat production per unit mass of 26Al, 60Fe and 53Mn
are several orders of magnitude greater than those of the long-lived isotopes (Table 2.2).
Second, all three are isotopes of major elements.
If the concentration of radioisotope i in a rock is Ci , then the heat generated by this

isotope per kg of rock isCiηi . The concentration of a radioactive isotope in a closed system
decays with time according to equation (2.93), and so does the rate of heat production. Let
the concentration of isotope i in a rock at the time of formation of the Solar System be C0

i .
Assuming that the rock remains closed to chemical exchange with its environment, the rate
of radioactive heat production by isotope i per unit mass of rock at time t after the formation
of the Solar System is given by (Chapter 12):

dqr

dt
=Ci

tηi =Ci
0e−λi tηi . (2.97)

The initial concentrations of 235U, 238U, 232Th and 40K can be determined from their
present-day concentrations, Cpi , as follows (Chapter 12):

Ci
0 =Ci

peλi ts (2.98)

where ts is the age of the Solar System. The present day concentration of active isotopes,
in turn, is the product of the corresponding present day isotopic abundance (also given in
Table 2.2) and the elemental concentration in the rock. The initial concentrations of the
extinct isotopes can obviously not be determined from equation (2.98). The initial isotopic
abundances of 26Al, 60Fe and 53Mn at the time of formation of the Solar System (shown in
Table 2.2) have been estimated on the basis of minute anomalies in the isotopic abundances
of their stable daughter isotopes (26Mg, 60Ni and 53Cr, respectively) measured in meteorites
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(Scott, 2007). The values ofC0
i for the extinct radionuclides are simply the product of these

initial isotopic abundances by the corresponding elemental abundances.
We now seek an order of magnitude estimate of the contribution of radioactive decay to

present-day terrestrial heat output. This requires knowledge of the Earth’s bulk chemical
composition, on which there are considerable uncertainties. Estimates of the bulk composi-
tion of the Earth are based upon the compositions of chondritic meteorites, complemented
by a number of inferences and reasonable assumptions.We know, for example, that the Earth
is depleted in volatile elements relative to chondritic meteorites, including in potassium,
which is a moderately volatile element. Starting from the present-day bulk earth elemental
abundances given by Kargel and Lewis (1993) we use equations (2.98) and (2.97) and the
data in Table 2.2 to calculate the temporal evolution of radioactive heat production in the
Earth. The results are shown in Fig. 2.21. We can see that at the present time radioactive
heating accounts for about one half of the observed terrestrial heat output. The balance
represents secular cooling, i.e., slow loss of internal energy that was stored during an earlier
epoch. The source of some of this energy may have also been radioactive decay, which
generated considerably more heat in the distant geologic past than today, largely as a result
of significantly higher abundances of 40K and 235U, with half lives of ∼1.3 and 0.7 billion
years, respectively (Fig. 2.21). Much of the Earth’s secular cooling, however, may still
reflect core formation. As we saw in Section 2.6, differentiation of the Earth dissipated
enough gravitational potential energy to melt the whole planet several times over. Given
that result (Worked Example 2.4) and the temporal evolution of radioactive heat production
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Fig. 2.21 Temporal evolution of bulk Earth radioactive heating per unit mass. Broken line shows the present-day terrestrial heat
output. Present radioactive heating accounts for about half of this value.
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shown in Fig. 2.19, it is hard to see how one can avoid the conclusion that terrestrial heat
output during theArchean and Early Proterozoic must have been much higher than today’s.
A refined estimate of the history of terrestrial heat flow requires that we also take into
account the fact that there are strong geochemical controls on the distribution of radioactive
elements, as well as the effects of heat transfer, which we will do in Chapter 3.
A wide range of thermal regimes is known to have affected different early Solar System

objects. For instance, some carbonaceous chondrites may have undergone aqueous alter-
ation at liquid water temperatures, whereas basaltic achondrites and ironmeteorites indicate
that some asteroid-sized bodies underwent essentially complete melting. Electromagnetic
induction heating is a possible energy source for thermal processing of early Solar System
objects (Section 2.8), but it is not the only one. Decay of short-lived radionuclides may
have fueled an early but very short phase of extreme heating of planetesimals. Consider
as an example an object with the composition of CI chondrites (this is the group of chon-
dritic meteorites that most closely match the Sun’s composition, except for loss of volatile
elements). Figure 2.22 shows radioactive heat production in such an object during the first
25 million years after formation of the Solar System, using data from Table 2.2 and chon-
dritic bulk composition from Palme and Beer (1993). Decay of 26Al dominates during the
first∼3million years, and during that time it generates heat at rates 1–2 orders of magnitude
greater than Io’s present-day extreme heat output. Decay of 60Fe is the chief heat source
between∼6 and∼13 million years, after which time the long-lived isotopes take over. The
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most intriguing observation to come out of Fig. 2.22 is that heat output from decay of 26Al
during the first million years may have been several times higher than the average rate of
supply of heat that would have been required to completely melt the chondritic object in 1
million years. This comparison is of course incomplete, as it ignores the effects of heat loss
(Chapter 3), but for a large enough body heat loss over a time scale of 106 years, before it
melts and starts convecting, is negligible. It is hard to see how objects that accreted while
26Al was still abundant could have escaped wholesale melting. Why, then, are there chon-
dritic meteorites that presumably come from parent bodies that never underwent melting
temperatures, and in many cases may have been barely heated? The most likely explanation
is that chondritic parent bodies accreted late enough that most short-lived isotopeswerewell
on their way to becoming extinct, whereas differentiated parent bodies may have been the
first ones to accrete (Bizzarro et al., 2004; Scott, 2007). A question that in my view has not
been satisfactorily answered is how short-lived radioisotope heating explains the thermal
gradient across the asteroid belt (see Section 2.8) and whether electromagnetic induction
heating also played a role in the origin of this gradient.

Exercises for Chapter 2

2.1 Derive equations (2.20), (2.21) and (2.22). Note that in both the linear and exponential
accretion models the accretion rate does not vanish when the planet reaches its final
mass, whereas in the sinusoidal model accretion rate is forced to be zero at the final
planetarymass. Comment on the relativemerits of the threemodels, and discusswhich
may be a better representation of the way in which terrestrial planets accrete.

2.2 Use the Maple worksheet accretion to study the effects of emissivity, nebular
temperature, total mass and accretion time on the initial thermal structure of terrestrial
planets. Search the literature for possible thermal gradients in the solar nebula, and
discuss the extent to which the initial thermal structures of Mercury and Mars could
have differed, assuming that they accreted at their present day heliocentric distances.

2.3 Use accretion to study accretion of icy bodies. Explore the effects of lower den-
sity and lower emissivity of ice compared to rock, and of possibly lower nebular
temperatures.

2.4 Derive the equation for escape velocity, Ve (see Section 2.4.1), from the definition that
Ve is the speed at which the kinetic energy of a body equals its gravitational potential
energy. Note that Ve depends on the distance to the attractor’s center of mass, but the
value is always well defined in the neighborhood of a planet’s surface.

2.5 Show that for a contracting self-gravitating body at hydrostatic equilibrium the change
in gravitational binding energy equals PdV work on the planet.

2.6 The virial theorem describes equilibrium conditions during contraction. In order for
contraction of a self-gravitating cloud of gas to start, however, it must be out of
equilibrium. Its specific gravitational binding energy (e.g. given by equation (2.10))
must be greater than its specific internal energy (Section 1.14). Derive an equation
that yields the minimum density that a gas cloud must have in order for contraction
to start, as a function of its radius and its temperature, assuming that it consists of
monatomic ideal gas.Assume that the Sun formed from a cloud of gas with a diameter
of 10 light years, at an initial temperature of 50 K. What were the density and the
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mass of the cloud? How does the mass of the cloud compare to the mass of the Sun?
Comment on your results.

2.7 Derive a relationship between the linear contraction rate of a proto-star (dR/dt) and its
surface temperature, assuming that it contracts at equilibrium and that it is composed
ofmonatomic ideal gas. Before the discovery of nuclear fusion, one of the explanations
proposed to account for solar radiation was Kelvin–Helmholtz contraction. Estimate
the necessary contraction rate, assuming that the Sun radiates at 6000 K. Comment
on your results.

2.8 Demonstrate that the gravitational acceleration at a point inside a solid sphere is
derived only from the mass contained inside the radius of the point (see Box 2.1).

2.9 Prove to yourself that I did not make anymistakes in the tedious derivation of equation
(2.61). This is good Maple practice.

2.10 Assume that for Mercury µ= 5× 1010 Pa,Qd = 100 and h= 1. Calculate the likely
magnitude of present-day tidal heating in Mercury from Solar-induced tides. Is this
a plausible energy source for Mercury’s magnetic field? Calculate the possible tidal
heating of Mercury before tidal despinning, assuming that it had a 10-hour day. Com-
pare this value with present-day measured planetary heat flows (e.g. Earth, Moon,
Io). All data needed to solve this problem not listed here can be found in Lodders and
Fegley (1998).

2.11 Assume that forTritonµ= 109 Pa,Qd = 100 andh= 1.Calculate the likelymagnitude
of present-day tidal heating in Triton (all data needed to solve this problem not listed
here can be found in Lodders & Fegley, 1998). Comment on your results, in view of
Triton’s young and active surface features.

2.12 Discuss how the quasi-static accretion model may be affected if short-lived isotopes
such as 26Al, 60Fe and 53Mn are present in the accretedmaterial (it is fairly straightfor-
ward to modify accretion in order to include this effect). Research the literature
to find out what is known about the presence of short-lived isotopes during accretion
of the Earth.



3 Energy transfer processes in planetary
bodies

We have developed a comprehensive physical description of the processes and pathways
by which planetary bodies acquire internal energy. Our next task is to examine how this
internal energy drives planetary processes. The hallmark of an active planetary body is that
it has surface features, other than impact craters, that have ages that are negligible compared
to the age of the Solar System. This is true for any epoch of the Solar System. For instance,
the youngest features on theMoon, the immense basaltic plains that we call lunar maria, are
about 3 billion years old. This means that the Moon is dead today, but it was active when
the age of the Solar System was of the order of 1.5 billion years
Active planetary processes are associated to heat flow, but the causal connection is

not always the same. Consider the ascent of magmas. This is a process that transfers
mass and heat from the planet’s interior towards its surface, and that is made possible
by melting, which entails conversion of thermal energy to chemical energy. Ascent of
magma and construction of volcanoes, however, are not driven by thermal energy but
by gravitational energy. Magmas rise to the surface of a planet if they are buoyant, and
magmas are buoyant if melting causes a decrease in density. The essence of the process
can be captured by considering a parcel of magma of unit volume and density ρm, ris-
ing from a depth at which the planetary radius is r to the planet’s surface at radius R
> r, and exchanging places with an equal volume of country rock of density ρc > ρm
(Fig. 3.1). The process takes place inside a solid sphere (Box 2.1). We neglect energy
dissipation by friction. The change in gravitational potential energy of the magma is
given by:

�Ug,m =−GMρm

2R3

(
r2−R2

)
(3.1)

and the change in gravitational potential energy of the country rock by:

�Ug,c =−GMρc

2R3

(
R2− r2

)
. (3.2)

The change in gravitational potential energy of the magma ascent process is, therefore:

�Ug =�Ug,m+�Ug,c = GM

2R3 (ρc−ρm)
(
r2−R2

)
< 0. (3.3)

Ascent of magma corresponds to a decrease in gravitational potential energy and, in fact,
it is physically and mathematically indistinguishable from planetary differentiation – the
distinction is one of scale only. But the First Law of Thermodynamics requires that we
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Fig. 3.1 Energy aspects of magma ascent. In (a) a batch of magma of densityρm initially located at radius r exchanges places
with an equal volume of country rock of densityρc , initially located at the geoid, radius= R. If the magma ascends
no further then there is an “excess” in gravitational potential energy which must be dissipated as heat. In (b) the
magma is allowed to rise until its gain in potential energy balances that lost by the country rock, building a volcano
with center of mass at radius Rv .

account for the gravitational potential energy that is “lost” in equation (3.3). In order to
do so, we must realize that the process depicted in Fig. 3.1a is not the whole story. If
the magma stops at or below the planet’s geoid (say, it forms a shallow intrusion) then
the potential energy that is “missing” in equation (3.3) is dissipated as heat, just as in the
case of planetary differentiation. If the magma is able to rise above the geoid then the
potential energy released by ascent of magma from its source to the geoid becomes the
gravitational potential energy of the magma (i.e. of a volcano) relative to the geoid (Fig.
3.1b). If we neglect frictional losses, the potential energy lost by the sinking country rock
must be balanced by the potential energy gained by the magma in rising from its source to
the volcano’s center of mass (radius Rv in Fig. 3.1b).
Volcanism is not possible in the absence of planetary internal energy, but there is no net

conversion of thermal energy to mechanical energy in the process. The thermal energy that
is converted to chemical energy during melting is released as heat during crystallization
and is eventually radiated to space. There is net transfer of mass in a gravitational field, so
that the source of energy for magma ascent is gravity.
Consider now processes such as plate tectonics, atmospheric circulation or planetary

dynamos, which are all manifestations of convection. In contrast to volcanism, in all of
these processes there is conversion of thermal energy to mechanical energy, but there may
not be mass transfer in a gravitational field. This is so because convection is a cyclic process
in which there is no accumulation of mass anywhere on the cycle, at least on time scales
that are long relative to the time of one convective overturn. Convection is not possible in
the absence of a gravitational field, but, since there is no net mass transfer, gravity cannot
be the energy source for convection. Convection is driven by conversion of thermal energy
(either a planet’s internal heat or solar energy) to mechanical energy. There is a remarkable
symmetry here with magma ascent, which is not possible in the absence of internal energy,
but that is not driven by internal energy. The key to this symmetry is whether or not there
is net transfer of mass down a gravitational field. The study of planetary sciences requires
a good physical and mathematical understanding of heat-transfer processes and this is the
goal of this chapter.
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3.1 Transport processes

The First Law of Thermodynamics is the mathematical expression of the principle of con-
servation of energy. Two other quantities that are conserved are mass and momentum. Each
of these three conserved quantities is associated with another quantity, which we may call
a potential, such that if there is a potential gradient the conserved quantity will tend to
flow down the potential gradient. This is one possible way of stating the Second Law of
Thermodynamics, as we shall see in greater detail in Chapters 4 and 12. For example, a
temperature gradient drives the flow of internal energy. A gradient in concentration (or,
more accurately, in chemical potential, Chapter 5) causes matter to flow, for example in
an initially inhomogeneous solution or across an osmotic barrier. Transfer of momentum
is more complicated because momentum is a vector quantity, in contrast to energy and
mass that are scalar quantities, but the principles are the same. The mathematical law that
describes the flow of these three conserved quantities is one and the same and can be written
in its most simple form as follows:

f =−cdΦ
dx

. (3.4)

In this equation f is the flux of the conserved quantity, i.e. the amount of energy, mass or
momentum that is transported per unit of time and per unit of area perpendicular to the
direction of transport. The potential that drives the flow is Φ, so that dΦ/dx is the potential
gradient, and the negative sign expresses the fact that the conserved quantity is transported
down the potential gradient. The parameter c is a material property which for now we will
assume to be a constant, although in general it is a function of temperature and it may also be
a function of dΦ/dx. This latter point can introduce immense computational complications.
We also note that, in its complete mathematical formulation, f is a vector, dΦ/dx is a one-
form, and c is another geometric object called a second-order tensor. In order not to get
bogged down in these mathematical complications we restrict our discussion to transport
in one spatial dimension, in which case all three geometric objects can be thought of as
scalars, as shown in equation (3.4) (in fact, a scalar is a zeroth-order tensor). But one must
always keep in mind that flow and flux (flow per unit area) are vectors.
Consider energy conservation first, which is schematized in the drawings at the top

of Fig. 3.2. Temperature is the potential that drives heat flow. If there is a difference in
temperature across a parcel of matter such that T1 > T2, then internal energy flows from
the high temperature region towards the low temperature one. The magnitude of the heat
flux, q, is given by:

q =−k dT
dx

, (3.5)

where k is a material property called thermal conductivity. If we express q in units of
J s−1 m−2 then the units of k are J s−1 m−1 K−1. Because energy is conserved, in the
absence of energy exchanges with the environment the system evolves to a state at a time t1,
later than t0, in which its internal energy, and therefore its temperature T3, are uniform and
such that T1 >T3 >T2 (see Fig. 3.2). Equation (3.5) is also known as Fourier’s law of heat
conduction, in honor of the French scientist Jean Baptiste Joseph Fourier (1768–1830) who
first gave it its mathematical form, and who made many other fundamental contributions
to physics and mathematics. In Fourier’s time it was not realized that equation (3.5) is
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Fig. 3.2 Analogy between diffusive transfer of heat down a temperature gradient dT/dx (top panels, where T1> T3> T2) and
transfer of momentum down a velocity gradient du/dx (bottom panels, with u1> u3> u2). Time flows from t0 to a
later time t1.

actually a special case of (3.4). Now it is better to think of equation (3.5) as one of several
constitutive relations, which describe the physical behavior of a material. The behavior that
is described by equation (3.5) is how the material transports heat by diffusion, which is
the macroscopic expression of propagation of kinetic energy among microscopic particles
without bulk macroscopic displacement of matter. Equation (3.5) tells us the rate at which
diffusive heat transfer takes place.
Diffusion of momentum is analogous to diffusion of heat. To see this, consider the draw-

ings at the bottom of Fig. 3.2, which represent flow of a fluid in which there is a velocity
gradient. The fluid flows downwards, as shown by the velocity vectors ū1 > ū2, but the
velocity gradient is in the x direction, which is the direction in which we apply equation
3.4. An important point of this thought experiment is that the boundary of the fluid region
drawn in Fig. 3.2 does not represent a physical boundary, but rather a region within an arbi-
trarily large volume of fluid. In the absence of external forces the momentum inside this
region is conserved, just as internal energy is conserved inside a region which undergoes
neither heat nor work exchanges with its environment. The result is that at a time t1, later
than t0, the velocity will be distributed uniformly across the fluid region, and will have a
magnitude ū3, such that ū1 > ū3 > ū2, see Fig. 3.2. Momentum has been transported from
left to right, driven by the velocity gradient du/dx. One can visualize this process in terms of
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infinitesimally thin layers of fluid, which initiallymovewith progressively higher velocities
towards the left. Because of the velocity difference there is a drag force between the layers.
This force transfers momentum from a layer to its neighbor to the right, that moves more
slowly, so that the former layer slows down and the latter speeds up. Momentum is thus
transported down the velocity gradient.
Momentum flux is the rate of transport of momentum per unit of area. As we can easily

see, momentum flux has dimension of stress:

[momentum]× [time]−1× [distance]−2 = [M]× [L]× [T ]−1× [T ]−1× [L]−2

= [M]× [L]× [T ]−2× [L]−2

= [force]× [area]−1 . (3.6)

This dimensional result agrees with our physical image in which the process that transports
momentum is friction between layers of different velocity. More precisely, the flux of
momentum in a fluid is the shear stress, τ . Equation (3.4) for momentum transport then
becomes:

τ =−µdu
dx

, (3.7)

where µ is called the viscosity (also, dynamic viscosity) of the fluid and the potential
gradient that drives flux of momentum is the velocity gradient taken perpendicularly to the
direction of fluid flow (Fig. 3.2). This is another constitutive relationship for a material.
Just as the thermal conductivity specifies heat flux, viscosity specifies momentum flux or,
in other words, shear stress. For a given velocity gradient, as viscosity increases so does
shear stress and, therefore, the magnitude of the drag force between layers. Momentum is
then homogenized at a faster rate. This agrees with our intuitive concept of viscosity. For
example, if we stir water or motor oil at the same rotational speeds and then stop stirring,
the motor oil will come to rest sooner, because momentum flux = shear stress is higher in
the more viscous oil than in water. Note that mechanical energy is not conserved during
viscous flow, as viscous drag forces engendered by shear stress are dissipative (Chapter 1).
But momentum is a different quantity and it is conserved. In our example, stirring causes
the fluid to heat up by dissipation of mechanical energy.When we stop stirring, momentum
is transported across the fluid via the vessel to the Earth.
In this chapter we will use constitutive relations (3.5) (Fourier’s law) and (3.7) to study

energy transport processes in planetary bodies. The equivalent relation for mass transport
will be discussed in Chapter 12.

3.2 Heat transport by diffusion

3.2.1 Overview of heat transfer processes

Heat diffusion (also called conduction) is a process in which internal energy flows as a result
of the propagation of kinetic energy among microscopic particles (e.g. molecules, atoms,
ions, or electrons), without bulk macroscopic displacement of matter. Internal energy is
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transported as neighboring particles interact with one another and exchange kinetic energy.
All microscopic kinetic energy modes: translation, rotation and vibration (Section 1.14),
may be involved in the process. Heat advection occurs when there is a net macroscopic
displacement of matter, which exchanges places with other parcels of matter at a different
temperature, so that internal energy is carried by the flow of matter.Although not customary
in the engineering literature, in planetary sciences it is convenient to make a distinction
between advection, as defined above, and convection, which is a process in which heat
is advected as a result of a cyclical motion of matter driven by a temperature gradient
that engenders buoyancy differences. Engineers call this process natural convection, and
distinguish it from forced convection, in which heat advection occurs as a result of motion
of fluid propelled by machineries, such as fans or pumps. As an example of the difference
between advection and convection, consider heat transfer in the Earth’s mantle and heat
transfer by magma ascending along a volcanic feeder conduit. The former is heat advection
resulting from mantle convection, whereas the latter is heat advection without convection
(to an engineer, magma ascent would be an example of forced convection). The processes
of diffusion and advection can only occur within matter. Radiation, in contrast, is a process
in which part of a body’s internal energy is transformed to electromagnetic energy that can
travel through matter only if it is transparent to that specific range of wavelengths, but that
travels unimpeded in the absence of matter. When electromagnetic radiation interacts with
an opaque body it is absorbed and converted to internal energy. Radiation is not an important
heat transfer process in planetary interiors, but it is important in planetary atmospheres and
is the only process by which planetary bodies receive energy from the Sun. We discuss
radiation in Chapter 13.

3.2.2 The diffusion equation

Heat diffusion is part of every heat transfer process. Beyond the obvious case, that it is the
only form of heat transfer that is possible in a rigid body, heat diffusion takes place between
layers of fluid moving at different velocities and at the boundary between a moving fluid
and its rigid environment. Heat diffusion is also responsible for carrying internal energy to
the interior of a rigid body whose surface receives energy by radiation.We seek to construct
an equation that describes heat diffusion in general, allowing for the possibility that both
temperature and temperature gradient vary as a function of space and time. We will also
include the effects of heat sources (e.g. radioactive, gravitational or electromagnetic heat
generation; dissipation of mechanical energy by friction, etc.) and heat sinks (e.g. melting
and metamorphic devolatilization reactions).
We begin by considering an infinitesimal volume element inside amaterial in which there

is heat flow (Fig. 3.3).We assume that thematerial is rigid and at rest relative to a coordinate
system fixed to the observer. Our goal is to write the equation for energy conservation in
the infinitesimal volume element. Because the process is assumed to take place at constant
pressure, any net gain or loss of heat corresponds to a change in the enthalpy content of the
volume element, and is reflected in a temperature change given by cp dT , where cp is the
specific heat capacity. The lengths of the sides of the volume element are δx, δy and δz, so
that the heat flow across the element’s left face (amount of heat flowing per unit of time
across a surface with area δyδz) is given by (see equation (3.5)):

−kδyδz∂T
∂x

∣∣∣∣
x

. (3.8)
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Fig. 3.3 Infinitesimal volume element in which diffusive heat transport is occurring.

We use partial derivatives because temperature is in general a function of the three spatial
coordinates and of time. The temperature gradient in equation (3.8) is evaluated at x, which
is the coordinate of the element’s left face, but the temperature gradient is not necessarily
the same on the element’s right face. Given that the volume element has infinitesimal
dimensions, the heat flow across the right face can be written as:

−kδyδz∂T
∂x

∣∣∣∣
x+δx

=−kδyδz
(
∂T

∂x

∣∣∣∣
x

+ ∂

∂x

(
∂T

∂x

)
δx

)

=−kδyδz
(
∂T

∂x

∣∣∣∣
x

+ ∂2T

∂x2
δx

)
. (3.9)

The net rate of change of enthalpy in the infinitesimal volume element due to heat flow in
the x direction is given by expression (3.8) minus equation (3.9) (i.e. “heat entering” minus
“heat leaving”):

kδxδyδz
∂2T

∂x2
. (3.10)

Similar arguments for heat flow along the other two orthogonal directions show that the rate
at which the enthalpy of the infinitesimal volume element changes due only to the effect of
heat flow is:

kδxδyδz

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)
= kδxδyδz∇2T , (3.11)

where the operator ∇2, called the Laplacian, is shorthand for the sum of the second partial
derivatives of a function relative to each of the independent spatial variables (note that the
Laplacian is a scalar).
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If the material that we are considering contains heat sources or sinks, then their contribu-
tion must be added to equation (3.11) in order to obtain the total rate of change of enthalpy.
Let the amount of heat added per unit mass and per unit time be α. For a heat source it is
α > 0, whereas for a heat sink it is α < 0. At this point we do not care what the sources or
sinks are, or how many of them are present – the value of α is simply the net amount of
heat added per unit mass and per unit time, from all sources and sinks combined. The total
rate of change of enthalpy of the volume element, from the combined effects of heat flow
and heat sources and sinks, is, then:

dH

dt
= kδxδyδz∇2T +αρδxδyδz, (3.12)

where ρ is the density of the material (recall that α is rate of heat supply per unit mass).
The rate of change of enthalpy is also given by:

dH

dt
= ρδxδyδzcP

∂T

∂t
. (3.13)

Equating (3.12) and (3.13) and simplifying we arrive at the heat diffusion equation:

∂T

∂t
= k

ρcP
∇2T + α

cP
(3.14)

or:

∂T

∂t
= κ∇2T + α

cP
, (3.15)

where κ = k/(ρcP ) is another material property called the heat diffusivity, with dimension
[L]2 [T]−1, e.g., units of m2 s−1. Equation (3.15) is called the diffusion equation and its
mathematical form applies to transport of any quantity that is described by equation (3.4).
Momentum diffusivity is described by the kinematic viscosity ν given by the ratio ν =µ/ρ.
Chemical diffusivity will be discussed in Chapter 12.
The diffusion equation is an example of a partial differential equation. As all differential

equations, it does not tell us directly how to calculate a quantity. Rather, it gives us a
mathematical law that describes how the quantity of interest varies. In this case, all that
equation (3.15) says is that the rate of change of temperature is a linear function of the
curvature (second derivative) of the temperature field. Starting from this information we
can construct a precise mathematical description of the spatial and temporal distribution of
temperature. At this point you should study Box 3.1 in depth, as it is fundamental for much
that follows.

Box 3.1 Solution of the heat diffusion equation in a semi-infinite half space

The heat diffusion equation is an example of a partial differential equation, as it relates the partial derivatives
of temperature relative to two independent variables, space and time. In general, solving a partial differential
equation requires that we begin by specifying the geometry of the problem and a set of initial and boundary
conditions. The geometry of the problem is a precise description of the nature and size of the region of space
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Box 3.1 Continued

over which we want to solve the equation, in this case, the region of space for which we wish to know the
temperature distribution at any instant of time. The initial condition is the value that the variable of interest
(in this case, temperature) takes at some instant chosen as time= 0 and at every point in the spatial region
of interest. The boundary conditions are the values that the variable (or some of its derivatives) take at some
specified points in space (generally, along the boundaries of the region of interest) for all instants of time.

Here we will solve the heat diffusion equation in one dimension over a semi-infinite half space, which is a
region of space that has only one boundary. This means that the temperature at a point infinitely far away
from the boundary does not change with time. This particular solution is fairly straightforward and leads
naturally to the meaning of the characteristic length and time scales of heat diffusion. It is also an important
step in understanding heat transfer in terrestrial planets and in inferring their internal structures.

We seek a solution to the heat diffusion equation (3.15) in one dimension and without a heat source:

∂T

∂ t
= κ

∂2T

∂x2
. (3.1.1)

A solution to this equation is a function T = T(x , t). We imagine a semi-infinite half space at a uniform
temperature and we impose an instantaneous temperature perturbation on the space’s only boundary. We
seek the function that describes the propagation of this perturbation in space and time.Weneed to specify the
appropriate initial and boundary conditions. This is illustrated in Fig. 3.4. The initial condition (t0 in Fig. 3.4) is
a semi-infinite half space at a uniform temperature T1, except at the boundary (x= 0) where the temperature
is T0. This is the temperature perturbation that we impose at time t0. If T0< T1 then the half-space cools by
losing heat across the boundary, as shown in Fig. 3.4. The temperature at the boundary is held constant at T0
for all times – this is the boundary condition. Our initial and boundary conditions are, respectively:

T (x > 0, 0)= T1

T (0, t)= T0. (3.1.2)

As the half space loses heat its temperature distribution changes as shown in Figure 3.4, where t1, t2, t3 are
three progressively longer intervals of time.

We wish to find the function that describes temperature distribution in space and time, i.e. the function
that describes the curves in Figure 3.4. These curves can be thought of as sections of a surface extending
perpendicular to the page, where the third coordinate represents time. One technique for solving partial
differential equations (PDEs) is to convert them into ordinary differential equations (ODEs). These are
equations that involve derivatives (possibly of different degrees) relative to a single independent variable,
and are generally easier to solve. One way of accomplishing this is by combining the two independent
variables in the PDE into a single one. Because diffusivity has dimension of [L]2 [T ]−1 we can define a
non-dimensional variable ζ (also called a similarity variable) by combining x and t as follows:

ζ = x

2
√

κt
(3.1.3)

(the factor 2 in the denominator has no physical significance, and is justified a posteriori because it simplifies
the algebraic manipulations). Besides simplifying the solution of the partial differential equation, the
similarity variable gives us the scaling factor for length vs. time. Once we know what the temperature is at
any given ζ then we can immediately calculate all of the x – t combinations at which temperature has



131 3.2 Heat transport by diffusion

Box 3.1 Continued

T

x

0

T0 T1

t0 = 0

t1

t2

t3

Fig. 3.4 Temporal evolution of the diffusive temperature distribution in a semi-infinite half space whose boundary is kept at
a constant temperature T0< T1 (the temperature at infinity). At the initial time (t0= 0) the half space has uniform
temperature T1, except at the boundary, where T= T0. The curves for longer intervals, t3> t2> t1, are
differently-scaled versions of the error function (see text).

this same value. If we seek a function for temperature in terms of this non-dimensional variable, however,
then we should also express temperature as a non-dimensional variable. This is accomplished by defining
the variable θ:

θ= T − T0
T1− T0

, (3.1.4)

which scales temperature to the temperature range characteristic of the problem. In terms of the two
non-dimensional variables, our initial and boundary conditions become:

θ= 1 as ζ →∞
θ= 0 at ζ = 0. (3.1.5)

We now use the chain rule to find expressions for ∂T/∂ t and ∂2T/∂x2 in terms of dθ /dζ and d 2θ /dζ 2

(partial derivative symbols are obviously no longer needed). Thus:

∂T

∂ t
= dT

dθ

dθ

dζ

dζ

dt
= −ζ (T1− T0)

2t
dθ

dζ
(3.1.6)
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Box 3.1 Continued

(you should work out the algebra to see where this comes from). Similarly:

∂T

∂x
= dT

dθ

dθ

dζ

dζ

dx
= T1− T0

2
√

κt

dθ

dζ
(3.1.7)

and:

∂2T

∂x2
= d

dζ

(
dT

dx

)
dζ

dx
= T1− T0

4κ t
d2θ

dζ 2 . (3.1.8)

We now substitute (3.1.6) and (3.1.8) into (3.1.1) and, after simplifying, we get:

−2ζ
dθ

dζ
= ∂2θ

∂ζ 2 . (3.1.9)

In order to solve this ODE we introduce the auxiliary variableφ:

φ= dθ

dζ
(3.1.10)

and its first derivative:

dφ

dζ
= d2θ

dζ 2 . (3.1.11)

Substituting into (3.1.9) and rearranging:

dφ

φ
=−2ζ dζ . (3.1.12)

In case you lost track, we have converted the original PDE, equation (3.1.1), into the very simple ordinary
differential equation (3.1.12). It may be a good idea to go back and review all of the steps involved in this
rather clever trick. The solution to (3.1.12) is, simply:

φ= ce−ζ 2
, (3.1.13)

where c is an integration constant. We can now do away with the auxiliary variableφ, and we get:

dθ

dζ
= ce−ζ 2

. (3.1.14)

In order to find the value of the constant c we integrate between the two conditions specified by equations
(3.1.5): ∫ θ=1

θ=0
dθ= c

∫ ζ=∞

ζ=0
e−ζ 2

dζ . (3.1.15)
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Box 3.1 Continued

The integral on the right-hand side of this equation appears in a function called the error function (see, for
example, Weisstein, 2003, p. 933), symbolized erf, and defined by:

erf (ζ )= 2√
π

∫ η=ζ

η=0
e−η2

dη, (3.1.16)

where η is a dummy variable of integration. Equation (3.1.15) then becomes:

1= c
√
π

2
erf (∞) . (3.1.17)

The values of the error function are tabulated (see Beyer, 1987) and also available inMaple. We find that erf
(∞ )= 1, so that the integration constant is:

c = 2√
π

. (3.1.18)

Integrating (3.1.14) with this constant:∫ θ

0
dθ= 2√

π

∫ ζ

0
e−η2

dη (3.1.19)

or:

θ = erf (ζ ) . (3.1.20)

This is the solution that we seek: the function that describes temperature distribution in a semi-infinite half
space cooled by diffusion and without a heat source. It is straightforward to substitute the definitions of the
non-dimensional variables ζ and θ (equations (3.1.3) and (3.1.4)) into equation (3.1.20) and obtain the
equation for T as a function of x and t:

T = (T1− T0) erf

(
x

2
√

κt

)
+ T0. (3.1.21)

Solution of the heat diffusion equation in a semi-infinite half space is a relatively simple exercise but it is
not necessarily the correct answer to every problem in heat diffusion. The classic text by Carlsaw and Jaeger
(1959) develops a large number of solutions of the heat equation with different geometries and boundary
conditions, many of them applicable to problems in the Earth and planetary sciences.

3.2.3 The physical meaning of diffusivity

Diffusivity measures the efficiency with which interactions at the microscopic level are
able to eliminate the potential gradient that drives the flow. In the expression κ = k/(ρcP )
we can think of the product ρcP as the thermal inertia of the material. The larger the
value of this product, the more difficult it is to change the thermal state of the material,
thus slowing down heat diffusion. All diffusivities (for heat, momentum and mass) have
dimensions of [L]2 [T ]−1, as should be evident from the fact that they have to satisfy the
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Fig. 3.5 The error function θ= erf (ζ ). Note that the axes for the independent and dependent variables are switched relative
to the mathematical convention, as is common practice in the planetary sciences when representing temperature
as a function of depth. The similarity variable ζ = x/2

√
κt tracks the propagation of a temperature perturbation in

space and time, as shown by the arrows. The magnitude of the perturbation is given by the distance from the
non-dimensional temperature θ= 1. The thermal boundary layer can be (arbitrarily) defined at ζ = 1, for
which θ ≈ 0.84.

same relationship between spatial and temporal derivatives given by equation (3.15). Other
physical quantities that appeared in the derivation of the diffusion equation, most notably
temperature and energy, do not show up in the dimension of diffusivity. The dimension of
diffusivity tells us that in all diffusive processes length scales with the square root of time.
Consider the simple case of diffusion in one dimension (i.e. ∂T /∂y= ∂T /∂z= 0)without

a source (α= 0). In Box 3.1 we solve this equation for a semi-infinite half space. Let us look
at the general solution in terms of the non-dimensional similarity variable ζ = x/2

√
(κt)

and non-dimensional temperature, θ. The error function, which is plotted in terms of these
variables in Fig. 3.5, describes the propagation of a temperature perturbation (θ= 0) imposed
at the boundary of a half space, for which the uniform initial condition is θ = 1. The distance
between the curve and the right vertical axis (θ= 1) is the amount of cooling,which increases
as ζ decreases. If we fix time, then a displacement towards ζ = 0 represents a displacement
towards the boundary of the half space (x = 0), which, for finite time, is the only point for
which θ= 0. Alternatively, if we consider a fixed point in space, then time, and with it the
amount of cooling, increases towards ζ = 0, and cooling to θ = 0 for an arbitrary value of
x �= 0 can be achieved only after an infinite amount of time (of course, this is true for a
“semi-infinite” half space, as complete cooling of a finite body such as a planet, a dike or
lava flow will of course always be accomplished in a finite interval of time).
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We can now define a value of ζ that gives a scale estimate for the propagation of a
temperature perturbation. As an example, if we set x =√(κt), we get ζ = 1

2 and θ ≈ 0.52
(Fig. 3.5). Temperature at this point has changed substantially from its initial value, but the
effect of the temperature perturbation extends considerably more than this. If we choose
ζ = 2,we find that θ = erf (2)= 0.995,whichmeans that the temperature perturbation at this
point is insignificant. An intermediate value between these two would give a good estimate
of how far the temperature perturbation has propagated. The choice is always arbitrary, and
in this book we will choose ζ = 1, for which θ = erf (1)= 0.843 (Fig. 3.5). Although the
temperature perturbation can still be seen for ζ > 1, most of the cooling has taken place in
the interval 0< ζ < 1. This gives us the following relationship between the characteristic
diffusion length, λ, and characteristic diffusion time, τ :

λ∼ 2
√
κτ , (3.16)

where the symbol “∼” means “of the same order of magnitude as”. Given that θ is non-
dimensional temperature, this relationship holds regardless of the absolute magnitude of
the initial temperature perturbation.
The physical meaning of equation (3.16) is that a temperature perturbation of any size

will travel a distance of order λ in a time τ . The numerical value of the diffusivity provides
a scale estimate for heat conduction. Consider for example the oceanic lithosphere. It forms
by diffusive cooling of mantle asthenosphere as it moves away from spreading centers. We
can therefore take the age of the ocean floor as the cooling time of the lithosphere. Using an
average age of the ocean floor of 100 million years, and a typical value of heat diffusivity
for rocks of 10−6 m2 s−1, we calculate from (3.16) an average thickness for the oceanic
lithosphere of ∼112 km, which is certainly of the right order of magnitude. Similarly, we
can estimate that the characteristic cooling time of a 10 m-thick ash flow (assuming that we
can neglect circulation of hydrothermal fluids) is ∼10 months, which means that, even if
the surface of the ash flow cools to room temperature much sooner than this, we can expect
that temperatures deep inside the ash flow will remain noticeably above room temperature
for about a year. Recall that in diffusive processes time scales with the square of length.
Thus, a 1-m thick lava flow cools 100 times faster than a 10-m thick lava flow – it will have
cooled in ∼3 days.
These numerical examples illustrate a powerful method for obtaining approximate

answers called scale analysis or scaling. The goal of scaling is to obtain a numerical value
that we can be reasonably certain is within an order of magnitude of the exact answer that
we seek. In many cases obtaining the exact answer may be computationally very intensive
and a scale analysis will return most of the information that we seek for a minimum invest-
ment of time and effort. This is especially true in planetary sciences, where the complexity
of the processes involved and the large uncertainties in the values of material properties
and intensive variables may not always render an “exact” calculation any more informative
than a scale analysis. The spirit of scale analysis is to capture the essential physics of the
phenomenon that we are studying, even as many of the details may remain uncertain or
unknown.Onemust be careful not tomiss some important information, though. In thewords
of Albert Einstein, “Everything should be made as simple as possible, but not simpler”.

3.2.4 The diffusive thermal boundary layer

The thickness of the half space that has been affected by the temperature perturbation (as
defined by equation (3.16)) is called the thermal boundary layer. Most of the temperature
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difference between the interior of the half space and the boundary occurs across the thermal
boundary layer (Fig. 3.5). A physical interpretation of the diffusive thermal boundary layer
is that the material beyond it does not “know” that it will be changing its temperature and,
therefore, does not contribute internal energy to the heat flow across the boundary of the
half space. Heat flow across the boundary comes only from cooling of material inside the
thermal boundary layer.
We seek an expression for the rate of heat loss across the thermal boundary layer. We

begin from the solution to the heat diffusion equation in a semi-infinite half space (equation
(3.1.21)):

T = (T1−T0)erf
(

x

2
√
κt

)
+T0 (3.17)

and using the similarity variable ζ defined by equation (3.1.3) we get, from equation 3.17
and the chain rule:

dT

dx
= (T1−T0)

[
d

dζ
erf (ζ )

]
dζ

dx
= T1−T0

2
√
κt

d

dζ
erf (ζ ) . (3.18)

From the definition of the error function, equation (3.1.16), it follows that:

d

dζ
erf (ζ )= 2√

π
e−ζ 2 (3.19)

so that the temperature gradient is given by:

dT

dx
= T1−T0√

πκt
e−ζ 2 . (3.20)

Since at the boundary ζ = x = 0, the heat flux across the boundary of the half space is
given by:

q0 =−k dT
dx

∣∣∣∣
0
=−k T1−T0√

πκt
. (3.21)

When applied to surface heat flux in planetary bodies, the negative sign in this equation can
be the source of some consternation. If we measure depths in a planet as positive quantities,
then heat flux at the planet’s surface is a negative quantity, as this equation, which is just
Fourier’s law, shows. It is customary, however, to express planetary heat flux as a positive
quantity, which is what we have been doing throughout this book. In order to follow this
near universal practice, which we will continue to do, it is necessary to drop the negative
sign from equation (3.21), which thus becomes:

q0 = k
T1−T0√
πκt

(3.22)

and it is also necessary to remember that we are inverting the sign of the planetary heat
flux, and adjust the sign in other equations, as needed. As the boundary layer cools and
thickens the thermally unperturbed material recedes progressively farther away (Fig. 3.5).
By Fourier’s law (equation (3.5)) heat flux across the boundary of the half space must also
decrease with time, as shown by equation (3.22).
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3.3 Heat diffusion and cooling of planetary bodies

3.3.1 Lord Kelvin and the thermal structure of the Earth

Students of the Earth and planetary sciences are familiar with the nineteenth-century con-
troversy about the age of the Earth between Lord Kelvin, who calculated an age of the
order of 107–108 years, and his contemporary geologists, who insisted on much older ages.
Insofar as some geologists advocated an undetermined, perhaps infinitely old age, and by
implication a steady-state Earth, this was an argument about the Second Law of Thermo-
dynamics. Kelvin, who was one of the foundational figures of classical thermodynamics,
correctly pointed out that a steady state Earth would violate the Second Law (Chapter 4).
I believe that the outcome of this argument was split. Kelvin’s was a quantitative estimate
based on a rigorous application of physics, and in this sense it was better science than
anything that nineteenth-century geology could offer. Lord Kelvin was also correct that the
Earth is not infinitely old. The age of the planet, however, is one to two orders of magnitude
greater than suggested by his calculations. As it turns out, Lord Kelvin’s error provides a
crucial clue about the interior structure of the Earth, which was not fully recognized until
the 1960s (although some scientists had grasped the significance of his error much earlier;
see England et al., 2007, for an account of one such case). Our focus here is to see what
we can learn about the interior of the Earth and other terrestrial planets from the physics of
heat diffusion.
Let us assume that we are ignorant of the interior structure of the Earth and that we

assume that it is a largely solid sphere in which heat moves by diffusion. Because there is
measurable heat flow at the surface, we can also conclude that, in the absence of an active
heat source, the Earth is cooling down from an initially hotter state. This was, more or less,
Lord Kelvin’s view of the Earth. Let us now add a crucial piece of information that was
unknown to him: the correct age of the Earth, 4.56Ga≈ 1.44× 1017 s. Fromequation (3.16),
with κ= 10−6 m2 s−1, we can conclude that only the outermost 750 km or so of the Earth
have cooled down. Deeper than that the Earth should still preserve temperatures comparable
to its primordial temperature, because there has not been enough time for diffusion to extract
heat from those depths. The observed heat flow at the surface of the planet must therefore
derive exclusively from cooling of the outermost 750-km thick layer. If we know the age of
the Earth then we can use the diffusion equation to do one of two things: assume an initial
temperature for the Earth and calculate the surface heat flux, or use the measured heat flux
and calculate the initial temperature of the Earth. We can also do what Lord Kelvin did:
use measured heat flux and an estimate of the Earth’s initial temperature to calculate the
length of time for which the Earth has been cooling down. We will now perform all three
calculations and show that they all lead to erroneous results. More accurately, they lead to
three ways of looking at the same result, namely, that heat diffusion by itself cannot explain
the thermal structure of the Earth.
We model the diffusively cooled Earth as a semi-infinite half space. This is acceptable

because, over the age of the Earth, a layer with thickness of only about one tenth of the
Earth’s radius can cool by diffusion, so that most of the planet effectively lies infinitely
distant from the surface in terms of heat transfer. We set x = 0 at the surface of the Earth
and x > 0 towards the center of the Earth. We assume that the Earth is initially at uniform
temperature T1, and that temperature at the surface has a constant value T0 for all times.
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Lord Kelvin obtained his estimate for the age of the Earth by solving equation (3.22) for t:

t = 1

πκ

[
k (T1−T0)

q0

]2
. (3.23)

Box 3.2 Summary of terrestrial heat flow

Throughout this chapter we will use terrestrial heat flow values in numerical examples, but the values
appropriate to each example are not necessarily the same. This brief review, based on data discussed by
Turcotte and Schubert (2002) and Davies (1999), which are in broad agreement with one another, explains
the reasons for the various choices.

The total terrestrial heat output is approximately 4.43 × 1013 W. Divided by the surface area of the
Earth (5.1× 1014 m2), this yields an average terrestrial heat flux of≈ 87 mW m−2. This total includes: (i)
heat lost from the deep planetary interior by advection (mostly by sea floor spreading, which is the surface
expression of mantle convection, plus a small but not negligible contribution from mantle plumes), (ii) heat
lost from the deep planetary interior by diffusion across the continental lithosphere, and (iii) heat generated
by radioactive decay in the continental crust. Table 10.1 in Davies (1999) summarizes the magnitude of
these various contributions. For our purposes, the important concept is that the total average terrestrial heat
flux of 87 mW m−2 does not discriminate between different sources, depths of origin or heat transport
mechanisms. This is the correct value to use, for example, if we wish to model terrestrial heat loss as the
product of a single heat transport process that applies indiscriminately to the entire Earth and in which the
source of heat is the same for all parts of the Earth. Kelvin’s diffusive cooling model is an example of this.

If we subtract radioactive heat generation in the crust, we are left with a total heat loss from the Earth’s
deep interior (mantle+ core) of∼ 3.6× 1013 W. This includes heat flowing from the mantle across both
the oceanic and continental Moho. Divided by the total surface area of the Earth, this yields an average
heat flux from the deep Earth of∼70 mW m−2. This is not, however, the heat that is transported to the
Earth’s surface by mantle convection, as part of this heat is transported to the Moho by diffusion across the
continental lithosphere. Subtracting the contribution from the subcontinental mantle, including continental
shelves, yields a total heat loss across the ocean floor of∼3.1× 1013 W. This is the heat that is transported
to the surface by mantle convection (if we ignore radioactive heat generation in the oceanic crust, which is
a very small fraction of this total). Divided by the surface area of ocean floor, about 3.1× 1014 m2, it yields
an average oceanic heat flux of 100 mW m−2. Perhaps 10–20% of this corresponds to heat transport by
mantle plumes. The rest, 80–90 mW m−2, is the heat flux that must be accounted for by the moving-plate
mode of mantle convection, i.e. formation of oceanic lithosphere at spreading centers and destruction of this
lithosphere at subduction zones.

We will discuss mantle convection in other terrestrial planets as well, and in order to do that we need
a rough estimate, or at least a bounding value, for the planet’s heat flux. If we assume that the bulk
compositions and differentiation histories of two planets are the same, then we can tentatively conclude
that the heat outputs per unit mass (see Chapter 2) of the two planets are similar. If the sizes of the planets
are different, however, the surface heat fluxes will not be the same, as surface area scales with the square of
radius and mass with the cube. Calling the two planets 1 and 2, we find:

q2 = q1
r2ρ2

r1ρ1
, (3.2.1)
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Box 3.2 Continued

where q is surface heat flux, r radius and ρ density. This formula is strictly applicable only if all of the surface
heat flux comes from an active heat source, such as radioactive decay. If some of the surface heat flux reflects
secular cooling, i.e. slow release of internal energy stored early in the planet’s history by processes such as
accretion, differentiation, tidal heating or decay of short-lived radioactive isotopes, then smaller planets with
a larger surface to mass ratio will cool faster and equation (3.2.1) would not be applicable for the present
age of the Solar System. If the planets are not too different in size, however, (3.2.1) may yield a reasonable
estimate. This is the case for Venus and Earth. Using (3.2.1) and the average heat flux from the deep Earth
(70 mW m−2) yields an estimate for Venusian mantle heat flux of 63 mW m−2. Application of this
relationship to smaller terrestrial planets is more contentious. For Mars we calculate an “Earth analog”
mantle heat flux of∼30 mWm−2. In Chapter 2 we saw that geochemical estimates suggest a total Martian
heat flux of 40 mW m−2, so that, accounting for upwards enrichment of radioactive isotopes, the mantle
heat flux estimated from (3.2.1) is not altogether unreasonable. For the Moon we get 12 mW m−2, which
is about half of the average value obtained from two measurements by Apollo crews. The anomalous lunar
heat flow, if real, could be a fossil of an extreme heating event cause by tidal despinning (Chapter 2).

In addition to the material properties k and κ and the surface heat flux, q0 (see Box 3.2),
the solution requires values for the initial temperature of the Earth, T1, and for the sur-
face temperature T0. A nice round number such as 300 K is a reasonable enough value
for the latter, but what about the initial temperature? As we saw in Chapter 2, this is very
poorly constrained, and it was all but unknown in Kelvin’s time. He seems to have cho-
sen a value on the order of 4000 K, on the basis of what little was known at that time on
melting temperatures of rocks. Given the significant uncertainties in initial temperature,
measured geothermal gradients and thermal properties for rocks, Lord Kelvin gave a pos-
sible age range of 25–400 million years. Using the value for mean terrestrial heat flux,
including continents and oceans, of ∼87 mWm−2 (Box 3.2), typical values for k and κ of
3 W m−1 K−1 and 10−6 m s−2, respectively, and T1 – T0 = 3700 K we obtain t = 5.18×
1015 s ≈ 164 million years, within the range of Kelvin’s results.

Let us now start from the known age of the Earth, 4.56 Ga≈ 1.44× 1017 s. If we assume
the same initial temperatures, T1 – T0 = 3700 K , we calculate a mean present-day surface
heat flux of ∼16.5 mW m−2, about one fifth of the observed value. Alternatively, using
the actual heat flux of 87 mW m−2, we arrive at an initial temperature of ∼19 800 K for a
conductively cooled Earth of the correct age. On the basis of our results from Chapter 2,
this temperature is unrealistically high, but there is a bigger problem.
A way of looking at these results is presented in Fig. 3.6 which shows temperature as a

function of depth, calculated with equation (3.17), for the three models discussed above.
Model 1 is a 4.56 Ga Earth with an initial temperature of 4000 K. This we can discard on
the basis of the observed surface heat flux. Model 2 has the same initial temperature but
is 164 million years old, which as we saw yields the correct mean terrestrial heat flux of
87 mWm−2. In addition to an erroneous age, this model requires a temperature of 4000 K
at a depth of ∼300 km, which is above the peridotite liquidus. Model 3, which is based on
the correct heat flux (note that dT/dx at the surface coincides with that of model 2) and the
correct age of 4.56 Ga, requires a temperature of 19000 K, or several times the peridotite
liquidus, at a depth of 1500 km, and is obviously unacceptable on geophysical grounds, as
it requires a present-day molten mantle.
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Fig. 3.6 Three diffusive thermal profiles of the Earth, all incorrect. Models 1 and 3 are for a 4.56 billion year old Earth, with
initial temperatures of 4000 K and∼ 20 000 K, respectively. Model 3 yields the correct surface heat flux, as does
model 2, which requires a 164 million year old Earth and a 4000 K initial temperature. Note that if the Earth cooled
diffusively then most of the planet would still be at its initial temperature, regardless of what this temperature was.
Diffusive length and time scales are independent of temperature.

The clue to the failure of the conductive model of terrestrial cooling is that, if the Earth
cools by diffusion, then the source of the heat flow observed at the surface is only a small
fraction of its internal energy content. The heat flow observed at the surface would be
driven by cooling of the thermal boundary layer. For an Earth of the correct age, and even
more so for Lord Kelvin’s age estimate, most of the planet’s interior is located beyond the
characteristic diffusion length, so that much of the Earth’s primordial internal energy would
remain stored and incapable of contributing to the planet’s surface heat flow at the present
epoch of the Solar System. The importance of Lord Kelvin’s mistake is that it shows that
conductive cooling of an Earth with no active heat sources fails to explain the observed
thermal structure of the planet (which, it must be stressed in his defense, was not known
in his time). There are two possible solutions. One, terrestrial heat flow may include a
contribution from an active heat source in addition to heat flow derived from cooling of the
thermal boundary layer. As we saw in Chapter 2, the only feasible heat source active today
is radioactive decay.Alternatively, the planet may have a thin conductive outer layer, below
which another heat transfer process is active, that is capable of tapping internal energy
from the large proportion of the Earth that lies beyond the diffusive boundary layer, and of
delivering this heat to the base of the conductive skin.

3.3.2 Can the conductive model for the Earth be saved?

Let us examine the contribution of radioactive heat production to a conductively cooling
Earth. We will assume that the entire terrestrial budget of long-lived radioactive isotopes
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is concentrated in the thermal boundary layer. This is justified on two grounds. First, it
is the best case scenario, for radioactive heating originating beyond the thermal boundary
layer cannot contribute to heat flow across the surface. Second, the assumption is sound on
geochemical grounds, because all long-lived isotopes are incompatible elements that tend
to migrate to the outer layers of the Earth.
If α is the present-day bulk Earth rate of radioactive heat production per unit mass, M

is the Earth’s mass and R its radius, then the heat flux derived from radioactive decay
is (αM)/(4πR2). Using the value of α from Fig. 2.20, ∼2.7× 10−12 W kg−1, we get a
maximum contribution from present-day radioactive decay of 31 mW m−2. Given a total
terrestrial heat flux of 87 mW m−2, it is necessary to derive 56 mW m−2 from diffusive
cooling. From equation (3.22) we calculate that the initial temperature of the Earth required
to yield this heat flux is∼12 200K, and this primordial temperature would still exist today
at a depth of ∼1500 km (see Fig. 3.6), which we know is not possible (it is still several
times the peridotite liquidus).
The Earth is certainly still today losing internal energy from an initial hotter state. The fact

that the core has not yet completely solidified is one indication of this. Diffusion, however,
cannot be the heat transfer process responsible for extracting heat from the Earth’s deep
interior.The only viable alternative is convection, as silicates are opaque to infrared radiation
(Chapter 13).
We should look at Lord Kelvin’s mistake in a different light. Unknown to him, his

greatest contribution to the Earth Sciences was to demonstrate that convection must be
occurring in the interior of our planet. In my view, the realization that this is the case, and
the ensuing quantitative understanding of convection in planetary mantles in general, is
as pivotal to planetary sciences as the replacement of the Ptolemaic view of the cosmos
with the Copernican one. One could say that geology before the understanding of mantle
convection was what Aristotelian mechanics is to Newtonian mechanics.

3.4 Convection as a heat engine

Heat engines are thermodynamic cycles that convert thermal energy to mechanical energy
continuously and indefinitely, as long as there is a net input of heat (this is the First Law
of Thermodynamics), and as long as there are two thermal reservoirs at different temper-
atures that the engine can exchange heat with (this is mandated by the Second Law of
Thermodynamics, which we will study in Chapter 4). The heat engine extracts heat from
the high-temperature reservoir and releases heat to the low-temperature reservoir. If the dif-
ference between heat absorbed at high temperature and heat released at low temperature is
greater than zero then there is the capability of performing work. We see from this descrip-
tion that a heat engine also acts as a heat transport mechanism. Convection fulfills this dual
role in planetary bodies. On the one hand, convection is the heat engine that underlies such
diverse processes as plate tectonics, mountain building, planetary dynamos, and hurricanes.
Convection is also the predominant heat transport process in active planetary mantles and
cores, as well as in planetary atmospheres and oceans.
We will construct a “toy model” of convection in a planetary mantle. By “toy model”

I mean that I will make a number of simplifying assumptions in order to extract some of
the physics of the process. First, it is customary to refer to the convecting material as a
fluid, even if, as in the case of planetary mantles, the material is a crystalline solid that is
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Fig. 3.7 Toy model of planetary convection. A parcel of material absorbs heat isobarically along the bottom boundary of the
convective layer, so that its temperature increases from A to B. It then rises adiabatically from B to C, loses heat
isobarically from C to D and sinks adiabatically from D to A, completing the cycle.

able to flow at rates of cm to m per year by a combination of microscopic and macroscopic
creep mechanisms (see Poirier, 1985). Convection occurs when the temperature difference
across a fluid layer is such that, given the magnitudes of material properties of the fluid
such as thermal diffusivity, coefficient of thermal expansion and viscosity, the rate of heat
transfer by advection exceeds the rate of heat transfer by diffusion. The fluid layer (Fig.
3.7) absorbs heat across its bottom boundary and releases heat across its top. In our toy
model we assume that pressure is constant along both boundaries. This is physically rea-
sonable for terrestrial mantle convection. The top of the convecting mantle corresponds
to the surface of the Earth (more precisely, the ocean floor). The bottom corresponds to
the core–mantle boundary, where the pressure is determined by the lithostatic load of the
overlying mantle so that it is essentially constant. Significant lateral temperature variations
exist along both boundaries. As the mantle releases heat through the planet’s surface, it
cools from asthenospheric temperature at mid-ocean ridges to atmospheric temperature at
subduction zones. We are less certain about what happens at the bottom boundary, but a
reasonable physical model is that cold downwelling mantle hits the core–mantle boundary,
moves laterally and its temperature rises as it absorbs heat from the core (see Fig. 3.7). This
toymodel of convection assumes that heat exchange occurs only at the bottom and top of the
convective layer, and that there are neither heat sources nor heat sinks within the convect-
ing fluid. The latter is seldom the case in real planetary systems. For example, radioactive
heat is generated in planetary mantles (and perhaps cores as well), frictional dissipation of
mechanical energy takes place in planetary cores, mantles and atmospheres, ohmic dissi-
pation is always part of planetary dynamos, and phase changes of condensable species are
huge heat sources and sinks in planetary atmospheres (H2O in Earth, hydrocarbons in Titan,
CO2 in Mars).
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It is the nature of convection that it must transfer heat faster than diffusion. This is so
because convection is driven by buoyancy forces, which in thermal convection arise from
temperature differences. Buoyancy can bemaintained only if temperature contrasts between
different parcels of fluid can bemaintained.The rate of change of the thermodynamic state of
a parcel of fluid not located at the heat exchange boundariesmust therefore be much faster
than the rate at which heat can be exchanged by diffusion with neighboring parcels. This
means that the interior of the convective layer is adiabatic (Fig. 3.7). Planetary convective
systems may differ in some important aspects, though. For example, in contrast to the
model in Fig. 3.7 in which both heat absorption and heat loss are isobaric, hurricanes are
convective systems in which both heat transfer boundaries are approximately isothermal.
The basic structure of two heat-transfer boundaries linked by an adiabatic interior is always
present, however.
The convective overturn depicted in Fig. 3.7 maps as a four-leg cycle on a pressure–

temperature diagram, shown in Fig. 3.8. A parcel of material located at the bottom of the
convective cell, at pointA, absorbs heat at constant pressurePb.As its temperature increases
from TA to TB the material expands until it eventually becomes buoyant at B. It then rises
and expands adiabatically, fromPb toPt .Adiabatic expansion causes its temperature to drop
from TB to TC . At C the parcel has reached the top of the convective layer and begins to
lose heat. It cools down isobarically from TC to TD and contracts, until at D the density has
increased sufficiently that it sinks and compresses adiabatically. Its temperature increases
in response to adiabatic compression until it reaches the bottom boundary atA. The function
T = T (P ) along an adiabatic path such as BC or DA is called the adiabat and is discussed
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Fig. 3.8 Pressure–temperature diagram for the planetary convection model shown in Fig. 3.7.
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Fig. 3.9 Pressure–volume diagram for the planetary convection model shown in Fig. 3.7. The area bound by the four curves is
the net work delivered by the cycle. In a planetary mantle most of this work is dissipated by viscous flow, and a very
small fraction is transformed to other types of mechanical energy such as potential energy (topography) and elastic
energy in the lithosphere.

fully in the next section, as it is a key element in the quantitative analysis of convection and
in the study of many planetary processes.
Because the integral of a functionP=P(V ) with respect toV represents mechanical work

(Section 1.4.1) mapping the convection cycle onto a pressure-volume diagram allows us to
explore the energetic aspects of the process. The adiabats are logarithmic curves on a P–V
diagram (see end-of-chapter problems) so that the convection cyclemaps onto theP–Vplane
as shown in Fig. 3.9. The net work performed by the thermodynamic cycle is represented
by the area bound by the four legs of the cycle. The heat absorbed at high pressure (fromA
to B) places the fluid on a hotter adiabat, which delivers work during expansion. The fluid
must then return to the colder adiabat, by losing heat from C to D, and then work must be
performed on the system in order to compress it along the colder adiabat, from D toA. The
integral of dE around a full cycle must vanish, because internal energy is a state variable
(Section 1.9). Therefore, applying the First Law of Thermodynamics to convection and
using the symbol

∮
which means integration along a closed path, we see that:∮

dE =
∮
dQ−

∮
dW = 0 (3.24)

or: ∮
dQ=

∮
dW . (3.25)
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The net work performed by a thermodynamic cycle equals the net amount of heat absorbed
by the cycle. In our toy convection model, this equals the heat absorbed along the high-
temperature isobaric path (fromA to B), minus the heat released along the low-temperature
isobaric path (fromC toD). The amount of work varies directly with the pressure difference
across the convecting layer (i.e. the length of the adiabats) and with the amount of heat that
can be extracted from the high-temperature source or delivered to the low-temperature sink
(i.e. the length of the two heat-exchange paths). Convective overturn is driven by buoy-
ancy, i.e. by gravitational forces, but what makes it possible is the temperature difference
between the ascending adiabat (B to C) and the descending adiabat (D toA). A temperature
difference between adiabatic paths can only be maintained if there is heat exchange at both
boundaries (see Fig. 3.9), or, equivalently, if there are at least two non-adiabatic legs in the
cycle. Either of them, or both, can exert the dominant control on convection. For instance,
the chief driving force for terrestrial mantle convection is cooling at the upper boundary and
formation of the negatively buoyant and mobile lithosphere. Terrestrial mantle convection
is largely controlled by the length of the cooling pathCD in Fig. 3.9, i.e. by the temperature
difference TC – TD (Fig. 3.8).
The convection heat engine absorbs heat at the high-temperature boundary and releases

heat at the low-temperature one, thus playing the part of a heat transport mechanism. It
can keep operating only as long as it is not outpaced by heat diffusion. As a planet cools
down the four legs of the cycle depicted in Fig. 3.9 approach one another and geological
activity declines. At some point the material becomes too stiff to be able to convect and the
planetary heat engine seizes. The planet may still contain a substantial amount of thermal
energy but this is diffused to the surface and radiated to space without performing work.
The Moon is an example of a planetary body in this evolutionary stage.

In real convection there are important additional considerations.Afraction of themechan-
ical energy that convection delivers at the expense of the planet’s thermal energy is always
dissipated. If the convective layer consists of very viscous and electrically insulating mate-
rial, such as the Earth’s mantle, virtually all of the mechanical energy is dissipated by
friction and returned to the mantle as heat. The remainder, a very small fraction of the total
energy flow, is transferred to the planet’s lithosphere, where it is stored as elastic energy and
gravitational potential energy (topography; e.g.Worked Example 1.1). In a convective layer
that is electrically conductive some of the mechanical energy appears as electric currents,
which are dissipated by ohmic heating while sustaining the planet’s magnetic field (Section
1.8.3). In planetary atmospheres, because of their low viscosity, there may be significant
conversion of heat to kinetic energy of wind, that is eventually dissipated by friction, both
within the atmosphere itself and between the atmosphere and the planet’s liquid or solid
surface (wind turbines tap a small fraction of this kinetic energy).

3.5 Planetary adiabats

The work performed by an adiabatic process must be balanced by a change in internal
energy. Therefore, a function must exist that relates temperature to pressure anywhere
along an adiabatic path. Such a function is called the adiabat and allows us, for instance, to
calculate temperature as a function of pressure (or depth) in an actively convecting mantle,
or atmospheric temperature as a function of elevation in a convecting atmospheric layer
(the troposphere). If we know temperature and pressure at one point on the adiabat then we
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can calculate the temperature at any other pressure. For instance, we can see by reference
to Fig. 3.8 that if a planet has a convective interior, then we can calculate the temperature
at depth in the planet from temperature measurements at some reference level close to its
surface.
We seek a function T = T (P ) along an adiabatic path. To begin, we re-state the First Law

of Thermodynamics in terms of enthalpy, because enthalpy allows us to write equations in
terms of the variables P and Tmore compactly than internal energy. From the definition of
enthalpy (equation (1.59)), an infinitesimal change in H is given by:

dH = dE+PdV +VdP (3.26)

substituting into the equation for the First Law (equation (1.56)) and simplifying:

dH = dQ+VdP. (3.27)

Along an adiabatic path dQ = 0, so for the adiabat equation (3.27) becomes:

dH = VdP. (3.28)

If pressure and temperature are the variables of interest we must express dH in terms of
infinitesimal T and P increments. This is given by (see equation (1.3.3), Box 1.3):

dH =
(
∂H

∂T

)
P

dT +
(
∂H

∂P

)
T

dP =CP dT +
(
∂H

∂P

)
T

dP. (3.29)

Substituting in equation (3.28) and rearranging:

CP dT =
[
V −

(
∂H

∂P

)
T

]
dP. (3.30)

To simplify this equation further we must express (∂H/∂P)T in terms of some combination
of the state variables: P , V , T and the material properties: KT , α and CP (Section 1.11).
In order to derive the required expression we must use both the first and second laws
of thermodynamics, so we will defer a full discussion until Chapter 4. The derivation is
presented in detail in Appendix 2, where it is shown that:(

∂H

∂P

)
T

= V (1−αT ) . (3.31)

Substituting in equation (3.30) we obtain the equation for the adiabat:

dT

T
= αV

CP
dP . (3.32)

In the derivation of equation (3.32) we have tacitly assumed that the adiabatic transfor-
mation is also reversible (Section 1.4.2 and Chapter 4). This happened when in equations
(3.26) and (3.27) we equated PdV to the work performed by the adiabatic expansion, which
is only true if there is no energy dissipation and therefore, as we shall see in Chapter 4, no
entropy generation. Although it is certainly an adiabat, equation (3.32) is more accurately
called an isentrope, as there are adiabatic transformations that are not isentropic (Chapter
4). It is customary in planetary sciences, however, to call (3.32) “the adiabat” and I will
generally follow this custom. This commonly presents no problems, but in cases in which



147 3.5 Planetary adiabats

it is necessary to examine the constant entropy assumption more rigorously we will do so
(Chapter 10).
We are often interested in how temperature varies with depth in a planetary interior, or

elevation in the atmosphere. From the chain rule of partial differentiation:

dT

dy
= dT

dP

dP

dy
. (3.33)

The pressure gradient inside a planet is given by the condition of hydrostatic equilibrium
(equation (2.34)), but whereas r in equation (2.34) is measured from the center of the planet
outwards, y is defined as positive downwards, so we have:

dP

dy
= gρ (3.34)

and, using (3.32) and (3.33):

dT

dy
= αgT

cP
, (3.35)

where we recall that cP = CP /(Vρ) is the specific heat at constant pressure (= constant
pressure heat capacity per unit mass).
Because we have made no assumptions regarding the equation of state of the material

that undergoes the adiabatic transformation, equations (3.32) and (3.35) are completely
general. In order to integrate them, however, it is necessary to know the equation of state
of the material of interest, so as to express α, V and CP as functions of P and T. It may
also be necessary to consider changes in g with depth. We can nevertheless get an order of
magnitude estimate of the adiabatic thermal gradient in the Earth’s upper mantle by using
characteristic values for forsterite. These are: α ≈ 3× 10−5 K−1, v ≈ 3 × 10−4 m3 kg−1
and cP ≈ 1200 J K−1 kg−1. Note that although (3.32) is written in terms of molar properties,
it is also valid if we express volume and heat capacity as specific properties, as the unit
conversions cancel out. Taking g= 9.8 m s−2 and a characteristic upper mantle temperature
T = 1700 K, we get an adiabatic gradient for the asthenosphere of ∼0.4 K km−1 or ∼1.3
K kbar−1. Temperature increases with depth, and the coefficient of thermal expansion
and the heat capacity are both functions of temperature and pressure (Chapter 8). The
adiabatic temperature gradient decreases at greater depths. It is always much smaller than
the temperature gradient in the lithosphere, however, in which heat transfer is by diffusion.
For example, the temperature difference across the oceanic lithosphere is of the order of
1400 K. With a lithospheric thickness of 100 km, this yields, assuming no radioactive heat
generation, a mean diffusive temperature gradient of 14 K km−1.

Worked Example 3.1 Atmospheric lapse rate

Equation (3.35) can be used to calculate how temperature varies with elevation in the
atmosphere, provided we are careful about some points. First and foremost, the thermal
gradient will be adiabatic only in those layers in which the atmosphere is convecting. This
is true, for example, for the terrestrial troposphere, up to ∼10 km above sea level, but not
at higher elevations. Second, even in the convective troposphere the adiabatic condition
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expressed by equation (3.35) is rigorously true only as long as there are no phase changes
of any of the atmospheric components. For example, we saw in Section 1.12.1 that the
heat associated with phase changes of H2O in the terrestrial atmosphere is not negligible,
rendering dQ �= 0 and equation (3.35) invalid in any atmospheric region in which there is
condensation or evaporation of H2O (or any other condensable species, e.g. CO2 in Mars or
hydrocarbons in Titan). Finally, we need to choose an equation of state. The atmospheres of
Earth, Mars and Titan are tenuous enough that the ideal gas equation of state is applicable,
but this may not be true for the atmosphere of Venus, nor for the atmospheres of the gas
giants below the top few kilometers (Chapter 9).
For a convective atmospheric layer that can be treated as an ideal gas we have α = 1/T

(Exercise 1.11), so equation (3.35) simplifies to:

dT

dy
= g

cP
. (3.36)

The temperature gradient given by equation (3.36) is a positive quantity called the dry
adiabatic lapse rate. It corresponds to y measured as positive downwards, so that if we
are interested in how temperature changes with elevation we need to take the negative of
equation (3.36). For an ideal gas atmosphere, we can also write the dry lapse rate in terms
of the number rotational and translational of degrees of freedom of the gas molecules, f, as
follows (see equation (2.45)):

dT

dy
= 2gw

(f + 2)R
, (3.37)

where w is the molecular weight (or proper mass....) of the gas. Clearly, this will work only
if the atmosphere can be considered to be composed of a single gas (e.g. Mars), or if all
the gas species in the atmosphere have the same number of degrees of freedom (Earth).
Calculation of the adiabatic lapse rate in atmospheres inwhich there are condensable species
is suggested as an end-of-chapter exercise.

3.6 Heat advection

3.6.1 The diffusion–advection equation

To study convection as a heat transfer mechanism we must begin by deriving the equation
that describes heat advection in general. In our derivation of the diffusion equation (equation
(3.15)) we assumed that there was no motion of the material in which heat diffusion takes
place.To describe advectionwemust specify a reference frame relative towhichwemeasure
the state of motion. A description of the situation to which equation (3.15) applies is that
the material is at rest relative to the observer. If we now allow the material to move relative
to the observer, then there will be heat advection relative to him/her/it as a result of motion
of material in which there is a gradient of internal energy. This is in addition to the heat that
is diffused, and that is described by equation (3.15). We need to add a term to that equation,
called the advective term, to account for the transport of additional internal energy. Let us
assume that the material inside the volume element in Fig. 3.3 is moving relative to an
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observer with velocity components ux , uy , and uz. The volume element, or equivalently the
coordinate axes, remains fixed relative to the observer, but the material inside the volume
element moves. The volume of material moving in the x direction per unit time is δy δz ux.
Because the temperatures at x and x + δx are generally different, the net enthalpy advected
per unit time into the volume element in the x direction equals the enthalpy of the incoming
material at temperature T(x) minus the enthalpy of the outgoing material at T(x + δx), as
follows:

δyδzuxρcP T (x)− δyδzuxρcP T (x+ δx)=−δyδzuxρcP ∂T
∂x

δx

=−δxδyδzρcP ux ∂T
∂x

. (3.38)

Identical arguments applied to the other two orthogonal directions yield the following
expression for the total amount of enthalpy advected into the infinitesimal volume element
per unit time:

−δxδyδzρcP
(
ux
∂T

∂x
+uy ∂T

∂y
+uz ∂T

∂z

)
, (3.39)

which can be written more compactly as:

−δxδyδzρcP (u · ∇T ) , (3.40)

where ū is the velocity vector,with componentsux, uy, uz and∇T is the temperature gradient
(a one-form), with components ∂T/∂x, ∂T/∂y and ∂T/∂z (see also Box 1.1). The total rate of
change in the enthalpy content of the volume element is given by adding equation (3.40) to
equation (3.12).
The rate of change of enthalpy is related to the rate of change in the temperature of the

volume element by equation (3.13). Equating the latter to the sum of (3.12) plus (3.40),
simplifying and rearranging we get:

∂T

∂t
+u · ∇T = κ∇2T + α

cP
(3.41)

or, in one dimension:

∂T

∂t
+ux ∂T

∂x
= κ

∂2T

∂x2
+ α

cP
. (3.42)

Equation (3.41) (or (3.42)) is called the diffusion–advection equation, as it accounts for
both modes of heat transfer. It is an energy conservation equation that expresses the First
Law of Thermodynamics. The diffusion equation, (3.14), is a special case of (3.41) with
ū= 0.

3.6.2 A velocity scale for advection

When material in which temperature is not uniform is in motion, heat transfer occurs by
both advection and diffusion, as described by equations (3.41) or (3.42). An important
question that arises is that of the relative rates at which thermal energy is transported by
advection and by diffusion. Consider a system in a steady state (∂T /∂t = 0) and with no
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heat generation (α = 0). To simplify notation we drop the subscript x from ux because we
consider heat flow in one dimension. Equation (3.42) becomes:

u
∂T

∂x
= κ

∂2T

∂x2
. (3.43)

The two sides of this equation represent the advective and diffusive contributions to heat
flow, which in a steady state and with no heat generation must balance one another. Let
M be the characteristic lengthscale of the problem in the x direction, in which material is
moving with velocity u, and such that a finite temperature difference, �T, occurs over the
distance M. We then write equation (3.43) as follows:

u
�T

M
≈ κ

�T

M2
, (3.44)

which simplifies to:

u≈ κ

M
. (3.45)

The ratio κ/M, which has dimensions of [L] [T ]−1, provides a velocity scale for advective
flow. We can define a non-dimensional velocity by forming the ratio u/(κ/M). This non-
dimensional velocity is called the Péclet number and is symbolized by Pe:

Pe≡ uM

κ
. (3.46)

A value of Pe > 1 means that advection outpaces diffusion. The higher the value of Pe,
the less significant diffusive heat transfer is. We could have also arrived at the definition
of Pe by noticing that the product of the characteristic velocity of the problem, u, times its
characteristic length, M, has units of diffusivity, so that the product uM can be thought of
as a measure of the efficiency with which advection diffuses heat. This leads to the same
physical interpretation of the Péclet number.
Measuring the velocity of the advective flow with a non-dimensional number such as Pe

determines the efficiency of advective heat transport independently of the absolute scale
of the problem, just as the non-dimensional parameters ζ and θ describe heat diffusion in
a scale-free way. As an example, consider convection in the Earth’s mantle. If we take a
characteristic rate of plate motion of 10 cm yr−1 ≈ 3× 10−9 m s−1 as the velocity of mantle
convection, u, and themantle thickness of∼3000 kmas its characteristic lengthscaleM, then
with κ = 10−6 m2 s−1 we get Pe ≈ 9000. This says that the velocity of the advective flow
in the Earth’s mantle is large enough to render heat diffusion negligible, so that the Earth’s
deep interior loses most of its thermal energy by convection. Compare this statement, and
how we arrived at it, with our discussion of diffusive planetary cooling in Section 3.3. The
conclusion that we reached there is the same one that follows from calculating the mantle’s
Péclet number, except that this is a lot simpler and it allows us to make a quantitative
statement. The flaw in Lord Kelvin’s argument about the age of the Earth becomes obvious,
but, of course, calculating the Péclet number requires that we know that the mantle is
convecting in the first place, and the rate at which it convects. Lord Kelvin had no way of
knowing this nor, I believe, did he have any compelling reasons to assume that the mantle
is convecting.



151 3.6 Heat advection

Worked Example 3.2 Heat advection andmetamorphic field gradients

Heat transfer within the Earth’s continental crust is primarily by diffusion. There are some
obvious exceptions to this statement, such as regions of active magmatic emplacement and
regions of permeable fluid flow. In the absence of local perturbations such as these, one
could expect that the geothermal gradient in the continental crust can be approximated as a
steady-state conductive temperature distribution (see Turcotte & Schubert, 2002, Chapter 4
for an in-depth discussion of continental geotherms). But is this always the case? Consider
denudation of metamorphic rocks equilibrated at depth, or burial of surface rocks. Rocks
will stay on the steady-state diffusive geotherm only if they are uplifted or buried with
a Péclet number of order 1 or less. If Pe ! 1 then their temperature will not be able to
adjust fast enough to what the steady-state geotherm would be, and a transient temperature
distribution, either hotter or colder than the steady-state geotherm, will develop (Fig. 3.10).
In order to estimate the maximum rate of burial or denudation that can preserve the

conductive geotherm we set the non-dimensional velocity Pe = 1 and solve equation 3.46
for u. We take the characteristic length of the problem, M, as being of the order of the
thickness of the continental crust,∼30 km.With κ = 10−6 m2 s−1, we obtain u∼3× 10−11
m s−1 ∼1 mm yr −1. This rate is comparable to the rate of denudation of active mountain
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Fig. 3.10 Schematic view of three metamorphic field gradients. If metamorphic rocks are unroofed with a Péclet number∼1
their temperature will approximately follow the steady state diffusive geotherm. The resulting assemblages
correspond to those of Barrovian metamorphism. High-temperature/low-pressure Buchan assemblages can form if
denudation occurs with Pe! 1. Low-temperature/high-pressure blueschist metamorphism requires burial with
Pe! 1.
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belts, but is one to two orders of magnitude slower than characteristic rates of tectonic
processes. If we take the latter rates to be in the range 1–10 cm yr−1, then an average
estimate for u in tectonically active areas is

√
(10× 1) cm yr−1≈ 10−9 m s−1, leading toPe

≈ 30. In areas of active tectonic activity, therefore, diffusive heat transfer is modest relative
to advection and the geothermal gradient cannot correspond to a steady-state diffusive
temperature distribution. It is important to understand that advection in this case has nothing
to do with motion of fluids of any kind and occurs entirely as a result of motion of solid
rock by some combination of faulting, ductile shearing and folding.
These contrastingmodes of heat transfer are expressed in themetamorphic field gradients

of exposed orogens, which are the thermal gradients preserved inmetamorphic assemblages
exposed at the surface but equilibrated over a range of pressures (see, for example, the clas-
sic text by Miyashiro, 1994). Metamorphic field gradients tend to cluster in three distinct
regions of P -T space which, in order of increasing temperature at a fixed pressure, are
often labeled Blueschist, Barrovian and Buchan. Metamorphic field gradients are not fossil
geotherms, because rocks at different depths do not attain their metamorphic peak temper-
atures simultaneously, but it can be shown that Barrovian metamorphism develops when
rocks are able to stay close to a diffusive geotherm during uplift and denudation (see Patino
Douce et al., 1990). This is only likely to happen if the core of an orogenic belt is denuded by
erosion. The other twometamorphic field gradients must therefore develop in environments
in which advection is the dominant mode of heat transfer, and in which the crust is either
heated (Buchan) or cooled (Blueschist) relative to the steady-state diffusive geotherm, in
response to tectonic activity. Blueschist metamorphism requires fast tectonic burial of cold
material (Fig. 3.10), which characteristically takes place at subduction zones and during the
initial stages of continental collisions. Buchanmetamorphic conditions may develop during
tectonic collapse of orogenic belts, where low-angle detachment faulting leads to tectonic
unroofing of deep-seated rocks with Pe! 1.
In this analysis we ignored the geometry of the environments in which metamorphism

takes place, but as we shall see in the following paragraph this can be an important consid-
eration. For instance, there is a minimum thickness that a fault block must have in order to
be able to preserve its internal temperature unperturbed during tectonic displacement.

Consider the geometry sketched in Fig. 3.11. Advective flow occurs in the x direction
only and heat transport perpendicular to this direction is by diffusion (uy = 0). We ask what
is the distance, λ, that a thermal perturbation will propagate by diffusion perpendicular to
the direction of advective flow. This length scale is related to the diffusion time scale
by equation (3.16): λ ∼ 2

√
κτ . Because we want to compare advective and diffusive

lengthscales, we make τ equal to the time that the advective flow takes to cover the
characteristic advective lengthscale,M, i.e. τ =M/ux . From this identity and the definition
of Pe:

Pe= uxM

κ
= M2

κτ
(3.47)

or:

M=√Pe√κτ ∼ λ

2

√
Pe, (3.48)



153 3.7 Convection as a heat transport mechanism

Pe = (uxΛ)/κ x

y

λ

Λ

Fig. 3.11 A rigid slab of thicknessλmoves with velocity ux in the x direction, in which temperature changes occur over a
characteristic lengthM. Heat transfer in the y direction is by diffusion. The geometry is a reasonable model for the
oceanic lithosphere.

which yields the following scaling relationship, valid only for the geometry sketched in
Fig. 3.11:

λ

M
∼ 2Pe−1/2. (3.49)

The geometry of sea-floor spreading corresponds to that of Fig. 3.11 The mantle flows
horizontally away frommid-ocean ridges and as it cools it gives rise to the rigid lithosphere,
inwhich vertical heat transfer is by diffusion. The thermal perturbation that we are interested
in is the exposure of hot asthenospheric mantle to the temperature at the surface of the
Earth. What we are asking is what is the thickness of mantle (± crust) that will cool down
significantly while it is being transported laterally by mantle convection. In other words,
what is the thickness of the oceanic lithosphere?Aswe sawpreviously, for theEarth’smantle
Pe ≈ 9000, so that with M= 5000 km (= characteristic width of an oceanic plate) we get
λ∼ 105 km, which agrees reasonably well with the thickness of the oceanic lithosphere.

3.7 Convection as a heat transport mechanism

We have discussed the energetic underpinnings of convection (Section 3.4) and we have
derived a general expression for the adiabat in a convective fluid (Section 3.5). We have
also found a general equation that describes advective heat transport (Section 3.6). Our
next task is to derive the mathematical equations that describe heat transport by convection.
This is not simple. A complete mathematical description of convection in a system such
as a planetary mantle, core, atmosphere or magma chamber seeks to describe the precise
geometry of the convective flow and its evolution with time. Exact analytical solutions
generally do not exist, and the significance of numerical solutions is sometimes hard to
assess, owing in part to the fact that solutions tend to be quite sensitive to the choice of initial
and boundary conditions, and also because there are significant uncertainties in material
properties, chemical composition and phase transformations. Our goal is more modest. We
seek to lay out the basic principles of what is called parametrization of convection, which
consists of developing a set of relatively simple equations that yield order of magnitude
estimates for global parameters such as heat flux and convective velocity, while ignoring
the local geometry and temporal evolution of the convective flow. It is a remarkable fact
that all of these equations are functions of a single parameter that encapsulates the dynamics
of convection, i.e. the forces that drive and oppose convective flow.
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Fig. 3.12 The forces acting on an element of fluid of characteristic linear dimension δ, inside a fluid layer of thickness D, are
buoyancy, B, and viscous drag, F . The sign convention is positive upwards, so that gravity, g, is negative.

3.7.1 Dynamics of thermal convection

Wewish to derive a criterion that will allow us to decide whether convection will take place
in a fluid layer. Consider a fluid layer of depth D, and in it a fluid element of characteristic
linear dimension δ, see Fig. 3.12. Convection will take place only if the fluid element is
buoyant throughout the thickness of the layer. The buoyancy,B, is a gravitational force that
acts on the fluid element and that arises from the difference, �ρ, between its density and
that of the surrounding fluid. The volume of the fluid element is of order δ3, so:

B ∼ gδ3�ρ. (3.50)

Because g, which is directed towards the center of the planet, is negative (equation (1.7)) a
mass deficit (�ρ< 0) results in a positive buoyancy force, i.e. directed upwards, as expected.
In the case of thermal convection the density contrast is a consequence of a difference in
temperature, but convection can also be driven by compositional gradients or, in the case of
double-diffusive convection, by both temperature and composition gradients. Staying for
now with thermal convection, we use the definition of the coefficient of thermal expansion,
α (equation (1.66)), to find the effect of temperature on density at constant pressure:

α =− 1

ρ

(
dρ

dT

)
P

, (3.51)

Integrating this equation between a reference state T0, ρ0 and any arbitrary state T, ρ we
get:

ρ =−ρ0e−α(T−T0). (3.52)

A useful approximation is that, for small x, ln(1− x)≈−x, or, equivalently, e−x ≈ 1− x.
The coefficient of thermal expansion for solids and liquids is small (typically of order 10−5
K−1, see also Chapter 8), so that, for all reasonable temperature contrasts (of order 103 K),
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this approximation is valid. The density contrast is then given by:

�ρ = ρ−ρ0 ≈−αρ0 (T −T0)≈−αρ0�T , (3.53)

where �T is the temperature contrast that drives convection. This corresponds to the tem-
perature change that takes place at the heat transfer boundaries of the convection cycle, for
example TB−TA or TD − TC in Fig. 3.9. The temperature change along the adiabatic paths
(TC−TB or TA−TD) does not generate buoyancy differences, because it affects equally all
fluid elements in the layer. Convection can take place only if there is a temperature differ-
ence between the boundaries once the effect of the adiabatic gradient has been subtracted.
This condition is described by saying that the temperature difference across the convecting
fluid layer is superadiabatic. It is equivalent to our statement in Section 3.4 that convection
is only possible if there are at least two heat transfer boundaries that separate the upwelling
and downwelling adiabats.
As the fluid element ascends it cools by diffusing heat to its surroundings. Buoyancy will

be maintained only as long as a significant temperature contrast exists. We can reasonably
postulate that convection will only take place if the time that the fluid element takes to rise
through the thickness of the fluid layer, which we can call the convection time tc, is small
compared to the characteristic diffusive cooling time of the fluid element, td . The latter is
given by equation (3.16):

td ∼ δ2

4κ
(3.54)

and tc by:

tc ∼ D

u
, (3.55)

where u is the characteristic velocity that describes vertical motion of the fluid.
Buoyancy, equation (3.50), is opposed by a frictional force that arises from viscous drag.

In all of the examples that we will consider in this book it is acceptable to neglect changes
in momentum of the fluid, i.e. we will only consider cases in which fluids move with
constant velocity. If this is the case then viscous drag must exactly balance buoyancy, so
that there is no net force acting on the fluid element. The frictional force, F, is the product
of the shear stress acting on the surface of the fluid element times the surface area of the
fluid element. The shear stress is given by equation (3.7). If velocity decays from its value
u at the boundary of the fluid element to zero over a characteristic length δτ , then we
can write:

τ =−µ
du

dx
≈−µ

u

δτ
. (3.56)

The surface area of the fluid element is of order δ2, so that the viscous drag (= total frictional
force) is:

F ∼−δ2τ ∼−δ
2µu

δτ
. (3.57)
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This force equals the buoyancy force, equation (3.50), see also Fig. 3.12. Therefore, using
(3.53):

−δ
2µu

δτ
∼ gδ3�ρ =−gδ3αρ0�T . (3.58)

Solving for u and substituting in (3.55):

tc ∼− µD

g�ρδδτ
= µD

gαρ0�T δδτ
. (3.59)

Recall that we are interested in the ratio td /tc, which includes the factor δ3δτ . The problem
with these equations is that they contain three different lengthscales: D, δ and δτ . Of these,
only the first one is well defined, as it is the thickness of the fluid layer. In order to define
the values of δ and δτ it is necessary to specify the geometry of the problem, so that it is
not possible to specify general values for these two lengthscales. The only way to come up
with a result of general validity is to define the timescales for diffusion and convection in
terms of the only lengthscale of the problem, which is the thickness of the fluid layer, D.
The diffusive and convective time scales defined in this way become:

td,D ≡ D2

4κ
(3.60)

and:

tc,D ≡ µD

gαρ0�TD2
= µ

gαρ0�TD
. (3.61)

The ratio between these two time scales, omitting numerical factors, is the definition of a
non-dimensional parameter known as the Rayleigh number, and symbolized by Ra:

Ra ≡ td,D

tc,D
= gαρ0�TD

3

µκ
. (3.62)

The Rayleigh number gives an indication of the tendency of the fluid layer to convect.
The greater the value of Ra, the longer the diffusion timescale is relative to the convection
timescale, and therefore the more likely it is that the fluid layer will undergo convective
overturn, because parcels of fluid will be able to traverse the thickness of the layer without
cooling down significantly. There is a critical value of the Rayleigh number, Rac, that
marks the onset of convection and hence the transition between diffusive and convective
heat transport. The actual critical value depends on the geometry and boundary conditions
of the problem, so that there is no universal value of Rac. This is to be expected, because in
equations (3.60) and (3.61) we substituted the fixed lengthscaleD for the two lengthscales
that depend on the particular configuration of the fluid layer, δ and δτ . Exact analytical
solutions for Rac are available for some simple cases; in many other instances its value can
only be determined numerically or experimentally.
For a laterally extended layer (in which the width is much greater than D) heated from

below, which is a reasonable approximation to planetary mantles and tabular igneous intru-
sions, Rac is of order 103–104. Typical values for the parameters in equation (3.62) for
the Earth’s mantle are: D = 3000 km; α = 10−5 K−1; ρ0 = 3500 kg m−3; µ = 1021 Pa
s; κ = 10−6 m2 s−1; g = 9.8 m s−2; �T = 1400 K. The value of �T is the temperature
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difference across the oceanic lithosphere, which is the temperature drop that corresponds
to the low-pressure cooling leg of the convection cycle (CD in Figs. 3.8 and 3.9). This is
the temperature difference that engenders negative buoyancy at the top of the mantle and
thus drives convection. With these numbers we find that Ra for the Earth’s mantle is∼107.
This value is so much higher than the critical value that one must conclude that the Earth’s
mantle is not only convecting, but doing so vigorously. This is also reflected in its high
Péclet number (Section 3.6.2). Note an important conceptual difference between Ra and
Pe, however. The Rayleigh number is based on the dynamics of fluid flow and is an a priori
predictor of whether or not a fluid layer is likely to convect. Calculation of Pe starts from
the knowledge that advective heat transfer is taking place and its value is a measure of the
efficiency of advection as a heat transfer mechanism.

3.7.2 The thermal boundary layer

In Section 3.6.2 we calculated the thickness of the oceanic lithosphere by specifying that
heat flow across it takes place solely by diffusion. In the terminology of heat transfer, the
lithosphere is the thermal boundary layer of mantle convection. When diffusion is the only
heat transfer mechanism the thermal boundary layer is the thickness of material across
which most of the thermal gradient occurs (Section 3.2.4, Fig. 3.5). This is also true of
advection but in this case the reason why most of the temperature gradient occurs across
the thermal boundary layer is that heat transfer across it is by diffusion, whereas motion of
matter transports internal energy throughout the remainder of the system, where advection
outpaces diffusion (see Section 3.5).
The thermal boundary layer is the main barrier to heat transfer, because diffusion is a

much less efficient heat transfer mechanism than advection. As heat transfer across the
boundaries is what drives convection (Section 3.4), it follows that the nature and thickness
of the thermal boundary layer is what ultimately controls the nature of convection. Figure
3.13a is a schematic view of the thermal boundary layer. Let x be the direction parallel to
the thermal boundary layer, and hence to the heat transfer interface, and y be perpendicular
to it. Fluid velocity in the y direction, uy , vanishes in the thermal boundary layer but has a
non-zero, and perhaps variable, value in the remainder of the fluid layer. The velocity in the
x direction, ux , varies between some characteristic value inside the actively convecting layer
and zero at the boundary. The top diagram in Fig. 3.13 shows a continuously decreasing
velocity profile, but this is not always the case, as we shall see. The key point is that there is
no heat advection in the y direction across the thermal boundary layer, because uy vanishes
in it. We can think of the thermal boundary layer as being made up of a number of layers
moving parallel to one another, like the cards in a deck. Regardless of the actual distribution
of velocities throughout the thermal boundary layer, heat transfer between adjacent layers,
and hence across the entire thermal boundary layer, can take place only by diffusion. If the
system has been convecting long enough to have reached a steady state, and there is no heat
generation in the thermal boundary layer, then the temperature gradient across the thermal
boundary layer is linear, from T0 at the heat transfer interface to the temperature of the
actively convecting fluid, Ti . This is not the case in the convective interior, where heat is
advected in the y direction, with uy ∼ ux .Wewill consider the temperature in the convecting
fluid to be constant, as shown in Fig. 3.13a. An adiabatic gradient can be superimposed on
this temperature distribution but this has no effect on the arguments that follow.
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Fig. 3.13 Convective thermal boundary layer. A generalized thermal boundary layer in x–y space is shown in (a). The velocity
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distribution with the thick line. Different types of boundary layers are shown in (b) through (d) in terms of the
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The effectiveness of convection as a heat transport mechanism is controlled to a large
extent by the velocity distribution across the thermal boundary layer. This is in turn deter-
mined by a number of factors, including material properties, temperature and temperature
gradient, and convective velocity. For example, if velocities are high enough that frictional
forces at the boundary are non-negligible then the velocity must vanish at the interface.
This is called a no slip boundary. The velocity in the boundary layer then varies continu-
ously (but not necessarily linearly) from 0 at the interface to the velocity of the actively
convecting fluid (Fig. 3.13b). This is the case, for example, at the interface between ocean
and atmosphere. Plate tectonics is different, as in this case friction at the interface (i.e. the
ocean floor) vanishes owing to the very small velocity. In this case ux is constant across the
thermal boundary layer (the oceanic lithosphere) and equal to the velocity in the actively
convecting mantle, and there is a velocity discontinuity at the interface (Fig. 3.13c). The
thermal boundary layer forms because the mantle close to the surface cools to the point
where it cannot flow anymore, forming a rigid lid on the ductile asthenosphere. What is
special about plate tectonics is that the lid is broken into plates that are able to subduct,
allowing fragments of diffusive lid to be carried along by mantle convection.
Formation of the rigid lid takes place because there is a strong inverse relationship

between temperature and viscosity (Box 3.3). In the case of plate tectonics, however, the

Box 3.3 Temperature effect on viscosity

For many materials, including mantle rocks, it is found that viscosity varies with temperature following an
inverse exponential law that is called Arrhenius’s law (see Chapter 12). A dependency on strain rate (called
non-Newtonian rheology) may be superimposed on Arrhenian behavior, but that is beyond the scope of this
book. The Arrhenius law for viscosity can be written as follows:

µ= K e
Ea

RT , (3.3.1)

where K and Ea are material properties and R is the gas constant. If we restrict temperature to a relatively
narrow interval we can define an (arbitrary) reference temperature T0 within this interval and, given the
viscosity µ0 at this temperature, we can calculate the viscosity at any other temperature inside the interval
by:

µ= µ0 e

Ea

R

T0−T

T T0 , (3.3.2)

which, if T and T0 are not too different, we can approximate as follows:

µ≈ µ0 e
−γ(T−T0) (3.3.3)

with the parameter γ defined as follows:

γ = Ea
RT02

. (3.3.4)

Equation (3.3.3) is a linearized approximation to Arrhenius’s law. The material property Ea is called the
activation energy for viscous flow (see Chapter 2). Typical values for mantle materials are µ0≈1021 Pa s at
T0 = 1950 K, and Ea≈ 300 kJ mol−1.
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contrast in viscosity between lithosphere and asthenosphere, which spans many orders of
magnitude, is masked by the fact that the lithosphere can break and thus move. Consider
now the cases of Mars or Venus. A case can be made for both planets that convection
takes place below the rigid outer layer (Section 3.8.2), but there is no evidence that this
outermost layer is broken up and carried along by the underlying convective flow. For
example, there are no subduction zones nor transform faults on either of the planets and
volcanoes are not arranged in Hawaii-style volcanic chains. Venus and Mars are examples
of what is called stagnant lid convection, depicted in Fig. 3.13d. The strong inverse effect
of temperature on viscosity generates a rigid lid, but in this case the lid does not break up.
The velocity gradient is then concentrated in a relatively thin layer called the rheological
boundary layer, sandwiched between the stagnant lid and the actively convecting fluid. The
y velocity component does vanish in the rheological boundary layer, so that it is part of the
thermal boundary layer (see Fig. 3.13d).
The driving force for thermal convection derives from buoyancy engendered by tem-

perature differences which in turn are caused by heat transfer across the thermal boundary
layer (Section 3.4). Some part of the thermal boundary layer must always be entrained
in the convective flow. It is in this part of the thermal boundary layer that buoyancy is
generated. In the case of convection with moving plates (Fig. 3.13c) the entire thermal
boundary layer enters the convective flow (e.g., at a subduction zone), so that the full tem-
perature difference�T (Fig. 3.13a) is available to drive convection. In contrast, convection
with a stagnant lid is driven only by that fraction of �T that occurs across the rheological
boundary layer, which is the only part of the thermal boundary layer that is entrained in
the convective flow and that generates buoyancy. We can expect that, other things being
equal, convection with a stagnant lid is less efficient at transporting heat than moving plate
convection.

3.7.3 Scaling of heat transport by convection

Consider a convective layer of thicknessD capped by a thermal boundary layer of thickness
δ, where in general it is δ � D. If the system is in a steady state then the heat flux across
the convecting fluid layer, q, must equal the heat flux across the thermal boundary layer.
By Fourier’s law, and with the convention that heat flux q is always a positive quantity
(Section 3.2.4) we have:

q = k
�T

δ
, (3.63)

where�T is the temperature difference across the thermal boundary layer.We now compare
this to the heat flux that would exist across the entire fluid layer if it was not convecting,
i.e. if heat diffused across the entire thickness D driven by the same temperature difference
�T. We label this heat flux q∗:

q∗ = k
�T

D
. (3.64)

The advective heat flux, q, and the hypothetical diffusive flux, q∗, are driven by the
same temperature difference. The ratio between q and q∗ is therefore a measure of how
much more efficiently advection transports heat relative to diffusion. This ratio defines a
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non-dimensional parameter called the Nusselt number, Nu:

Nu≡ q

q∗
= q

k �T
D

= D

δ
. (3.65)

The Nusselt number is the non-dimensional advective heat flux, just as Pe is the non-
dimensional advective velocity. Nu is also the ratio between the thickness of the fluid layer
and the thickness of the thermal boundary layer.

Worked Example 3.3 Heat transfer efficiency of terrestrial mantle convection

In the case of convection with moving plates, such as Earth’s plate tectonics, the entire ther-
mal boundary layermoveswith the same velocity as that of the convecting fluid (Fig. 3.13c).
If the thickness of the fluid layer, D, is comparable to its characteristic lateral dimension
thenD and the thickness of the thermal boundary layer, δ, scale according to equation (3.49),
i.e.:

δ

D
∼ 2Pe−1/2. (3.66)

We can then derive the following scaling relationship between Nu and Pe:

Nu∼ 1

2
Pe1/2. (3.67)

Note that (3.67) applies only to convection with moving plates, as we have explicitly used
the geometry of this type of thermal boundary layer in the derivation of this equation. Since
Pe and Nu are both non-dimensional numbers, there is no mathematical requirement that
they be related by any specific type of function. This is true of any scaling relationship
among non-dimensional numbers.
For theEarth’smantle,withPe≈9000 (Section3.6.2),wegetNu∼50.Mantle convection

cools the Earth 50 times faster than diffusion would. It may sound counterintuitive, but this
is the explanation for why Kelvin’s age estimate was too low. In a diffusive Earth most of
the planet would not have began cooling after 4.5 billion years (Fig. 3.6). In contrast, in a
convective Earth the deep interior of the planet contributes to surface heat flow from the
very inception of the convective regime, most likely immediately after differentiation. A
convective planet will cool down completely and meet its thermal demise much faster than
if the same planet cooled by diffusion. It is ironic, in view of his argument with geologists,
that Kelvin’s diffusive model implied that the Earth would have had a much longer life
expectancy than what our rapidly cooling planet actually has (disregarding, of course, the
fact that the Sun will burn out before diffusive cooling could have had time to reach the
center of the Earth).
We can also use equation (3.67) to estimate the rate of mantle convection in the Earth.

Let the average mantle heat flux be qo and assume that heat production in the oceanic
lithosphere is negligible. We write equation (3.65) as follows:

Nu= qoD

k�T
. (3.68)
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From equations (3.46) and (3.67), making M = D, we have:

Nu∼ 1

2
Pe1/2 = 1

2

(
uD

κ

)1/2
. (3.69)

We can eliminateNu between these two equations and solve for u, the velocity of the mantle
flow:

u∼ 4
qo

2Dκ

k2 (�T )2
. (3.70)

The value of qo in this equation is the average oceanic heat flux of 100 mWm−2 (Box 3.2).
Other characteristic mantle values are: D= 3000 km,�T= 1400 K, κ = 10−6 m2 s−1 and
k = 3 W m−1 K−1. We then estimate u ∼ 6.8 ×10−9 m s−1 ≈ 20 cm yr−1. This is a factor
of 3 higher than typical rates of plate motion. Agreement is not great, but it is within an
order of magnitude.

3.7.4 Energy conservation in a convecting fluid

The goal of the parametrized description of convection is to generate estimates for heat flux,
convective velocity and thickness of the thermal boundary layer in terms of the Rayleigh
number, depth of the convective layer, temperature change at the heat exchange boundaries
(e.g. Fig. 3.8), and nature of the thermal boundary layer (i.e. stagnant or moving). If we
need to solve for three unknowns: heat flux, q, convective velocity, u and thickness of
the boundary layer, δ, we need three independent equations relating these variables. We
already have two of these equations: (3.63), which gives the relationship between heat
flux and thickness of the thermal boundary layer, and (3.66), which relates thickness of
the thermal boundary layer to fluid velocity. The third equation must be one that relates
heat flux to velocity. Recall from equation (3.7) that the velocity gradient determines shear
stress in the fluid, and that shear stress in turn determines the rate of heating by viscous
dissipation (Chapter 1). This suggests that fluid velocity and heat flux must be related by an
energy conservation equation, which in a convecting fluid must be the diffusion advection
equation. We write equation (3.41) in two dimensions:

∂T

∂t
+ux ∂T

∂x
+uy ∂T

∂y
= κ

(
∂2T

∂x2
+ ∂2T

∂y2

)
+ α

cp
(3.71)

(do not confuseα in this equation, which is the rate of heat production per unit mass, with the
coefficient of thermal expansion). Consider a fluid layer of depthD in the y direction, capped
by a boundary layer of thickness δ (Fig. 3.14). We are interested in steady state conditions
with no horizontal thermal gradient, so ∂T/∂t and ∂T/∂x vanish. We will now substitute a
fictional but mathematically equivalent picture for heat transfer inside the convecting fluid.
Imagine that the vertical velocity component, uy , vanishes everywhere in the convective
fluid, and that the advective heat flux in the y direction is accounted for by diffusion with a
large but fictive value of the thermal conductivity, k∗. It will not be necessary to calculate
the value of k∗, all that we need to keep clear is that it is the thermal conductivity that
the fluid would have to have in order to transport heat in a steady state at the same rate
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Fig. 3.14 Viscous dissipation in an element of convecting fluid. The dimensions of the fluid element are δx, δy and δz (coming
out of the page). The force acting on the horizontal faces of the element is τδxδz. The horizontal velocity changes by
an amount δux over length δy, so that the top surface of the element moves a distance δux in unit time. Horizontal
velocity varies from ux to – ux over the thickness D of the fluid layer. The thermal boundary layer has thickness δ.

as convection, assuming that the temperature gradient is the same adiabatic temperature
gradient present in the convective layer. In contrast to the vertical velocity, we will make no
assumptions about the horizontal velocity, ux , which does not vanish.With these constraints
we can drop the partial derivative symbols because ∂T/∂t =∂T/∂x = ∂2T/∂x2 = uy = 0, and
equation (3.71) simplifies to:

κ∗ d
2T

dy2
+ α

cp
= 0, (3.72)

where κ∗ is the heat diffusivity that corresponds to the fictive conductivity k∗. From the
definition of heat diffusivity, κ = k/(ρ cp), and following the convention that heat flux is
always a positive quantity, this equation can be re-written as follows:

−k∗ d
2T

dy2
+φ= 0, (3.73)

where φ = αρ is heat production per unit volume. If we consider a simple case in which
there are no phase changes nor radioactive heat generation in the fluid layer, and in which
the fluid is a perfect electrical insulator, then the only source of heat is viscous dissipation
of mechanical work.
Consider an infinitesimal volume of fluid with dimensions δx, δy, δz (Fig. 3.14, in which

δz comes out of the page). The viscous stress is given by equation (3.7), which, if horizontal



164 Energy transfer processes in planetary bodies

velocity changes with depth, we write as follows:

τ =−µ
dux

dy
≈−µ

δux

δy
, (3.74)

where δux is the difference in velocity between the top and bottom of the infinitesimal fluid
volume. The viscous force that acts on the horizontal surface of this volume (perpendicular
to the page) is:

τδxδz≈−µ
δux

δy
δxδz. (3.75)

In unit time this force moves a distance δux , as this is how much the top horizontal face
is displaced relative to the bottom one (see Fig. 3.14). The total rate of dissipation of
mechanical energy is τδxδzδux, and the rate of energy dissipation per unit volume is:

τδxδzδux

δxδyδz
≈−µ

(
δux

δy

)2

. (3.76)

This is work performed by the viscous force on the system, where “the system” is the
infinitesimal volume element. The result of equation (3.76) is always a negative quantity.
In the language of the First Law and with our sign convention (dW > 0 is work performed
by the system), this means that “the environment” always performs work on “the system”.
The system, i.e. our infinitesimal volume element, absorbs this energy as heat. The rate of
viscous heating per unit volume is thus the negative of equation (3.76), i.e.:

φ≈ µ

(
δux

δy

)2

. (3.77)

Taking the small increments to the limit we rewrite equation (3.73) as follows:

−k∗ d
2T

dy2
+µ

(
dux

dy

)2

= 0. (3.78)

We now approximate the values of the derivatives by averaging over the depth of the fluid
layer, D. If ux is the characteristic fluid velocity, then the horizontal velocity must change
from ux to −ux over the distance D (Fig. 3.14), hence we can write:(

dux

dy

)2

≈
(
2ux
D

)2
. (3.79)

Also, from:

d2T

dy2
= d

dy

(
dT

dy

)
(3.80)

we see that we can approximate this term starting from the thermal gradient across the fluid
layer. Because the fluid is convecting the thermal gradient is adiabatic, so we can substitute
equation (3.35), as follows:

k∗ d
2T

dy2
= k∗ d

dy

(
dT

dy

)
= k∗ d

dy

(
αgT

cP

)
= αg

cP

(
k∗ dT
dy

)
. (3.81)
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Since we are averaging the derivatives over the depth of the fluid layer the expression in
parentheses in the last term in equation (3.81) is the heat flux across the convective layer, q,
which is also the heat flux across the thermal boundary layer. Hence (with the convention
of q always positive):

k∗ d
2T

dy2
≈ αg

cP
q. (3.82)

Substituting equations (3.79) and (3.82) into (3.78) we arrive at the following equation for
energy conservation averaged over the thickness of the fluid layer, which relates heat flux
to velocity:

αg

cP
q ≈ 4µ

(ux
D

)2
. (3.83)

Note that α in this equation is the coefficient of thermal expansion.

3.8 Parametrization of convection in planetary interiors

The interiors of many planetary bodies in the Solar System, present and past, can be dis-
cussed on the basis of eithermoving plate or stagnant lid convection. The goal of this section
is to develop simple mathematical descriptions of these two convection modes, that capture
some of the essential physics of the processes without getting into any of the details. A
very complete and rigorous discussion of mantle convection, including the gory details, is
presented in the massive treatise by Schubert et al. (2001). It is my hope that the material
that I present here will serve as an introduction to that work for the motivated reader.

3.8.1 Convection with moving plates

The parametrized solution for convection with moving plates is a set of values {q, u, δ}
that simultaneously satisfy equations (3.63), (3.66) and (3.83). We rewrite the equations
in terms of a single characteristic velocity, u, make M = D, and convert Pe to dimensional
velocity using (3.46). The three equations become, respectively:

q = k
�T

δ
(3.84)

δ ∼ 2

(
κD

u

)1/2
(3.85)

αg

cP
q ≈ 4µ

( u
D

)2
. (3.86)

Combining (3.84) and (3.85) to eliminate δ:

q ∼ k�T

2

( u

κD

)1/2
(3.87)

and eliminating u between (3.86) and (3.87):

q3 ∼ αgk4 (�T )4

64µcP κ2
. (3.88)
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The right-hand side of this equation can bewritten in terms of theRayleigh number (equation
(3.62)) and a combination of dimensional parameters. After a bit of algebra and using the
definition of heat diffusivity we find that (3.88) can be simplified to:

q ∼ 0.25Ra1/3
(
k
�T

D

)
(3.89)

or in non-dimensional form (see equation (3.65)):

Nu∼ 0.25Ra1/3. (3.90)

Fromequation (3.65)we also see that the thickness of the thermal boundary layer is given by:

δ ∼ 4DRa−1/3. (3.91)

We can now substitute this value for δ in (3.85) to get the velocity:

u∼ 0.25
κ

D
Ra2/3. (3.92)

There are two implicit assumptions in this derivation. In the first place, it is assumed that
the thermal boundary layer is in steady-state thermal equilibrium with the interior of the
convective fluid. This means that the convecting fluid loses heat at the same rate as it is
conducted across the thermal boundary layer, as specified by equation (3.84). Second, we
assume that there is a source of energy for convection that supplies heat to the convecting
fluid at this same rate. Our derivation of the energy conservation equation, (3.83), specif-
ically rules out heat generation in the convecting fluid, so that the solution set given by
equations (3.89), (3.91) and (3.92) is strictly applicable only to a fluid layer heated from
below.

Worked Example 3.4 Archaeanmantle convection

We will apply equations (3.89) through (3.92) to study how mantle convection may have
evolved throughoutEarth’s history.Onemust keep inmind that these equations yield order of
magnitude estimates and not exact results, but because they rely on a single non-dimensional
parameter, the Rayleigh number, that encapsulates the dynamics of convection, they can
yield a high rate of return in terms of insight gained relative to effort invested.
Mantle convection may have differed in the distant geologic past because mantle

temperatures must have been higher than today’s (Chapter 2). Temperature enters into this
analysis in two ways: directly in the factor �T and indirectly as a result of the temperature
dependence of viscosity. The viscosity–temperature function is discussed in Box 3.3. A
subtle but crucial point is that the temperature that enters into the calculation of viscosity
with equation (3.3.3) is a characteristic temperature of the interior of the fluid layer which is
not the same as the temperature at the bottom of the thermal boundary layer. The latter is the
one that defines the temperature contrast with the surface, �T, that drives convection by
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causing negative buoyancy. In a thick fluid layer such as a planetary mantle the two temper-
atures can be very different, owing to the adiabatic gradient. Moreover, temperature varies
across the convecting layer, so what is the characteristic value that we must use in order
to calculate viscosity with equation (3.3.3)? There is no unique answer to this question.
One possibility, which is what I have chosen to do here, is to use as characteristic mantle
temperature the temperature at a depth halfway across the fluid layer. Since the convecting
fluid lies on an adiabat, we can set the temperature at the base of the lithosphere, and then
calculate the temperature anywhere in the convecting layer by integrating equation (3.35).
The result is:

Ty = T0 e
αg
cP
(y−y0), (3.93)

where Ty is the temperature at depth y, and T0 is the temperature at some reference depth
y0 (e.g. the base of the lithosphere, but it could be anywhere else).
The results of parametrization of terrestrial mantle convection with equations (3.89)–

(3.92) is shown in Fig. 3.15 as a function of characteristic mantle temperatures (Ty)
calculated with equation (3.93). The corresponding temperatures at the base of the litho-
sphere (T0) are shown in the bottom panel of the drawing. The temperature of the ocean floor
is close enough to 0◦C that we can assume that T0 ≈�T , as suggested in the figure. The
characteristic mantle temperature for the present day Earth’s mantle according to Schubert
et al. (2001) is 1950K, shownwith a thick broken vertical line in Fig. 3.15. This corresponds
to a temperature at the base of the lithosphere of∼1400 ◦C, which is consistent with petro-
logic constraints (Chapter 10). The bottom panel of the figure also shows mantle viscosities
calculated with equation (3.3.3), using a reference viscosity of 1021 Pa s at 1950K and an
activation energy of 300 kJ mol−1 (see Box 3.3 and Chapter 12). Other model parameters
are listed in the figure caption.
Our first task is to gauge the performance of the model against the terrestrial mantle

that we can observe today. The parametrized model predicts a present-day mantle heat flux
of ∼ 82 mW m−2, a convection velocity of ∼ 15 cm yr−1, and a lithospheric thickness of
∼ 50 km. The predicted heat flux corresponds almost exactly (and probably fortuitously) to
the observed heat loss that can be attributed to the spreading–subduction cycle (Box 3.2).
Agreement is less good for the other two parameters, which are off by a factor of approx-
imately 2 (observed values are 5–10 cm yr−1 and ∼100 km), but certainly of the correct
order of magnitude.
What can we infer about the Earth’s mantle in the distant geologic past? Petrologic

evidence (e.g. eruption of ultramafic lavas such as komatiites) and models of the Earth’s
thermal history suggest thatArchaeanmantle temperaturesmayhave been 200–400Khigher
than today’s. The model then suggests thatArchaean mantle heat flux may have been about
3–4 times higher than today’s, plate thicknesses may have been about half of today’s, and
convection velocity may have been up to one order of magnitude faster, maybe approaching
1 meter per year! Plate tectonics, in the sense of mantle convection with a mobile thermal
boundary layer, almost certainly existed, for the processes that make it possible – breaking
and bending of plates – are facilitated by a thinner lithosphere (see next section). But owing
to their lesser thickness (and hence rigidity) Archaean plates must have been smaller, and
thereforemore numerous, than today’s, andmay havemoved up to ten times faster. The total
length of plate margins, convergent and divergent, would therefore have been greater than
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Fig. 3.15 Parametrization of terrestrial mantle convection, as a function of characteristic mantle temperature (calculated with
equations (3.89)–(3.92)). The model assumes a reference mantle viscosity of 1021 Pa s at 1950 K and an activation
energy for mantle viscous flow of 300 kJ mol−1(see Box 3.3). Other parameters are:α = 10−5 K−1,ρ = 3500 kg
m−1, cP= 1 kJ K−1 kg−1, κ = 10−6 m2 s−1, k= 3 Wm−1 K−1, D= 3000 km, Tsurface= 300 K, g= 9.8 m s−2.
Conditions for the present-day mantle correspond to a characteristic mantle temperature of 1950 K. The range in
possible Archaean conditions arises from assumed mantle temperatures of 2100–2300 K.
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today and cycles of continental assembly and break up, which since the late Proterozoic
have had a characteristic time scale of a few hundred million years, may have operated on
time scales of the order of 107 years. The fast rate of crustal growth that characterizes the
Archaean may reflect, at least in part, the higher rates of mantle convection and greater
lengths of plate margins.

3.8.2 Convection with a stagnant lid

An implicit assumption in the derivation of the scaling laws for convection with moving
plates is that the viscosity of the fluid does not vary strongly with temperature. This is what
allows the thermal boundary layer to move with the same velocity as the underlying fluid.
Of course this is not true for mantle rocks nor for any other material, as viscosity is always
a strong function of temperature (Box 3.3). This temperature dependency is what makes
the rigid lithosphere physically distinct from the asthenosphere. Convection with moving
plates is possible on Earth because the lithosphere is broken into fragments that can move
relative to one another, and bend to some extent, by a combination of localized brittle and
ductile deformation mechanisms. The result of this is that the apparent global viscosity of
the thermal boundary layer (the lithosphere) is comparable to that of the asthenosphere.
Locally, however, the lithosphere preserves its rigid behavior that makes diffusion the
only possible heat transport mechanism. Convection with moving plates is a rather special
case, as one might surmise from the uniqueness of plate tectonics in the present-day Solar
System. Amore common situation in solid planets is that of convection with a stagnant lid
(Fig. 3.13d).
In order to parametrize this style of convection it is necessary to include the viscosity–

temperature relationship of the fluid (this does not show up in the equations for moving
plate convection because we implicitly assume that viscosity is constant). Let Ti be the
temperature of the convecting fluid,Tr the temperature at the top of the rheological boundary
layer (Fig. 3.16) and T0 the temperature at the top of the thermal boundary layer (see also
Fig. 3.13d). Convection with moving plates is driven by the full temperature difference
�T = Ti−T0, but if a stagnant lid forms then convection is driven only by the temperature
difference across the rheological boundary layer, �Tr = Ti − Tr . This is so because this
is the only volume of cool rock that is entrained in the convective flow, and the negative
buoyancy of the rheological boundary layer is what drives convection. We can then define
the rheological boundary layer as that portion of the thermal boundary layer in which the
viscosity, µr , is of the same order of magnitude as the viscosity of the convecting fluid, µi .
From equation (3.3.3):

µr = µie
−γ (Tr−Ti) = µie

γ�Tr . (3.94)

The condition µr ∼ µi is satisfied if γ�Tr = 1, where γ is defined by equation (3.3.4),
Box 3.3. The temperature difference that drives convection is therefore given by:

�Tr = 1

γ
. (3.95)

The effective Rayleigh number of the fluid corresponds to this temperature difference. We
will symbolize it by Rae, to distinguish it from Ra (equation (3.62)), which is calculated
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Fig. 3.16 Thermal boundary layer in stagnant lid convection. The diffusive lid has thickness δ, but only a portion of it, the
rheological boundary layer of thickness δr , participates in convective flow, the remainder is immobile. Vertical heat
transport across the rheological boundary layer is by diffusion (uy = 0), so that the temperature gradient is constant
across the entire boundary layer (assuming no heat generation). Convection is driven by the temperature drop across
the rheological boundary layer, Tr – Ti .

with the full temperature difference, �T. Thus:

Rae = gαρ0�TrD
3

µκ
= gαρ0D

3

µκγ
=Ra (γ�T )−1 . (3.96)

With the Rayleigh number defined in this way the problem of stagnant lid convection
becomes the same as that of convection with moving plates, as long as we ignore the
portion of the thermal boundary layer that lies beyond δr (Fig. 3.16) – we will return to
this shortly. Convection is driven by the rheological boundary layer becoming negatively
buoyant and sinking. We can therefore think of the rheological boundary layer as being
made up of plates that move under the stagnant upper portion of the thermal boundary
layer, suggesting that we modify equations (3.89), (3.91) and (3.92) as follows:

q ∼ 0.25Rae
1/3
(
k
�Tr

D

)
= 0.25Rae

1/3
(

k

γD

)
(3.97)

δr ∼ 4DRae
−1/3 (3.98)

u∼ 0.25
κ

D
Rae

2/3. (3.99)

We have to be careful with the Nusselt number, however, as it is defined on the basis of the
full temperature difference, �T and not �Tr . From equation (3.65):

Nu= q

k�T
D

= 0.25Rae
1/3 (γ�T )−1 (3.100)
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or, using the relationship between Rae and Ra (equation (3.96)):

Nu= 0.25Ra1/3 (γ�T )−4/3. (3.101)

These equations highlight an important difference with moving plate convection. In that
case the efficiency of convective heat transport scales with the Rayleigh number only
(equation (3.90)), whereas in stagnant lid convection the viscosity–temperature relationship
of the fluid also enters the scaling law for heat transfer. We should expect this on physical
grounds, as the viscosity–temperature law iswhat determines the thickness of the rheological
boundary layer and hence the effective temperature difference that drives convection.
We still need to calculate the total thickness of the thermal boundary layer, δ. If we assume

that the stagnant lid is in steady-state thermal equilibrium with the convective fluid and that
there is no heat generation in it then the thermal gradient across the entire thermal boundary
layer is linear. The thickness of the thermal boundary layer is in that case related to that of
the rheological boundary layer as follows (Fig. 3.16):

δ = �T

�Tr
δr = γ�T δr . (3.102)

Worked Example 3.5 Stagnant lid convection vs. moving plate convection

An instructive way of comparing the two styles of convection is by considering what may
happen during the transition from moving plate to stagnant lid convection, for example, if
plate tectonics on Earth were to seize up. During moving plate convection the mantle is
cooled by subduction of cold lithosphere. If subduction stops then convection becomes less
efficient at transporting heat. We can consider two end-member situations: either the rate
of heating does not change, in which case the internal energy content of the mantle must go
up, or the temperature of the mantle does not change, because there is no active heat source.
In both cases we can expect the lithosphere to thicken because it ceases to be recycled and
is thus no longer heated by being immersed in the hot convecting fluid.
Mantle convection is driven by a combination of radioactive decay and secular cooling,

of which core crystallization may be an important component. Radioactive decay delivers
energy at the same rate independently of temperature and, therefore, of the rate at which
heat is transported away from its source. In contrast, the rate of energy supply by secular
cooling generally varies with temperature. For example, if mantle temperature increases
the thermal gradient relative to the core will decrease, and so will the rate of delivery of
enthalpy of crystallization. It follows that the relative contributions of radioactive decay
and secular cooling will determine the evolution of mantle temperature in our hypothetical
planet in which plate tectonics comes to a sudden stop.
Figure 3.17 is constructed for a planet identical to the present day Earth. The thick curves

labeled “Moving plates” are the same ones for lithospheric thickness and heat flux as in
Fig. 3.15, calculated with equations (3.91) and (3.89), respectively. The thick curves labeled
“Stagnant lid” show lithospheric thickness and heat flux for a planet with the same charac-
teristics as Earth, but calculated with equations (3.102) and (3.97). We seek to understand
how the planet may transition from the moving plate to the stagnant lid regime. If stagnant
lid convection had been taking place on Earth since its formation then its mantle temper-
ature would be higher than it is now, because plate tectonics is a more efficient cooling
mechanism than stagnant lid convection, but the comparison between the two convection
styles would still be valid.
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Fig. 3.17 Transition frommoving plate to stagnant lid convection for a hypothetical planet with the characteristics of the Earth.
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(thick curve labeled “Stagnant lid”) is calculated with equations 3.97–3.102. If the plates seize up and mantle
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of stagnant lid convection, as a function of mantle temperature when plate tectonics end (the temperature then
remains constant). The thermal boundary layer cannot be thicker than∼760 km, its thickness for the age of the Solar
System. If there is heat generation in the mantle, or heat input from the core, and the rate of heat supply remains
constant, then steady state stagnant lid convection will be attained when the mobile-plate heat flux is reestablished,
at the end of path (ii). This is accompanied by a substantial increase in mantle temperature, and modest increase in
lithospheric thickness.



173 3.9 Convection and cooling of solid planetary interiors

Suppose that there is no radioactive heat generation, nor any other active source of internal
energy (e.g. tidal, electromagnetic). In this case mantle temperature cannot increase when
plate tectonics stops and the thermal boundary layer will cool and thicken by diffusion.
Assuming that the moving plates before seizing were thin relative to the fluid layer, the
thickness of the rigid lid capping the fluid mantle a time t after the plates lock up will be
of order 2

√
κt, and the surface heat flux at that time will be given by equation (3.22). The

broken lines in Fig. 3.17 show heat flux and thickness of the thermal boundary layer for
three times, 108years, 109 years and the age of the Solar System. If the temperature of the
mantle at any given time is such that the convective heat flux is less than the diffusive heat
loss across the lid then the fluid mantle will keep convecting (as long as its Rayleigh number
is above the critical value) and the lid will continue cooling diffusively and thickening. This
is shown by the thin arrows labeled (i) in Fig. 3.17. For example, if the Earth had formed
with a mantle temperature of 1950 K and had never had plate tectonics, then convective
heat flux under a stagnant lid at the age of the Solar System would still be far lower than
diffusive heat loss across the thermal boundary layer (recall that in thismodel there is no heat
generation – this is essentially Kelvin’s model). If enough time is available then diffusive
heat loss across the lid and convective heat transport may eventually become equal and, if
at this point the mantle is still convecting, then subsequent changes in the thickness of the
stagnant lid will be controlled by the evolution of the fluid mantle, rather than by diffusive
cooling. The maximum possible stagnant lid thickness for this end-member situation is the
diffusive cooling length 2

√
κt (e.g. ∼760 km for the age of the Solar System, Fig. 3.6).

The other end-member situation is one in which there is an active energy source, such
as radioactive decay. In this case mantle temperature must increase, as the rate of energy
supply does not change but the rate of heat loss decreases when subduction stops. The
evolution is shown by the thin arrows labeled (ii) in Fig. 3.17. Steady-state convection is
reestablished once the heat flux in the stagnant lid regime matches the moving plate heat
flux. The continuous lithosphere at this point is thicker than it was when it was broken into
plates. This may sound counterintuitive, given that mantle temperature is now higher, but
the point is that, in order to preserve the same heat flux under a higher temperature gradient,
the diffusive lid must become thicker (by Fourier’s law, equation (3.5)).
Real planetary bodies with unbroken lithospheres must lie somewhere in between these

two end-members. Lithospheric thickness cannot be greater, and mantle heat flux cannot be
lower, than the diffusion values corresponding to the time since inception of the stagnant
lid regime, because diffusion is the least efficient heat transfer mechanism. Minimum litho-
spheric thickness or maximum heat flux are not so easily constrained, but either variable
can be calculated from the other one with the equations of stagnant lid convection.

3.9 Convection and cooling of solid planetary interiors

I have treated convection as being driven exclusively by heat loss across the cold upper
boundary layer. I have ignored the bottom boundary layer, and have implicitly assumed
that it is able to transport heat at whatever rate is demanded by the convective system,
and otherwise behave in a completely passive way. This is not true in nature. What I have
described is only one of the possible modes of heat advection in planetary mantles. The
hot lower boundary layer drives another type of advective heat transport process which is
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expressed as mantle plumes. This mode is superimposed on the convection process driven
by the top boundary layer. I will not offer a quantitative description of mantle plumes, but an
accessible and lucid explanation can be found in the book by Davies (1999). On the Earth,
mantle plumes are responsible for perhaps 20% of the total heat loss from the planet’s deep
interior (Box 3.2). The proportion may be different in other planets.
At present only the Earth undergoes convection with moving plates. But was this true for

all epochs of the Solar System? Differentiation dissipates a large amount of gravitational
potential energy, which may be sufficient to at least partially melt a planet (Section 2.6).
In addition, there may be other important heat sources during the early stages of planetary
evolution, such as tidal heating, decay of short-lived radioisotopes and planet-sized impacts.
Vigorous convectionmust take place in partiallymolten planetarymantles. If amagmaocean
forms it may be reasonable to postulate, from analogy with lava lakes, that when the surface
layer first solidifies it will form thin moving plates that subduct. But what if this solid layer
consists of low density material, such as lunar anorthosites or water ice? These materials
remain buoyant relative to ultramafic melts and liquid water, respectively. The Moon and
the icy worlds must have undergone stagnant lid convection from the time of formation of
the first continuous solid outer layer. As the mantle solidifies the thermal boundary layer
thickens in response to declining heat flux and convection of the solid mantle continues
under the stagnant lid as long as the value of Rae (equation (3.96)) is above the critical
value for convection (∼103–104).
This is not the only way in which stagnant lid convection can be established, however.

The Earth today convects with a healthymoving-plate regime, but at some time in the future,
as heat flux dwindles, it is inevitable that the plates will thicken to the point that they will
be unable to break, bend and subduct. The thermal boundary layer will then lock up and
display its true (high) viscosity. Could this have happened in the other two large terrestrial
planets? Mars may have had something similar to plate tectonics early in its history, as
hinted by magnetic anomalies in its ancient southern hemisphere, that resemble stripes of
alternately magnetized ocean floor on Earth (Acuña et al., 1999). The case of Venus is more
puzzling.
Wewill attempt to gain some insight about the internal structures ofVenus andMars as an

example of the application of the equations of parametrized convection. We will approach
each planet with two competing working hypotheses. The first one will be to assume that
we know for how long the present-day stagnant lid regime has existed, and that the thermal
boundary layer has attained its maximum possible thickness (case (i) in Fig. 3.17). Based
on their average surface ages, we will take this time to be ∼4 billion years for Mars (Carr,
1999), and 600 million years for Venus (Head & Basilevsky, 1999). Using equation 3.16
we estimate maximum lid thicknesses of ∼250 km for Venus and ∼700 km for Mars. The
other working hypothesis will be that we know the planetary heat flux and that there is no
heat generation in the lithosphere.This last statement is patently untrue, but we will address
that too. Assuming that the full planetary heat flux comes from the deep mantle, and that
convection is in a steady state, we can calculate a minimum thickness for the stagnant lid as
in case (ii) in Fig. 3.17, and a characteristic mantle temperature. As discussed in Box 3.2,
we postulate mantle heat flux values of 30 mWm−2 for Mars and 63 mWm−2 for Venus.
What viscosity should we use in our calculations? There is no clear nor unique answer

to this question. The mantles of Venus and Mars must be made up of Mg-rich silicates,
but there may be important differences with the Earth’s mantle that may affect viscosity.
For example, we know that the Martian mantle is richer in Fe than the terrestrial mantle,
and we can surmise that the Venusian mantle is probably drier than the Earth’s mantle. The
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approach that I follow here is to allow the viscosity to vary inside a feasible range, and
to study the sensitivity of the results to these variations. As an example, I will allow the
reference viscosity µ0 (equation (3.3.3)) to vary between 1020 and 1022 Pa s at 1950 K, i.e.
one order of magnitude in each direction relative to the likely terrestrial value. I assume
that the activation energy is 300 kJ mol−1, as in the Earth’s mantle.

Let us look at the results for Venus first (Fig. 3.18). A steady state mantle heat flux of
63 mWm−2 requires mantle temperatures 600–1000 K higher than on Earth, depending on
the assumed viscosity (shown by the thin dashed line in the center panel of the figure). This
appears unlikely, as at such temperatures there should be a continuous layer of partially
molten asthenosphere and Venus would be expected to be much more volcanically active
than Earth. This is not the case, for although there certainly are young volcanoes on Venus,
they do not appear to cover the planet with a density comparable to Earth’s. In fact, Venus
may be somewhat less volcanically active than Earth. Given the planet’s high surface
temperature (∼800K), its lithosphere is likely to be less rigid than Earth’s and, moreover, it
would rest on a significantly less viscous and partially molten asthenosphere. Gravitational
potential energy stored in topography should be dissipated faster on Venus than on Earth.
The lithospheric thickness for this model (∼70–80 km, shown by the thin arrow in the
top panel) is therefore hard to reconcile with the significant topographic relief of Venus,
comparable to that of the Earth. Note that the calculated lithospheric thickness is fairly
insensitive to mantle viscosity (interval between the thin dashed lines in the top panel), and
that the Rayleigh number required to sustain the assumed heat flux varies by a factor of
∼2 for a viscosity contrast of 2 orders of magnitude (bottom panel).
The other end-member possibility is that Venus has a lithosphere ∼250 km thick, that

has been cooling conductively since the planet was resurfaced about 600 million years
ago. The steady-state mantle heat flux in this case would be∼20 mWm−2, varying slightly
depending on the assumedmantle viscosity (center panel).This would necessitate thatVenus
has considerably less radioactive heat generation than Earth, that theVenusian core is not an
important heat source, that the planet has undergone a stronger fractionation of incompatible
elements towards the surface than Earth, or a combination of all of the above. Interestingly,
Venus has no intrinsic magnetic field, suggesting that its core is not convecting, and that
it might therefore not be an important energy source for mantle convection. Lack of core
convection could result either from a “cold” core in which crystallization is complete or
near-complete, or from a “hot” core that ismostly above its liquidus and is thus not liberating
enthalpy of crystallization. Highmantle temperatures that arise from stagnant lid convection
would argue for the latter explanation. Venus could also be in a steady state if the proportion
of internal energy that is transported to the surface by mantle plumes is larger than in the
Earth, in which case it is required that there be significant heat flux from the core (see
Davies, 1999). In this view the planet’s notable coronae could be active plume heads.
An alternative is thatVenus is not in a steady state, but is rather in the process of following

a path such as (ii) in Fig. 3.17. The mantle may be heating up as the rigid lid thickens.
Depending on the mechanical behavior of the lithosphere, it may eventually complete the
transition to a steady state stagnant lid regime (the end point of path (ii) in Fig. 3.17),
or the lithosphere may break up and a regime of convection with moving plates may be
established. In this view (suggested by Turcotte, 1995), Venusian plate tectonics would
consist of catastrophic global subduction events separated by periods of non-steady-state
stagnant lid convection, and the coronae could be incipient subduction zones rather than
plume heads. I do not take sides in this argument regarding steady state vs. episodicVenusian
convection, but I would like to suggest that they lead to tectonic interpretations of coronae
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that are so diametrically opposed – i.e., are they rising or sinking? – that it should be possible
to come to some resolution on the basis of available observations.
In the case of Mars (Fig. 3.19), the response of the lithosphere to the load of the large

volcanoes indicates that the mean thickness of the planet’s rigid lid is of the order of a few
hundred kilometers, which is compatible with both end-member steady-state models. A
mantle heat flux of 30 mWm−2(see Box 3.2), which could account for most of the Martian
heat output, implies a lithosphere∼200 km thick and mantle temperatures some 500–700 K
higher than on Earth, depending on the assumed mantle viscosity (thin dashed line in the
center panel). This is probably at odds with the apparent paucity of active volcanism on
Mars. If, as seems likely, the surface layers of the planet are enriched in incompatible
elements then the mantle heat flux could be significantly lower than 30 mW m−2. Mantle
heat flux for a 700-km thick, 4 billion year old lithosphere could be around 10 mW m−2
(center panel). Even in this case mantle temperature could be 200–500 K higher than in
the Earth and the deep mantle would still be convecting, with a Rayleigh number of ∼ 106

(bottom panel). This suggests the idea that Mars is an agonizing planet that is not quite dead
yet (with apologies to Monty Python). Yes, most of its surface is old and heavily cratered,
but huge volcanoes here and there were active as recently as 160–200 Ma, perhaps more
recently, marking a few places where the hot and actively convecting mantle was able to
poke through the 700-km thick lithosphere.

Exercises for Chapter 3

3.1 In Section 2.1 I described the reason why heat flux in solid planetary bodies other
than Io cannot be estimated remotely, and must be measured with direct observation
on the ground. Use Fourier’s law to design an experiment to measure the natural heat
flux of rocky planetary bodies.

3.2 Consider a sequence of parallel rock layers that differ in their thermal conductivities.
Assume that there is no heat production in any of the layers. Define the condition for
steady state heat flow across the sequence. Steady state means dT/dt = 0 everywhere.

3.3 Assume that all the layers in Exercise 3.2 have the same thickness. What is the factor
that determines steady-state heat flow across the system? Generalize your criterion to
a system in which the layers are of arbitrary thickness.

3.4 Draw schematic but geometrically correct plots of the steady-state geotherm for
(a) a lithosphere with no heat generation, (b) a lithosphere with a heat source (e.g.
radioactive decay) and (c) a lithosphere with a heat sink (e.g. melting).

3.5 Calculate and plot the thickness of the oceanic lithosphere as a function of the age of
the ocean floor, for ages ranging from 20 to 200 million years. Let κ = 10−6 m2 s−1,
and assume that there is no heat production in the oceanic lithosphere.

3.6 Using your results from Exercise 3.5, calculate and plot the thickness of the oceanic
lithosphere as a function of distance from the mid ocean ridge, for theAtlantic Ocean
(spreading rate ≈ 2 cm year−1) and for the Pacific Ocean (spreading rate ≈ 10 cm
year−1).

3.7 Using your results from Exercise 3.6, plot heat flux through the ocean floor as a
function of age of the ocean floor. Assume k = 3 J s−1 m−1 K−1, temperature at the
base of the lithosphere = 1400 ◦C, temperature at the ocean floor = 0 ◦C.
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3.8 Discuss why it is not possible to use the approach in Exercises 3.5 to 3.7 to calculate
continental heat flux.

3.9 In the definition of heat diffusivity the product (ρcP) describes the thermal inertia of
the material. What is the dimension of ρcP? Comment on this.

3.10 How long will it take for each of the following to cool to ambient temperature? (i)
A lava flow 10 m thick. (ii) A 10-m thick sill emplaced at a depth of 2 km. (iii) A
pyroclastic layer 10 cm thick. (iv) A granitic pluton with a 10 km diameter.

3.11 In Section 2.4 we assumed that the temperature distribution inside an accreting planet
is not modified by heat flow during the accretion process. Justify this assumption for
accretion times of 105 to 107 years.

3.12 What is the maximum asteroid size for which we can be certain that cooling is com-
plete? What can you say about cooling of asteroids larger than this? For an asteroid
larger than this size, how would you determine whether or not it is still cooling down?

3.13 In Section 2.9 we saw that decay of short-lived isotopes may liberate enough thermal
energy to melt a chondritic asteroid in 1–10 million years. Discuss whether there is
some relationship between the size of the asteroid and the likelihood that it will melt by
this process. Derive an approximate relationship between accretion rate and half life
and concentration of a short-live isotope thatmay allow you tomake semi-quantitative
predictions about melting of planetesimals in the very early Solar System.

3.14 Derive the equation for the adiabat on a P–V diagram (Fig. 3.9).
3.15 Calculate the dry adiabatic lapse rates for the five solid planetary bodies with “sub-

stantial” atmospheres: Venus, Titan, Earth, Mars and Triton. Look up the necessary
data in Lodders and Fegley (1998). For each case, discuss whether or not the dry adi-
abatic lapse rate is a good approximation to the temperature structure of convective
atmospheric layers.

3.16 Modify equations (3.36) or (3.37) to include the effect of condensation of atmospheric
species (e.g. H2O in Earth or CH4 in Titan). This is known as the wet adiabatic lapse
rate. (Hint: start from equation (3.27), but now dQ �= 0. Write dQ in terms of latent
heat and mass of vapor that changes state).

3.17 Estimate the minimum thickness of a thrust sheet in which Buchan metamorphism
can develop, and show why blueschist metamorphism can develop in accretionary
wedges. (Hint: start from equation (3.49)).

3.18 Discuss the Gulf Stream and the Hudson current from the point of view of the Péclet
number of the ocean.

3.19 Aglacier advects enthalpy from the zone of ice accumulation to the zone of ablation. If
we consider a steady-state atmosphere then the terminus of the glacier can be thought
of as being located at a point where the temperature perturbation caused by exposure
to air warmer than that in the zone of accumulation has been able to penetrate the
entire thickness of ice. Derive an equation that relates the length of a glacier to its
thickness and flow rate. Test your equation by comparing its predictionswith observed
dimensions and flow rates of alpine and continental glaciers. Discuss possible sources
of discrepancies. For ice κ = 1.5 × 10−6 m2 s−1.

3.20 In the accretion model (Section 2.4) we ignored compression of the growing planet.
Derive an equation for temperature increase in the planetary interior caused by
adiabatic compression. What is the source of this thermal energy?

3.21 Decide whether icy satellites convect. Assume that they are composed of H2O ice,
for which: µ= 1012 Pa s, κ = 1.5× 10−6 m2 s−1, α= 2× 10−4 K−1 and ρ0 = 1000
kg m−3. Consider and justify a range of likely values for�T (temperature drop across
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the thermal boundary layer). You may want to analyze separately the cases of large
satellites (e.g. Callisto) and small ones (e.g. Mimas or Enceladus). Necessary data not
listed above can be found in Lodders and Fegley (1998).

3.22 Discuss whether the large asteroidVesta may have convected, whether it is likely to be
convecting now, and how long convection may have lasted. Use material properties
for silicate planets given in the text (e.g. Figure 3.15), and other necessary data from,
yes, Lodders and Fegley (1998).

3.23 Estimate ranges of possible convective velocities in Venus and Mars. Compare your
results with the velocity of terrestrial mantle convection and discuss the physical
reasons for the differences.

3.24 Io has an observed heat flux of∼ 2.5Wm−2. Assuming that Io is undergoing steady-
state stagnant lid convection, estimate the thickness of, and temperature difference
across, the thermal boundary layer, and the velocity of Ionian convection. Are your
results likely? If not, how can Io’s heat flux be accounted for?



4
The Second Law of Thermodynamics and

thermodynamic potentials

The First Law of Thermodynamics, like all conservation laws, is expressed mathematically
by an identity relationship. As such, it is incapable of predicting the direction in which a
natural process will occur. For example, on the basis of energy conservation alone it is not
possible to decide whether heat flows from a hot body to a colder one, or the other way
around.We know that heat flows down a temperature gradient, but this does not follow from
the First Law. Similarly, energy conservation cannot predict that ice will melt at 20 ◦C, or
that water will freeze at −20 ◦C, and it cannot predict that a gas will expand to fill all of
the volume available to it.
Another law of nature is required to predict the direction of spontaneous changes. By

“spontaneous” we mean a process that occurs in nature in the direction towards equilibrium
and without outside intervention. For example, heat flow down a temperature gradient is a
spontaneous process. It is possible to transfer heat from a cold body to a hotter one, but this
requires “outside intervention” in the form of a heat pump, which uses mechanical energy
to accomplish a process that is not “naturally spontaneous”. As soon as the expenditure of
mechanical energy ceases the spontaneous process takes over and the cold body heats up
at the expense of the hotter one.
The law thatwe are searching for,which is theSecondLawofThermodynamics, cannot be

expressed by a mathematical identity, because identities are unable to determine direction.
Therefore, it cannot be a conservation law. Rather, the Second Law of Thermodynamics
must be a law that states that some quantity changes when a spontaneous process takes
place, or, equivalently that the total content of some quantity in the observable universe
varies monotonically with time.

4.1 An intuitive approach to entropy

Consider two bodies at different temperatures, T1 > T2, enclosed in a container that is a
perfect thermal insulator, is also perfectly rigid (i.e. it cannot undergo expansion work) and
is impervious to any other imaginable type of energy transfer. The system (in this case, our
two bodies) enclosed in such a container is called isolated (Fig. 4.1). Recall that adiabatic
means impervious to heat transfer, but not to exchanges of mechanical energy. We know
that heat will flow from body 1 to body 2 until their temperatures become the same, at
which point heat transfer will stop. Heat does not spontaneously flow from a cold body to
a hotter one. This is an observation as fundamental, and as impossible to demonstrate from
simpler concepts, as any conservation law, such as those for energy, momentum or electric
charge. It is, in fact, one possible statement of the Second Law of Thermodynamics.
The First Law of Thermodynamics applied to our system goes as follows. Let us assume

that the coefficients of thermal expansion of the two bodies are zero, so that there is no
181
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∆Q1
∆Q2

T1 T2

rigid & insulating wall

Fig. 4.1 Transfer of heat between two bodies at different temperatures. The two bodies constitute a system that does not
interact with its environment.

PdV work. For a finite heat exchange, the changes in internal energy of the two bodies are
given by:

�E1 =�Q1

�E2 =�Q2.
(4.1)

Since the system is isolated, its total energy content is constant, so:

�E1+�E2 = 0 (4.2)

from which we conclude what we already knew:

�Q1 =−�Q2. (4.3)

This is as far as the First Lawwill take us. It is only from the knowledge that T1>T2 that we
can conclude that�Q1< 0 and�Q2 > 0. Let us now define a new variable, Z , as follows:

�Z = �Q

T
(4.4)

and apply it to the heat transfer process in the isolated system:

�Zisolated system = �Q1

T1
+ �Q2

T2
= �Q1

T1
− �Q1

T2
=�Q1

T2−T1
T2T1

> 0. (4.5)

Note very carefully:�Q1 and (T1−T2) always have opposite signs, regardless of which of
the two bodies is hotter. This is a restatement of the fact that heat flows down a temperature
gradient, and again, a possible way of expressing the Second Law. We can now draw three
conclusions.

(i) �Z for heat transfer in an isolated system is always a positive quantity.
(ii) �Z = 0 only when T1 = T2, in which case there is no heat transfer.
(iii) Thermal equilibrium in an isolated system is attained when the variable Z attains its

maximum possible value for a given (and fixed) value of the total energy content of
the system.
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The last point is crucially important in much of what follows, so let me re-phrase it. If the
two bodies are initially at different temperatures, then Z will increase as heat flows from
the hotter to the colder one. Heat will stop flowing when the two temperatures become
equal, at which point we say that the system has attained thermal equilibrium because no
further changes take place with time. At this point Z has attained its maximum possible
value. If the two bodies were initially at the same temperature then the system was already
at equilibrium and the value of Z was already the maximum possible for the total internal
energy content of the system. The fact that heat does not spontaneously flow from a cold
body to a hotter one is called the Clausius statement of the Second Law of Thermodynamics
and is reflected in the fact that�Z for an isolated system can never be a negative quantity,
so that Z can never decrease in an isolated system. The italics are important, as forgetting
about this last condition is the source of many misconceptions about the Second Law of
Thermodynamics, especially among pseudo-scientists and other assorted charlatans.
This looks very much like the law that we are looking for, that will allow us to predict the

direction of a spontaneous natural change.We have defined a quantity that always increases
when such a change takes place. There are, however, at least two problems with the variable
Z as we have defined it. In the first place, it may allow us to tell the direction in which heat
flows (which, by the way, we already knew) but it is not at all clear that it will allow us to
predict, for example, whether a chemical reaction will take place, or whether a substance
will melt or crystallize at certain conditions. Second, and more subtly, Z cannot possibly be
a state variable because we have defined it on the basis of a non-equilibrium process: heat
transfer between bodies that differ in temperature by a finite amount is not a quasi-static
process (Section 1.4.2). In the next section we see that with just some minor tweaking we
can define a state function that allows for completely general predictions about the direction
of spontaneous natural processes.

4.2 The entropy postulate and the Second Law of Thermodynamics

Presenting the Second Law of Thermodynamics is the hardest part of any thermodynamics
course. It may seem remarkable that this is the case if the only thing that it does is to codify
everyday experience, such as the fact that your coffee will become cold if you don’t drink it
soon enough. It may even seem that conservation of energy is more removed from intuition
than this. The problem is that the direction of heat flow is just one aspect of the Second
Law, and we seek a statement, and the mathematical law that goes with it, that is completely
general. There are several approaches to accomplishing this. The one that came historically
first relies on thought experiments and theorems about thermodynamic cycles and heat
engines, going back to experimental observations by Carnot and Clausius in the first half of
the nineteenth century, and Kelvin’s work a bit later. I will discuss some of this material in
order to complete the discussion of convection in Chapter 3, but I will not follow this path
in order to introduce the Second Law. The primary reason for eschewing this approach is
that, at some point, one always comes up against postulates or conclusions that appear to
be arbitrary or concocted (although they are not). A better approach, in my view, is to state
our postulates at the very beginning and accept their validity later, on the basis of how well
the mathematical structure that we build from these postulates agrees with reality. In the
words of Callen (1985, p. 27):
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“We . . . formulate . . .a set of postulates depending upon a posteriori rather than a priori
justification. These postulates are, in fact, the most natural guesses that we might make”

This is the spirit of what follows, even though the treatment is much simplified relative to
those of Callen (1985) or Guggenheim (1967).

Drawing from our example in Section 4.1, we define an extensive variable called entropy
and symbolized by S, by means of the following function:

dS = dQrev

T
. (4.6)

The meaning of dQrev is that it is an infinitesimal amount of heat that is transferred
reversibly, which means that no energy dissipation takes place, and that the transforma-
tion takes place between equilibrium states (it is “quasi-static”). The problem is that this
definition of entropy is perfectly circular, because in order to define dissipation (or lack
thereof) we need to know what entropy is, or at least how to measure it. But this is the key:
I am not telling you what entropy is, only how to calculate it. We still have to deal with the
circularity, or at least incompleteness, of (4.6), so we make the following entropy postulate
(Callen’s “most natural guess”):

A process in an isolated system takes place spontaneously only if it causes the entropy
of the isolated system to increase. Equilibrium is attained when the entropy takes the
maximum possible value for the system’s energy content (which is constant in an isolated
system).

This postulate can bemotivated by the discussion in Section 4.1, but nowwe are not making
any mention of heat exchange between different parts of the system. Our postulate is that
entropy increases in any isolated system that changes towards equilibrium (i.e. that under-
goes a spontaneous change), regardless of what the process that leads to equilibrium is (heat
flow, diffusion, chemical reactions, phase transitions, etc.). We express this mathematically
as follows:

dSisolated system ≥ 0. (4.7)

We also state that: (i) entropy is a state function, meaning that its value at equilibrium is
fully defined by the state of the system (Section 1.5), (ii) that entropy is additive, i.e. that
it is an extensive property, and (iii) that it is a continuous and monotonically increasing
function of internal energy, E. All of these statements may sound like postulates, but they
can actually be formally demonstrated from (4.6) (see for example Callen, 1985).
At this point it is necessary to address the issue of the “entropy of the universe”. By defini-

tion, the observable universe is an isolated system, so its entropy is constantly increasing as
natural processes unfold. Sometimes, when applying the Second Law to a specific problem,
one analyzes whether or not the entropy of the universe increases, so as to decide whether
or not the process under scrutiny will take place. What we mean with this phrase (which I
will try not to use) is that we are considering the entropy change in a system that is large
enough to include all of the energy and matter exchanges that we are interested in, so that,
as far as our problem is concerned, this system does not interact with anything outside of
it. Commonly we do not have to get anywhere near the edge of the observable universe,
though.
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Worked Example 4.1 Entropy of melting

When a substance melts it absorbs heat. Therefore, by (4.6) its entropy must increase.
Consider melting of water ice at a constant pressure of 1 bar and T = 273 K. The heat
absorbed by melting of ice at constant pressure is the enthalpy of melting, �Hmelting ≈
6 kJmol−1. The (finite) increase in entropy that accompanies melting, called the entropy
of melting, �Smelting , is therefore given by:

�Smelting = �Hmelting

Tmelting
≈ 22JK−1mol−1. (4.8)

Note that the units of entropy are the same as those of heat capacity.When water crystallizes
it gives off the same amount of heat as it absorbs during melting, so that�Hcrystallization =
−�Hmelting , and thus�Scrystallization =−�Smelting ≈−22 J K−1 mol−1. Now, since the
entropy of crystallization is negative, doesn’t the freezing of water violate the Second Law
of Thermodynamics? Of course not. Equation (4.7) applies to an isolated system. Freezing
of water cannot be an isolated system by itself, since the enthalpy of crystallization must be
absorbed by some other body. The temperature of the absorbing bodymust be lower than the
freezing temperature, because otherwise heat would not flow and water would not freeze.
By the First Law the heat absorbed by this body must be the same as the heat liberated by
the water, but because its temperature is lower, by (4.6) it follows that its entropy increase
is greater than the entropy decrease of freezing water.We can arrange for the freezing water
and the heat absorbing body to conform to an isolated system, whose entropy increases as
ice melts. But what if the temperature of the freezing water and of the absorbing body are
the same? Then �S for the isolated system vanishes, which means that the system is at
equilibrium. In such an ideal system water at its freezing temperature never freezes, and ice
at its melting temperature never melts.

4.3 The First Law of Thermodynamics revisited

When we write the First Law as in (1.55):

dE = dQ− dW (4.9)

we make no requirements on the kind of process involved. Equation (4.9) is always true,
regardless of whether or not the process that it describes is reversible, or, equivalently,
of whether or not energy dissipation occurs. Energy conservation cannot be circumvented
under any circumstances. We have implicitly used the generality of (4.9) in many of our
derivations in Chapters 2 and 3 which describe transformations that are dissipative, or
irreversible. For instance, storage of thermal energy in planetary interiors by dissipation of
mechanical, electrical or nuclear energy. As we discussed in Section 1.9, dQ and dW do
not stand for differentials of functions, and for this reason they are often called “inexact”
differentials. Equation (4.9) assures us, however, that their difference is the differential of
a state function. Let us see what happens then, when we write the First Law as follows:

dE = dQ−PdV . (4.10)
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BecauseE,P and V are all state functions, dQ in this case must be the differential of some
function that takes on a single well-defined value for each state of the system. This is only
possible if (4.10) applies only to transformations between equilibrium states. If this is the
case then we can use (4.6) to make the substitution:

dQ= T dS (4.11)

from which we get the following expression for the First Law, applicable only to
transformations between equilibrium states:

dE = T dS−PdV . (4.12)

This innocent-looking equation, which combines the First and Second Laws, has several
important consequences. We will examine the most momentous ones in Section 4.8. For
now, we note that it is written only in terms of state variables, i.e. quantities that are well
defined in any equilibrium state. We can therefore integrate equation (4.12) in order to
calculate the change in entropy between two arbitrary equilibrium states. We can apply the
same arguments to the First Law written in terms of enthalpy (equation (3.27)):

dH = T dS+VdP . (4.13)

The following two identities follow immediately from equation (4.12):(
∂E

∂S

)
V

= T (4.14)

and: (
∂E

∂V

)
S

=−P . (4.15)

These equations are the thermodynamic definitions of temperature and pressure. They allow
a number of algebraic manipulations that are crucial in the formal development of the
conditions of chemical equilibrium. We shall have much more to say about this, beginning
in Section 4.8.

4.4 Entropy generation and energy dissipation

Wewill use an example to gain some insight into the nature of entropy, andmore specifically
into the relationship between entropy generation and energy dissipation. Consider a system
undergoing two different types of adiabatic expansion (Fig. 4.2). In case (a) the system
undergoes a quasi-static expansion from an initial volume V i to a final volume Vf . If the
system is a gas then we recall from Section 1.4.2 that this means that the expansion is
slow enough that molecular velocities preserve an equilibrium statistical distribution, but
equivalent statements can be made for a system in any aggregation state (e.g. distribution
of vibrational frequencies in a solid). During the quasi-static transformation the system
expands against an external pressure that is always infinitesimally close to its own pressure,
and that decreases infinitesimally slowly. In case (b) the system undergoes the same change
in volume as a result of a free expansion. This means that the substance of interest, for
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(b) Free expansion

(a) Quasi-static expansion

Vi

Vi

Vf

VfVf - V i

Tf < Ti

Tf = Ti

Fig. 4.2 (a) Quasi-static expansion of an ideal gas performing work on its environment. (b) Free expansion of an ideal gas into
a vacuum. Shading represents temperature.

example a gas, initially occupies a volume Vi , and the rest of the system’s volume, Vf −Vi ,
is empty and separated from the volume filled with gas by a partition. The partition is
removed and the gas expands to fill the entire volume Vf . The transformation is not quasi-
static, but we are free to allow enough time to elapse after the expansion, such that the
system eventually reaches thermal equilibrium, in the sense of Section 1.4.2.
Because both transformations are adiabatic, we have, for both cases:

dQ= dE+ dW = 0. (4.16)

During the quasi-static transformation (a), the system expands against an external pressure
equal to its own pressure, so dW = PdV :

dEquasi-static+PdV = 0 (4.17)

and, substituting (4.12):

T dSquasi-static−PdV +PdV = 0 (4.18)

or:

dSquasi-static = 0. (4.19)

Thus, the quasi-static adiabatic expansion that we described is also isentropic. We may ask,
if there is no entropy change during a quasi-static expansion, then why does the expansion
occur at all? Wouldn’t that imply that the system is at equilibrium, and that a spontaneous
compression, or better yet, no change at all, are as likely, or unlikely, as a spontaneous
expansion? There are several answers to this question, but they all boil down to the fact
that the description that I gave of the system is incomplete, and that the system as described
is not isolated. Expansion occurs within a larger isolated system in which entropy must
increase. The condition dS = 0 applies only to the system expanding quasi-statically. But
in order for it to be possible for the system to expand and perform work against an external
force the energy must have been previously stored in the system as internal energy, for
example by heating the system and causing its temperature to rise. During the heating stage
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the system is not an adiabatic one, and entropy generation accompanies heat transfer, as in
equation (4.5).
There is also the issue of where the work performed by the quasi-static expansion goes.

When a system expands quasi-statically it performs work on its environment. This must be
so if we are to allow for an infinitesimally slow expansion. It would be in principle possible
to store the full amount of this mechanical energy in some device, such as by compressing
a spring or lifting a weight suspended from a cord running over a pulley. If we could com-
pletely eliminate friction then there would be no energy dissipation and releasing the spring
or the weight at an infinitesimally slow rate would compress the substance adiabatically to
its initial state. This is the meaning of a reversible transformation: one in which there is no
conversion of mechanical energy to heat (i.e. no dissipation). The three conditions: (i) no
entropy generation (dS = 0), (ii) no energy dissipation and (iii) reversible transformation
are thus equivalent. It would also be possible to make the quasi-static expansion in (a)
take place by adjusting a frictional force so that expansion proceeds infinitesimally slowly
by dissipating energy. Equation (4.19) would still be true for the expansion process, but
entropy would be generated by frictional dissipation somewhere else, and the entropy of
an isolated system large enough to contain all of the required components (“the Universe”)
would increase.

Let us now examine transformation (b). By hypothesis the system does not perform
external work during free expansion, because it is not expanding against any external force.
Let us assume for the sake of argument that the system is an ideal gas, so there are no
intermolecular forces and there is no work performed in separating the molecules either.
Then, from (4.16):

dEfree expansion = 0. (4.20)

If after the free expansion is completed we wait long enough for the system to attain thermal
equilibrium (i.e. for all its molecules to “communicate” with one other and establish the
equilibrium velocity distribution) then we can substitute (4.12) in (4.20):

TdSfree expansion−PdV = 0 (4.21)

or:

dSfree expansion = P

T
dV . (4.22)

For expansion dV > 0, and P and T are always positive quantities, so:

dSfree expansion > 0. (4.23)

Equation (4.23) says, for instance, that a gas will always expand to fill any empty space
available to it (“nature abhors a vacuum”), and it also says that a gaswill never spontaneously
contract.
What is the physical meaning of the difference between equations (4.19) and (4.23)?

During free expansion the system does not perform mechanical work, as it is not expanding
against an external force, but rather just filling empty space (recall that we ignore inter-
molecular forces). The entropy increase measures the magnitude of the mechanical work
that could have been performed by the expansion, but wasn’t. When the system is in its
initial state, occupying volume Vi , it has the capability of performing the amount of work
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that it performs during a quasi-static expansion. When we allow it to expand freely this
capability is irretrievably lost. This is equivalent to saying that the system initially stores
some amount of “potential for doing work” (careful! do not confuse this with potential
energy as defined in Chapter 1) that was dissipated when it expanded without performing
any work. From (4.21) we see that the integral of T dS is the amount of mechanical energy
that was lost, or dissipated, during the free expansion. This also shows that dW =PdV only
for a reversible transformation. For the irreversible free expansion dW = 0, but PdV �= 0.
The derivation of equation (3.32) for planetary adiabats assumes that the process is

isentropic, i.e. that no energy dissipation takes place. If energy dissipation takes place
during adiabatic expansion or compression then additional terms must be added to equation
(3.32) to account for this thermal energy. This is the reason why (3.32) is rigorously an
isentrope, which is a special case of an adiabat. We return to this in Chapter 10.

4.5 Planetary convection and Carnot cycles

4.5.1 Thermodynamic efficiency

A temperature gradient represents a potential for doing work. If heat is allowed to diffuse
without performing work then the loss of this work potential is energy dissipation, which
is measured by the amount of entropy that is generated. Consider a system bound by two
isothermal boundaries at different temperatures, T2 > T1, where the temperatures are held
constant by a heat source at temperature T2 and a heat sink at temperature T1 (Fig. 4.3). This
is a reasonable approximation for atmospheric convection, in which the planet’s surface is
the heat source and space is the heat sink. We can arrange for our idealized atmosphere

q1

q2

w

T1

T2Heat source

Heat sink

Convection

Fig. 4.3 Idealized view of convection in a planetary atmosphere as a Carnot heat engine.
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together with its heat source and its heat sink to make up an isolated system (this could
be the universe). Let the source at temperature T2 transfer heat to the atmosphere at a rate
(−q2) < 0, where q = dQ/dt . Assume initially that heat diffuses across the atmosphere,
so that no work is performed. The atmosphere then delivers heat at the same rate rate q2 to
the sink at temperature T1. Entropy generation is in this case maximum because no work is
being performed, so that the maximum rate of entropy generation, (dS/dt)max, is given by:(

dS

dt

)
max

= −q2
T2

+ q2
T1
= q2

T2−T1
T2T1

> 0. (4.24)

Now suppose that the atmosphere convects. In this case it performs work, which appears
as kinetic energy of moving air. The ideal maximum possible rate at which the atmo-
sphere can perform work must be such that the there is no entropy generation, so we make
(dS/dt)min=0, although in nature we never get this close (more on this soon). In this case
part of the heat flow q2 is converted to work at a rate wmax = (dW/dt)max, so that the rate
of heat loss across the top boundary, q1, is given by:

q1 = q2−wmax. (4.25)

We can then write the minimum rate of entropy production as follows:(
dS

dt

)
min
= −q2

T2
+ q1
T1
= −q2

T2
+ q2
T1
− wmax

T1
= q2

T2−T1
T2T1

− wmax

T1
= 0. (4.26)

Using (4.24), the maximum rate at which work can be performed is given by:

wmax = T1

(
dS

dt

)
max

, (4.27)

which re-states the concept that entropy production measures the loss of work potential
(Section 4.4). Let us now define the thermodynamic efficiency of convection, η, as the ratio
of this maximum rate of performing work to the rate of heat absorption from the source, i.e.:

η= wmax

q2
= T1

q2

(
dS

dt

)
max

. (4.28)

Substituting (4.24) and simplifying, we find:

η= 1− T1

T2
. (4.29)

This result is originally due to the early nineteenth century French scientist Sadi Carnot,
although he was talking about steam engines and not planetary atmospheres. It is rightly
considered one of the cornerstones of thermodynamics, as it is what set Clausius and Kelvin
on the path to formalizing the Second Law of Thermodynamics.
Recall that in Chapter 3 we defined a heat engine as a thermodynamic cycle that converts

thermal energy to mechanical energy continuously and indefinitely. A planetary mantle or
atmosphere, or a steam engine, are heat engines, and equation (4.29) states that the (ideal)
maximum thermodynamic efficiency possible for a heat engine, called the Carnot efficiency,
depends only on the ratio between the temperature of the heat sink and the temperature of the
heat source. This is true for any heat engine, as in deriving (4.29) we made no assumptions
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whatsoever about the nature of the process by which some of the heat absorbed from the
source is transformed to mechanical energy.
There are two corollaries that follow from equation (4.29). First, the thermodynamic

efficiency is always less than 1, as T1/T2= 0 would require either a sink at absolute zero or
an infinitely hot source, and both are impossible (we will return to this when we discuss the
Third Law of Thermodynamics later in this chapter). Since η< 1, even if we could construct
a heat engine in which all friction and all other sources of dissipation are eliminated we
would still not be able to achieve complete conversion of thermal energy to mechanical
energy. The second corollary is that, if T1= T2, then η=wmax = 0. This result is called the
Kelvin–Planck statement of the Second Law: it is not possible to construct a heat engine
that performs work by extracting heat from a single source at a constant temperature. Recall
that most of the mechanical energy generated in planetary mantles and cores is dissipated
by a combination of viscous and ohmic heating. Consider a hypothetical planet in which
there is neither tectonic nor magnetic work. If it were not for the Second Law all that we
would need for the mantle or core of such a planet to convect would be an initial supply
of heat and perfectly insulating boundaries. Once convection starts it would feed on heat
generated by its own dissipation. This is called a perpetual motion machine of the second
kind, and is impossible by (4.29) (or, more generally, by the Second Law).

