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Preface

Fuzziness is a basic type of subjective uncertainty. The study on fuzziness was
started in 1965 after the publication of Zadeh’s seminal work Fuzzy Sets. In or-
der to measure the chance of a fuzzy event occurs, Zadeh proposed the concepts
of possibility measure and necessity measure, which are proved to be normal, non-
negative, monotone, but not self-dual. Since the duality is intuitive and important
in both theory and practice, Liu and Liu (2002) defined a credibility measure as the
average value of possibility measure and necessity measure, which was redefined
by Li and Liu (2006) as a set function satisfying the normality, monotonicity, dual-
ity, and maximality axioms. After that, credibility measure was widely used in the
fields of fuzzy decision, fuzzy process, fuzzy calculus, fuzzy differential equation,
fuzzy logic, fuzzy inference, and so on. Nowadays, credibility theory has become
a branch of mathematics for studying the behavior of fuzzy phenomena. Chapter 1
will be devoted to the credibility theory.

The decision analysis with fuzzy objective or fuzzy constraints is natural in some
real-world applications, and sometimes seems to be inevitable. Credibilistic pro-
gramming is a type of mathematical programming used to handle the fuzzy deci-
sion problems. In past years, researchers have proposed many efficient modeling
approaches, which have been widely applied to many real-life problems. For exam-
ple, Liu and Liu (2002) formulated an expected value model to minimize the average
value of the objective under certain expected constraints. Liu and Iwamura (1998)
proposed a maximax chance-constrained programming model, and Liu (1998) pro-
posed a maximin chance-constrained programming model, which respectively max-
imizes the optimistic value and the pessimistic value of the objective with assump-
tion that the fuzzy constraints will hold with certain confidence levels. Based on
the concepts of fuzzy entropy, Li et al. (2011) proposed an entropy optimization
model to minimize the uncertainty on possible values of the fuzzy objective, and
Qin et al. (2009) formulated a cross-entropy minimization model to minimize the
divergence of the fuzzy objective from a priori fuzzy quantity. Recently, Li et al.
(2012) provided a regret minimization model to minimize the distance between the
fuzzy objective values and the best values. Chapter 2 will provide a general intro-
duction on the credibilistic programming