4.5.2 Carnot’s cycle

As it turns out, it is possible to get a bit more specific about the type of heat engine that
achieves the maximum thermodynamic efficiency given by (4.29), and the result is relevant
to planetary convection. There are several ways of demonstrating what follows, which is
known as Carnot’s theorem. I think that this derivation, modified fromGuggenheim (1967),
is particularly simple. Suppose that our heat engine absorbs heat at various temperatures,
Ti , of which T2 is the maximum, and releases heat at various temperatures To, of which
T1 is the minimum. Let the various rates of heat absorption and emission be qi and qo,
respectively, where, as in Section 4.5.1, all of the qs are positive quantities. The maximum
thermodynamic efficiency is always obtained when (dS/dt)min = 0. We now write this
condition with the following general equation ((4.26) is a special case of this equation, for
a single input and a single output temperature):(

dS

dt

)
min
=−

∑ qi
Ti
+
∑ qo

To
= 0, (4.30)

which we rewrite as follows: ∑ q i
Ti
=
∑ qo

To
. (4.31)

The rate at which work is performed is given by (compare (4.25)):

w=
∑
qi −

∑
qo (4.32)

and the thermodynamic efficiency by (see also (4.28)):

η= w∑
qi
= 1−

∑
qo∑
q i

. (4.33)
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The thermodynamic efficiency η is maximum when the ratio
∑
qo/
∑
qi is minimum. In

order to minimize this ratio we have to make each qo as small as possible, and each qi as
large as possible. By (4.31), we will accomplish this by making all To equal to the minimum
value, T1, and all Ti equal to the maximum value, T2. Thus, η takes its maximum possible
value, given by equation (4.29), when the heat engine absorbs heat at a single maximum
temperature, and releases heat at a single minimum temperature. The most efficient cycle
is one that works between two isothermal boundaries, with no heat exchanged at any other
temperature. Changes in the system that take place between the two isothermal boundaries
are therefore adiabatic.
A thermodynamic cycle that is bound by two adiabats and two isotherms is called a

Carnot cycle. It is sketched in terms of its pressure–volume evolution in Fig. 4.4, where it
is compared to the isobaric–adiabatic cycle that I proposed as a model for mantle convec-
tion in Section 3.4. Carnot’s cycle operates between two temperatures, T2>T1, which are
re-labeled TB and TD , respectively, for comparison with Fig. 3.9. Starting from the high-
est pressure point in the diagram (P1), the fluid in Carnot’s cycle absorbs heat at constant
temperature TB , expanding (performing work) and decompressing to P2. From this point
the fluid expands adiabatically and cools down, until it reaches temperature TD at pressure
P3. It then releases heat at constant temperature TD , so that it contracts and its pressure
increases to P4, from which point the fluid is compressed adiabatically until it reaches the

V

P TB

TB

TD

TD

TA

TC

P1

P2

P3

P4

isotherm

isotherm

adiabat

adiabat

Fig. 4.4 The mantle convection cycle proposed in Chapter 3: isobaric heating at the core–mantle boundary from TA to TB ,
adiabatic decompression during mantle upwelling from TB to TC , isobaric cooling at the surface from TC to TD , and
adiabatic compression during mantle downwelling from TD to TA (the isobaric legs are shown with thin dotted lines).
Mantle convection approximates a Brayton cycle, that is compared in the figure to a Carnot cycle working between the
same extreme temperatures, TB and TD .
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initial state, at temperature TB and pressure P1. If the cycle is completed in unit time then
the area bound by the four curves is the working rate, w. According to equation (4.29), as
the two isotherms become further apart the efficiency of conversion of thermal energy to
mechanical energy (η) increases. Convesely, if TB = TD then it must be η= 0.

Worked Example 4.2 Efficiency of planetary convection systems

In contrast toCarnot’s cycle, the convection cycle in Section 3.4 absorbs enthalpy at constant
pressure, between temperatures TA and TB , and releases enthalpy at constant pressure,
cooling from fromTC toTD at the planet’s surface (seeFig. 4.4). Such an isobaric–isothermal
cycle is called a Brayton cycle or Joule cycle, and, interestingly, it is also an approximate
description of the working of jet engines. We have just proved that, given that in this case
heat is absorbed and released over a range of temperatures, the thermodynamic efficiency of
convection in planetary interiors must be less than the efficiency of a Carnot cycle working
between the same extreme temperatures, TB and TD , given by (4.29) (see Figs. 3.8, 3.9
and 4.4). We will now calculate the thermodynamic efficiency of the Brayton cycle. Let
qH be the rate of heat absorption at high pressure (from TA to TB ) and qL be the rate of
heat release at low pressure (from TC to TD). Work is performed at a rate w= qH −qL, so
that the thermodynamic efficiency of the Brayton cycle, ηB , is given by (compare equation
(4.28)):

ηB = w

qH
= 1− qL

qH
. (4.34)

For notation simplicitywewill take the unit of time as being equal to the cycle’s period.Then,
given that the two heat transfer legs of the cycle are isobaric, we have qH = cP (TB−TA)
and qL = cP (TC − TD), where we have arranged for all the qs to be positive quantities.
Substituting into (4.34):

ηB = 1− TC −TD
TB −TA . (4.35)

Note that TC and TB lie on the same adiabat, and so do TD and TA. Assuming that the
adiabats are also isentropes we can write the temperature ratio as a function of the thickness
of the convecting layer, D, by integrating (3.35), as follows:

TC

TB
= TD

TA
= e

− αgD
cP . (4.36)

Substituting in (4.35) we get an estimate for the thermodynamic efficiency of convection
in planetary interiors:

ηB = 1− e− αgD
cP . (4.37)

The exponent (αgD)/cP is a non-dimensional parameter that is a function of material
properties, gravitational acceleration and thickness of the convecting layer, but not of
temperature, except indirectly through the effect of T on α.
We can use equation (4.37) to compare the thermodynamic efficiency of convection in

planetary interiors. Figure 4.5 shows the function ηB = 1−e−x (equation (4.37)) and rough
estimates of the value of the exponent x = (αgD)/cP for various planetary bodies. A small
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Fig. 4.5 Thermodynamic efficiency of the Bryton cycle as a model for convection in planetary interiors. Values for giant planets
are very rough approximations, calculated with the assumption of very simple internal structures and equations of
state, and assuming constant g. The correlation of greater efficiency with larger size is likely to be qualitatively correct.

planet such as Mars is not efficient at transforming thermal energy into mechanical energy.
Even at an early age, when its internal heat flow may have been significantly higher than
today’s terrestrial heat flow, it is unlikely that Mars could have supported a rate of tectonic
activity comparable to Earth’s plate tectonics. In contrast, the giant planets, by virtue of their
large sizes, can be very efficient heat engines. Convection of ionized fluids in their interiors
is thought to be responsible for their magnetic fields (Section 1.8.3). Efficient conversion
of their high heat flows to mechanical energy may be an important factor in explaining the
strong magnetic fields of the giant planets. Of course, Fig. 4.5 shows only thermodynamic
efficiencies, and only a very small fraction of the work performed by convection leaves the
planetary interior asmechanical energy, for example, in the formof lithospheric deformation
or planetary magnetic fields. Most of the mechanical energy is dissipated by viscous flow
and electric currents (see also Section 1.8.3), and leaves the planetary interior as heat. The
actual efficiency of convection in planetary interiors is close to 0, and the rate of entropy
generation is close to the maximum given by equation (4.26).
We can also show that the thermodynamic efficiency of the convection cycle, given by

equation (4.37), is less than that of a Carnot cycle working between the same extreme
temperatures (Fig. 4.4) and given by equation (4.29):

ηC = 1− TD

TB
. (4.38)

We can write this temperature ratio as follows (see equation (4.36)):
TD

TB
= TD

TC

TC

TB
= TD

TC
e
− αgD

cP . (4.39)
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Calling �T = TC −TD we write the efficiency of the Carnot cycle as:

ηC = 1− e−
αgD
cP + �T

TC
e
− αgD

cP , (4.40)

which leads to:

ηB = ηC − �T

TC
e
− αgD

cP (4.41)

or, in other words, ηB < ηC , as required by Carnot’s theorem.
Equation (4.41) has an interesting implication. This is that, as �T becomes smaller, the

thermodynamic efficiency of the Brayton cycle approaches that of the Carnot cycle. This is
immediately obvious fromFig. 4.4: as�T becomes smaller, the adiabatic excursions needed
to construct a Carnot cycle between the same extreme temperatures become smaller and the
two cycles become more similar. However, from Fig. 3.9 and our discussion of convection
in Chapter 3, we recall that�T is the temperature contrast that drives convection. We must
therefore conclude that the thermodynamic efficiency of stagnant lid convection is closer to
the maximum Carnot efficiency than that of convection with moving plates. This may seem
counterintuitive, for example in view of the fact that Earth has a more active lithosphere
than Venus. But one must not confuse efficiency with the actual rate of performing work.
The rate at which the convection cycle performs work is given by:

w= qH − qL = cP [(TB −TA)− (TC −TD)]= cP (TC −TD)
(
e
αgD
cP − 1

)
, (4.42)

which, for a given planetary size (constant g and D), yields:

w∝�T . (4.43)

Plate tectonics is driven by a greater temperature contrast than stagnant lid convection, so
it performs mechanical works at a greater rate than the latter.

Atmospheric circulation over tropical and subtropical oceans approaches a Carnot cycle
more closely than convection in planetary interiors. This is particularly striking in the case
of hurricane formation (see Emanuel, 1986, 2006), but we can also see Carnot at work in
Earth’s global climate patterns. Because of the immense heat capacity of the oceans, air
absorbs heat and humidity from tropical oceans at their (nearly) constant surface temper-
ature, TO , causing atmospheric pressure to decrease from P1 to P2 (Fig. 4.6). When the
density has decreased sufficiently it rises and cools adiabatically fromTO toTA, causing con-
densation and precipitation in the tropics. As air moves towards higher latitudes it radiates
heat to space at the approximately constant temperature of the tropopause (troposphere–
stratosphere boundary), TA. Air density thus increases isothermally from P3 to P4, at which
point it becomes negatively buoyant and sinks.Adiabatic compression raises its temperature
from TA to TO . This hot and dry sinking air gives rise to the belts of subtropical deserts on
both sides of the equator.
To calculate the Carnot efficiency of atmospheric convection we integrate (3.36) as

follows:

TA

TO
= 1− gh

TOcP
, (4.44)
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T

P

P1

TA TO

P2

P3

P4

Air moves over ocean
from subtropics
towards equator

Air rises
at equator

Air sinks
in subtropics

Air moves
at altitude

towards subtropics

Fig. 4.6 Highly idealized view of atmospheric convection in the tropics as a Carnot engine. Air absorbs heat isothermally from
the oceans and releases heat isothermally to space. The large thermal effect of condensation during adiabatic rise
near the equator is ignored in the figure. For a rigorous discussion see Emanuel (1986, 2006).

where h is the thickness of the troposphere, ∼10 km and TO is a characteristic surface
temperature, ∼300K. With these values we obtain η ≈ 0.3 for the terrestrial atmosphere.
This would appear to suggest that atmospheric convection is able to convert about a third
of the thermal energy that it absorbs from the Earth’s oceans into mechanical energy. But of
course this is not quite so, because the thermodynamic efficiency given by equation (4.44)
does not take into account dissipation in the engine itself, i.e. the finite viscosity of air (see
Section 3.7.4) and friction at the interface between the atmosphere and the Earth’s surface.
The effective efficiency of atmospheric convection is much lower than 0.3.

4.6 Amicroscopic view of entropy

4.6.1 Microstates andmacrostates

Entropy, like internal energy, is a macroscopic variable. It allows us to make accurate
predictions about natural processes and, in regards to much of the material that we will
cover in this book, the macroscopic understanding of entropy is all that we need. There are,
however, some topics, such as solid solutions (discussed in Chapter 5) and equations of
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state (discussed in Chapters 8 and 9) for which it is useful to have an understanding of the
microscopic underpinnings of entropy. In addition to this practical reason, there is a more
fundamental one.We saw in Section 1.14 that internal energy, the macroscopic concept that
forms the basis for the First Law, has a well-defined microscopic interpretation. It would be
deeply unsatisfactory if the same were not true of entropy, which is at the core of the Second
Law.There is alsomuchmisuse and abuse of theword entropy by non-scientists and pseudo-
scientists, and for this reason too it is important to have a deeper understanding of what it is.
The microscopic interpretation of entropy begins with the concepts of the microstate of

a system vs. its macrostate. The macrostate of a system is defined solely on the basis of
macroscopic variables and does not require knowledge of the underlying microscopic con-
figuration of the system, which is what we call its microstate. For example, the macrostate
of an ideal gas made up of a single chemical species is fully specified by its temperature
and its pressure, from which we can calculate all of its other macroscopic parameters, such
as molar volume, internal energy, enthalpy and entropy (we shall see how). Although this
macroscopic specification of the sate of a system is independent of any knowledge of its
underlyingmicroscopic structure, in Section 1.14we saw that we can also define the internal
energy of an ideal gas in terms of a microscopic model called the kinetic theory of gases. In
order to describe the microstate of a system made up of ideal gas we would need to specify
the position and velocity of each of the individual molecules. Here lies the crucial differ-
ence between macrostates and microstates: a given macrostate may arise from more than
one different microstate. For example, we know that the distribution of molecular speeds
is as given by Fig. 1.12, but there are many ways in which 1023 individual molecules may
arrange themselves to give this distribution (see Box 4.1). Each of these different ways is
a microstate. As far as the macrostate is concerned we don’t care what the velocity of each
individual molecule is, i.e. which specific equivalent microstate we have, as long as the
velocity distribution is the one that corresponds to that specific macrostate.

Box 4.1 Countingmicrostates

The microscopic interpretation of entropy, and indeed much of statistical mechanics, relies on being able to
count the number of equivalent microstates. We define all microstates that give rise to the same macrostate
as being equivalent. Consider a situation in which there are N objects of the same kind, each of which can
exist in i different states, with N ≥ i . For example, it could be a group of N coins, each of which can be in one
of two states (heads or tails), or a group of N octahedral sites in a crystal of olivine, each of which can be in
one of two states (filled with Mg or Fe2+), or a group of N particles in a gas, each of which can be in one of i
different energy levels. We want to know how many possible microstates these systems have. A microstate
is defined by the number of objects that are in each possible state. All microstates with the same number of
objects in each state are equivalent and correspond to the same macrostate. For example, if we have 5 coins,
then all microstates with 3 heads and 2 tails are equivalent, and correspond to a single macrostate that is
different from the one that arises from all microstates in which there are 4 heads and 1 tail. We wish to
calculate the number of equivalent microstates that underlie a given macrostate.

The total number of arrangements of the N objects, which you can think of as the number of ways in
which we can choose them one at a time, is N!: we can choose the first in N ways, the next in (N− 1)
ways, the next one in (N− 2) ways, and so. You can visualize this process as arranging the objects in a
row, but this is just a help in visualization and has nothing to do with any putative spatial distribution of the
objects. We thus have N! possible arrangements of objects (e.g. coins), and each object can be in one of i
different states (e.g. heads or tails). Let ni be the number of objects that have the property i , i.e. that are in
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Box 4.1 Continued

state i . Obviously,
∑

i ni = N. We subdivide the set of N objects into i subsets of ni objects. Two microstates
are said to be equivalent if ni is the same for all i . If two microstates fulfill this requirement but, additionally,
each of the individual objects in each subset ni are the same except that they are arranged in a different
order, then they are the samemicrostate, rather than equivalent microstates. By the same argument that we
used for N, each subset of ni objects can be arranged in ni ! different ways. This is true for all ni , so the product∏

(ni !) is the total number of repeated (i.e. identical) microstates. The product of the number of equivalent
microstates, which we symbolize withO, times the number of repeated microstates,

∏
(ni !) must be equal

to the total number of possible arrangements of the N objects, N!, as there is no other possibility that we
have not considered. The number of equivalent microstates is therefore given by:

O= N!∏
ni ! , (4.1.1)

which in the case of i = 2 (that we will use frequently), simplifies to:

O= N!
n!(N− n)! , (4.1.2)

where n objects are in state 1, and (N− n) objects in state 2.
Consider again the example of 5 coins. The number of microstates defined by 3 heads and 2 tails is 5!/(3!

2!) = 10. All of these microstates are equivalent and correspond to the same macrostate. In contrast, the
macrostate corresponding to 4 heads and 1 tail has 5!/(4! 1!) = 5 microstates.

The numbers of objects (molecules, atoms, ions, crystalline sites, etc.) in systems of physical interest
are much larger than this, typically of order 1023. The factorial of 1023 is a very large number, beyond
the computational range of everyday calculators and computers. Luckily, however, what we are interested
in is the logarithm of O, rather than in O itself, and this we can easily calculate by means of Stirling’s
approximation, which states that, for N very large:

lnN! ≈ N lnN− N. (4.1.3)

Where does this come from? First, we can write ln N! as a sum of logarithms:

lnN! =
i=N∑
i=1

ln i . (4.1.4)

Although the factorial function is defined only for integers, which are discrete variables, when N becomes
very large we can approximate the right-hand side of (4.1.4) as an integral, i.e.

i=N∑
i=1

ln i ≈
∫ N

1
ln idi = N lnN− N+ 1≈ N lnN− N, (4.1.5)

which is (4.1.3).

A given macrostate can arise from more than one microstate. We shall say that these
microstates are equivalent. We will also postulate that: (i) All individual microstates are
equally probable and (ii) the observed macrostate, which we will call the equilibrium
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Vf = VA + VB

Tf = Ti

VA VB

Fig. 4.7 Mixing of two different ideal gases in an isolated container. Each of the gases can be thought of as undergoing a free
expansion from its initial volume to the same final volume, Vf .

macrostate, is the one that corresponds to the greatest number of equivalent microstates.
An example will clarify the meaning and implications of these statements and show their
plausibility, although it must be borne in mind that their acceptance as a valid description
of nature relies on the much larger theoretical framework of statistical mechanics, and on
an enormous amount of observations.
Let us consider the process of spontaneous mixing of two different ideal gases at uniform

and constant temperature and pressure. Suppose that we have two containers separated
by a wall, with volumes VA and VB , as shown in Fig. 4.7. Container A is filled with a
moles of ideal gas A, and container B is filled with b moles of ideal gas B. When the
partition is removed the gases mix by diffusion, so that after some time the entire volume,
Vf =VA+VB is filled with a homogeneous mixture in which the mol fractions of the two
gases areXA = a/(a+b)=VA/Vf andXB = b/(a+b)=VB/V f (use the ideal gas EOS
to prove these identities). Pressure and temperature were the same for the two gases before
mixing and remain unchanged during mixing.
Diffusive homogenization of the two gases in an isolated system is a spontaneous process,

so it must be accompanied by an increase in entropy, which we calculate as follows. From
equation (4.12) we write the entropy change �S from an initial state i to a final state f as
follows:

�S =
∫ f

i

dE

T
+
∫ f

i

P

T
dV . (4.45)
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Using the ideal gas equation of state and the fact that internal energy of an ideal gas is a
function of temperature only (Section 1.14), we re-write equation (4.45) for an ideal gas as
follows:

�S =
∫ f

i

CV

T
dT +R

∫ f

i

dV

V
=CV ln

(
Tf

Ti

)
+R ln

(
Vf

V i

)
. (4.46)

Diffusive homogenization of ideal gases is an isothermal process, because ideal gases are
made up of non-interacting particles (i.e. there are no forces between the particles, and hence
nowork is performedwhen particles of different gasesmix). However, the volume occupied
by each of the gases increases during mixing, from the volume of the respective initial
container to the total final volume, Vf . The entropy of each gas therefore increase during
mixing by the same amount that it would increase if it was undergoing a free expansion
(compare equation (4.22)). Because entropy is additive (Section 4.2), the total entropy
increase for the mixing process is given by:

�Smixing = a�SA+ b�SB = aR ln

(
Vf

Va

)
+ bR ln

(
Vf

Vb

)

=−aR ln (XA)− bR ln (XB) > 0. (4.47)

As mol fractions in a mixture are always less than 1, spontaneous mixing of gases is always
accompanied by an increase in entropy. I never cease to marvel at this result. We defined
entropy on the basis of heat transfer (equation (4.6)), and yet it can correctly predict the
behavior of a system in which there is no heat transfer involved! As you will soon see,
the importance of equation (4.47) goes beyond merely telling us that ideal gases will mix
spontaneously.
Let us look at this same process microscopically. The two vessels initially contain aN

and bN molecules of different ideal gases, where N ≈ 6.02× 1023 is Avogadro’s number.
We will now count microstates, as described in Box 4.1. You can think of the “objects” that
I refer to in Box 4.1 as being little boxes into which the containers are subdivided, such
that there is exactly one box per molecule. Averaging over a sufficiently long time, there is
always exactly one molecule inside each box, and there are no empty boxes. The boxes can
be in two different states: occupied by either a molecule of gas A or a molecule of gas B.
Before the partition is removed all boxes in side A are filled with molecules of A, and all
boxes in side B are filled with molecules of B. According to equation (4.1.2), the number
of microstates in each of the two vessels, OA and OB , is:

OA = (aN)!
(aN)!0! =

(bN)!
(bN)!0! =OB = 1. (4.48)

The total number of microstates for the system before the gases are allowed to mix, Oi ,
is the product of these two numbers, as any microstate in A can be combined with any
microstate in B, i.e.:

Oi =OAOB = 1. (4.49)

When the gases are allowed to mix there are (a+ b)N boxes in a single vessel of volume
VF , of which aN are in one state (occupied by anAmolecule) and bN in the other (occupied
by a B molecule). Using equation (4.1.2), the number of microstates is given by Of , as
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follows:

Of = [(a+ b)N ]!
(aN)!(bN)! . (4.50)

We now use Stirling’s approximation (equation (4.1.3)):

lnOf = (a+ b)N ln [(a+ b)N ]− (a+ b)N
− [(aN) ln (aN)− (aN)]− [(bN) ln (bN)− (bN)] , (4.51)

which simplifies to:

lnOf = aN ln

(
a+ b
a

)
+ bN ln

(
a+ b
b

)
(4.52)

or:

lnOf =−aN ln (XA)− bN ln (XB) . (4.53)

Consider these results in the light of the two postulates aboutmicrostates andmacrostates.
According to postulate (i) all microstates are equally probable. Equation (4.49) says that
there is only one microstate that corresponds to the initial macrostate: all boxes on each side
filled with only one kind of molecule. We know that, if the partition is not there, this is not
the equilibriummacrostate. Rather, the equilibriummacrostate is one in which the gases are
mixed uniformly over both containers. According to equation (4.53), for a system size of
order 1 mol this macrostate corresponds to∼ eN equivalent microstates (N ≈ 6.02×1023).
By postulate (i) each of these equivalent microstates has the same probability of occurring
as the single microstate that describes the un-mixed gases. There are, however, eN times
more equivalent microstates than in the first case, so it is eN times more likely that we will
observe a homogeneous mixture than separate gases (as long as the partition is not there).
This is what postulate (ii) says, that the equilibrium macrostate, i.e. the final state that the
system will spontaneously evolve to, is the one that corresponds to the most microstates.
Note that we have not proved that equation (4.53) is indeed the maximum, only that it
is (much) larger than (4.49). It happens to be the maximum, though (see, for example,
Glazer & Wark, 2001). The probability that the two gases will spontaneously un-mix and
return to the state they were in before the partition was removed is not zero (this is what
postulate (i) says), but it is so vanishingly small that we can be certain that we will not
observe this phenomenon in the lifetime of the Solar System (quite a bit longer than that,
actually). There is an additional point in this argument. This is the fact that fluctuations
take place in all natural systems, during which the system visits microstates that are very
close, but not identical, to an equilibrium microstate. These fluctuations are so small and
swift that they are not reflected in the macrostate of the system, except when a system is
close to a critical phase transition (more on this later). In principle, another exception could
occur when the system of interest is so small that 1/eN becomes an “observable” number.
In Chapter 14 we will see that this may be a limiting factor for the minimum size of living
organisms.
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4.6.2 Boltzmann’s postulate

The attentive reader might have noticed a striking similarity between equations (4.47) and
(4.53).The two equations are identical, but for a constantmultiplicative factor.They suggest,
but do not prove, the following relationship between entropy and number of microstates:

S = kB lnO, (4.54)

where kB = R/N = 1.38× 10−23 J K−1 molecule−1 is known as Boltzmann’s constant.
Equation (4.54), due to Ludwig Boltzmann and reputedly inscribed on his tombstone, is
known asBoltzmann’s postulate.Aswith the laws of thermodynamics, it remains a postulate
because it cannot be shown to be valid from simpler statements or observations. We accept
its validity a posteriori, on the basis of the agreement of the theory built upon it with the
observed behavior of nature. Boltzmann’s postulate provides a microscopic interpretation
of entropy that is intuitively satisfying. It says that the highest entropy macrostate is the one
that corresponds to the greatest number of equivalent microstates. The increase in entropy
that accompanies all spontaneous processes in an isolated system is simply a reflection of
the system “falling onto” the most likely set of equivalent microstates. The impossibility
of entropy decreasing in an isolated system should actually be seen as a vanishingly small
probability – “practically impossible” for any conceivable macroscopic system. As to the
relationship between entropy and disorder, which obsesses philosophers, social scientists,
post-modernist writers and other commentators, we shall have more to say about it shortly.
Let us go back to the relationship between (4.53) and (4.47). Using (4.54), we can write

the following equation:

Sconfigurational = kB
(
lnOf − lnOi

)= kB ln

(
Of

Oi

)
. (4.55)

The increase in entropy that accompanies mixing of the gases is a function only of the ratio
between the number of microstates in the final and initial states. This increase in entropy is
called the configurational entropy, as it reflects a change in the microscopic configuration
of the system. It is important to realize that equation (4.54) gives the functional relationship
between S and O, but it says nothing about the factors that enter into the definition of the
microstates that are counted by O. The number of microstates in our example was defined
solely on the basis of the identity of the molecules, but in reality other parameters must
be considered too, most importantly temperature. As the temperature increases so does the
number of quantized energy levels available for atomic vibrations, and therefore the number
of accessible microstates and, by (4.54), the entropy. Because we consider an isothermal
transformation the effect of temperature on the value of O cancels out in equation (4.55),
leaving the change in configuration as the only contribution to the entropy of mixing.
There is an important question here: how does the microscopic interpretation of entropy

relate to the concept of energy dissipation and the fact that an entropy increase reflects an
irreversibly lost opportunity to perform mechanical work? The following is a possible way
of looking at this, which traces its origin to James Clerk Maxwell (who was perhaps the
greatest scientist of the nineteenth century). Suppose that rather than a removable partition
the two vessels with different gases in Fig. 4.7 are separated by a fixed wall with a small
opening covered by a revolving trapdoor thatwill turn onlywhen it is simultaneously hit by a
pair of different molecules coming from opposite directions. The door is just large enough to
allow a single molecule through in each direction at any one time (Maxwell used imaginary
demons for this sort of thought experiment, and his demons were actually asked to perform
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a task opposite to the one we describe here, see, for example, Baylin, 1994). The door is
connected to an external reservoir of mechanical energy, such as a spring or a weight, so that
rotation in one direction compresses the spring (or raises the weight) by a small amount,
and rotation in the opposite direction releases the spring by the same amount.As long as the
door keeps revolving in the same direction there is net storage of mechanical energy, but if
the door flip-flops then there is no net storage nor release of mechanical energy. When we
first free the revolving door with different gases in each container it will only be hit by A
molecules coming from the left andBmolecules coming from the right, so it will spin in only
one direction and storemechanical energy.As the gasesmix the doormay start flip-flopping,
but as long as there is a gradient in composition across the partition therewill be a net storage
of mechanical energy, because the door will rotate more often in one direction than in the
other.When the gas compositions become identical on both sides there will be a net amount
of mechanical energy stored in the spring or weight, which came exclusively from diffusive
mixing of the two gases. If we use a removable partition rather than our little trapdoor this
work potential is lost, and entropy is generated, or equivalently, energy is dissipated.
But the gases were allowed to mix anyway, even if they perform work, so didn’t their

entropy increase, as calculated by (4.47) or (4.53)? No, as one must still abide by the First
Law. The mechanical energy stored in the spring came from somewhere: it must have come
from the kinetic energy of the molecules. If the container is adiabatic then the gas cooled
down. Equation (4.53) is now not a complete description of the number of microstates in
the final state, as it does not account for the fact that, as temperature decreases, the number
of accessible energy levels of the molecules decreases too, and so does the number of
microstates (see Glazer & Wark, 2001). Does the trapdoor example carry over to entropy
generation by diffusive heat flow?Yes, but it is less obvious how. The key is thatO changes
with temperature, so we need to imagine some contraption that is able to store mechanical
energy by intercepting packages of molecular kinetic energy exchanged between bodies at
different temperatures.

Worked Example 4.3 Configurational entropy in crystals

Configurational entropy plays an important role in the thermodynamic characterization of
minerals andmelts, that wewill study in later chapters. Here we focus on the configurational
entropy of minerals of constant composition and variable crystalline structure. Consider the
case of potassium feldspar. A unit cell of potassium feldspar consists of four formula units,
so that it has the composition: K4Al4Si12O32. Silicon and aluminum occupy tetrahedral
sites in the crystalline structure. There are a total of sixteen tetrahedral sites in a potassium
feldspar unit cell. In all potassium feldspar polymorphs it is possible to distinguish between
two types of tetrahedral sites, on the basis of their sizes and symmetries, which we can call
T1 and T2 sites, and such that there are eight T1 sites and eight T2 sites. In addition, in
some of the crystal forms it is also possible to discriminate between two subsets of the T1
sites, which we will label T1a and T1b. The four Al and twelve Si atoms can occupy the
sixteen tetrahedral sites in a number of different ways, giving rise to minerals with different
crystal symmetries and different amounts of configurational entropy.
Consider microcline first. In this mineral the T1a and T1b sites are distinguishable. The

four T1a sites are occupied by Al, whereas the four T1b sites and the eight T2 sites are
occupied by Si. This regular distribution of Si and Al atoms is said to constitute a structure
with long-range order. It is also a structure with a high information content: we have total
certainty of what we are going to find in each type of site. In sanidine, on the other hand,
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Al and Si distribute themselves randomly over all sixteen tetrahedral sites, such that, one
average (i.e. in a macrsocopic crystal with ∼ N atoms in it) there are six Si and two Al
atoms in the T1 sites and six Si and twoAl atoms in the T2 sites. This structure lacks long-
range order, and has a low information content: all we know is that we have a one in three
probability of finding anAl atom in any one tetrahedral site, compared to the certainty that
we had in the case of the ordered structure of microcline.
We will now count the number of equivalent microstates that give rise to each of the two

macrostates, microcline and sanidine. One “unit cell mol” of potassium feldspar contains
N unit cells, i.e. 4N Al atoms and 12N Si atoms. The objects that we will count are
crystalline sites, each of which can be in two possible states: filled with Si or filled withAl.
In the following equations, the numerator is the number of crystalline sites, the first term in
the denominator is the number of those sites occupied by Si, and the second term in the
denominator is the number of sites occupied by Al. For microcline we must consider the
number of microstates of each of the three types of distinguishable sites, so that we have:

OT1a = (4N)!
0!(4N)!

OT1b = (4N)!
(4N)!0!

OT2 = (8N)!
(8N)!0! .

(4.56)

The total number of microstates for the microcline macrostate is:

Omicrocline =OT1aOT1bOT2 = 1 (4.57)

or:

lnOmicrocline = 0. (4.58)

For sanidine:

OT1 = (8N)!
(6N)!(2N)!

OT2 = (8N)!
(6N)!(2N)! ,

(4.59)

using Stirling’s approximation we find:

lnOT1 = lnOT2 = 6N ln

(
4

3

)
+ 2N ln 4 (4.60)

and:

lnOsanidine = lnOT1+ lnOT2 = 2N

[
6ln

(
4

3

)
+ 2ln4

]
. (4.61)

The sanidine macrostate corresponds to a (much) greater number of microstates than the
microcline macrostate, so by Boltzmann’s postulate it must have a higher entropy. This
configurational entropy does not reflect a change in the composition of the phase, as in
the example of the mixing gases, but rather a change in the microscopic configuration of
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the crystal. We use Bolztmann’s equation, (4.54), to calculate the configurational entropies
of the two polymorphs. Noting that equations (4.58) and (4.61) are based on four formula
units of potassium feldspar, the molar configurational entropies (i.e. per mol of KAlSi3O8)
are:

Sconfigurational, microcline = 1

4
kB lnOmicrocline = 0 (4.62)

and:

Sconfigurational, sanidine = 1

4
kB lnOsanidine =R

[
3ln

(
4

3

)
+ ln 4

]
=R ln

(
256

27

)

≈ 18.7J K−1mol−1
(4.63)

The total entropy of a crystal, Stotal , is in general made up of two contributions:

Stotal = Sthermal +Sconfigurational . (4.64)

One contribution, Sthermal , arises from the distribution of (quantized) energy levels of the
constituent atoms, and is called the thermal or vibrational component of entropy. Thermal
entropy increases with temperature, as the vibrational energy of the atoms gets “dispersed”
over a greater number of possible energy levels, which increases the number of accessible
microstates. Configurational entropy, Sconfigurational , arises from the distribution of atoms in
the crystalline structure and remains constant with temperature as long as the distribution of
atoms between different crystalline sites does not change (e.g. as long as sanidine does not
invert to microcline). In a crystal with perfect long-range order there is no configurational
entropy, but at all finite temperatures the ordered crystal still has thermal entropy (see
Section 4.7).
The lower “information content” of the crystalline structure with greater configurational

entropy (sanidine in this example) is at the core of the relationship between “entropy and
disorder”: greater order implies greater certainty of what kind of atom is in what kind of
crystalline site, and therefore a lower number of microstates and lower configurational
entropy. It is a tragedy that this concept, that has a strict and unambiguous meaning in the
context of themicroscopic structure of matter, has beenmisunderstood andmisappropriated
by non-scientists, who then proceed to apply it erroneously in awide range of contextswhere
it does not belong. Entropy as a measure of disorder is a strictly microscopic concept and is
meaningless as a description of “macroscopic order”. Perhaps the most egregious example
of the misuse of the concept of entropy is its erroneous application to support the spurious
claim that biological evolution, and indeed the existence of life itself, requires a supernatural
explanation. I will dispel these detestable notions in Chapter 14.
There is one final point that you may be wondering about. If sanidine has higher entropy

than microcline (i.e. it is a macrostate that is more likely because it corresponds to a larger
number of equivalent microstates), then why does microcline exist at all? Shouldn’t it
spontaneously invert to sanidine? If the crystal were an isolated system (constant internal
energy and volume) then it would, subject to the removal of constraints (interatomic forces,
whichwould be the equivalent of the partition in Fig. 4.7). But the direction of a spontaneous
change in a crystal that is not an isolated system (which is the common situation in nature)
is not necessarily determined by an increase in entropy, but rather by a decrease in the
thermodynamic potential appropriate to the constraints on the system. We return to this in
Sections 4.8 and 4.9.
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4.7 The Third Law of Thermodynamics

4.7.1 Statement of the Third Law of Thermodynamics

There is an additional principle, called the Third Law of Thermodynamics, that is inde-
pendent of the First and Second Laws. It is essential in the development of chemical
thermodynamics, although much of classical thermodynamics and its applications to heat
engines and other engineering processes do not require it. We introduce the Third Law
by stating that experimental evidence shows that, as temperature approaches 0K, heat
capacities (CP and CV ) approach zero faster than temperature, i.e.:

lim
T→0

(
CP

T

)
= 0. (4.65)

Afew examples are shown in Fig. 4.8.Aconsequence of (4.65) is that the entropy difference
of a substance between 0K and any other temperature, T, is a finite value. Assuming that
heating takes place at constant pressure, and that there are no phase transitions between 0
and T, then dQ=CpdT , and we have:

S (T )−S (0)=
∫ T

0
dS =

∫ T

0

CP

T
dT (4.66)

with condition (4.65) guaranteeing that the integral does not blow up. An unknown
integration constant remains, however, which is the entropy at 0K.
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Fig. 4.8 Low temperature behaviors of CP/T for an ionic crystal (KCl, data from Berg & Morrison, 1957), a crystalline oxide
(MgO, data from Barron et al., 1959) and a crystalline silicate (enstatite, data from Krupka et al., 1985).
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It is found that the entropy change associated with any transition between equilib-
rium states of perfect crystalline substances vanishes as well as T → 0. The meaning of
“perfect crystalline substance” is that the crystal has no configurational entropy, i.e. that its
atoms are perfectly ordered in the sense that we discussed inWorked Example 4.3. Consider
a transformation A→ B between equilibrium states of perfect crystals. This could be, for
instance, a chemical reaction. Using the notation for changes in state variables that we laid
out in Section 1.13.1, we have:

�rSP ,T =
(
SP ,T

)
B
− (SP ,T )A

= (SP ,0)B − (SP ,0)A+
∫ T

0

(
CP

T

)
B

dT −
∫ T

0

(
CP

T

)
A

dT (4.67)

and�rSP ,T → 0 when T → 0. The low-temperature behavior of heat capacities, equation
(4.65), means that the two integrals in (4.67) also vanish as T → 0. One must therefore
conclude that:

lim
T→0

[(
SP ,0

)
B
− (SP ,0)A]= 0. (4.68)

The integration constant in (4.66), which is the entropy at absolute zero, is therefore the
same for all perfect crystalline substances. This was the original statement of the Third Law,
put forward by the physical chemist W. Nernst in 1906. Note that (4.68) does not fix the
absolute value of S at 0K, only that the value is the same for all crystalline substances.
Max Planck gave a stronger statement of the Third Law in 1916, by postulating that entropy
vanishes at 0K. Planck’s statement of theThird Law,which is the one that is widely accepted
today (and which subsumes Nernst’s original statement) is that the entropy of all perfect
crystalline substances vanishes at 0K. The emphasis on “perfect crystalline substance” is
important. For example, Planck’s statement of the Third Law implies that the entropy of
microcline vanishes at 0K. The entropy of sanidine, however, does not vanish, because its
configurational entropy remains unchanged with temperature (as long as the atoms don’t
order themselves spontaneously, in which case it is no longer sanidine).
The Third Law remains a postulate (just as the First and Second Laws), but its plausibility

can be demonstrated from quantum mechanical arguments. There is another statement of
the Third Law, which can be shown to be equivalent to Planck’s statement, and which is
also due to Nernst. This is that it is impossible to reach T = 0 in a finite number of reversible
steps. We will not be concerned with this statement in this book, but the interested reader
can see Baylin (1994) for a derivation.

4.7.2 An absolute entropy scale

The Third Law of Thermodynamics makes it possible to define absolute values of entropy
for all substances. This is in contrast to energy functions, such as enthalpy. Recall that in
Section 1.13.1 we constructed a scale for enthalpy by setting to zero the enthalpies of all
pure elements in their stable forms at 298.15 K and 1 bar, and then defining enthalpies of
formation for compounds relative to this arbitrary zero. The Third Law says that we cannot
do this for entropy. From equation (4.66) it follows that the entropy of all substances,
including pure elements, at 298.15 K and 1 bar is not zero. Using Planck’s postulate, we
define the reference state entropy, also called the reference state Third Law entropy, and
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commonly symbolized by S0298, as:

S0298 =
∫ 298.15

0

dQrev

T
dT (4.69)

with S(0)= 0 if the substance is a perfect crystal at absolute zero. If configurational entropy
is not zero at 0 K then it must be added to (4.69) (more on this in Chapter 7). If there are
no phase transitions between 0K and 298.15 K (which is the case for the three examples
shown in Fig. 4.8) then this integral is equal to (4.66) and is simply the area under the
curves in Fig. 4.8. If there are phase transitions between 0K and 298.15 K then the entropy
changes associated to the phase transitions must be added to (4.69), as discussed inWorked
Example 4.4.
Values of reference state Third Law entropies are listed in thermodynamic data bases. It is

important to reiterate this point: reference states entropies are not “entropies of formation”.
An entropy of formation could be defined as the difference between the Third Law entropy
of a compound and those of its constituent elements. If we call this difference�(S0298), then:

�
(
S0298

)
= S0298−

∑
elements

S0298, elements (4.70)

but, by (4.66), S0298, elements �= 0 for all elements, so �(S0298) �= S0298 for all substances.
Entropies of formation are seldom, if ever, used. The point of 4.70 is to make clear the
difference between reference state entropy and reference state enthalpy of formation.

Worked Example 4.4 Entropies of phase transitions

Heat capacity becomes undetermined at phase transitions, because the system absorbs heat
without experiencing a temperature change. In Chapter 1 we discussed this concept in
terms of sensible heat and latent heat, and saw that the enthalpy associated with a phase
transition must be treated separately from the heat capacity integrals that track enthalpy
changes associated with sensible heat (see Section 1.13.2). The same is true of entropy:
if phase transitions occur within the temperature range that one is integrating over (e.g.
equation (4.69)), then the entropy of the phase transitions, calculated as discussed inWorked
Example 4.1, must be added separately. A simple example is the element chlorine, which
melts at 172.12K and vaporizes at 239.05K. Figure 4.9a shows values ofCP /T for chlorine
between 0K and 270 K, measured by Giauque and Powell (1939). There are three different
curves, separated by two discontinuities that correspond to the two phase transitions,melting
and vaporization. The area under each of the curves corresponds to the contribution of each
of the phases to the Third Law entropy of chlorine at 270 K, but the entropies associated
with the phase transitions are not accounted for in this figure.
Third Law entropy of chlorine is plotted as a function of temperature in Fig. 4.9b. The

entropy for the solid at any temperature between 0K and 172.12 K is equal to the area
under the first curve in Fig. 4.9a between 0 K and that temperature. The entropy of liquid
chlorine at the melting point of 172.12 K is equal to the entropy of the solid at the melting
point plus the entropy of melting, which is equal to the enthalpy of melting divided by
the melting temperature (Worked Example 4.1). We then add the area under the second
curve in Fig. 4.9a to get the entropy of liquid chlorine at the vaporization point, 239.05K.
This, plus the entropy of vaporization (= enthalpy of vaporization divided by temperature
of vaporization), yields the entropy of chlorine gas at 239.05K, and so on.
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Fig. 4.9 Heat capacity, phase transitions and Third Law entropy of chlorine. Data from Giauque and Powell (1939).

The existence of a non-zero enthalpy of transition causes the entropy to be discontinuous
at the phase transition, as this example shows. For reasons that we discuss in Chapter 7, a
phase transition of this type, in which there is an entropy discontinuity and�Htransition �= 0,
is called a first-order phase transition. Melting, sublimation, vaporization and polymorphic
transformations (such as graphite→← diamond or kyanite→← sillimanite) are common exam-
ples of first-order phase transitions. Continuous (or “second-order”) phase transitions, in
which entropy is continuous (and thus�Htransition = 0) are important in the study of fluids
(Chapter 9) and also occur in some minerals (Chapter 8).
The entropy discontinuity associated with first-order phase transitions reflects a discon-

tinuity in the number of accessible microstates. A simplified view is as follows. In the
solid there are vibrational degrees of freedom only. At the melting point rotational degrees
of freedom appear, and so the energy of the molecules can be distributed over a greater
number of microstates. Even more microstates appear when the substance vaporizes and
translational degrees of freedom become available.

4.8 Thermodynamic potentials

4.8.1 The entropy maximum principle revisited

The goal of the rest of this chapter is to develop a formal thermodynamic definition of chem-
ical equilibrium, that will allow us to calculate phase equilibrium and phase compositions
in planetary environments. In order to reach that goal and to understand where each result
comes from we must follow a somewhat tortuous path that I will try to simplify as much
as possible without losing any of the necessary physical and mathematical justifications.
We begin by re-stating the Second Law of Thermodynamics in a formal mathematical lan-
guage. The Second Law says that the entropy of an isolated system can only increase, or,
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equivalently, that the state of equilibrium in an isolated system is the one in which entropy
takes its maximum possible value for the (constant) total internal energy content of the
system (we will ignore forms of energy other than E). By definition, an isolated system
does not interact with anything else, so we see that the condition dE = 0 (i.e constant inter-
nal energy) must be true of an isolated system. It must also be true that dV = 0, because
otherwise the system would exchange work with its environment. Moreover, an isolated
system must also be closed to the exchange of chemical components. If we call the mol
number (= number of mols) of the ith component ni , then for an isolated system it must be
dni = 0, for all i.
In the mathematical notation of thermodynamics, the maximum entropy statement of the

Second Law is often written as follows:

dSE,V ,ni = 0 (4.71)

d2SE,V ,ni < 0. (4.72)

These are mangled versions of the conditions for the maximum of a function: the first
equation says that the first derivative vanishes at an extremum, whereas the second one says
that, if the second derivative is negative at the extremum, then the extremum is a maximum.
The problem is that equations (4.71) and (4.72) are not written in terms of derivatives, but
rather in terms of the total differentials of entropy. This notation is mathematically sloppy,
as loudly pointed out by Truesdell (1984), but, regrettably, the use of equations such as
(4.71) and (4.72) is so deeply ingrained in thermodynamics that it is difficult to get away
from it. It is important, however, to understand what these equations are actually saying.
In particular, if E, V and ni are all constant, exactly what variable are we differentiating
entropy relative to, so as to find an extremum for the function? Which begs the question:
what (else) is entropy a function of? Or, in physical terms, why is entropy changing in the
first place?
The way to think about this is by imagining that, initially, there are restrictions, or

constraints, that prevent the system from changing towards equilibrium. For instance,
a partition separating two different gases that can mix by diffusion, or two different
electrolyte solutions that will precipitate a solid when they mix, or a perfect thermal insula-
tor separating two bodies at different temperatures. When we remove the restriction the
system changes towards equilibrium, and as it does so entropy changes as a function
of some physical quantity that drives the displacement towards equilibrium. This could
be, for example, exchange of gas molecules between the two sides of the container in
Fig. 4.7, or exchange of ions between the electrolyte solutions, or exchange of internal
energy between two bodies at different temperatures. We will analyze the latter exam-
ple in formal mathematical language so as to clarify the meaning of equations (4.71)
and (4.72).
At constant E, V and ni , the entropy of the isolated system varies as a function of

the amount of internal energy exchanged between the two bodies. Let the internal energy,
entropy and temperature of body j be Ej , Sj and Tj , respectively, and the corresponding
properties of the isolated system composed of the two bodies beE, S and T.We will assume
that there is no exchange of matter between the bodies, and that they are incompressible.
We then have:

E1+E2 =E (4.73)
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and, because the system is isolated (E constant):

dE1

dE2
=−1. (4.74)

We will track the change in entropy of the system relative to the internal energy content
of one of the bodies, say 1, at constant internal energy of the system. For an extremum we
need the first derivative to vanish, so that:(

∂S

∂E1

)
E,V ,ni

= 0. (4.75)

This is the same equation as (4.71), except that nowwe are explicitly stating how to calculate
the derivative. Using the fact that entropy is an extensive variable, we expand (4.75) as
follows: (

∂S

∂E1

)
E,V ,ni

=
(
∂S1

∂E1

)
E,V ,ni

+
(
∂S2

∂E1

)
E,V ,ni

= 0 (4.76)

and using (4.74): (
∂S

∂E1

)
E,V ,ni

=
(
∂S1

∂E1

)
E,V ,ni

−
(
∂S2

∂E2

)
E,V ,ni

= 0. (4.77)

From (4.14) and the properties of partial derivatives (Box 1.3, equation (1.3.18)), this
becomes: (

∂S

∂E1

)
E,V ,ni

= 1

T1
− 1

T2
= 0, (4.78)

which says that the entropy of the closed system takes an extremum value when T1 = T2.
We know, of course, that this is the equilibrium condition, but equation (4.78) by itself does
not prove it, because it does not tell us whether the extremum is a maximum or a minimum.
In order to test for this we need to find the sign of the second derivative, so we write the
formal equation equivalent to (4.72):(

∂2S

∂E2
1

)
E,V ,ni

= ∂

∂E1

(
∂S

∂E1

)
E,V ,ni

= d

dE1

(
1

T1
− 1

T2

)
(4.79)

or, using (4.74): (
∂2S

∂E2
1

)
E,V ,ni

= d

dE1

(
1

T1

)
+ d

dE2

(
1

T2

)
. (4.80)

From the chain rule:

d

dE

(
1

T

)
= d

dT

(
1

T

)
dT

dE
=− 1

T 2

dT

dE
(4.81)
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and, since we assume that the bodies are incompressible, heat transfer is at constant volume,
so, using (1.13.18):

dT

dE
= 1

CV
. (4.82)

Putting it all together, and noting that CV is always a positive quantity, we arrive at:(
∂2S

∂E2
1

)
E,V ,ni

=− 1

CV T
2
1

− 1

CV T
2
2

< 0, (4.83)

which is the equivalent of (4.72) and shows that entropy is indeed maximumwhen T1= T2.
As an aside, because the isolated system consists of the two bodies only, this result also
shows that the equilibrium temperature of the system, T, is uniform and equal to that of the
two bodies.
Exchange of internal energy is the only restriction that we are allowed to impose and

release in our example, so that it is the only variable relative to which we can track entropy
changes in the isolated system. Other restrictions are in general possible, such as exchanges
of chemical components, PdV work, electric work or radiant energy between different
parts of an isolated system. There may also be more than one independent restriction, a
point that will become important when we study chemical equilibrium, so that we may
need more than one variable to track the total entropy change. We will use the symbol
Zk to represent the independent variables that represent the quantities that are exchanged
between parts of an isolated system when restrictions are released and the system evolves
spontaneously towards equilibrium. The equilibrium condition, or, if you wish, the Second
Law of Thermodynamics, is then written as follows:

dSE,V ,ni =
∑
k

(
∂S

∂Zk

)
E,V ,ni

dZk = 0; dZk �= 0 (4.84)

and:

d2SE,V ,ni =
∑
k,j

∂

∂Zj

(
∂S

∂Zk

)
E,V ,ni

dZj dZk < 0; dZj �= 0, dZk �= 0. (4.85)

In our example there is only one restriction, because changes inE1 andE2 are not indepen-
dent (equation (4.74)), and the quantity whose flow drives the system towards equilibrium
is internal energy. These equations then become:

dSE,V ,ni =
(
∂S

∂E1

)
E,V ,ni

dE1 = 0; dE1 �= 0 (4.86)

and:

d2SE,V ,ni =
∂

∂E1

(
∂S

∂E1

)
E,V ,ni

(dE1)
2 < 0; dE1 �= 0, (4.87)

which, given the condition dE1 �= 0 are identical to (4.78) and (4.83), respectively. Through-
out the rest of this book Iwill use both notations. I think that it is important to become familiar
not only with the one that is widely used in thermodynamics (e.g. dS = 0) but also with the
one that is mathematically complete (e.g. ∂S/∂Z = 0). This is a point that is unfortunately
not made in most thermodynamics textbooks. You can always refer to equations (4.84) and
(4.85) to clarify the relationship between the two notations.
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4.8.2 The energy minimum principle

We now have a formal mathematical statement that defines thermodynamic equilibrium
(equations (4.84) and (4.85)), but this definition is unwieldy on two accounts. In the first
place, it is based on entropy, which is neither an intuitively simple concept nor a quantity
that is directly observable. Second, it only applies to isolated systems, and in nature we
frequently have to deal with systems that are not isolated. We will now take care of these
difficulties. The first step is to recast the Second Law of Thermodynamics in terms of an
extremum in internal energy rather than entropy. The full justification for doing this will
become apparent a posteriori. At this stage let us view it as a simple exercise in calculus:
can we start from (4.84) and (4.85) and obtain equivalent (NOT identical !!) expressions
for ∂E/∂Z and ∂2E/∂Z2? In particular, what can we say about the internal energy of a
constant-entropy system at equilibrium?
We first seek an expression for (∂E/∂Z)S in terms of (∂S/∂Z)E . Using equation (1.3.19)

(Box 1.3), and omitting the subscripts V and ni because these variables stay constant
throughout, we write:(

∂E

∂Z

)
S

=−
(
∂E

∂S

)
Z

(
∂S

∂Z

)
E

=−T
(
∂S

∂Z

)
E

. (4.88)

If (∂S/∂Z)E vanishes, then so does (∂E/∂Z)S . Thus, an extremum for entropy at constant
internal energy is also an extremum for internal energy at constant entropy. We now have
to decide whether it is a minimum or a maximum, so we take the second derivative. To
simplify the notation, we make (∂E/∂Z)S = Y . Then, using (1.3.12) (Box 1.3):(

∂2E

∂Z2

)
S

=
(
∂Y

∂Z

)
S

=
(
∂Y

∂Z

)
E

+
(
∂Y

∂E

)
Z

(
∂E

∂Z

)
S

, (4.89)

which, using (4.88) and the fact that at an extremum it is (∂E/∂Z)S = 0, simplifies to:(
∂2E

∂Z2

)
S

=
(
∂Y

∂Z

)
E

=
[
∂

∂Z

(
∂E

∂Z

)
S

]
E

=
[
∂

∂Z
(−T )

(
∂S

∂Z

)
E

]
E

. (4.90)

If you are wondering whether it is licit to use the condition (∂E/∂Z)S = 0 to simplify
(4.89), but ignore this simplification in (4.90), it is. The reason is that in (4.90) we are
evaluating (∂2E/∂Z2)S in general, and (∂E/∂Z)S = 0 is only a special point. We could
carry over the last term in (4.89) to the end of the calculation, and drop it there. The result
would be the same, because we are not operating on this term any further, but why make
the equations any more messy than they have to be?
Applying the product rule to the right-hand side of (4.90), and using the extremum

condition (∂S/∂Z)E = 0, we have:(
∂2E

∂Z2

)
S

=−
(
∂T

∂Z

)
E

(
∂S

∂Z

)
E

−T
(
∂2S

∂Z2

)
E

=−T
(
∂2S

∂Z2

)
E

> 0, (4.91)

where the inequality, which shows that this extremum is a minimum, follows directly from
(4.85), i.e. the fact that S at constant E is a maximum at equilibrium: (∂2S/∂Z2)E<0.
The Second Law of Thermodynamics therefore leads to a minimum energy princi-
ple: at equilibrium in a constant entropy system the internal energy takes it mini-
mum possible value. In the notation of thermodynamics we write the minimum energy
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principle as follows:

dES,V ,ni = 0 (4.92)

d2ES,V ,ni > 0, (4.93)

which can also be expanded in a way analogous to (4.84) and (4.85) (exercise left for the
reader).
The entropy maximum and the energy minimum principles are both valid definitions of

thermodynamic equilibrium. To understand what this means, you should now do Exercise
4.7, in which you are asked to prove the condition of thermal equilibrium (T1 = T2) in a
constant entropy system, by developing a set of equations for the derivatives of internal
energy that parallels equations (4.73) to (4.83). It is necessary to be extremely careful here,
though. The equilibrium state defined by equations (4.92) and (4.93) is not the same as
the one defined by equations (4.71) and (4.72). It cannot possibly be, as in the first case we
are dealing with an isolated system and in the second case we are not. If entropy were kept
constant in an isolated system then the system would not change and the minimum energy
principle would be meaningless, because internal energy would not be able to change. In
order for constant entropyminimization of the internal energy to be possible, the systemof
interest must be part of a larger isolated system in which entropy does increase. Consider
again the example of the two bodies at different temperatures, T2 > T1, shown now in
Fig. 4.10. If we want to achieve thermal equilibrium at constant internal energy (case I)
then the two bodies must make up an isolated system, A in the figure. This is the situation
considered in Section 4.8.1. If, on the other hand, we want to achieve thermal equilibrium
at constant entropy, which is the situation considered in this section (case II), then systemA
cannot be isolated. It must be able to exchange energy with its surroundings, which conform
an isolated system, labeled B in the figure, and the entropy of B must increase. In order for
the entropy of B to increase there must be heat transfer betweenAand the rest of B. Because
equilibrium of A at constant entropy requires that its internal energy be minimized, heat
must be transferred fromA to its surroundings. Therefore, the final temperature of A if it is
allowed to reach equilibrium at constant entropy must be lower than its final temperature
if it reaches equilibrium at constant internal energy.

T1 T2 T1 T2

(I) (II)

Isolated system
boundary

A: constant E
A: constant S

B: constant E

Fig. 4.10 (I) Thermal equilibrium at constant energy maximizes entropy in isolated system A. (II) Thermal equilibrium at
constant entropy minimizes internal energy in isentropic but non-adiabatic system A, and maximizes entropy in a
larger isolated system B.
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Worked Example 4.5 Heat flow at constant energy and at constant entropy

We reached the conclusion in the last sentence on the basis of physical arguments only. We
will now derive it formally. Consider Fig. 4.10 again. Let the initial temperatures of the two
bodies, T2 > T1, and their masses, m1 and m2, be the same in both thought experiments,
I and II in the figure. We will call the final equilibrium temperatures reached at constant
internal energy (case I) and constant entropy (case II) TE and TS , respectively. The constant
energy condition is:

�E =�E1+�E2 =m1CV (TE −T1)+m2CV (TE −T2)= 0 (4.94)

from which we get:

TE = m1T1+m2T2

m1+m2
. (4.95)

From the constant entropy condition, and assuming that heat capacities are constant:

�S =�S1+�S2 =m1CV

∫ Ts

T1

dT

T
+m2CV

∫ Ts

T2

dT

T
= 0 (4.96)

we get:

lnTS = m1 lnT1+m2 lnT2
m1+m2

. (4.97)

We can now make m2 = km1, with k > 0, and T2 = hT1, with h > 1. These two conditions
cover all possible situations: T2 is always greater than T1, but either of the two bodies can
be larger, and by any factor that we wish. Substituting into (4.95) and (4.97) we get:

TE = T1 (1+ kh)
1+ k (4.98)

and:

TS = T1h

k

1+k . (4.99)

Take the ratio TS/TE :

R = TS

TE
= (1+ k)h

k

1+k

1+ kh . (4.100)

For k > 0 and h > 1, we find that R < 1, always. This is shown in Fig. 4.11, that shows
that the equilibrium temperature at constant entropy (case II) is always lower than the
equilibrium temperature at constant internal energy (case I). If one of the bodies becomes
much larger than the other one (k→ 0 or k→∞) then R approaches 1, which is also what
one should expect. The effect of varying initial temperature contrast (parametrized by h) is,
however, very asymmetric.
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Fig. 4.11 The R = TS/TE , ratio of final temperature for the constant entropy process to final temperature for the constant
energy process, for the systems in Fig. 4.10, as a function of the ratio between the masses of the (h) and the ratio
between their initial temperatures (k).

4.8.3 Internal energy as a thermodynamic potential

Internal energy is one of several thermodynamic potentials. The name comes from analogy
with potentials in mechanics. Thermodynamic equilibrium is attained when a thermody-
namic potential is minimized subject to specific constraints. In the case of E these are:
constant entropy, volume and chemical composition, and the release of some internal restric-
tions of the system, for example, removal of a partition between different gases or solutions,
or of an insulating wall between bodies at different temperatures. Mechanical equilibrium
is attained when a mechanical potential (= potential energy per unit mass, Section 1.3.1)
is minimized. For example, a mountain range is not in mechanical equilibrium because
it has potential energy relative to the geoid (equipotential surface), which sets the mini-
mum potential level. When restrictions are released, for example by weathering, erosion
drives the surface of the planet towards mechanical equilibrium by lowering its gravita-
tional potential. Equilibrium would be attained if the surface of the planet were to become
everywhere identical to its equipotential surface. This state of mechanical equilibrium is
easily achieved in fluid planets but not in solid bodies.
When we discussed the entropy maximum and energy minimum principles we explicitly

stated that they applied to systems that are closed to changes in chemical composition,
which we specified with the subscript ni , meaning that the mol number of component i
remains constant, for all is. When studying natural systems we have to make allowance for
the possibility that changes in chemical composition may occur. In order to do this we add a
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term to equation (4.12) that accounts for changes in internal energy that arise from possible
changes in chemical composition. The equation becomes:

dE = TdS−PdV +
∑
i

µidni . (4.101)

The extensive variable ni is the mol number (= number of mols) of chemical component i,
andµi is an intensive variable called the chemical potential of i. The definition of chemical
potential follows immediately from (4.101):

µi =
(
∂E

∂ni

)
S,V ,nj �=i

. (4.102)

The chemical potential of component i in a thermodynamic system is the first derivative
of the internal energy of the system relative to the mol number of i, taken while keeping
S, V and the mole numbers of all other components, j �= i, constant. If you prefer physical
terms, the chemical potential of a chemical species i keeps track of how the internal energy
of the system varies when the amount of i varies by an infinitesimal amount, everything else
being held constant. Chemical potential will play a central role in much of the remainder of
this book. We shall soon see that there are alternative definitions of µi that are better suited
to solving problems in chemical equilibrium. It must be absolutely clear, however, that no
matter how one defines it, the chemical potential is always one and the same variable and,
everything else being the same, it has a single and well-defined value. It is no different
from the other two intensive variables in equation (4.102), temperature and pressure: no
matter how one chooses to define or measure them, their physical meaning and magnitude
are the same.
Equation (4.101) is called a fundamental equation, and the variables S, V and ni , are

called the natural variables for the thermodynamic potential E. There is more to these
definitions than just attaching labels to things. In the first place, the natural variables are
the ones that are held constant in order to specify the type of system or process for which
the thermodynamic potential E takes on a minimum value at equilibrium. Second, the
derivatives of E relative to its natural variables are physically significant properties. One
of these properties is the chemical potential, defined by (4.102). Others are:

(
∂E

∂S

)
V ,ni

= T ;

(
∂2E

∂S2

)
V ,ni

=
(
∂T

∂S

)
V ,ni

= T

CV
(4.103)

(
∂E

∂V

)
S,ni

=−P ;
(
∂2E

∂V 2

)
S,ni

=−
(
∂P

∂V

)
S,ni

=− 1

V βS
. (4.104)

If we know the fundamental equation for a system, E =E(S,V , ni ) then we can know
its thermodynamic state by using (4.102), (4.103) and (4.104) to calculate its pressure and
its temperature, in addition to the chemical potentials of its chemical components. In the
planetary sciences this result is much more than a clever-sounding mathematical gimmick.
In general, we cannot measure intensive variables such as pressure and temperature in deep
planetary interiors by dropping instruments into holes. The fundamental equation for the
thermodynamic potential suggests that there may be alternative ways of doing this.
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4.8.4 Conjugate variables, extensions and transformations of the
thermodynamic potential

Each of the pairs of variables that appear in the fundamental equation (4.101): P–V , T –S,
µ–n, are called conjugate variables and have some important regularities. First, and obvi-
ously, their product in every case has dimension of energy. Second, each conjugate pair
consists of an intensive variable (P , T , µ) and an extensive variable (V , S, n). Third, in
every case the intensive variable is a “driving potential” for “displacement” of the extensive
variable: a pressure gradient causes a change in volume, a temperature gradient causes heat
flow and hence a change of entropys and a gradient in chemical potential causes diffusion
of chemical components and hence a change in mol numbers. Each of the three products of
conjugate variables tracks a separate contribution to the thermodynamic potential: expan-
sion work, heat transfer and mass transfer. We now see that adding the compositional term∑
(µdn) to (4.12) in order to obtain (4.101) consisted of adding the product of a pair of

conjugate variables that accounts for the energetic contribution of chemical composition to
the thermodynamic potential E. There is no reason why we should stop here. Suppose that
we are interested in a system in which mechanical work is also performed. We then need to
add the product of an intensive variable that measures a “driving potential”, in this case a
force F , times its extensive conjugate, which is the distance over which the force acts, dx.
The fundamental equation for E then becomes:

dE = T dS−PdV +
∑
i

µidni +Fdx. (4.105)

Other terms could be added if we were also interested in the work of, for example, grav-
itational forces, elastic forces, Lorentz forces or nuclear forces. Once we identify all of
the energetic contributions to the thermodynamic potential we are free to add or remove
products of conjugate variables as needed.
Each of the terms in equations (4.101) or (4.105) is the product of an intensive variable

times the differential of its extensive conjugate. In other words, if we restrict ourselves to
equation (4.101) then internal energy is a function of the form E = E (S, V , ni). This
raises the question, is this the only way of writing a thermodynamic potential? Could we
define a thermodynamic potential in which the natural variables are intensive variables, so
that the minimum energy condition can be applied to a system in which intensive variables,
such as P and T, are held constant? On dimensional grounds all we can expect is that a
thermodynamic potential must be a sum of products of conjugate variables. In each of the
products, however, either of the two variables could be the one that appears in differential
form. Consider some other function, say Y = Y (T ,V ,ni ), or any other combination of
variables that are not conjugate among themselves. Do such functions exist? And do they
have the properties of thermodynamic potentials?

4.8.5 The Legendre transform

The answer to the questions in the last paragraph is yes, but we have to be careful with how
we construct these other functions. In order to ensure that any new function that we construct
is a thermodynamic potential we must begin with a thermodynamic potential, such as E =
E (S, V , ni), and transform this function in such a way that all of its properties are inherited
by the new function. This is accomplished by means of a mathematical procedure called
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the Legendre transform. The Legendre transform is in essence a change of coordinates. We
choose any (or all) of the coordinates of the original function (its natural variables) that are
not convenient for our purposes, and find a new function that contains the same information
in terms of the conjugates of the original coordinates, which become the natural variables
of the new function.
Suppose you have a function φ(x), and that its natural variable x is a physical quantity

that is hard to measure and/or that is difficult to control. The first derivative of φ: dφ/dx,
is, however, a physical quantity that is easy to handle. By this I mean that it is easy to
come up with natural situations in which dφ/dx stays constant, and also that dφ/dx is easy
to measure. Call this quantity dφ/dx = y. It would be useful if we could construct a new
function,ψ(y), that contains the same information asφ, but that is a function of y rather than
x. An example is internal energy. Entropy is one of the natural variables of E, but entropy
is a physical quantity that cannot be measured directly. We thus have the easy-to-define but
hard-to-work-with functionE(S). Its first derivative, (∂E/∂S)V = T (equation (4.103)) is,
however, a physical quantity that is easy to measure and is intuitively easy to grasp. We
seek another function that contains the same thermodynamic information as E, but that is
written in terms of T as one of its natural variables, instead of its conjugate S.
The Legendre transform allows us to do this for certain types of function. The concept

of the Legendre transform is best approached geometrically (Fig. 4.12). The key idea is

φ(x) φ

ψ
x

yx

y = dφ /dx

Fig. 4.12 Geometric interpretation of the Legendre transform. If a function is strictly convex, meaning that its second derivative
does not change sign such asφ(x) in the figure, then the function can also be described by the set of all of its tangent
lines. The value of the primitive function is given byφ= yx+ψ, where y is the slope of the tangent line at x. Note
thatψ(y) is the Legendre transform ofφ(x), given byψ(y)= φ(x)− yx .
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that the set of all tangent lines to the curve φ(x) describes the function φ(x) as well as the
function itself. This only works if there is a one-to-one relationship between x and y or, in
other words, if each value of the slope y occurs at one and only one value of x. This is the
case for the function shown in the figure. It means that x is a function of y, i.e. x = x(y).
The converse is necessarily true if φ is a function of x. A function for which there is a
one-to-one correspondence between the independent variable, x, and the slope, y, is called
strictly convex and is characterized by the fact that its second derivative never changes sign.
Equations (4.103) and (4.104) show that this is the case for the natural variables of internal
energy, so the Legendre transform can be applied to E.

From Fig. 4.12 it is clear that we can write ψ as follows:

ψ= φ− yx. (4.106)

So as to keep track of the fact that the function that we seek is a function of y, we write
(4.106) more completely as follows:

ψ(y)= φ(x(y))− yx(y), (4.107)

where the convexity of φ guarantees that the function x(y) exists. Equation (4.107) is the
Legendre transformofφ: it transforms the functionφ(x) into the functionψ(y), that contains
the same information as φ, but now in terms of our preferred variable y. In particular,
the Legendre transform switches the roles of the conjugate variables in thermodynamic
functions. From the definition of y = dφ/dx we have:

dφ= ydx. (4.108)

Differentiating ψ relative to y in equation (4.106):

dψ

dy
= dφ

dx

dx

dy
− y dx

dy
− x = y

dx

dy
− y dx

dy
− x =−x (4.109)

or:

dψ=−xdy. (4.110)

If φ is a function which has x as one of its natural variables, the ψ is another function for
which y, which is the conjugate of x, is a natural variable.
We need to demonstrate that if φ is a thermodynamic potential, then ψ is also a thermo-

dynamic potential. First we note that the Legendre transform conserves the convexity of
the function, as we can easily see from:

d2ψ

dy2
= d

dy

(
dψ

dy

)
=−dx

dy
=− 1

d2φ

dx2

. (4.111)

This says that, if the second derivative of φ does not change sign (φ is strictly convex), then
the second derivative of ψ does not change sign either, and it is strictly convex too. From
here it is simple to show that the Legendre transform is invertible, and that the Legendre
transform of ψ is φ (exercise left to the reader).

Suppose now that φ is a thermodynamic potential. This means that in a system in which
its natural variables are held constant φ takes a minimum value at equilibrium.As usual we
track the behavior of the systems relative to an unspecified variable Z that can vary when
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some restriction is released. Recall that Z is not one of the natural variables of φ, but rather
a quantity that can vary while the natural variables of φ are held constant. For example, this
could be the progress of a chemical reaction towards equilibrium measured by the amount
of matter that reacts, or the progress of a system towards thermal equilibrium measured by
the amount of heat transferred. It is not necessary to specify what the variable Z actually
is. We write the equilibrium condition for the thermodynamic potential φ as follows (see
equations (4.84), (4.85) and (4.92), (4.93)):

(
∂φ

∂Z

)
x

= 0 (4.112)

(
∂2φ

∂Z2

)
x

> 0, (4.113)

where for simplicity we consider only one natural variable, x. From equation (4.106) we
find the derivative of ψ at constant value of its natural variable, y:

(
∂ψ

∂Z

)
y

=
(
∂φ

∂Z

)
y

− y
(
∂x

∂Z

)
y

=
(
∂φ

∂Z

)
y

. (4.114)

The last identity in (4.114) comes from the fact that the following must always be true:

(
∂y

∂Z

)
x

=
(
∂x

∂Z

)
y

= 0 (4.115)

given that, as x = x(y), if y is constant then x is constant, and conversely if x is constant
then y is constant. Using identities (1.3.12) and (4.115):

(
∂φ

∂Z

)
y

=
(
∂φ

∂Z

)
x

+
(
∂φ

∂x

)
Z

(
∂x

∂Z

)
y

=
(
∂φ

∂Z

)
x

, (4.116)

which substituting in (4.114) shows that:

(
∂ψ

∂Z

)
y

=
(
∂φ

∂Z

)
x

. (4.117)

This is true in general, and therefore also at an extremumatwhich (4.112) is valid.Therefore,
an extremum of the function φ is also an extremum of the function ψ. In order to prove that
ψ is a thermodynamic potential all we need to do is prove that this extremum is a minimum.
We take the second derivative of (4.106):

(
∂2ψ

∂Z2

)
y

=
(
∂2φ

∂Z2

)
y

− y
(
∂2x

∂Z2

)
y

=
(
∂2φ

∂Z2

)
y

, (4.118)

where the second identity follows from (4.115): derivatives of any order of y at constant x,
and of x at constant y, vanish. Switching the order of differentiation and applying identity



222 The Second Law of Thermodynamics

(4.116) repeatedly:

(
∂2φ

∂Z2

)
y

= ∂

∂Z

[(
∂φ

∂Z

)
y

]
y

= ∂

∂Z

[(
∂φ

∂Z

)
x

]
y

= ∂

∂Z

[(
∂φ

∂Z

)
y

]
x

= ∂

∂Z

[(
∂φ

∂Z

)
x

]
x

=
(
∂2φ

∂Z2

)
x

(4.119)

from which we conclude that: (
∂2ψ

∂Z2

)
y

=
(
∂2φ

∂Z2

)
x

(4.120)

so, from (4.113), a minimum for φ is also a minimum for ψ. This completes the proof
that the Legendre transform constructs a new function that inherits its properties from
the primitive function. The Legendre transform of a thermodynamic potential is another
thermodynamic potential in which the roles of the conjugate variables have been switched.
The advantage of deriving this relationship in terms of a generic variable with the properties
of a thermodynamic potential is that the results are valid for any and all of the natural
variables of any thermodynamic potential. For functions of several variables, such as E =
E(S,V ,ni), we can transform as many or as few of the natural variables as we wish.
Relations (4.117) and (4.120) are true for every variable that we transform.

4.8.6 The four fundamental thermodynamic potentials

Bymeans of the Legendre transformwe can construct three other thermodynamic potentials
starting from E, by transforming each of its natural variables, S and V, separately, or both
of them simultaneously. Let H be the potential in which pressure replaces its conjugate,
volume, as a natural variable. By (4.107):

H (S,P ,ni )=E (S,V (P ),ni )−V (P )
(
∂E

∂V

)
S,ni

(4.121)

or, more compactly and using (4.104):

H (S,P , ni )=E (S,V , ni )+PV , (4.122)

which is identical to (1.59). Enthalpy is the thermodynamic potential which has entropy
and pressure as its natural variables. Using the notation of thermodynamics and substituting
(4.101) (compare equation (4.13)):

dH = dE+PdV +V dP = T dS+V dP +
∑
i

µidni . (4.123)

Enthalpy is the thermodynamic potential that allows us to define equilibrium at constant
pressure and entropy.
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In the study of equations of state (Chapters 8 and 9) it is convenient to work with
a thermodynamic potential that is a function of temperature and volume. This function is
called theHelmholtz free energy and is symbolized byF =F (T ,V , ni ). Some authors useA
for this potential but I reserveA for a different function called the affinity (Chapter 12). The
Helmholtz free energy is the Legendre transform of internal energy relative to entropy, i.e.:

F (T ,V , ni )=E (S(T ),V , ni )−S(T )
(
∂E

∂S

)
V ,ni

(4.124)

or, using (4.103):

F (T ,V , ni )=E (S,V , ni )−T S, (4.125)

which results in:

dF = dE−T dS−SdT =−SdT −PdV +
∑
i

µidni . (4.126)

A function that is central to much of chemical thermodynamics is the Gibbs free energy,
G = G(T ,P ,ni ) which is the double Legendre transform of internal energy relative to
entropy and volume:

G(T ,P ,ni)=E (S,V ,ni )−S
(
∂E

∂S

)
V ,ni

−V
(
∂E

∂V

)
S,ni

. (4.127)

Using (4.103), (4.104), (4.125) and (1.59) we find the following identities:

G=E−T S+PV
G= F +PV
G=H −T S.

(4.128)

In thermodynamics notation the total differential of Gibbs free energy in terms of its natural
variables is:

dG=−SdT +V dP +
∑
i

µidni . (4.129)

Other thermodynamic potentials are possible, by transforming any of the other conjugate
variables in (4.105), or any additional ones that we may need to add for any specific prob-
lem. In particular, potentials in which mol numbers ni are switched with their conjugates,
chemical potentials µi , are known as grand thermodynamic potentials.

4.9 Gibbs free energy

Planetary bodies act as large reservoirs of thermal energy and mass that tend to buffer P
and T while chemical reactions take place, so that it is commonly a good approximation
to assume that natural chemical reactions occur at constant temperature and pressure. The
thermodynamic potential appropriate to studying equilibrium under these conditions is
therefore the Gibbs free energy, which has pressure and temperature as its natural variables
(equations (4.127) and (4.129)). Equilibrium in a system at constant pressure and constant
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temperature is defined by the minimum value of its Gibbs free energy. In the differential
notation of thermodynamics we express this as follows:

dGT ,P ,ni = 0 (4.130)

d2GT ,P ,ni > 0. (4.131)

A significant portion of the remainder of this book is focused on calculating Gibbs free
energy for a wide range of planetary materials over a wide range of pressures and temper-
atures. Minimization of Gibbs free energy is the fundamental mathematical tool used to
study chemical equilibrium. Here we focus on some general properties of the Gibbs free
energy function.

4.9.1 Derivatives of the Gibbs free energy

The first and second derivatives ofG relative to its natural variables, P ,T and ni , show up
repeatedly in chemical equilibrium calculations, so we review them here. From (4.129) we
have the following first derivatives: (

∂G

∂T

)
P ,ni

=−S (4.132)

(
∂G

∂P

)
T ,ni

= V (4.133)

(
∂G

∂ni

)
T ,P ,nj �=i

= µi . (4.134)

The chemical potential of component i is, thus, the first derivative ofG relative to ni , taken
at constant T, P and mol numbers of all the other system components, nj �=i . This definition,
which is the one that we will most commonly use in this book, is different from (4.102),
but the chemical potential is the same as the one defined there, and has the same value. The
second derivative relative to T is:(

∂2G

∂T 2

)
P ,ni

=−
(
∂S

∂T

)
P ,ni

=−CP
T

, (4.135)

which relies on the definitions of entropy (equation (4.6)) and heat capacity at constant
pressure (equation (1.53)). We also have:(

∂2G

∂P 2

)
T ,ni

=
(
∂V

∂P

)
T ,ni

=−V βT , (4.136)

where we have used the definition of isothermal compressibility, equation (1.65). Using the
definition of coefficient of thermal expansion, equation (1.66), the mixed second derivative
yields: (

∂2G

∂P∂T

)
ni

=
[
∂

∂T

(
∂G

∂P

)
T ,ni

]
P ,ni

=
(
∂V

∂T

)
P ,ni

= V α. (4.137)

The three material properties that I defined in section 1.11, CP , βT and α, are simple
functions of the three second derivatives of Gibbs free energy. Other material properties
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such as heat capacity at constant volume, adiabatic compressibility and the Grüneisen
parameter are similarly related to the second derivatives of other thermodynamic potentials
(see Exercise 4.9).
A fundamental result of multivariable calculus says that, if a function complies with

certain requirements about continuity and differentiability (and thermodynamic potentials
do), then the order of differentiation in mixed second- and higher-order derivatives does
not matter. This means that we could have also written (4.137) as follows:

(
∂2G

∂P∂T

)
ni

=
[
∂

∂P

(
∂G

∂T

)
P ,ni

]
T ,ni

=−
(
∂S

∂P

)
T ,ni

, (4.138)

which results in: (
∂S

∂P

)
T ,ni

=−
(
∂V

∂T

)
P ,ni

=−V α. (4.139)

Equation (4.139) is one example of a large number of analogous relationships, called
Maxwell relations, that can be obtained from the identity of mixed second derivatives of any
thermodynamic potential. These relations are sometimes tabulated, but I don’t see the point
of that, as they are very easy to derive starting from the definition of the thermodynamic
potential appropriate to the problem at hand (see Exercise 4.10). Maxwell’s relations are
often useful when solving problems in thermodynamics (e.g. Chapters 8, 9 and 10). They
are also used to derive thermodynamic identities as discussed in Appendix 2.

Worked Example 4.6 Isentropes and adiabats revisited

An example of the application of the derivatives of thermodynamic potentials is to find the
equation that describes P and T along an isentropic transformation. Consider an isentropic
transformation in a system in which the only intensive variables are P and T. This could
be, for instance, compression or expansion of a convecting fluid in a planetary mantle,
ocean or atmosphere. For a constant entropy transformation we have:

dS =
(
∂S

∂T

)
P

dT +
(
∂S

∂P

)
T

dP = 0. (4.140)

Substituting (4.135) and (4.139) in (4.140):

CP

T
dT −V αdP = 0 (4.141)

or: (
∂T

∂P

)
S

= αV T

CP
, (4.142)

which is the equation for the adiabat, (3.32), that we derived in Chapter 3. We have now
rigorously demonstrated that this equation describes a process that is isentropic, hence the
partial derivative notation in (4.142). As we saw in Section 4.4, a transformation can be
adiabatic but not isentropic. In such a case the entropy of the systemmust increase during the
adiabatic transformation, and the relationship between P and T given by equation (4.142)
is no longer valid, because (4.140) is no longer valid. When we apply equation (3.32),
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or (4.142), to calculate temperature in a convecting fluid (e.g. a planetary mantle) we are
assuming that the process is isentropic. Although this is commonly a good approximation,
it may not always be the case. In Chapter 3 we examined, and discarded, heat diffusion as a
possible source of entropy.We did not call heat diffusion an entropy-generating process, but
nowwe known that that is what it is. Theremay be other sources of entropy, however. Exam-
ples include dissipation of gravitational potential energy by separation of phases of different
densities, radioactive heating and viscous deformation.We return to this topic in Chapter 10.

4.9.2 The Gibbs free energy surface

Calculating and analyzing chemical equilibrium is in essence an exercise in computing and
comparing Gibbs free energy surfaces, and seeking the conditions under which different
surfaces intersect one another. We will perform these tasks algebraically rather than geo-
metrically (Chapter 5), but having a mental image of what the Gibbs free energy surfaces
look like is always a powerful aid in understanding what one is doing. The Gibbs free
energy of a system of constant composition at equilibrium varies as a function of pressure
and temperature as described by equations (4.132), (4.133) and (4.135) to (4.137). The
function G =G(P , T ) for a system at equilibrium is therefore always a surface with the
geometrical properties sketched in Fig. 4.13. The entropy of a system is always a positive
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Fig. 4.13 Geometry of the Gibbs free energy surface for any system at equilibrium. The slope and curvature of the G surface on
the T and P sections are given by the first and second derivatives of G, as shown in the figure, and always have the
same signs.
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quantity. (Careful! Do not confuse this statement with the fact that the entropy change for
a process can be negative.) Therefore, the first temperature derivative of G is always neg-
ative, whereas the first pressure derivative (V ) is always positive, as shown in the figure.
The corresponding second derivatives are always negative (equations (4.135) and (4.136)),
so that the Gibbs free energy surface has negative curvature, as shown in Fig. 4.13. The
magnitudes of the slopes and curvatures may vary greatly, depending on the nature of the
system. For example, the curvature of the G surface relative to pressure at constant tem-
perature (equation (4.136)) is greater for gases than for solids and liquids, reflecting the
greater compressibility of gases. The first derivative relative to temperature at constant
pressure is also commonly greater for gases than for other substances, because gases have
higher entropy. The geometric properties of the G surface, however, are always as shown
in Fig. 4.13.

Exercises for Chapter 4

4.1 Show that isothermal expansion is accompanied by an increase in entropy.
4.2 Calculate the rate of entropy production by frictional heating during fault motion,

Section 1.12.3. This is an example of a process that is adiabatic but not isentropic.
Can you give other examples among planetary processes?

4.3 Formation of amineral solid solution is accompanied by an increase in configurational
entropy, which as we shall see in Chapter 5 is an important aspect in the calculation
of equilibrium in natural systems. As a first example, derive a general expression
for the configurational entropy of orthopyroxene solid solution along the binary join
MgSiO3–FeSiO3, as a function of composition (i.e., XMg or XFe). What are the
configurational entropies of pure enstatite and of pure ferrosilite? What orthopyrox-
ene composition has maximum configurational entropy? How does configurational
entropy change with temperature?

4.4 Repeat Exercise 4.3 for olivine solid solution, between the end-members forsterite:
Mg2SiO4 and fayalite: Fe2SiO4. How does you expression compare to the one for
orthopyroxene?

4.5 Consider a homogeneous mixture of two gases, 1 and 2, with mol fractions X1 and
X2. Calculate the value of O for the mixed gas phase. Now consider the possibility
that there is a small inhomogeneity in the composition of the gas between different
parts of the container, such that the left hand side is richer in gas 1 and the right hand
side is richer in gas 2. Call this difference δ. Call the number of microstates of the
inhomogeneous gas mixtureO′. Derive an equation for the ratio (O′/O) as a function
of δ and of the total number of molecules of gas, N . What is the meaning of the ratio
(O′/O)? What can you say about the magnitude of the largest random concentration
fluctuations that are likely to appear spontaneously in a homogeneous gas phase?How
does the magnitude of likely random concentration fluctuations relate to the size of
the system (i.e., the value of N )?

4.6 The following is known asGibbs paradox. Consider three different experiments based
on the setup in Fig. 4.7. (i) Side A is filled with He at 1 bar and 298 K, assumed to
behave as an ideal gas, and side B is empty. The partition is removed and He expands
to fill the entire volume. Calculate the increase in entropy. (ii) Side B is filled with
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He at 1 bar and 298 K, assumed to behave as an ideal gas, and side A is empty. The
partition is removed and He expands to fill the entire volume. Calculate the increase
in entropy. (iii) Both sides are filled with He at 1 bar and 298 K, assumed to behave as
an ideal gas. The partition is removed and the gases are allowed to mix. Does entropy
increase in this case? Why or why not? Resolve the paradox. The microscopic view
is essential.

4.7 Prove that theminimum energy principle leads to the condition of thermal equilibrium
(uniform temperature distribution) in a system evolving at constant entropy.

4.8 Modify the fundamental equation for Gibbs free energy, (4.129), to account for the
effect of mechanical work on Gibbs free energy. Derive equations for the rate of
change of Gibbs free energy of the Earth’s mantle during (i) the isobaric cooling
leg and (ii) the adiabatic decompression leg. Assume that the mantle is composed
of pure forsterite and ignore phase transitions of magnesium silicates. Estimate the
rate of change of Gibbs free energy of the mantle during the isobaric and adiabatic
legs. Thermodynamic properties can be found in Holland and Powell (1998) – use
values at 298 K and 1 bar. Assume that the mantle supports a shear stress of order
100 bar. Comment on the relative contributions of the various terms in the fundamental
equation to the rate of change of Gibbs free energy, and reconsider Exercise 4.3 in
the light of your results. Comment on the relative magnitudes and signs of the rate
of change of Gibbs free energy during adiabatic decompression and isobaric cooling,
and discuss how your results relate to the driving mechanism for mantle convection.

4.9 Find expressions for the heat capacities at constant volume and constant pressure,
the isothermal and adiabatic bulk moduli, the isobaric and adiabatic coefficients of
thermal expansion, and the Grüneisen parameter in terms of the second derivatives of
the thermodynamic potentials E, H , F and G.

4.10 Derive the relationships among all themixed second derivatives of the thermodynamic
potentialsE,H , F andG (Maxwell’s relations). Simplify these relationships as much
as possible using the expressions for material properties from Exercise 4.8.



5
Chemical equilibrium. Using composition as a

thermodynamic variable

A comprehensive understanding of planetary bodies requires that we study how changes
in physical conditions give rise to chemical phenomena. Physical conditions may be deter-
mined, for example, by the intensive variablesP andT, where possibleP–T combinations are
in turn determined by the nature of heat sources and heat transfer mechanisms (Chapters 2
and 3). Chemical phenomena are transformations that entail redistribution of matter among
andwithin phases. Some examples are:mineral transformations andmelting in solid planets,
changes in the relative amounts of molecular species that make up a gas or a supercritical
fluid phase, and changes in the ionic constituents in an electrolyte solution such as seawater.
The study of phenomena such as these is based on a mathematical description of chemical
equilibrium, even in those cases in which departures from equilibrium cannot be ignored
(Chapter 12). In this chapter we lay the foundations for the study of chemical equilib-
rium, including a comprehensive discussion of the use of composition as a thermodynamic
variable. The principles and mathematical formalisms that we develop here are general,
but important differences in implementation for different types of systems exist. These are
dealt with in subsequent chapters.

5.1 Chemical equilibrium

5.1.1 Fundamental concepts

We begin by distinguishing between homogeneous and heterogenous systems. A homo-
geneous system consists of a single phase. Some examples are: gas in a container with
nothing else in it, a planetary atmosphere with no clouds nor suspended particulate matter,
or a mineral. A heterogeneous system is one in which we can identify more than one phase,
for example, the contents of a liquefied gas cylinder (liquid + gas), a planetary atmosphere
with clouds, or a polymineralic rock. The chemical composition of a system is specified by
the relative amounts of aminimumnumber of independently variable chemical components.
There are two requirements on this set of components, which are properly called system
components: (i) the components must be linearly independent, and (ii) they must span the
full compositional range of the system of interest. The system components may or may not
correspond to actual chemical species present in the system (e.g. molecules, ions, etc.). For
example, the composition of a homogeneous gas phase that contains the chemical species
H2O, H2, CO2, CO, CH4 and NH3 can be described in terms of the relative amounts of the
four system components C, H, O and N. We shall define these concepts more rigorously in
Chapter 6, but for now this intuitive introduction will suffice.
The state of chemical equilibrium in a system at constant pressure and temperature is

the one in which the Gibbs free energy of the system takes its minimum possible value.
229
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Fig. 5.1 Isobaric sections across the Gibbs free energy surfaces for a 2:1 mixture of molecular hydrogen and oxygen, H2O gas
and H2O liquid. The equilibrium state at any P and T is the one for which G takes its minimum value.

Consider a homogeneous system consisting of a gas composed of hydrogen and oxygen in
an atomic ratio 2 H : 1 O. There are at least two possible states for this homogeneous system:
a mixture of molecular H2 and O2 in a ratio of 2:1 or gaseous H2O (other possibilities that
we are not considering would be mixtures of atomic and/or ionic species).Which of the two
is the equilibrium state? If we specify the temperature and pressure for which we seek an
answer, then all we need to do is calculate the Gibbs free energy of each of the two possible
states of the system, and determine which of the two is the smallest value.
Figure 5.1a showsGibbs free energy for a 2:1 hydrogen–oxygenmixture, and forH2Ogas,

as a function of temperature and at a constant pressure of 1 bar. The theoretical framework
for these calculations is discussed in Box 5.1, and a calculation procedure using Maple is
explained in Software Box 5.1. The figure shows that the Gibbs free energy of gaseous
H2O is everywhere lower, within this temperature range, than that of a physical mixture
of hydrogen and oxygen with the same chemical composition. What this means is that the
spontaneous process at constant temperature and pressure, i.e. the one that will minimize
the thermodynamic potential G, is the combination of hydrogen and oxygen to form H2O.
The difference in Gibbs free energy that accompanies the chemical reaction is called the
Gibbs free energy of reaction, �rG (see Fig. 5.1a). For a spontaneous chemical reaction,
it must be �rG < 0. Thus, H2O does not spontaneously break up into H2 + O2 at these
conditions because �rG for that process is greater than zero. Water can break up into
hydrogen and oxygen at room temperature, for example by electrolysis, but in that case
electrical work is being performed on the system so the process is not “spontaneous”.

Box 5.1 Calculation of Gibbs free energy

We seek an explicit expression for the Gibbs free energy of a chemical species at any arbitrary temperature
and pressure. For now let us define a species as an entity (compound, pure element or ion)whose composition
in the system of interest remains fixed. For example, O2 and H2O are two of the chemical species in the
terrestrial atmosphere, H2O and Na+ are two of the chemical species in seawater, and forsterite and fayalite
are chemical species in olivine.
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Box 5.1 Continued

In this book I symbolize the standard state molar Gibbs free energy of a chemical species at P and T
by G0

P,T . Symbols for thermodynamic variables in all chemical equilibrium equations will be in uppercase
non-bold font, representing molar quantities (Section 1.9). The superscript 0 means “standard state” and
indicates that the value of G corresponds to the pure chemical species at those conditions. We will see that
this is different from G of the chemical species in a solution. For example, the standard state molar Gibbs free
energy of oxygen at 1 bar and 20◦C, symbolized by G0

1,298, is the molar Gibbs free energy of pure oxygen at
those conditions, but it is not equal to the Gibbs free energy of oxygen in air at 1 bar and 20◦C. Similarly, G0

of forsterite is not the same as the Gibbs free energy of forsterite in an olivine solid solution at the same P
and T .

The reference state for Gibbs free energy is 298.15 K and 1 bar, andwe symbolize G0 at these conditions by
G0
1,298. This notation is not standard, but in my experience it is the clearest one, because it states explicitly the

conditions at which one is evaluating the thermodynamic function. Using (4.132) and (4.133), and recalling
that S and V are functions of temperature and pressure, we see that the Gibbs free energy for the chemical
species at any other P and T is given by:

G0
P,T = G0

1,298−
∫ T

298
S(P, T)dT +

∫ P

1
V(P, T)dP. (5.1.1)

We need to find explicit expressions for the three terms in the right hand side of equation (5.1.1). The two
integrals can be evaluated in any order, but the simplest, and standard, way is the following: evaluate the
temperature integral along an isobaric path at 1 bar, from 298 K to T , and evaluate the pressure integral
along an isothermal path at T , from 1 bar to P. Alternative ways of doing this, which lead to the same result,
are proposed in end-of-chapter problems.

(i) Gibbs free energy at the reference state. The value of G0
1,298 is listed in some thermodynamic data bases as

the reference state Gibbs free energy of formation, �f G
0
1,298. This is defined as the Gibbs free energy of

a chemical species measured relative to G of its constituent elements, which are arbitrarily set to zero for
all pure elements in their stable configurations at 298.15 K and 1 bar. This is the same as the definition of
enthalpy of formation (Section 1.13.1), but recall that the entropy of pure elements at these conditions is not
zero (Section 4.7.2). Thus, whereas �f H

0
1,298 is a measured quantity (heat evolved at constant pressure),

�f G
0
1,298 is not. It includes a contribution from the difference between the entropy of the compound and

the (non-zero) entropies of the elements at 298 K. The reference state Gibbs free energy of formation is
commonly (but not always!) defined as follows:

�f G
0
1,298 =�f H

0
1,298− 298�

(
S0298
)
, (5.1.2)

where �(S0298) is the difference between the Third Law entropy of the species of interest and those of
its constituent elements in their stable configuration, taken at 298.15 K and 1 bar (equation (4.70)). All
thermodynamic data bases list values of�f H0

1,298 and S
0
298, so that it is always possible to calculate�f G0

1,298
(which is the value of G0

1,298 in equation (5.1.1)) with (5.1.2), if its value is not listed. We will see, however,
that although the value of G0

1,298 is needed in order to calculate the Gibbs free energy of a chemical species,
it is not required when calculating the change in G associated with chemical reactions, called the Gibbs free
energy of reaction,�rG.
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Box 5.1 Continued

(ii) The temperature integral. We expand the temperature integral in equation (5.1.1) by using (4.135), as
follows: ∫ T

298
S(1, T)dT =

∫ T

298

(
S0298+

∫ T

298

CP
T
dT

)
dT

= S0298 (T − 298)+
∫ T

298

∫ T

298

CP
T
dT dT , (5.1.3)

where S0298 is the Third Law entropy of the chemical species at 298 K (not the “entropy of formation”, see
Section 4.7.2). The double integral is easily solved by parts. Defining:

u=
∫ T

298

CP
T
dT

v = T

(5.1.4)

we get:

T

∫ T

298

CP
T
dT =

∫ T

298

∫ T

298

CP
T
dT dT +

∫ T

298
CP dT . (5.1.5)

Rearranging and substituting in (5.1.3):∫ T

298
S(1, T)dT = S0298 (T − 298)+ T

∫ T

298

CP
T

dT −
∫ T

298
CP dT . (5.1.6)

In order to evaluate the heat capacity integrals one must substitute the appropriate heat capacity
equations, see Software Box 1.1. These equations are polynomials in T that are empirical fits to measured
CP values and may not have a strong physical foundation, beyond being able to reproduce the weak
temperature dependence of heat capacity above the Debye temperature (Section 1.14.3 and Chapter 8).
The choice of Cp(T) equation is generally dictated by the choice of data base. Throughout most of this
book we use thermodynamic data from Holland and Powell (1998), who rely on the Shomate heat capacity
equation. An important exception is the calculation of phase equilibria at very high pressures, for which a
different heat capacity equation will be used (Chapter 8).

It is useful to start collecting terms incrementally, as we find expressions for each of the components of
equation (5.1.1). Using (5.1.6) we can write an expression for the Gibbs free energy of a chemical species
at T and P as follows:

G0
P,T =�f G

0
1,298− S0298 (T − 298)− T

∫ T

298

CP
T
dT +

∫ T

298
CPdT +

∫ P

1
V(P, T)dP. (5.1.7)

(iii) The pressure integral . Evaluation of the pressure integral requires that we substitute an explicit equation of
state for the material, which is a function V = V(P, T). As we discussed in Chapter 1, condensed phases
(solids and liquids) and non-condensed phases (gases) respond very differently to changes in pressure.
Their equations of state are different enough that we need to consider each case separately.

(iii)(a) Condensed phases. The simplest approximation for condensed phases is to assume that their volume
does not change with pressure or temperature. The pressure integral in equation (5.1.7) is evaluated
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Box 5.1 Continued

at constant temperature T . Let V1,T be the volume of the chemical species at 1 bar and T. If V is
constant, then the pressure integral is simply:

∫ P

1
V(P, T)dP = V1,T

∫ P

1
dP = (P− 1)V1,T ≈ PV1,T , (5.1.8)

where for pressures of more than a few tens of bars we can assume that the lower limit
of integration vanishes. Note that equation (5.1.8) is written in terms of the volume at the
temperature of interest, T , but molar volumes of chemical species are typically tabulated at a
reference temperature of 298 K. Thermal expansion is not insignificant, but, again, we can ignore
it as a first approximation and calculate (5.1.8) by using the reference state volume, V1,298.
These approximations (incompressible phases that undergo no thermal expansion) are generally
acceptable for near-surface conditions, but accurate calculation of Gibbs free energy requires that
we account for changes in molar volume with pressure and temperature, as well as for the
temperature dependence of the coefficient of thermal expansion and the temperature and pressure
dependencies of the bulk modulus. We discuss this in Chapter 8.

(iii)(b) Gases. The simplest treatment for gases results from assuming ideal gas behavior. Using the ideal gas EOS,
the pressure integral is simply:

∫ P

1
V(P, T)dP = RT

∫ P

1

dP

P
= RT lnP. (5.1.9)

Real gases approach ideal gas behavior if their temperature is much higher than the critical
temperature, and at very low pressure (Chapter 9). Equation (5.1.9) is applicable to surface
environments in the terrestrial planets (except perhaps Venus). Equations of state for fluids
in planetary interiors are discussed in Chapter 9.

Summary

We summarize our results so far. For pressure and temperature conditions characteristic of the surface
and shallow crust of the large terrestrial planets (and perhaps much of the interior of small solid bodies),
the Gibbs free energy of a species in a condensed phase can be approximated to first order by combining
equations (5.1.7) and (5.1.8):

G0
P,T =�f G

0
1,298− S0298 (T − 298)− T

∫ T

298

CP
T
dT +

∫ T

298
CPdT + PV1,298. (5.1.10)

For gases at P–T conditions that are far removed from their critical point (low pressure, high temperature)
the pressure term is replaced with (5.1.9), and we obtain:

G0
P,T =�f G

0
1,298− S0298 (T − 298)− T

∫ T

298

CP
T

dT +
∫ T

298
CP dT + RT lnP. (5.1.11)
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Software Box 5.1 Calculation of Gibbs free energy of ideal gas and incompressible phase
The file th_template_2.mw contains the following two new Maple procedures:

Gsurf_idealgas: calculates the Gibbs free energy of an ideal gas, or of a mixture
of ideal gases, with equation (5.1.11). Thermodynamic properties are entered in
the spreadsheet RefStateData, and the gas or mixture of gases are specified in
a table with two columns, as explained in Software Box 1.1. The procedure calls
on procedures in the package th_shomate.mw to perform the heat capacity
integrals, and then adds the pressure integral. It performs the calculations over
a P–T range and with P–T increments that are specified in the procedure call.
Output is sent to a text file whose name is specified in the procedure call.

Gsurf_Vconst: works as Gsurf_idealgas but assumes that the volume of the
phase or assemblage is constant (pressure integral as in equation (5.1.10)).

The data for hydrogen, oxygen and water are stored in tab-delimited format in a file
named waterprops.

There is, of course, more to this story. In the first place, we know that if the temper-
ature is lower than 100◦C at 1 bar, then the equilibrium condition is not H2O gas but
liquid H2O. The reason why this does not show up in Fig. 5.1a is that I have not included
the curve that represents the Gibbs free energy function for liquid H2O. This situation is
rectified in panel (b) of the figure. We can now compare Gibbs free energies for three
different possible states of a system with the same chemical composition. At any given
pressure and temperature, the equilibrium state, which we also call the stable state, is
the one in which Gibbs free energy is lowest. At 1 bar pressure molecular H2O is sta-
ble relative to H2 + O2 everywhere in the temperature interval 0–200 ◦C. At T < 100◦C
the Gibbs free energy of liquid water is lower than that of H2O gas, so that the stable
state is liquid water. The converse is true at T > 100 ◦C. At T = 100◦C and P = 1 bar
the Gibbs free energies of liquid and gaseous H2O are the same, so that both phases
are stable.
There is another aspect that we must consider. If we mix hydrogen and oxygen in a

container at room temperature we know from Fig. 5.1a that the system is not at equilibrium
and that a spontaneous reaction that lowers the system’s Gibbs free energy by forming
molecular H2O should take place. But does this happen? Hydrogen-filled airships were
built and flown in Germany for many years with no apparent inconveniences, until the
Hindenburg disaster in 1937. The answer is that in order for the reaction to take place we
need to “excite” the system, for example, by supplying heat in the form of an open flame or
an electrical spark (which is what apparently doomed the Hindenburg). The effect of this
excitation is to break the bonds in the H2 and O2 molecules, so that the atoms are able to
recombine as H2O molecules. This is the chemical equivalent of removing a restriction in a
system, such as a wall separating two different gases or an insulating layer between bodies
at different temperatures.We saw that, when such restrictions are removed, isolated systems
evolve spontaneously in the direction mandated by the Second Law of Thermodynamics.
In the case of a chemical reaction the restrictions are the chemical bonds in the molecules of
the reactant species.We remove that restriction by supplying the amount of energy required
to break those bonds. This energy is called the activation energy for the chemical reaction,
which we will discuss in Chapter 12.
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5.1.2 Gibbs free energy surfaces and phase boundaries

The curves in Fig. 5.1 are isobaric sections across Gibbs free energy surfaces such as that
in Fig. 4.13. We can represent Gibbs free energy surfaces by means of contour lines of
constant G projected on a P–T plane, as shown in Fig. 5.2. The solid curves are contours
on the G surface for H2O gas, and the dotted lines are contours on the G surface for liquid
H2O. The different shapes of the two sets of curves reflect the different effects of pressure
on the Gibbs free energy of condensed and non-condensed phases, as discussed in Box 5.1
and in more detail in Chapters 8 and 9. The Gibbs free energy of a gas is a strong function of
pressure, whereas G of a liquid or solid is much less sensitive to pressure. Within the P–T
range of the figure, and for the contour interval chosen (2 kJ), there are four intersections
between contour lines,markedwith the solid circles.These are four points on the intersection
between the two surfaces, which is shown by the thick solid curve. Along this curve the
Gibbs free energy of the liquid and of the gas are the same, so that the two phases are in
heterogeneous chemical equilibrium. The curve is a phase boundary. We can see that the
thermodynamic condition for a phase boundary is simply:

�rGP ,T ,ni = 0, (5.1)
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Fig. 5.2 Phase diagram for H2O. Data from Robie et al. (1995) were used to calculate the Gibbs free energy surfaces for liquid
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236 Chemical equilibrium

where the Gibbs free energy of reaction, �rG is defined in the same way as �rH

(equation (1.86)). A phase boundary is the locus of points for which �rG= 0.
The diagram in Fig. 5.2 is an example of a phase diagram. It shows which is the stable

phase for different combinations of intensive variables. For each combination of pressure
and temperature that is not on the phase boundary there is one phase that has lower Gibbs
free energy. Equilibrium requires that the phase with lower Gibbs free energy, called the
stable phase, forms at the expense of the other one. In this example, two phases (liquid and
gaseous H2O) are stable (i.e. they are at equilibrium) along the phase boundary. On the high
pressure - low temperature side of the phase boundary, shown in dark grey,Gliquid <Ggas,
so the stable phase is liquid H2O. On the other side of the phase boundary, shown in light
grey, we haveGgas <Gliquid , so the stable phase is H2O gas. Note that these relations refer
to molar Gibbs free energy, i.e. an intensive property.
Phase diagrams can become more complex in systems composed of more chemical

species than this one, and phase diagrams can be constructed so as to showphase equilibrium
as a function of other intensive variables besides pressure and temperature. In every case,
however, it is of great help to keep in mind that a phase diagram is simply a set of curves
defined by intersections among Gibbs free energy surfaces.

5.1.3 Properties of phase boundaries and phase transitions

We can make some useful generalizations about phase equilibrium by examining the geom-
etry of the G surfaces in Fig 5.2 along an isobaric cross section (e.g. at P = 1 bar, Fig. 5.3)
and an isothermal cross section (e.g. at T = 100◦C, Fig. 5.4). The intersections of the curves
in these two diagrams represent one and the same point on the phase boundary in Fig. 5.2:
equilibrium between liquid and gaseous H2O at 1 bar and 100◦C. This example deals with
a phase boundary that separates two distinct phases with the same chemical composition.A
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Fig. 5.3 Isobaric section across the phase diagram for H2O. The phase that is stable on the high-temperature side of the phase
transition must have a steeper G–T curve, so its entropy must be higher than that of the low-temperature phase.
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phase boundary in a one-component system is called a discontinuous, or first-order, phase
transition. The Gibbs free energy is continuous at a discontinuous phase transition, as it
must be given that this is the definition of equilibrium between the two phases. The first
derivatives ofG (S and V ) are, however, discontinuous at the phase transition (this is where
the name comes from). This also implies that there is a finite enthalpy change associated
with first-order phase transitions (see Worked Example 1.1). Moreover, if the first deriva-
tives ofG are discontinuous, then the second derivatives, heat capacity and compressibility
(equations (4.135) and (4.136)), are undefined at the phase transition. This means that as
long as the two phases coexist at equilibrium the system water–steam can absorb indefinite
amounts of thermal and mechanical energy without its temperature or pressure changing,
although the relative amounts of the two phases will change.
The isobaric section (Fig. 5.3) shows that the slope of theG surface for H2O gas is steeper

than that for liquid H2O. By equation (4.132), the interpretation of this is that the entropy
of the gas is higher than the entropy of the liquid. This conclusion is general and expected
on physical grounds. The entropy of a non-condensed phase must be higher than that of a
condensed phase with the same chemical composition because transition from a condensed
to a non-condensed state (boiling or sublimation) requires absorption of thermal energy
in order to break intermolecular bonds, and heat absorption means an increase in entropy
(equation (4.6)). The microscopic interpretation is that there is an increase in the number
of accessible microstates for molecular vibrations.
From the geometry of the isobaric section it follows that, among condensed phases, the

entropy of the solid must be lower than the entropy of the liquid, because the intersection
that defines the melting point must occur at lower temperature than the one that defines the
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boiling point. This agrees with the fact that melting requires absorption of heat in order to
break atomic bonds in the solid, so that the entropy of melting is always a positive quantity
(Worked Example 4.1).
On the isothermal projection, Fig. 5.4, the slope of theG surface for the gas is also steeper

than that for the liquid. This is the geometric expression of the higher molar volume, or
lower density, of the gas relative to the liquid (equation (4.133)). The curvature of the gas
surface on the isothermal projection is also greater than that of the liquid. From (4.136) we
see that this reflects the greater compressibility of the gas (a consequence of the molecules
being further apart and of the weakness of intermolecular forces).
We can make an important generalization: the high entropy phase is on the high temper-

ature side of a phase transition, and the high density (= low molar volume) phase is on
the high pressure side of a phase transition.We can also derive an algebraic expression for
the slope of the phase transition. For a system of constant chemical composition, the total
differential of the Gibbs free energy of reaction d(�rG), is given by:

d (�rG)=
(
∂ (�rG)

∂T

)
P

dT +
(
∂ (�rG)

∂P

)
T

dP . (5.2)

From the linearity of differentiation (the derivative of a sum is the sum of the derivatives)
and equations (4.132) and (4.133) it is simple to show that:(

∂ (�rG)

∂T

)
P

=−�rS (5.3)

and: (
∂ (�rG)

∂P

)
T

=�rV , (5.4)

where �rS and �rV , the entropy and volume of reaction, are the differences in entropy
and volume across the phase transition. Substituting in (5.2) we get:

d (�rG)=−�rS dT +�rV dP . (5.5)

Along aphase transition theGibbs free energyof reaction is identically zero, i.e.d(�rG)=0.
It follows from (5.5) that the slope of the phase transition is given by:

dP

dT
= �rS

�rV
. (5.6)

This equation is known as the Clapeyron equation, and the slope of a phase transition is
often called the Clapeyron slope. It is important to keep in mind that both �rS and �rV

are generally functions of P and T, so that the Clapeyron slope is not constant.

5.2 Equilibrium among pure chemical species

In the preceding section we used a one-component system to derive the thermodynamic
condition of chemical equilibrium and some of the properties of phase transitions. All
of these results generalize to equilibrium in multicomponent systems. In multicomponent
systems more than one phase is stable on at least one of the sides of a phase boundary
(Chapter 6). Properly speaking a phase boundary in a multicomponent system is not a
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phase transition, but the use of the phrase “phase transition” to refer to multicomponent
phase boundaries is common in the planetary sciences, for instance, as in the “spinel–garnet
phase transition” or the “perovksite phase transition”. In any event, because Gibbs free
energy is an extensive property (i.e. it is additive) phase boundaries between multi-phase
assemblages in multicomponent systems have the same geometric properties as first order
phase transitions. The goal of the rest of this chapter is to build the mathematical framework
needed to calculate chemical equilibrium in systems composed of an arbitrary number of
components and in which phase compositions may be variable. There are several ways of
doing this. In the most general case, one starts with a list of chemical components and a set
of possible phases, and seeks the subset of phases (and perhaps their compositions, if they
can vary) that minimizes Gibbs free energy for every combination of intensive variables
and for a constant bulk composition of the system. A way to visualize this procedure, and
indeed to implement it, is to calculate the Gibbs free energy surface for each possible phase
and then seek the combination of surfaces that minimizes G subject to the constant bulk
composition constraint. Phase boundaries are then defined by intersections between these
surfaces, in a manner analogous to what we did in Fig. 5.2. We examine this approach to
phase equilibrium in the context of species distribution in homogeneous fluids (Chapters 9
and 14). In this chapter we follow a different route which, if not as general, is pedagogically
clearer.Wewill assume that we know beforehand the phase boundary that wewant to locate.
The location of the phase boundary will then be found by solving for the set of intensive
variable combinations thatmakes�rG= 0. In otherwords,wewill calculate the intersection
between Gibbs free energy surfaces directly, without calculating the surfaces themselves.
This is procedurally simpler than finding Gibbs free energy minima, but requires more prior
qualitative knowledge of the system of interest. Specifically, we need to know what is the
exact phase assemblage or phase boundary that applies to our problem. Inmost instances this
is either known from observations or can be inferred with reasonable certainty (Chapter 6).
We begin by considering chemical equilibrium among chemical species in their standard

state. The precise meaning of standard state will become clear later on, but for now we
note that a pure chemical species at a specified temperature and pressure and in a well-
defined physical state is one possible definition of standard state. For example, at a given
temperature and pressure, pure liquid H2O, or pure solid H2O, or pure H2O gas are all
possible (though different) standard states for the chemical species H2O.

Consider a balanced chemical reaction involving an arbitrary number of chemical
species, each of them in its standard state, where νi is the stoichiometric coefficient
of species i (νi < 0 for reactants, νi > 0 for products). Chemical equilibrium among
the species occurs at all coordinate combinations for which �rG = 0. The coordi-
nates can be any intensive variables, for example, pressure and temperature, but other
choices of intensive variables are also possible. Finding the equilibrium position con-
sists simply of solving the equation �rG = 0 for the intensive variables of interest. If
the chemical reaction takes place among chemical species in their standard states, then
we symbolize the Gibbs free energy change of the reaction at pressure P and temperature
T by �rG

0
P ,T , where the superscript 0 means standard state. For every thermodynamic

variable Z, we define the difference operator for a balanced chemical reaction, �r ,
as follows:

�rZ =
∑
i

νiZ
i , (5.7)
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where Zi is the molar value of Z for species i. This is a generalization of equation (1.86).
The equilibrium condition for a reaction among chemical species in their standard state is
thus given by:

�rG
0
P ,T =

∑
i

νiG
0,i
P ,T = 0, (5.8)

where G0,i
P ,T is the standard state Gibbs free energy of species i at P and T.

The linearity of differentiation allows us to combineG and any of its derivatives (S,V ,Cp,
etc.) using (5.7). Therefore, using equation (5.1.7) we write the standard state Gibbs free
energy change for a chemical reaction at P and T as follows:

�rG
0
P ,T =�r

(
�fG

0
1,298

)
−�rS

0
298 (T − 298)

−T
∫ T

298

�rCP

T
dT +

∫ T

298
�rCP dT +�r

(∫ P

1
V (P ,T )dP

)
. (5.9)

In this equation we have placed the difference operators for the heat capacity terms under
the integral signs. This implies that heat capacities for all of the species can be combined
linearly, which is possible if they are all given by the same polynomial function. This is
almost always the case (see Box 5.1 and Software Box 1.1), but if it is not then the integral
for each species must be performed separately. The pressure integral generally cannot be
treated linearly, so equation (5.9) will not be made explicit in pressure for now.

From equation (5.1.2), the difference in Gibbs free energy of formation among chemical
species is:

�r

(
�fG

0
1,298

)
=�r

(
�fH

0
1,298

)
− 298�r

[
�
(
S0298

)]
. (5.10)

Now,�(S0298), the “entropy of formation” of a species, is the difference between the Third
Law entropy of the species and those of its constituent elements, given by equation (4.70).
Chemical stoichiometry requires that the sum of chemical elements be the same for both
sides of a chemical reaction (this is what balancing the reaction is all about!), so that �r

for the entropies of the constituent elements must always vanish. This means that:

�r

[
�
(
S0298

)]
=�rS

0
298, (5.11)

where �rS
0
298 is simply the difference in reference state Third Law entropies between

products and reactants, as given by equation (5.7). Following equation (1.98) we also write:

�r

(
�fH

0
1,298

)
=�rH

0
1,298, (5.12)

where �rH
0
1,298 is the difference in reference state enthalpies of formation between prod-

ucts and reactants. Substituting in (5.9) and simplifying we get the following equilibrium
equation:

�rG
0
P ,T =�rH

0
1,298−T�rS

0
298

−T
∫ T

298

�rCP

T
dT +

∫ T

298
�rCP dT +�r

(∫ P

1
V (P ,T )dP

)
, (5.13)
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which we can also write as follows, for the sake of keeping track of where the various
contributions to the Gibbs free energy of reaction come from:

�rG
0
P ,T =�rH

0
1,T −T�rS

0
1,T +�r

(∫ P

1
V (P ,T )dP

)

=�rG
0
1,T +�r

(∫ P

1
V (P ,T )dP

)
. (5.14)

Equation (5.13) (or (5.14)) is the starting point for all our calculations of chemical equilib-
rium. Setting�rG

0
P ,T = 0 (equation (5.8)) allows us to calculate heterogeneous equilibrium

among pure phases of fixed composition. The set of intensive variable combinations that
satisfy the equation is the phase boundary. This is what we did in Section 5.1. The appli-
cation of equation (5.13) goes beyond calculating phase diagrams among species in their
standard states, however. We will see that calculating heterogeneous equilibrium among
phases of variable composition, and calculating homogeneous chemical equilibrium within
a phase, are simple extensions of (5.13).

Worked Example 5.1 Calculation of a phase boundary: the spinel–garnet transition in planetary
mantles, part (i)

The mineral assemblage of the Earth’s upper mantle, and almost certainly of the upper
mantles of the other terrestrial planets, consists of olivine, orthopyroxene, clinopyroxene
and an aluminous phase. The aluminous phase changes with increasing pressure, from
plagioclase to spinel to garnet. Although the modal abundance of the aluminous phase is
generally subordinate to those of the other uppermantle phases, its identity exerts a powerful
control on the melting relationships of mantle lherzolite, such as melting temperature, melt
productivity and major element melt compositions. Each aluminous phase imparts distinct
trace element signatures tomaficmagmas formed in its stability field, and they can also affect
the physical properties of mantle rocks, such as density and elastic parameters. It is thus of
interest to know the pressure–temperature conditions under which the plagioclase–spinel
and spinel–garnet transitions occur in planetary mantles. Here we focus on the spinel–
garnet transition. Plagioclase peridotites are restricted to shallow and high-temperature
environments in the suboceanic mantle. It is left as an exercise to the reader to find out the
limits of plagioclase stability in planetary mantles.
All of the mantle phases involved in the spinel–garnet transition are Fe–Mg solid

solutions. In addition, both pyroxenes dissolve significant amounts ofAl, Cr is a major com-
ponent of spinel and also enters pyroxenes and garnet, and Ca is an important component in
garnet.All of these compositional characteristics result in considerable complications when
trying to determine the conditions under which the spinel to garnet transition takes place,
which have been the subject of many published studies (Green &Ringwood, 1967;Asimow
et al., 1995; Robinson&Wood, 1998;Klemme&O’Neill, 2000a;Klemme, 2004).We begin
with the simplest possible model for the transition, which is the Mg end-member reaction:

MgAl2O4+ 2Mg2Si2O6 �Mg2SiO4+Mg3Al2Si3O12. (5.15)

In this simple model the spinel–garnet transition is the phase boundary defined by equili-
brium (5.15). Calculation of the phase boundary consists of finding the set of all P–T
combinations for which �rG = 0. We need an explicit function for the pressure integral
in equation (5.13), and the simplest one comes from assuming that crystalline solids are
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incompressible and undergo no thermal expansion. The following equation for the phase
boundary then follows directly from equations (5.13) and (5.1.10):

�rH
0
1,298+

∫ T

298
�rCP dT −T

(
�rS

0
298+

∫ T

298

�rCP

T
dT

)
+ (P − 1)�rV

0
solids = 0,

(5.16)

where�rV
0
solids is the volume change of the reaction calculated from the molar volumes of

the solid phases at the reference state, 1 bar and 298.15K.We shall relax the constant volume
assumption in Chapter 8 – consider equation (5.16) as an “interim rough approximation”
only, the goodness of which needs to be determined.
We have one equation, (5.16), in two unknowns, P and T. We say that this is a system

with one degree of freedom, meaning that we can freely specify one of the two variables,
and solve the equation for the other one. The equation is linear in P but not in T, and the
heat capacity integrals are messy polynomial functions that do not have analytical roots.
Solving for P by hand would be simple, if computationally intensive. Trying to come up
with an approximate solution for T by hand is much harder. Either solution, however, is
very easy to implement in a symbolic computation system such as Maple, as explained in
Software Box 5.2.

Software Box 5.2 Calculation of a phase boundary among pure phases. Spinel–garnet
equilibrium, part (i)
The file th_template_3.mw contains Maple procedures that solve for a phase
boundary among pure solid phases, assuming constant volume. The procedures in
this worksheet solve equation (5.16). Calculation of the Gibbs free energy change of
reaction is placed in its own procedure, named dGPT. This procedure is called as a
function by Maple’s equation solver, which makes solving for a phase boundary very
straightforward. There are two different procedures that do this.

Pbound: solves for pressure along the phase boundary, at a specified temperature,
by making dGPT=0. The temperature range and increment are specified in the
procedure call, as are the name of the table containing the reaction stoichiometry
and the name of the file where output is to be sent. Since the �rG= 0 equation is
linear in P the solution is very fast.

Tbound: solves for temperature along the phase boundary, at a specified pressure, by
making dGPT=0. The pressure range and increment are specified in the procedure
call, as are the name of the table containing the reaction stoichiometry and the name
of the file where output is to be sent. In this case the �rG = 0 equation is non-
linear (and messy) because of the heat capacity integral. An initial temperature
guess must therefore be supplied in the procedure call, and this guess is updated at
each iteration of the solver (for a different pressure) with the solution for the last
iteration. If the procedure fails to find a solution it is almost certainly because the
initial temperature guess is in an unfeasible solution region. Enter a different initial
guess and try again.

The data for the spinel–garnet phase boundary are stored in tab-delimited format in a
file named spgrt.
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Fig. 5.5 Phase boundary between spinel lherzolites and garnet lherzolites calculated with equation (5.16), assuming

(incorrectly) that no Al dissolves in orthopyroxene. The MOR adiabat is a possible adiabatic thermal gradient beneath
Earth’s mid-ocean ridges, calculated from equation 3.32: P = P0+ (Cp/αV) ln(T/T0) , assuming T0 = 1623 K
(1350◦C) at P0 = 3 kbar. The solidus is a possible lherzolite solidus (fromMcKenzie & Bickle, 1988). The calculated
phase boundary predicts that initial melting under mid ocean ridges should take place in the stability field of garnet
lherzolites, which is thought not to be the case (see also Chapter 10).

The results of the calculations are shown in Fig. 5.5. The figure suggests that, if the
terrestrial mantle were composed of the elements Mg, Al, Si and O only, and under the
incorrect assumption that all species remain in their standard states, garnet would become
stable under mid-ocean ridges at P ∼17 kbar. They also suggest that mid-ocean ridge
basalts (MORB) should form entirely in the stability field of garnet lherzolites. We will
come back to these results and see the extent to which our conclusion will have to be
modified once we account for some of the changes in phase compositions that actually
take place in the mantle.
The geometric properties of a multicomponent phase boundary are the same as those

of a one-component phase transition, but in this case the assemblage with higher entropy
is the one that is on the high-temperature side of the phase boundary, and the assemblage
with lower molar volume is on the high-pressure side. The Clapeyron slope of the phase
boundary is the ratio of the change in entropy to the change in volume between reactant
and product assemblages.

5.2.1 An important digression: uncertainties in calculated equilibrium conditions

There is a question that we need to address. This is: how sensitive is a calculated phase
boundary, such as the one shown in Fig. 5.5, to uncertainties in the values of reference state
thermodynamic properties? We begin our analysis of this question with Fig. 5.6, which
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Fig. 5.6 Intersection between the Gibbs free energy surfaces for the assemblages spinel+2 enstatite (solid contour lines) and
garnet+ forsterite (dashed contour lines). Dots show four intersection points between the surfaces. Phase boundary,
the same one as in Fig. 5.5, is shown by thick curve. Note the very shallow intersection between the Gibbs free energy
surfaces of the two condensed assemblages.

shows contours on the Gibbs free energy surfaces for the assemblages spinel + 2 enstatite
(solid lines) and forsterite + pyrope (dashed lines), together with the phase boundary for
reaction (5.15) (this diagram is equivalent to Fig. 5.2). There is a crucial message here,
the importance of which I cannot overemphasize: the two Gibbs free energy surfaces are
almost exactly parallel to one another. Clearly, even a small relative displacement of the
G surfaces can have a large effect on their intersection, which is what defines the phase
boundary. This is in stark contrast to the phase diagram for H2O (Figure 5.2), in which the
intersection between theG surfaces for liquid and gas is sharp. It is important to understand
the reason for the difference. The local slope of the Gibbs free energy surface is given
by the entropy and volume of the assemblage (see Fig. 4.13). Entropy and volume are
significantly different for a liquid and a gas of the same chemical composition, leading to
a sharp intersection such as that in Fig. 5.2. In contrast, in a reaction in which only solid
phases participate the entropies and volumes of the reactant and product assemblages are
typically so close that the two surfaces meet almost tangentially.
We can attach some numbers to this conclusion. From equations (4.132) and (4.133) and

the linearity of differentiation the temperature and pressure derivatives of �rG are �rS
and �rV , respectively. The values of these functions for reaction 5.15 at a characteristic
temperature of 1400 ◦C are ∼6.9 J K−1mol−1 and 0.8 J bar−1mol−1. This means that a
relative displacement of the G surfaces of, say, 1 kJ corresponds to a displacement in their
intersection of ∼150◦C or ∼1.25 kbar. These are certainly not negligible values, but their
significance becomes even more crucial when they are compared to the absolute Gibbs
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free energies of the assemblages, i.e. to the actual values of the contours in Fig. 5.6. For
reaction (5.15), the Gibbs free energies of the assemblages spinel+ 2 enstatite or forsterite
+ pyrope at 1400◦C are ∼8800 kJ mol−1. A displacement of 1 kJ mol−1 corresponds to
approximately 0.01% of this value.
Although this analysis is based on a specific example, the conclusion is general: even

small errors in the determination of reference thermodynamic properties can have enormous
effects on calculated phase diagrams. This is true despite the fact that enthalpies and Gibbs
free energies are referenced to an arbitrary zero, because their measurement nevertheless
entails measuring energy transfers of the order of thousands of kilojoules.And, in any case,
entropy values are absolute values, by the Third Law.Adescription of the experimental and
mathematical procedures used to determine thermodynamic properties is beyond the scope
of this book; see, for example, Anderson, 2005; Berman, 1988; Holloway andWood, 1988;
Holland and Powell, 1998; Anderson, 1995.

In addition to errors in reference state thermodynamic properties, ignoring the compress-
ibility and thermal expansion of the solid phase can have important energetic implications,
with large effects on the positions of calculated phase boundaries. We discuss this in
Chapter 8, where we will see that the constant volume assumption is not generally an
acceptable approximation, except for surface and near-surface conditions. Uncertainties in
solution properties (discussed later in this chapter) and in the energetics of higher-order
phase transitions (discussed in Chapter 7) must be considered too.

5.3 Phases of variable composition: chemical potential revisited

5.3.1 Equilibrium among chemical species in an arbitrary state

Most planetary materials, whether solids, liquids or gases, are phases of variable composi-
tion. We refer to such phases as solutions. The chemical species that make up a solution,
such that the amount of any of them can be varied independently of all the other species,
are called solution components or phase components. We will often refer to them simply
as components, but they must not be confused with the system components defined in
Section 5.1. For example, consider a system made up of olivine (forsterite–fayalite) and
orthopyroxene (enstatite–ferrosilite) solid solutions. This system can be described with the
three system components FeO, MgO and SiO2, as they constitute a linearly independent
set that spans the composition of the system. None of these is, however, a phase compo-
nent, as their amounts cannot be varied independently of the others while preserving the
integrity of the phases olivine and orthopyroxene. The appropriate phase components in
this case are Mg2Si2O6, Fe2Si2O6, Mg2SiO4 and Fe2SiO4. This set does not constitute a
set of system components, as they are not linearly independent. It is generally clear from
the context whether one is referring to system components or phase components, but the
type of component will be specified if there is any possibility of confusion. We shall return
to this topic in Chapter 6.
We now seek an equation that describes chemical equilibrium among phase components

in solutions of variable composition, or, equivalently, among chemical species that are not
necessarily in their standard states. Consider a system made up of h phases, in which there
are k phase components among which it is possible to write a balanced chemical reaction.
We make no claims as to the relative values of h and k , nor as to whether or not other
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phase components that are not part of the chemical reaction between the k components are
also present. For instance, if we consider a system made up of the solid solutions spinel,
orthopyroxene, olivine and garnet (h = 4), we can write a balanced chemical reaction
among the phase components MgAl2O4, Mg2Si2O6, Mg2SiO4 and Mg3Al2Si3O12 (k= 4),
regardless of whether or not there are other phase components that do not participate of
this chemical reaction. If we consider a homogeneous gas phase composed of the system
components C, H and O (h = 1) we can write a balanced chemical reaction among the
phase components CH4, H2O, CO2 and H2 (k = 4), even if other phase components are
present (e.g. O2, CO, C2H6, etc.). Other chemical reactions involving these components
are of course possible.

For now we will identify each phase by a number j (0 < j ≤ h) and each component
by another number i(0 < i ≤ k). We arrange the is so that all components in each phase
are identified by consecutive numbers. Thus, phase 1 consists of components 1 through φ1,
phase 2 of components φ1+ 1 to φ2, and so on where φi is the identity of the last of the
phase components of interest that is present in phase i. We study the behavior of the system
when infinitesimal amounts of matter are transferred among phase components. Let dni
be an infinitesimal change in the amount of phase component i, and νi the stoichiometric
coefficient of component i in the balanced chemical reaction among the k phase components.
If we choose to make ν1 = 1, which we can do without loss of generality, then we have
dni = νidn1 for all k phase components.
We use equation (4.129) to write the change in Gibbs free energy for each phase, dGj ,

when matter is exchanged at constant temperature and pressure. For phase 1 we have:

dG1 =
i=φ1∑
i=1

µidni , (5.17)

where µi is the chemical potential of component i. Similarly,

dG2 =
i=φ2∑

i=φ1+1
µidni (5.18)

and so on until we get to the last phase:

dGh =
i=φh∑

i=φh−1+1
µidni , (5.19)

where obviously it must be φh = k. The total change in the Gibbs free energy of the system
when matter is exchanged at constant pressure and temperature is given by:

dG=
j=h∑
j=1

dGj

=
i=φ1∑
i=1

µidni +
i=φ2∑

i=φ1+1
µidni +·· ·+

i=φh∑
i=φh−1+1

µidni

=
i=k∑
i=1

µidni .

(5.20)
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Applying the stoichiometry constraint (dni = νidn1) this equation becomes:

dG= dn1

i=k∑
i=1

νiµ
i . (5.21)

At equilibrium it is dG= 0 (equation (4.130)), and becausewe have specified that transfer of
matter does take place, dn1 �= 0. We then arrive at the following fundamental equation that
expresses the condition of isothermal and isobaric chemical equilibrium among chemical
species in any state related by a balanced chemical reaction:∑

i

νiµ
i = 0. (5.22)

This equation is formally identical to (5.8), except that standard state Gibbs free energy
has been replaced by chemical potential. All explicit references to specific phases have
disappeared from equation (5.22), so that it is valid for heterogeneous equilibrium among
solutions, homogeneous equilibrium within a solution, or a combination of these situations.
I chose to identify phases and components with numbers because it simplifies the notation

in the algebraic steps that lead to the compact equation (5.22).This notation is not convenient
in practice, however, as it is better to state explicitly the identity of each chemical species and
of the phase in which it is present. In explicit applications I shall therefore replaceµi byµcp,

where c is the component and p is the phase, and similarly, if needed, νi by ν
p
c . For example,

if we consider equilibrium among the Mg-bearing species in spinel, orthopyroxene, garnet
and olivine solid solution, then equation (5.22) becomes:

µ
MgAl2O4
spinel + 2µMg2Si2O6

opx = µ
Mg3Al2Si3O12
garnet +µMg2SiO4

olivine . (5.23)

Even though (5.22) (or a specific application such as (5.23)) is the rigorous thermodynamic
definition of chemical equilibrium among chemical species in any arbitrary state, it does
not by itself allow us to calculate an equilibrium condition. In order to do so we need to find
a function that relates chemical potential to phase composition and standard state Gibbs
free energy.We tackle this problem in subsequent sections, but before that we explore some
other important properties of the chemical potential.

5.3.2 Chemical potential as a driving force for mass transfer

Consider two solutions, call them A and B, and a chemical species σ that is a component
in both phases and that can be transferred between them. Simple examples could be the
species NaAlSi3O8, which can be a component of the phases plagioclase, alkali feldspar
and silicate melt, or the species H2O contained in the phases seawater, moist air and ice.
By equation (5.22) equilibrium between the phases requires that the following condition
be met:

µσA = µσB . (5.24)

Equilibrium requires that the chemical potential of a component be the same in all phases
in which the component is present. The importance of this conclusion is that it is always
true, and in particular it is independent of how one chooses to define the standard state. For
example, in order for sanidine to coexist at equilibrium with a silicate melt the chemical
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potential of the species KAlSi3O8 must be the same in the crystal as in the melt, and in
order for water ice to be stable on the Martian surface the chemical potential of H2O must
be the same in surface ice as in the Martian atmosphere. This seemingly trivial corollary of
(5.22) is a fundamental concept that we will rely on many times.
Suppose now that the system composed of the two phases A and B is not at equilibrium.

Then a spontaneous transfer of component σ between the phases at constant temperature
and pressure, say from A to B, can take place only if it leads to a decrease in the Gibbs free
energy of the system. Expanding (5.21) we have:

dG= (µσA−µσB)dnσ A < 0. (5.25)

But if matter is transferred from A to B then it must be dnAσ < 0, which implies that:

µσA > µσB . (5.26)

In other words, chemical species are transferred down chemical potential gradients. This is
what we should have expected given thatµ and n are conjugate variables (Section 4.8.4) and
also justifies the name chemical potential for the thermodynamic variable µ. Equilibrium
is reached once mass transfer among phases eliminates chemical potential gradients. The
proof that equation (5.26) generalizes to systems with any number of phases and chemical
species is left as an exercise.

5.4 Partial molar properties

Finding the function that relates the chemical potential of a phase component to its standard
state Gibbs free energy and to the composition of the solution requires several steps. We
begin by noting that we can express any extensive thermodynamic property of a solution,
Zsol , as a sum of products of intensive quantities zi for each of the i components of the
solution, times the amount (an extensive quantity, for example the number of mols, ni) of
each component, as follows:

Zsol =
∑
i

zini . (5.27)

We make no claims as to the functional form of the zis, and in particular, as to whether
or not the various zis are a function of each other. Equation (5.27) is simply an algebraic
identity. We do require, however, that the amount of each component, ni , be independently
variable, so these must be phase components (for example, we can add forsterite to olivine
without changing the amount of fayalite). Zsol being a thermodynamic variable, it is also
a function of temperature and pressure. It then follows from (5.27) that the quantities zi ,
called partial molar quantities, are defined by the following derivative:

zi ≡
(
∂Zsol

∂ni

)
P ,T ,nj �≡i

. (5.28)

It is important to understand what this equation means: partial molar z of component i, an
intensive variable symbolized zi , equals the rate of change of Z of the solution (an extensive
variable) relative to a change in the amount of component i (also extensive), while keeping
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pressure, temperature and the amounts of all other components constant. Dividing (5.27) by
the total number of mols in the system we obtain molar Z of the solution, Zsol , as follows:

Zsol =
∑

i z
ini∑

i ni
=
∑
i

ziXi , (5.29)

where Xi is the mol fraction of component i.
Obviously, the thermodynamic property Z also takes a definite value for each of the

solution components when they are in their standard states. For a component iwe symbolize
this byZ0,i , reserving the subscript slot to state the pressure and temperature of the standard
state, if needed (e.g. Section 1.13.1). On dimensional grounds it is evident that zi and Z0, i

refer to the same type of thermodynamic property (e.g. they must both have dimensions of
volume per mol, energy per mol or entropy per mol). Note, however, a very important point:
we have made no assumptions about the relationship between zi and Z0, i . In particular,
the definitions of the two variables are not the same. Whereas the standard state property,
Z0, i , is defined independently of the properties of a solution (for example, for a pure
chemical species), the definition of the corresponding partial molar property zi is based on
the behavior of a particular solution that contains i. There is no expectation that the two
variables take on the same value, so that we can write the following equation:

Zsol =
∑
i

ziXi =
∑
i

Z0, iXi +�Zmixing . (5.30)

We take (5.30) as the definition of �Zmixing , noting that this quantity is defined for the
solution (not for the components). For a pure chemical species (equivalently, a phase of
fixed composition), there is only one component, for which Xi = 1, so that in this case zi

is always equal to Z0, i , for any thermodynamic variable, and �Zmixing is obviously zero.
There is an additional relationship among partial molar properties and the molar prop-

erty of the solution that plays a central role in the study of solutions. For a solution of
k components, the partial molar property of the ith components is given by:

zi =Zsol +
j=k∑
j=2

(
δij −Xj

) ∂Zsol
∂Xj

, (5.31)

where the symbol δij, called the Kronecker delta, takes the value 1 if i = j , and 0 otherwise.
The proof and geometric interpretation of (5.31) are given in Box 5.2.

Box 5.2 Proof of equation 5.31

Let Z be any extensive thermodynamic variable. We can write Z for a solution of k components as a function
of the form:

Zsol = Zsol (P, T , n1, . . . ,nk) (5.2.1)

or, equivalently, as a function of the total number of mols, n=∑i ni and the mol fractions of any k− 1
components (the kth is not linearly independent):

Zsol = Zsol (P, T ,n,X2, . . . ,Xk) . (5.2.2)
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Box 5.2 Continued

This is a simple change of coordinates: note that the functions (5.2.1) and (5.2.2) have the same number of
variables, and that, as long as we know n, it is always possible to convert the ni s to Xi s and vice versa. Molar
Z of the solution, Z sol , is obtained by dividing (5.2.2) by n, and, because n is the only extensive independent
variable in (5.2.2), this results in:

Z sol= Zsol (P, T , n,X2, . . . ,Xk)
n

= Zsol (P, T , 1,X2, . . . ,Xk). (5.2.3)

We now use (5.2.3) to re-write the definition of the partial molar property zi (equation (5.28)) as follows:

zi =
(
∂
(
nZsol

)
∂ni

)
P, T ,nj �≡i

= Z sol
(
∂n

∂ni

)
P, T ,nj �≡i

+ n
(
∂Z sol

∂ni

)
P, T ,nj �≡i

. (5.2.4)

Because all nj �=i are kept constant, it is: (
∂n
∂ni

)
P, T ,nj �≡i

= 1. (5.2.5)

Using (5.2.3) we write the partial derivative in the second term of the right-hand side of (5.2.4) as follows:

(
∂Zsol

∂ni

)
P, T ,nj �≡i

=
j=k∑
j=2

(
∂Zsol

∂Xj

∂Xj
∂ni

)
P, T ,nj �≡i

(5.2.6)

and, using (5.2.5):(
∂Xj
∂ni

)
P, T ,nj �≡i

=
(
∂Xj
∂n

∂n

∂ni

)
P, T ,nj �≡i

=
(
∂Xj
∂n

)
P, T ,nj �≡i

=
(
∂Xj
∂n

)
P, T

. (5.2.7)

In the last identity we have dropped the constraint nj �=i because we are now differentiating relative to the
total number of mols. Each mol fraction is given by:

Xj = nj

n
(5.2.8)

so: (
∂Xj
∂n

)
P, T
= ∂

∂n

(nj

n

)
P, T
= 1

n

(
∂nj

∂n
− Xj

)
P, T

. (5.2.9)

Component i can be any arbitrary component, either component 1 or any one of the k − 1 components
between j = 2 and j = k. We need to account for all possibilities. For nj �=i it is ∂nj/∂n= 0, whereas for
nj=i we have ∂nj/∂n= 1. We can then write (5.2.9) using the Kronecker delta: δij = 1 if i = j , δij = 0 if
i �= j , as follows: (

∂Xj
∂n

)
P, T
= 1

n

(
δij − Xj

)
. (5.2.10)
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Box 5.2 Continued

Substituting into (5.2.6): (
∂Zsol

∂ni

)
P, T ,nj �≡i

= 1
n

j=k∑
j=2

(
δij − Xj

) ∂Zsol
∂Xj

. (5.2.11)

Substituting (5.2.11) in (5.2.4) and using (5.2.5):

zi = Z sol +
j=k∑
j=2

(
δij − Xj

) ∂Z sol
∂Xj

, (5.2.12)

which is (5.31).
This equation comes up repeatedly in the study of solutions, and it is helpful to visualize its geometry.

This is best done by considering a system of two components, a and b, in which case (5.2.12) becomes:

za = Zsol − Xb
∂Z sol

∂Xb
. (5.2.13)

Rearranging as follows:

∂Zsol

∂Xb
= Z sol − za

Xb
(5.2.14)

it is easy to see (Fig. 5.7) that the partial molar properties za and zb for a given solution composition, say at
mole fractions ξa , and ξb = 1− ξa , are the intercepts of the tangent line to Z sol at that composition with

0 1 Xb

01 Xa

Z 0, b

Z sol

z b( a, b )

Z 0, a

z a( a, b )

a

b

Fig. 5.7 Geometric interpretation of the relationships between the molar property of a solution, Zsol , standard state molar
properties of end-member species, Z 0,a and Z0,b , and partial molar properties of the species in solution, za and zb.
Partial molar properties, shown in the figure for a specific solution composition given by ξa and ξb = 1− ξa , are
functions of composition.
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Box 5.2 Continued

the Z axis at Xa = 1 and Xb = 1, respectively. This is true for any extensive thermodynamic function that
can be written as (5.27), and regardless of the functional form of Z sol . The geometric point of view (Fig. 5.7)
is particularly helpful in emphasizing that, whereas Z0, i is a constant at a given P and T , zi varies with the
composition of the solution at constant P and T (except for a property for which Z sol is a linear function).
The geometry is the same for multicomponent solutions, except that the tangent line is replaced by a
tangent n− 1 plane embedded in an n-dimensional space, where n is the number of components in the
solution.

Equations (5.27) through (5.31) are algebraic identities that can be applied to any exten-
sive thermodynamic state variable, for instance, enthalpy, entropy, volume and Gibbs free
energy. With one exception, the partial molar property is symbolized with the same let-
ter used for the standard state molar property but written in lowercase (e.g. partial molar
entropy, s) rather than uppercase (e.g. standard state molar entropy, S0). The exception
is Gibbs free energy. Comparison of (5.28) with (4.134) shows that the partial molar
Gibbs free energy is the chemical potential, µ. It is customary to symbolize the standard
state molar Gibbs free energy of a pure species by µ0, and to call it the standard state
chemical potential. This is physically appealing given that the interpretation of chemical
potential as a driving force for transfer of matter (equation (5.26)) is also true for pure
chemical species. In this book we will use both µ0,i and G0,i , depending on the context,
but you must keep in mind that the identity µ0,i = G0,i is always true. Summarizing,
we have:

Gsol =
∑
i

µiXi =
∑
i

µ0,iXi +�Gmixing (5.32)

Ssol =
∑
i

siXi =
∑
i

S0,iXi +�Smixing (5.33)

H sol =
∑
i

hiXi =
∑
i

H 0,iXi +�Hmixing (5.34)

V sol =
∑
i

viXi =
∑
i

V 0,iXi +�Vmixing . (5.35)

The pressure and temperature derivatives of chemical potential follow the same rules as
those of Gibbs free energy. Thus (omitting the constant variable subscripts for clarity, see
Box 1.3):

∂µi

∂P
= ∂

∂P

(
∂Gsol

∂ni

)
= ∂

∂ni

(
∂Gsol

∂P

)
= ∂V sol

∂ni
(5.36)

or:

(
∂µi

∂P

)
T

= vi . (5.37)
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And by an identical procedure: (
∂µi

∂T

)
P

=−si . (5.38)

5.5 Generalized equilibrium condition. Activity and the
equilibrium constant

5.5.1 Definition of activity

We now have the background needed to derive the algebraic expression that describes
equilibrium among chemical species in any state, as a function of temperature, pressure,
composition and thermodynamic properties in the standard state. We begin by defining a
new thermodynamic variable called activity. Using equation (4.128) (last line) we write the
following equation for the molar properties of a solution:

Gsol =H sol −T Ssol . (5.39)

We can re-write this in terms of partial molar properties, by using (5.32), (5.33) and (5.34):∑
i

µiXi =
∑
i

hiXi −T
∑
i

siXi (5.40)

fromwhich, given that the mol fractions can vary independently, we derive an identity valid
for each component i:

µi = hi −T si . (5.41)

Equation (4.128) also yields the following relationship between standard state molar
properties:

µ0, i =H 0, i −T S0, i . (5.42)

Subtracting (5.42) from (5.41) and rearranging:

µi = µ0, i +
(
hi −H 0, i

)
−T

(
si −S0, i

)
. (5.43)

The terms in this equation have dimension of energy. We can therefore choose to write the
sum of the last two terms on the right-hand side as the product of the gas constant, R, times
temperature, T, times a non-dimensional variable.We define this non-dimensional variable,
called activity and symbolized by a, as follows:

lnai ≡ 1

RT

(
hi −H 0, i

)
− 1

R

(
si −S0, i

)
(5.44)

from which we get:

µi = µ0, i +RT lnai . (5.45)
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There are different ways of defining activity (see, for example, Guggenheim, 1967).
Equation (5.44) is not orthodox, but it is elegant. All definitions converge on equation
(5.45). It is very important to understand what this equation is saying. Activity is a non-
dimensional parameter that measures the chemical potential of a component in a solution
relative to the chemical potential of the same chemical species in a specified standard state.
Activity is a relative quantity that has meaning only if the standard state that it refers to is
given explicitly. This standard state could be, for example, the pure chemical species in the
same physical state as the solution (e.g. solid in a certain crystalline state, liquid, gas) and at
the pressure and temperature of interest.We could also specify a different standard state, and
if we do so then, as is readily apparent from (5.45), the value of the activitymust also change,
because it now measures the same chemical potential relative to a different reference level.

Worked Example 5.2 Activity of components in silicate melts: an example of changing the
standard state

Consider a silicate melt saturated in quartz, for instance, a granitic melt. By “saturated” we
mean that crystalline quartz is at equilibrium with the melt, so that we have:

µ
0,SiO2
quartz = µ

SiO2
quartz = µ

SiO2
melt (5.46)

The identityµ0,SiO2
quartz =µSiO2

quartz comes from (5.30), noting that for pure quartz it isXSiO2 = 1.
We wish to specify the activity of SiO2 in the melt, but in order to do so we must first define
the standard state relative to which the activity is to bemeasured. One possibility is to define
the standard state as pure crystalline quartz at the pressure and temperature of interest. As
with chemical potential, it is convenient to label activity with the identities of the chemical
species and the phase, thus: acp . If we call the activity of SiO2 in the melt relative to a
standard state of pure crystalline quartz at the pressure and temperature of interest a1 we
have, from (5.45):

µ
SiO2
melt = µ

0,SiO2
quartz +RT ln

(
a
SiO2
melt

)
1

(5.47)

and, using (5.46): (
a
SiO2
melt

)
1
= 1. (5.48)

Another possibility is to define the standard state as pure liquid SiO2 at the pressure and
temperature of interest. This standard state, µ0,SiO2

liquid , is related to the pure quartz standard
state by:

µ
0,SiO2
liquid = µ

0,SiO2
quartz +�mG

0
P ,T , (5.49)

where�mG
0
P ,T is the Gibbs free energy of melting of quartz at the pressure and temperature

of interest, i.e.�rG for the reaction quartz→ liquid SiO2 at P and T. Using liquid SiO2 as
the standard state and calling the activity relative to it a2 we have:

µ
SiO2
melt = µ

0,SiO2
liquid +RT ln

(
a
SiO2
melt

)
2

(5.50)
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and, using (5.46) and (5.49):

(
a
SiO2
melt

)
2
= exp

(
−�mG

0
P ,T

RT

)
. (5.51)

Now, �mG
0
P ,T vanishes only if P and T are on the melting curve of pure quartz, in which

case the two standard state chemical potentials are equal (equation (5.49)), and a1 = a2.
Otherwise, it is �mG

0
P ,T �= 0 and a1 �= a2. Note very carefully that µSiO2

melt is the same in
(5.47) and (5.50). What has changed is the standard state, and therefore the activity scale
that measures this fixed chemical potential.

5.5.2 The equilibrium constant

Substituting (5.45) in (5.22), the condition of equilibrium among chemical species in an
arbitrary state and at temperature T can be written as follows:

∑
i

νiµ
0, i +RT

∑
i

ln
(
ai
)νi = 0. (5.52)

The first term of the sum in (5.52) is the standard state Gibbs free energy of reaction
(equation (5.7)):

∑
i

νiµ
0,i =

∑
i

νiG
0,i
P ,T =�rG

0
P ,T , (5.53)

but this is now not necessarily zero, as equation (5.8) is true only for species in their
standard state, and we have relaxed this restriction. We define another non-dimensional
variable, called the equilibrium constant of the chemical reaction, and symbolized by K ,
as follows:

K =
∏
i

(
ai
)νi

. (5.54)

Using (5.53) and (5.54) in (5.52) we get the following generalized equation of chemical
equilibrium:

�rG
0
P ,T +RT lnK = 0. (5.55)

Finding the equilibrium position for a chemical reaction among species in any state entails
solving equation (5.55). This equation is a generalization of (5.8), and collapses to (5.8) if
all species are in their standard states, in which case, according to (5.45), it is ai = 1 for
all is, and, therefore lnK = 0. The following are two examples of equilibrium calculations
among solutions in heterogeneous and homogeneous systems.
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Worked Example 5.3 The spinel–garnet transition in planetary mantles, part (ii)

In order to study phase changes in real planetarymantleswe need to calculate the equilibrium
position of reaction (5.15) for the general case in which theMg-bearing species are not pure
phases but components in mineral solid solutions. We define the standard state of each
Mg-bearing species as the pure crystalline solid (pyrope, forsterite, spinel or enstatite) at
the pressure and temperature of interest. Applying (5.54), we get the following expression
for the equilibrium constant of reaction (5.15):

K = a
Mg3Al2Si3O12
garnet · aMg2SiO4

olivine

a
MgAl2O4
spinel ·

(
a
Mg2Si2O6
opx

)2 . (5.56)

We then write the equilibrium condition (5.55) like this:

�rG
0
P ,T +RT ln


 aMg3Al2Si3O12

garnet · aMg2SiO4
olivine

a
MgAl2O4
spinel ·

(
a
Mg2Si2O6
opx

)2

= 0. (5.57)

Keeping in mind that �rG
0
P,T is a function of P and T, given by (5.13), we see that (5.57)

contains six unknowns: P ,T and the four activities, which, as we shall discuss beginning
in the next section, are functions of composition. Therefore, equation (5.57) by itself has
five degrees of freedom, which means that in order to solve it we must specify the values
of five of the variables. We can ask (i) which five, and (ii) how? The answer depends on
what we are trying to accomplish. Let us look at two distinct possibilities.
Suppose first that we have a sample of lherzolite that contains the four-phase assem-

blage olivine–orthopyroxene–garnet–spinel, and that we have good reasons (petrographic
or other) to be confident that the four phases crystallized at equilibrium.We can then calcu-
late the four activities from the respective mineral compositions (more on this in subsequent
sections), leaving us with two unknowns in (5.57), and thus one degree of freedom. We are
now in the same situation that we discussed in Worked Example 5.1: we can calculate a
curve inP–T space that maps all the possibleP–T combinations at whichminerals with the
observed compositions could have crystallized. The location of this curve will in general be
different from the one in Fig. 5.5 (unless, by chance, activities are such that K = 1) and its
physical meaning is also subtly different (more on this in Chapter 6). The curve nonetheless
constrains the possible crystallization conditions of our lherzolite. If we have an indepen-
dent way of fixing one of the two variables, for instance temperature, then equation (5.57)
can be solved for the pressure of crystallization (subject to the uncertainties discussed in
Section 5.2.1, plus others that arise from activity–composition relationships, as we shall
see). We may label this procedure inverting mineral compositions in order to determine the
values of intensive variables during crystallization. It is also called “geothermometry” or
“geobarometry”, depending on which is the target intensive variable.
Alternatively, we may wish to do forward modeling in order to predict mineral compo-

sitions as a function of pressure and temperature. In this case we specify arbitrary values
of P and T, leaving us with three degrees of freedom in equation (5.57). In order to solve
the problem we need to come up with three additional equations, or some other way of
constraining three of the compositional variables (Worked Example 5.6).
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Worked Example 5.4 Speciation in a homogeneous gas phase. Carbon–oxygen equilibrium,
part (i)

Carbon–oxygen equilibrium plays important roles in many planetary processes, from deter-
mining the composition of volcanic gases (Chapter 9) to determining ice compositions in
the outer reaches of the solar nebula, and perhaps the compositions of early post-nebular
atmospheres in terrestrial planets (Chapter 14). One often wishes to know the speciation in
the gas phase, i.e. the relative amounts of chemical species present in the gas phase, which
in this case would be CO2, CO and O2. In almost every realistic speciation calculation in
planetary fluids a meaningful calculation requires that equilibria involving other system
components, chiefly hydrogen, nitrogen and sulfur, be included as well (more on this in
Chapters 9 and 14). The C–O example, however, allows us a simple first look into how the
calculations are carried out.
The following two equilibria describe the chemical reaction between carbon and oxygen:

Reaction 1 : C+ 1

2
O2←→CO,

Reaction 2 : C+O2←→CO2.
(5.58)

Let us assume that equilibrium is established in the presence of excess graphite, i.e. there
is not enough oxygen to oxidize all of the carbon. The assemblage then consists of graphite
and a gas phase composed of CO, CO2 and O2. It is convenient in this case to define pure
graphite at the temperature and pressure of interest as the standard state for C, as this results
in: aCgraphite = 1. We can now write one version of (5.55) for each reaction, as follows:

K1 =
aCOgas(
a
O2
gas

)1/2 = exp

(
−�rG

0,1
P ,T

RT

)
(5.59)

and:

K2 =
aCO2
gas

a
O2
gas

= exp

(
−�rG

0,2
P ,T

RT

)
, (5.60)

where the 1 or 2 superscripts identify the reaction. If we specify pressure and temperature
then these are two equations in three unknowns (the three activities).The systemof equations
appears to have one degree of freedom. We shall see, however, that we can recast the
activities as functions of the concentration, or mol fraction, of each of the three gas species
in the gas phase, XCO2 , XCO and XO2 . Solving for these concentrations is what we call
determining the speciation of the gas phase. If we assume that no other components are
present then we can write an additional equation which states that the gas contains only
CO2, CO and O2:XCO2+XCO+XO2 = 1. Together with (5.59) and (5.60) this constitutes a
system of equationswith no degrees of freedom, that we can solve for the threemol fractions
(at given P and T).We have not defined the standard states for the three gas species: O2, CO
and CO2. Neither the activities nor the Gibbs free energies of reaction in equations (5.59)
and (5.60) have any meaning unless standard states are specified. The usual way of defining
standard states for gases is different from condensed phases, and will be discussed briefly
in Worked Example 5.5, where we will solve equations (5.59) and (5.60), and in detail in
Chapter 9.
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5.6 Introduction to solution theory: ideal solutions

The remainder of this chapter is devoted to discussing the nature of the functions that
relate the concentration of a component in a solution to its activity. These are called
activity–composition relationships. The study of these relationships is a physically and
mathematically rich theory, called solution theory. We will cover some of the fundamental
concepts in these sections, and some specific applications to solids, liquids and gases in sub-
sequent chapters, but a thorough coverage of the theory would exceed the available space
and the intent of this book (see, for example, Guggenheim, 1952; Darken & Gurry, 1953;
Kerrick & Darken, 1975; Wood & Nicholls, 1978; Ganguly & Saxena, 1987; Navrotsky,
1987; Wood, 1987; Pitzer, 1995; Kress, 2003).
An important concept of solution theory is that of ideal solution. We define an ideal

solution as one in which the activity of every component, which we shall term its ideal
activity (sometimes also called thermodynamicmol fraction) follows a strict and simple rule,
which is specified in the next section.As with ideal gases, ideal solutions and ideal activities
are a simplification of the behavior of natural systems, which under some circumstances
may be approached more or less closely, but never perfectly, and often not even closely.
The importance of the concept of ideal solution rests, as for ideal gases, on the fact that
its mathematical definition is straightforward and it captures fundamental aspects of the
behavior of natural systems. For this reason the mathematical formalism of ideal solutions
provides a suitable starting point to describe the behavior of real, or also called non-ideal,
solutions.

5.6.1 Definition of ideal solution and ideal activity

An ideal solution is defined as one that complies strictlywith two conditions. The first condi-
tion is that the enthalpy of mixing vanishes for all solution compositions, i.e.�Hmixing = 0.
From (5.34) it follows that (hi −H 0,i) is identically zero, and hence, from (5.44), that the
activity of any component in an ideal solution, called its ideal activity and symbolized
ai, ideal is:

lnai, ideal =− 1

R

(
si −S0,i

)
. (5.61)

The second condition focuses on the definition of the quantity (si − S0,i). From (5.33) we
find the following relationship:∑

i

Xi

(
si −S0, i

)
=−R

∑
i

Xi lna
i, ideal =�Smixing . (5.62)

The entropy of mixing, �Smixing , must be related in some way to the increase in configu-
rational entropy (= increase in the number of allowed microstates) that arises from mixing
of distinguishable particles. The particles could be, for example, ions in a crystal or in an
electrolyte liquid solution, molecules in a multicomponent molecular liquid, or molecules
in a mixed gas phase (the latter is the example discussed in Section 4.6.1). We can jus-
tify on physical grounds a relationship between �Smixing and Sconfigurational as defined in
Chapter 4 (equation (4.55)), but we have no reason to assume that the two quantities are in
general identical. This is so because end-member components may contain configurational
entropy that will also be present in the solution but that does not arise from mixing with
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other components. Hence the second condition in the definition of an ideal solution, which
is that the entropy of mixing of an ideal solution equals the configurational entropy of the
solution minus a constant entropy contribution from each end-member component. We can
write this additional entropy term as R lnCi (Boltzmann’s postulate), and:

�Smixing = Sconfigurational −
∑
i

XiR lnCi . (5.63)

The constant lnCi may take different values for each solution component, andmay possibly
vanish for some or all components, but it is important to emphasize that it is a constant in
termsof every thermodynamicvariable, in particular, temperature, pressure and composition
of the solution. From (5.62) we write:∑

i

Xi

(
si −S0,i +R lnCi

)
= Sconfigurational (5.64)

and note that, because Sconfigurational is a molar property of the solution, the quantity (s i−
S0,i + RlnCi) behaves algebraically as a partial molar property (see (5.29)). Using the
definition of partial molar properties (5.28) and rearranging:

(
si −S0,i

)
=−R lnCi +

(
∂
(
Sconfigurational

)
∂ni

)
P ,T ,nj �≡i

. (5.65)

The definition of ideal activity then becomes:

lnai, ideal ≡ lnCi − 1

R

(
∂
(
Sconfigurational

)
∂ni

)
P ,T ,nj �≡i

. (5.66)

Again, unorthodox but elegant.

5.6.2 Ideal activity and configurational entropy

We can approximate the partial derivative in (5.66) by calculating the change in the number
of microstates that arises when we add one molecule of component i to a solution. Say that
the solution containsmi molecules of component i. It may contain any number of molecules
of any number of additional components, the only requirement being that all of these other
quantities stay fixed.Wewill symbolize the number ofmicrostates of this solutionwithOmi .
The configurational entropy of this solution, Sconfigurational(mi), is given by equation (4.55):

Sconfigurational(mi) = kB ln

(
Omi

Oi

)
, (5.67)

where Oi is the number of microstates of the end-member configuration that corresponds
to the chosen standard state. Adding one molecule of component i changes the number of
mols of i by N−1 (N =Avogadro’s number), which is an infinitesimally small increment
for all practical purposes. The configurational entropy changes to:

Sconfigurational(mi+1) = kB ln

(
Omi+1
Oi

)
. (5.68)
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The partial derivative in (5.66) can be approximated as follows:(
∂
(
Sconfigurational

)
∂ni

)
P ,T ,nj �≡i

≈ Sconfigurational(mi+1)−Sconfigurational(mi)
N−1 . (5.69)

Substituting (5.67) and (5.68) in (5.69), and then in (5.66), and simplifying we arrive at:

ai, ideal =Ci
Omi

Omi+1
. (5.70)

Equation (5.70) is general, as we have made no assumptions regarding the nature of the
solution or its components, beyond the fact that it is an ideal solution. The reason why I
stated that (5.44) and (5.66) are “elegant” is because they lead naturally to (5.70). In order
to evaluate ai, ideal for a specific component in a specific solution, however, it is necessary
to know the rules under which mixing takes place, such as whether there is ordering over
different types of crystallographic sites and whether or not there are coupled substitutions.
We examine some specific cases in the next sections that will exemplifymost of the common
calculation techniques that are involved in finding ideal activities. Given space constraints,
the coverage cannot possibly be exhaustive, but using (5.70) as a starting point it is always
possible to calculate an ideal activity in any solution that one may come across.

5.6.3 Ideal activity–composition relationships in fluids and in
simple crystalline solids

Consider a crystalline solid solution in which mixing takes place in only one type of crys-
tallographic site, that may however appear repeated in the standard formula unit. We call
the number of repetitions of the crystallographic site its site multiplicity, u. For example, a
simplistic view of Ca-free feldspar is that it is a solid solution of the components KAlSi3O8

and NaAlSi3O8, in which the cations K and Na mix in only one site, so that in this case
u = 1. Olivine is a solid solution of Mg2SiO4 and Fe2SiO4, so in this case Mg and Fe
mix in two crystallographic sites, and u = 2. If we disregard complications arising from
substitution of other cations in the Si and Al sites (we will get to these later), garnet is a
solid solution of the four components: Mg3Al2Si3O12, Fe3Al2Si3O12, Mn3Al2Si3O12 and
Ca3Al2Si3O12, and in this case u= 3 for mixing of Mg, Fe, Mn and Ca.
We expand equation (4.1.1) and write the number of microstates Omi as follows:

Omi =
N !

ni !∏nj �=i ! . (5.71)

In this equation N, typically ∼ Avogadro’s number, is the total number of atoms involved
in mixing (e.g. total number of Mg + Fe + Mn + Ca in garnet, Mg + Fe in olivine or
orthopyroxene, and so on), ni is the number of atoms of the component of interest, and the
nj �=is are the numbers of atoms of all other kinds (I have simply factored out ni! from the
product in the denominator of equation (4.1.1)).We now add onemolecule of the component
of interest, which means that we add u atoms of i while leaving the amounts of every j �= i

unchanged (e.g. if we want to calculate the activity of pyrope we add one molecule of
pyrope to garnet, which adds 3 Mg atoms). The number of microstates is now given by:

Omi+1 =
(N +u)!

(ni +u)!∏nj �=i ! . (5.72)
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Noting that for N ! u we can write (N +u)! ≈NuN !, we get:

Omi + 1

Omi1

= (N +u)!ni !
(ni +u)!N ! ≈

N !Nuni !
ni !nui N !

=
(

1

Xi

)u
(5.73)

since ni/N =Xi . Substituting in (5.70) we arrive at:

ai, ideal =Ci (Xi)
u . (5.74)

In order to calculate the value of the constant Ci we must specify the standard state. If
we choose as standard state the pure chemical species at the temperature and pressure of
interest then it follows from (5.45) that it must be ai, ideal = 1 forXi = 1, and hence Ci = 1.
With this choice of standard state, which is the norm, we have:

ai, ideal = (Xi)
u . (5.75)

You can see from (5.63) that in this case �Smixing and Sconfigurational are identical, which
recovers our discussion in Section 4.6.2. The condition �Smixing = Sconfigurational is not
an a priori assumption, but follows from a specific rule for mixing in the solution and a
specific choice of standard state. Equation (5.75) is deceptively simple, but must be applied
with care. In particular, one must give careful consideration to how the configurational
entropy of the entire solution is affected by compositional changes, as more than one
distinct crystallographic site may be involved. The following example, subsequent sections
and end-of-chapter problems will make this clear.

Worked Example 5.5 Chemical potential and activity in a mixture of ideal gases. Carbon–oxygen
equilibrium, part (ii)

Mixing of ideal gases is the simplest possible type of solution, as all locations in the gas
are equivalent (there is only one possible “site” on which mixing takes place). We seek an
expression for the chemical potential of an ideal gas in a gas phase composed of a mixture
of ideal gases. Let the gas phase occupy a volume V at pressure P and temperature T. The
total number of mols of gas in the mixture is N =∑i ni , where ni is the number of mols
of component i. Because ideal gases are made up of dimensionless and non-interacting
particles (Section 1.14) each component exerts a pressure, pi , equal to the pressure that the
same amount of gas would exert if it occupied by itself a volume V at temperature T . Thus:

piV = niRT . (5.76)

Dividing by the equation applied to the full mixture, PV =NRT :
pi

P
= ni
N

(5.77)

or:

pi =XiP . (5.78)
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We callpi the partial pressure of component i, and it is obvious from (5.78) thatP =∑i pi .
From (5.36) and (5.37) we see that:

vi =
(
∂µi

∂P

)
T

=
(
∂V

∂ni

)
P ,T ,nj �≡i

= ∂

∂ni

(
NRT

P

)
P ,T ,nj �≡i

= RT

P

(
∂
∑

i ni

∂ni

)
P ,T ,nj �≡i

= RT

P
= V 0, i , (5.79)

where V 0, i is the molar volume of any ideal gas at P and T. Thus, the partial molar volume
of an ideal gas equals the molar volume of the pure component, vi = V 0,i , and therefore
�Vmixing = 0 for mixtures of ideal gases (see equation (5.35)).
In order to find the chemical potential of component i in the mixed gas phase at P and

T, µiP ,T we can integrate dµ at constant temperature T, from a standard state µ0, i
P ,T defined

as pure i at P and T, to a state in which the component is at partial pressure pi in the gas
mixture. Thus: ∫ pi

P

dµi = µiP ,T −µ0,i
P ,T . (5.80)

We re-write this equation using (5.79), as follows:

µiP ,T = µ
0,i
P ,T +

∫ pi

P

(
∂µi

∂P

)
T

dP = µ
0,i
P ,T +RT

∫ pi

P

dP

P
, (5.81)

which, integrating and substituting (5.78), yields:

µiP ,T = µ
0, i
P ,T +RT lnXi . (5.82)

Comparing (5.82) with (5.45) shows that, if we define the standard state of an ideal gas as
the pure gas at the temperature and pressure of interest, then:

ai =Xi . (5.83)

From (5.75) it also follows that, with the standard state define in this way, a mixture of
ideal gases behaves as an ideal solution with site multiplicity u= 1. Note that we have not
assumed this to be the case – we have proved it.
For reasons that we will discuss in Chapter 9, it is more convenient to define the standard

state for gases as the pure gas at the temperature of interest and 1 bar. Calling the standard
state chemical potential in this case µ0,i

1,T , we can relate it to the standard state chemical
potential of pure i at P and T as follows:

µ
0, i
P ,T = µ

0, i
1,T +

∫ P

1

(
∂µ0, i

∂P

)
T

dP = µ
0, i
1,T +

∫ P

1
V 0, idP = µ

0, i
1,T +RT

∫ P

1

dP

P
(5.84)

or:

µ
0, i
P ,T = µ

0, i
1,T +RT ln

(
P

1

)
. (5.85)

In equation (5.85) I have written the division by 1 explicitly, in order to make it clear that
the argument of the logarithm is not pressure, but rather a non-dimensional parameter that
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equals the ratio between the pressures in one standard state, P bars, and the pressure in the
other standard state, 1 bar. The explicit division will generally be absent from equations
such as (5.85) if the denominator is 1, but it must always be remembered that this is an
abuse of notation, and that the argument of the logarithm function is a non-dimensional
variable, which in this case is numerically equal to pressure.
Substituting (5.85) in (5.82) and using (5.78) we get:

µiP ,T = µ
0, i
1,T +RT ln

(pi
1

)
, (5.86)

where again the division by 1 will be used only here, as a reminder that the argument of
the logarithm is a non-dimensional variable. Although we could call the ratio pi/1 the
activity of an ideal gas relative to a standard state of 1 bar and the temperature of interest, a
different terminology is used for gases, that we will examine in Chapter 9. Equations (5.82)
and (5.86) are equally valid representations of the chemical potential of an ideal gas in a
mixture of ideal gases, but (5.86) is preferred because it leads to a simpler generalization
to real gases. The standard state for gas species, real as well as ideal, is taken at 1 bar and
the temperature of interest.
We can now complete the speciation calculation for a C–O fluid at 1 bar that we began

in Worked Example 5.4. At 1 bar the ideal gas approximation is generally valid and there
is no ambiguity about the standard state, as this is simply the temperature of interest and 1
bar (which is also the pressure of interest). We use (5.83) and re-write (5.59) and (5.60) as
follows:

XCO(
XO2

)1/2 = exp

(
−�rG

0,1
1,T

RT

)
(5.87)

and:

XCO2

XO2

= exp

(
−�rG

0,2
1,T

RT

)
. (5.88)

Together with the condition XCO2 +XCO+XO2 = 1 we have three equations that can be
solved for the three mol fractions at any specified temperature and 1 bar. An additional
simplification is possible in this case. The exponential functions in (5.87) and (5.88) (which
are the equilibrium constants K1 and K2, compare with (5.59) and (5.60)) are very large
numbers. For example, we find that at 500◦C, K1 and K2 are of order 1012 and 1026,
respectively. This means that the mol fraction of oxygen in the gas phase is vanishingly
small, which of course reflects the fact that oxygen is an extremely reactive chemical
species (more on this in Chapters 13 and 14). We can then make XCO2 +XCO ≈ 1 and
eliminateXO2 between (5.87) and (5.88) by squaring (5.87) and dividing by (5.88), leaving
us with two equations inXCO2 andXCO.We eliminate one of these variables between these
equations (say, XCO2) and with some manipulation end up with the following quadratic
equation:

(XCO)
2+KrXCO−Kr = 0, (5.89)

where:

Kr = (K1)
2

K2
= exp

[
1

RT

(
�rG

0,2
1,T − 2�rG

0,1
1,T

)]
. (5.90)
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The mol fraction of CO2 is simply 1−XCO, andXO2 (� 1) is calculated from either (5.87)
or (5.88). It is very straightforward to write a Maple© procedure to perform all of these
calculations, using previously written procedures that handle the thermodynamic calcula-
tions (Software Box 5.3). The results are plotted in Fig. 5.8 for temperatures between 25◦C
and 1000◦C. These are probably of limited applicability to real planetary environments, as
hydrogen-bearing species are unlikely to be absent from the gas phase. Recall that the cal-
culations assume that graphite is at equilibrium with the gas phase. They show that carbon
is a powerful reducing agent at high temperature, as the gas phase, which is almost pure
CO2 at low temperature, becomes almost pure carbon monoxide at T ∼ 1000 ◦C. Calcu-
lated oxygen mol fractions pose an interesting question: what is the physical meaning of
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Fig. 5.8 Speciation in a carbon–oxygen gas phase in equilibrium with graphite at P = 1 bar, assuming ideal gas behavior.
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numbers such as XO2 = 10−40 (Fig. 5.8)? This represents a concentration of the order of
one molecule of oxygen per 1016 mols of gas. The concept of fugacity, that we develop in
Chapter 9, allows us to circumvent this physically unappealing interpretation and attach to
numbers such as these a rigorous thermodynamic significance.

Software Box 5.3 Calculation of species distribution in a mixture of ideal gases
The Maple worksheet gas_mix_1.mw contains a procedure named COeq1 that
solves for species distribution in a C–O gas phase in equilibrium with graphite at 1
bar assuming ideal gas behavior (Worked Example 5.4 and 5.5). The procedure uses
dGPT (see Software Box 5.2) to calculate the values of equilibrium constants K1 and
K2 (equations (5.59) and (5.60)), and solves for the mol fraction of CO with equation
(5.89). Oxygen concentration is calculated from equation (5.88). Output for a specified
temperature range is sent to a file, name must be provided in the procedure call. The
data for CO–CO2–graphite equilibrium are stored in tab-delimited format in a file named
gasdata1. The procedure is easily modified to calculate other gas phase equilibria.

5.7 The geometric view of activity and Gibbs free energy of mixing

The concept of an ideal solution is that the only change in Gibbs free energy that takes place
when the solution forms arises from a change in the configurational entropy of the solution
(see equation (5.61) and associated discussion). The attentive reader may have noticed,
however, thatwe never examinedwhether an ideal solution in fact forms.The term

∑
µ0,iXi

in equation (5.32) is the Gibbs free energy of a system that consists of a macroscopic
aggregate of components in the same relative proportions as they are present in the solution,
except that in the latter mixing occurs at a microscopic scale. A solution will form only if
�Gmixing < 0 (equation (5.32)). Starting from the relationship Gsol = H sol − TSsol (this
is simply the definition of Gibbs free energy) it is straightforward to show using (5.32) to
(5.34) that:

�Gmixing =�Hmixing −T�Smixing . (5.91)

From the definition of ideal solution (�Hmixing = 0) and the fact that mixing at the
microscopic scale always results in an increase in configurational entropy (a corollary
of Boltzmann’s postulate, see Section 4.6.2) we conclude that:

�Gidealmixing =−T�Sidealmixing < 0. (5.92)

An example of the behavior described by (5.92) is shown in Fig. 5.9, wherewe plot�Gmixing
for a simple one-site ideal binary solution (equation (5.83)), using (5.62) to calculate
�Smixing . From (5.62) it also follows that:

�Gidealmixing =
∑
i

XiRT lnai, ideal (5.93)
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Fig. 5.9 Geometric representation of equations (5.93) and (5.94). Compare with Fig. 5.7. The curve represents the Gibbs free
energy of mixing, which vanishes for pure species. The intersections of the tangent line with the vertical axes give the
differences between chemical potentials in the solution and standard state chemical potentials= RT lnai , ideal . The
actual values of the standard state properties do not affect this relationship, so they can be set to zero, as in the figure.

and comparisonwith (5.29) shows thatRT lnai, ideal is a partial molar property. Using (5.45)
and (5.2.13) we find that, for an ideal binary solution such as that depicted in Fig. 5.9:

µa −µ0,a =RT lnaa, ideal =�Gidealmixing −Xb

∂
(
�Gidealmixing

)
∂Xb

(5.94)

leading to the geometric interpretation of µa − µ0,a (= RT lnaideal) shown in Fig. 5.9.
There are two additional considerations. First, for solutions with more than two compo-
nents the function �Gmixing ideal is a higher-dimensional equivalent of the bowl-shaped
curve in Fig. 5.9, the tangent line becomes a tangent plane, and the geometric meaning of
µa −µ0,a stays the same. Second, (5.93) and (5.94) remain true for non-ideal solutions,
by simply removing the superscript “ideal” from the variables. We will expand on this
shortly.

5.8 More complex ideal activity–composition relationships

5.8.1 Crystalline solutions with multiple ionic sites

In order to apply equation (5.74) to crystalline solids it is necessary to know how ionic
substitution in the solid generates configurational entropy. Let us look first at a simple
case like olivine, in which substitution takes place only in two octahedral sites that can be
considered to be equivalent. Configurational entropy of olivine solid solutions arises only
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from mixing of cations in these two sites, so we have:

a
Fo, ideal
ol = (XMg

)2
a
Fa, ideal
ol = (XFe)

2 .
(5.95)

Consider now a mineral in which ionic substitution takes place in two distinct ionic sites,
A and B, such that the mineral’s structural formula is AxByOz, and suppose that we are
interested in calculating the ideal activity of an end-member component consisting of ele-
ments α and β, αxβyOz. We need to consider two possibilities. Let us assume first that
substitution in the two sites is uncoupled, because only cations with the same charge mix in
each site. In this case each site makes its own independent contribution to configurational
entropy. One way of seeing why this is the case is to consider mixing on one site while
leaving the composition of the other one fixed at one of its end-members, and then perform
the converse operation. The total configurational entropy is the sum of the configurational
entropy contribution from each distinct crystallographic site, each of which has its own site
multiplicity. It follows fromBoltzmann’s postulate that the ideal activity of the end-member
phase component is the product of activity contributions from each crystallographic site. In
our example we have:

aαxβyOz , ideal = (Xα)
x
(
Xβ

)y
. (5.96)

Garnets within the compositional range (Mg, Fe, Mn, Ca)3(Al, Cr)2Si3O12 can be treated
in this way. For example:

a
Prp, ideal
grt = (XMg

)3
(XAl)

2

a
Alm, ideal
grt = (XFe)

3 (XAl)
2

a
Kno, ideal
grt = (XMg

)3
(XCr)

2

(5.97)

where Prp= pyrope, Alm= almandine and Kno= knorringite (Mg3Cr2Si3O12). Conceiv-
ably, a small tetravalent cation could substitute for Si in the tetrahedral sites of garnet, in
which case the expressions in (5.97) would have to be multiplied by (XSi)3 to obtain the
correct ideal activities (but I am not aware of this ever being necessary).
A second possibility is that, owing to charge-balance constraints, solid solution forms

by coupled substitution. In this case a substitutes for α in site A only if b substitutes
simultaneously for β in site B. The ionic charges are such that [charge (a+ b)]= [charge
(α+ β)]. We shall assume for now that in a “perfect” crystal this substitution takes place
while preserving local charge balance, such that adjoining A and B sites are substituted
simultaneously. If this is the case then the “particles” that mix are not the individual ions
but the ionic pairs, ab and αβ. In virtually all minerals in which coupled substitution is
important the site multiplicity of the sites that undergo substitution is 1, even if the actual
multiplicities of A and B may be different. We then have, from (5.74) with u= 1:

aαβ, ideal =Xαβ =Xα =Xβ . (5.98)

An important example of (5.98) is the calculation of activities of Tschermak’s components
in pyroxenes. The Tschermak’s substitution can be written in general as an exchange of the
formAlO AlT RO−1 SiT−1, where the superscripts O and T signify octahedral and tetrahedral
crystallographic sites, and R stands for a divalent cation. For example, in orthopyroxene



268 Chemical equilibrium

taking R=Mg gives us the Mg-Tschermak’s end-member component: MgAlAlSiO6. The
two Al cations are kept separate in the formula to emphasize that they occupy different
crystallographic sites. In order to calculate the ideal activity of Mg-Tschermak’s we begin
by noting that the two octahedral sites in pyroxenes are distinct. One of them, labeledM1, is
smaller than the other one, M2. In a “perfect” orthopyroxene M2 sites are occupied by Mg
and Fe only. If such orthopyroxene dissolvesAl then half of theAl cations enter theM1 site,
where they substitute forMg or Fe cations, and the other half enter a neighboring tetrahedral
(T) site, where they substitute for Si. Because we assume that this coupled substitution
preserves local electrical neutrality the couples AlAl and MgSi behave as mixing units. In
a binary Mg–Al orthopyroxene (i.e., no Fe, Ca, etc.) the ideal activities of enstatite and
Mg-Tschermak’s in orthopyroxene are then given by equation (5.98):

a
MgTs, ideal
opx =XAl,M1 =XAl,T = 1

2
nAl

aEn, idealopx =XMg,M1 = 1−XAl,M1 = 1− 1

2
nAl

(5.99)

where nAl is the total number of Al cations per orthopyroxene formula unit: A2B2O6.
In the case of an Fe–Mg–Al orthopyroxene one possibility is that the coupled M1–T

substitution is independent of Fe–Mg substitution, and that Fe and Mg do not order
between M1 and M2 sites. The latter condition implies that (XMg,M1)/(XFe,M1) =
(XMg,M2)/(XFe,M2) = nMg/nFe, i.e. the ratio of Mg/Fe occupancy of M1 and M2 sites
equals the ratio between the number of Mg and Fe cations per orthopyroxene formula unit.
The following activity–composition expressions then follow from (5.96) and (5.98):

a
MgTs, ideal
opx =XAl,M1 ·XMg,M2

aEn, idealopx =XMg,M1 ·XMg,M2

aFs, idealopx =XFe,M1 ·XFe,M2.

(5.100)

As an exercise, you should derive equations (5.100) formally starting from (5.70).

Worked Example 5.6 The spinel–garnet transition in planetary mantles, part (iii)

In Worked Example 5.1 we calculated a hypothetical location of the spinel–garnet tran-
sition by calculating the phase boundary for the Mg end-member reaction (5.15). This
phase boundary cannot be correct, as examination of natural peridotite samples shows that
orthopyroxene always dissolves some amount of Al. By (5.99), the activity of enstatite in
orthopyroxenemust be less than 1, so that the equilibrium constant for reaction (5.15), given
by (5.56), does not vanish. Calling reaction (5.15) equilibrium (i), and using (5.99) for the
activity of enstatite, we re-write (5.57) as follows:

�rG
0,(i)
P ,T − 2RT lnXMg,M1 = 0 (5.101)

since the activities of the other species remain unity. We can now write another reac-
tion, involving the Mg-Tschermak’s component in orthopyroxene, which we shall call
equilibrium (ii):

MgAl2O4+Mg2Si2O6 �MgAlAlSiO6+Mg2SiO4 (5.102)
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the equilibrium condition for which is (see (5.99)):

�rG
0,(ii)
P ,T +RT ln

(
XAl,M1

XMg,M1

)
= 0. (5.103)

Equations (5.101) and (5.103), together with the crystallographic constraint for a binary
Al–Mg orthopyroxene, XMg,M1+XAl,M1 = 1, constitute a system of three equations with
one degree of freedom, as there are four unknowns: P , T ,XMg,M1,XAl,M1. We can specify
one of the variables, which in this case will be T, and solve the system of equations for the
other three variables, so as to obtain the location of the spinel–garnet phase boundary and
the composition of orthopyroxene as a function of temperature and pressure.
We begin by eliminating one of the mol fractions, say XAl,M1, and re-write (5.103) as

follows:

�rG
0,(ii)
P ,T +RT ln

(
1−XMg,M1

XMg,M1

)
= 0. (5.104)

We now have a system of two equations, (5.101) and (5.104), in three unknowns
(P , T ,XMg,M1), which we solve by specifying temperature. The Maple implementation is
described in Software Box 5.4, and the results are shown in Fig. 5.10.
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Predicted initial melting under mid ocean ridges shifts from the garnet to the spinel stability field. Inset shows
calculated mol fraction of Al in orthopyroxene as a function of temperature (pressure is not constant in this graph).
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Software Box 5.4 Calculation of spinel–garnet equilibrium, assuming ideal Al–Mg mixing in
orthopyroxene
The Maple worksheet sp_grt_MAS.mw contains a procedure named spgrAlMAS
that solves the two simultaneous equations, (5.101) and (5.104), for the two unknowns,
P andXMg,M1 in orthopyroxene. The two equations are labeled R1 and R2 in theMaple
procedure, which calls dGPT (see Software Box 5.2) to calculate the values of the stan-
dard state Gibbs free energy change of equilibria (5.15) and (5.102).Maple’s numerical
solver, fsolve, is quite powerful and is able to find solutions to systems of non-linear
equations with relative ease, as this example shows and as we shall have plenty of
opportunity to test in later chapters.
Because spinel–garnet equilibrium is relatively “flat” in P–T space the procedure

solves for pressure and orthopyroxene composition at a given temperature, for tempera-
tures over a range that is specified in the procedure call. The name of the file for output
is also specified in the procedure call. Output is: T−P−XAl,M1. Thermodynamic data
are stored in tab-delimited format in a file named spgrt. The procedure can be modi-
fied to calculate other equilibria, by changing and/or adding tables defining the required
reactions (e.g. reaction1, reaction2, etc.).

The calculated phase boundary is located at pressures 2–10 kbar higher than those
obtained assuming that there is no Al in opx (Fig. 5.5). Solubility of Al in orthopyrox-
ene increases with temperature (inset in Fig. 5.10), which agrees with the fact that the
right-hand side of reaction (5.102) has the higher entropy (exercise left for the reader). The
pressure shift arises because dissolution of Al causes the activity of enstatite to decrease
(equation (5.99)), so that its chemical potential decreases as well (equation (5.45)). Looking
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Fig. 5.11 Isothermal section across the Gibbs free energy surfaces for the assemblages in Fig. 5.10, showing that dissolution of
Al in orthopyroxene lowers the Gibbs free energy of the assemblage orthopyroxene+ spinel, and must therefore shift
the equilibrium to higher pressure.
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at a schematicG–P diagram (Fig. 5.11), we see that lowering the Gibbs free energy of the
low-pressure assemblage in a reaction forces the equilibrium position to higher pressure.
This is a necessary consequence of the geometry of Gibbs free energy surfaces (Fig. 4.13).
The phase boundary in Fig. 5.10 is a better approximation than that in Fig. 5.5 to the con-

ditions under which the spinel–garnet transition takes place in planetary mantles, because
it accounts for the non-negligible solubility of Al in orthopyroxene. In contrast to what
we would have predicted if we had ignored the Al content of orthopyroxene, the more
complete phase diagram predicts that garnet becomes stable under mid-ocean ridges at
pressures of ∼24 kbar, and that MORB magmas form in the stability field of spinel lher-
zolites (Chapter 10). Our phase boundary in Fig. 5.10 is, however, still deficient on two
accounts. First, there are at least three other elements – Ca, Cr and Fe – that can be expected
to have non-trivial effects on the location of the spinel–garnet equilibrium. Second, our cal-
culations have been based on the assumption that crystalline solid solutions behave ideally,
but we have not examined the validity of this assumption.

5.8.2 Crystalline solutions with non-vanishing configurational entropy
in the end-member species

Because they can exist in several different states of cation ordering, plagioclase feldspars
are an excellent example of the effect of variable degrees of configurational entropy on
ideal activity. They also serve to illustrate further the use of equation (5.70). Using the
nomenclature from Worked Example 4.3, we recall that we can distinguish two T1 sites
and two T2 sites among the four T (tetrahedral) sites in one formula unit of feldspar. We
will consider mixing along the albite–anorthite join using three different assumptions about
cation ordering in the tetrahedral sites, as follows.

Model (i) assumes perfect local charge balance, such that Al–Si substitution only
occurs on T sites adjoining an octahedral site in which Ca–Na substitution occurs
simultaneously.

Model (ii) assumes that Al and Si mix randomly over the two T1 sites, so that the
two T2 sites are occupied by Si only. Mixing in tetrahedral and octahedral sites is
independent, so that there is no local charge balance.

Model (iii) assumes that Al and Si mix randomly over the four T sites, so that, again,
octahedral and tetrahedral mixing are independent and local charge balance is not
preserved.

The number of atoms of Na, Ca andAl, nNa, nCa and nAl, per formula unit of plagioclase
and the mol fractions of Na and Ca, are related by the following equations:

nNa+nCa = 1

nAl = 1+XCa = 2−XNa.
(5.105)

The local charge balance model, case (i), corresponds to the simple example of coupled
substitution discussed in Section (5.8.1). For this model we therefore have:

a
Ab, ideal(i)
plg =XNa

a
An, ideal(i)
plg =XCa.

(5.106)

In order to calculate the activities for model (ii) we must go back to equation (5.70) and
write out the number of microstates explicitly. Because octahedral and tetrahedral mixing
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are now independent of one another the total number of microstates equals the product of
the numbers of octahedral and tetrahedral microstates:

OmAb =OmAn =
(nNa+nCa)!
nNa!nCa! · (nAl+nSi,T1)!

nAl!nSi,T1! . (5.107)

The number of Si atoms in the T1 sites is given by nSi,T1 = 2−nAl. Adding one molecule
of albite we find:

OmAb+1 =
(nNa+nCa+ 1)!
(nNa+ 1)!nCa! ·

(nAl+nSi,T1+ 2)!
(nAl+ 1)!(nSi,T1+ 1)! (5.108)

and similarly for one molecule of anorthite:

OmAn+1 =
(nNa+nCa+ 1)!
nNa!(nCa+ 1)! ·

(nAl+nSi,T1+ 2)!
(nAl+ 2)!nSi,T1! . (5.109)

Substituting these equations in (5.70) and simplifying:

a
Ab, ideal(ii)
plg =CAb(ii)XNaXAl,T1XSi,T1 (5.110)

and:

a
An, ideal(ii)
plg =CAn(ii)XCa

(
XAl,T1

)2
. (5.111)

The mol fractions of Al and Si in the T1 sites are given by:

XAl,T1 = nAl

2
= 2−XNa

2
= 1+XCa

2

XSi,T1 = nSi,T1

2
= XNa

2
= 1−XCa

2
.

(5.112)

We now note that for pure albite it is XAl,T1 = XSi,T1 = 1
2 , whereas for pure anorthite

XAl,T1 = 1. Substituting these values in (5.110) and (5.111), respectively, and recalling that
we require activities to be unity at the standard state (pure end-member species), we find
CAb(ii) = 4 and CAn(ii) = 1. With these values for the constants and mol fractions as in
(5.112) we obtain:

a
Ab, ideal(ii)
plg = (XNa)

2 (2−XNa)

a
An, ideal(ii)
plg = 1

4
XCa (1+XCa)

2 .
(5.113)

We follow the same procedure in order to calculate ideal activities for model (iii).
Equation (5.107) needs to be modified slightly, in order to reflect the fact that we must
now count all four silicon atoms, with nSi = 4−nAl:

OmAb =OmAn =
(nNa+nCa)!
nNa!nCa! · (nAl+nSi)!

nAl!nSi! . (5.114)

Adding one molecule of each end-member:

OmAb+1 =
(nNa+nCa+ 1)!
(nNa+ 1)!nCa! ·

(nAl+nSi+ 4)!
(nAl+ 1)!(nSi+ 3)! (5.115)

and:

OmAn+1 =
(nNa+nCa+ 1)!
nNa!(nCa+ 1)! ·

(nAl+nSi+ 4)!
(nAl+ 2)!(nSi+ 2)! , (5.116)
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which, using (5.70) and simplifying, leads to:

a
Ab, ideal(iii)
plg =CAb(iii)XNaXAl,T

(
XSi,T

)3
(5.117)

and:

a
An, ideal(iii)
plg =CAn(iii)XCa

(
XAl,T

)2 (
XSi,T

)2
. (5.118)

The mol fractions of Al and Si over the four T sites are:

XAl,T = nAl

4
= 2−XNa

4
= 1+XCa

4

XSi,T = nSi

4
= 2+XNa

4
= 3−XCa

4
.

(5.119)

Unit activities at the standard state require that CAb(iii) = 256/27 and CAn(iii) = 16, so that
we finally arrive at:

a
Ab, ideal(iii)
plg = 1

27
XNa (2−XNa)(2+XNa)

3

a
An, ideal(iii)
plg = 1

16
XCa (1+XCa)

2 (3−XCa)
2 .

(5.120)

It is now clear thatCi �= 1 if different cationsmix on the same site in an end-member species,
as in this instance their mol fraction in the end-member species is not unity, but the activity
for the chosen standard state must be unity. From (5.63) we see that Ci �= 1 implies that
the entropy of mixing and configurational entropy of the solution are not the same, and we
can now understand why. The end-member plagioclase species may contain configurational
entropy that arises fromSi–Almixing in the tetrahedral sites (see alsoWorkedExample 4.3),
and this entropy is “carried over” into the solution, so that it must be subtracted from the
total configurational entropy of the solution in order to obtain the net increase in entropy
generated by mixing.
The three sets of equations, (5.106), (5.113) and (5.120), yield significantly different

ideal activities for plagioclase of a given composition, but none of them is more “correct”
than any other. Choosing among the three models requires that one knows the structural
state of the particular plagioclase of interest. This is seldom trivial, and is complicated by
the fact that the two end-members may show different Al–Si ordering in their standard
states, as anorthite always has full long-range ordering (except perhaps near its melting
point) whereas the ordering state of end-member albite changes with temperature (see,
for example, Putnis, 1992). We will not discuss the details of configurational entropy in
plagioclase any further, but it is important to gain some insight into the energetic effects of
the different ideal activity models and their likely geological significance. This is shown
in Fig. 5.12, where we plot values of RT lnai, ideal using T = 1000 K as an example. The
calculated chemical potentials shift by the same amount as the energy difference between
models (equation (5.45)), and the effect is far from trivial. For example, a typical anorthite
content in plagioclase in medium to high-grade metamorphic rocks isAn20−40. Figure 5.12
shows that the calculated chemical potential for anorthite would vary by 5–10 kJmol−1,
depending on the ideal activitymodel used. Plagioclase inmantle rocks and inmafic igneous
rocksmay contain∼10–20%albite, and in this case the shift in calculated chemical potential
could be 20 kJmol−1 or more, as the temperature in such rocks is likely to be greater than
the 1000K assumed in the figure. Energy differences of this magnitude would translate to
displacements in calculated equilibrium positions of hundreds of degrees or of kilobars to
perhaps tens of kilobars (see Section 5.2.1).
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Fig. 5.12 Comparison of three ideal activity models for plagioclase, at a constant temperature of 1000 K.

5.9 Non-ideal solutions

We defined an ideal solution as one for which �Hmixing = 0. Ideal solutions have another
important property, which is that�Vmixing in them vanishes too, as is easy to prove starting
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from (5.37) and (5.40). Ideal solutions are an algebraic construct based upon Boltzmann’s
postulate, but is it reasonable to expect that real substances will follow the ideal behavior
that is defined by the condition �Hmixing = �Vmixing = 0? There are physical reasons to
believe that in general this will not be the case. For example, molecules in some fluids
are polar (e.g. H2O), whereas in others they are not (CO2). When the two fluids mix
CO2 molecules screen electrostatic interactions among H2O molecules, and this should be
observed macroscopically as a non-zero �Vmixing . Different ions mixing in a crystalline
lattice generally differ in size, even if slightly, and therefore their surface charge densities
will differ too. Ionic substitution should then be accompanied by absorption or liberation
of energy (�Hmixing �= 0), and perhaps by a change in volume relative to the equivalent
macroscopic aggregate (�Vmixing �= 0). More subtly, mixing of different ions may have
effects on microscopic ordering that are not accounted for by the ideal mixing model, so
that the actual configurational entropy of the solution may be different from the value given
by (5.63). For example, ions may arrange themselves as if they are forming compounds (at a
microscopic level) and this will affect the configurational entropy of a crystal. Or molecules
may react to some extent in a mixed gas phase.
There are different ways of treating the behavior of real solutions. Here I focus on what

is perhaps the most widely used, and certainly the simplest, approach to real solutions. This
consists of assuming a reasonable microscopic mixing model from which one calculates
ideal activities, and then approximating the departure of the real (= observed) behavior
of the solution from this ideal model by fitting an empirical or semi-empirical function
with a variable number of free parameters. This is not the most elegant approach, as the
function has no strong physical justification, but there are a number of arguments that can
be made in its defense. Above all, it is simple and makes it possible to construct at least
a rough description of the behavior of real solutions on the basis of limited experimental
observations. Calibration of non-ideal solution models that have a better physical basis
often require experimental observations that for many phases and chemical species of
planetary interest do not exist. Their application to complex multicomponent phases under
very high temperatures and pressures may become computationally unwieldy, yet they
carry uncertainties that may make their results indistinguishable from those of simpler
empirical models, especially when compounded with possibly large uncertainties about
physical conditions in planetary interiors.

5.9.1 Excess mixing functions

Equation (5.91) (�Gmixing =�Hmixing−T�Smixing) is valid for any solution, ideal or non-
ideal, as no assumptions about the nature of the solution were made in its derivation. If a
solution is non-ideal then in general it must be:

�Gmixing �=�Gidealmixing . (5.121)

The inequality may arise from a combination of enthalpy and entropy contributions to
Gibbs free energy, but there may not be an a priori way of discriminating between them.
We therefore convert (5.121) into an identity by adding a Gibbs free energy contribution to
the Gibbs free energy of ideal mixing. This contribution is called excess Gibbs free energy,
Gexcess, and is defined by the following equation:

Gexcess ≡�Gmixing −�Gidealmixing . (5.122)



276 Chemical equilibrium

0

∆G
m

ix
in

g

∆G
m

ix
in

g
∆G

m
ix

in
g

∆G
m

ix
in

g

0

0
Xi

Xi

Xi Xi

0

(a)

(c)

1

1

1

1

(b)

(d)

Fig. 5.13 Possible non-ideal behaviors of a binary one-site solution, shown by the thick curves. The thin curve is the same in all
four graphs and shows ideal one-site mixing. The examples shown do not exhaust all possibilities. For example, the
inflected behavior shown in (c) is symmetric, but it can also be asymmetric, as in (b). Negative deviation from ideality,
as in the left side of (d), can also be symmetric (at least in principle).

Figure 5.13 exemplifies possible behaviors of real solutions. The thick curves in the figure
represent the Gibbs free energies of four possible real solutions. The thin curves are the
Gibbs free energies of the same solutions, assumed to be ideal. The excess Gibbs free energy
is the distance between the curves. We see that Gexcess may be symmetric (Fig. 5.13a) or
asymmetric (Fig. 5.13b) relative to composition, it may be such that the curvature of the
�Gmixing function changes with composition (Fig. 5.13c), or such that the sign of Gexcess

changes with composition (Fig. 5.13d), or some combination of these behaviors. Because it
is a Gibbs free energy,Gexcess is related to excess enthaply, entropy and volume functions:

Gexcess =H excess−T Sexcess (5.123)(
∂Gexcess

∂T

)
P ,ni

=−Sexcess (5.124)

(
∂Gexcess

∂P

)
T ,ni

= V excess. (5.125)
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We use (5.2.12) to define a partial molar property, called excess chemical potential, µexcess,
as follows:

µi,excess ≡Gexcess+
j=k∑
j=2

(
δij −Xj

) ∂Gexcess
∂Xj

(5.126)

so that, by equation (5.29), Gexcess =∑i Xiµ
i . From (5.126), (5.122) and (5.93) we get:

�Gmixing =
∑
i

XiRT lnai, ideal +
∑
i

Xiµ
i,excess (5.127)

and, by using (5.45):

µi −µ0, i =RT lnai =RT lnai, ideal +µi,excess. (5.128)

In order to construct a compact equation for the activity of a component in a non-ideal
solution we define a new non-dimensional parameter, called the activity coefficient and
symbolized by γ, as follows:

γi ≡ exp

(
µi,excess

RT

)
(5.129)

so that:

ai = γi · ai, ideal . (5.130)

Equations (5.122) through (5.130) are the foundations of the mathematical treatment of
non-ideal solutions. They have a simple geometric interpretation which helps to visualize
the behavior of real solutions (Fig. 5.14). The excess chemical potential of a species is the
distance between the intersects of the tangents to the ideal and real Gibbs free energy of
mixing curves with the G axis for that species (compare Fig. 5.9). This distance vanishes
as the mol fraction of the species of interest approaches unity, and approaches a constant
finite value as the species becomes infinitely dilute (Fig. 5.14).

5.9.2 Raoult’s law and Henry’s law

If we consider a simple one-site binary solution then (5.130) becomes:

ai = γ iXi (5.131)

and, calling the two components 1 and 2, we get from (5.126):

µ1,excess =Gexcess−X2
∂Gexcess

∂X2
. (5.132)

For X1 → 1 we have X2 → 0 and also Gexcess → 0 (see Fig. 5.14), so that, as long as
∂Gexcess/∂X2 stays bound, µ1,excess→ 0. We then have, for a nearly pure component:

ai =Xi , for Xi → 1. (5.133)

On the other hand, for X1 → 0, X2 → 1 but it is still Gexcess→ 0. Assuming again that
∂Gexcess/∂X2 stays bound, we have:

µ
1,excess
X1→0 =−

(
∂Gexcess

∂X2

)
X2=1

. (5.134)
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Fig. 5.14 Geometric interpretation of excess mixing properties. The thin curve and tangent line correspond to an ideal solution,
the thick ones to a (symmetric) non-ideal solution. Compare with Fig. 5.9.

We define a constant, K1
H , as follows:

K1
H = γ1X1→0 = exp

[
− 1

RT

(
∂Gexcess

∂X2

)
X2=1

]
, (5.135)

which, using (5.131), yields the following relation for an infinitesimally dilute component:

ai =Ki
HXi , for Xi → 0. (5.136)

Equations (5.133) and (5.136) are known as Raoult’s and Henry’s laws, respectively, and
were found empirically by the eponymous scientists during the nineteenth century. Raoult’s
law is perhaps self-evident, but Henry’s law is not. It requires that ∂Gexcess/∂X2 approach
a constant finite value as X1 becomes infinitesimally small.

Raoult’s andHenry’s lawswere originally derived for binarymixtures of liquid and gases,
but they are applicable to any type of solution. For complex multi-site solid solutions we
can re-state them as follows:

ai = ai, ideal , for Xi → 1 (5.137)

and:

ai =Ki
Ha

i, ideal , for Xi → 0. (5.138)

Henry’s law is the thermodynamic basis of trace element geochemistry (Chapter 10) and is
also important in the thermodynamic treatment of electrolyte solutions (Chapter 11).
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5.9.3 Polynomial expansion of excess mixing functions

The empirical approach to describing non-ideal solutions consists of finding a function of
T, P and composition that can reproduce observed values of Gexcess (i.e., the varying dis-
tance between the curves in Fig. 5.13) as closely as possible. This function must subsume
Raoult’s and Henry’s laws. Thus,Gexcess must vanish as the end-member compositions are
approached, and all partial derivatives ∂Gexcess/∂Xi must be finite over the entire compo-
sitional range, and in particular at the end-members. In addition to these two properties,
the Gexcess function must be such that it is able to reproduce a range of possible non-ideal
behaviors, as depicted in Fig. 5.13. A polynomial in powers of mol fractions can, subject
to some constraints, be made to do all of these things. The most general way of construct-
ing such a polynomial is to begin with the following series, in which the w coefficients
are constant with respect to composition but are in general functions of temperature and
pressure:

Gexcess =
∑
i

∑
j

wijXiXj +
∑
i

∑
j

∑
k

wijkXiXjXk

+
∑
i

∑
j

∑
k

∑
l

wijklXiXjXkXl +·· · ,
(5.139)

where i,j ,k, l, . . . are solution components. Higher-order terms can be added as needed,
but it is often sufficient, or necessary owing to lack of data, to truncate the series after the
second term, in cubes of mol fractions.
Anumber of simplifications ensue. First, it is convenient to set coefficients with different

permutations of the same subindices equal to one another, i.e. wij = wji , wijk = wikj =
wjik =wjki =wkij =wkji and so on. Second, in order forGexcess to vanish for all pure end-
member components every coefficient in which all subindices are the samemust vanish too,
i.e. wii =wiii =wiiii = 0, and so on if higher-order terms are included. Third, because of
the closure condition (

∑
i Xi = 1), there are dependencies among the non-zero coefficients,

which cuts down on the number of free parameters needed to fitGexcess. This is easily seen
in a binary solution, but is true, although algebraically more complex, for solutions of any
number of components. Applying (5.139) to a binary solution, truncating the series at the
second term, collecting coefficients with different permutations of the same subindices and
omitting those coefficients that are zero we get:

Gexcess = 2w12X1X2+ 3w112X
2
1X2+ 3w122X1X

2
2, (5.140)

which, noting that X1+X2 = 1, we write as:

Gexcess =X1X2 [3w112X1+ 3w122X2+ 2w12 (X1+X2)] (5.141)

or:

Gexcess =X1X2 [(3w112+ 2w12)X1+ (3w122+ 2w12)X2] . (5.142)

In equation (5.142) there are only two independent coefficients, whichwe are free to rename
as follows: WG

21 = 3w112 + 2w12 and WG
12 = 3w122 + 2w12. These parameters, written

with a capital W , are commonly called Margules parameters or interaction parameters.
Equation (5.142) simplifies to:

Gexcess =
(
WG

21X1+WG
12X2

)
X1X2. (5.143)
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The superscript G is added to the parameters to denote the fact that they measure excess
Gibbs free energy. It is important to realize that Margules parameters are functions of
temperature and pressure but not of composition.
We can verify that (5.143) is an acceptable algebraic representation of the excess Gibbs

free energy of a binary solution. First,Gexcess vanishes if the mol fraction of any of the two
end members becomes zero (Raoult’s law). Second, using infinitely dilute component 1 as
an example, we have: (

∂Gexcess

∂X2

)
X2=1

=−WG
12, (5.144)

i.e. ∂Gexcess/∂Xi at the limiting end-member composition has a finite non-zero value and
is related to the Henry law constant by:

K1
H = γ 1

X1→0 = exp

[
− 1

RT

(
∂Gexcess

∂X2

)
X2=1

]
= exp

(
WG

12

RT

)
. (5.145)

There are no a priori conditions on the signs and relativemagnitudes of theMargules param-
eters. An inflected�Gmixing curve (Fig. 5.13c) results if the two interaction parameters are
positive and large, whereas aGexcess function that changes sign (Fig. 5.13d) arises if the two
parameters have different signs. An important simplification ensues if the two interaction
parameters are equal, in which case we haveWG

21 =WG
12 and:

Gexcess =WG
12X1X2. (5.146)

Equation (5.146) corresponds to the symmetric behavior depicted in Figs. 5.13a and 5.13c,
whereas the general asymmetric case in Figs. 5.13b and 5.13d is reproduced by (5.143) with
WG

21 �=WG
12. A commonly used terminology refers to the symmetric solution described by

(5.146) as a simple mixture, and to the asymmetric solution given by (5.143) as a subregular
solution.Tomake thingsmore confusing, a symmetric solution (= simplemixture) forwhich
Sexcess = V excess = 0 (i.e. for which Gexcess is independent of P and T) is called a regular
solution. I find this terminology,which is used primarily for historical reasons, unnecessarily
confusing, and will eschew it in favor of the more descriptive terms symmetric solution (e.g.
Fig. 5.13a and c) and asymmetric solution (e.g. Fig. 5.12b and d), with or without T and/or
P dependencies.
BecauseGexcess is a linear function of interaction parameters, identities (5.123) to (5.125)

carry over to equivalent identities among interaction parameters, so that we have:

WG
ij =WH

ij −TWS
ij (5.147)(

∂WG
ij

∂T

)
P

=−WS
ij (5.148)

(
∂WG

ij

∂P

)
T

=WV
ij . (5.149)

Note that the subscript ni is no longer needed in the partial derivatives, because the interac-
tion parameters as defined by (5.139) are not functions of composition. Excess enthalpies,
entropies and volumes are calculated with (5.143) or (5.146), using WH , WS , or WV , as
needed.
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Excess chemical potentials and activity coefficients are obtained by substituting the
polynomial expansion for Gexcess (i.e. equations (5.143) or (5.146), depending on whether
the solution is asymmetric or not) in (5.126) and (5.129). For example, for an asymmetric
binary solution we have:

µ1,excess =
[
WG

12+ 2X1

(
WG

21−WG
12

)]
X2

2. (5.150)

which for a symmetric solution simplifies to:

µ1,excess =WG
12X

2
2. (5.151)

The attentive reader must have noticed that, beginning with equation (5.140), the dis-
cussion has focused exclusively on binary solutions. This is because the corresponding
polynomial expansions for solutions of three or more components quickly become much
more cumbersome, and are best dealt with by means of a symbolic algebra package such
as Maple (see end-of-chapter exercises).

5.9.4 Perils and tribulations of excess mixing functions

Whenever one uses non-ideal mixing models the fact must be kept in mind that the values
of excess thermodynamic properties are not independent of the values of standard state
properties. In order to understand what this means, and the perils that ensue, it is necessary
to sketch out how excess mixing properties are measured. One way of doing this is by
means of phase equilibrium experiments. The method is based on equilibrating a phase
of variable composition in an assemblage in which all the other phases are end-member
species that do not change composition. An example is the determination of Al–Mg excess
mixing properties in orthopyroxene using reaction (5.102). The experimental data that one
seeks are orthopyroxene compositions coexisting at equilibrium with end-member spinel
and forsterite. The equilibrium condition for this reaction is equation (5.103), which con-
tains three free parameters: P , T and XMg,M1 in orthopyroxene (e.g. equation (5.104)). If
we wish to determine the excess mixing properties of Al–Mg in orthopyroxene then we
can perform a series of phase equilibrium experiments at controlled pressures and temper-
atures, and measure the composition of orthopyroxene that crystallizes in each experiment.
Equation (5.103) assures us that at each P and T there is a unique equilibrium orthopyrox-
ene composition, since neither spinel nor olivine will depart from their Mg end-member
compositions. We will not go into the details of how the experiments are performed, what
are the uncertainties in experimental temperatures and pressures, how we can ascertain
whether equilibrium was attained in the experiments, or what are the likely uncertainties in
orthopyroxene compositions arising from analytical techniques (see for example Holloway
&Wood, 1988; Berman, 1988; Holland & Powell, 1998; Anderson, 2005). Rather, we will
put ourselves in the somewhat optimistic position that none of these is a concern, and see
that there is a more fundamental issue in play.
Allowing for the possibility that Al–Mg mixing in orthopyroxene may not be ideal, we

rewrite equation (5.103) as follows (see (5.128)):

�rG
0,(ii)
P ,T +RT ln

(
XAl,M1

XMg, M1

)
+µMgTs,excess

opx −µEn,excess
opx = 0. (5.152)

Ifweknow the pressure and temperature of the experiment thenwe can calculate the standard
stateGibbs free energy of reaction (the first term in the equation), andwe get the second term
(the ratio of ideal activities) from themeasured orthopyroxene composition.One experiment
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thus gives us the difference between the excess chemical potentials ofMg–Tschermakite and
enstatite. We will see in a second that with multiple experiments we can find the absolute
value of each of the excess chemical potentials, but before getting into that you must
understand that equation (5.152) is the crux of the issue: the values of the excess chemical
potentials are anchored to the values of the standard state thermodynamic properties. The
problem is that standard state properties formany species of interest in the planetary sciences
are not known with high accuracy, and there may be significant differences among values
given in different data bases. Excess mixing properties measured by phase equilibria are
relative values. They are determined relative to standard state properties from a specific
data base, and they canONLY be used together with standard state data from that same data
base. Of course, equation (5.152) shows that the values of excess mixing properties are also
anchored to our choice of ideal activity model, but accounting for this is less of a problem,
as it requires only that one be consistent when calculating ideal activities. In contrast,
combining excess properties with standard state properties different from those used in the
derivation of the excess properties renders the results questionable at best. Excess mixing
properties can also be derived from calorimetric measurements (see Navrotsky, 1986), and
although these can be absolute values, the same caveat applies: they should not be used in
conjunction with standard state properties derived by some other method.
Extracting Margules parameters from (5.152) is straightforward but requires that we per-

formmultiple experiments over a range of pressures and temperatures, so as to obtain a range
of orthopyroxene compositions.Assuming that Mg–Al non-ideal mixing is asymmetric, we
use (5.150) to re-write (5.152) as follows:

�rG
0,(ii)
P ,T +RT ln

(
XAl,M1

XMg,M1

)

+WG
AlMg

(
X2
Mg,M1− 2XAl,M1X

2
Mg,M1− 2XMg,M1X

2
Al,M1

)
−WG

MgAl

(
X2
Al,M1− 2XAl,M1X

2
Mg,M1− 2XMg,M1X

2
Al,M1

)
= 0.

(5.153)

This is one equation in two unknowns (the two Margules parameters). In principle, and
assuming that there is no temperature nor pressure dependency of the WG parameters
(i.e. WS =WV = 0, see equations (5.148) and (5.149)), with two experiments at different
conditions, in which the values of�rG

0,XMg andXAl are different, we could solve for the
two parameters. In practice many experiments are required so as to have an overdetermined
system of equations that allows us to analyze experimental errors, and detect possible P and
T dependencies of the Margules parameters (i.e. discriminate WG into WH , WS and WV ,
see equation (5.147)). Assuming a symmetric solution simplifies 5.153 considerably, to:

�rG
0,(ii)
P ,T +RT ln

(
XAl,M1

XMg,M1

)
+WG

(
X2
Mg,M1−X2

Al,M1

)
= 0. (5.154)

One commonly uses experimental data to test for symmetry vs. asymmetry, for example
by determining whether the difference between the two parameters fitted to an asymmetric
model is statistically significant.
The following example is designed to show that, no matter what model one chooses to

use to represent the behavior of a real solution, unless consistency between the various
sources of thermodynamic data is observed, the results can be spectacularly incorrect.
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Worked Example 5.7 The spinel–garnet transition in planetary mantles, part (iv)

The spinel–garnet transition can be used as an example of the perils of combining mixing
and standard state properties that are not consistent with one another. The phase boundary
andAl contents in orthopyroxene in Fig. 5.10were calculated using standard state properties
from Holland and Powell (1998) and ideal Al–Mg mixing in orthopyroxene. Relative to
their standard state properties, Holland and Powell find that WG

AlMg = 0. In other words,
Al and Mg appear to mix ideally in orthopyroxene. In truth what probably happens is that
the available experimental data are too sparse and do not make it possible to accurately
discriminate between standard state and excess mixing properties for this particular binary
join. The safest course of action in such case is to set the excess chemical potential equal to
zero, and let the standard state properties of Mg–Tschermakite “absorb” any excess mixing
properties – this is, I believe, what Holland and Powell have done. Whether or not Al–Mg
mixing in orthopyroxene is ideal, and it almost certainly is not, if we are going to useHolland
and Powell’s standard state properties to calculate the phase boundary then we must use
ideal mixing. The curves in Fig. 5.10 are therefore the correct ones.
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Fig. 5.15 The effect of calculating a phase boundary using excess mixing properties that are inconsistent with the standard
state properties. Curves labeled “CONSISTENT” were calculated using standard state properties from Holland and
Powell (1998), that require that Al–Mgmixing in orthopyroxene be considered ideal. Curves labeled “INCONSISTENT”
were calculated with the same standard state properties, and Al–Mg excess mixing properties from Klemme and
O’Neill (2000b). This does notmean that Klemme and O’Neill’s mixing properties are incorrect, only that they are
anchored to a different set of standard state properties. The purpose of the diagram is to show that using standard
state and mixing properties that are inconsistent with one another can engender very significant errors.
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Perusing the literature, however, one finds other studies that report significant non-ideality
for Al–Mg mixing in orthopyroxene. One such paper is the one by Klemme and O’Neill
(2000b), who find a symmetric non-ideal behavior withWG = 20 kJ mol−1, but relative to
a different set of standard state values (which unfortunately they do not make explicit). Let
us ignore this “but” and recalculate the phase diagram using Holland and Powell’s standard
state data and Klemme and O’Neill’s non-ideal mixing model. The calculation is very
easily implemented in Maple (Software Box 5.5) and the results are shown in Fig. 5.15.
The calculated phase boundary shifts by ∼5 kbar, and the calculated Al mol fraction in
orthopyroxene drops by about 0.1 to 0.15. These are non-negligible displacements, and the
new curves (labeled “INCONSISTENT” in the figure) are incorrect. Note that this does
not mean that Klemme and O’Neill’s non-ideal mixing model is incorrect. Their model is
a different way of allocating experimental measurements among standard state and excess
properties, as equation (5.152) should make clear. This exercise is designed to demonstrate
the fallacy of combining excess properties and standard state properties that are notmutually
consistent. I emphasize: I made this error on purpose, with purely didactic goals.

Software Box 5.5 Incorporation of non-ideal Al–Mgmixing in orthopyroxene to the calculation
of spinel–garnet equilibrium
The Maple worksheet sp_grt_MAS.mw contains a procedure named
spgrAlMASni that adds non-ideal mixing terms to equations (5.101) and (5.104).
Assuming symmetric non-ideal Al–Mg interactions in orthopyroxene, we find from
equation (5.151):

µEn,excess
opx =WG

AlMgX
2
Al (5.155)

and:

µ
MgTs,excess
opx =WG

AlMgX
2
Mg. (5.156)

Incorporating these excess chemical potentials in (5.101) and (5.104), and recalling that
XAl,M1+XMg,M1 = 1, we get:

�rG
0,(i)
P ,T − 2RT lnXMg,M1− 2WG

AlMg

(
1−XMg,M1

)2 = 0 (5.157)

and:

�rG
0,(ii)
P ,T +RT ln

(
1−XMg,M1

XMg,M1

)
+WG

AlMg

[
X2
Mg,M1−

(
1−XMg,M1

)2]= 0.

(5.158)

As in the ideal solution case (Software Box 5.4) we have two equations that, if we
fix temperature, we can solve for the two unknowns, P and XMg,M1 in orthopyroxene.
Procedure spgrAlMASni is thus otherwise identical to spgrAlMAS.
In the example discussed in Worked Example 5.7 I have purposely used values of

standard state and excess mixing properties that are inconsistent with one another. Of
course, theMaple procedure can be used with any combination of thermodynamic prop-
erties, bymodifying the standard state values stored in the spreadsheetRefStateData
and/or the value of the excess mixing parameter stored in the variable WAlMg.
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Exercises for Chapter 5

5.1 Calculate the Clapeyron slope for the reaction spinel + 2 enstatite→← forsterite +
pyrope at 298 K and 1 bar, and compare your result to the slope of the reaction in
Figure 5.5.

5.2 Using the reaction spinel + 2 enstatite→← forsterite + pyrope, verify that the assem-
blage with higher entropy is the one that is on the high temperature side of the phase
boundary, and the assemblage with higher density is on the high pressure side of the
phase boundary.

5.3 Calculate the phase boundary for the transition between plagioclase lherzolite and
spinel lherzolite for the end-member Ca–Mg system, assuming that both diopside
and enstatite remain as pure end-member phases, and ignoring the order–disorder
transition in anorthite (more on this in Chapter 7). You need to write a balanced
reaction among anorthite, forsterite, diopside, enstatite and spinel, and program this
reaction in the Maple worksheet th_template_3.mw (see Software Box 5.2).
Use standard state properties from Holland and Powell (1998). You will refine this
calculation in Exercises 5.15 through 5.17.

5.4 Calculate the activity of diamond relative to the standard state graphite, and the activity
of graphite relative to the standard state diamond, at 298 K and 1 bar. What is the
physical meaning of a > 1? Of a < 1?

5.5 Show that the conclusion that chemical species are transferred down chemical poten-
tial gradients (i.e. equation (5.26)) is valid in systems with any arbitrary number of
phases and components.

5.6 Prove equations (5.95), starting from (5.70).
5.7 Prove equations (5.97), starting from (5.70).
5.8 Prove equations (5.100), starting from (5.70).
5.9 Write equations for the ideal activities of eastonite (KMg2AlAl2Si2O10(OH)2) and

muscovite (KAl2AlSi3O10(OH)2) in a trioctahedral mica.
5.10 Prove equation (5.91), i.e.:

�Gmixing =�Hmixing −T�Smixing .
5.11 Prove that �Vmixing for an ideal solution is zero.
5.12 Use Maple’s plotting capabilities to explore the conditions under which a non-ideal

symmetric solution develops an inflected�Gmixing curve, as in Fig. 5.13c. (Hint: vary
the relative values of temperature and the interaction parameter.)

5.13 Use Maple’s plotting capabilities to show that a Gexcess function for an asymmetric
solution that changes sign (as inFig. 5.13d) arises only if the two interactionparameters
have different signs.

5.14 Prove equation (5.150).
5.15 A first step in refining the anorthite–spinel phase boundary in lherzolites is to include

the Mg–Tschermak’s component in orthopyroxene (using reaction (5.102)) and the
Ca–Tschermak’s component in clinopyroxene: CaAlAlSiO6. Assume that Ca fills the
M2site in cpx, and thatAl andMgmix in theM1site of cpx, as in opx.Youneed to come
up with an additional balanced chemical reaction that includes the Ca–Tschermak’s
species in cpx. There are several possibilities, but the simplest one is a reaction among
the two Tschermak’s components, diopside and enstatite. You will end up with three
linearly independent equations ((5.102), the one that you derived in Exercise 5.3, and
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your new reaction) in four unknowns: P, T, (XAl,M1)opx and (XAl,M1)cpx. The system
has one degree of freedom, and can be solved by fixing one variable, for example
temperature. Use the discussion in Software Box 5.4, and the worksheet described
there, to help you program the solution of this system of equations inMaple, assuming
ideal mixing in both pyroxenes. Plot the new plagioclase–spinel phase boundary and
compare it with the one you generated in Exercise 5.3. Use standard state properties
from Holland and Powell (1998).

5.16 In order to further refine the plagioclase–spinel phase boundary you should include
excess mixing properties in pyroxenes. According to Holland and Powell, Al–Mg
mixing in the M1 site of both pyroxenes is symmetric, with (WAlMg)opx = 0 and
(WAlMg)cpx = 7 kJmol−1.With the discussion in Software Box 5.5 as a guide, include
the corresponding excess chemical potentials, recalculate the plagioclase–spinel phase
boundary and compare it with the ones you generated in Exercises 5.3 and 5.15.

5.17 In reality, Ca andMg alsomix in theM2 site of both clinopyroxene and orthopyroxene.
You can then add the following two reactions to your system of equations:

(CaMgSi2O6)cpx
→←(CaMgSi2O6)opx

(Mg2Si2O6)cpx→←(Mg2Si2O6)opx

and end up with a system of five equations and six unknowns: P , T , (XAl,M1)opx,
(XAl,M1)cpx, (XMg,M2)opx, and (XMg,M2)cpx. The system still has one degree of free-
dom, and can thus be solved by fixing one variable, e.g., temperature. According to
Holland and Powell, Ca–Mg mixing in the M2 site of pyroxenes is symmetric, with
(WCaMg)opx = (WCaMg)cpx = 30 kJ mol−1. Recalculate the plagioclase–spinel phase
boundary and compare it with the ones you generated in Exercises 5.3, 5.15 and 5.16.



6 Phase equilibrium and phase diagrams

A phase diagram is a graph that shows the distribution of stable phase assemblages as a
function of the values of the intensive variables used to describe the thermodynamic system.
If pressure and temperature are the variables of interest then the stable assemblage is the
one with the lowest Gibbs free energy, although other thermodynamic potentials may be
used if the variables of interest are different, for example, Helmholtz free energy if one
is interested in temperature and volume (more on this in Chapter 9). Phase diagrams are
powerful analytical tools in many branches of planetary sciences, as they provide a way
to quickly visualize how phase assemblages change in response to changes in pressure,
temperature, chemical potentials, or any other combination of intensive variables. There
are many different types of phase diagrams and it is not the purpose of this book to offer a
comprehensive review of all of them. Rather, in this chapter I will focus on the fundamental
rules that phase diagramsmust abideby inorder to be thermodynamically valid.We therefore
begin with a discussion of the thermodynamic underpinnings of phase diagrams.

6.1 The foundations of phase equilibrium

6.1.1 The Gibbs–Duhem equation

Any extensive thermodynamic property can be written as a sum of products of partial molar
properties times mol numbers (equation (5.27)). Let us re-write equation (5.27) specifying
the identity of the phase that it applies to with the index α (α can be a solution or a pure
phase, in which case identity (5.27) is trivial):

Zα =
∑
i

ziαn
α
i . (6.1)

Taking derivatives:

dZα =
∑
i

ziαdn
α
i +

∑
i

nαi dz
i
α . (6.2)

Now, sinceZ is a state variable it is a function of temperature and pressure, i.e. the following
function exists:

Zα = Zα (P ,T ,nαi ) . (6.3)

287



288 Phase equilibrium and phase diagrams

Note that (6.1) and (6.3) are two different functions that yield the value of the same extensive
property, Z. Taking the derivative of (6.3):

dZα =
(
∂Zα

∂T

)
P ,nαi

dT +
(
∂Zα

∂P

)
T ,nαi

dP +
∑
i

(
∂Zα

∂nαi

)
P ,T ,nαj �≡i

dnαi . (6.4)

Substituting the definition of partial molar property, equation (5.28), in (6.4), equating with
(6.2) and simplifying we arrive at the following, known as the Gibbs–Duhem equation:(

∂Zα

∂T

)
P ,nαi

dT +
(
∂Zα

∂P

)
T ,nαi

dP −
∑
i

nαi dz
i
α = 0. (6.5)

This equation is valid for any thermodynamic extensive variable, but its most common
application is to Gibbs free energy, in which case, by using (4.132) and (4.133), it becomes:

SαdT −V αdP +
∑
i

nαi dµ
i
α = 0. (6.6)

In this form equation (6.6) is also known asGibbs’equation 97.Dividing by the total number
of mols, nα =Tin

α
i we can also write the Gibbs–Duhem equation as follows:

SαdT −V αdP +
∑
i

Xα
i dµ

i
α = 0. (6.7)

The Gibbs–Duhem equation specifies the number of intensive variables that can vary inde-
pendently in a homogeneous phase in thermodynamic equilibrium. For example, suppose
that we can describe the composition of a phase in terms of the amounts of s different chem-
ical species. There are then s+2 intensive variables in (6.6): pressure, temperature and the
chemical potential of each of the s species. The equation has s + 1 degrees of freedom,
which is the number of intensive variables that must be specified in order to solve it.
You may have noticed that, whereas in Chapter 5 we distinguished between system com-

ponents and phase components, in the previous paragraph we ignored that distinction and
referred simply to the chemical species that make up the phase. The reason for this is that
the Gibbs–Duhem equation makes no distinction between phase components and system
components. We imposed no restrictions on the type of components when writing equation
(6.1), except that whichever components we choosemust allow us to fully describe the com-
position of the phase. Thus, the Gibbs–Duhem equation is equally true whether we choose
to describe the composition of the phase in terms of system components, phase components
or any combination of the two. We will exploit this flexibility on many occasions.

6.1.2 Gibbs’ phase rule

Consider now a system made up ofF different phases, and let us describe the composition
of each of the phases in terms of the same set of system components. Recall from Section
5.1.1 that this is a set of chemical species whose compositions are linearly independent and
such that they span the composition space of the full system (and hence of each of the phases
that make up the system). In the language of linear algebra the system components conform
a coordinate basis or minimal spanning set for the composition space of the system. The
coordinate basis, i.e. the specific set of system components that we choose, is not unique
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but, importantly, whatever basis we choose it always contains the same number of system
components, which we shall call c (in linear algebra, c is the dimension of the composition
space). We can construct a system of F Gibbs–Duhem equations, as follows:

S1dT −V 1dP +
c∑
i=1
n1i dµ

i
1 = 0

.............................................. (6.8)

SFdT −VFdP +
c∑
i=1
nFi dµ

i
F = 0.

For a system at equilibrium, and given that we have chosen to write all of the Gibbs–Duhem
equations in terms of the same set of system components, it must be µ1

i = ·· · = µF
i , for

every one of the c components, 1 ≤ i ≤ c. At equilibrium there must also be identity
among the differentials of the chemical potentials, i.e. dµ1

i = ·· · = dµF
i . There are then

F equations in c + 2 independent variables: dT, dP and c dµs. Two fundamental results
follow immediately from the elementary algebraic properties of systems of linear equations.

(i) The maximum possible number of phases at equilibrium in a system composed of c
linearly independent chemical species (= system components) is c + 2. If the number
of phases,F, were greater than this then there would be more Gibbs–Duhem equations
than independent variables and the system of equations would be inconsistent.

(ii) The number of degrees of freedom of the system, f , is given by:

f = c+ 2−F. (6.9)

The number of degrees of freedom, f ≥ 0, also called the variance of the system, is
the number of intensive variables that must be specified, or constrained independently,
in order to be able to solve the system of equations (6.8) and hence have a complete
description of the thermodynamic state of the system.

These two statements constitute Gibbs’ phase rule. It is a simple algebraic result with
profound implications for understanding the physicochemical constitution of planetary
bodies.
The phase rule is commonly derived along the lines that I followed here, but I find it

interesting that a subtle yet obvious question is seldom addressed explicitly: where does
the 2 in equation (6.9) come from? Perhaps the clearest justification for the 2 can be found
in the very first two sections of Guggenheim’s Thermodynamics (1967), which I rephrase
as follows:

In order to specify the thermodynamic state of a system we need a variable that keeps
track of changes in thermal energy – temperature or its conjugate, entropy – and another
variable that keeps track of changes in mechanical energy – pressure or its conjugate,
volume. These are the two variables that show up in equation (6.9) in addition to the
chemical potentials of each of the linearly independent chemical species.

If additional products of conjugate variables need to be considered (see Section 4.8.4), such
as would be the case if the gravitational potential cannot be ignored (Chapter 13), then the
constant term in equation (6.9) becomes greater than 2.
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6.1.3 Choosing and switching components

The solution of a system of equations such as (6.8) yields a “complete thermodynamic
description” of the system of interest. By this we mean that we can calculate its pressure,
its temperature and the chemical potential of each of the chemical species that compose the
system. Equivalently, since there is a functional relationship between chemical potential
and composition (e.g., equation (5.2.12)), the “complete thermodynamic description” could
be T, P and the composition of each phase. This is the most useful description in planetary
sciences, and the chief goal of many thermodynamic calculations. There are alternative
ways of arriving at this description. One possibility is to integrate each of the Gibbs–Duhem
equations in (6.8) and then solve for the combination of intensive variables that satisfies the
system of integrated equations. This is seldom easy, especially for systems of more than two
components. Fortunately, it is also seldom necessary, as several shortcuts are possible. In
fact, we have already used some of these shortcuts in the numerical examples in Chapter 5.
In the derivation of the phase rule we specified that the Gibbs–Duhem equations for all

phases in the system be written in terms of system components. Because system compo-
nents constitute a minimal spanning set for the composition of the system, this requirement
assures that the number of unknown variables in the system of equations (6.8) is the mini-
mumpossible. The number of equations relating these variables in (6.8) is also theminimum
possible, as there is one and only one Gibbs–Duhem equation per phase. These two state-
ments signify that the mathematical description of the thermodynamic state of the system is
complete and cannot be simplified any further. In particular, regardless of the way in which
we choose to solve for the thermodynamic state of the system, the number of degrees of
freedom of our system of equations must be the one given by the phase rule. This is perhaps
the most important consequence of Gibbs’ phase rule, and the first key to finding algebraic
shortcuts for the thermodynamic description of a system.
The second key is more a question of intuition, experience and the specific goal that one

has, rather than a rigorous mathematical rule, although such rule exists, as we shall see in a
moment. We begin by choosing the set of chemical species that we are actually interested
in. This is determined by the nature of the system that we are investigating, and by what we
know about the possible compositional range of each of the phases that make up the system.
We must choose at least as many chemical species as the number of system components,
and we must choose a set of chemical species that allows us to write the composition of all
of the phases in the system. Beyond these restrictions, however, there can be any number of
species, and their nature (system components, phase components or a combination of both)
is not important. Let us say that we choose a total of s chemical species, with s ≥ c (c is
the number of system components). The F Gibbs–Duhem equations must be re-written in
terms of these s components (some of the mol numbers or mol fractions may be zero, but
this is not a problem).

Clearly, if s> c then the compositions of all s species cannot be linearly independent.More
precisely, there must exist s – c linearly independent equations relating the compositions of
the s species. Each of these equations corresponds to a balanced chemical reaction among
someor all of the s chemical species. But ifwe canwrite a balanced chemical reaction among
chemical species then we can also write an equation among their chemical potentials that
describes a condition of heterogeneous chemical equilibrium. Each of these equations is a
version of (5.22): ∑

i

νiµ
i = 0 (6.10)
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and each one can be differentiated to obtain an equation of the form:

∑
i

νidµ
i = 0. (6.11)

There are s – c equations like (6.11), which, together with the F Gibbs–Duhem equations,
gives a total of F + s – c equations. These equations contain s + 2 unknown variables:
pressure, temperature and the chemical potential of each of the s chemical species. The
number of degrees of freedom of the augmented system of equations is still c + 2 – F,
as required by the phase rule. This system of equations is an alternative description of the
thermodynamic state of the system that is equivalent to a set of Gibbs–Duhem equations
such as (6.8).
The underlying algebraic rule is simple: we must add one equation for each chemical

species that we wish to consider beyond the number of system components. Generally,
each of these additional equations is an equation of heterogeneous equilibrium of the form
(6.10). And the shortcut that we seek is to solve only these equations, and stay away from
the Gibbs–Duhem equations if at all possible. Equations of the form (6.10) are a lot easier
to solve because they are already given in integral form, and all that is required is a function
that gives chemical potential in terms of P, T and phase composition. This is exactly what
we have been doing throughout Chapter 5.
By now you may be thoroughly confused. The best way of clearing the air is with

an example. I encourage you to go over the following example carefully, and return to
the preceding discussion often as you do so. The example also demonstrates additional
thermodynamic possibilities that we will exploit further in subsequent sections.

Worked Example 6.1 The spinel–garnet transition in planetary mantles revisited

The model for the spinel–garnet transition that we discussed in Chapter 5 consists of the
four phases: spinel, orthopyroxene, olivine and garnet. The Mg end-member system is
spanned by three system components, which we can choose as SiO2, Al2O3 and MgO (but
see Exercise 6.1). Thus, F = 4, c = 3 and, from (6.9), f = 1. This is the same number of
degrees of freedom that we found when we solved the equations that describe the phase
boundaries in Worked Examples 5.1 and 5.6. Where did those equations come from, and
how can we be sure that they are a complete thermodynamic description of the system?
Let us start by writing out the Gibbs–Duhem equations in terms of our chosen system

components. The explicit form of (6.8) for this system is:

Ssp dT −V sp dP +nspSiO2
dµSiO2 +nspAl2O3

dµAl2O3 +nspMgO dµ
MgO = 0

Sopx dT −V opx dP +nopxSiO2
dµSiO2 +nopxAl2O3

dµAl2O3 +nopxMgO dµ
MgO = 0

Sol dT −V ol dP +nolSiO2
dµSiO2 +nolAl2O3

dµAl2O3 +nolMgO dµ
MgO = 0

Sgrt dT −V grt dP +ngrtSiO2
dµSiO2 +ngrtAl2O3

dµAl2O3 +ngrtMgO dµ
MgO = 0. (6.12)

I have omitted the phase identification subscripts in the chemical potential terms because
at equilibrium the chemical potential of each component is the same in all phases. Some
of the mol numbers, such as nspSiO2

and nolAl2O3
, may be zero, but there is no harm in keep-

ing the corresponding terms in (6.12). This is a (minimal) system of four equations with five
unknowns: dP, dT, dµSiO2 , dµAl2O3 and dµMgO. We could solve it by integrating the
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Gibbs–Duhem equations and specifying the value of any one of the intensive variables. As
an aside, a system of equations such as (6.12), in which all equations have a zero constant
term, is called a homogeneous system and its only solutions are zeroes. Integrating the
equations converts (6.12) into a heterogeneous system with non-zero solutions, thanks to
non-zero integration constants. This is an important concept from linear algebra, but need
not concern us too much at this point for, if all we are interested in is the location of the
phase boundary, there is a much easier solution that does not require any integration.
We begin by re-writing the Gibbs–Duhem equations in terms of an appropriately chosen

set of phase components. Suppose first thatwe did not know thatAl can enter orthopyroxene.
The compositions of the four phases can in that case be written out in terms of the four
phase components: MgAl2O4, Mg2Si2O6, Mg2SiO4 and Mg3Al2Si3O12. This is one more
than the number of system components, so in order to preserve the number of degrees of
freedom we must add an equation. Let us re-write the Gibbs–Duhem equations in terms of
our new set of components:

SspdT −V spdP +nspMgAl2O4
dµ

MgAl2O4
sp = 0

SopxdT −V opxdP +nopxMg2Si2O6
dµ

Mg2Si2O6
opx = 0

SoldT −V oldP +nolMg2SiO4
dµ

Mg2SiO4
ol = 0

SgrtdT −V grtdP +ngrtMg3Al2Si3O12
dµ

Mg3Al2Si3O12
grt = 0. (6.13)

In (6.13) it is convenient to include the phase identification subscripts in the chemical
potentials because the additional equation that we seek is a heterogeneous equilibrium
equation among these species, obtained by differentiation of equation (5.23):

µ
MgAl2O4
sp + 2µMg2Si2O6

opx = µ
Mg3Al2Si3O12
grt +µMg2SiO4

ol , (6.14)

which results in:

dµ
MgAl2O4
sp + 2dµMg2Si2O6

opx − dµMg3Al2Si3O12
grt − dµMg2SiO4

ol = 0. (6.15)

Equations (6.13) and (6.15) constitute a system of five equations in six unknowns: dP, dT
and the four dµs. It therefore preserves the one degree of freedom required by the phase rule,
as shown by the system (6.12).We do not need to solve the full system of equations, however,
because we can write each of the chemical potentials in (6.14) as a function of temperature
and pressure. For phases in their standard state (e.g. pure phase at the temperature and
pressure of interest) the required function µ0 = µ0(P ,T ) is equation (5.1.1). Substituting
a function of this kind for each of the four phases in (6.14) reduces this equation to two
unknowns: P and T. The resulting equation is (5.16), which we solved in Worked Example
5.1 by specifying temperature.
Of course, we know from Worked Example (5.6) that, given that Al dissolves in

orthopyroxene, this solution is not correct. In order to obtain a better solution we need to
consider an additional chemical species, theMg–Tschermak’s component in orthopyroxene:
MgAlAlSiO6. The Gibbs–Duhem equations are now as follows:

SspdT −V spdP +nspMgAl2O4
dµ

MgAl2O4
sp = 0

SopxdT −V opxdP +nopxMg2Si2O6
dµ

Mg2Si2O6
opx +nopxMgAlAlSiO6

dµ
MgAlAlSiO6
opx = 0
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SoldT −V oldP +nolMg2SiO4
dµ

Mg2SiO4
ol = 0

SgrtdT −V grtdP +ngrtMg3Al2Si3O12
dµ

Mg3Al2Si3O12
grt = 0. (6.16)

But, in order to preserve the number of degrees of freedom we need an additional equation,
which is the heterogeneous equilibrium condition for reaction (5.102):

µ
MgAl2O4
spinel +µMg2Si2O6

opx = µ
MgAlAlSiO6
opx +µMg2SiO4

olivine . (6.17)

or, equivalently:

dµ
MgAl2O4
spinel + dµMg2Si2O6

opx − dµMgAlAlSiO6
opx + dµMg2SiO4

olivine = 0. (6.18)

Equations (6.16), (6.15) and (6.18) constitute a system of six equations in seven unknowns:
dP, dT and five dµs. Hence, one degree of freedom (and J. Willard Gibbs stays happy). But
if we now focus on the integral forms of (6.15) and (6.18), which are equations (6.14) and
(6.17), respectively, we see that these are two equations in three unknowns, as we can write
the chemical potentials of Mg2Si2O6 andMgAl2SiO6 as a function of P, T and mol fraction
of Mg (or Al) in orthopyroxene, and all the other chemical potentials as functions of P and
T only.With the appropriate substitutions, and assuming ideal mixing in orthopyroxene, the
resulting equations are (5.101) and (5.103), which we solved inWorked Example 5.6. Note
that if we choose to treat orthopyroxene as a non-ideal solution there is still one degree
of freedom, as the excess chemical potentials of Mg2Si2O6 and MgAl2SiO6 are functions
of P, T and orthopyroxene composition only (e.g. equations (5.153) or (5.154)) so that no
additional variables are introduced (this is true in general, not just for this specific example).
There is no need to stop here, however. For example, we may be interested in the chem-

ical potentials of the species SiO2, Al2O3 and MgO. Even though the amounts of these
components cannot vary independently in any of the four phases that we are considering,
equations (6.12) assure us that the chemical potentials of these species are well defined,
and can be calculated. It is important to understand that this is always true, even if none
of these chemical species exist as “free” or “stoichiometric” components in the system of
interest. We will have many uses for this fact. For now, we motivate the following calcula-
tion by noting that the chemical potentials of the oxide species may be important in order
to understand how mantle phases interact with supercritical hydrous fluids (Chapter 9), or
in order to understand their melting relationships (Chapter 10).
Since we have already determined that equations (6.14) and (6.17) by themselves consti-

tute a valid thermodynamic description of our system we can start from these two equations
only and ignore the Gibbs–Duhem equations. The problem of determining the chemical
potentials of the three oxides is simply one of adding three new variables: µSiO2 , µAl2O3

and µ MgO and three new equations of heterogeneous equilibrium, so as to preserve the
number of degrees of freedom. There are several possible sets of equations, but as long as
we choose three equations that are linearly independent which particular three we choose
is immaterial (Exercise 6.3). Here I choose the following three:

Mg2SiO4+SiO2 �Mg2Si2O6 (6.19)

2MgAl2O4+SiO2 �Mg2SiO4+ 2Al2O3 (6.20)

MgAl2O4 �MgO+Al2O3. (6.21)
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We can write the chemical potential of each of the three oxides as the sum of its standard
state chemical potential, chosen, for example, as pure crystalline solid at the temperature and
pressure of interest, plus an activity term (equation (5.45)). The conditions of heterogeneous
chemical equilibrium for the three reactions are then as follows:

�rG
0,(6.19)
P,T +RT ln

(
XMg,M1

)
opx−RT lnaSiO2 = 0 (6.22)

�rG
0,(6.20)
P,T + 2RT lnaAl2O3 −RT lnaSiO2 = 0 (6.23)

�rG
0,(6.21)
P,T +RT lnaAl2O3 +RT lnaMgO = 0. (6.24)

In these equations the standard state chemical potentials of the oxides are included in the
�rG terms, as usual. I have assumed ideal mixing in orthopyroxene and used (5.99) for
the activity of Mg2Si2O6. We now have five equations: (6.14), (6.17) and (6.22) through
(6.24), with six independent variables: P, T, XMg,M1 , a

SiO2 , aAl2O3 and aMgO. The system of
equations preserves the single degree of freedom and can be solved if we specify the value
of one of the intensive variables. It is straightforward to add the three new equations to
theMaple worksheet that we developed in Software Box 5.4 to solve for the spinel–garnet
phase boundary. We can then specify temperature (for example) and solve simultaneously
for the other five variables. You should verify (Exercises 6.2 and 6.3) that the resulting
values of pressure and Al content in orthopyroxene are the same ones that we obtained in
Chapter 5 (Fig. 5.10).
The activities of the three oxides calculated in this way are plotted in Fig. 6.1 as a function

of temperature. In the ternary SiO2–Al2O3–MgO system, the four-phase assemblage spinel–
orthopyroxene–olivine–garnet fixes, or buffers, the chemical potentials (or activities) of the
three oxide components along the curves shown in Fig. 6.1. This means that, as long
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Fig. 6.1 Activities of Al2O3, SiO2 and MgO buffered by the orthopyroxene–spinel–forsterite–pyrope univariant assemblage.
Pressure at the univariant equilibrium from Fig. 5.10.
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as the four phases are present, the chemical potential of each oxide takes one and only one
value at any given temperature. Note that neither pressure nor (XMg,M1)opx are constant
along these curves. Rather, their values are the equilibrium values for each temperature, as
shown in Fig. 5.10.
The three oxides behave differently with temperature. In particular, the activity ofAl2O3

increases with decreasing temperature, and reaches a value of 1 at T ∼ 750◦C and P ∼ 17.5
kbar. Since the standard state that we chose is pure crystalline Al2O3 at the temperature
and pressure of interest, this means that at those P–T conditions the four-phase system
becomes saturated in an additional phase, namely, corundum. According to the phase rule
the number of degrees of freedom now becomes zero, as the number of system components
has not changed, but there is now an additional phase. A system of equations with no
degrees of freedom has a single solution and does not allow us to fix the value of any of the
variables independently. Thus, in the ternary SiO2–Al2O3–MgO system there is a single
P–T combination at which the five phases spinel–orthopyroxene–olivine–garnet–corundum
coexist at equilibrium. We discuss these concepts further beginning in Section 6.2.

You may be wondering, why do we need to go to all the trouble discussed in excruciating
detail in this example? In practice we seldom do, as we tacitly skip over the Gibbs–Duhem
equations (unless there are reasons to use them,more on this later).However, before immers-
ing oneself in any thermodynamic calculation it is always necessary to do a “phase rule
check” of number of phases, components and degrees of freedom (and of course the Gibbs–
Duhem equations are implicit in this). If the number of degrees of freedom of whatever
system of equations we set up does not agree with the number predicted by the phase rule
then our proposed thermodynamic description cannot be correct.
As another example, consider the gas speciation calculation fromWorked Examples 5.4

and 5.5. Our model system consists of two phases (graphite and gas) and is described by two
system components (we can choose, for example, C andO2).Thus,Gibbs’phase rule assures
us that the system has two degrees of freedom. When we solved the system of equations
consisting of (5.87), (5.88) and the composition of the gas phase (XCO2 +XCO+XO2 = 1)
I stated that this is a system of three equations in three unknowns (the three mol fractions),
that can therefore be solved exactly. This does not mean, however, that the thermodynamic
system has no degrees of freedom, as in order to solve this system of equations we had to
specify two intensive variables: temperature and pressure (which we fixed at 1 bar). The
thermodynamic system has two degrees of freedom, as required by the phase rule. The
species distribution can only be calculated if we specify both P and T.

6.2 Analysis of phase equilibrium among phases of
fixed composition

The phase rule is the foundation for the study of phase equilibrium and phase diagrams.
For the sake of clarity it is convenient to break up the discussion of phase diagrams into
different parts, focusing first on equilibria among phases of fixed composition and then on
equilibria among phases of variable composition. Nature, of course, does not fall neatly into
one or the other of these categories, so that we generally have to keep both sets of concepts
in mind.
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6.2.1 Some fundamental concepts and terminology

A phase assemblage with a single degree of freedom (such as the four-phase assemblage
spinel–orthopyroxene–olivine–garnet in the ternary system SiO2–Al2O3–MgO) is called a
univariant assemblage. Recall that this means that, if the four phases exist at equilibrium,
then only one intensive variable can be independently specified. The geometric representa-
tion of a univariant assemblage is a segment of a curve, that we also call a phase boundary
(e.g. Figs. 5.2 and5.5). It should be immediately apparent that an assemblagewith nodegrees
of freedom, called an invariant assemblage, is expressed geometrically by a point, and an
assemblage with two degrees of freedom, termed divariant, is represented geometrically
by a sector of a two-dimensional surface. We could keep going, and note that a trivariant
assemblage corresponds to a portion of a three-dimensional volume, a quadrivariant assem-
blage to a portion of a four-dimensional hypervolume, and so on. Algebraic descriptions
of assemblages with any number of degrees of freedom are not a problem, but phase dia-
grams limit us to representing information in two dimensions. This means that geometric
representations of phase equilibria commonly do not extend beyond divariant assemblages.
This would appear to be a serious limitation on the usefulness of phase diagrams but, as
we shall soon see, in most cases it is not, as it allows us to focus on those variables that
are particularly relevant to the problem at hand. Moreover, low-variance assemblages (say,
those with f ≤ 2) are particularly useful, as they often make it possible to place fairly tight
brackets on the values of intensive variables.
An equilibrium invariant assemblage (f = 0) in a system of c components consists of

c+ 2 phases (equation (6.9)). This assemblage is represented by a point on a plane, in which
the coordinates are any two intensive variables. The emphasis is crucial: the variables that
we use to track phase equilibrium can be any combination of intensive variables, and the
principles that rule the construction of phase diagrams are the same regardless of which
combination of intensive variables we use. The variables can be P and T, or two chemical
potentials, or a chemical potential and T or P, or some other combination. In order to
emphasize the fact that the rules that govern phase diagrams are completely general I will
use the names Y and Z for the intensive variables, unless the specific example calls for a
particular set of intensive variables. Going back now to our system of c components we
can see that there are c + 2 different univariant assemblages that converge at the invariant
point, each of them consisting of c + 1 phases. We obtain these univariant assemblages by
eliminating each of the c + 2 phases that exist at the invariant point, one at a time. Each of
these univariant assemblages is represented by a different curve on the Y−Z plane, and all
of the curves must have a common intersection at the invariant point.
Consider now a system of one component, in which there are three phases: A, B and C,

that exist at equilibrium at an invariant point. There are three univariant curves that intersect
at the invariant point, each of them representing univariant equilibrium of one of the three
possible two-phase assemblages. This situation is sketched in the left hand side of Fig. 6.2.
The labels next to the univariant curves indicate which phases are stable on each side of each
phase boundary, and the two phases are of course stable along the corresponding curve. This
particular arrangement of phases is not random. It is an arrangement that is thermodynam-
ically possible. In order to see what this means, and to derive some fundamental properties
of phase diagrams, we begin by noting that Gibbs free energy is a monotonic function of
all intensive variables or, more precisely, that the first and second derivatives of Gibbs free
energy relative to any intensive variable never change sign. We have seen that this is the
case for temperature and pressure (equations (4.132), (4.133), (4.135) and (4.136)), and it is
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Fig. 6.2 Univariant equilibria in a one-component system shown as a function of the intensive variables Z and Y (left). Each
point on the univariant curves corresponds to an intersection between two G = G(Y ) curves at constant Z (right
diagrams). For example, intersection 2 between the Gibbs free energy curves for phases A and B corresponds to the
point on the A–B univariant curve at Z = Z1 and Y = YAB.

trivial to show (e.g. from equation (6.1)) that it is also true for the derivatives of G relative
to chemical potential. This property of the Gibbs free energy function means that, if Y and
Z are any two intensive variables and Z is kept constant, then the curves G = G(Y) for
different univariant assemblages intersect only once. This is shown on the right-hand side
of Fig. 6.2, for two different values of Z , greater than and less than the value of Z at the
invariant point, Zi .
Clearly, the threeG(Y ) curves have a common intersection point at the (Y, Z) coordinates

of the invariant point (not shown in the figure). It is also evident that, becauseG ismonotonic
relative to all intensive variables, the order in which the curves intersect relative to the value
of Y must change as the value of Z becomes greater or less than that at the invariant point.
For example, for Z1 > Zi the order of intersection may be as shown in the top right of Fig.
6.2. If this is the case, then there must exist a finite interval in the neighborhood of the
invariant point, Z2 < Zi , in which the curves intersect as shown in the bottom right of
Fig. 6.2. It follows that some arrangements of univariant and divariant assemblages around
the invariant point are possible, whereas others are not thermodynamically permissible.
The monotonicity of the Gibbs free energy function assures us of this. Note that it would
be equally valid to have the sequence of intersections be 1–2–3 at Z2 and 4–5–6 at Z1.
However, given the properties of the Gibbs free energy function, other arrangements are
not possible (see also Exercise 6.4).
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An examination of the diagrams on the right-hand side of Fig. 6.2 shows that not all
intersections between Gibbs free energy functions correspond to stable univariant assem-
blages. For example, at Z = Z1, intersection 1 corresponds to the univariant assemblage
BC, but this assemblage has higher Gibbs free energy than A at the same conditions, and
intersection 3 corresponds to the univariant assemblage AC, but this has higher Gibbs free
energy than B at the same conditions. The two intersections, 1 and 3, are said to correspond
to metastable univariant equilibria. What this means is that univariant equilibrium among
the corresponding phases is possible, and may in some cases persist for extended periods
of time, but, given the appropriate activation energy (Chapter 12, recall also our discussion
of the Hindenburg in Chapter 5) the system will collapse to the stable lowest free energy
state. The lowest Gibbs free energy state in this example corresponds to stable divariant
equilibrium assemblages, which are in this case the single-phase assemblages A and B rel-
ative to the metastable univariant assemblages BC and AC, respectively. We can also see
that at Z > Zi phase C is never stable, and the only possible stable univariant equilibrium
assemblage is AB. The same line of argument shows that at Z < Zi all three phases can be
stable, univariant assemblagesAC andBC can both be stable, but univariant assemblageAB
is always metastable. Most importantly for the construction and analysis of phase diagrams,
note that all three univariant equilibria switch from stable to metastable when they cross
the invariant point.
A phase diagram such as that on Fig. 6.2 is not satisfactory, as it does not convey the

fundamental difference between stable and metastable equilibria. A better representation
of the phase relations in this system is given by the phase diagram in Fig. 6.3. The stable
univariant equilibria are shown with long solid lines and their metastable extensions across
the invariant point with short broken lines. The importance of showing these metastable
extensions will become clear in the next section. The divariant fields can in this case be
uniquely identified with the name of the single phase that is stable in each of them but, as we
shall see, this is not true of systems ofmore than one component. In contrast, there is a simple
way of labeling the univariant curves, by using the identity of the single phase that is absent
along each univariant curve. This carries over to systems of any number of components.
For example, the curve that represents univariant equilibrium between phases A and B will
be called the C absent curve, and is symbolized by placing C inside parentheses at the end
of the curve, as shown in Fig. 6.3. This apparently innocent labeling system constitutes a
powerful tool in the construction of phase diagrams, which we will examine in the next
section. Here we note that the metastable extension of each univariant curve enters the
divariant stability field of the phase that is absent along that curve. This is a necessary
consequence of the monotonicity of the Gibbs free energy function, as you can verify for
yourself by comparing the Z–Y diagram with theG–Y diagrams in Fig. 6.3. There is a more
general way of stating this property of metastatble extensions, easily applicable to systems
of any number of components, which is that the metastable extension of each univariant
curve enters the only divariant field in which the phase absent along the univariant curve
appears as a reactant on the two univariant curves that bound the field. Thus, the metastable
extension of the (A) curve enters the only divariant field which is bound by univariant
curves in which A appears as a reactant (see Fig. 6.3).

6.2.2 Schreinemakers’ rule

Although it is possible to carry out an analysis such as that in the preceding section for
systems of more than one component, the number of assemblages and Gibbs free energy
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curves becomes quickly unmanageable. Notice, for example, that although in the neighbor-
hood of an invariant point the plane is always divided by the c+ 2 univariant curves into
c+ 2 divariant fields, this does notmean that there are c+ 2 different divariant assemblages.
Except for the case c= 1, there are more. To see why, we note that in the same way that we
generate a univariant assemblage by omitting one phase from those present at an invariant
point, we can generate a divariant assemblage by omitting one phase from those present
along a univariant curve. Since there are c+ 1 phases in a univariant assemblage, there must
be c + 1 divariant assemblages “radiating” away from each of the c + 2 univariant curves.
This leads to a total of (c+ 1)(c + 2) divariant assemblages, but each of these assemblages
is duplicated, as interchanging the order in which the two phases are omitted leads to the
same exact assemblage. Thus, the number of divariant assemblages is 1/2 (c + 1)(c + 2).
For c = 1 this yields three divariant assemblages, in agreement with what we saw in the
previous section. In that case there is one and only one assemblage in each divariant field,
but for c = 2 there are six divariant assemblages distributed over four divariant fields, for
c = 3 there are ten divariant assemblages distributed over five divariant fields, and so on.
How are we to represent a systemwith such complexities on a two-dimensional diagram?

Fortunately, there is a simple and clever way, which arises from the work, almost a century
ago, of the Dutch physical chemist F.A.H. Schreinemakers (see, for example, the 1965
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Fig. 6.4 Justification of Schreinemakers’ rule. Phases in parentheses are absent along the corresponding univariant curve or
inside the divariant field (or fields) spanned by the arc segments with arrow heads. See text for complete explanation.

English translation of his collected papers). The method is remarkably sophisticated and
leads to many possible variants of phase diagrams, which we will not review in detail
as there are clear and complete treatments available in the literature (especially those by
Korzhinskii, 1959, and Zen, 1984). The fundamental principle of Schreinemakers’method
is, however, very simple and readily explained.We will use it repeatedly in the construction
of different types of phase diagrams. In fact, we have already deduced an important part of
the method in the preceding section, as we shall now see.
Let us consider a system with c > 1 (the actual value of c is not important for now),

and two univariant curves, which we shall label (A) and (B), see Fig. 6.4a. Divariant fields
radiate from both univariant curves. In particular, the (unique) divariant field in which
both of these phases are absent, which we can label (A, B), radiates from both of these
univariant curves. Without a formal demonstration, I will make the intuitively acceptable
statement that, just as a univariant curve switches from stable to metastable when it crosses
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the invariant point, a divariant field switches from stable to metastable when it crosses a
univariant curve (see, for example, Zen, 1984). Thus, the divariant field (A, B) is stable on
one side of each of the univariant curves and metastable on the other. We can see from Fig.
6.4a that it must be stable on the side of the intersection in which the angle between the
two curves is less than 180◦, which is shown in the figure by the arc labeled (A, B). To see
why this must be the case let us assume that (A, B) was stable on the other side, i.e. to the
right of (A) and below (B). If this were the case then we would run into the contradiction
that between each stable curve and the metastable extension of the other one, in regions 1
and 2, (A, B) would have to be simultaneously stable and metastable. This is, essentially,
Schreinemakers’ rule: a stable divariant field always extends between the two univariant
curves that each lack one of the two phases absent from the divariant assemblage, and on
the side in which the angle between the curves is less than 180◦ (there is a special case in
which the angle equals 180◦, which we discuss later). This simple rule makes it possible
to construct phase diagrams of arbitrary complexity. Remarkably, it can be stated in even
simpler terms. To see how, we note that, if (A, B) is stable to the left of (A) and above (B),
then all divariant fields that are stable to the right of (A) must contain B, and all divariant
fields that are stable below (B) must containA. Thus,A and B must show up as reactants on
the sides of the univariant curves opposite to the (A, B) field, as shown in Fig. 6.4a – this is
of course the same conclusion that we reached in Section 6.1.1 for a one-component system.

Let us now add a third univariant curve, labeled (C). Following the same arguments as
above, we label the stable divariant fields and add the reactant phases on the opposite sides
of the univariant curves, as shown in Fig. 6.4b. It appears that we have recovered the phase
diagram from Fig. 6.3, and if this was a one component system that would be the case. In
general, however, this may be only the beginning in the construction of a phase diagram
for a system with c > 1. We can add a fourth univariant curve, labeled (D), for example
as in Fig. 6.4c. Repeating the same arguments we conclude that the identities of the stable
divariant fields and the sides onwhich the reactant phases plotmust be as shown in this figure
(note that if we had placed the fourth curve anywhere else the diagram would be identical,
except for a rotation and some switched divariant field labels). We could keep going, but
there is little reason to do so, as Schreinemakers’method already emerges from this example.
Figure 6.4c is a thermodynamically feasible phase diagram for a system of two com-

ponents. It shows consistent relative locations of all four univariant assemblages and all
six divariant assemblages. Two of the latter, (A, D) and (B, C), extend over more than one
divariant field, and there are three divariant fields that can containmore than one equilibrium
divariant assemblage. Which is the actual equilibrium assemblage in each divariant field
depends on the bulk composition of the system, as we shall see in the following section. The
labels for the divariant assemblages, and the arcs showing their extents, are not normally
shown in phase diagrams, as there is a more compact way of showing this information
(Section 6.2.3). We can thus “clean” the diagram and obtain Fig. 6.4d, which shows how
Schreinemakers’“180◦ rule” transforms into a rule that is much simpler to apply, regardless
of how many components the system has. This is simply a restatement of the rule that we
inferred for the case c = 1, which we now see is true in general: the metastable extension
of each univariant curve enters the only divariant field in which the phase absent along the
univariant curve appears as a reactant on the two univariant curves that bound the field .
Thus, the metastable extensions of (B) and (D) enter the same field, as B and D are reactant
phases on the two boundaries of this field. The metastable extensions of (A) and (C) enter
different divariant fields, with A and C as reactant phases on their respective boundaries.
In the divariant field bound by (B) and (D) there is no phase that appears as a reactant on
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both boundaries and, correspondingly, there are no metastable extensions going into this
field.
Schreinemaker’s rule can be stated in several equivalent ways, but I find the statement

written in italics in the preceding paragraph the one that is most generally applicable and
simplest to use. The rule determines the order in which univariant curves and divariant
fields succeed one another around an invariant point, and is all that one needs to place them
in the correct sequence. Schreinemakers’ rule is a powerful aid in the construction of phase
diagrams for phases of fixed composition, but it is equally important to understand what it
is that this method does not do. In particular, Schreinemakers’ rule does not yield: (a) the
actual slopes of the univariant phase boundaries and (b) the side of the phase boundary
on which the reactant phases appear. This is shown in Fig. 6.5. The first phase diagram
in the figure is the one that we constructed in Fig. 6.4. The second one is a rotation of
the first, and shows that changing the slopes (case (a)) does not affect the thermodynamic
validity of the phase diagram. The third phase diagram is a mirror reflection of the first
one, and exemplifies situation (b): reactant phases appear on the opposite side of each
phase boundary, and the univariant curves and divariant fields follow one another in the
opposite direction around the invariant point, relative to Fig. 6.4, yet the phase diagram
is equally feasible from a thermodynamic point of view. All three phase diagrams comply
with Schreinemakers’ rule, so they are all thermodynamically feasible, yet only one can be
correct. Deciding which is the correct phase diagram requires thermodynamic data, as we
shall see (review Exercise 6.4).

6.2.3 Chemography

We saw that, except for the case c= 1, there are alwaysmore possible divariant assemblages
than there are divariant fields in the neighborhood of an invariant point. This means that in
at least some of the divariant fields more than one assemblage is possible. If we examine
the univariant reactions in the phase diagram in Fig. 6.4 or 6.5, we see that these phase
relations are possible only if there are some specific compositional relationships among
the phases. In particular, whereas phases A and C can be formed by combining subsets of
the other phases, this is not true of phases B and D. For example, we can write reactions
of the form C + D → A and B + D → C, but similar reactions in which B or D appear
by themselves on one side of the reaction do no occur. This means that B and D must be
at the ends of the compositional range of the system of interest, and that between the two of
them they span this compositional range. The chemical compositions of B and D can thus
be taken as system components (Section 6.1.2), which we will label 1 and 2, respectively.
It is often helpful to show the compositional information of a system graphically (obvi-

ously, in the case of phase diagrams with phases of variable composition, it is mandatory).
This is known as chemography, and two examples are shown in Fig. 6.6. Compositional
information in a system of two components, also known as a binary system, can be repre-
sented on a line segment, in which the two system components correspond to the endpoints.
We shall write the names, or chemical compositions, of the system components below the
line (top part of Fig. 6.6). In binary systems the compositions of two of the phases of inter-
est coincide with those of the system components, and other phases are located along the
line segment. We show phase compositions with black circles, and the name of the phase
above the circle. The top part of Fig. 6.6 is an example of a chemographic diagram for a
binary system. Compositional relations in three-component, or ternary, systems are shown
on triangular chemographic diagrams such as that in the lower part of Fig. 6.6. In this case
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the system components are generally located at the vertices. There may be phases whose
compositions correspond to those of some system components (e.g. E in the lower part of
Fig. 6.6). Other phases plot either on the sides of the triangle or inside it. There are many
possible variants in the arrangement of phases in three-component systems, which we will
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Fig. 6.6 Chemographic diagrams for a binary system (top) and a ternary system (bottom). Components are labeled with
numbers, phase compositions are shown with dots, and labeled with letters.

not review systematically here but will rather discuss as the need arises (see Zen, 1984, for
a systematic discussion). The arrangement of phases in the lower part of Fig. 6.6 is just an
example. The bulk composition of a system in which the phases of interest are A E F G H
must plot inside the area defined by the dotted line and the segment EG of the side 32 of
the triangle. In this case there is no set of three phase compositions that can serve as system
components, but suchmay be the case in other systems. Chemographic diagrams for systems
of more than three components require multiple projections from three or more dimensions
onto two. They are generally confusing and, in my view, tend to hinder understanding rather
than help it (in other words, I will not use them).
We now revisit the phase diagram in Fig. 6.4 armed with the appropriate chemographic

diagrams (Fig. 6.7). Within each divariant field we place a version of the diagram that
shows which are the phases that are stable in that field. The univariant reactions mediate
the changes between chemographic diagrams in adjacent divariant fields. For example,
univariant reaction (C), which the phase diagram shows to correspond toB+D→A, causes
A to appear between B and D in the chemographic diagrams, as the curve is crossed in the
direction of decreasing Z . The reason for using chemographic diagrams now becomes clear:
they unequivocally show which are the possible divariant assemblages in each divariant
field. For example, in the field bound by the curves (C) and (D) the two possible assemblages
are AB and AD. This information is also available in Fig. 6.4c, as assemblage (B, C) is the
same as AD, and (C, D) is the same as AB, but using a chemographic diagram shows this
information more compactly. More importantly, the chemographic diagram shows that the
identity of the divariant assemblage is determined by the bulk composition of the system,
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as AB or AD will form depending on whether the bulk composition is on one or the other
side of A. This information is not present in Fig. 6.4c.
There is some redundancy of information in Fig. 6.7, and aswe shall see in some cases it is

not necessary, or even meaningful, to include the chemographic diagrams. If chemographic
diagrams are used, then there is an alternative way of expressing Schreinemakers’s rule,
which is that the metastable extension of each univariant curve enters the divariant field in
which the phase absent along the curve is stable for all bulk compositions.You can verify
the validity of this statement in Fig. 6.7. This version of the rule is easy to apply in systems
of two and three components, but can be (very) tricky when c > 3. In all cases I prefer the
statement given in Section 6.2.2, which is equally easy to use in systems of any number of
components.

Worked Example 6.2 Evaporites, part (i)

Terrestrial evaporites display a remarkable mineralogical diversity, and, as we come to
know and understand evaporites in other planets (chiefly, Mars and Titan) the diversity of
evaporites is likely to become greater. Formation of evaporites entails equilibrium among
solid, liquid and gas phases, and in this sense thermodynamic description of evaporite-
forming processes is fundamentally the same as that of igneous rocks – the differences (and
assorted devils) are in the details. Let us look at a simple example, which focuses on the
formation of two sodium sulfate minerals that are found in terrestrial evaporites, and could
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Fig. 6.8 Phase diagram for crystallization of thenardite (Na2SO4) and mirabilite (Na2SO4.10H2O). The slopes of the (Th), (V)
and (L) curves are unambiguous. The (Mi) curve is harder to pin down and two alternatives are shown. The correct one
is (b), see text.

conceivably be present on the Martian surface as well: thenardite (Na2SO4) and mirabilite
(Na2SO4.10H2O). These minerals are known to precipitate from marine brines, which
constitute a liquid phase. The process occurs at the planet’s surface, and therefore in the
presence of a gas phase. Ifwe ignore for now the fact that the planet’s atmosphere (i.e. the gas
phase) contains various other components, we can consider this to be a binary system, and
useNa2SO4 andH2O as the system components –we shall return to the issue of atmospheric
composition in a moment. In the binary system the four phases thenardite–mirabilite–
liquid–vapor constitute an invariant assemblage (we call a gas phase in equilibrium with a
condensed phase a “vapor”, more on this in Chapter 9). Four univariant curves radiate from
the invariant point. Using Schreinemakers’ rule and general properties about univariant
phase boundaries that we derived in Section 5.1.3, such as their Clapeyron slopes and how
�rS and�rVdetermine the side of a reaction that a given assemblage is on,we can construct
the P–T phase diagrams shown in Fig. 6.8.
The orientation of the phase diagram is obtained from the (L) and (V) curves. In the first

place, both liquid and vapor are higher entropy phases than the solids, so theymust be placed
on the high temperature side of these equilibria, establishing the mirror orientation of the
diagram (see Fig. 6.5). They are also higher volume (lower density) phases than the solids,
so the Clapeyron slopes of both curvesmust be positive. Finally, because the volume change
associated with reaction (L), in which a gas is evolved, is greater than that associated with
reaction (V), in which a liquid forms in the absence of a gas phase, equilibrium (V) must
have a steeper Clapeyron slope than (L), as shown in Fig. 6.8. There is a tacit assumption in
the last statement, which is that �rS varies less than �rV between reactions (L) and (V).
This is true but I have not justified it; I will return to this issue in Chapter 9 and 10.

Schreinemakers’ rule determines the location of the (Th) and (Mi) curves, but their slopes
are not as easy to ascertain as those of the other two univariant curves. This is so because
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in both of these equilibria the liquid and gas phases appear on opposite sides of the phase
boundary, and the signs of�rS and�rV are not always evident. The sign of the Clapeyron
slope becomes strongly dependent on two factors: pressure and the nature and stoichiometry
of the reaction. At low pressure, such as at and near a planet’s surface, molar volumes of
gases are orders of magnitude greater than those of liquids, so that it is a safe assumption
that reactions that consume vapor and produce liquid have �rV < 0. This is certainly
the case at the conditions at which evaporites form. Gases are much more compressible
than liquids, however, and at pressures significantly greater than that of the critical point
�rV for reactions that involve aqueous or carbonic fluids on one side and silicate melts
on the other may change sign. This becomes important when studying the formation of
magmas in the deep crust and mantle of the Earth and other planets. Staying for now with
evaporites we note that, although in general gases also have higher entropy than liquids,
the difference is not as large as that for molar volume (Chapter 9). The sign of �rS then
becomes dependent on reaction stoichiometry, which determines the relative amounts of
vapor and liquid in a balanced reaction. The liquid along the (Th) and (Mi) curves is
an aqueous solution saturated in mirabilite and thenardite, respectively. Given the very
large H2O content of mirabilite, it appears reasonable to assume that, when this mineral
decomposes and liberates H2O, little additional H2Omay be required to dissolve any excess
sulfate, so that the stoichiometric coefficient of the vapor is probably small. The dominant
contribution to the entropy of reaction arises from the increase in configurational entropy
that occurs when crystalline mirabilite becomes aqueous sodium sulfate. The resulting�rS
for the (Th) reaction is positive, and hence the phase boundary has a negative Clapeyron
slope, as shown in Fig. 6.8.
Reactions such as (Mi) are in general harder to pin down, chiefly because of greater

uncertainty about the sign of �rS . Two alternatives are shown in Fig. 6.8. A negatively
sloping reaction, case (a), requires that, with increasing temperature, thenardite reacts with
vapor to yield a saturated sodium sulfate solution. If the slope is positive, case (b), increasing
temperature causes boiling of the liquid (sodium sulfate solution) and crystallization of
thenardite. Worded like this (which I did on purpose) it appears obvious that the correct
phase diagram must be (b), and this is indeed the case for this particular system, and in
general for crystallization of evaporites from liquid H2O solutions. One can intuitively
justify this result by noting that thenardite is an anhydrous mineral, so that all of the H2O
needed to form the saturated sodium sulfate solution at the (Mi) curve must come from
condensation of vapor. In contrast to the (Th) curve, the stoichiometric coefficient of vapor
must be quite large, and the entropy contribution from the phase change of H2O overrides
the contribution from the breakdown of the crystalline structure of thenardite.We then have
�rS < 0, and a positive Clapeyron slope, as in Fig. 6.8b. This conclusion is, however, not
general, and in particular is incorrect for equivalent reactions in igneous systems (Worked
Example 6.3).
We nowhave a thermodynamically consistent phase diagram for crystallization of sodium

sulfate phases (Fig. 6.8b), but how meaningful is it in relation to natural evaporites? There
are three issues that must be addressed.
First, this is a purely schematic phase diagram. In order for it to be useful it must be made

quantitative, by calculating the actual locations of the phase boundaries in terms of the
intensive variables of interest. We have established the principles for doing so in Chapter 5,
but we have not yet discussed how to calculate equilibria involving gases at pressures other
than 1 bar (Chapter 9) nor how to calculate equilibria involving aqueous solutions (Chapter
11). We can nonetheless see the importance of Schreinemakers’ analysis. It allows us to
identify erroneous thermodynamic data, for instance if the calculated position of a phase
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boundary is inconsistent with Schreinemaker’s rule. It also allows us to work with only a
partial data set, as being able to calculate only a couple of the reactions places constraints
on the locations of the others.
The second issue is that the information contained in a phase diagram such as that in

Fig. 6.8b, or even in a quantitative version of it, is incomplete. The composition of the
liquid phase is not fixed, and its location in the chemographic diagrams is only schematic.
Liquid composition is fixed at each point on each univariant curve, because the chemical
potentials of each of the liquid components are fixed at each point on each curve, but
the liquid composition is not constant along each curve, nor is it equal from one curve to
another. In the divariant fields the liquid composition also depends on bulk composition.
For example, consider a liquid in the field bound by the reactions (Th) and (V). If the bulk
composition of the system is such that there is excess mirabilite, then the liquid is saturated
in mirabilite and its composition will be that of the saturated solution at any given P and
T (which are the two degrees of freedom). If, on the other hand, all mirabilite dissolves
then the liquid will be in equilibrium with a gas phase rather than with mirabilite, and its
sodium sulfate content will be less than that of a saturated solution at the same pressure
and temperature. This shortcoming is inherent to this type of phase diagram. Recall that in
this section we set out to construct phase diagrams among phases of fixed composition. By
including a liquid phase we have gone beyond that specification, even if the resulting phase
diagram is still thermodynamically valid.
The third, and most important, issue, is whether the choice of intensive variables in

Fig. 6.8 is the most appropriate one for this particular example. We must now return to our
decision to ignore the fact that the Earth’s atmosphere consists chiefly of components other
than H2O. By considering a system of two components and using pressure as an intensive
variable we are assuming that the gas phase is made up exclusively of H2O, so that the
pressure on the system is the same as the partial pressure of H2O (see Worked Example
5.5). This would be true in a hypothetical planet in which the atmosphere consisted of H2O
vapor only, but it is certainly not true of the present-day Earth. Using pressure as an intensive
variable to represent the phase relations of sodium sulfate phases is not incorrect, but it leads
to unphysical interpretations if the diagram is used to study natural evaporites. For instance,
consider a systemwhose bulk composition is betweenMi and L, and assume that conditions
are initially within the divariant field bound by (L) and (Th). If conditions change such that
reaction (Th) is crossed then all the vapor will be consumed and the assemblage will be
liquid+mirabilite. This description may work in a closed vessel in a laboratory, but it does
not work on a planetary surface. A better alternative would be to use µH2O as an intensive
variable. By doing so we can track the evolution of the system as a function of changes
in atmospheric humidity at constant atmospheric pressure, as there is a simple relationship
between the mol fraction of H2O in air and the chemical potential of H2O (e.g., equation
(5.82)). We return to this in Worked Example 6.6.

Worked Example 6.3 Hydrous melting of silicate rocks

Melting of hydrous silicatemineral assemblages is an important process in the origin of felsic
terrestrial magmas, and in the origin and evolution of the continental crust. Whether or not
such processes ever took place inMars orVenus is as yet unknown, and figuring this out will
be important in piecing together the crustal evolution of our sister planets. The fundamental
thermodynamic relations of hydrous melting of silicate rocks are a close parallel to those
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field in which L appears as a reactant on the two bounding curves, (V) and (Ms).

of evaporite–brine equilibria. A complete analysis of hydrous melting of rocks can only
be carried out in systems of at least four or five components, but a simple analog that
exhibits some of the key thermodynamic aspects can be based on the ternary system:Al2O3–
KAlSi3O8–H2O. Let us consider the five-phase invariant assemblage: muscovite–sanidine–
corundum–melt–vapor in this ternary system (Figure 6.9). In this simple example we will
assume that the vapor is pure H2O. The melt composition will be taken to correspond to a
hydrous and slightly peraluminous syenite (Fig. 6.9) – rocks that approximately match this
description are rare in nature, but not unknown.
A schematic P–T phase diagram for this system is shown in Fig. 6.9. Comparison with

Fig. 6.8 reveals some remarkable similarities and one important difference. Except for
the fact that there is one additional phase in each assemblage (because this is a ternary
system), reactions (Co), (L) and (V) are analogous to (Th), (L) and (V), respectively, in
the sodium sulfate–H2O system. Thus, the hydrous mineral assemblage (mirabilite, or
muscovite+ sanidine) reacts with vapor to yield a liquid at (Th) and (Co), respectively. The
hydrous mineral by itself breaks down to an anhydrous solid assemblage (thenardite, or
sanidine+ corundum) plus either vapor or liquid at the (L) and (V) curves in both systems.
For reasons that wewill discuss inChapter 10, in igneous systemswe typically call the liquid
phase amelt, but, as these diagrams suggest, there are important thermodynamic similarities
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between both systems. The signs of the Clapeyron slopes of these three reactions at low
pressure are the same in both systems, for the reasons that we discussed inWorked Example
6.2, but at high pressure, such as in the deep crust or uppermantle of the Earth, the Clapeyron
slopes of the (Co) and (V) curvesmay change signs, in response to the higher compressibility
of hydrous fluids relative to silicate melts, and of silicate melts relative to crystalline phases.
In the hydrous silicate system (c = 3) there is an additional univariant curve, (Kf), that

has no analog in the sodium sulfate–H2O system (c= 2). This reaction is similar to (Co) in
the sense that in both of them muscovite reacts with vapor to produce liquid, except that an
anhydrous solid phase is produced together with the liquid along the (Kf) reaction, but not
along (Co). The one important difference between both systems is in the Clapeyron slope of
the reaction in which an anhydrous assemblage, thenardite or sanidine + corundum, reacts
with vapor to produce liquid. In the evaporite example we justified the positive slope of (Mi)
on the basis of the large value expected for the stoichiometric coefficient of vapor. We can
think of the liquid that forms at (Mi) as the result of condensation of vapor and dissolution
of the anhydrous solid in the resulting condensate. At the high temperature at which the
(Ms) reaction takes place, in contrast, the liquid forms by melting of the crystalline solids
and dissolution of vapor in the melt. The consequence is that the stochiometric coefficient
of vapor in the (Ms) reaction is characteristically quite small, and �rS is dominated by
the entropy of melting of the silicates, which is of course positive. The volume change of
reaction, and therefore the Clapeyron slope, are negative.
In the discussion of igneous phase relations alternative names are used for some of

these reactions. Thus, (Co) is called the vapor-saturated solidus. This reaction maps the
minimum temperature at which melt can form. Because melt forms along this reaction
only if an aqueous vapor phase is present the melt at the solidus is saturated in H2O. Note
that for certain bulk compositions (e.g. inside the triangle defined by the phases vapor,
muscovite and corundum, see Fig. 6.9) the (Kf) reaction, rather than (Co), is the vapor-
saturated solidus. The liquid-absent curve is called the subsolidus dehydration reaction, as
the assemblage becomes anhydrous without melting. Finally, the (V) curve, where melt
forms in response to breakdown of the hydrous mineral without formation of a vapor phase,
is called the dehydration-melting or vapor-absent melting reaction.
Whether we call the liquid phase a liquid (or solution) or a melt depends on the com-

position of the coexisting solids. A melt is a liquid at equilibrium with a solid of its same
composition (Chapter 10). The composition of the liquid that forms in the silicate rock
example is close enough to the composition of the solid phases that it is properly called a
melt. In the evaporite example, on the other hand, the liquid composition is close to that
of a condensed gas and it contains dissolved ions, so we call it a solution. Liquid-forming
reactions such as (Co), (Th), (Mi) and (Ms), in which the only product of the reaction is a
liquid, are called congruent melting or congruent dissolution reactions. In contrast, along
equilibria such as (Kf) and (V) a solid phase crystallizes on the high-temperature side of the
reaction, together with formation of a liquid. Such reactions are called incongruent melting
or incongruent dissolution reactions.

6.2.4 Compositional degeneracy

A detailed discussion of the many possible chemographic relations in systems of two or
more components, and of the different topological varieties of phase diagrams that they
give rise to, exceeds the space available here (but see Zen, 1984). There is, however, one
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Fig. 6.10 Two types of compositional degeneracy in a binary system. If the degenerate reaction occurs at one of the ends of the
compositional range, as in (a), the univariant curve does not becomemetastable when it crosses the invariant point. If
the degeneracy is internal, as in (b), the univariant curve becomes metastable (see text).

instance that needs attention, as it occurs very commonly in natural systems. This is the case
in which a subset of phases can be described in terms of a smaller number of components
than the system as a whole. Phase transitions (including polymorphic transformations) are
an example of this situation, as they are described in terms of only one component (the
composition of the substance that undergoes the phase transition). Other examples are: a
set of three phases that plot along a straight line in a ternary chemographic diagram, so
that equilibria among these phases are described in terms of two components only; a set
of four co-planar phases in a four-component system, and so on. Such cases are said to be
compositionally degenerate.
Consider a binary system in which two phases have the composition of one of the system

components (Fig. 6.10a). The phase transition (B � C in this example) is a univariant
equilibrium, which is represented by a curve, labeled (A, D), along which two phases are
missing. Two divariant fields, (A, D, C) and (A, D, B), radiate from this univariant curve,
and each of these divariant fields must switch from stable to metastable as it crosses the
univariant curve (A, D). The only way in which this can be accommodated is if the curve (A,
D) crosses the invariant point without becomingmetastable, as shown in Fig. 6.10a.Another
wayof seeingwhy (A,D) does not becomemetastable is by thinking of it as a phase boundary
in a one-component system in which phasesAand D do not exist. The phase transition B�
C takes place regardless of the presence of additional components that make phases A and
D possible. Alternatively, comparing Fig. 6.10a with Fig. 6.7, one may imagine that, as C
approaches B on the chemographic diagram, the slope of reaction (B) approaches that of
reaction (C) on the phase diagram. Coincidence in both diagrams occurs simultaneously, so
that when the reaction becomes degenerate each stable curve coincides with the metastable
extension of the other (this is the basis of the method developed by G. W. Morey to derive
Schreinemakers’ rule; see, for example, Williamson &Morey, 1918; Morey &Williamson,
1918). The important point here is to understand how Schreinemakers’ rule applies to this
degenerate case, which is easily seen in Fig. 6.10a. In my preferred versions of the rule,
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each of the ends of the (A, D) curve, none of which is metastable, splits the only divariant
field in which one of the phases absent along the univariant curve appears as a reactant on
the two univariant curves bounding that field. Alternatively, each of the ends of the (A, D)
curve splits a divariant field in which a phase absent along the curve is stable for all bulk
compositions.
If the phase transition occurs for a composition that does not correspond to one of the

system components then the behavior is different, and is shown in Fig. 6.10b. In this case
the univariant curve that corresponds to the phase transition, (B, D) in the example, must
become metastable as it crosses the invariant point. This must be so because reactions (A)
and (C) correspond to the breakdown of the two phases with the same composition. Neither
of the phases is stable in the divariant field that extends between these two reactions,
and therefore the phase transition must be metastable in this field. Figure 6.10b shows
that the application of either version of Schreinemakers’ rule is immediately obvious. It
is important to see the subtle difference in Schreinemakers’ rule applied to both types of
degenerate systems shown in Fig. 6.10. In case (a) the phases absent along the degenerate
univariant reaction,Aand D, appear on opposite sides of the curves that bound the divariant
fields, whereas in case (b) the two phases (B and D) appear on the same side.

Worked Example 6.4 A simple model for carbonatite melts

The fascination of petrologists with carbonatites is out of proportion to their scarcity in
the terrestrial igneous rock record. This is justified, however, as the processes that lead to
the formation of carbonate melts in a silicate planet are not as straightforward as those that
generate silicatemelts.The simplest possiblemodel for carbonatemelting canbe constructed
in the binary system CaO–CO2 (Fig. 6.11). If we assume that calcite melts congruently to
a liquid with the same composition then the melting reaction is degenerate, as shown in
the figure. When this reaction, labeled lime- and vapor-absent, crosses the invariant point it
becomes metastable – this is the case illustrated in Fig. 6.10b. The invariant point therefore
marks the minimum pressure at which calcite melts or, equivalently, the minimum pressure
at which calcite can crystallize from a carbonate melt. The pressure of the invariant point is
higher than 1 bar, as at atmospheric pressure calcite decarbonates to lime plus vapor along
the liquid-absent curve.
The parallels with the examples discussed in Worked Examples 6.2 and 6.3 should be

clear. We could call the (L) and (Lm, V) reactions the “subsolidus decarbonation” and
“decarbonation-melting” reactions, respectively, and we see that they are close analogs of
the corresponding reactions in the H2O-bearing examples. The vapor-saturated solidus is
missing in the carbonate system because we assumed a degenerate melting reaction. Phys-
ically, this means that we assumed that the carbonate liquid is not able to dissolve excess
CO2. If this were not the case then the liquid phase would be richer in CO2 than calcite and
the melting reaction would not be degenerate. The (Lm,V) reaction would then split into
two different reactions, with the (Lm) reaction: Cc + V = L becoming an exact analog of
the (Co) or (Th) reactions in the previous examples. As with the (Mi) and (Ms) reactions,
the slope of the (Cc) reaction is the one that is most uncertain. I emphasize this in Fig. 6.11
by plotting it parallel to the T axis. We can be certain that liquid is the high-pressure
phase, but whether it is the high- or low-temperature phase depends on the entropy ofmolten
CaCO3 relative to that of a stoichiometric mixture of CaO and CO2. Note that regardless
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Fig. 6.11 Schematic phase diagram for melting of carbonates. Carbonatitic melts can only exist between the (Cc) and (Lm,V)
curves. Calcite cannot crystallize from a melt at a pressure lower than that of the invariant point. Compare Fig. 6.9.

of the slope of the (Cc) reaction the pressure of the invariant point is the minimum pressure
at which calcite can crystallize from a melt.
The phase diagram in Fig. 6.11 suggests that one way in which carbonatite melts can

form is by subduction of limestones. The “cold” conditions that prevail at subduction zones
may be able to keep limestones on the low temperature side of the (L) reaction until the
pressure of the invariant point is exceeded. Heating of subducted limestones at high pressure
would then produce carbonatite melts. Alternatively, carbonatite melts could be produced
by infiltration of CO2-rich fluids into clinopyroxene- or garnet-bearing peridotites.

Worked Example 6.5 Freezing of brines. Liquid water on the Martian surface?

Consider the system NaCl–H2O, and the four phases: ice–vapor–halite–liquid (Fig. 6.12).
The liquid phase in this system is brine, which we shall label L2, to distinguish it from
pure liquid H2O, which we label L1. The four phases I–V–Ha–L2 exist at equilibrium at
an invariant point, O2 in Fig. 6.12. Because neither ice nor vapor dissolve NaCl the phase
transition I � V is a degenerate reaction, (L2, Ha), that in this case crosses the invariant
point without becoming metastable (this is the case depicted in Fig. 6.10a). The other two
univariant equilibria, (V) and (I), correspond to freezing and boiling of brine, respectively.
The negative slope of the (V) reaction arises from the fact that H2O expands when it freezes,
which is of course unusual.
Because sublimation of ice is a liquid-absent reaction, and the composition of both ice and

vapor is H2O, the (L2, Ha) reaction must be the same liquid-absent reaction that appears in
the one component system H2O, and which we can label (L1). This reaction meets the
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Fig. 6.12 Effect of a solute (e.g. halite) on the phase diagram of H2O. The triple point for pure H2O (O1) shifts to lower pressure
and temperature (O2). The freezing temperature drops and the boiling temperature rises.

freezing and boiling curves of pure water at the invariant point O1, which is the triple point
of H2O. Reaction (L1) must become metastable when it crosses O1, as no other behavior is
possible in a one-component system. The univariant curve for ice–vapor equilibrium joins
the two invariant points, even as its name changes (by convention) in the neighborhood of
each of the invariant points. Schreinemakers’ rule also tells us that O1 must be located at
higher pressure than O2, because O2 must lie on the stable part of the (L1) curve. Given
vapor’s higher volume and higher entropy relative to ice, the slope of the (L2, Ha) reaction
is positive. The two invariant points must therefore be located relative to one another as
shown in Fig. 6.12.
Schreinemakers’ rule generates a qualitative result that we knowwell: addition of a solute

to water lowers its freezing point and raises its boiling point. The magnitude of the effect of
course depends on each particular solute, and thermodynamic data are needed in order to
calculate it (Chapter 11). But another prediction follows from this analysis, and this is that
the triple point of water shifts to lower pressure and temperature by addition of a solute.
Consider a planet (for instance, Mars), in which the partial pressure of H2O at the surface
is below O1 (why we specify partial pressure will become clear in the next section). In the
absence of soluble salts liquid water is not stable at the planet’s surface, but if appropriate
solutes are available then the pressure of invariant point O2 may be low enough to allow
brines to exist. The implications of these phase relations for the possible existence of liquid
H2O on the Martian surface are discussed in Chapter 11.
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I used a binary system to discuss the concept of compositional degeneracy, but application
to systems with more components presents no difficulty, as further examples will show (see
end-of-chapter Exercises).

6.3 Phase diagrams in open systems

We can define a closed system as one in which the only intensive variables that can be con-
trolled independently and externally (or, equivalently, imposed on the system) are pressure
and temperature. An open system is one in which, in addition to pressure and temperature,
some chemical potentials can be controlled externally. Let the number of externally con-
trolled chemical potentials be v. Then the total number of independent intensive variables
in an open system is v + 2. Consider the evaporite system discussed inWorked Example 6.2.
If the gas phase is not pure H2O, and the H2O content of the atmosphere is variable, then
v= 1 and there are three independent intensive variables: P , T and µH2O. These additional
independently variable thermodynamic quantities allow extra flexibility in the construction
of phase diagrams for open systems.

6.3.1 Externally controlled chemical potentials

Recall that Schreinemakers’ rule is general, as we derived it on the basis of a set of arbitrary
and unspecified intensive variables. Pressure and temperature are not always the most
convenient combination of variables, particularly for open systems. Evaporites, for instance,
are most accurately described as open systems that exchange a chemical component (H2O)
with their environment (the atmosphere). In Worked Example 6.2 I suggested that the
chemical potential of H2O is a better intensive variable than pressure to study the behavior
of evaporites. This is so because, whereas pressure at the Earth’s surface is approximately
constant, atmospheric humidity is not. By using µH2O as one of the intensive variables
we can track how changes in atmospheric humidity cause H2O to be transferred between
the atmosphere and the evaporite + brine assemblage, and predict changes in the evaporite
phase assemblage. Recall that equation (5.86) relates µH2O to the partial pressure of H2O,
pH2O, and that pH2O is a convenient way of measuring atmospheric humidity.

Consider an equilibriumassemblagewith f degrees of freedom, and subject to v externally
controlled (or imposed) chemical potentials. In such a system there are v + 2 independent
intensive variables (the v chemical potentials, pressure and temperature). If we fix the
values of any f of the v + 2 intensive variables then the assemblage appears to behave as
an invariant assemblage, as long as we keep the values of the f chosen intensive variables
fixed. Our goal is to map the f -variant assemblage onto a pseudo-invariant point in a two-
dimensional graph in which the coordinates are any two intensive variables, (Z, Y ), taken
from the v + 2 available independent variables. In order for this to be possible it must
be v = f . The variance of the assemblage is of course still f , so that it is stable over an
f -dimensional region of intensive-variable space. However, for each point in this region
there is a unique combination of the variables Z and Y for which the assemblage is stable.
This combination maps as a pseudo-invariant point on the Z–Y plane. Suppose further that
the pseudo-invariant assemblage consists of F= c+ 2− f phases. Then, removing each
of the F phases one at a time generates F pseudo-univariant curves radiating from the
pseudo-invariant point, along each of whichF−1 phases are stable. These curves separate
F pseudo-divariant fields, inside each of which F− 2 phases are stable. In general, a



316 Phase equilibrium and phase diagrams

“pseudo-q-variant assemblage” means that the assemblage actually has q + v degrees of
freedom, but the values of v intensive variables are held constant.

For example, suppose that we have a divariant assemblage (f = 2) in a four-component
open system (F = 4). In order for it to be possible to map this assemblage as a pseudo-
invariant point there must be two chemical potentials that are controlled externally (v = 2).
If we fix any two intensive variables, say pressure and temperature, then there is a unique
combination of the two chemical potentials for which the assemblage is stable. This com-
bination of values defines a pseudo-invariant point in an isobaric and isothermal phase
diagram in which the two coordinates are the two externally controlled chemical potentials.
Four phases are stable at the pseudo-invariant point, four pseudo-univariant three-phase
curves radiate from the point, and there are four pseudo-divariant two-phase fields between
the curves. Note that we can choose to fix any two intensive variables. In this example we
chose P and T, but if we had chosen, say, T and one of the chemical potentials then the
four-phase assemblagewill be pseudo-invariant in a phase diagram inwhich the coordinates
are P and the other chemical potential. All of this is best seen in examples that will make
guest appearances throughout this and subsequent chapters.

Worked Example 6.6 Evaporites, part (ii)

We wish to recast the phase diagram for sodium sulfate evaporites shown in Fig. 6.8 as
a function of the intensive variables µH2O and T (Fig. 6.13). Note that, whereas Fig. 6.8
assumes a closed system (constant bulk composition), in Fig. 6.13 we consider the system
mirabilite–thenardite–liquid to be an open system that exchangesH2Owith its environment.
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H2O

Mi L
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Th
H2O

Th
H2O

Mi

P = constant

Mirabilite

Thenardite
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Fig. 6.13 Crystallization of sodium sulfate evaporites at constant pressure, as a function of temperature andµH2O (e.g.
atmospheric humidity). The faded line shows the path of the psudo-invariant point with changing pressure (it is not a
phase boundary). The path of the pseudo-invariant point terminates at the dot, which corresponds to the
temperature of the invariant point for the binary system (Fig. 6.8). P–T along the path of the pseudo-invariant point
correspond to the (V) curve for the binary system.
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In the former case the chemical potential of H2O is fixed by the assemblage that is stable
for each combination of pressure and temperature. In contrast, the chemical potential of
H2O in the open system depicted in Fig. 6.13 is an externally imposed variable, just as
pressure and temperature. In this case there is one externally controlled chemical potential
(v = 1), so that a univariant assemblage in the P–T diagram maps to a pseudo-invariant
assemblage if we fix one intensive variable. We choose to fix pressure, so that the three-
phase assemblagemirabilite+ thenardite+ liquid is stable at a pseudo-invariant point in the
isobaric µH2O–T phase diagram. Three pseudo-univariant curves, along each of which two
phases coexist at equilibrium, radiate from the pseudo-invariant point. As usual, we label
each curve with the name of the absent phase. Vapor is no longer a phase in our analysis,
however. Rather, we are interested in how H2O is transferred between our system and its
environment (the atmosphere). We therefore substitute the name of this mobile species for
V along the pseudo-univariant curves (Fig. 6.13), which makes it clear that an increase
in µH2O always causes H2O to move from the environment (atmosphere) to the system
(evaporite + brine), and vice versa. This is of course the same conclusion that we reached
in Section 5.3.2. A single phase is stable inside each of the pseudo-divariant fields. This
is the phase that is absent along the curve whose metastable extension enters that field.
Recall that by “pseudo-divariant field” we mean that there are 2 + v degrees of freedom:
the two coordinates in the phase diagram plus the variables that we chose to fix. In this case
v = 1, so that the three degrees of freedom required by the phase rule for a single phase
in a binary system are preserved. The same is of course true for the pseudo-univariant and
pseudo-invariant assemblages. The slopes of the phase boundaries are discussed in the next
section.
What about the vapor-absent reaction? The assemblage along this reaction is the same

one as in the pseudo-invariant point, so that it cannot exist along a curve on the isobaric
µH2O – T phase diagram. The location of the pseudo-invariant point shifts with pressure,
along the (V) curve for the binary system in Fig. 6.8. It defines a path on the µH2O – T
plane which is the locus of all points at which the pseudo-invariant assemblage mirabilite+
thenardite + liquid is stable. This is shown in Fig. 6.13 with a “ghost” line, to emphasize
that it is not a phase boundary but rather the path along which the pseudo-invariant point
slides with changing pressure. This path has a lower extremum, which corresponds to the
P –T conditions of the invariant point for the binary system (i.e. for the situation in which
the vapor phase is pure H2O, Fig. 6.8).
Note the similarities between the phase diagram in Fig. 6.13 and the phase diagram of

H2O (e.g. Fig. 6.12).We can think of the (Mi) curve as a “boiling” reaction, in the sense that
H2O in the liquid phase becomes vapor. Following this analogy the (Th) curve corresponds
to a freezing reaction, in which (most of) the H2O in the liquid phase “crystallizes” as
it is incorporated in the structure of mirabilite. The (L) curve behaves like a sublimation
reaction, in which H2O of crystallization of mirabilite becomes vapor.

Consider two evaporite basins in different locations, such that their characteristic tem-
peratures are below and above the temperature of the pseudo-invariant point, for instance
T1 and T2 in Fig. 6.13. Say that evaporation occurs at constant temperature and pressure, in
response to a decrease in atmospheric humidity (i.e. pH2O) and hence in µH2O. Recall that,
at equilibrium,µH2O is the same in the gas phase (atmosphere) as in the liquid phase (brine).
In the cooler climate the brine crystallizes mirabilite. If atmospheric humidity never drops
below the value at the (L) curve then the evaporite bed will consist of mirabilite only. On
the other hand, if dessication of the atmosphere continues then the (L) curve, where
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mirabilite dehydrates to thenardite plus vapor, may be reached, and perhaps crossed. In
this case mirabilite will be partially or totally replaced by thenardite. Under conditions
hotter than the invariant point, such as T2, evaporite formation occurs by crystallization of
thenardite only and mirabilite never forms. If, however, the climate becomes cooler and
the (L) curve is reached from the right, then mirabilite would crystallize at the expense of
thenardite. Note that in every case the label “H2O” on the phase boundaries indicates the
direction in which this component is being exchanged between system (evaporite basin)
and environment (atmosphere).
There are four paragenetic sequences which, at least in principle, can be identified in

evaporite sequences and used as paleoclimatic indicators: mirabilite only, thenardite only,
mirabilite followed by thenardite, and thenardite followed by mirabilite. Of course, real
evaporites are muchmore complex than this, but some of the key thermodynamic principles
that govern their formation can be seen in this example.

6.3.2 Slopes of pseudo-univariant phase boundaries

Phase diagrams inwhich the coordinates are chemical potentials are also known as chemical
potential diagrams. There are simple equations that yield the slopes of phase boundaries
in them, analogous to Clapeyron’s equation for P–T phase diagrams. Let A and B be phase
assemblages in an open system, such that they are at equilibrium along a pseudo-univariant
curve by exchanging species X and Y with the environment, according to the following
balanced chemical reaction:

A+ νxX = B+ νyY . (6.25)

The stoichiometric coefficients of X and Y are νx and νy , whereas those of the phases
that constitute the open system are subsumed in the symbols A and B. We can write the
equilibrium condition for this reaction as follows:

�rGphases + νyµy− νxµx = 0, (6.26)

where �rGphases is the difference in Gibbs free energy between assemblages B and A. We
seek the response of the system to infinitesimal changes in pressure, temperature and the
chemical potentials of X and Y . In order for equilibrium to be maintained between the
system and its environment the following identity must hold:(

∂�rGphases

∂T
+ νy ∂µ

y

∂T
− νx ∂µ

x

∂T

)
dT

+
(
∂�rGphases

∂P
+ νy ∂µ

y

∂P
− νx ∂µ

x

∂P

)
dP

+ νydµy − νxdµx = 0. (6.27)

Because the chemical potentials of X and Y are controlled externally they can be
varied independently of temperature and pressure, which requires that we include the
differentials of these chemical potentials in the last line of the equation. The terms
in parentheses in the first two lines of (6.27) are simply the temperature and pres-
sure derivatives of the Gibbs free energy change for the complete chemical reac-
tion (6.25), which we will symbolize by �rG. Note very carefully that this is not
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�rG0, as the phases may not be in their standard states. We can then simplify equation
(6.27) to:

−�rSdT +�rV dP + νydµy− νxdµx = 0. (6.28)

The slopes of phase boundaries in various types of diagrams follow immediately from this
equation. First, setting dµy = dµx = 0 we recover Clapeyron’s equation (5.6). For an
isobaric and isothermal phase diagram we have:

dµy

dµx
= νx

νy
, (6.29)

i.e. the slope is the ratio between the stoichiometric coefficients of the externally-controlled
species. For a T −µy diagram at constant P and µx :

dµy

dT
= �rS

νy
(6.30)

and for a P −µy diagram at constant T and µx :

dµy

dP
=−�rV

νy
. (6.31)

The signs in equations (6.30) and (6.31) are of course reversed if we interchangeµy andµx .
It is sometimes convenient to plot phase relations in terms of activities (or concentrations, or
fugacities, see Chapter 9) of externally controlled species. Differentiating equation (5.45)
and applying the chain rule equations (6.29) to (6.31) become:

d lnay

d lnax
= νx

νy
(6.32)

d lnay

dT
= �rS

RT νy
(6.33)

d lnay

dP
=− �rV

RT νy
(6.34)

where, again, it must be kept in mind that the entropy and volume of reaction in these
equations are generally not the standard state values (more on this later).

Worked Example 6.7 Equilibrium among iron compounds in different oxidation states: a key to
early terrestrial environments

Iron, one of the most abundant elements in terrestrial planets, has three oxidation states: Fe0

(metallic iron), Fe2+ (ferrous iron) and Fe3+ (ferric iron). As a consequence there is a wide
range of phase relations involving iron compounds that play important roles in the evolution
of rocky planetary bodies. We begin with a simple example, which focuses on equilibria
among the three phases: hematite (Fe2O3), magnetite (Fe3O4) and siderite (FeCO3).
These three phases constitute a divariant assemblage in the ternary system: FeO–Fe2O3–
CO2 (we could have also chosen the system components as Fe–O2–CO2, it makes no
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difference). We can think of situations in which the chemical potentials of O2 and CO2 are
controlled externally, for instance, if an assemblage of oxides and carbonates equilibrates
with a planet’s atmosphere, or with groundwater, or with hydrothermal fluids. The two
chemical potentials (v = 2) allow us tomap the divariant assemblage onto a pseudo-invariant
point in an isobaric and isothermal phase diagram. Such diagram is shown in the top panel
of Fig. 6.14. The three pseudo-univariant curves that radiate from the pseudo-invariant point
correspond to the following three reactions:

4mt+O2 � 6hm (sd) (6.35)

4sd+O2 � 2hm+ 4CO2 (mt) (6.36)

6sd+O2 � 2mt+ 6CO2 (hm). (6.37)

The slopes of these reactions in the isobaric and isothermal phase diagram (also called a
chemical potential diagram) are givenby the stoichiometric coefficients of the twoexternally
controlled chemical potentials (equation (6.29)). Thus, the (sd) reaction is parallel to the
µCO2 axis, and the (mt) and (hm) reactions have ∂µO2/∂µCO2 slopes equal to 4 and 6,
respectively. The units on the coordinate axes in Fig. 6.14 are arbitrary, as it shows only
the relative position of the reactions and not their absolute locations (we will get to this in
Chapter 11). The relative slopes scale with a change in coordinates, however, and could
also have been derived from Schreinemakers’ rule, as the figure shows. It is important to
remember that slopes derived from equation (6.29)must be consistent with Schreinemakers’
rule – if they are not then you made a mistake somewhere. The mirror orientation of the
phase diagram can be obtained in several different ways, for example, from the fact that
hematite is the most oxidized phase, or that siderite must become stable with increasing
µCO2. Each pseudo-divariant field contains a single phase which, at fixed pressure and
temperature, is stable over aµO2–µCO2 region (of course, a single phase in a ternary system
has four degrees of freedom, but two of these are “used up” by fixing P and T ). The diagram
confirms what we should intuitively expect: that hematite forms by oxidation of magnetite,
that siderite forms by carbonation of the oxides, or the oxides by oxidation of siderite, and
that reduction of ferric iron in the oxides to ferrous iron in siderite requires higher µCO2

the higher µO2 is. It may seem that we have not gained much information that we did not
already know, and this is indeed a very simple example. But a schematic phase diagram
such as Fig. 6.14 is the starting point for construction of the rigorous quantitative version,
which we will do in Chapter 11.
We can choose to fix different subsets of the four externally controlled intensive

variables. The phase diagrams at the bottom of Fig. 6.14 show two possibilities: µO2–T and
µO2–P diagrams.Although the slopes can be derived from equations (6.30) and (6.31), this
is not always as straightforward as for the µ–µ diagram. Only one gas species participates
in the (sd) reaction, which immediately identifies the high-entropy and high-volume side
of the reaction, and the signs of �rS and �rV in (6.30) and (6.31). In the (mt) and (hm)
reactions there are four and six times more gas, respectively, on one side of the reaction
than on the other. These relationships define the signs of �rS0 and �rV0 but not of �rS
and�rV, as the gas species are generally not in their standard states. Schreinemakers’ rule
would allow for the three lines to have positive slopes in theµO2–Tdiagram.The justification
for the negative slopes of the (mt) and (hm) reactions will be given in Chapter 9. The
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Fig. 6.14 Magnetite–hematite–siderite phase relations in three different projections. See text for discussion, but note that
Schreinemakers’ rule is followed in all three projections.

µO2–T and µO2–P phase diagrams show that siderite breaks down to iron oxide plus CO2

with increasing temperature, and that the resulting oxide is either hematite or magnetite,
depending on the chemical potential of oxygen. They also tell us something that may not
have been so obvious: that at constant µO2 hematite is the low-temperature and high-
pressure phase relative to magnetite. In fact, the positive slope of the hematite–magnetite
phase boundary in the isobaric µO2–T diagram is characteristic of all oxidation reactions
(Chapter 9).
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We can now ask some additional questions. For instance: (i) under what conditions can
an aqueous solution contain a significant concentration of dissolved iron (we shall see in
Chapter 11 that the relevant aqueous ion is Fe2+) and (ii) what are the identities of the iron
phases that crystallize from such solutions under different conditions? Such questions are
relevant to understanding changes in the oxidation state of the early terrestrial atmosphere, as
well as the possible conditions under which liquid water may have existed on the Martian
surface in the geological past. In order to address them we can consider the quaternary
system Fe–O2–CO2–H2O, and four phases in this system: siderite, magnetite, hematite
and an aqueous liquid phase that may or may not contain a significant concentration of
Fe2+(I will clarify the meaning of “significant” in the next paragraph). Subsets of three of
these phases constitute trivariant assemblages in the quaternary system, that we can map to
pseudo-invariant points by finding three externally controlled chemical potentials (v = 3),
and fixing any three of the resulting five independent intensive variables (P, T and the three
µs). Two of the chemical potentials are µO2 and µCO2 , as before. The third one is the
chemical potential of the hydrogen ion, which can be measured in terms of the pH of the
aqueous solution. Recalling that pH is the negative of the logarithm of the H+ concentration
(Chapter 11), we see that we can apply equations (6.32)–(6.34) with the signs switched to
determine the slopes of phase boundaries in diagrams in which pH is one of the coordinates.
The phase diagram in Figure 6.14 is valid in the quaternary system, with the proviso

that: (a) we indicate that there are three intensive variables that are kept constant: P, T
and pH , and (b) we indicate that one of the phases, the aqueous solution, is absent at the
pseudo-invariant point and along all reactions that emanate from it. A common convention
is to indicate the phase that is absent at an invariant point by enclosing it in square brackets.
The pseudo-invariant point in Fig. 6.14 can then be labeled [aq], and the three pseudo-
univariant phase boundaries could be re-labeled (sd, aq), (mt, aq) and (hm, aq). Take now
the pseudo-invariant point [hm]. The following three pseudo-univariant reactions radiate
from it:

2mt+ 12H+ � 6Fe2++ 6H2O+O2 (sd,hm) (6.38)

sd+ 2H+ � Fe2++H2O+CO2 (mt,hm) (6.39)

6sd+O2 � 2mt+ 6CO2 (hm,aq). (6.40)

The aqueous solution phase appears in these reactions as the combination (Fe2+ + H2O),
but what exactly does this mean? A liquid H2O phase is typically always present on both
sides of reactions such as (6.38) and (6.39). The “appearance” or “disappearance” of the
aqueous Fe2+ species is more accurately described as a change in the concentration of
Fe2+. In order to plot these reactions as pseudo-univariant phase boundaries it is necessary
to (arbitrarily) fix some concentration of Fe2+ that we will use as the boundary between
“dissolved Fe” and “precipitated Fe”. This is what I meant by “significant concentration
of Fe2+”. If, in addition, we note that the chemical potential of H2O stays approximately
constant (because its mol fraction is very close to 1, regardless of howmuch Fe is dissolved
in it), then we see that reactions (6.38) and (6.39) have one degree of freedom (µO2 orµCO2 ,
respectively) at constant P, T and pH . With these restrictions it is possible to treat them as
pseudo-univariant reactions, and Schreinemakers’ rule applies. In Chapter 11 we will see
how to deal with aqueous solutions in a less restrictive way.
Reactions (6.40) and (6.37) are the same one, so this reaction must be the one that joins

the [hm] and [aq] pseudo-invariant points (see Worked Example 6.5). Because hematite is
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not stable at the [hm] point this must be located on the stable side of reaction (6.37). The
resulting phase diagram is shown in Fig. 6.15a. The labels of the pseudo-univariant lines
have been omitted for clarity but you should convince yourself that their relative locations
abide by Schreinemakers’ rule. Just as there is a hematite-absent pseudo-invariant point,
there is also a magnetite-absent pseudo-invariant point, [mt], where the following three
reactions meet:

2hm+ 8H+ � 4Fe2++ 4H2O+O2 (sd,mt) (6.41)

sd+ 2H+ � Fe2++H2O+CO2 (hm,mt) (6.42)

4sd+O2 � 2hm+ 4CO2 (mt,aq). (6.43)

Reaction (6.43) is now the same as (6.36), so this must be the reaction that joins the [mt]
and [aq] pseudo-invariant points. Since magnetite is not stable at [mt], this point must be
located on the stable side of reaction (6.36). The only way in which this is possible is if
both the [hm] and [aq] pseudo-invariant points are located on the metastable side of the
(aq, mt) reaction, as shown in Fig. 6.15b. The two phase diagrams in Fig. 6.15 represent
two different sets of phase relations for the same system. We will get to that in a moment,
but first note that there is an important difference between the two sets of phase relations.
When the [mt] point becomes stable magnetite is never stable and both the [hm] and [aq]
pseudo-invariant points are metastable. In contrast, when the [hm] point is stable hematite
exists around the stable [aq] pseudo-invariant point.
How can two different sets of phase relations be possible for the same system? Because

each of the phase diagrams in Fig. 6.15 is valid for a different combination of the three
intensive variables that are being held constant, P, T and pH. In particular, they may corre-
spond to different pH values, labeled pHI and pHII in the figure, at the same pressure and
temperature.
We can determine the relative values of pHI and pHII by drawing the phase relations on

the µO2–pH plane at constant P , T and µCO2 . These are shown in Fig. 6.16 – you should
demonstrate to yourself that this is the correct diagram. We can now see that magnetite
becomes unstable with increasing acidity (decreasing pH ). Let the two pH values be as
shown in Fig 6.16 and recall that µCO2 is now being held constant, for example at the value
µc in Figure 6.15. Under less acidic conditions, pHI , reduction of hematite at constantµCO2

produces magnetite first and dissolved Fe2+ at lower µO2 , as in Fig. 6.15a. If conditions
are more acidic, pHII , then hematite dissolves in response to a decrease in µO2 without
forming magnetite as an intermediate product, as in Fig. 6.15a.
Banded iron formations (BIF) are chemical sediments that are found in Earth’s strati-

graphic record beginning in the Early Archaean, reaching their maximum extent in the
interval 2.5–2.0 Ga, and tapering off after that. Their major development coincides in time
with what is known as the Great Oxidation Event, when µO2 in the terrestrial atmosphere
increased sharply and relatively rapidly (geologically speaking). The most likely explana-
tion for the origin of BIFs is that they formed by precipitation of Fe2+ dissolved in seawater.
What was the ultimate source of this iron is a different, and controversial, question. There is
considerable variability in the mineralogy of BIFs but some consistent patterns exist. Some
are dominated by hematite, which in some cases is accompanied by subordinate magnetite.
Siderite is rare in hematite-dominated BIFs. Other BIFs are dominated by magnetite, and
these commonly also contain large quantities of siderite. Yet a third kind is composed
predominantly of siderite, with no oxides. All BIFs contain chert and/or iron silicates.
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We can construct a qualitative interpretation of these observations on the basis of the
phase relations in Figs. 6.15 and 6.16. Oxide-dominated BIFs are most likely to represent
precipitation of Fe2+ in response to an increase in µO2, but precipitation caused by an
increase in the pH of seawater cannot be ruled out. Precipitation of hematite may generally
indicate oxidation under more acidic conditions than precipitation of magnetite, but there
is also a minimum value of the chemical potential of oxygen that is needed to stabilize
hematite. Oxidation under yet less acidic conditions may have caused precipitation of
magnetite + siderite BIFs. Carbonate-dominated BIFs with little or no magnetite, in
contrast, are more likely to represent an increase in pH or µCO2 under relatively reducing
conditions, at which neither of the two oxides is stable. BIFs preserve a priceless record of
the chemical evolution of the atmosphere and ocean in the early Earth, that we will study
in a more quantitative fashion in Chapter 11. Widespread deposits of hematite have also
been identified on the Martian surface, both by remote sensing and in-situ observations
by landers. Magnetite and siderite, in contrast, appear to be absent in Mars, or at the very
least to be far less common than in terrestrial sedimentary iron formations. One possible
explanation is that Martian hematite formed by precipitation from bodies of consistently
acidic water, hinting at an important difference with early terrestrial environments.

6.4 Equilibrium among phases of variable composition

When we consider chemical equilibrium among phases of variable composition we are
interested in tracking phase compositions as a function of the intensive variables that control
the system, most commonly temperature and pressure. The following discussion focuses
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exclusively on binary systems but the principles are valid, if considerablymore cumbersome
to implement, for systems of any number of components. We need to consider two distinct
situations.
In the first case each of the compositional end-members undergoes a discontinuous phase

transition between two phases that have the same chemical composition but different struc-
tural states. This could be solid–liquid, solid–gas, liquid–gas or a phase transition between
two isochemical solids with different crystallographic structures.Although the concept of a
discontinuous phase transition is intuitively easy to grasp, we can give it a precise thermo-
dynamic meaning by noting that they are accompanied by a non-zero enthalpy change (e.g.
the enthalpy of fusion, vaporization, sublimation, etc.) and therefore also a finite entropy
change, as well as a finite volume change.At a discontinuous phase transition�rG vanishes
but its first derivatives, �rS and �rV, do not. Thermodynamic analysis of discontinuous
phase transitions is based on a set of equations that describe the equilibrium of a chemical
species between coexisting phases. These equations are derived in Section 6.5, and applied
to the study of phase transitions in Section 6.6.
The second case consists of equilibrium between two phases of different composition

that are in the same, or very similar, structural states. These could be two liquids or two
isostructural solids (e.g. two feldspars, or two pyroxenes). It is an empirical observation, that
we will also justify from thermodynamic considerations, that the compositions of the two
phases at equilibrium converge with increasing temperature, until the two phases become
indistinguishable at a well-defined temperature called the critical mixing temperature. At
the critical temperature the system undergoes a phase transition between a sub-critical state
in which two phases coexist at equilibrium, and a super-critical state in which only one
phase exists at equilibrium. Such phase transitions are called continuous, or critical, phase
transitions. They are discussed in the next chapter.

6.5 Chemical equilibrium at first-order phase transitions

6.5.1 Condensed phases

Consider a chemical species, A, contained in two condensed phases, 1 and 2, that are
at equilibrium at a discontinuous phase transition. We will follow the convention that
phase 2 has higher entropy and higher volume than phase 1, so that phase 2 occurs on the
high-temperature and low-pressure side of the phase transition, and we will always write
the reaction with the high entropy and high-volume phase as a product. The equilibrium
condition can be written as follows (see equation (5.55)):

ln

(
aA2

aA1

)
= lnK =−�rG

0
P,T

RT
. (6.44)

If the phases on both sides of the phase transition are condensed phases (i.e., the phase
transition is solid–liquid or solid–solid) then the standard states in (6.44) are taken to be
pure A in phase 1 and pure A in phase 2 at the temperature and pressure of the phase
transition for the pure substance. Equation (6.44) vanishes at the pressure and temperature
at which pure A undergoes the phase transition, but at any other P–T combination it is not
zero. We now wish to find how the ratio of equilibrium activities at the phase transition
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changes with temperature and pressure. Thus, at constant pressure:

∂ lnK

∂T
=− 1

R

∂

∂T

(
�rG

0
P,T

T

)
=− 1

R

(
1

T

∂�rG
0
P,T

∂T
− �rG

0
P,T

T 2

)

=− 1

R

(
−�rS

0
P,T

T
− �rG

0
P,T

T 2

)
. (6.45)

Now, from the definition of Gibbs free energy (equation (4.128)) we can write:

�rH
0
P,T

T 2
=−�rG

0
P,T

T 2
− �rS

0
P,T

T
(6.46)

which, substituting in (6.45), yields:

∂ lnK

∂T
= �rH

0
P,T

RT 2
. (6.47)

We can now integrate this expression, at constant pressure, between the temperature of the
phase transition for pure A, TA, and any other arbitrary temperature T :

lnKT =
∫ T

TA

�rH
0
P,T

RT 2 dT + lnKTA . (6.48)

We will assume that the integration interval is narrow enough that the enthalpy change
associated with the phase transition can be considered to be constant, and equal to that for
the phase transition for pure A at TA. Calling this enthalpy change �rH0

A and given that
our choice of standard states makes lnKTA = 0, we get the following expression for the
activity ratio at temperature T:(

aA2

aA1

)
T

=KT = exp

[
−�rH

0
A

R

(
1

T
− 1

TA

)]
. (6.49)

If we write the chemical formula of species A in such a way that site multiplicity equals
one then the activities are the products of mol fractions times activity coefficients, and we
can recast (6.49) as follows: (

XA
2

XA
1

)
= α (T )

(
γA
1

γA
2

)
(6.50)

where, in order to simplify subsequent equations, we have made:

α (T )= exp

[
−�rH

0
A

R

(
1

T
− 1

TA

)]
. (6.51)

Equation (6.49), or its equivalent (6.50), is sometimes called the freezing point depression
equation, as it tracks how the melting point T of a substance changes relative to the melting
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point of the pure substance, TA, as a function of the addition of “impurities” that lower the
activity of the substance in the melt phase, a2, in equilibrium with pure solid (a1 constant
and equal to 1). Equation (6.49) is, however, completely general and applicable to any first-
order phase transition, even if some additional considerations are needed when applying it
to phase transitions involving a gas phase (next section).
We are also interested in how the activity ratio varies with pressure at constant

temperature. In this case it is straightforward to see that:

∂ lnK

∂P
=−�rV

0
P,T

RT
. (6.52)

If the pressure of the phase transition for pure A is PA, so that lnKPA = 0, we get:

lnKP =− 1

RT

∫ P

PA

�rV
0
P,T dP. (6.53)

If the phases on both sides of the phase transition are condensed phases then it may be
acceptable as a first approximation to treat the volume change as a constant, in which case
we have: (

aA2

aA1

)
P

=KP = exp

[
�rV

0
A

RT
(PA−P)

]
, (6.54)

where �rV0A is the volume change associated with the phase transition of pure A at PA.
Separating ideal and excess contributions to activity and defining:

α (P )= exp

[
�rV

0
A

RT
(PA−P)

]
(6.55)

we get: (
XA
2

XA
1

)
= α (P )

(
γA
1

γA
2

)
. (6.56)

The integrals in (6.48) and (6.53) can be refined by considering the temperature and
pressure dependencies of the enthalpy and volume changes of the phase transition. It is also
possible to write the freezing point depressions equation (6.49) as a function of the entropy
of the phase transition, something that we will do and justify in Chapter 10.

6.5.2 Phase transitions involving a gas at low pressure

If the phase transition involves a gas then it is necessary to define the standard state in such a
way that the energy contribution that arises from expansion of the gas is properly accounted
for. Here we will restrict the discussion to gases at pressures of order 1 bar or less, such that
the ideal gas approximation is acceptable. The phase transitions in question are boiling and
sublimation, that we will call in general vaporization, and their inverse, condensation, also
called deposition in the case that a gas condenses to a solid.
Recall that according to our labeling convention phase 2 is the high entropy and high

volume phase, so that it is the gas. Phase 1 can be either a liquid or a solid. We will choose
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the standard states as pure gaseous A (phase 2) and pure A in phase 1 at 1 bar and the
temperature of the phase transition for the pure substance at 1 bar. With this definition
of standard states the activity of A in the gas is numerically equal to the partial pressure
of component A in the gas, pA (see equation (5.86)). The equilibrium constant in equation
(6.48) is therefore the ratio pA/aA1 , and given our choice of standard states lnKTA vanishes,
as before. We now write (6.49) as follows:

ln

(
pA

aA1

)
T

=−�rH
0
A

RT
+ �rH

0
A

RTA
(6.57)

For moderate temperature excursions relative to TA (the temperature of the phase transition
for pure A at 1 bar) �rH0

A can be considered to be constant. Equation (6.57) can then be
re-written as follows:

log10

(
pA

aA1

)
= a+ b

T
(6.58)

with a and b constants, and the natural logarithm conventionally replaced by decimal log-
arithm. This is the version of equation (6.49) that is widely used for phase transitions
involving a gas at low pressure. The partial pressure of gas species A, pA, in equilibrium
with a condensed phase in which the activity of speciesA is aA1 is called the vapor pressure
of A. We will return to this in Chapter 9, but it is important to understand what it means.
First, the definition of vapor is a gas in equilibrium with a condensed phase, solid or liq-
uid, of the same composition. If a condensed phase containing species A exists inside a
system whose volume is greater than that of the condensed phase, there is “empty space”
if you wish, then thermodynamic equilibrium requires that the chemical potential of A in
the “empty space” must be the same as the chemical potential of A in the condensed phase.
This means that there must be a vapor of A molecules in the “empty space”. The vapor
pressure ofA is the partial pressure ofA that makes the chemical potential ofA in the vapor
(see equation (5.86)) equal to that of A in the condensed phase. If no other substances are
present then this partial pressure equals the total pressure on the system (equation (5.78)),
but at a given temperature the vapor pressure ofA is fixed, regardless of the total pressure –
this is what equation (6.58) stands for. The relation is equally valid whether the condensed
phase is a liquid or a solid, although the vapor pressures of a solid and a liquid of the same
composition and at the same temperature are different, and so are the a and b parameters
in equation (6.58). Substances are said to be more volatile the higher their vapor pressure
is at a given temperature. The boiling point of a liquid is the temperature at which its vapor
pressure equals the total pressure, so that at least locally (at the liquid–gas interface) the gas
is made up exclusively of molecules with the same composition as the liquid. This concept
also works for solid–gas equilibrium, even if we don’t generally think of a boiling point for
solids.
The usefulness of equation (6.58) is that values of the parameters a and b are tabulated for

liquid–vapor and solid–vapor equilibria for many substances (see, for example, Lodders &
Fegley, 1998, Table 1.20), which makes calculation of vaporization equilibria very straight-
forward (see below). I emphasize, however, that (6.49) and (6.58) are the same equation. A
refinement of (6.58) that accounts for changes in�rH0

A with temperature is alsowidely used
and is known as the Antoine equation (Antoine equation parameters for many substances
can be found in the NIST Chemistry WebBook).
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Suppose that we wish to use (6.58) to track changes in the equilibrium compositions
of gas and condensed phase with temperature, at a constant pressure P. We recall from
equation (5.78) that the mol fraction of species A in the gas phase is given by XA = pA/P.
Separating ideal and excess contributions to activity in the condensed phase we can rewrite
(6.58) as follows: (

XA
2

XA
1

)
= α (T )

P
· γA

1 , (6.59)

where the exponential function in this case is:

α (T )= 10

(
a+ b

T

)
. (6.60)

Equation (6.58) can also be recast so as to track changes in phase composition with
pressure, at constant temperature. If we fix the temperature at some value of interest then
the right-hand side of (6.58), and hence α(T), is a constant. In particular, α(T) is equal to
the partial pressure of A in a gas in equilibrium with a condensed phase composed of pure
A at the temperature of interest. Let us call these values of partial pressure and activity
pA,0 and a1A,0 = 1, respectively. From (6.58) it follows that for any other combination of
equilibrium values it must be:

pA

aA1
= pA,0

a
A,0
1

= pA,0. (6.61)

Let the total pressure on the system be P. Dividing (6.61) by P and separating the activity
coefficient in the condensed phase we get:(

XA
2

XA
1

)
= pA,0

P
· γ A

1 , (6.62)

which is the equivalent of 6.56 for vaporization reactions.

6.6 Discontinuous phase transitions in phases of
variable composition

We need to consider two distinct behaviors. In one instance there is complete miscibility
between two components, which we shall label A and B, in two phases, labeled 1 and 2,
separated by a discontinuous phase transition. By complete miscibility we mean that all
phase compositions between pure A and pure B are stable. Ideal solutions always exhibit
this behavior, as do non-ideal solutions above their critical point (Chapter 7).At the opposite
end of the spectrum is the case in which there is complete miscibility between A and B in
one of the phases, whereas on the other side of the phase transition A and B are present in
perfectly immiscible phases of constant composition, which we shall label a (= pure A)
and b (= pure B). Intermediate behaviors, in which limited miscibility exists on one or both
sides of a discontinuous phase transition, are common but will not be discussed here.
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6.6.1 Complete miscibility in both phases

We discuss first the case in which the phase transition occurs between two phases in both
of which the two components, A and B, are fully miscible. We will abide by the following
conventions regarding phases and components (see Fig. 6.17). First, phase 2 has higher
entropy and volume than phase 1. Thus, phase 2 occurs on the high temperature and low
pressure side of the phase transition. Second, the transitions for the pure phases occur at
different temperatures and pressures, such that, at constant pressure TA<TB, and at constant
temperature PA > PB. You can think of component B as being more refractory and less
volatile than A, but these definitions are not entirely clear if applied, for example, to a
solid–solid phase transition, or to the effect of pressure on a melting reaction.
Let us look first at the behavior of the phase transition at constant pressure. For a given

temperature we have two versions of equations (6.50) or (6.59), depending on whether only
condensed phases or a gas phase is present:

(
XA
2

XA
1

)
= α (T )

(
γA
1

γA
2

)
(
XB

2

XB
1

)
= β(T )

(
γ B
1

γ B
2

)
(6.63)

Phase 2

Phase 1

Phase transition
for pure A

Phase transition
for pure B

P

T

TA TB
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PA

Fig. 6.17 Labeling convention for phases and components in binary phase diagrams with phases of variable composition – see
text.



332 Phase equilibrium and phase diagrams

or, if a gas is present: (
XA
2

XA
1

)
= α(T )

P
· γA

1

(
XB

2

XB
1

)
= β(T )

P
· γ B

1 (6.64)

where I have used β(T ) to represent the exponential function (6.51) or (6.60) for phase B.
In addition, because the system is binary, we have the conditions:

XA
1 +XB

1 = 1

XA
2 +XB

2 = 1. (6.65)

The activity coefficients are functions of composition and, perhaps, temperature. Thus, at
constant temperature we have a system of four equations that we can solve for the four
mol fractions, i.e. for the compositions of the two phases at equilibrium along the phase
transition.The general solution can be quitemessy because of the compositional dependency
of activity coefficients, and must generally be obtained numerically. However, if the phases
can be considered to be ideal mixtures, or if the departures from ideality are comparable
in the two phases so that the ratio of activity coefficients in (6.63) is of order 1, then the
general solutions are very simple. For phase transitions among condensed phases:

XA
1 =

β(T )− 1

β(T )−α(T )

XA
2 = α(T )

β(T )− 1

β(T )−α(T )
(6.66)

and for vaporization transitions:

XA
1 =

β(T )−P
β(T )−α(T )

XA
2 =

α(T )

P
· β(T )−P
β(T )−α(T )

. (6.67)

The distribution of component B follows trivially from (6.65).
Note some important properties of these equations. First, for T > TB > TA both α(T)

(orα(T )/p) andβ(T) (orβ(T )/p) are greater than 1. If the activity coefficients are unity then
this is impossible by (6.63) or (6.64).The conditionTB>TA>T leads to another impossible
result. Thus, the only feasible solutions are in the interval TB≥ T ≥ TA . This means that the
phase transition for any composition intermediate betweenA and B occurs at a temperature
that is intermediate between the temperatures at which the two end-members undergo the
phase transition. Second, from the condition TB ≥ T ≥ TA it follows that XA

2 > XA
1 and

X B
1 > X

B
2 . The low-temperature phase, 1, is enriched in the more refractory component, B,

relative to the high temperature phase, and conversely for the less refractory component,
A. Note that these conclusions are not necessarily valid if excess mixing properties are not
negligible.
The solution for the behavior of the phase transition with pressure at constant temperature

is analogous.Assuming that activity coefficients can be neglected we obtain, for condensed
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phases:

XA
1 =

β(P )− 1

β(P )−α(P )

XA
2 = α(P )

β(P )− 1

β(P )−α(P )
(6.68)

and for vaporization:

XA
1 =

pB,0−P
pB,0−pA,0

XA
2 =

pA,0

P
· pB,0−P
pB,0−pA,0 . (6.69)

In this case we find that, if activity coefficients can be neglected, then the physical solutions
are in the interval PB ≤ P≤ PA, and from this condition we find that it must be X 2

A > X 1
A

and X 1
B > X 2

B. The low-pressure phase, 2, is enriched in the more volatile component,
relative to the high-pressure phase, and conversely for the less volatile component, B (see
also Fig. 6.17).
Figure 6.18 shows the topology of the phase diagrams calculated with these equations.

Each diagram consists of two curves that map the equilibrium compositions of phase 1 and
phase 2, expressed as a function of the mol fraction of component A. For example, at TZ or
PZ, phase 1 of composition X I is in equilibrium with phase 2 of composition X II.
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Fig. 6.18 T–X and P–X diagrams for phase transitions between two binary phases, in both of which there is complete
miscibility between components A and B. Phase 2 has higher entropy and molar volume than phase 1 (possible
combinations of phases are listed at the bottom of the figure). The two phases exist at equilibrium inside the shaded
regions. The compositions of the coexisting phases are given by the intersections of the T or P coordinate with the
respective bounding curves.
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Phase 1 is stable at lower T and higher P than phase 2. A one-phase assemblage in a
binary system has three degrees of freedom, which in this case we choose as P, T and a
chemical potential that is represented by a compositional variable,X(A). Pressure is fixed in
diagram (i) and temperature is fixed in diagram (ii), so each of the one-phase assemblages
is stable over a two-dimensional region (T–X or P–X, respectively) in the phase diagrams.
Each of these regions terminates at a curve (calculated with the corresponding equation
for XA

1 or XA
2 ) that represents the location of the phase transition. Inside the shaded area

bound by the two curves the two phases are stable, so that there are two degrees of freedom.
In diagram (i) these are pressure, which is fixed, and either temperature or composition,
whereas in diagram (ii) they are temperature (fixed) and either pressure or composition. At
a given temperature in (i), say TZ, and the pressure chosen to construct the diagram, the
compositions of the coexisting phases, XI and XII, and hence all the chemical potentials,
are determined by the solutions to the systems of equations that we derived above, with no
possibility of arbitrarily choosing the value of any other variable. For any combination of
bulk composition and temperature in diagram (i), or bulk composition and pressure in (ii),
that plots inside the shaded regions there are two phases at equilibrium, whose compositions
are given by the intersections of the two bounding curves with the temperature or pressure
coordinate. The two phases can exist at equilibrium atTZ, orPZ, only if the bulk composition
of the system lies between XI and XII. If the system is richer in B relative to this interval
then only phase 1 is stable at these conditions, and conversely only phase 2 is stable in a
system whose bulk composition is richer in A than XII.
The phase transition in the binary system occurs over a divariant region, rather than along

a univariant curve as in the case of a one-component system. For example, as temperature
rises or pressure falls, phase 1 of composition XI will begin to undergo the transition to
phase 2 at TZ, or PZ, respectively, at which conditions phase 2 of composition XII will form.
In a closed system the two phases may remain at equilibrium, while changing composition,
until Ty, or Py, are reached, at which point phase 2 will have attained composition XI.
Further increase of temperature or decrease of pressure will cause phase 1 to disappear.
More interesting behaviors become possible in open systems. For instance, if phase 2 is lost
from the system then the bulk composition shifts in the direction of component B, and the
phase transition will extend beyond Ty, or Py, conceivably all the way to the values for the
univariant equilibrium in the pure B system, TB or PB.
The type of phase diagram shown in Fig. 6.18(i), and the different behaviors that are

possible depending on whether the system is closed or open, are of course familiar to geolo-
gists from elementary igneous petrology. They are commonly exemplified by the olivine or
plagioclase melting loops. If the phase diagram corresponds to a melting reaction, then the
curve that maps the upper thermal stability of the solid phase is called the solidus, whereas
the lower thermal stability of the melt is mapped by the liquidus. Note that the solidus and
the liquidus coincide for the two degenerate end-member systems. I wish to present these
results in a different light from that commonly associated with igneous petrology, empha-
sizing their generality and in particular the following three points. First, melting is only
one of the possible types of discontinuous phase transitions involving phases of variable
composition. The thermodynamic relations and topology of the resulting phase diagrams
are the same for other discontinuous phase transitions. Second, temperature has no special
status as an intensive variable. Phase compositions at the transition can also be tracked as
a function of pressure, if it is more convenient. Third, the topology of the phase diagram is
determined by the solutions to sets of equations such as (6.63) and (6.65), (6.64) and (6.65),
and so on. All that these equations require is that the curve that maps the composition of
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the high-entropy, or high-volume, phase be located at higher temperature, or lower pres-
sure, than the curve that maps the composition of the low-entropy or low-volume phase.
The equations per se do not determine neither the separation between the curves nor their
curvature. These quantities depend on the relative values of temperature, pressure, enthalpy
change and volume change of the phase transitions for the pure end-member phases, as
we shall see in the following examples. Also important are the excess mixing properties of
the two phases, which we have ignored in this discussion. It is generally far from trivial to
account for these in calculations and we shall not attempt it here. Many phase diagrams are,
however, constructed empirically, so that they conflate all of these effects from experimental
measurements.

Worked Example 6.8 Crystallization of planetary mantles and cores

At temperatures close to their melting points, olivine forms a complete solid solution
between the Fe and Mg end-members, fayalite and forsterite, and so do Fe and Ni met-
als. Solid–liquid equilibria in these two systems constitute very simplified models for the
crystallization of the mantles and cores of the terrestrial planets. These simple models cap-
ture some of the important physicochemical aspects of those processes, however.Assuming
that excess mixing properties can be ignored all that we need in order to construct phase
diagrams formelting of olivine or Fe–Ni alloys using equations (6.66) are themelting points
and enthalpies of fusion of each of the end-members – see equation (6.49). The required
values are: TFo= 2163 K, TFa = 1490 K,�fHFo= 71.1 kJ mol−1,�fHFa = 92.2 kJ mol−1
and TFe = 1809 K, TNi = 1726 K, �fHFe = 14.2 kJ mol−1, �fHNi = 18.2 kJ mol−1. With
these data we calculate α(T) and β(T) with equation (6.51), and the compositions of the
coexisting phases, for a series of temperatures, TB ≥ T ≥ TA (a spreadsheet program such
as QuattroPro will do this effortlessly). The resulting phase diagrams (at 1 bar pressure)
are shown in Fig. 6.19. If you compare the olivine phase diagram in the figure with the one
shown in igneous petrology textbooks you will notice that they differ. This is so because
the diagram shown in textbooks is constructed from experimental results, and thus includes
the effects of non-ideal mixing in olivine and melt. That diagram is the correct one, but the
simplified version shown in Fig. 6.19 will do for our purposes.
There is a striking difference between the olivine and metal phase diagrams. First, the

solidus and liquidus curves have curvatures of opposite signs in the olivine phase diagram,
whereas both have positive curvature in the metal phase diagram. Second, and more impor-
tantly, the curves for olivine are widely separated, whereas they almost coincide with one
another in the metal diagram (see inset). Melting, or crystallization, strongly fractionates
olivine compositions, but that is not the case for Fe–Ni metal alloys. The different behaviors
are rooted in the different enthalpies (and entropies) of fusion of the two systems, which
are about five times greater in the silicates compared to the metals (see also Chapter 10).
Equation (6.49) shows that, for a given temperature, the ratio between the activity of a com-
ponent in phase 1 relative to its activity in phase 2 varies exponentially with the enthalpy
of transition.
We can think of two ways in which these contrasting behaviors may have affected the

evolution of terrestrial planets. First, mantle crystallization from a magma ocean of olivine
composition produces olivine crystals considerably richer in Mg than the liquid. If the
densities of the solid and liquid phases differ significantly then the two phases would
become separated and crystallization would take place in an open system. The residual
liquids would become progressively enriched in Fe, resulting in a planetary mantle with
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primary compositional stratification. Such stratification is less likely to develop in metallic
cores, given that the Fe–Ni alloy that crystallizes from a molten metal mixture has virtually
the same composition as the liquid. Second, in a crystallizing silicate mantle there is a wide
temperature interval over which solid and liquid coexist, which may lead to a sizable depth
interval over which the melt fraction varies between 1 and 0. In contrast, solidification of
a metal core can be expected to take place along a sharp front.

Worked Example 6.9 Hydrocarbons in Titan’s atmosphere–hydrosphere cycle

Titan’s atmosphere is composed predominantly of nitrogen, but it has been known for a long
time that non-trivial amounts of hydrocarbons are also present. TheCassini–Huyghensmis-
sion has revealed remarkably Earth-like landforms, including dendritic drainage networks,
lakes and dry lake beds. It is thought that Titan’s rocky surface consists chiefly of water ice,
and that surface liquids are hydrocarbons. Hydrocarbons in Titan play a role comparable to
that of water in the terrestrial atmosphere. The dominant hydrocarbon species present in the
atmosphere is methane, accompanied by lesser amounts of ethane. The two hydrocarbons
are fully miscible in both the liquid and gas phases. Condensation of atmospheric gases and
evaporation of liquid hydrocarbons from lakes should lead to methane–ethane fractionation
in Titan’s climate cycle.
Titan’s surface atmospheric pressure is about 1.5 bar, with a hydrocarbon mol fraction of

∼0.05, so that the partial pressure of hydrocarbons inTitan’s atmosphere is∼75mbar. Using
equation (6.58) anda andbparameters fromLodders andFegley (1998) andNISTChemistry
WebBook we find that the temperature at which the end-members attain a saturation vapor
pressure of 75 mbar are 88 K for methane and 147 K for ethane. Given that the average
surface temperature is ∼95 K, there must exist a range of bulk compositions over which
liquid and vapor coexist.
We can use equations (6.67) to calculate the compositions of the coexisting phases at

P = 75 mbar. This calculation assumes that the sum of the partial pressures of the two
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hydrocarbons does not change with temperature, which is a somewhat artificial constraint
that we will address later. As in the previous example, we calculate α(T) and β(T) for
temperatures in the range 88–147 K, but in this case with equation (6.60). The resulting
phase diagram is shown in the left panel of Fig. 6.20. Because hydrocarbons are not the
only components present in the gas phase, the horizontal coordinate in the phase diagram
is not the absolute mol fraction of methane, but rather the ratio of mols of methane to mols
of methane + ethane, which are the two species that contribute to the partial pressure of
hydrocarbons in our model.
At the conditions of Titan’s surface methane–ethane mixtures with a molar proportion of

methane greater than ∼0.4 exist as liquids at equilibrium with atmospheric hydrocarbons.
One can therefore expect evaporation from hydrocarbon lakes and hydrocarbon rain. There
is, however, strong fractionation between the two phases. Hydrocarbon vapor is almost pure
methane, but the lakes are about 60% ethane. Note that although it is possible to predict
the composition of Titan’s lakes from hydrocarbon partial pressure in the atmosphere and
temperature, it is not possible to derive a bulk methane–ethane ratio from these data alone.
The bulk composition can lie anywhere between about 60%ethane and almost puremethane,
and would be reflected in the relative masses of liquid and gaseous hydrocarbons.
Some other issues need to be addressed. First, is there a chance that hydrocarbons will

solidify on Titan’ surface? The melting points of pure methane and ethane are 85 and 101 K,
and the enthalpies of fusion are 0.94 and 0.58 kJ mol−1, respectively. Assuming that they
mix ideally in the solid state (this is probably incorrect, but it is OK for this discussion,
and is explored further in the end-of-chapter exercises), we calculate a binary melting
loop as in Worked Example 6.8. The melting loop is also shown in the left panel of Fig.
6.20. Given the very low enthalpies of fusion the solidus and liquidus curves are virtually
indistinguishable from one another. For the compositional interval of possible liquid–vapor
equilibria the freezing curve is below Titan’s average surface temperature. Mixtures with
more than about 70% ethane would freeze, however.
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What would happen if the bulk proportion of ethane in Titan’s hydrocarbons was between
60%and70%, i.e. in the interval between the freezing and vaporization curves?Therewould
still be liquid hydrocarbons on the surface, but in equilibrium with a lower hydrocarbon
partial pressure in the atmosphere. This is shown in the right panel of Fig. 6.20, which shows
isothermal phase relations at 95 K, calculated with equations (6.69). The bounding curve of
the vapor field (called the vaporus, by analogy to solidus and liquidus; see Ricci, 1966) is so
steep in this region that atmospheric hydrocarbons would still be essentially pure methane,
even if lakes were composed of up to 70% ethane. At approximately this composition the
freezing curve is intersected, such that for bulk compositions with more than 70% ethane
one would find hydrocarbon icefields and frozen lakes in equilibrium with atmospheric
hydrocarbons that would still be dominated by methane, unless the bulk composition was
almost pure ethane. The solid–vapor curves are shown (schematically) in the figure, and
could be precisely calculated with (6.69) if the vapor pressure of pure solid ethane at 95 K
were accurately known, which as far as I can tell is not the case.

6.6.2 Complete immiscibility in the low temperature or high pressure phase

We now turn to the case in which there is complete miscibility between the two compo-
nents on one side of the phase transition, typically in a liquid or gas phase, and complete
immiscibility on the other side, typically between two solid phases. We will assume that
the high-entropy and high-volume phase, labeled 2 as before, is the one in which A and B
mix without restrictions. Phase 1 is replaced by two distinct phases in the same aggrega-
tion state, a and b, composed of pure A and B, respectively. As in the previous case, the
phase transitions for pure end-member phases are such that, at constant pressure TA < TB
and at constant temperature PA > PB. Consider the isobaric relations for a phase transi-
tion between condensed phases first. This is almost always a melting reaction, although in
principle it could also take place between two immiscible solids with different crystalline
structures on one side and a third solid on the other. Since now a and b are pure phases the
activities of A and B in them are unity and equations (6.63) become:

XA
2 = α (T )

(
1

γA
2

)

XB
2 = β (T )

(
1

γ B
2

)
. (6.70)

We have only one mol fraction equation, for the high-entropy phase:

XA
2 +XB

2 = 1. (6.71)

The situation is rather different from the one that arises if there is full miscibility in both
phases. We cannot choose any arbitrary temperature and solve for the composition of
phase 2. Rather, 6.70 and 6.71 constitute a system of three equations in three unknowns:
the two mol fractions in phase 2 and temperature. The system of equations has zero degrees
of freedom, meaning that there is only one temperature at which the three phases co-exist
at equilibrium. This is of course the phase rule result: three phases in a binary system have
one degree of freedom, that is taken up by pressure, which we fix arbitrarily. Temperature
is therefore fixed by the stable co-existence of the three phases. This temperature, which is
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the solution to the system of simultaneous equations (6.70) and (6.71), is called the eutectic
temperature, Te.
In this case the parameters α(T) and β(T) equal the activities of each of the components

in phase 2, because the phases a and b remain at their standard states (equation (6.70)).
Therefore, if phase 2 is a stable solution (we will return to this in the next chapter), then
by equation (5.31) both α(T) and β(T) must be less than one (see also Fig. 5.7). Given that
phase 2, typically a liquid or gas, is the high entropy phase,�rH is always positive. It then
follows from equation (6.51) that the eutectic temperature must be lower than both of the
end-member phase transition temperatures: Te < TA < TB. This relationship applies most
commonly to melting. In order for melting to occur at equilibrium at a point other than
the eutectic, one of the solid phases must disappear – the phase rule assures us of this.
Say that the phase that disappears is a. Then the chemical potential of A in the liquid must
decrease relative to that at the eutectic and, by equation 5.31, the chemical potential of B
must increase (Fig. 5.7). If the temperature did not change then the chemical potential of B
would be lower in the solid than in the liquid. Because the liquid is the high-entropy phase
equilibrium between solid and liquid can be restored only by increasing the temperature.
The algebraic expression of this is that, when one of the solids disappears, we are left with
only one of the equations in (6.70), which represents equilibrium between liquid and the
other solid phase. This equation can be solved for the mol fraction of one component, A
or B, in the liquid, in equilibrium with its pure solid, a or b, for any temperature between
Te and TA or TB, respectively. There are two physical solutions for Te < T < TA, and only
one for TA < T < TB. The liquid must disappear at T < Te. In contrast to the binary loops
discussed in the previous section there is no analytical solution for this system of equations,
because temperature appears in an exponential function, equation (6.51) (i.e. α(T) and β(T)
in (6.70)). It is, however, very easy to write a Maple routine that solves for the eutectic
temperature and the composition of phase 2 at the eutectic (Software Box 6.1).

Software Box 6.1 Calculation of melting loop and eutectic melting and vaporization
The worksheet phasediags1.mw contains two Maple procedures.

Ibin_Tloop: Calculates a melting loop assuming full miscibility and ideal one-site
solution behavior in the two coexisting phases. It solves the system of equations
(6.63) and (6.65). Note that these calculations can also be implemented in a
spreadsheet.

Ibin_eutec: Calculates eutectic melting relations assuming complete immiscibil-
ity in the solid and full miscibility and ideal solution in the liquid. It first solves
equations (6.70) and (6.71) for the eutectic temperature, and then calculates each
branch of the liquidus with the corresponding equation from (6.70). Each branch
of the liquidus is stored in a separate file, with “a” or “b” appended at the end
of the name. Both branches are stored in terms of mol fraction of species A.

The eutectic behavior for vaporization reactions is obtained in the same way, by solving
the system of equations:

XA
2 =

α(T )

P

XB
2 =

β(T )

P
(6.72)
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together with equation (6.71), and recalling that in this case α(T ) and β(T ) are given by
equation (6.60) (see Software Box 6.1).
Of considerable interest are isothermal phase transitions involving eutectic vaporization

or condensation at low pressure. In this case the system of equations consists of two versions
of (6.62):

XA
2 =

pA,0

P

XB
2 =

pB,0

P
(6.73)

together with equation (6.71). The total pressure P is the combined partial pressure of the
two chemical species. An analytical solution is in this case trivial, with the pressure at the
eutectic given by:

Pe = pA,0+pB,0. (6.74)

The eutectic composition follows immediately from substitution of Pe in (6.73). In this case
the combined partial pressure at the eutectic is greater than the partial pressures at the end-
member phase transitions. The gas compositions in equilibrium with each of the condensed
phases at any pressure P ,pB,0 <P <Pe or pA,0 <P <Pe is also obtained directly from
(6.73).
Isothermal phase relations for condensed phases are obtained by substituting α(P) and

β(P) – see equations (6.55) and (6.56) – for α(T) and β(T) in (6.70). They also predict a
eutectic pressure, Pe, which must be higher than the phase transition pressures for the two
end-members, i.e. Pe > PA >PB (exercise left for the reader).
The key aspect of eutectic phase relations is that the melting and boiling points of an

assemblage of immiscible phases are lower than the corresponding values for each of the
phases in isolation, and the vapor pressure of the assemblage is higher than those of either of
the isolated phases.An assemblage of immiscible phases is less refractory andmore volatile
than each of the phases by themselves. Equally important is the fact that the composition of
the liquid or gas that forms at the eutectic point (minimum temperature or maximum vapor
pressure) is fixed, and is independent of the bulk composition of the system. These simple
facts underlie many fundamental planetary processes. To name just two, they are the reason
why terrestrial planets have basaltic crusts (the Earth too, or at least 70% of it) and why
granitic rocks have a well-defined and restricted compositional range. We will examine
these and other applications of eutectics in later chapters. At this point it is important
to build an understanding of how eutectics work, including what are the thermodynamic
parameters that determine the magnitude of the displacement of the eutectic temperature or
vapor pressure.

Figure 6.21 shows three isobaric phase diagrams for eutectic melting of hypothetical
substances that are reasonable models for materials abundant in terrestrial planets. In all
cases the pure solids have the same melting point: a (= pure componentA) melts at 1600 K,
and b (pure B) melts at 1950 K. They also have the same enthalpy of fusion, but this differs
among the three diagrams: 100 kJ mol−1 in the top panel, 30 kJ mol−1 in the middle and
10 kJ mol−1 in the bottom. Silicate minerals typically fall in the range between the top and
middle panels, and metals between the middle and bottom panels (see Worked Example
6.8). The magnitude of the melting point depression is a strong inverse function of the
enthalpy of melting, and it is easy to see why. Fixing the composition of the liquid at any
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arbitrary value we find from equation (6.49) that the depression of the melting point for a
given liquid composition, �Tm, varies approximately as the square of the melting point of
the end-member and as the inverse of the enthalpy of melting, i.e.:

�Tm ∼ TA
2

�mH
0
A

. (6.75)

The figure also shows that the composition of the eutectic phase shifts towards that of
the refractory phase as the eutectic temperature decreases. This also follows from (6.49)
(exercise left to the reader).
It is customary to label eutectic phase diagrams as shown in Fig. 6.21. The labels identify

the phases that are stable for any combination of temperature and bulk composition inside
each field. Below the eutectic temperature, Te, only the solid assemblage is stable. Liquid
first appears at Te, and the composition of this liquid is fixed at Xe, for all bulk compositions
between A and B, except for the two degenerate cases, pure A and pure B. The solidus
of the non-degenerate system (and of a third degenerate system, of composition Xe) is
thus the point (Xe, Te). Depending on whether the bulk composition of the system lies
to the left or to the right of Xe the first phase to disappear as the system absorbs heat
will be a or b, respectively. For example, a will be consumed first for bulk composition
XI. If this happens then the system gains one degree of freedom allowing its temperature
to increase, so that it enters the field labeled b + liquid. For any point inside this field
the composition of the liquid in equilibrium with pure b is given by the intersection of
the temperature coordinate with the bounding curve, which is the liquidus and is also the
geometric representation of the second equation (6.70) – the other curve emanating from the
eutectic is the representation of the first equation. Liquidus and solidus coincide for the three
degenerate compositions,A, B andXe.Aclosed system of composition XI becomes entirely
molten at TI. Students of earth sciences are well acquainted with these relations, commonly
exemplified by important eutectic systems such as anorthite–diopside and albite–quartz.
Note that whereas the liquidus curves in those systems are convex up, as in the top panel
in Fig. 6.21, the curvature vanishes and eventually changes sign as enthalpy of melting
decreases.

Perhaps less familiar to geologists is the effect of pressure on eutectic phase relations.
These are exemplified in Fig. 6.22, for equilibrium between gas and, say, two solids, a and
b. The geometry of the phase diagram in this case is determined exclusively by the relative
values of the vapor pressures of the two end-member solids, as shown by equations (6.73)
and (6.74).
The figure shows three hypothetical isothermal phase diagrams. Phase a is the same in all

of them, composed of pureA and with a vapor pressure of 0.1 bar. Component B and phase
b are different in each diagram, with vapor pressures of 0.1, 0.03 and 0.01 bar from top to
bottom.The labeling of the various fields and themeaning of the various curves are the same
as in themore familiar temperature–compositionmelting phase diagram of Fig. 6.21, except
that in this case the curves extending from the eutectic composition to the vapor pressures
of each of the end-members represents the composition of the gas phase and are called
vaporus, rather than liquidus. The diagrams make clear what equation (6.74) says: that a
mixture of two immiscible solids (or liquids) is more volatile, i.e. has higher vapor pressure,
than each condensed phase in isolation. If the two condensed phases have very different
vapor pressures the effect is particularly strong for the less volatile substance (e.g. B in the
bottom panel of the figure). With increasing disparity in volatilities the composition of the
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“eutectic” gas shifts in the direction of the more volatile substance. These may have been
important factors in the condensation of solids from nebular gas during formation of the
Solar System. For example, a solid of relatively low volatility such as B in the bottom panel
of Fig. 6.22 may have been prevented from condensing by the presence of more volatile
components in the nebular gas, such as A in the figure, until the nebular gas attained a
pressure considerably higher than what would have been needed to condense the pure solid.

Worked Example 6.10 Cryolavas in Triton

One of the biggest surprises to emerge from the flyby of the Neptune system by Voyager 2
in 1989 was the discovery that its large satellite Triton has a tenuous atmosphere and shows
signs of current, or at least recent, geological activity. There are stunning pictures of what
are almost certainly volcanic calderas and associated lava flows. Icy worlds such as Triton
undergo volcanic processes (and, necessarily, plutonic ones) that may resemble those in
terrestrial planets in many ways except one: the composition of the magmatic liquids. The
temperatures and compositions of icy crusts do not allow the existence of silicate liquids,
but melts composed of mixtures of C–H–O–N species, known as cryolavas if they are
erupted, are certainly possible. Melting in the binary system CH4–CO is a simple example
of cryomagmatism that may be applicable to Triton (Fig. 6.23). Actual icy magmas are no
doubt more complex and varied than this. Using this phase diagram as an introduction to
cryomagmatism is akin to introducing the study of basaltic magmatism with the system
diopside–anorthite – an informative simplification.
The melting points of pure CH4 and CO at 1 bar are 90.6 K and 68.1 K, respectively.

These values would of course be different at the higher pressures at which the cryomagmas
would form in Triton’s interior, but we will ignore that. The enthalpies of melting are 0.93
and 0.84 kJ mol−1 for CH4 and CO, respectively. Assuming that the two species crystallize
as pure immiscible solids and that they mix ideally in the liquid phase we use the system of
equations (6.70) and (6.71) to calculate the phase diagram in Fig. 6.23 (see Software Box
6.1). The system melts at a eutectic temperature of∼51 K, and the eutectic melt consists of
approximately 60mol% carbon monoxide and 40 mol% methane.
Magmas on Earth seldom reach the surface at temperatures significantly above their

liquidus (Chapter 10). If this is also the case in icy satellites then one could expect cryolavas
to have temperature–composition combinations along one of the two liquidus curves on
Fig. 6.23, and perhaps to be saturated with phenocrysts of either methane ice or carbon
monoxide ice, depending on the bulk composition. Say that a cryolava of composition L
(Fig. 6.23) is erupted at a temperature of ∼65 K on Triton’s surface, where the ambient
temperature is about 38 K. The saturation vapor pressures of liquid CH4 and CO at 65 K
are about 1 and 94 mbar, respectively, which are orders of magnitude higher than Triton’s
atmospheric pressures (tens of µbar, see Worked Example 6.11). The lava will therefore
boil upon eruption, but boiling will increase its cooling rate, so that a quenched crust
(microcrystalline? glassy?) is likely to form on the surface of the lava flow. Say that this
crust cools instantaneously to the ambient 38K. The saturation vapor pressures of solid CH4

and CO at 38 K are, respectively, ∼0.006 and 2.6 µbar, i.e., below atmospheric pressure.
The solid crust is therefore stable against sublimation in Triton’s atmosphere (but see also
next Example). If the lava flow is thick enough, or the liquid collects in a lava lake, cooling
and crystallization of the interior of the flow may progress slowly enough that the liquid
composition will move down the liquidus curve, crystallizing methane ice, as shown by the
arrow in Fig. 6.23. An interesting question is what happens to these crystals – do they float
or sink? This depends on how the density of methane–carbon monoxide liquids varies with
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composition and temperature. In any event, when the liquid reaches the eutectic, point E in
the figure, carbonmonoxide ice joins the crystallizing assemblage and no further changes in
liquid composition nor temperature will take place until solidification is complete. If there
was efficient segregation of the liquid from the early-formedmethane ice crystals then crys-
tallization of the last pools of liquid may give rise to pods in which the two ices are present
in eutectic proportions, perhaps not unlike terrestrial minimum-temperature granites.
An interesting aspect of thismodel forTritonian cryomagmatism is that the solidus (eutec-

tic temperature) is only 10–15 K higher than the satellite’s surface temperature, making it
possible for Triton to be geologically active even if its source of internal heat is feeble.
Cryomagmas in H2O-rich icy satellites such as Titan and Ganymede are likely to be

composed of H2O + NH3 ± CH4 mixtures. This introduces a few complications relative
to the simple system that we considered here. First, although water–ammonia mixtures do
melt eutectically, several intermediate compounds form (ammonia hydrates) and the system
has at least three different eutectics between H2O and NH3. Second, for a range of liquid
compositions starting at the H2O end-member the liquid is denser than the solid, so that
magmatic ascent and extrusion may be impossible. We return to these issues in Chapter 10.
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Worked Example 6.11 A simple model for the atmosphere of Triton and other icy bodies in the
outermost Solar System

The dominant species in Triton’s atmosphere is N2, and nitrogen ice is also abundant on
its surface. Triton is thus an example of a planetary body in which the chief atmospheric
component condenses on the surface. This is distinct from Earth and Titan, in both of which
N2 is also the chief atmospheric gas but the surface temperature is above the boiling point
of N2 (∼78 K). The dominant component of the Martian atmosphere also condenses on the
planetary surface, but whereas on Mars there are only relatively minor amounts of frozen
CO2 in the planet’s ice caps, much of Triton’s surface appears to be composed of frozen
nitrogen.We can consider Triton’s surface to be a collapsed atmosphere (a situation vividly
described in Dan Simmons’ Rise of Endymion). This may be the norm in the outermost
bodies of the Solar System, such as Pluto, Charon and other Kuiper Belt objects.
The following is a simple thermodynamic model for this type of atmosphere. Suppose

that the surface of Triton consists of frozen nitrogen and carbon monoxide, two immiscible
solids. Triton’s surface temperature is ∼38 K, the lowest surface temperature so far
measured for any body in the Solar System. From equation (6.60) (a and b parameters from
Lodders & Fegley, 1998) we calculate vapor pressures at 38 K of∼20.8 and 2.6µbar for N2

andCO, respectively.We can then construct the phase diagram in Fig. 6.24, using the system
of equations (6.73) and (6.74). The combined vapor pressure of CO and N2 in equilibrium
with the mixture of pure solids at 38 K is ∼23.5 µbar. If there are no other components in
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Triton’s atmosphere then this is also the total pressure of the gas, i.e. atmospheric pressure
at Triton’s surface. The composition of Triton’s atmosphere also follows from the phase
diagram: it is the composition of the eutectic gas, ∼89 mol% N2 and 11 mol% CO.
Note what we have done here. Beginning with a simple physical model for Triton’s atmo-

sphere and the observed surface temperature and composition we calculated atmospheric
pressure and composition. The calculation can be refined by including other solid species
known to be present on Triton’s surface, notably methane (perhaps brought to the surface by
lava flows, as discussed in the previous example) and carbon dioxide. The vapor pressures
of these two solids at 38 K are, however, many orders of magnitude lower than those of N2

and CO (∼ 10−9 and 10−29 bar for CH4 and CO2, respectively), so that they are unlikely to
be present in the atmosphere in any significant concentrations, and the results are not likely
to be much different from those shown in Fig. 6.24.

Exercises for Chapter 6

6.1 Find alternate sets of system components to describe the system spinel–
orthopyroxene–olivine–garnet.

6.2 Modify the Maple worksheets described in Software Boxes 5.2 and 5.4 to solve the
system of five simultaneous equations: (6.14), (6.17), (6.22), (6.23) and (6.24) for the
five unknowns: P, (XMg,M1)opx, aSiO2 , aAl2O3 and aMgO, as a function of temperature.
Check your results against Figures 5.10 and 6.1.

6.3 Find a set of linearly independent heterogeneous equilibrium equations that fix the
chemical potentials of MgO, SiO2 and Al2O3, but different from the set {6.19, 6.20,
6.21}. Repeat Exercise 6.2 and verify that you get the same values of P, (XMg,M1)opx,
aSiO2, aAl2O3 and aMgO, as a function of temperature.

6.4 Compare the phase diagrams of H2O and Al2SiO5 with Figs. 6.2 and 6.3. Sketch
G–P and G–T curves for each of the phases in each system, with the correct relative
slopes (recall that the pressure and temperature derivativesG are physically accessible
quantities). Convince yourself that the phase diagrams that you are familiar with
are the only possible one for each of these systems. What is the only significant
difference between the phase diagrams for these two one-component systems? (Hint:
the behaviors of andalusite and liquid H2O are opposite to each other.)

6.5 Construct a schematic phase diagram for the phases jadeite–albite–quartz–melt in the
system NaAlSi2O6–SiO2. Assume that the melt is silica-saturated.

6.6 Construct schematic phase diagrams in the neighborhoods of each of the following
invariant points in the ternary system MgO–SiO2–Al2O3:
(i) periclase–forsterite–pyrope–sillimanite–spinel
(ii) forsterite–enstatite–pyrope–sillimanite–spinel
(iii) periclase–forsterite–pyrope–corundum–spinel
(iv) periclase–enstatite–quartz–corundum–spinel
(v) periclase–forsterite–enstatite–quartz–pyrope
(vi) periclase–quartz–corundum–sillimanite–spinel.
Use thermodynamic properties (e.g. from Holland & Powell, 1998) to decide on the
correct orientation of each of the phase diagrams. Compare your phase diagrams and
discuss the differences among them.
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6.7 Consider the phases forsterite–enstatite–magnesite–vapor (of composition CO2)–
melt (of composition MgCO3) in the ternary system MgO–SiO2–CO2. Construct
a schematic phase diagram and use it to discuss the generation of carbonatite melts
in magnesite-free mantle peridotites. Is it possible, in this simple system, for a Mg-
carbonatite melt to crystallize a silicate mineral assemblage, leaving no traces of the
existence of a carbonate liquid?

6.8 Consider the four-component system MgO–CaO–SiO2–CO2, and the phases
forsterite, diopside, enstatite, calcite, vapor (of composition CO2) and melt (of com-
position CaCO3). Construct a schematic phase diagram for this system, and connect
it to the phase diagram in Fig. 6.11 via the multiply-degenerate reaction (di, fo, en,
v). Discuss the similarities and differences between this phase diagram, the one in
Exercise 6.7, and the one in Fig. 6.11.

6.9 Construct a schematic P–µO2 phase diagram for ferroslite–fayalite–magnetite, at con-
stant temperature and µSiO2 . Discuss the implications of your phase diagram for
the effects of pressure and oxidation conditions on the generation of tholeiitic vs.
calc-alkaline igneous differentiation trends.

6.10 Construct schematic T–µO2 and P–µO2 phase diagrams in the neighborhood of the
wustite (FeO)–cohenite (Fe3C)–metallic Fe–graphite invariant point in the ternary
systemFe–C–O.Use your diagrams to discuss whether there ismore than one possible
explanation for the fact that metallic iron ± cohenite is more characteristic of the
interiors of small planetary bodies (e.g. asteroids and the Moon) than of large bodies
(e.g. Earth, Mars).

6.11 Construct P–T, P–µO2 , T–µO2 and µSiO2–µO2 phase diagrams showing equilib-
ria among the phases: metallic iron, fayalite, schreibersite (Fe3P), whitlockite
(Ca3(PO4)2), perovskite and ilmenite, in the six-component system Fe–Si–P–Ca–
Ti–O. Discuss the various pathways by which whitlockite microcrystals can exsolve
from metal grains in chondritic meteorites.

6.12 InWorked Example 6.9 I calculated amethane–ethanemelting loop under the assump-
tion that the two ices are fully miscible. This may not be the case. The opposite
“end-member” possibility is that they are perfectly immiscible, and that the ice mix-
ture exhibits eutectic behavior. Calculate the phase diagram that results from this
assumption, using theMaple worksheet described in Software Box 6.1 (all necessary
data are given in Worked Example 6.9). How does this affect the conclusions about
the possible nature of Titan’s surface hydrocarbons?

6.13 Refine the calculation of Triton’s atmospheric composition by calculating the pressure
and composition of the vapor in equilibriumwith the four ices: N2, CO, CO2 and CH4.
All the necessary data can be obtained from Lodders and Fegley (1998), Table 1.20.



7 Critical phase transitions

The phase transitions thatwe discussed in Section 6.6 are all discontinuous phase transitions.
They are step-wise changes in the structure of matter, for instance, the destruction of the
crystalline structure during melting or sublimation, or the breakdown of molecular bonds
in a liquid during boiling. These are microscopic changes that are accompanied by a macro-
scopic exchange of heat with the environment, what we call the enthalpy of transition
(melting, vaporization, etc.), or also “latent heat”. There is another type of phase tran-
sition, which takes place without there being a discontinuity either in the microscopic
structure of a substance or in its macroscopic properties, and during which there is no
energy exchange with the environment. Such phase transitions are called continuous or crit-
ical phase transitions, and play important roles in many planetary processes. For example,
they underlie exsolution phenomena such as are observed in feldspars, pyroxenes, oxides
and meteoritic metal, hydrogen–helium unmixing in fluid planets and liquid immiscibility
phenomena inmagmatic systems. They also explain order–disorder transformations in crys-
talline substances. Critical phase transitions also play an important role in the study of fluids
(Chapter 9).

7.1 An intuitive approach to critical phase transitions

Consider a binary solution between components A and B with unit site multiplicity. If we
use X for the mol fraction of component A then the mol fraction of B is 1−X, and the
Gibbs free energy of ideal mixing is given by equation (5.93):

�Gidealmixing =RT [X lnX+ (1−X) ln (1−X)] . (7.1)

This function vanishes atX= 0 andX= 1, is negative everywhere in between, and becomes
more negative with increasing temperature. What this means is that, if two substances mix
ideally, then the solution (microscopic mixture) is always stable relative to a mechanical
(macroscopic) mixture of the pure substances, and becomes more stable (the tendency to
form the solution becomes stronger) with increasing temperature. The curve that represents
�Gidealmixing has a minimum and is concave up, as shown in Fig. 5.9. The second derivative
of (7.1) must therefore be everywhere positive, which you can verify by differentiating the
function. Let us now assume that the solution is not ideal. From (5.122):

�Gmixing =�Gidealmixing +Gexcess. (7.2)

We begin by considering a hypothetical non-ideal solution that can be described with a
symmetric excess Gibbs free energy function (equation (5.146)) that is neither a function of
temperature nor of pressure (i.e.WS =WV = 0). This is the simplest possible description

349
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of a non-ideal solution.Gexcess vanishes at X= 0 and X= 1 and is positive everywhere in
between and independent of temperature. BecauseGexcess and�Gidealmixing have opposite signs

andGexcess is a function of composition onlywhereas�Gidealmixing is a function of both compo-
sition and temperature, the relativemagnitudes of the two functions, and hence of�Gmixing ,
vary in interesting ways with temperature and composition. This is shown in Fig. 7.1.
At some high temperature T1 the excess function is small enough relative to the ideal

function that �Gmixing has the properties of the ideal function, in particular, it is always
negative and concave up. This case corresponds to the top diagram on the left of Fig. 7.1.
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Under these conditions any composition between pureAand pure B forms a stable solution,
just as in the case of ideal mixing. As temperature decreases, however, �Gidealmixing becomes
less negative but Gexcess remains unchanged (and positive). The properties of the two
functions are such that at some temperature T2<T1,�Gmixing takes the shape shown in the
bottom left diagram of Fig. 7.1 (see also Figure 5.13.c).At this temperature the curvature of
the�Gmixing function changes sign twice: there is a central interval with negative curvature
separated from two positively-curved intervals by two inflection points. Given a curve with
this shape it is possible to find two points, labeled a and b in the figure, which have a
common tangent. Note that in Fig. 7.1 these points happen to be minima, but this is only
because we are plotting Gibbs free energy of mixing, so that the vertical coordinate of
the two end-members is the same. A plot of Gibbs free energy of the solution would not
show these points as minima, but they would still have a common tangent. The common
tangent is what matters, for it means that there are two compositions in which each of the
components, A and B, have chemical potentials that are simultaneously the same (see also
Fig. 5.9). These compositions are labeledXA(β) andXA(α) in Figure 7.1. It is evident from
the figure that the Gibbs free energy of any solution that could form in between these two
compositions is greater than the Gibbs free energy of a macroscopic mixture of solutions
with compositions XA(β) and XA(α). Such a solution is therefore unstable relative to a
macroscopic mixture of phases with compositions XA(β) and XA(α).
Two distinct phases, which I have labeled phase α and phase β, are therefore stable at T2.

For any bulk composition in the interval XA(β) – XA(α) the stable assemblage consists of
two phases: phase β of composition XA(β) and phase α of composition XA(α). Two phases
in a binary system constitute a divariant assemblage, and since we have chosen arbitrary
values of pressure and temperature the compositions of the two phases are fixed. The stable
assemblage for bulk composition between XA(β) and X = 0 (pure B) consists of phase β
only. This can be seen from the fact (Figure 7.1) that any solution within this interval has
lower Gibbs free energy than a macroscopic mixture of pure B and XA(β). The one-phase
assemblage is trivariant, so that the composition of phase β if it exists at equilibrium by itself
is not fixed, but is rather given by the bulk composition of the system. Identical arguments
show that phase α alone is stable from XA(α) to X = 1 (pure A), and that its composition
within this interval equals the bulk composition of the system.
The two points XA(β) and XA(α) are compositions of phases that coexist at equilibrium.

They correspond to two points on a curve that maps compositions of coexisting phases as
a function of temperature, as shown on the right-hand side diagram of Fig. 7.1. This curve
is called a solvus and is the phase diagram for this system. Bulk compositions inside the
solvus consist of two phases at equilibrium, of compositions given by the two intersections
of the temperature coordinate with the solvus. Bulk compositions outside the solvus consist
of a single phase, of composition equal to the bulk composition. We will get to a formal
justification for the shape of the solvus below, but it should be intuitively apparent that the
solvus of the system that we are considering must become wider as temperature decreases
and the positive contribution of the excess term in (7.2) becomes greater in relative terms.
It is important to realize that the only thing that changed betweenT1 andT2 is temperature.

The nature of the phase has not changed, as reflected in the fact that the mathematical
description of mixing has not changed. The ideal and non-ideal contributions to Gibbs
free energy of mixing are described by the same equations and using the same values
for the interaction parameters throughout, and we have also implicitly assumed that the
standard state Gibbs free energies always refer to the same two end-members (otherwise
leveling�Gmixing at zero at the end-members for all temperatures would not be valid). The
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corollary follows that a solvus can exist only between condensed phases that have the same
or very similar microscopic structures, such that complete miscibility is possible at some
temperature. Examples include: two feldspars, two pyroxenes, two micas, two metals, two
liquids, etc. (but obviously not two gases, since gases are always fully miscible).
A temperature must exist at which the nature of the system changes from one in which

there is only one phase spanning the entire compositional range between A and B, such
as at T1, to one in which there is a compositional interval within which two phases are
stable, such as at T2. This temperature is called the critical temperature. The two branches
of the solvus converge on the same composition, Xc, at the critical temperature, defining
the critical mixing point (Xc, Tc), see Fig. 7.1. This point is also called the consolute point,
but I prefer critical mixing point because it highlights the deep underlying analogies among
all critical phenomena, that we will explore further below and in Chapter 9.

But what exactly happens at the critical mixing point? If there are two distinct phases,
α and β, that can exist below the critical temperature, but only one above it, is the high-
temperature phase α or β, or something else altogether? The answers to these questions
begin with the middle diagram on the left-hand side of Fig. 7.1, which shows Gibbs free
energy of mixing at the critical temperature, Tc.As we saw, for T< Tc the Gibbs free energy
function has two inflection points, whereas for T> Tc there are no inflection points. Recall
that at an inflection point the curvature of a function changes signs, and hence its second
derivative vanishes. We can move from T > Tc to T < Tc without any discontinuity, as
all that is entailed in doing so is changing the value of T, which is a continuous variable,
and monitoring how (7.2), which is a continuous function, responds. Somewhere along this
continuous path theremust be a temperature – the critical temperature – atwhich the function
goes from having a second derivative that never vanishes to having a second derivative that
vanishes at two points. The only way in which this can happen without a discontinuity is
if at some temperature, which is the critical temperature, the second derivative vanishes
at one point only. Now, if the function vanishes at X = 0 and X = 1 and has a single
inflection point in between, then the sign of the curvature of the function cannot change at
this inflection point either. Mathematically this means that the third derivative of the Gibbs
free energy function vanishes as well. This special behavior is depicted in the middle left
diagram in Fig. 7.1. It corresponds to a curve that is very flat in the neighborhood of Xc.
It is, if you wish, almost a straight line but not quite. Generally, the fourth derivative is
the lowest order derivative of the Gibbs free energy of mixing that does not vanish at the
critical point (Section 7.4).
Consider a phase of composition Xc that forms at T> Tc.We shall label any phase that is

stable at T > Tc the supercritical phase. If the supercritical phase is cooled instantaneously
to a temperature T < Tc it will have a finitely higher Gibbs free energy relative to a mixture
of phases α and β and this Gibbs free energywill act as a driving potential (see Section 5.3.2)
that will cause the single supercritical phase to unmix into a macroscopic mixture of the
subcritical phases α and β (albeit subject to kinetic constraints, Chapter 12).With an exper-
iment of this kind it would in principle be possible to distinguish between the supercritical
phase and the subcritical phases. However, if the final temperature of the experiment ismade
progressively higher, all the while keeping it below Tc, the driving potential for unmixing
becomes smaller (because the �Gmixing curve becomes flatter), and the compositions and
physical properties of the two subcritical phases become closer to one other, and also closer
to those of the supercritical phase. Finally, at Tc it is no longer possible to distinguish
between the three phases. There is no discontinuous phase boundary between the supercrit-
ical phase and either of the two subcritical phases. Rather, at the critical point the system
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changes continuously from a supercritical state in which only one phase is possible to a sub-
critical state in which two phases can exist at equilibrium. If the experiment is repeated with
a supercritical phase of composition other than Xc then the phase will change continuously
and imperceptibly, as temperature is lowered, from the supercritical phase to either of the
two subcritical phases (depending on the bulk composition), until the temperature is reached
atwhich this particular bulk composition intersects the solvus and the other subcritical phase
will appear, in this case discontinuously.There is a direct analogywith the behavior of fluids:
the distinction between liquid and gas, and the discontinuous phase transition that separates
the two phases, vanishes continuously as the critical point is approached, and a single super-
critical fluid phase is stable above the critical temperature (Chapter 9). Application of the
phase rule at a critical point may be confusing, but it shouldn’t be (see Box 7.1).

Box 7.1 The phase rule at a critical point

Consider a solvus in a binary system such as the one in the left-hand side panel of Fig. 7.2. The solvus is a
divariant phase boundary, as can be seen from an application of the phase rule. We have c = 2, and along
the solvus the two phases, α and βs coexist at equilibrium, soF= 2 and f = 2. The solvus appears as
a one-dimensional curve, i.e. as a pseudo-univariant phase boundary, because we hold pressure constant,
thus “using up” one of the two degrees of freedom. At a different pressure the solvus will generally be
located at a different temperature. This is shown schematically by the two curves in the left-hand panel
of Fig. 7.2, where I have arbitrarily chosen the higher temperature solvus to correspond to a pressure, P2,
lower than that of the lower temperature solvus, P1. It could also be the other way around, but this diagram
is applicable, for example, to the system liquid molecular helium–liquid metallic hydrogen (see Fig. 2.16).

The solvus is also a first-order phase transition. Consider bulk composition Xz, at temperature Tz and
pressure P2. At these conditions the system consists of the two phases, α and β, of compositions given
by the intersection of the temperature coordinate with the two branches of the solvus. If we change the
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Fig. 7.2 Two solvus curves for a hypothetical system (left) in which the critical mixing temperature varies inversely with
pressure. The P–T curve on the right-hand side diagrammaps the location of the critical mixing point. It is not a
univariant phase boundary, because only one phase is stable along the curve. Following Ricci (1966) we can call it a
“singular curve” that separates supercritical conditions (to the right) from subcritical conditions (to the left).
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Box 7.1 Continued

temperature while holding the pressure constant one of the phases will form at the expense of the other,
and the two phases will change composition. If we raise the temperature then phase α will eventually
disappear when the vertical coordinate Xz intersects the solvus. These changes are “first order” because there
is a difference in entropy and volume between the two phases, so that there is a non-vanishing enthalpy of
reaction associated with the phase changes.

More generally, this non-zero enthalpy change that characterizes first-order phase transitions is what
makes it possible for invariant (and univariant, divariant, and so on) assemblages to exist in the first place.
We can add or remove heat to an invariant system (e.g. an equilibrium assemblage of the three Al2SiO5
polymorphs) and the system will stay at the P and T of the invariant point by forming some of the phases at
the expense of the others, until one or more of the phases disappears and the variance of the assemblage
increases. With two degrees of freedom rather than zero, this is what happens along the solvus.

Except at the critical point. Critical points have unique coordinates. Thus, in the two component system
shown in Fig. 7.2, the critical point at each pressure occurs at a unique temperature, which is the temperature
at which coexistence of the two subcritical phases ends. We can show this by a curve in P–T space, as in the
right-hand panel of Fig. 7.2, that shows the combination of (T, P) coordinates at which the critical phase
transition takes place. The figure would appear to suggest that this curve is a univariant phase boundary but
this is not correct. By construction, the curve represents the P–T conditions at which phasesα and β become
identical, and in effect identical to the supercritical phase. It is the locus of all critical points, two of which,
corresponding to the diagrams on the left, are shown in the figure. Along the curve the system consists of a
one-phase assemblage, so according to the phase rule it should be trivariant. Yet it shows as what looks like
a univariant phase boundary. Similarly, if one considers the critical point of a one-component fluid (Chapter
9), this is the point at which the liquid–vapor equilibrium curve ends, and only one phase is present at the
critical point. It looks like an invariant point, but according to the phase rule its variance is 2.

What is going on here? Simply, that the variance is indeed what the phase rule says it should be. We will
see why in a moment but first a note of caution. It is sometimes proposed that the way to fix this conundrum
is by modifying the phase rule at the critical point, by subtracting a number of degrees of freedom equal to
the number of phases that become indistinguishable at the critical point (two in both the example of the
solvus and that of the fluid critical point). The justification offered for this is having to account for “conditions
of criticality”, and although it may work arithmetically, it is thermodynamically incorrect. The critical point
in a one-component system is not invariant, and the P–T locus of critical mixing points in a two-component
system (Fig. 7.2) is not univariant.

The correct description was formulated by Ricci a long time ago (Ricci, 1966, pages 24–27). He pointed
out that a critical point along a univariant phase boundary (e.g. the end of the liquid–vapor coexistence
curve, more on this in Chapter 9) is a singular point: it is simply the point where the boundary ends. It is
not an invariant point, because exchange of even an infinitesimal amount of energy will move the system away
from the critical point, which is distinctly different from what happens at a true invariant point. Depending on
whether one adds (or subtracts) heat or work the system can move both in P and T , so the critical point is
indeed divariant. The fact that it is a “point”, with unique coordinates, does not make it invariant!

Consider a mixture at its critical mixing point. An infinitesimal exchange of heat, or of mechanical energy,
or of matter, will move the system away from the critical point in T, P and X, respectively. The critical
point is indeed trivariant. Following Ricci’s terminology, we can label the curve on the right-hand diagram
of Fig. 7.2 a singular curve: it is the boundary of a two-dimensional divariant field, that extends to the
left of the curve in the figure. The coexistence of α and β ends at the singular curve because the phases
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Box 7.1 Continued

become identical. We can also state a general rule as follows: a critical phase transition occurs along an
n-dimensional boundary of an (n+ 1) dimensional region, over which an assemblage of subcritical phases
coexist. The phases become identical at the n-dimensional critical boundary, and only a single supercritical
phase exists on the other side of it.

So what makes phase equilibrium at the critical point different? Simply, the fact that there is no latent
heat associated with critical (continuous) phase transitions. Because entropy and volume are continuous
across a critical phase transition,�transitionH= 0. It therefore becomes impossible to have, for example, an
invariant assemblage, as transfer of even an infinitesimal amount of energy will change the temperature
and/or pressure. The phase rule, and the variance that it predicts, are intact and there is no need to invent
“conditions of criticality”.

I must emphasize that although I used a symmetric Margules-type function to exemplify
the concept of critical mixing (because it generates simple diagrams, such as in Fig. 7.1),
the behavior is general. It arises from the fact that, if the relative magnitudes of the ideal and
excess contributions to Gibbs free energy of mixing change with temperature, then a transi-
tion from a Gibbs free energy function with no inflection points to one with two inflection
points must happen at some temperature. At this critical temperature both the second and
third derivatives of �Gmixing must vanish, giving rise to a continuous phase transition.

Unmixing of a homogeneous supercritical phase into two or more subcritical phases
is an important process in nature. Common examples include exsolution in high-pressure
mantle phases (such as pyroxenes from majoritic garnets), Widmanstätten textures in iron
meteorites, metal–sulfide–silicate liquid immiscibility, condensation of a supercritical fluid
into a liquid and coexisting vapor, and immiscibility between liquid helium and liquid
metallic hydrogen in the interiors of some giant planets (Chapter 2).

7.2 Location of the critical mixing point

Finding the critical mixing point of a solution is the first step in determining its solvus.
From the preceding discussion it follows that at the critical mixing point the following two
conditions must be satisfied:

∂2�Gmixing

∂X2
= ∂2�Gidealmixing

∂X2
+ ∂2Gexcess

∂X2
= 0 (7.3)

and:

∂3�Gmixing

∂X3
= ∂3�Gidealmixing

∂X3
+ ∂3Gexcess

∂X3
= 0 (7.4)

which, substituting (7.1), yield:

∂2Gexcess

∂X2
=− RT

X(1−X) (7.5)
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and:

∂3Gexcess

∂X3
=−RT (2X− 1)

X2 (1−X)2 . (7.6)

Equations (7.5) and (7.6) are general (for solutions of sitemultiplicity one).They contain two
free parameters,X andT, whichmeans that they can be solved for a unique pair of values that
satisfy both equations simultaneously. These are the coordinates of the critical mixing point.
In order to solve the equations, however, it is necessary to substitute an explicit expression
for the excess Gibbs free energy function. As an example we will assume that the excess
Gibbs free energy can be represented by the asymmetricMargules function (5.143), with no
temperature dependency.Without loss of generality we can choose to label the components
such thatWG

12 ≥WG
21, and make X =X2. We also define the variable KW , as follows:

KW = WG
21

WG
12

(7.7)

and note that it must be KW ≤ 1, with KW = 1 corresponding to the symmetric function
(5.146). Substituting these definitions in (5.143), taking the second and third derivatives of
the resulting function, and substituting in (7.5) and (7.6)weobtain, after some simplification:

− RT

X(1−X) =WG
12 [(6X− 4)KW − 6X+ 2] (7.8)

and:

−RT (2X− 1)

X2 (1−X)2 = 6WG
12 (KW − 1) . (7.9)

Dividing (7.8) by (7.9) and simplifying some more we get:

2X− 1

2X− 3X2
= 3(1−KW)

2KW − 1
(7.10)

which is a quadratic equation in X :

9(1−KW)X
2+ (10KW − 8)X+ (1− 2KW)= 0. (7.11)

The physical solution of this equation is Xc, the composition of the critical mixing point.
Equation (7.11) shows that the composition of the critical mixture depends only on the
relative values of the interaction parameters, and not on their absolute values. In particular,
for a symmetric solutionKW = 1 andXc = 0.5, which of coursewe could have inferred from
symmetry considerations. Let us now define a non-dimensional temperature, τ , as follows:

τ = 2RT

WG
12

(7.12)

and call the value of τ at the critical temperature τ c. Substituting this definition in (7.8),
and with Xc given by the physical solution of (7.11), we find that τ c is given by:

τc = 4Xc (1−Xc) [KW − (1−KW)(1− 3Xc)] . (7.13)

This is a remarkable result: given that Xc depends only on KW , the non-dimensional critical
temperature, τ c, is also a function of KW only. But, alas, this concise and rather elegant
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Fig. 7.3 Calculated composition (Xc ) and non-dimensional temperature (τc ) at the critical mixing point, for (possibly
hypothetical) solutions with temperature-independent excess Gibbs free energy of mixing.

result is true only because we assumed that Gexcess is not a function of temperature, and is
given by the simple Margules function. Since the Margules approximation is no more than
an empirical fit, with little physical fundamentation, we should not expect equation (7.13)
to provide more than a rough approximation to the behavior of real solutions.
Even if equations (7.11) and (7.13) are no more than simplified models for the behavior

of real solutions, the results, which are summarized in Fig. 7.3, help make the significance
of the critical mixing temperature clear. The figure shows Xc and τc as functions of KW .
Note that KW is defined to be ≤ 1, and although it could in principle also be negative,
such behavior (which corresponds to Fig. 5.13d) is uncommon and is not included in the
figure. The figure shows that, starting from the value Xc = 0.5 for a symmetric solution,
increasing asymmetry causes the composition of the critical mixture to shift in the direction
of the component that is associated with the larger interaction parameter (Xc > 0.5), i.e.
the component that is responsible for generating the greatest amount of excess Gibbs free
energy of mixing. We will see in the next section that this asymmetry carries over into
the subcritical region. Symmetric solutions also have the largest value of non-dimensional
critical temperature, τ c = 1. Note that τc decreases to a minimum of ∼0.89 for KW ∼ 0.5,
but this range may have little practical significance in planetary processes. Figure 7.3
illustrates how equations (7.11) and (7.13) encapsulate a fundamental property of critical
mixing. Namely, all non ideal solutions (W12

G �= 0) are in principle capable of exhibiting
critical mixing behavior. This means that all non-ideal solutions can undergo a continuous
phase transition between a supercritical one-phase region at τ > τc, and a subcritical region
at τ < τc that, in a binary system, is populated by two phases (Fig. 7.3, right panel). For
a given value of KW (asymmetry) the absolute value of the critical temperature is a linear
function of the interaction parameterWG

12, given by (7.12). This leads naturally to a couple
of important considerations, that arise from the fact that the stabilities of phases, both
supercritical and subcritical, unavoidably terminate at some discontinuous phase boundary.
If the excess Gibbs free energy of mixing is small then the critical mixing point may occur
at a temperature lower than that at which the supercritical phase breaks down to a lower-
entropy assemblage, i.e. the criticalmixing point ismetastable. The critical temperaturemay
also be sufficiently low that subcritical unmixing, even if thermodynamically favored, is
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kinetically unfavorable (Chapter 12). In either of these cases only the supercritical phase is
commonly found in natural assemblages.Agood example of this is olivine.Alternatively, the
critical temperature in strongly non-ideal solutionsmay be high enough that the supercritical
phase is suppressed by formation of a stable higher entropy phase, most commonly a melt.
Crystallization of two pyroxenes from basaltic melts is an example of this.

Worked Example 7.1 Rock-formingminerals as supercritical vs. subcritical phases

Despite the fact that equation (7.12) is only an approximate description of real solutions, it
does a reasonable job of explaining why some minerals display continuous solid solution
between two end-members, but others do not. This is summarized in Fig. 7.4. The two
diagonal lines in the figure show values of Tc as a function ofWG

12, calculated with equation
(7.12) and for two different values of τ c (0.89 and 1), corresponding to KW values of 0.5
and 1, respectively. These values span the range of possible values for these variables (see
Fig. 7.3).
In addition to calculated values of Tc, the figure shows data for a number of rock-forming

minerals. The horizontal coordinate of each thick vertical line is an approximate value
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Fig. 7.4 Miscibility relationships in some common rock-forming minerals. The diagonal lines labeled KW = 1 and KW = 0.5
map critical mixing temperature, Tc as a function ofWG

12 (equations (7.12) and (7.13)). Solid solutions are plotted in
terms of approximate values of their largest interaction parameter (∼WG ), and likely temperatures of formation in
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Mg- Ca garnet; Hc-Mt : Al-Fe3+ ferroan spinel; Or-An: K-Ca feldspar.
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for the larger interaction parameter (WG
12) measured in each solid solution. The lengths of

the lines are very rough estimates of the characteristic temperature ranges in which the
minerals form, or at least exist stably. For example, olivine (Fo-Fa) and orthopyroxene (En-
Fs) are associated with igneous and solid-state mantle processes, for which characteristic
temperatures may be in the range 1200–1700 K. Given the small excess Gibbs free energy
of mixing in these minerals their critical mixing temperatures may be close to room tem-
perature, so that they always crystallize as supercritical phases. The same is true of Fe-Mg
garnets and Mg-Al micas. On the other hand, mixing between clino- and orthopyroxenes is
associated with much higher excess Gibbs free energy of mixing.We could say that two dis-
tinct subcritical phases (clino- and orthopyroxene) form even in high-temperaturemagmatic
systems, because the critical point for this solution is metastable relative to (discontinuous)
melting reactions. Pyroxenes are actually more complicated than this, undergoing other
types of discontinuous phase transitions in the solid state, but the description based on
critical mixing is probably correct in general terms, and physically appealing. Other exam-
ples of minerals that commonly occur as subcritical phases are K-rich–Ca-rich feldspars,
muscovite–paragonite and Mg and Ca carbonates in low-temperature near-surface envi-
ronments. Note that the critical temperature for calcite-magnesite mixing is ∼1000K, so
that a supercritical Ca-Mg carbonate phase might crystallize from carbonatitic magmas.
The alkali feldspars are an interesting case in that they can crystallize (e.g. from granitic
magmas) as a single supercritical phase that often unmixes into two subcritical phases upon
cooling, generating perthitic intergrowths.

7.3 Calculation of non-dimensional solvi

The two branches of the solvus at any temperature T < Tc are the two points XA(α) and
XA(β) that simultaneously satisfy the following two equations (see Fig. 7.1):(

∂�Gmixing

∂X

)
X=XA(α)

=
(
∂�Gmixing

∂X

)
X=XA(β)

(7.14)

and:

(
�Gmixing

)
X=XA(α)

= (�Gmixing)X=XA(β)
+ [XA (α)−XA (β)]

(
∂�Gmixing

∂X

)
X=XA(β)

.

(7.15)

The first equation establishes the common tangent (equal chemical potentials in both
phases), the second one simply states that the difference in Gibbs free energy between
the two phases equals the slope of the common tangent times the difference between the
compositions of the phases at equilibrium. These equations are initially written in terms
of Gsolution, rather than �Gmixing , but all standard state properties drop out, resulting in
(7.14) and (7.15) (check this by yourself!). The equations express fundamental thermo-
dynamic relations that are independent of any particular model that one may choose to
describe the Gibbs free energy of mixing. They are thus general but, in order to solve them,
we must choose an explicit function to describe �Gmixing . As in the previous section we
will choose an asymmetric Margules function with no temperature dependency, with the
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understanding that we are doing this in order to investigate how solutions in general behave
in the subcritical region, and not as a rigorous and accurate description of any specific
system.
Since�Gmixing , or its first derivative, appear on both sides of equations (7.14) and (7.15)

we can divide throughout byRT and rewrite these equations in terms of the non-dimensional
parameter (�Gmixing/RT ). Introducing the non-dimensional parametersKW and τ defined
in the previous section we have, for an asymmetric Margules excess mixing function:

�Gmixing

RT
=X lnX+ (1−X) ln (1−X)+ 2

τ
X(1−X) [KW (1−X)+X] (7.16)

and its first derivative:

∂

∂X

(
�Gmixing

RT

)
= lnX− ln (1−X)+ 2

τ

[
3(KW − 1)X2− 2(2KW − 1)X+KW

]
.

(7.17)

Substituting (7.16) and (7.17) in (7.14) and (7.15) we end up with two equations in the
two unknowns, XA(β) and XA(α), that can be solved in terms of KW and τ , for values of
τ < τc. The task might be rather unpleasant by hand (I’m not sure it even has an analytical
solution) but Maple handles it without breaking a sweat (Software Box 7.1).

Software Box 7.1
Procedure solvi in worksheet solvus.mw solves the non-dimensional solvus spec-
ified by equations (7.14) through (7.17). The procedure uses Maple’s diff function
to calculate the first derivative of the Gibbs free energy equation (equation (7.17)), so
that even though it is written for an asymmetric Margules equation it should be possible
to substitute a different Gibbs free energy function and find the solvus for some other
description of the excess mixing function. Care must be exercised when specifying the
maximum temperature in the input line (parameter tauhigh), as if this value is higher
than τc the procedure will crash. The procedure appears to be stable for tauhigh up
to ∼0.9999τc.

The result of these calculations is a solvus that shows the compositions of the coexist-
ing subcritical phases as a function of the non-dimensional temperature τ . Four examples
are shown in Fig. 7.5, calculated for different values of KW . Recall that if Gexcess is
describedwith a temperature-independentMargules function then τ c andXc depend only on
KW (equations (7.11) and (7.13)). With increasing asymmetry the solvus becomes narrower
and “leans” in the direction of the component that generates the greatest amount of excess
Gibbs free energy of mixing. The effect is that the stability field of the subcritical phase rich
in the “more ideal” component becomes wider at the expense of the phase rich in the “less
ideal” component (we could have expected this to be the case on purely intuitive grounds).
A real solution with a given degree of asymmetry (given by the value of KW ) will exhibit
a solvus with the same shape as the corresponding non-dimensional solvus, scaled in its
vertical coordinate according to the value ofWG

12.
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Fig. 7.5 Solvi for hypothetical solutions with temperature-independent interaction parameters, plotted in terms of
non-dimensional temperature, τ . In this simple case τc , Xc and the width and location of the solvus are determined
only by the asymmetry of the solution, given by the non-dimensional parameter KW .

7.4 Order–disorder phase transitions in crystalline solids

In the preceding sections we discussed critical phase transitions focusing on the example
of unmixing of a single-phase solution as its temperature drops below the critical mixing
temperature. Critical mixing is only one particular instance of a wide class of phenomena
that are governed by the same statistical mechanical principles, and that can be described
using the same theoretical framework. We will now begin to see what this means, although
our discussion of critical phenomenawill not be complete until we discuss fluids, in Chapter
9. A note of caution: many algebraic manipulations in the remainder of this chapter have
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been omitted owing to space constraints. I believe that a full comprehension of the physics
involved requires a clear understanding of where the equations come from. I include some
of the important derivations as end-of-chapter problems, and others are left to the reader,
but I think that it is crucial that you fill in the gaps as you go over this material.
Minerals can undergo microscopic changes with temperature and pressure, such as

changes in their crystalline structures or in cation ordering, that have energy implications.
Such changes must be accounted for in order to have a full and accurate thermodynamic
description of a mineral at any temperature and pressure. In contrast to Sections 7.1 to
7.3, in this section we will restrict ourselves to transformations at constant composition. It
is important to understand that the changes that we are discussing here are distinct from
polymorphic transformations. The latter are first order phase transitions: they are step-
wise structural changes that take place “in full” at a specific temperature and pressure.
For instance, you can have either kyanite or sillimanite, but not something in between.
They are different minerals, with distinct crystalline structures, optical properties, densi-
ties, entropies, etc. Their Gibbs free energies are the same at the univariant phase boundary,
but their entropies and volumes (the first derivatives of G) are not. These discontinuities
in ∂G/∂T and ∂G/∂P are reflected in the enthalpy of transition, or latent heat, and are the
hallmark of discontinuous, or first order, phase transitions.
In critical phase transitions, which for historical reasons are also known as second-order

phase transitions, microscopic changes occur gradually over a finite temperature interval
and are completed at a well-defined temperature. For example, a mineral may display long-
range cation ordering (Worked Example 4.3) at low temperature and become progressively
disordered as the temperature increases, until its cation arrangement becomes fully random
at a well-defined transition temperature, known, for reasons that we shall presently see, as
the lambda temperature: Tλ. It then remains in the same state of complete disorder for all
temperatures higher than the lambda temperature, until the mineral’s demise at a first-order
phase transition. Order–disorder phase transitions are observed, for instance, in minerals in
which Si and Al occupy similar cation sites, such as feldspars and aluminosilicates. They
are also common in compound oxides, such as spinels and ilmenite, and in minerals of Fe
and other transition metals, in which they arise from the alignment of magnetic moments of
individual atoms. The lambda temperature is a critical temperature with the same properties
as those of the critical mixing temperature, the critical temperature of a fluid, or the Curie
temperature of a magnet, among many other examples.

Consider a crystalline structure in which there are two types of atoms that can exchange
places with one another in two types of crystallographic sites. These could be, for example,
Si and Al over different types of tetrahedral sites, or Fe atoms with oppositely pointing
magnetic moments over different octahedral sites. Our first task is to define a variable that
describes quantitatively the state of long-range order of the crystalline structure. Recall
from Chapter 4 that a structure with perfect long-range order is one that has maximum
information content, by which we mean that we are absolutely certain of what type of atom
we will find in each type of crystallographic site. For example, in microcline, which has
long-range order, the four T1a sites are occupied by Al, whereas the four T1b sites and the
eight T2 sites are occupied by Si. At the other extreme, in a perfectly random structure we
can only define the probability of finding a certain kind of atom in a certain kind of site.
This probability is equal to the fraction of atoms of the kind we are interested in, relative
to the total number of atoms that can enter the site. Thus, in sanidine, which has a fully
disordered structure, all we know is that we have a 1 in 4 probability of finding anAl atom,
and a 3 in 4 probability of finding a Si atom, in any one tetrahedral site.
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Let us call the probability of finding atom X in site ξ, PXξ. We define a parameter φ,
called the order parameter, as follows:

φ = PXξ−PXξ, random

PXξ, ordered −PXξ, random
. (7.18)

Clearly, it must be 0≤ φ ≤ 1, with φ = 1 for the structure with perfect long-range order, and
φ = 0 for a structure with complete disorder, i.e. fully random. This formula is general, but
we will apply it to our example of two types of atoms, let us call themAand B, mixing over
two crystallographic sites, say α and β. For simplicity we will assume that the stoichiometry
and structure of the mineral are such that there are equal numbers of A and B atoms and
α and β sites. In principle the relative amounts of A and B could change, but here we are
only interested in changes in the crystal at constant composition, AB. We will define the
state of perfect long-range order as the one in which A atoms occupy only α sites, and B
atoms occupy only β sites. In the disordered state any site, α or β, has the same probability
of being occupied by A or B. We then have:

PAα, ordered = PBβ, ordered = 1

PAα, random = PBβ, random = 1

2

(7.19)

which, substituting in (7.18), yields:

φ = 2PAα− 1= 2PBβ− 1 (7.20)

or, equivalently, and, as we shall see, more usefully:

PAα = PBβ = 1

2
(1+φ)

PAβ = PBα = 1

2
(1−φ) .

(7.21)

When A and B atoms redistribute themselves in the crystal there is a change in configu-
rational entropy. This change arises not only if A and B are atoms of different elements,
but also, for instance, if they are atoms of the same element (e.g. Fe) with differently ori-
ented magnetic moments. As long as the atoms are distinguishable there is entropy to pay
when we shift them around (Chapter 4). There is also an enthalpy cost, however, that arises
from the fact that the energetic interactions between the different types of atoms are not
necessarily equal. For example, if A and B are different atoms then the enthalpies of forma-
tion of A–A, B–B and A–B bonds may be different. In the case of alignment of magnetic
moments, energy is exchanged when the moments flip between parallel (A–A or B–B) and
anti-parallel (A–B) arrangements.
To deal with this we split-up the Gibbs free energy of the crystal as follows:

G=G(T ,P)+G (φ)=G(T ,P)+H (φ)−T S (φ) . (7.22)

In this equationG(T ,P ) is a function of temperature and pressure (and perhaps composition,
but we keep that variable fixed in this case) but not of the state of order of the structure. The
free energy contribution that arises from the state of order of the structure,G(φ), consists of
an enthalpy term, H (φ), and a configurational entropy term, S(φ), which correspond to the
enthalpy and entropy effects that we described in the previous paragraph. For the crystal
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to be in homogeneous thermodynamic equilibrium at T and P the order parameter, φ, must
take the value that minimizes G(φ) at that T and P. Since G(T ,P ) is not a function of φ,
minimizingG(φ) assures thatG is also minimized. In general, the value of φ that minimizes
G(φ) is a function of T (and P, although initially we will ignore the pressure dependency).
To see why, suppose that the enthalpies of formation of all bonds are negative, but that the
enthalpy of formation of A–B bonds is greater in absolute magnitude (more negative) than
those of A–A and B–B bonds. One might think naively that the stable configuration, i.e.
the one with lowest Gibbs free energy, would be the one that maximizes the number of
A–B bonds. Such a structure would, however, have perfect long-range order (φ = 1), and
its configurational entropy would vanish. Thus, and given that the enthalpy and entropy
contributions to G have opposite signs, maximizing the number of A–B bonds might not
minimizeG(φ). Perhaps somevalue ofφ<1would produce enough configurational entropy
tomore than compensate for the loss of someA–Bbonds.Moreover, since S(φ) ismultiplied
by T, the value of φ that minimizes G(φ) must be a function of temperature. The fact that
the Gibbs free energy of a system includes competing enthalpy and entropy contributions
is what allows it to undergo a critical phase transition.
In order to construct the functionG(φ) we begin by finding explicit expressions forH (φ)

and S(φ). The latter is the configurational entropy that we learned to calculate in Chapter
4 (equation (4.55)). Say that in one mol of mineral (N sites) there are N /2 each of α and β

sites. The total number of microstates, O, equals the product of microstates for the α and β

sites, Oα and Oβ:

Oα= (N/2)!
(NAα)!(NBα)!

Oβ= (N/2)!(
NAβ

)!(NBβ

)! .
(7.23)

Using Stirling’s approximation and the definitions of the site occupation probabilities, PXξ ,
we find after some simplification:

lnOα =NAα ln

(
N/2

NAα

)
+NBα ln

(
N/2

NBα

)
=−(N/2)PAα lnPAα− (N/2)PBα lnPBα

(7.24)

and an identical expression for lnOβ, substitutingPBβ andPAβ forPAα andPBα, respectively.
Using (7.21) and simplifying some more we get:

lnO= lnOα+ lnOβ =N ln 2− (N/2) [(1+φ) ln (1+φ)+ (1−φ) ln (1−φ)] (7.25)

finally arriving at:

S (φ)=R ln 2− R

2
[(1+φ) ln (1+φ)+ (1−φ) ln (1−φ)] . (7.26)

It is a good idea to check what (7.26) is saying. For the fully ordered state φ = 1 and
S(φ)= 0 (recall that the limit of x ln x for x going to zero is 0), whereas for the fully random
state, φ = 0 and S(φ)=R ln 2.

Say now that the formation of each type of nearest-neighbor pair, A–A, B–B and A–B
is associated with an enthalpy εAA, εBB and εAB, respectively, and call the number of each
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type of nearest-neighbor pairs νAA, νBB and νAB. If z is the coordination number of the
crystal, then:

νAA = zN

2
·PAα ·PAβ = zN

8

(
1−φ2

)

νBB = zN

2
·PBα ·PBβ = zN

8

(
1−φ2

)
(7.27)

νAB = zN

2
·PAα ·PBβ+ zN

2
·PBα ·PAβ = zN

4

(
1+φ2

)
.

The enthalpy of formation of all nearest-neighbor pairs in a mol of crystal is then given by:

νAAεAA+ νBBεBB+ νABεAB

= zN

8
(εAA+ εBB+ 2εAB)+ zN

8
(2εAB− εAA− εBB)φ

2. (7.28)

Because the first term in the right-hand side of (7.28) is not a function of φ, wemay consider
it to be part of G(T ,P ) in equation (7.22). We thus get:

H (φ)= zN

8
(2εAB− εAA− εBB)φ

2 (7.29)

or, defining:

η= zN

8
(2εAB− εAA− εBB) (7.30)

we re-write (7.29) as follows:

H (φ)= ηφ2. (7.31)

The constant η is the difference between the enthalpy of formation of different nearest
neighbors and the enthalpy of formation of same nearest neighbors. Thus, η > 0 means
that the formation of AB nearest neighbors is either less exothermic or more endothermic
than the formation of AA and BB nearest neighbors, or, in other words, that there is A–B
avoidance in the crystal. Conversely, η < 0 implies that there is preference for the formation
of A–B nearest neighbors.
Collecting terms from (7.22), (7.26) and (7.31) we arrive at:

G(φ)= ηφ2−RT ln 2+ RT

2
[(1+φ) ln (1+φ)+ (1−φ) ln (1−φ)] . (7.32)

We seek the value of φ that minimizes this function, so we equate its first derivative to zero:

dG(φ)

dφ
= 2ηφ+ RT

2
ln

(
1+φ
1−φ

)
= 0 (7.33)

and note that φ = 0 is always a solution to this equation. But is this particular solution a
minimum, and is it the only solution? To answer these questions we begin with the second
derivative:

d2G(φ)

dφ2
= 2η+ RT

(1−φ)2 . (7.34)
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We now see that, if η ≥ 0, then the second derivative at φ = 0 is always positive, meaning
that G(0) is in this case always a minimum. Moreover, if η ≥ 0 then φ = 0 is the only
solution to (7.16), as any non-zero solution requires:

ln

(
1+φ
1−φ

)
≤ 0, (7.35)

which is impossible for φ > 0. What this means is that, if there is either A–B avoidance
(η > 0) or neither preference for nor avoidance of A–B nearest neighbors (η = 0) , then the
only stable configuration is the fully disordered state, except for the special case η = 0 at
T = 0, where φ could be greater than zero (and the Third Law says that, in a perfect crystal,
it must be 1). Note that, if η > 0, then long-range order is not even possible at absolute zero.
We could have arrived at these conclusions by simple inspection of (7.22). They are also
what one should expect on physical grounds: the only way of spontaneously overcoming
disorder is if there is an energetic advantage for formation of A–B pairs, which is not the
case if there is A–B avoidance.
The case η ≥ 0 is, then, rather uninteresting, as there is no possibility for the system to

undergo a phase transition. Again on physical grounds, we should expect this not to be the
case for η < 0, as in this instance A–B affinity may cause the structure to become ordered
at some finite temperature. We now note that, although φ = 0 is a solution to (7.33) with
η < 0, it is not necessarily a minimum. In order for this solution to be a minimum it must be:

2η+RT > 0 (7.36)

or:

T >−2η

R
. (7.37)

Thus, the fully disordered structure is the stable one (lowest Gibbs free energy) for
temperatures greater than the lambda temperature, Tλ, given by:

Tλ =−2η

R
. (7.38)

Before we continue, note that this equation for Tλ is formally identical to the one for the
critical mixing temperature of a solution: setting τ = 1 in (7.12), we get Tc =WG

12/2R. This
is no coincidence, as we shall see.
For T < Tλ the solution φ = 0 is a maximum, so we need to find whether there is another

solution to (7.33) that minimizes G(φ). We rewrite (7.33) as follows:

1

2
ln

(
1+φ
1−φ

)
=− 2η

RT
φ = Tλ

T
φ, (7.39)

which, making use of the rather obscure hyperbolic trigonometric identity:

tanh−1 x = 1

2
ln

(
1+ x
1− x

)
(7.40)
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becomes:

T

Tλ
= φ

tanh−1φ
. (7.41)

Equation (7.41) has non-zero roots over the domain of tanh−1φ, which is |φ|< 1, so we are
assured that for every possible value of the order parameter, G(φ) will have an extremum
at some temperature T < Tλ. Moreover, since the solution φ = 0 is a maximum and G is a
continuous function, the other solution 0< φ < 1 must be a minimum.
Figure 7.6 (top) shows φ vs. T /Tλ, calculated with (7.41). If we start from a disordered

phase (φ = 0) at high temperature (T > Tλ) we see that, as the temperature is lowered,
ordering begins atT =Tλ, andφ initially increases very rapidlywith decreasing temperature
below Tλ. The value of the order parameter is very close to 1 at T ∼ 0.5Tλ, and changes
very little with further cooling to T = 0. Figure 7.6 (bottom) shows dimensionless Gibbs
free energy:G(φ)/RTλ (substitute (7.38) in (7.22)), plotted as a function of dimensionless
temperature, T /Tλ. As we saw, for T > Tλ there is only one possible value of G(φ),
that corresponds to φ = 0. G(φ) has two possible values below Tλ, a maximum at φ = 0
(shown with a dashed line in Fig. 7.6 (bottom)) and a minimum at the value of φ > 0
given by Fig. 7.6 (top) (shown with the solid curve in 7.6 (bottom)). The disordered phase
becomes metastable below Tλ relative to a phase with some degree of long-range order,
which increases with decreasing temperature. In nature the disordered high-temperature
phase may persist metastably below Tλ, depending on the nature of the cooling process, but
that is a different story (Chapter 12). The shape of the function G(φ) for various values of
temperature is shown in Fig. 7.7, plotted as non-dimensional values normalized to G(0):
−[(G(φ)−G(0))/G(0)]. Indeed, for T > Tλ the minimum occurs at φ = 0, whereas for
T < Tλ the function goes through a maximum at φ = 0 (corresponding to points on the
dashed curve in Fig. 7.6 (bottom)) and a minimum at φ > 0 (points on the solid curve in
Fig. 7.6 (bottom)). The distance between the maximum and minimum (i.e. between the
two curves in Fig. 7.6 (bottom)) increases with decreasing temperature. Note that at T = Tλ
the function has a very “flat”minimum, reflecting the fact that the secondderivative vanishes
(substitute (7.38) in (7.34)), and so does the third derivative (check for yourself). The fourth
derivative is positive, though, ensuring that φ = 0 is a minimum at Tλ. The attentive reader
will have noticed that this is the same behavior that we found at the critical mixing point
(see Section 7.1, and especially Fig. 7.1).

Examining Fig. 7.6 (bottom) we see that G(φ) is not smooth at Tλ, meaning that its
derivatives are discontinuous. The phase transition that occurs at the lambda temperature,
called a lambda phase transition is, however, continuous, in the sense that there is no
entropy “jump” at the transition. If the lambda phase transition is continuous then the shape
ofG(φ) in Fig. 7.6 (bottom) is a problem, as it would imply that there are discontinuities in
entropy and volume, which characterize first-order phase transitions. Clearly something is
missing from our description of the lambda phase transition. This problem, together with
the realization that there are phase transitions that at first sight have no obvious relationship
to order–disorder transformations yet behave in the same fundamental way, led to the
development of a mathematical formalism to describe phase transitions known as Landau
theory, named after the great mid twentieth-century Russian physicist Lev Landau. As we
shall see, one of the fundamental insights that comes out of Landau theory is the realization
that transitional behavior between continuous and discontinuous phase transitions is also
possible.
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7.5 Analogies with other phase transitions

There are systems that display behaviors that are remarkably similar to order–disorder
phase transitions, even though at first sight they do not appear to bear close similarities
to the atomic ordering processes that we discussed in the previous section. The key is to
identify a variable in the system that can serve as an order parameter. Figure 7.8 shows
some examples. The top panel is a calculated lambda phase transition for atomic ordering
– it is in fact the same curve as in Fig 7.6 (top), scaled so as to make comparisons with
the other examples easier. The second panel shows the difference in composition between
the two branches of a calculated symmetric solvus (e.g. from Figs. 7.1 or 7.5), plotted
against the ratio T /Tc, where Tc is the critical mixing temperature. The vertical coordinate
isXA(α)−XB(β). This variable takes values between 0 and 1 (see Fig. 7.1) and it can serve
as the order parameter. The curve is identical to that in the top panel, but note that the two
curves describe different phenomena. In one case it is atomic ordering in a single phase at
constant composition. In the other it is separation of two phases of different composition
from a single homogeneous supercritical phase. A way to think of this is as “ordering” of
the components A and B into the phases α and β, with perfect order (pure A and pure B)
attained only at T = 0, but already approached very closely at ∼0.5Tc (see Fig. 7.5).

Some minerals acquire higher symmetry with increasing temperature. For example, a
mineral may be orthorhombic at low temperature but, owing to anisotropic thermal expan-
sion, the lengths of its a and b crystallographic axes become progressively closer to one
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Fig. 7.8 Order parameter vs. non-dimensional temperature. Measured values of crystallographic axes of NaMgF3 perovskite
from Zhao et al. (1993). The other three curves are calculated and correspond to: the hypothetical phase in Figs. 7.6
and 7.7, the symmetric solvus in Fig. 7.1, and liquid–vapor equilibrium in H2O (Chapter 9).

another with increasing temperature, until at a well-defined temperature a and b become
equal. When this happens the symmetry changes from orthorhombic to tetragonal. It can
also happen that all three axes become equal at a single temperature, and in such case the
symmetry of the crystal changes from orthorhombic to cubic. The third panel in Fig. 7.8
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shows data for a solid, NaMgF3 with perovskite structure, that behaves in this way. It
is orthorhombic at low temperature, but as temperature increases the lengths of its three
crystallographic axes approach each other and the solid undergoes a lambda-type phase
transition at Tλ ≈ 1050K, where it takes on cubic symmetry. The figure shows the dif-
ference (in Å) between the lengths of the a and b crystallographic axes (data from Zhao
et al., 1993). This difference serves as the order parameter, and could be converted, if one
wishes, to a non-dimensional variable that takes the value 1 at T = 0 by dividing by a− b
at 0 K. Even without doing this, however, the figure shows clearly that a−b goes to 0 at an
accelerating rate as Tλ is approached, just as in the case of an order–disorder transition. In
fact, the change in crystal symmetry can be understood as an order–disorder transition by
considering rotations and distortions in the crystalline framework that affect the entropy of
the crystal (see, for example, Putnis, 1992).
The bottom panel in Fig. 7.8 shows the difference between the molar volumes of water

vapor and liquid water coexisting at equilibrium (obviously, pressure cannot be constant
along this curve – why?), normalized to the volume of the vapor. The molar volumes
become equal at the critical temperature (∼647.3 K) and a single supercritical phase exists
at T >Tc. Two phases exist below Tc, and their volumes diverge rapidly immediately below
this temperature. We shall return to critical phenomena in fluids in Chapter 9. There are
other important critical phenomena that we will not discuss in this book. Examples include:
the para-ferromagnetic transition at the Curie temperature, responsible, for example, for
the preservation of thermal remanent magnetization in igneous rocks; the appearance of
superconductivity in some materials at low temperature; and the existence of a superfluid
liquid-helium phase near absolute zero. What is common to all of these processes is that in
all of them it is possible to define an order parameter that goes to zero continuously and at
an accelerating rate as the critical temperature is approached from below, and that stays at
zero above the critical temperature.
It has been known for a long time that systems that behave in this way display anomalies

in the second derivatives of the Gibbs free energy in the neighborhood of the critical
temperature. This is true of heat capacity, compressibility and thermal expansion (equations
(4.135) to (4.137)), but for now we will focus on cP only. At a first-order phase transition
these three quantities become infinite, because as long as a univariant assemblage is present
energy transfer (either thermal or mechanical) causes changes in entropy and volume at
constant temperature and pressure, by forming some phases at the expense of others. The
“infinite heat capacity” occurs only at the first order phase transition, at which S and V are
discontinuous, but cP (and the other second derivatives) behave normally everywhere else.
At a lambda phase transition the second derivatives are anomalous in the neighborhood of
the transition temperature, and diverge strongly (but may or may not become infinite) at the
transition temperature itself. Three examples of this behavior are shown in Fig. 7.9. The top
two correspond to crystal symmetry phase transitions, including the example of NaMgF3
perovskite. The bottom panel in Fig. 7.9 corresponds to an order–disorder transition caused
by alignment of magnetic moments in ferrosilite. In every case the dashed curve showswhat
the “normal” heat capacity would be expected to be. The measured values define a strong
and steep positive anomaly relative to these expected values, which is characteristically
lambda-shaped, hence the name for this type of phase transition.An important point is that,
whether or not cP becomes infinite at the transition temperature, the function is integrable
across the transition, i.e., the area under the lambda-shaped anomaly is finite.This area needs
to be known in order to be able to calculate the entropy of the solid at T> Tc (Section 4.7.1).
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Fig. 7.9 Lambda heat capacity anomalies in three different solid phases. Data from references shown in the figure.

In the simple thermodynamic description of an order–disorder phase transition that we
developed in Section 7.4 there is no indication of the behavior depicted in Fig. 7.9. There
is need for a theoretical framework that reproduces this observed behavior.

7.6 Landau theory of phase transitions

7.6.1 Critical phase transitions

The key idea of Landau theory of phase transitions is to start with equation (7.22), in which
we made G equal to the sum of a function of T and P and a function of φ, and expand the
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function G(φ) as a power series in φ. When this is done G(φ) is (informally) called the
Landau potential. As before, we seek the values of φ that minimize G(φ), but in this case
we will make no assumptions about the functional forms of H(φ) or S(φ). Rather, we will
derive these, as well as the heat capacity, from the temperature derivatives of the Landau
potential. We require that the order parameter be a non-dimensional variable in the interval
0 ≤ φ ≤ 1 and symmetric relative to 0, so that if we wish to define the order parameter
backwards it would be G(−φ)=G(φ) (this is a minor point, but simplifies the notation).
We also require that at a critical phase transition φ goes to zero as the critical temperature
is approached from below, and remains at zero for T > Tc. Beyond these constraints we
attach no specific meaning to the order parameter, which gives us flexibility to define it a
posteriori in the most convenient way for each specific application. In fact, the requirement
that the maximum value of φ be 1 can be relaxed trivially, as we shall see.

Symmetry of the order parameter means that we must include only even powers of φ, so
that, including numerical coefficients that will simplify the derivatives, we write the power
series as follows:

G(φ)= 1

2
g2φ

2+ 1

4
g4φ

4+ 1

6
g6φ

6+·· · (7.42)

The coefficients gi are empirical macroscopic parameters, as is the order parameter φ. The
microscopic description that we used to construct (7.32) (number of microstates, energy
of nearest neighbor pairs), or any other kind of a priori microscopic model, is not a part
of Landau theory. Landau theory is an example of a mean field theory. The power of this
approach is that it is applicable to a large class of phenomena which may have only remote
microscopic similarities, and for which our microscopic understanding may be limited. Of
course, there is a drawback too, and that is that it provides little insight about themicroscopic
nature of a specific phase transition.
We will initially assume that we can truncate the power series after the second term. As

usual, we require that there be a minimum of G(φ) for φ = 0 at T ≥ Tc, and for a value of
φ > 0 at T< Tc. Taking the first and second derivatives of (7.42), these conditions require
the following three relationships (see Exercise 7.2):

g2 > 0, T > Tc

g2 < 0, T < Tc

φ2 = −g2
g4

> 0, T < Tc.

(7.43)

One solution to (7.43) is to make g4 a positive constant, and g2 a linear function of (T −Tc):
g2 = α (T −Tc) (7.44)

with α > 0. We then re-write (7.42) as follows:

G(φ)= 1

2
α (T −Tc)φ2+ 1

4
g4φ

4, α > 0, g4 > 0. (7.45)

This function has the same geometric properties as the function G(φ) plotted in Fig. 7.7: a
sharp minimum at φ = 0 for T> Tc, a “flat” minimum for T= Tc and a minimum at φ > 0
and maximum at φ = 0 for T< Tc (Exercise 7.3). Perhaps more interestingly, from the last
line in (7.43) we get an equation for φ valid for T < Tc (we will use only the positive root,
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because by construction φ is symmetric):

φ =
[
α

g4
(Tc−T )

]1/2
. (7.46)

If we scale the order parameter so that φ = 1 at T= 0, then we get:

Tc = g4
α

(7.47)

and:

φ =
(
1− T

Tc

)1/2
. (7.48)

Note that scaling the order parameter to the interval [0,1] is a matter of convenience, not of
necessity. Function (7.48) is plotted in Fig. 7.10 (labeled “critical”). Substituting (7.48) in
(7.45), and recalling that φ = 0 for T ≥ Tc we get:

G(φ)= 0, T ≥ Tc

G(φ)=−1

4
g4

(
1− T

Tc

)2
, T < Tc (7.49)
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and, differentiating (7.49) relative to T:

S (φ)= 0, T ≥ Tc
S (φ)=−α

2

(
1− T

Tc

)
=−α

2
φ2, T < Tc. (7.50)

We note that at φ = 0 bothG(φ) and S(φ) are continuous, andG(φ) is smooth, confirming
that these equations describe a continuous, and not a first-order, phase transition. Calculation
of H (φ) is left as an exercise (Exercise 7.3). Note that spontaneous ordering is always
exothermic, so that the entropy of the “universe” increases by a greater amount than the
decrease in the entropy of the system given by (7.50), as required by The second Law (more
on this in Chapter 14).
We will label the contribution of the ordering process to heat capacity Cp(φ) and, by

analogy with (7.22), we make Cp = Cp(P ,T )+Cp(φ). Differentiating (7.50) and using
(4.135):

CP (φ)= 0, T ≥ Tc

CP (φ)= α

2

T

Tc
=− α2

2g4
T , T < Tc. (7.51)

Heat capacity is thus discontinuous at the phase transition, and this is in fact the origin
of the name “second order” – entropy (and volume) are not smooth across a continuous
phase transition, and the second derivatives of the free energy are thus discontinuous. The
name is discouraged, though, because in some cases discontinuities show up in higher
order derivatives. “Critical” or “continuous” are preferable names to encompass all “not
first order” phase transitions.
The behaviors of the three thermodynamic functions at a critical phase transition are

shown in the top three panels of Fig. 7.11. Comparison of the free energy plot with that in
Figure 7.6 (bottom) shows what Landau theory accomplishes: it makes G smooth across
the phase transition, while preserving the general relationship between G of the stable
ordered phase and G of the metastable disordered phase below Tc. If you rotate the curves
to the left of the phase transition in Fig. 7.6 (bottom) counterclockwise until the dashed line
(G of metastable disordered phase) becomes the extension of the solid line (G of the ordered
phase above Tc) you will get, more or less, the Gibbs free energy diagram in Fig. 7.11.
With this transformation G becomes smooth and S becomes continuous at the phase
transition.

7.6.2 Lambda phase transitions

Although heat capacity is discontinuous atTc, the ordering contribution toCP varies linearly
with temperature at T < Tc (Fig. 7.11). Thus, although equations (7.45) through (7.51) are
a correct description of a continuous (or critical) phase transition, they do not describe
the behavior observed at lambda phase transitions, where CP characteristically diverges
strongly (Fig. 7.9). Can Landau theory be made to account for this? Inspection of equations
(7.51) suggests that, if g4 were made a function of (T −Tc), then the heat capacity function
would diverge as T→ Tc. However, it would not have a finite integral, so this solution
is not acceptable. We then do the next best thing, which is to make g4 = 0, immediately
invalidating (7.45) through (7.51). We note, however, that if g4 vanishes, then the only way



376 Critical phase transitions

0
–0.8

–0.4

0

G
(

)

0

–0.8

–0.4

0

S
(

)

0
0

10

C
P
(

)
0

–0.8

–0.4

0

T/Tc T/Tc T/Tc

T/TcT/TcT/Tc

G
(

)

0

–0.8

–0.4

0

S
(

)

0
0

10

C
P
(

)

G(0)

G( )

ordered phase stable

di
so

rd
er

ed
 p

ha
se

 s
ta

bl
e

G(0)

G( )

ordered phase stable

di
so

rd
er

ed
 p

ha
se

 s
ta

bl
e

1 1

1 1

1

1

Fig. 7.11 Gibbs free energy, entropy and heat capacity for systems that undergo a critical phase transition (top) or a tricritical
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of allowing for the ordered phase to be stable at T < Tc is to have g6 �= 0. In effect, we keep
(7.44) and the first two lines in (7.43), and from the first derivative of (7.42) with g4 = 0
we replace the third line with (see Exercise 7.5):

φ4 = α (Tc−T )
g6

> 0, T < Tc, (7.52)

which shows that it must be g6 > 0. We then replace (7.45) with:

G(φ)= 1

2
α (T −Tc)φ2+ 1

6
g6φ

6, α > 0, g6 > 0 (7.53)

and note that this function generates a family of curves that have the same general char-
acteristics as those obtained from (7.45) (Exercise 7.6). We now obtain a set of equations
that parallel (7.46) through (7.51), but with a crucial difference, as we shall see. Scaling the
order parameter as before so that φ = 1 at T= 0, we have:

Tc = g6
α

(7.54)
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and, from (7.52):

φ =
(
1− T

Tc

)1/4
, T < Tc. (7.55)

Function (7.55) is labeled “tricritical” in Figure 7.10 (the reason for this name is essentially
historical, and need not concern us; see, for example, Griffiths &Wheeler, 1970; Griffiths,
1973). The Landau potential is now given by:

G(φ)= 0, T ≥ Tc

G(φ)=−1

3
g6

(
1− T

Tc

)3/2
, T < Tc (7.56)

and the contribution of order–disorder to entropy:

S (φ)= 0, T ≥ Tc

S (φ)=−α
2

(
1− T

Tc

)1/2
=−α

2
φ2, T < Tc. (7.57)

The crucial difference is in the contribution of ordering to heat capacity,which nowbecomes:

CP (φ)= 0, T ≥ Tc
CP (φ)= α

4

T√
T c

(Tc−T )−1/2 , T < Tc. (7.58)

The bottom panels of Fig. 7.11 show plots of the thermodynamic functions for tricritical
phase transitions (equations (7.56), (7.57) and (7.58)). The heat capacity diverges at Tc,
but it has a finite integral. Comparison of (7.58) with measured heat capacities (Fig. 7.9)
suggests that a Landau potential given by (7.53) may provide a good approximation to the
behavior of solids that undergo lambda phase transitions.

7.6.3 Discontinuous phase transitions

Beyond the intriguing name, what is a tricritical phase transition? The difference with a
critical phase transition becomes clear once we realize that Landau theory can also describe
discontinuous phase transitions. We have considered the cases g4 > 0 and g4 = 0, so it is
natural to be curious about the case g4 < 0. Let us begin by seeking the equilibrium value
of the Landau potential (with g4 < 0) at the critical temperature. Taking the first derivative
of (7.42) and equating to zero:

dG(φ)

dφ
= α (T −Tc)φ+g4φ3+g6φ5 = 0 (7.59)

we find that at T = Tc the Landau potential has extrema at φ = 0 and φ = (−g4/g6) 12 –
recall that we only use the positive square root. The first non-vanishing derivative for the
solution φ = 0 is the fourth derivative:

d4G(φ)

dφ4
= 6g4 < 0. (7.60)
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The fact that this derivative is negative means four things. Firstly, that the disordered phase
is metastable at the critical temperature, because it corresponds to a maximum of G(φ).
Secondly, that if the other solution must represent the stable phase at Tc, then g6 must be
positive (see equation (7.59)). Thirdly, that the order parameter of the stable phase at the
critical temperature is given by (also comes from (7.59)):

φ =
(
−g4
g6

)1/2

, T = Tc. (7.61)

Plugging this result in the second derivative proves that this is indeed the value of the order
parameter that minimizes the Landau potential at Tc. Fourthly, and most momentously, that
the phase transition must occur at a different temperature, Tr , which must be Tr > Tc, as the
disordered phase can only become stable with increasing temperature, and it is not stable
at Tc.
The critical point is in effect a metastable critical point, but for reasons that will become

clear in a moment we nonetheless wish to know the value of Tc. As always, we scale to
φ=1 at T = 0 and, substituting in (7.59) (because the ordered phase must be the stable one
at zero temperature), we get:

Tc = g4+ g6
α

. (7.62)

It is important to emphasize that (7.62) yields the temperature of a metastable critical point,
not of an actual phase transition, but note that if g4 = 0 then the solution collapses to that
of the tricritical case, equation (7.54) – you may see where this is going.
At the transition temperature Tr ,G(φ) of the (partially) ordered phase must become zero,

because this is the Landau potential of the disordered phase everywhere above Tc. But the
ordered phase must also be stable at Tr , so the first derivative of the Landau potential for
the ordered phase must also vanish at Tr . We thus have two equations that must vanish
simultaneously, one forG(φ) and the other one for its first derivative. Dividing the first of
these equations by φ2 and the second one by φ we get:

1

2
α (Tr −Tc)+ 1

4
g4φ

2+ 1

6
g6φ

4 = 0

α (Tr −Tc)+g4φ2+g6φ4 = 0 (7.63)

which yield the solutions:

φ =
(
−3g4
4g6

)1/2
, T = Tr (7.64)

and:

Tr = Tc+ 3

16

g24
αg6

. (7.65)

Equation (7.64) says that at the temperature Tr given by (7.65) the system undergoes a
discontinuous (= first-order) phase transition, as shown by the curve labeled “first order”
in Fig. 7.10. This is so because at that temperature the Landau potential of a phase that
is still partially ordered (with φ given by (7.64)) vanishes and therefore becomes equal to
the Landau potential of the disordered phase. The order parameter “jumps” from the value
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given by (7.64) to 0 at a definite temperature, Tr . The key to understanding the details of
this behavior is in the ratio (−g4/g6). To see why we first combine (7.62) and (7.65) to
obtain:

Tr

Tc
= 1+ 3

16

(
g4
g6

)2 1

1+
(
g4
g6

) . (7.66)

The second equation in (7.63) is the equilibrium equation (first derivative of the Landau
potential equal to zero) so it is valid for φ �= 0 for all T < Tr . Using the quadratic formula
and some algebra we find that the non-zero solution is generated by the positive square root
(Exercise 7.7). By using (7.62) and some additional algebra, we then arrive at:

φ =

−1

2

g4

g6
+
(
1

4

(
g4
g6

)2
+
(
1+ g4

g6

)(
1− T

Tc

))1/2


1/2

, T ≤ Tr . (7.67)

We can see that as g4 → 0 the solution for the first-order phase transition approaches the
tricritical case. Equation (7.66) says that, as g4 → 0, Tr approaches Tc which, according
to (7.62), is the value of Tc for the tricritical case (i.e. for g4→ 0, (7.62) becomes (7.54)).
Moreover, equation (7.67) shows that the solution for the order parameter approaches that
of the tricritical case (equation (7.55)) as g4→ 0.
A tricritical phase transition is therefore a limiting case, between a continuous (critical)

and a first-order phase transition. As Fig. 7.11 suggests, it shares characteristics of both:
entropy (and volume) are continuous across the tricritical phase transition, but “less smooth”
than at a critical phase transition. Heat capacity diverges, but less strongly than in a first-
order transition, and the anomaly occurs over a finite temperature interval, rather than only
at the transition temperature. Figure 7.12 shows the ratio Tr /Tc and the value of the order
parameter at the transition temperature Tr , as a function of (−g4/g6). The tricritical phase
transition occurs at (−g4/g6)= 0. As this ratio increases, Tr initially stays infinitesimally
close to Tc, but the order parameter at Tr increases rapidly. It is apparent that discriminating
experimentally between a tricritical phase transition and one that is first order but associated
with a small discontinuity may not always be easy.

7.6.4 Some comments of Landau theory

Landau theory is empirical and provides only an approximate description of actual phase
transitions. Still, it is a powerful analytical tool to understand the nature of phase transitions,
and in some instances, such as order–disorder transformations in minerals, it does an excel-
lent job of describing the thermodynamic functions associated with these transformations.
It is also very flexible – in the preceding section we have barely scratched the surface of
what Landau theory is capable of, and although space constraints prevent us from digging
deeper into it, there are a couple of points that are worth exploring in some more detail.
First, what is the physical significance of the α and gi parameters? We begin by noting

that α has units of entropy, and g4 and g6 have units of energy. We now re-write (7.47), or
(7.54), as follows:

gi −αTc = 0. (7.68)

We can interpret (7.68) as meaning that, if the phase transition took place as a first-order
transition at Tc, then α would be the entropy of transition, and gi would be the enthalpy of
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transition. The phase transition is, however, either critical (7.47) or tricritical (7.54) and in
such cases α and gi may represent the total entropy and total enthalpy associated with the
phase transition, “spread out” from absolute zero (φ= 1) to the critical temperature (φ=0).
In the case of a discontinuous phase transition we can manipulate (7.65) to show that α
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represents the entropy of the phase transition at Tr , and that the enthalpy of transition is a
non-linear function of g4 and g6, although the individual meanings of g4 and g6 are obscure
(Exercise 7.8).
Second, what if we wish to look at the effect of some other intensive variable on the phase

transition? This is done by including additional terms in the Landau polynomial expansion.
Say that the intensive variable that we are interested in is Z . The simplest case is to add
only a quadratic term in Z, so that (7.42) (with g2 substituted as in (7.44)) becomes:

G(φ)= 1

2
α
(
T −Tc,0

)
φ2+ 1

4
g4φ

4+ 1

6
g6φ

6+ 1

2
αζZφ

2. (7.69)

The coefficient αζ corresponds to the conjugate variable of Z , so that the product αζZ has
the dimension of energy (recall that α represents entropy, which is the conjugate variable of
T). The intensive variables that we are most commonly interested in are either pressure, in
which case the coefficient is labeled αv and represents a volume change associated with the
phase transition, or composition, in which case wewill have αµterms representing chemical
potential changes.
By choosing to use only the quadratic term in Z we are coupling αζ to α only. This means

that the value of α will be the same for any value of Z , but the gis will vary with Z . I have
also added a 0 to the subscript of Tc, to emphasize that this is the critical temperature at
a zero value of Z , i.e. setting Z = 0 in (7.69) recovers (7.42). We now re-write (7.69) as
follows:

G(φ)= 1

2
α
[
T −

(
Tc,0− αζ

α
Z
)]
φ2+ 1

4
g4φ

4+ 1

6
g6φ

6 (7.70)

and we define the critical temperature at Z, Tc,Z as follows:

Tc,Z ≡
(
Tc,0− αζ

α
Z
)
. (7.71)

Substituting (7.71) in (7.70) we get an equation in T and φ only, which is identical to (7.42)
(with g2 substituted as in (7.44)). This makes all the other equations valid, except that the
numerical values of the critical temperature and of the gi parameters will be different from
those obtained with Z = 0. From (7.71) we also get the value of critical Z at Tc,Z:

Zc = α

αζ

(
Tc,0−Tc,Z

)
. (7.72)

Note that, in contrast toTc, there is no a priori requirement that the disordered phase be stable
on any particular side of Zc. This depends on the sign of αζ , which is not predetermined
as in the case of α (by equation (7.44)). For instance, if αζ is negative then the critical
temperature increases with increasing Z , and the supercritical (disordered) phase is stable
on the low Z side of the phase transition (see also Box 7.1).

Worked Example 7.2 Lambda phase transitions and phase equilibrium

Several important rock-forming minerals undergo lambda phase transitions which arise
from a variety of microscopic processes. We already mentioned the case of perovskites,
in which crystal symmetry changes occur with increasing temperature. More subtle
symmetry changes are observed in quartz (transition between α quartz and β quartz at 847
Kand1bar) and in carbonateminerals.Albite and anorthite display full Si–Al disorder above
critical temperatures (at 1 bar) of 950 K and 2300 K, respectively, and progressive ordering
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below those temperatures. Iron and nickel oxides, as well as the respective metals, undergo
order-disorder phase transitions associated with the orientation of magnetic moments. The
energetic effects of these phase transitions must be incorporated in the calculation of phase
equilibrium.The data set of Holland and Powell (1998 and electronic updates, henceforward
HP98) includes lambda phase transition properties that have been regressed simultaneously
with standard state properties, so that they are mutually consistent (seeWorked Example 5.7
for a refresher of why internal consistency of thermodynamic data is important). Holland
and Powell find that the energetic effects of lambda transitions for all minerals in their data
base can be accurately modeled by means of a tricritical Landau potential (equation (7.53)),
regardless of the microscopic nature of the transformation in each particular mineral. The
equations in Section 7.6.2 are applicable to their data, with two important caveats. First,
HP98 reverse the sign of S(φ) in equation (7.57). Second, they use 298 K as the reference
point for Landau potentials (i.e. they makeG(φ)= 0 at 298 K). The effect of these changes
is that the maximum value of entropy, at Tc, is a positive number rather than zero. With
their convention S(φ) is in fact always positive, and would become zero at 0 K (compare
equations (7.57)).
Figure 7.13 shows the Landau potentials for several minerals, calculated from HP98

(see Software Box 7.2). The effect of their sign convention is to make the diagrams
look like Fig. 7.6 (bottom). As in that case, I also show the Landau potential of the
metastable disordered phase below Tc for one mineral (ilmenite) to emphasize that what
really matters is the Gibbs free energy change that accompanies the ordering process, i.e.
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Fig. 7.13 Gibbs free energy of ordering, G(φ), also called the Landau potential, for several minerals, calculated with data
from Holland and Powell (1998). The lambda phase transition for each mineral occurs at the end of the respective
curve. Holland and Powell change the convention from G(φ)=0 for the disordered phase (e.g. Figs. 7.6, 7.10 and
7.11) to G(φ)= 0 at 298.15 K, for consistency with the way in which chemical thermodynamic calculations are
usually done. The value of�G of ordering is not affected: compare the example of ilmenite, for which G of the
metastable disordered phase is shown with a broken line, with Fig. 7.6 and its rotated equivalent, Fig. 7.11.
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the distance between the stable and metastable curves. Restoring Landau’s sign and refer-
ence conventions rotates the curves as in Fig. 7.11, but the distance between them remains
invariant. The figure shows that lambda phase transitions in minerals cause free energy
changes of the order of a few kilojoules per mol, which are not insignificant values (see
Section 5.2.1).

Software Box 7.2. Incorporation of the Landau potential to Gibbs free energy of minerals
Aprocedure is included in worksheet th_shomate.mw that calculates the Gibbs free
energy of order–disorder transitions in minerals, with the formalism of Holland and
Powell (1998). The name of the procedure is landau_hp. It calculates the Landau
potential of a mineral at any given P and T, using tabulated values of Tc, Smax and Vmax,
as defined by Holland and Powell (1998). Recall that their sign convention is different
from the one commonly used in physics, but procedure landau_hp takes care of this.
Since the procedure is encapsulated in the package th_shomate.mw it can be called
from any other worksheet.
The strategy to include the Landau potential in mineral equilibrium calculations is

to call landau_hp for each of the species that participates in a reaction, multiply by
the corresponding stoichiometric coefficient, and add up all of the Landau potentials
(they may be zero for some species). The result is added to the Gibbs free energy of
reaction as an “excess term”. Worksheet th_template_4.mw contains a procedure
named Gord that does this. The solution for the equilibrium position must now be
found iteratively, because there is a conditional statement in landau_hp that checks
whether the temperature is above or below the lambda phase transition. This conditional
statement is not accepted by Maple’s equation solver fsolve. The way around this
problem is illustrated in procedures Peq and Teq, that solve for pressure at given
temperature, and for temperature at given pressure. The procedures first find a tentative
solution assuming that the sum of Landau potentials is zero. They then calculate the
Landau potential sum at this pressure and temperature, solve again including this interim
Landau potential, and so on, iterating until consecutive solutions converge within a
desired interval (set at 1 bar or 1 K). Peq is able to solve for pressure directly, but Teq
asks for an initial temperature guess, needed because of the non-linearity of the heat
capacity equations. If needed, the procedures can easily be incorporated in a loop to
calculate a phase boundary, as in th_template_3.mw (e.g. Figure 7.14; exercise
left to the reader).
Procedures Peq and Teq also include a call to vdp, which is another procedure,

included in the package th_shomate.mw, that calculates the pressure integral in
equation (5.1.7) with Holland and Powell’s compressibilty and thermal expansion data.
This is discussed in Chapter 8.

An example of the effect of lambda phase transitions on calculated phase equilibrium is
shown in Fig. 7.14. The breakdown of albite to jadeite plus quartz is an important indica-
tor of the transition between medium pressure metamorphism (greenschist–amphibolite
facies) and high-pressure metamorphism (blueschist–eclogite facies). Both albite and
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Fig. 7.14 Effect of ignoring�G of ordering in albite and quartz on the calculated position of the breakdown reaction of
albite to jadeite+ quartz.

quartz undergo lambda phase transitions. The figure shows the location of the univari-
ant phase boundary calculated with and without the energetic contributions of these
phase transitions. Ignoring the Landau potentials displaces the calculated equilibrium
position by about 1 kbar. Note that, because albite and quartz are on opposite sides
of the reaction, the contributions from the two minerals cancel each other to some
extent. The effect would be greater if only one of the phases underwent a lambda phase
transition.

Exercises for Chapter 7

7.1 Convert the diagrams on the left of Fig. 7.1 from �Gmixing to Gsolution, and show that
the two points with a common tangent in the subcritical region are no longer minima,
but they still have a common tangent.

7.2 Derive the conditions (7.43) for a critical phase transition.
7.3 Show that equation (7.45) generates curves like those in Fig. 7.7. (Use any good

scientific plotting program.)
7.4 Find the equation forH (φ) for a system that undergoes a critical phase transition. Show

that spontaneous ordering must be exothermic. Assume that the system that undergoes
spontaneous ordering is contained in a larger isolated system. Discuss how the entropy
of this isolated system changes during ordering.

7.5 Prove that, if g4 = 0, then φ must be given by (7.52).
7.6 Show that (7.53) generates a family of curves with the same general characteristics as

(7.45), but with sharper curvature. (Use any good scientific plotting program.)
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7.7 Explainwhy, if the second equation in (7.63) is the equilibriumequation, itmust be valid
for φ �= 0 for all T< Tr . Show that the non-zero solution of this equation corresponds
to the positive square root of the quadratic equation, and derive equation (7.67) for the
order parameter.

7.8 Show that for a first-order phase transition α represents the entropy of the phase
transition at Tr , and derive an equation for the enthalpy of the phase transition.



8 Equations of state for solids and the internal
structure of terrestrial planets

Inferring the internal structure of solid planetary bodies requires that we use thermodynamic
theory in order to interpolate and extrapolate often sparse experimental data to very high
pressures and temperatures. The constant-volume approximation that we used in Chapter 5
to calculate the Gibbs free energy of solids at high pressure leads to erroneous results at
depths greater than a fewkm.This situation is remedied by introducing a variety of equations
of state for condensed phases, that are accurate over progressively greater pressure ranges.
The study of equations of state for condensed phases that are valid at very high pressures and
temperatures will allow us not only to perform chemical equilibrium calculations relevant to
deep planetary interiors but also to predict physical conditions – pressure and temperature –
as a function of depth in solid planets.

8.1 An introduction to equations of state for solids

In Chapter 5 we calculated the following integral for solid phases assuming that their molar
volumes remain constant:

∫ P

1
V (P ,T )dP . (8.1)

This is tantamount to assuming that the second derivatives of the Gibbs free energy vanish
(equations (4.136) and (4.137)), which is in general not true.All materials change in volume
in response to changes in pressure and temperature, and a change in volume entails a
change in free energy. This energy needs to be accounted for, both when studying chemical
transformations (i.e. calculation of phase equilibria) and when inferring physical conditions
in planetary interiors. For example, equation (3.32) is a general differential equation for
the adiabat, based exclusively on thermodynamic relations and thus independent of specific
material properties. Integrating this equation so as to find the temperature distribution inside
a convective planet requires knowledge of how α, V and CP (all of which are derivatives
of the free energy) vary with temperature and pressure. Throughout Chapter 3 we assumed
that these properties are all constant, and although this may be fine as a first approximation
it introduces unacceptably large errors in detailed work.
Recall from Chapter 1 that the functional relationship between the three variables, P, V

and T, is called an equation of state (EOS). Operationally, the procedure to construct an EOS
begins with a reference value for the volume, whichwe symbolizeV0 .Except in surface and
near-surface environments, P! 1 bar, so that the reference pressure is commonly taken to
be 0, and the reference volume is called the zero-pressure volume, even if it is customarily

386
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measured at 1 bar (1 ≈ 0, if P ! 1). The reference temperature, T0, may be taken either
at the standard reference temperature for thermodynamics (298.15 K), or at 0 K (in which
case we refer to the zero-temperature volume). The most appropriate choice depends on
the nature of the EOS, and when stating the value of V0 = V (0,T0) I will always explicitly
state the value of T0.
We seek a function that yields either the volume at P and T ,V (P ,T ), which is called a

volume-explicit EOS, or the pressure at V and T, P(V ,T ), which is called a pressure-explicit
EOS.Aswith other thermodynamic calculations,we construct the function in steps, allowing
only one intensive variable to change at a time. Two different approaches are summarized
in Fig. 8.1. One possibility is to calculate the effect of isobaric thermal expansion at zero
pressure, fromT0 to the temperature of interest. This takes the volume fromV0 toV(0,T ).We
then hold the temperature constant and calculate the effect of compression to the pressure of
interest (labeled “hot isothermal compression” ), so that we obtain the volume at the P and T
of interest,V (P ,T ). Equations of state formaterials at very high pressures and temperatures,
such as in deep planetary mantles and cores, are often constructed following the alternate
route shown inFig. 8.1. In this approachwemust consider separate contributions to pressure,
so that the total pressure, P, is given by:

P = P0+Pth+Pel . (8.2)

In this equation P0 is the pressure required to change the volume from the reference volume
V0 to the volume at the pressure and temperature of interest V (P ,T ), along an isothermal
compression path at the reference temperature, which is labeled “cold isothermal compres-
sion” in the figure. The pressure at the end of the cold isothermal compression leg, P0 is
such that V (P0, T0) = V (P ,T ). This is the pressure associated with elastic compression
of the material at the reference temperature. Heating at constant volume (isochoric) from
T0 to T generates additional pressure contributions. One of them, called thermal pressure,
Pth, arises from increased vibrations of the atoms about their mean equilibrium positions
(see Section 1.14). The other term in (8.2), Pel , arises from electron vibrations. It is negli-
gible in dielectric materials such as silicate rocks, but becomes important in metals at high
temperature (e.g., in the cores of terrestrial planets) and in plasmas (such as liquid metallic
hydrogen in the cores of giant planets). Unless otherwise stated wewill assume thatPel = 0,
as in Fig. 8.1.
Both approaches to constructing an equation of state require that we find a functional

relationship between pressure and volume at constant temperature (to handle the isother-
mal legs in Fig. 8.1). Such a function is known as an isothermal EOS. In the following
sections we discuss three different ways of constructing isothermal EOS: from thermody-
namics (MurnaghanEOS), from finite strain (Birch–MurnaghanEOS) and from interatomic
potentials (Born–Mie EOS). The first two are macroscopic approaches and the resulting
isothermal EOS are applicable at any temperature, as long as the material properties at
the temperature of interest are known. Isothermal EOS based on interatomic potentials, in
contrast, incorporate a microscopic model of the material and are rigorously correct only
at 0 K.
The two approaches summarized in Fig. 8.1 differ substantially in theway they handle the

effect of temperature. In the “hot isothermal compression” method one adjusts the material
properties in the isothermal EOS to the temperature of interest (Section 8.2.2). In the “cold
isothermal compression”method a separate term is added, that accounts for thermal pressure
(Sections 8.3 and 8.4).
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Fig. 8.1 Two ways of calculating V = V(P, T) or P = P(V , T). An isothermal equation of state is needed in both cases.

8.2 Macroscopic equations of state

8.2.1 The Murnaghan isothermal EOS

This equation of state follows directly from thermodynamic identities, even if it was origi-
nally derived byMurnaghan (1937) from finite strain considerations.We begin by recalling
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the definition of the isothermal bulk modulus, equation (1.21):

KT =−V
(
∂P

∂V

)
T

. (8.3)

Integrating (8.3) at constant T we get:

ln

(
VP ,T

V0,T

)
=−

∫ P

0

dP

KT

(8.4)

where we use 0 as the lower integration limit because we integrate from “zero pressure”.
The integral on the right-hand side of (8.4) would be very easy to solve if the isothermal
bulk modulus were constant, which would require that all third derivatives of the Gibbs
free energy vanish. This is in general not the case, however. Rather, the isothermal bulk
modulus is a function of both temperature and pressure. Because equation (8.4) is integrated
at constant temperature, however, KT can be treated as a function of pressure only, at a
constant temperature T. The simplest possible assumption now is to make KT a linear
function of P so that, using K ′

T for the first pressure derivative of KT , we write:

K ′
T =

(
∂KT

∂P

)
T

= constant. (8.5)

This approximation, which is equivalent to assuming that the third pressure derivative of
the Gibbs free energy does not vanish but the fourth and higher derivatives do, leads to
what is known as the Murnaghan equation of state. If we use K0,T to symbolize the bulk
modulus at zero pressure and temperature T, then integration of (8.5) yields:

KT =K0,T +K ′
T P . (8.6)

Substituting in (8.4):

ln

(
VP ,T

V0,T

)
=−

∫ P

0

dP

K0,T +K ′
T P

. (8.7)

Making the substitution u = K 0,T +K ′
T P, this integrates easily to:

ln

(
VP ,T

V0,T

)
=− 1

K ′
T

ln

(
K0,T +K ′

T P

K0,T

)
(8.8)

or:

VP ,T = V0,T

(
1+ K ′

T P

K0,T

)− 1
K′
T , (8.9)

which is the volume-explicit form of Murnaghan’s equation of state. The temperature of
interest, T, can be any value that is convenient. If T = T0 then we substitute V0 for V0,T
in (8.9) – this is a notation issue, but it is important to keep it straight for consistency with
what follows. The Murnaghan EOS works well up to pressures of the order of 200 kbar.
More accurate representations of volume are needed at higher pressure.
To apply the Murnaghan EOS (equation (8.9)) or Birch–Murnahgan EOS (see below) at

any arbitrary temperature we need to account for thermal expansion at zero pressure, so as
to calculate V0,T , and we need the values of the bulk modulus and its pressure derivative.
Before we proceedwith other isothermal EOSwe discuss how each of these steps is handled
for solid materials.
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8.2.2 Thermal expansion at zero pressure

Recalling the definition of the coefficient of thermal expansion, equation (1.66):

α= 1

V

(
∂V

∂T

)
P

(8.10)

we see that volume at zero pressure and the temperature of interest is given by:

V0,T = V0 exp

(∫ T

T0

α dT

)
, (8.11)

whereV0 is the volume at zero pressure and the reference temperature T0 (generally, 298K).
Evaluating 8.11 requires a function α= α(T ).
The behavior of the coefficient of thermal expansion with temperature parallels that of

heat capacity. In Section 1.14.3 we saw that heat capacity increases strongly with T at low
temperature, and that the T dependency becomes weaker as the Debye temperature of the
material θD is approached. Figure 8.2a shows this relationship, plotted as non-dimensional
heat capacity vs. non-dimensional temperature for three minerals, periclase, corundum
and forsterite, for which the values of θD are approximately 940 K, 1040 K and 760 K,
respectively (data fromAnderson et al., 1992). In the graph I have normalized temperature
to θD and heat capacity to the Dulong and Petit values (Section 1.1.4.3) for each of the
three minerals. This procedure makes the regularity of the behavior hinted at in Fig. 1.15
strikingly clear.What is perhaps evenmore remarkable is that thermal expansion behaves in
essentially the same way. This is shown in Fig. 8.2b, in which I normalized the coefficients
of thermal expansion for the same three minerals to the values measured at or close to the
Debye temperature, symbolized by αθD . The reason for the similar behavior arises from
the fact that heat capacity and thermal expansion are both macroscopic manifestations of
changes in atomic vibration modes. The importance of the trends shown in Fig. 8.2 for our
present purposes is that they suggest that we can represent thermal expansion coefficients
with polynomial functions similar to the ones used to express heat capacity as a function
of temperature. There appears to be less common ground regarding the actual function that
should be used to represent thermal expansion than there is for heat capacity, though. For
instance, Berman (1988) and Chatterjee et al. (1998) propose two-parameter polynomials,
Saxena et al. (1993) a polynomial with four parameters, and Holland and Powell (1998) a
single-parameter equation.

8.2.3 Bulk modulus at zero pressure

The second parameter required for the “hot isothermal compression” approach is the bulk
modulus at zero pressure and the temperature of interest: K0,T . Measurements show that
the bulk modulus of minerals decreases linearly with increasing temperature (i.e., minerals
becomeweakerwith increasing temperature). This is exemplified in Fig. 8.3, which is drawn
for the same minerals shown in Fig. 8.2 (data fromAnderson et al., 1992). The behavior of
bulk modulus with temperature is quite regular and, in contrast to heat capacity and thermal
expansion, does not appear to be significantly affected by whether the mineral is above
or below its Debye temperature. One could infer from Fig. 8.3 that our problem is easily
solved, as one would just need to obtain data such as those in this figure for all minerals,
and values of K0,T would be readily available for any temperature. Alas, this is not the
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Fig. 8.3 Variation of zero-pressure isothermal bulk modulus with non-dimensional temperature. Data from Anderson et al.
(1992).

case, because constructing curves such as those in this figure requires measurements of
the bulk modulus at high temperature and atmospheric pressure, and this is experimentally
rather difficult.What can be measured more easily is thermal expansion at high temperature
and atmospheric pressure (these are the data shown in Fig. 8.2b) and compressibility (the
inverse of bulk modulus) as a function of pressure at room temperature.We therefore need a
thermodynamic relation that allows us to calculate bulkmodulus at high temperature starting
from the measurements that are easier to make. This is a topic of immense importance in
the study of planetary interiors, as it is relevant not only to phase equilibrium but also to the
determination of the elastic constants that need to be known in order to interpret seismic
data. We can only cover the most basic aspects in this book. Two excellent references for
in-depth study are the books by D. L. Anderson (1989) and O. L. Anderson (1995).
We begin from the observation that, if both volume and bulk modulus vary regularly with

temperature at zero pressure (as suggested by Figs. 8.2b and 8.3), then the same must be
true of the relationship between the two variables at constant pressure. Figure 8.4 shows
that graphs of ln(K0,T ) vs. ln(V ) at zero pressure for the same three minerals as before are
straight lines, and, moreover, that they all have approximately the same slope, ≈−5. This
observation suggests that the parameter δT , defined as follows, may be significant:

δT ≡−
(
∂ lnKT

∂ lnV

)
P

, (8.12)

where δT is called the isothermal Anderson–Grüneisen parameter, and provides the
crucial link that makes the calculation of K0,T possible. From the chain rule of
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differentiation we get:(
∂ lnKT

∂ lnV

)
P

= ∂ lnKT

∂KT

(
∂KT

∂V

)
P

∂V

∂ lnV
= 1

KT

(
∂KT

∂V

)
P

V (8.13)

or:

δT =− V

KT

(
∂KT

∂V

)
P

. (8.14)

Also from the chain rule, and using the definition of the coefficient of thermal expansion,
(8.10): (

∂KT

∂V

)
P

=
(
∂KT

∂T

)
P

(
∂T

∂V

)
P

= 1

αV

(
∂KT

∂T

)
P

. (8.15)

From (8.14) and (8.15) it follows that:(
∂KT

∂T

)
P

=−αKT δT . (8.16)

Now, (∂KT /∂T )P is the slope of the lines in Fig. 8.3. If we can assume that the behavior
of these three crystalline solids is true of all minerals, then (∂KT /∂T )P is a charac-
teristic constant for each mineral. We can approximate this constant by substituting in
equation (8.16) values of α and KT measured at a single temperature, and some charac-
teristic value of δT . In particular, we can use the values at the reference state, α0 and K0.
Integrating equation (8.16) and taking the reference state at 298 K we get the following
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equation for K0,T :

K0,T =K0 [1− δT α0 (T − 298)] . (8.17)

If δT can be assumed to be a constant then this equation is general, as it follows from ther-
modynamic identities and not from any specific material properties. The room-temperature
values α0 and K0 are known for most minerals, but there is the difficulty of the parameter
δT . Treating it as a constant is a convenient assumption but is not strictly true. In fact, the
Anderson-Grüneisen parameter does vary with temperature, although not strongly, and it
is also somewhat different for different minerals. For most minerals at terrestrial mantle
temperatures δT varies within a factor of 2, in the range 4–8.

8.2.4 Pressure derivative of the bulk modulus

The pressure derivative of the bulk modulus,K′, is a dimensionless number that is generally
within the range 3.5–7 and close to, but smaller than, δT . If a measured value ofK′ exists for
the mineral of interest then it can be used in an EOS. It will become important to understand
where the relationship between K′ and δT comes from, however. We begin by forming the
product αKT . Using the definitions of α and KT , and identity (1.3.19) in Box 1.3, we find
that:

αKT =−
(
∂V

∂T

)
P

(
∂P

∂V

)
T

=
(
∂P

∂T

)
V

. (8.18)

Thus, the product of the two material properties α and KT gives the change in pressure with
temperature, at constant volume. This is the thermal pressure that we discussed in Section
8.1 (see Fig. 8.1) and to which we will return later. For now we note that it is an empirical
observation that for solids at high temperature, which roughly means above their Debye
temperature, αKT is a very weak function of P and T (see, for example, Anderson et al.,
1992). This is of interest for our present discussion. Taking the pressure derivative of αKT
at constant temperature we get:(

∂ (αKT )

∂P

)
T

=KT

(
∂α

∂P

)
T

+α

(
∂KT

∂P

)
T

. (8.19)

It is straightforward to prove that (Exercise 8.2):(
∂α

∂P

)
T

= 1

KT
2

(
∂KT

∂T

)
P

. (8.20)

Substituting in (8.19) and using (8.5) and (8.16), we get:(
∂ (αKT )

∂P

)
T

= 1

KT

(
∂KT

∂T

)
P

+αK ′ = α
(
K ′ − δT

)
. (8.21)

If αKT can be considered to be constant at high temperature then its pressure derivative
vanishes. In the absence of measured values for one or the other of the parameters, it is
therefore often assumed that:

K ′ ≈ δT (8.22)

This remains an approximation, generally valid at high temperature, but it is no substitute
for measured values. When the latter do exist it is found that δT ≥K ′.
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Worked Example 8.1 Somemineral reactions in the Earth’s upper mantle

Let us look at the effect of ignoring the compressibility and thermal expansion of solid
phases on the calculated location of some important phase boundaries in the Earth’s upper
mantle. As in other examples focusing on crustal and upper mantle conditions, and also
because their data set is large, allowing for the formulation of many different examples,
I will use standard state thermodynamic properties from Holland and Powell (1998). We
must therefore use their treatment for compressibility and thermal expansion, which is
based on the isothermal Murnaghan EOS. The Maple implementation of the procedures
discussed here is given in Software Box 8.1.

Software Box 8.1 Calculation of Gibbs free energy of solid phases at high pressure with
Murnaghan equation of state
Software Box 7.2 describes the procedures Peq and Teq in worksheet
th_template_4.mw. These procedures include a call to the procedure vdp, that
is also included in th_template_4.mw.

Procedure vdp calculates the total contribution of pressure to the Gibbs free
energy of reaction by calling function vdp_hp, which is included in the package
th_shomate.mw. The function vdp_hp calculates the integral of the Murnaghan
equation of state for a phase (equation (8.24)), using Holland and Powell’s data and for-
malism to calculate thermal expansion at 1 bar and the value of the bulk modulus at the
temperature of interest.An examination of the lines of code in vdp_hp and comparison
with the discussion in Section 8.2 and Worked Example 8.1 is self-explanatory.

Procedure vdp calls vdp_hp for each phase in the reaction, multiplies the Gibbs
free energy term by the stoichiometric coefficient, and adds up the contributions of all
of the phases in the reaction. In Peq and Teq this Gibbs free energy is then added to the
Gibbs free energy of reaction at 1 bar, calculated with DGT_sh, and any contribution
from order–disorder, calculated with Gord, and the condition �rG= 0 is then solved
for iteratively, as discussed in Software Box 7.2.
Peq and Teq include all of the calculations necessary to calculate the equilibrium

of a solid assemblage in which all phases are in their standard states, with Holland and
Powell’s data base. This includes the heat capacity integral, thermal expansion contribu-
tion, Murnaghan EOS pressure integral and Landau potential contribution. Calculation
of equilibrium among solid solutions is handled by adding energetic contributions from
non-unit activities, as discussed in SoftwareBoxes 5.4 and 5.5 and theMapleworksheets
referenced there (exercise left for the reader). Calculation of a full phase boundary, e.g.
as in Fig. 8.5, is accomplished by including either Peq or Teq in a do loop that iterates
over a pressure or temperature range of interest, e.g. as inworksheetsp_grt_MAS.mw.
The pressure integral of non-condensed phases is handled differently, and will be

discussed in Chapter 9.

Substituting (8.9) in (8.1) and integrating at constant T along a “hot isothermal
compression” path from zero pressure (≈ 1 bar) to the pressure of interest we get:

∫ P

0
V (P ,T )dP = V0,T

∫ P

0

(
1+ K ′P

K0,T

)− 1
K′
dP . (8.23)



396 Equations of state for solids

Making the substitution u= 1+K ′P/K0,T , we arrive quite easily at:

∫ P

0
V (P , T )dP = V0,T K0,T

K ′ − 1


(1+ K ′P

K0,T

)K′−1
K′ − 1


 . (8.24)

There are three parameters in this equation: V0,T andK0,T are functions of temperature only
and K′ is a constant (by construction of the Murnaghan EOS, see equation (8.5)).

Holland and Powell use a single-parameter equation for thermal expansion, and make
the case that trying to fit more complex equations to the high-temperature volume data
available formanymineralswould amount to “overfitting” – i.e. themore complex empirical
equations would not recover any significant information that is not already recovered by
the one-parameter equation that they propose. Their equation for α is:

α= a0

(
1− 10T −1/2

)
, (8.25)

where a0 is an empirical parameter characteristic for each mineral. This equation causes α

to approach the limiting value a0 at very high temperature, which is the behavior suggested
by Fig. 8.2b. Substituting in (8.11) and integrating we get:

V0,T

V0
= exp

(
a0

[
(T − 298)− 20

(√
T −√298

)])
. (8.26)

For conditions up to those of the terrestrial mantle transition zone the argument of the
exponential function in (8.26) is always a small number, as a0 is characteristically of order
10−5K−1, and temperatures are at most of order 2–3× 103 K.We can then use the approxi-
mation ex ≈ 1+ x, for x small (expand ex as aMcLaurin series if you don’t rememberwhere
this comes from), and we get the following expression for the volume at the temperature of
interest and zero pressure:

V0,T = V0

(
1+ a0

[
(T − 298)− 20

(√
T −√298

)])
. (8.27)

Bulk modulus at zero pressure and T is given by (8.17). Holland and Powell list values
of K0 in their data base, and set the product δT α0 in equation 8.17 constant and equal to
1.5×10−4. This appears to provide a reasonable approximation for crustal and uppermantle
conditions. In any case, because their thermodynamic data base is regressed assuming that
this is the (constant) value of the product δT α0, calculations using Holland and Powell’s
data must be carried out with this constant value in equation (8.17) in order to be consistent.
Finally, Holland and Powell point out that the amount of data available for most minerals
only warrants the use of a single value ofK′ for all minerals, and chooseK ′ = 4 as the value
that yields the best fit to all available data.As we shall see below this is also the value ofK ′
that can be expected on theoretical grounds if one assumes that this parameter is constant.
Software Box 8.1 shows that numerical implementation of the pressure integral (8.24) is
very straightforward.
Figure 8.5 (top) shows the spinel–garnet phase boundary (again!), as defined by equilib-

rium among spinel, aluminous enstatite, forsterite and pyrope (see Worked Example 5.6),
calculated both under the assumption that volumes are constant (dashed curve, which is
the same curve as in Fig. 5.9) and using equation (8.24) to account for compressibility and
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thermal expansion (solid curve). You may rightly wonder whether the preceding several
pages of formulas and thermodynamic derivations are worth the effort. The difference
between the two calculated phase boundaries is of the order of 100 bars at most, and all
but vanishes at characteristic mantle temperatures (∼1400◦C). The difference in calculated
orthopyroxene compositions may barely be outside analytical error. The problem is that this
result is not general. It is a lucky coincidence, arising from the fact that compressibilities
and thermal expansions on both sides of the reaction essentially cancel each other out. This
is not the case if either a particularly “weak” (= small bulk modulus) or “strong” mineral
occurs on one side of the phase boundary, or if thermal expansions vary significantly among
the participating minerals. It is an even greater problem in mineral reactions that evolve a
fluid phase, and in partial melting reactions, as we shall see in the following chapters. The
error incurred by ignoring volume changes of solid phases increases with pressure and is
always unacceptable at pressures higher than a few tens of kilobars.
Figure 8.5 (bottom) shows calculated phase boundaries for some model mineral reac-

tions relevant to the study of utrahigh-pressure metamorphism (UHPM) of crustal rocks
subducted to mantle depths (typically at continental collision zones). In every case the
solid line is calculated accounting for the compressibility and thermal expansion of miner-
als, and is consistent with experimental brackets, whereas calculation of the dashed lines
assumes constant volume. Coesite and diamond are perhaps the two chief diagnostic min-
erals of UHPM. Ignoring volume changes in the reactions graphite � diamond and quartz
� coesite introduces errors of the order of 3–4 kbar, or about 10% of the actual equilibrium
pressure, and equivalent to a depth uncertainty of ∼10–12 km. These large discrepancies
arise from significant differences in both bulk moduli (diamond= 5800 kbar vs. graphite=
390 kbar, coesite= 1000 kbar vs. quartz= 750 kbar) and coefficients of thermal expansion
(a0 values are: diamond= 1.65×10−5 K−1 vs. graphite= 4.84×10−5 K−1 and coesite=
1.8× 10−5 K−1 vs. quartz = 0.65× 10−5 K−1). Note that the high pressure phase in both
cases is the less compressible one, as one would expect from a closer packed crystalline
structure. Thermal expansion, in contrast, is greater for graphite relative to diamond, but
smaller for coesite relative to quartz.
The two other reactions shown in the figure are the breakdown of albite to jadeite plus

quartz, which we discussed in Worked Example 7.2, and a water-conserving reaction that
models the formation of the assemblage phengite + clinopyroxene in rocks of tonalitic
composition. Reactions such as the latter one, including ones in which amphiboles take
part, may be responsible for inhibiting dehydration-melting (see Worked Example 6.3) of
metamorphosed crust during continental subduction (Patino Douce, 2005). In both of these
cases the effect of ignoring volume changes in solid phases is less severe, but note that the
magnitude of the error is not systematic.

8.2.5 The Birch–Murnaghan isothermal EOS

Derivation of the Birch–Murnaghan EOS begins from a description of finite strain (see,
for example, Birch, 1952). Strain can be measured relative to either the deformed or
undeformed states, leading to different equations. We will describe strain relative to the
deformed state, which is known as the Eulerian convention. Measurement of strain rel-
ative to the undeformed state, known as the Lagrangian convention, leads to a more
cumbersome EOS.
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Let the distance between two points in a strained material be S, given by S2 =∑�X2
i ,

where�Xi (i= 1, 2, 3) is the distance along eachof three orthogonal directions.Thedistance
between the same points in the unstrained state is S0, where S20 =

∑
(�Xi − dXi)

2. The
increments dXi are the elongations along the three orthogonal directions. We are interested
in changes in volume only, which is a condition that is called isotropic strain. We can thus
make dXi = k�Xi , with the same proportionality constant, k < 0 (we are interested in
compression), for all three directions. The change in distance between the points is then
given by:

S2−S20 =
∑[

�X2
i − (�Xi − dXi)

2
]
=
(
2k− k2

)∑
�X2

i = 2ε
∑

�X2
i . (8.28)

The coefficient ε, known as the Eulerian strain, is a second-order tensor with nine com-
ponents εij , i = 1,2,3, j = 1,2,3. If strain is isotropic then all shear components vanish
(εij = 0 for i �= j ) and all principal components are equal (ε11 = ε22 = ε33). In this special
case the Eulerian strain tensor collapses to the scalar ε (a zeroth-order tensor), which can
be shown to be ε= 1

2 (2k− k2), as in (8.28) (Exercise 8.3).
If we now call the strained volume V =∏�Xi and let the unstrained volume be the

reference volume V0 =∏(�Xi − dXi), we find that (proof left for the reader):

V0

V
= (1− k)3 . (8.29)

We define the parameter f =−ε and with some manipulations find:

f =−ε=−1

2

(
2k− k2

)
= 1

2

[(
V0

V

)2/3
− 1

]
. (8.30)

Note that for compression it is always f > 0. The idea of the Birch–Murhanghan equation
of state is to express the elastic free energy of the material as a power series in the positive
quantity f , and then obtain the isothermal pressure, P0, as a derivative of the elastic free
energy. Because we seek to define pressure as a derivative of free energy relative to volume
at constant temperature the relevant thermodynamic potential is the Helmholtz free energy,
F =F(V ,T ), rather than theGibbs free energy (see Section 4.8.6, equations 4.124 – 4.126).
We write:

F e = a1f + a2f 2+ a3f 3+·· · (8.31)

where the subscript e specifies that this is only the elastic contribution to Helmholtz free
energy. The power series is commonly truncated at the cubic term, which generates what
is known as the third-order Birch–Murnaghan EOS, although the fourth-order term is
sometimes included too (and the algebra, which is already ungainly at third order, becomes
even more so). From equation (4.126) for a constant composition system we have, using
the chain rule:

P0 =−
(
∂Fe
∂V

)
T

=−
(
∂Fe
∂f

)(
∂f

∂V

)
. (8.32)

Because: (
∂Fe

∂f

)
= a1+ 2a2f + 3a3f

2 (8.33)
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and P0 must vanish in the uncompressed state (f = 0), we see that it must be a1 = 0. From
(8.30) we find the other partial derivative in (8.32) to be:(

∂f

∂V

)
=− 1

3V0
(2f + 1)5/2 (8.34)

so:

P0 = f

3V0
(2a2+ 3a3f )(2f + 1)5/2 . (8.35)

There are two unknown parameters in this equation, a2 and a3,which can be evaluated if we
find two linearly independent equations that relate these two parameters to experimentally
observable quantities. For example, we can fix the values of two of the derivatives of P0
at some reference pressure, such as zero pressure (because (8.35) vanishes at zero pressure
we cannot use this equation). Applying the chain rule to the definition of isothermal bulk
modulus we get:

KT =−V
(
∂P0

∂V

)
T

=−V
(
∂P0

∂f

)(
∂f

∂V

)
. (8.36)

We already have ∂f/∂V (equation (8.34)). Calculation of ∂P0/∂f involves some rather unin-
teresting algebra. You can do it yourself, or have Maple do it for you, and verify the
result:

KT = (2f + 1)5/2

9V0

[
2a2+ (14a2+ 6a3)f + 27a3f

2
]
. (8.37)

Evaluating (8.37) at f = 0 (i.e. zero pressure) we find:

K0,T = 2a2
9V0,T

. (8.38)

We can also take the pressure derivative of KT , K ′T :

K ′
T =

∂KT

∂P
= ∂KT

∂f

∂f

∂P
(8.39)

and, after some additional uninteresting algebra and evaluation at zero pressure, arrive at:

K ′
0,T =

a3

a2
+ 4. (8.40)

From (8.38) and (8.40) we can get the values of a2 and a3 in terms of three parameters
that are experimentally accessible: V0,T , K0,T , and K ′

0,T . Substituting these values and
the definition of f (equation 8.30) in the pressure equation (8.35) we finally arrive at the
(Eulerian) Birch–Murnaghan equation of state to third order:

P0 = 3

2
K0,T

[(
V0,T

V

)7/3

−
(
V0,T

V

)5/3][
1+ 3

4

[(
V0,T

V

)2/3

− 1

](
K ′

0,T − 4
)]

.

(8.41)

The subscript T in the three parameters, V, K and K′ in (8.41) makes it clear that this is an
isothermal equation of state that can be used at any temperature, provided that the values of
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the three parameters are known at that temperature. If the equation is applied to calculation
of isothermal compression at the reference temperature (cold isothermal compression in
Fig. 8.1) then the parameters are labeled V0, K0 and K ′

0, but it is always necessary to
specify whether the reference temperature is 298 K or 0 K.
The second-order Birch–Murnaghan EOS is obtained by setting a3 = 0 (see

equation (8.31)). This makes K ′
0 constant and equal to 4 (equation (8.40)) which is the

value used in the Holland and Powell data set, and is comparable to the value measured for
many minerals. The resulting second-order EOS is:

P0 = 3

2
K0,T

[(
V0,T

V

)7/3

−
(
V0,T

V

)5/3
]
. (8.42)

Note that, in contrast to the Murnaghan EOS, both forms of the Birch–Murnaghan EOS are
pressure-explicit and have no analytic solutions for V.

Worked Example 8.2 The ringwoodite–perovskite phase transition in planetary mantles

If, as a first approximation, we neglect the relatively minor componentsAl and Ca, then the
chemical composition of the mantles of the terrestrial planets approaches (Mg,Fe)2SiO4,
with XMg∼0.9 for the Earth’s mantle and ∼0.8 for the mantles of Mars and the Moon
(Mg number for the mantles of Venus, Mercury and other rocky bodies are far less well
constrained). At near-surface conditions these components occur as the mineral olivine –
in fact, the stability field of olivine is what defines the Earth’s upper mantle. Olivine
undergoes phase transformations with increasing pressure, which are observed as discon-
tinuities in seismic velocities. In the Earth the first such discontinuity occurs at a depth of
∼410 km, where olivine transforms to the isochemical phase wadsleyite which has a
spinel-like structure. At a depth of ∼520 km wadsleyite in turn transforms to ringwoodite,
also (Mg,Fe)2SiO4 but with a true spinel structure. Density increases from olivine to
wadsleyite to ringwodite, but in all three phases silicon occurs in tetrahedral coordination.
At a depth of approximately 660 km in the Earth’s mantle a major phase transformation
takes place, in which ringwoodite breaks down to a phase with perovskite structure
and composition (Mg,Fe)SiO3, and an oxide phase of composition (Mg,Fe)O, which is
called either magnesiowüstite or, more appropriately in view of its relative Mg and Fe
contents, ferropericlase. This transformation, in which a silicate perovskite phase with Si
in octahedral coordination becomes stable, marks the top of the Earth’s lower mantle. The
depth interval 410–660 km, over which the olivine–wadsleyite–ringwoodite–perovksite
phase transitions take place, is known as the mantle transition zone. Other reactions
involving Al- and Ca-bearing phases such as pyroxenes, majoritic garnets and calcium
perovskite also take place in the mantle transition zone. Completing the picture, there is a
“final” silicate phase transition that occurs close to the Earth’s core–mantle boundary and
corresponds to the D′′ seismic discontinuity. It has recently been found experimentally that
this phase transition gives rise to a dense silicate phase that is isochemical with perovskite,
and is at the time of this writing called the “post-perovskite phase”.
In this example we will calculate the ringwoodite–perovskite phase boundary, and see

what we can learn from it about deep planetary interiors. There are some significant
complications, not the least of which is the paucity of well-constrained standard state ther-
modynamic properties. It is known from experimental results that ringwoodite–perovskite
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phase relations are shifted significantly in P and T between the Mg and Fe end-member
systems. In fact, at P–T conditions such as those of the terrestrial mantle transition zone
Fe-perovskite is not stable, and Fe-ringwoodite breaks down to the assemblage wüstite +
stishovite. We will thus consider the four phases: perovksite (pv = MSiO3), ringwoodite
(rw =M2SiO4), ferro-periclase (pc = MO) and stishovite (st = SiO2), where M stands for
Mgor Fe, and calculate the following four univariant reactions in each of the two-component
end-member systems.

rw � pv+ pc (st)

pv � pc+ st (rw)

rw � 2pc+ st (pv)

2pv � rw+ st (pc)

We need a full set of standard state thermodynamic properties, and here is the first prob-
lem.As of this writing there appears to be no updated and internally consistent data base for
high pressure phases comparable to, for example, those of Holland and Powell or Berman
for crustal and upper mantle phases. Part of the problem is that these ultra-high-pressure
phases are difficult to synthesize in enough quantity to allow accurate calorimetric mea-
surements, and the error bars in pressure and temperature of phase equilibrium experiments,
that can also be used to derive values of thermodynamic functions, can be considerable. I
have chosen to harvest thermodynamic data from three sources: Matsuzaka et al. (2000),
Frost et al. (2001) and Mattern et al. (2005), as a reasonable compromise between quality
and “recentness” of data, on the one hand, and mutual consistency in the treatment of heat
capacities, thermal expansion coefficients and bulk moduli on the other.As we shall see, the
results of the calculations are generally supportive of this choice. Both CP and α for these
high-pressure phases are expressed by different polynomials from those used by HP98, so
that newMaple procedures are needed in order to implement the heat capacity and volume
integrals (this is of course trivial, see Software Box 8.2). The corresponding equations are:

CP = a1+ a2T + a3T −2+ a4T 2+ a5T −3+ a6T −1/2+ a7T −1 (8.43)

and:

α= α0+α1T +α2T
−2. (8.44)

There appears to be some consensus that, at pressures such as those of themantle transition
zone and higher (we will calculate what those pressures are later), the third-order Birch–
MurnaghanEOS reproducesmineral volumes reasonablywell. In contrast to theMurnaghan
EOS, however, the Birch–Murnaghan EOS cannot be written in volume-explicit form, so
that VdPmust be integrated by parts:∫ P

0
VdP = PVP ,T −

∫ VP ,T

V0,T

P dV , (8.45)

where V0,T is the zero pressure volume and VP ,T is the volume at the pressure of interest,
both of them taken at the temperature of interest. If one wishes to calculate thermodynamic
functions at a given pressure, for example to locate a phase boundary, it is necessary first to
solve (numerically) for VP ,T , and then integrate (8.45), substituting the desired pressure-
explicit EOS. Both of these steps are handled with ease by Maple (Software Box 8.2).
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Fig. 8.6 Calculated reactions among ringwoodite (rw), silicate perovskite (pv), ferropericlase (pc) and stishovite (st), for the
Mg and Fe end-member systems. The dashed line shows a possible path of the pseudo-invariant point for ternary
systems of intermediate composition (it is not a phase boundary!), but note that the actual path does not have to
be a straight line. Inset shows schematic phase relations, to emphasize Schreinemakers’ legality. Thermodynamic
data fromMatsuzaka et al. (2000), Frost et al. (2001) and Mattern et al. (2005). High-pressure volumes calculated
with third-order Birch–Murnaghan EOS.

Software Box 8.2 Maple worksheets for thermodynamic calculations with solid phases at
very high pressures.
Holland and Powell estimate that their data base is reliable to pressures of order 100
kbar. Different data, and different equations, must be used to handle thermodynamic
calculations at higher pressures. I include many commonly used calculations in two
packages, so that they can be called from any other Maple worksheet.
The package th_hiP.mw parallels th_shomate.mw but substitutes heat capac-

ity equation (8.43) for the Holland and Powell (Shomate-style) equation used in
th_shomate.mw. Package th_hiP.mw contains procedures that calculateCp,

∫
Cp,∫

Cp/T,H , S andG. There is also a procedure that calculates zero-pressure volume,V(T),
by integration of equation 8.11 using equation (8.44) to express α(T ), and a procedure
that calculates zero pressure bulk modulus K(T ) using equation (8.46). Except for bulk
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modulus, parameters are passed in a one-dimensional array in which elements 1 through
7 are heat capacity coefficients (equation (8.43)), element 8 is standard state enthalpy,
element 9 is standard state entropy, element 10 is standard state Gibbs free energy
(can be set to zero if desired), element 11 is volume and elements 12 through 14 are the
coefficients of the thermal expansion equation (8.44). Bulk modulus at zero temperature
and dK/dT (equation (8.46)) are passed as individual variables.
The package S_EOS.mw contains procedures that calculate pressure and the value of∫
VdP (integrated by parts, see equation (8.45)) for the pressure-explicit version of the

Murnaghan EOS (solve equation (8.9) for P ), the third-order Birch–Murnaghan EOS
(equation (8.41)), the second-order Birch–Murnaghan EOS (equation (8.42)), and the
Born–Mie EOS (equation (8.56)). The rather messy

∫
PdV definite integrals are handled

implicitly by Maple, resulting in very compact procedures.
Worksheet delgcalc_hi_p.mw contains examples of the use of some of the

procedures in these packages, applied to the calculation of phase boundaries among
pure end-member high pressure phases. This worksheet was used to construct Fig.
8.6. Procedures load and deltareax work as in previous examples (see Software
Box 1.1), but load is slightly modified to accommodate the different format of the high
pressure data set. Procedure vdp calculates

∫
VdP for each phase in the reaction, and

adds up the total pressure contribution to the Gibbs free energy of reaction. Procedure
dGPT calculates the total Gibbs free energy of reaction at P and T. Solution of the
equilibrium condition is implemented in delg0 which uses an iterative procedure, as
the integral in thevdp procedure does not allowuse ofMaple’sfsolve facility.delg0
solves for pressure (in kbar) at given T (in centigrade) and requires an initial pressure
guess. A value of 500 kbar appears to be a good choice for the initial pressure guess.
Procedure delg0 finds equilibrium conditions among pure end-member phases, but
can be easily modified if desired to find equilibrium among solid solutions, by adding
an RTlnK term.

Calculation of a phase boundary among pure end-member phases is accomplished
by the do loop in Pbound, which works in the same way as in many similar prior
procedures. Input parameters are the reaction name, the range of temperatures over
which to solve, the temperature increment between consecutive solutions, the initial
pressure guess, and the name of the output file.
The statement block at the end of the worksheet defines the stoichiometries of all of

the reactions included in the phase diagram in Fig. 8.6. Remember that this statement
block must be executed before the phase boundary calculation is attempted, or an error
message will result.

The third-order Birch–Murnaghan EOS contains three parameters. V0,T is calculated
from (8.11), using (8.44). In the data sources used for this example K is assumed to be a
linear function of temperature, so that:

K0,T =K0+ dK

dT
(T −T0) . (8.46)

Finally, K′ is also treated as a constant, but with different and characteristic values for
each phase (compare Holland and Powell’s treatment for lower pressure phases, in which all
phases are assigned the same value of K′ ). Values of K0, K′ and ∂K/∂T , as well as of all
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the other thermodynamic parameters, for all of the phases used in this exercise are given
in Matsuzaka et al. (2000), Frost et al. (2001) and Mattern et al. (2005). The numerical
implementation is discussed in Software Box 8.2, and the results are shown in Fig. 8.6.
The calculated reactions are consistent with Schreinemakers’s rule, as shown in the inset

diagram. The invariant points for each of the two end-member systems are labeled [Fe]
and [Mg]. The Fe-absent system, [Fe], is more closely applicable to the mantles of the
terrestrial planets. As we shall see later, the temperature in the Earth’s mantle at the 660 km
discontinuity may be ∼1600◦C, which in the Mg end-member system corresponds to a
pressure of∼245 kbar.As we shall also see, this corresponds to a depth of∼700 km, which
is close to, but not exactly, the expected value. The calculated phase diagram shows that
adding Fe to the system shifts the equilibrium to lower pressures, with the invariant point
following a path such as the one suggested by the dashed line (the actual path does not
have to be a straight line – the line is for illustrative purposes only). In another numerical
example towards the end of this chapter we will incorporate the effect of varying XMg and
see whether a better agreement with the depth of the observed seismic discontinuity can be
obtained.
An interesting feature of the phase diagram in Fig. 8.6 is that the ringwoodite–perovskite

phase transition has a negative Clapeyron slope (as this is true of both end-member systems
it is almost certainly true in general). Thismeans that if the transition is crossed isothermally,
or nearly so, in the direction of increasing pressure (�V < 0) then the reaction is endothermic
(�H = T�S > 0) and, conversely, it is exothermic during decompression.

8.3 Isothermal equations of state from interatomic potentials:
the Born–Mie EOS

Consider equation (8.2) (with Pel = 0) and let us define the pressure components more
rigorously. We shall require that all of the energy of vibration of atoms about their equi-
librium positions be expressed macroscopically as thermal pressure, Pth. We will derive
expressions forPth in Section 8.4. For nowwe focus on the fact that from this requirement it
follows that Pth vanishes at 0 K. The pressure associated with isothermal compression at 0
K arises only from the energy of position of the atoms or, more accurately, from changes in
the energy of position that arise from changes in interatomic distances (i.e. P =−∂E/∂V if
T = 0, see equation (4.12)). Now, in order for a crystalline structure to be stable (i.e. neither
collapse nor fly apart) there must be both attractive and repulsive forces between atoms.
The equilibrium interatomic distance is where the two forces balance each other out. We
can then express the energy of position of the atoms, also called the lattice energy, EL, as
the sum of an attractive (negative) potential and a repulsive potential (recall the definition
of potential from Section 1.3.1):

EL =− a

rm
+ b

rn
=− a

V m/3
+ b

V n/3
, (8.47)
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where a, b, m and n are positive constants, r is the equilibrium interatomic distance, and V
is the equilibrium volume (which goes as the cube of r). At absolute zero we can write:

P0 =−
(
∂EL

∂V

)
. (8.48)

Note very carefully that, because the natural variables of internal energy are volume and
entropy, the isothermal derivative (8.48) is true only at 0 K (see equation (4.12)). Isothermal
EOS derived from interatomic potentials are therefore only strictly correct at zero tempera-
ture, and in this case we must take V0 at T0= 0 K, even if the difference in volume between
0 K and 298 K is small and is often ignored.
Applying (8.48) to (8.47) we get:

P0 =−am
3
V
−
(
m+3
3

)
+ bn

3
V
−
(
n+3
3

)
. (8.49)

We now seek the values of two of the constants, a and b, in terms of m and n. Why will
become clear soon – for now we note that we need two linearly independent equations in a
and b. From (8.49) at zero pressure we easily find:

a

b
= n

m
V
(m−n3 )
0 . (8.50)

We can also calculate the bulk modulus from (8.49):

KT =−V
(
∂P

∂V

)
T

=−am(m+ 3)

9
V
−
(
m+3
3

)
+ bn(n+ 3)

9
V
−
(
n+3
3

)
. (8.51)

Evaluating 8.51 at zero pressure (V = V0) and using (8.50) we find:

a = 9K0

m(n−m)V
(
m+3
3

)
0 , b= 9K0

n(n−m)V
(
n+3
3

)
0 , (8.52)

where K0 is the isothermal bulk modulus at 0 K and zero pressure. Substituting in (8.49)
we finally arrive at:

P0 = 3K0

m−n


(V0

V

)(m+3
3

)
−
(
V0

V

)( n+3
3

)
 . (8.53)

This equation is known as the Mie equation of state. It is not complete, as the values of the
exponents m and n in (8.47) are still undetermined (see also Exercise 8.4). The simplest
way of addressing this is to assume that the attractive potential is due only to electrostatic
forces, which vary as the inverse square of distance, so thatm= 1 (compare equation (1.8)
for the gravitational potential). We then need an additional equation to get the value of n,
which can be estimated from the pressure derivative of K at zero pressure, K ′

0. Applying
the definition of bulk modulus to (8.53) we find:

K = K0

m−n


(m+ 3)

(
V0

V

)(m+3
3

)
− (n+ 3)

(
V0

V

)( n+3
3

)
 . (8.54)
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Note that in (8.54) K0 is the bulk modulus at zero pressure and zero temperature, whereas
K is the bulk modulus at some other pressure (given by the value of V), but still at zero
temperature. Differentiating (8.54) relative toP (more uninteresting algebra) and evaluating
at zero pressure we get the pressure derivative of the bulk modulus at zero pressure and
zero temperature:

K ′
0 =

1

3
(n+m+ 6) . (8.55)

Substituting m= 1 and n from (8.55) in (8.53) we arrive at the following equation, known
as the Born–Mie EOS:

P0 = 3K0

3K ′
0− 8


(V0

V

)( 3K′0−4
3

)
−
(
V0

V

)( 4
3

) . (8.56)

8.4 Thermal pressure

We can argue on the basis of physical intuition that thermal pressure must vary directly
with the vibrational energy of atoms about their equilibrium positions, and inversely with
volume, i.e.:

Pth = γ
Evib

V
. (8.57)

This equation states that thermal pressure is proportional to the vibrational energy density.
The proportionality factor γ is known as the Grüneisen ratio and appears in a number
of geophysical applications. Equation (8.57) is the starting point for statistical mechani-
cal approaches to calculating thermal pressure. These entail finding expressions for Evib

as sums of individual vibrational modes and allow, in principle, ab initio calculations of
thermal pressure, i.e. calculations that rely on minimal empirical knowledge of specific
material properties. Such calculations are beyond the scope of this book, and Imention them
only for completeness. We will calculate thermal pressure following a thermodynamic (i.e.
macroscopic) approach.
From (8.2), and neglecting electron pressure, we have:(

∂P

∂T

)
V

=
(
∂P0

∂T

)
V

+
(
∂Pth

∂T

)
V

. (8.58)

Because in (8.2) we defined P0 at constant temperature, the first term in the right-hand side
of (8.58) vanishes. Using identity (8.18) we infer:(

∂Pth

∂T

)
V

= αKT . (8.59)

Thermal pressure can therefore be calculated by integrating the product of the (macroscopic)
material properties αKT . We shall return to this integral in a moment. First, we note that
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because solids only have vibrational degrees of freedom, the vibrational energy density
equals the internal energy density, so that we can differentiate (8.57) as follows:(

∂Pth

∂T

)
V

= γ

V

(
∂E

∂T

)
V

= γCV

V
. (8.60)

Comparing with (8.59) yields a definition of the Grüneisen ratio in terms of experimentally
accessible macroscopic quantities:

γ = αKT V

CV
. (8.61)

We now return to the calculation of thermal pressure. As thermal pressure is calculated
along a constant-volume path (see Fig. 8.1) we can find it by integrating (8.59):

Pth =
∫ T

0
(αKT )dT . (8.62)

The lower limit of integration is 0 because thermal pressure, which arises from atomic
vibrations, vanishes only at 0 K. Thus, and as I mentioned previously, in order for the
calculation to be rigorously correct isothermal compression must be calculated at 0 K.
In order to evaluate the integral (8.62) we not only need to know how the product αKT
varies with temperature but also, and more subtly, how it changes with volume. The latter
information is needed even if the integration path is at constant volume because the value
of this volume will be different depending on how much the material is compressed at zero
temperature (see Fig. 8.1). From our discussion in Sections 8.2.2 and 8.2.3, see in particular
Figs. 8.2 and 8.3, we see that KT decreases linearly with temperature and, above the Debye
temperature, α increases approximately linearly with temperature. We can thus expect that
their product will not be very sensitive to temperature above θD , and this expectation is
borne out by experimental measurements. Fig. 8.7 shows non-dimensional plots of αKT
normalized to the value of this product at the Debye temperature, versus non-dimensional
temperature, T/θD, for the same three minerals as in Figs. 8.2 and 8.3 (data fromAnderson
et al., 1992). Although in detail it is necessary to account for the small deviations observed
above θD (seeAnderson, 1995), assuming thatαKT is constant above theDebye temperature
is commonly an excellent approximation.
For T > θD, which is the case for planetary interiors at depths greater than the top few

kilometers, we can break up (8.62) as follows:

Pth = (αKT )D (T − θD)+
∫ θD

0
(αKT )dT , (8.63)

where (αKT )D is the approximately constant high temperature value of αKT , for example
measured at some T above the Debye temperature. If the regular non-dimensional behavior
depicted in Fig. 8.7 is truly universal (or at least applicable to the chief minerals in deep
planetary interiors) then an additional simplification is possible. Let AD be the area under
the (nearly identical) curves in Fig. 8.7 in the interval [0,1], given by:

AD =
∫ 1

0

(αKT )

(αKT )D
d

(
T

θD

)
= 1

θD (αKT )D

∫ θD

0
(αKT )dT . (8.64)
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Fig. 8.7 Variation of the productαKT , normalized to the values of the product at the Debye temperatures, relative to
non-dimensional temperature. Data from Anderson et al. (1992). The area under the curves between 0 and 1 is
approximately 0.77.

Numerical integration of the curves in Fig. 8.7 yields AD ≈ 0.77, so:

∫ θD

0
(αKT )dT ≈ 0.77θD (αKT )D (8.65)

and, substituting in (8.63):

Pth ≈ (αKT )D (T − 0.23θD) , T ≥ θD . (8.66)

Other thermodynamic approximations to thermal pressure may be found, for example, in
Anderson (1995) and Jackson and Rigden (1996), but my approximation, equation (8.66),
appears to work reasonably well. Thermal pressures for T < θD can be calculated in a
similar manner, by integrating numerically (8.64) to the desired temperature.

Worked Example 8.3 Thermal pressure in planetary mantles

Let us compare the relativemagnitudes of thermal pressure and elastic pressure (see equation
(8.2)) along mantle adiabats.We re-write the condition of hydrostatic equilibrium (equation
(2.34)) as a function of depth, z, as follows:

dP

dz
= gρ = g

v
, (8.67)
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where v is specific volume (i.e. volume per unit of mass). We will first calculate zero-
temperature pressure as a function of depth inside a planet by integrating this equation as
follows:

z− zr = 1

g

∫ P

Pr

V dP , (8.68)

where Pr is the pressure at some reference depth, zr . If we choose the reference depth as the
surface of the planet then zr = Pr = 0, but as we shall see we cannot always do this.Whereas
in previous discussions we considered density to be a constant, we will now incorporate the
variation of density with pressure (at constant T = 0). This requires a function V = V (P ),
i.e. an isothermal EOS, which for this example I choose to be the Born–Mie EOS, equation
(8.56). In order to use a pressure-explicit EOS such as this one wemust integrate by parts, so
we substitute (8.45) in (8.68) and, accounting for the non-zero lower integration limit, obtain:

z= zr + 1

g

[
PVP −PrVPr +

∫ VPr

V0

PdV −
∫ VP

V0

PdV

]
. (8.69)

In this equation V0 is the zero-pressure volume, as usual, VP is the volume at the pressure of
depth z, andVPr is the volume at the pressure of the reference depth,Pr , all taken at the same
temperature, 0 K in this case. The integral is easily implemented in Maple (see Software
Box8.3), but there is an important point that Iwant to stress here: equation (8.69) is a function
of the form z= z(V ). Thus, the calculation procedure requires that we choose a value of VP ,
use this value to calculate P from the EOS (e.g. equation (8.56) if we choose the Born–Mie
EOS), and then evaluate the integral in (8.69). In other words, the independent variable in
the calculations is volume (or density), and both pressure and depth are functions of V. This
may sound odd, but it is required by the pressure-explicit nature of the equations of state.

Software Box 8.3 Calculation of zero-temperature pressures in solid planets
The Maple worksheet Z_P.mw contains two procedures that generate tables of zero-
temperature pressure and density as a function of depth, by calling on the procedures in
the S_EOS package. The two procedures, ZvsP_BoMi and ZvsP_BiMu are identical,
except that they use the Born–Mie or Birch–Murnaghan EOS, respectively. The proce-
dures use density as the independent variable, convert density to specific volume, and
calculate pressure from the equation of state and depth from equation (8.69). In order to
apply these procedures to planets with phase transitions (e.g. Fig. 8.9) the procedure is
run separately for each layer, using the pressure and depth at the bottom of each layer as
the starting point for the next layer. The material properties for each phase, molar vol-
ume and bulk modulus, are always the zero-pressure values (see discussion in Worked
Example 8.3).

If we knew nothing about phase transitions in the Earth’s mantle, or chose to ignore them,
then we could start with olivine at the Earth’s surface and solve the equations (the EOS for
P and 8.69 for z) all the way to the core–mantle boundary. Using this approach we have
V0= 3.006×10−4 m3 kg−1 (corresponding toρ0= 3300 kgm−3,which is the zero-pressure
density of Fo90 olivine), K0 = 1.3 Mbar = 1.3 × 1011 Pa, K ′ = 4 and zr = Pr = 0.
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The resulting zero-temperature pressure vs. depth curve calculated with the Born-Mie EOS
and assuming a constant value of g = 9.8 m s−2 (see Chapter 2 for a justification of why
this is an acceptable approximation) is shown by the thin P0 curve in Fig. 8.8. This curve
can’t be much better than an order of magnitude approximation, however, as both density
and bulk modulus change at mantle phase transitions.
The correct procedure is, of course, to calculate the curve in various segments, changing

the material properties at each phase transition to those of the incoming phase, and setting
zr equal to the depth of the phase transition and Pr equal to the pressure at that depth. Note
very carefully, however, that the material properties of the incoming phase that are used to
solve the EOS and the depth equation, (8.69), are always the zero-pressure properties. If
you are not clear on why this is so you should derive equation (8.69) and convince yourself
that this is indeed the case.
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Fig. 8.8 Calculated pressures in the Earth’s mantle compared to pressures on the Preliminary Reference Earth Model (PREM) of
Dziewonski and Anderson (1981). Chemical composition of the mantle is assumed to be Mg1.8Fe0.2SiO4. P0 are
zero-temperature pressures calculated with the Born-Mie EOS, either ignoring olivine phase transitions (thin curve),
or assuming two phase transitions, at depths of 500 km (olivine to ringwoodite) and 670 km (ringwoodite to
perovskite + ferropericlase), see also Figure 8.9. Pth is the thermal pressure calculated with equation 8.66.
Thermodynamic calculation of thermal pressure assumes heating at constant volume (see Figure 8.1). This is not
realizable in the Earth’s upper mantle and transition zone, because self-compression of the mantle is not sufficient to
counter thermal expansion. The actual thermal pressure in the Earth’s mantle may be better represented by the
difference between PREM and the calculated zero-temperature pressure, shown by the curve labeled�Pth.
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The thickP0 curve in Fig. 8.8 was calculated in this way, assuming that olivine transforms
to ringwoodite at 500 km depth, and ringwoodite transforms to perovskite at 660 km depth.
This is still a simplification, as it ignores other phase transitions in the mantle transition
zone (olivine transforms to wadsleyite at the top of the transition zone,∼410 km deep), but
it is much better than assuming that olivine is stable throughout the entire mantle. Pressures
up to 500 km depth were calculated with the olivine properties given above. This yields
a pressure of 163 kbar at 500 km depth, and these values are set equal to Pr and zr for
the ringwoodite layer. For ringwoodite we have ρ0 = 3700 kg m−3, K0 = 1.9 Mbar =
1.9 × 1011 Pa, and K ′ = 4. With these values we get Pr = 222 kbar at zr = 660 km, which
is the top of the perovskite layer, and then use the zero pressure properties of perovskite,
ρ0 = 4200 kg m−3, K0 = 2.5 Mbar = 2.5 × 1011 Pa, and K ′ = 4 to calculate pressures
all the way to the core–mantle boundary. Figure 8.9 shows zero-temperature densities as a
function of depth calculated with this model, as well as the (hypothetical) density of olivine
if phase transitions are ignored (i.e. along the thin P0 curve in Fig. 8.8). Exercise 8.5 asks
you to verify these results.
Figure 8.8 shows that ignoring mantle phase transitions underestimates the pressure at

the core–mantle boundary by ∼200 kbar, or roughly 20% relative. This difference reflects
the fact that there are significant density jumps at the phase transitions, as shown by Fig. 8.9.
Also shown in Figs. 8.8 and 8.9 are curves labeled PREM. These curves show pressure and
density along the Preliminary Reference Earth Model of Dziewonski andAnderson (1981).
Details of how these values were calculated are complex and beyond the space available
here (see, for example, Anderson, 1989). Suffice it to say that the PREM results are not
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Fig. 8.9 Densities as a function of depth in the Earth’s mantle calculated assuming zero-temperature compression of
Mg1.8Fe0.2SiO4 ,with or without phase transitions as in Fig. 8.8. Densities along PREM shown for comparison; note the
much more complicated pattern in the upper mantle and transition zone, corresponding to mineral reactions that I
ignored in the simplified calculations.
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altogether independent of a specific choice of EOS, but they are generally accepted as a
good approximation to actual pressures and densities inside the Earth.
We first note that although PREM densities show more “texture” than the ones calcu-

lated in this example, reflecting the real phase transitions in the Earth’s mantle, they are
in generally good agreement with the simple model. PREM pressures and calculated zero
temperature pressures are virtually indistinguishable to a depth of ∼500 km, but diverge
smoothly as depth increases beyond this value. At the base of the Earth’s mantle the cal-
culated zero-temperature pressure is ∼220 kbar lower than the PREM pressure. Clearly,
thermal pressure must have a role in this discrepancy, but what exactly is this role? In order
to answer this question we calculate thermal pressure along the mantle adiabat.
Temperature along an adiabat is obtained by integrating equation (3.35), as follows:

T = TL exp

[
αg

cP
(z− zL)

]
, (8.70)

where TL is the temperature at the base of the lithosphere (top of the convective layer)
and zL is the depth to the base of the lithosphere. For Earth we can take TL = 1650 K
and zL = 150 km. Substituting in (8.66) we obtain an approximate expression for thermal
pressure along a mantle adiabat:

Pth ≈ (αKT )D

(
TL exp

[
αg

cP
(z− zL)

]
− 0.23θD

)
. (8.71)

We now need to choose characteristic values for the parameters in this equation. For many
minerals θD is of the order of 1000 K and the high-temperature (i.e. above θD) values of
α and cP are approximately 3 × 10−5 K−1 and 1.2 kJ K−1 kg−1, respectively. The high-
temperature value of αKT for closely-packed minerals is of the order of 60 bar K−1. Using
these parameter values equation (8.71) generates the curve labeled Pth in Fig. 8.8.
A “blind” application of equation (8.2) would lead us to add Pth to P0 in order to obtain

the total pressure. Figure 8.8 shows that, whereas this would yield a value comparable to the
PREMpressure at the core–mantle boundary, pressures calculated in thiswaywould become
progressively more erroneous with decreasing depth, and would be gross overestimates in
the upper mantle. What is going on here? Quite simply, that if we had applied equation
(8.2) “blindly” we would have been careless with how we applied thermodynamics to
the real world. The definition of thermal pressure (equations (8.57) or (8.59)) requires
that volume be kept constant as the material is heated, yet the Earth does not behave as
a perfectly rigid container. At shallow depth, where the zero-temperature pressure and
the (calculated) thermal pressure are of comparable magnitudes, compression of the mantle
under its ownweight (often called self-compression) cannot keep themantle fromexpanding
as its temperature increases. The zero-temperature (elastic) pressure corresponds to the load
that is available to keep the volume of the “container” fixed and it is not enough to counteract
the thermal expansion of the mantle. In other words, the isochoric heating leg in Fig. 8.1
is not realizable in the Earth’s upper mantle, because the upper mantle does not behave as
a rigid vessel. In particular, Fig. 8.8 suggests that at depths less than 300 km or so thermal
pressure would be higher than zero temperature pressure, which is physically impossible
(the material would shatter).
If the material is allowed to expand freely then there can be no thermal pressure. The

increase in atomic vibrational energy that occurs with increasing temperature is in such
case expressed macroscopically as thermal expansion rather than thermal pressure. The
coincidence between PREM and P0 suggests that this is the case in the Earth’s upper mantle
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Fig. 8.10 Zero-temperature pressures and thermal pressures (calculated with the constant-volume assumption, Fig. 8.1) in
Mars and Io. Thermal pressure is likely to be vanishingly small in Io, and almost negligible in the Martian mantle.

(depths less than∼650 km). The picture at greater depths becomes more blurred. If PREM
is an accurate representation of actual pressures inside the Earth and P0 is the correct zero
temperature pressure then the difference between the two values must be thermal pressure.
This difference, let us call it the inferred thermal pressure, is shown by the curve labeled
�Pth in Fig. 8.8. The inferred thermal pressure only becomes comparable to the calculated
thermal pressure at depths in excess of 1500 km or so. This suggests that at such depths
it becomes reasonable to consider the mantle as a “constant volume” vessel, and that
a direct application of equation (8.2) to calculate pressure is likely acceptable for the Earth’s
deep mantle and core. As we move towards the surface there is not enough load to keep
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the volume perfectly constant, but neither is free expansion possible, so that some thermal
pressure builds up. This decreases with decreasing depth, until thermal pressure essentially
vanishes in the upper mantle. There is no well-defined ratio between P0 and calculated Pth
at which the actual thermal pressure becomes significant, but Figure 8.8 suggests that when
Pth is less than about 1/3P0, the constant volume approximation, and hence equation (8.2),
may become reasonably accurate.
What about application to other planets, for whichwe do not have PREMas a benchmark?

Figure 8.10 shows Po and Pth calculated for the mantles of Mars and Io (core–mantle
boundaries assumed to be at 1630 km and 1100 km depth, respectively, after Lodders &
Fegley, 1998). In the case of Mars I assumed an adiabatic (convecting) mantle below
a 700 km lithosphere, with TL = 2000 K and g = 3.7 m s−2. For Io I assumed a thin
lithosphere (zL = 50 km), with TL = 2000 K and g = 1.8 m s−2. In both cases I assumed
that olivine does not undergo phase transitions. The case of Io is unambiguous: temperature
is high enough and gravitational acceleration low enough that calculated thermal pressure
is everywhere higher than zero temperature pressure, by a large factor. This means that Io’s
interior must behave as an essentially unconfined solid or, in other words, that pressure in
Io’s interior is well approximated by zero-temperature pressure, with a vanishingly small
thermal component. In the case of Mars we find that at the core–mantle boundary Pth ≈ 0.6
P0. By comparison, a similar relationship occurs in Earth at a depth of∼600 km, where the
inferred thermal pressure,�Pth, is∼ 10 kbar, or about 5% of the zero-temperature pressure.
One could tentatively conclude that thermal pressure is generally negligible in the Martian
mantle. Thermal pressures in the Moon and Venus are left as an exercise for the reader.

Worked Example 8.4 The ringwoodite–perovskite phase transition in planetarymantles revisited

In Worked Example 8.2 we calculated phase diagrams for the Mg and Fe end-member
systems of mantle silicates. If we focus on the stishovite-absent phase boundary we see
that, in an Fe-Mg system, we can write three linearly independent heterogeneous equilibria
along this phase boundary:

(i)Mg2SiO4 �MgSiO3+MgO

(ii) Fe2SiO4 � FeSiO3+FeO

(iii)MgSiO3+FeO� FeSiO3+MgO. (8.72)

Excess mixing properties for perovksite, ringwoodite and periclase are not well known, and
in any case a set of mixing properties consistent with the standard state properties that I
chose to calculate the phase diagram in Fig. 8.6 does not exist (see Worked Example 5.7
for why this is important). Under these circumstances, and as a first approximation, we will
treat the three phases as being ideal solutions. Assuming that all phases are binary Mg–Fe
solutions we write the equilibrium conditions for the three reactions as follows:

(i) K(i) = exp

(
−�rG

0,(i)
P,T

RT

)
= X

pv
Mg ·Xpc

Mg(
Xrw
Mg

)2
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(ii) K(ii) = exp

(
−�rG

0,(ii)
P,T

RT

)
=
(
1−Xpv

Mg

)
·
(
1−Xpc

Mg

)
(
1−Xrw

Mg

)2

(iii) K(iii) = exp

(
−�rG

0,(iii)
P,T

RT

)
=
(
1−Xpv

Mg

)
·Xpc

Mg

X
pv
Mg ·

(
1−Xpc

) . (8.73)

At fixed pressure and temperature these are three equations in three unknowns, so that
we can solve for the compositions of the three phases at equilibrium. It is always a good
idea to check that this is consistent with the phase rule. In the Fe-Mg system we haveF= 3
and c= 3, so f = 2 and everything is fine – fixing two intensive variables fully determines
the thermodynamic state of the system.
Let us now calculate the composition of the phases at equilibrium at the 670 km discon-

tinuity, and compare the results to the structure and composition of the terrestrial mantle. In
order to do this we use the pressure vs. depth values from PREM (shown in Fig. 8.8), and
combine them with temperatures as a function of depth calculated with (8.70), assuming
TL = 1650 K at zL = 150 km. This yields a curve of pressure vs. temperature, labeled
“Terrestrial adiabat” in Fig. 8.11. Calculated conditions at the 670 km discontinuity are
∼238 kbar and ∼1600 ◦C, shown with the dash-dot lines in the figure. Using these values
in the solution of the system of equations (8.73) (Software Box 8.4) yields Xpv

Mg = 0.86,

Xrw
Mg = 0.9 and Xpc

Mg = 0.82, which compares rather favorably with the Mg number of
the terrestrial mantle of ∼90. It is hard to say to what extent this agreement is fortuitous,
but it is encouraging. If correct, it means that for the composition of the Earth’s mantle
the stishovite-absent reaction is displaced relative to the Mg end-member so that it goes
through 238 kbar at 1600 ◦C. The calculation also predicts that Fe partitions into the oxide
phase relative to the silicates, which agrees with experimental findings.

Software Box 8.4 Fe–Mg exchange among ringwoodite, perovskite and ferropericlase
Mapleworksheetfe_mg_exch_hiP.mw contains two new procedures that solve the
system of equations in Worked Example 8.4 and generate the P–X loop in Fig. 8.12.
Procedure FMX calls on dgPT (see Software Box 8.2) to solve the system of non-
linear simultaneous equations (8.73), for the three unknowns XMg

pv, XMg
rw and XMg

pc.
Executing the statement block following the procedure runs FMX and outputs the three
mol fractions to the screen. Procedure FMX_LOOP encloses FMX in a pressure loop and
generates a file that lists the three mol fractions as a function of pressure, at constant
temperature. This output is used to construct Fig. 8.12. Remember that the statement
block at the end of the worksheet, where the reaction stoichiometries are defined, must
be executed before the Fe-Mg calculations are attempted, or an error messagewill result.

The attentive reader should have noticed that, given that ringwoodite–perovskite–
periclase equilibrium in the Fe-Mg system is divariant, the three phases must coexist over
a pressure range at constant temperature. This is the behavior depicted in the right hand
panel of Fig. 6.18. By solving the system of equations (8.73) for a range of pressures at a
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Fig. 8.11 Terrestrial and Martian adiabats superimposed on the phase diagram of Fig. 8.6, with some reactions omitted for
clarity. The diagram predicts that stabilization of silicate perovskite in the terrestrial mantle at the 670 km
discontinuity would take place for a bulk composition with XMg ≈ 0.9, which agrees almost perfectly (and perhaps
somewhat fortuitously) with the mantle composition. The Martian adiabat terminates at the conditions of the
core–mantle boundary, shown with a star. The ringwoodite–perovskite phase transition would take place at the
conditions of the Martian core–mantle boundary for a bulk composition with XMg ≈ 0.64, which is more ferroan that
any likely Martian mantle composition. Silicate perovksite is therefore unlikely to be present in the Martian mantle.
Breakdown of ringwoodite to ferropericlase+ stishovite is also unlikely if temperatures in the Martian mantle are of
the order of those estimated in Section 3.9, see also Fig. 3.18.

constant temperature (say 1600 ◦C) we can construct a pressure–composition loop such as
that in Fig. 6.18. This is shown in Fig. 8.12, but there are two complications. First, as Fig. 8.6
shows, the stishovite-absent equilibrium must become metastable at a certain XMg value.
Calculation of the exact XMg and P at which this happens is left as an exercise. In Fig.
8.12 I truncate the diagram at 225 kbar, which is close to the conditions at which the
stishovite-absent equilibrium becomes metastable relative to the perovskite-absent one (see
Fig. 8.6). The second complication is that, in contrast to the simple phase transitions dis-
cussed in Section 6.6, the equilibrium described by equations (8.73) has two phases with
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Fig. 8.12 P–XMg loop (compare Fig. 6.18) for the ringwoodite to silicate perovskite+ ferropericlase phase transition at
1600◦C. Silicate perovskite becomes metastable relative to ferropericlase+ stishovite for P–X combinations close to
the lower bounds of the diagram (see Ito & Takahashi, 1989; Matsuzaka et al., 2000; Frost et al., 2001). For bulk
XMg = 0.9, and assuming that temperature is constant (which is approximately correct for a convective mantle), the
divariant phase transition is “spread out” between 238 and 241 kbar, corresponding to a depth interval of∼7 km.

differentXMg on one side of the reaction. In Fig. 8.12 I show the composition of ringwood-
ite with a solid curve, and the compositions of the two phases that coexist on the other
side of the reaction, perovskite and periclase, with broken lines. The bulk composition of
the assemblage perovskite + periclase must lie between these two curves, and is shown
schematically with a solid curve. The two solid curves, labeled rw and pv + pc, are the
boundaries of the divariant phase transition at the 670 km discontinuity. For a mantle with
XMg = 0.9, breakdown of ringwoodite at 1600 ◦C begins at∼238 kbar and is completed at
∼241 kbar. Thus, the divariant assemblage ringwoodite + perovskite + periclase coexists
at equilibrium over a pressure interval of∼3 kbar, which corresponds to a depth interval of
∼7 km (see, Fig. 8.8). This result compares favorably with estimates based on the sharpness
of the seismic discontinuity.

Let us now repeat the exercise for the Martian mantle. In this case we use the zero-
temperature Born–Mie pressures shown in Fig. 8.10 and temperatures calculatedwith (8.70)
assuming TL = 2000 K at zL= 700 km (see Section 3.9). Using zero-temperature pressures
is justified by our finding that thermal pressure in the Martian mantle is likely to be small.
The resulting P–T curve is labeled Martian adiabat in Fig. 8.11, and terminates at the
pressure of the Martian core–mantle boundary (CMB), shown with a star in the figure.
Calculated conditions at the Martian CMB are ∼200 kbar and ∼2180 K, for which the
solution set of equations (8.73) is Xpv

Mg = 0.6, Xrw
Mg = 0.64 and Xpc

Mg = 0.53. Given that the
Martian mantle is more magnesian than this (Mg number about 80), and that the perovskite
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phase transition at any pressure less than that of the CMB would require an even more
Fe-rich composition than that calculated for the CMB (see Fig. 8.11), we can infer that
perovskite does not exist in the Martian mantle. Moreover, if the temperatures estimated
in Section 3.9 are approximately correct, then the Martian adiabat also stays on the high
temperature side of the invariant point, and breakdown of ringwoodite to ferropericlase +
stishovite is also inhibited. We can thus conclude that the silicate phase at the base of the
Martian mantle is likely to be ringwoodite.

Exercises for Chapter 8

8.1 The ringwoodite–perovskite transition, that defines the bottom of the mantle transition
zone, has a negative Clapeyron slope (Fig. 8.6). In contrast, the olivine–wadsleyite
transition, that defines the top of the transition zone, has a positive Clapeyron slope.
Discuss how each of these transitions may affect the mantle adiabat.

8.2 Prove identity 8.20: (
∂α

∂P

)
T

= 1

KT
2

(
∂KT

∂T

)
P

. (8.20)

8.3 Prove that if all shear strain components vanish (εij = 0 for i �= j ) and all diagonal
elements of the strain tensor are equal (ε11 = ε22 = ε33) then strain is isotropic, meaning
that elongation is proportional to the distance between points only, and independent of
orientation. Also, prove that in this special case Eulerian strain is related to the pro-
portionality constant between elongation and distances by ε= 1

2 (2k− k2), see Section
8.2.5.

8.4 Note that the Mie EOS (equation (8.53)) is formally identical to the second-order
Birch–Murnaghan EOS (equation (8.42)). To make it identical would require thatm=
4> n= 2. Is this physically reasonable? Explain why. (Hint: find the extrema of the
function.) How does the Born–Mie EOS get around this problem?

8.5 ReproduceFigs. 8.8 and8.9, using theMapleworksheets described inSoftwareBox8.3.
Plot density vs. pressure in the simplified three-layer mantle described in these figures.
Comment on your results.

8.6 On the basis of the discussion in Section 3.9, construct a possible adiabat for Venus.
Assuming that the Venusian mantle has the same composition as the terrestrial mantle,
estimate the depth of the ringwoodite–perovskite transition in Venus. As a very rough
approximation estimate the depth of the olivine-ringwoodite (metastable) transition by
scaling your result to Fig. 8.9. Calculate curves of zero-temperature pressure vs. depth
and thermal pressure vs. depth for Venus, and comment on your results.

8.7 The phase diagram in Fig. 8.12 shows that the high-pressure assemblage perovskite +
ferropericlase is richer in Fe than the low-pressure phase ringwoodite. Yet the mantle
transition zone is an isochemical boundary. Explain the apparent contradiction.
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From a physical point of view a fluid is a material that lacks shear strength, i.e. that deforms,
or “flows”, when subject to shear stress. The strain rate for a given shear stress is of course
highly variable, and defines the viscosity of the fluid. From a chemical thermodynamic point
of view it is convenient to distinguish between different types of fluids. There are fluids with
relatively low densities and low viscosities, which tend to be highly mobile in planetary
environments. These are often referred to as “volatiles”, and are typically composed of
species in the system C–O–H–N–S–F–Cl, with inert gases (particularly He) also important
in gas giants. There are also fluids with generally higher densities than volatiles, which
also have much higher viscosities, typically by several orders of magnitude. If such fluids
exist at equilibrium with solids of broadly similar bulk composition we call them melts
(Chapter 10). Melts in terrestrial planets are chiefly silicates, although natural carbonate
melts also exist, as do metallic melts in planetary cores. Melts in icy satellites, in contrast,
are likely to be composed chiefly of species in the system C–O–H–N. A third type of
fluids are liquids at conditions that are far removed from equilibrium with solids of similar
bulk composition, but that may contain species in solution that crystallize their own solids.
Aqueous solutions (Chapter 11) are an example.

The boundaries between these different types of fluids are not always clearly defined.
In this chapter we will discuss the thermodynamics of fluids that can be described as
volatiles. These can be gases, i.e. non-condensed phases that expand indefinitely, liq-
uids, which are condensed and strongly incompressible fluids, or supercritical fluids,
whose physical properties vary continuously between those of gases and liquids (see also
Section 1.15).

9.1 Fugacity and standard state fugacity

In Chapter 5 we saw that the chemical potential of a gas species, i, in a mixture of ideal
gases at total pressure P is given by:

µiP ,T = µ
0,i
P(o),T

+RT ln

(
pi

P(o)

)
= µ

0,i
P(o),T

+RT ln

(
XiP

P(o)

)
, (9.1)

where pi is the partial pressure of species i in the mixture, and P(o) is the pressure of some
arbitrarily chosen standard state, inwhich species i is pure. InChapter 5 (e.g. equation (5.86))
we chose P(o) = 1 bar, and this is indeed the usual practice for gases. We shall return to this
convention soon, but for clarity in the following derivations it is best to leave the value of
P(o) temporarily unspecified.

420
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We can write the chemical potential of a gas species in a mixture of real gases as a
combination of ideal and excess, or residual, contributions:

µiP ,T = µiP ,T , id +µiP ,T ,res = µ
0,i
P(o),T

+RT ln

(
XiP

P(o)

)
+µiP ,T ,res . (9.2)

We now define a dimensionless parameter φi , called the fugacity coefficient of species i in
the mixture, by the expression:

RT lnφi ≡ µiP ,T ,res (9.3)

and re-write (9.2) as follows:

µiP ,T = µ
0,i
P(o),T

+RT ln

(
Xiφ

iP

P(o)

)
. (9.4)

We can collect the terms in the numerator of the logarithmic function and define a new
thermodynamic function, called fugacity, by means of the following two equations:

fi ≡Xiφ
iP (9.5)

lim
P→0

fi

XiP
= 1. (9.6)

Note the following properties of fugacity: (i) equation (9.5) defines fugacity as a phys-
ical quantity with units of pressure, (ii) equation (9.3) makes the fugacity of an ideal
gas (µres=0) identical to its partial pressure, or its total pressure if Xi = 1, and
(iii) equation (9.6) states that at vanishingly small total pressure the fugacity of any gas is
equal to its partial pressure. As long as T ! 0 (e.g. T ≥ 298 K), a pressure of 1 bar is under
most circumstances low enough for (9.6) to be valid. Unless otherwise stated, then, we shall
assume that (9.6) is always valid at 1 bar and call this condition the ideal gas limit. We also
note that, although not explicitly stated in (9.3) and (9.5), fugacity and fugacity coefficient
are functions of temperature and pressure.
Let us consider now the special case of a pure gas. In this case Xi = 1 and we re-write

(9.5) as follows:

f 0 = φ0P , (9.7)

where f 0 and φ0 are called the standard state fugacity and standard state fugacity
coefficient, respectively. Considering (9.4) for a pure substance and substituting (9.7)
we find:

µ0
P ,T = µ0

P(o),T +RT ln

(
f 0

P(o)

)
. (9.8)

In equation (9.8) I dropped the superscript i to emphasize that we are now dealing with a
pure substance. The two chemical potentials in this equation can be taken as two possible
standard states, at P and P(o). Using the relationship V = (∂G/∂P )T we can also relate the
two standard states as follows:

µ0
P ,T = µ0

P(o),T +
∫ P

P(o)

VdP, (9.9)
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which results in:

RT ln

(
f 0

P(o)

)
=
∫ P

P(o)

V dP . (9.10)

We now introduce the usual convention for gases, i.e. P(o) = 1 bar, and (9.10) becomes:

RT lnf 0 =
∫ P

1
V dP , (9.11)

which is the definition of standard state fugacity. We will use this equation to calculate f 0

(Section 9.5). Note that, as I will do from now on, I have omitted the denominator in the
argument of the logarithmic function in (9.11). It must be tacitly understood that we are
dividing by 1 bar, however, so that fugacity retains its pressure dimension.
With the convention P(o) = 1 bar equation (9.8) becomes:

µ0
P ,T = µ0

1,T +RT lnf 0, (9.12)

which shows that standard state fugacity is a function that converts the standard state of a
real gas at 1 bar to the standard state at any arbitrary pressureP, and at the same temperature.
Physically we can think of the standard state fugacity of a real gas as its thermodynamic
effective pressure, i.e the pressure that an ideal gas with the same chemical composition
would have to be under in order to generate the observed chemical potential of the real
gas (compare (9.12) with (9.1), setting Xi = 1). Equation (9.12) provides a simple way of
calculating the standard state chemical potential of a pure gas species at any pressure and
temperature.We first take the gas from the reference temperature (298 K) to T, at a constant
pressure of 1 bar, by evaluating the heat capacity integrals for enthalpy and entropy (Box
5.1). This yields µ0

1,T : the standard state chemical potential at 1 bar and T. We then add the
standard state fugacity term, in order to obtain the standard state chemical potential at P and
T. The standard state fugacity is calculated by integrating (9.11), substituting an appropriate
equation of state. The choice of equation of state, and the integration procedure, will be
discussed later in this chapter.
If we now consider a gas species in a mixture of real gases then substituting (9.5) in (9.4)

we get:

µiP ,T = µ
0,i
1,T +RT lnfi (9.13)

where in this case the fugacity of species i in the mixture, fi , plays the role of a thermo-
dynamic effective partial pressure. Amore useful interpretation of equation (9.13) is that it
defines fugacity as a measure of the difference between the chemical potential of a species
in its 1 bar standard state and the chemical potential of the species in the system of inter-
est, regardless of whether or not the species is actually present in a fluid phase, or even
of whether or not a fluid phase is present. Note that even though we defined fugacity by
considering the behavior of chemical species in a gas phase, equation (9.13) as interpreted
in the previous sentence is an equally valid definition of fugacity, that makes no a priori
statement regarding the existence of a fluid phase. In fact, we can also start from (9.13) and
work our way backwards to equation (9.1), which is how fugacity was initially defined by
G. N. Lewis, about a century ago.
The importance of interpreting fugacity as a difference between chemical potentials is

that it makes it possible to attach physicalmeaning to results such as the one that we obtained
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in Worked Example 5.5. There we calculated a partial pressure of oxygen of order 10−40
bar. It is hard to make sense of this number from a molecular point of view, but in terms
of fugacity it is easily understood as a representation of the chemical potential of oxygen,
relative to that of pure oxygen at the same temperature and 1 bar. Comparing (9.12) with
(9.13) it also follows that the activity of species i in a fluid, ai is given by:

ai = fi

f 0
. (9.14)

Although (9.14) is rigorously correct we shall not use this relationship, as it is redundant.
Because of the condition imposed by equation (9.6) fugacity is defined in absolute terms,
relative to the behavior of the ideal gas at vanishingly small pressure, and it is a number
that by itself carries all the information that we need.

Worked Example 9.1 Mineral-fluid reactions: hydration of peridotites

Mantle peridotites emplaced in the Earth’s continental crust, or incorporated into the ocean
floor, typically undergo retrograde metamorphism. The anhydrous high-temperature ultra-
mafic assemblage is replaced partially or completely by hydrous minerals, transforming the
rock into a serpentinite. A simple Mg end-member model reaction for this process is the
formation of chrysotile from forsterite plus enstatite, according to:

2Mg2SiO4+Mg2Si2O6+ 4H2O→← 2Mg3Si2O5 (OH)4 . (9.15)

In the presence of a volatile phase that contains no species other thanH2O this is a univariant
reaction. If we choose the value of one intensive variable, for example, temperature, then all
other intensive variables are fixed by the assemblage. This includes the chemical potential
of H2O or, equivalently, the fugacity of H2O, which in this case must be the standard
state fugacity, f 0(H2O), at the equilibrium temperature and pressure. Volatiles in planetary
interiors are seldom composed of pure H2O, however, and may contain C, S, N, F and Cl in
addition to H and O. The variance of an equilibrium such as (9.15) in nature is thus greater
than 1. Regardless of what the actual variance of the system is, however, as long as the
three solid phases in (9.15) coexist at equilibrium the chemical potential of H2O is fixed
by this equilibrium. This means that fixing T and P fixes the fugacity of H2O, f (H2O).
We state this by saying that the assemblage enstatite + forsterite + chrysotile buffers the
fugacity, or chemical potential, of H2O.We note from our preceding discussion that it must
be f (H2O)≤f 0(H2O), with the equality holding only for the special case of univariant
equilibrium, in which no other components are present in the fluid phase.
In order to calculate the fugacity of H2O buffered by (9.15) we write the equilibrium

condition for this reaction as follows:

�rG
0,(9.15)
1,T +

∫ P

1
�VsolidsdP − 4RT lnf (H2O)= 0. (9.16)

Note that in (9.16) the standard state Gibbs free energy change is calculated at 1 bar and
the temperature of interest. The contribution of pressure to Gibbs free energy change is
then split into two components that are calculated separately, one for the solid phases
and the other for the gas species. This is necessary because the equations of state for
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solids and gases are different, as we will see later in this Chapter. We discussed how to
calculate the standard state Gibbs free energy change in Chapter 5 (e.g. Box 5.1), and how
to calculate the pressure integral for solids in Chapter 8. Hence, calculation of f (H2O)
from (9.16) is easily implemented in Maple by calling on previously written procedures
(Exercise 9.1).
Fugacities of H2O calculated from (9.16) are shown in Fig. 9.1, as a function of temper-

ature at constant P = 6 kbar (top), and as a function of pressure at constant T = 500◦C
(bottom). By fixing one of these two intensive variables the curves in Fig. (9.1) become
pseudo-univariant phase boundaries (Section 6.3.1 ). Also shown in the figure are curves
showing the standard state fugacity of H2O, obtained by integrating (9.11) and substitut-
ing an explicit equation of state; this will be discussed later in this chapter. The standard
state fugacity curves separate a “feasible” region from a “prohibited” region, which is
shaded in the figure. The standard state fugacity of a fluid species, which is its fugacity
in a pure fluid, is the maximum value that fugacity can take at a given P and T. Fugacity
can be less than f 0, but not greater. Equivalently, one can state that the chemical potential
at equilibrium cannot be greater than the chemical potential of the pure species, for if it
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was then the pure phase would form, lowering the Gibbs free energy to that of the pure
species.
The curves for f (H2O) along equilibrium (9.15) intersect the f 0(H2O) curves. At the

intersection f (H2O)=f 0(H2O), so these points represent equilibrium in the presence of
a fluid composed of pure H2O. The intersections in Fig. 9.1 correspond to points on the
univariant equilibrium phase boundary for reaction (9.15). The segments of the f (H2O)
curves that enter the “prohibited regions” represent impossible conditions. The H2O fugac-
ity curves must therefore terminate at the f 0(H2O) curves, but are shown in the figure
extending beyond the intersection for the sake of this discussion. The figures can also be
interpreted as saying that chrysotile is not stable at temperatures greater than, or pres-
sures less than, those at the intersection, and that these intersections are the ultimate
limits of chrysotile stability (because it must be f (H2O)≤f 0(H2O)). On the opposite
side of the intersections the four-phase assemblage enstatite + forsterite + chrysotile
+ fluid is stable, and the fugacity of H2O lies on the pseudounivariant phase bound-
ary. Because this fugacity is lower than the standard state fugacity, however, a pure H2O
fluid cannot be present at equilibrium. If a fluid is present then the distance between the
two curves is a measure of the H2O content of the fluid in equilibrium with the three
solid phases.

Worked Example 9.2 Evaporites revisited

Let us take another look at the thernardite–mirabilite equilibrium that we discussed in
Chapter 6. In Fig. 6.13 we showed the phase relations as a function of the coordinates µH2O

andT. Equation (9.13) allows us to represent the chemical potential as a fugacity, but in order
to calculate actual fugacity values it is necessary to know standard state thermodynamic
properties (see equation (9.16)). These are known for the two crystalline phases but not for
the liquid. We can therefore calculate the position of the liquid-absent equilibrium only.
Using equation (9.16) and standard state properties from Robie and Hemingway (1995) we
calculate the univariant equilibrium curve at 1 bar shown in Fig. 9.2, which is the same as
Fig. 6.13. Calculated H2O fugacities are of order 10−2–10−1 bar at T∼20–40◦C. Because
I used standard state properties for H2O gas, these are the fugacities of H2O gas. At these
P –T conditions (ideal gas limit) fugacity is equivalent to the partial pressure of H2O. The
calculated fugacity can therefore be compared to the vapor pressure ofH2O, i.e. to the partial
pressure of H2O vapor in equilibrium with its liquid (see Section 6.5.2 ). Saturation vapor
pressure is shown in the figure by the thin curve bounding the shaded “prohibited region”.
Equilibrium fugacities (or partial pressures) inside this region are impossible because liquid
H2O condenses and buffers the chemical potential of H2O, and f (H2O), at the saturation
vapor pressure. The thenardite–mirabilite phase boundary intersects the vapor saturation
curve at a temperature of∼42◦C,meaning that the (pseudo)invariant point in Fig. 6.13must
be located at a temperature lower than this. In Fig. 9.2 I show it at T ∼ 32◦C, which is its
approximate location as determined by phase equilibrium experiments (Rodríguez-Navarro
et al., 2000; Marliacy et al., 2000). The metastable extension of the liquid-absent reaction
is shown projecting to its intersection with the vapor saturation curve. The other two phase
boundaries are shown schematically. The precise conditions for the formation of thenardite
vs. mirabilite can be obtained from the diagram, with partial pressure converted to relative
humidity if desired.
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Worked Example 9.3 Oxygen fugacity along iron oxidation reactions

The multiple oxidation states of iron: Fe0, Fe2+, Fe3+, and its very large cosmic abun-
dance give this element the capability of serving as an oxygen buffer in many planetary
environments. Increasingly oxidized states of Fe can be related by the following three reac-
tions, conventionally called QFI (quartz–fayalite–iron), QFM (quartz–fayalite–magnetite)
and HM (hematite–magnetite), respectively:

2Fe+SiO2+O2
→←Fe2SiO4 (9.17)

3Fe2SiO4+O2→←2Fe3O4+ 3SiO2 (9.18)

4Fe3O4+O2
→←6Fe2O3. (9.19)

Using equation (9.16) it is a simple exercise to calculate f (O2)− T curves for the three
reactions, which are shown for a constant pressure of 1 bar in the top panel of Fig. 9.3
(note that, with the exception of fayalite, all solid phases in these reactions undergo lambda
phase transitions, whose free energy contributions must be included in equation (9.16), as
we discussed in Section 7.6). The thermodynamic meaning of the f (O2)−T curves is the
same as that of the chrysotile dehydration curves in Fig. 9.1: as long as a given solid phase
assemblage is present oxygen fugacity is buffered at the values along the corresponding
curve.There are a couple of important differenceswith the serpentinization example, though.
First, because oxygen fugacity values are many orders of magnitude smaller than 1, it is not
necessary toworry about the standard state fugacity of oxygen, as the curves staywell within
the “feasible” region. This is another way of saying that oxygen has a strong affinity for
most other elements, so that one is unlikely to come across oxygen in a state approaching its
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Fig. 9.3 Top: oxygen fugacity as a function of temperature along three successive Fe oxidation reactions, at P = 1 bar.
Bottom: oxygen fugacities along Fe oxidation reactions as a function of pressure, at T = 1000◦C.

standard state. Oxygen fugacity in the terrestrial atmosphere,∼0.2 bar, is not at equilibrium
with the Earth’s surface, but makes it possible for me to write this and for you to read it. I
discuss this topic in Chapter 14. Second, in the case of the chrysotile dehydration reaction it
is possible, but not necessary, to give the H2O fugacity values an interpretation in terms of
mol fraction of H2O in a fluid (more on this later in this chapter). For oxygen fugacities such
as those in Fig. 9.3 this interpretation becomes problematic, as we already noted. Oxygen
fugacity along buffering reactions such as those in Fig. 9.3 must be seen as a measure of the
chemical potential of O2, independently of whether or not a fluid phase exists at equilibrium
with the solid phases. This same interpretation is of course also valid for H2O fugacities
in Fig. 9.1 and 9.2, but in those cases we can also make meaningful inferences about fluid
composition, assuming that a fluid phase exists.
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The effect of pressure on oxygen fugacity along the three buffering reactions at a constant
temperature of 1000◦C is shown in the bottom panel of Fig. 9.3. From 1 bar to 100 kbar
(which is within the range of pressures that Holland and Powell’s data base is expected
to be reliable) oxygen fugacity along the QFI buffer reaction stays several orders of mag-
nitude below the other two, but the QFM and HM buffers intersect at P ≈ 57 kbar. This
is an intersection between two pseudounivariant reactions (Section 6.3.1 ), that defines a
pseudoinvariant point. The HM reaction is degenerate, so it crosses the pseudoinvariant
point without becoming metastable, but the QFM reaction must become metastable at the
pseudoinvariant point. Two other reactions, magnetite-absent and oxygen-absent, must also
radiate from the pseudo-invariant point. These reactions, shown in Fig. 9.3 in their correct
calculated locations, are:

2Fe2SiO4+O2
→←2Fe2O3+ 2SiO2 (9.20)

2Fe3O4+SiO2
→←2Fe2O3+Fe2SiO4. (9.21)

The first reaction is an analog to the QFM buffer which is not stable in the Earth’s crust
and shallow mantle, but that can be expected to substitute for QFM as the oxide–silicate
buffer at greater depths. The second reaction is called an iron disproportionation reaction.
It entails no change in oxidation state, but rather the segregation of Fe2+ and Fe3+, that
occur together in magnetite, into a ferric phase (hematite) and a ferrous phase (fayalite).
Because it is oxygen-absent it plots parallel to the f (O2) axis.

9.2 Liquid–vapor equilibrium. Critical phase transitions redux

In Section 1.15, see in particular Fig. 1.16, we saw that non-ideal gases span a range of
densities between those of ideal gases and liquids. In order to develop equations of state
appropriate for non-ideal gases, then, we must first discuss the nature of the liquid–gas
phase transition in some detail. We recall that gases are non-condensed fluids because
they expand indefinitely as pressure decreases, whereas we call liquids condensed fluids
because they do not behave in this manner. A vapor is a gas in equilibrium with its liquid.
As temperature increases, the properties of liquid and vapor at equilibrium approach each
other, until the two phases become indistinguishable at the critical temperature. Above the
critical temperature a single fluid phase is stable, called a supercritical fluid. The density of
supercritical fluids may vary from values typical of liquids to values typical of ideal gases.
The defining property of a supercritical fluid is that in it there is no discontinuous phase
transition separating both states. This behavior is reminiscent of that of solid solutions and
order–disorder transitions in crystalline solids (Chapter 7).

9.2.1 The van der Waals equation of state

Ideal gases do not condense at any temperature or pressure, as by hypothesis they lack
intermolecular forces. Thus, in contrast to the ideal gas EOS, we require that any EOS for
a real gas be able to reproduce condensation and the existence of a critical phase transition.
The simplest equation of state that can achieve this was proposed by the Dutch physical
chemist J. D. van der Waals in 1873. The van der Waals EOS is not quantitatively accurate,
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but thanks to its simplicity and its correct qualitative behavior it remains a powerful tool
with which to gain insight into the behavior of real fluids. Some of the more refined EOS
that we will discuss in later sections follow the van der Waals equation in spirit, if not in
algebraic detail.
We begin by defining the (poorly named) compressibility factor of a gas, Z , as follows:

Z ≡ PV

RT
. (9.22)

For an ideal gas, Z = 1. In a real gas we expect that there are both attractive and repulsive
forces between molecules, that are not present in an ideal gas. Intermolecular repulsion will
cause Z to increase, whereas attraction will cause it to decrease. We can then write Z for a
real gas as follows:

Z = 1+�Zrepulsion−�Zattraction. (9.23)

The idea behindvanderWaals’equation, and in fact behindmostEOS for real gases, is to find
explicit expressions for the �Z terms that match the experimentally measured behavior of
fluids over aswide a range of conditions as possible.Many successful approaches, beginning
with that of van der Waals himself, entail some combination of intuition, educated guesses
and trial and error.
As both the repulsive and attractive terms arise from intermolecular potentials, it is

reasonable to postulate that the two �Z terms will vary inversely with some power of
volume: the closer the molecules are, the stronger they will interact. This is essentially the
same argument used to derive the Mie EOS, e.g. equation (8.47). Note that, just as in that
case, the qualitative statement about the relationship between volume and intermolecular
potentials says nothing about the actual value of the exponents. The van der Waals EOS
assumes that both the attractive and repulsive terms go asV−1, but the value of the exponent
could be different, and in fact this is one of the problems with this equation.
Real gas molecules have a finite volume, which in the van der Waals equation is defined

as the distance at which intermolecular repulsion becomes infinite: no matter how high
we make the pressure we cannot squeeze molecules any closer than this value. The total
molecular volume defined in this way for a mol of gas is called the excluded volume and
symbolized with b. We write the repulsive term as follows:

�Zrepulsion = b

V − b . (9.24)

This equation gives the desired behavior: repulsion becomes stronger with decreasing vol-
ume, and diverges as the excluded volume is approached (the term b must appear in the
numerator too because Z is a dimensionless number). We can immediately see two pitfalls
in this equation: first, molecules are assumed to be perfectly rigid, and second, the effect of
temperature, which is likely to affect the b parameter, is ignored. We shall return to this in
later sections.
In contrast to repulsion, the effect of attractive forces is assumed to decrease with

increasing thermal agitation, so we write:

�Zattraction = a

RT V
, (9.25)

where a is a constant with the units required to make�Z non-dimensional. Again there are
pitfalls that we will address later: a is assumed to be independent of temperature, and the
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exponents of T and V are arbitrarily assumed to be −1. Ignoring all of these problems we
substitute in (9.23) and obtain:

Z = 1+ b

V − b −
a

RT V
, (9.26)

which, by using (9.22), we recast as follows:

P = RT

V − b −
a

V 2
. (9.27)

Equation (9.27) is the van der Waals EOS. We shall now see what this equation predicts
about the behavior of fluids, following a path that parallels our prior discussions of critical
phase transitions in Chapter 7.

9.2.2 The critical point of a van der Waals fluid

For a system at equilibrium the derivative (∂P /∂V )T must be negative. This is easy to
prove formally from the equilibrium conditions for Helmholtz free energy (Exercise 9.4),
but we can also accept it on the grounds of physical intuition: in a system at equilibrium
volume can only decrease in response to an increase in pressure. For the ideal gas EOS
this condition is always true, but the van der Waals EOS may have a positive (∂P /∂V )T
derivative under certain circumstances. To see why, and what these circumstances may be,
we differentiate (9.27): (

∂P

∂V

)
T

=− RT

(V − b)2 +
2a

V 3
. (9.28)

It is obvious that (9.28) may take positive or negative values, according to the relative
magnitudes of T and V. Inside any T –V region over which the derivative is positive a single
fluid phase cannot exist at equilibrium (note the emphasis on single). In order to identify
such regions we note that the derivative vanishes where it changes sign, so we make (9.28)
equal to 0 and solve for T:

T = 2a

R

(V − b)2
V 3

. (9.29)

The shape of this function is shown in Fig. 9.4. The origin of the coordinate system is fixed
at T = 0 and V = b, as the region V < b is not physically meaningful. By construction,
(∂P /∂V )T vanishes along the curve, it is negative for temperatures above the curve and
positive for temperatures below it. Thus, the region under the curve in Fig. 9.4 is the
T –V region within which a single fluid cannot exist at equilibrium, which I will call the
“prohibited region”.
The peak of the curve is the maximum temperature at which (∂P /∂V )T may take non-

negative values. For temperatures higher than this value, let us call it Tc, (∂P /∂V )T is
negative for all values of V. This means that for T > Tc a single fluid phase that obeys van
derWaals’EOS (equation (9.27)) is stable for all V and P. By “being stable for all V and P ”
I mean that we can vary the intensive variables continuously and, as long as we stay inside
the region T > Tc there will be no discontinuity in the material properties of the phase. We
shall return to this, but for now we notice that the properties of equation (9.27) assure us
that this continuity is certainly true of density.
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Fig. 9.4 Conditions for reversal of the sign of the derivative (∂P/∂V)T for a van der Waals gas. In the shaded region below
the curve the derivative is positive, implying that a single fluid phase cannot be stable. The peak of the curve is the
critical temperature: above this temperature a single fluid phase of any density can be stable.

For T < Tc there is a “prohibited” volume (or density) interval within which a single
phase is not stable.Any volume inside this region can, however, be obtained algebraically as
a linear combination of two arbitrary volumes outside and on opposite sides of the curve – in
particular, by two volumes that satisfy equation (9.27) at the same temperature and pressure
(the equation is cubic in V, so it must have either one or three real roots). Note that these
volumes are not the two intersections of a temperature coordinate with the curve in Fig. 9.4,
as these intersections simply define the condition (∂P /∂V )T = 0. The two volumes that
we seek correspond to two stable phases of different densities, so they must lie outside of
the curve, and they must be such that they minimize the free energy of the system.We shall
return to this crucial point shortly.
At the temperature Tc the system changes from one in which two different fluids are

possible (for T < Tc) to one in which only one fluid is possible (for T > Tc). This looks a
lot like a critical temperature, and in fact it is. In order to find its value we need to locate
the maximum of the curve in Fig. 9.4, so we differentiate (9.29) and equate to 0:

dT

dV
= 2a

R

[
2V (V − b)− 3(V − b)2

V 4

]
= 0. (9.30)

The solution to (9.30) is the critical volume Vc, i.e. the volume at the critical temperature:

Vc = 3b. (9.31)

Substituting in (9.29) we get the critical temperature, Tc:

Tc = 8a

27Rb
(9.32)
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and using (9.31) and (9.32) in (9.27) we get the critical pressure, Pc:

Pc = a

27b2
. (9.33)

The set {Tc,Pc,Vc} gives the coordinates of the critical point of a van der Waals gas with
constants a and b. In the next section wewill show rigorously that a single supercritical fluid
phase is stable at T > Tc, whereas two subcritical phases, a liquid and its vapor, can exist at
equilibrium forT <Tc.At the temperatureTc the properties of the subcritical phases become
identical, marking the critical phase transition. Before we demonstrate these conclusions
formally it is important to focus on some of the similarities between the critical point of a
fluid and those that we discussed in Chapter 7, for solutions and for order–disorder phase
transitions in crystals.
We recall that the Helmholtz free energy, F , is a function of the natural variables T and

V, such that (see Section 4.8.6 ): (
∂F

∂V

)
T

=−P . (9.34)

Thus: (
∂2F

∂V 2

)
T

=−
(
∂P

∂V

)
T

= RT

(V − b)2 −
2a

V 3 (9.35)

and: (
∂3F

∂V 3

)
T

=− 2RT

(V − b)3 +
6a

V 4
. (9.36)

Substituting the values of Tc and Vc we find that both the second and third derivatives of
free energy vanish at the critical point. This is the same behavior that we found at the critical
point of a solution, and at order–disorder critical phase transitions in general (Chapter 7).We
recall that the order parameter is a quantity that vanishes at the critical point and takes non-
zero values only for T < Tc. For example, the difference in the compositions of coexisting
phases or the difference in the dimensions of the crystallographic axes. For a fluid we
may take the difference in density, or molar volume, between the two subcritical phases,
liquid and vapor, as the order parameter (see Fig. 7.8). Note also that, because the second
derivative of free energy (=−∂P/∂V ) vanishes at the critical point, so does the isothermal
bulk modulus. Equivalently, the compressibility becomes infinite. Divergence of quantities
such as compressibility and heat capacity (Fig. 7.9) is a characteristic of critical phenomena.

9.2.3 The phase diagram of a van der Waals fluid

To continue our study of real fluids it is best to recast van der Waals’ EOS into non-
dimensional form.We define the non-dimensional pressure,π, volume, φ, and temperature,
τ, as the ratiosP/Pc, V /Vc and T /Tc, respectively. The variablesπ, φ and τ are also known
as reduced variables (do not confuse this φ with the fugacity coefficient that we defined in
Section 9.1). With these coordinate transformations the van der Waals EOS becomes:

π = 8τ

3φ− 1
− 3

φ2
. (9.37)
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Fig. 9.5 Reduced pressure of a van der Waals gas (a) and its volume derivative (b), plotted as a function of reduced volume.
For a given temperature below the critical temperature (e.g. τ = 0.7) the width of the “prohibited” region in Fig. 9.4
corresponds to the dashed segment of the curve in (a). For any pressure between 0 and the local maximum of the
isotherm there are two phases at equilibrium. An example is shownby the two diamonds joined by the thin dashed line.

Because the parameters a and b disappear in this equation, this would be a universal EOS if
all fluids followed van der Waals behavior (i.e. equation (9.26)) exactly, but unfortunately
this is not the case. We will need to develop more complex EOS to deal with real fluids in a
quantitative fashion. In the meantime (9.37) is an excellent tool with which to gain physical
insight.
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Figure 9.5a shows π = π(φ) calculated with (9.37) along three isotherms, and Fig. 9.5b
shows (∂π/∂φ)τ along the same three isotherms. The supercritical isotherm, τ = 1.5, is
reminiscent of the hyperbola P ∼ 1/V that describes an ideal gas. Its slope is always
negative, implying that a single phase of continuously variable density is stable everywhere
along the isotherm. The critical isotherm, τ = 1, tends to become parallel to the supercritical
isotherm at low densities (large φ) but is generally steeper than the latter at high densities.
This hints at the existence of two distinct fluids: a highly incompressible high density
fluid for which (∂π/∂φ)τ →−∞ and a fairly compressible low density fluid for which
(∂π/∂φ)τ approaches a small negative value (see Fig. 9.5b). One could identify the former
with a condensed phase (liquid) and the latter with a non-condensed phase (gas), but along
the critical isotherm there is continuity between both states, because there is no first-order
phase transition between them. To see this, note that the critical point, τ = π = φ = 1, is
the only point on this isotherm for which (∂π/∂φ)τ = 0 and, since this point corresponds
to a maximum of the first derivative function (Fig. 9.5b), the second derivative vanishes
too, as we expected from (9.36). At the critical point the bulk modulus vanishes, but since
it never becomes negative there is no region of the critical isotherm inside which a single
fluid phase is prohibited from existing.
Along the subcritical isotherm, τ = 0.7, there is an interval, shown by the broken seg-

ment in Fig. 9.5a, inside which (∂π/∂φ)τ is positive, as seen in the corresponding curve
in Fig. 9.5b. This “prohibited” interval extends from a minimum to a maximum on the
isotherm, as it must given that (∂π/∂φ)τ vanishes at both ends of the interval. Of course, it
is possible to have an equilibrium system with {τ,π,φ} coordinates inside this region, but
the thermodynamic relations summarized in Fig. 9.5, which we will explore in more detail
in amoment, mandate that this system cannot consist of a single phase. It must bemade up of
two phases that lie on the same isotherm but on opposite sides of the prohibited region, and
at the same pressure. In this case we can identify the low-volume phase as a liquid and the
high-volume phase as its vapor.Note, however, that the diagrams in this figure by themselves
cannot tell us what the volumes of the phases that coexist at equilibrium are. In particular,
these are not the volumes at the ends of the prohibited interval, first because they do not lie
at the same pressure and second because, in this case, one of the volumes corresponds to
the unphysical condition π< 0. The latter is not a general constrain, as isotherms closer to
τ= 1 never take negative π values, but the former is (as an aside, negative pressures are not
altogether impossible, but their magnitude is limited by the cohesiveness of the material).
There is a π interval, between 0 and the maximum on the isotherm located at the right end
of the broken segment, within which (9.37) has two solutions in φ for each value of π , on
opposite sides of the prohibited interval. The thin dashed line is an example, with the two
solutions shown by the diamonds. The phase rule assures us that one and only one of these
solution pairs along each isotherm represents thermodynamic equilibrium, as we have a
system of one component and two phases, and therefore one degree of freedom, which we
have chosen to be the temperature. The phase rule does not tell us, of course, which is
the equilibrium pair. What we can be certain about, however, and what characterizes the
subcritical region, is that the two phases must be separated by a first-order phase transition,
because there is a discontinuity in volume and hence in enthalpy and entropy.
In order to find the volumes of coexisting liquid and vapor at equilibrium we begin by

calculating the Helmholtz free energy of the fluid. This we do by integrating (9.34) and
substituting the van der Waals EOS (equation (9.27)). The result is (check with Maple):
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F =−
∫ V

V0

PdV =−RT ln (V − b)− a

V
+
[
F0+RT ln (V0− b)+ a

V 0

]
, (9.38)

where F0, V0 are the Helmholtz free energy and volume at some arbitrary reference state.
Let us now define a non-dimensional Helmholtz free energy, W = F/RTc. Substituting
(9.31) and (9.32) in (9.38) we find:

W =−τ ln (3φ− 1)− 9

8φ
+
[
W0+ τ ln (3φ0− 1)+ 9

8φ0

]
. (9.39)

We can, without loss of generality, set the constant term in square brackets equal to zero –
this will move the curve of W(φ) up or down, but will not change its geometric properties.
We also find, using the chain rule and required substitutions:

∂W

∂φ
= ∂W

∂F

∂F

∂V

∂V

∂φ
=−3

8
π, (9.40)

which is the non-dimensional equivalent of (9.34).
The left-hand-side panels in Fig. 9.6show W(φ) calculated for three different values

of τ. It is now important to recall that, whereas Gibbs free energy defines the equilib-
rium condition at constant temperature and pressure, Helmholtz free energy does the same
thing at constant temperature and volume (Sections 4.8.5 and 4.8.6 ). This means that the
equilibrium state of a system at constant temperature and volume is the one that mini-
mizes Helmholtz free energy, F , or its non-dimensional avatar, W. We see in Fig. 9.6 that,
for τ > 1, i.e. above the critical temperature, the Helmholtz free energy has continuously
negative curvature, meaning that at any given volume there is only one possible stable
phase. The situation is different below the critical temperature, τ< 1. There are now two
inflection points, and two points on the curve that have a common tangent. Because the
tangent to the Helmholtz free energy curve is the negative of the pressure (equation (9.40))
the φ coordinates of these two points are the volumes of two different fluids at the same
pressure. Moreover, for all volumes in between these two the Helmholtz free energy of a
combination of these two fluids (i.e. a point on the common tangent) is lower than that
of a single fluid with the same volume, implying that the single fluid is unstable relative
to formation of liquid + vapor. The interval between φliq and φvap in the bottom left
panel of Fig. 9.6is thus the “prohibited” density interval. Outside of this interval Helmholtz
free energy has negative curvature and a single phase is stable, a high-density liquid or a
low-density gas.
The transition between the two different behaviors occurs at the critical temperature,

τ = 1. As the critical temperature is approached from below the common tangent points
approach one another, and merge at a single point at τ = 1. At this temperature the free
energy curve becomes “flat” in the neighborhood of the coordinate φ = 1 (the critical
volume), reflecting the fact that its second and third derivatives vanish (equations (9.35)
and (9.36)). A comparison of Fig. 9.6with Fig. 7.1should bring out the similarities between
the critical point of a fluid and the critical mixing point of a solution, but there are also
differences, most notably the fact that symmetry between the subcritical phases is never
possible in a fluid.
The diagram on the right of Fig. 9.6shows the phase relations of the fluid in terms of the

reduced variablesπ, φ and τ, and completes the analogy with critical mixing (Fig. 7.1). The
thick curve, called the liquid–vapor loop, bounds the “prohibited region”. Calculation of the
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liquid
+

vapor

critical point

supercritical fluid

τ = 1

τ = 1

τ = φ = π = 1

τ < 1

τ > 1

τ > 1

τ < 1

φliq

Fig. 9.6 Non-dimensional Helmholtz free energy as a function of non-dimensional volume (left panels, for the critical
temperature and temperatures above and below the critical temperature), and the phase diagram of a van der Waals
gas (right panel). Compare with Gibbs free energy diagram for a non-ideal solution in Fig. 7.1.

loop is explained inBox9.1.Anyπ–φ combination inside the loop consists of liquid+vapor,
with the equilibrium volumes given by the two intersections of the pressure coordinate,
indicated by the dashed line, with the loop. The liquid–vapor loop corresponds to the solvus
in Fig. 7.1. The supercritical fluid phase unmixes into two subcritical phases as temperature
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drops below Tc. The width of the loop, φvap−φliq , is the order parameter. The thin curves
are isotherms, with the critical isotherm (τ= 1) separating the supercritical region (shaded)
from the subcritical region. The critical isotherm is tangent to the liquid–vapor loop at the
critical point.

Box 9.1 Calculation of the liquid–vapor loop

The problem of calculating the liquid–vapor loop, e.g. in Fig. 9.7and 9.8, consists of finding the volumes of
the two subcritical phases at equilibrium. We seek to solve for three variables, the non-dimensional volumes
of the liquid and its vapor, φliq and φvap, respectively, and the non-dimensional pressure, π. Hence, we
need three independent equations, which in this case are non-linear. The first one is the equality of pressures
between the two phases,πliq = πvap , which from (9.37) yields:

8τ
3φliq− 1

− 3
φ2

liq

= 8τ
3φvap− 1

− 3
φ2

vap
. (9.1.1)

The second equation is the equality of Gibbs free energy between the two phases. Note that the Helmholtz
free energy of the two fluids at equilibrium is not the same – Fig. 9.6makes this clear. The two fluids have
different volumes, so Helmholtz free energy does not provide the correct equilibrium criterion. The two fluids
coexist at equilibrium at constant temperature and pressure, however (Fig. 9.6, right panel), so it must be
Gliq = Gvap . Now, applying the Legendre transform we find that:

G = F + PV (9.1.2)

so the equilibrium condition at constant P and T is:

�G =�F + P�V = 0 (9.1.3)

which in non-dimensional form becomes:

�ψ+ 3
8
π�φ= 0 (9.1.4)

and substituting (9.39):

−τ ln
(

3φliq− 1
3φvap− 1

)
− 9

8

(
1

φliq
− 1

φvap

)
+ 3

8
π
(
φliq−φvap

)= 0. (9.1.5)

The third equation is the equation of state, which we can apply to either the vapor or the liquid, e.g.:

π= 8τ
3φvap− 1

− 3
φ2

vap
. (9.1.6)

At a given temperature equations (9.1.1 ), (9.1.5 ) and (9.1.6 ) are a system of three non-linear equations in
the three unknownsφliq ,φvap, andπ . They are easily solved with aMaple procedure that you are asked to
write in Exercise 9.5. Solving for the vapor–liquid loop with the dimensional van der Waals EOS, or any other
EOS, is in principle no more complicated.
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Fig. 9.7 Non-dimensional pressure–volume diagram for a van der Waals fluid. The contours are isotherms (τ given on the
right edge of the diagram). The critical isotherm is tangent to the vapor–liquid loop at the critical point. In a
supercritical fluid there is no discontinuous phase transition separating “low density fluids” (= gases) from “high
density fluids” (= liquids). A discontinuous phase transition between the two phases always exists at temperatures
below the critical temperature.

Close-ups of the neighborhood of the critical point are shown in Figs. 9.7–9.9. The first of
these figures shows the pressure–volumeprojection,with temperature depicted by isotherms
(the numbers on the right-hand side are the values of τ , the two missing values are 1.01
and 1.02). Figure 9.8shows the temperature–volume projection, with pressure depicted by
isobars (showing values of π ), and Fig. 9.9shows the pressure–temperature projection with
contoured isochores (showing values of φ). The fat dot in all figures is the critical point. The
univariant phase boundary in Fig. 9.9maps the location of the liquid–vapor discontinuous
phase transition, i.e. it tracks the P–T path of the liquid–vapor loop that appears in the
other two projections. The density jump across the first-order phase transition decreases
towards the critical point, and disappears at τ = π = 1. Therefore, the univariant phase
boundary necessarily terminates at the critical point, which is a singular point on the curve,
not an invariant point (see Box 7.1). No discontinuous phase transition is possible beyond
the termination of the univariant phase boundary, but note that the critical isochore (φ= 1)
is the continuation of the univariant phase boundary (Exercise 9.6).
The distinction between condensed and non-condensed fluids, expressed, for example,

by their different densities and compressibilities, is discontinuous below the critical point.
The density of the liquid varies relatively little along the vapor–liquid coexistence curve,
but the density of the vapor decreases rapidly with decreasing pressure. Above, but in the
neighborhood of, the critical point there is a sharp decrease in the compressibility as density
increases, but no discontinuity between condensed and non-condensed phases. Where one
chooses to place the boundary between condensed and non-condensed fluid is conventional
(or unimportant): in the supercritical region, which is shaded in Fig. 9.7and 9.8, there is
no discontinuous phase transition between the two states. Supercritical fluid means that the
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fluid’s properties change continuously from those of a gas to those of a liquid, but carries
no density connotation. For example, given that the critical temperature and pressure for
nitrogen and oxygen are approximately 126 K, 34 bar and 154 K, 50 bar, respectively, air
cannot be made to condense at a discontinuous phase transition by compressing it at room
temperature – it must be cooled below its critical temperature.

9.3 The principle of corresponding states

It is an empirical observation, which was put on solid footing largely by the work of
Guggenheim (for example, 1967, pp. 135–140), that some gases follow the same behavior
if their pressure, temperature and volume are expressed as the non-dimensional reduced
quantitiesπ, τ and φ. This is known as the principle of corresponding states. It suggests that
a universal equation of state may exist, but it does not tell us what form the universal EOS
has, nor, for that matter, whether an analytic function with the properties of a universal EOS
even exists. We can quickly discard the non-dimensional van der Waals EOS, however. If
gases followed this equation as a universal EOS then their critical compressibility factor,
Zc, would be (using (9.31)–(9.33)):

Zc = PcVc

RTc
= 3

8
. (9.41)

A compilation of critical parameters for eighteen gases of interest in planetary sciences
(Table 9.1) shows that this is not the case, and thatZc is in every case significantly less than
0.375.The gases inTable 9.1are listed in order of decreasingZc. There is a group of gases for
whichZc is∼0.3. These gases are sometimes called simple gases and follow the principle of
corresponding states more or less closely.As we shall see, a simple EOS exists which, if not
completely accurate, is at least acceptable as a first order semi-quantitative approximation
to their behavior.At the other extreme there are substances such as H2O, NH3, HCN and HF
for which Zc is much less than 0.3 and, more importantly, significantly different among the
various gases. This suggests that a universal EOS for these substances does not exist. These
gases do not obey the principle of corresponding states.What distinguishes these substances
from the “simple gases” is that their molecules are strongly polar. In between there are some
gases, most notably CO2 and SO2, which depart significantly from the behavior of simple
gases but not as much as, say, H2O. This emphasizes the fact, pointed out by Guggenheim,
that there is no sharp boundary that one can draw between gases that follow the principle
of corresponding states and those that don’t.
One important consequence of the principle of corresponding states is that, if a sufficiently

simple universal EOS can be found, then the adjustable parameters of the EOS can be
calculated from the critical parameters of the gas. To exemplify this, let us assume for the
sake of argument that the van der Waals equation is the universal EOS. We could then pick
any two of the equations (9.31)–(9.33) and solve for a and b in terms of any two of the
critical parameters. If the gas followed the van der Waals EOS exactly then we would get
the same values for a and b regardless of whether we chose to solve in terms of {Tc,Pc},
{Tc,Vc} or {Pc,Vc}, as the three critical parameters would be related by (9.41). For real
gases this is not the case, however, as Zc �= 0.375. Because the pressure and temperature of
the critical point are easier to measure accurately than the critical volume, it is customary
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to solve for a and b in terms of these variables and then we have, from (9.32) and (9.33):

avdW = 27

64

R2T 2
c

Pc
, bvdW = RTc

8Pc
. (9.42)

Equations (9.42) are of interest primarily for historical and didactic reasons, as the van
de Waals EOS, even if qualitatively correct, does not provide an accurate quantitative
representation of the behavior of any real gas. For any EOSwith two adjustable parameters,
however, the samemethodology canbe applied in order to derive the values of the parameters
from measured values of Tc and Pc.

9.4 Equations of state for real fluids at P–T conditions typical of the
crusts and upper mantles of the terrestrial planets

There are two basic approaches to constructing EOS applicable over a wide range of tem-
peratures and pressures. The first one, exemplified by the van der Waals equation, is to
start from the ideal gas EOS and add adjustable parameters that account for repulsion and
attraction between molecules, and for the ways in which these forces vary with temperature
and density. These are empirical equations that are cubic in volume and are thus called
cubic equations of state. We will discuss two equations of this type, in addition to the
van der Waals EOS: the Redlich–Kwong EOS (Redlich & Kwong, 1949) and a successful
modification to this equation due to Kerrick and Jacobs (1981).
The other approach is philosophically more satisfying because it can be shown to have

physical fundamentation, but it unfortunately results in an equation of state that performs
very poorly and that can only be improved by empirical tweaks not unlike those used in cubic
EOS. As we did for some of the equations of state for solids, we begin with an expression
for the Helmholtz free energy of the fluid. In this case we consider two contributions to F ,
one corresponding to the Helmholtz free energy of the ideal gas and a second one, called
the residual free energy, Fres , that encapsulates all of the energetic effects that arise from
intermolecular interactions:

F = Fideal +Fres. (9.43)

We now write the residual term as a power series in density or, equivalently, in the inverse
of volume:

Fres =RT
(a1
V
+ a2

2V 2
+ a3

3V 3
+ ·· ·

)
, (9.44)

where the coefficients ai , called the virial coefficients, are functions of temperature. The
virial coefficients can be shown to represent the energetic effects arising from interactions
between two molecules (a1), three molecules (a2) and so on (see, for example, Mason &
Spurling, 1969). The name derives from the fact that the distribution of molecular energies
in terms of kinetic and potential energy terms is described by the virial theorem that we
discussed in Chapter 2.

Differentiating (9.43) we get:

P =−
(
∂F

∂V

)
T

=−
(
∂Fideal

∂V

)
T

−
(
∂Fres

∂V

)
T

= Pideal −
(
∂Fres

∂V

)
(9.45)
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and from (9.44) and the ideal gas EOS:

P =RT

(
1

V
+ a1

V 2
+ a2

V 3
+ a3

V 4
+ ·· ·

)
(9.46)

or, equivalently:

Z = 1+ a1

V
+ a2

V 2
+ a3

V 3
+ ·· · . (9.47)

Equation (9.46), or (9.47), with ai = ai(T ), is known as the virial equation of state. Despite
its theoretical foundation the equation is unsatisfactory. Many terms are required in order to
represent the behavior of real gases at even moderate pressures, and then at high densities
(small V) the series may diverge, i.e. terms in progressively higher powers of V become
larger rather than smaller. Its one strong point is that it provides an explicit expression for
the Helmholtz free energy (equation (9.44)), which is convenient when calculating other
thermodynamic functions such as fugacity (Section 9.5.1 ). We will discuss an equation of
state (the Pitzer–Sterner EOS) which is constructed following the same idea as the virial
EOS, i.e. beginning from an empirical function for the Helmholtz free energy, but which
is not a virial equation because the function is not a power series in V , and is therefore
not a physical representation of intermolecular potentials. Finally, we will discuss another
empirical EOS (Brodholt–Wood EOS) that combines a cubic EOS with virial-like terms.

9.4.1 Cubic equations: the van der Waals EOS revisited

We begin our discussion with the van der Waals (VDW) EOS, with the sole purpose of
understanding why it fails and what can be done about it. We will compare the predictions
of VDWand three other EOSwith the measured density of H2O at pressures of 0.1–10 kbar.
Figure 9.10shows compressibility as a function of reduced density, ρ/ρc = Vc/V . From the
definition of compressibility (equation 9.22)we also getZ=V /Videal .We can thus interpret
the vertical coordinate either as the ratio of the volume of the gas to that of an ideal gas at
the same pressure, or as the ratio of the pressure acting on a given volume of real gas to
the pressure that would be required to take an ideal gas to the same volume. In any case an
ideal gas would plot in this figure as a horizontal line at Z = 1.

Molar volumes of H2O were measured by Burnham et al. (1969) to 8.9 kbar, and extrap-
olated by them to 10 kbar. The symbols in Fig. 9.10represent the density of H2O from
0.1–10 kbar along two isotherms, circles for the critical isotherm (Tc = 647.14 K) and
triangles for 700◦C, which corresponds closely to 1.5Tc. Focusing first on the measured
behavior of H2O we see that at low density it is more compressible than an ideal gas
(Z< 1), and that it becomes less compressible than an ideal gas as density increases. This is
the behavior that we should expect from a substance with strongly polar molecules: attrac-
tion predominates at low density, but, as the molecules are squeezed more closely together,
repulsion (or the finite size of molecules) takes over. Attraction becomes less important at
high temperature, as thermal agitation tends to swamp intermolecular potentials, explaining
why the data at 1.5Tc plot at higher Z than data at the critical temperature.
At low densities, generally much lower than the critical density, the VDW EOS is mod-

erately successful, but as density increases it fails spectacularly (Fig. 9.10). This behavior
arises because the repulsive term is a constant. As density increases and V approaches b the
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Fig. 9.10 Comparison of four equations of state for H2O against measured densities at 1 and∼1.5 TC (experimental data from
Burnham et al., 1969).

pressure required to accomplish further compression diverges (equation (9.27)). An impor-
tant reason for the inadequacy of the VDW EOS is its failure to take into account the fact
that molecules are not rigid.

9.4.2 Cubic equations: the Redlich–Kwong EOS

The first successful modification to the VDW EOS was proposed by Redlich and Kwong
in 1949. In this equation the repulsive term (equation (9.24)) is left unchanged, but the
attractive term (equation (9.25)) is modified as follows:

�Zattraction = a

RT V
· 1

T 1/2
· 1

1+ b
V

. (9.48)
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The additional factors accomplish two things. The first factor causes the attractive force to
fall off faster with increasing temperature than in the VDW equation. The second factor
makes the attractive force less dependent on density. Redlich and Kwong stated that there
is no theoretical justification for these particular correction terms. Rather, they just happen
to vastly improve the agreement between the EOS and measured densities for many fluids,
especially the simple gases discussed in Section 9.3. As in the VDW equation, a and b
in (9.48) are constants with specific values for each gas. Substituting (9.24) and (9.48) in
(9.23) we get the Redlich–Kwong (RK) EOS:

P = RT

V − b −
a

T 1/2V (V + b) . (9.49)

Because this equation has only two adjustable parameters it is possible to derive their
values from the critical properties of the gas, by using the condition that the second and
third derivatives of the Helmholtz free energy vanish at the critical point. Applying these
conditions to (9.49) we get:

aRK = 0.4274802337
R2T

5/2
c

Pc
, bRK = 0.08664034997

RTc

Pc
(9.50)

andZc = 1/3. This value for the critical compressibility factor is closer to the value of∼0.3
measured for the simple gases in Table 9.1. One could then expect that the RK EOS with
parameters calculated from (9.50) may do a reasonable job of representing the properties
of these gases, at least up to moderate pressures. For substances that depart significantly
from corresponding state behavior, however, it is better to obtain the values of the a and b
parameters by fitting the equation to P–V –T measurements spanning as wide a range of
conditions as possible. The parameters for H2O in Table 9.1were obtained in this way (data
from Holloway, 1987).
The RK EOS does not solve the problem of the divergence of pressure at a finite volume

that is a characteristic of the VDW EOS. However, comparing (9.50) with (9.42) we see
that the value of the b parameter in the RK EOS is about half of that in the VDWEOS. This
means that the useful range of the RK EOS can be expected to extend to higher densities
than the VDWEOS. This is borne out by a comparison of its predictions with the measured
density of H2O up to 10 kbar (Fig. 9.10). The agreement is far from perfect, and generally
inadequate for accurate thermodynamic calculations, but is much better than for the VDW
EOS.The fit improveswith increasing temperature. However, at the highest densities shown
in the diagram the tendency for pressure to diverge clearly insinuates itself. This is a problem
with the EOS, not with H2O in particular, whichmeans that its application to simple gases is
also limited to moderate pressures, such that the molar volume remains significantly greater
than b.

9.4.3 Cubic equations: the Kerrick–Jacobs modified Redlich–Kwong EOS

Since Redlich and Kwong’s proposal of equation (9.49) many modifications have been
proposed in order to overcome the limitations of that equation.All of these EOS come under
the general label of modified Redlich–Kwong (MRK) EOS, and they are all empirical fits
of varied complexity. Among the most successful ones for conditions in planetary interiors
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is the MRK equation proposed by Kerrick and Jacobs in 1981. This equation leaves the
attractive term in the RK EOS unchanged but: (1) it makes the parameter a a function of
temperature and volume (and hence pressure) and (2) it modifies substantially the repulsive
term. The Kerrick and Jacobs (KJ) EOS is:

P = RT
(
1+ y+ y2− y3)
V (1− y)3 − a (V ,T )

T 1/2V (V + b) (9.51)

where:

y = b

4V
(9.52)

and:

a = a1 (T )+ a2 (T )

V
+ a3 (T )

V 2
(9.53)

and:

ai (T )= ci,1+ ci,2T + ci,3T 2. (9.54)

The KJ EOS has ten adjustable parameters, which obviously makes it much easier for it to
reproduce measured volumes over a wide pressure–temperature range. Figure 9.10shows
that, up to∼10 kbar, it reproduces the measured behavior of H2O almost perfectly, although
at τ = 1.5 there is a hint of the KJ EOS beginning to show divergence in the pressure, as V
approaches b/4.
In contrast to two-parameter equations, it is not possible to estimate the values of the

adjustable parameters of the KJ EOS from the critical properties. The equation can only be
calibrated by fitting it to measured volumes over a pressure–temperature range. Values for
b and the nine ci,j parameters are given for H2O and CO2 by Kerrick and Jacobs (1981)
and for CH4 by Jacobs and Kerrick (1981). Because the KJ EOS is an empirical equation
its performance beyond the range of conditions used to fit the parameters (∼0–10 kbar) is
uncertain, and application to such conditions must be done with caution.

9.4.4 Expansion of the residual Helmholtz free energy: the Pitzer–Sterner EOS

Pitzer and Sterner (1994) proposed an equation of state based on an empirical formulation
for the residual Helmholtz free energy. Their expression is most easily written in terms of
density, ρ = 1/V :

Fres

RT
= a1ρ+

(
1

a2+ a3ρ+ a4ρ2+ a5ρ3+ a6ρ4 −
1

a2

)

−
(
a7

a8

)(
e−a8ρ − 1

)−( a9
a10

)(
e−a10ρ − 1

) (9.55)
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where each of the ten adjustable parameters ai is a function of temperature parametrized
by the following polynomial:

ai (T )= ci,1T
−4+ ci,2T −2+ ci,3T −1+ ci,4+ ci,5T + ci,6T 2. (9.56)

The equation has 60 adjustable parameters, although many of them are found to be zero.
Using (9.45) the Pitzer–Sterner (PS) EOS is:

P

RT
= ρ+ a1ρ2−ρ2

(
a3+ 2a4ρ+ 3a5ρ2+ 4a6ρ3(

a2+ a3ρ+ a4ρ2+ a5ρ3+ a6ρ4
)2
)

+ a7ρ2e−a8ρ + a9ρ2e−a10ρ .
(9.57)

The equation has no physical justification but is found to reproduce the volumetric proper-
ties of H2O and CO2 to very high pressure with a remarkable degree of accuracy. Figure
9.10shows that the agreement with the measured properties of H2O to 10 kbar is essentially
perfect, but the agreement is also excellent to much higher pressures (of order 102–103

kbar), for which scattered volume measurements obtained by a variety of experimental
methods are available. The form of equation (9.57) keeps the EOS from blowing up at high
densities, as happens with cubic EOS when the molar volume approaches the value of the
excluded volume, b. The equation is calibrated for H2O and CO2 only. The coefficients for
the two gases are given by Pitzer and Sterner (1994). Given the large number of adjustable
parameters one would expect that the PS EOS would also work well for other fluid species,
but as of this writing, and to the best of my knowledge, no attempt has been made to per-
form the necessary calibrations. It would be interesting to know whether the PS EOS can
be applied successfully to other important fluid species such as CH4, CO, H2S and NH3.

9.4.5 The Brodholt–Wood EOS for H2O at high pressure

Brodholt and Wood (1993) performed molecular dynamics simulations of the properties
of H2O to 2500K and 350 kbar. They then fit the following EOS to the results of their
simulations:

P = RT

V − b −
a

T 1/2V (V + b) +
c

V
+ d

V 2
+ e

V 3
+ f

V 4
(9.58)

with:

a = a0+ a1T + a2T 2+ a3T −2 (9.59)

and:

b= b0+ b1V < 0 (9.60)

and c,d,e and f constants (values of all coefficients are given by Brodholt &Wood, 1993).
The Brodholt–Wood (BW) EOS has been described as an MRK equation with virial terms,
but I would argue that this is not correct. In the first place, the b term is always negative,
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as both b0 and b1 are negative constants. The physical meaning of the b parameter is
thus not the excluded volume. As a consequence the first term in (9.58) is not a repulsive
term, which is the intention in cubic equations of state such as MRK EOS. Second, the
terms in inverse powers of V may look like virial terms, but rigorously they are not, as
virial coefficients are defined on the basis of a series expansion of residual Helmholtz free
energy (equation (9.44)), which is not the case in equation (9.58). The BW EOS is an
empirical equation that fits the results of molecular dynamics calculations very well, and
also reproduces isolated data points for H2O volumes at extreme pressures (350 kbar), but
it has no obvious physical justification. Its one drawback is that it does not work below 10
kbar, which is a minor (but not fatal) inconvenience in the calculation of thermodynamic
functions such as fugacity. It is not known whether an equation of this type works for other
fluids too. EOS based on molecular dynamics simulations for H2O as well as for other
species of geological interest have also been proposed by Duan and co-workers (see, for
example, Duan et al., 1992, 1996, 2000; Zhang & Duan, 2009).

9.4.6 Summary

The preceding list does not come close to being an exhaustive compilation of available
equations of state. I have chosen to discuss these particular EOS either because they are
important from a historical point of view (VDW), because they have been shown to perform
adequately up to temperatures and pressures corresponding to the Earth’s upper mantle (KJ)
or the Earth’s mantle transition zone (PS and BW), or because they are a reasonable (or
only) “stopgap”EOS for some species, that can at least provide semi-quantitative predictions
(RK). Figure 9.11 compares four of these EOS for H2O and three of them for CO2 (the BW
EOS is not calibrated for CO2) from 1 bar to 300 kbar, and at 1000 K and 2000 K. The
RK and KJ EOS are not expected to yield accurate results over most of this pressure range
but are included for comparison. Both of them predict strongly incompressible fluids. This
arises from the repulsive term in cubic EOS, which becomes unphysical at high density.
The BW and PS EOS avoid this problem and are in generally good agreement with each
other and with high pressure experimental data (see Brodholt & Wood, 1993 and Pitzer &
Sterner, 1994). The PS EOS has two advantages, however: (1) it works continuously from
the ideal gas limit to very high pressure, whereas the BWEOS breaks down below 10 kbar,
and (2) it is calibrated for both H2O and CO2.
The plots in Fig. 9.11suggest that at densities of up to ∼2.5–3 times the critical density

the departure of the RK EOS from the PS EOS is rather small. One could then, tentatively
and rather carefully, suggest that the RK EOS might be used for other fluid species too at
conditions such that ρ< 3ρc. For those gases listed in Table 9.1that may conceivably exist
as free species in planetary interiors this possible upper validity bound for the RK EOS
corresponds approximately with the P–T conditions of the base of the Earth’s continental
crust. The two last columns in the table show densities calculated at 10.7 kbar and 950 K
with the RKEOS, and the ratio of these densities to the corresponding critical densities. The
latter values generally fall in the region where the RKEOS for H2O and CO2 begin to depart
significantly from the corresponding PS EOS. The RK EOS is by no means accurate, but it
may provide a reasonable first-order approximation to the behavior of fluids at P < 10 kbar
in those cases in which other EOS are not available.
The densities listed in Table 9.1offer a glimpse into the nature of deep planetary volatiles.

These are dense supercritical fluids. The density of supercritical H2O at the base of the
Earth’s continental crust is approximately the same as that of liquid H2O on the Earth’s
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Fig. 9.11 Comparison of various equations of state for H2O (top) and CO2 (bottom), for pressures ranging from 1 bar to 300 kbar
(coordinate axes as in Fig. 9.10, actual fluid densities added for comparison). The RK EOS is not accurate above a few
kbar, and the KJ EOS may be valid to a few tens of kbar. Both the PS and BW EOS are supposed to be valid to
∼300 kbar, but at densities above∼5 times the critical density they predict significantly different densities for H2O
(the BW EOS is calibrated for H2O only).

surface. Supercritical CO2 at those conditions is even denser. A more complete view is
presented in Fig. 9.12, in which I have plotted the densities of H2O and CO2 along a
possible terrestrial continental geotherm, also shown in the figure. The conductive portion
of the geotherm is constructed by fixing the temperature at 300 K at the surface, 950 K at
the Moho (40 km depth) and 1650 K at the base of the lithosphere (150 km), with pressure
calculated as in Worked Example 8.3. This is physically unrealistic because it causes a
discontinuity in thermal gradient at the Moho, but the curve as a whole approximately
mimics the curved steady-state geotherm of a crust with radioactive heat production (see
Turcotte & Schubert, 2002, Chapter 4). The adiabatic geotherm at depths greater than
150 km was calculated with (8.70). The densities of H2O and CO2 were calculated with
the PS EOS which is thought to be reliable at least to pressures of the base of the mantle
transition zone (∼240 kbar, Fig. 8.11). The densities of H2O and CO2 at those conditions
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Fig. 9.12 Densities of H2O and CO2 calculated with the Pitzer–Sterner EOS along a possible terrestrial geotherm, from the
surface to the top of the Earth’s lower mantle.

are approximately 1.85 and 2.55 g cm−3, respectively. The minimum in H2O density at
the Moho may simply be an artifact of the strong thermal gradient assumed for the crust,
which causes thermal expansion to outpace compression, but the existence of this minimum
under certain circumstances cannot be ruled out. Dense supercritical fluids such as those
represented in this figure are powerful solvents. In nature they do not exist as pure fluids,
but rather as complex solutions of silicate, oxide, carbonate and other species, with densities
higher than those shown in Fig. 9.12.

9.5 Calculation of fugacity in fluid phases

In Section 9.1we defined fugacity and we saw that it is straightforward to calculate the
fugacity of a fluid species in equilibrium with a buffering solid assemblage. Those values
by themselves do not tell us much about the nature of a putative fluid in equilibriumwith the
solids. They are best understood as a measure of the chemical potential of the fluid species
relative to its 1 bar standard state. A different problem is that of calculating the fugacities
of chemical species in a fluid phase, and the distribution of chemical species in the fluid.
We now address these questions.

9.5.1 Standard state fugacity of pure fluids

Standard state fugacity is calculated by substituting an equation of state in (9.11). Because
equations of state are generally pressure explicit we cannot integrate directly, so we fol-
low the same procedure that we used to calculate the pressure integral for solid phases
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(equation (8.45)). Integrating (9.11) by parts we get:

RT lnf 0 = PVP ,T −V1,T −
∫ VP ,T

V1,T

P dV . (9.61)

Note that, in contrast to the integral for solid phases, we cannot drop the V1,T term (which
is multiplied by 1 bar) because for a gas the difference between 1 bar and zero pressure is
not negligible. Once a particular EOS is chosen the integral is easily implemented inMaple
(Software Box 9.1). The procedure entails, first, solving the EOS for VP ,T and V1,T and
then using these values to calculate the definite integral. We can also make the substitution,
valid at the ideal gas limit, V1,T ≈ RT ; the result is numerically indistinguishable from
calculating V1,T explicitly with the EOS. If the EOS is written in terms of density, ρ, rather
than molar volume then 9.61is easily converted to:

RT lnf 0 = P

ρP ,T
− 1

ρ1,T
+
∫ ρP ,T

ρ1,T

P

ρ2
dρ. (9.62)

Software Box 9.1 Calculation of standard state fugacities
The package fluideos.mw contains procedures that calculate pressure, volume and
standard state fugacity with the equations of state discussed in Section 9.4. Pressure
is calculated directly, volume is calculated by invoking Maple’s numerical solver,
fsolve, to solve the corresponding EOS for V, and standard state fugacity is cal-
culated either by performing the integral (9.61), or, for the Pitzer–Sterner EOS, with
(9.62) and (9.63). The units that must be used in every case are cm3 mol−1 for molar
volume, Kelvin for temperature and bar for pressure and fugacity. Conversion to or from
other units must be handled by the calling procedure. Particular care must be exercised
with the volume units, which are different from the ones used in other thermodynamic
calculations in this book (i.e. J bar−1 mol−1). The reason for this is that use of cm3 mol−1
is deeply ingrained in the literature of thermodynamics of fluids, and the parameters for
the various EOS are almost always given in these units.
There are slight differences in the way each procedure must be invoked, which are

explained as comments in theMaple code. Some additional notes follow.
For the Van der Waals EOS there are procedures to calculate pressure and volume

only (no fugacity calculation). The values of the a and b parameters must be provided
by the calling procedure.
For the Redlich–Kwong EOS the calling procedure must provide the values of the

a and b parameters and, for calculation of volume and fugacity, an initial volume
guess. This is required in order to force the solution to the liquid or gas branch of
the loop. The actual value of the volume guess varies with each gas species and with
the specific P–T conditions. Some trial and error may be necessary (an inappropriate
volume guess will generate an error message). The Maple code listing includes some
suggestions.
Two sets of procedures are provided for the Kerrick and Jacobs EOS, for H2O and

CO2. The EOS parameters are included in the package, so they are not passed by the
calling procedure. An initial volume guess is required for calculation of volume and
fugacity (see above).
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Software Box 9.1 Continued
The procedures for the Brodholt–Wood EOS (for water only) should only be used

for P > 10 kbar, as the equation is not valid at lower pressures. Standard state fugacity
is calculated by adding the Kerrick–Jacobs fugacity at 10 kbar to the Brodholt–Wood
integral from 10 kbar to the pressure of interest. The EOS parameters are included in
the package, so they are not passed by the calling procedure. The initial volume guess
is included in the procedure and is not passed by the calling procedure either.
Two sets of procedures are provided for the Pitzer–Sterber EOS, for H2O and CO2.

The EOS parameters are included in the package, so they are not passed by the calling
procedure. Pressure is calculated as a function of density, not volume, but this does
not affect the procedures that calculate volume and standard state fugacity. An initial
volume guess is required for calculation of volume and fugacity (see above).
An accompanying Maple worksheet named fluidtest.mw includes examples of

the use of the procedures in fluideos.mw.

If an explicit expression for Helmholtz free energy is available (as in the case of the PS
EOS) then a further simplification is possible, as the PdV integral can be evaluated as
follows:

∫ ρP ,T

ρ1,T

P

ρ2
dρ=−

∫ VP ,T

V1,T

P dV =
∫ F 0

P ,T

F 0
1,T

dF = F 0
P ,T −F 0

1,T

=
(
F 0
P ,T −F 0

1,T

)
ideal

+
(
F 0
P ,T −F 0

1,T

)
res

=RT ln
ρP ,T

ρ1,T
+
(
F 0
P ,T −F 0

1,T

)
res

.

(9.63)

At the ideal gas limit we have ρ1,T = 1/RT and (F 0
1,T )res = 0, so this expression

simplifies to:

−
∫ VP ,T

V1,T

P dV =RT ln
ρP ,T

RT
+
(
F 0
P ,T

)
res

(9.64)

and, substituting in (9.62):

lnf 0 = P

RT ρP ,T
+ lnρP ,T +

(
F 0
P ,T

)
res

RT
+ lnRT − 1, (9.65)

where (F 0
P ,T )res is given by an equation such as (9.55).

Other procedures to calculate standard state fugacities, which rely on calculating the
fugacity coefficient rather than the fugacity itself, are commonly found in the literature.
I believe that such procedures are largely a product of the time before easily accessible
computers, because their chief advantage is that they facilitate graphic integration. I find
them to be unnecessarily confusing, as implementing (9.61) or (9.65) in a symbolic algebra
software package is straightforward.
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Worked Example 9.4 Standard state fugacities of H2O and CO2
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Fig. 9.13 Standard state fugacity coefficients for H2O and CO2 as a function of pressure at T = 1000 K, calculated with the
Redlich–Kwong, Kerrick–Jacobs and Pitzer–Sterner EOS.

Figure 9.13shows standard state fugacity coefficients for H2O and CO2 at 1000K, calcu-
lated from 1 bar to 10 kbar with the RK, KJ and PS EOS. Over this pressure range the
results for the last two EOS are for all practical purposes identical. The RK EOS predicts
noticeably different fugacities beginning at pressures of ∼1 kbar, and, relative to the other
two equations, its performance is generally better for H2O than for CO2. Note that fugacity
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coefficients are about one order of magnitude greater for CO2 than for H2O, so that the
thermodynamic effective pressure of CO2 is many times higher than its actual pressure. The
two gases also behave differently in the sense that there is a pressure range, below about
7 kbar, in which fugacity coefficients of H2O are less than 1, but this is never the case for
CO2. This difference arises from the stronger attractive term of H2O, which overwhelms
repulsion at low densities.

9.5.2 Fugacities in mixed fluids

Calculation of chemical equilibrium between a mixed volatile phase and solid or melt
phases, as well as determination of the distribution of species in a homogeneous volatile
phase at equilibrium, requires knowledge of the fugacity of each of the individual chemical
species that make up the phase. Derivation of the necessary equations is rather tedious,
and can become quite cumbersome depending on the EOS that one chooses to use, but
implementation of the final equation inMaple is generally straightforward. We begin with
equation (9.4), for the chemical potential of species i in a mixed fluid. Differentiating
relative to P, and keeping in mind that φi is a function of pressure but Xi is not, we get:(

∂µiP ,T

∂P

)
T

=RT
∂ ln
(
φiP

)
∂P

. (9.66)

But: (
∂µiP ,T

∂P

)
T

= vi (9.67)

where vi is the partial molar volume of species i in the mixture (equation (5.37)). From
(9.66) and (9.67) we get:

RT lnφiP =RT ln
fi

Xi

=
∫ P

1
vidP , (9.68)

which is equivalent to (9.11) but written in terms of partial molar properties. The problem
is that integrating this expression is not as simple as integrating (9.11). In that case V is the
volume of the gas phase. The integrand in equation (9.68) is the partial molar volume of a
specific component of the gas phase. This generally varies with pressure, temperature and
composition, so what is required in order to integrate (9.68) is an EOS that accounts for the
effects of these variables on partial molar volume, and that can do so continuously over the
integration interval [1,P ].
As usual when working with partial molar properties, the simplest way to include the

effect of phase composition is by converting to extensive properties. From the definition of
partial molar properties, equation (5.28), we write:

vi =
(
∂V m

∂ni

)
P ,T ,nj �=i

(9.69)
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where V m is the (extensive) volume of the gas mixture. Now, from partial derivative
identities (equation 1.3.19 ) we find that:

(
∂V m

∂ni

)
P ,T ,nj �=i

=−
(
∂V m

∂P

)
T ,ni

(
∂P

∂ni

)
V ,T ,nj �=i

(9.70)

which allows us to change the variable of integration in (9.68), as follows:

RT lnφiP =−
∫ Vm

P ,T

Vm
1,T

(
∂P

∂ni

)
V ,T ,nj �=i

dV m. (9.71)

This equation is general and rigorously complete , but in order to evaluate the integral we
need an explicit expression for (∂P/∂ni), and no general expression of such type exists,
as it is obviously dependent on a particular EOS. Therefore, a specific expansion of the
derivative must be found for each particular equation of state. In the following example
I illustrate the procedure with the Redlich–Kwong EOS. The procedure for other EOS is
analogous, but can be more time consuming and fill many more pages.

Worked Example 9.5 Species fugacities in a mixed Redlich–Kwong fluid

We begin by re-writing the Redlich–Kwong EOS, (9.49), in terms of the (extensive) total
volume of the gas mixture Vm = nV , where V is the molar volume of the mixture, and
n=∑ni is the total number of mols in the mixture:

P = nRT

V m−nb −
n2a

T 1/2V m (V m+nb) . (9.72)

The RK parameters a and b in this case describe the mixed gas phase, not a specific species.
As we shall see, determining reliable values for themixture parameters is themain difficulty
in calculating fugacities in mixed fluids. Using (9.72) we calculate the integrand in (9.71),
which is:

(
∂P

∂ni

)
V ,T ,nj �=i

=
RT (Vm−nb)+nRT

(
∂(nb)
∂ni

)
(V m−nb)2

− 1

T 1/2Vm



(V m+nb)

(
∂
(
n2a
)

∂ni

)
−n2a

(
∂(nb)
∂ni

)
(V m+nb)2


 .

(9.73)

This expression allows us to evaluate the definite integral in (9.71). Below I present the
final result, recast in terms of the molar volume of the mixture, V = V m/n, and including
several simplifications that arise from the fact that, at the lower limit of integration (ideal
gas at 1 bar), the following approximations are true to an excellent degree of accuracy:

V1,T + b≈ V1,T − b≈ V1,T ≈RT ,
1

V1,T
≈ 0. (9.74)
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The definite integral in (8.71) is, then:

RT lnφiP =RT ln

(
RT

VP ,T − b
)
+
RT
(
∂(nb)
∂ni

)
VP ,T − b

+

(
∂
(
n2a
)

∂ni

)
nbT 1/2

ln

(
VP ,T

VP ,T + b
)

−
a
(
∂(nb)
∂ni

)
b2T 1/2

ln

(
VP ,T

VP ,T + b
)
−

a
(
∂(nb)
∂ni

)
bT 1/2

(
VP ,T + b

) .

(9.75)

Equation (9.75) is specific to the RK EOS, and it still contains derivatives for which we
must find explicit values. These values depend on how the parameters ai and bi for each
of the individual species in the gas mixture combine to yield the a and b parameters for the
mixture. From a physical point of view the question that we are asking is how attraction and
repulsion among molecules of different gases depend on the properties and concentration
of each of the gases in the mixture. This is akin to finding an expression for excess mixing
properties in a crystalline solution (e.g. Section 5.9.3 ). For gases the problem is often
expressed algebraically by means of mixing rules, which are functions of the form a =
f (ai ,ni ) and b= f (bi ,ni ). Many mixing rules have been proposed, with greater or lesser
amounts of theoretical justification and experimental verification. In general, microscopic
mixing rules that describe interatomic potentials tend to be the ones with greater theoretical
justification, but they can only be used with EOS constructed on the basis of molecular
dynamics simulations, such as those of Brodholt and Wood and Duan and collaborators.
Mixing rules for macroscopic EOS are largely empirical. For two-parameter cubic EOS
such as the RK EOS the following mixing rules, due originally to van derWaals, are widely
used and reasonably successful:

b=
∑
i

Xibi (9.76)

a =
∑
i

∑
j

XiXj

(
aiaj

)1/2
. (9.77)

The intuitive justification for these mixing rules is easy to see. Equation (9.76) states that
the excluded volume of the mixture is the weighted average of the excluded volumes of
the individual components, whereas (9.77) states that the attractive term is the weighted
average of attractions over all types ofmolecular pairs. Both rules recover the corresponding
parameters for pure species. The fact that they are intuitively reasonable, however, does
not mean that they are theoretically justified, nor that they are the only rules that yield
empirically acceptable results. We will use (9.76) and (9.77) in this example, but it must
be understood that if any other set of mixing rules is to be used then the equations that
follow must be modified accordingly (as (9.72) through (9.75) must be modified for any
EOS other than the RK EOS). From (9.76) and (9.77) we obtain the following values for
the derivatives:

∂ (nb)

∂ni
= bi (9.78)

∂
(
n2a
)

∂ni
= 2(ai)

1/2
∑
j

nj
(
aj
)1/2

, (9.79)
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where the summation in (9.79) is over all components in the mixture, i.e. including com-
ponent i (it is a good idea to work out the derivatives on your own to see why this is so).
Substituting in (9.75) we arrive at:

RT ln
fi

Xi

=RT lnφiP =RT ln

(
RT

VP ,T − b
)
+ biRT

VP ,T − b

+ 2(ai)1/2
∑

j Xj

(
aj
)1/2

bT 1/2
ln

(
VP ,T

VP ,T + b
)

− abi

b2T 1/2
ln

(
VP ,T

VP ,T + b
)
− abi

bT 1/2
(
VP ,T + b

) .
(9.80)

It is important to understand how this equation must be used. The calculation procedure
starts with the composition of the mixed gas phase (i.e. the values of Xi for all component
species), uses these mol fractions to calculate a and b of the mixture with (9.76) and (9.77),
then these parameters are used to calculate themolar volume of the mixture atP and T ,VP ,T ,
with the RK EOS, equation (9.49), and finally the values for the mixture (a,b,VP ,T ) are
combined with ai , bi of the species of interest in (9.80), to calculate the fugacity coefficient
and fugacity of species i. AMaple implementation is discussed in Software Box 9.2.

Software Box 9.2 Calculation of fugacities and fluid speciation in mixed fluids
The Maple package RKmixing.mw contains procedures that calculate species fugac-
ities in a mixed fluid containing an arbitrary number of species, by using the
Redlich–KwongEOS andmixing rules given by equations (9.76) and (9.77). Themixing
rules are implemented in proceduresbmix andamix, and the derivative of the amixing
rule (equation (9.79), converted to mol fraction as in (9.80)) in procedure damix. The
package also contains procedures that calculate volume and fugacity with the RK EOS,
identical to those in fluideos.mw and included here for convenience only.

Procedure rkphimix is the key to this package. It calculates the fugacity coefficient
of the ith species using equation (9.80). The call to this procedure is rkphimix(X,
a, b, i, P, T, vguess), where:

X is a one-dimensional array containing the mol fractions of all species in the mixture
a is a one-dimensional array containing the RK a parameters, in the same order as X
b is a one-dimensional array containing the RK b parameters, in the same order as X
i is the index of the species of interest in the arrays (i.e. the identity of the species

for which the fugacity coefficient is to be calculated)
P and T are pressure in bar and temperature in Kelvin
vguess is an initial guess for the volume of the mixture (trial and error may be

necessary).

The procedure returns the fugacity coefficient of species i.
TheMaple worksheet phimixcalc.mw shows an example of the use of procedure

rkphimix. It calculates fugacity coefficients and fugacities, and the ratio of each of
these variables to the corresponding standard state value (as plotted in Fig. 9.14) for a
binary join. The example is for the H2O–CH4 join in the figure. In order to calculate
some other join the RK parameters must be changed in the procedure itself, as explained
in the Maple code.
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Fig. 9.14 Fugacity coefficients (top) and fugacities (bottom) in a binary H2O–CH4 mixture at 2 kbar and 400◦C, calculated with
the RK EOS, and normalized to the values of the corresponding standard state functions.

An example of fugacity-composition relationships for a binary fluid, calculated with the
RK EOS (equation (9.80)), is shown in Fig. 9.14. The fluid is assumed to consist of the
species H2O and CH4 only, although as we shall see in the following section this may be an
unrealistic constraint. The calculations are done at 2 kbar and 400◦C, atwhich conditions the
RK EOSmay still yield reasonably accurate results (e.g. Fig. 9.11). The top panel shows the
ratio of the fugacity coefficient of each species in the mixture to the corresponding standard
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state fugacity coefficient. In a mixture of ideal gases the two curves would be straight lines
at a constant value of 1. The bottom panel shows the ratio of fugacity of each species in
the mixture to its standard state fugacity. This ratio must vanish as the concentration of the
component goes to zero, and approach one as the fluid becomes pure. A mixture of ideal
gases would follow the dashed lines in the figure. TheH2O–CH4 mixture displays a positive
departure from ideal behavior, which reflects a positive excess Gibbs free energy of mixing
(Section 5.9.1 ). In principle, all of the information describing non-ideal mixing behavior of
real gases is contained in the equation of state and the mixing rules. This of course does not
mean that Fig. 9.14is an accurate representation of an H2O–CH4 mixture, first because, as
we shall see in the next section, other species are also likely to be present in non-negligible
amounts in this system, and second because the RK EOS is not accurate above pressures
of a few hundred bars. The latter point becomes particularly serious when dealing with
mixtures of polar and non-polar species, as in this case. Multiparameter equations, such as
the PS EOS, are better suited to the task, but as of this writing they have not been calibrated
for species other than H2O and CO2, thus greatly limiting their usefulness for modeling
many planetary processes.

9.6 Speciation inmulticomponent volatile phases

In a multicomponent volatile phase there is virtually unrestricted freedom of formation
of chemical species. Distinct chemical species can be considered to exist in a crystal, but
the type and number of species is limited by the stoichiometry of the compound and the
crystal chemical constraints of the crystalline structure. In a gas there are no such constraints.
Calculating the distribution of species in a homogeneous fluid is important for understanding
its chemical properties (e.g. its oxidizing potential) and physical behavior (e.g. stratification
of fluid composition in a gravitational field).
We will discuss two different approaches to calculating fluid speciation. The chemical

equilibrium approach is based on finding a linearly independent set of homogeneous equi-
librium equations among the fluid species. It is best suited to studying species distribution
in those cases in which there may be mineral assemblages that buffer the fugacities of some
of the fluid species. An alternate approach is to seek the species distribution that minimizes
the Gibbs free energy of the fluid. This is an efficient way of studying species distribution
as a function of the bulk composition of the fluid, and of identifying the conditions under
which saturation of condensed phases may take place.

9.6.1 The chemical equilibrium approach to fluid speciation

Consider a homogeneous gas phase composed of c system components, in which there are s
distinct chemical species (or phase components). The speciation problem consists of finding
the equilibrium mol fraction,Xi , i = 1 . . . s, of each of the s chemical species. We therefore
need s linearly independent equations relating these variables. There must be s− c linearly
independent conditions of homogeneous equilibrium in the gas phase (Section 6.1.3 .). Each
of these equations corresponds to a balanced chemical reaction among a subset of chemical
species. The homogeneous gas phase is a system with f = c + 2− 1 = c + 1 degrees
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of freedom. Therefore, at constant temperature and pressure it is necessary to specify the
value of c−1 intensive variables in order to fully determine the thermodynamic state of the
system. These could be, for instance, the values of the fugacities of c−1 of the fluid species.
The fluid could exist at equilibrium with a mineral assemblage that buffers these fugacities,
or we could just specify their values arbitrarily and see how fluid speciation changes in
response to changes in these variables. Alternatively, the c−1 intensive variables could be
mol fractions of c−1 system components, which fully specify the bulk composition of the
fluid phase. In either case we have so far identified a total of: s− c+ c−1= s−1 linearly
independent equations. The final equation required to solve for the species distribution is
the closure condition,

∑
i Xi = 1. Finding the species distribution consists of writing each

of these equations, and solving the system.

Worked Example 9.6 Species distribution in C–O–H fluids, (i): general relations

Fluids in which the only, or at least major, components are C, O and H are important in
many planetary environments. In this case we have c = 3, so in order to fully specify the
thermodynamic state of the system, and thus be able to calculate the species distribution
in the fluid, we need to specify the values of c− 1 = 2 intensive variables in addition to
pressure and temperature. These could be the fugacities of two of the species in the fluid,
or the bulk contents of two of the system components, say C and O (H content then follows
by difference). We shall see examples of both approaches, and why we would choose one
or the other.
In order to calculate species distribution we must begin by deciding which species are

present, or likely to be present, in the fluid phase. There are no general rules on how to do
this, and the approach is largely a combination of intuition and trial and error. For example,
undermost planetary conditions (the terrestrial atmosphere being the one notable exception)
oxygen fugacity is so low that it is fine to assumeXO2 = 0. This does not mean that we will
also make f (O2)=0, however. We will use oxygen fugacity as a measure of the chemical
potential of O2, while assuming that there is no free molecular oxygen. For other species
the decision may not be that simple. In this example we will assume that the C–O–H fluid
contains five species: H2O, H2, CH4, CO2 and CO and we will calculate the mol fractions
of these five species over a range of conditions. Other species could also conceivably be
present in non-negligible amounts, for instance: C2H6, CH2O, CH3OH. If one suspects that
this may be the case, then the fugacities of these other species can be estimated a posteriori
from the calculated species distribution, and if some of the fugacities are found to suggest
non-negligible mol fractions then the offending species can be added to the list of species,
and the species distribution calculated again.
For now let us stay with the five species, H2O, H2, CH4, CO2 and CO. This makes s = 5,

so that there must be s − c = 2 linearly independent homogeneous equilibrium reactions,
which we can choose as follows:

CH4+ 3CO2→← 4CO+ 2H2O (reaction 1)

CH4+H2O→← CO+ 3H2. (reaction 2)

Together with the condition: X (CO2) + X (CO) + X (CH4) + X (H2) + X (H2O)=1 and
the values of two externally controlled intensive variables, this gives us five equations that
we can solve for the five mol fractions.



461 9.6 Speciation in multicomponent volatile phases

Homogeneous chemical equilibrium is described by equation (5.22):

∑
i

νiµ
i = 0 (9.81)

where νi is the stoichiometric coefficient of the ith species in the reaction. Substituting
(9.13) and simplifying we get the following equation for equilibrium in a homogeneous gas
phase:

�rG
0
1,T +RT

∑
i

νi lnfi = 0 (9.82)

and substituting (9.5) and rearranging:

∏
i

(Xi)
νi =

exp

(
−�rG

0
1,T

RT

)
[
P(
∑

i νi)
]∏

i (φi)
νi
. (9.83)

At fixed P and T the values of all of the variables on the right-hand side of (9.83) are known,
except for the fact that the φi are functions of Xi (Section 9.5.2 ). This requires an iterative
solution of the system of equations, but except for this procedural detail (9.83) is an equation
in a subset of the unknowns, Xi . Each of the (s− c) homogeneous equilibrium conditions
gives rise to an equation of this form. Incorporation of the externally controlled intensive
variables is accomplished by some modification of (9.83), as we shall now see.

Worked Example 9.7 Species distribution in C–O–H fluids, (ii): inorganic methane production by
serpentinization of ultramafic rocks

The Martian atmosphere contains trace amounts of methane (Krasnopolsky et al., 2004).
Because atmospheric methane decomposes by photodissociation over times many orders
of magnitude shorter than the age of the Solar System, the observation implies that there
is active methane outgassing from the Martian surface or subsurface. One possibility is
microbial activity (Chapter 14).Another possibility is thatmethane is produced by inorganic
reactions involving hydration of ultramafic rocks in the presence of a carbon-bearing fluid.
The process consists of reduction of CO2 to CH4 by H2 generated by serpentine-producing
reactions, and is thought to be important in the Earth’s ocean floor. We will calculate
the species distribution in C–O–H fluids in equilibrium with ultramafic rocks undergoing
serpentinization. The output of the exercise will be plots of fluid species distribution as a
function of f (O2) and f (H2O), at constant temperature and pressure.
We choose to specify the values of the two intensive variables f (O2) and f (H2O) because

during serpentinization f (H2O)may be buffered by reactions such as (9.15), whereas f (O2)
may be buffered by silicate-oxide reactions such as (9.18). If f (H2O) is specified arbitrarily
then X(H2O) is given by equation (9.5):

XH2O =
fH2O

φH2OP
. (9.84)
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In order to incorporate f (O2) we write the equilibrium:

2CO+O2→← 2CO2 (reaction 3)

from which, by using (9.83) and simplifying, we get:

XCO2

XCO
= φCO

φCO2

(
fO2

)1/2
exp

(−�rG
0,3
1,T

RT

)
. (9.85)

Applying (9.83) to each of the two homogeneous equilibrium reactions, 1 and 2 in Worked
Example 9.6, we get:

(XCO)
4(

XCO2

)3
XCH4

=
(
φCO2

)3
φCH4(

φCO
)4 (

fH2O
)−2

exp

(−�rG
0,1
1,T

RT

)
(9.86)

and:

XCH4

XCO
(
XH2

)3 = φCO
(
φH2
)3

φCH4
P 3 (fH2O

)−1
exp

(−�rG
0,2
1,T

RT

)
. (9.87)

Finally, the closure condition is:

XH2O+XH2 +XCH4 +XCO2 +XCO = 1. (9.88)

Equations (9.84)–(9.88) are our five equations in the five unknownmol fractions.The system
of equations does not have an analytical solution, and the fugacity coefficients are functions
of the fluid composition. The strategy to solve the system of equations is to calculate first
the standard state fugacity coefficients, use these to solve for an initial set of mol fractions,
use these mol fractions to calculate fugacity coefficients in the mixture (e.g. with (9.80) if
the RK EOS is chosen), recalculate mol fractions, and iterate between these last two steps
until consecutive solutions converge within a desired interval.An implementation inMaple
is discussed in Software Box 9.3.

Software Box 9.3 Calculation of fluid speciation by chemical equilibrium
The Maple worksheet eq_fluid_species.mw contains procedures that calculate
fluid speciation in a C–O–H fluid as a function of f (O2) and f (H2O), at constant
temperature and pressure. The procedures arewritten specifically to solve the problem in
Worked Example 9.7. Because in this case we choose f (O2) and f (H2O) as independent
variables the system of equations can be simplified considerably. First, the mol fraction
of H2O is calculated from (9.84), and the mol fraction of H2 from:

XH2 =
fH2O

φH2P

(
KI

fO2

)1/2
, (S9.3.1)

where KI is the equilibrium constant for the reaction:

2H2O→← 2H2+O2. (I)
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This reduces the problem to a system of three equations in three unknowns:

XCO2

XCO
= φCO

φCO2

(
KII ·fO2

)1/2
XCO

XCH4

= φCH4

φCO

KIII
(
fO2

)3/2(
fH2O

)2 (S9.3.2)

XCO2 +XCO+XCH4 = 1−XH2O−XH2

where KII and KIII are the equilibrium constants for the reactions:

2CO+O2
→← 2CO2 (II)

and:

CH4+ 3/2O2→← CO+ 2H2O. (III)

Note that the equations appear to be linear but they are not, because the fugacity coef-
ficients are functions of composition. The system is solved with Maple’s fsolve
command. There are two procedures.

COH1 solves the fluid speciation as a function of log f (O2), at constant temperature,
pressure and H2O fugacity. It calculates an arbitrary number of points within
a specified log f (O2) interval. The procedure is invoked with the follow-
ing parameters, in this order: (pressure in bar, temperature
in centigrade, H2O fugacity in bar, initial log
oxygen fugacity, final log oxygen fugacity, number
of points to be calculated, name of output file).

COH2 solves the fluid speciation as a function of f (H2O), at constant tem-
perature, pressure and oxygen fugacity. It calculates an arbitrary number
of points within a specified f (H2O) interval. The procedure is invoked
with the following parameters, in this order: (pressure in bar,
temperature in centigrade, initial H2O fugacity in
bar, log oxygen fugacity, final H2O fugacity in bar,
number of points to be calculated, name of output
file).

Thermodynamic properties of the gas species are entered in the spreadsheet
RefStateData, with a Shomate-type heat capacity equation, as explained in Soft-
ware Box 1.1. The properties used in this example can be imported in tab-delimited
format from the file agaspeciesdata, or they can be copied from a spreadsheet.

An example of the results generated by the Maple procedure is shown in Fig. 9.15. All
calculations were done at 2 kbar and 400◦C. I chose these conditions as representative
of serpentinization at shallow depth in the Earth’s oceanic crust. Similar conditions may
exist in the Martian crust if some type of magmatic activity survives to this day. The top
diagram shows species distribution as a function of oxygen fugacity, calculated at constant
f (H2O)=230 bar. The serpentinization reaction (9.15) buffers the fugacity ofH2O at values
ranging from 215 bar for XFo = 0.9 to 250 bar for XFo = 0.8, corresponding to possible
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Fig. 9.15 Species distribution in a C–O–H fluid at 2 kbar and 400◦C. Top: as a function of f (O2) at f (H2O) buffered by
serpentinization reaction (9.15) with XMg≈0.9. The QFM and HM oxygen buffers are shown for reference. Bottom: as
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Standard state fugacity of H2O at these conditions is 717 bar. Voluminous production of inorganic methane is possible
as long as oxygen fugacity stays below that of the QFM buffer.

terrestrial andMartian compositions, respectively (Exercise 9.10) – 230 bar is in themiddle.
The approximate locations of the QFM and HM oxygen buffers are shown by the dashed
vertical lines. Under oxidizing conditions the fluid is a rather dull binary mixture of CO2

and H2O, with vanishingly small contents of other species. At very reducing conditions
the fluid can be considered a ternary mixture of CH4, H2O and H2. It is an empirical
observation that most terrestrial upper mantle rocks crystallized within a relatively nar-
row range of oxygen fugacity, roughly between 0.01–1 times QFM. The Martian mantle
appears to be slightly more reducing than this. Fluid speciation undergoes interesting and
rapid changes in the neighborhood of these conditions. Assuming that mantle assemblages
buffer oxygen fugacity during serpentinization, the fluids would be dominated by CH4,
with a mol fraction of H2O of∼0.15 and much smaller concentrations of H2, CO2 and CO.
However, within one order of magnitude of the QFM buffer, towards more oxidizing con-
ditions, CH4 concentration drops rapidly, and is replaced by CO2 as the dominant carbon
species.
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The effect of H2O fugacity at constant f (O2)=10−29 bar (≈ QFM) is shown in the
bottom diagram of Fig. 9.15. The standard state H2O fugacity at 2 kbar and 400◦C is 717 bar
(calculated with the RK EOS), and this is the upper bound of the horizontal coordinate axis
in the figure (for which XH2O → 1). The assemblage forsterite + enstatite + chrysotile
buffers f (H2O) at ∼230 bar, shown by the vertical line labeled SRP. H2O fugacity can be
greater than this if one or both of the anhydrous silicates are absent, whereas chrysotile
would not be present at equilibrium if f (H2O) was less than this value (see also Fig. 9.1).
At the oxygen fugacity of the QFM buffer CH4 is the dominant species over a wide range of
H2O fugacities. It is replaced by H2O as f (H2O)→ f o(H2O), i.e. as the fluid approaches
pure H2O, and by CO2 as f (H2O)→ 0. At these oxidation conditions H2 and CO are
always minor species. In fact, CO concentration is always vanishingly small at this pressure
and temperature, and ignoring this species would have a negligible effect on the results
(Exercise 9.11).
The calculations summarized in Fig. 9.15suggest that inorganicmethane production in the

shallow Martian crust is feasible, and perhaps capable of explaining the observed methane
concentration in the Martian atmosphere. This conclusion, however, rests on five premises:
(1) that ultramafic rocks are present in the shallow Martian crust, (2) that a shallow heat
source exists, (3) that a source of H2O exists, (4) that a source of CO2 exists and (5) that
the ultramafic assemblage buffers oxygen fugacity to conditions not much more oxidizing
than QFM. Of these, we can be reasonably confident of (3) and, by analogy to terrestrial
examples, perhaps of (5) as well. Sedimentary carbonates could be a source of CO2, but
confirming their presence inMars has been elusive; (1) and (2) are likely to remain unknown
until geological and geophysical work on the surface of Mars become possible, which, in
the humble opinion of this pundit, will require the development of highly mobile robots
capable of autonomous intelligent decision making.

9.6.2 Calculation of fluid speciation by Gibbs free energy minimization

There are instances in which one wishes to know how speciation in a fluid depends on its
bulk composition, rather than on externally buffered chemical potentials of some of the
species. Although it is in principle possible to use the chemical equilibrium approach to do
this, it rapidly becomes unwieldy and a much simpler method is available. It relies on the
fact that the thermodynamic potential of a system takes its minimum value at equilibrium.
As in the previous example, we consider a fluid composed of c system components. In this
instance it is convenient to choose elements as system components, for example, C, H, O,
N, S, Cl, F, etc. The total mol number (number of gram atoms) of the j th system component
will be represented by Nj , j = 1 . . . c. There are also s distinct chemical species (phase
components), with the mol number of species i labeled ni,i = 1 . . . s. If we call the total
number of mols of phase components in the fluid phase nt , then:

nt =
s∑
i=1
ni , Xi = ni

nt
. (9.89)

Let us write the chemical potential of the ith species as follows:

µi = µ
0,i
1,T +RT ln

(
φiP

)
+RT ln

(
ni

nt

)
. (9.90)
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The total Gibbs free energy of the fluid phase is given by equation (5.27):

Gfluid =
s∑
i=1
niµ

0,i
1,T +RT

s∑
i=1
ni ln

(
φiP

)
+RT

s∑
i=1
ni ln

(
ni

nt

)
. (9.91)

The equilibrium fluid distribution at constant temperature and pressure is given by the set
of nis that minimizes its Gibbs free energy.
The problem of determining the fluid speciation consists of finding the minimum of the

function (9.91). Since this is a function of s variables it has s partial derivatives, relative
to each of the nis. If an absolute minimum of the function exists it would correspond to
a point where all of the partial derivatives vanish. We do not seek the absolute minimum
of (9.91), however, because there are constraints on the values that the nis can take. These
constraints are given by the bulk composition of the system. Recalling that Nj is the total
number of atoms of the j th system component we can define C new functions that describe
the bulk composition constraints, as follows:

ϕj =RT

[
s∑
i=1

ηijni −Nj
]
= 0, (9.92)

where ηij is the number of atoms of component j in species i, and I have multiplied by RT
because it leads to a more compact final equation. The problem now consists of finding
the set of nis that minimize (9.91), subject to the nis also satisfying (9.92). A simple
yet powerful technique exists to solve this problem, known as the method of Lagrange
multipliers. Themethod consists of multiplying each of theC functions (9.92) by a constant,
λj (the Lagrange multiplier), adding these C new functions to (9.91) to construct a new
function, Γ , as follows:

Γ =Gfluid +
c∑

j=1
λjϕj (9.93)

and then minimizing Γ . The mathematical justification of the method is not complicated
but is beyond the scope of this book – a particularly clear explanation can be found in the
textbook by Sokolnikoff and Redheffer (1966).
The function Γ has i partial derivatives relative to the nis, which must all vanish simul-

taneously at a minimum. Performing the algebra (which you should verify for yourself) we
find that each of these equations is of the form:

∂Γ

∂ni
= µ

0,i
1,T

RT
+ 1+ ln

(
φiP

)
+ ln

(
ni

nt

)
− ni
nt
+

c∑
j=1

λj η
i
j = 0 (9.94)

where I have divided by RT in order to make the equation more readable (since we are
equating to zero this is always legal). At constant temperature and pressure we have a
total of s equations like (9.94) plus c equations (9.92), with a total of s + c unknowns:
the s nis and the cλj s (nt is given by (9.89)). The remarkable fact is that this system of
equations is generally quite easy to solve numerically, as we shall see in the following exam-
ple. The Lagrange multipliers have mathematical meaning, but they do not have physical
meaning in this instance and we will just discard those values. We are only interested in
the nis.
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The Gibbs free energy minimization method does not require that we find homoge-
neous equilibrium equations among the fluid species, but it does require that we decide
beforehand on which species are likely to be present. However, adding or removing species
simply consists of adding or removing equations like (9.94), and making the necessary
modifications to the constraining equations (9.92). Of course, the phase rule must always
be obeyed and it is necessary to check on this before attempting to solve the system of
equations. If we restrict the system of interest to a homogeneous fluid phase with c compo-
nents then in order to completely specify the thermodynamic state of this system we must
specify the values of c+ 1 intensive variables. Two of these are pressure and temperature,
leaving c− 1 intensive variables to be specified. These typically would be bulk compo-
sition parameters of the fluid. Alternatively, we may be interested in speciation in a fluid
phase saturated with some specific condensed phases, in which case we must minimize the
Gibbs free energy of a heterogeneous system, including the Gibbs free energy contribu-
tion of the condensed phases. The best way to understand all of this is with an example,
as follows.

Worked Example 9.8 Species distribution in C–O–H fluids, (iii): fluid composition during core
formation in planetesimals

Meteorites preserve evidence that planetesimals with radii of order 102 km underwent
core formation very early in the history of the Solar System. The chondritic precursors of
differentiated planetesimals may have been rich in carbon and H2O, so that C–O–H fluids
may have been present during core formation. The bulk compositions of these putative
fluids are unknown, but we are interested in understanding how species distribution in them
may have varied over a range of bulk compositions, and also as a function of temperature
and pressure. The Gibbs free energy minimization method is well suited to address these
questions.
As in previous examples, we shall assume that the fluid consists of the five species: CO2,

CO, CH4, H2 and H2O. If we consider only a homogeneous C–O–H fluid phase then this is
a ternary system with four degrees of freedom, of which two are temperature and pressure.
We can specify the other two as bulk composition variables, for example the ratiosNO/NH

andNO/NC. Note that these two ratios completely define the bulk composition of the fluid.
Because graphite is present inmany differentiated and undifferentiatedmeteorites, however,
it is of interest to study the fluid distribution in C–O–H fluids saturated in this phase. In this
case we have a ternary system with two phases and three degrees of freedom, in which we
can specify only one compositional variable. Given that the system is saturated in graphite,
carbon is present in excess, so that we must choose the ratio NO/NH as the compositional
variable. Molecular O2 will be assumed to be present in vanishingly small amounts, which
leads to a simple way of calculating its chemical potential (or fugacity) as part of the Gibbs
free energy minimization exercise.
We begin by writing the three constraining bulk composition equations, (9.92):

ϕ1 =RT
[
nCO2 +nCO+nCH4 +ngraphite−NC

]= 0

ϕ2 =RT
[
4nCH4 + 2nH2O + 2nH2 −NH

]= 0

ϕ3 =RT
[
2nCO2 +nCO+nH2O+ 2nO2 −NO

]
≈RT

[
2nCO2 +nCO+nH2O−NO

]= 0.

(9.95)
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Note that I wrote two versions of the oxygen equation (ϕ3). Because nO2 is vanishingly
small it is permissible to ignore its contribution to the function ϕ3, but not to the derivative
∂ϕ3/∂nO2 = 2, which enters into the function ∂Z/∂nO2 . This will become clear in a second.
The Gibbs free energy of the system fluid + graphite,Gsystem, is made up of three contri-

butions:Gfluid as given by (9.91),GO2 andGgraphite. Even if molecular oxygen is present in
vanishingly small quantities there is a finite chemical potential of oxygen that contributes
to the Gibbs free energy of the system and that must therefore be accounted for in the
minimization calculation. We write the contribution of O2 to the total Gibbs free energy of
the system as follows:

GO2 = nO2µ
0,O2
1,T +nO2RT lnfO2. (9.96)

Because we are considering a graphite saturated system we must also have an equation for
the Gibbs free energy of graphite. As this is a pure phase it is simply:

Ggraphite = ngraphite µ0,graphite
1,T +ngraphite

∫ P

1
VgraphitedP . (9.97)

The function Z in this case is as follows:

Z =Gfluid +GO2 +Ggraphite+
3∑

j=1
λjϕj (9.98)

with Gf luid given by (9.91). This function has seven partial derivatives, all of which must
vanish at the minimum. Five of the partial derivatives are of the form of equation (9.94),
one each for CO2, CO, CH4, H2 and H2O. As an example, the CO2 equation is:

∂Z

∂nCO2

= µ
0,CO2
1,T

RT
+ 1+ ln

(
φCO2P

)
+ ln

(
nCO2

nt

)
− nCO2

nt
+λ1+ 2λ3 = 0. (9.99)

In this equation nt = nCO2 + nCO + nCH4 + nH2 + nH2O, as nO2 can be ignored in this
context. The other four partial derivatives, for CO, CH4, H2 and H2O, are analogous, and
you should write them out yourself. The partial derivative relative to nO2 is:

∂Z

∂nO2

= µ
0,O2
1,T

RT
+ lnfO2+ 2λ3 = 0. (9.100)

The variable nO2 disappears, but we now see why it is necessary to leave it in ϕ3 when
forming equation (9.98) and calculating the derivative ∂ϕ3/∂nO2: it generates the coefficient
of the Lagrange multiplier. Finally, the graphite partial derivative is:

∂Z

∂ngraphite
= µ

0,graphite
1,T + ∫ P1 Vgraphite dP

RT
+λ1 = 0. (9.101)
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Equations (9.95), (9.99) and its equivalents, (9.100) and (9.101) constitute a system
of 10 non-linear equations in the 10 unknowns: nCO2 , nCO, nCH4, nH2 , nH2O, ngraphite,
ln(fO2), λ1, λ2 and λ3. The input parameters are P, T and the three bulk gram-atom num-
bers: NO, NH and NC. As in the chemical equilibrium method, the solution is numerical
and iterative. Recalling that the fugacity coefficients are functions of fluid composition,
we must initially calculate the standard state fugacity coefficients, use these to obtain an
initial solution set, and then use the fluid composition from this solution set to calculate
fugacity coefficients in the mixture, iterating until consecutive solutions converge within a
desired interval. Implementation in Maple is straightforward and is discussed in Software
Box 9.4.

Software Box 9.4 Calculation of fluid speciation by Gibbs free energy minimization
The Maple worksheet minG_fluid_species.mw contains a procedure that
calculates fluid speciation in a C–O–H fluid saturated in graphite as a func-
tion of bulk O/H ratio, at constant temperature and pressure. The proce-
dure, COH_graphite_saturation, implements the solution described in
general terms in Section 9.6.2 , and in particular solves the problem
described in Worked Example 9.8. The procedure is invoked with the fol-
lowing parameters, in this order: (pressure in bar, temperature in
centigrade, name of output file). It calculates fluid speciation, oxy-
gen fugacity and fluid composition on the graphite saturation boundary, along the
O–H join. The content and organization of the output file are described in the Maple
listing. Thermodynamic properties of the gas species are entered in the spreadsheet
RefStateData, with a Shomate-type heat capacity equation and volumetric prop-
erties for solid phases from Holland and Powell (1998). The properties used in this
example can be imported in tab-delimited format from the file agaspeciesdata, or
they can be copied from a spreadsheet.

Given that we are explicitly studying speciation in graphite-saturated fluids, there is
an additional step that we must take, which is to determine the bulk composition of the
fluid at which graphite saturation takes place. The graphite saturation boundary defines the
boundary of the bulk composition region within which the calculations are valid. For bulk
compositions outside of this region the fluid is not saturated in graphite and equation (9.97),
and hence (9.98) and (9.101), are no longer valid.
Let us call the ratioNO/NH, that we will use as our compositional variable,NO/NH = z.

As long as the system is saturated in graphite, for each value of P ,T and z there is one and
only one equilibrium fluid composition, because the thermodynamic state of the system
is fully determined. This means that species mol fractions, and hence the ratios among
them, are fixed and independent of the value ofNC.Along the graphite saturation boundary
ngraphite vanishes, so that we can write the following two compositional equations valid
along the boundary:

NC = nCO2 +nCO+nCH4

NH = 4nCH4 + 2nH2O+ 2nH2 .
(9.102)
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Using the fact that species mol fractions are fixed at graphite saturation for given P ,T and
z we can define the following four constant ratios:

a1 = nCO2

nCO
, a2 = nH2

nCH4

, a3 = nCH4

nCO
, a4 = nH2O

nCO
, (9.103)

which, substituting in (9.102), yield the ratioNC/NH along the graphite saturation boundary:

NC

NH
= a1+ a3+ 1

4a3+ 2a4+ 2a2a3
(9.104)

For any P–T combination we can choose values of z = NO/NH from z→ 0 to z→∞,
solve for the fluid speciation at each z using any value of NC large enough to ensure that
the system is saturated in graphite (which we can easily verify because the calculation
must yield ngraphite > 0), and then use (9.103) and (9.104) to calculate NC/NH along the
graphite saturation boundary. The combination ofNO/NH andNC/NH yields a unique point
on the graphite saturation boundary. The tedious algebra is easily incorporated in theMaple
procedure that calculates fluid speciation (Software Box 9.4).
An example of the results obtained by this procedure is shown in Fig. 9.16. The ternary

diagram shows three graphite saturation boundaries, calculated at the same temperature,
1200◦C, and pressures of 1, 5 and 10 kbar. These conditions may bracket core form-
ing conditions in 100–1000 km planetesimals. Fluids above the boundary are saturated in
graphite. Bear in mind that the results depend on the Redlich–Kwong EOS for calcula-
tion of the fugacity coefficients, so the 10 kbar values are unlikely to be very accurate,
and the same may be true of the 5 kbar results. The qualitative trend is however cor-
rect: increasing pressure expands the graphite stability field, as we should expect from
the fact that graphite is the low volume phase relative to fluid. The shaded region in
the diagram, between the CO2–H2O join and the oxygen vertex, represents a range of
bulk compositions that cannot be modeled with the equations given above, because in this
region oxygen mol number is never negligible (you should explain to yourself why this is
the case).
At a givenP and T fluids with a constant O/H ratio anywhere within the graphite saturated

region (i.e. anywhere along a tie line joining the graphite saturation boundary and the carbon
vertex, such as the one shown in the diagram) have the same composition, and therefore
also the same oxygen fugacity. Variation of the oxygen fugacity of graphite saturated fluids
with O/H ratio is shown in the bottom diagram of Fig. 9.16. Also shown in the plot are
oxygen fugacities at the QFM and QFI buffers (the bands correspond to the ranges in f (O2)
between 1 and 10 kbar). We see that f (O2) of graphite-saturated C–O–H fluids is some
3–4 orders of magnitude lower than at the QFM buffer, which is generally consistent with
separation of metallic Fe (Exercise 9.14).

Fluid speciation as a function of O/H ratio is shown in Fig. 9.17, which reveals some
interesting trends.At low pressure (1 kbar) the predominant species is CO over a wide range
of O/H ratios, and CH4 for fluids very rich in H. Except over a very narrow interval, H2O is
everywhere subordinate to CO and CH4.With increasing pressure, however, H2O becomes
the chief species over a progressively wider compositional range. Methane is always the
dominant species for H-rich fluids, but carbon monoxide is replaced by carbon dioxide
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Fig. 9.16 Graphite saturation conditions for a C–O–H fluid at 1200◦C, with fluid properties calculated with the RK EOS. Top:
graphite saturation boundaries at 1, 5 and 10 kbar pressure. Increasing pressure expands the graphite stability field,
as expected from fundamental thermodynamic relationships. Graphite-saturated fluids anywhere along a join
between the graphite saturation boundary and the C vertex, such as the one shown, have the same species
distribution, which is shown in Fig. 9.17. The model discussed in the text breaks down in the shaded region, where
molecular oxygen concentrations are not negligible. Bottom: oxygen fugacity of graphite-saturated fluids as a
function of bulk O/H ratio. Fugacities are in every case several orders of magnitude lower than along the QFM buffer,
making crystallization of metallic Fe possible.

as the dominant species in hydrogen-poor fluids at high pressure. These results suggest
that retention of volatile components during differentiation of planetesimals smaller than
a certain radius may be made very difficult, not only by the low gravitational attraction
but also by the fact that H2O, which could combine with silicates to form hydrous mineral
phases, is not an abundant species in the fluid phase (hence its chemical potential will be
relatively low). Retention of volatiles in the deep interior of planetesimals by formation of
hydrous phases becomes easier with increasing body size, as core formation will take place
at higher pressures.
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9.7 Fluids at the conditions of giant planet interiors

The equations of state that we discussed to this point are generally not applicable to fluids
at the conditions that exist in the interiors of the giant planets (Section 1.15). Fluids at
particle densities of ∼1029 m−3, even before they become degenerate (Fig. 1.16), become
as incompressible as solids. When electron degeneracy sets in the behavior can only be
described in terms of quantum mechanical effects. Explicit EOS often do not exist, and
are substituted by tables of thermodynamic properties listed as a function of pressure and
temperature. Thermodynamic properties are generally obtained from numerical simulations
of interatomic and electronic potentials, and the predictions of the simulations are checked
against the results of shock-wave, diamond anvil or other extreme-condition experimental
techniques.
Once an EOS for fluids at ultrahigh pressure is available (even if only as a table of

thermodynamic values), calculation of chemical potentials, speciation, etc., can be carried
out as described in the previous sections, and applied to model processes in the interiors of
giant planets, such as unmixing of molecular helium and fluid metallic hydrogen. The EOS
for fluid planets is also important to understand their thermal evolution. Let uswrite the EOS
for fluids at ultrahigh pressure as two separate equations, for pressure and internal energy.
In each case we consider zero temperature and thermal components (see Section 8.4):

P = P0+Pth = P0+ γCV

V
T (9.105)

E =E0+Eth =E0+CV T , (9.106)

where γ is the Grüneisen ratio (equations (8.61)) and the variables E,V and CV are all
extensive quantities. We recall that the zero temperature energy is the strain energy of the
material when compressed under P0. We also recall the relationship between pressure and
internal energy valid at zero temperature (equation (8.48)) and, using the chain rule, we find:

P0 =−∂E0

∂V
=−∂E0

∂m

∂m

∂V
=−ρ ∂E0

∂m
, (9.107)

where m is mass, and ρ density = m/V . We saw in Chapter 2 that in a self-gravitating
body at hydrostatic and thermodynamic equilibrium, the gravitational binding energy and
the body’s thermodynamic state are related to one another by equation (2.42), which we
now write as follows:

UB =−3
[∫ M

0

P0

ρ
dm+

∫ M
0

Pth

ρ
dm

]
. (9.108)

From (9.107) we have:

∫ M
0

P0

ρ
dm=−

∫ M

0
dE0 =−E0, (9.109)

i.e. the total strain energy of the planet. We re-write the thermal pressure as follows:

Pth = γρcV T , (9.110)
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where cV =CV/m is the specific heat capacity. Substituting in (9.108) and assuming some
average values for temperature and heat capacity:∫ M

0

Pth

ρ
dm=

∫ M

0
γ CV T dm= γCV T = γ (E−E0)= γEth. (9.111)

Substituting (9.109) and (9.111) in (9.108) we arrive at:

UB = 3(E0− γEth) . (9.112)

Consider now a planet that contracts by an infinitesimal amount between two states of
hydrostatic and thermodynamic equilibrium. The change in gravitational binding energy is
given by:

dUB = 3(dE0− γ dEth) < 0 (9.113)

where the negative sign states that the planet is contracting. The thermal energy radiated by
the planet is (see equation (2.50)):

dQ= dE+ dUB = dE0+ dEth+ 3(dE0− γ dEth)

= 4dE0+ (1− 3γ )dEth < 0,
(9.114)

where dQ must be a negative quantity because planets do not absorb heat from space. We
see that the strain (zero–temperature) and thermal energies of the planet must be related as
follows:

dE0 <
3γ − 1

4
dEth. (9.115)

This is a general result, that follows from the conditions of thermodynamic and hydrostatic
equilibrium. The actual values of dE0 and dEth are given by the specific equation of state,
but they must satisfy (9.115). In the absence of an EOS they remain unknown, but we can
analyze some limiting cases.
The Grüneisen ratio is characteristically a number of order 1, so we rewrite (9.115) as

follows:

dE0 <
1

2
dEth. (9.116)

Clearly it must be dE0 ≥ 0, for the strain energy cannot decrease under compression
(equation (9.107)). Suppose first that dE0 = 0. We then get:

dEth =−1

3
dUB , dQ= 2

3
dUB . (9.117)

This case is unphysical, as it implies a material incapable of storing strain energy, or equiv-
alently, a material with no strength. If a planet behaved in this way then upon contraction it
would store one third of the gravitational energy dissipated as thermal energy, and radiate
the other two thirds to space. Compare this result to the behavior of a monatomic ideal gas
(dQ=−dE, equation (2.52)), which is as close as we can get to a material with no strength.
Consider now the other limiting case dE0= 1

2dEth. In this case we would have dQ= 0,
which would imply a planet in thermal equilibrium with its environment and hence not
contracting. As long as a planet has a temperature higher than ∼2.7 K, however, it will
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radiate thermal energy to space (Chapter 13) and hence contract. We can think of this case,
then, as one in which the planet is losing thermal energy stored during an earlier stage of
contraction during which dE0 <

1
2dEth, whereas at present dE0 = 1

2dEth. We then have:

dEth =−2

3
dUB , dE0 =−1

3
dUB , (9.118)

i.e. two thirds of the gravitational energy would be stored as thermal energy, and the other
third as strain energy. The key point here is that in a planet composed of this type of material
all of the gravitational energy released during contraction is stored as internal energy, much
of it as heat.
The EOS for hydrogen, helium and H2O–NH3–CH4 mixtures at conditions of the deep

interiors of the giant planets suggest that their present day behaviors approach this second
limiting case. Today the planets are cooling by releasing either thermal energy stored during
a previous stage of contraction during which the properties of the (less dense) fluids were
significantly different, or heat generatedby radioactive decay, or somecombination.Cooling
causes contraction, but the gravitational binding energy released in this process is chiefly
stored in the planets’ deep interiors, as in (9.118).

Exercises for Chapter 9

9.1 Write a Maple procedure to calculate f (H2O) along the serpentinization reaction
(9.15). Compare your results to Fig. 9.1.

9.2 The bottom panel of Fig. 9.1shows that dehydration occurs with increasing pressure.
Explain this apparently inconsistent result.

9.3 Write equations for f (CO2) as a function of f (O2) at constant P and T along the (hm)
and (mt) reactions in Fig. 6.14. Plot the two reactions at 1 bar, 25◦C and 1 kbar, 400◦C
and confirm that their intersections coincide with the (sd) reaction (see Fig. 9.3).What
is the stable phase assemblage at the Earth’s surface? What can you infer about the
fluid composition during crystallization of a hydrothermal vein with the equilibrium
assemblage siderite + magnetite?

9.4 Prove that for a system at equilibrium the derivative (∂P /∂V )T must be negative.
(Hint: start from the definition of Helmholtz free energy.)

9.5 Write aMaple procedure to solve the system of simultaneous equations (9.1.1 ), (9.1.5
) and (9.1.6 ) for the three non-dimensional variables φliq, φvap, and π , as a function
of non-dimensional temperature, τ . Verify your results against Fig. 9.7, 9.8and 9.9.

9.6 Explain why the critical isochore (φ= 1) is the continuation of the univariant phase
transition (Fig. 9.9).

9.7 Plot the following three fluids in Figs. 9.7, 9.8and 9.9: (i) N2 at 1 bar, 300 K; (ii) N2 at
1.5 bar, 100 K; (iii) CO2 at 92 bar, 800 K. Comment on the nature of the atmosphere
at the surfaces of Earth, Titan and Venus.

9.8 Compare the behavior of : (i) N2 at 1 bar, 300 K; (ii) N2 at 1.5 bar, 100 K; (iii) CO2

at 92 bar, 800 K, as predicted by the ideal gas EOS and by the Redlich–Kwong EOS.
Which EOS would you use to model the atmospheres of Earth, Titan and Venus?

9.9 Use the Maple worksheet that you wrote for Exercise 9.1 to justify the choice of
f (H2O) in Worked Example 9.7.
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9.10 Recalculate the speciation calculation in Worked Example 9.7 ignoring CO, and
compare your results to Fig. 9.16.

9.11 A metamorphic rock contains the equilibrium assemblage: muscovite + sillimanite
+ quartz + microcline + graphite. During metamorphism this assemblage was at
equilibrium with a volatile phase. Construct plots showing the composition of the
volatile phase as a function of temperature at 1, 5 and 10 kbar. Begin by finding the
upper temperature limit for each plot by determining the location of the muscovite
+ sillimanite + quartz + microcline + vapor equilibrium in the carbon-free system.
Then modify the Maple worksheet described in Software Box 9.3to calculate the
diagrams.

9.12 Recalculate theCO–CO2 speciation calculation (Exercise 5.5) usingGibbs free energy
minimization. Plot isobaric graphite saturation boundaries in a diagram of T vs. com-
position (the binary C–O join). Use your diagram to discuss preservation of elemental
carbon during metamorphism of organic sediments.

9.13 Plot log f (O2) vs.XMg in olivine at quartz saturation, and log f (O2) vs. aSiO2 for pure
fayalite, along the QFI buffer at 1200◦C and constant pressures of 1, 5 and 10 kbar.
Discuss the implications for crystallization of metallic Fe during differentiation of
planetesimals (assume that the fluids are C–O–H fluids saturated in graphite).

9.14 Plot fugacities of ethane and formaldehyde in the speciation diagrams in Fig. 9.17and
discuss whether including these species in the Gibbs free energy minimization calcu-
lations would make any significant difference. Necessary thermodynamic properties
can be obtained from NIST’s Chemistry WebBook.



10 Melting in planetary bodies

The liquid state extends from themelting point to the boiling point. Beyond the critical point
fluids with liquid-like densities transition continuously to fluids with gas-like densities. A
liquid close to its freezing temperature may differ significantly in such properties as vis-
cosity, microscopic structure and chemical behavior from a liquid of the same composition
near its boiling or critical points. For this reason it is convenient to define a melt as a liquid
that is at, or very near, its freezing point. A melt is therefore saturated, or nearly so, in a
solid phase (or assemblage) of broadly similar bulk composition. The exact meaning of
“broadly similar” will remain undefined, but will become clear from the context of this
and the following chapter, in which we will discuss electrolyte solutions. There is a parallel
between this definition of melt and that of vapor, which is a gas that is at equilibrium with
its liquid.
This chapter focuses on the ways in which melts form in planetary interiors. Because

several excellent and up-to-date textbooks on igneous petrology are available (see, Winter,
2001; McBirney, 2006; Philpotts & Ague, 2009), and the research literature in the field is
vibrant, I will not discuss processes of magma evolution and crystallization. There is no
point in repeating here what is explained in much greater detail elsewhere. It is impor-
tant to recall that a magma is an assemblage of melt, suspended solids and dissolved
volatiles. As geologists we are most familiar with the silicate (and minor carbonate)
magmatism characteristic of terrestrial planets, but there is no fundamental thermo-
dynamic distinction between that kind of magmatism, ice magmatism in bodies such
as Titan, Ganymede or Triton, and equilibrium between molten and solid metals in
planetary cores.

10.1 Principles of melting

10.1.1 Melting of simple solids

From the point of view of thermodynamics, melting of a simple substance (e.g. a one-
component system) at constant P and T is simply defined as a process that causes the
Gibbs free energy of a solid and that of its liquid to become identical. But what is melt-
ing at the microscopic scale? Let us begin by looking at elements, which are the simplest
possible thermodynamic systems. A crystal of an element consists of an assemblage of
identical atoms arranged in a lattice. We can consider the lattice as being made up of
lattice points that are occupied by atoms, and interstitial sites which remain vacant. The
latter is the case because, if an atom were to occupy one of these interstitial sites, then it
would be closer to some other atoms and the increased repulsive potential (e.g. Section
8.3) would raise the free energy of the crystal. The lattice points are the equilibrium
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positions of the atoms, that yield the minimum free energy of the crystal. This is a
structure with perfect long-range order (Section 7.4). In fact, this description of a crys-
tal of an element is identical to the example that we considered in Section 7.4: there
is a total of N sites, of which N/2 are occupied lattice points, and N/2 are vacant
interstitial sites.
As temperature increases the atoms vibrate with increasing amplitude about their equi-

librium positions, but remain “anchored” to their corresponding lattice points, so that the
configurational entropy of the crystal remains constant. The vibrational, or thermal, entropy
of course increases, as additional vibrational energy levels become accessible (Section
4.6.2). At some temperature the amplitude of the vibrations reaches a critical value relative
to the lattice spacing, and the atoms become detached from their lattice positions. One
particularly fruitful way of modeling this, known as the Lennard-Jones and Devonshire
theory of melting (Lennard-Jones & Devonshire, 1939a,b), is to postulate that the lattice
points and interstitial sites still exist when such vibrational instability sets in, but now the
atoms are distributed at random over the two types of sites. This corresponds to the sudden
loss of the long range order of the material. There is an entropy discontinuity and hence a
first-order phase transition (Section 7.6.3). The loss of long-range order causes the crystal to
lose its resistance to shear, because there is no longer an “organized” system of interatomic
potentials that generates a restorative force when interatomic bonds are stretched in a given
direction. From amechanical point of view the solid becomes a liquid at the first order phase
transition. These are complementary microscopic descriptions of melting or, equivalently,
alternative ways of defining the difference between a solid and a liquid, i.e.: (i) as condensed
phases that either have long-range order (solids) or not (liquids); (ii) as condensed phases
that either have shear strength or not; or (iii) as condensed phases in which the amplitudes
andmodes of atomic vibrations stay within certain bounds or not. Each of these approaches,
and others, have been pursued in order to construct fundamental theories of melting. Excel-
lent discussions can be found in Poirier (1991, most recommended), Ubbelohde (1978),
Cotterill (1980), Mulargia (1986) and the remarkably clear and succinct paper by Oriani
(1951). Here I will focus only on the point of view of melting as a sudden loss of long range
order, as it is the one that is most helpful in understanding the chemical–thermodynamic
aspects of melting.
There are several contributions to the increase in entropy during melting. One of them

is the configurational entropy that arises from the loss of long-range order, as we dis-
cussed in the previous paragraph. In systems more complex than elements there are
additional contributions to configurational entropy, arising from chemical mixing. For
example, in a silicate crystal there may be ordering between cations occupying different
kinds of octahedral sites (say, Ca and Mg in clinopyroxene) that persists to the melting
point but not in the melt. There is then an increase in configurational entropy arising
from chemical mixing, in addition to the lattice point–interstitial site disorder. For most
substances melting is also accompanied by an increase in volume (the low pressure poly-
morph of H2O ice is an important exception, that we discuss later). Expansion arises
from repulsion among atoms with the same type of charge, that in the ordered crystal
are shielded by oppositely charge atoms, and entropy increases in concert with expansion,
as additional vibrational energy modes become available. Additional entropy contribu-
tions may arise if particles in the melt can acquire rotational degrees of freedom, which
do not exist in the solid, or if changes in electron occupation levels become possible
(for example, silicon becomes metallic on melting, and this contributes to its entropy
of melting).
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We can write the entropy of melting of a substance, �mS, as a sum of various
contributions:

�mS =�Sexpansion+�Slattice disorder +�Schemical mixing
+�Srotation+�Selectronic+·· · . (10.1)

For a simple substance only the first two terms are non-zero, and we write them as follows:

�mS =
(
∂S

∂V

)
T

�mV +�Slattice disorder (10.2)

where the expansion term equals the rate of increase in entropy (number of vibrational
frequencies) with volume at constant temperature, times the increase in volume during
melting. Now, from the definition of Helmholtz free energy we have:(

∂S

∂V

)
T

=
[
∂

∂V

(
−∂F
∂T

)
V

]
T

=
[
∂

∂T

(
−∂F
∂V

)
T

]
V

=
(
∂P

∂T

)
V

. (10.3)

Recall that this is one of Maxwell’s relations (Section 4.9.1) – you can memorize them,
look them up or, better, as this usually brings out their physical meaning, derive them as
needed from the cross second derivatives of the appropriate thermodynamic potential. We
recall equations (8.59) and (8.60):(

∂P

∂T

)
V

= αKT = γCV

V
(10.4)

and substituting in (10.2) we get:

�mS = αKT�mV +�Slattice disorder . (10.5)

In Section 8.4 we saw that above the Debye temperature the product αKT is nearly constant.
This is a good approximation for equation (10.5). If the configurational entropy associated
with loss of long-range order is also a constant then the entropy of melting should be a
linear function of the volume of melting.
We can test this hypothesis by using the second identity in (10.4) to write (10.5) as

follows:

�mS = γCV
�mV

V
+�Slattice disorder . (10.6)

It was pointed out by Stishov et al. (1973) and Lasocka (1975) that if values of �mS

for many elements are plotted against the corresponding values of (�mV /V ) the points
scatter about a straight line with y intercept equal to R ln 2. Figure 10.1a shows this for
a number of metals. The volume of melting is divided by the volume of the solid phase.
I have also divided equation (10.6) by R ln 2, so that a y intercept equal to 1 corresponds
to �mS = �Slattice disorder = R ln 2. The straight line is not a calculated correlation line,
but rather an arbitrary line drawn through the point {0,1}, intended as a guide for the eye.
There is clearly quite a bit of scatter, possibly arising to some extent from experimental
uncertainties, but the pattern appears to be robust: for all of these metals the configura-
tional entropy associated with loss of the crystal’s long range order is approximatelyR ln 2.
Now, in the previous section we noted that, according to the Lennard-Jones and Devonshire
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Fig. 10.1 Entropy of melting versus volume of melting for metals (stars), alkali halides (circles) and silicates (triangles). The
same group of metals are shown in all three panels, and the same halides in panels (b) and (c). The lines are eyeballed
but forced to intersect the vertical axis at�mS(R ln 2)= 1. Data from Ubbelohde (1978), Bottinga (1985) and Richet
and Bottinga (1986).

model ofmelting, for a simple substance the configurational entropy of themelt corresponds
to mixing N/2 occupied lattice points and N/2 vacant interstitial sites over a total of N
sites, and that this is exactly the same problem that we considered in Section 7.4. From
equation (7.26) we see that, since the solid has no configurational entropy, the entropy
increase that we should expect in this case is, indeed, equal to R ln 2. The importance of
this result is that it validates the interpretation of the melting phase transition as a sud-
den loss of long-range order. Note that this is different from a critical phase transition.
In a critical phase transition the order parameter approaches zero continuously, so that
there are no discontinuities in entropy, or enthalpy, at the phase transition. In the case
of melting there is a discontinuous jump in the order parameter (see Fig. 7.10). It has
been argued that this discontinuity may vanish at high pressure, leading to a solid–melt
critical point analogous to the vapor–liquid critical point. Unequivocal experimental evi-
dence for this is lacking, however, at least for conditions such as those in the interiors of
terrestrial planets.
The melting behavior of alkali halides (Fig. 10.1b) appears to follow that of elements

fairly closely. This suggests that the alternation of anions and cations is largely preserved in
themelt, so that there is no contribution to configurational entropy beyond the redistribution
of both types of atoms among lattice points and interstitial sites, as happens in pure elements.
Observations such as this one have given rise to the quasicrystalline model of melts. In this
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model the melt is thought of as a crystal in which the number of defects is of the same order
as the total number of crystallographic sites (see Ubbelohde, 1978, Chapter 5).
In contrast to halides, the melting behavior of silicates is clearly different from that

of metals (Fig. 10.1c). In this case there is a very large entropy component in excess
of the R ln 2 term that arises from lattice point–interstitial site mixing, with the largest
contribution likely arising from chemical mixing. Quartz is anomalous, however, in that
its configurational entropy of melting is significantly lower than that of simple substances.
This suggests that SiO2 melt is strongly polymerized, and preserves much of the long range
order of the crystal.

10.1.2 Melting in complex natural systems

Melting in multicomponent systems in which a multi-phase assemblage is stable at the
solidus is much more complex. To begin with, if melt–solid equilibrium is multivariant
then we must distinguish a solidus and a liquidus (Section 6.6.1). The microscopic picture
of melting becomes fuzzy. For example, is the structure of the melt analogous to one of
the solid phases in particular, or is it a composite of the various solid phases at equilibrium
at the solidus? From a purely thermodynamic point of view the picture may seem clearer,
as calculating the composition of a melt at equilibrium with a given solid assemblage as
a function of intensive variables is no different from calculating equilibrium among solid
phases (Chapters 5 and 8) or between solids and a gas phase (Chapter 9). In fact, in Chapter 6
we calculated some simple melt–solid phase diagrams (Section 6.6). Those calculations,
and the resulting phase diagrams, are, however, no more than crude approximations. They
are only intended to illustrate the qualitative behavior of the systems that we modeled, for
instance, the effect of enthalpy of fusion on the width of a melting loop, or on the magnitude
of the melting point depression. Implementing quantitatively rigorous calculations that
allow us, for example, to predict basaltic melt compositions as a function of mantle source
composition, pressure of melting and oxygen fugacity ismuchmore complex than what we
did in Chapter 6. Fundamentally, this is so because it is never acceptable to assume that
mixing in the melt phase is ideal, and it is not always obvious what the basis for a non-
ideal model ought to be. The problem begins by defining what chemical species to use in
a multicomponent melt (such as what we did in fluid speciation calculations, Section 9.6).
Once the species have been defined, it is not always straightforward to determine their
standard state thermodynamic properties and their excess mixing properties. As of this
writing, and in the humble opinion of yours truly, only one comprehensive calculation engine
cum data base exists that generates reliable thermodynamic models of igneous systems over
awide range of bulk compositions and intensive variables.This isMELTSand its extensions,
developed by Ghiorso, Sack, and collaborators (see, for example, Ghiorso & Sack, 1995;
Ghiorso, 1997; Ghiorso et al., 1983, 2002). Discussing these models is beyond the scope
of this book, as well as the available space. I will rather focus on some of the constraints
on the conditions of formation of planetary magmas.

10.2 Melting point depression. Eutectics, cotectics and peritectics

Eutectics are a fundamental aspect of planetary magmatism, for two reasons. First, the fact
that the solidus temperature of an assemblage of immiscible phases may be hundreds of
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degrees lower than the melting point of each individual phase (e.g. Figure 6.21) makes
igneous activity possible at conditions that otherwise it might not be. Second, the invariant
(or nearly so) nature of eutectic melting equilibria restricts the range of common magmatic
compositions. Consider the case of silicate planetary bodies. They all have peridotitic man-
tles. Over a wide range of conditions the initial melting behavior of peridotite is more or
less close to eutectic, and the composition of the resulting low-temperature melts is broadly
speaking basaltic. Because of this, all silicate planetary bodies have basaltic crusts. Before
you get incandescently upset at this sweeping generalization, let me emphasize that this is
a book on thermodynamics, not igneous petrology. My purpose is to use simple thermody-
namic reasoning to understand many of the first-order characteristics of planetary bodies.
Along the way, and because space and time are both finite, we will be forced to ignore
important details. Some of these details are very dear to this writer, such as the fact that
about one third of the Earth’s solid surface is not basaltic, because it is not a simple product
of mantle melting.
The fundamental thermodynamic reason for eutectic behavior is the fact that the chem-

ical potential of a component in a stable solution is lower than its standard state chemical
potential (e.g. Fig. 5.9). If solid phases do not form a solution, and therefore remain in their
standard states, but the components mix stably in the melt, then solid–melt equilibrium is
only possible at a temperature lower than the melting temperature of the isolated phases.
You can see this graphically by constructing a diagram similar to Fig. 5.3, in which the
low entropy curve corresponds to one of the pure solids, and the high-entropy curve to
the corresponding component in the melt. If the chemical potential of the melt compo-
nent decreases equilibrium must shift to a lower temperature. As we saw in Sections 6.5
and 6.6, the magnitude of this effect can be calculated by using the melting point depression
equation, (6.49). This equation is important not only for the study of eutectics, but also to
study other controls on magma generation. There are reasons to revise equation (6.49) as
applied specifically to melting reactions, which we do next.

10.2.1 A revision of the melting point depression equation

Although (6.49) is the traditional way of integrating (6.48), our microscopic understanding
of melting, Section 10.1.1, suggests that a better approximation may be to consider the
entropy of melting, rather than the enthalpy of melting, to be constant. Using the identity
�mH = T ·�mS, we re-write equation (6.48) for the depression of themelting point relative
to that of a pure substance as follows:

lnKT =
∫ T

T0

�mS

RT
dT (10.7)

where T0 is the melting point of a pure one-component substance, and KT is the ratio of
the activity of this component in the melt to its activity in the solid (see equation (6.44)).
Equation (10.7) integrates to:

KT =
(
T

T0

)�mS

R

(10.8)

which is equivalent to (6.49) (but not identical, see Exercise 10.1). We shall use this ver-
sion of the melting point depression equation throughout this chapter. One advantage of
this equation relative to (6.49) is that it is more compact. More importantly, experimental
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studies of natural rock compositions (see Kojitani &Akaogi, 1997) support the theoretical
expectation (Section 10.1.1) that entropy of melting varies less strongly with temperature
than enthalpy of melting.

10.2.2 Multicomponent eutectics and cotectics

The conclusion that the eutectic temperature must be lower than the melting point of the
isolated phases generalizes immediately to systems of any number of components. Consider
a system of c components, in which there are c mutually immiscible solid phases. An
assemblage consisting of the c solid phases plus a melt is univariant, or pseudoinvariant at
constant pressure. Call the equilibrium temperature Te.At equilibrium there is one equation
like (10.8) for each of the c components. Let i be the component that has the lowest melting
temperature, T0, i . We then have, because the solid remains pure:

ai,melt =
(
Te

T0, i

)�mS

R

. (10.9)

But if the melt is a stable phase then ai,melt < 1 (Fig. 5.9). Because the exponent in (10.9) is
always positive for a melting reaction, it follows that Te < T0, i , i.e. the eutectic temperature
is lower than the melting point of the least refractory phase.
What happens if one of the phases disappears, but the corresponding component is still

present in the melt? We now have two degrees of freedom, so the system becomes pseu-
dounivariant at constant pressure. The c–1 solid phases can exist at equilibrium with melt
over a temperature range. Themelt composition will necessarily change along this tempera-
ture range, because the Gibbs free energy of each of the solid phases varies with temperature
at a different rate (in order for this not to be the case all the solid phases would have to have
the same entropy and heat capacity – why?). The resulting temperature vs. melt composi-
tion curve is called a cotectic, with which you are almost certainly familiar from igneous
petrology. In general, c cotectics radiate away from a eutectic. For our purposes the impor-
tant point is to recall that temperature along each of the cotectics increases away from the
eutectic, and to understand why.
Suppose that the solid phase consisting of component j disappears from the eutectic

assemblage. This does not have to be the lowest melting point phase, it can be any of the
solid phases. The chemical potential of j in the melt decreases relative to its value when the
melt was at equilibrium with the solid phase, because the melt is no longer saturated in this
phase. The chemical potentials of the othermelt componentsmust increase (equation (5.31))
so that preserving solid–melt equilibrium requires that temperature increase relative to that
of the eutectic. Alternatively, you can pretend that temperature does not increase. In that
case the solid assemblage has a lower Gibbs free energy than the melt, and the latter will
crystallize, unless temperature rises.
The same line of argument can be applied to show that each time that a solid phase

disappears, and a degree of freedom is gained, melting temperature must keep increas-
ing (exercise left to the reader). The sequence in which this happens depends on the bulk
composition of the system relative to the thermodynamically determined locations of the
eutectic and cotectics. It may be different for different bulk compositions, something that
is very important in the detailed study of igneous phase relations, but that will not concern
us here. The important point for many of our subsequent discussions is that, in general,
peridotites consisting of several major components and a comparable number of phases
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(e.g. lherzolites) are less refractory than simpler ultramafic rocks such as dunites or
pyroxenites. Similarly, the mantle of an icy satellite consisting of a mixture of H2O, NH3

and CH4 ices melts at a lower temperature than one consisting of pure H2O.

10.2.3 Incongruent melting and peritectics

The phase rule requires that an assemblage of c solid phases plus a melt phase in a c-
component system be pseudoinvariant at constant pressure, but it is mute with respect to
the chemography of the melting reaction. At a eutectic the only phase on the high entropy
side of the reaction is melt. Such a reaction is known as a congruent melting reaction.
However, as we saw in Worked Example 6.3, there are also incongruent melting reactions
in which the high entropy assemblage consists of melt plus one or more solid phases. If
the total number of phases at an incongruent melting reaction is c+ 1 then the variance is
still 1. The isobaric pseudoinvariant point is in this case known as peritectic. In contrast
to eutectics, peritectics are not minimum melting points. It can be shown that requiring
a peritectic to be a minimum melting point leads to a violation of Schreinemakers rule
(Exercise 10.2).
Our simplified calculation of the temperature and composition of eutectics (e.g.

equations (10.9) or (6.70) and (6.71)) assumes that the melt is an ideal mixture of the
same chemical species that make up the solid phases. Incongruent melting is impossible
with this assumption. In order to see why, consider a binary system. The congruent melting
reaction, A+B→ liquid, allows for the liquid to be a combination of species A and B.
The incongruent melting reaction, A→ liquid+B, in contrast, makes it impossible for the
liquid to be a linear combination of non-negative amounts of speciesAand B. It follows that
calculation of the temperature and composition of a peritectic requires that one specify melt
species that are not present in the solid phases, and that may interact non-ideally in the melt
phase. How to do this is beyond the scope of this book, but is at the core of thermodynamic
models such as MELTS.

10.3 Partitioning of trace components between solids andmelts

Virtually all minerals incorporate in their crystalline structures trace amounts of components
that are not present in their nominal formulas. For example, end-member forsterite is never
Mg2SiO4, as a small fraction of the Mg cations are replaced by elements such as Ni and
Co. When the mineral melts these components also enter the melt and, under the right
circumstances, equilibriummay be established between trace components in the crystal and
in the melt, for instance: Ni2SiO4 (crystal)

→←Ni2SiO4 (melt). The usual convention is to write
the equilibrium of a trace element between crystal and melt with the crystal as product (this
convention, which I have always found counterintuitive, probably arises from an excessive
preoccupation with magmatic differentiation, as opposed to magma generation):

zmelt � zcrystal . (10.10)

In this equation z stands for the trace component of interest. It could be an element or
some convenient species such as Ni2SiO4. If the concentrations of the trace component in
the crystal and the melt are low enough that Henry’s law is valid (Section 5.9.2), then the
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thermodynamic equilibrium condition for (10.10) can be written as follows:

−�mG
0
P ,T +RT ln

(
K
z,s
H Xz,s

K
z,m
H Xz,m

)
= 0, (10.11)

where s and m stand for solid and melt, KH are the respective Henry law constants, X is
mol fraction and �mG

0
P ,T is the standard state Gibbs free energy of melting of the trace

component at the pressure and temperature of interest. We can re-write (10.11) as follows:

Xz,s

Xz,m
= K

z,m
H

K
z,s
H

exp

(
�mG

0
P ,T

RT

)
. (10.12)

As a first approximation it is often assumed that the exponential function is a constant, or at
least that it varies very slowly, over a restricted pressure–temperature range. Furthermore,
for restricted ranges in the compositions of solid and melt the mol fraction of z can be con-
sidered to be related by a constant factor to its mass concentration, expressed, for example,
in weight percent or ppm. Using Cz for the mass concentration, we simplify (10.12) to:

Cz,s

Cz,m
=Ds/m, (10.13)

whereDs/m is called the solid–melt partition coefficient. This equation is sometimes called
Nernst’s distribution law, and Ds/m is Nernst’s distribution coefficient (Chapter 11). It
incorporates the right-hand side term of equation (10.12), plus the ratio of constant factors
that convert mol fraction to mass fraction in the solid and melt. Partition coefficients are
determined empirically rather than calculated from thermodynamic properties, so that these
different contributions are lumped together and in general cannot be isolated. If enough
experimental measurements exist, however, it may be possible to determine the pressure
and temperature dependencies of the partition coefficient.
Trace elements are classified as compatible vs. incompatible, depending on whether the

value of D is greater or smaller than one, respectively. A compatible trace element prefers
the crystal, and an incompatible one themelt. From the point of viewof thermodynamics this
distinction arises from two independent causes, which can be identified in equation (10.12).
The first is themelting point of the trace component relative to that of the crystalline host, or,
in other words, whether the trace component is more or less refractory than the host. If it
is more refractory then �mG

0
P ,T > 0, because at the temperature at which the host crystal

melts the stable phase for the trace component is the solid. The trace element in this case
will tend to behave compatibly. Conversely, it will tend to be incompatible if the trace
component is more fusible than the host and�mG

0
P ,T < 0. The second factor is the relative

value of the Henry’s law constant in the crystal to that in the melt. Given two trace cations
in the same crystalline host, the one closer in size and charge to the essential cation in the
crystal will generally have a smaller Henry law constant and be more compatible. It follows
that a given trace component can be compatible in some systems and incompatible in others.
Whether a trace element is compatible or incompatible is important. Suppose that we have

a crystal that melts progressively, such that melt fraction, ϕ, varies continuously between
0 and 1. We shall come back to the “melts progressively” statement and analyze it from
a rigorous thermodynamic point of view, but for now we note that, if Cz, i is the initial
concentration of component z in the crystal before melting starts, and melt and crystal
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remain at equilibrium throughout the melting process, then for any melt fraction we have,
by mass balance:

Cz,s (1−ϕ)+Cz,mϕ=Cz, i (10.14)

or:

Cz,m = Cz, i

Ds/m (1−ϕ)+ϕ
. (10.15)

This equation is known as the batch melting equation, meaning that crystal and melt remain
at equilibrium from the beginning of melting until (at least) melt fraction ϕ is attained.
Other possibilities exist, and may be more common in nature (Maaløe, 1985;Winter, 2001;
Philpotts & Ague, 2009), but (10.15) is sufficient for our purposes. Variation in Cz,m with
ϕ for various values of Ds/m is shown in Fig. 10.2. We begin by noting that for ϕ = 0
we get Cz,m = Cz, i/D

s/m. This is the concentration in the first infinitesimal fraction of
melt; it is very high for a strongly incompatible element (e.g.Ds/m = 0.001, Fig. 10.2) and
virtually zero for a strongly compatible one (Ds/m = 100). For ϕ= 1, Cz,m =Cz, i , as now
the composition of the melt is identical with the starting composition.
An incompatible component (Fig. 10.2) is strongly enriched in the first melts and its con-

centration initially decreases very rapidly. The rate of decrease slows down with increasing
melt fraction. For an incompatible trace component: (i) at sufficiently large melt fractions
the concentration is more or less independent of the value of D and depends only on melt
fraction, and (ii) the same is true for sufficiently small values of D. The reason is that, in
both cases, Cz,m ≈ Cz, i/ϕ (see equation (10.11)). A strongly compatible trace element, in
contrast, may be virtually absent from the melt until the melt fraction is almost 1. These
concepts, and elaborations based on the nature of the melting process (e.g. whether melt
and crystal remain at equilibrium or are separated as soon as a new melt increment forms)
constitute much of the basis of trace element geochemistry.Application to multicomponent
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Fig. 10.2 Concentration of trace component z in melt, Cz,m, relative to bulk initial concentration, Cz, i . Numbers in boxes are
solid–melt partition coefficients, Ds/m.
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systems (i.e. rocks) differs chiefly in the fact that the partition coefficient that is used, called
the bulk partition coefficient, is a weighted average of the partition coefficients for each of
the minerals in the assemblage. We will not pursue these topics here, but in Section 10.4.2
we will examine the conditions under which trace element partitioning may have important
effects on melt generation in planetary mantles.

10.4 The effect of “impurities” onmelting temperature

10.4.1 Melting point depression revisited (again!)

Let T0 be the melting point of a pure one-component crystal, and T the melting point of
the crystal in the presence of a component, z, that dissolves in the melt but not in the solid.
We shall refer to this component as an “impurity”, and to the component that makes up the
crystal as the “major” component. The impurity could be an abundant component that is
altogether excluded from the solid, or a strongly incompatible trace component – all that
matters is that its concentration in the solid is vanishingly small relative to its concentration
in the melt and can thus be ignored. The difference with our discussion of eutectics is that
now we do not require that this additional component make up a phase of its own. Let the
mol fraction of the impurity in the melt beXz,m. Because we ignore the concentration of the
impurity in the solid the activity of the major component in the solid species is 1, and KT

in the melting point depression equation (10.8) equals the activity of the major component
in the melt, just as in the case of a eutectic. Let γr,m be the activity coefficient of the major
component in the melt. Then KT = γr,m (1−Xz,m) and (10.8) becomes:

γr,m
(
1−Xz,m

)= ( T
T0

)�mS

R

(10.16)

or:

T = T0
(
γr,m

) R

�mS
(
1−Xz,m

) R

�mS . (10.17)

This equation yields the crystal–melt equilibrium temperature as a function of the mol
fraction of the impurity in the melt. Calculating an accurate value for T , however, depends
on knowing accurate values for (i) Xz,m and (ii) γr ,m. This is the crux of the problem, as
it requires that we know the distribution of chemical species in the melt and the possible
non-ideal interactions among them, something that is generally far from simple.
We can derive an important generalization, however. If the concentration of the trace

component in the melt remains low then γr ,m ∼ 1, and we can ignore it. Because the
exponent R/�mS is always a positive quantity, T < T0. Say that the molecular weight of
the impurity is mz, and that of the major component mr . If we express concentrations in
mass percent (what we normally and incorrectly call weight percent), we have:

Xz,m =
Cz,m
mz

Cz,m
mz

+ 100−Cz,m
mr

. (10.18)
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Fig. 10.3 Melting temperature of forsterite as a function of the parameterM= ratio of molecular weight forsterite,mr , to
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Defining the ratio of molecular weight of major component to molecular weight of impurity
M =mr/mz, we get:

Xz,m = MCz,m

(M − 1)Cz,m+ 100
(10.19)

and:

T ≈ T0

(
1− MCz,m

(M − 1)Cz,m+ 100

) R

�mS

. (10.20)

We see that the molecular weight of the impurity relative to that of the major component
has a large effect on the magnitude of the melting point depression, simply because a given
mass of impurity represents a greater number of mols the lower its molecular weight is
relative to that of the host. This is shown by the curves of T vs.M in Fig. 10.3. The curves
are calculated with equation (10.20) for values of T0 = 2174 K and �mS = 56 Jmol−1
K−1, which correspond to melting of forsterite at 1 bar, and constant values of Cz,m of 1
and 10 wt%.

10.4.2 Effect of partitioning of incompatible trace components onmelt generation

In Section 10.3 I was somewhat careless about the thermodynamics of melting. It is now
necessary to clean up the act. Naively, one could think that the “progressive melting” that
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I referred to in Section 10.3 corresponds to melting at constant temperature, as a result
of slow addition of heat (enthalpy of melting). This is not the case, however. Consider an
idealized system inwhich forsterite is pureMg2SiO4.Melting in this system is univariant.At
constant pressure there is a unique temperature at which crystal and melt are at equilibrium,
i.e. the solidus and liquidus temperatures are the same. Suppose now that olivine contains
a trace component dissolved in its crystalline structure. This could be a cation substituting
for Mg, or it could be a molecular species, such as H2O or some other volatile component,
accommodated interstitially in its crystalline structure. In any case, we are now dealing
with a two-component system, and since the extra component does not cause a new phase
to form, the melting reaction becomes divariant: solidus and liquidus temperatures do not
coincide, nor will they in general be the same as the melting temperature of pure forsterite.
Whether this thermodynamically inevitable effect of incorporation of trace components is
petrologically significant is another question, to which we now seek answers. This topic
has been explored in detail by Hirschmann and collaborators in a number of recent and
clear contributions (Hirschmann, 2006; Hirschmann et al., 2009; Tenner et al., 2009). Here
I will derive a set of very general equations applicable to simple systems of what I shall
call “one component plus a trace”. By this I mean that the system is binary when the
trace component is included, and that we will compare its behavior to that of the unitary
trace-free system.
We seek an equation for the solidus temperature of a crystal that contains a trace

component dissolved in it. From (10.15) and (10.19) we write:

Xz,m = MCz, i

(M − 1)Cz, i + 100Ds/m (1−ϕ)+ϕ
. (10.21)

Substituting this expression in (10.17) and setting ϕ= 0 yields the desired equation for the
solidus temperature, TS :

TS = T0

(
1− MCz, i

(M − 1)Cz, i + 100Ds/m

) R
�mS

. (10.22)

This equation allows us to explore the effects of the three parameters, M , Ds/m and Cz, i
on the melting point of a crystal. Figure 10.4 shows curves of TS vs. Cz, i calculated for
melting of forsterite at 1 bar (T0 = 2174 K, �mS = 56 Jmol−1 K−1, same as Fig. 10.3).
The horizontal axis extends to a maximum value of 0.1 wt% (= 1000 ppm), which makes
it clear that even trace amounts of “impurities” can have a dramatic effect on the solidus
temperature of a crystal (emphasis important, as we shall soon see). The values of the
partition coefficient and of the molecular weight of the trace component relative to that of
the host both havemajor effects on themagnitude of the melting point depression. Themore
incompatible a component is, the more it partitions into the melt and therefore the greater
the melting point depression is. We discussed the effect of molecular weight in Section
10.4.1, but let us now consider specific examples.

10.4.3 Volatiles andmelting

Volatiles, and in particular H2O, have a strong effect on themelting point of silicate systems.
The key to this behavior is, to a considerable extent, the low molecular weight of volatile
species. What determines the maximum magnitude of the melting point depression is the
solubility of the volatile in the silicate melt at the conditions of interest, i.e. how large Cz,m
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Fig. 10.4 Melting temperature of forsterite as a function of bulk initial concentration of impurity, for different values of the
parameterM, and different solid–melt partition coefficients, Ds/m.

can get. But for a given mass solubility, the lower the molecular weight of the volatile,
the stronger its effect on the melting point will be. Volatile solubility in silicate melts is a
complicated function of volatile and melt compositions, pressure and temperature. A vast
literature on this topic exists, of which a reasonably recent summary can be found inVolume
30 of Reviews in Mineralogy.Volatile solubilities in silicate melts increase with pressure at
constant temperature. If any generalizations beyond this one are possible, one could say that:
(i) H2O solubility in silicate melts is significant (in the wt% level) beginning at pressures
of a few hundred bars, (ii) CO2 solubility reaches wt% levels only at pressures of order
10 kbar, (iii) fluorine solubility may be comparable to that of H2O, whereas chlorine may
be at least one order of magnitude less soluble, (iv) sulfur solubility is strongly dependent
on oxygen fugacity and the oxidation state of iron, and (v) nitrogen solubility may become
quite large only at lower mantle pressures.
Another important consideration is the nature of the sub-solidus host for the volatile

species. One possibility (see Worked Example 6.3) is that a volatile phase exists at equilib-
rium with the rock. If the volatile phase is pure (say, pure H2O), then the melt is saturated in
the volatile species. In this caseXz,m takes its maximum value at the given P and T , and the
solidus temperature takes its minimum value (equation (10.17)). A variation on this theme,
that we discuss in Section 10.7, is a situation in which the volatile phase percolates through
the rock but the volatile mass flux is low enough that the melt does not become saturated
in volatiles, at least initially. Another possibility is that the volatile species is an essential
structural component of one or more of the mineral phases in the rock, for example, micas,
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amphiboles, apatite or carbonates. In this case it does not become available until the host
crystalline phase breaks down. This is dehydration melting (discussed in Worked Exam-
ple 6.3). Chemography requires that in this case the concentration of the volatile in the melt
be lower than the saturation concentration. The dehydration-melting solidus temperature
must therefore be higher than the vapor-saturated solidus (equation (10.17), Fig. 6.9). Yet
another possibility, that may be important in planetary mantles, is that the volatile species
is present as a trace component in a nominally anhydrous mineral.

10.4.4 Melting point depression by trace volatiles

Olivine at upper mantle pressures can dissolve a few hundred ppm of H2O, and measured
values ofDolivine/melt forH2Oare in the range 0.006 to 0.009; see, for example,Hirschmann
(2006); Hirschmann et al. (2005); Tenner et al. (2009). As pointed out by these authors, a
reliable estimate of themelting point depression is complicated by the fact that the speciation
ofH2O in silicatemelts is far frombeing completely understood.We can postulate, however,
that the molecular weight of H2O species is likely to be much lower than that of silicate
species, so perhaps the curves for M = 10 in Fig. 10.4 yield a reasonable estimate of the
effect of H2O on the melting point of forsterite. If this is the case then a few hundred ppm
of H2O dissolved in forsterite will lower its solidus temperature by as much as 150–200 K,
which may be significant when considering magma generation in planetary mantles (see
Section 10.6). Suppose, on the other hand, that forsterite contains the same mass of a trace
incompatible cation in solution, for example potassium. We can reasonably assume that
when K enters the melt it does so as a silicate species, so in this caseM may be closer to 1.
For a partition coefficient similar to that of H2O the melting point depression would be only
∼20 K. These estimates ignore the effect of any excess chemical potential of the major melt
component (i.e. γr ,m in equation (10.17)). A value of this factor greater than 1 would raise
the solidus temperatures relative to those in Fig. 10.4, but the behavior depicted in Figure
10.4 is nonetheless qualitatively correct.
These results correspond to generation of an infinitesimal amount of melt at the solidus.

A different question is that of how much melt forms as a function of temperature above the
solidus. For a strongly incompatible component we expect that, as melt fraction increases
above the solidus, the concentration of the trace component in themeltwill initially dropvery
rapidly (Fig. 10.2), giving rise to a negative feedback effect that will limit melt generation.
We can examine this by substituting (10.21) in (10.17) and solving for the melt fraction, ϕ.
After some uninspiring algebra:

ϕ= 1

1−Ds/m


Cz,i100


 M

1−
(
T
T0

)�mS
R

−M + 1


−Ds/m


 . (10.23)

Note that this equation blows up for T = T0, as it must, for the liquidus (ϕ = 1) must
also be attained at a temperature lower than the melting point of the pure system (T0).
The liquidus temperature can be calculated by substituting (10.21) in (10.17) and setting
ϕ= 1. It is (obviously) independent ofD and for all likely values of Cz, i andM it is only a
fraction of a degree to a couple of degrees lower than the melting point of the pure system.
Equation (10.23) is plotted in Fig. 10.5, for a constant value of Cz, i = 0.05 (= 500 ppm).
The plot confirms our suspicion that, even if a strongly incompatible trace component with
a low molecular weight can cause a strong depression of the solidus, the increase in melt
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Fig. 10.5 Forsterite melt fraction as a function of temperature, for different values of the parameterM and different solid–melt
partition coefficients, Ds/m. The bulk initial concentration of impurity is 500 ppm in all cases.

fraction above the solidus is painfully slow, requiring perhaps 100 K to generate 1% melt.
The rate of melting for a system in which the impurity is closer in molecular weight to the
major component is greater, but the melting point depression is relatively minor to begin
with. There is no free lunch.
The principles summarized in Figs. 10.4 and 10.5 apply tomulticomponent systems, such

as rocks, but there is a potentially important difference with the one-component system,
which is shown schematically in Fig. 10.6. In this figure I use the labels “dry” solidus
and “dry” liquidus to refer to the solidus and liquidus of the system in the absence of a
trace component. As we saw, the latter could be a volatile species, but it could also be
an incompatible trace element, such as an alkali in a magnesium silicate. Regardless of
the number of components in the system, addition of a trace component lowers both the
solidus and the liquidus temperatures. Depression of the solidus can be drastic, depending
on the nature of the impurity, its abundance, and its partition coefficient. Depression of the
liquidus, in contrast, is always vanishingly small, as for ϕ= 1 the concentration of the trace
in the melt is always small. The initial rate of increase of melt fraction may be very slow
(see also Fig. 10.5) but, if the solidus depression is large enough, the melt fraction at the
temperature of the dry solidus of a multicomponent system may be substantial. One way of
looking at this is that the importance of trace amounts of volatiles in nominally anhydrous
mantle phases is not so much that they lower the solidus temperature as the fact that they
raise the amount of melt produced at temperatures near that of the dry solidus. Quantifying
these effects, however, requires a detailed thermodynamicmodel ofmulticomponent silicate
melts, which is beyond the scope of this book (see, for example, Hirschmann et al., 1998,
1999a,b).
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10.5 Melting in planetary interiors

In Chapter 2 we discussed the sources of thermal energy in planetary interiors. With the
exception of catastrophic events, such as planetary-sized impacts, core formation, tidal
de-spinning and perhaps decay of abundant short-lived isotopes, all of which may have
been common in the early Solar System, the rate of heating of planetary interiors is not
sufficient to cause wholesale melting. Formation of magmas is always localized and entails
less than complete melting of the parent solid assemblage. We seek to understand what
causes localized partial melting in planetary interiors.
The ratio �Hfusion/CP for silicate minerals is of order 102–103 K. Melting a given

amount of rock requires the same amount of energy as raising its temperature by hundreds
of degrees. This is a key part of the explanation for why magmas typically do not carry
significant superheat, or in other words, that eruption temperatures are not normally above
liquidus temperatures. It also tells us that melting must have a considerable effect on a
planet’s thermal gradient. Let us define our thermodynamic system as a region of the inte-
rior of a planetary body in which partial melting takes place. Focusing on its fundamental
thermodynamic aspects we can consider three simple end-member situations. First, melt-
ing may take place in an open system, in which there is mass and heat transfer across its
boundaries. This typically involves influx of a volatile phase that lowers the melting point
of the solid assemblage (Section 10.4.4). Melting above terrestrial subduction zones may
largely occur in this way. Second, melting may occur in a closed but non-adiabatic system,
i.e. one that can exchange heat but not matter with its environment. This may be a magma
generation process at major planetary-scale compositional discontinuities, at which jumps
in density, melting point and rheological properties may allow the juxtaposition of advec-
tive and diffusive heat-transfer regimes. Partial melting of the Earth’s continental crust
by ponding of mafic magmas near the Moho may be an example. The problem with this
mechanism is that it relies on diffusive heat transfer into the region that undergoes melting,
and the very long time scales for heat diffusion may render it inoperable (Chapter 12). One
way of getting around this difficulty is to decrease the diffusive lengthscale which would
be the case, for example, if mafic magmas intrude the crust as a complex of closely spaced
dikes. Finally, melting may occur under adiabatic conditions if the solidus of the mineral
assemblage intersects the adiabatic thermal gradient. This process, called decompression
melting, is likely to be the most widespread magma generation process in convective plan-
etary bodies. It is responsible for magmatism at Earth’s mid-ocean ridges, hot spots and
large igneous provinces, such as continental flood basalts and oceanic plateaus. It is almost
certainly responsible for magmatism in Venus and Mars, and perhaps for Io’s volcanoes as
well. Because of its importance we will discuss this process first.

10.6 Decompressionmelting

10.6.1 Fundamental relations

In Chapter 3 we derived expressions for the adiabatic temperature gradient, as a function
of either depth (equation (3.35)) or pressure (equation (3.32)). In Chapter 4 we saw that
these equations correspond to a specific type of adiabatic process, during which entropy
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is constant (Worked Example 4.6), and that adiabatic but not-isentropic transformations
are also possible (Section 4.4). We have calculated and used adiabatic thermal gradients in
several discussions without paying much attention to this distinction, which is generally
safe to do in systems in which neither inelastic deformation nor phase separation take place.
We can ask, however, is decompression melting truly adiabatic (see, for example, Asimow,
2002; Stolper & Asimow, 2007)? Of course, if a transformation is not adiabatic it cannot
be isentropic, as heat exchange entails entropy generation, but even if melt generation is
an adiabatic process, is it isentropic? We shall address these questions in a later section,
but the isentropic approximation is an excellent starting point. This is so, first and fore-
most, because the mathematics are simple, allowing us to focus on the physics of melt
generation during mantle upwelling. Second, in many instances decompression melting is
approximately isentropic, at least locally. Third, it is relatively straightforward to start with
the isentropic approximation and add to it the effects of entropy gain or loss arising from
exchange of heat and matter with the environment, or from energy dissipation. Through-
out this discussion, and unless otherwise stated, I will continue to use the terms adiabat,
and adiabatic decompression melting, to mean adiabatic and isentropic, as this is common
throughout the literature. When necessary I will explicitly state whether departures from
the constant entropy assumption need to be taken into consideration.
Using equation (3.35) and the thermodynamic properties of forsterite yields a characteris-

tic adiabatic gradient for the Earth’s upper mantle of∼0.4 K km−1, or, using equation 3.32,
∼1.5 K kbar−1. The measured volume and entropy of melting of upper mantle minerals
(forsterite, diopside, enstatite and spinel) yield Clapeyron slopes for their melting reactions
(equation (5.6)) of 50–100 bar K−1, or equivalently 10–20 K kbar−1. Clearly, the adia-
bat and the melting curve for the mantle can intersect. Whether and where they intersect,
however, and what happens next, depend not only on their relative slopes but also on their
absolute locations.
We will consider melting under Earth’s mid-ocean ridges as our reference model – after

all, this is where most of Earth’s volcanic activity takes place. Let us assume that the
oceanic lithosphere extends to a depth of 150 km, and that the temperature at the base of the
lithosphere is 1650 K (= 1377 ◦C, see Chapter 3). The pressure at that depth is ∼50 kbar
(Chapter 8). From these values and a slope of 1.3 K kbar−1 we derive the mantle adiabat
shown in Fig. 10.7. The intersection of the mantle adiabat with the Earth’s surface (P = 0)
defines the mantle’s potential temperature, which in our example is Tp = 1312◦C. This is
the temperature that the mantle would have if it were allowed to decompress adiabatically
(and, remember, isentropically) to the planet’s surface, i.e. if the lithosphere did not exist
and phase changes did not take place. This may not happen, but knowing the potential
temperature is important because, given that an adiabat is fully determined if we specify a
single {P , T } point on it (Section 3.5), Tp allows us to compare the thermal state of different
regions of a convective mantle, as well as the mantles of different planetary bodies. In other
words, comparing how much hotter or colder different parts of a convective region are
requires that we specify the pressure at which we make the comparison, and we choose zero
as the reference pressure.
In Section 3.7.2 we defined the lithosphere as the thermal boundary layer for mantle

convection, meaning that heat transfer across the lithosphere is by diffusion. If we ignore
radioactive heat production (which, if not quite right, is not altogether unacceptable for the
oceanic lithosphere) then the equilibrium lithospheric geotherm is a straight line. In Fig. 10.7
I show this conductive geotherm with a straight line joining the 1650 K temperature at the
base of the lithosphere to a surface temperature of 300 K. This translates to a heat flux of
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Fig. 10.7 Simplified thermal conditions in the Earth’s oceanic upper mantle. The thick “dog-leg” line shows the geotherm far
away from a mid-ocean ridge. Under a mid-ocean ridge adiabatic upwelling of the mantle intersects the peridotite
solidus. If the adiabat were able to reach the surface unperturbed its temperature would be the potential
temperature, Tp . The difference between Tp and basalt eruption temperatures (range shown with an arrow) reflects
the enthalpy of melting.

∼50 mW m−2, which is a bit on the low side for old ocean floor. Including radioactive
heat production in the lithosphere would probably raise the value to the right ballpark, but
this is not important for the present discussion. What is important is that the geotherm
in an old sector of ocean floor, effectively infinitely removed from any region of active
magma generation, would look like the thick “dog-leg” line in Fig. 10.7, composed of an
adiabatic (advective) segment capped by a diffusive segment. There are places, however,
where advective flow is able to penetrate to depths that are significantly less than that of the
“typical” lithospheric base. This process may be driven either from “above”: the lithosphere
thins in response to stretching, or from “below”: the rate of heat advection is high enough
to thermally “erode” the lithosphere. For our purposes it does not matter which is the case.
What matters is that under those circumstances the adiabatic thermal gradient will extend
to shallower depths, as shown by the line labeled “adiabat” in Fig. 10.7.
The figure also shows the drymodel peridotite solidus, afterMcKenzie andBickle (1988).

The adiabat and the solidus intersect at a pressure of ∼17 kbar, indicating where decom-
pression melting begins during mantle upwelling. The intersection occurs in the spinel
lherzolite field. This is consistent with the phase equilibrium and geochemistry of MORBs,
suggesting that the processes and thermal conditions summarized in Fig. 10.7 are a feasible
model for melting under Earth’s mid-ocean ridges. The zero-pressure solidus temperature
is 1100◦C. Hypothetical solidi going through this temperature and with Clapeyron slopes
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of 50 and 100 bar K−1, which bracket the slope range for typical mantle minerals at low
pressure, are also shown. McKenzie and Bickle’s model solidus is almost exactly in the
middle, which may be reassuring at some (subjective) level.
If the enthalpy of fusion of rocks were zero and the melts formed by decompression

melting rose isentropically then they would reach the surface at the mantle’s potential
temperature. This is not the case. Basalt eruption temperatures are typically∼1200 ◦C. The
difference between this temperature and the mantle’s potential temperature must reflect at
least in part the conversion of sensible heat to latent heat duringmelting, as first-order phase
transitions are always accompanied by a non-zero enthalpy change. We will discuss this
issue in detail in the next section, but before doing so there are a few more things to learn
from Fig. 10.7.
First, the eruption temperature of a magma formed by adiabatic decompression melting

must be lower than the potential temperature of its mantle source region. Thus, whereas
Fig. 10.7 may be able to account for melting under mid-ocean ridges, it cannot explain
high-Mg basaltic lavas with eruption temperatures in excess of 1300◦C, let alone ultramafic
komatiite lava flows. These require mantle potential temperatures significantly higher than
1312 ◦C, which may have been the norm in the Archaean mantle (Worked Example 3.4).
Second, mafic lavas exist that have major and trace element characteristics indicative of
having formed from garnet-bearing peridotites. Figure 10.7 shows that melting in the garnet
lherzolite field can take place through a combination of higher potential temperature, steeper
Clapeyron slope and lower solidus temperature at a given pressure. In view of our discussion
in Section 10.4, the fact that some of these deep magmas tend to be rich in incompatible
elements (e.g. K) and dissolved volatiles may be significant.

10.6.2 Batch decompression melting of a one-component system

We initially consider decompression melting under isentropic conditions. This requires that
the melt remain in the system and in equilibrium with the solid, a process that as we saw
in Section 10.3 is known as batch melting. We will later relax this constraint and allow the
melt to leave the system at the same rate as that at which it is produced. This process, known
as fractional melting, is obviously not adiabatic, and hence not isentropic.
Imagine an idealized planetary mantle composed of a single component (Fig. 10.8). At

pressures greater than Pi the temperature is below the solidus and the mantle consists of a
single solid phase, so that it is a divariant thermodynamic system. Upwelling of solid mantle
occurs along an adiabat with potential temperature Tp, from A to B in the figure. At point
B the adiabat intersects the solidus at temperature Ti and, as a second phase appears, the
system becomes univariant. Adiabatic decompression beyond the intersection point cannot
follow the adiabat calculated with equation (3.32). Rather, it must be constrained to the
solidus (which in this case is also the liquidus), from B to C in Fig. 10.8. It is important
to realize that the two-phase segment of the decompression path, BC, is also adiabatic.
However, it is not described by equation (3.32) because this equation does not take into
consideration the enthalpy of fusion.At point C,when the upwellingmantle reaches pressure
Pf , melting is complete and the system becomes divariant once more. Further ascent, from
C to D, occurs along another adiabat calculated with equation (3.32), but with a different
potential temperature,Tp,m, and perhaps a different slope arising fromdifferences inmaterial
properties between solid and liquid. The drop in potential temperature from theAB adiabat
to the CD adiabat reflects the enthalpy absorbed by the melting phase transition.
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Fig. 10.8 Decompression melting of a one-component system. The solid mantle (divariant in a one-component system) rises
adiabatically from A to B. The solidus (which is also the liquidus in a one-component system) is intersected at pressure
Pi , temperature Ti (point B). At B the system becomes univariant and adiabatic upwelling is constrained to the
melting curve BC. Melt fraction increases from B to C, as sensible heat is converted to latent heat. Melting is complete
at C, and melt rises adiabatically from C to D.

We seek an equation that allows us to calculate the extent of melting as a function of
pressure along the two-phase segment of the adiabat.Wewill initially restrict our discussion
to the simple one-component systemdepicted in Fig. 10.8, because this problemhas a simple
analytical solution that will allow us to examine the fundamental thermodynamic aspects
of decompression melting. Later we will see how the results generalize to multicomponent
systems in which there is a finite temperature difference between solidus and liquidus.
If decompression melting occurs during isentropic upwelling then we can begin with

equation (4.140) and modify it so as to include the thermal effect of the phase transition.
We write the new equation on a molar basis, as follows:

dS =
(
∂S

∂T

)
P

dT +
(
∂S

∂P

)
T

dP +
(
∂S

∂ϕ

)
P ,T

dϕ= 0, (10.24)

where ϕ is (molar) melt fraction, i.e. ϕ= 1 corresponds to melting of one mol of substance.
Clearly, (∂S/∂ϕ)P ,T is the molar entropy of fusion, �mS, so (10.24) becomes (see also
(4.141)):

CP

T
dT −αV dP +�mS dϕ= 0. (10.25)



499 10.6 Decompression melting

Let the Clapeyron slope of the melting reaction be y = (dP/dT )melting . The temperature at
any point along the two-phase segment, BC in Fig. 10.8, is then given by:

T = Ti + P −Pi
y

. (10.26)

Taking the derivative of (10.26), substituting in (10.25), rearranging and simplifying
we get:

dϕ

dP
=− CP

�mS (yTi +P −Pi) +
αV

�mS
. (10.27)

The material properties CP ,V and α correspond to the two-phase system and must there-
fore vary between those of the pure solid at B to those of the pure melt at C. Including
weighing functions such as Cp = Cp(ϕ), etc., is certainly possible but it complicates the
equation tremendously, requires a numerical solution, and obscures the physics contained
in 10.27. For simplicity we will use values for CP ,V and α that are intermediate between
characteristic solid and melt values for upper mantle phases. Reasonable estimates are:
Cp ≈ 200 JK−1 mol−1, α ≈ 6× 10−5 K−1 and V ≈ 4.7 J bar−1 mol−1. The other param-
eters in equation (10.27) are independent of ϕ. We can choose typical values of 56 J K−1
mol−1 for the entropy of melting, and 80 bar K−1 and 1600 K for the Clapeyron slope and
initial melting temperature in the upper mantle, respectively.
Equation (10.27) applies to any point along the two-phase segment of the adiabat: {Ti ,Pi}

could be the pointwhere the solidus is first intersected, or it could be any other point between
B and C. Let us consider first a situation in which {Ti ,Pi} is some arbitrary point in the
two-phase segment of the adiabat, and P is infinitesimally close to Pi , so that Pi −P ≈ 0
and T ≈ Ti . We can then simplify (10.27) as follows:

dϕ

dP
≈− CP

yT�mS
+ αV

�mS
, (10.28)

and in this form it is easier to dissect the physics of decompression melting. Note first that
decompressionmeltingmeans that dϕ/dP< 0.Because all of the variables on the right-hand
side of (10.28) are positive quantities, it follows that the first term contributes to melting,
whereas the second one opposes melting. The reason is obvious: the first term represents
conversion of sensible heat to latent heat (it contains the ratio Cp/�mH ) whereas the
second term represents the amount of thermal energy that is converted to expansion work.
The melting rate is controlled by the difference between the Clapeyron slope of the melting
reaction and the slope of the isentrope. This can be seen graphically in Fig. 10.8: the energy
available for melting is a function of the horizontal distance between the adiabat and the
melting curve. The faster the divergence rate between the two curves, the greater themelting
rate will be. Using the values for the upper mantle that we chose in the previous paragraph
we get:

− CP

yT�mS
≈−0.028 kbar−1, αV

�mS
≈ 0.005 kbar−1. (10.29)

In this case the energy that goes into expansion work is about half an order of magnitude
smaller than the energy used inmelting.The resultingmelting rate, dϕ/dP≈−0.023 kbar−1
is quite low. Assuming that the melting rate stayed constant (which it doesn’t because
(10.28) is a linear approximation to (10.27)) complete melting would require ∼50 kbar of
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decompression. Compare this value to our estimate in Fig. 10.7 that melting under Earth’s
mid-ocean ridges begins at a pressure of ∼17 kbar.

Equation (10.28) shows that the rate of decompression melting increases with decreasing
melting temperature. As we saw in Section 10.1.1, melting is a discontinuous loss of long
range order. Because the lattice disorder term is not a strong function of temperature, entropy
of melting can be expected to stay more or less constant with temperature (equation (10.6)).
Entropy of melting may vary with pressure, but again we can expect such variations to
be small, as they would arise from differences in the compressibilities of solid and melt
(equation (10.6)). Experimental measurements generally confirm these expectations (e.g.
Kojitani & Akaogi, 1997). If the entropy of melting stays constant then the enthalpy of
melting must increase with temperature, and the melt productivity must concomitantly
decrease. This has the somewhat counterintuitive consequence that decompression melting
along an adiabat with a higher potential temperature (e.g. at mantle hot spots) requires
a greater amount of decompression to produce the same amount of melt that would be
produced along a colder adiabat (e.g. at mid-ocean ridges), although melting would begin
deeper along the hotter adiabat (Fig. 10.7).

In order to calculate the total amount of melt produced by a given amount of decompres-
sion we integrate equation (10.27) between ϕ = 0 at P =Pi and any other value of P ≥Pf .
Ignoring changes in CP ,V and α with ϕ we get:

ϕ=− CP

�mS
ln

(
yTi +P −Pi

yTi

)
+ αV

�mS
(P −Pi) . (10.30)

Note that ϕ only depends on the amount of decompression, not on the absolute value
of Pi , although of course Ti changes with Pi . Defining the pressure interval over
which decompression melting takes place as �P = P − Pi , we can re-write (10.30) as
follows:

ϕ=− CP

�mS
ln

(
1+ �P

yTi

)
+ αV

�mS
�P . (10.31)

This equation overestimates actualmelt production for two reasons. In the first place, (10.31)
describes melting of a one-component system, in which the solidus and the liquidus coin-
cide. In reality the mantle is a multicomponent system in which the temperature interval
between solidus and liquidus is of the order of several hundred degrees. In order for melt-
ing to continue above the solidus temperature must increase relative to the value given by
equation (10.26), so that less “sensible heat” is available for conversion to enthalpy of melt-
ing.Wewill estimate themagnitude of this effect in Section 10.6.4. Second, equation (10.31)
assumes batch melting, i.e. that melt and solid remain at equilibrium throughout the melting
process. If melt is extracted as it is produced then the system is no longer adiabatic. The
system in this case loses heat (and thus entropy), and melt productivity must decrease. We
prove this formally next.

10.6.3 Fractional decompression melting of a one-component system

Batch melting, in which the melt remains in equilibrium with the solid until a desired melt
fraction is attained, or until melting is complete, is one end-member of a spectrum that
extends, at the other end, to fractional melting. During fractional melting melt is removed
at the same rate as it is produced, so effectively at any given moment there is only an
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infinitesimal amount of melt in equilibrium with the solid. The process is not adiabatic,
but it can be broken down into an infinite number of steps, each of which is adiabatic and
isentropic. Equation (10.27) applies to each step: an infinitesimal amount ofmelt is produced
isentropically, then removed, a new melt increment is produced, and so on. The equation
needs to be modified, however, to account for the fact that the mass of rock that undergoes
partial melting decreases continuously. Each melt increment in equation (10.27) will now
be measured relative to the amount of solid that remains. Call this melt infinitesimal dϕr .
We then re-write equation (10.27) as follows:

dϕr

dP
=− CP

�mS (yTi +P −Pi) +
αV

�mS
(10.32)

with the understanding that (10.32) applies to each infinitesimal isentropic melting step. If
the total amount of melt generated and extracted from one (initial) mol of solid is ϕ, then
a small incremental amount of melt of δϕ mols corresponds to a per mol increment in melt
fraction, δϕr (i.e. measured relative to the remaining solid) of:

δϕr = δϕ

1−ϕ
(10.33)

so, passing to the limit:

dϕ

dϕr
= 1−ϕ. (10.34)

From (10.32) and (10.34), using the chain rule:

dϕ

dP
= dϕ

dϕr

dϕr

dP
= (1−ϕ)

(
− CP

�mS (yTi +P −Pi) +
αV

�mS

)
, (10.35)

which we integrate by rearranging as follows:

dϕ

(1−ϕ)
=
(
− CP

�mS (yTi +P −Pi) +
αV

�mS

)
dP . (10.36)

The integral of the right-hand-side term is identical to (10.30), so, after rearranging:

ϕ= 1− exp

[
CP

�mS
ln

(
1+ �P

yTi

)
− αV

�mS
�P

]
. (10.37)

Melt production by fractional decompression melting of a one-component system
(equation (10.37)) is compared to batch melting (equation (10.30)) in Fig. 10.9. Material
properties and other physical parameters are the same as those used in equations (10.29).
As we expected, fractional melting generates less melt than batch melting, because migra-
tory coconuts err.... melts extract thermal energy from the system. The two curves diverge
strongly for large values of�P . Since the enthalpy of fusion comes exclusively from cool-
ing, the system can never become completely molten if it loses melt at the same rate as
it is produced, so the fractional melting curve approaches ϕ = 1 asymptotically. The two
curves, for batch and fractional melting, bound a region of possible decompression melting
behaviors. Melting in nature is likely to proceed in some intermediate fashion. One pos-
sibility is that melt is extracted continuously once some finite melt fraction is attained –
this differs from fractional melting in that a finite, as opposed to infinitesimal, amount of
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Fig. 10.9 Variation in melt fraction during batch and fractional decompression-melting of a one-component system. Batch
melting is assumed to be isentropic. During fractional melting melt leaves the system at the same rate as it is
produced, carrying thermal energy, and entropy, with it.

melt is always present.Another possibility is that melt is generated in small batches that are
extracted discontinuously. Whatever the actual melting mechanism, however, melt produc-
tivity by decompression melting of a one-component system is bound by two curves such
as in Fig. 10.9.

10.6.4 Decompression melting in multicomponent systems

Melting of rocks takes place over multivariant intervals, extending from the solidus to
the liquidus. A rather simplistic view of this process is presented in Fig. 10.10. As in the
one-component case (Fig. 10.8) melting begins at point B, at temperature Ti and pressure
Pi , where the adiabat with potential temperature Tp intersects the solidus. The melt +
solid assemblage is in this case multivariant, so temperature increases above the solidus as
melting progresses.Adiabatic upwelling therefore causes the P–T conditions of the system
undergoing melting to describe a path such as BC in the figure. The liquidus is intersected
at point C, and further upwelling occurs along the adiabat with potential temperature Tp,m.
Compared to the one-component system (Fig. 10.8), in this case there is less thermal energy
available for melting, because some enthalpy must be used to raise the temperature above
the solidus. We seek to estimate the magnitude of this effect.
For simplicity we will assume that the solidus and the liquidus are parallel, and that melt

fraction varies linearly between 0 at the solidus and 1 at the liquidus. As it turns out, this
by itself is not a bad assumption for melting of peridotite, but it masks another effect that is
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Fig. 10.10 Decompression melting of a multi-component system (compare Fig. 10.8). Melting begins at B, as in the
one-component system, but now in order for additional melting to take place the temperature must increase above
the solidus, as shown by the arrow. The temperature interval between solidus and liquidus, TSL, is assumed to be
independent of pressure. In reality the gap between peridotite solidus and liquidus narrows with increasing pressure.

important, and that we will completely ignore. This is the fact that the nature of the melting
reaction changes from the solidus to the liquidus, and also with pressure. We are ignoring
differences in the enthalpy of melting of the various reactions, as well as the enthalpies
of possible reactions among solid phases. The only way of including these effects is by
means of a sophisticated thermodynamic model for silicate melts such as pMELTS, which
is beyond the scope of this book.
Let TSL be the constant temperature difference between solidus and liquidus. Ignoring all

compositional effects, and assuming a linear increase in melt fraction over the temperature
interval TSL, we write the equation for the BC melting curve in Fig. 10.10 as follows:

T = ϕTSL+Ti + P −Pi
y

. (10.38)

The total differential of T is:

dT =
(
∂T

∂ϕ

)
dϕ+

(
∂T

∂P

)
dP = TSLdϕ+ dP

y
. (10.39)

Substituting (10.38) and (10.39) in (10.28), making �P = P − Pi , and rearranging we
obtain the following expression for batch melting:[

CPTSL

ϕTSL+Ti + �P
y

+�mS

]
dϕ+

[
CP

y (ϕTSL+Ti)+�P −αV
]
d (�P )= 0 (10.40)
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and similarly for fractional melting, using (10.36):

[
CP TSL

ϕTSL+Ti + �P
y

+�mS

]
dϕ

1−ϕ
+
[

CP

y (ϕTSL+Ti)+�P −αV
]
d (�P )= 0. (10.41)

These equations cannot be integrated analytically, but generating numerical approximations
is a simple exercise withMaple (Software Box 10.1).

Software Box 10.1 Calculation of decompression melting
The Maple worksheet decompression_melting.mw contains two procedures,
batch_melting and fractional_melting, that useMaple’s fsolve to solve
equations (10.40) and (10.41), respectively. The two procedures are identical except for
the core equation.
When invoking the procedure one specifies the temperature and pressure at which

the adiabat first intersects the solidus (in Centigrade and kbar) and a filename forMaple
to send the output to. All other model parameters can be changed by editing the proce-
dure. This includes: the Clapeyron slope of the solidus, the solidus–liquidus temperature
interval, heat capacity, entropy of melting, coefficient of thermal expansion, molar vol-
ume, and the pressure increment for the solution. The latter must be a negative number
(decompression) and must be expressed in bar.
The procedure generates a text file in which each line corresponds to a decompression

step, extending from the initial intersection of the solidus with the adiabat to the planet’s
surface. The first field in each line is the total amount of decompression (in kbar), the
second field is melt fraction, the third field is temperature (in Centigrade), and the fourth
field is pressure (in kbar).

Worked Example 10.1 Decompression melting in the Earth’s mantle

We apply numerical solutions of equations (10.40) and (10.41) to study decompression
melting of the Earth’s upper mantle under different thermal regimes. We start with a model
dry peridotite solidus, simplified after McKenzie and Bickle (1988) for P < 45 kbar, and
Herzberg et al. (2000) at higher pressure, as shown in Figs. 10.11 and 10.12.Acharacteristic
value of TSL for mantle peridotites is ∼500 K. We therefore draw the peridotite liquidus
parallel to the solidus and displaced 500 K towards higher temperature. We study decom-
pression melting along three possible mantle adiabats, with potential temperatures of 1300,
1500 and 1700◦C. The first twomay represent conditions under present-day terrestrial mid-
ocean ridges and oceanic islands, respectively. The last one represents possible conditions
in the Archaean Earth. The three adiabats intersect the peridotite solidus at temperatures of
approximately 1600, 1820 and 2050 K, and pressures of 16, 34 and 57 kbar, respectively.
We use the same material properties and other physical parameters as in previous exam-
ples (e.g. equations (10.29)), except that we make the Clapeyron slope y = 80 bar K−1 for
melting at mid-ocean ridges and oceanic islands, and 85 bar K−1 along the hotter adiabat,
to reflect the fact that the peridotite solidus steepens with increasing pressure (we discuss
this in more detail in the next example).
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Fig. 10.11 Simplified model for batch melting of the terrestrial mantle. Solidus after McKenzie and Bickle (1988) for
P < 45 kbar, and Herzberg et al. (2000) at higher pressure. The liquidus drawn parallel to the solidus with
TSL = 500 K. Three mantle adiabats are shown, with potential temperatures of 1300, 1500 and 1700◦C. Solid lines
with arrows showmelting paths, corresponding to the segment BC in Fig. 10.10. The broken arrow forking from the
hottest adiabat shows adiabatic ascent of melt with eruption temperature of 1400◦C. The bottom diagram shows
melt fraction as a function of decompression. A range is shown for the hottest adiabat (“Archaean komatiites”), bound
between the decompressive path that generates melt with 1400 ◦C eruption temperature and the maximum possible
decompressive path (to P = 0).
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Fig. 10.12 Same as Fig. 10.11, but for fractional melting.

The solid arrows in Figs. 10.11 and 10.12 are isentropic melting paths, corresponding to
BC in Fig. 10.10. The P–T paths are calculated by first solving equations (10.40) or (10.41)
for ϕ as a function of P , and then substituting these values of ϕ in equation (10.38). In every
case the decompressionmelting paths intersect the surface before reaching the liquidus. The
batch melting paths reach the surface at temperatures of ∼1200 ◦C and ∼1300◦C for mid-
ocean ridges and oceanic islands, respectively. The corresponding temperatures assuming
fractional melting are∼10–20◦C lower. If mantle upwelling caused decompression melting
to continue to the surface erupted magmas would have these temperatures. Eruption
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temperatures would be higher if melts separated from their source regions at depth. The
agreement with observed basalt eruption temperatures is quite good, but this should be
hardly surprising, as the potential temperature of the mantle is to a large extent constrained
from basalt eruption temperatures.
Calculated melt fractions along the isentropic melting paths are shown in the bot-

tom panels of the figures. Maximum melt production at mid-ocean ridges, assuming
that the upwelling mantle melts continuously from 17 kbar (where the solidus is inter-
sected) to zero pressure, ranges from 17%–19%, depending on whether one assumes
fractional or batch melting, respectively. This happens to be a reasonably good esti-
mate. The corresponding values for melting under oceanic islands are 30%–36%, for a
maximum decompression interval of 35 kbar. These values possibly overestimate actual
melt fractions to some extent, although the generally more mafic nature of ocean island
basalts compared to MORBS is consistent with them representing a higher melt fraction of
peridotite.
Melting of the mantle along our hypothetical Archaean adiabat, from the solidus at

57 kbar to the surface, would generate 44%–54% melt with eruption temperatures of
1300–1350◦C. Komatiite eruption temperatures appear to have been somewhat higher than
this, perhaps ∼1400◦C. Melts with this eruption temperature could have been extracted
from the upwelling mantle region at pressures of 7–14 kbar, for batch and fractional melt-
ing, as shown by the broken arrows in the figures. The more restricted decompression
melting intervals would generate between 32% and 44% melt, which is not altogether
unreasonable for komatiites. The geometry of the figure shows that an adiabat with a
potential temperature higher than 1700◦C would intersect the solidus deeper and the
resulting melting path would reach the 1400 ◦C melt adiabat at a shallower depth than
the one emanating from the 1700◦C adiabat. Thus, it would generate a higher frac-
tion of melt with the same eruption temperature. No surprise here – it is simply energy
conservation.

Worked Example 10.2 Melting in the Martian mantle

We can use equations (10.40) and (10.41) to assess the plausibility of the Martian mantle
models that we developed in Chapter 3. In Section 3.9 we saw that two possible models for
the Martian interior are a relatively thin lithosphere (∼250 km thick) capping a hot mantle,
or a thick lithosphere (∼700 km) overlying a colder mantle, but still hotter than the Earth’s.
Let us assume that the mantle potential temperatures for the two models are 1800 ◦C and
1500◦C, respectively, which are approximately 500◦C and 200 ◦C hotter than the terrestrial
mantle under mid-ocean ridges. Intersection of these adiabats with the model peridotite
solidus (shown in Fig. 10.11) occurs at temperatures of 1543◦C and 1935 ◦C, and pressures
of ∼34 and 105 kbar, respectively. We assume that this solidus curve is applicable to the
Martian mantle, which is not strictly true but there are larger sources of uncertainty. The
Clapeyron slope of the solidus steepens sharply with pressure above about 60 kbar. The
adiabat also steepens, although to a lesser extent. Equations (10.40) and (10.41) assume
that both of these quantities are constant, and although it is possible to modify them to
account for their pressure dependency this complicates the equations considerably and is
left as an exercise for the reader. As we saw, the degree of melting is ultimately determined
by the difference between the slope of the isentrope and that of the melting reaction, and this
difference varies less strongly with pressure than the Clapeyron slope of the solidus.
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Fig. 10.13 Melt generation in the Martian mantle, assuming either a 700 km lithospheric lid capping an adiabatic mantle with
TP = 1500◦C, or a 250 km thick lithospheric lid over an adiabatic mantle with TP = 1800◦C. Envelopes spanning
batch melting to fractional melting are shown in both cases. Melting in the thin lithosphere model begins within the
asthenosphere and is probably inconsistent with the lack of planet-wide volcanism. Melting in the thick lithosphere
model would begin well within the lithosphere, and would only be made possible by the existence of large and
long-lived mantle plumes. This may be the reason why only two large and isolated young volcanic provinces, Tharsis
and Elysium, exist on Mars.

As a first approximation, then, we will assume that these quantities stay constant along each
decompression path, but choose different Clapeyron slopes, of 80 and 130 bar K−1 for the
melting paths beginning at 34 and 105 kbar, respectively.
The calculated decompression melting paths are shown in Fig. 10.13, as a function of

pressure in the Martian interior (not �P, compare Figs. 10.11 and 10.12). Envelopes are
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shown for each adiabat, spanning the range between batch and fractional melting. The
pressure at the bottom of a 700 km thick Martian lithosphere is approximately 86 kbar. If
the potential temperature of the underlying convective mantle is 1500◦C melting would
begin at a pressure of ∼34 kbar, or more than halfway across the lithosphere. In other
words, the asthenosphere must be able to penetrate some 400 km of lithosphere before
it starts melting. One could expect that volcanic activity in this model would be sparse,
and limited to places where large and very long-lived hot spots are capable of transferring
enough heat to “thermally drill” through the lithosphere. If a decompression melting regime
can be established melt fractions of up to about 30% would be achieved, and the magmas
could have eruption temperatures of at least 1300◦C (higher if magmas are segregated
at depth). A hotter Martian mantle, with a potential temperature of 1800◦C, would start
melting at about 105 kbar. The pressure at the bottom of the 250 km lithosphere capping
that mantle would be about 30 kbar. Melting in this case would be widespread, and melt
fractions of 40% or higher would not be uncommon.
Although the results shown in Fig. 10.13 are only rough approximations, the qualitative

distinction between themagmatic activity that is to be expected from the twoMartianmantle
models is probably robust. The thick lithosphere model is consistent with the existence of
few, large and long-lived magmatic provinces, which is what is observed in Mars. The thin
lithosphere would generate a much more volcanically active planet than is observed.

I wish to emphasize that the equations and numerical examples presented in this section
are extremely simplified pictures of decompression melting in nature. They are only
intended to convey the thermodynamic underpinnings of the process, and in that sense
I believe that their simplicity is hard to argue with. The fundamental physics are contained
in the equations, even if they cannot provide any petrological detail. Thorough mathemat-
ical and numerical treatments of decompression melting in real muticomponent systems
have been presented, among others, by McKenzie (1984), McKenzie and Bickle (1988,
and most recommended), Iwamori et al. (1995), Asimow and Stolper (1999) and Asimow
(2002). The reader is urged to consult these works for what is missing above.

10.6.5 Departures from the constant-entropy assumption

During fractional decompression melting heat loss from the magma source region lessens
melt production relative to batch melting. There are other reasons why the results of the
previous sections, which assume either global or local isentropic conditions, may have to
be revised. For example, we may ask, what must be the size of the region undergoing
decompression melting so that diffusive heat loss can be safely ignored, i.e. so that the
system is truly adiabatic? If diffusive heat loss is not negligible then melt production will
be lower than that predicted by the equations derived above. We may also wonder whether
the melting region is isentropic, even if it is adiabatic. If energy dissipation takes place
inside an adiabatic system then dS > 0, and in this case melt production will be higher than
what those equations predict. We can generate order of magnitude estimates for some of
these effects.
For the sake of expository synthesis I will call the ascending region of the mantle that

undergoes decompressionmelting a “diapir”, without necessarily implying that I knowwhat
a diapir is, nor that there is consensus that diapirs as envisioned byRamberg (1967) exist.We
can estimate the effect of diffusive heat exchange between the diapir and its environment by
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means of the Péclet number (Section 3.6.2), and we can do this in two ways. First, consider
vertical heat flow, i.e. in the same direction that the diapir is moving. Figure 10.7 shows
that the characteristic depth at which melting begins under mid-ocean ridges is of order 50
km. Using this value forM in equation (3.46), assuming u= 5 cm yr−1≈ 1.6×10−9 m s−1
and κ = 10−6 m2 s−1 we get Pe ≈ 80. Thus, mantle upwelling is 80 times more efficient
than diffusion in transporting heat in the direction in which progressive melting takes place,
which says that we are justified in considering the system adiabatic in this direction. But
what about horizontal heat diffusion? Equation 3.48 relates the lengthscale of advective
heat transfer (M) to the lengthscale of diffusive heat transfer in a direction perpendicular
to advection (λ). This can be applied to a situation in which hot asthenosphere penetrates,
and is surrounded by, colder lithosphere (Fig. 10.7). Substituting the definition of Péclet
number (equation (3.46)) in (3.48) we obtain:

λ∼ 2

(
Mκ

u

)1/2
. (10.42)

As before, M is the depth at which decompression melting begins (∼50 km), as this is the
distance over which the thermal perturbation caused bymelting will develop.With the same
values of u and κ as before we find λ ≈ 50 M1/2, for λ and M in meters. We can expect
heat diffusion to affect an approximately 10 km wide rind of a 50 km tall diapir. Thus, if
the diapir is at least a few tens of km wide, then its outer part may cool down significantly,
but there will always be a core region in which the assumption of adiabatic behavior is
warranted. If adiabatic upwelling continues for an extended period of time, moreover, then
the environment will heat up, decreasing the horizontal thermal gradient and hence the rate
of heat loss. It is significant that λ goes as the square root of M. For example, if melting
occurred at the base of the thick Martian lithosphere (∼700 km) a diapir would have to be
some 3–4 times wider than under Earth’s oceans in order to be able to generate eruptable
magmas. The size of the Tharsis and Elyseum volcano-tectonic bulges (1000–5000 km)
suggests that Martian mantle plumes were (are?) larger than Earth’s.
Sources of energy dissipation inside an adiabatically rising diapir include: inelastic rock

deformation, dissipation of gravitational potential energy by separation of melt and solid
of different densities, viscous flow of melt, radioactive heating and chemical diffusion. We
will examine only the first two processes (see Asimow, 2002, for a complete mathematical
treatment of all of them).We seek equations for the rate of entropy productionwith pressure,
(∂S/∂P )pr . Because this entropy is generated inside the system, and the system is still
assumed to be adiabatic, there is no entropy exchange with the environment, and we can
modify equation (10.25) as follows:

CP

T
dT +

[(
∂S

∂P

)
pr

−αV
]
dP +�mS dϕ= 0. (10.43)

We derived equation (1.83) to quantify frictional heating in a fault or shear zone, but it can
also be applied to estimate energy dissipation by inelastic deformation inside a diapir. Let
us re-write (1.83) as follows:

dT

dx
= τV

zCP
, (10.44)

where τ is the magnitude of the shear stress that causes deformation in the diapir, z is the
width over which inelastic strain is distributed, V is the molar volume of the material and
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CP its molar heat capacity (equation (1.83) is written in terms of density and specific heat,
but in the present discussion I find it simpler to use molar quantities). Because dx is a
displacement in the direction in which the shear stress is applied, and shear stress in an
ascending diapir is chiefly vertical, we can interpret the ratio dT /dx as the vertical thermal
gradient engendered by viscous dissipation. We seek to convert this into a rate of entropy
production with pressure, so, using the chain rule:(

∂S

∂P

)
pr

= dS

dT

dT

dx

dx

dP
. (10.45)

Writing the condition of hydrostatic equilibrium (equation (3.34)) in terms of molar
properties and using (1.3.18) we get :

dx

dP
= V

g m
, (10.46)

where m is the molecular weight of the material. Recalling that (∂S/∂T )p = CP /T ,
equation (10.45) becomes: (

∂S

∂P

)
pr

= τV 2

z T g m
. (10.47)

For olivinewe haveV ≈ 4.5×10−5 m3 mol−1 andm≈ 0.14 kgmol−1. Characteristic values
for the other parameters for Earth’s upper mantle are τ ≈ 102bar = 107 Pa, T ≈ 1600 K
and g = 9.8 m s−2. These values yield (∂S/∂P )pr ≈ 900/z J K−1 kbar−1 mol−1, with
z in meters. If strain is distributed evenly over the width of the diapir, then for a 50 km
wide diapir (∂S/∂P )pr ≈ 0.02 J K−1 kbar−1 mol−1. By comparison, the product αV is of
order 0.2 J K−1 kbar−1 mol−1, i.e. one order of magnitude greater. These two terms are
combined in equation (10.43), so we can conclude that the contribution of inelastic rock
deformation to melt production averaged over the entire volume of the diapir is likely to be
small. However, if strain is focused on narrow shear zones (small z) then viscous heating
may be locally important and greatly enhance melt production in the shear zones.
Dissipation of gravitational potential energy can take place inside a diapir if the melt,

which is less dense than the solid, ascends relative to the latter. We can estimate the thermal
effect of gravitationalmelt segregation as follows. Consider an infinitesimal vertical interval
of the diapir of length dx. A volume Vm of melt ascends this distance, displacing an equal
volume of solid which sinks the same distance. The amount of gravitational energy that is
dissipated, dU g , is given by:

dUg = Vm�ρgdx, (10.48)

where �ρ is the difference in density between melt and solid and g is gravitational accel-
eration. The gravitational potential energy dissipated per unit volume of rock, dU g,V , must
clearly attain its maximum value when the rock is 50% molten. We can then write:

dUg,V =ϒ�ρgdx, (10.49)

where the parameter ϒ is defined as follows. Let ϕ be the volume fraction of melt. Then
ϒ = ϕ if ϕ ≤ 0.5, and ϒ = 1− ϕ if ϕ > 0.5. Since gravitational energy is dissipated as
thermal energy we can also write:

dQg,V =
CP

V
dT = ρCP

m
dT , (10.50)
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where CP ,V and m are molar properties, and dQg,V is heat generated per unit volume.
Equating (10.49) and (10.50) we get:

dT

dx
=ϒ

�ρ

ρ

mg

CP
(10.51)

and, by using (10.45) and (10.46):

(
∂S

∂P

)
pr

=ϒ
�ρ

ρ

V

T
. (10.52)

For olivine atmantle conditionsV /T ≈ 2.8 JK−1 kbar−1 mol−1.Now, because (10.52) takes
its maximum value forϕ= 0.5, we have (∂S/∂P )pr ,max ≈ 1.4(�ρ/ρ) J K−1 kbar−1 mol−1.
For this term to be comparable to αV ≈ 0.2 J K−1 kbar−1 mol−1 it must be �ρ/ρ≈ 0.14,
or, for a solid density of 3300 kg m−3, �ρ ≈ 500 kg m−3, which is about the same as
the difference in density between basaltic melt and peridotite. Dissipation of gravitational
energy by phase separation could thusmake a non-negligible contribution tomelt production
but only when melt fraction in the diapir approaches 50%, and assuming that there is
complete separation of the two phases. Even in this case the effect of phase separationwould
only be enough to cancel out the expansion term, αV (see equation (10.43)), which itself
is about one fifth the magnitude of the cooling term (equations (10.29)). One can conclude
that under most circumstances the isentropic model of melt production (equation (10.25))
is a reasonably good approximation to decompression melting in planetary mantles.

10.7 Open systemmelting

At the other end of the spectrum from isentropic decompression melting is open system
melting, in which the system is open to influx of mass, typically in the form of a fluid phase,
and energy. The simplest example of this is a two-component system with a binary melt
phase, in which one of the componentsmakes up a pure solid phase and the other component
a pure fluid phase. This system will allow us to look at the fundamental thermodynamic
and physical aspects of fluid-fluxed melting. The three phases, solid, fluid and melt, con-
stitute a univariant assemblage or, at constant pressure, a pseudoinvariant assemblage. This
assemblage exists at equilibrium at point I in Fig. 10.14, a schematic isobaric diagram in
which the coordinates are the chemical potential of the fluid component and temperature.
The curve that traces the chemical potential of the pure fluid component (µ0, fluid ) bounds
a “prohibited region”, as the system cannot exist at equilibrium for µfluid > µ0, fluid . The
two branches of this curve correspond to the pseudounivariant equilibrium assemblages
melt+ fluid (= solid absent) and solid+ fluid (=melt absent), at temperatures higher and
lower than that of the pseudoinvariant point, respectively. The vapor-absent melting curve,
corresponding to the equilibrium assemblage solid + melt, connects the pseudoinvariant
point with the melting point of the pure solid (T0) in the fluid-free system.
The mol fraction of fluid component in the melt is the variable Xz,m in the melting point

depression equation (10.16). Assuming ideal mixing in the melt the vapor-absent curve is
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then given by:

µ
fluid
P ,T = µ

0, fluid
P(o),T

+RT ln

[
1−
(
T

T0

)�mS
R

]
. (10.53)

If, as is commonly the case, mixing is not ideal then the term in square brackets would be
multiplied by an activity coefficient, but the geometry of the diagramwould not be affected.
The composition of the melt along the melt–solid coexistence curve (V ) is also obtained
from the melting point depression equation. Defining mD and mF as the number of mols
of molten solid and fluid contained in the melt, respectively, we have:

T = T0

(
1− mF

mF +mD

) R
�mS = T0

(
mD

mF +mD

) R
�mS

. (10.54)

The validity of this equation is limited by the solubility of the fluid at the conditions of
melting, Xsaturation, so that we require:

mF

mF +mD

≤Xsaturation (10.55)
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where the saturation mol fraction Xsaturation depends on pressure, temperature and the
compositions of fluid and melt. When melt in equilibrium with solid becomes saturated in
the fluid component it must be µfluid =µ0, fluid , so the fluid saturation point corresponds to
the pseudoinvariant point in Fig. 10.14. The temperature of this point defines the minimum
melting temperature of the system at the pressure of the diagram.
We now add the energy conservation condition to the phase relations. Say that we have

a system consisting of melt and solid at equilibrium at point A in the figure. The system
is invaded by a small amount of fluid, δmF , which for simplicity we will assume is at
the same temperature as the system (we will address possible differences in temperature
shortly). Because the chemical potential of the pure fluid is higher than that of the fluid com-
ponent in the melt the added fluid must dissolve in the melt in order to restore equilibrium.
But the added fluid also lowers the equilibrium temperature for the solid +melt assemblage,
so that enthalpy must be released. The enthalpy is absorbed as enthalpy of melting, causing
a small amount of dry solid, δmD, to melt. Addition of δmF mols of fluid therefore causes
equilibrium to shift from point A to point B. The magnitude of this displacement, or equiv-
alently, the amount of solid that melts, δmD , is determined by two opposing factors: (i) the
melting point depression effect of the added fluid (equation (10.54)) and (ii) the energy
balance, which is given by the following equation:

CP ,R mR δT +T�mS δmD +CP ,F (T −TF )δmf = 0, (10.56)

wheremR is the total number of mols in the system (solid + melt), T is the temperature after
equilibrium is restored (T of point B in the figure), δT is the temperature change required
to supply the enthalpy of melting (TB−TA),�mS is the entropy of melting, TF is the initial
temperature of the fluid, and CP ,R and CP ,F are the heat capacities of the system (which
for simplicity, and as in the case of decompression melting, we will assume to be constant
and independent of melt fraction and melt composition) and of the fluid, respectively.
Equations (10.54) and (10.56) can be solved iteratively for T and mD as a function of

mF , for both batch and fractional melting. We do that in the following numerical example,
but first let us see how the results from the two melting regimes are expected to differ.
Differentiating (10.54) we get:

dT

dmF

=−T0 R

�mS

mD
R/�mS

(mF +mD)
R/�mS+1 . (10.57)

The variables mD and mF are related by a possibly variable factor k, which, however,
is always a finite (as opposed to infinitesimal) quantity. We can write mF = kmD , and
substituting in (10.57) we arrive at:

dT

dmF

∼−T0 R

�mS

1

(k+ 1)R/�mS+1
1

mD
R/�mS

. (10.58)

Recall that mD is the amount of solid component present in the melt. This is a finite value
during batch melting, but tends to an infinitesimally small value during fractional melting.
Hence, the rate of change of temperature with added fluid along the vapor-absent curve in
Fig. 10.14 is greater during fractional melting than during batch melting. This implies a
greater enthalpy release and, therefore, for the same total amount of fluid added, greater
melt production for fractional melting than for batch melting. This behavior is opposite to
that of decompression melting of a dry solid.
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Worked Example 10.3 Batch vs. fractional melting by fluid influx

Both batch melting and fractional melting can be thought of as being made up of a large
number of small increments. The difference between both processes is whether the succes-
sive melt increments, δmD , stay in the system (batch) or leave (fractional). Let Ti−1 be the
equilibrium temperature of the system at the end of an incremental melting step. Substitut-
ing (10.54) in (10.56) and simplifying we can write the energy balance for the subsequent
melting increment as follows:

T0
[
CP,R mR +�mS δmD +CP ,F δmF

]( mD

mF +mD

) R

�mS

−CP,RmR Ti−1−CP,F δmFTF = 0.

(10.59)

The idea now is to solve equations (10.59) and (10.54) iteratively for δmD and T by adding
small fluid increments δmF . This can be done with a simple Maple procedure (Software
Box 10.2). It is convenient to define two new variables, the total amount of dry rock that has
melted after (i− 1) fluid increments, D(i−1) =∑(i−1) δmD, and the total amount of fluid
added to that point, F(i−1) =∑(i−1) δmF . The solutions for batch and fractional melting
are different from this point on.

Software Box 10.2 Calculation of volatile-fluxed melting
The Maple worksheet volatile_melting.mw contains the procedures
volatile_ batch_melting and volatile_fractional_melting, that
calculate melt production by volatile infiltration. The procedures solve equation (10.59)
for small melt increments, δmD , and then calculate temperature with equation (10.54).
The algorithms for batch and fractional melting are explained inWorked Example 10.3.
The procedure call requires that one specify the initial temperature of the rock, T0,
and the temperature of the fluid, TF , both in Kelvin, and a filename for the output.
Other model parameters can be changed by editing the procedures, following the same
conventions discussed in Software Box 10.1. The variable dfluid specifies the added
amount of fluid at each step, δmF (in mols per mol of rock).
The procedures generate text files in which each line gives the state of the system

after addition of each fluid increment. There are six output fields, as follows. The first
field is the total amount of fluid added, the second is the total amount of solid that has
melted, the third is the temperature (in Kelvin), the fourth is the mol fraction of fluid in
the melt, the fifth is the size of the system, i.e. initial solid plus added fluid for batch
melting, or initial solid minus melt produced for fractional melting, and the sixth field
is the melt increment generated at each step, δmD .
The procedures iterate 2000 times (this can be changed by editing the do loop) and

do not check whether the mol fraction of fluid dissolved in melt (the fourth output
field) exceeds the likely solubility. One can examine the output and discard whatever
portion of it implies unreasonable volatile solubility.

Let us assume that we start with 1 mol of dry solid. During batch melting the melt,
including the fluid dissolved in it, stays in the system, so we makemR = 1+F(i−1)+ δmF

(recall thatmR is the total size of the system). Using the same argument we can see that for
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the batch melting case the melt composition in the melting point depression
equations (10.59) and (10.54) is given by mD =D(i−1)+ δmD and mF = F(i−1)+ δmF .
Choosing some small value for δmF and making Ti−1 equal to the value of T calculated
in the previous step we solve equation (10.59) for δmD, and then (10.54) for T . In the case
of fractional melting the fraction of solid that melts, and the fluid dissolved in it, leave the
system, so we make mR = 1−D(i−1). As none of the melt previously formed remains in
the system, in this case we makemD = δmD andmF = δmF . As before, we specify a small
value of δmF and solve (10.59) for δmD, and then (10.54) for T (Software Box 10.2).
We can study the behavior of these equations by choosing characteristic values for the

parameters, as follows: CP,R = 200 J K−1 mol−1 (a decent guess for Mg silicates), CP ,F =
50 J K−1 mol−1 (a ballpark figure for H2O) and �mS = 56 J K−1 mol−1 (the value for
forsterite). Let us also make TF = T0 = 1600 K (a characteristic upper mantle temperature,
which we assume to be also equal to the temperature of the fluid, TF ), and note that, given
that the heat capacity of the fluid is only one fourth that of the rock and the total amount
of fluid added is well below 1, the solution is not likely to be very sensitive to our choice
of TF . Figure 10.15 shows calculated total melt production (i.e. the fraction of solid that
has melted) and melting temperature as a function of the total amount of added fluid, up to
0.1 mol per mol of solid rock.
As expected, our simple model for fluid-fluxed melting produces more melt by fractional

melting than by batch melting. The difference is considerable: about 28% of the rock
melts during fractional melting, versus some 23% during batch melting. For both batch
and fractional melting it is clear that, if the solubility of the fluid in the melt is sufficiently
high, then fluid-fluxed melting is an efficient mechanism of magma generation. Between
20 and 30 molar% of dry solid melts by addition of ∼0.1 mols of fluid to 1 mol of solid.
Solving equation (10.19) for the mass proportion of fluid,Cfluid , and assuming that the ratio
of molecular weights is M = 10 (a possible value for H2O and Mg silicates) we find that
0.1 mol of H2O added to 1 mol of silicate rock corresponds approximately to 1 wt% H2O.
The inset in Fig 10.15 shows the calculated mol fraction of fluid in the melts. The solid

curve for fractional melting shows the fluid concentration in each small melt increment,
whereas that for batch melting shows fluid concentration in the total amount of melt gen-
erated. The equivalent curve for fractional melting is shown with a dashed line, and is of
course below that for batch melting, as it must given that the total amount of melt produced
is greater (there is an apparent contradiction here that is not such, see Exercise 10.7). The
mol fraction of fluid in melts produced with the addition of 0.1 mols of fluid is ∼0.32
for batch melting (total melt) and ∼0.45 for fractional melting (last melt increment). For
M = 10 this would correspond to∼4.5 wt% and 7.6 wt%, respectively, which is well below
H2O solubility at mantle pressures. This calculation is admittedly very crude, but even if
the ratioM were ∼2 (an unlikely low value for H2O in silicate melts) we would get fluid
concentrations of 19 and 29 wt%, respectively, which are comparable to H2O solubility in
silicate melts at upper mantle pressures.
Of course, this calculation is highly simplified and completely ignores the phase equi-

librium of melting in complex natural systems. It also ignores effects such as that of excess
Gibbs free energy of mixing in the melt, which might cause an even stronger depression of
the solidus and potentially supply a greater amount of enthalpy of melting. Recall, finally,
that this calculation assumes that the initial temperature of the rock is the dry solidus. Melt
production would be less if the rock’s initial temperature is lower. Despite these simplifi-
cations the calculations expose the fundamental physical aspects of fluid-fluxed melting,
and demonstrate the importance of a process without which melting at Earth’s convergent
plate margins would be virtually impossible.
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Fig. 10.15 Batch and fractional melting of a two-component system: solid+ fluid. The calculation assumes that the solubility of
the fluid in the melt is at least as high as the maximum Xfluid values shown in the inset diagram.

10.8 The nature of solid–melt equilibrium in icy satellites

InWorked Example 6.10 we discussed how methane–carbon monoxide cryomagmas could
form in outer Solar System objects. In less extreme worlds, such as the moons of Jupiter and
Saturn, cryomagmatism is more likely to be based on water. A distinct property of water is
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that low-pressureH2O ice contracts when itmelts. The explanation for this resides in the fact
that hydrogen bonds have preferred orientations, and this produces a crystalline structure
with plenty of open spaces. These open spaces become occupied by H2O molecules in the
disordered melt, causing a decrease in volume upon melting. Higher-pressure polymorphs
of ice are, in contrast, “normal” in the sense that their density is greater than that of the
melt. Because of the peculiar freezing behavior of H2O the nature of magmatic activity in
H2O-rich icy planetary bodies is different from that in silicate bodies.

Let us begin by studying the phase diagram of H2O, shown in Fig. 10.16 (calculated
with thermodynamic data from Choukroun & Grasset, 2007). Over the pressure range 0–
15 kbar, shown in the figure, four ice polymorphs undergo stable melting reactions: ice Ih
(the familiar low-density ice) and three high-pressure ices, denser than liquid: ice III, V
and VI. Another polymorph, ice II, is not stable to the solidus. For comparison, the inset
in the figure shows the composite solidus curve from the main figure, together with the
sublimation and boiling curves of H2O, the latter terminating at the critical point.
A pressure of 15 kbar in large icy satellites such as Ganymede or Titan corresponds to

a depth of ∼1000 km, which is about as deep as the outermost H2O-dominated shell is
thought to extend in those worlds. Europa may have a much thinner H2O veneer, whereas
Callisto may be largely undifferentiated, and a mixture of ice and silicates may exist all the



519 10.8 The nature of solid–melt equilibrium

way to the satellite’s center, at a pressure of ∼50 kbar. Maximum pressures in small icy
satellites such as Enceladus or Mimas are of order 500 bar, so that high-pressure ices do
not form in them.
We now seek answers to a number of questions about the interiors of icy satellites.

First, do icy satellites convect? To answer this question, we solve the Rayleigh number
(equation 3.62) for the thickness of the convective layer, D:

D =
(
Ra µκ

gαρ0�T

)1/3
. (10.60)

Characteristic values for H2O ices are: µ = 1012 Pa s, κ = 1.5 × 10−6 m2 s−1, α =
2× 10−4 K−1 and ρ0 = 1000 kg m−3. Recall that the temperature difference �T is the
temperature drop across the thermal boundary layer. For an icy satellite a conservative
value is �T ∼ 10 K. Assuming that the onset of convection occurs at Ra ∼ 1000, we get
D ∼ 1000 g−1/3 m. For a large icy satellite g ∼ 1 m s−2, soD∼ 1 km, whereas for a small
icy satellite g ∼ 0.1 m s−2 and D ∼ 2 km. As these values are orders of magnitude smaller
than likely ice thicknesses (100–1000 km), we conclude that icy satellites convect, and in
fact do so vigorously (i.e. with a high Nusselt number, equation (3.65)). This conclusion is
valid for pure H2O ice, and probably for mixtures of H2O–NH3–CH4 ices as well.
Because they convect, temperature distribution inside icy satellites must be adiabatic.

Using values for high pressure ices, α = 2× 10−4 K−1, V = 1.9 J bar−1 mol−1, Cp =
47 J K−1 mol−1 and taking T = 300 K we get from equation (3.32) an adiabatic gradient
of ∼2.5 K kbar−1. This leads to the second question: what is the minimum potential tem-
perature in a convective icy satellite that allows the existence of liquid? For a convecting
silicate mantle, the answer is approximately 1400 K (≈ 1100◦C, see Fig. 10.7). An adiabat
with this potential temperature would intersect the peridotite solidus at zero pressure. For a
satellite composed of pure H2Owe see from Fig. 10.16 that the answer is approximately 247
K. Adiabats with a higher potential temperature will intersect the solidus, but in contrast to
silicate systems they will do so at P > 0. Moreover, if the potential temperature is between
∼247 K and ∼273 K then the liquid is only stable at pressures higher than the pressure at
the satellites’ surface. The conclusion that follows is that, in contrast to a silicate planet,
extrusion of cryolavas in a pure H2O world is impossible.
The surface of our pure H2O world could be covered by a convective ocean with a

potential temperature higher than 273 K. If the ocean was deep enough (equivalent to at
least a few kbar) then its bottom would freeze to high-pressure ice. There is no satellite
like this in the present-day Solar System. If the potential temperature of the convecting
satellite was less than 247 K then it would be solid throughout. This is perhaps the case for
most of Saturn’s small icy moons, with the exception of Enceladus. Large H2O satellites
with potential temperatures between 247 K and 273 K must contain a layer of liquid H2O
sandwiched between ice Ih at the surface and high pressure ices at depth. In this case there is
a maximum possible thickness for the ice Ih shell, which is given by the pressure of the ice
Ih–ice III–liquid invariant point, about 2 kbar (see Fig. 10.16). For the Solar System’s large
icy satellites this corresponds to a depth of ∼170 km. This is the greatest possible depth
to the top of the liquid layer, if such layer exists. In small icy satellites such as Enceladus
liquid H2O can exist under an ice Ih layer, but the deep high pressure ice layer cannot.

Present day Titan, and quite possibly Ganymede as well, are thought to follow the sand-
wich model, with a layer of liquid H2O between low-pressure and high-pressure ice layers.
The case of Europa appears to be different, as the H2O layer is not thick enough to allow
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crystallization of high-pressure ices, so that liquid H2O would be sandwiched between the
ice Ih shell and the planet’s silicate mantle (or crust?). Focusing on Titan and Ganymede,
then, we ask our next question: is cryomagmatism possible in these worlds? If the com-
position of the icy envelope is pure H2O then, as we saw, the answer is no. Liquid H2O
would freeze when attempting to ascend through the ice Ih shell (this is a convoluted way
of saying that ice floats on water). And yet, there is geologic evidence for cryolavas in both
of these worlds. The most likely explanation for this is that the material that encases these
satellites is a mixture of H2O with other volatile compounds, chiefly NH3 and perhaps CH4

as well. These additional components have two effects that may facilitate cryomagmatism:
they lower the melting point of ice, and they lower the density of the liquid.
Melting phase relations for the binary system H2O–NH3 at low pressure were summa-

rized by Kargel (1992). Three intermediate crystalline compounds form between Ice Ih and
solid ammonia: ammonium dihydrate (NH3.2H2O), ammonium hydrate (NH3.H2O) and
diammonium hydrate (2NH3.H2O). These give rise to three eutectics, and a peritectic at
which ammonium dihydrate melts incongruently to ice Ih plus a liquid richer in ammonia
that NH3.2H2O. Everywhere between the composition of the peritectic (∼33wt%NH3) and
the H2O end of the binary join the H2O–NH3 melt is at equilibrium with ice Ih. Therefore,
a subsurface liquid layer in a water–ammonia icy satellite containing between 0 wt% and
33 wt% NH3 can exist at equilibrium with an ice Ih shell.
What is the buoyancy of these H2O–NH3 melts relative to the Ice Ih country rock? An

equation of state for H2O–NH3 liquids has been calibrated by Croft et al. (1988). Their
equation consists of an isothermal Murnaghan EOS (Section 8.2.1) and a polynomial zero-
pressure thermal expansion term. It is somewhat unwieldy because the calibration changes
with composition along the H2O–NH3 join. We cannot discuss it here owing to space
constraints. We can state some of the key results of the Croft et al. EOS, though. First, it
predicts that the density of H2O–NH3 liquids is always lower than that of pure H2O liquid at
the same pressure and temperature, and that density decreases with increasing NH3 content.
Second, it shows that H2O–NH3 melts may be more or less dense that ice Ih, depending on
pressure and melt composition. Third, it suggests that the melts that form by incongruent
melting of ammonium dihydrate are less dense than ice Ih, which is the solid phase that
these melts are at equilibrium with. The melt becomes denser than ice Ih with decreasing
NH3 content, but a compositional interval exists within which the Clapeyron slope of the
ice Ih melting reaction changes from negative (i.e. as in the pure H2O system, Fig. 10.16)
to positive. Under those circumstances the melt can ascend through the ice Ih crust and
eventually be extruded on the surface of the satellite.
And herein lies a significant problem: if a satellite-wide liquid layer of low-density H2O–

NH3 melt forms, it is gravitationally unstable relative to the ice Ih shell. This would produce
a short-lived surge of magmatic activity, at the end of which refractory ice Ih would underlie
a less-dense mixture of H2O–NH3 ices, making further igneous activity difficult. This is
not altogether different from the formation of anorthositic crust from a primordial lunar
magma ocean. The problem is that, in contrast to the volcanically deadMoon, there appears
to be geologically recent cryovolcanism on Titan, and perhaps on Ganymede as well. One
possible way out is that the liquid layer underlying the ice Ih shell is not positively buoyant
after all, but merely close to being neutrally buoyant, and that cryomagmas are “squeezed”
to the surface by tectonic processes driven by convection of the ice Ih shell (see Mitri
& Showman, 2008). Another possibility is that a satellite-girdling liquid layer does not
exist at all, because the average internal temperature is lower than the solidus, and that
convection causes only local decompression melting of ices, as in silicate planets. If the
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NH3 concentration is high enough to preempt the negative Clapeyron slope of the ice Ih
melting reaction then the resulting liquids could be extruded on the satellite’s surface.

Exercises for Chapter 10

10.1 The two melting point depression equations, (6.49) and (10.8), are approximations.
Derive an equation for the difference between both approximations and discuss the
conditions under which one or the other, or neither, is a better approximation.

10.2 Show that a peritectic cannot be a minimum melting point because it would violate
Schreinemakers’ rule.

10.3 Use the Maple worksheet described in Software Box 10.1 to study how each of the
following variables affects melt production by decompression melting: (i) Clapeyron
slope of the solidus; (ii) temperature difference between solidus and liquidus, (iii) ratio
of heat capacity to enthalpy of melting.

10.4 Use the Maple worksheet described in Software Box 10.1 to study decompression
melting in Venus, assuming that the composition of the Venusian mantle is the same
as that of the Earth’s, and using the thermal structure of theVenusian mantle discussed
in Section 3.9.

10.5 Discuss how the “envelope” between batch melting and fractional melting shown
in Fig. 10.9 would be affected by the non-isentropic processes discussed in Section
10.6.5. Show this (at least) semi-quantitatively.

10.6 Use the Maple worksheet described in Software Box 10.2 to study the effect of fluid
temperature on melt production by fluid-fluxed melting. How likely is it that the
temperature of the fluid will differ significantly from the temperature of the rock?
Use the appropriate equations from Chapter 3 to justify your answer.

10.7 Show that there is no contradiction between the facts that, during fractional volatile-
fluxed melting, individual melt increments have higher fluid mol fractions than batch
melts, whereas the total melt produced by fractional melting has lower fluid mol
fractions than batch melts (see Fig. 10.15).
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The focus of this chapter is on liquid solutions in which one component is present in much
greater abundance, say at least one order ofmagnitude greater, than all others. Examples that
underscore the importance of this type of solutions include seawater, and natural terrestrial
waters in general, but one can imagine more exotic possibilities, such as hydrocarbon-based
solutions on Titan’s surface and ammonia-based solutions in its interior. What all of these
examples share is the fact that it is convenient to make a distinction between dilute solutes
that may not be liquid in their standard states, and a liquid solvent that is generally close
to being in its standard state. Depending on the nature of the solvent and of the solutes
the latter may exist as electrically neutral chemical species, as ions, or as a combination
of both. Solutions in which solutes dissociate into ions are known as electrolyte solutions.
Among these, those in which water is the solvent are by far the most important ones, at
least in terrestrial environments. The chapter emphasizes aqueous electrolyte solutions, but
virtually all of the thermodynamic framework is applicable to any type of dilute solution.
We begin with a discussion of dilute solutions in general, and shift the focus to electrolyte
solutions in Section 11.3.

11.1 Some properties of dilute solutions

In our discussions so far on the thermodynamic properties of solutions we have made no
distinction between the treatment of the different solution components. All our equations
have been symmetric, in the sense that we could interchange the components and arrive
at the same final result. This was true whether the solution was above or below its critical
mixing point (Section 7.1). In the latter case we considered two distinct subcritical phases
(for binary systems), and we allowed for the possibility that one or the other, or both, could
exist within some region of interest. This is not always the case, however. Consider aqueous
solutions as an example. One of the components in such solutions is liquid H2O.Within the
P–T region in which liquid H2O is stable the solubility of many chemical species of interest
in the planetary sciences is small (although there are important exceptions, such as NH3).
One way to look at this is that most aqueous solutions correspond to conditions that are so
far below the critical mixing point that their compositional range is restricted to a narrow
interval between the solvus and the H2O end of the composition axis. The other branch
of the solvus is generally inaccessible, either because the necessary bulk compositions are
not realized in nature, or because the solvus is suppressed by a first-order phase transition
and the corresponding liquid component is not stable at the conditions at which liquid
H2O is stable (consider, for example, a solution of NaCl in liquid H2O). In such cases it
is convenient to distinguish between a solvent and one or several solutes, such that the
total solute concentration is much lower than the solvent concentration. “Much lower” is of
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course not a proper quantitative definition, but a good rule of thumb is “at least one order
of magnitude lower”. Solvent and solutes are best described by different sets of equations,
and the symmetry that characterizes the equations for other types of solutions is lost.
Two points must be clearly understood. First, although the liquid solvent that we most

commonly encounter in planetary environments is water this is not necessarily always the
case. Second, many aqueous solutions are electrolyte solutions, meaning that the solutes
dissociate into ions upon dissolving. Although thermodynamic description of electrolyte
solutions requires some specific techniques, that we will study beginning in Section 10.3,
there are fundamental aspects of the way in which dilute solutions are handled that are the
same regardless of whether or not they are electrolytes.

11.1.1 Concentration scale in dilute solutions

The concentration of the solvent in dilute solutions is expressed in mol fraction, as we have
done so far. For the solutes this is inconvenient for two reasons. First, solute mol fractions
are small numbers (� 1). Second and most importantly, many dilute solutions of interest,
and in particular aqueous solutions, may contain a large number of solutes. This makes it
advisable to describe the concentration of each solute with a function that remains invariant
when the amounts of other solutes are varied. Mol fraction does not behave in this way,
because if the amount of one component is varied all mol fractions vary. For the solvent in
a dilute solution this variation is generally trivial, but the same is not true for the solutes.
Solute concentration in dilute solutions is expressed inmolality, defined as mols of solute

per kg of solvent. We will use the fixed subscript s to refer to the solvent, and the variable
subscript i to refer to solutes, where i can take as many different values as there are solutes
in the solution. Let the number of mols of solvent be ns , and the number of mols of the ith
solute be ni . The mol fraction of the solvent is then given by:

Xs = ns

ns +
∑

i
ni

. (11.1)

The number of mols of the ith solute per kg of solvent is given by:

ni

nsMs

, (11.2)

whereMs is themolecular weight of the solvent, in units of kgmol−1. The units of (11.2) are
mol kg−1, which agrees with our definition of molality but presents some formal problems.
In particular, units of concentration should always be dimensionless (e.g. equation (11.1))
because they end up as arguments of logarithmic functions. The problem is in this case easily
solved by defining the dimensionless molecular weight of the solvent,M∗

s , as follows:

M∗
s =

Ms

1kg mol−1
, (11.3)

which allows us to define the non-dimensional molality of i, mi , as follows:

mi ≡ ni

nsM∗
s

. (11.4)

Note that, in contrast to fugacity and partial pressure, which retain their pressure dimension
but are divided by the 1 bar standard state pressurewhen they are the argument of a logarithm
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(even ifwe omit the denominators for simplicity), equation (11.4) defines a non-dimensional
molality. This function has the desired property, that the molality of a solute in a dilute
solution depends only on the amount of the solute itself. The amounts of all other solutes
j �= i can be changed and this does not affect mi .

11.1.2 Standard states in dilute solutions

The standard state for the solvent in a dilute solution is taken as usual, as pure solvent at the
temperature and pressure of interest. Commonly the solvent is a liquid at the temperature
and pressure of interest, but it could also be a solid or a supercritical fluid. Using the same
standard state convention for dilute solutes is not convenient, however. One reason for this
is that the pure liquid solute at the temperature and pressure of interest is in many cases
not thermodynamically stable. This is the case, for instance, when we consider aqueous
solutions of substances that are solids or gases at room temperature. Another reason is that
the chemical potential of a very dilute solute may be orders of magnitude lower than that
of the pure substance at the same P and T, even if the latter was stable. It is thus more
convenient to define the standard state of dilute solutes at the infinite dilution limit, rather
than at the pure solute state. This requires some arbitrary definitions, and the first one is to
postulate that an infinitely dilute solution of a single solute is ideal, and that its molality
equals its activity. We write this as follows:

lim
mi→0

ai

mi

≡ 1, mj �=i = 0, (11.5)

where ai is the activity of solute i. Equation (11.5) carries the assumption that the activity
coefficient γ i of every solute tends to 1 as the total solute molality

∑
mi goes to zero.

We now recall the usual relation between µ and µ0:

µi = µ0, i +RT lnai (11.6)

and define the standard state chemical potential of solute i at infinite dilution as follows:

µ0,i ≡ lim
mi→0

(
µi −RT lnmi

)
, mj �=i = 0. (11.7)

There are two important aspects of this definition. The first one is explicitly stated: the
standard state of solute i is defined in an infinitely dilute solution in which i is the only
solute. The second one is also contained in (11.7) but it may be less obvious. It is the fact
that the standard state of a solute depends on the identities of both the solute and the solvent.
Recall that in equation (11.5) we specified that the infinitely dilute solution is ideal, and
that its activity equals its molality. This implies that the molecules of solute and solvent do
not interact with one another, which is never the case. The energetic contributions of these
interactions, which depend on the nature of the molecules of both solute and solvent, are
lumped into the standard state chemical potential by equation (11.7). Consider for example
N2 as a dilute solute in two different solvents, liquid H2O and methanol (CH3OH), at
the same temperature and pressure. The interaction energies of N2 molecules with H2O
molecules and CH3OH molecules are different, and therefore the standard state chemical
potential of N2 in a water solution is different from that in a methanol solution. This is
different from the way in which we have dealt with other solutions, where the standard state
properties depended only on the identity of the substance itself. Now we need to consider
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the solute and the solvent but, by requiring that mj �=i = 0, the standard state properties are
independent of any other solutes.
You may object that equation (11.7) does not necessarily tell us how to measure the

standard state chemical potential at infinite dilution. This is true, but if you think about it
it is also true of all the definitions of standard state properties that we have used so far. In
this book I take the position that we will not worry about this. It is possible to determine
values of standard state chemical potentials, enthalpies, entropies and heat capacities, and
extrapolate them to infinite dilution (see, for example, Robinson & Stokes, 1959; Pitzer,
1995; Anderson, 2005). Standard state values for many species in aqueous solution are
tabulated at the usual reference conditions: 298.15 K and 1 bar (see Wagman et al., 1982;
Robie&Hemingway, 1995). Standard state properties in other solvents are less well known.
What matters to us is that equation (11.7) allows us to operate on the chemical potential of
dilute solutes, and hence perform chemical equilibrium calculations.
We also note that we can expand (11.6) as follows:

µi = µ0,i +RT ln
(
γ imi

)
. (11.8)

For a hypothetical ideal 1 molal solution we would have γ i =mi = 1, and therefore µi =
µ0,i . Because of this relationship the infinite dilution standard state defined by equation
(11.7) is also referred to as the “1 molal” standard state. This means that the standard state
chemical potential at infinite dilution would also be the chemical potential of the solute in
a hypothetical 1 molal solution in the same solvent that behaved ideally. The actual 1 molal
solution is never ideal, however, even if no other solutes are present. The chemical potential
of a solute in a real 1 molal solution is never equal to its standard state chemical potential.
This may be rather confusing, but it is nothing more than an algebraic manipulation.

11.1.3 Activity coefficient of a dilute solute and excess Gibbs free energy of mixing

From equation (5.129), the excess chemical potential of solute i is given by:

µi,ex =RT lnγ i . (11.9)

The relationship between excess chemical potential (a partial molar property) and excess
Gibbs free energy of mixing, Gex(Section 5.9.1), is given by equation (5.28):

µi,ex =
(
∂Gex

∂ni

)
P ,T ,nj �≡i ,ns

(11.10)

where ns is the number of mols of solvent, and nj are the number of mols of solutes other
than i. From (11.9) and (11.10) we find:

RT lnγ i = ∂Gex

∂ni
= ∂Gex

∂mi

∂mi

∂ni
(11.11)

and from (11.4):

∂mi

∂ni
= 1

nsM∗
s

(11.12)
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from which we get:

lnγ i = 1

RT nsM∗
s

(
∂Gex

∂mi

)
P ,T ,mj �≡i

. (11.13)

Therefore, if one has an explicit formula for the excess Gibbs free energy of the solution
(Section 11.6), the activity coefficient of each solute can be calculated with (11.13).

11.1.4 Gases as low-concentration solutes

Consider a molecular species, A, that is present in a gas phase and that dissolves in a
coexisting condensed phase. The usual case is that the condensed phase is a liquid, but the
following treatment is equally valid for solid–gas equilibrium. At equilibrium we have:

µA(g) = µA(s), (11.14)

where µA(g) is the chemical potential of A in the gas phase, and µA(s) its chemical poten-
tial in the liquid solution. Because at low pressures, say those corresponding to planetary
atmospheres and near-surface environments (including planetary oceans), solubilities of
most common gas species in water and other possible liquid solvents are rather low, it is
convenient to refer the chemical potential of species A dissolved in the liquid phase to the
infinite dilution standard state. We therefore expand (11.14) as follows:

µ0,A(g)+RT lnfA = µ0,A(s)+RT lnaA(s), (11.15)

where µ0,A(g) is the standard state chemical potential of pure gaseous A at the temperature
of interest and 1 bar, µ0,A(s) is the standard state chemical potential of infinitely dilute A in
the solvent of interest and at the temperature of interest (equation (11.7)), fA is the fugacity
of A in the gas phase and aA(s) is the activity of solute A in the liquid solution. Writing
activity as the product of molality, mA, times activity coefficient, γ A, (equation (11.8)) we
rearrange (11.15) as follows:

mA

fA
=

exp
(
−�sG

0

RT

)
γ A

, (11.16)

where�sG0 is the standard stateGibbs free energy of dissolution at infinite dilution, defined
as:

�sG
0 = µ0,A(s)−µ0,A(g). (11.17)

It is an empirical observation that, at constant temperature and for very dilute solutions
(i.e. as mA → 0), the ratio mA/fA is approximately constant. This is Henry’s law (Section
5.9.2), and the resulting constant, KAH ,s , is one way of defining Henry’s law constant. We
then have:

mA

fA
=KA

H ,s , mA� 1, (11.18)

where the constant KAH ,s is equal to the right-hand side of equation (11.16) and therefore
includes contributions both from the standard stateGibbs free energy of dissolution and from



527 11.1 Some properties of dilute solutions

the excess chemical potential of A in the condensed solution (i.e. the activity coefficient).
It follows that the value of Henry’s law constant is specific to each solute–solvent pair.
Henry’s law (equation (11.18)) describes the equilibrium between a molecular species in

a gas and the same molecular species in a dilute condensed solution. The quantitymA refers
only to the molality of the molecular species A in the solution. If the species dissociates,
or reacts with the solvent in some other way, then mA will be less than the total amount of
dissolved A, which is a quantity known as the analytical concentration of A. This is a key
point, that will become clear in several numerical examples.
Henry’s law constant as defined by equation (11.18) describes the solubility (hence the

subscript s) of the gas in the condensed phase. It is also common to use the inverse of
equation (11.18) and define Henry’s law constant as the ratio fA/mA asmA goes to zero. The
resulting constant, KAH ,v , describes the volatility of the gas and is simply equal to 1/KAH ,s .
This alternate formulation is used in many thermodynamics textbooks (e.g. Pitzer, 1995;
Anderson, 2005). I prefer the solubility constant defined by equation (11.18) because it is
the convention used in comprehensive data bases for gases in aqueous solutions (see below).
The solubility of most gases in liquids decreases with increasing temperature. Within

the temperature range in which aqueous solutions are stable the effect is not negligible. We
account for the temperature dependency of Henry’s law constant by writing, from equations
(11.16) and (11.18):

lnKA
H ,s =−

�sG
0

RT
− lnγA. (11.19)

Differentiating with respect to T, and assuming that γ is constant:

∂ lnKA
H ,s

∂T
= 1

R

(
�sS

0

T
+ �sG

0

T 2

)
(11.20)

or:

∂ lnKA
H ,s

∂T
= �sH

0

RT 2
, (11.21)

where �sH0 is the molar enthalpy of dissolution at infinite dilution. Using the chain rule
we simplify this further to:

∂ lnKA
H ,s

∂ (1/T )
= ∂ lnKA

H ,s

∂T

∂T

∂ (1/T )
=−�sH

0

R
. (11.22)

Assuming that the enthalpy of dissolution remains constant we integrate from some
reference temperature T0 (universally taken as 298.15 K) to the temperature of interest:

KA
H ,s =K

A,0
H ,s exp

[
−�sH

0

R

(
1

T
− 1

T0

)]
. (11.23)
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Worked Example 11.1 Concentration of atmospheric gases in Earth’s oceans

Henry’s law constants and their temperature dependency can be calculated from standard
state thermodynamic properties and activity coefficients but, more commonly, they are
measured directly. Comprehensive tabulations exist for virtually all gases in aqueous solu-
tion (Sander, 1999; also NIST Chemistry WebBook). These tables typically list values of
KA,0H ,s and (−�sH0/R), the latter parameter commonly labeled as (d lnK/d(1/T )). A sim-
ple application of equations (11.18) and (11.23) is to calculate the concentration of gases
dissolved in liquid H2O in equilibrium with the terrestrial atmosphere. Figure 11.1 shows
equilibrium molalities of N2, O2, Ar and CO2 as a function of temperature, calculated with
constants and temperature derivatives from Sander (1999). The fugacities are assumed to
be constant and equal to 0.8 bar, 0.2 bar, 0.01 bar and 3.8 × 10−4 bar, for N2, O2, Ar and
CO2 respectively (the latter figure assumes an atmospheric CO2 concentration of 380 ppm
by volume, and is likely to be a nostalgic value by the time you read this). As expected, all
concentrations decrease with increasing temperature, but the temperature dependency of
CO2 concentration is stronger than those of the other gases. This is one of several positive
feedback mechanisms in global warming: as the oceans warm they exsolve CO2, which
further raises its atmospheric concentration. Warming oceans also become depleted in oxy-
gen, and the change could be significant for organisms that may have evolved very specific
metabolic requirements or oxygen exchange mechanisms.
Themolalities shown in the figure correspond to the concentrations of the actualmolecular

species. For nitrogen, oxygen and argon these are likely to be essentially the same as the
total dissolved concentrations (= analytical concentrations) of the corresponding gases. For
CO2 this is not the case, as CO2 reacts with H2O to form H2CO3,which in turn dissociates
into protons and carbonate and bicarbonate anions. The analytical concentration of CO2 in
seawater is thus greater than the concentration of molecular CO2 calculated from Henry’s
law (Worked Example 10.4).
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Fig. 11.1 Concentration of atmospheric gases dissolved in water in equilibrium with the terrestrial atmosphere. Calculated with
Henry’s law constant data from Sander (1999). The plot shows the concentration of the molecular species only.
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11.1.5 Nernst’s distribution law and trace element partitioning

Although the focus of this chapter is on liquid solutions, and in particular aqueous solutions,
it is instructive to take a short detour and revisit the trace element partitioning equations
that we discussed in Section 10.3. Consider a solute i in two dilute solutions with different
solvents, s1 and s2. Let the corresponding chemical potentials of the solute be µis1 and µ

i
s2.

At equilibrium we have µis1 = µis2, or:

µ
0, i
s1 +RT ln

(
γ i,s1mi,s1

)
= µ

0, i
s2 +RT ln

(
γ i,s2mi,s2

)
. (11.24)

Rearranging:

mi,s1

mi,s2
= γ i,s2

γ i,s1
exp

(
µ
0, i
s2 −µ0, i

s1

RT

)
. (11.25)

This equation, known as Nernst’s distribution law, is the same relationship that we derived
in Chapter 10 to describe trace element partitioning between minerals and melt (equation
(10.13)). The two standard state chemical potentials are the chemical potentials of the same
trace component, at infinite dilution in two different solvents. At constant temperature,
therefore, the exponential factor is a constant. Ifwe consider a restricted compositional range
then the activity coefficients may also be approximately constant, and we recover (10.13),
with the right-hand side of equation (11.25) equal to D, the partition coefficient. Note that
we have not specified the aggregation state of the two solvents. Nernst’s distribution law
is equally valid for crystal–liquid partitioning as it is for partitioning between two different
crystals, or two different liquids.
Writing the distribution law in the form of equation (11.25) one can examine some of

the complications underlying the modeling of trace element behavior in igneous systems.
First, the partition coefficient is a function of temperature. Temperature variability within
a given type of magmatic system (e.g. basalts) may be restricted enough that it can be
safely ignored, but the same is not true if we compare, for example, basaltic and rhyolitic
systems. Second, melts with significantly different major element compositions (consider
again basalts vs. rhyolites) effectively behave as different solvents, so that the standard
state chemical potential of the same trace element will be different in each solvent, and so
will the partition coefficient. Third, the activity coefficients are in general functions of the
composition of the solvent and of the concentrations of all the solutes, so if we once again
consider the example of basalts vs. rhyolites we see that the activity coefficient for the same
solute will almost certainly be different, and so will the partition coefficient.

11.2 Effects of dilute solutes on the properties of the solvent

Dilute solutes can have strong effects on the behavior of the solvent, such as depressing its
freezing point, raising its boiling point, or affecting its density and refractive index.We now
look at the equations that make it possible to track some of these effects.All of the equations
in this section are valid in general, for both molecular and electrolyte solutions, although
as we shall see in later sections electrolyte solutions require additional considerations.
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11.2.1 The osmotic coefficient

We can write the Gibbs–Duhem equation (equation (6.6)) for a dilute solution at constant
temperature and pressure as follows:

nsdµ
s +
∑
i

nidµ
i = 0. (11.26)

Dividing by ns M∗
s we get:

1

M∗
s

dµs +
∑
i

midµ
i = 0. (11.27)

If all of the solutes behave ideally (i.e. γ i = 1 for all is) then from (11.8) we get:

dµi

dmi

= RT

mi

(11.28)

so:

1

M∗
s

dµs +RT
∑
i

dmi = 0. (11.29)

Integrating to the composition of the solution:

RTM∗
s

∑
i

mi = µ0,s −µs, ideal , (11.30)

where µ0,s is the standard state chemical potential of the solvent (pure solvent at the
temperature and pressure of interest) and µs, ideal is the chemical potential of the solvent in
the ideal dilute solution. The sum

∑
imi is the total concentration (molality) of dissolved

species.
Equation (11.30) is true only if all of the solutes dissolve ideally, which is in general not

the case. In order to account for the aggregate excess mixing behavior of all the solutes one
defines a parameter φ, called the osmotic coefficient, as follows:

φ ≡ µ0,s −µs
RTM∗

s

∑
i mi

(11.31)

from which we get the chemical potential of the solvent (compare equation (11.30)):

µs = µ0,s −RTM∗
s φ
∑
i

mi . (11.32)

The osmotic coefficient φ is a function of the molality of each solute, mi , and of the
contribution of each solute to the excess mixing properties of the solution. Calculation of
an explicit value is generally far from trivial, but if a value can be measured or calculated
then equation (11.32) yields the chemical potential (and other thermodynamic properties)
of the solvent.
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11.2.2 Osmotic coefficient and excess Gibbs free energy of the solution

The chemical potential of the solvent, µs,ideal , in equation (11.30) corresponds to an ideal
solution, whereas µs in equation (11.32) is that of a real solution. The excess chemical
potential of the solvent, µs,ex = µs −µs,ideal , is therefore given by:

µs,ex = (1−φ)RTM∗
s

∑
i

mi . (11.33)

If one has an explicit formula for the excess Gibbs free energy of the solution, Gex, then
the osmotic coefficient can be calculated as follows. From equation (5.28):

µs,ex =
(
∂Gex

∂ns

)
P ,T ,ni

(11.34)

where ns is the number of mols of solvent, and ni are the number of mols of solutes, which
remain constant. Equating (11.33) and (11.34):

1−φ = 1

RTM∗
s

∑
i mi

(
∂Gex

∂ns

)
P ,T ,ni

. (11.35)

When working with aqueous solutions it is common, however, to measure the mass of the
solvent in kg rather than in number of mols. If the mass of ns mols of solvent is ws , then
ws = nsM∗

s and (11.35) becomes:

1−φ = 1

RT
∑

i mi

(
∂Gex

∂ws

)
P ,T ,ni

. (11.36)

Equation (11.36) is the starting point for the calculation of osmotic coefficients in electrolyte
solutions (Section 11.6).

11.2.3 Relationship between osmotic coefficient of the solvent and activity
coefficients of the solutes

Differentiation of (11.8) for a non-ideal solution yields:

dµi

dmi

= RT

mi

+ RT

γ i

∂γ i

∂mi

(11.37)

substituting in (11.27) and simplifying:

1

M∗
s

dµs +RT
∑
i

dmi +RT
∑
i

mi
∂γ i

γ i
= 0. (11.38)

Differentiating (11.31) we find:

dµs =−RTM∗
s

(∑
i

midφ+φ
∑
i

dmi

)
. (11.39)
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Substituting in (11.38) and simplifying:

(1−φ)
∑
i

dmi

mi

− dφ+
∑
i

d lnγ i = 0, (11.40)

which for a solution of a single solute simplifies to:

d lnγ = (φ− 1)
dm

m
+ dφ. (11.41)

Depending on whether one wishes to calculate the activity coefficient of the solute from the
osmotic coefficient of the solvent, or vice versa, and recalling that, because the infinitely
dilute solution is assumed to be ideal, we have γ = φ = 1 as m → 0, we can integrate
(11.41) in one of two ways (Exercise 11.1):

lnγ = φ− 1+
∫ m

0

φ− 1

m
dm (11.42)

or:

φ = 1+ 1

m

∫ m

0
md lnγ . (11.43)

Solving the integrals requires either measured values of one of the variables over a con-
centration range extending to very dilute solutions (m→ 0), or an explicit equation for the
activity coefficient or osmotic coefficient as a function of composition (Section 11.6).

11.2.4 Freezing and boiling of dilute solutions

One application of osmotic coefficients is to predict how phase transitions of the solvent
are affected by the presence of dilute solutes. We shall use the melting point depression
equation (6.49) once more. Consider a liquid solution that freezes to pure solid solvent
(aqueous solutions behave in this way to an excellent approximation). For this case we
write equation (6.49) as follows:

lnasliq =−
�mH

0
s

R

(
1

T
− 1

T0,f

)
, (11.44)

where asliq is the activity of the solvent in the liquid solution,�mH0
s is the enthalpy ofmelting

of the solvent and T0,f is the freezing temperature of the pure solvent at the pressure of
interest. From equation (11.32) we see that:

lnasliq =
µs −µ0,s

RT
=−M∗

s φ
∑
i

mi . (11.45)

Substituting (11.45) in (11.44) we find:

1

T
− 1

T0,f
= RM∗

s

�mH 0
s

φ
∑
i

mi . (11.46)

If we now assume that T remains close to T0,f we can simplify (11.46) as follows:

T = T0,f − RM∗
s T0,f

2

�mHs
0 φ

∑
i

mi . (11.47)
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The first factor in the second term in the right-hand side of equation (11.47) contains
properties of the solvent only – its non-dimensional molecular weight, enthalpy of melting
and freezing temperature – and the gas constant R. It is therefore a constant for each solvent,
which is known as the cryoscopic constant, kcr :

kcr = RM∗
s T0,f

2

�mH 0
s

. (11.48)

For H2O at 1 bar the values of the parameters in equation (11.48) are: T0,f = 273.15 K,
�mH0

s = 5.94 kJ mol−1, and M∗s = 0.01802, which yield kcr ,H2O = 1.882 K (P = 1 bar).
Note that the cryoscopic constant is always a positive quantity, as enthalpy of melting is
always positive. Therefore, a solution that freezes to pure solvent always does so at lower
temperature than the pure liquid solvent. This is of course the same behavior that we found
for eutectics in igneous systems (Chapters 6 and 10). We can also re-write (11.47) more
simply as:

T = T0,f − kcrφ
∑
i

mi , (11.49)

emphasizing the fact that for a given solvent the magnitude of the freezing point depression
depends on the total molality of solutes and on the osmotic coefficient (which is a sort of
“aggregate activity coefficient”).
If the solutes can be considered to be non-volatile compared to the solvent, i.e. if their

vapor pressures are negligible compared to that of the solvent, then when the solution
boils the vapor phase is composed to a very good approximation of pure solvent. Aqueous
solutions of solid solutes generally behave in this way. The boiling point displacement
caused by the presence of non-volatile solutes can also be calculated with equation (6.49).
According to the labeling convention adopted at the beginning of Section 6.5.1 regarding
the placement of the high-entropy phase we now write equation (6.49) as follows:

lnasliq =
�vH

0
s

R

(
1

T
− 1

T0,b

)
. (11.50)

As before, asliq is the activity of the solvent in the liquid solution, but now �vH0
s is the

enthalpy of vaporization of the solvent and T0,b is the boiling temperature of the pure
solvent at the pressure of interest. Following the same sequence of steps used in deriving
equation (11.47) we arrive at:

T = T0,b+ RM∗
s T0,b

2

�vH 0
s

φ
∑
i

mi . (11.51)

The ebullioscopic constant, keb, comprises only properties of the solvent and is defined as:

keb = RM∗
s T0,b

2

�vH 0
s

. (11.52)

The parameters for H2O at 1 bar are: T0,b = 373.15 K, �vH0
s = 40.6 kJ mol−1, and

M∗s = 0.01802, yielding an ebullioscopic constant keb,H2O = 0.514 K (P= 1 bar). Because
the enthalpy of vaporization is always a positive quantity it must be keb>0. Therefore,
it follows from (11.51) that a solution always boils at higher temperature than the pure
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solvent. Because the osmotic coefficient φ is in general a function of temperature its value
in equations (11.47) and (11.51) will in general be different, even for solutions with the
same total solute molality,

∑
mi .

11.2.5 Solubility of a pure solute

Equations (11.47) and (11.51) describe the equilibrium of a dilute solution with pure solid
solvent and pure solvent vapor, respectively. It is also of interest to describe the equilibrium
between the solution and a pure solute. The composition of the solution along this equi-
librium defines the solubility of the solute in the specific solvent. At equilibrium between
solution and pure solute we have:

µi = µ0, i(s), (11.53)

where µi is the chemical potential of the solute in the solution and µ0,i(s) is the standard
state chemical potential of pure solute at the pressure and temperature of interest. Note very
carefully that this is the chemical potential of the pure solute, which could be a solid, liquid
or gas, as opposed to the chemical potential of an infinitely dilute solute in the solvent of
interest, which we label µ0,i(cf. equation (11.7)). Substituting equation (11.8) in (11.53)
and rearranging we arrive at:

ln
(
γ imi

)
= µ0, i(s)−µ0,i

RT
. (11.54)

Let us now define the molar Gibbs free energy of dissolution at infinite dilution, �sG
0 as

follows:

�sG
0 = µ0, i −µ0, i(s). (11.55)

Substituting in (11.54) and taking the temperature derivative:

∂ ln
(
γ imi

)
∂T

= 1

R

(
�sS

0

T
+ �sG

0

T 2

)
, (11.56)

which simplifies to:

∂ ln
(
γ imi

)
∂T

= �sH
0

RT 2
, (11.57)

where �sH0 is the molar enthalpy of dissolution at infinite dilution. Note that the value of
�sH0 depends on both the solute and the solvent and that, in contrast to the enthalpies of
melting and vaporization, it may be a positive or a negative quantity (or, conceivably but
very unlikely, zero).
We can integrate (11.57) between some convenient reference temperature T0 (e.g. 298K)

and any arbitrary temperature T. After some simplification, and assuming that we can make
TT0 ≈ T20 , we arrive at:

mi =mi,0

(
γ i,0

γ i

)
exp

[
�sH

0

RT 2
0

(T −T0)
]
. (11.58)
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This equation yields the solubility of the solute in the solvent as a function of temperature
(at constant pressure), assuming that we know the solubility at some reference temperature
and an equation for the activity coefficient as a function of temperature and composition.
If �sH

0>0, i.e. if dissolution is endothermic, then solubility varies directly with temper-
ature, and conversely, it varies inversely with temperature if dissolution is exothermic and
�sH

0<0.

11.2.6 Expansion of the stability field of liquid water by dilute solutes

Water may be the only common liquid solvent in which chemical reactions associated
with biological metabolism can take place (Chapter 14). For this reason it is of interest to
understand how the presence of dilute solutes expands the stability field of liquid water. In
Worked Example 6.5 we used Schreinemakers’ rule to derive a schematic phase diagram
for the system H2O–NaCl. The qualitative results, summarized in Fig. 6.12, are applicable
to aqueous solutions of non-volatile solids in general, regardless of whether or not they
are electrolytes. We saw in that example that Schreinemakers’ rule causes the solute-absent
and solute-present invariant points to be located along the liquid-absent curve in relative
positions such that freezing and boiling of brine occur at lower and higher temperatures,
respectively, than the corresponding phase transitions for pure H2O. This is what equations
(11.47) and (11.51) require.We can now include some additional information that is missing
from Fig. 6.12.
Consider an aqueous solution, which we will label liquid, of a generic non-volatile solid.

In most cases of geological interest the solute will be an electrolyte.We study such solutions
beginning in the next section, but what we are interested in here is in the behavior of the
solvent, and this can be discussed in general termswithout specifying the nature of the solute.
As far as the solvent is concerned the details of the solute are encapsulated in the osmotic
coefficient, which is what determines the behavior of the solvent.
The pressure–temperature phase diagramshownat the bottomofFig. 11.2 is redrawn from

Fig. 6.12. Invariant point O1 corresponds to the pure H2O system, whereas O2 corresponds
to the H2O–salt binary system. The two diagrams at the top of the figure are isobaric
temperature–composition sections at twopressures,P1 andP2, above and below the pressure
of invariant point O1. We will assume that there are no other volatile components in the
system, so that the partial pressure of H2O in the vapor phase is equal to the total pressure.
The diagrams are schematic, however. The composition axes are calibrated in molality
and extend from pure H2O to some unspecified solute molality somewhat higher than the
saturation concentrations. For virtually all solutes of interest in the planetary sciences this
would correspond to solute mol fractions much smaller than 1.
At pressure P1 pure H2O freezes and boils at the temperatures of points b and c, respec-

tively. Addition of a solute shifts the freezing point to lower temperature (equation (11.47))
and the boiling point to higher temperature (equation (11.51)). The graphs of these two
functions in the temperature–composition diagram are the freezing and boiling curves, ba
and cd, which show the composition of liquid in equilibrium with pure H2O ice and pure
H2O vapor, respectively. Each of the divariant assemblages (pseudo-univariant at constant
pressure), liquid + ice and liquid + vapor, exists inside the field labeled accordingly, with
the liquid composition given by the intersection of the temperature coordinate with the cor-
responding bounding curve. The liquid becomes saturated in solid at points a and d.At each
of these two points three phases are stable, so they must be located on the corresponding
univariant phase boundaries for the solute-bearing system, as shown in the bottom diagram.
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Fig. 11.2 Freezing and boiling phase relations of dilute aqueous solutions of a non-volatile solute. The P–T phase diagram
(bottom) is redrawn after Fig. 6.12. The two isobaric temperature–composition phase diagrams (top) correspond to
pressures higher and lower than that of the triple point of pure H2O (O1). The liquid field shrinks continuously from
the pressure of point O1 to the pressure of point O2, where it disappears altogether.

They must also appear as pseudo-invariant points on the isobaric sections. Because a and
d are saturation points they must both lie on the solubility curve given by equation (11.58).
The graph of this function is therefore the curve ad in the figure. The divariant assemblage
liquid + solid is stable to the right of the curve, with the composition of the solid-saturated
liquid given by the intersection of the temperature coordinatewith curve ad. Note that inside
the field labeled “liquid” only one phase is stable, so that the assemblage is trivariant, or
pseudodivariant at constant pressure. Temperature and liquid composition can be chosen
independently as long as no other phase is stable.
Equations (11.47) and (11.51) assure us that, because points a and d are saturated in

solid, they must correspond to the minimum freezing temperature and maximum boiling
temperature at pressureP1. Point a is therefore a eutectic (comparewith Figs. 6.21 and 6.23).
For all temperatures lower than that ofa the systemconsists of the divariant assemblage ice+
solid. Similarly, in a neighborhood above the temperature of point d the stable assemblage
is solid+ vapor, but this divariant field must terminate at some higher temperature, at which
the solidmelts.The eutectic andmaximumboiling temperatures can be calculated by solving
simultaneously equations (11.47) and (11.58), or (11.51) and (11.58), respectively.
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Consider now the temperature–composition phase relations at pressure P2, lower than
that of the triple point of pureH2O (invariant pointO1).At pressureP2 pure liquidH2O is not
stable, so the liquid + vapor and liquid + ice fields must meet at the H2O composition end-
member. This happens at point g, which corresponds to a point along the stable univariant
sublimation curve for H2O (see bottom figure). As in the previous case, the freezing and
boiling curves, gf and gh, are the graphs of functions (11.47) and (11.51). They map the
liquid compositions in equilibrium with ice and vapor, respectively, and terminate at points
f and h on the solubility curve, given by equation (11.58). As pressure decreases from
O1 to O2 the temperatures of the eutectic point, f , and of the maximum boiling point, h
approach each other, so that the temperature interval within which liquid is stable shrinks.
The two temperatures become identical, and equal to the sublimation temperature, at O2.
For pressures lower than that of O2 liquid is never stable and the only possible univariant
equilibrium in the two-component system is the degenerate H2O sublimation reaction.
There is a subtle point that we must address. In deriving equations (11.47) and (11.51) we

assumed that the pure liquid solvent is stable, and therefore that freezing and boiling of the
pure solvent take place. For pressures betweenO1 andO2 liquid is stable only if it contains
dissolved solutes in it, so that freezing and boiling of the pure solvent do not take place.
Is it then “legal” to use equations (11.47) and (11.51) to construct the freezing and boiling
curves? Moreover, what temperatures should be chosen for T0,f and T0,b, the freezing and
boiling point of the pure solvent? The graphical construction in Fig. 11.2 suggests that
both temperatures should be the same, and equal to the sublimation temperature of the
solvent at the pressure of interest.We now demonstrate formally that this is indeed the case.
Equilibrium along the freezing curve can be written as (see equation (11.32)):

µ
H2O
liquid = |µ0,H2O

liquid |−RTM∗
s φ
∑
i

mi = µ
0,H2O
ice , (11.59)

where the standard state chemical potential of liquid H2O enclosed inside vertical lines
is a fictive value, corresponding to a hypothetical pure liquid H2O phase at pressure P2.
Similarly, for the boiling curve we have:

µ
H2O
liquid = |µ0,H2O

liquid |−RTM∗
s φ
∑
i

mi = µ0,H2O
vapor . (11.60)

The two curves meet at the pure H2O end-member (point g), at which
∑
mi = 0, so:

µ
0,H2O
ice = µ0,H2O

vapor = |µ0,H2O
liquid |. (11.61)

The sublimation temperature (g in the figure) therefore corresponds to both the (fictive)
freezing and boiling temperatures of pureH2O.Moreover, the fictive standard state chemical
potential of liquid H2O is well defined, and is equal to the standard state chemical potentials
of ice and vapor at the sublimation temperature. This makes it possible to define the activity
of H2O in liquid as in equation (11.45), and thus confirms that functions (11.47) and (11.51)
represent the freezing and boiling curves of liquid at pressures below the triple point of pure
H2O too.
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Worked Example 11.2 Perchlorate brines on the Martian surface

The chemical experiments aboard the Phoenix spacecraft, that reached Mars in May of
2008, detected what appears to be a large concentration of the perchlorate ion, ClO−4 , in her
landing site on the planet’s northern plains (Hecht et al., 2009; Kounaves et al., 2009). The
importance of this finding is that alkali- and alkali-earth perchlorates are quite soluble in
water. The maximum freezing point depression of a solution (i.e. its eutectic temperature)
depends in part on the location of the solubility curve ad in Fig. 11.2 (given by equation
(11.58)) – the more soluble a solid is, the lower the eutectic temperature is likely to be. The
question arises, could perchlorates be soluble enough, and abundant enough on Mars, to
extend the stability field of liquid water to the conditions of the Martian surface? And why
would perchlorates be so abundant on Mars in the first place? Formation of perchlorates
requires an oxidant more powerful than molecular oxygen (Exercise 11.2). The most likely
explanation for its presence on Mars, and in some desert terrestrial environments, is the
oxidation of chloride anions in the atmosphere, either by ozone or by some of the products
of ozone photochemistry (Catling et al., 2010; see also Chapter 12).
The calculation of the eutectic point of an aqueous solution entails the simultaneous

solution, for temperature and solute molality, of equations (11.49) and (11.58). The melting
and solubility curves, ba and ad in Fig. 11.2, are then constructed by solving each of these
equations for one of the variables (e.g. temperature) as a function of the other (molality). The
procedure is in principle the same one that we used to calculate eutectic phase relations in
Chapter 6, and thatwe implemented inSoftwareBox6.1.Thephase diagrams formagnesium
perchlorate and sodium perchlorate aqueous solutions were calculated in this manner by
Chevrier et al. (2009). For solutions of electrolytes the calculations are far from trivial,
however. This is so because, as we shall see later in this Chapter, the activity and osmotic
coefficients of electrolyte solutions are rather complex functions of composition. We will
therefore not repeat the calculations of Chevrier et al. (2009), but will rather study their
phase diagrams, from which I extract the diagrams at the top of Fig. 11.3.
Chevrier et al. found that the system Mg(ClO4)2–H2O has a 1-bar eutectic temperature

of 206 K, and that the concentration of magnesium perchlorate in the eutectic melt is 44
wt%. The corresponding values for the system NaClO4–H2O are 236 K and 52 wt%. These
temperatures must lie on the vapor-absent curves of the respective binary systems, such
as a or f in Fig. 11.2. We can construct the vapor-absent curves by assuming that their
slope is the same as that of the freezing curve of pure H2O. This is not rigorously true,
as both the entropy and volume of the solutions will in general be different from those
of pure liquid water (recall that dP/dT = �S/�V , and that ice is a pure phase in all
cases). The error that might be introduced between 1 bar and the near zero pressure of
the Martian surface is, however, almost certainly negligible. The bottom diagram in Fig.
11.3 shows the P–T locations of the vapor-absent equilibria, which are the Mg-perchlorate
and Na-perchlorate eutectics, inferred from the temperatures calculated by Chevrier et al.
(2009) and the Clapeyron slope of the freezing reaction of pure H2O. Also shown is the
ice sublimation curve, calculated from the H2O data of Wagner et al. (1993). Since this is
the liquid-absent curve its location is independent of the composition of the solution. The
intersection of each of the freezing curves with the sublimation curve defines the invariant
point for each system (the invariant point for pure H2O is also shown for comparison). A
third phase boundary, the boiling curve, emanates from each invariant point. These curves
are shown schematically, as their slopes remain unknown.
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Fig. 11.3 Melting phase relations for the binary systems Mg(ClO4)2–H2O and NaClO4–H2O (top), simplified from Chevrier et al.
(2009). The corresponding P–T phase relations for the two systems are shown in the bottom diagram. Compare
Fig. 11.2.

The P–T diagram in Fig. 11.3 corresponds to a system in which no additional volatile
components are present, so that the partial pressure of H2O in the vapor phase is equal to
the total pressure on the system. TheMartian atmosphere, however, consists predominantly
of components other than H2O, so the partial pressure of H2O in the gas phase is much
lower than atmospheric pressure, which is about 7 mbar at the planet’s mean surface level.
The diagram can nevertheless be applied to understand conditions on the Martian surface,
if we keep the following in mind. The freezing curve is a vapor-absent equilibrium so it
is not affected by changes in the composition of the vapor phase. Its P–T location remains
unchangedwhether the pressure axis represents total pressure or partial pressure.The boiling
and sublimation curves represent equilibrium between vapor and condensed phases, and
the condensed phases will not undergo any significant change in volume in response to
pressure differences of order 1 bar or less. Therefore, the location of the phase boundaries
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within the restricted range of conditions shown in the figure depends only on the partial
pressure of H2O, and we can think of the pressure coordinate as representing this variable,
rather than atmospheric pressure.
The shaded region in the diagram shows a range of possible surface conditions on Mars.

Martian surface temperatures are within the range in which perchlorate brines can exist.
Whether such brines are thermodynamically stable depends on the H2O content of the
Martian atmosphere. In the Mg-perchlorate system the liquid can be stable down to an
H2O partial pressure of ∼0.003 mbar, which would correspond to an H2O mol fraction of
∼10−4 in the Martian atmosphere. The values for the Na-perchlorate system are∼0.2 mbar
H2O partial pressure, equivalent to an H2O mol fraction of about 0.03. For comparison, the
saturation vapor pressure of pure H2O at 298 K is∼31mbar, so that 100% relative humidity
in the terrestrial atmosphere at this temperature corresponds to anH2Omol fraction of about
0.03. The corresponding mol fraction value at 273 K is ∼0.006.
The minimum atmospheric H2O concentration required to stabilize Na perchlorate brine

is almost certainly higher than anything that is common, or even possible, in the Martian
atmosphere, but Mg perchlorate brines might be stable in unusually “humid” Martian envi-
ronments. We can speculate that stable perchlorate brines probably do not exist over most
of the surface of Mars. Chevrier et al. (2009) showed, however, that evaporation rates of
metastable brine pools could be slow enough that they could persist for a few hours. Even
if long-lived pools of stable perchlorate brines did exist on Mars, however, it is not clear
what their biological significance might be, given that perchlorates are powerful oxidizers
(Chapter 14).

11.3 Electrolyte dissociation

A very important class of dilute solutions are electrolyte solutions. These are solutions in
which the solutes dissociate, partially or fully, into electrically charged mobile species,
or ions. The evidence that this happens is the higher electrical conductivity of electrolyte
solutions compared to that of the pure solvent. The thermodynamic treatment of electrolyte
solutions is based on the general formulation for dilute liquid solutions that we developed
in Sections 11.1 and 11.2, but includes some significant extensions.
Athermodynamicdescriptionof electrolyte solutions should be independent of anymicro-

scopic model of the solution, but it will be helpful to have in mind at least a rudimentary
microscopic model. In fact, accurate prediction of excess mixing properties in electrolyte
solutions is impossible without recourse to their microscopic properties. Let us begin with
a simple question: why do substances dissociate into ions? This happens when the thermal
energy of the ions, of order kBT , becomes comparable to thework that must be performed to
separate them. In an ionic solid the forces holding the atoms together are purely electrostatic.
Therefore, an ionic solid will dissociate into ions either if the thermal energy increases or
if the electrostatic attractive forces decrease. The former case corresponds to melting and
gives rise to what is called a pure liquid electrolyte, i.e. a liquid made up of free anions and
cations. Molten alkali halides are the archetypal examples of this (see also Section 10.1).
Alternatively, electrostatic attractive forces may decrease as a result of interactions with
the molecules of the solvent. Dissociation in this case occurs at temperatures at which the
substance would otherwise be a solid. The result is the formation of an electrolyte solution.
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11.3.1 The dielectric constant and the structure of polar liquids

We recall Coulomb’s law, equation (1.38), that gives the magnitude of the electrostatic force
between two charged particles:

|fe| =
1

4πε

|q1||q2|
x2

. (11.62)

The constant ε is a material property called the permittivity, except if the charges are located
in vacuum, in which case it is a universal constant called the permittivity of free space and
symbolized by ε0. For all substances it is found that ε > ε0. We define a non-dimensional
quantity εr , called the dielectric constant, as the ratio:

εr = ε

ε0
> 1. (11.63)

From (11.62) it follows that the dielectric constant is also a measure of how much the
electrostatic force decreases in response to the introduction of a material between charged
particles. The higher the dielectric constant, the lower the electrostatic force, everything
else being equal.
The physical explanation of this behavior is easy to see. Consider two oppositely charged

plates, initially separated by a vacuum (Fig. 11.4). By (11.62), intercalation of an insulating
substance between the plates decreases the electrostatic force between them. The decrease
in the electrostatic force happens because all substances become polarized to some extent.
What this means is that the electric field between the plates causes the charge distribu-
tion in the interstitial material to become asymmetric, such that there is some excess of
negative charge closer to the positive plate, and an equal excess of positive charge closer
to the negative plate. These charge excesses generate an induced electrostatic field that
opposes the primary field between the plates, and hence lowers the net attractive force
between them. Of course, if the substance is an electrical conductor (i.e. if the potential
difference between the plates is higher than its dielectric strength, see Worked Example
1.4) then current will flow, the plates will lose their charge, and this picture is no longer
valid.
Non-polar materials consist of molecules with symmetric charge distribution. In the

absence of an external field themolecules do not display any preferred charge distribution, or
in otherwords, they are not polarized.When a non-polar substance is immersed in an electric
field, however, it acquires induced polarization as described in the last paragraph. The
magnitude of the induced field that opposes the primary field depends on the characteristics
of the individual molecules and on their density. In diatomic elemental gases at low pressure
(lowmolecular density) the induced field is extremelyweak. Hence, their dielectric constant
may be indistinguishable from 1 for most practical purposes. For instance, the dielectric
constant of dry air at 298 K and 1 bar is∼1.0005, so that the force between charged particles
immersed in air is virtually indistinguishable from what the force would be in vacuum. In
non-polar liquids, such as hydrocarbons or liquid CO2, the dielectric constant is somewhat
higher (typically of order 2), largely as a result of the higher molecular density, which
engenders a stronger induced field.
In contrast to non-polar substances, polar materials consist of molecules with an inherent

charge asymmetry that exists regardless of the presence of an external electrostatic field.
Water is both an excellent example and the most important one in the planetary sciences.
The two OH bonds in H2O subtend an angle of ∼105◦. Because the bonds arise from
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Fig. 11.4 Schematic diagram comparing the behavior of a non-polar substance (top) with that of a polar substance (bottom). In
the absence of an external electric field charges in the molecules of non-polar substances are distributed
symmetrically, but the symmetry is broken when an external field is applied (right). Polar substances such as water
have molecules with permanent charge asymmetry, that acquire a preferred orientation in an external field. In both
cases an induced electric field appears that opposes the external field, but this field is much stronger in polar
substances. Because thermal agitation tends to disrupt molecular orientation the intensity of the induced field (and
the dielectric constant) decreases with increasing temperature.

sharing of the H electrons, each of the two H ends of the molecule acquires a fractional
positive charge, and theO vertex the complementary negative charge.WhenH2Omolecules
are immersed in an electric field between charged plates the molecules orient themselves
such that the negatively charged vertices face the positive plate and the positively charged
ends the negative plate. The result is a strong induced field and therefore a large decrease
in the electrostatic force between the plates. For example, the dielectric constant of H2O
at 298 K is εr ,H2O = 78.3, meaning that the force between charged particles immersed
in water is almost two orders of magnitude less than in vacuum. The dielectric constant
varies inversely with temperature. Its value for liquid water at 1 bar is 87.7 at the freezing
point and 55.7 at the boiling point. It decreases further at higher temperatures, in liquid
water kept from boiling by increased pressure, and in supercritical H2O. This behavior
is to be expected from the simple fact that increasing thermal agitation tends to disrupt
the molecular orientation responsible for the induced field that opposes the external field.
Other polar liquids generally have dielectric constants comparable to or lower than that of
water. For instance, liquid ammonia has a dielectric constant of 22 at its 1 bar boiling point
(239.7 K).
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11.3.2 Free energy of ions in dielectric materials

At an intuitive level we can think of ionic dissociation in polar solvents as taking place
because the dielectric constant of the solvent lowers the attractive force between ions in
the crystal to the point where thermal agitation is able to break the electrostatic bonds.
The problem with this simple model is that it considers the solvent to be a structureless
continuum, when in reality it is made up of molecules of comparable size to the ions of the
solute. The dielectric constant is amacroscopic property, so that its value cannot be expected
to remain unchanged down to molecular lengthscales. In spite of this, the continuummodel
for the solvent forms the basis of what was historically the first successful physical model
for electrolyte solutions, proposed by the great German physicist Max Born in the early
1920s. Born’s model seeks to calculate the change in free energy that takes place when
an isolated ion is transferred from vacuum to a material. The result provides fundamental
physical insight into the nature of electrolytic dissociation, so we will reconstruct the main
aspects of Born’s reasoning.
First we need to define the electrostatic potential, Φe. As for gravitational potential, this

is defined as the electrostatic potential energy per unit of electric charge. From equation
(1.47) we get

Φe = 1

4πε

q

r
, (11.64)

where q is the electric charge that engenders an electric field in a medium of permittivity ε,
andΦe is the electrostatic potential at a distance r from the charge.Note that the potential can
be positive or negative, depending on the sign of the charge. Born’s idea is to consider ions
as spheres of radius ri that are initially electrically neutral, and calculate how much energy
is required to charge the sphere with the electric charge of the ion, qi . This energy equals the
work, we, done against the electrostatic field by the charging process. The energy, which is
stored in the field as electrostatic potential energy, is given by the following integral:

we =
∫ qi

0
Φedq = 1

4πεri

∫ qi

0
qdq = 1

4πεri

q2i

2
. (11.65)

The procedure is somewhat analogous to calculating the gravitational binding energy of
a body (Section 2.4), but there is a crucial difference. This is that, whereas gravitational
assembly of a body always extracts potential energy from the gravitational field, charging a
body stores energy in the electrostatic field, because work must be performed to overcome
the electrostatic repulsion between the charge already present in the body and the newly
arriving charge increment. The square in qi in equation (11.65) ensures that we is always
positive, whether the charge of the ion is positive or negative.
We recall from Section 4.8.4 that, if energy transformations other than heat exchange,

expansion work and transfer of chemical components take place in a system, then their
contributions must be included in the thermodynamic potentials. Charging a sphere at
constant temperature, pressure and composition therefore changes its Gibbs free energy by
an amount �chG equal to we, or:

�chG= 1

4πεri

q2i

2
. (11.66)

As always with Gibbs free energy, what we are interested in is not its absolute value, but
rather how its value changes between different states of a system. In this case we ask, how
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does the Gibbs free energy of an ion differ between a state in which the ion is in vacuum
and another state in which the ion is immersed in a material with dielectric constant εr?
Calling this Gibbs free energy difference �dsG, we see that it is given by:

�dsG= (�chG)material − (�chG)vacuum = 1

4πεri

q2i

2
− 1

4πε0ri

q2i

2
(11.67)

which, simplifying and introducing the definition of the dielectric constant (equation
(11.63)), becomes:

�dsG= 1

4πε0

q2i

2ri

(
1

εr
− 1

)
< 0. (11.68)

This is known as Born’s equation, and it packs a physics punch in a beautifully compact
expression. First, because for all materials the dielectric constant is greater than 1, the Gibbs
free energy change is always negative. Thus, an isolated ion is always more stable if it is
immersed in a solvent than if it is in vacuum. Moreover, the tendency for an ion to enter
solution becomes stronger (i.e. �dsG becomes more negative) the greater the dielectric
constant of the solvent is. This says that electrolyte solutions form more readily the more
polar a solvent is. For a given solvent, as temperature increases and the dielectric constant
decreases electrolytic dissociation becomes less likely. Born’s equation also shows that the
tendency towards electrolytic dissociation varies directly with the square of ionic charge
and inversely with ionic radius.
By differentiating (11.68) one can obtain an expression for the enthalpy change associated

with immersing an ion into a solvent. With some additional algebraic manipulations and
reference state conventions (see below) this enthalpy becomes an experimentally accessible
quantity. Experimental measurements show that, although Born’s equation is a brilliant
conceptual model, it is not quantitatively successful, as it predicts enthalpies of solution
that are generally too high by a factor of∼2. The failure is to a significant extent due to the
fact that the macroscopic dielectric constant is not valid at the range typical of molecular
interactions. The presence of a charged ion must affect the local arrangement of molecules
in a polar solvent, and therefore the local value of its dielectric constant. For example,
a cation in liquid water surrounds itself with a sheath of H2O molecules arranged with
their oxygen vertices towards the cation. This structure is known as a solvation sphere
(hydration if the solvent is water), and the number of solvent molecules attached to the ion
as the solvation (or hydration) number. Solvation causes the effective dielectric constant at
molecular lengthscales to be lower than the macroscopically determined value.

11.4 Thermodynamic formulation of electrolyte solutions

It is possible to distinguish two contrasting behaviors among electrolytes. There are
electrolytes that undergo complete dissociation, meaning that there is no evidence that
undissociated molecules exist in the solution. These are called strong electrolytes. The
classic examples of these are alkali halides in aqueous solution at room temperature, and
in particular NaCl. On the other hand, there are electrolytes, called weak electrolytes,
that undergo only partial dissociation, such that ions coexist in the solution with neutral
undissociated molecules. Room temperature aqueous solutions of weak acids and of many
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transition metal salts behave in this way. The distinction is not invariable. For example,
some electrolytes are fully dissociated at low concentrations and only partially dissoci-
ated as concentration increases. The nature of the solvent also plays a fundamental role,
as described by Born’s equation (equation (11.68)). A substance may behave as a strong
electrolyte in a solvent with a high dielectric constant, and as a weak one if the solvent’s
dielectric constant is lower. In particular, substances that behave as strong electrolytes in
liquid water at room temperature become weak electrolytes, or fail to dissociate altogether,
in high temperature liquid water and supercritical H2O. The thermodynamic treatment of
the two types of electrolytes differs in the definition of the standard states and of quantities
that depend on the standard state, such as activity and activity coefficient.

11.4.1 Thermodynamic functions of ionic species

We begin by discussing general thermodynamic relations that are the same for all types of
electrolytes. The standard state thermodynamic properties of ionic species are defined as in
Section 11.1.2, at the infinite dilution limit (equation (11.7)), which, as we saw, can also be
thought of as a hypothetical one-molal ideal solution. In the case of ionic species there is an
additional restriction, which is that the solution must be electrically neutral. The condition
of electrical neutrality of an electrolyte solution is written as follows:∑

i

mizi = 0, (11.69)

where mi is the molality of ion i and zi is its charge, positive or negative depending on
whether it is a cation or an anion. Even if a solution contains many different ions, it will
be convenient to consider anion–cation pairs that correspond to dissociation of specific
electrolytes. Take for instance an ionic substance composed of anions A−, of charge zA−,
and cations B+ of charge zB+, and let the formula unit of the substance be BβAα , such that:

βzB++αzA− = 0. (11.70)

Dissociation of the substance corresponds to the reaction:

BβAα � β (B+)aq +α (A−)aq . (11.71)

This equation is valid regardless of whether the substance is a strong or weak electrolyte. I
have specified the state of the ionic species by means of the subscript aq, meaning aqueous
solution. All of the equations that we will develop here are valid for any polar solvent, but
since liquid H2O is the most common one in natural environments we will use “aqueous”
as a generic designation. If we were to consider solutions in liquid ammonia, for instance,
then am could replace aq as the subscript. Note that, in contrast to the ionic species, I have
not specified the state of the compound BβAα in equation (11.71). This will take different
meanings in strong and weak electrolytes. For now we are only concerned with the ionic
species, and equation (11.71) is in this sense best thought of as an algebraic identity, not as
a chemical reaction.
We write the chemical potentials of the ionic species as follows:

µB+aq = µ
0,B+
aq +RT lnaB+aq

µA−aq = µ
0,A−
aq +RT lnaA−aq

(11.72)
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where the standard state chemical potentials correspond to the usual infinite dilution limit.
The electrical neutrality constraint (equation (11.69)) introduces the complication that con-
centrations of individual ions cannot be varied independently of those of opposite charge.
As we shall see later this is solved by arbitrarily assigning a value of zero to the standard
state properties of the cation H+.
The ionic activities in equations (11.72) are given by:

aB+aq = γ B+aq mB+

aA−aq = γA−aq mA−.
(11.73)

TheB–A ion pair appears in the proportions β to α in every equilibrium equation involving
the compound BβAα . This makes it convenient to define the mean ionic molality, m±, and
mean ionic activity coefficient, γ±aq , of dissociated electrolyte as follows:

m± =
[
(mB+)β (mA−)α

] 1
β+α (11.74)

and:

γ±aq =
[(
γB+aq

)β (
γ A−aq

)α] 1
β+α

(11.75)

The three following points need to be emphasized. First, the mean ionic molality and mean
ionic activity coefficient correspond specifically to electrolyte BβAα . Second, equation
(11.74) does not imply that the molalities of B+ and A− in the solution are in the propor-
tion β to α. This would be the case only if the solution was one of pure electrolyte BβAα .
In a mixed electrolyte solution the relative amounts of the ions are only constrained by the
bulk charge balance condition (11.69), and will in general not correspond to the stoichio-
metric coefficients β and α. However, the mean ionic molality and activity coefficient for
electrolyte BβAα are still given by (11.74) and (11.75). Third, for reasons that will become
apparent in the following section we have not defined a “mean ionic activity” analogous to
the mean ionic molality and activity coefficient.

11.4.2 Standard states and activities of strong and weak electrolytes

A solution of a weak electrolyte contains undissociated molecules, which we shall label
(BβAα)aq, as well as ions. For equilibrium among the aqueous species:

(
BβAα

)
aq

� β (B+)aq +α (A−)aq (11.76)

it must be:

µ
BβAα
aq = βµB+aq +αµA−aq . (11.77)

We can also write (11.77) as:

βµ0,B+
aq +αµ0,A−

aq −µ0,BβAα
aq +RT lnKds =�rG

0
P ,T +RT lnKds = 0, (11.78)
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where �rG0
P ,T is the standard state Gibbs free energy change for the dissociation reaction

(11.76) at infinite dilution and the temperature and pressure of interest, so that:

Kds = exp

(
−�rG

0
P ,T

RT

)
. (11.79)

The equilibrium constant Kds is known as the dissociation constant and is also equal to:

Kds =
(
aB+aq

)β (
aA−aq

)α
a
BβAα
aq

. (11.80)

Because in the case of a weak electrolyte the species (BβAα)aq exists, its standard state
properties are defined in the same way as those for any other molecular or ionic dilute
solute (equation (11.7)). In this case the molality of the undissociated solute is a physically
significant quantity. We can then write the activity of the undissociated electrolyte in terms
of its molality and activity coefficient, as follows:

a
BβAα
aq = γ

BβAα
aq mBβAα (11.81)

and using the mean ionic molality and mean ionic activity coefficient of the dissociated
species (equations (11.74) and (11.75)) we get the following expression for the dissociation
constant:

Kds =
(
γ±aqm±

)β+α
γ
BβAα
aq mBβAα

. (11.82)

In contrast to weak electrolytes, when a strong electrolyte dissolves in a polar solvent
it undergoes complete dissociation. If this is the case then the molecular species (BβAα)aq
is not present in the solution, and one cannot specify its molality. As we shall see, it is
nevertheless convenient to define thermodynamic properties for a fictive species that we
can call the bulk aqueous electrolyte, (BβAα)bl . We can give a precise thermodynamic
definition of (BβAα)bl by stating that, if BβAα is a strong electrolyte and Y stands for any
of the thermodynamic potentials, the entropy, the heat capacity or the volume of the bulk
aqueous electrolyte, then Y is given by:

Y
BβAα
bl ≡ βYB+aq +αYA−aq . (11.83)

Thus, the chemical potential of (BβAα)bl is:

µ
BβAα
bl ≡ βµB+aq +αµA−aq . (11.84)

Note that there is a subtle difference with equation (11.77), for a weak electrolyte: whereas
in that case the equation is the statement of chemical equilibrium, equation (11.84), for
a strong electrolyte, is the definition of the chemical potential of the fictive bulk species.
Expanding (11.84) in terms of standard state chemical potentials and activities we find:

µ
0,BβAα
bl +RT lna

BβAα
bl = β

(
µ0,B+
aq +RT lnaB+aq

)
+α

(
µ0,A−
aq +RT lnaA−aq

)
. (11.85)
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Since we required that all thermodynamic potentials of (BβAα)bl be given by an equation
of the form of (11.83), the standard state chemical potential of the bulk aqueous electrolyte
is given by:

µ
0,BβAα
bl ≡ βµ0,B+

aq +αµ0,A−
aq . (11.86)

This definition of standard state properties is the crucial difference with the treatment of
weak electrolytes. A consequence of equation (11.86) is that we can think of the dissoci-
ation constant of a strong electrolyte as being identically equal to 1 at all pressures and
temperatures for which the electrolyte undergoes complete dissociation. Equation (11.86)
is, however, never valid for a weak electrolyte in which, as we saw, the standard state is
defined in the usual way for a dilute solute.
From (11.85) and (11.86) we find that the activity of the bulk electrolyte is given by:

a
BβAα
bl =

(
aB+aq

)β (
aA−aq

)α
. (11.87)

Note that this is different from the activity of an undissociated weak electrolyte, given
by (11.81). Substituting mean ionic molality and mean ionic activity coefficient, (11.87)
becomes:

a
BβAα
bl =

(
γ±aqm±

)β+α
, (11.88)

which should be compared with equation (11.81) for a weak electrolyte. Exercise 11.3 asks
you to apply these relations to the equations that relate activity and osmotic coefficients
(Section 11.2.3), and may be helpful in clarifying the meaning of (11.87) and (11.88).

11.4.3 The reference for standard state properties of ionic species

A problem that arises in the treatment of ionic species is that their concentrations cannot
be varied independently of those of ions of opposite charge. It is possible to determine
the infinite dilution standard state properties of dissolved molecular species for a weak
electrolyte, or the standard state properties of (fictive) bulk strong electrolytes, for example
by measurements of enthalpies of dissolution. Once these data are available one knows
the sum of the standard state properties of the corresponding anion and cation, e.g. via
equations (11.78) or (11.86). In all cases we have one equation with two free parameters,
so that there is no unique solution unless one specifies the value of one of the parameters.
The convention is to make the standard state enthalpy, entropy, Gibbs free energy and heat
capacity of the H+ cation in aqueous solution at infinite dilution equal to zero, i.e.:

�fH
0,H+
aq =�fG

0,H+
aq = S0,H

+
aq =CP

H+ = 0. (11.89)

Because the heat capacity is set equal to zero equation (11.89) is valid at all temperatures.
Of course, the entropy of protons at any temperature other than zero is not zero, but since all
we care about when performing thermodynamic calculations are entropy (or free energy)
differences at constant temperature and pressure the convention does not introduce any
difficulties. Also, H+ ions in aqueous solutions are always hydrated, i.e. attached electro-
statically to one or more H2O molecules, and do not exist as free protons. The symbol H+
in equation (11.89) and all subsequent discussions must be understood as thermodynamic
shorthand for the actual molecular entity that exists in solution.
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11.4.4 Dissociation of water and pH

Water is a polar liquid, so it should not be surprising that H2Omolecules dissociate in liquid
water to some extent (Section 11.3). We can write this dissociation reaction as follows:

(H2O)liq �H+aq +OH−aq . (11.90)

Choosing the standard state of water as the pure liquid at the temperature and pressure of
interest, we get the following equation for the dissociation constant of water, Kw (compare
equation (11.80) for the dissociation of a weak electrolyte):

KW = aH
+

aq · aOH
−

aq = (mH+ ·mOH−
)(
γH+
aq · γOH−

aq

)
. (11.91)

At 298.15 K the constant KW , also known as the ionization product of water, has a value
of KW = 1.011 × 10−14, which is commonly rounded off to KW ≈ 10−14. The ionic
concentration in pure water is very low. Therefore, as a first approximation that is consistent
with the infinite dilution standard state, we can assume that the activity coefficients of the
ionic species are unity. The charge balance constraint, equation (11.69), then requires:

mH+ =mOH− ≈ 10−7. (11.92)

This was the basis of the original definition of pH as the negative of the decimal logarithm
of the hydrogen ion concentration:

pH =−log10mH+ (11.93)

and the definition of a neutral solution, with pH = 7, as one in which the hydrogen ion
molality is 10−7. Rigorously, however, pH is defined on the basis of hydrogen ion activity:

pH ≡−log10aH
+

aq =−log10
(
γ H+
aq mH+

)
(11.94)

and a neutral solution is one in which the hydrogen ion activity is 10−7. In dilute electrolyte
solutions the difference between (11.93) and (11.94) is negligible, but in concentrated
solutions it may be necessary to calculate the activity coefficient of H+ and use the rigorous
definitions (11.91) and (11.94).

Worked Example 11.3 Atmospheric CO2 and the pH of rainwater

Dissolution of atmospheric gases in water is described by equation (11.18). In Worked
Example 11.1 we calculated the concentrations of the molecular species N2, O2, Ar and
CO2 in water at equilibrium with the terrestrial atmosphere. When CO2 dissolves in water,
however, it reacts with H2O and produces bicarbonate and carbonate ions, according to:

CO2aq +H2O�HCO−3aq +H+aq (I )

HCO−3aq � CO2−
3aq +H+aq (II). (11.95)

If the solution is dilute and we take the activity coefficients to be unity then we can write
the dissociation constants as:

Kds,I =
mHCO−3

mH+

mCO2

(11.96)
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and:

Kds,II =
mCO2−

3
mH+

mHCO−3
. (11.97)

At equilibrium the chemical potential of gaseous CO2 in the atmosphere is the same as
the chemical potential of molecular CO2 dissolved in water. Therefore, by choosing the
standard state of CO2 as the pure gas at the temperature of interest and 1 bar, rather than
infinitely dilute CO2 in aqueous solution, we can re-write equation (11.96) as follows:

Kds,I =
mHCO−3

mH+

fCO2

. (11.98)

Equations (11.96) and (11.98) are equivalent, differing only in the choice of standard state
for CO2 and, therefore, in the numerical value of the dissociation constant. Although it is
customary to use an equation of the formof (11.96), I believe that (11.98) is preferable, as this
gets around the problem of calculating activity coefficients for dissolved molecular gases.
If one wishes to calculate the concentration of dissolved gases this is simply accomplished
by means of Henry’s law (equation (11.18)), i.e. in this case:

mCO2 = fCO2 ·KCO2
H ,s . (11.99)

There are two additional equations that must be satisfied by the molalities of dissolved
species at equilibrium. One is the water ionization equation (11.91) (taking the activity
coefficients to be unity), and the other is the charge balance equation (11.69) which in this
case is:

mH+ −mHCO−3
− 2mCO2−

3
−mOH− = 0. (11.100)

If we fix the fugacity of CO2 in equilibrium with water then equations (11.91) (setting
the activity coefficients equal to 1), (11.97), (11.98) and (11.100) constitute a system of
four equations in which the four aqueous molalities are the unknowns. The equations are
non-linear, but a numerical solution with Maple is straightforward (Software Box 11.1).
The two ionic dissociation constants can be calculated from standard state properties for
aqueous species given, for example, by Wagman et al. (1982) or Robie and Hemingway
(1995). If one wishes to calculate equilibrium at 298.15 K then the dissociation constants
are simply obtained from the listed standard state Gibbs free energy of formation of the
species, as in equation (11.79). Equilibrium at other temperatures can be calculated from
listed standard state enthalpy and entropy values: �rG0 =�rH0−T�rS0, including heat
capacity integrals if the CP values are known. The constants at 298.15 K and 1 bar are:
Kds,I = 1.465× 10−8 (with a standard state of pure CO2 gas) and Kds,II = 4.685× 10−11.

Software Box 11.1 Calculation of carbonate speciation in aqueous solution, assuming ideal
behavior
Procedure zeco2 in Maple worksheet aq_spec_ideal.mw calculates molalities
of dissolved carbonate, bicarbonate and carbon dioxide, in equilibrium with a 1 bar
atmosphere at 298.15 K. The aqueous solution is assumed to be ideal (see Worked
Example 11.3). A range of CO2 atmospheric concentrations (in ppm) is specified in the
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procedure call, as well as the number of intermediate values to calculate between these
boundaries, and a file name to send the output to. Output fields are: CO2 atmospheric
concentration (ppm), pH , mCO2 , mHCO−3

, mCO2−
3
, total dissolved CO2 molality.

A second procedure, zecalcite, adds calcite saturation (equation (11.106), see
Worked Example 11.4) but is otherwise identical to zeco2. An additional field at the
end of each line of output contains mCa2+.

The results of the calculations as a function of fCO2 for values ranging from 0 to 5 ×
10−4 bar (≈ 500 ppm CO2 by volume in a 1 bar atmosphere) are shown in Fig. 11.5. The
top panel shows molalities of dissolved molecular CO2 (calculated from fCO2 and Henry’s
law constant given by Sander, 1999,KCO2

H = 0.034) and of carbonate and bicarbonate ions,
as well as the sum of all three species, which is the total amount of dissolved CO2, called
the carbonate analytical concentration. At very low CO2 fugacity the dominant species is
the bicarbonate anion, but as CO2 concentration increases and the solution becomes more
acidic (bottompanel) the increasedH+ concentration displaces equilibrium (I) to the left and
limits dissociation, so thatmolecular CO2 is themost abundant species. The bottomdiagram
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shows that the pH of water in equilibrium with the present-day terrestrial atmosphere
(380 ppm CO2) should be about 5.6. This is approximately the pH of rainwater in regions
far removed from sources of pollution (particularly burning of high-sulfur coal and diesel
fuel). It is not the pH of oceanwater, nor of surface waters in general, as these waters contain
other solutes in addition to CO2 and may also be in equilibrium with solid phases.

11.4.5 Equilibrium between electrolyte solutions and solid phases

Aquestion that repeatedly comes upwhen studying aqueous solutions iswhether the solution
becomes saturated in one or more crystalline phases. This is the same problem that is at
the core of igneous petrology, but aqueous solutions are generally better understood from a
theoretical point of view than silicate melts. We can represent equilibrium between an ionic
crystalline solid, (BβAα)xs, and its dissociation products by:(

BβAα
)
xs

� β (B+)aq +α (A−)aq . (11.101)

This equilibrium is equally valid whether the substance is a strong or weak electrolyte.
In the latter case we could also, if we wished, write an equilibrium equation with the
undissociated aqueous species. As usual, the standard state for the crystalline phase is the
pure solid at the temperature and pressure of interest. Note that this is not equal to the
standard state chemical potential of the molecular species (BβAα)aq for a weak electrolyte.
The equilibrium condition for (11.101) is:

µ
0,BβAα
xs = βµB+aq +αµA−aq

= βµ0,B+
aq +αµ0,A−

aq +RT ln

[(
aB+aq

)β (
aA−aq

)α]
. (11.102)

Let us call the equilibrium constant for this reaction Ksp, so that:

Ksp = exp

(
−�rG

0

RT

)
= exp

(
−βµ

0,B+
aq +αµ0,A−

aq −µ0,BβAα
xs

RT

)
(11.103)

and:

Ksp =
(
aB+aq

)β (
aA−aq

)α = (mB+)β (mA−)α
(
γ±aq
)β+α

. (11.104)

These equations are valid in general, but it is convenient to distinguish between relatively
soluble and relatively insoluble substances. For the former the molalities at saturation are
large enough that the activity coefficients cannot be ignored. For relatively insoluble elec-
trolytes the molalities are small enough that it may be acceptable to ignore the activity
coefficients. In such cases Ksp is known as the solubility product and it provides a conve-
nient way of checking for saturation of specific phases.At a given temperature and pressure
the solubility product is a constant for each phase in equilibrium with an aqueous solution.
It is independent of the composition of the solution, as it is a combination of standard state
properties only (see equation (11.103), but recall that if the solvent is a liquid other than
water then the standard states for the solutes will be different, and sowill the solubility prod-
uct). At saturation the product of the activities (or molalities if the solution is sufficiently
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dilute) of the ionic species, with the stoichiometric coefficients as exponents, is equal to
the solubility product. If the activity (or molality) product is less than the solubility product
then the solution is not saturated in that particular phase. If it is greater then the solution is
supersaturated with respect to the phase, which is a non-equilibrium condition.

Worked Example 11.4 Limestone saturation and the pH of ocean water

Shallow ocean water is saturated in calcium carbonate, or at least nearly so. We can be
reasonably certain of this because, for instance, the shells of marine invertebrates do not
dissolve when the animals die. We will study how calcium carbonate saturation affects our
calculation of carbonate speciation and pH (Worked Example 11.3). Three of the equations
that we used in those calculations, (11.97), (11.98) and thewater ionization equation (11.91),
remain unchanged. Because now we must also consider aqueous Ca2+ ions, the electrical
neutrality equation (11.100) is modified as follows:

mH+ + 2mCa2+ −mHCO−3
− 2mCO2−

3
−mOH− = 0 (11.105)

and we have an additional equation, which is the solubility product of calcite:

Ksp,cc =mCa2+ ·mCO2−
3
·
(
γ±,CaCO3
aq

)2
. (11.106)

There are now five equations in five unknowns: the five ionic molalities listed in equation
(11.105). The solubility product of calcite at 298.15 K calculated with data from Wagman
et al. (1982) is Ksp,cc = 4.965× 10−9 (using aragonite instead of calcite makes a small
difference). For now we will assume that we can ignore the activity coefficient in equation
(11.106), andwill return to this in Section 11.6.Modifying theMaple procedure discussed in
Software Box 11.1 to include the additional equation (11.106) is straightforward (Exercise
11.4).
For an atmospheric CO2 concentration of 380 ppm we calculate an oceanic pH of

∼8.3, which is similar to typical values measured in the Earth’s oceans. The agreement
is remarkably good, considering that we have ignored all excess mixing properties. Table
11.1 compares the calculated solution compositions with and without calcite saturation
(Worked Example 11.3), for a fixed atmospheric CO2 concentration of 380 ppm. The con-
centration of dissolved molecular CO2 is of course the same in both cases, as this is fixed by
equilibrium with the gas phase. Total dissolved carbonate, however, is almost two orders of
magnitude higher in water saturated with calcite. The calculated Ca2+ molality is ∼5.4 ×
10−4, which is more than one order of magnitude lower than measured molality in seawater
(∼10−2). The discrepancy arises to a large extent from ignoring the activity coefficient in
equation (11.106).
Why is the pH of seawater controlled by CaCO3 saturation? The answer is that among

the most abundant species in seawater carbonate is the only weak electrolyte, for which it is
possible to write a partial dissociation reaction such as (11.95)(II). Table 11.2 (taken from
Millero, 2004) shows the concentrations of the most abundant ions in seawater. The four
most abundant cations are strong bases, and the halide and sulfate anions are strong acids.
None of these ions react with H2O to consume or produce H+ ions. The pH of seawater
is therefore fixed by the solid carbonate for which the solubility product is first exceeded,
and for present day seawater this is calcite.
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Table 11.1 Calculated ionic speciation in simplified natural waters

Rainwater Calcite-saturated water

ideal Debye–Hückel ideal Debye–Hückel

CO2 1.29× 10−5 1.29× 10−5 1.29 × 10−5 1.29 × 10−5
HCO−3 2.36× 10−6 2.36× 10−6 1.05 × 10−3 1.15 × 10−3
CO2−

3 4.68× 10−11 4.71× 10−11 9.28 × 10−6 1.22 × 10−5
Total CO2 1.53× 10−5 1.53× 10−5 1.07 × 10−3 1.18 × 10−3
Ca2+ − − 5.35 × 10−4 5.89 × 10−4
Ionic strength 2.36× 10−6 2.37× 10−6 1.61 × 10−3 1.78 × 10−3

pH 5.63 5.63 8.28 8.30

Calculations are based on 380 ppm atmospheric CO2 at 1 bar and 25 ◦C, assuming either ideal
aqueous solutions or Debye–Hückel activity coefficients. Concentrations given in molality.

Table 11.2 Most abundant ionic species in seawater (after Millero, 2004)

Cation Molality Anion Molality

Na+ 0.4691 Cl− 0.5459

Mg2+ 0.0528 SO2−
4 0.0282

Ca2+ 0.0103 HCO−3 0.0018
K+ 0.0102 Br− 0.0008

F− 0.0007

CO2−
3 0.0003

11.5 Speciation in ionic solutions. Iron solubility in ocean water
as an example

Iron cations occur in two oxidation states, Fe2+ and Fe3+, that have vastly different solu-
bilities in water. Both ferrous and ferric ions react with water to form several ionic species
whose relative abundances are a function of pH . These properties make iron aqueous solu-
tions an excellent test subject on which to apply the concepts that we have discussed so
far. We will estimate the solubility of iron in ocean water, and study how this may have
varied with changes in atmospheric composition. The problem was introduced in Worked
Example 6.7, where we discussed banded iron formations and the information that they
preserve about conditions in the early Earth.
The solubility of iron in the present day shallow oceans, i.e. in ocean water that is in

equilibrium with the atmosphere, is limited by precipitation of Fe3+ species. This fol-
lows from the fact that the present day atmospheric oxygen fugacity is about 70 orders of
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magnitude higher than the oxygen fugacity along the hematite–magnetite buffer at room
temperature (Fig. 9.3). We can expect the solubility-limiting phase to be either ferric oxide
or ferric hydroxide. The Gibbs free energy change for the reaction 2 Fe(OH)3 → Fe2O3+
3 H2O at 298 K is ∼ −30 kJ mol−1, which means that hematite is the stable phase.
The phase that usually precipitates from seawater is not hematite, however, but rather
an amorphous solid or a hydrated crystalline ferric oxide with a composition intermedi-
ate between those of hematite and ferric hydroxide. Over time the precipitate dehydrates
and becomes hematite, and this may have been the mechanism by which Precambrian
hematite iron formations formed. This is a kinetic problem, that we will not address here
(see Chapter 12). We will use hematite in our calculations, in order to be consistent with
Worked Example 6.7. Because the metastable phase that actually forms has higher Gibbs
free energy than hematite, the results of our calculations are an absolute minimum of
solubility.
In these calculations we will only consider dissolved iron species that exist in an aqueous

solution with no other solutes, except carbonate anions. The effect of this simplification is
to underestimate the solubility of iron relative to the actual solubility in seawater, in which
formation of other Fe-bearing ionic species is possible.Wewill also assume that the activity
of dissolved iron species is ideal (i.e. a = m). Our estimated total iron contents in solution
will be about two orders of magnitude lower than the analytical concentrations of iron in
present day seawater (∼10−10 molal in oxygen-rich near-surface water). The qualitative
behavior with changes in oxygen fugacity and pH that wewill uncover are, however, robust,
and will illuminate the significance of banded iron formations (see also Worked Example
6.7). A rigorous discussion of iron solubility in seawater is given, for example, by Millero
et al. (1995) and Liu and Millero (2002).
We can think of dissolution of Fe ionic species in water as occurring in one of two ways.

The one that is perhaps more intuitively appealing is to think of iron hydroxides as weak
bases. Just as dissolvedCO2,which is aweak acid, undergoes successive ionization reactions
(Worked Example 11.3), so a molecular aqueous species such Fe(OH)3aq can be thought
to dissociate in steps to Fe(OH)2+, FeOH2+ and finally Fe3+. All of these stoichiometric
species are known to exist in ferric iron solutions. Alternatively, we may imagine that Fe3+
exists in solution as free ions that associate electrostatically with OH− groups to form
complex ions with the same stoichiometries as the molecular species that would form by
dissociation. The difference is that whereas in the former case the intermediate ionic species,
aswell as neutral Fe(OH)3, are taken to be covalently bondedmolecules, in the latter case the
ionic species are complexes in which Fe3+ and OH− ions are attached electrostatically. The
more accurate physical picture is the latter one, but from a macroscopic thermodynamic
point of view the two approaches are equivalent. I will therefore use the “weak base”
model, because of its intuitive appeal. According to this model dissolution of hematite in
water proceeds as follows:

1

2
Fe2O3+ 3

2
H2O� Fe (OH)3aq (III ,hm)

Fe (OH)3 aq � Fe (OH)+2 aq +OH−aq (III ,1)

Fe (OH)+2 aq � FeOH2+
aq +OH−aq (III ,2)

FeOH2+
aq � Fe3+aq +OH−aq (III ,3)

(11.107)
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for which the equilibrium constants are (assuming an ideal electrolyte solution):

KIII ,hm =mFe(OH)3

KIII ,1 =
mFe(OH)+2

·mOH−

mFe(OH)3

KIII ,2 = mFeOH2+ ·mOH−

mFe(OH)+2

KIII ,3 = mFe3+ ·mOH−

mFeOH2+
.

(11.108)

The values of the equilibrium constants at 298.15 K and 1 bar, calculated with data from
Wagman et al. (1982) are:KIII ,hm=1.499×10−12,KIII ,1=5.997×10−12,KIII ,2=1.011×
10−9,KIII ,3= 1.515× 10−12. From equations (11.108) it follows that the solubility product
for hematite isKsp,hm=KIII ,hm, ·KIII ,1 ·KIII ,2 ·KIII ,3 =1.38× 10−44. Ifwewere to calculate
the solubility of hematite from this figure we would get a molality of Fe3+of ∼10−23 at
pH = 7. This is the correct concentration of Fe3+ cations in equilibrium with hematite, but
the analytical concentration of dissolved ferric iron is many orders of magnitude higher than
this, as the solubility product fails to account for the abundances of the other ionic species.
This is a point that one must always be careful with when calculating solubilities: failure to
account for speciation leads to grossly erroneous results. In fact, atpH = 7 themost abundant
species is neutral Fe(OH)3, and the second most abundant one, with a concentration over
four orders of magnitude lower, is Fe(OH)2+. Fe3+ becomes the dominant aqueous species
only in very acidic solutions (Exercise 11.5).
The total concentration (= analytical concentration) of dissolved ferric iron is obtained

by solving each equation in (11.108) for one of the species molalities, and adding up the
resulting equations. Using the ionization product of water (equation (11.91)) to convert
mOH− to mH+ we get the following equation for total dissolved ferric iron, mFe3+, total , in
equilibrium with hematite, as a function of pH:[
mFe3+, total

]
hm sat

=

=KIII ,hm

(
1+ KIII ,1

KW

10−pH + KIII ,1 ·KIII ,2
K2
W

10−2pH + KIII ,1 ·KIII ,2 ·KIII ,3
K3
W

10−3pH
)
.

(11.109)

Although in the present day terrestrial oceans the concentration of Fe2+ is vanishingly
small (at least in those parts of the ocean that are close to equilibrium with the atmosphere),
the samemay not have been true during theArchaean. To account for this wewrite equations
for equilibrium between hematite and dissolved ferrous iron, which will necessarily involve
oxygen. In contrast to Fe(OH)3, there is no experimental evidence for the existence of the
neutral species Fe(OH)2 in aqueous solution. We therefore write the reactions for hematite
saturation from Fe2+ as follows:

1

2
Fe2O3+H2O� FeOH+aq +OH−aq +

1

4
O2 (II , hm)

FeOH+aq � Fe2+aq +OH−aq (II , 2). (11.110)
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Taking the standard state of oxygen as the pure gas at the pressure and temperature of
interest the equilibrium constants are:

KII ,hm =
(
fO2

)1/4 ·mFeOH+ ·mOH−

KII ,2 = mFe2+ ·mOH−

mFeOH+
(11.111)

and the values of the equilibrium constants (calculated with data fromWagman et al., 1982)
are KII ,hm = 7.431× 10−32 and KII ,2 = 5.920× 10−8. We can now derive an equation for
total dissolved ferrous iron in equilibrium with hematite, analogous to (11.109), which is:

[
mFe2+, total

]
hm sat =

KII ,hm

KW

10−pH(
fO2

)1/4
(
1+ KII ,2

KW

10−pH
)
. (11.112)

Equations (11.109) and (11.112) are plotted in Fig. 11.6 as a function of oxygen fugacity,
at a constant pH = 8, which is approximately that of present day ocean water. Also shown
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is a curve for total dissolved iron = mFe3+, total +mFe2+, total . Recall that the calculations
are only appropriate for a very dilute solution of iron in pure water, and that concentrations
in ocean water are 2–3 orders of magnitude higher. The qualitative behavior shown in
the figure is, however, applicable to seawater. The concentration of total dissolved ferric
iron in equilibrium with hematite is of course independent of oxygen fugacity, but that
of total dissolved ferrous iron is not. For the present day atmospheric oxygen fugacity
the concentration of total dissolved ferrous iron is vanishingly small, and only becomes
comparable to that of total ferric iron at oxygen fugacities ∼10−45 bar. Below 10−50 bar
f (O2) ferrous species become the dominant forms of dissolved iron, and iron solubility
increases rapidly with decreasing oxygen fugacity.
At 298 K magnetite becomes stable at f (O2) ∼10−69 bar (Fig. 9.3). In order to see the

effect of this phase transition on iron solubility (see also Worked Example 6.7) we have to
write the corresponding saturation equations. This is accomplished by replacing each of the
first equations in (11.107) and (11.110) with the corresponding magnetite equations:

1

3
Fe3O4+ 3

2
H2O+ 1

12
O2 � Fe (OH)3aq (III , mt) (11.113)

and:

1

3
Fe3O4+H2O� FeOH+aq +OH− + 1

6
O2 (II , mt) (11.114)

with equilibrium constants:

KIII ,mt = mFe(OH)3(
fO2

)1/12 (11.115)

and:

KII ,mt =
(
fO2

)1/6 ·mFeOH+ ·mOH− . (11.116)

Numerical values (with standard state data from Wagman et al., 1982) are: KIII ,mt =
1.356 × 10−6, KII ,mt = 6.723 × 10−26. The other equations in (11.107) and (11.108)
remain unchanged, so we find the following equations for total dissolved ferric and ferrous
iron in equilibrium with magnetite:[

m3+
Fe , total

]
mt sat

=KIII ,mt ·
(
fO2

)1/12·
·
(
1+ KIII ,1

KW

10−pH + KIII ,1 ·KIII ,2
K2
W

10−2pH + KIII ,1 ·KIII ,2 ·KIII ,3
K3
W

10−3pH
)

(11.117)

and:

[
mFe2+ , total

]
mt sat =

KII ,mt

KW

10−pH(
fO2

)1/6
(
1+ KII ,2

KW

10−pH
)
. (11.118)

Equations (11.117) and (11.118), and the sum of both, are also shown in Fig. 11.6. The
curves for total dissolved iron in equilibrium with hematite and magnetite intersect at
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log f (O2) = −68.59. This is the oxygen fugacity at which the hematite–magnetite phase
transition takes place, but the careful reader may note that there is a slight discrepancy
between this value and the one shown in Fig. 9.3. This arises from the use of standard
state properties from different data sets. I used data from Holland and Powell (1998) to
calculate the hematite-magnetite buffer in Fig. 9.3, and Wagman et al. (1982) to calculate
the equilibrium constants in this example.
At oxygen fugacity higher than that of the magnetite–hematite equilibrium the calculated

concentrations of total dissolved ferrous and ferric species in equilibrium with magnetite
are higher than those in equilibrium with hematite. This means that magnetite is not stable,
and that iron solubility is controlled by hematite saturation. There are two equivalent ways
of seeing this: you can think that with increasing iron content the solution becomes saturated
in hematite first, or that the chemical potentials of iron species at equilibrium with hematite
are lower than those at equilibrium with magnetite. At f (O2) lower than that of the phase
transition the converse is true.
If we now “clean up” the diagram, leaving only the stable saturation curves, we get the

phase diagram shown inFig. 11.7.The fields labeled “hematite” and “magnetite” correspond
to total dissolved iron concentrations above the solubility curves. These are “prohibited
regions”, in the sense that solution compositions inside these regions are thermodynamically
unstable relative to precipitation of the corresponding crystalline phase. Conditions below
the solubility curves correspond to solutions undersaturated in iron oxides. For oxygen
fugacities lower than ∼10−50 bar, i.e. in the region where iron solubility varies strongly
with oxygen fugacity, the solubility is controlled by oxidation of Fe2+ to a ferric crystalline
phase. This is so because in this region the saturation concentration of total dissolved
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Fig. 11.7 Same as Fig. 11.6, but showing only concentration of total dissolved iron along the magnetite and hematite
saturation curves (the thick curve in Fig. 11.6). Conditions inside the shaded regions are metastable relative to
precipitation of the corresponding oxide phase.
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ferric iron remains very low and constant, at close to 10−12 molal, until magnetite starts
precipitating, where it decreases further with decreasing oxygen fugacity. Above ∼10−50
bar oxygen fugacity the concentration of total dissolved ferrous iron becomes negligibly
small and iron solubility is determined by the solubility of ferric species.
The total concentration of dissolved iron in Archaean seawater in equilibrium with an

anoxic atmosphere in which f (O2) was less than about 10−50 bar may have been several
orders of magnitude higher than the solubility of iron in today’s shallow oceans. Dissolved
iron in Archaean oceans would have been overwhelmingly present as ferrous species, that
could precipitate to solid ferric phases upon oxidation. Iron solubility remains essentially
unchanged over an f (O2) range of∼40 orders of magnitude, from 10−40 bar to its present-
day value. Deposition of banded iron formations by oxidation of dissolved ferrous iron
must have taken place under oxidation conditions (f (O2) <∼10−50 bar) that are not even
remotely comparable to those that are needed for aerobic metabolism (Chapter 14).
The equations show that iron solubility in water is a function not only of oxygen fugacity

but also of pH, and the question arises, could the deposition of banded iron formations
primarily reflect a change in oceanic pH, rather than in oxygen fugacity? In Exercise 11.6
you can explore this and see why, although possible, this is a very unlikely explanation –
BIF deposition must be the response to oxidation of the Earth’s surficial environments.
Figure 11.7 shows a subtle detail that is not evident from the schematic phase diagrams

that we constructed in Worked Example 6.7. This is the fact that formation of magnetite
iron formations requires more concentrated iron solutions than formation of hematite iron
formations. For a total iron concentration lower than that at the magnetite–hematite transi-
tion (∼6×10−8 molar in this simplified model) magnetite iron formations cannot form at
any oxygen fugacity, but hematite iron formations would form by oxidation.

InWorked Example 6.7 we saw that magnetite iron formations are sometimes associated
with siderite, and that some Precambrian BIFS are in fact composed chiefly of siderite. In
order to study the conditions that lead to the formation of siderite iron formations we begin
by writing the following magnetite–siderite equilibrium:

2Fe3O4+ 6CO2 � 6FeCO3+O2. (11.119)

The oxygen fugacity at which siderite replaces magnetite as the iron solubility-limiting
phase depends on the fugacity of carbon dioxide. Using the pure gases at the temperature of
interest and 1 bar as the standard states for O2 and CO2 we write the equilibrium condition
for (11.119) as follows:

fO2(
fCO2

)6 =Kmt−sd (11.120)

with Kmt−sd = exp(−�rG
0/RT ) = 2.887× 10−70 at 298 K (data from Wagman et al.,

1982). As an example, let us assume that CO2 fugacity in the Archaean atmosphere was
0.02 bar. A value considerably higher than today’s is suggested by the fact that Archaean
glaciations appear to be non-existent, despite the fact that the early Sun was fainter than
today’s (Sagan & Mullen, 1972; Kasting, 1987; Gilliland, 1989). From this CO2 fugacity
we calculate an oxygen fugacity at the magnetite–siderite transition of ∼1.9 × 10−80 bar,
i.e. well below the hematite phase transition.An important question is whether CO2 is stable
at this low oxygen fugacity, relative to, for example, CO. The answer, which you are asked
to prove in Exercise 11.7, is yes.
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It would appear that we could now simply add another phase boundary to Fig. 11.7,
showing the stability of siderite below this oxygen fugacity. The problem is that this diagram
is calculated for pH = 8, which is approximately correct for the present day atmospheric
CO2 concentration but not for the higher concentration that we are now assuming. Under
0.02 bar of CO2 the ocean must have been more acidic than today. The effect of pH on the
saturation boundaries is small (Exercise 11.6) but not entirely negligible.We therefore must
first calculate the pH of seawater in equilibrium with 0.02 bar of CO2, and then adjust Fig.
11.7 accordingly.

Suppose that the Archaean ocean was saturated in both calcite and siderite. We can then
add two more equations to the system of equations that we solved inWorked Example 11.4.
One of them is the solubility product of siderite:

FeCO3 � Fe2+aq +CO2−
3aq (11.121)

for which Ksp,sd = 3.13× 10−11. The other is the Fe2+ hydrolysis reaction:

Fe2+aq +H2O� FeOH+aq +H+aq , (11.122)

which can be converted to the second dissociation reaction in (11.110) using the ionization
product of water (equation (11.91)). We must also modify the charge balance equation
(11.105) to include the molalities of Fe2+ and FeOH+. Modifying theMaple routine to do
the calculations is easy, and is left as an exercise for the reader (Exercise 11.8).
For a CO2 fugacity of 0.02 bar we calculate the pH of our simplified ocean to be 7.13.

The solution set of the system of equations for siderite saturation (Exercise 11.8) also yields
the total concentration of dissolved ferrous iron, which in this case is 4.11 × 10−5 molal.
Figure 11.8 shows the hematite andmagnetite saturation boundaries redrawn forpH = 7.13
(compare Fig. 11.7). The concentration of ferrous aqueous species in equilibrium with
siderite is independent of oxygen fugacity (equation (11.121)), so the siderite saturation
boundary is parallel to the f (O2) axis, at a total ferrous iron molality of 4.11 × 10−5. This
line intersects the magnetite saturation boundary at f (O2) = 1.9 × 10−80 bar, which is
the same oxygen fugacity that we calculated for the magnetite–siderite equilibrium from
equation (11.120). Consistency between two sets of calculations is always reassuring.
The resulting diagram shows the stability fields of the three most common phases in

banded iron formations. Reaction (11.119) determines the maximum oxygen fugacity that
allows siderite precipitation, which varies as the sixth power of CO2 fugacity.An increase in
CO2 fugacity expands the siderite field both towards the right (at the expense of magnetite)
and downwards, by lowering the concentration of Fe2+ required for siderite crystallization
(solubility product for reaction (11.121)). We can calculate with equation (11.120) the
CO2 fugacity needed to eliminate the magnetite field altogether, i.e. so that the siderite
field adjoins the hematite field. Making log f (O2) = −68.59 (the oxygen fugacity at
the magnetite–hematite transition) we get f (CO2) = 1.44 bar. The rarity of hematite–
siderite iron formations suggests that this is a reasonable upper bound for CO2fugacity in
the Archaean atmosphere at the time at which banded iron formations precipitated.
All of these calculations ignore the activity coefficients of aqueous species, which are

not negligible in a solution as concentrated as seawater. The rest of this chapter is focused
on this problem.
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Fig. 11.8 Same as Fig. 11.7, but at pH= 7.13, corresponding to a calcite-saturated solution at f(CO2) = 0.02 bar. Increasing
CO2 fugacity expands the siderite field downwards and rightwards, along the magnetite saturation curve. The
magnetite field disappears at f (CO2)≈ 1.44 bar. This represents the minimum chemical potential of CO2 at which
siderite and hematite can precipitate at equilibrium. The rarity of this assemblage in terrestrial banded iron
formations places an upper bound on Archaean atmospheric CO2 fugacity.

11.6 Activity coefficients in electrolyte solutions

The key difficulty when calculating chemical equilibrium in electrolyte solutions is in
estimating reliable values for the activity coefficients of the many charged and neutral
species that exist in solution. The preceding section shows that even in a highly idealized
solution of Fe in water one must deal with almost ten species, and the number of species
grows rapidly with the number of components in the solution. The problem is not unlike that
of calculating speciation in a gas phase (Chapter 9), but it is more complicated because of (i)
the greater number of species, (ii) the existence of a solvent whose properties change with
temperature and (iii) the nature of the interactions among charged particles, and between
ions and solvent molecules.
The fact that electrolyte solutions behave differently from solutions of neutral specieswas

recognized early in the twentieth century. The different behaviors are compared schemat-
ically in Fig. 11.9, which shows the logarithm of the activity coefficient as a function of
molality for very dilute solutions of a neutral species (lnγ ) and an electrolyte (lnγ±). In
both cases the activity coefficient becomes unity atm= 0. It is important to recall that this is
conventional, and that it arises from choosing to define the standard state at infinite dilution.
In other words, and as we discussed in Section 11.1.2, any excess Gibbs free energy that
may exist at infinite dilution remains unknown and is lumped into the standard state Gibbs
free energy.What matters now is that, whereas at very great dilution the activity coefficient
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Fig. 11.9 Schematic diagram showing the contrasting behaviors of dilute solutions of a neutral species and an electrolyte. The
key difference is that, whereas in a dilute solution of a neutral species lnγ varies linearly with concentration, the
variation in a dilute electrolyte solution is of the form ln γ =−αIβ , withα> 0 and 0<β < 1.

of neutral species varies linearly with molality, the same is not true for electrolytes. The
activity coefficient of electrolytes in dilute solutions varies in a strongly non-linear fashion
with concentration, and approaches the limiting value at infinite dilution with an infinite
slope. For neutral species the activity coefficient is generally greater than 1, whereas for
electrolytes activity coefficients in dilute solutions are less than one, butmay become greater
than one at higher concentrations.
The distinct behavior of electrolytes can be thought of as arising from the formation

of “ionic atmospheres”. These are regions around each ion that, owing to electrostatic
attraction, carry an excess of charge of a sign opposite to that of the central ion. As long as
the individual ionic atmospheres remain distant, i.e. at low concentration, they shield the
central ions and make it less likely that they will interact with other ions. This is expressed
macroscopically as a decrease in their chemical potential. As the solution becomes less
dilute the ionic atmospheres interfere with one another and shielding becomes less effective.
Particles of a neutral solute, in contrast, are not surrounded by ionic atmospheres so one
would expect that any energetic effect arising from interactions among them would vary
more or less linearly, or at least monotonically, with concentration.

11.6.1 Debye–Hückel theory

The first theory capable of predicting activity coefficients for electrolytes on the basis of
a rigorous physical description of the microscopic structure of electrolyte solutions was
proposed by Debye and Hückel in 1923. The place of Debye–Hückel theory in the ther-
modynamics of electrolytes is not unlike that of the van der Waals equation of state in the
thermodynamics of fluids. The theory is quantitatively accurate only for dilute solutions,
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however. For example, it is already grossly inaccurate for seawater, in which the total con-
centration of dissolved electrolytes is less than 1mol kg−1. It is, however, the basis formany
of the more elaborate formulations that are used to calculate activity coefficients in concen-
trated electrolyte solutions. In contrast tomost of the latter formulations,which are empirical
to varying extents, the Debye–Hückel approach has a strong theoretical foundation.
A rigorous derivation of the remarkably simple final equation of Debye and Hückel for

the mean ionic activity coefficient of an electrolyte is beyond the scope of this book, but
it is instructive to construct a semi-formal a posteriori justification of their equation. We
begin by defining the ionic strength of a solution, symbolized by I , as:

I = 1

2

∑
i

z2i mi , (11.123)

where zi is the charge of ion i, mi its molality, and the sum is over all of the ionic species
present in the solution. The ionic strength is ameasure of the total concentration of dissolved
electrolytes. If we apply (11.123) to a solution of a single electrolyte we see that the behavior
of an electrolyte solution as it approaches the infinite dilution limit (Fig. 11.9) can be
represented by a function of the form:

lnγ =−αIβ , α > 0, 0< β < 1. (11.124)

The derivative of this function relative to I diverges as I goes to zero, as required by the
observed behavior of very dilute electrolyte solutions schematized in Fig. 11.9. Debye and
Hückel proved rigorously that the actual equation valid as the solution approaches infinite
dilution is:

log10γi =−A|zi+ zi−|I1/2, (11.125)

where zi+ and zi− are the charges of the cation and anion in electrolyte i, andA is a constant
that depends on the solvent only, but varies with temperature and pressure. I is the ionic
strength, given by (11.123), and includes the concentration of i as well as of any other ions
present in the solution. Equation (11.125) is known as Debye–Hückel’s limiting law. It is
only accurate for ionic strengths lower than ∼10−3, but at such low concentrations it is
accurate enough that it is routinely used to extrapolate measurements of thermodynamic
functions done at very low dilutions to the infinite dilution limit. Its main use for our
purposes will be to understand the meaning of the parameter A and, with it, some of the
physical aspects of Debye–Hückel theory. Their theory shows that A is given by:

A= (2πNρs3)1/2, (11.126)

where N is Avogadro’s number, ρ is the density of the solvent, and s is a length given by:

s = e2

4πε0εrkBT
(11.127)

with e the elementary unit of charge, ε0 the permittivity of free space, εr the dielectric
constant of the solvent and kB Boltzmann’s constant. The meaning of the length s becomes
clear if we re-write (11.127) as follows:

kBT = e2

4πε0εrs
(11.128)
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and note that the equation now has units of energy. The length s is the distance between
two units of charge at which their electrostatic energy (see also equations (11.65)) equals
their thermal energy. The higher the temperature, or the dielectric constant, the closer the
charges have to be in order for the electrostatic force to overcome thermal agitation. We
next note that we can re-write the product Nρ as:

Nρ = M

V/N
≈ M

λ3
, (11.129)

where M is the molecular weight of the solvent, V its molar volume and λ is a length of
the order of the intermolecular distance in the solvent. The parameter A is a function of the
ratio (s/λ), i.e.:

A∼
[
2πM

( s
λ

)3]1/2
. (11.130)

If (s/λ) is small then the distance over which electrostatic forces are effective is small com-
pared to the distance between solvent molecules, and formation of an ionic atmosphere
would tend to be restricted: the value of the parameter A decreases and the activity coef-
ficient approaches unity (equation (11.125)). On the other hand, a large value of the ratio
(s/λ) implies that electrostatic forces are effective over distances greater than intermolec-
ular separation in the solvent, allowing the formation of ionic atmospheres that lower the
chemical potential of the ion.
Before we proceed note two formal aspects of equation (11.125). First, it is customary

to write it in terms of decimal logarithm, rather than natural logarithm. Second, there is the
usual problem with units that arises when expressing concentration as molality. As written,

equation (11.126) implies thatAhas units of (kgmol−1) 12 . Ifwe expressmolality inmol kg−1

then the units of I1/2 are (mol kg−1) 12 and the logarithm is dimensionless, as it must be.
Alternatively, if we choose to use dimensionless molality (Section 11.1.1) then the term
in parentheses in equation (11.126) must be multiplied by 1 mol kg−1 (see also equation
(11.4)) andA becomes a dimensionless parameter. This is the usual convention. Numerically
it makes no difference, but mathematical rigor requires that we worry about this.
Debye–Hückel’s parameter A is a property of the solvent only (and temperature, both

directly, see equation (11.127), and via the effect of T on the dielectric constant and density
of the solvent). The limiting law, equation (11.125), does not contain any solute properties
besides their charges. In particular, it ignores ionic radius. We can expect this to be a
reasonable model at very high dilution, where ions are separated by distances that are large
enough compared to their radii that they can be thought of as point charges.As concentration
increases the radius of the ions becomes significant relative to their separation and we must
expect the activity coefficient to become a function of ionic radius. This leads to the full
Debye–Hückel equation:

log10γi =
−A|zi+zi−|I 1/2
1+ åiBI 1/2 , (11.131)

whereåi , knownas thedistanceofmaximumapproach, isa functionof theeffective ionic radii
of the ions that constitute electrolyte i, andB is a parameter that depends only on the identity
of the solvent and temperature. The product BI1/2 has dimension of length−1 (necessarily,
as åi has dimension of length) and can be thought of as the inverse of the effective radius of
the ionic atmosphere. If the distance of maximum approach is much smaller than this radius
then the denominator of (11.131) approaches 1 and we recover the limiting law, equation
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(11.125). Note that the radius of the ionic atmosphere is a function both of a solvent property
(B) and of the ionic strength of the solution. For historical reasons, the unit that is universally
used for åi and B is the Ångstrom= 10−10 m. Values of the å parameter for many common
ions were tabulated by Kielland (1937) and this is still the standard reference more than
seven decades later. The values of the A and B parameters for water have been calculated
over a large temperature range by Helgeson and Kirkham (1974).
Although equation (11.131) has theoretical justification it does not reproduce the observed

behavior of electrolytes at ionic strengths greater than∼0.1. Figure 11.10 shows measured
activity and osmotic coefficients for four strong electrolytes at 298 K (data from Robinson
& Stokes, 1959). Also shown are activity coefficients calculated with the Debye–Hückel
equation (11.131), and osmotic coefficients calculated by integrating (11.131) according to
(11.43) (Exercise 11.9). The discrepancy above I ∼ 0.1 is very large. Note that, as equation
(11.131) does not have a minimum for any value of I, it is incapable of reproducing the
behavior of actual electrolytes, which generally show a minimum in γ at moderate ionic
strengths.
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Fig. 11.10 Measured activity and osmotic coefficients (symbols) in aqueous solutions of sodium chloride, sulfate and perchlorate,
and magnesium perchlorate (data from Robinson & Stokes, 1959), compared to the values of the activity coefficients
calculated with Debye–Hückel equation (11.131), and osmotic coefficients calculated by integrating (11.131)
according to (11.43).
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Worked Example 11.5 The pH of natural waters revisited and a foray into soda lakes

We can refine the calculations in Worked Examples 11.3 and 11.4 by incorporating activity
coefficients calculated with the full Debye–Hückel equation, (11.131). In order to calculate
the pH of rainwater we re-write the first dissociation reaction, (11.98) as follows:

Kds,I =
mHCO−3

mH+

fCO2

· γHCO−3
aq · γH+

aq (11.132)

or, using the definition of mean ionic activity coefficient, equation (11.75)

Kds,I =
mHCO−3

mH+

fCO2

·
(
γHCO3−H+
aq

)2
(11.133)

where:

log10
(
γHCO3−H+
aq

)
=

−A|zH+zHCO−3 |I
1/2

1+ 1
2

(
åH+ + åHCO−3

)
BI 1/2

. (11.134)

The distance of maximum approach between two ions equals the sum of their radii, but
Kielland (1937) and all subsequent writers use ionic diameters – hence the division by 2 in
the denominator of (11.134). The second dissociation reaction, (11.97), becomes

Kds, II =
mCO2−

3
mH+

mHCO−3
· γ

CO2−
3

aq · γH+
aq

γ
HCO−3
aq

. (11.135)

In contrast to (11.132), the individual ion activity coefficients in (11.135) do not work out
to a mean ionic activity coefficient. We have two options to deal with this situation. We can
choose to calculate single ion activity coefficients by applying (11.131) to each ion, so that
the product of charges in the numerator becomes the square of the charge of the ion, and
the distance of maximum approach is the ionic diameter. Or we can multiply the numerator
and denominator in (11.135) by γH+

aq and re-write this equation as:

Kds,II =
mCO2−

3
mH+

mHCO−3
·

(
γ
CO2−

3 2H+
aq

)3

(
γ
HCO3−H+
aq

)2 . (11.136)

Mathematically the two approaches are identical. Physically, however, equation (11.136) is
preferable because single ion activity coefficients cannot be measured, whereas mean ionic
activity coefficients can. Finally, we include activity coefficients in the water ionization
reaction, (11.91), which becomes:

KW =mH+ ·mOH− ·
(
γH+OH−
aq

)2
(11.137)

and we calculate pH with equation (11.94).
We are now ready to re-do the calculation in Worked Example 11.3, by using equations

(11.133), (11.136) and (11.137), plus the charge balance equation (11.100), which of course
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remains unchanged. The solution must in this case be found by iteration, because in order to
calculate activity coefficients we need to know the ionic strength. AMaple procedure that
does this is described inSoftwareBox11.2.The calcite saturation reaction (WorkedExample
11.4) is handled in an identical fashion, by adding the solubility product equation (11.106)
to the system of equations, calculating the mean ionic activity coefficient of Ca2+CO2−

3
with (11.131), and using the charge balance equation (11.105).

Software Box 11.2 Calculation of carbonate speciation in aqueous solution. Non-ideal behavior
calculated with Debye–Hückel equation.
Maple worksheet aq_spec_DH.mw contains two procedures, zeco2_DH and
zecalcite_DH, that parallel the procedures in aq_spec_ideal.mw, but add
calculation of aqueous activity coefficients with the Debye–Hückel equation, (11.131)
(see Worked Example 11.5). The Debye–Hückel equations are contained in their own
procedures, at the top of the worksheet. Input for zeco2_DH and zecalcite_DH is
the same as for the equivalent procedures in aq_spec_ideal.mw. Output is also the
same, except that an additional field at the end of each line gives ionic strength.
The soda lake calculations in Worked Example 11.5 are contained in the Maple

worksheet soda_lakes_DH.mw. There are two procedures, soda_lake_Ca and
soda_lake_CO2. The first procedure calculates the composition of the soda lake as
a function of the parameter da (equation (11.139)) at constant CO2 fugacity (see Fig.
11.11). Input is f (CO2) in bar, high da , low da , number of intermediate values and
output file name. The output fields are: da , pH, mCa(2+) , mNa+ , mHCO−3

, m
CO(2−)3

, Na

bicarbonate ion activity product, Na carbonate ion activity product, ionic strength. The
second procedure performs the same calculations as a function of CO2 fugacity at con-
stant da (Fig. 11.12). Input is low f (CO2) in bar, high f (CO2) in bar, da , number of
intermediate values and output file name. The output fields are: f (CO2) in bar, pH,
mCa(2+) , mNa+ , mHCO−3

, m
CO(2−)3

, Na bicarbonate ion activity product, Na carbonate ion

activity product, ionic strength.

The results of the refined calculations are compared in Table 11.1 to the estimates that we
obtained assuming that the electrolyte solutions were ideal, for a constant CO2 fugacity of
3.8 × 10−4 bar. For rainwater in equilibrium with atmospheric CO2 we calculate an ionic
strength of 2.4 × 10−6, so the Debye–Hückel equation can be expected to yield accurate
results – in fact, even the limiting law, equation (11.125), wouldwork in this case. Calculated
electrolyte concentrations and pH are virtually indistinguishable from the ideal estimates.
The solution saturated in calcite has an ionic strength of∼1.8× 10−3, so equation (11.131)
should provide accurate results. In this case pH increases by 0.02 and the concentration
of Ca2+ increases by about 10% relative to the ideal calculation. These values would be
appropriate for “pure” water in equilibrium which calcite, but not for seawater, which has
an ionic strength about three orders of magnitude higher than what calcite dissolution by
itself generates.
An interesting extension of these calculations is to study the chemical evolution

of soda lakes. These are bodies of water that generally form in closed basins in
arid climates, subject to strong evaporation. The defining characteristic of soda lakes
is that the supply of alkali-earth cations, Ca2+ and Mg2+, is severely limited (see
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Risacher & Fritz, 1991, 2009; Lowenstein & Risacher, 2009; Millero, 2009; Reimer et al.,
2009). This is the case, for example, if the drainage basin feeding the lake consists predomi-
nantly of felsic volcanic or plutonic rocks. Charge balance of the carbonate and bicarbonate
anions in soda lakes is in such case chiefly accomplished by the alkali cations Na+ and
K+. Evaporation concentrates the solution to the point where carbonates precipitate but,
because sodium and potassium carbonates and bicarbonates are quite soluble, the crystal-
lizing carbonate assemblage typically consists of calcite, magnesite and dolomite. Because
the system is depleted in Mg2+ and Ca2+ , however, the pH of soda lakes is not buffered as
effectively as that of seawater, and can in fact reach fairly extreme values.We can construct
a simplified thermodynamic model of a soda lake by considering only the Na+ and Ca2+
cations and carbonate and bicarbonate anions, and writing the following charge balance
equation:

mH+ + 2mCa2+ +mNa+ −mHCO−3
− 2mCO2−

3
−mOH− = 0. (11.138)

We seek the values of the six ionic molalities, so we need six equations, one of which
is (11.138). The carbonate and bicarbonate dissociation reactions and the water ionization
reaction are also applicable, so we include (11.133), (11.136) and (11.137). We assume that
the soda lake is saturated in calcite, so we also use equation (11.106). These five equations
do not contain information about the degree of Ca2+ depletion of the soda lake, yet this
is what defines them and what makes their chemistry so radically different from that of
seawater. We therefore write a final equation that describes the Ca to carbonate ratio, as
follows:

2mCa2+
mHCO−3

+ 2mCO2−
3

= da . (11.139)

A value of da = 1 means that carbonate and bicarbonate charges are exactly balanced by
Ca2+. In our simplified model this means that there can be no Na+ in solution, but in nature
of course sodium (and potassium) would be present, balanced by other anions such as chlo-
ride and sulfate, as in seawater. If da < 1 then the soda lake must contain Na+ in solution.
We will assume that sodium supply to the lake is unrestricted, so that Na+ concentration
in the solution is limited only by the charge balance constraint, equation (11.138).
The six equations: (11.106), (11.133), (11.136), (11.137), (11.138) and (11.139) contain

two free parameters: the fugacity of CO2 and the calcium to carbonate ratio, da .We study
the evolution of soda lakes as a function of these parameters. Numerical solution of the set
of equations withMaple is a straightforward extension of the procedure that we used for the
first part of this example, and is described in Software Box 11.2. Let us assume first that CO2

fugacity is fixed by equilibrium with the atmosphere, so we make f (CO2) = 3.8 × 10−4
bar. Figure 11.11 shows changes in the chemical composition of the solution as a function
of the calcium to carbonate ratio, da . The top panel shows pH and ionic strength. For da
= 1 we recover the results for seawater, pH ∼8.3 and I ∼10−3. Both pH and ionic strength
increase with decreasing Ca2+ content. At da ∼ 5×10−5 the pH is about 9.7 and the ionic
strength is about 0.1. The results for our simplified soda lake should be fairly accurate up to
this point, but become less so as Ca2+ content decreases further and ionic strength increases
(e.g. Fig. 11.10). Ionic strength in real soda lakes is of course much higher, so the results
are not strictly applicable to complex natural systems, but the behavior is qualitatively the
correct one.
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Fig. 11.11 The chemistry of an idealized soda lake in equilibrium with atmospheric CO2 (f (CO2) = 3.8× 10−4 bar) at 25 ◦C.
The lake is assumed to contain only Na+ and Ca2+ cations and HCO−3 and CO2−3 anions. Changes in pH and species
distribution are tracked as a function of the Ca2+ deficit, given by the parameter da . The pH axes of the center and
bottom diagrams are scaled to correspond approximately to the da values in the top diagram. The bottom diagram
shows that the first sodium species to precipitate is nahcolite (sodium bicarbonate), at pH≈ 10.5. The shaded
regions correspond to ionic strengths greater than 0.1 (shown with the dashed arrows in the top diagram),
for which Debye–Hückel theory is not accurate, so the results are only semi-quantitative.
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The middle panel of the figure shows the molalities of Na+, HCO−3 and CO2−
3 ions as a

function of pH , with the pH axis scaled so as to correspond approximately to the values of
the da parameter in the top panel. The shaded area on the left of the figure corresponds to
the region outside the range of validity of Debye–Hückel theory, i.e. I > 0.1. The dominant
carbonate species changes from HCO−3 for pH <∼ 10 to CO2−

3 for pH > ∼10. All three
ions become strongly concentrated with increasing pH , so one may wonder, do sodium
carbonates precipitate? In order to answer this question we write the saturation reactions:

NaHCO3(xs) �Na+aq +HCO−3aq (1)

Na2CO3(xs) � 2Na+aq +CO2−
3aq (2) (11.140)

and the corresponding equilibrium conditions:

K1 =mNa+ ·mHCO−3
·
(
γ
HCO−3 Na+
aq

)2

K2 =m2
Na+ ·mCO2−

3
·
(
γ
CO2−

3 2Na+
aq

)3
. (11.141)

In order to determine whether the soda lake becomes saturated in sodium carbonate or bicar-
bonate we compare the values of the equilibrium constants calculated from standard state
thermodynamic properties (the left-hand side of equations (11.141)) with the ion activity
products (the right hand side of the equations) that result from the thermodynamic model
of the soda lake. The values of the equilibrium constants (calculated with standard state
properties from Wagman et al., 1982) are K1 = 3.915 × 10−1 (Na bicarbonate saturation)
and K2 = 18.11 (Na carbonate saturation). As long as the ion activity products are smaller
than these numbers the lake is not saturated in sodium carbonates. The bottom panel in Fig.
11.11 shows the values of the ion activity products as a function of pH , as well as the values
of the equilibrium constants. At a constant CO2 fugacity of 3.8 × 10−4 bar the soda lake
trends towards sodium carbonate saturation with decreasing acidity. It becomes saturated
in sodium bicarbonate (the mineral nahcolite) at pH ∼10.5, but at these conditions it is still
far from being saturated in sodium carbonate.
If we keep the calcium to carbonate ratio constant and vary f (CO2) the behavior of

the soda lake is strikingly different. Figure 11.12 shows this, for a constant value of the
parameter da = 10−3. The solution in this case becomes more acidic as it becomes more
concentrated, in response to increasingCO2 fugacity.This is opposite to the effect of starving
the lake of calcium at constant CO2 fugacity.A consequence of this is that the lake is driven
towards saturation in sodium carbonateswith increasing acidity, as can be seen in themiddle
and bottom panels of Fig. 11.12. For da = 10−3 nahcolite precipitates at pH ∼6.5, which
corresponds to a CO2 fugacity of about 10 bar. This result is thermodynamically correct,
but is a consequence of the constraints imposed on this simplified model, in particular the
assumption that an unlimited supply of sodium is available to balance the charge ofwhatever
carbonate concentration one chooses to apply. There may be few natural environments in
which conditions that allow sodium bicarbonate to precipitate from a mildly acidic solution
are realized. Environments of this kind could exist in lakes formed in craters or calderas of
active felsic and alkaline volcanoes, composed of rocks such as trachytes and pantellerites.
These rocks are rich in alkalis and relatively poor in calcium and magnesium, and volcanic
gases could provide a high CO2 flux.
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Fig. 11.12 Same as Fig. 11.11, but tracking changes in the soda lake as a function of CO2 fugacity, for a constant value of da=
0.001. The behavior of the soda lake is remarkably different. Precipitation of nahcolite takes place in this case in
response to increasing acidity. This may occur in response to influx of CO2-rich volcanic gases.

11.6.2 Activity coefficients in concentrated electrolyte solutions

That the complete Debye–Hückel equation, (11.131), is not accurate for solutions with
ionic strengths greater than∼0.1 has been known since the equation was proposed. Debye–
Hückel theory, however, performs well for dilute solutions, in which key assumptions,
such as treating the solvent as a continuum (i.e. assuming that the macroscopic dielectric
constant is valid) and ignoring all characteristics of the ions beyond their charge and radius,



573 11.6 Activity coefficients in electrolyte solutions

can be expected to be better approximations than in concentrated solutions. This suggests
that equation (11.131) encapsulates important aspects of the behavior of real electrolytes,
and that concentrated solutions may be amenable to be described by extensions of Debye–
Hückel’s theory. Two such theories are widely used to study natural systems. One of them,
due to Pitzer and co-workers, is largely based on calibrating non-ideal empirical interaction
parameters among individual ions. The other one, proposed by Helgeson and collaborators,
seeks to preserve the Debye–Hückel philosophy as much as possible, by identifying the
species that form by ion association, defining their standard state properties as a function
of temperature and pressure, and accounting for the effects of temperature and pressure on
the dielectric properties of the solvent. Both formulations lead to equations of significant
operational complexity (as opposed to mathematical complexity), the full development of
which is beyond the space available here. Excellent summaries of the contrasting Pitzer
and Helgeson approaches, as well as of a few other simpler alternatives, can be found in
the textbooks by Anderson (2005) and Nordstrom and Munoz (1986).
The formulation of Pitzer and co-workers startswith the limiting lawofDebye andHückel

and expands the excess Gibbs free energy of mixing, beyond the amount that is accounted
for by Debye–Hückel theory, as a virial-like, but largely empirical, series in composition.
Philosophically this is the same approach used in the Pitzer and Sterner equation of state
(Section 9.4.4). The earliest attempt along these lines is due to Guggenheim (1935; 1967,
p. 286), who suggested a characteristically simple and clever approach. His idea was based
on the fact that, because the Debye–Hückel equation is chiefly (or only, for the limiting law)
a function of solvent properties and ionic strength, different solutes of the same charge type
(and approximately the same ionic size) should have the same excess chemical potential in
any solution of the same ionic strength. This is not what is observed. Guggenheim proposed
that some arbitrarily defined and well-characterized electrolyte, for example NaCl, be used
as a reference, and that one then measure the difference in the excess Gibbs free energy
of mixing of other electrolytes relative to that of the standard. He then suggested that
the difference in excess Gibbs free energy of mixing between an arbitrary solution and a
solution of pure standard electrolyte be expanded as a sum of terms, each of which has the
form βcamcma , where mc and ma are cation and anion molalities, and βca is an empirical
interaction parameter that characterizes each cation–anion pair. Guggenheimdid not include
terms for interactions between ions with the same charge. This is known as the principle
of specific ion interactions and was first stated by Brønsted (1922) who hypothesized that
ions of the same charge never come close enough together to have an effect on the free
energy of the solution beyond that which arises from their charge (i.e. their identity does not
matter). This may be true in dilute solutions, but not in concentrated ones. By differentiating
Guggenheim’s expression for excess Gibbs free energy of mixing one obtains expressions
for the osmotic coefficient (equation (11.36)) and activity coefficients (equation (11.13)),
relative to those of the standard. The properties of the standard electrolyte are given by the
Debye–Hückel theory. These will not be accurate in absolute terms, but since the activity
coefficients for all electrolytes are referred to this same standard the differences among
them can be expected to reproduce the observed behavior fairly well.
Pitzer’s approach is an extension of these ideas, differing in three important ways: (i) the

binary interaction terms contain more than one empirical parameter, which are functions of
ionic strength (Guggenheim’s βca is a constant, except perhaps for an unknown temperature
dependency), (ii) interactions between ions of the same sign are included, and (iii) triple
particle interactions, which may be negligible in dilute solutions but not at high concentra-
tions, are also included. Pitzer’s general equation for the excess Gibbs free energy of the
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solution has the form:

Gex

RT
=wsf (I )+ 1

ws

∑
ij

λij (I )ninj + 1

w2
s

∑
ijk

µijkninjnk , (11.142)

where ws is the mass of solvent (in kg), f (I ) is a function of ionic strength and solvent
properties that is similar, but not identical, to the Debye–Hückel equation (11.131), and
the ni , nj , nk are number of mols of ionic species. The interaction parameters λij (I ) are a
function of ionic strength, they include more than one adjustable parameter, and they apply
to interactions among same charge as well as opposite charge ions, and neutral species
too if they exist. The ternary interaction parameters µijk , on the other hand, are not a
function of ionic strength and are set to zero if all three ions are of the same charge.
Equation (11.142) is manipulated so as to express the interaction parameters as functions
of measurable electrolyte properties, and the resulting expression differentiated relative to
ws or mi in order to obtain the osmotic coefficient of the solvent or the activity coefficient
of each solute (equations (11.13) and (11.36)). The details, which are rather ponderous,
can be found, for example, in Pitzer (e.g. 1987, 1995), and the final equations are also
summarized by Anderson (2005). Important applications of Pitzer’s equations include to
terrestrial evaporites (see Harvie &Weare, 1980; Harvie et al., 1984) and ocean water (see
Millero, 2004, 2009, and references therein), Martian brines and evaporites (see Chevrier
&Altheide, 2008; Chevrier et al., 2009; Marion et al., 2003, 2008, 2009), and icy-satellite
cryomagmas (Marion et al., 2005).
Pitzer’smodel is calibrated at 298K and 1 bar. Extrapolation to other conditions is accom-

plished by expressing the interaction parameters as polynomial functions of temperature
and pressure, although at present these functions are calibrated for only a relatively small
set of electrolytes of geological importance (see, for example, Marion et al., 2008). An
important aspect of the model, which is expressed in equation (11.142), is that it assumes
that interactions occur among individual ions. If a specific ionic association (i.e. species
formation) takes place this is not considered explicitly but is rather reflected in the values
of the interaction parameters, which generate a lower activity coefficient for the affected
ions. The model is therefore purely thermodynamic, in the sense that it focuses only on
macroscopic properties, regardless of what the microscopic mechanism for these properties
may be.
Helgeson’s approach (see Helgeson, 1969; Helgeson et al., 1981; Tanger & Helgeson,

1988) differs significantly from Pitzer’s in this last respect. Ion association and complex
formation are explicitly accounted for. Infinite dilution standard state properties are gen-
erated for all species, together with heat capacity and volumetric data. This allows a more
straightforward extrapolation to high temperatures and pressures. In fact, at high tempera-
ture Helgeson’s model is physically more satisfactory than Pitzer’s, because the decrease in
the dielectric constant of water with increasing temperature, that limits electrolyte dissocia-
tion, is explicitly accounted for (all electrolytes at high temperature tend to behave as weak
electrolytes). Speciation calculations in Helgeson’s model are accomplished by writing
chemical reactions among the species and solving for the species concentrations that make
the Gibbs free energy change of all the homogeneous equilibrium reactions vanish (this
is equivalent to the chemical equilibrium approach to fluid speciation, see Section 9.6.1).
Activity coefficients are based on the Debye–Hückel model, complemented by empirical
species-specific terms. The computational details are intricate and are nicely summarized
by Anderson (2005).



575 Exercises for Chapter 11

Exercises for Chapter 11

11.1 Integrate (11.41) in two different ways, so as to obtain (11.42) and (11.43).
11.2 Study various pathways for the formation of ClO2 (chlorine peroxide gas), e.g. from

various combinations of the elements in their molecular and atomic states, as well as
from the respective hydrides (HCl and H2O).What are likely pathways for formation
of perchlorates in planetary atmospheres? What makes these reactions possible (i.e.
where is the “missing free energy” coming from?)What are likely constraints on the
types of natural environments where perchlorates can form? Necessary thermody-
namic properties can be obtained from Wagman et al. (1982) or NIST’s Chemistry
WebBook.

11.3 Show that the equations derived in Section 11.2.3, that lead to the relations between
activity and osmotic coefficients, equations (11.41) through (11.43), are also valid
for electrolyte solutions, using bulk electrolyte properties.

11.4 Modify theMaple procedure used to calculate carbonate speciation in rainwater (Fig.
11.5) to include calcite saturation equation (11.106).

11.5 Study the distribution of ferric species in aqueous solution as a function of pH
at some constant value of oxygen fugacity that is high enough to make concen-
trations of ferrous species negligible (e.g. the present day terrestrial atmosphere).
Find the conditions under which Fe3+ becomes the dominant aqueous species.
Discuss how analytical Fe3+ concentration varies with pH at constant oxygen
fugacity. How would your conclusions be affected by changes in oxygen fugac-
ity, as long as its value is oxidizing enough to suppress ferrous species? What is
the likely significance of primary hematite deposits, i.e. hematite that precipitated
from aqueous solution directly, without formation of intermediate metastable ferric
hydroxides?

11.6 Discuss why, although possible, it is unlikely that most terrestrial BIF’s formed in
response to a change in oceanic pH, and that a change in oxidation conditions is the
simplest and most probable explanation.

11.7 Show that in an atmosphere as reducing as f (O2) ∼10−70 bar the concentration of
carbon monoxide is negligible relative to that of carbon dioxide, so that CO2 is the
dominant oxidized carbon species. If the atmospherewas also saturated inH2O, could
CH4 concentration be significant at this oxygen fugacity?A review of Chapter 9 can
be useful. We will discuss these calculations in greater detail in Chapter 14.

11.8 Modify theMaple procedures discussed in Software Box 11.1 to include saturation in
both calcite and siderite. The calculation must include the Fe2+ hydrolysis reaction,
equation (11.122). Assume an ideal aqueous solution. Plot the concentrations of the
various aqueous ferrous species, and total Fe2+ analytical concentration as a function
of pH . Assume that oxygen fugacity is low enough to make Fe3+ concentration
negligible.

11.9 Write a Maple procedure that calculates Debye–Hückel osmotic coefficients, by
integrating (11.131) according to (11.43).

11.10 Study the phase relations of saturation of calcite, dolomite and magnesite from aque-
ous solution as a function of dissolved Mg2+ and Ca2+ concentrations, atmospheric
CO2 concentration and temperature. Write the necessary Maple procedures, using
Debye–Hückel activity coefficients. Your calculations are not applicable to seawater
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(why?), but are the results likely to be reasonably accurate for a simple solution like
the one you are modeling? Molalities of Mg2+ and Ca2+ in present-day ocean water
are ∼0.053 and 0.010, respectively (from Millero, 2004). What carbonate should
one expect to precipitate according to the simplified model? How does this compare
with carbonate precipitation from seawater? Discuss your findings.



12
Non-equilibrium thermodynamics and rates of

natural processes

With the exceptions of Chapters 2 and 3, our discussions have largely focused on equi-
librium conditions, and chiefly on the equilibrium of systems in which the only kind of
mechanical work that takes place is expansion work. Even with these severe restrictions
thermodynamics can provide a wealth of information about the nature and evolution of
planetary bodies. But these are by no means the limits of thermodynamics. In fact, one
could argue that thermodynamics only begins to get interesting when these restrictions are
lifted.An in-depth discussion of the possibilities that open up would demand an entire book,
at least as long as this one. That is a fight for another day. The goal of this chapter is to
lift a corner of the proverbial veil. I will introduce some of the principles of linear non-
equilibrium thermodynamics and use them to examine chemical diffusion and chemical
reaction mechanisms and rates. These are two classes of processes that are responsible for
displacing systems towards equilibrium in a wide range of situations.

12.1 Non-equilibrium thermodynamics

By definition, equilibrium thermodynamics concerns itself with static systems and with
“quasi-static” transformations between equilibrium states. These are abstractions, but if
our discussions so far are any indication, they are very useful ones. Throughout the pre-
vious chapters we have also come across non-equilibrium processes, however. Examples
include catastrophic planetesimal collisions (Chapter 2), heat transfer (Chapter 3) and non-
isentropic melting (Chapter 10). Processes such as these are the purview of non-equilibrium
thermodynamics. I will present here a short introduction to non-equilibrium thermodynam-
ics of systems close to equilibrium (the precise meaning of this will become clear in an
instant), along the lines initiated by de Donder, Onsager, Mazur, Prigogine, de Groot and
collaborators (see, for example, de Donder, 1936; de Groot, 1959; de Groot &Mazur, 1984;
Prigogine, 1961, 1962, 1967; Prigogine &Defay, 1965). This topic is not only intellectually
exciting, but it also provides the framework that underlies processes as apparently distinct
as heat and mass diffusion, the progress and rate of chemical reactions, viscous deformation
and electrical currents.

12.1.1 Fundamental concepts

We begin by revisiting our definition of entropy (Chapter 4). Let us split the entropy change
of a system into an external part, deS and internal part, diS:

dS = deS+ diS. (12.1)

577
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We define the external contribution as the entropy change that arises from exchange of heat
with the environment, i.e.:

deS ≡ dQ

T
= dE+PdV

T
. (12.2)

This component can be positive, negative or, in the case of adiabatic or isolated systems,
zero. The internal contribution to entropy arises from processes that occur inside the sys-
tem. These could be, for example, heat transfer, chemical diffusion, chemical reactions,
viscous dissipation, or dissipation of electric currents. An important part of the study of
non-equilibrium thermodynamics consists of finding rigorous mathematical expressions
for these and other entropy production processes. At this point we note that diS must obey
the following relationship:

diS ≥ 0. (12.3)

The equality holds for a systemat equilibrium, i.e. static. If a system is not static thendiS > 0.
Of course, there is nothing new here: if we apply (12.1) to an isolated system (deS = 0)
then (12.3) recovers the property of entropy given by equation (4.7). The importance of
separating external and internal entropy contributions as in (12.1) is that internal entropy
production (diS) is always positive in a non-static system, regardless of how the system
interacts with its environment. Moreover, it is positive not only for the system as a whole
but also for any (non-static) part of the system that we may wish to analyze independently.
If a system is not at internal equilibrium then gradients in intensive variables must exist

within it. If entropy gradients exist then the concept of molar entropy for the system as
a whole loses meaning. If the system is not far from equilibrium, however, it is possible
to define a lengthscale within which local equilibrium holds (i.e. such that gradients in
intensive variables can be neglected over distances of this magnitude). It is then convenient
to work with entropy per unit volume, so that the entropy of sufficiently small volume
elements is well-defined.More precisely, because we are interested in non-static conditions,
we consider the rate of entropy production per unit volume, σ , defined as:

σ ≡ 1

V

diS

dt
. (12.4)

We note that the units of σ are entropy per unit volume per unit time, for instance: J K−1
m−3 s−1.
Entropy production is the result of flows that occur as long as the system is not at

equilibrium, and that cease when the system reaches equilibrium. We shall call these ther-
modynamic flows. They could be, for instance, flow of heat, matter, electric charge or
momentum, or the change in the number of molecules of a given species during a chemical
reaction (a special case of mass flow). The thermodynamic flows are driven by potential
gradients, which are also called thermodynamic forces. For a general system in which
several different entropy production processes operate simultaneously we have:

σ =TiJ iF
i , (12.5)

where the J i are flows (vectors), the F i are potential gradients (one-forms) and (12.5) is
an inner product that produces the scalar quantity σ (Box 1.1). Consider heat flow as an
example. In this case J q is the heat flux vector (Section 3.1), which has units of J s−1
m−2. On dimensional grounds we see that the units of the potential gradient that drives this
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flow must be K−1 m−1. Restricting our discussion to flow in one spatial dimension, z, we
conclude that the thermodynamic gradient that drives heat flow is:

F q = ∂

∂z

(
1

T

)
. (12.6)

We shall now make the assumption that, if the potential gradients are small, then the flows
are linear functions of the potential gradients.This linear relationship is the formal definition
of a system close to equilibrium. If the linear relationship between flows and forces does
not hold then the system is far from equilibrium and the discussion in this and subsequent
sections does not hold. We write the linear relationship as follows:

J i =TkL
i
kF

k , (12.7)

where the Lik are constants called phenomenological coefficients. Note that this equation
says that a flow J i may be driven not only by the gradient F i but also by all other poten-
tial gradients that may exist in the system. For instance, if gradients in temperature, F q

(equation (12.6)) and chemical potential, F d , exist in a system, then according to (12.7),
both heat flow, J q , and mass flow, J d , each includes two separate contributions, one driven
by F q and the other by F d . Expanding (12.7) for this case we would have:

J q =L
q
qF

q +LqdF d
J d =LdqF

q +LddF d .
(12.8)

Each phenomenological coefficient is a scalar, and the matrix composed of all phenomeno-
logical coefficients arranged as in equations (12.8) is a geometric object called a tensor.
The two diagonal coefficients are easily interpreted: Lqq relates temperature gradient to heat
flow, so it must be somehow related to the heat conductivity, k (Chapter 3), whereas Ldd
links the gradient in chemical potential to mass flow, so it must be related to chemical
diffusivity (Section 12.2.2).
The other two coefficients are more obscure and perhaps unexpected.Lqd �= 0 implies that

a gradient in chemical potential drives heat flow, a phenomenon know as the Dufour effect,
whereas Ldq �= 0 means that a gradient in temperature causes chemical diffusion, which
is known as the Soret effect. These and other “cross-flow” phenomena have been known
since the nineteenth century. For example, a temperature engenders an electric current (the
Seebeck effect) and a gradient in electrical potential gives rise to heat flow at constant
temperature (the Peltier effect). Cross chemical diffusion terms arise in systems in which
there are gradients in the chemical potentials of more than one component (Section 12.2.3).
Lars Onsager (1931a, and b) demonstrated that these effects are not random, but rather
a fundamental property of non-equilibrium systems. His work is one of the cornerstones
of non-equilibrium thermodynamics. We shall not discuss it here, but we will mention a
fundamental result that is due toOnsager.This is the fact that thematrix of phenomenological
coefficients is symmetric. In other words, all cross coefficients obey the identity:

Lik =Lki . (12.9)

This is known as Onsager’s reciprocal relation.



580 Non-equilibrium thermodynamics

12.1.2 Heat diffusion revisited and the principle of minimum
entropy production rate

Consider a one-component system, in which compositional gradients are by definition
impossible. If we impose a thermal gradient on this system then because F d = J d = 0 it
must be Lqd =Ldq = 0, and (12.8) collapses to:

J q =L
q
qF

q . (12.10)

The thermodynamic flow is in this case the heat flux, given by equation (3.5):

J q = q =−k dT
dz

. (12.11)

The potential gradient F q is given by equation (12.6), which we can also write as:

F q = ∂

∂z

(
1

T

)
=− 1

T 2

dT

dz
. (12.12)

We then obtain a relationship between the phenomenological coefficientLqq and the thermal
conductivity, k:

k = L
q
q

T 2
(12.13)

and, using (12.5), the rate of entropy production per unit volume is:

σ = k

T 2

(
dT

dz

)2

. (12.14)

As expected, σ is a non-negative quantity, and vanishes only if temperature is uniform and
hence there is no heat flow.
We recall from Chapter 3 that the steady state for heat diffusion, i.e. ∂T /∂t = 0, is

attained, in a system with no heat generation, when the thermal gradient is uniform, i.e.
∂T /∂z= constant (e.g. equation (3.15)). It can be proved beginning from equation (12.14)
that, for any non-zero temperature gradient, σ is minimized if T (z) is a linear function, so
that ∂T /∂z = constant. The formal demonstration of this will not be presented here (see,
for example, Kondepudi & Prigogine, 1998, p. 399). The result is, however, general, and is
known as the theorem of minimum entropy production rate, originally due to Prigogine. In
words, it states that any non-equilibrium system inwhich at least someof the thermodynamic
forces do not vanish, and in which the linear phenomenological law (12.70) and Onsager
reciprocal relations are valid, evolves to a non-equilibrium steady state in which the rate of
entropy production is minimum. One way to think of this, suggested by Onsager, is that the
rate of entropy production behaves as a potential, that is minimized when a non-equilibrium
system reaches a dynamic state that remains stationarywith time.Although the reality of this
result is not in question, different opinions exist on whether minimum entropy production
is a principle (i.e. non-demonstrable from simple statements) or a theorem, as envisioned
by Prigogine (see, for example, Jaynes, 1980).



581 12.2 Chemical diffusion

12.2 Chemical diffusion

12.2.1 Fundamental relationships

Transport of chemical species down a chemical potential gradient is a non-equilibrium
process. It therefore generates entropy. Mass transfer can take different forms. One of them
is chemical diffusion without chemical reaction. We seek an equation that relates this type
of matter flow to entropy production. We begin with the fundamental equation (4.101),
which we re-write as follows:

dS = dE+PdV
T

− 1

T

∑
i

µidni . (12.15)

Comparing to (12.1) and (12.2) we find that internal entropy production is given by:

diS =− 1

T

∑
i

µidni . (12.16)

Consider diffusive mass transfer of a single component, which requires that there be a
gradient in the chemical potential of only that component. Physically this could be possible,
for example, in a one-component system that is not in equilibrium in a gravitational field
(Chapter 13), or in a two-component system in which the solute is dilute enough that the
concentration of the solvent can be considered to be constant even if the solute concentration
varies (Chapter 11). The latter case is known as tracer diffusion. For simplicity we will
consider diffusion in a single spatial dimension, z, but the equations are easily extended
to diffusion in three dimensions (see Kondepudi & Prigogine, 1998; Zhang, 2008; Borg &
Dienes, 1988).
Consider two parallel surfaces of cross-sectional area a, separated by a small distance

δz, and such that the chemical potentials of the diffusing component at each surface are µ1

and µ2, with µ1 >µ2 (Fig. 12.1). Define δµ= µ2−µ1. Matter flows from 1 to 2, so that
if we call dn= dn2 =−dn1 > 0, we have:∑

i

µidni = µ1dn1+µ2dn2 = δµdn. (12.17)

Substituting in (12.16):

diS =− 1

T
δµdn, (12.18)

which is always positive, as δµ and dn always have opposite signs. Passing to the limit
and noting that this amount of entropy is produced inside a volume of size aδz, we get, by
using (12.4):

σ = 1

a

dn

dt

(
− 1

T

dµ

dz

)
. (12.19)

Comparing (12.19) to (12.5), and allowing for the possibility that temperature gradientsmay
also exist (Section 12.2.4), we identify the thermodynamic flow and the thermodynamic
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Jd

δz

>

a

µ1 µ2

Fig. 12.1 Matter flow, Jd , between two parallel surfaces of area a on which the chemical potentials of the diffusing species are
µ1 >µ2.

potential gradient as follows:

J d = 1

a

dn

dt

F d =− d

dz

(µ
T

)
.

(12.20)

For isothermal diffusion of a single component we write the phenomenological relationship
(12.7) as follows:

J d =−L
T

dµ

dz
. (12.21)

12.2.2 Fick’s laws of chemical diffusion

Equation (12.21) describes isothermal chemical diffusion of a single chemical species, but
it is not convenient because chemical potential is not a directly measurable quantity. We
seek to recast this equation in terms of concentration of the diffusing species. If ci is the
molar concentration of the diffusing species per unit volume and V is the molar volume
of the system, then the mol fraction Xi is Xi = V ci . Taking the standard state as the pure
substance at the temperature and pressure of interest:

µi = µ0, i +RT ln (γiciV ) . (12.22)
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By the chain rule, and assuming that the specis concentration is low enough that it follows
Henry’s law (γi approximately constant):

dµi

dz
= dµi

dci

dci

dz
= RT

ci

dci

dz
. (12.23)

Substituting in (12.21):

J d =−LR
ci

dci

dz
(12.24)

and defining:

D ≡ LR

ci
(12.25)

we arrive at:

J d =−Ddci

dz
, (12.26)

which is known as Fick’s first law of diffusion. Equation (12.26) is identical to Fourier’s
law of heat conduction (equation (3.5)) and it is no more of a “law” than the latter. Rather,
it is another constitutive equation that is a special case of the general transport relation
expressed by equation (3.4).
We now recall that ci has units of mols per unit volume, and that the matter flux J d has

units of mols per unit area per unit time. It follows that the dimension of D is area per unit
time, e.g.m2 s−1,which are units of diffusivity (Section 3.2.3).The parameterD is called the
chemical diffusivity or diffusion coefficient. In particular, for the dilute one-component case
thatwe are considering here it is called the tracer diffusion coefficient.Diffusion coefficients
are a strong function of temperature (Section 12.4.1) and equation (12.25) shows that they
are also a function of composition. This latter point can cause considerable complications
in the mathematics of diffusion, but the compositional dependency can usually be ignored
in tracer diffusion problems.
Equation (12.26) still has the disadvantage that it includes a matter flux term that is

generally not easily measured, especially if D is small. A better alternative would be
to measure the change in concentration with time. Consider a volume element of unit
cross-sectional area and width δz (Fig. 12.2), and let the matter fluxes across its two faces
be J z and J z+δz. The change per unit time in the number of mols of solute contained
in the volume is J z − J z+δz, so that the rate of change of concentration (mols per unit
volume) is:

dci

dt
= 1

δz
(J z−J z+δz) . (12.27)

Using (12.26):

∂ci

∂t
= D

δz

(
∂ci

∂z

∣∣∣∣
z+δz

− ∂ci

∂z

∣∣∣∣
z

)
= D

δz

∂2ci

∂z2
δz (12.28)
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a = 1

Jz
Jz + δz

δz

a = 1

Fig. 12.2 Geometry of the chemical diffusion equation in one dimension. The volume element has unit cross-sectional area
perpendicular to the matter flow direction and thickness δz along this direction.

or:

∂ci

∂t
=D

∂2ci

∂z2
. (12.29)

Equation (12.29), which is identical to the heat diffusion equation (3.15) without a source
term, is known as Fick’s second law of diffusion. You may also recognize in equations
(12.27) and (12.28) a compact version of the derivation of equation (3.15) in Section 3.2.2.
As I mentioned there, equation (12.29) is a differential equation that shows up in many
branches of physics and is simply known as the diffusion equation. The mathematics of
diffusion are the same regardless of what is the physical entity that is transported.

Worked Example 12.1 Chemical diffusion on planetary time and lengthscales

We can get a feeling for the relevance of chemical diffusion in planetary processes by
focusing on a few examples. In particular, we will look at diffusion in the atmosphere, the
oceans, magmatic systems and minerals at metamorphic conditions. As for heat diffusion,
we have the relationship:

λ2

τ
∼D, (12.30)

where λ is the characteristic diffusive lengthscale, τ the characteristic time scale, and D the
diffusion coefficient. Diffusivities of trace gas components in air at 298 K and 1 bar are of
the order of 10−5 m2 s−1, whereas for molecular and ionic species in aqueous solution at
298 K typical values are∼10−9 m2 s−1 (see Kondepudi & Prigogine, 1998; Zhang, 2008).
Diffusivities in silicate melts are somewhat more variable; we will use a typical value for
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Fig. 12.3 Some examples of chemical diffusion in planetary environments. The lines labeled with diffusion coefficients (in
m2 s−1) are plots of equation (12.30). For the atmosphere and ocean we start from their characteristic lengthscales
and infer unrealistically long chemical diffusion time scales, implying that other homogenization mechanisms
operate, such as eddy diffusion. For igneous and metamorphic processes we start with estimates of characteristic time
scales, e.g. 106 years for crystallization of a magma chamber and 20× 106 years for a metamorphic event, and infer
lengthscales for various processes (see text).

H2O in rhyolite melts at 900◦C, which is ∼10−12 m2 s−1 (Zhang et al., 2007). Tracer
diffusion coefficients in minerals are much more variable. For example, Pb in monazite
at 700◦C has a diffusivity of ∼10−32 m2 s−1 (Cherniak et al., 2004), whereas the value
for Sr in feldspars at the same temperature is ∼10−22 m2 s−1(Cherniak & Watson, 1994).
Figure 12.3 shows plots of equation (12.30) with each of these diffusivity values.
The terrestrial atmosphere and oceans have lengthscales of ∼10 km and 2 km, respec-

tively. We see from Fig. 12.3 that diffusive homogenization of the atmosphere would take
about 300 000 years. The corresponding value for the ocean would be about 130 million
years. Clearly, some other mass transfer mechanism must operate in both of these systems.
For instance, changes in CO2 concentration with a periodicity of less than one year are seen
in the atmosphere. A diffusive time for the ocean of 130 million years would imply that
it should not be possible to detect differences between Cretaceous and present-day ocean
chemistry, yet marine sediments record changes on much shorter time scales. If we assume
that the atmospheremixes over times of order 1 year, and the ocean over times of∼100 years
(rates are probably faster than these), then we can calculate with equation (12.30) that the
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effective diffusivities are∼3 and 10−3 m2 s−1, respectively. These values are 5 to 6 orders
of magnitude greater than the corresponding chemical diffusivities. The explanation for the
discrepancy is that mass transfer in the atmosphere and ocean is chiefly controlled by a
process known as eddy diffusivity. The idea is that, owing to their relatively low viscosities,
neither air nor water are ever perfectly still. Rather, turbulent motions, i.e. eddies, occur
at all lengthscales, driven by causes such as temperature gradients and motion of animate
or inanimate bodies. Eddies cause local stirring and homogenization, and coupling among
eddies effectively diffuses matter at a rate that renders chemical diffusion in oceans and
atmospheres inconsequential.
A reasonable time scale for crystallization of a large igneous system may be 1 million

years. Over this time diffusive homogenization of compositional gradients would extend
over a distance of about 6m.At least somemagmatic systems are known to be homogeneous
over greater distances, as suggested for instance by the composition of km-size plutons and
of large volcanic eruptions. Again, some other mechanism for chemical mixing appears to
be required, but eddy diffusivity is unlikely to be the answer, given the very high viscosity
of silicate melts. Convective stirring in magma chambers is a possible explanation.
Let us now assume that a typical high-grade metamorphic recrystallization event lasts

20 million years. Over this time Sr in feldspar would diffuse a distance of perhaps 0.5 mm,
whereas Pb in monazite would homogenize over 10−9–10−8 m. Radiogenic Pb formed
by decay of U and Th is essentially immobile relative to the size of a monazite crystal
(say, 10−5 to 10−4 m). Monazite is a refractory mineral that commonly survives high-
grade metamorphism. Therefore, monazite crystal cores can be used to date events that
preceded metamorphic recrystallization, even if rims of neoformed monazite grow during
metamorphism. In contrast, feldspar may break down and regrow in response to changes in
metamorphic conditions. Chemical reactions such as these are mass transfer mechanisms,
whichmay bemuch faster than simple chemical diffusion. However, even if feldspar growth
did not take place, Sr would homogenize over a length not too different from the size of
feldspar crystals. Rb–Sr dating may then yield the age of metamorphism.
An important generalization that follows from these examples is that, whereas chemical

diffusion is not an important mass transfer mechanism at planetary lengthscales, it pro-
vides the physical underpinnings and constraints for many powerful techniques used to
study planetary processes, such as radiometric dating and estimation of rates of geological
processes. A comprehensive and up to date treatment of these topics is given by Zhang
(2008).

12.2.3 Interdiffusion

Consider now the case of a binary system in which two components are present in com-
parable concentrations. If there is a compositional gradient then the two components will
diffuse in opposite directions. This is known as interdiffusion or, also, binary diffusion. It
is the process by which crystals that grow during metamorphism or igneous crystallization
tend to homogenize.
Let the matter fluxes be J 1 and J 2. As always we consider diffusion in one dimension.

In some systems the following relationship is valid:

J 1+J 2 = 0. (12.31)
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Recall that we consider flux in units of mols, or particles, per unit of surface per unit of time.
Interdiffusion in amixture of ideal gases at constant temperature and pressure obeys (12.31).
The same can be expected to be at least approximately true in a crystal, in which particles
exchange places among fixed sites in a crystalline lattice. But there may be instances in
which (12.31) is not valid, for example if the partial molar volumes of the two components
are significantly different. This requires only a slight modification to the equations, as we
shall see.
Calling the mol fractions of the two components X1 and X2 we have, from Gibbs–

Duhem’s equation (6.7) at constant temperature and pressure:

X1dµ
1+X2dµ

2 = 0 (12.32)

or:

X1
dµ1

dz
+X2

dµ2

dz
= 0. (12.33)

We can combine (12.31) and (12.33) as follows:

J 1X2

dµ1/dz
= J 2X1

dµ2/dz
(12.34)

and define a phenomenological coefficient, L, as follows:

−L
T
≡ J 1X2

dµ1/dz
= J 2X1

dµ2/dz
. (12.35)

Calling the molar concentrations per unit volume c1 and c2, and using (12.23), we find:

J 1 =− LR

X2c1

dc1

dz

J 2 =− LR

X1c2

dc2

dz

(12.36)

so that the diffusion coefficients are (see equation (12.26)):

D1 = LR

X2c1

D2 = LR

X1c2
.

(12.37)

For X2 → 1 the coefficient D1 becomes the tracer diffusion coefficient given by
equation (12.25), and as long as X1 �= 0, D2 remains bound and the flux J 2 vanishes
as dc2/dz→ 0. In other words, we recover the tracer diffusion case. We also note that, if
the molar volume of the mixture is V , then for all values of X1 and X2 we have X1 = V c1
and X2 = V c2. Substituting these identities in (12.37) we find:

D1 =D2 =Di , (12.38)
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where Di is the interdiffusion coefficient of species 1 and 2 in a binary mixture.
Note that identity (12.38) does not mean that the interdiffusion coefficient is constant:
equations (12.37) show that it is a function of the concentration product c1c2. Because the
phenomenological coefficient L is a constant, however, it is in principle possible to calcu-
late the interdiffusion coefficient for any arbitrary composition frommeasurements of tracer
diffusion coefficients of one of the two species. From this we can infer that interdiffusion
coefficients are at most of the same order of magnitude as tracer diffusion coefficients. For
example, if we take species 1 as the trace component we have (equation (12.25)):

D1, tr = LR

c1, tr
, (12.39)

where c1,tr is a trace concentration of 1, and D1,tr is the corresponding tracer diffusion
coefficient. Using 12.37 we calculate the interdiffusion coefficient for c1! c1,tr :

Di =D1, tr
c1, tr

V c1c2
, (12.40)

which is at most of the same order as D1,tr , and generally smaller. It follows that the
conclusions that we reached in Worked Example 12.1 are valid for chemical diffusion in
general, not just tracer diffusion.
Consider now a slightly different case, in which rather than balancing the number of

particles, as in equation (12.31), the opposing flows of matter keep the volume of the
system constant. Equation (12.31) is then modified as follows:

v1J 1+ v2J 2 = 0, (12.41)

where v1, v2 are the partial molar volumes of the two species. In this case we find that the
diffusion coefficients are given by:

D1 = LR

X2v1c1

D2 = LR

X1v2c2

(12.42)

(note that the dimension ofL is not the same as in equations (12.37), which of course follows
from the fact that we are now considering volume fluxes rather than particle fluxes). The
interdiffusion coefficient is now given by:

Di = v1D1 = v2D2, (12.43)

which, if the two species have the same partial molar volume, as is the case for ideal gases,
collapses to (12.38).
The fact that binary diffusion can be fully described with a single phenomenological

coefficient (equations (12.37) or (12.42)) means that there are no “cross-flow” terms, or,
in other words, that the Onsager reciprocal relationship does not apply to binary diffusion.
This is so because the chemical potential gradient of each component is unequivocally
determined by the concentration gradient of the other. Reciprocal matter flow terms appear
in systems of three or more components (Exercise 12.1), in which there is at least one
concentration that can vary independently.
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12.2.4 Coupling of mass and heat transfer

Let us consider a system in which there are gradients in temperature and composition. For
simplicity we will assume that a compositional gradient exists in only one component, i.e.
we consider tracer diffusion, and we restrict the treatment to one spatial dimension. Using
J q for heat flux and J i for matter flux of component i, the rate of entropy production σ is
(see equations (12.5), (12.6) and (12.20)):

σ = J q ∂
∂z

(
1

T

)
−J i ∂

∂z

(
µi

T

)
. (12.44)

We have:

∂

∂z

(
µi

T

)
= 1

T

∂µi

∂z
+µi ∂

∂z

(
1

T

)
(12.45)

but chemical potential is a function of both composition and temperature, both of which
vary, so:

∂µi

∂z
= ∂µi

∂ci

∂ci

∂z
+ ∂µi

∂T

∂T

∂z
= ∂µi

∂ci

∂ci

∂z
− si ∂T

∂z

= ∂µi

∂ci

∂ci

∂z
+ siT 2 ∂

∂z

(
1

T

)
,

(12.46)

where si is the partial molar entropy of component i, and ci its concentration, which we
choose to express in mols per unit volume. Substituting in (12.45):

∂

∂z

(
µi

T

)
= 1

T

∂µi

∂ci

∂ci

∂z
+
(
siT +µi

) ∂

∂z

(
1

T

)

= 1

T

∂µi

∂ci

∂ci

∂z
+hi ∂

∂z

(
1

T

)
,

(12.47)

where hi is the partial molar enthalpy of i. We now substitute (12.47) in (12.44) and group
terms as follows:

σ =
(
J q −hiJ i

) ∂

∂z

(
1

T

)
−J i 1

T

∂µi

∂ci

∂ci

∂z
. (12.48)

The product hiJi , known as the heat of transport, is the thermal energy content of the matter
flow. Defining the reduced heat flux, J q,r as:

J q,r ≡ J q −hiJi (12.49)

we write the linear phenomenological relationships, (12.8), as follows:

J q,r =L
q
q

∂

∂z

(
1

T

)
−Lqi

1

T

∂µi

∂ci

∂ci

∂z

J i =Liq
∂

∂z

(
1

T

)
−Lii

1

T

∂µi

∂ci

∂ci

∂z

(12.50)
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or, using the definitions of heat conductivity k (equation (12.13)) and chemical diffusivity
Di (equation (12.25)), and identity (12.23):

J q,r =−k ∂T
∂z

−Lqi
R

ci

∂ci

∂z

J i =−Liq
1

T 2

∂T

∂z
−Di

∂ci

∂z
.

(12.51)

The two cross terms are the heat flux carried by matter flow, which is known as the
Dufour effect, and the flow of matter driven by the temperature gradient, which is known
as the Soret effect, or also as thermal diffusion. Defining the Dufour coefficient, DD , and
the coefficient of thermal diffusion, DT , as follows (do not confuse DT with the thermal
diffusivity, κ!):

DD, i ≡ L
q
i R

c2i

DT , i ≡
Liq

ciT 2

(12.52)

equations (12.51) become:

J q,r =−k ∂T
∂z

− ciDD, i
∂ci

∂z

J i =−ciDT , i
∂T

∂z
−Di

∂ci

∂z

(12.53)

in which we have from the Onsager reciprocal relationship, Lqi =Liq :

DD, i

DT , i
= RT 2

ci
. (12.54)

Worked Example 12.2 Soret and Dufour diffusion in planetary processes

The derivations in this section make for some rather elegant, if elementary, algebra (even
more so in three dimensions). They lead to equation (12.54), which suggests an experimental
test of the Onsager reciprocal relation. But how important are these effects in planetary
processes? During the 1980s it was thought that Soret diffusion could be an important,
perhaps even dominant, mechanism of igneous differentiation (see Walker & DeLong,
1982; Lesher, 1986; Lesher &Walker, 1991). This is now known not to be the case, except
perhaps in very specific and localized situations, and then only over minuscule lengthscales.
Let us see why.
It is convenient to define the Soret coefficient, sT , as the ratio of thermal to chemical

diffusivity:

sT ≡ DT ,i

Di

. (12.55)
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We note that sT has dimension of [T ]−1, i.e. K−1. The matter flux equation becomes:

J i =−sT ciDi

∂T

∂z
−Di

∂ci

∂z
. (12.56)

The condition of no matter flow, i.e. J i = 0, results if the thermal and chemical gradients
have opposite signs and their effects exactly balance each other out. Thus, by setting J i = 0
we get an estimate of the magnitude of the compositional gradient that can be caused by
a thermal gradient. It is convenient to do this in terms of mol fraction rather than molar
concentration, so using the relationship Xi = ciV we write:

− sT XiDi

V

∂T

∂z
− Di

V

∂Xi

∂z
= 0 (12.57)

which simplifies to:

dXi

dT
=−sT Xi . (12.58)

Thus, approximately:

δXi ∼−sT XiδT . (12.59)

The key is, of course, the value of sT . Soret coefficients are poorly understood functions of
composition, temperature and temperature gradient (Lesher & Walker, 1991; Huang et al.,
2010). For a wide range of materials, including silicate melts, aqueous electrolyte solutions
and gases, sT is of order 10−2 to 10−3 K−1. This means that we can expect Soret diffusion
to be a significant effect only in settings in which there are strong temperature differences,
of order 100 K or more. Such temperature differences could exist, for example, across the
thermal boundary layer of a convective magma chamber. Soret diffusion could be important
in that instance (Sonnenthal, 2004).
This is not the whole story, however, as the rate of mass transfer is still determined by the

chemical diffusivity, regardless of whether the driving force is a gradient in composition
or temperature. Given that thermal diffusivity, κ∼10−6 m2 s−1 is typically six orders of
magnitude greater than chemical diffusivity in silicate melts, Di ∼ 10−12 m2 s−1 (see
Worked Example 12.1), thermal gradients decay much faster than chemical gradients. The
question is, then, how far can Soret diffusion extend in the time that it takes for a thermal
gradient to dissipate? Using λq for the thermal diffusion lengthscale and λi for the chemical
diffusion lengthscale we have, from equations 3.16 and 12.30:

λi

λq
∼
(
Di

κ

)1/2

∼ 10−3. (12.60)

Suppose that a thermal gradient of ∼100 K exists across a 10-m thick thermal boundary
layer of a magma chamber. Soret diffusion would cause a significant compositional change
over a thickness of only ∼1 cm. An essentially identical result was obtained by Cygan and
Carrigan (1992) by means of a rigorous numerical solution of the mass flow equations (i.e.
(12.56)). Soret diffusion is not important in nature, although it could have noticeable effects
on isotopic fractionation during high-temperature experiments (Richter et al., 2008, 2009),
and also has technical applications.
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The Dufour effect is smaller than the Soret effect. Using (12.54) and (12.55) in the heat
flow equation (12.53), and setting J q,r = 0, we find:

δT ∼− sT DiRT
2

kV
δXi . (12.61)

Substituting typical values we find δT ∼ 10−4δXi . We can interpret this result as meaning
that the Dufour effect is equivalent to the heat flow driven by a temperature difference
of order 10−4 K times the mol fraction difference. It is unlikely that there are natural
environments where this is a significant effect.

12.3 Rate of chemical reactions

12.3.1 Fundamental concepts

Chemical reactions displace systems towards equilibrium. Therefore, chemical reactions
take place while a system is not at equilibrium. The study of the rate of chemical reactions is
a huge field and we can only cover some of the basic concepts. In particular, we will focus
only on chemical reactions in homogeneous systems, e.g. a gas phase or a liquid solution.
We begin by considering elementary reactions. These can be defined as reactions that go
from reactants to products without any intermediate steps.At a molecular level, elementary
reactions take place by collisions between the actual reactant molecules. Most chemical
reactions are not elementary. Rather, they are combinations of elementary steps. Here we
focus on elementary reactions in homogeneous systems only, whether or not I state this
explicitly.
We can expect on physical grounds that there are likely to be some simple constraints

on the nature of elementary reactions, in particular with regards to the number of partic-
ipating molecules. This number is known as the molecularity of the reaction. Elementary
reactions are known to have molecularities of 1, 2 or 3 only, and are designated unimolecu-
lar, bimolecular or termolecular, respectively. Of these, bimolecular reactions are the most
straightforward, as they simply require a collision between two reactant molecules, for
example A and B:

A+B→ products.

In contrast to this simple case, unimolecular and termolecular reactions each present prob-
lems of their own, and it is arguable whether they are rigorously elementary. Let us focus
on termolecular reactions first, which we can schematize as:

A+B+C→ products.

The probability that three differentmoleculeswill converge on the exact same spot at exactly
the same time is very low, and in fact termolecular elementary reactions are much rarer than
bimolecular ones. The simplest picture of how termolecular reactions take place is that they
consist of two collisions in rapid succession, such that one of the collisions produces a
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temporary “agglutination” of two of the reactant molecules, for example:

A+B→AB,

AB+C→ products.

An important point is thatA and B remain stuck for only a very short period of time. If they
collide withC within this time then the products form; if notA andB separate. The fact that
termolecular reactions become more common with increasing pressure is consistent with
this model, as higher molecular density makes it more likely thatC will collide with theAB
cluster before it has time to break down. We can expect that reactions with molecularities
higher than three must be exceedingly rare, and indeed there is no experimental evidence
for such reactions taking place.
Unimolecular reactions correspond to:

A→ products

and they present a different problem. If a reaction is truly unimolecular, then what makes
a molecule react? Some fraction of the reactant molecules must acquire higher energy,
sufficient to cause the energized molecules to break apart into the product molecules (if
all reactant molecules were energized then the reactant would disappear instantaneously
and we would not have to worry about chemical kinetics). One way in which this can
happen is by irradiation with photons of the appropriate wavelength – this is known as
photodissociation (Section 12.4.2). But unimolecular reactions that are not photo-activated
also exist. The path of unimolecular decomposition in this case is known as the Lindemann
mechanism and can be schematized as follows:

A+M→A∗ +M
A∗ +M→A+M
A∗ → products.

The first step, known as the activation step, involves a collision with another molecule,
M , known as a collision partner. M could be another molecule of A, it could be a product
molecule, or it could be a molecule of some other species. The important point is that as
a result of the collision some of the energy of M is transferred to A, which becomes the
activated molecule A∗. This molecule can lose its energy excess either by colliding with
another collision partner in a deactivation step (second step) or by breaking apart into the
products (third step). The reaction is not truly unimolecular, but if we add up the first and
third steps it looks unimolecular.
One can legitimately argue whether a unimolecular reaction of this kind is an elementary

reaction, and the same is true of termolecular reactions which consist of two collisions
in rapid succession. Such arguments may not be all that important, however, as what we
observe macroscopically is not the molecularity but a related quantity, known as the order
of the reaction. In the simple examples discussed above the molecules that participate in
elementary reactions were labeled A, B and C, but they do not necessarily have to be
different. We can therefore write a generalized elementary reaction as follows:∑

i

νiYi → products, (12.62)
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where νi is the stoichiometric coefficient of reactant speciesYi .We can expect that the rate of
an elementary reactionmust be proportional to the number of molecules that are available to
react, which in the simplest case means the concentration of each of the reactant molecules.
A thermodynamically more rigorous choice would be their activities (see Section 12.3.2),
but concentration is universally used in kinetic studies, because it is a directly observable
quantity, whereas activity is not. We therefore write the rate law of reaction (12.62) as:

r = k
∏
i

[Yi]
νi , (12.63)

where r is the reaction rate expressed in units of number of (reacting) mols per unit of
volume per unit of time, and [Yi] is the concentration of reactant Yi in mols per unit
volume. This notation for concentration is different from what we have used so far, but
is standard in the literature of chemical kinetics, and convenient too. The parameter k is
called the rate constant for the reaction. It is important to understand that the rate constant is
not a thermodynamic quantity, and that it in fact encapsulates aspects of chemical kinetics
that cannot be addressed by thermodynamics. We shall have more to say about this in later
sections, but we note at this point that the rate constant is a measure of the fraction of
molecules that are reactive. Owing to the statistical distribution of molecular energies (e.g.
Section 1.14) we can expect that there will always be some fraction of the total ensemble of
molecules that do not carry enough energy for the molecular bonds to be broken during a
collision. Thosemolecules that are energetic enough are the reactivemolecules. The fraction
of reactive molecules, and thus the rate constant, increases with temperature in the case of
thermally activated reactions (Section 12.4.1), but molecules can become activated by non-
thermal processes as well, such as absorption of photons within a specific wavelength. This
is the basis of photochemical reactions (Section 12.4.2).
Reaction (12.63) is said to be of order νi in species Yi , and the order of the reaction as a

whole is the sum
∑

i νi . At first sight the order of an elementary reaction is the same as its
molecularity, and indeed elementary reactions can be of first, second or third order only, but
the detailed microscopic picture is a bit different. It is clear that bimolecular reactions must
be of order two. Regardless of whether an elementary termolecular reaction occurs by a
single triple collision or by two collisions in rapid succession, wemay expect it to be of order
three, because in either case the rate should varywith the product of the concentrations of the
three species. The point is that what is actually measured is the order of the reaction, which
is a macroscopic variable, and the molecularity is one possible microscopic interpretation
of this observation. Finally, it must be noted that the overall order of a compound reaction,
composed of an assemblage of elementary steps, is defined by equation (12.63), but in such
case there is no connection with any simple microscopic picture, and the order need not be
1, 2, or 3, in fact not even an integer (Logan, 1996; Houston, 2006).
An important part of the study of chemical kinetics focuses on the rate laws for reactions

of the various orders, and on how these laws combine in non-elementary reactions. We
discuss these topics below, but before doing that it is important to clarify some of the
relationships between thermodynamics and kinetics.

12.3.2 Thermodynamics, kinetics and entropy production by chemical reactions

All of the arguments that we made in the preceding section are strictly kinetic. By writ-
ing an elementary reaction, for example as A+ B → products, we are eschewing any
thermodynamic content, as we are implying that the reaction proceeds in only one direction,
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and that there is no possibility of equilibrium between reactants and products. Thermody-
namics tells us that this is not the case, and that in fact there is always the possibility, at least
in principle, that the free energies of products and reactants will be the same, and equilib-
rium will be attained. The key to understanding the relationship between thermodynamics
and kinetics can be found by focusing on equilibrium situations, and more specifically on
how a chemical reaction approaches equilibrium.
Let us write a somewhat different version of reaction (12.62) as follows:∑

i

νiYi→←
∑
j

νjZj , (12.64)

where now νi is the stoichiometric coefficient of reactant species Yi , and νj is the stoi-
chiometric coefficient of product species Zj . The implication of equation (12.64) is that
there are two elementary reactions taking place simultaneously: the forward reaction (Y s
going to Zs) and the reverse reaction (Zs going to Y s). At equilibrium the rates of the two
reactions are the same, and in fact this is one possible definition of chemical equilibrium,
but in general this need not be so. We also define a variable, ξ , called the extent of reaction
or progress variable, as follows:

dξ ≡ dnZj

νj
=−dnYi

νi
, all i,j , (12.65)

where dnZj is the number of mols of species Zj that are produced, dnY i is the number
of mols of species Yi that are consumed, and νj , νi are the corresponding stoichiometric
coefficients. By defining the progress variable in this way we avoid any ambiguities about
the extent of reaction that might arise from the variable stoichiometric coefficients. Note
that the progress variable is always a positive quantity.We also define the net rate of reaction
(12.64), rn, as follows:

rn ≡ 1

V

dξ

dt
(12.66)

with dimension of mols per unit volume per unit time. If the reaction rates of the forward
and reverse reactions in (12.64) are rf and rr , respectively, then the net rate of the reaction,
rn, must be equal to the difference between the forward and reverse rates, i.e.:

rn = rf − rr . (12.67)

We now seek to relate kinetics to thermodynamics, so we will write the rate laws
(equation (12.63)) in terms of activity rather than concentration. One way to think about
this is that in (12.63) the activity coefficients are subsumed in the rate constants, whereas
now we include them in the activities. We therefore write the forward and reverse reaction
rates as follows:

rf = kf
∏
i

(
aYi
)νi

rr = kr
∏
j

(
aZj
)νj

,
(12.68)

where kf , kr are the rate constants for the forward and reverse reactions.
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The double arrow in equation (12.64) is always true, but we commonly think of a reaction
as “proceeding to the right” or “proceeding to the left”. What these statement refer to is
to the relative magnitudes of the forward and reverse rates. In particular, we can define
chemical equilibrium as the condition for which rn = 0. From (12.68) this implies:

kf

kr
=
∏
j

(
aZj
)νj
eq∏

i

(
aYi
)νi
eq

= exp

(
−�rG

0
P ,T

RT

)
, (12.69)

where I have added the subscript eq to specify that these are the activities at equilibrium. Up
until this point we have only dealt with equilibrium situations, so that this notation was not
necessary, but this is no longer the case. If the rate laws given by equations (12.68) are valid,
then equation (12.69) says that the ratio between the forward and reverse rate constants is
determined by equilibrium thermodynamics, and is in fact equal to the equilibrium constant.
What thermodynamics cannot do is provide the values of the individual rate constants.
We now seek a thermodynamic function that gives the distance of a chemical reaction

from equilibrium. This function is called the affinity, which I will represent with E . It is
defined as the difference between the sum of the chemical potentials of the reactants and
those of the products. Using the notation of equation (12.64) we have:

E ≡
∑
i

νiµ
Yi −

∑
j

νjµ
Zj . (12.70)

If the affinity is positive then reaction (12.64) proceeds from left to right, whereas E = 0
corresponds to equilibrium. We can also write (12.70) as follows:

E =−�rG
0
P ,T +RT ln

( ∏
i

(
aYi
)νi∏

j

(
aZj
)νj
)
, (12.71)

where in this case the activities are the actual values, i.e. the values as the chemical reaction
is taking place, and not necessarily the equilibrium values. Using (12.69) we see that the
affinity is also given by:

E =RT ln

(
kf
∏
i

(
aYi
)νi

kr
∏
j

(
apj
)νj
)

(12.72)

or, from (12.68):

rf

rr
= exp

(
E

RT

)
, (12.73)

which should be compared to (12.69): the ratio between the rate constants is a constant (the
equilibrium constant), but the ratio between the reaction rates varies with the affinity, or,
in other words, with the progress of the reaction. Using (12.73) we can write (12.67) as
follows:

rn = rf

[
1− exp

(
− E

RT

)]
, (12.74)
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which shows that the net rate of the reaction approaches a maximum value, equal to the
rate of the forward reaction, when E →∞, i.e. when the products are infinitely dilute.
The net reaction rate decreases exponentially as equilibrium is approached and E → 0,
but equation (12.74) yields a value for the net reaction rate only if rf is known. This in
turn requires that we know the value of the rate constant kf (equation (12.68)), which
is something that thermodynamics cannot supply. Equation (12.74) does say that the net
reaction rate increases exponentially with distance from the equilibrium state, but it does
not say that the rates of different reactions can be compared on the basis of their affinities,
as the rate constants for different reactions are generally different, and not predictable
from thermodynamics. Equations (12.69) and (12.74) encapsulate the relationship between
thermodynamics and kinetics.
We can calculate the rate of entropy production by a chemical reaction. Using

equation (12.65) we expand (12.16) as follows:

diS =− 1

T


∑

j

νjµ
Zj −

∑
i

νiµ
Yi


dξ (12.75)

or:

diS = E

T
dξ (12.76)

from which the rate of entropy production per unit volume (equation (12.4)) is:

σ = E

T

1

V

dξ

dt
. (12.77)

Note that this is always positive, i.e. chemical reactions always produce entropy. Comparing
with equations (12.5) and (12.66) we identify the thermodynamic flow with the net reaction
rate, i.e.:

J = 1

V

dξ

dt
= rn. (12.78)

Wecan thinkof a chemical reaction as amass transfer process inwhich chemical components
migrate from the reactant species to the product species, and in which the net reaction rate
is the mass transfer rate. The thermodynamic potential gradient is given by:

F = E

T
(12.79)

so that the linear phenomenological relationship (12.7) implies:

rn =L
E

T
. (12.80)

This appears to be at oddswith (12.74), in whichwe found a non-linear relationship between
the thermodynamic flow and the potential gradient. The apparent contradiction arises from
the fact that (12.74) is valid in general, whereas the linear relation (12.80) is valid only
close to equilibrium. This is explored further in Exercise 12.2.
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12.3.3 Differential and integral rate laws

We now return to the strictly kinetic question of how the concentrations of chemical species
change with time. The simplest case is that of an elementary first-order reaction A→
products. From (12.63) the rate law of a first order reaction is r = k[A], where [A] is molar
concentration per unit volume. Setting rr = 0 in (12.68), and using (12.67) and (12.66):

k [A]= 1

V

dξ

dt
(12.81)

and from (12.65):

dξ

dt
=−V d [A]

dt
(12.82)

so:

d [A]

dt
=−k [A] , (12.83)

which is the first-order rate law.
Let x be the change in concentration of A (mols per unit volume), so that ξ = xV . If the

initial concentration of A is [A0], and we make x = 0 at t = 0, then we have:

[A]= [A0]− x (12.84)

which allows us to re-rewrite equation (12.83) as:

dx

x− [A0]
=−kdt . (12.85)

This integrates to:

x = [A0]
(
1− e−kt

)
(12.86)

or equivalently:

[A]= [A0]e
−kt . (12.87)

This is the first-order rate law in integral form, and is identical to the radioactive decay
law (Section 2.9). Radioactive decay, although not a chemical reaction, is the archetypal
example of a process that follows first-order kinetics. As for radioactive decay, we can
define the half life of a chemical reaction, τ1/2, as the time required for the concentration of
the reactant to decay to half of its initial value. Setting [A] = 1/2[A0] in (12.87) we find:

τ1/2 = ln 2

k
. (12.88)

An alternative estimate of the characteristic rate of a process, that is commonly used for
chemical reactions, is the reaction time scale,which is the time required for the concentration
of the reactants to become “exponentially close” to the equilibrium concentration. The
definition of the reaction time scale τ , is given by:

[Aτ ]−
[
Aeq
]= 1

e

(
[A0]−

[
Aeq
])
, (12.89)
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where [Aeq ] is the equilibrium concentration of A and [Aτ ] is its concentration at time τ .
Equivalently:

xτ = xeq

(
1− 1

e

)
. (12.90)

Substituting in (12.86), and noting that the equilibrium concentration is attained as t→∞,
we find for a first-order elementary reaction:

τ = 1

k
. (12.91)

The definitions of reaction half life and reaction time scale are always the same, but the
specific equations (12.88) and (12.91) are valid only for reactions that follow first-order
kinetics.
When we consider higher order reactions the number of possible rate laws multiplies.

Equation (12.83) is the only possible first-order rate law, but for a second-order reaction we
have two possibilities:A+B→ products and 2A→ products. For third-order reactions
there are three possibilities. As an example we will look at the second-order reaction A+
B→ products, others are left as exercises. We can write the rate law for this reaction as
follows:

d [A]

dt
=−k [A] [B] (12.92)

or, in terms of the progress variable x and the initial concentrations [A0] and [B0]:
dx(

x− [A0
])([

B0
]− x) =−kdt . (12.93)

The integral is messier than that for a first-order reaction, but, thanks to Maple:

ln

((
[B0]− x

)
[B0]

)
− ln

((
[A0]− x

)
[A0]

)
=−( [A0]− [B0]

)
kt (12.94)

or, with a bit of rearrangement:

x = [A0] [B0](1−ϑ)
[B0]−ϑ [A0]

(12.95)

where:

ϑ = e

(
[A0]−[B0]

)
kt . (12.96)

The result is more informative if we express it in terms of the concentrations of the reactants:

[A]

[B]
= ϑ

[A0]

[B0]
. (12.97)

Equations 12.96 and 12.97 show that, as we should expect, the system becomes enriched
in the reactant that is present in excess. Consider the limiting case in which [B0] ! [A0],
so that even when all of reactant A has reacted it is [B] ≈ [B0]. Then equation (12.97)
simplifies to:

[A]= [A0]e
−[B0]kt . (12.98)



600 Non-equilibrium thermodynamics

This is known as pseudo-first-order kinetics. It differs from true first-order behavior
(equation (12.87)) in that the exponential factor is multiplied by the concentration of
the abundant species, B. Calculation of reaction half life and time scale for second- and
third-order reactions is left as an exercise.

12.3.4 Some simple composite reactions

We will look at two examples, sequential reactions and parallel reactions, of how the rate
laws of elementary reactions combine to yield more complex behaviors. Consider first the
case in which a reactantA goes to a productC with formation of an intermediate compound,
B. For simplicity let all of the reactions be first-order:

A→ B, rate constant = k1

B→C, rate constant = k2.

The concentrations of the three species vary as:

d [A]

dt
=−k1 [A]

d [B]

dt
= k1 [A]− k2 [B]

d [C]

dt
= k2 [B] .

(12.99)

The behavior of this reaction depends on the stability of the intermediate species, B. This
must be reflected in the relative values of the two rate constants. If B is relatively unstable
then it is likely to be short-lived, which requires that k2 be much larger than k1, so that the
concentration of B always stays close to zero. Conversely, if k2 is much smaller than k1
then B must be relatively long-lived and its concentration may build to the point where it
becomes the dominant species in the system. We seek an equation for the change of [B]
with time.
Let us assume that the initial concentrations are [A0] �= 0 and [B0] = [C0] = 0. The con-

centration of A as a function of time is given by equation (12.87), with k = k1. Substituting
(12.87) in (12.99):

d [B]

dt
= k1 [A0]e

−k1t − k2 [B] . (12.100)

Solution of this differential equation by hand is not immediate, but Maple’s differential
equation solver does it in a single step. The final result is:

[B]= [A0]
k1

k2− k1
(
e−k1t − e−k2t

)
(12.101)

from which we can also calculate:

d [B]

dt
= [A0]

k1

k2− k1
(
−k1e−k1t + k2e−k2t

)
. (12.102)
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If k1! k2 then these equations become, approximately:

[B]= [A0]
(
e−k2t − e−k1t

)
d [B]

dt
= [A0]

(
k1e

−k1t − k2e−k2t
) (12.103)

whereas for k2! k1 we have:

[B]= [A0]
k1

k2

(
e−k1t − e−k2t

)
d [B]

dt
= [A0]

k1

k2

(
k2e

−k2t − k1e−k1t
)
.

(12.104)

These two distinct behaviors are plotted in Fig. 12.4. If k1! k2 then A quickly decays to B.
The concentration of B builds up to a value comparable to [A0], and then decays as B reacts
to C. The derivative d[B]/dt (bottom panel) varies strongly and approaches zero only after
a long time, when most of B has decayed. In this case B is a long-lived intermediate species.
In contrast, if k2 ! k1 [B] reaches a maximum value that is only a small fraction of [A0]
and then remains approximately constant. This is emphasized by the graph of d[B]/dt ,
which after the initial “build-up” period stays close to zero. B is in this case a short-lived,
or relatively unstable, intermediate species, and its concentration after the initial “build-
up” period can be considered to be approximately constant. This leads to the steady-state
approximation, from which it is possible to calculate the behavior of the entire system in
a relatively straightforward fashion, by converting the differential equations into algebraic
equations. Setting d[B]/dt = 0 we get, from (12.99) and (12.87):

[B]= k1

k2
[A0]e

−k1t (12.105)

and, from mass balance:

[C]= [A0]− [A]− [B]= [A0]

(
1− k1e

−k1t − k2e−k2t
k2

)
. (12.106)

This approach yields a tremendously simplified solution. In this particular case, which
consists of only two first-order reactions, the exact solution is easy to obtain, but this is
not the case in general, and the steady state approximation, if it can be justified from the
relative values of the decay constants, is a powerful shortcut.
A different case is that of parallel reactions, in which the same species follow different

reaction pathways. These could be either the same reactants giving rise to different product
assemblages, or different reactant assemblages generating the same products. Consider the
case of the following two competing first-order reactions:

A→ B, rate constant= kB

A→C, rate constant= kC .
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Fig. 12.4 Concentration (top) and rate of change of concentration with time (bottom) of the intermediate species, B,
in a sequential reaction. If B is a short-lived species (k1 � k2) d[B]/dt approaches zero after a relatively short initial
build-up period and [B] remains approximately constant after this. If B is a long-lived species (k1! k2) d[B]/dt does
not approach zero until the reaction is almost complete and its concentration cannot be considered to remain constant.

We assume that [A0] �= 0, [B0] = [C0] = 0. The rate of decay of A is given by:

d [A]

dt
=−kB [A]− kC [A] (12.107)

so that, from equation (12.87):

[A]= [A0]e
−(kB+kC)t (12.108)
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Because A is consumed by both reactions, the total rate constant is the sum of the individual
rate constants. For product B we have:

d [B]

dt
= kB [A]= kB [A0]e

−(kB+kC)t (12.109)

which integrates to:

[B]= [A0]
kB

kB + kC
[
1− e−(kB+kC)t

]
(12.110)

and similarly for C:

[C]= [A0]
kC

kB + kC
[
1− e−(kB+kC)t

]
. (12.111)

We see that the ratio between the concentrations of B and C is a constant, known as the
branching ratio, and given by:

[B]

[C]
= kB

kC
. (12.112)

As usual, the mathematics become considerably more complicated as soon as we consider
anything but first-order kinetics. In many cases closed analytical solutions do not exist, and
the problems must be solved numerically.

Worked Example 12.3 Ozone in planetary atmospheres

Ozone is aminor but essential component in the terrestrial stratosphere (Chapters 13 and 14),
and is also found in trace amounts in theMartian atmosphere. Its atmospheric concentration
is not in equilibriumwith oxygen, as can be seen from the homogeneous gas phase reaction:

3O2
→←2O3. (12.113)

Atmospheric pressure in Earth at an elevation of 30 km is approximately 20 mbar
(Chapter 13), so we can estimate a characteristic partial pressure of O2 in the stratosphere
of ∼4 mbar. The standard state Gibbs free energy change for reaction (12.113) at 298 K is
�rG

0
1,298 = 326.4 kJ, from which we calculate an equilibrium ozone partial pressure in the

stratosphere of∼6×10 −33 bar. Measured values are in the range 10−8–10−7 bar, i.e., some
25 orders of magnitude higher. This huge ozone excess is the result of a dynamic process
sustained by a constant supply of energy, which was first proposed by Chapman (1930a, b).
In its simplest form the Chapman cycle begins with photodissociation of molecular oxygen
according to:

O2+hνuv →O+O,

where hνuv represents an ultraviolet photon (Chapter 13).Atomic oxygen can be consumed
by any of the following three reactions:

O+O→O2

O+O+M→O2+M

O+O2+M→O3+M ,
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where M is a collision partner, which in the terrestrial atmosphere is typically N2 or O2 (i.e.
one of the dominant species).An intuitive argument based on the fact that [M]>>> [O] and
[O2] >>> [O] suggests that the dominant reaction is likely to be the third one. A rigorous
analysis using the values of the corresponding rate constants confirms this expectation (see,
for example, de Pater & Lissauer, 2001, p. 114). Ozone is produced by a sequential reaction
with a short-lived intermediate product, atomic oxygen, and is in turn consumed by two
reactions, photochemical dissociation:

O3+hνuv →O+O2

and chemical recombination with atomic oxygen:

O+O3+M→ 2O2+M.

The simplest version of the Chapman cycle, in an atmosphere in which all components other
than oxygen can be considered to be inert, can then be summarized as follows, where the
symbols following the reactions are the corresponding rate constants:

O2+hν→O+O, j1

O+O2+M→O3+M, k2

O3+hν→O+O2, j3

O+O3→O2+O2, k4

(12.114)

The rate constants for the two photochemical reactions, symbolized by j1 and j3 for reasons
that we discuss later, are functions of the solar energy flux and of the absorption cross
sections of oxygen and ozone molecules at ultraviolet wavelengths (Section 12.4.2 and
Chapter 13). They vary in a complex fashionwith latitude, season, time of day and elevation.
For this example we will take characteristic values for the terrestrial stratosphere, averaged
over time, altitude and latitude: j1∼10−12 s−1 and j3∼10−4 s−1 (dePater&Lissauer, 2001,
p. 112). The other two reactions are thermally activated and followArrhenius-like behavior
(Section 12.4.1). Characteristic values for the corresponding rate constants at stratospheric
conditions are: k2∼ 10−33 cm6 molecule−2 s−1 and k4∼ 10−15 cm3 molecule−1 s−1. Note
that the units of the rate constants are determined by the order of the reaction. For example,
because reaction 2 is third order its concentration product has units of [molecules] 3 ×
[volume] −3, so that the rate constant must have units of [molecules] −2 × [volume] 2 ×
[time] −1, in order to yield a reaction rate in the proper units: [molecules]× [volume] −1 ×
[time] −1. The use of molecules (rather than mols) and cm (rather than m) is common in
chemical kinetics.
In the Chapman cycle there are two species that are likely to have short half lives: atomic

oxygen and ozone. We can expect this on thermodynamic grounds.As we saw, ozone is not
stable relative to molecular oxygen, and a similar calculation shows the same to be true for
atomic oxygen. We can then assume that the concentrations of these two species are in a
steady state, i.e.:

d[O]
dt

= 2j1[O2]− k2[O][O2][M]+ j3[O3]− k4[O][O3] = 0 (12.115)
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and

d[O3]
dt

= k2[O][O2][M]− j3[O3]− k4[O][O3] = 0. (12.116)

Adding the two equations and rearranging:

[O] = j1

k4

[O2]
[O3] (12.117)

substituting in (12.116) and rearranging:

[O3]2+ j1

j3
[O2][O3]− j1k2

j3k4
[O2]2[M] = 0. (12.118)

For a pressure of 20mbarwe calculate from the ideal gas EOS that [M]≈ 5×1017 molecules
cm−3, so that [O2] ≈ 1017 molecules cm−3. Using the values for the rate constants listed
above we also find:

k2

k4
[M] ∼ 0.5. (12.119)

We therefore note that it must be:

j1
j3
[O2][O3]

j1k2
j3k4

[O2]2[M]
= [O3]

k2
k4
[O2][M]

� 1 (12.120)

so that we can drop the linear term in (12.118) and solve for [O3] as follows:

[O3] ≈ [O2]
(
j1k2

j3k4
[M]
)1/2

. (12.121)

Substituting numerical values we find that [O3] ≈ 7 × 1012 molecules cm−3, which
corresponds to an ozone partial pressure of ∼3× 10−7 bar.
This calculation yields an ozone concentration that is close to the measured value, but

not quite right. It overestimates the actual atmospheric concentration by up to one order
of magnitude. The reason for this discrepancy is that other species that are present in the
terrestrial atmosphere are not inert with respect to ozone destruction, but they do not affect
ozone formation, which relies exclusively on the photochemical dissociation of oxygen, i.e.
the first reaction in (12.114). Three such species are the radicals OH and NO, and atomic Cl.
These species form by photodissociation of H2O, N2O and halomethanes such as CCl2F2,
respectively. The latter are exclusively of anthropogenic origin, whereas nitrogen oxide has
both natural and anthropogenic sources (e.g., jet engine exhaust). Each of these species
gives rise to an ozone-consuming sequence of reactions, that can be written as follows:

OH+O3→HO2+O2

HO2+O→OH+O2
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and:

NO+O3→NO2+O2

NO2+O→NO+O2

and:

Cl+O3→ ClO+O2

ClO+O→ Cl+O2.

The net result of all three reaction sequences is the same, namely:

O+O3→ 2O2

with regeneration of the active species. For this last reason these are known as cat-
alytic cycles. If we use X to designate a catalyst in general then all of these reactions
correspond to:

X+O3→XO+O2, k5

XO+O→X+O2, k6.
(12.122)

We can modify (12.115) and (12.116) as follows:

d[O]
dt

= 2j1[O2]− k2[O][O2][M]+ j3[O3]− k4[O][O3]− k6[XO][O] = 0 (12.123)

and

d[O3]
dt

= k2[O][O2][M]− j3[O3]− k4[O][O3]− k5[X][O3] = 0 (12.124)

and add a rate law for any one of the two X-bearing species (they don’t vary independently),
for example:

d[XO]
dt

= k5[X][O3]− k6[XO][O] = 0. (12.125)

Eliminating [O] between (12.123), (12.124) and (12.125) we get a quadratic equation
in [O3]:

[O3]2+
(
k2k5

j3k4
[O2][M][X]+ j1

j3
[O2]

)
[O3]− j1k2

j3k4
[O2]2[M] = 0. (12.126)

Comparing the two contributions to the coefficient of the linear term, and using the same
values for the rate constants and concentration of the collision partner as before, we find:

k2k5
j3k4

[O2][M][X]
j1
j3
[O2]

= j1k4

k2[M]
1

k5[X] ∼
10−12

k5[X] � 1, (12.127)
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where the last inequality is true unless the rate constant k5 is very small – this will be
justified further a posteriori. We can then simplify (12.126) as follows:

[O3]2+ k2k5

j3k4
[O2][M][X][O3]− j1k2

j3k4
[O2]2[M] = 0 (12.128)

which, using the quadratic formula and noting that the only physical root is the positive
one, yields:

[O3] =
[(

k2k5

2j3k4
[O2][M][X]

)2

+ j1k2

j3k4
[O2]2[M]

]1/2
− k2k5

2j3k4
[O2][M][X]. (12.129)

Comparing the second term in the square root in (12.129) to (12.121) we see that this is the
square of the ozone concentration in the absence of an active species, which we can call
[O3]0, so that we have:

[O3] =
[(

k2k5

2j3k4
[O2][M][X]

)2

+ ([O3]0)2
]1/2

− k2k5

2j3k4
[O2][M][X] (12.130)

or:

[O3]
[O3]0 =

[(
k2k5

2j3k4

[O2][M][X]
[O3]0

)2
+ 1

]1/2
− k2k5

2j3k4

[O2][M][X]
[O3]0 . (12.131)

The ratio is equal to one for [X] = 0, as we should expect, and it is less than one for any
value of [X]> 0. Thus, equation (12.131) confirms a decrease in the ozone concentration
when active species are added to the atmosphere. This behavior is general, but in order
to study it in more detail it is necessary to substitute numerical values. Using once more
the rate constants and gas concentrations in the terrestrial stratosphere discussed earlier we
find:

k2

2j3k4
[O2][M] ∼ 1020 (12.132)

so that, for these particular parameter values, (12.131) becomes:

[O3]
[O3]0 =

[(
k5× 1020

[X]
[O3]0

)2
+ 1

]1/2
− k5× 1020

[X]
[O3]0 . (12.133)

The behavior of this function is shown in Fig. 12.5, for values of the rate constant k5 ranging
from 10−8 to 10−14 cm3 molecule−1 s−1, which ensure the validity of (12.127).We see that
a sufficiently small concentration of the active catalytic species has a negligible effect on
ozone concentration, but that there is a threshold value beyond which ozone concentration
becomes quite sensitive to increased concentration of the active species and declines steeply.
The value of this concentration threshold depends on the magnitude of the rate constant k5.
For example, k5 for theCl-initiated cycle is of the order of 10−11 cm3 molecule−1 s−1, which
means that significant ozone depletion begins when the concentration of Cl atoms is as low
as ∼10−10 times the initial ozone concentration, and that a Cl concentration of only 10−8
[O3]0 is sufficient to virtually deplete stratospheric ozone. The ozone-depleting catalytic
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Fig. 12.5 Atmospheric ozone depletion caused by a catalytic cycle initiated by an active species X (X could be, for instance, OH,
NO or Cl). Numbers in boxes are values of the rate constant k5, for the reaction: X+ O3 → XO+ O2, in cm3

molecule−1 s−1. [O3]0 is the concentration of ozone in the absence of species X. Note that minuscule concentrations
of the active species X can wipe-out atmospheric ozone, and that there is a threshold value of [X] above which ozone
destruction increases rapidly.

cycles are in reality considerably more complex that the examples that we considered here
but the behavior depicted in Fig. 12.5 is qualitatively correct.

It is important to point out that the laws of thermodynamics are not “violated” by the
fact that ozone concentration in the atmosphere is not at equilibrium with that of oxygen.
This non-equilibrium ozone concentration is kept at a (more or less) constant level by a
continuous supply of energy, in the form of solar photons that split oxygen atoms in the first
reaction of the Chapman cycle (equation (12.114)). Production of ozone, and its persistence
in a concentration far greater than the equilibrium concentration, are dynamic processes that
depend on the continuous operation of this photochemical reaction. If ultraviolet radiation
were to be turned off permanently then ozone, and atomic oxygen, would convert to the
stable species O2, at rates dependent on the specific reaction mechanism.
The two first reactions of the Chapman cycle can be combined to yield reaction (12.113).

The enthalpy change for this reaction is 285.4 kJ. We can calculate the total energy of the
photons consumed by this reaction with the formula:

Uν = hcA

λ
, (12.134)

where h is Planck’s constant, c is the speed of light, A is Avogadro’s number, and λ is the
wavelength of the photon. It is found experimentally that photodissociation of O2 occurs for
photons of λ< 240 nm (see also Chapter 13), from which we calculateUν > 498 kJ mol−1.
There is more than enough energy to account for the higher enthalpy of ozone relative to
oxygen. Where does the energy excess go? Because of conservation of momentum, the
photons’ momentum (= hν/c) must be transferred to the oxygen atoms, increasing their
translational kinetic energy. This energy influx is then distributed throughout the gas by
molecular collisions, increasing its temperature and therefore its entropy. We return to this
discussion in the next chapter.
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12.4 Controls on rate constants

Much of this chapter has focused on dynamic processes, by which we mean that the
thermodynamic state of the system changes with time. Rates are quantified by means of
“constants”, such as chemical diffusivities and reaction rate constants. But what determines
the values of these “constants”?We shall briefly discuss two important classes of processes:
thermally activated processes and photoactivated processes.

12.4.1 Thermally activated processes. Arrhenius law

The rates of many natural processes, such as chemical diffusion, viscous flow (which we
discussed in Chapter 3 and which, as we saw there, corresponds to diffusion of momen-
tum) and thermally activated chemical reactions, vary exponentially with temperature
according to:

Ψ =Aexp

(
− Ea

RT

)
, (12.135)

where A and Ea are positive constants and Ψ is a parameter that describes the charac-
teristic rate of the process. For example, Ψ can be the chemical diffusion coefficient D
(Section 12.2.2), the rate constant of a chemical reaction, k (Section 12.3.1), or the viscous
flow shear rate du/dx (Section 3.7.4). In the latter case the parameter Ψ is the rate of
shearing, which at constant shear stress is the inverse of the viscosity µ (equation (3.7)).
Because viscosity, rather than its inverse, is the parameter that is used to measure the rate of
momentum transfer the negative sign does not appear in the exponential factor of equation
(3.3.1). Otherwise that equation is identical to (12.135).
Equation (12.135) is known as Arrhenius law, after the Swedish physical chemist Svante

Arrhenius, who discovered it experimentally. If we think of Arrhenius law as an empirical
macroscopic relationship then it is not necessary to attach any physical meaning to the
constants A and Ea . We can nonetheless note that Ea has units of energy, and it is a
quantity known as the activation energy for the process in question. The units of A, known
as the pre-exponential factor, vary depending on what the parameter Ψ represents, but
they always include the factor [T ]−1. From a purely macroscopic point of view we can
think of A as the limiting value of Ψ at very high temperature. We can, however, attach
more specific physical meanings to the two constants, which relate to the microscopic
nature of the processes in question. In this view A is a quantity that is proportional to
the rate at which microscopic events take place. The exponential factor exp(−Ea/RT )
is the probability that a given event will produce a specific outcome. For example, if Ψ
corresponds to the rate constant of a chemical reaction then the events would be molecular
collisions, and the exponential factorwould describe the probability that a given collision has
enough energy to break atomic bonds and result in chemical recombination. If Ψ describes
diffusion of matter or momentum then the events would be excursions of atoms away from
their equilibrium positions and the exponential factor would be the probability that a given
excursion is energetic enough to cause an atom to jump from its initial equilibrium position
to a neighboring one. In every case the probability tends to zero as temperature goes to zero.
Then no events have enough energy to accomplish the desired result, and the macroscopic
process stops. The probability tends to one at high temperature, so that all events accomplish
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the desired result and the rate of the macroscopic process approaches some maximum, but
finite, value.
Arrhenius law is a reasonably good first approximation to the behavior of thermally acti-

vated processes. Chemical diffusivities and reaction rate constants are commonly tabulated
in the form of values of the A and Ea parameters in equation (12.135). An example is the
large database of reaction rate constants, from which the values used in Worked Exam-
ple 12.3 were obtained, maintained on-line by the U.S. National Institute of Science and
Technology (NIST Chemical Kinetics Database). A compilation of chemical diffusivity
parameters of geological interest (used in Worked Example 12.1) can be found in Zhang
(2008).
Equation (12.135) is not a complete physical picture, however. For example, it is found

that the pre-exponential factor is generally a function of temperature, and pressure depen-
dencies of the pre-exponential factor and the activation energy also exist. Thesemacroscopic
effects point to a microscopic mechanism that is more complex than what I describe here.
Rigorous discussions of these topics can be found, for example, in the books by Logan
(1996); Houston (2006); Borg and Dienes (1988), and with specific focus on geological
processes, Poirier (1985) and Zhang (2008).

12.4.2 Photochemical processes

Thermal energy is incapable of initiating a chemical reaction if the resulting kinetic energy
of the molecules is not sufficient to break interatomic bonds. Even at low temperature, how-
ever, individual molecules may acquire excess energy and become reactive by absorbing
photons of specific wavelengths (see also Chapter 13). An example of this is the initiation
step of the Chapman cycle.At the temperature of the stratosphere, and even at temperatures
considerably higher than this, O2 molecules do not have sufficient kinetic energy to disso-
ciate as a result of collisions, but a molecule of O2, regardless of its temperature, dissociates
when it absorbs an ultraviolet photon. This is not a thermal process, which means that it
does not rely on a statistical distribution of molecular speeds and on the probability that the
speeds of some molecules will exceed some characteristic threshold. The rate constants for
photochemical reactions are therefore not described by equation (12.135). Partly for this
reason it is customary to use a different symbol for the rate constants (j instead of k), even
if the rate laws are the same regardless of the nature of the activation process.
Photochemical reactions are activated by radiation within a specific range of wave-

lengths. For example, photodissociation of O2 (the first reaction in the Chapman cycle)
requires ultraviolet photons with wavelengths shorter than 240 nm. There are reactions,
called radiolytic reactions, that require higher energy photons, in the X-ray and gamma
part of the spectrum. We can expect that the rate constant will vary directly with the inten-
sity of the radiation of the required wavelength (number of photons per unit of area per
unit of time, i.e., photon flux) and with the absorption cross section, which we can think
of as the effective target area offered by the molecules to the photon flux (more on this in
Chapter 13). We write this relation as follows:

j =
∫
I (λ)σ (λ)dλ, (12.136)

where I (λ) is the photon flux at wavelength λ, σ(λ) is the absorption cross section, which
also varies with wavelength, and the integral is over the range of wavelengths within which
photoactivation takes place.
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This equation is appropriate, for example, to photoactivation of a chemical reaction
in a laboratory environment. Photochemical reactions in planetary atmospheres are more
complicated, because the photon flux varies with elevation. It is maximum, and equal to the
incident solar flux, at the top of the atmosphere, and then decreases as photons are absorbed
by atmospheric gases. If, for the sake of simplicity, we consider only a hypothetical situation
in which solar radiation is always perpendicular to the planet’s surface (e.g. noon at the
equator on the day of the equinox), then we have, by Beer–Lambert’s law of radiation
(Section 13.2.4):

I (λ)= I0(λ)e
−τλ , (12.137)

where I0(λ) is the photon flux at the top of the atmosphere and τλ is a non-dimensional
absorption length, known as the optical thickness (Section 13.2.4), and given by (see also
equation (13.55)):

τλ =
∑
i

σi(λ)

∫
Ni(z)dz, (12.138)

where σi is the absorption cross section of chemical species i, Ni is the number density
of species i (molecules per unit volume), the integral is from the top of the atmosphere to
the elevation of interest, and the summation is over all atmospheric species that absorb at
wavelength λ. If the incident solar radiation is not perpendicular to the planet’s surface then
a geometric correction must be applied to Beer–Lambert’s law.
Substitution of (12.138) in (12.137), and then in (12.136), yields the value of the rate

constant as a function of elevation:

ja(z)=
∫
I0(λ)e

−∑i σi (λ)
∫
Ni(z)dzσa(λ)dλ, (12.139)

where σa is the absorption cross section of the photoactivated molecule of interest. As we
should expect, this equation states that the rate constant decreases with increasing optical
thickness, i.e. as the planet’s surface is approached. Photochemistry is therefore a more
important process in the stratosphere than in the troposphere, for the simple reason that
there is a higher photon flux. The rate constants will obviously also vary with time of
day and season, as the angle of the incident solar radiation and hence the photon flux will
vary. Rate constants for atmospheric photochemistry vary over many orders of magnitude
across a planetary atmosphere. The values of j1 and j3 used in Worked Example 12.3
are approximate average values for the terrestrial stratosphere at an elevation of ∼30 km.
Since the rate of production and destruction of ozone is critically dependent on these rate
constants, it follows that the numerical results obtained there change with elevation.

12.5 An introduction to kinetics of heterogeneous processes

The kinetic behavior of homogeneous processes, such as chemical reaction in a homoge-
neous phase or diffusion in a single continuous phase, can be set-up mathematically in
a relatively straightforward and unambiguous fashion – which of course does not mean
that the resulting equations are necessarily easy to solve. The mathematical description
of the kinetics of heterogeneous processes is less straightforward. It commonly involves
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sets of coupled differential equations that describe rates of chemical reaction, heat transfer
and mass transfer. Simplifying assumptions are sometimes possible, though. Consider the
following three simple examples.

(i) Crystallization of enstatite from a basaltic melt, which we can schematize as follows:

MgOmelt +SiO2 melt �MgSiO3 crystal.

(ii) Devolatilization of the assemblage magnesite + quartz:

MgCO3 crystal+SiO2 crystal �MgSiO3 crystal+CO2 vapor.

(iii) Weathering of enstatite at the Earth’s suface:

MgSiO3 crystal+ 3H2O�Mg2+aq +H4SiO4 aq+ 2OH−.

One way of analyzing the kinetic behavior of heterogeneous reactions such as these is to
assume that the locus of the chemical reaction is a homogeneous region of infinitesimal
extent, which we may call the reaction volume or reaction interface (Zhang, 2008). The
rate of the chemical reaction is then a function of its rate constant and of the affinity of the
reaction inside the infinitesimal reaction volume (equation (12.74)). The rate constants of all
three of these reactions are functions of temperature (equation (12.135)), and the affinity,
which is a linear combination of chemical potentials, varies with temperature, pressure
and composition. As the reactions proceed enthalpy is liberated or absorbed, and chemical
species are consumed and produced. The temperature and affinity in the reaction volume are
therefore determined by the relative rates of chemical reaction and heat andmass exchanges
between the reaction volume and its environment.
Crystallization of enstatite from a melt (reaction i) liberates enthalpy (�rH < 0) and

consumes MgO and SiO2 melt components. If the reaction volume were a closed system
then its temperature would increase and the concentrations of the reactants would decrease.
From the definition of affinity, equation (12.70), we can see that:

∂E

∂T
=�rS = �rH

T
(12.140)

and:

∂E

∂Xi
= νiRT

Xi

> 0, i : reactant. (12.141)

In a closed reaction volume the affinity would decrease and hence the reaction would slow
down, and eventually stop. There would also be an effect on the rate constant that would act
in the opposite direction, but this is likely to be minor at magmatic temperatures, at which
chemical reaction rates are always fast. In reality, however, crystallization sets up gradients
in temperature and chemical potential between the reaction volume and the surrounding
melt, so that heat is carried away from the reaction volume and chemical components are
transported towards it. If we assume that diffusion is the transport mechanism for both
heat and chemical components then we can conclude that mass transfer is the rate-limiting
process, as heat diffusivity at magmatic temperatures is ∼6 orders of magnitude greater
than chemical diffusivity (see Worked Examples 12.1 and 12.2). As a first approximation,
then, the kinetics of reaction (i) could be treated as a chemical diffusion problem.
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Consider now reaction (ii). This reaction is endothermic (�rH > 0) so that, if it took
place in a closed system, the temperature would decrease and the fugacity of CO2 would
increase. If the gas phase is a product then differentiation of (12.70) yields:

∂E

∂fj
= νjRT

fj
< 0, j : product (12.142)

so that it follows from (12.140) and (12.142) that the affinity in a closed reaction volume
would go down. Let us assume for the sake of argument that the decarbonation reaction (ii)
occurs in a permeable setting, inwhich, for example, a networkof cracks allows thegas phase
to escape as soon as it forms. If, as in the previous case, the temperature is high enough that
the reaction rate is much faster than heat diffusion, then we can consider two end-member
situations. If grain size is “infinitesimally fine” and the mixture of minute magnesite and
quartz crystals is perfectly random then we might be able to ignore mass transfer rates and
assume that the rate-limiting process is heat diffusion. For any “geologically reasonable”
grain size, however, it is likely that mass transfer will determine the rate of reaction (ii), but
there is an important qualitative difference with the crystallization reaction (i). In that case
diffusion of Mg and Si cations in the melt phase does not present a conceptual problem, but
in the case of the solid-state reaction (ii) this is not so. How do SiO2 and CaCO3 components
migrate to the reaction volume where enstatite and CO2 are produced? Does this happen
by solid-state diffusion? If so, which are the chemical species that actually diffuse, and
what is the underlying atomic lattice through which they diffuse? Or does mass transfer
take place by dissolution of the reactants in a fluid phase, for example the CO2 produced
by the reaction itself, and migration of the fluid phase? The rate-determining process may
be difficult to pin down, and even more difficult to quantify.
In the case of the weathering reaction (iii) we may assume that circulation of meteoric

water, i.e. advection, is the mechanism that accounts for both heat and mass transfer. Given
that advection ismuch faster than diffusion, and that fromArrhenius law (equation (12.135))
we can expect a small value of the rate constant for the chemical reaction at room temper-
ature, we may infer that weathering rates are likely to be controlled by chemical reaction
rates. The chief difficulty in quantifying the process in this casewould be in the experimental
determination of the required rate constants.

Worked Example 12.4 Relationships between affinity and progress variable

The attentive reader should have noticed that the statement that I made regarding reactions
(i) and (ii), to the effect that in a closed system the affinity of a reaction decreases as the
reaction proceeds, is always true. In fact, it is an alternative way of stating the Second Law
of Thermodynamics, which we can summarize as follows:

∂E

∂ξ
≤ 0. (12.143)

The inequality holds true in a closed system – it simply states the fact that in a spontaneous
chemical reaction the Gibbs free energy of the products is lower than that of the reactants.
In order for the equality to be true the rates of heat and mass transfer between the reaction
volume and its environmentmust exactlymatch the rates of change of enthalpy and chemical
species concentrations caused by the reaction.Assume for simplicity that a chemical reaction
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occurs in the linear regime defined by equation (12.80) (i.e. close to equilibrium, see also
Exercise 12.2). We can re-write this equation as follows:

∂ξ

∂t
= k1E , (12.144)

where k1 is a positive constant. To begin with, we note that (12.144) says that a chemical
reaction can only take place beginning from a non-equilibrium condition, as the reaction
rate vanishes for E = 0. This means that some degree of overstepping is always required in
order for reactions to occur in nature. For example, melting can only begin at a temperature
higher than the solidus, and crystallization cannot begin until temperature drops below the
liquidus. According to equation (12.144), the amount by which the reaction is overstepped
(i.e. the value of E ) will determine the rate at which melting or crystallization proceeds.We
can now look at different ways in which E may vary with the progress variable ξ .
Assume first that E is a constant. This could happen, for instance, during crystallization

of a well-stirred one-component system (e.g. ice from pure H2O), or during crystallization
from a very large reservoir of low-viscosity liquid (e.g. ocean water). Defining the value of
the progress variable at t = 0 as ξ0 = 0 we have:

ξ = k1E t , (12.145)

which states that the reaction will proceed indefinitely. The behavior becomes more inter-
esting if we consider the inequality in (12.143). This means that either heat or mass transfer
are not able to keep up with the chemical reaction rate. The exact functional form of the
derivative ∂E /∂ξ may be difficult to determine, but we can choose the simplest possible
function as an example. This is the linear law:

∂E

∂ξ
=−k2, (12.146)

where k2 is another positive constant. This constant must contain information about the
efficiency of the rate controlling process. For instance, if the rate is controlled by chemical
diffusion then k2 must vary inversely with diffusivity: the lower the diffusivity, the more
the affinity will decrease with reaction progress, and thus the larger the magnitude of k2
must be. Let the affinity at ξ0 = 0 be E0. Then:

E = E0− k2ξ (12.147)

so that, substituting in (12.144) and integrating:

ξ = E0
k2

(
1− e−k1k2t

)
. (12.148)

We now note that the reaction goes to completion as t→∞ and that, because k1 and k2 are
positive constants:

lim
t→∞ξ =

E0

k2
. (12.149)

Say that the process that we are modeling is crystallization from a silicate melt and that
we assume, rather simplistically, that the magnitude of the progress variable ξ represents



615 Exercises for Chapter 12

crystal size. Chemical diffusivity in melts varies inversely with viscosity, so that k2 varies
directly with viscosity. Equation (12.149) then states that crystals that grow from a viscous
melt (e.g. a water-poor rhyolite) should be smaller than those that grow from a fluid melt
(e.g., a water-saturated pegmatite).Although duringmagmatic crystallization there are addi-
tional complications that we have ignored, most notably the generation and availability of
nucleation sites, equation (12.149) provides at least a qualitative kinetic explanation for an
observation that we became familiar with during our introductory physical geology course.

Exercises for Chapter 12

12.1 Derive the full set of interdiffusion equations, including the Onsager reciprocal terms,
for a ternary system consisting of two dilute solutes and a solvent (Section 12.2.3).

12.2 Find a linear approximation to (12.74) by writing rf = rf ,eq + δrf , where rf ,eq is
the rate of the forward reaction at equilibrium, by lineariting the exponential function
for E

RT
<< 1. Use your linearized expression to find a relationship between the phe-

nomenological coefficient L and rf . Establish a criterion by which a reaction can be
considered to be close to equilibrium.

12.3 Write differential and integral rate laws for the elementary reactions:
(i) 2A→ products
(ii) 3A→ products
(iii) 2A+B→ products
(iv) A+B+C→ products.
(Hint: use Maple wherever possible.)

12.4 Find expressions for the half lifes and time scales of the elementary reactions:
(i) 2A→ products
(ii) A+B→ products
(iii) 2A+B→ products.
For (ii) and (iii) consider three cases: [A0] = [B0], [A0]>> [B0] and [A0]<< [B0].

12.5 Compare the exact solution for the concentration of a short-lived species [B]
(equation (12.104)) with the steady state solution (12.105). Establish a criterion for
how much time must be allowed to elapse for the steady state solution to become
an acceptable approximation. Also, describe some conditions under which the steady
state solution is never an acceptable approximation.

12.6 Estimatewhat would be the half life of ozone in the terrestrial atmosphere if ultraviolet
radiation were to stop suddenly. Comment on likely night vs. day variations in ozone
concentration.
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Topics in atmospheric thermodynamics and

radiative energy transfer

This chapter seeks to answer three basic questions about the physical nature of planetary
atmospheres. First, why do some planets have atmospheres and others do not? Second, what
controls the mass and the thickness of a planetary atmosphere? Third, how is a planet’s
surface temperature affected by the existence of an atmosphere? Some of the answers that
we find here will be the starting point for our discussion, in the last chapter, of the chemical
evolution of atmospheres in the terrestrial planets and the possible relationships between
atmospheric composition and the origin of life.

13.1 Gravitational binding of planetary atmospheres

Whether or not a planet has an atmosphere depends on the relationship between the gravita-
tional potential at the planet’s surface and the translational kinetic energy of gas molecules.
The latter is of order kBT (Section 1.14), whereas the gravitational potential at the planet’s
surface can be written asΦ = 4/3πGr2ρ (from equation (1.8)). Recalling thatΦ is gravita-
tional potential energy per unitmass,we take the productΦu,whereu= 1.66054×10−27 kg
is the atomic mass unit, and form the non-dimensional ratio:

^= 3kBT

4πGr2ρu
. (13.1)

The parameter ^ is an estimate of the tendency of a planetary atmosphere to escape. For
reasons that we will see later the absolute value of^ does not have a rigorous interpretation,
but the relative value among different planets is a good indicator of whether or not a planet
is likely to have an atmosphere, and, to some extent, of what type of volatile species may
be most abundant. The smaller the value of ^, the more strongly bound an atmosphere is,
and the more likely it is to contain a large proportion of low molecular weight species.
Calculated values of ^ for planets and major moons are shown in Fig. 13.1, arranged

in order of increasing value of ^. The value of T used in this graph is the temperature at
the planet’s surface (or its equilibrium temperature, Worked Example 13.1). As we shall
see this is not the best choice, but it is the simplest one. Regardless, we note that, with
one exception, the parameter ^ discriminates correctly between bodies with “substantial”
atmospheres (to the left of Triton) and those without one (to the right of Triton). Triton’s
faint atmosphere marks the boundary. The exception is Pluto, which is thought to have an
atmosphere comparable to that of Triton, but given the non-trivial uncertainties in Pluto’s
physical parameters the significance of this is not clear – it will likely remain unresolved
until theNewHorizons spacecraft arrives in the Pluto–Charon system in 2015. Ignoring this
exception, equation (13.1) shows, for instance, that the reason why Titan has an atmosphere
but none of the Galilean satellites of Jupiter does is the fact that they lie closer to the
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Fig. 13.1 Value of the non-dimensional parameter^ (equation (13.1)) for the planets and large moons of the Solar System.
Triton marks the boundary between bodies with atmospheres (to the left) and airless bodies (to the right), the one
outlier being Pluto.

Sun. Interestingly, the plot suggests that Europa is as unlikely to be able to hold on to an
atmosphere as Mercury, and that the Moon is even more hopeless in this respect.
Focusing on the left side of the plot, we note that the four giant planets have very small

^ values, ranging from 0.0007 to 0.003. This means that their atmospheres are bound very
tightly, but it also means something else. In equation (13.1) I used a constant mass, u, to
obtain the non-dimensional parameter^, but the masses of different gas species, and hence
their gravitational binding energies, differ. For instance, the gravitational potential energy
of an H2 molecule (mass= 2) is more than twenty times smaller than that of a CO2 molecule
(mass= 44).At a given temperature, however, their kinetic energies are the same, so that the
hydrogenmolecule is muchmore likely to escape than the carbon dioxide molecule.We can
also think of this in terms of velocities: the gravitational potential determines the planet’s
escape velocity (Section 2.4.1), whereas molecular speeds are a function of temperature
and molecular mass (Section 1.14). Molecular speeds follow a statistical distribution with
long “high speed” tails (Fig. 1.12), so that it is generally the case that only some fraction
of the total number of gas molecules in a planetary atmosphere have speeds greater than
the planet’s escape velocity. The rate at which gases can escape a body’s gravitational
attraction varies directly with the fraction of molecules that have speeds that exceed the
escape velocity, and at a given temperature this fraction is greater for light species (e.g. H2)
than for heavy ones (e.g. CO2). We can then (qualitatively) interpret a very small value of
the parameter ^ as signifying that even light molecules will generally be able to remain
gravitationally bound to the planet, because only a very small portion of the high velocity
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tail represents molecules with enough velocity to exceed the escape velocity. The giant
planets can therefore be expected to be rich in the lightest volatiles, hydrogen and helium,
which is indeed the case. By comparison, Titan has a much higher ^ value, so that even
though its temperature, given by its solar distance, is similar to that of Saturn, its atmosphere
is dominated by the much heavier species N2. The value of the parameter for the Galilean
satellites of Jupiter is higher still, consistent with the fact that not even N2 molecules have
remained gravitationally bound.
Among the three large terrestrial planets Earth has a significantly lower ^ value than

Venus and Mars. This is part of the explanation for why Earth is so much richer in water
than the other two planets. However, the fact that Europa, Ganymede, Callisto and even the
small icy moons of Saturn are richer in water than Earth suggests that the temperature at
which a volatile species condenses and/or freezes is also an important factor in determining
whether H2O can remain gravitationally bound to the planet.
The apparently simple physical picture suggested by Fig. 13.1 becomes complicated

when we consider it in detail. For instance, the characteristic temperature that determines
whether molecules have enough kinetic energy to escape is not the temperature at the
planet’s surface (which I used in the figure), but rather the temperature at an elevation at
which atmospheric density is low enough that molecular collisions are unlikely, so that a
molecule that is moving faster than the escape velocity will indeed escape before it has a
chance of colliding with another molecule. The elevation where this becomes true, and the
temperature at that elevation, are not as simply defined as the surface temperature (or the
equilibrium temperature, Worked Example 13.1). Also, the escape mechanism on which
equation (13.1) is based, which is known as thermal escape, is not the only way in which a
planet can lose its atmosphere, and perhaps not even the dominantway. Further discussion of
these topics is beyond the scope of this book but clear mathematical descriptions, including
rigorous treatments of thermal and other escape mechanisms, can be found, for example,
in Hunten (1973), Chamberlain and Hunten (1987), Zahnle and Kasting (1986), Zahnle et
al. (1990) and Bohren and Albrecht (1998).
Should we expect the mass of a planet’s atmosphere to be related in some simple fashion

to the parameter^?Atmospheric pressure at a planet’s surface is given by the weight of the
gas column. Calling the atmospheric mass density per unit of areama, themean atmospheric
pressure at the planet’s surface, P0, is given by:

P0 =mag, (13.2)

where g is the gravitational acceleration at the planet’s surface, assumed to remain constant
throughout the atmospheric thickness. Substituting numerical values of P0 and g for the
five solid planetary bodies with substantial atmospheres we find that atmospheric mass
densities vary by six orders of magnitude, as follows:

Venus∼ 1.1× 106 kg m−2

Titan∼ 1.1× 105 kg m−2

Earth∼ 1.0× 104 kg m−2

Mars∼ 1.7× 102 kg m−2

Triton∼ 2.1× 100 kg m−2
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Comparing these values with Fig. 13.1 reveals no correlation between atmospheric mass
and^.What determines atmospheric mass, then?We begin by considering planetary accre-
tion, the bulk of whichmust have taken placewhile the growing solid bodies were immersed
in the solar nebula. Rocky planets are likely to have had primordial atmospheres of solar
composition, i.e. dominated by hydrogen and helium. These primordial atmospheres persist
in the giant planets (which have a rocky core – the image that comes to mind is that of a
dandelion), but they have been lost from the solid planets (think of dandelions after you
blow on them). Loss of primordial atmospheres probably took place by a combination of
gradual processes, such as thermal and non-thermal escape (see Hunten, 1973; Chamber-
lain & Hunten, 1987), and catastrophic processes such as atmospheric blowoff caused by
large impacts (Pepin, 1997). This physical picture is supported by the observed abundances
and isotopic compositions of noble gases in planetary atmospheres (Pepin, 2006). It is
unlikely that whatever atmosphere the proto-Earth may have had would have been capable
of surviving the Moon-forming event.
Present day atmospheres are therefore “secondary”, in the sense that they were acquired

after, and perhaps long after, planetary accretion was substantially completed, and the pri-
mordial atmospheres had been lost. The present day atmospheric masses and compositions
are therefore determined by the relative rates of addition, removal and modification of
individual volatile species since loss of the nebular atmosphere. Buildup of the secondary
atmospheres must have occurred via a combination of late accretion of volatile-rich mate-
rials (e.g. comets) and volcanic outgassing. The rates of these two processes during the
formative stages of the present-day atmospheres, almost certainly more than 4 billion years
ago, are very difficult to pin down with any degree of certainty. Yet those rates are largely
responsible for determining the initial masses and chemical compositions of the secondary
atmospheres. Crucially, the compositions of volcanic gases and cometary volatiles are likely
to have been different, and are poorly constrained.
Removal of volatile species is perhaps easier to constrain. It takes place by three distinct

pathways: escape to space, condensation, and chemical reaction with the planet’s surface
materials.As we saw above, the effectiveness of the first of these pathways depends at least
in part on the planet’s mass (i.e. its gravitational attraction) and distance from the Sun (i.e.
temperature), andmay selectively remove light volatile species. For instance, we can expect
that molecular and atomic hydrogen escape planetary atmospheres much more effectively
than, say, molecular nitrogen or carbon dioxide, and that hydrogen loss will be more severe
from Venus and Mars than from Earth (Fig. 13.1). Hydrogen-bearing molecules such as
H2O and CH4 are photodissociated in the upper atmosphere (Section 12.4.2). Escape of the
resulting hydrogen atoms is equivalent to an irreversible loss of water or methane, and an
increase in the oxidation state of the planet’s surface. Replenishment of these species in the
atmosphere by evaporation of liquid or solid reservoirs provides a continuous pathway for
planetary desiccation and oxidation (Chapter 14), which may have gone to near completion
in Venus and perhaps somewhat less in Mars.
Condensation of volatile species removes them from the atmosphere and tends to protect

them from escape. The process is particularly efficient if volatile species freeze, as in
Europa, Ganymede, Callisto and Triton. The surfaces of these bodies can be thought of
as collapsed atmospheres, that have been protected from escape by virtue of the very low
vapor pressures in equilibrium with solid phases. Since the rate of photodissociation is
proportional to concentration (e.g. equation (12.83)), the low vapor pressure of H2O in
equilibrium with a planetary surface composed of ice hinders hydrogen loss.
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Volatile species can also be removed from the atmosphere by reaction with surface mate-
rials. One example is precipitation of carbonates by reaction of atmospheric CO2 with
aqueous cations leached from silicate minerals. This process is thought to have scavenged
10–60 bars’ worth of CO2 from the terrestrial atmosphere (see for example, Walker, 1985;
Kasting & Ackerman, 1986; Kasting, 1987; Tajika & Matsui, 1993), which would other-
wise have present-day composition, mass, surface pressure and temperature not all that
different from those of Venus (and Gustav Mahler would not have existed, which would
have made the universe a much poorer place). Another example is the effect of Fe2+ as a
sink for atmospheric O2. Oxidation of Fe2+ has sequestered oxygen liberated by photodis-
sociation of H2O in the Martian atmosphere over billions of years, generating the strongly
oxidized Martian surface. At least in the case of Earth, present day atmospheric composi-
tion is also the result of modification by biological activity, including photosynthesis and
also unnecessary and irresponsible use of pick-up trucks, minivans, jet-skis, snowmobiles,
street lighting, insanely cold air conditioning, suffocating heating, and other sources of
anthropogenic greenhouse gases.

13.2 Equilibrium thermodynamics in a gravitational field

The equations of equilibrium thermodynamics that we have discussed to this point ignore
the existence of a gravitational field. This is generally acceptable locally, for example,
in a laboratory setting or at the scale of heterogeneous phase equilibrium in a planetary
body. However, if we are interested in the equilibrium distribution of species in a planetary
atmosphere, then the effect of the gravitational force must be taken into account. Each of
the terms in the fundamental equation for Gibbs free energy:

dG=−SdT +V dP +
∑
i

µidni (13.3)

is the product of a pair of conjugate variables, one intensive and the other extensive. In
every case the intensive variable can be thought of as a field, such that gradients in the
field drive displacement of the corresponding extensive quantity. Thus, a temperature gra-
dient generates heat flow, or, equivalently, entropy flow; a pressure gradient causes volume
change, and a gradient in chemical potential drives mass transfer. Another way of stating
these conditions is that dT = 0 implies thermal equilibrium, dP = 0 implies mechanical
equilibrium relative to expansion work, and dµ = 0 implies chemical equilibrium.

If the system is immersed in a non-uniform gravitational field then there is an additional
contribution to its energy,which arises from thework associatedwith displacement ofmatter
in the gravitational field. This is mechanical work, but it is distinct from the expansion work
that is encapsulated in theV dP term in equation (13.3). IfΦ is the gravitational potential (=
gravitational potential energy per unit mass, equation (1.8)) at a point, andmi the molecular
weight of component i, then the productmiΦdni is thework associatedwith an infinitesimal
change in the amount of component i at the point. This contribution must be included in
the Gibbs free energy of a system embedded in a gravitational field, which now becomes:

dG=−SdT +V dP +
∑
i

(
µi +miΦ

)
dni . (13.4)
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By analogy with equation (5.24), a system in a gravitational field is in equilibrium relative
to transfer of component i if:

d
(
µi +miΦ

)
= 0 (13.5)

or, as molecular weight is a constant:

dµi +midΦ = 0. (13.6)

In the absence of a gravitational field, or if the field can be considered to be uniform,
dΦ = 0 and we recover (5.24). However, if dΦ �= 0, which is the general case, and is
in particular true in the neighborhood of planetary bodies, then equilibrium with respect
to mass transfer requires that dµ �= 0. Thus, equilibrium distribution of matter in a non-
vanishing gravitational field implies a gradient in chemical potentials. Moreover, because
chemical potential is in general a function of temperature, pressure and composition, it
follows that gradients in at least some of these variables must exist in matter at equilibrium
in a gravitational field.
We can write the total change in chemical potential of component i as follows:

dµi =
(
∂µi

∂T

)
P ,Xi

dT +
(
∂µi

∂P

)
T ,Xi

dP +
∑
j �=i

(
∂µi

∂Xj

)
P ,T

dXj (13.7)

or, by using (5.37) and (5.38), in terms of partial molar entropy and partial molar volume:

dµi =−sidT + vidP +
∑
j �=i

(
∂µi

∂Xj

)
P ,T

dXj . (13.8)

Substituting in (13.6):

−sidT + vidP +
∑
j �=i

(
∂µi

∂Xj

)
P ,T

dXj +midΦ = 0, (13.9)

which is the equilibrium condition for each component i of a multicomponent phase
immersed in a gravitational field. Summing over all components we get the equilibrium
condition for the phase:

−SdT +V dP +
∑
i


Xi∑

j �=i

(
∂µi

∂Xj

)
P ,T

dXj


+MdΦ = 0, (13.10)

where S andV are themolar entropy and volume of the phase, andM is themolecular weight
of the phase (=weighted average of the molecular weights of the phase components). From
the Gibbs–Duhem equation (6.7) we have:(∑

i

Xidµ
i

)
P ,T

=
∑
i


Xi∑

j �=i

(
∂µi

∂Xj

)
P ,T

dXj


= 0. (13.11)

So (13.10) simplifies to:

−SdT +V dP +MdΦ = 0. (13.12)
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These differential equations are general, but they are not necessarily simple to solve. In
particular, the entropy term always introduces significant conceptual and computational
difficulties. Here we restrict ourselves to isothermal processes. At constant temperature,
and noting that density, ρ =M/V , we re-write (13.12) as follows:

dP

dΦ
=−ρ, (13.13)

which is the condition of hydrostatic equilibrium. In order to see this, use equation (1.8) to
calculate dΦ/dr, apply the chain rule to calculate dP/dr, and compare to equation (2.34).

13.2.1 Pressure in a one-component isothermal atmosphere.
Atmospheric scale height

Let us assume that a planetary atmosphere is composed of a single ideal gas species, so
that M is constant with elevation, and that the atmosphere is isothermal (see also Exercise
13.1). From the ideal gas EOS we have:

ρ = PM

RT
. (13.14)

Substituting in (13.13):

dP

P
=− M

RT
dΦ (13.15)

and integrating:

P

P0
= exp

[
− M

RT
(Φ−Φ0)

]
, (13.16)

where P0, Φ0 could be the pressure and gravitational potential at the planet’s surface, for
instance. With this convention, as we move up in the planet’s atmosphere it is Φ > Φ0

(recall equation (1.8)), so that P < P0, as expected. Using the approximate expression for
gravitational potential energy that we discussed in Worked Example 1.1, and using h > 0
for elevation above the planet’s surface we get:

P = P0 exp

(
−Mgh

RT

)
. (13.17)

Provided that atmospheric temperature does not vary greatly, so that it makes sense to
talk of a “characteristic” temperature for the atmosphere, this equation provides a first
approximation to the variation in atmospheric pressure with elevation. In particular, it leads
to the definition of the scale height of the atmosphere, H :

H ≡ RT

Mg
(13.18)

so that:

P = P0 exp

(
− h

H

)
(13.19)
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Thus, when elevation changes by H atmospheric pressure varies by a factor e. This gives
an indication of how quickly an atmosphere “fades” with elevation: the greater the scale
height, the more the atmosphere extends into space. Substituting appropriate values for the
five planetary bodies with substantial atmospheres in equation (13.18) we calculate scale
heights of: 7.9 km for Earth, 10.7 km for Mars, 13.3 km for Triton, 14.9 km for Venus and
19.8 km for Titan. Of all the bodies with air in the Solar System the Earth is the one that
“holds” its atmosphere closer to the solid surface. At the other end are Venus and Titan,
that have the most “stretched out” atmospheres, although for different reasons (see equation
(13.18)): Venus because of its high temperature, and Titan because of its low gravitational
acceleration. In the case of Triton the low gravitational acceleration is offset by the very
low temperature. Note that the definition of scale height, equation (13.18), is similar to
that of the parameter ^, equation (13.1), except that H is a dimensional quantity, and the
composition of the atmosphere is accounted for by means of the mean molecular weight,
M . The scale height is, however, undefined for an airless body, but^ is independent of the
existence of an atmosphere.

13.2.2 Compositional stratification in a fluid immersed in a gravitational field

Consider a fluid composed of an arbitrary number of chemical species. The chemical
potential of species i is given by:

µi = µ0,i +RT lnfi (13.20)

from which, at constant temperature:

dµi =RT d lnfi . (13.21)

Substituting in (13.6):

RT d lnfi +midF= 0 (13.22)

and integrating:

fi = fi,0 exp
[
− mi

RT
(Φ−Φ0)

]
(13.23)

where fi,0 is the fugacity at the reference level, not the standard state fugacity. This rela-
tionship is general, and must be satisfied by every species in a multicomponent gas phase
immersed in a gravitational field. Suppose that the atmosphere behaves as an ideal gas. We
can then substitute partial pressure for fugacity, which simplifies things considerably. By
using, as in the previous example, h for elevation relative to the planet’s surface we find:

pi = pi,0 exp

(
−migh

RT

)
, (13.24)

where pi is the partial pressure of species i.
Ifwenowconsider two species in the gas phase, call them1and2,with differentmolecular

weights we see that the ratio between the partial pressures of the two species varies as a
function of elevation as:

p1

p2
= p1,0

p2,0
exp

[
(m2−m1)

gh

RT

]
, (13.25)
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Fig. 13.2 Variation with height of atmospheric pressure and methane mol fraction in Titan’s atmosphere, assuming surface
pressure= 1.5 bar and constant temperature= 90 K. H is the atmospheric scale height (equation (13.18)).

which shows that the composition of the gas phase will be stratified according to the
molecular weights (or densities) of the component species. For instance, if m2 > m1, then
the ratio p1/p2 increases with elevation. The gas becomes enriched in the lighter component
towards the top – which of course we already knew, but we can now quantify the effect.
Equation (13.25) shows that the extent to which a fluid phase fractionates in a gravitational
field varies directly with the difference in molecular weights of the component species and
with the gravitational acceleration, and inversely with temperature.
Figure 13.2 shows an application to Titan’s atmosphere. We assume that the atmosphere

consists of a binary mixture of CH4 and N2, with X(CH4) at the surface equal to 0.05,
a surface pressure of 1.5 bar and a characteristic atmospheric temperature of 90 K. The
partial pressure of each gas as a function of elevation is calculated with (13.24), the
mol fraction of methane is X(CH4) = p(CH4)/(p(CH4) + p(N2)), and the total atmo-
spheric pressure is p(CH4) + p(N2). The latter value is virtually indistinguishable from
the value calculated with (13.19) because, even if the methane/nitrogen ratio changes sub-
stantially with elevation, nitrogen is always the dominant species. The mol fraction of
methane more than doubles between the surface and the upper atmosphere, which is impor-
tant given that methane is destroyed by photochemical reactions in the upper atmosphere
(Section 12.4.2), leading to irreversible hydrogen loss. Since the photochemical reaction
rate is proportional tomethane concentration, atmospheric stratification enhances the rate of
hydrogen loss.
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13.3 Radiative energy transfer

Although advection is an important heat transfer mechanism in some atmospheric layers,
solar heating of atmospheres and planetary surfaces, and heat loss of planets to space, take
place by radiation.We therefore devote this section to a discussion of radiative heat transfer,
and apply it to construct a simple quantitative model of greenhouse warming.

13.3.1 Fundamental concepts and equations of thermal radiation

All materials, at any temperature, emit and absorb electromagnetic radiation. The rates
at which a body emits and absorbs electromagnetic energy are not necessarily the same,
however. If they are then there is no net conversion between internal and electromagnetic
energies, but if, say, the rate of emission is higher than the rate of absorption then internal
energy is converted to electromagnetic energy, and conversely if absorption outpaces emis-
sion. At the microscopic level, conversion between internal energy and electromagnetic
radiation corresponds to exchanges between the vibrational, rotational and/or translational
kinetic energy modes of atoms and molecules on one side and energy of photons on the
other.
Here we will assume that all radiant surfaces behave as diffuse emitters, which means

that they emit radiation with the same intensity in all directions. This is not necessarily
true in nature, but this simplification makes it possible to avoid a significant amount of
terminology, algebra and solid geometry, and concentrate on the fundamental physics of
radiative heat transfer. We define the irradiance, F , as the total flux (energy per unit area
per unit time) of electromagnetic radiation over the entire spectrum and traveling in all
directions. The monochromatic irradiance, Fλ, is the energy flux for radiation of a single
wavelength λ. The two variables are obviously related by:

F =
∫ ∞

0
Fλdλ. (13.26)

It is often necessary to distinguish between emitted and incident energy flux, which we will
do explicitly (special terms exist for these different quantities, but we will not introduce
them here).
Electromagnetic radiation travels unimpeded in vacuum, but it interacts with matter.

Interactions between radiant energy andmatter can be described in terms of the absorptivity,
Aλ, the transmissivity,Θλ, and the reflectivity,Rλ, of the medium, all of which are functions
of wavelength. These macroscopic parameters arise frommicroscopic interactions between
photons and particles of matter (molecules for the range of wavelengths of interest in
planetary processes, see Section 13.3.3). Each of these parameters varies between 0 and 1
and represents the fraction of the irradiance of wavelength λ that is absorbed, transmitted
and reflected, respectively. Their sum is always equal to 1, i.e.:

Aλ+Θλ+Rλ = 1 (13.27)

and also:

A+Θ +R = 1, (13.28)
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where A, Θ and R are the total absorptivity, transmissivity and reflectivity, integrated over
all wavelengths. These equations state energy conservation: the total incident flux of radiant
energymust be accounted for in terms of a fraction that is reflected, a fraction that is absorbed
and a fraction that is transmitted.
The spectrum and intensity of the electromagnetic radiation emitted by a body depends

on its temperature and on another macroscopic parameter called the emissivity, ε (ε ≤ 1),
which is a function of temperature and of wavelength.Ablack body is defined as a substance
that emits and absorbs the maximum possible intensity of radiation at all wavelengths and
in all directions. Thus, for a black body Aλ = ελ = 1 andΘλ = Rλ = 0, for all wavelengths
and at all temperatures. The black body monochromatic emission flux, F∗λ, also called the
spectral emissive power, is given by Planck’s radiation law:

F ∗λ =
2πhc2

λ5
(
e

hc
λkBT − 1

) , (13.29)

where h is Planck’s constant, kB is Boltzmann’s constant and c is the speed of light. This
equation was first proposed semi-empirically by Planck in 1901 and became one of the
foundational pillars of quantum mechanics. Its derivation is beyond the scope of this book
but can be found, for example, in Incropera and DeWitt (1996) or Jones (2000). Equation
(13.29) is a function of two variables, temperature and wavelength. It yields the spectrum
of the electromagnetic radiation emitted by a black body at a constant temperature T, i.e.
the distribution of emitted energy flux as a function of wavelength (Fig. 13.3). The curve is
a “skewed bell”. From the peak, radiation flux falls off steeply towards shorter wavelengths
and more gently towards longer wavelengths. The wavelength at which the maximum flux
occurs can be found by taking the derivative dFλ∗/dλ and equating it to zero (see Exercise
13.3). The result, known as Wien’s displacement law, is:

λpeak ≈ 2898

T
(13.30)

with T in Kelvin and λ in µm. The peak shifts towards shorter wavelengths with increasing
temperature.
Figure 13.3 shows the regions into which the electromagnetic spectrum is conventionally

subdivided within the interval 10−2–104 µm. The Sun radiates (approximately) as a black
body at a temperature of ∼6000 K. Because radiation emitted at this temperature peaks
at ∼0.5 µm it was evolutionarily advantageous for life on Earth to develop acute sensory
organs that respond to wavelengths in this region. For this reason we call the 0.4–07 µm
range visible radiation. It also happens that animal perception senses radiation extending
from the near ultraviolet to the near infrared (roughly, 0.1–10 µm) as heat. Conventionally,
we extend this range to the far infrared (∼ 100 µm) and call the range 0.1–100 µm thermal
radiation. However, any electromagnetic radiation that has a spectrum given by Planck’s
equation (13.29) is strictly speaking thermal radiation.
The integral of Fλ∗ over all wavelengths (i.e. the area under the curves in Fig. 13.3)

yields the total black body emission flux, F∗, at temperature T and across the full spectrum.
Substituting (13.29) in (13.26) and solving the integral (see Exercise 13.4) we get:

F ∗ =
∫ ∞

0
F ∗λ dλ= σT 4. (13.31)
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Fig. 13.3 Blackbody emission power spectrum calculated with Planck’s radiation law (equation (13.29)) for the temperature of
the solar photosphere (∼6000 K), the terrestrial equilibrium temperature (278 K), the temperature at which the
Earth’s internal energy flux would radiate to space if the Sun disappeared (35 K) and the cosmic microwave
background radiation (2.7 K). The narrow wavelength interval labeled “v.” is what we call visible radiation, because
we evolved around a star whose spectrum peaks in this region, making sensory organs that respond to these
wavelengths evolutionarily advantageous.

This is Stefan–Boltzmann’s law (equation (2.1), with ε = 1). From the integral it also
follows that the Stefan–Boltzmann constant, σ , is given by (Exercise 13.4):

σ = 2

15
π5h−3c−2k4B . (13.32)

13.3.2 Radiant energy exchange

The geometry sketched in Fig. 13.4 yields some results that are useful in solving problems
of thermal radiation that arise in planetary sciences. We consider a spherical body of radius
rb and surface area ab, at a uniform temperature Tb, concentric with a spherical cavity of
radius rc! rb and surface area ac, at temperature Tc. We assume that the intervening space
has transmissivityΘ = 1 andwewill initially also assume that both the sphere and the cavity
are black bodies, i.e. Aλ = ελ = 1 for all λ. From equation (13.31) and the surface areas
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Fig. 13.4 Radiant energy exchange between a cavity at temperature Tc and a body at temperature Tb . Both are assumed to
behave as black bodies, and the intervening medium has unit transmittivity.

of body and cavity, the total rates of energy radiation are abσT4b and acσTc
4, respectively.

There is an important difference between the two, though: the cavity radiates onto itself,
but the body does not. Heat transfer by radiation between the two is thus not symmetrical.
In particular, the total amount of energy radiated by the body is absorbed by the cavity, but
the converse is not true.
The radiation emitted by the body gives rise to an incident energy flux Fb→c on the

surface of the cavity given by:

Fb→c = abσTb
4

ac
=
(
rb

rc

)2

σTb
4 (13.33)

which is the inverse square law of radiation, a.k.a. the equation of energy conservation. The
flux of electromagnetic radiation emitted by the cavity, σTc4, bathes its interior uniformly.
This can be demonstrated formally (Winterton, 1997) or you can accept it intuitively on
the basis of symmetry. The body interposes a surface area ab to this energy flux, so that the
total amount of energy emitted by the cavity that is absorbed by the body is abσTc4, and
the flux of radiation incident on the body Fc→b, is, therefore:

Fc→b = abσTc
4

ab
= σTc

4. (13.34)
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Because the body is a black body it absorbs this energy, so that the net flux of electromagnetic
energy that leaves the body,Fb,net , equals the energy emittedminus the energy absorbed, i.e.:

Fb,net = Fb−Fc→b = σ
(
Tb

4−Tc4
)
. (13.35)

If Tb > Tc then the body is losing internal energy, and must either be cooling down, if
this energy is not being replenished, or there is an internal source that supplies energy at
this rate. Conversely, if Tc > Tb radiant energy is being transformed to internal energy in
the body. Think of this conversion in terms of photons colliding with particles of matter,
whereupon the kinetic energy of the photons is added to the translational, vibrational or
rotational energies of the particles. As an aside, photons carry not only kinetic energy but
also momentum, and momentum conservation must be obeyed too. Transfer of momentum
from photons to particles of matter gives rise to radiation pressure.
Equation (13.35) shows that radiative heat flux varies as the difference between the fourth

powers of temperature, in contrast to diffusive and convective heat flux, which are linear
functions of temperature difference, or nearly so (e.g. equations (3.5) and (3.89)). It justifies
equation (2.16): the planet at temperature T is immersed in the solar nebula, which we can
think of as the “cavity”, at temperature T0.

From (13.35) we can define the equilibrium temperature for the body, Tb,eq, as the tem-
perature at which there is no net flux of electromagnetic radiation from the body and hence
no change in its internal energy content with time. This is simply:

Tb, eq = Tc. (13.36)

A body at the same temperature as its environment does not exchange electromagnetic
energy with it.

Worked Example 13.1 Radiative energy balance at a planet’s surface

The Sun can be approximated as a spherical black body with an emission temperature of
∼6000 K, and planetary orbits can be thought of as circumferences on spherical cavities
centered on the Sun. Setting rb = rs = solar radius, rc = ro = orbital radius and Tb = Ts
= Sun’s emission temperature, equation (13.33) gives the flux of solar radiation across a
planet’s orbit, which is called the solar constant (Fig. 13.5). The solar constant for the Earth
is ∼1368 W m −2. This is the absolute maximum rate at which energy can be extracted
from sunlight at the Earth’s surface. Even if all of this radiant energy could be converted to
mechanical energy, it represents somewhat less than 2 horse-power per square meter. The
energy density of solar power is quite low, which is a reality that economic development
of this energy source must cope with. In practice, moreover, only a fraction of the solar
energy flux can be converted to usable energy at the Earth’s surface, partly because for
the atmosphere A> 0 (see below), and also because conversion to electrical or mechanical
energy is never 100% efficient (Chapter 4).
We can calculate the equilibrium temperature of the planet, Teq , that we referred to in

Section 2.1. This is a temperature such that the planet emits electromagnetic radiation at the
same rate as it absorbs it from the Sun. The total amount of solar radiation that reaches a
planet is equal to the solar constant multiplied by the cross section of the planet, πr2p, where
rp is the planet’s radius. Note that this is not the surface area of the hemisphere facing the
sun, but the cross section that intersects the solar energy flux, i.e. the stream of solar photons
(Fig. 13.5). Think of the planet as the “body” in Fig. 13.4, inside a cavity of infinite extent.
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Fig. 13.5 Radiant energy exchange between the Sun (radius rs) and a planet of radius rP in a circular orbit of radius ro . The
planet absorbs the solar flux contained in the light grey solid angle, defined by the cross section areaπ rp2at the
planet’s orbital distance. Thermalized radiation is radiated back to space (a cavity of infinite extent symbolized by the
dark grey circle) over the entire surface area of the planet, 4π rp2.

We see from equation (13.35) that, because during the day Tb < Tc, the planet absorbs
sunlight, whereas at night Tb > Tc and the planet emits radiation. This radiation is what
we called thermalized radiation, or thermalized sunlight, in Chapter 2. If the planet rotates
fast enough we can assume that it radiates at the same equilibrium temperature, Teq , over
its entire surface area, 4πr2p. We will ignore the planet’s internal energy flux. The Earth’s

internal energy flux is∼10−5 times the solar constant, so it cannot have any noticeable effect
on its surface equilibrium temperature. The same is true of the other terrestrial planets but,
as we saw in Chapter 2, it is not the case for the fluid planets nor for Io. Assuming that
the planet behaves like a black body, Teq must satisfy the following energy conservation
condition:

4πrp
2σ
(
Teq
)4 = πrp

2
(
rs

ro

)2
σTs

4 (13.37)
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or:

Teq =
(
1

4

)1/4(
rs

ro

)1/2
Ts . (13.38)

At this temperature the planet radiates energy at the same (average) rate as it receives it
from the Sun. For the Earth we calculate an equilibrium temperature of∼278 K.We can use
Planck’s law (equation (13.29)) to compare the spectrum of sunlight with that of thermalized
sunlight (Fig. 13.3). The emission peak shifts from 0.5 µm, in the visible range, to 10 µm,
in the mid infrared. Because of the very strong dependency of emitted flux on temperature
there is a difference of seven orders of magnitude between the height of the peaks at 6000 K
and 278 K.
The Earth’s equilibrium temperature is about 10 K lower than the actual mean terrestrial

surface temperature (∼288 K). Why the discrepancy? In short, because the Earth has an
atmosphere, oceans and a climate system. For example, some trace components in the tro-
posphere such as H2O, CO2 and CH4 absorb in the infrared part of the spectrum, causing
warming of the lower atmosphere (the greenhouse effect, see below). Additional complica-
tions arise from variations in solar radiation with latitude and seasons (that drive convective
heat transport) and with changes in albedo related to ground cover and cloud cover.
I stated above that at night Tb > Tc, but what is the “cavity temperature” at night?

Disregarding for now the planet’s atmosphere (and heterogeneities that may arise from
interplanetary and galactic energy sources) this is the temperature of the microwave back-
ground radiation,∼2.7 K (Fig. 13.3). In terms of heat transfer, you can think of this radiation
as being emitted by an infinitely distant cavity at this uniform temperature, although this is
of course not its true physical nature (it is strongly red-shifted radiation from the early Uni-
verse). If the Earth were to be ejected from the Solar System into the depths of intergalactic
space, would it still radiate electromagnetic energy to space? Yes, at its current average
internal energy output (∼87 mW m−2) it would radiate as a black body at a temperature
of ∼35K (equation (13.31)) with a peak at a wavelength of ∼82µm (equation (13.30)),
corresponding to the far infrared part of the spectrum (Fig. 13.3). Emission flux originating
from the Earth’s internal heat (at 35 K) is some five orders of magnitude lower than the flux
of thermalized solar radiation at 278 K (Fig. 13.3). This explains why it is generally not
possible to use remote sensing to determine heat flux from terrestrial planets. It is interest-
ing (and pointless) to speculate that the low surface temperature that would result from the
Earth being ejected to intergalactic space would increase (slightly) the mantle’s Rayleigh
number and hence the rate of plate tectonics.

To conclude this section we derive a fundamental relationship between emissivity and
absorptivity.Assume that the body in Fig. 13.4 is not a black body.Then, for eachwavelength
λ it has an emissivity ελ �= 1 and an absorptivityAλ �= 1. The cavity is a black body that emits
an energy flux F∗c,λ, given by equation (13.29). From equation (13.34) and the definition
of absorptivity, the energy flux absorbed by the body at a given wavelength is:

Fc→b,λ =AλF
∗
c,λ. (13.39)

From the definition of emissivity, the emission from the body is given by:

Fb,λ = ελF
∗
b,λ, (13.40)
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where F∗b,λ is the black body emission at the body’s temperature. The net radiant flux
leaving the body is then given by:

Fb,net ,λ = Fb,λ−Fc→b,λ = ελF
∗
b,λ−AλF ∗c,λ. (13.41)

If the temperatures of the body and the cavity are the same then F∗c,λ = F∗b,λ and also,
from equation 13.35, Fb,net ,λ = 0. The following result, known as Kirchoff’s law, follows:

Aλ = ελ. (13.42)

In other words, absorptivity and emissivity at a given wavelength are equal. There are
some important caveats. First, if a body absorbs radiation that was emitted at a temperature
different from that of the body itself then the integrated absorptivity and emissivity are not
equal. For example (see Fig. 13.3), because sunlight peaks at∼0.5µmwhereas thermalized
sunlight on Earth peaks at∼10.4 µm, the absorptivity and emissivity of the Earth’s surface
integrated over all wavelengths are not equal. Second, it is in general the case that A �= ε

even if emitted and absorbed radiation correspond to the same black body temperature. The
reasons for this have to do with the fact that, in contrast with a black body, radiation from
real bodies is in general not isotropic and may also be polarized differently from absorbed
radiation. Discussion of these effects is beyond the scope of this book.

13.3.3 Molecular absorption and emission of electromagnetic radiation

Electromagnetic radiation transports heat because photons can interact and exchange energy
with particles of matter. Heat transport by radiation is relatively minor in liquids and gener-
ally negligible in solids, but absorption and emission of radiant energy by planetary liquids
and solids is important. In contrast, gases are important in terms of radiant energy trans-
ported as well as absorbed and emitted. We saw in Chapter 1 that molecules in gases carry
energy as translational, rotational and vibrational kinetic energy, and that, as temperature
increases, all three modes come to participate in the heat capacity of gases. Molecules
also store energy in their electronic configurations. This mode does not show up in the
heat capacity of gases at “normal” planetary conditions because at these conditions there
is not enough energy to bring about changes in the electronic configuration of a molecule
or atom, or, in the terminology of quantum mechanics, to excite the electronic energy
modes.
In order to discuss emission, absorption and transport of radiant energy in gases we must

take a closer look at the variousmodes inwhich energy is stored inmolecules.The rotational,
vibrational and electronic modes are all quantized, which means that they can carry energy
only in specific levels that are separated by discrete energy differences. Molecules can
absorb or emit energy only in discrete packages that correspond to the differences between
quantum energy levels. Photons carry discrete amounts of energy too, given by (hc)/λ. A
photon can interact with a molecule only if its energy corresponds to some of the possible
energy transitions in the molecule. Only photons of the appropriate wavelength (= energy)
can be absorbed and when they are, one of the molecular energymodes is excited to a higher
energy level. Conversely, when the molecule “drops” from an excited state to the ground
state it emits a photon of a wavelength that corresponds to this energy difference.
It is perhaps intuitively apparent that it takes relatively little energy to change the state

of rotation of a molecule, more energy to change the vibrations of the atomic bonds, and
even more energy to alter the electronic configuration of the molecule. This is formally
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proved in quantum mechanics and is important for our purposes. The energies required
to excite electronic modes are carried by photons with wavelengths of order 0.1–0.5 µm,
within the ultraviolet and visible part of the spectrum (see Fig. 13.3). Electronic excitation
corresponds to breaking or forming of chemical bonds, i.e. chemical reactions. Vibrational
energy transitions are associated with lower energies, corresponding to infrared photons
with wavelengths of 1–10 µm. Rotational transitions occur in response to even lower
energy photons, in the microwave region of the spectrum (102 − 104 µm). Excitations
of rotational modes are generally unimportant in planetary processes, as they correspond
to exceedingly low temperatures, but are important in astrophysics, where non-thermal
mechanisms for the emission of microwave electromagnetic radiation exist (they are also
what makes microwave ovens work).
Molecular gases absorb and emit radiation of wavelengths extending from the ultraviolet

to the infrared, by exciting electronic and vibrational energy modes. The mechanisms are
different for the two types of energy transitions. Absorption of ultraviolet radiation by
electronic transitions is associated to photodissociation reactions. Oxygen–ozone reactions
in the Earth’s stratosphere are a good example (Worked Example 12.3). The first and third
reactions in the Chapman cycle (equation (12.144)) absorb photons with wavelengths in
the 0.2–0.25 µm range. In both cases absorption of a photon excites an electronic transition
which results in breakage of an atomic bond. Absorption of ultraviolet radiation by these
reactions in the Earth’s stratosphere has two important effects. First, because complex
organic molecules such as proteins and DNAcan also break up by absorbing photons in this
energy range, photoactivated reactions that produce and destroy ozone allow us to be here
discussing these things. Second, absorption of ultraviolet radiation heats the stratosphere
and inverts the temperature gradient that drives convection in the troposphere.
Infrared photons are not energetic enough to break atomic bonds and facilitate chemical

reactions.They are absorbed by exciting vibrationalmodes.There is an additional restriction
in this case, that arises from quantum mechanics selection rules. The selection rule for
vibrational excitations is that they can only happen in molecules in which the electrostatic
dipole moment (i.e. the distribution of electric charge across the molecule) is asymmetric.
What this means is that homonuclear diatomic molecules such as O2 and N2 cannot absorb
infrared radiation, because the electric charge of both atoms is identical. In contrast, diatomic
molecules made up of different atoms (e.g. CO or HCl) and polyatomic molecules have
dipole moments that are not symmetric relative to the molecular structure. By the selection
rule they can absorb infrared photons as long as they have the correct energy to excite one
of the possible vibrational transitions. A well-known example of this is the capability of
molecules such as CO2, H2O and CH4 to absorb infrared radiation at wavelengths that are
close to the emission peak of thermalized solar radiation (see below).
Gases emit and absorb photons of specific wavelengths only, that correspond to allowed

energy transitions in the molecules. Emission and absorption of electromagnetic radia-
tion by molecular gases gives rise to line spectra. The molecules and atoms in solids
and liquids, in contrast, are close enough that the quantum states of individual atoms are
not independent of one another and the discrete energy transitions become smoothed out.
The result is that absorption and emission of electromagnetic radiation in solids and liq-
uids extend over continuous regions of the spectrum. This is also true of gases in which
electrons are free, because in such case electrons do not have set energy levels, and it
is the reason why the outer envelopes of stars, made up of ionized gas, radiate as black
bodies.



634 Topics in atmospheric thermodynamics

13.3.4 Absorption and emission of electromagnetic radiation:
the macroscopic description

Consider a layer of material of infinitesimal thickness, dx (Fig. 13.6) and a beam of electro-
magnetic radiation of wavelength λ incident on one of its sides. Recall that the irradiance,
Fλ, is the total flux of radiation traveling in all directions.Wewill consider only the simplest
case of changes in radiation intensity in a single direction. The intensity of the radiation,
Iλ, is defined as the flux of radiation traveling in a single direction, which in this case is
perpendicular to the layer of material. As in all radiation problems, a complete analysis
requires that we consider the full geometry of the problem and how radiation intensity
changes with direction, but the physical principles involved are easier to see if we ignore
these complications.
In general, the material may both absorb and emit radiation of a given wavelength, so

that the total change in the intensity of the beam over the thickness dx is given by:

dIλ = dIλ,absorbed + dIλ,emitted . (13.43)

From the definition of absorptivity we see that:

dIλ,absorbed =−AλIλ. (13.44)

It is reasonable to assume that the absorptivity is a function of some intrinsic material
property, on how much matter there is, and of the thickness of the layer, so we write:

Aλ = kλρdx, (13.45)

where ρ is density and kλ is called the mass absorption coefficient for radiation of wave-
lengthλ. Because absorptivity is a non-dimensional number, themass absorption coefficient
must have dimensions [L]2 [M]−1, e.g. m2 kg−1. In this derivation we will consider only
absorption and emission by molecular mechanisms such as those that we discussed in the
previous section. The intensity of electromagnetic radiation can also change as a result of
scattering, as when photons interact with solid or liquid particles suspended in the atmo-
sphere. This process will not be considered here, but it is straightforward to add the effects

dx

dτλ = kλ ρ dx

dlλ = (–lλ + Sλ) dτλ lλ + dlλlλ

Fig. 13.6 Interaction between a monochromatic beam of electromagnetic radiation of intensity Iλ and a slab of material of
thickness dx .
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of scattering to the absorption coefficient, in which case the name changes to extinction
coefficient to account for the combined effects of absorption and scattering.
We define a non-dimensional variable, called the optical thickness, τλ, as follows:

τλ = kλρx, (13.46)

and from equations (13.44), (13.45) and (13.46), we write the change in beam intensity due
to absorption as follows:

dIλ,absorbed =−kλρIλdx =−Iλdτλ. (13.47)

We can also write an expression for dIλ,emitted similar to (13.47) by defining a variable Sλ,
called the source term, which, as Iλ, has units of energy flux. Thus:

dIλ,emitted = Sλdτλ. (13.48)

The source term is a measure of how much radiation the layer emits per unit of non-
dimensional optical thickness. Using equations (13.47) and (13.48), (13.43) becomes:

dIλ =−Iλdτλ+Sλdτλ (13.49)

The solution of this differential equation is straightforward if Sλ is a constant (see Exercise
Problem13.12, or differentiate (13.50) and substitute in (13.49) to verify that it is a solution):

Iλ =
(
Iλ(0)−Sλ

)
e−τλ +Sλ, (13.50)

where Iλ(0) is the intensity of the incident beam and Iλ is the intensity at optical
thickness τ λ.
Themeaning of the optical thickness becomes apparent ifwe consider the case inwhich Sλ

= 0. Equation (13.50) then simplifies to the following, which is known as the Beer–Lambert
law (see also equation (12.137)):

Iλ = Iλ(0)e
−τλ . (13.51)

The optical thickness is the non-dimensional absorption length. About 2/3 of the incident
radiation is absorbed at τλ= 1, and at five optical thicknessesmore than 99% of the incident
radiation has been absorbed.As an example, consider transmission of solar radiation through
the terrestrial atmosphere. Solar radiation peaks at visible and ultraviolet wavelengths. The
temperature of the atmosphere is of the order of 250 K. We can see from Planck’s and
Wien’s laws that the atmosphere does not emit any significant amount of radiation in this
region of the spectrum, so that Sλ ≈ 0. From our discussion in Section 13.3.3 it follows that
atmospheric oxygen has a large value of kλ for λ ∼0.2µm (ultraviolet photons). For the
Earth’s atmosphere τλ! 1 for ultraviolet radiation.We say that the atmosphere is optically
thick in the ultraviolet, or, equivalently that the atmosphere is nearly opaque to ultraviolet
radiation.
Returning to the full absorption–emission equation, (13.50), we consider what happens

if the temperature of the medium is such that emission at the wavelength of the incident
radiation (the term Sλ) cannot be ignored (this can be the case for infrared radiation in
CO2-rich planetary atmospheres). In this case, for small optical thicknesses the source term
cancels out and the radiation flux is dominated by the incident flux, whereas for large optical
thicknesses radiation flux is dominated by thermal emission in the layer.
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13.3.5 Absorption cross section andmean free path

Themass absorption coefficient, kλ, is amacroscopic parameter that describes the interaction
between electromagnetic radiation and matter. We can give it a microscopic interpretation,
as follows. From the definition of optical thickness, equation 13.46, we see that the product
kλρ has dimension of length−1, so that (kλρ)−1 is the natural lengthscale for absorption
of radiation of wavelength λ. We now search for a product of two microscopic variables
with the same dimension. We define the absorption cross section at wavelength λ, σλ, as
the effective target area that each molecule offers to photons of this wavelength. Thus, if
a substance is inert to a particular wavelength, such as molecular oxygen to infrared, σλ
vanishes. In contrast, if a substance absorbs radiation of a given wavelength (e.g. CO2 in
the infrared) its absorption cross section for that wavelength is a finite and potentially large
number. The dimension of σλ is length2 molecule−1. If we multiply the absorption cross
section by the number density of molecules,N , defined as the number of molecules per unit
volume, we get a product with dimension of length−1. This product is the total absorption
cross section per unit volume, so we can suggest the following relationship between the
macroscopic absorption coefficient and the microscopic absorption cross section:

kλρ= σλN . (13.52)

Imagine now that we have a slab of absorbing substance of cross section a 2 and thickness
ιλ, such that ιλ is the characteristic distance that a photon of wavelength λ can penetrate into
the substance before it becomes certain that it will be absorbed. This distance is called the
photon’s mean free path. The mean free path must be of the same order as the distance into
the layer at which the sum of the absorption cross sections of all of the molecules equals the
actual cross section of the slab. Since σλN is the absorption cross section per unit volume,
multiplying this by the volume of the slab we get the total absorption cross section of the
slab, which we require to be equal to the physical cross section of the slab, i.e.:

σλNa
2ιλ = a2, (13.53)

which shows that the mean free path is given by:

ιλ = 1

σλN
= 1

kλρ
. (13.54)

The mean free path thus equals the lengthscale for absorption, (kλρ)−1. From equations
(13.46) and (13.54) we have:

τλ = x

ιλ
. (13.55)

An optical thickness of 1 is reached, and most of the incident radiation is absorbed, when
the distance traveled by the electromagnetic radiation is of the order of the mean free path.
Other things being equal, the mean free path varies inversely with the number density, N
(equation (13.54)), explaining in part why solids tend to be more opaque (absorptivity= 1)
than gases.
In amixture of ideal gases, the number densityN of a gas species at constant temperature is

proportional to the partial pressure of the species. For dilute gases at low pressure, therefore,
mean free path varies inversely with the partial pressure of the absorbing species (equation
(13.54)) and optical thickness can be approximated with a linear function of partial pressure
(equations (13.54) and (13.55)).
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13.3.6 A radiative toy model of greenhouse warming

We close our discussion of radiative heat transfer by constructing a “toy model” of green-
house warming. The goal of this section is not to develop a complete and quantitatively
accurate model of the process, which is far beyond the scope of this book. Rather, I sim-
ply want to highlight the aspects of radiative heat transport that underlie the planetary
greenhouse effect. With this caveat, we proceed as follows (see Fig. 13.7).
Consider a planet such that the solar constant at its orbit is Fs . The planet has an atmo-

spheric layer in which radiative heat exchanges take place. The elevation and thickness of
this active layer are unspecified, except for the fact that it is close enough to the planet’s
solid surface, and thin enough, that the radius of the planet, rp, and the mean radius of the
active atmospheric layer can be considered to be equal. We will simplify the mathematical
treatment by assuming that we can describe the interactions between electromagnetic radi-
ation, the atmosphere and the surface on the basis of only two sets of A, Θ , R and ε. As
we saw, all of these parameters depend on wavelength but here we will assume that we can
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(both directions)

Active atmospheric
layer, temperature = Ta

Planetary surface
temperature = Tg

= 1

Fa =

π rp Fs
2

π rp 2Ra,λs π rp 2 2

4

(Θa,λs)

π rp 2 Θa,λs

4π rp 2 4π rp 2Θa,λt
Θa,λtFs Rg,λs Fs

π rp 2 Θa,λs Ag,λs

Ag,λs

Fs π rp 2 Θa,λs Rg,λs

Rg,λs

Fs

Fs 4π rp 2 Fa

4π rp 2 Fg 4π rp 2 Ag,λt

Fg
Fa Fa4π rp 2 Rg,λt

Ra,λs Aa,λs

+

+ = 1Ag,λtRg,λt +

Aa,λs

Θa,λs

Θa,λs

+ Aa,λtΘa,λt

= Aa,λta,λt σTa

Fg = 4
g,λt σTg

Fa 4π rp 2 Rg,λt Fa

g,λt = Ag,λt

a,λt

Fig. 13.7 Energy balance for a simple radiative model of greenhouse warming of a planet of radius rP and solar constant Fs. The
planet has an atmospheric layer that interacts with solar and thermal radiation, and attains an equilibrium
temperature Ta . The equilibrium temperature of the planet’s surface is Tg . The arrows illustrate the direction of the
various energy fluxes, but not their relative intensities.
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define two “average” values for each parameter, one for the ultraviolet and visible wave-
lengths that make up most of solar radiation, and the other one for infrared wavelengths
radiated by the planet’s surface and atmosphere.
The active atmospheric layer is at a constant and uniform temperature Ta . It reflects a

fraction Ra,λs of the incoming short wavelength solar radiation, with characteristic wave-
length λs, and absorbs a fraction Aa,λs of this radiation. This absorption could take place,
for example, as a result of ozone-forming and ozone-destroying reactions. The transmit-
ted fraction of the solar energy flux, Θa,λs = 1 − (Aa,λs + Ra,λs), reaches the planet’s
surface, which is opaque to all electromagnetic radiation. We will assume that the atmo-
sphere does not reflect sunlight downwards, i.e., for sunlight reflected from the planet’s
surface, we will set Ra,λs = 0 and Θa,λs = 1 − Aa,λs . The reason for this is to avoid
dealing with second and higher order internal reflections, which obscure the calculations
without providing any important insight, nor affecting the results in any significant way.
The average absorptivity of the surface for solar radiation is Ag,λs and its reflectivity is
Rg,λs = 1− Ag,λs . Solar radiation is thermalized and re-emitted at the average temperature
of the planet’s surface, Tg . The emissivity of the ground for long-wavelength thermalized
radiation, characterized by wavelength λt, is εg,λt . Abusing somewhat equation (13.42),
we will assume that the absorptivity of the ground for thermalized radiation is equal to
the emissivity, i.e. Ag,λt = εg,λt and since the ground is opaque at all wavelengths, Rg,λt
= 1 − Ag,λt . The absorptivity and emissivity of the atmospheric layer for thermalized
radiation are also considered to be equal to each other, i.e. Aa,λt = εa,λt , and we assume
that the atmosphere does not reflect long wavelength radiation either, i.e. Aa,λt + Θa,λt

= 1. We assume that convection does not take place in the atmosphere, so heat transport
is by radiation only, and that there are no other complications such as phase transitions
(e.g. cloud formation) and latitudinal variations in solar irradiation. Our goal is to find the
equilibrium temperatures of the ground and of the active atmospheric layer, Tg and Ta ,
respectively.
We will solve for the energy fluxes emitted by the ground and by the active atmospheric

layer, Fg and Fa , which are related to the respective temperatures by the Stefan–Boltzmann
law:

Fa = εa,λtσTa
4 (13.56)

and:

Fg = εg,λtσTg
4. (13.57)

We need two equations in the two unknowns, Fa and Fg . Our first equation is the bulk
planetary energy balance. This is an expanded version of the problem that we solved in
Worked Example 13.1. In order for the planet to be in thermal equilibrium it must radiate
energy to space at the same average rate as it receives it from the Sun, but now there is
radiation from both the surface and the atmosphere, and some of the short wavelength
sunlight is reflected without being thermalized. Recall from Worked Example 13.1 that
incident and reflected solar energy fluxes act over the cross section of the planet that
intersects the solar photon flux, πrp2, whereas thermalized fluxes are radiated over the
entire surface area of the planet and atmosphere, 4πrp2. The energy flows that we need to
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consider, shown in Fig. 13.7, are as follows.

Solar radiation reflected to space by atmosphere: πr2pRa,λsFs.

Solar radiation reflected by planet surface: πr2p(`a,λs)
2Rg,λsFs

(recall that we assume that the atmosphere does not reflect sunlight downwards).

Thermalized radiation from planet’s surface: 4πr2p`a,λtFg .

Thermalized radiation from top of atmosphere: 4πr2pFa .

Thermalized radiation from atmosphere reflected from planet’s surface:

4πr2pRg,λtΘa,λtFa .

The sum of all of these terms is the energy radiated by the planet, so that at thermal
equilibrium this sum must equal the total energy received from the sun, πrp2 Fs . With
some algebra we find that the planetary energy balance simplifies to:

k1Fs = 4k2Fa + 4Θa,λtFg , (13.58)

where the two parameters k1 and k2 combine terms as follows:

k1 = 1−Ra,λs −Θa,λs
2Rg,λs

k2 = 1+Θa,λtRg,λt . (13.59)

The parameter k1 is the fraction of solar energy that is effectively absorbed by the planet, and
k2 is the total thermal energy radiated by the atmosphere that escapes to space, including the
direct upwards flux and the fraction of the downwards flux that is reflected by the planet’s
surface.
For our second equation we can choose to balance energy either at the planet’s surface or

in the atmosphere.We can choose either one, but regardless ofwhich onewe choosewemust
get the same results. I will choose energy balance at the surface, as the equations are simpler.
As an exercise, you should redo the calculations using energy balance in the atmosphere
(Exercise 13.13). In order for the temperature of the planet’s surface to be constant with
time the flow of thermalized energy emitted by the planet’s surface, 4πrp2 Fg , must equal
the total radiant energy absorbed by the surface, which comprises the following two terms
(see Fig. 13.7).

Thermalized radiation from bottom of atmosphere: 4πr2pAg,λtFa

Absorbed solar radiation: πr2pΘa,λsAg,λsFs .

Equating and simplifying, we find:

Θa,λsAg,λsFs = 4
(
Fg −Ag,λtFa

)
. (13.60)

The solutions that we seek for the fluxes of thermal energy emitted by the surface and the
atmosphere are:

Fg = Fs

4

k1Ag,λt + k2Θa,λsAg,λs

k2+Θa,λtAg,λt
(13.61)

Fa = Fs

4

k1−Θa,λtΘa,λsAg,λs

k2+Θa,λtAg,λt
, (13.62)
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which we convert to ground and atmospheric temperatures with equations (13.56) and
(13.57).
We now use these equations to analyze the effects of some of the radiative energy transfer

parameters on average global temperature.Among these, the following are the ones that are
likely to be most variable.

(i) Aa,λt , the long-wavelength absorptivity of the atmosphere, which is sensitive to the
atmospheric concentration of infrared active molecules such as CO2, H2O and CH4.

(ii) Rg,λs , the reflectivity of ground for solar radiation (i.e. the albedo of the planet’s
surface), which is strongly affected by ice and snow cover, as well as by vegetation.

(iii) Ra,λs , the fraction of solar radiation reflected by the upper atmosphere, which can
be affected by fine dust, soot and sulfur dioxide crystals such as can be produced by
volcanic eruptions, meteorite impacts and missile-launch-button-happy individuals.

We study the effects of these three parameters, and assume that the absorptivity of the
atmosphere for solar radiation, which is controlled to a significant extent by oxygen con-
centration, and the absorptivity of the ground for infrared radiation have the constant values
Aa,λs = 0.2 and Ag,λt = 0.95 (hence, Rg,λt = 0.05). We will also assume that the solar
constant equals its present-day value of 1368 Wm−2.

Figure 13.8 shows the effects of Aa,λt and Rg,λs . The solid circle on the leftmost panel
shows the equilibrium temperature for a black body Earth (∼ 278 K, see Worked Example
12.3).We then addAa,λs = 0.2 andAg,λt = 0.95 and reasonable values (taken fromdePater&
Lissauer, 2001, and Chamberlain &Hunten, 1987) for the present day surface albedo (Rg,λs .
= 0.3) and atmospheric reflectivity (Ra,λs = 0.1). Without greenhouse warming (Aa,λt = 0)
the equilibriumground temperature drops to∼249K, shownby the open circle.The diagram
shows that a temperature comparable to the present-day average surface temperature of the
Earth (∼288K, shown by the diamond) is attainedwithAa,λt = 0.9. This is our starting point
for the other panels in the figure. The one on top shows the effect of increasingAa,λt beyond
this value while holding the albedo, Rg,λs , constant. An increase of ∼10% in the infrared
absorptivity of the atmosphere raises ground temperature by about 8K.To put this number in
perspective, the increase in global temperatures since the Pleistocene is about 6 K, of which
1–2 K are the result of anthropogenic causes since the Industrial Revolution. Rising global
temperatures cause glaciers and sea ice to melt, lowering the planetary albedo. The effect
of decreasing Rg,λsat constant Aa,λt = 0.9 is shown in the bottom center panel. In reality
both parameters are coupled: asAa,λt increases so does global temperature, causing Rg,λs to
drop. The functional relationship between the two parameters is complex and is in fact one
of several sources of uncertainty in global warming models. The coupling does not depend
on radiative heat transport, but rather on physical, chemical and biological interactions
between the atmosphere, the oceans and the solid surface. The figure suggests that a strong
coupling between the two parameters can plausibly raise average global temperatures by
10–15 K, which may result in ice-free conditions comparable to those that existed during
much of the Mesozoic.
The effect of changes in the solar radiation reflectivity of the atmosphere, Ra,λs , is shown

in Fig. 13.9. Here we keep Aa,λt constant at 0.9. In the top panel we vary Ra,λs from 0.1
to 0.2, while keeping Rg,λs constant. As global temperatures drop, one expects that ice
and snow cover will increase, raising the planetary albedo and thus further lowering surface
temperatures (bottom right panel).As in the previous case, coupling between the two effects
is very complex and I will not attempt to include it. Strong coupling in this case could lead
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Fig. 13.8 Left: the Earth’s equilibrium black body temperature (278 K) decreases to 249 K when the non-zero reflectivities of the
atmosphere (Ra,λs) and planetary surface (Rg,λs) are taken into account. Present-day average temperature (diamond)
requires long-wavelength absorption coefficient in the atmosphere Aa,λt = 0.9. Right top: effect of increasing
atmospheric long-wavelength absorption Aa,λt while leaving other parameters constant. Right bottom: effect of
decreasing surface short-wavelength reflectivity Rg,λs (i.e. decreasing the albedo of the planet’s surface) while
leaving other parameters constant. One should expect positive feedback between Aa,λt and Rg,λs : the increase in
temperature caused by greater long-wavelength atmospheric absorption melts ice, which lowers short-wavelength
reflectivity of the planet’s surface. This effect is not included in the figure.

to average global temperatures that are near freezing, perhaps as happened on Earth during
widespread late Proterozoic glacial periods.
Atmospheres are much more complicated systems than this simple toy model. Nonethe-

less, because radiative heat transfer is the only way in which a planet exchanges energy with
its space environment, the model does capture some important qualitative aspects. First,
without greenhouse warming the Earth might not be a habitable planet. Second, planetary
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Fig. 13.9 Left panel is the same as in Fig. 13.8. Right top: effect of increasing atmospheric short-wavelength reflectivity Ra,λs
while leaving other parameters constant. Right bottom: effect of increasing surface short-wavelength reflectivity
Rg,λs while leaving other parameters constant. There is coupling between both parameters, as the temperature drop
caused by increased reflection of sunlight by the atmosphere increases ice cover and therefore surface albedo. This
effect is not included in the figure.

surface temperatures are determined by several radiative heat transfer parameters, of which
atmospheric absorptivity in the infrared is one. Other parameters that have comparably
strong effects are the short-wavelength reflectivity of the planet’s surface and of the atmo-
sphere. Relatively small changes in the values of any of these parameters can cause shifts
in surface planetary temperatures of the order of 1–10 K. Although this may not sound
like much, temperature changes of this magnitude can have potentially catastrophic effects
on biological systems that have evolved to match very specific environmental conditions,
especially if the rate of temperature change is significantly faster than the rate at which
evolution operates. If significant areas of a planet have average surface temperatures that
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straddle the freezing point of abundant planetary volatiles (e.g. H2O on Earth, CH4 or C2H6

on Titan) temperature variations triggered by changes in one heat transfer parameter may
have profound effects on planetary albedo that amplify the temperature perturbation, both
towards cooling and warming.

Exercises for Chapter 13

13.1 Modify the equations in Section 13.2.1 to include adiabatic temperature change with
elevation. Discuss how this affects the estimate of atmospheric scale height.

13.2 Using the equations in Section 13.2.2 as a guide, derive an approximate expression
for Fe/Mg fractionation in an isothermal planetary magma ocean of composition
(Mg,Fe)2SiO4. Estimate the extent of Fe/Mg fractionation in a 1000-kmdeepmagma
ocean in Earth, Mars and the Moon, assuming T= 1800 K.

13.3 Derive Wien’s law, equation (13.30).
13.4 Derive Stefan–Boltzmann’s law, equation (13.31), and find the value of the Stefan–

Boltzmann constant as a function of Planck’s constant, Boltzmann’s constant and
the speed of light (equation (13.32)).

13.5 Can you suggest a reason why humans do not perceive radiation with wavelengths
longer than about 10 µm as heat?

13.6 Calculate the orbital radius that a planet must have in order to receive the same
energy flux as the Earth from its star (i.e. the solar constant, ∼ 1368 W m −2) if the
planet orbits:
(i) a red dwarf with T= 2600 K and r = 0.15 rSun
(ii) a blue giant with T= 10 000 K and r = 1.7 rSun
(iii) a blue supergiant with T= 25 000 K and r = 37 rSun,
where the stellar radii, r, are given in terms of the solar radius, rSun. Express your
answer in astronomical units and km.

13.7 What is the equilibrium temperature of each of the three planets in 13.6?
13.8 In what section of the spectrum does the electromagnetic energy received by each

of the planets in 13.6 peak? For each of the three planets, discuss the possible nature
of their atmospheres (e.g. are molecules likely to be stable?), the likelihood of life,
and the nature of any possible life.

13.9 Comment on how much a star can conceivably differ from the Sun and still be able
to sustain life as we know it.

13.10 Plot thermalized solar radiation emission flux as a function of heliocentric distance.
Discuss the implications for remote sensing of internal energy flux.

13.11 ADyson sphere is a stellar engineering project, conceived by the physicist Freeman
Dyson, consisting of an artificial spherical cavity centered on the Sun. Design a
Dyson sphere with an equilibrium temperature of 288 K, assuming that the medium
between the Sun and the internal surface of the sphere does not interact with
electromagnetic radiation of any wavelength.

13.12 Solve differential equation (13.49).
13.13 Solve for the energy fluxes emitted by the ground and by the active atmospheric

layer, Fg and Fa(Section 13.3.6) using energy balance in the atmosphere rather than
the surface. Compare to equations (13.61) and (13.62).
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13.14 Estimate a range of possible surface temperatures forVenus that arise from equations
(13.61) and (13.62). How do these temperatures compare with the observed temper-
ature of the surface of Venus (∼800 K)? Modify the toy model in Section 13.3.6 so
as to include additional terms that might improve the agreement. Comment on your
results.



14 Thermodynamics of life

In this final chapter we examine life, and in particular how life may have originated, from
a strictly thermodynamic point of view. I will not get anywhere close to biochemistry,
biophysics or genetics, nor will I offer a definition of life. Rather, I begin from a concept
that everybody must agree upon. This is the fact that a necessary (but not sufficient!)
component of the definition of life is that it is a process that never reaches thermodynamic
equilibrium, for if thermodynamic equilibrium is reached then the process stops, and life is
no more. Life must therefore be powered by a gradient in free energy, which for the only
type of life that we know takes the form of a chemical potential gradient, i.e. a non-zero
affinity. Catabolicmetabolism (henceforth simplymetabolism, as I will not discuss anabolic
metabolism in detail) is a chemical reaction (or rather a set of coupled chemical reactions)
that transfers chemical energy from reactants in an organism’s inorganic environment,
known as the substrate, to complex organic molecules inside the organism, such as ATP
(adenosine triphosphate), that are capable of delivering this energy to structures where the
chemical energy is transformed to mechanical energy (e.g. motion), electrical energy (e.g.
conscience), electromagnetic energy (e.g. fireflies), etc.
Atmospheric composition, and in particular the oxidation state of the atmosphere, is one

of the factors in understanding the origin of life. Strongly reducing atmospheres, rich in
species such asCH4,NH3 andH2S, are thought to be best suited for the synthesis of complex
organic molecules. As we shall see, however, an atmosphere with these characteristics may
present near insurmountable obstacles to the establishment of metabolic pathways that
supply energy to living organisms. A somewhat more oxidized atmosphere, in which CO2

is an abundant species, is better suited to the inception of catabolic processes. In the first
section of this chapter we use the machinery of fluid equilibrium that we developed in
Chapter 9 to place some constraints on the atmospheric evolution of the terrestrial planets.

14.1 Chemical evolution of post-nebular atmospheres

We seek to understand the chemical evolution of post-nebular atmospheres, i.e. of those
atmospheres that accumulated on rocky planets after loss of the original hydrogen-
dominated nebular atmospheres. The greatest problem that we face in trying to reconstruct
these early environments is that we know very little about the nature of volatile sources
(impactors and/or volcanoes?), their compositions, and the rate of supply of material. We
are also uncertain about the volatile sinks at that time. Thermodynamics provides a way
of analyzing the problem. By constructing a model of speciation in a gas phase we can
examine how the nature of the atmosphere responds to changes in the bulk composition of
the phase, temperature, density and gravitational acceleration.

645
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Wewill use the Gibbs free energy minimization procedure described in Section 9.6.2 and
Worked Example 9.8. The equations and discussion in this section follow closely what we
did there, with a few modifications. We assume a simple atmosphere composed of C, H,
O and N (four system components), and we consider a two-phase system, consisting of a
gas phase in equilibrium with liquid water. The justification for assuming H2O saturation
is that oxygen isotopic compositions of detrital zircons suggest that liquid water existed
on the Earth’s surface as early as 4.2 billion years ago, and perhaps even earlier (Valley
et al., 2005; Valley, 2006). We wish to know what type of atmosphere could have been
in equilibrium with planetary oceans. This is a two-phase four-component system, so it
has four degrees of freedom. We choose to specify temperature and three compositional
variables (concentration of the fourth component follows by difference). Pressure is not
specified a priori, but is rather one of the variables that is solved for, via equation (13.2).
Themodel ignores dissolution of gas species in liquidwater, whichmay have non-negligible
effects on the calculated gas phase concentrations of fairly soluble species, such as CO2

and NH3, but the qualitative trends are almost certainly correct despite this simplification.
Let the total number of mols per unit of planetary surface area of each of the system

components be NC, NH, NO and NN (in atomic proportions, not molecules). Note that
these variables have units of number of mols per unit area, so their values reflect the
total amount of volatile material added to the planet’s surface.We consider the following
chemical species: H2O(vapor), H2O(liquid),CH4, H2, CO2, CO, N2, NH3 and O2, and use
ni for the number of mols per unit area of species i. Other species that could be present in
small concentrations include formaldehyde (CH2O) and hydrogen cyanide (HCN).We will
show that their concentrations can be reliably estimated a posteriori. In fact, the same is
true of carbon monoxide, but we choose to leave it in the Gibbs free energy minimization
calculation anyway.
The total number of mols of gas species per unit area is given by:

nt = nH2O(vapor)+nH2 +nCH4 +nCO2 +nCO+nN2 +nNH3 . (14.1)

As in Worked Example 9.8, oxygen is not included in (14.1) because its concentration is
vanishingly small, so that it is simpler to write its Gibbs free energy in terms of oxygen
fugacity (equation (9.96), see also below). The pressure at the planet’s surface is given by
equation (13.2), which we expand as follows using (14.1) and molecular weights in kg
atoms:

P = [0.018nH2O(vapor)+ 0.002nH2 + 0.0016nCH4 + 0.044nCO2

+0.028nCO+ 0.028nN2 + 0.017nNH3

]
g.

(14.2)

We have four mass balance equations of the type of (9.92), as follows:

ϕ1 =RT
[
2nH2O(vapor)+ 2nH2O(liquid)+ 2nH2 + 4nCH4 + 3nNH3 −NH

]= 0

ϕ2 =RT
[
nH2O(vapor)+nH2O(liquid)+ 2nCO2 +nCO−NO

]= 0

ϕ3 =RT
[
nCO2 +nCO+nCH4 −NC

]= 0

ϕ4 =RT
[
2nN2 +nNH3 −NN

]= 0.

(14.3)
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Atmospheric pressures are typically low enough that the ideal gas approximation is perfectly
acceptable. Saturation of the atmosphere in liquid water is therefore given by:

µ
0,H2O(liquid)
1,T

RT
− µ

0,H2O(vapor)
1,T

RT
− lnP − ln

(
nH2O(vapor)

nt

)
= 0. (14.4)

We write six partial derivatives of the function Z (equation (9.93)), one each for H2,
CH4, CO2, CO, N2 and NH3. Because we assume ideal gas behavior we omit the fugacity
coefficients from the partial derivatives (compare equation (9.94)). This leads to a consid-
erable simplification in the calculation procedure (Software Box 14.1). The six derivatives
∂Z/∂ni are:

µ
0,H2
1,T

RT
+ 1+ lnP + ln

(
nH2

nt

)
− nH2

nt
+ 2λ1 = 0

µ
0,CH4
1,T

RT
+ 1+ lnP + ln

(
nCH4

nt

)
− nCH4

nt
+ 4λ1+λ3 = 0

µ
0,CO2
1,T

RT
+ 1+ lnP + ln

(
nCO2

nt

)
− nCO2

nt
+ 2λ2+λ3 = 0

µ
0,CO
1,T

RT
+ 1+ lnP + ln

(
nCO

nt

)
− nCO
nt

+λ2+λ3 = 0

µ
0,N2
1,T

RT
+ 1+ lnP + ln

(
nN2

nt

)
− nN2

nt
+ 2λ4 = 0

µ
0,NH3
1,T

RT
+ 1+ lnP + ln

(
nNH3

nt

)
− nNH3

nt
+ 3λ1+λ4 = 0.

(14.5)

Software Box 14.1 Speciation calculation in C–H–O–N atmospheres
The Maple worksheet highway_to_hell.mw contains a procedure, atmos, that
calculates speciation in a C–H–O–N gas phase in equilibrium with liquid H2O at low
pressure (ideal gas behavior is assumed) by Gibbs free energy minimization. It solves
the system of equations (14.2) to (14.7). The procedure call is as follows.

atmos (T in C, mols H, mols O, mols C, mols N, g in m s−2)

Output is sent to the terminal and is self-explanatory. The procedure can be included in
a do loop that varies the input parameters, in order to calculate diagrams such as those
in Figures 14.1 to 14.5.
Thermodynamic data are contained in tab-delimited format in the file aatmosdata,

and also in the spreadsheet sh_data. The order in which the data are to be loaded (row
id numbers) is listed in the heading of procedure atmos.
The error message “Water boiled off” means that a solution of the system of equations

saturated in liquid water was not found. The error message “No convergence” means
that the procedure failed to find a solution within the maximum number of iterations
specified by the variable hmax.
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The partial derivative of the Gibbs free energy of oxygen follows equations (9.96) and
(9.100):

µ
0,O2
1,T

RT
+ lnfO2+ 2λ2 = 0 (14.6)

and the partial derivative for liquid water, ignoring the effect on pressure on the chemical
potential of liquid H2O, is (compare equation (9.101) for graphite):

µ
0,H2O(liquid)
1,T

RT
+ 2λ1+λ2 = 0. (14.7)

Equations (14.2)–(14.7) constitute a system of 14 equations in the 14 unknowns:
nH2O(liquid), nH2O(vapor), nH2 , nCH4 , nCO2, nCO, nN2 , nNH3 , ln(fO2), P , λ1, λ2, λ3 and
λ4 (nt is given by (14.1)). Numerical solution withMaple is straightforward and is briefly
discussed in Software Box 14.1. Recall that the four Lagrange multipliers are necessary in
order to solve the constrained minimum problem (Section 9.6.2), but we have no use for
their numerical values.
Let us first examine solution sets at 25◦C for a planet with Earth’s gravitational accel-

eration and with total volatile content adjusted so as to yield an atmospheric mass of order
104 kg m−2, comparable to the present day Earth. We start with the following values.

NH = 1650× 103 mols m−2

NO = 650× 103 mols m−2

NC = 350× 103 mols m−2

NH = 100× 103 mols m−2

The total volatile mass that results is equal to 1.765×104 kg m−2, which is almost twice the
present-day terrestrial atmospheric mass, but as we shall see some of this mass condenses
as liquid water. The relative proportions of the four components are similar to cometary
material (see Lodders & Fegley, 1998, Tables 15.3 and 15.4), but I emphasize that there is
no special significance to this starting composition, other than being plausible. The point of
this exercise is to examine how atmospheric speciation responds to changes in the model
parameters.
Figure 14.1 shows the effect of changing the bulk contents of H, C and O independently,

i.e. the bulk content of one each of these elements changes, while all the others remain
constant and equal to the values listed above. The independent variable in each graph is the
bulk atomic fraction of the component that varies. Temperature is kept constant at 25◦C,
and g = 9.8 m s−2. The top panels show the oxygen fugacity and mol fraction of each of
the gas species except CO, which never rises above ∼ 10−10 and which we discuss later.
The bottom panels display atmospheric pressure at the planet’s surface and the amount of
H2O that condenses as liquid, converted to thickness of the water column (55.56×103 mols
m−2 = 1 m of water depth).
The calculations show a steep jump in species distribution, between a H2–NH3–CH4

atmosphere with virtually no CO2, and a CH4–CO2 atmosphere with small but non-zero
contents of NH3 and H2. The atmosphere becomes less reduced in response to decreasing
bulk H content or increasing bulk O or C contents, but in every case there is a sudden jump
in species abundances over very narrow bulk composition intervals. The behavior is in some



649 14.1 Chemical evolution of post-nebular atmospheres

10–6

10–5

10–4

10–3

10–2

10–1

CO2 CO2
CO2

CO2 CO2

CH4 CH4 CH4H2

H2 H2

H2

H2

–72
–72

–74

–76

–78

–80

–72

–74

–76

–78

–80

–76

–80

–84
1.5

0.5

1

1.5

0.5

1

1.5

0.5

1

H2

NH3

NH3
NH3

NH3

NH3

NH3

CO2

P
P

P

Water

0.2 0.2 0.3 0.02 0.04 0.06 0.08 0.10.10.4 0.6 0.8

Water

Water
10

5

0

10

5

0

10

5

0

fO2

fO2

fO2

N2

N2
N2

N2

H2O
H2O

H2O

N/C+O) = 0.1
C/O = 0.54

N/(C+H) = 0.05
C/H = 0.21

N/(O+H) = 0.43
C/H = 0.39

1

10–7

10–6

10–5

10–4

10–3

10–1

1

10–7

10–6

10–5

10–4

10–3

10–1

1

10–7

S
pe

ci
es

 m
ol

 fr
ac

tio
n

S
pe

ci
es

 m
ol

 fr
ac

tio
n

P
re

ss
ur

e 
(b

ar
)

P
re

ss
ur

e 
(b

ar
)

P
re

ss
ur

e 
(b

ar
)

lo
g 

f(
O

2)

lo
g 

f(
O

2)

lo
g 

f(
O

2)

W
at

er
 d

ep
th

 (
m

)

W
at

er
 d

ep
th

 (
m

)

S
pe

ci
es

 m
ol

 fr
ac

tio
n

W
at

er
 d

ep
th

 (
m

)
Bulk H/(C+H+O+N) – atoms Bulk O/(C+H+O+N) – atoms Bulk C/(C+H+O+N) – atoms 

Fig. 14.1 Species distribution in a C–H–O–N atmosphere calculated by Gibbs free energy minimization at 25◦C. The top
diagrams showmol fractions in the gas phase (solid curves, port axes) and oxygen fugacity (dashed curves, starboard
axes). Bottom diagrams show thickness of the liquid water column averaged over the planet’s surface, and
atmospheric pressure at the planet’s surface. Bulk content of H, O or C is varied in each plot, while keeping bulk
contents of all other components constant. Note the sharp transition between H2–NH3 atmospheres and CH4–CO2
atmospheres.

ways analogous to a phase transition (Chapter 7), in the sense that there are two possible
“phases”: a CO2-bearing atmosphere with very little ammonia and molecular hydrogen, or
a CO2-free atmosphere dominated by methane, ammonia and molecular hydrogen. Atmo-
spheres inwhichCO2,NH3 andH2 are all significantly abundant are not thermodynamically
stable. Over a very narrow compositional interval spanning the transition the equilibrium
species distribution consists chiefly ofCH4 +H2O±N2.Atmosphereswith this composition
are unlikely to be common, however, as they require very fine-tuned conditions (Fig. 14.1).
The CO2/CH4 ratio increases with the oxidation state. CO2 becomes the dominant atmo-

spheric species for bulk compositions sufficiently rich in O or poor in H. Oxygen fugacity,
however, remains < ∼10−70 bar even in atmospheres with ∼90 mol% CO2. This oxygen
fugacity is below the stability limit of hematite (e.g. Fig. 11.7 and 11.8). Thus, Fe2+-rich
Archaean oceans are consistent with a CO2-dominated atmosphere (Section 11.5). Increas-
ing oxidation of a CH4–CO2 atmosphere always raises atmospheric pressure, as the light
carbon species, CH4, is replaced by the much heavier CO2. The thickness of the water col-
umn, however, responds differently depending on whether oxidation is driven by hydrogen
loss, which produces CO2 at the expense of liquid water and CH4, or by an increase in bulk
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oxygen content, which produces liquid water and CO2 at the expense of CH4. Note that the
models in Fig. 14.1 yield relatively thin water columns, less than ∼10 m, which are orders
of magnitude thinner than the terrestrial oceans. This is a function of the total volatile mass
that I arbitrarily chose as input for the calculations. The thickness of the water column can
be varied without changing atmospheric pressure nor composition by adding H and O to
the bulk composition in a proportion of 2 to 1 (Exercise 14.1).
These trends are largely unaffected by changes in bulk nitrogen content. The left panel

in Fig. 14.2 shows the effect of varying bulk N content while keeping bulk H, O and C
contents fixed at the starting values chosen above. Nitrogen-bearing species become more
abundant with increasing N content, and atmospheric pressure increases, but the relative
proportions of C–H–O species, oxygen fugacity and the depth of the liquid water column
remain constant. An ammonia-dominated atmosphere forms if the bulk composition is
sufficiently rich in both nitrogen and hydrogen. This is shown in the right panel of Fig. 14.2,
in which gas speciation is tracked as a function of variable bulk H content, for a bulk
N content ten times greater than in Fig. 14.1 (atomic ratio N/(C+O) = 1, compared to
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N/(C+O)= 0.1 in the equivalent plot in Fig. 14.1). In this case too there is a rapid transition
from a strongly reducing NH3–CH4 atmosphere to a N2–CO2 atmosphere, in response to
hydrogen loss.
The effects of changing total volatile mass and gravitational acceleration are shown in

Fig. 14.3. Increasing both of these variables raises atmospheric pressure almost linearly
but has negligible effects on atmospheric composition, except at very low pressure, or for
H2O vapor content, at all pressures. The effect on X(H2O) is a consequence of saturation in
liquid water: the chemical potential, and hence partial pressure, of H2O vapor is fixed, so
its concentration must decrease as pressure increases. Decreasing pressure is accompanied
by an increase in the concentration of molecular hydrogen because the methane oxidation
reactions:

CH4+H2O� CO+ 3H2
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and

CH4+ 2H2O� CO2+ 4H2

both have large and positive �rV , so they are favored by low pressure. As the concentra-
tion of H2 increases with decreasing pressure so does the ammonia concentration. Note in
passing that although all the calculations are performed at constant pressure, assumed to be
the pressure at the planet’s surface given by the atmospheric mass, the results in Fig. 14.3
can also be used to infer that the equilibrium species distribution does not change signifi-
cantly with elevation. The emphasis is on equilibrium because, as we saw in Chapter 12,
photoactivated processes affect non-equilibrium species distribution with elevation.
The depth of the water column varies linearly with total volatile mass, but it responds in a

non-linear fashion to changes in gravitational acceleration at constant volatile mass. In the
latter case evaporation of water (required to preserve the chemical potential of H2O in the
atmosphere) depletes a liquid reservoir of definite size. Of course gravitational acceleration
does not change with time once a planet has accreted. Rather, this result should be seen as
a demonstration of the difficulty that a small planet such as Mars may have had in holding
on to its oceans and lakes.
The concentrations of minor species can be calculated a posteriori, because they have a

negligible effect on the Gibbs free energy of the system and on the mass balance constraints
(equations (14.3)). For example, we can calculate the concentrations of hydrogen cyanide
and formaldehyde from the equilibria:

NH3+CH4 �HCN+ 3H2 (i)

and:

H2O+CH4 � CH2O+ 2H2 (ii)

for which we have:

XHCN = XNH3 ·XCH4(
XH2

)3 ·P 2
exp

(
−�rG

0,(i)

RT

)

XCH2O =
XH2O ·XCH4(
XH2

)2 ·P exp

(
−�rG

0,(ii)

RT

)
.

(14.8)

Representative results are shown in Fig. 14.4 (left panel), together with CO concentrations,
which were calculated as part of the Gibbs free energy minimization procedure, but could
also have been calculated as in equations (14.8). Formaldehyde and other organicmolecules
in which carbon is present in the same oxidation state (CH2O) are essential biological
building blocks (Section 14.2.1). These results suggest that their equilibrium atmospheric
concentrations are unlikely to ever have been significant, even in reducing atmospheres.
The synthesis of these molecules must have been the outcome of other processes that took
place at the inception of life on Earth.
For simplicity sulfur is not included in the model calculations, because it is likely to have

always been less abundant than C, H, O andN. Even if we ignore the absolute abundances of
sulfur species, it is important to constrain their oxidation state, partly for biological reasons.
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We do this by means of the equilibrium:

H2S+O2 � SO2+H2 (iii)

which yields:

XSO2

XH2S
= fO2

XH2 ·P
exp

(
−�rG

0,(iii)

RT

)
. (14.9)

Representative results are shown in the right panel of Fig. 14.4, where they are compared to
the CO2/CH4 ratios for the same range of atmospheric compositions. An important conclu-
sion is that carbon oxidizes more readily than sulfur, so that a CO2-dominated atmosphere
can still be reducing enough to contain H2S and virtually no SO2. We will return to this
later in this chapter.
Photodissociation of CH4, NH3 andH2Omolecules produces free hydrogenwhich, as we

saw in Chapter 13, can be lost by thermal escape. This is an irreversible process, for the same
relationship between kinetic energy and gravitational binding energy (equation (13.1)) that
makes hydrogen loss possible makes it impossible for a planet to capture hydrogen atoms.
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If surface conditions are such that the atmosphere contains significant H2O vapor, then
hydrogen loss leads inevitably to a dry planet with an atmosphere dominated by carbon
dioxide and nitrogen, regardless of how reduced the initial atmospheric composition might
have been (Fig. 14.1 left panel, and Fig. 14.2 right panel). In the absence of other processes a
CO2-rich atmosphere is a terminal state, as carbon–oxygen gas species are not readily lost
by atmospheric escape processes.Protracted hydrogen loss is themost likely explanation for
the nature of the present-day atmospheres of Venus andMars. Neither the Earth nor Titan fit
this picture, however. Titan’s atmosphere consists chiefly of nitrogen, with minor amounts
of CH4, H2 and other reduced carbon species. Thus, it must be located on the reduced side of
the speciation transition (Fig. 14.1 and 14.2). Yet according to equation (13.1) and Fig. 13.1
hydrogen loss from Titan’s atmosphere must be at least as efficient as in Venus and Mars.
Oxidation of Titan’s atmosphere is prevented by its very low surface temperature, which
keeps the partial pressure of H2O (∼ the saturation vapor pressure over ice at very low
temperature) virtually equal to 0. The example of Titan emphasizes the importance of H2O
vapor as the oxygen source for atmospheric oxidation. It is the only abundant molecule that
contains both H and O, so that photodissociation followed by hydrogen loss makes oxygen
available. If there is no H2O in the atmosphere, for instance because it is sequestered in
low-temperature ice, then there is simply no source of oxygen.
The Gibbs free energy minimization model also allows us to examine the effect of tem-

perature on the equilibrium species distribution. Representative results are shown in Fig.
14.5, in which I have adjusted the bulk composition so that there are∼100m of liquid water
in equilibrium with a CO2-rich atmosphere at 25◦C and ∼1.5 bar pressure. As tempera-
ture increases water must evaporate in order to preserve the equilibrium saturation vapor
pressure. This raises the concentration of H2O vapor in the atmosphere, and also atmo-
spheric mass and hence atmospheric pressure. At temperatures approaching 100◦C, H2O
becomes the dominant atmospheric component, even if water may be kept from boiling
by the high atmospheric pressure. This condition, known as a steam atmosphere, greatly
accelerates the rate of hydrogen loss because it increases both the concentration of H2O
in the atmosphere, and hence the rate of photodissociation (equation (12.83)), and its tem-
perature (equation (13.1)). Temperature increase also raises the equilibrium H2 and NH3

concentrations by several orders of magnitude.
Buildup of a steam atmosphere is thought to be a self-reinforcing process, by virtue of

the strong infrared absorption of H2O molecules (Section 13.3.6). It is possible that once
the concentration of H2O vapor exceeds certain threshold it causes a runaway temperature
increase that results in complete dessication of the planet’s surface and CO2 accumulation
in the atmosphere. As long as there is liquid water CO2 may be scavenged by carbonate
precipitation at a rate that is largely controlled by the rate at which silicate weathering
supplies cations such as Ca2+, Mg2+ and Fe2+in aqueous solution. This process is known
as theUrey reaction (Urey, 1952). Once liquidwater disappears this scrubbingmechanism is
no longer possible, and CO2 atmospheric concentration cannot decrease. Hydrogen escape
rates are likely to have always been lower in Earth than in Venus and Mars (e.g. Fig. 13.1).
Whether or not Venus ever had a steam atmosphere, it may have lost its water early on,
and with it the capability of controlling its atmospheric CO2 concentration. Mars probably
underwent slower dessication and oxidation, and eventual freezing of its remaining surface
water. Hydrogen loss from Earth has been slow enough to allow much of its surface water
to persist over the age of the solar system.
If atmospheric methane concentration decreases to trace levels then the atmosphere loses

its ability to buffer oxygen fugacity. As long as there is water vapor available that can
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undergo photodissociation oxygen concentration could in principle increase freely, but this
is generally not the case. Under equilibrium conditions atmospheric oxidation is limited
by the availability of reduced species at the planet’s surface, chiefly ferrous iron, sulfides
and reduced carbon. Figure 11.8 shows that oxidation of iron to its terminal ferric state
buffers equilibrium oxygen fugacity to log(fO2)∼−68.6 (at 25◦C). Sulfide oxidation can
be modeled by means of the following reaction, that produces anhydrite and hematite at the
expense of pyrite and calcite:

4FeS2+ 8CaCO3+ 15O2 � 8CaSO4+ 2Fe2O3+ 8CO2,
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and that is at equilibrium for: log(fO2)= (8/15) log(fCO2)− 64.7. These two oxidation
boundaries are shown in Fig. 14.6. If a planet has internal activity and is able to resupply its
surface with reduced species such as pyrite, olivine, pyroxene and other iron silicates via
volcanism and tectonism then its equilibrium atmospheric oxygen fugacity cannot exceed
these boundaries. Venus is still active today, so that the oxygen liberated by photodissoci-
ation of H2O and hydrogen escape in the geologic past must be present in the lithosphere,
combined with iron, sulfur and other elements of variable oxidation state. There is no
H2O left to supply oxygen, and there is almost certainly an excess of reduced species of
internal origin. The atmosphere of Venus is a thermodynamic dead end. The case of Mars
is somewhat different. First, it still has frozen H2O on its surface, and perhaps liquid or
frozen H2O in its shallow subsurface. Second, Mars may have largely lost its capability to
transport reduced species from the planet’s interior to its surface, and the surface is already
thoroughly oxidized. The possibility therefore exists that oxygen fugacity in the Martian
atmosphere exceeds the iron and sulfur oxidation boundaries (Fig. 14.6), as attested by the
existence of perchlorates on its surface (Chapter 11).
The Earth is of course different, because its atmosphere is very far from thermodynamic

equilibrium with its surface, and in particular with the biosphere. Carbon in organic mat-
ter typically has the same oxidation state as in formaldehyde, CH2O, so that equilibrium
between organic matter and atmospheric oxygen can be modeled by the reaction:

CH2O+O2 � CO2+H2O.

which results in: log(fO2)= log(fCO2)− 92.67. This reaction, also shown in Fig. 14.6,
is located more than 90 orders of magnitude (!) below the actual oxygen fugacity in the
terrestrial atmosphere. In a planet covered with organic matter it would not be even possible
for ferrous iron or sulfide to oxidize, if the atmosphere was in thermodynamic equilibrium
with the biosphere. Upkeep of the oxygen content of the terrestrial atmosphere is a non-
equilibrium process driven by supply of solar energy.
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14.2 Thermodynamics of metabolic processes

14.2.1 Carbon fixing and respiration of reduced organic carbon

Chemical interactions between living organisms and their substrate are of two principal
types. One of these consists of reactions that reduce oxidized carbon absorbed from the
environment, typically CO2, in which C has an oxidation state of+4. The products of these
reactions are organic molecules in which the oxidation state of C is characteristically 0.
The simplest such compound is formaldehyde: CH2O. Reactions of this type are called
carbon-fixing reactions. The reduced carbon species generated by these reactions fulfill
two distinct biological roles. Firstly, they are used by living matter to synthesize all of the
complex organic molecules needed for life – we will not discuss this role any further but
we will keep in mind that this process, which is the essence of anabolic metabolism, is the
reason why carbon fixation is essential for life as we know it. Secondly, reduced carbon
species can serve as reactants for metabolic reactions that transfer energy from the substrate
to the living organism (i.e. catabolic metabolism). These reactions are called respiration
reactions and are the other type of chemical interactions that take place between living
organisms and their substrate. Some respiration reactions use reduced carbon as a reactant.
This is most commonly organic carbon that was fixed by reactions of the first type, although
reduced carbon of inorganic origin (e.g. CH4 in volcanic gases) can also be used. However,
many respiration reactions exist in which no carbon species are involved (more on this in
the next section).
Because their role is to transfer energy from the substrate to energy-carrier molecules

within living cells, a necessary condition of respiration reactions is that theymust be thermo-
dynamically spontaneous. Any combination of chemical species with �rG< 0 (or E > 0)
could, in principle, constitute the basis for respiration. In contrast, with one important excep-
tion that we will discuss in detail below, carbon-fixing reactions have�rG> 0. They must
therefore be sustained by a constant energy flux from the environment. Perhaps the most
familiar carbon-fixing reaction is oxygenic photosynthesis, which we canmodel as follows:

CO2(g)+H2O(l)+hν→ CH2O(g)+O2(g), (14.10)

where hν represents electromagnetic radiation in the visible part of the spectrum and
CH2O(g) is formaldehyde gas. Actual photosynthesis produces more complex molecules
with the same oxidation state as formaldehyde, such as glucose (C6H12O6), but the
thermodynamic relations are qualitatively the same as those that can be derived from
equation (14.10). The standard state Gibbs free energy change for this reaction is
528.96 kJ per mol of formaldehyde. At equilibrium we thus have:

fCH2O ·fO2

fCO2

≈ 10−93 (14.11)

which, as we saw in the previous section, means that the terrestrial atmosphere (fO2 ≈
0.2 bar) is very far from being in thermodynamic equilibrium with reduced organic matter.
Reaction (14.10) is a photochemical reaction that fixes carbon and liberates molecular
oxygen against a huge chemical potential gradient by converting an electromagnetic energy
flux to chemical bonding energy (see also Worked Example 12.3). Photosynthesis based
on other elements that can change oxidation state also exists. Two important examples are
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based on sulfur and iron. The former is carried out by green sulfur bacteria, that ingest H2S
and excrete elemental sulfur and which we may model as:

CO2(g)+ 2H2S(g)+hν→ CH2O(g)+H2O(l)+ 2S(xtal) (14.12)

while iron-based photosynthesis occurs in purple bacteria and we model it as follows:

CO2(g)+ 4Fe2+(aq)+ 4H+(aq)+hν→ CH2O(g)+H2O(l)+ 4Fe3+(aq). (14.13)

With the standard states defined as in (14.12) and (14.13), the values of �rG
0 for these

reactions are 121.8 and 351.5 kJ per mol of formaldehyde, respectively. As for oxygenic
photosynthesis, these reactions are not spontaneous for any reasonable value of the chemical
potential of formaldehyde, and rely on a fluxof electromagnetic energy in order to fix carbon.
Reduced organic molecules are oxidized by respiration reactions. A simple example is

the inverse of (13.1):

CH2O+O2→ CO2+H2O. (14.14)

This reaction proceeds spontaneously with a large affinity value (e.g. equation (14.11)).
Note, however, that even though respiration reactions are thermodynamically spontaneous
their rate constants are very low (or equivalently, their activation energies are very high,
Section 12.4.1). If thiswere not the case then organicmatterwould spontaneously (and rather
unpleasantly) combust in the terrestrial atmosphere. Respiration reactions are catalyzed in
living cells by organic molecules known as enzymes, that effectively lower their activation
energies. Reaction (14.14) is the respiration process of choice of, for instance, self-aware
eukaryotes, but many prokaryotes are able to oxidize reduced carbon with other oxidants.
Thus, iron-reducing bacteria carry out the inverse of (14.13), in bogs and other euxinic
environments:

CH2O+H2O+ 4Fe3+→ CO2+ 4Fe2+ + 4H+. (14.15)

Denitrifying bacteria use nitrate in order to oxidize organicmatter, in a process that is crucial
in maintaining a constant atmospheric concentration of N2 (which is in turn oxidized to
nitrate inorganically during electrical storms, and also by organic processes):

5CH2O+ 4NO−3 + 4H+ → 5CO2+ 2N2+ 7H2O. (14.16)

Sulfate-reducing bacteria can make a living by spoiling organic matter, including eggs:

2CH2O+SO2−
4 + 2H+ → 2CO2+H2S+ 2H2O. (14.17)

Reactions (14.14)–(14.17) have two common characteristics: they are all thermodynami-
cally spontaneous, and they all oxidize carbon to its terminal oxidation state, corresponding
to CO2. The ultimate source of the energy that is liberated in these reactions is solar elec-
tromagnetic radiation. The reduced carbon species that are produced by photochemical
carbon-fixing reactions act as energy carriers. There are other respiration reactions, how-
ever, that do not rely on the availability of reduced carbon of organic origin. As we shall
see, a strong case can be made that a reaction of this kind must have been the primordial
metabolic process that powered the first living organisms.
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14.2.2 Respiration without reduced organic carbon

Respiration is a continuous chemical reaction. This is only possible in an open system,
in which there is an uninterrupted supply of reactants and evacuation of products, for in
a closed system equilibrium would unavoidably be reached. Any spontaneous chemical
reaction (�rG< 0, or E > 0) could, in principle, constitute the basis for respiration, but we
can pare down the list. Life is based on fundamental units, the cells, and metabolism takes
place inside cells, where the energy liberated by the respiration reaction is used to produce
energy-carriermolecules such asATP.The supply of reactants to, and evacuation of products
from, the open system must take place by diffusion across the cell walls. This means that
respiration must be based on substances that are either (a) soluble in the substance that
makes up most of the cell (H2O for the only type of life that we know) or (b) able to exist as
colloidal suspensions in that substance or (c) gases (which generally dissolve in the cell’s
constitutive substance anyway). We shall return to this in a moment.
A requirement for life is that metabolic reactions be able to proceed continuously. This

necessitates the maintenance of a continuous chemical potential gradient inside the cell,
which relies on an uninterrupted supply of reactants. By this I mean that some process, or
processes, external to the system in which metabolic reactions take place, is able to supply
the system with a steady flow of chemical species that are out of equilibrium and that can
therefore react to a different set of chemical specieswith lowerGibbs free energy – this is the
essence of respiration. Terrestrial life exploits two sources of out-of-equilibrium chemical
species to power respiration. One of them, that we discussed in the previous section, is
based on production of reduced carbon species by photosynthetic reactions. This source is
kept active by electromagnetic energy from the Sun. The other source, that is kept active by
the planet’s internal energy, is the difference in thermodynamic states between the surface
of the planet and its interior.
Internal processes such as volcanism and orogeny supply the surface of the Earth with

mineral assemblages and fluids that are stable at temperatures higher than, and oxygen
fugacities lower than, those at the surface of the Earth. The bulk of these minerals are
silicates, which at the surface of the Earth react (albeit slowly) to yield assemblages stable
at lower temperature – this is the process that we call weathering. The following reaction
is a simple model for weathering of forsterite on the ocean floor:

Mg2SiO4+ 2H2O� 2Mg2+ +SiO2+ 4OH−. (14.18)

Formation of ocean floor at mid-ocean ridges continuously replenishes the reaction with
forsterite, so that in principle weathering of Mg silicates could be the basis for a metabolic
process. Yet, as far as I know, there is no respiration based on silicate weathering. The chief
reason for this is, I think, the fact that high-temperature crystalline silicates cannot dissolve
in water while preserving their crystalline structure, and hence their “high-temperature”
thermodynamic properties, nor do they form colloidal suspensions, so there is no pathway
for these reactants (i.e. the high-temperature phases) to enter cells. This essentially rules
out the possibility of using the difference between the equilibration temperature of igneous
and metamorphic assemblages and the temperature at the planet’s surface as a source of
reactants for respiration, i.e. of chemical species out of equilibrium.
The difference in oxidation state between theEarth’s interior and its surface is, on the other

hand, the basis for a large number of respiration processes in many groups of bacteria and
archaea. In the present-day Earth this difference corresponds to many orders of magnitude
in oxygen fugacity. The fugacities of reduced species such as H2, CH4 and H2S in mantle
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and crustal fluids may be high enough that chemical reactions with large affinities result
when these fluids enter surficial environments in which there are non-negligible chemical
potentials of species such as CO2, SO

2−
4 , Fe3+, NO−3 or O2. Also important, and used in

respiration by somemicroorganisms, is the fact that transition elements can exist in multiple
oxidation states, and that their oxidation states in igneous andmetamorphic assemblages are
characteristically low. Ferrous iron is the most common example, but respiration processes
based on reduced forms of Mn, Se, As, Cu and other elements are also known. Respiration
reactions in these cases depend on the ability of the reduced cation to dissolve in water and
preserve its low oxidation state until the solution enters a cell and the oxidation reaction
can take place inside the cell.
Respiration based on the difference in thermodynamic states between the Earth’s surface

and its interior is always based on redox reactions. The continuous supply of metabolic
reactants, which we call nutrients, depends on the ability of the planet to transport reduced
chemical species from its interior to its surface, and this ability depends on the planet’s
internal heat.

14.2.3 Speculations about the origin and evolution of metabolism on Earth

There is strong evidence that all life on Earth has a common ancestor (see, for example,
Theobald, 2010). This does not necessarily mean that life originated only once, but rather
that only our lineage managed to survive the conditions of the early Earth. If there was
more than one independent biogenesis then the product of one of these processes was able
to outcompete the rest. It is interesting to speculate on what may be some of the reasons for
the common ancestry of all extant terrestrial life.
Whether replication and inheritance mechanisms originated before or after metabolism

(and this is intensely debated by origin of life researchers), the first living organisms had to
metabolize. What is the primordial respiration process likely to have been? We can begin
with an inventory of available nutrients in the present-day Earth, and see how it extrapolates
to the early Earth.At present most reduced species originate in one or more of the following
four ways.

(i) As relatively minor components in volcanic gases, chiefly H2, H2S and CH4, but one
could also include NH3.

(ii) As reduced cationswith variable oxidation state in volcanic rocks (chiefly ocean floor).
The most important by far is Fe2+, but Mn2+ and other less abundant trace elements
are also used by metabolic processes.

(iii) As products of photosynthesis. As we saw, these are organic molecules in which the
oxidation state of carbon is lower than that in CO2.

(iv) As products of decay of organic matter under low oxygen fugacity. These processes
produce species such as CH4, H2S, NH4+, Fe2+, etc., and are typically carried out by
microorganisms.

If we wish to discuss primordial metabolism then we can immediately discard (iv).
Although the argument has been made that sulfide-oxidizing photosynthesis (reac-
tion (14.12)) or iron-oxidizing photosynthesis (reaction (14.13)) may represent primordial
processes (see Hartman, 1998; Mulkidjanian & Galperin, 2009), photosynthesis is a com-
plex process, that requires specialized enzymes and pigments that absorb electromagnetic
radiation of the required wavelengths. It also must take place in an environment bathed in
solar radiation, that includes a high flux of ultraviolet photons capable of photodissociating
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complex organic molecules. Pre-biotic and early biotic organic synthesis may have been
difficult, if not impossible, in such high energy environment (present-day organisms have
evolved defensive mechanisms to cope with this problem and ozone, which is ultimately
of organic origin, serves as a UV shield). It thus appears unlikely that photosynthesis is
a primordial process (see Fenchel, 2002; Schulze–Makuch & Irwin, 2004), and we can
with some confidence discard (iii) as a source of reduced species for primordial metabolic
processes. Reduced chemical species corresponding to categories (i) and (ii), on the other
hand, were certainly present in the early Earth, and perhaps more abundant than today.
The most common oxidizers at the Earth’s surface today are O2, Fe3+, SO2−

4 , NO−3 and
CO2. If the only source of molecular oxygen is photosynthesis then its chemical potential
in the early Earth, before photosynthetic organisms evolved, must have been vanishingly
small (Section 14.1). Molecular oxygen can be produced by photodissociation of water
vapor in the stratosphere. The temporal and spatial distributions of Archaean banded iron
formations (BIF), however, place an upper bound on likely paleoArchaean atmospheric
oxygen fugacity of the order of 10−70 bar (e.g. Figs. 10.7 and 10.8), which implies that
molecular oxygen was not present in the atmosphere. Fe3+ content in pre-BIF oceans must
have been virtually zero (Figs. 11.7 and 11.8), and SO2−

4 concentration must also have been
very small (Fig. 14.6). Thus, these oxidizers are also unlikely to have been present at the
inception of primordial metabolism. Production of nitrate requires much higher oxygen
fugacity. By simple elimination one is left with CO2 as the most likely oxidizer at the
beginning of life. This inference is consistent with the results of Section 14.1, that suggest
that the Archaean atmosphere must have been rich in CO2. We are led to the tentative
conclusion that the best candidate for primordial respiration is a reaction that used CO2 to
oxidize H2, H2S, CH4, Fe2+, NH3, or some combination of these species.

Primordial life must also have been able to produce CH2O-typemolecules, that were then
used as the building blocks for more complex organic compounds. One could infer that the
following reaction, that is one of the tentative respiration reactions that we identified in the
previous paragraph, might have been able to accomplish this:

CH4+CO2→ 2CH2O (14.19)

but the problem is that this reaction has a large and positive�rG
0≈ 240 kJ. Reaction (14.19)

is not spontaneous – but what exactly does this mean? Using equation (12.71), and recalling
that a reaction is spontaneous if its affinity is positive, we find that reaction (14.19) will
proceed to the right only as long as:(

fCH2O
)2

fCH4 ·fCO2

< 10−42. (14.20)

From a purely thermodynamic point of view we interpret this as meaning that, in a closed
system, the reaction reaches equilibrium, and therefore stops, once a vanishingly small
amount of formaldehyde is produced. From a biological point of view we can say that, in
order for the metabolic reaction to be spontaneous, inequality (14.20) must apply to the
fugacities inside the cell. If the ratio of fugacities becomes equal to, or greater than, 10−42,
then the cell “chokes” on its ownmetabolic products andmetabolism stops. The point is that
reaction 14.19 cannot be a respiration reaction. It could act as a carbon-fixing reaction if a
constant supply of energy were available (for instance, via photosynthetic reactions such as
(14.10), (14.12) and (14.13)), but for the reasons that we discussed above photosynthesis
is out of the question for primordial metabolism.
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Could some of the other reactions between CO2 and reduced endogenous species serve
as an energy source? Consider hydrogen oxidation:

4H2+CO2→ CH4+ 2H2O. (14.21)

TheGibbs free energy change for this reaction is�rG
0≈−130 kJ permol ofCH4 produced,

from which we infer that the reaction is spontaneous if:

fCH4

fCO2 ·
(
fH2

)4 < 1023. (14.22)

The reaction proceeds to the right even if the fugacity of the metabolic product (methane)
inside the cell is orders of magnitude higher than those of the nutrients (hydrogen and
carbon dioxide). This means that (14.21) is a possible, and in fact thermodynamically very
favorable, respiration reaction. The reaction liberates energy, but it does not produce the
CH2O-type molecules that are needed by biological processes.
Take now a linear combination of (14.19) and (14.21) of the form:

CH4+CO2→ 2CH2O

+n(4H2+CO2→ CH4+ 2H2O)

4nH2+ (n+ 1)CO2→ (n− 1)CH4+ 2CH2O+ 2nH2O. (14.23)

From the standard state Gibbs free energy changes of (14.19) and (14.21) we see that for
any value of n greater than ∼2, �rG

0 of reaction (14.23) is negative, or:

(
fCH4

)n−1 · (fCH2O
)2(

fCO2

)n+1 · (fH2

)4n < 10Q (14.24)

with Q> 0. If there is a constant supply of hydrogen and carbon dioxide, and the cell is
able to dispose of themetabolic products, for instance, by excretingmethane and converting
formaldehyde into complex organic molecules, then (14.23) acts as a respiration reaction
that at the same time fixes carbon. Note that, given the large energy requirement of the
carbon fixing reaction (14.19), it must be n > 2, so that the complete reaction (14.23)
always produces an excess of methane, that must be excreted.
Discussing the enzymatic pathways thatmaymake a reaction such as (14.23) possible, and

how such pathwaysmay have developed, is beyond the scope of this book (see, for example,
Nitschke & Russell, 2009). The crucial fact is that such reactions exist. They are known
as methanogenesis, and are used as the energy source by a group of present-day Archaea
known as methanogens. Similar reactions, that excrete acetate (CH3COO−) rather than
methane, are the metabolic processes that sustain a group of bacteria known as acetogens.
Methanogenesis and acetogenesis are unique, in that they are the only metabolic processes
in extant organisms that fix carbon while simultaneously liberating energy (see Lane et al.,
2010; Nitschke & Russell, 2009). They are also the only known respiration processes that
reduce carbon rather than oxidizing it. All other known carbon-fixing pathways absorb
energy (e.g. reactions (14.10), (14.12) and (14.13)), so that organisms that depend on them
must rely on distinct processes in order to fix carbon (photosynthesis) and liberate energy
(by respiration processes that oxidize carbon). Autotrophic organisms are able to carry out
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both types of processes, whereas heterotrophic organisms can only respire, and depend on
carbon fixed by autotrophs.
The sheer simplicity and efficiency of a reaction such as (14.23) makes it an excellent

candidate for a primordial metabolic process, but there are other lines of evidence that
support this hypothesis. Methanogenesis depends on a constant supply of hydrogen, for
example derived from volcanic gases (perhaps via serpentinization reactions, see Worked
Example 9.7), and carbon dioxide, which is likely to have dominated the Hadean and early
Archaean atmosphere (Section 14.1), and must therefore have been abundant in solution in
the primeval terrestrial oceans. Many extant methanogens (though not all) are thermophilic,
which is what one would expect if they are descended from primordial life that originated
near submarine hydrothermal vents, where H2 was abundant. There is also geochemical
evidence for methanogenesis from fluid inclusions in paleo-Archaean rocks (Ueno et al.,
2006). More directly, the genomes of methanogenic organisms place them close to the root
of the tree of life (see Di Giulio, 2009).
Reaction (14.23) is a possible pathway to methanogenesis, but is it the only one that

was available at the beginning of life? Recall that other reduced species are also present
in volcanic products. Could they reduce CO2 to CH4, so as to yield a reaction that can
be combined with the CH2O-forming reaction (14.19)? We can immediately discard the
following two reactions:

4H2S+CO2→ CH4+ 4S+ 2H2O (14.25)

CO2+ 8Fe2++ 8H+→ CH4+ 8Fe3++ 2H2O (14.26)

as they both have positive standard state Gibbs free energy changes: 3.6 and 463 kJ per mol
of CH4. Ammonia oxidation is feasible, as the reaction:

3CO2+ 8NH3→ 3CH4+ 4N2+ 6H2O (14.27)

has �rG
0 = −86.8 kJ per mol of CH4. It could thus be combined with (14.19) to yield

a self-sustaining carbon-fixing reaction. If this metabolic pathway ever existed on Earth
it appears to have left no descendants. Perhaps it never arose, or perhaps it did but it was
out-competed by methanogenesis. The reason in either case is likely to have been that
terrestrial volcanic gases never contained large enough ammonia concentrations to make it
competitive with hydrogen oxidation (reaction (14.23)). Ammonia oxidation might be the
starting point for biology in other worlds.
Another respiration reaction that is a feasible energy source for primordial organisms is

oxidation of sulfur according to:

8H2S+ 4Fe2+ +CO2→ CH4+ 4FeS2+ 2H2O+ 8H+. (14.28)

This reaction has a negative standard state Gibbs free energy change (−186.9 kJ per mol
of CH4), so it can be combined with (14.19) in a manner similar to (14.23), to yield the
following methanogenesis reaction that also precipitates pyrite:

8nH2S+ 4nFe2+ + (n+ 1)CO2→
→ (n− 1)CH4+ 2CH2O+ 4nFeS2+ 2nH2O+ 8nH+, (14.29)

where n> ∼1.5 (because of the relative values of�rG
0 of reactions (14.19) and (14.28)).

A reaction of this kind has been proposed as a metabolic pathway for primordial metabolism
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(e.g. by Wächtershäuser, 1988, and many subsequent publications). It oxidizes S2− to S−
by reducing carbon. The oxidation state of iron does not change, but the reaction is driven
strongly to the right by the very low solubility of pyrite. It relies on the availability of Fe2+,
for example extracted from basaltic ocean floor and dissolved in anoxic ocean water, and
H2S, which may be abundant in reduced volcanic gases. There is thus no a priori reason
why (14.29) could not have been the primordial metabolic pathway, rather than (14.23),
except that modernmethanogensmetabolize by oxidation of hydrogen according to (14.23),
without precipitating pyrite. One could argue that the vanishingly small concentration of
Fe2+ in the present-day ocean is an impediment that did not exist during the Archaean, but
there are other environments, such as euxinic lakes, where the required nutrients (hydrogen
sulfide and ferrous iron) are abundant and yet microorganisms in such environments use
othermetabolic pathways.Lane et al. (2010) andNitschke andRussell (2009), amongothers,
review a number of biochemical constraints that indicate that all modern life forms derive
from a common ancestor that oxidized hydrogen by the simpler methanogenic reaction
(14.23). If life based on pyrite-producing methanogenesis (reaction (14.29)) did arise on
Earth then for some reason it was not as successful as life based on direct hydrogen oxidation
(reaction (14.23)), and it became extinct.
Thermodynamic arguments do not constitute proof that life on Earth originated by

methanogenesis, but this may be as close as we may be able to get to a reasonably plausible
answer. In my view this is a simple process of elimination. There is a limited list of pos-
sible reduced nutrients of endogenous origin that are abundant enough, and an even more
restricted list of possible exogenous oxidizers, essentially limited to CO2. Thermodynamics
then forces us to discard all but two of the possible metabolic pathways: methanogenesis
by hydrogen oxidation (14.23) and methanogenesis by sulfur oxidation and pyrite precip-
itation (14.29). On the reasonable postulate that primordial metabolism is likely to have
been as simple as possible, we may choose reaction (14.23). This thermodynamic choice is
supported by genetics and molecular biology.
Even if we settle on methanogenesis as the most likely primordial metabolism, there

are a number of other tantalizing questions. Among them: (1) what was the source, or
sources, of molecular hydrogen; (2) would the origin of life have been possible if the
terrestrial atmosphere had been dominated by reduced species such as hydrogen and ammo-
nia? (Section 14.1); and (3) could the origin of life have been dependent on delivery of
extraterrestrial reduced carbon species?

Molecular hydrogen is present in reduced volcanic gases and it can also be produced by
the serpentinization process discussed in Worked Example 9.7 (see in particular Fig. 9.15).
This process is known to occur at present in hydrothermal vents located a few km from
active mid-ocean ridge volcanoes (see Kelley et al., 2001). Fluids in these “secondary”
hydrothermal vents are considerably colder than those emanating from black smokers near
sites of volcanic activity, and this would have been an advantage for the synthesis and
preservation of complex organic molecules.
With regard to question (2) it is hard to see what type of metabolic reactions could

be powered by the difference in thermodynamic states between the Earth’s interior and a
methane–ammonia–hydrogen atmosphere, as in that case there would have been no sig-
nificant difference in oxidation conditions between the Earth’s interior and its surface. A
possible pathway exists, however, for a nitrogen-dominated atmosphere such as would
form if the temperature is low enough to lock H2O as ice (Section 14.1). We return to this
possibility in Section 14.3.2.
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Question (3) is prompted by the suggestion that cometary impacts in the early Earth could
have supplied the young planet with abundant complex organic molecules (see Chyba et al.,
1990). Such compounds are indeed known to occur in comets and chondritic meteorites,
so we could add extraterrestrial reduced carbon to the list of possible nutrients that we
discussed at the beginning of this section. The problem with this hypothesis is the lack of
oxidizing species in the early Earth. The strongest abundant oxidizer is likely to have been
CO2, and oxidation of organic matter with CO2 is thermodynamically very unfavorable,
as shown by the large and positive standard state Gibbs free energy change of reaction
(14.19). Methanogenesis is the only present-day metabolic process that uses CO2 as the
oxidizer, and it works only because H2 is a powerful reducing agent, capable of producing
reduced carbon as a metabolic product. All other known metabolic processes, including
those in which the reduced nutrient is organic matter, rely on species more oxidized than
CO2, such as SO

2−
4 , Fe3+, NO−3 or O2. These reactions generateCO2 as ametabolic product

of organic nutrients. Methanogenesis is distinctly different in this respect, and is the only
metabolic reaction for which there was ample supply of nutrients in the early Earth. From a
thermodynamic point of view the largest stumbling block for the origin of life by anymeans
other than methanogenesis is lack of oxidizers, so cometary supply of reduced carbon does
not appear to be of much help.

14.3 Speculations about extraterrestrial life

As a long-time fan of “hard” science fiction, I could not resist this one. But I will keep the
discussion firmly ground on thermodynamics. Before we get to thermodynamics, though,
it is important that I state the following: there are at least two good reasons why it is very
unlikely that life can be based on any element other than carbon. The only other element that
is able to generate a large variety of complex molecular structures is, or course, silicon. Yet
what makes organic chemistry, and biochemistry, unique is the capability of carbon atoms to
bond with other carbon atoms without intervening atoms of other elements. Polymerization
in silicate structures – minerals and melts – requires bridging anions (typically oxygen),
making a silicon-based analog of organic chemistry impossible. This is the first reason. The
second one is more obvious, yet rarely invoked: Earth is a silicate planet. If silicon-based
life were possible, then why did carbon-based life originate instead? The answer, I think,
is because there is no other possibility.

14.3.1 Extraterrestrial life based on free energy gradients other than
chemical potentials

Having established why, in my opinion, life must be based on carbon, we can now focus
on thermodynamics. The sine qua non requirement for life is that the substrate be able to
sustain an uninterrupted free energy gradient. For all known life forms this corresponds to
a chemical potential gradient. What other possibilities are there? Good reviews are offered
by Schulze–Makuch and Irwin (2004) and Lunine (2005). Here I will focus on only a few
of the possibilities, which are the ones that I consider to be less unlikely.
The first possibility that usually comes to mind is a thermal gradient – and “gradient” is

the key word here. A living organism that feeds on thermal energy (let us call this process
thermofagy) is a heat engine, that absorbs heat from a high temperature reservoir and
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excretes heat to a lower temperature reservoir (Chapter 4). Thus, internal planetary heat
by itself cannot sustain life, just as a reduced chemical species by itself (e.g. hydrogen)
can’t. Internal planetary heat can be used as a biological nutrient only if the organism is
able to transfer heat to a colder environment faster than the rate at which heat would flow
by inorganic means (e.g. by diffusion or advection). This is equivalent to the concept that
aerobic life can use reduced carbon and oxygen in respiration only because enzymatic
pathways alter the kinetics of the oxidation reaction and make it faster than inorganic
oxidation at room temperature. A thermofagous organism could conceivably accomplish
this in two distinct ways. First, by swimming rather quickly between, say, a hydrothermal
vent on the sea floor and the surface of the sea. Second, by being a very large sessile organism
that is able to sustain internal convection, while extending across a substrate in which heat
moves only by diffusion. I don’t think that there is much hope for Jabba theHutt, but thermal
swimmers may stand a chance. I will not worry about the biochemical pathways that could
make it possible to harvest energy from a thermal gradient (but see Schulze–Makuch &
Irwin, 2004, pp. 54–56). Thermal swimmers, if they are at all possible, may be the best
chance for life in Europa, Ganymede, Enceladus, Titan and other icymoons with subsurface
oceans, where they could exploit the temperature difference between hydrothermal vents
or other warm areas of the ocean floor and the bottom of the ice lid. Could they have arisen
on Earth and then been out-competed by the type of life that we know? We will probably
never find out.
An idea that is closely allied to thermofagy is the exploitation of a chemical concentration

gradient. A swimming organism might be able to move between regions in an ocean in
which the concentration of a given solute is different. The organism may be enveloped by
an osmoticmembrane (like all organisms are) and its internal fluidmay have an intermediate
concentration of the solute, so that solvent (for instance, water) will be ingested from the
low-concentration region and excreted into the high concentration region. These we could
call osmotic swimmers, and they may also stand a chance in icy worlds, though exactly how
solute diffusion across an osmotic membrane could be converted to biological molecules
is hard to say (again, see Schulze–Makuch & Irwin, 2004, for some ideas).
Asomewhat different possibility is to harvest kinetic energy. This could be accomplished,

for instance, by ciliate organisms that could have somehow evolved the capability of using
the movement of the cilia to power metabolic processes. The organisms would feed off
convective flow of the surrounding fluid, which ultimately would be driven by temperature
or chemical potential gradients. I think that thermal swimmers or osmotic swimmers would
be more efficient, but who knows?
More outlandish possibilities have been considered (see the references cited above).

These include: feeding off magnetic fields, electromagnetic induction, gravitational poten-
tial gradients, tectonic stress, radioactive decay, etc. I do not think that any of these putative
nutrients warrants serious consideration. In fact, I don’t think that any of the other possibil-
ities considered in this section are very likely either. Chemical potential gradients are able
to generate a much higher energy flow, so the question is, what other chemical pathways to
metabolism that do not exist on Earth are possible?

14.3.2 Extraterrestrial life based on chemical potential gradients
uncommon or non-existent in Earth

The fact that all extant life on Earth can trace its ancestry to a methanogenic common
ancestor probably reflects the fact that methanogenesis is a relatively simple and efficient
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metabolic process. As such, one could expect that methanogenic life will arise anywhere
that the inorganic substrate is able to provide the required nutrients, i.e. hydrogen and car-
bon dioxide. If active volcanoes still exist on Mars then the Red Planet (there – I said it)
may very well support methanogenic life, perhaps in subterranean environments in which
water is kept liquid by internal heat. The presence of methane in theMartian atmosphere has
been interpreted as the signature of Martian life (Krasnopolsky et al., 2004), but the prob-
lem is that methane can also be produced by inorganic serpentinization reactions (Worked
Example 9.7), that would also be fueled by active internal processes.
If an endogenous supply of reduced species such as hydrogen does exist in Mars, how-

ever, the strongly oxidized nature of the Martian surface makes other metabolic pathways
possible, such as:

H2+ 2Fe3+→ 2H+ + 2Fe2+. (14.30)

This is a respiration reaction with�rG
0=−148.4 kJ per mol of H2. It is used by anaerobic

terrestrial microorganisms, but of course it requires a separate metabolic pathway to fix
carbon. It may not be an ideal candidate for the origin of life, but it may have evolved
from a methanogenic ancestor on Mars, as it did on Earth. Other respiration reactions that
use Mn4+, SO2−

4 , ClO−4 , etc., to oxidize hydrogen are also possible on Mars.
There is no lack of likely metabolic pathways, most of them tested by terrestrial life, that

could sustain life in present-day Mars, but there is no proof of Martian life. In this respect
it is instructive to examine the supposed presence of microfossils in Martian meteorite
ALH84001 (McKay et al., 1996). This claim is now discredited, and the following simple
argument (after Fenchel, 2002) shows why it should never have been taken seriously in
the first place. The supposed Martian nanofossils have a diameter of ∼100 nm, which
yields a characteristic volume of ∼4×10−21 m3. If the organism consisted only of H2O
then it would contain∼2×10−16 mols of H2O.Assuming that the organisms were adapted
to neutral pH conditions, they would contain ∼2×10−23 mols of protons, or about one
proton! Such an organism would not be able to maintain a constant pH, which would
make metabolism impossible. One could improve the viability of these putative organisms
by assuming that they are adapted to acid conditions, but the fact remains that the smallest
terrestrial organisms have a volume of∼5×10−19 m−3, i.e. two orders ofmagnitude greater
than the artifacts in the Martian meteorite.
Consider now a planet with a nitrogen atmosphere and active volcanism that supplies

reduced fluids containing hydrogen. There is no CO2 available to act as an oxidizer. The
following is a possible respiration reaction in such a planet, with �rG

0 =−16 kJ per mol
of NH3:

3H2+N2→ 2NH3. (14.31)

The atomic bond in the N2 molecule is very strong, so the kinetics of this reaction are very
unfavorable, but perhaps enzymatic pathways might evolve that would make it possible, as
happens on Earth with bacteria responsible for oxidizing atmospheric nitrogen. Production
of organic molecules in our hypothetical planet could begin with the reaction:

CH4+H2O→ CH2O+ 2H2 (14.32)

forwhich�rG
0= 185 kJ permol of formaldehyde.By analogywith terrestrialmethanogen-

esis (reaction (14.23)), reactions (14.31) and (14.32) could be coupled to yield the following
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respiration reaction that also produces formaldehyde:

nN2+ (3n− 2)H2+CH4+H2O→ CH2O+ 2nNH3 (14.33)

with n> 6. This reaction requires a supply of the reduced species H2 and CH4 (e.g. volcanic
gases), liquid H2O, and a dense nitrogen atmosphere, which can generate a significant con-
centration of N2 dissolved in water. Earth is a candidate planet, but this metabolic pathway
does not exist. If it arose in the primeval Earth it must have been driven to extinction by
the much more efficient methanogenesis process. Present day Titan may have the necessary
ingredients, but the liquid water requirement would restrict life based on reaction (14.33) to
deep environments, where the supply of atmospheric nitrogen may be problematic. Future
warming of Titan (as solar energy output increases) may make it more feasible, as long
as tidal and/or radioactive heating continues to support some sort of endogenous activity.
Reaction (14.33) may be a pathway to life in extra-solar worlds with less oxygen than the
early Earth, but whether the rich biology that we are familiar with could spring from these
beginnings is another question.
The possibility of life in the ice-mantled oceans of Europa, Ganymede and Enceladus is a

popular discussion topic, but the fundamental thermodynamic constraints should temper our
enthusiasm for this possibility.A source of internal heat, that undoubtedly exists in all these
three worlds, is not sufficient – what is required is a sustained free energy gradient. Leaving
aside the fanciful non-chemical possibilities discussed in the previous section, how could a
chemical potential gradient arise in an ocean covered by ice? If the ice layer is thin enough
to allow some high-energy electromagnetic radiation to get through then photodissociation
of H2O molecules could generate molecular oxygen, which could in turn oxidize species
such as ferrous iron or sulfide. Convection could transport these oxidized components to
the deep ocean, where a chemical potential gradient relative to reduced species would arise.
In principle some of the same respiration pathways that exist on Earth could be sustained
in this way, but the low efficiency and unpredictability of the process would make life for
putative Europan microbes rather miserable.
What I conclude, and this is opinion rather than a logically rigorous conclusion, is that

when we find extraterrestrial life we will immediately recognize it, as it will be chemically
very familiar. Yes, there are other ways to make a living, and it is possible, perhaps even
likely, that some of these other biological pathways arose in the early Earth. But there is a
good reason why we all share a common methanogenic ancestor, which is natural selection
of the most efficient metabolic pathway.

14.4 Entropy and life

Metabolism, and therefore life, is only possible if the inorganic reactants in the substrate
can be related by a chemical reaction with positive affinity. Metabolism therefore generates
entropy, just as any chemical reaction that proceeds from a state of non-equilibrium towards
equilibrium does (equation (12.77)). I am always mystified by statements to the effect that
life and biological evolution “violate” the Second Law because, in producing “ordered”
structures, they “lower the entropy of the universe”. Such statements denote a profound
ignorance of thermodynamics, as they fail to appreciate the fact that entropy is a macro-
scopic function, whereas the probabilistic foundation of entropy (the “order–disorder” idea)



669 Exercise for Chapter 14

is an exclusively microscopic concept (Chapter 4). Evolution, assembly and growth of com-
plex and organized organisms (be it a bacterium or one of my tabbies) is a macroscopic
process, and has no bearing on the state of microscopic order of the system, which is what
determines its entropy. The correct way to see any biological process is that both catabolic
metabolism (responsible for energy transformations) and anabolic metabolism (responsible
for synthesizing cellular structures from material gathered from the substrate) are chemical
reactions, and all chemical reactions generate entropy, as equation (12.77) shows.
The same is true of the origin and evolution of life, although in this case we can make an

additional argument. Say that the origin of life from inanimate matter is an ordering process,
in the same sense that growth of a crystal from a solution or melt is an ordering process – the
random distribution of atoms and simple molecules of nutrients in the “primordial soup”
becomes a more ordered arrangement of atoms in complex organic compounds, including
RNA, DNA, etc. We can use Landau theory (Section 7.6) to examine this process. We set
the order parameter φ = 0 for the inanimate precursor of life (the disordered phase), and
φ > 0 for the first living organism (the ordered phase).Note that the order–disorder concept
applies to the microscopic nature of the system, as it must. Using (7.48) we write (7.49) as
follows:

G(φ)= 0, (disordered phase)

G(φ)=−1

4
g4φ

4, g4 > 0, (ordered phase)
(14.34)

and (7.50) as:

S (φ)= 0, (disordered phase)

S (φ)=−α
2
φ2, (ordered phase).

(14.35)

The enthalpy of ordering is given by:

�Hordering =G(φ)ordered +T S (φ)ordered −G(φ)disordered −T S (φ)disordered
=−1

4
g4φ

4−T α
2
φ2 < 0. (14.36)

Ordering is always an exothermic process. The system that becomes ordered (in this case,
a biological molecule) releases heat, that is absorbed by the environment. Because the
environment must be at a lower temperature in order for heat to flow, its entropy increase
is greater than the entropy decrease associated with ordering of the primordial cell. Heat
transfer generates entropy (equation (12.14)), and the “entropy of the Universe” increases.
We may not yet have a full understanding of how life on Earth originated, but we can be

certain that it did not involve intervention of some ad-hoc and imaginary entity capable of
violating the Second Law of Thermodynamics. The origin of life was a chemical reaction,
however complex, and as such it generated entropy.

Exercise for Chapter 14

14.1 Consider a planet with g= 9.8 m s−2 and a water column of thickness 2 km averaged
over the surface area of the planet. The planet has an atmosphere in which the partial



670 Thermodynamics of life

pressure of N2 is 0.8 bar. The planet’s early atmosphere was rich in CO2 (later in
its history most of that CO2 was scrubbed by formation of carbonates and organic
matter, but we will ignore this). Use the Maple code described in Software Box 14.1
to estimate a possible range of bulk C–H–O–N contents if the partial pressure of CO2

in the early atmosphere was (i) 1 bar, (ii) 10 bar, (iii) 50 bar. Compare your results to
chondritic and cometary abundances, and discuss the implications for the origin and
early evolution of the terrestrial atmosphere.



1
Appendix 1 Physical constants and other useful

numbers and conversion factors

Constant Symbol Value

Gas constant R 8.3145 J K−1 mol−1
Avogadro’s number N 6.0221× 102 mol−1
Boltzmann constant kB 1.3807× 10−23 J K−1
Atomic mass unit u 1.6605× 10−27 kg
Planck constant h 6.6261× 10−34 J s
Speed of light in vacuum c 2.9979× 108 m s−1
Gravitation constant G 6.6726× 10−11 m3 kg−1 s−2
Stefan–Boltzmann constant σ 5.6705× 10−8 J s−1 m−2 K−4
Permittivity of free space ε0 8.8542× 10−12 C2 N−1 m−2
Electron charge e 1.6022× 10−19 C
Electron mass me 9.1094× 10−31 kg
Million years my 3.1558× 1013 s
bar bar 105 N m−2 = 105 Pa
kilobar kbar 108 N m−2 = 100MPa= 0.1GPa
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2
Appendix 2 Derivation of thermodynamic

identities

Solving thermodynamic equations often entails simplifications and combinations of partial
derivative relationships.We often need towrite equations in terms of variables that are either
easily measured or that we want to solve for, such as T , P and V , and of the three material
properties, KT (or βT ,), α and CP . From the material properties we extract the following
three partial derivatives, which are the ones that we wish to appear in our equations, to the
exclusion of other partial derivatives:(

∂V

∂T

)
P

= αV (A2.1)

(
∂V

∂P

)
T

=−βTV =− 1

KT

V (A2.2)

(
∂H

∂T

)
P

=CP . (A2.3)

There is a straightforward method that allows one to obtain any partial derivative as
a combination of these material properties and the variables P ,T and V . A “black-box”
recipe to do this was given almost a century ago by theAmerican physicist P. W. Bridgman
(1914), who made pioneering contributions to high-pressure research. The recipe relies on
using tabulated “half identities” (see, for example, Glasstone, 1946). Bridgman’s relations
can be derived in an elegant fashion using Jacobian matrices and determinants, as discussed
by Shaw (1935) and Guggenheim (1967, p. 41). A detailed explanation of how Bridgman
obtained his equations can also be found in Tunell (1985).
Whenever possible, I find it more satisfying to derive the relations one may need from

first principles. This is the case with all thermodynamic identities used in this book. Many
of the most commonly used relations follow directly from the identity of the mixed second
derivatives of the thermodynamic potentials (Maxwell’s relations, see Section 4.9.1). Other
relations at constant T or P can be found as follows (this derivation largely follows that of
Tunell, 1985.

The idea is that thermodynamic state functions can bewritten as functions of the variables
P ,T , V , E and S. The first task is to find expressions for the first derivatives of E and S
relative to T and P , as a function of some combination of the variables P ,V ,T and the
three material properties, α, βT and Cp. The second derivatives of the Gibbs free energy
function (equations (4.135) and (4.139)) give us the first two equations:(

∂S

∂T

)
P

= CP
T

(A2.4)

(
∂S

∂P

)
T

=−V α. (A2.5)
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Recall that (A2.5) arises from one of Maxwell’s relations (Section 4.9.1). Using (1.3.3) we
write the total differentials of E,Q and V relative to T and P :

dE =
(
∂E

∂T

)
P

dT +
(
∂E

∂P

)
T

dP (A2.6)

dQ=
(
∂Q

∂T

)
P

dT +
(
∂Q

∂P

)
T

dP =CP dT +
(
∂Q

∂P

)
T

dP (A2.7)

dV =
(
∂V

∂T

)
P

dT +
(
∂V

∂P

)
T

dP = αV dT − βTV dP . (A2.8)

We next substitute these expressions into the First Law: dE= dQ−PdV (equation (1.56))
and collect terms as follows:(

∂E

∂T

)
P

dT +
(
∂E

∂P

)
T

dP = (CP −PαV )dT +
[(

∂Q

∂P

)
T

+PβTV

]
dP . (A2.9)

Because dP and dT are linearly independent variables we have the following identities:(
∂E

∂T

)
P

=CP −PαV (A2.10)

(
∂E

∂P

)
T

=
(
∂Q

∂P

)
T

+PβTV . (A2.11)

Equation (A2.10) is the third equation that we seek. To reduce (A2.11) to material properties
we use the definition of entropy, equation (4.6), to write:(

∂Q

∂P

)
T

= T

(
∂S

∂P

)
T

=−αV T (A2.12)

so: (
∂E

∂P

)
T

= (PβT −T α)V . (A2.13)

Summarizing the four equations:(
∂E

∂T

)
P

=CP −PαV

(
∂E

∂P

)
T

= (PβT −T α)V

(
∂S

∂T

)
P

= CP
T

(
∂S

∂P

)
T

=−V α.

(A2.14)

As an example, suppose that we need an expression for (∂H/∂P )T , see Section 3.5. From
equation (4.122): (

∂H

∂P

)
T

=
(
∂E

∂P

)
T

+P
(
∂V

∂P

)
T

+V (A2.15)

using (A2.2) and (A2.13):(
∂H

∂P

)
T

= (PβT −T α)V −PβTV +V = V (1−αT ) . (A2.16)
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For a different example, suppose we need the pressure and temperature derivatives of the
Helmholtz free energy. From (4.125), (A2.13) and (A2.5) we have:(

∂F

∂P

)
T

=
(
∂E

∂P

)
T

−T
(
∂S

∂P

)
T

= PV βT (A2.17)

and from (4.125), (A2.10) and (A2.4):(
∂F

∂T

)
P

=
(
∂E

∂T

)
P

−T
(
∂S

∂T

)
P

=−PV α. (A2.18)

The equations summarized in (A2.14) work only if we seek derivatives of other thermo-
dynamic functions at constant temperature or constant pressure. If different conditions are
required, such as constant entropy, then other equations must be found, in which case it
may be convenient to use a different set of material properties, such as the adiabatic bulk
modulus or the Grüneisen parameter. Some examples are presented in the main text, see
especially Chapters 7, 8 and 9. If all else fails, then one can always use Bridgman’s formulas
or, better, Shaw’s method.
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accretion 74
non-equilibrium 88

activation energy see chemical reaction, energy,
viscosity

activity 253
and chemical reaction rates 595
in dilute solutions 524

of electrolytes 546, 546–548
ideal 258, 259

relationship to configurational entropy 259, 267,
268, 273

and Gibbs free energy of mixing 265
non-ideal 277
relationship to composition 258
relationship to fugacity 423
as a relative quantity 254

activity coefficient 277
in dilute solutions 526

of electrolytes 546, 562
Debye–Hückel theory 563–571

extensions to less dilute solutions 572–574
Maple code 568
and pH 549
and solubility product 552

relationship to osmotic coefficient 532
and Henry’s law constant 278, 527
and reaction rate constants 595
relationship to excess chemical potential 277
and trace element geochemistry 529

adiabat 145–148, 167, 413
isentropic 225
non-isentropic 510–512
potential temperature 495

advection see heat transfer
affinity 596, 613

and reaction progress 596, 614
albedo 71
and greenhouse warming 640

analytical concentration 527
of CO2 in seawater 528
of Fe3+in seawater 556, 557 (figure)

Anderson–Grüneisen parameter 392
temperature dependence 394

Antoine equation 329
asteroid

ohmic heating 113, 115

thermal gradient (across asteroid belt) 115
Arrhenius law 159, 609–610
atmosphere

chemical evolution 645
carbonate sequestration (Urey reaction) 654
and liquid water 648

effect of gravitational acceleration 652
oxidation state 649, 652, 654, 655

carbon species 654
difference with planet’s interior 659, 664
effect of methane 654
effect of water vapor 654
and liquid water 649
sulfur species 653

speciation 649 (figure), 650 (figure), 651 (figure),
653 (figure), 655 (figure), see also gas

effect on atmospheric pressure 649
collapsed 619
gravitational binding 616, 653, 616 (figure)
greenhouse gases 620, 631
mass 618
hydrogen loss 617, 653

desiccation 649, 654
oxidation 619, 651

scale height 622
of specific planetary bodies 623

steam 654
stratification 624
thermal escape 616, 618

Beer–Lambert law 611, 635
Biot–Savart law 32, 33
black body 71, 626, see also heat transfer, thermal

radiation
radiant energy balance of 629

boiling curve 535
Boltzmann’s postulate 202
and ideal activity 259

boundary layer
rheological 160, 158 (figure), 169, 171
thermal 135

in convection 157, 158 (figure)
and cooling history of the Earth 137–141
in magma chambers (Soret diffusion in) 591

Brayton cycle 192 (figure)
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brines
Martian 538
phase relations 313, 317, 535

brown dwarf 65
bulk modulus see modulus

calcite saturation 553, 568
in the Archaean oceans 561, 562 (figure)
Maple code 551, 568
in soda lakes 569

Callisto
internal structure 518

carbonate speciation
Maple code 550, 568
in rain water 549, 551 (figure)
in seawater 553
in soda lakes 569, 570 (figure), 572 (figure)

Carnot’s theorem 191
catastrophic impacts

thermal effect 87
center of mass 104
chain rule 20
chemical diffusivity see diffusion
chemical potential see equilibrium, Gibbs free energy,

potential
chemical potential diagrams 318

slopes of phase boundaries 318–319
chemical reaction

activation energy 234
composite 600
parallel 601

branching ratio 603
rate laws 600
sequential 600, 602 (figure)

steady-state approximation 601
elementary 592
and chemical equilibrium 49
collision partner 593, 604, 606
first-order 598

half life 598
reaction time scale 598

molecularity 592, 594
Lindemann mechanism 593

order 593
pseudo-first-order 600
rate constant 594, 595

and equilibrium constant 596
in photochemical reactions 610, 611
in thermally activated reactions 609

rate law 594, 595
and equilibrium constant 596
first-order 598
second-order 599

entropy production by 184, 207, 221, 578,
594–597, 668, 669

Gibbs free energy of 230, 231, 240, 318
kinetics and thermodynamics 595–597

net rate 595
and approach to equilibrium 597
in heterogenous systems 612

reaction interface 612
reaction volume 612, 613

progress variable 595, 614
rate 50, 577, 592–611

chemographic diagram 302, 302 (figure), 304 (figure),
309 (figure)

and compositional degeneracy 311
chondrite

fluid composition 467
radioactive heating 119

Clapeyron equation 238
in open systems 319

Clapeyron slope 238, 243
of ice melting reactions 520, 538
of mantle melting reaction 495, 504
and decompression melting 499
in Mars 507

of mantle phase transitions 405
coconuts 501
C–O–H fluid speciation 460

during core formation in planetesimals 467, 471
(figure), 472 (figure)

Maple code 469
during serpentinization 461, 464 (figure)

Maple code 462
collapsed atmosphere 346
collision 21

elastic 11, 57
inelastic , 76, 86, 88 (figure),
molecular 592-594, 609

components see phase component, system component
compositional degeneracy 311
compressibility 41

adiabatic 225
at a critical point 432, 438
factor (of gases) 429

critical 440, 445
isothermal 224, 310
of fluids 310
of gases 237 (figure), 238
of minerals 395–398
at a phase transition 237

critical 371
consolute point see critical mixing point
constitutive relation 583, 126, see also heat transfer
constraints (thermodynamic) 210
contraction 74

equilibrium 94
of gas giants 474

convection 33, 123, see also Earth, heat transfer, ice,
Mars, Venus

atmospheric 195, 196 (figure), 633
as a heat engine 141–145,
as a heat transfer mechanism 150, 153–157
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convection (cont.)
in icy satellites 519
in Jabba the Hutt 666
in Mars 178
moving plate 158 (figure), 160, 161, 165–169, 171
parametrization of 153, 165–178
stagnant lid 158 (figure), 160, 169–173
thermodynamic efficiency of 189
in planetary interiors 193, 194 (figure)

in the terrestrial mantle 138
Archaean 166
heat transfer efficiency of 161

in Venus 175
convex function 220
coordinate change 219
core formation 96
corresponding states 440
critical mixing point 352, 350 (figure), 353 (figure),

see also solvus, temperature
analogy with critical point of a fluid 435
behavior 352
calculation 355, 357 (figure)
and dilute aqueous solutions 522
metastable 357

cryoscopic constant 533
crystallographic sites
multiplicity 260
ordering 268, 362, 363, 368 (figure)

Debye–Hückel theory 563, see also activity
coefficient, dielectric constant, electrolyte,
permittivity

a posteriori justification 564
distance of maximum approach 565
full equation 565
limiting law (at very low concentrations) 564

degrees of freedom 57, 59, 61
in gases 62
in melts 478
in the phase rule 289, 290, 295, 296, 334, 483

at a critical point 353
under externally controlled intensive variables

315
in multicomponent fluids 467

in solids 209, 408
in systems of equations 256, 288

density 64
atmospheric 618, 645
critical 440 (table)
Earth’s mantle 401, 410
energy (solar power) 629
giant planet interiors 473
icy satellite interiors 518, 520
in magma segregation processes 511
number (Beer–Lambert law) 611, 636
particle 65

in terrestrial atmosphere 605

in phase equilibrium 238
Pitzer–Sterner EOS 446
in planetary assembly processes 74, 76
in planetary contraction 89, 93
in planetary convection 143, 154
in planetary differentiation 96
of subcritical fluids 431, 438
of supercritical fluids 428, 438, 448, 450 (figure)

description
macroscopic 55, 26, 125, 196, 202, 275, 349, 373,

387, 388-401, 407, 543, 593, 610, 625,
634–635, 668

microscopic 55, 26, 127, 196–205, 265, 275, 362,
373, 387, 477, 482, 540, 563, 594, 636, 669

diapir 509
heat transfer efficiency of 510

dielectric constant 541
in Debye–Hückel theory 564, 565
effect on ionic dissociation 544, 545
at molecular lenghtscales 544
variation with temperature 542
of water 542

dielectric strength 29, 541
difference operator 239
differential equation 129–133
Maple solver 600

differentiation (planetary) 74
of planetesimals (fluid distribution) 471
in Saturn 102
thermal effect of core formation 99

diffusion
chemical 581–588, see alsoArrhenius law, Soret

diffusion
binary see interdiffusion
diffusion coefficient 583
diffusivity see coefficient
eddy diffusivity 586
Fick’s first law 583
Fick’s second law 584
in heterogeneous systems 612, 614
interdiffusion 586

coefficient 588
and tracer diffusion 587, 588

and metamorphic recrystallization 586
phenomenological relationship 582, 587, 588
tracer 581

and entropy generation 210, 226, 578, 580
equation 129
of heat see heat transfer
of momentum 125, see alsoArrhenius law
thermal 590

and chemical diffusion 591
diffusion–advection equation 148
dimension 6
dimensional analysis 6
disproportionation reaction 428
dissipation factor 106
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Dufour effect 579, 590, 592
Dulong and Petit’s law 63, 390

Earth
accretionary heating 82, 88
age estimate by Kelvin 138
significance for mantle convection 141, 150, 161

Archaean
atmosphere 323, 556, 649

and origin of life 661, 663
magmas 504
molecular oxygen 661
seawater 560

asthenosphere 135, 159
fluid densities in 450

banded iron formations 323, 554–561, 661, see also
iron solubility

bulk composition 118
continental crust 308
melting 494
subduction 398
volatile densities in 448, 450 (figure)

convergent plate margins
melting at 516

core–mantle boundary 142
thermal pressure 413
zero-temperature pressure 412

density of fluids
along continental geotherm 449
in the upper mantle 449

differentiation 99
glacial periods (late Proterozoic) 641
global warming 528
Hadean

atmosphere 663
thermal conditions of Earth–Moon system 111

heat flow 78
ice-free (Mesozoic) 640
komatiites 167, 507
mantle

lower 401
transition zone 401

fluids 449
upper 401

fluids 442, 450 (figure)
melting 499, 504, 511, 516
thermal pressure in 413

mantle convection
adiabatic gradient 147
during the Archaean 167
Nusselt number 161
Péclet number 150
Rayleigh number 157

mantle phase transitions
plagioclase–spinel 241
ringwoodite–perovskite 401, 415, 403 (figure),

417 (figure)

binary P–XMg loop 418 (figure)
Maple code 403, 416

spinel–garnet 241, 256, 268, 283, 291, 396
Maple code 242, 270, 284

mantle plumes 138, 174
melting at 507

mantle upwelling 506
mid-ocean ridge basalt (MORB) 504
mid-ocean ridges 142, 243, 271, see also

melting
lherzolite melting 243, 271, 484, 496
mantle upwelling 496

oceanic island basalt (OIB) 504
oceanic lithosphere 135, 145, 153 (figure)
evolution after the end of plate tectonics 171
as thermal boundary layer 157
thermal erosion of 496

ozone 603
Chapman cycle 603, 633
destruction by catalytic cycles 606, 607, 608

(figure)
partial pressure 605

radioactive heating 118
seawater

concentration of dissolved gases 528
secular cooling 118, 139, 171
subduction zones 142, 160, 171

limestones 313
melting at 494

tidal heating 111
tropical atmospheric circulation 195

ebullioscopic constant 533
electric current density 114
electromagnetic radiation see thermal radiation
electrolyte 522, see also activity, activity coefficient,

entropy, field, heat capacity, hydrogen ion,
potential, standard state

Debye–Hückel theory 563, see also activity
coefficient

validity of 566, 566 (figure)
dissociation 540, 543

Born’s equation 544
electrical neutrality 545
Guggenheim model 573
Helgeson model 574
ion activity product 571
ionic strength 564
mean ionic activity coefficient 546
mean ionic molality 546
and neutral species (different behavior) 562, 563

(figure)
Pitzer model 573
principle of specific ion interactions 573
solubility product 552
strong 544

bulk aqueous electrolyte 547
activity 548
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electrolyte (cont.)
weak 544

activity 547
dissociation constant 547

electron degeneracy 66, 473
emissivity 71, 626, 632, see also heat transfer,

radiation
Enceladus

internal structure 519, 519
tidal heating 111

energy 4
activation 159, 167, 234, 609
balance in atmosphere 637 (figure)
binding

gravitational 75–78, 79, 89, 93, 473
per unit mass 77, 77 (figure), 87

nuclear 70
dissipation of 116–120

conservation 4
in a convecting fluid 162

conversion 123, 141, 193
dissipation 13, 47

in an diabatic system 509
and entropy generation 186–189, 510
by inelastic deformation 510
by melt separation 511

elastic 106, 25, 107, 399
electrical

dissipation of 112–116
electromagnetic 71, 625
electronic 55, 632
electrostatic 30, 55
equipartition of 57, 60
Fermi 66
flux 71, 625
Gibbs 223, see also Gibbs free energy
Helmholtz 223, see also Helmholtz free energy
gravitational 7, 76, 122

dissipation of 73
by accretion 74, 78–88
Maple code 80

by contraction 74, 89–96
by differentiation 74, 96–103

in fluid planets 102
by tides 74, 103–112, 110 (figure)

of gas molecules 616
internal 23, 36, 55, 56, 57, 79, 89, 94, 182, 625

at constant entropy 213
and entropy 184, 213
in fluid planet interiors 473
ideal gas

monatomic 59
polyatomic 60

in a thermodynamic cycle 144
as a thermodynamic potential 216–217, 218, 219

ionization 64
kinetic 10, 85

in First Law of Thermodynamics 86
lattice 30, 31, 75, 405
minimum

principle 213–215
nuclear 55
mechanical 6
in metabolic processes 657–660, 662

for extraterrestrial life 665
of photons 632
of position 405
quantum 66
radiant 625, 627–632
rotational 55, 60, 632
strain 473
thermal 35, 64, 66, 79, 540
thermalized 71, 639
translational 45, 55, 56, 608, 616
vibrational 55, 61, 63, 202, 205, 209, 405, 632

and melting 478
and thermal pressure 407, 413

zero temperature 473
enthalpy 40

in adiabatic path 146
change by heat advection 149
change by heat diffusion 128
of crystallization 46
of dissolution 527, 534
excess 276
and First Law of Thermodynamics 186
of formation 50

standard state 51
reference state 208, 231

of fusion see enthalpy of melting
in Landau theory 379
in mantle convection cycle 193
of melting 336 (figure), 480

effect on magma eruption temperature 495
(figure), 497

in fluid-fluxed melting 512 (figure), 514
effect on melting point depression 340, 341

(figure)
and entropy of melting 185
of rocky materials 99
of solvent 532

of mixing 258
of ordering 363–365

in origin of life 669
partial molar 252

in Onsager reciprocal terms 589
of phase transitions 208, 237, 326, 327, 335, 349,

354, 362, 434
of reaction 43, 45
as thermodynamic potential 222
of vaporization 42

of solvent 533
of volatile species 422

entropy 24, 184
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absolute scale for 207
at absolute zero 206–207
of aqueous electrolyte 547
and Boltzmann’s postulate 202
change between equilibrium states 186
configurational 202, 203, 258, 363
and ideal activity 259–261, 266–273
in non-ideal solutions 275

and disorder 205
and energy minimum principle 213, 215–215
and enthalpy
excess 276
external 578
of formation 240
generation

in adiabatic expansion 146
in Carnot cycle 194
in chemical diffusion 581
by chemical reactions 597
and energy dissipation 186
in free expansion of a gas 188
and heat transfer 188, 580
internal and external components 577
in mantle upwelling 509–512
during mixing of gases 200
and thermodynamic efficiency 190

and Gibbs free energy (Legendre transform of) 223
and Gibbs free energy surface 226
and Helmholtz free energy (Legendre transform of)

223
and information content 205
internal 578
and Landau parameters 379
and life 668–669
of lattice disorder 479
mathematical properties 184
maximum principle 209
and Maxwell demons 202
microscopic interpretation 197–203
of melting 185, 238, 479, 500

and melting point depression 482
microscopic view 478, 479, 480 (figure)

of mixing 200, 202, 258
and configurational entropy of end members 273
of ideal solution 259

as natural variable of enthalpy 222
as natural variable of internal energy 219
of ordering 375, 376 (figure)
partial molar 252

in Soret diffusion 589
of phase transitions 208, 238, 243, 326, 354, 367
in planetary adiabats 225
postulate 184
production rate 578

minimum principle 580
per unit volume 578, 580

reference state 231

Third Law 231
of the universe 184
vibrational 205
of volatile species 422

environment (in the thermodynamic sense) 2, 164,
188, 315–318, 318, 474, 510, 578, 612, 629, 645,
657, 669

equation of state 20, 55, 64, 94, 147, 232, 386
Brodholt–Wood 447
Maple code 452

calculation of fugacities in mixed fluids 454
Redlich–Kwong 455, 465, 470
Maple code 457
mixing rules 456

calculation of standard state fugacity 422, 451
Maple code 451

cubic 442
fluid planet interiors 473
ideal gas 21, 58, 148, 200

atmospheric density 622
in calculation of Gibbs free energy 233

isothermal 387
from interatomic potentials 406
Murnaghan 388, 389

Holland and Powell parameters 396
Maple code 395, 404

Birch–Murnaghan
Maple code 410, 404
second-order 401
third-order 400
mantle transition zone conditions 404

Born–Mie 407
Maple code 410, 404
terrestrial mantle pressure 410

Mie 406
Kerrick–Jacobs 446
Maple code 451

Pitzer-Sterner 446
Maple code 451

pressure explicit 387
for real gases 429

comparative behavior 444 (figure), 448 (figure)
Redlich–Kwong 444
Maple code 451
possible validity range in planetary interiors

448
for solids 386
universal 440
van der Waals 428, 443

dimensionless form 432, 437
Maple code 451

virial 443
volume-explicit 387
water–ammonia mixtures 520

equilibrium 2, 181, 184
atmospheric composition 427, 603, 646, 652
Maple code 647
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equilibrium (cont.)
oxygen concentration 656

chemical 209, 229
heterogeneous 235, 239

calculation of 239–241
Maple code 242, 404
uncertainties in 243

identity of chemical potentials 247
homogeneous 288, see also Gibbs–Duhem

equation
metastable 298, 298 (figure)

in compositionally degenerate systems 311
in a multicomponent gas phase 261, 459–471
Maple code 265, 462, 469

in open systems 315–325
in phases of variable composition 247
stable 298, 298 (figure)

constant 255–257
for ionic dissociation 547

of water 549
at constant entropy 213
at constant pressure and temperature 234
at discontinuous phase transitions 326–347
displacement towards 578, 592, 597
fugacity 454
hydrostatic 89, 93, 95, 147, 409, 473, 511, 622
in isolated system 210, 184, 213
interatomic distance 405, 477, 609
internal 578
isotopic 116
linear approach to 579
liquid–vapor 428–440
local 578
macrostate 198, 201
phase see phase equilibrium
and Second Law of Thermodynamics 212
temperature

of planetary surface 71, 629, 638
thermal 182, 187, 212, 214
thermalized energy flux 72
thermodynamic 214

at constant pressure and entropy 222
at constant pressure and temperature 223, 226
at constant temperature and volume 435
in fluid planet interiors 474
in a gravitational field 620–624
and life 645, 659, 668
minimization of thermodynamic potential 216,

220
and order parameter 369

volume 406, 436, 437
equipotential surface 9, 216
error function 133
eruption 46, 586, 640
cryolavas 344
pyroclastic 46

temperature 494, 495 (figure), 497, 505 (figure),
507

ultramafic lavas 167
escape velocity 86

and atmospheric loss 617
Europa

internal structure 518, 519
life 668
tidal heating 111
volatile retention 619

evaporites 305, 425
analogy with igneous phase relations 309
and atmospheric humidity 317, 426 (figure)

evolution (biological) 205, 668
excess thermodynamic functions 275, see also activity

coefficient, enthalpy, entropy, Gibbs free energy,
potential, solution, volume

as relative quantities 282
pitfalls 283, 283 (figure)

Margules parameters 279
polynomial expansion 279–281
exsolution see solvus

fault 47, 152, 160
heating at 49

feldspars
exsolution 358 (figure)
order–disorder 203, 271

field 5
gravitational 7

chemical equilibrium in 581, 620–624
and magmatic ascent 123
and planetary differentiation 96

electric 28
in electrolyte dissociation 541, 543

magnetic 32
interplanetary 112
planetary 33, 194
and planetary heating 112–116

temperature
and heat diffusion 129

fluid
condensed 64, 428
equations of state 442–450
in giant planets 473
momentum transfer in 125
non-condensed 64, 66, 428
planetary mantles as 141, 154–157, 166, 171
in rock melting 512–517 , 512 (figure)
Maple code 515

supercritical 64, 353, 428, 430–440, 436 (figure),
440 (table)

in thermodynamic cycles 192
van der Waals 430
volatile 420

force 5
buoyancy 143, 154
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electrostatic 27, 541, 565
frictional 47, 105
gravitational 7, 75, 103, 620
inside a body 98

interatomic 405, 540, 543
intermolecular 428, 445
Lorentz 32, 113
magnetic 32
thermodynamic 578, 580
in thermodynamic potential 672
tidal 104–110
viscous 126, 155, 164

Fourier’s law 124
freezing curve 535
freezing point depression equation 327, 533, see also

melting point depression equation
fugacity 265, 421
of CO2

effect on composition of soda lakes 568, 572
(figure)

Maple code 568
effect on iron solubility in seawater 560
effect on pH surface waters 551
in the Archaean atmosphere 560

in a gravitational field 623
and Henry’s law constant for gas solubility 526
ideal gas limit 421, 451
in mixed fluids 454

calculation 455, 458 (figure)
Maple code 457

as a representation of chemical potential 422
standard state 421

calculation 422, 450–454, 453 (figure)
Maple code 451

of oxygen 426
buffered by atmospheric methane 654
buffered by graphite 471 (figure)
buffered by iron oxidation reactions 426, 427

(figure)
effect of pressure 428, 427 (figure)
in planetary atmospheres 655

effect on iron solubility in seawater 555–561,
649, 557 (figure), 559 (figure)

and carbonate precipitation 560
effect on serpentinization reactions 463, 464

(figure)
methane production 464

of graphite-saturated fluids 470, 471 (figure)
in the Hadean atmosphere 648–656, 649 (figure),

650 (figure)
in the Martian atmosphere 656
in the terrestrial atmosphere (present day) 427,

554, 656
of H2O

at dehydration reactions 423, 424 (figure)
in evaporite formation 425, 426 (figure)

during serpentinization reactions 423, 464
(figure)

and hydration of peridotites 423, 424 (figure)
fugacity coefficient 421

in mixed fluids 457, 454, 462
Maple code 463

standard state 421, 453

Ganymede
cryomagmas 345, 520
internal structure 518, 519
tidal heating 111

gas
aqueous solution 526
atmospheric speciation 645
Maple code 647

equilibrium with condensed phases 328–330 , 342,
346

gravitational stratification 624
gravitationally bound to planets 617
ideal 25, 40, 47, 55, 65

activity–composition relationship 261
expansion 188
Gibbs free energy 233, 235, 238, 420
Maple code 234

gravitational self-compression 94
microstate 197
mixing 199

Maxwell’s demons 202
monatomic 55
planetary atmospheres 148
pressure 57
speciation 257, 264

Maple code 265
interaction with electromagnetic energy 632–633
real , 62, 66
chemical potential 421–422

equations of state 428–430, 440–450
Maple code 451

speciation 459–471
Maple code 462, 469

simple 440
and Redlich–Kwong equation of state 445

gas giants
convection 194
heat sources 96, 78

geobarometry 256
geothermometry 256
geoid 9, 123
Gibbs–Duhem equation 288, 295

in dilute solutions 530
equivalent systems of equations 291
in a gravitational field 621
homogeneous system of equations 292
and phase rule 289
and phenomenological coefficients 587
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Gibbs free energy 223, see also chemical reaction,
energy, entropy, heat capacity, pressure,
temperature, thermal expansion, thermodynamic
potential

calculation 230, 395
Maple code 234, 395

of charging 543
of dissolution 534, 526
in equations of state for solids 389
of formation 231, 240
in a gravitational field 620
of ionic dissociation 544, 547
of melting 254
minimization (in calculation of fluid speciation)

465–470, 646
Maple code 469, 647

of mixing 265
derivatives of 352
excess 275, 280

and critical phase transitions 349, 350 (figure),
355, 356, 357 (figure)

in dilute solutions 525
and osmotic coefficient 531

ideal 266 (figure), 266, 275
and exsolution 349

of ordering 363, 367, 368 (figure), 376 (figure)
as Landau potential 373, 373, 376, 373
Maple code 383

partial molar 252
of reaction 240, 241, 230

calculation 241, 231
and equilibrium constant 255
Maple code 242, 383, 395, 404
and phase boundaries 236

surface 226 (figure), 235–238, 244, 270 (figure)
Gibbs’ phase rule see phase rule
graphite saturation boundary 469, 471 (figure)
Maple code 469

gravitational acceleration 7, 8
and atmospheric escape 618, 623
and atmospheric speciation 651
and atmospheric stratification 624
inside a body 92
and thermal pressure 415
and thermodynamic efficiency of planetary

convection 193
and tidal forces 104, 107

gravitational binding energy see energy
gravitational constant 7
gravitational heating 75
gravitational potential see potential
greenhouse warming 637, 640 (figure), 641 (figure),

see also albedo, atmosphere, equilibrium
temperature, heat transfer, thermalized sunlight,
toy model

Grüneisen parameter see Grüneisen ratio
Grüneisen ratio 225, 407, 408, 473

harmonic oscillator 62
heat 35

engines 141, 145
Carnot’s cycle 192, 192 (figure)
thermodynamic efficiency of 190

in planetary convection 194 (figure)
generation by gravitational dissipation 73–103
generation by ohmic heating 112–115
generation by radioactive decay 116–120, 118

(figure), 119 (figure), 117 (table)
and diffusive cooling of the Earth 140

generation by tidal dissipation 105–112,
110 (figure)

Maple code 80
latent 40, 42, 349

at critical phase transitions 355
at discontinuous phase transitions 362

sensible 39
of transport 589

heat advection see heat transfer
heat capacity 35, 41

at constant pressure 38,40
and derivatives of Gibbs free energy 224
ideal gas 62

at constant volume 36
and derivatives of Helmholtz free energy 225
ideal gas

diatomic 60
monatomic 59
polyatomic 60

and Debye temperature 390, 64, 390 (figure)
of electrolytes 525, 547, 550
function 43

in calculation of Gibbs free energy 232
Maple code 234

in calculation of fluid equilibria 422
Maple code 463, 469

in calculation of Gibbs free energy of reaction
240, 242

Maple code 242, 395
for high-pressure phases 402
Maple code 403

Shomate 43
low-temperature behavior 207
molar 53
of ordering 375
at phase transitions 208, 237, 374 (figure), 376

(figure)
critical 371, 375, 432
lambda 377, 379

of solids 63
specific 38

of silicate minerals 87
and Third Law of Thermodynamics 206, 209

(figure)
heat conduction see heat diffusion
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heat conductivity 579, see also thermal conductivity
heat diffusion see heat transfer
heat diffusivity 129

dimension of 133
of rocks 135

heat flow 35
at constant energy vs. constant entropy 215
and entropy generation 181–183, 200, 203, 578,

580–580
rate 50

planetary 71–73, 73 (table), 73 (figure), 77
(figure), 138

reduced 589
as a thermodynamic flow 578, 579

heat flux 71, see also heat flow
heat transfer

advection 127, 141, 148-153
advection–diffusion equation 149
and metamorphic field gradients 151
velocity scale for see Péclet number

convection 142, 153–178
criterion for see Rayleigh number
dimensionless heat flux see Nusselt number
driving force for 160
efficiency see Nusselt number

of Earth’s mantle 161
Mars 177 (figure), 178
with moving plates 160, 165–166, 168 (figure)
with a stagnant lid 160, 169-171, 170 (figure),

172 (figure)
superadiabatic thermal gradient in 155
terrestrial atmosphere 196
thermal boundary layer 157, 158 (figure)
thermodynamic efficiency 193
Venus 175, 176 (figure)

diffusion 125, 126–141
boundary layer 135, 140
constitutive relation 125
cooling of planetary bodies by 137–141
diffusion equation 129, 584
Fourier’s law 124, 583
length 135
reciprocal relationship with chemical diffusion

589–592
time 135

in the kinetics of heterogeneous equilibrium 612,
613, 614

radiation 127, 625–632
and greenhouse warming 637–643

Helmholtz free energy 223, see also energy, entropy,
heat capacity, temperature, thermodynamic
potential

in Birch–Murnaghan equation of state 399
in calculation of standard state fugacity 452
and critical point of a fluid 432
as elastic free energy 399
in equation of state for fluids 442

Pitzer–Sterner equation 446
and liquid–vapor equilibrium 435
non-dimensional 435
residual (in a real gas) 442

in Pitzer–Sterner EOS 446
in virial EOS 442

Henry’s law 278
constant 278, see also activity coefficient, fugacity

for gases 526
and volatility 527

relationship to Margules parameters 280
and trace element geochemistry 484
and chemical diffusivity 583

hydrogen
in the early terrestrial atmosphere 649
escape from planetary atmospheres 58, 617, 619,

624, 651, 653, 654, 656
in graphite-saturated fluids 467
ion

chemical potential of 322
reference state for electrolytes 548

concentration (pH) 549
oxidation as a metabolic process 662–668
pressure ionization 101, 355, 387

ice
carbon monoxide

phenocrysts in cryolavas 344, 345 (figure)
Triton surface 346, 346 (figure)

giant planets 66
on Mars 313

at equilibrium with perchlorate brines 539
(figure), 538

methane
phenocrysts in cryolavas 344, 345 (figure)

nitrogen
Triton surface 346, 346 (figure)

planetary bodies 52
accretion of 87, 88 (figure)
convection in 519
cryomagmatism 520
internal structure of 519
tidal heating of 111, 110 (figure)

on Titan 336
water

effect on atmospheric oxidation state and
metabolic pathways 664

effect on atmospheric hydrogen loss 619, 654
effect on planetary albedo 640
at equilibrium with brines 535–540, 536 (figure)

phase diagram 518, 518 (figure)
polymorphs 518

igneous petrology 477, 482
inner product 5, 578
Io

heat flow 72, 78
mantle pressure 415
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Io (cont.)
tidal heating 106, 110

ionic atmosphere 563, 565
ionization

pressure 66
of hydrogen 101

thermal 65
ionization product (of water) 549
iron solubility (in seawater) 554, 557 (figure), 559

(figure), 562 (figure)
in the Archaean 560, see also Earth, banded iron

formations
controlled by hematite 556
controlled by magnetite 558
controlled by siderite 560

constraints on Archaean atmospheric
composition 561, 562 (figure)

effect of pH 560
and oxidation conditions 560
speciation of ferric species 555
speciation of ferrous species 556

irradiance 625, 71
isentrope 146, 187 see also adiabat
isotopic decay (heat generated by) 13

Jupiter
heat flow 78

Kelvin–Helmholtz cooling 95
kinetic theory of gases 55

Lagrange multipliers 466
Landau theory 372, see also enthalpy, entropy, Gibbs

free energy, order parameter, phase transition,
potential, pressure, temperature, volume.

lapse rate 147
lattice

disorder 479, 500
points 477, 480

Legendre transform 219, 219 (figure)
life see also Earth, entropy, Europa, Mars,

metabolism, methanogenesis
carbon-fixing reactions 657, 661, 662, 663

carbon oxidations state in organic matter 657,
658

Gibbs free energy change of 657
not based on carbon (unlikelihood of) 665
not based on chemical potential gradients

(unlikelihood of) 666
and entropy production 669
in icy satellites 668
on Mars 667
multiple biogenesis 660, 668
origin 660, 663

CO2 as the oxidizer 661
extraterrestrial supply of reduced carbon 665
reduced atmosphere 664, 668

thermodynamic arguments 664, 669
properties 645
respiration reactions 659, 657, 658

activation energy 658
ferric iron (on Mars) 667
hydrogen 662
methanogenesis 662, 663
primordial 661
in a reduced atmosphere 667
silicate weathering 659

under strongly reducing conditions 668
limestone see calcite saturation
liquidus 334

and eruption temperatures 494
undercooling and crystallization 614

macroscopic aggregate 265, 275
macrostate 197
equilibrium 201, 202

Madelung constant 31
magma 477

chemical diffusion 584, 585 (figure)
and crystal size 615

differentiation 484
eruption temperature 497, 506, 509
generation 481, 484

by decompression melting 496
effect of trace volatiles 491
as a localized thermal event 494
by fluid influx 512, 516

icy 518, 520, 574
Soret diffusion 591

magma ascent 123, 123(figure), 345
magmatic superheat 494
Mahler, Gustav 620
Maple 42

array 45
command 44
export data 44
package 43
procedure 42
spreadsheet 44
table 44, 45
worksheet 44
see also entries under specific applications

Mars
atmospheric evolution 654

photodissociation of H2O 620
atmospheric methane 461
and serpentinization of mafic rocks 465

atmospheric oxidation conditions 656
atmospheric scale height 623
atmospheric stability 618, 652
bogus microbes 461, 667
core–mantle boundary 417

thermal pressure 415
zero-temperature pressure 415
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differentiation of 99, 101
hematite 325
hot spots 509
internal heat source 78
life 667
lithosphere 178, 507

thermal erosion of 509
magmatic provinces 509

volcano-tectonic bulges 510
magnetic field 33
mantle convection 160, 174, 177 (figure)

thermodynamic efficiency of 194
mantle heat flux 139
mantle melting 507, 508 (figure)
mantle phase transitions 401, 418, 417 (figure)
mantle plumes 510

melting at 508 (figure)
mantle pressures 415
perchlorate solutions 538
surface conditions 314, 325, 465, 538
stability of aqueous solutions 540

material property 17, 38, 41, 672
in Arrhenius law 159
in constitutive relations for diffusion 124
as second derivatives of thermodynamic potentials

224
macroscopic 26, 36
molar 38
specific 38
at zero pressure 411

Maxwell demons 202
Maxwell’s principle of equipartition of energy see

energy
Maxwell relations 225, 479, 672, 673
Maxwell–Boltzmann distribution 17 (figure), 56, 58
mean field theory 373
melt

chemical diffusivity 584
and crystal growth 614

definition 64, 420, 477
effect on tidal heating 111
Soret diffusion 591
trace element contents 484–486, see also Nernst’s

distribution law
melting

of alkali halides 480
binary loop 336 (figure)

Fe–Ni alloys 335
olivine 335

effect of trace water concentrations 490, 491
carbonatites 312
congruent 310
cotectic 483
definition 477–481

as loss of long-range order 478, 480 (figure)
Lennard–Jones and Devonshire theory 478

effect of trace components 484–492, 488 (figure),
489 (figure)

partition coefficient 485
effect of volatiles 489–492, 492,492 (figure), 492

(figure), see also melting by volatile influx
in multicomponent systems 492
nature of sub-solidus host 490
solubility in silicate melts and melting relations

490
eutectic 339, 341 (figure)

in aqueous solutions 536
effect of enthalpy of melting 342
ice assemblages 344, 345 (figure)
Maple code 339
Martian brines 538, 539 (figure)
in multicomponent systems 483
significance in planetary magmatism 482

heat sources 494
hydrous 308–310, 309 (figure)

dehydration-melting 310, 491 (figure)
vapor-saturated 310

in icy satellites 517, 520
incongruent 310, 484
of metals 479
peritectic 484
of planetary bodies

by decay of short-lived isotopes 120, 119 (figure)
during core formation 99
during large impacts 87, 88 (figure)
by ohmic heating 112
during accretion 85

of quartz 481
of rocks

by adiabatic decompression 494–512
batch process 123
contributing factors 499
effect of gravitational dissipation 511
effect of melting temperature 500
effect of viscous dissipation 511
fractional process 500
in Earth’s upper mantle 504, 505 (figure), 506

(figure)
during the Archaean 507
at mid-ocean ridges 496, 507
at oceanic islands 507
relation of solidus to adiabat 495

in icy satellites 518 (figure), 518–521
in the Martian mantle 507, 508 (figure)
eruption temperature 497
minimum size of melting region 510
in multicomponent systems 502, 502 (figure)
Maple code 504
melt production equation under batch

melting 503
melt production equation under fractional

melting 504
non-isentropic 509
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or rocks (cont.)
in one component systems 497, 497 (figure),

502 (figure)
under batch melting conditions 497
melt production equation 499, 500
under fractional melting conditions 500
melt production equation 501

of silicates 481
trace element partitioning 484

batch melting equation 486, 486 (figure)
compatible trace element 486
complications with modeling 529
effect of crystalline structure 485
effect on melting point depression 488

controlling parameters 489
effect of melting points of trace and major

component 485
effect on melting relations 492
effect of solvent composition 529
effect of temperature 529
incompatible trace element 486
thermodynamic underpinnings 529

under mid-ocean ridges 269 (figure), 495, 495
(figure)

by volatile influx 512–516, 512 (figure), 517
(figure)

limited by fluid solubility 513, 516
thermodynamic relations 512–514
numerical solution 515–516
Maple code 515

melting point depression equation 482, 532
and trace components 487

Mercury
core formation 100
tidal heating 112

metabolism 645, 657, see also life
based on chemical potential gradient at planet’s

surface 659
redox reactions 660, 661, 667

and entropy generation 668
primordial 660, 662, 664, 663

metamorphic field gradient 152
metamorphic reactions

diffusion 584, 585 (figure)
retrograde 423
ultra-high pressure 398, 397 (figure)

methane
ammonia atmosphere 649–651
carbon monoxide eutectic (model for Tritonian

magmas) 344, 345 (figure)
ethane fractionation in Titan’s surface systems 336,

337 (figure)
metabolic product 662–664
production by serpentinization of mafic rocks 461,

464 (figure)
Maple code 462

methanogenesis 662, see also life, metabolism,
methane

ammonia oxidation 663
hydrogen oxidation 662

and origin of life 664
sulfur oxidation 663

microstate 197
and entropy of mixing 258, 200
equivalent 198
fluctuations 201
and ideal activity 259, 271
in Landau theory 373
in order-disorder phase transitions 364
number of (calculation) 197, 204
postulates 198, 201, 202

microwave background radiation 631, 626
(figure)

modulus
bulk 17, 41

adiabatic 24, 674
isothermal 18, 389

at a critical point 432, 434
in Mie equation of state 406
pressure dependence 389, 394-394
temperature dependence 390-394, 390

(figure)
elastic 24
shear 25
Young’s 25

molality 523
momentum 11

angular (in tidal coupling) 105
diffusivity 129

kinematic viscosity 129
flux 126

and dynamic viscosity 126
Arrhenius law behavior 609, 159

of photons 629
transfer 124, 125 (figure)

and entropy production 578
Moon

anorthositic crust 520, 174
heat flow 78, 139
tidal heating 111

Mount St. Helen’s 47

Nernst’s distribution coefficient see Nernst’s
distribution law

Nernst’s distribution law 529, 485
nuclear weapons 47
Nusselt number 161 see also Earth mantle
in icy satellites 519
in stagnant lid convection 170

ohmic heating 33
in planetary energy budgets 112

one-form 5
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Onsager’s reciprocal relation 579, 590, see also
chemical potential, enthalpy, phenomenological
coefficient

optical thickness 611, 635
and mean free path 636

order parameter 363, 370 (figure)
and atomic ordering 367, 368 (figure)
in fluids 371, 432, 437
and crystal symmetry 371
in Landau theory 373, 374 (figure), 380 (figure)
and melting 480
minimization of Gibbs free energy 364
and origin of life 669
in a solvus 369

osmotic coefficient 530
calculation 531
of electrolytes 566
relationship to activity coefficients 532

osmotic swimmers 666

partial derivative 18
Laplacian operator 128

partial molar properties 248, 250, 251 (figure),
see also Gibbs free energy, chemical potential

and configurational entropy 259
in dilute solutions 525
in Gibbs–Duhem equation 288
and ideal activity 266
and interdiffusion coefficients 587
and non-ideal activity 277
in ideal gases 262
in real gases 454

partial pressure see pressure
partition function 57, 59
Péclet number 150 see also Earth mantle

of mantle diapirs 510
and metamorphic field gradients 151
and sea-floor spreading 153

perfect crystal 207
permittivity 28

of free space 28
in Debye–Hückel theory 564

of polar solvents 543
perpetual motion machine 34, 191
pH 549

effect on iron solubility 322, 325 (figure), 560, 562
(figure)

in imaginary Martian microbes 667
of rain water 549, 551 (figure)
Maple code 551

of seawater 553
of soda lakes 567–571, 570 (figure), 572 (figure)
Maple code 568

phase 2, 229
condensed 64, 66
at a critical point 352
non-condensed 64

supercritical 352
subcritical 352

phase boundary 235, 236, 236-238
calculation 241, 256, 268, 395
Maple code 242, 270, 284, 395
uncertainties in 243, 244 (figure)
at very high pressure (mantle transition zone)

401–405, 403 (figure), 415–419
Maple code 403, 416
in the Martian mantle 417 (figure)

and phase transition 238
phase component 245, 288

in the phase rule 290
phase diagram 235 (figure), 236, 287
phase equilibrium 236, 287–289

analysis 295–325, see also Schreinemakers’ rule
divariant 296
in a gravitational field 620–622
invariant 296
pseudo-divariant 315
pseudo-invariant 315
pseudo-univariant 315
in open systems 315–319
among phases of variable composition 325–347
univariant 296

phase rule 289, 290, 295
at a critical point 353–355

conditions of criticality 354
at the liquid–vapor loop 434

phase transition 14, 41, 236–238, see also phase
boundary

continuous see critical phase transition
critical 326, 349, 364, 480, see also solvus

algebraic analysis 355–359, 357 (figure), 358
(figure)

Landau theory 372–375
compared to polymorphic transformations 362
in fluids 428–440, 436 (figure)
phase rule analysis 355
solid–melt 480

discontinuous 14, 42, 209, 237, 326, 478
as compositional degeneracies 311
among condensed phases 326
involving gases at low pressure 328
Landau theory analysis 377–379

metastable critical point 378
liquid–gas 428, 434
among phases of variable composition 330–344,

418 (figure), 418
thermal effect on mantle adiabat 498

first-order see discontinuous phase transition
lambda 367, 371, 372 (figure)

Landau theory analysis 375–377
Maple code 383
effect on mineral equilibria 381

Landau theory 372–381
order–disorder 361–367
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phase transition (cont.)
origin of life 669

and phase boundary 239
second-order see critical phase transition
tricritical 377, 380 (figure), 377, see also lambda

phase transition
phenomenological coefficient 579

chemical diffusivity 587
cross-flow components 579, 588
thermal conductivity 580
thermal diffusion (Onsager reciprocal terms) 589

phenomenological description 26, 55
philosophers 202
photochemical reaction 594, 610
carbon fixing 657
ozone depletion 608
ozone production 604

photodissociation 593, 633
of halomethanes 605
of methane 461, 619

and hydrogen loss 624, 653, 654
and origin of life 660
of oxygen 603, 608
of water 619

in icy satellites 668
photon
absorption cross section 636, 604, 610, 611

and mean free path 636
energy 608, 632

and interactions with matter 632, 593, 594, 610,
633, 635

flux 610
solar 638
variation with elevation 611

mean free path 636
momentum 608, 629

photosphere 626 (figure)
photosynthesis 620, 657, 658
and origin of life 660

planetesimal 78
extreme heating of 119
ohmic heating 116

plate tectonics 161, 171, see also Earth
Archaean 167
thermodynamic efficiency 194

Pluto
atmosphere 346, 616

polar molecules 541, 542 (figure)
polar solvent 544
post-modernist writers 202
potential
chemical 217, 224

buffering 294
as coordinates in phase equilibrium analysis

315–325
as criterion for chemical equilibrium 247
in dilute solutions 524

as driving force for mass transfer 248, 581
in Soret diffusion (Onsager reciprocal terms)

589
in a gravitational field 621
in electrolyte solutions 545, 547, 552
as partial molar property 252
excess 277, 278 (figure)

in dilute solutions 525
in electrolyte solutions 565

of non-stoichiometric components 293
relationship to activity 254, 266 (figure)
relationship to fugacity 421–422
standard state 252

electrostatic (in ionic solutions) 543
gravitational 8, 70, 98, see also energy, gravitational
and atmospheric scale height 622
and atmospheric stability 616, 620
as biological nutrient 666
of solid sphere 89
and tidal dissipation 107, 110

interatomic 66, 66, 387
in Born–Mie equation of state 405–407

intermolecular 64
in van der Waals equation of state 429

Landau 373
in minerals 382 (figure)
Maple code 383

thermodynamic 216, 222–223
behavior under the Legendre transform 222
fundamental equation 217
grand 223
in electrolyte solutions 547
internal energy 216
and Maxwell’s relations 225
minimization (calculation of equilibrium) 465
natural variables 217

potential gradient (thermodynamic force) 578, 580,
597

in biological processes 659
extraterrestrial 666

potential temperature (of mantle adiabat) 495, see also
temperature, adiabat

icy satellites 519
Earth 504
Mars 507

PREM (preliminary reference Earth model) 412, 416,
411 (figure), 412 (figure)

pressure
atmospheric 618, 646

variation with elevation 622, 624 (figure)
critical 432, 438 (figure), 439 (figure), 438 (figure),

440 (table)
elastic 387, see also zero temperature pressure
electronic 387
effect on solvus 353
ionization 66, 65 (figure), 101
and the kinetic theory of gases 58
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in Landau potential 381
isothermal 399, 405
natural variable of enthalpy 222
natural variable of Gibbs free energy 223
partial 262

and fugacity 421
and photon mean free path 636
at vaporization phase transitions 340

in planetary interiors 89, 93, 147, 217
radiation see momentum, photons
reference 50

for high-pressure equations of state 386
thermal 387, 394, 405, 407–409, 413
calculation 409
in gas giants 473
in Io 415, 414 (figure)
in the Earth’s mantle 413, 411 (figure)
in the Martian mantle 415, 414 (figure)
and thermal expansion 413

thermodynamic definition 186
units 6
vapor 329
zero temperature 413

in the Earth’s mantle 411, 411 (figure)
in icy satellites 518
in Mars 414 (figure)
Maple code 410

proper mass 38
proto-star 95
pseudo-scientists 183

quantum mechanics 55, 63, 626
selection rules for absorption of electromagnetic

energy 633
quasi-crystalline model of melts 480

radiation see heat transfer, thermal radiation
inverse square law 628

radiation pressure 629, see alsomomentum of photons
radioactive heating

early Solar System 119, 119 (figure)
Earth, present day 118
and Kelvin’s estimate of the age of the Earth 141

radioactive isotopes 117
short lived 117
upwards concentration (incompatible behavior) 141

Raoult’s law 278
Rayleigh number 156 see also Earth mantle

in icy satellites 519
in parametrization of mantle convection 166

in stagnant lid convection 169
reduced variables 432
respiration reactions

rate 658
RMS molecular speed 58

Saturn
heat flow 78

contribution of helium unmixing 102
scalar 9, 124
scalar field 5
scaling 135

of convection 160–162
of sea-floor spreading 153

Schreinemakers’ rule 302, 298 (figure), 301, 305
and compositional degeneracy 311
and melting relations 484
in open systems 315

self-compression 413
self-gravitating 75
shear zone 47

heating at 49, 511
singular curve 354, 353 (figure)
singular point 354, 438, 438 (figure)
soda lakes 568

and alkaline volcanoes 569
response to alkali-earth cation starvation 568, 571
response to carbon dioxide fugacity 571

solar constant 629
solar nebula 51
condensation 344
and planetary accretion 79, 619

solar wind 112
T-Tauri phase 115

solid solutions
clinopyroxene 358 (figure)
garnet 267, 358 (figure)
olivine 260, 266, 335, 358 (figure)
orthopyroxene 268, 270, 281, 358 (figure)
plagioclase 271, 274 (figure)

solubility 329, 534
solubility curve 536
solubility product see electrolyte
solidus 334

of binary solid solutions 335, 336 (figure)
overstepping of 614
of peridotite 495 (figure), 496
in systems that undergo eutectic melting 342, 341

(figure)
effect of trace components 489, 489 (figure)

volatiles 491
of water ice 518 (figure)

solution 245, 265, see also activity, activity coefficient
ideal 258

and Boltzmann’s postulate 275
non-ideal 277, 279, 278 (figure), 276 (figure)

asymmetric 280
contributions to 275
in critical phase transitions 279, 350, 350

(figure), 436 (figure)
in dilute systems 531
regular 280
simple mixture 280



706 Index

solution (cont.)
subregular 280
symmetric 280

critical mixing temperature 357
solvation sphere 544
solvus 351, 350 (figure)
analogy with subcritical fluid unmixing 369
non-dimensional 360, 361 (figure)

calculation of 359–360,
Maple code 360

as a first-order phase transition 353
in hydrogen–helium mixtures 102
order parameter in 369
and the phase rule 353

Soret coefficient 590
Soret diffusion 579, 590

in igneous differentiation 590
magnitude of 591

speciation
in a gas phase 257, see also gas
Maple code 263

in electrolyte solutions 554, see also carbonate,
iron solubility

Maple code 550, 568
and analytical concentration 556

spontaneous process 181, 184, 201, 202
at constant temperature and pressure 230, 248
ordering 375
respiration 659

stable state 234, see also equilibrium
standard state 239, 247, 254, 292

in calculation of first-order phase transition 326
including non-condensed phases 328

in chemical diffusion 582
in crystalline solids 256, 259, 261, 272, 552
in dilute solutions 524–525

dilute gases 526, 550
infinite dilution limit 524, 562
ionic species 545

reference 548
strong electrolytes 548
weak electrolytes 547

one molal 525
for the solvent 524

in gases 257, 262, 420, 421, 422, 557
state function 23, 36, see also state variable

and thermodynamic identities 672
and thermodynamic notation 37

state variable 36, 37, 50,52, 56, 57 see also state
function

and Gibbs–Duhem equation 287
statistical mechanics 27, 55, 197
Stefan–Boltzmann law 71, 627
Stirling’s approximation 198
strain 24

Eulerian 399

in derivation of Birch–Munaghan equation of
state 399

tidal 107, 110
stress 24

shear 48
in an ascending diapir 510
in derivation of Rayleigh number 155
as momentum flux 126 , 162

tidal 110
supercritical fluid see fluid
supercritical solution 357, see also phase

rock-forming minerals as 359
system 2

adiabatic 23, 47
closed 2
heterogeneous 2, 229
homogeneous 3, 229
open 2
state of 3

system component 229, 245, 288
and dimension of composition space 289
as a minimal spanning set 288
in the phase rule 289, 290

tabbies 669
temperature 3

absolute see Thermodynamics, Third Law
along an adiabat 146, 413

in icy satellites 344
in the Archaean mantle 166
black body emission 71
boiling 329
and configurational entropy 202
critical 64

of fluids 371, 428, 430 (figure), 431, 433 (figure)
and Helmholtz free energy 435, 436 (figure),

438 (figure), 439 (figure), 438 (figure)
values for planetary volatiles 440 (table)

in Landau theory 373, 374 (figure)
of a solution (critical mixing temperature) 326,

352, 350 (figure),
and derivatives of the Gibbs free energy 355
of mineral solid solutions 358 (figure)
non-dimensional 356, 357 (figure)
and the phase rule 354

Debye 7, 390, 394, 408
dimensionless 131, 134 (figure)
of a discontinuous phase transition (in Landau

theory) 378
effect on chemical reaction rates 609
effect on viscosity 159
and electromagnetic radiation spectrum 626, 626

(figure)
eutectic 339
Maple code 339
of Tritonian cryolavas 344, 345 (figure)

gradient across the asteroid belt 115
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gradient across convective thermal boundary layer
155, 157, 158 (figure)

in stagnant lid convection 169, 170 (figure)
gradient as driving force for mass transfer (Soret

effect) 590
gradient as driving force for transfer of internal

energy 124, 149
at equilibrium 212, 215
in non-equilibrium thermodynamics 579
and Second Law of Thermodynamics 182

gradient as a metabolic nutrient 665
gradient as a potential for doing work 186
ideal gas 58
ionization 64
increase caused by core formation 99
increase caused by large impacts 87, 88 (figure)
lambda 362, 367 (figure)

in Landau theory 375, 374 (figure)
of minerals 381
Maple code 383

relationship to critical mixing temperature 366
in the Martian mantle 178
natural variable for Helmholtz free energy 223
natural variable for Gibbs free energy 223
perturbation 135
of a planetary surface

during accretion 80
effective 71
equilibrium 71, 629

and atmosphere retention 616
and greenhouse warming 640 (figure), 641

(figure)
potential

in the atmosphere 46
for mantle convection 495, 495 (figure)
and melt productivity 500

profile of the Earth during accretion 80, 83 (figure),
85 (figure)

Maple code 80
reduced 440
reference 50

in equations of state for solids 387
of solar nebula 79
status as an intensive variable 334
thermodynamic definition 186
units 4
in the Venusian mantle 175

thermal agitation
effect on dielectric constant 542, 565
in gases 429, 443

thermal boundary layer see boundary layer
thermal conductivity 124
thermal convection see convection
thermal diffusion see Soret effect
thermal diffusivity see heat diffusivity

thermal entropy 205, see also entropy, absolute
scale for, entropy, at absolute zero, entropy, Third
Law, entropy, vibrational

thermal escape of atmospheric gases 618, 653
thermal equilibrium see equilibrium
thermal expansion 41, 390, 390 (figure), 396
analogy with heat capacity 390
and atomic vibration modes 390

anisotropic (in lambda phase transitions) 369
coefficient as polynomial function 390, 396
Maple code 383, 395, 404

at a critical phase transition 371
and derivatives of Gibbs free energy 224
effect on thermal pressure 413

thermal gradient 35
thermal inertia 133
thermal pressure see pressure
thermal radiation 625–636, 626

black body 626
Kirchoff’s law 595
mass absorption coefficient 634
Planck’s law 626
spectrum 626, 626 (figure)

visible range 626
Wien’s law 626

thermal swimmers 666
thermalized sunlight 630, 632

and greenhouse warming 633, 638
thermally activated process seeArrhenius law
thermodynamic components see system component,

phase component
thermodynamic effective pressure see fugacity,

standard state
thermodynamic efficiency 190

maximum (Carnot efficiency) 190
thermodynamic flow 578, 580, 581, 597
thermodynamic force see force, thermodynamic

potential gradient
thermodynamic mol fraction 258
thermodynamic potential see potential
thermodynamic potential gradient 578, 580, 582, 597
thermodynamics 2, 27

First Law of 39, 50
mathematical expression for isobaric processes

40
mathematical expression in terms of entropy 186

mathematical notation 37
non-equilibrium 577–580
linear approximation 579

in a gravitational field 620
and non-equilibrium chemical concentrations 608
and rates of natural processes 596
Second Law of 35, 124

and affinity 613
and charlatans 183
Clausius statement 183
Kelvin–Planck statement 191
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thermodynamics (cont.)
maximum entropy statement 210
minimum energy statement 213

Third Law of 207
and absolute entropy scale 207
and absolute zero 207
Nernst’s statement 207
Planck’s statement 207

thermofagy 665
tidal
acceleration 104
bulge 105
deformation 105
despinning 106
dissipation 106

due to eccentricity 107
due to rotation 107

lock 106
Titan

atmosphere 148, 616, 618
chemical evolution 623
hydrocarbons 336
methane fractionation with elevation 624 (figure)
scale height 623

cryomagmas 345, 520
internal structure 518, 519
lakes 337
life 668
tidal heating 111

total differential 18
and rigorous mathematical notation 210

toy model 141
of greenhouse warming 637
of mantle convection 141
of ozone depletion 603

transformation 13
adiabatic 46, 23, 225, 495
dissipative 13, 23, 185
irreversible 16
isothermal 18, 24
non-dissipative 13
quasi-static 15, 184, 577
reversible 16, 146, 188

triple point (of H2O) 52
effect of solutes 314, 537, 536 (figure)

Triton
atmospheric composition 346
atmospheric scale height 623
atmospheric stability 616
cryomagmas 344
tidal heating 112

troposphere 145
adiabatic thermal gradient 147
as a Carnot engine 196

units 6
unmixing see solvus

vapor 64, 329
and critical point 354, 371, 428, 432
in crystallization of evaporites 306, 317, 316

(figure), 425, 426 (figure)
equilibrium calculation 434, 437, 536
in equilibrium with solids 342, 342 (figure)

and atmospheric escape 619, 654
in the Martian atmosphere 539
in Triton’s atmosphere 346, 346 (figure)

hydrocarbon (in Titan’s atmosphere) 337, 337
(figure)

pressure see pressure
water (effect on atmospheric hydrogen loss), 654

vaporus 338, 342
variable

conjugate 218
intensive 38

as driving potential 218, 620
extensive 38

and Gibbs–Duhem equation 288
variance 289

at a critical point 354
in open systems 315

vector 6, 124
Venus

atmospheric evolution 654
photodissociation of H2O 656

atmospheric oxidation conditions 656
atmospheric scale height 623
atmospheric stability 618
coronae 175
lithospheric thickness 175
magnetic field 33, 175
mantle convection 160, 174, 176 (figure)

thermodynamic efficiency of 195
mantle heat flux 139
mantle plumes 175

virial theorem 94
viscous

heating 33
in a convecting fluid 162–164, 163 (figure)

viscosity see also momentum
activation energy 159
apparent (in plate tectonics) 169
dynamic 126, see also momentum flux
kinematic see momentum diffusivity
temperature effect seeArrhenius law

volatility 527
volcanism 123

and early metabolic processes 659, 667
on Mars 178, 508 (figure)
on Titan 520

volume
as conjugate variable to pressure 218
critical 431, 435, 438–440, 438 (figure), 439

(figure), 438 (figure), 440 (table)
dimensionless 432, 436 (figure), 437
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excess 276
excluded 429, 447, 456
of melting 479, 480 (figure)
molar 38, 41
molecular 429
as natural variable of Helmholtz free energy 223
as natural variable of internal energy 217
partial molar 252, 588, 621

of ideal gases 262
or real gases 454

of phase transitions 238, 243
critical 355, 375
discontinuous 362
in Landau theory 116
tricritical 379

prohibited 431
reaction 612
and thermal pressure 407, 413
zero pressure 386, 390
zero temperature 387

work 5
expansion 14, 21, 46

at a discontinuous phase transition 45
during decompression melting 499

of a frictional force 47
by a thermodynamic cycle 144, 144 (figure)

in planetary convection 194
tidal 107
of a viscous force 164
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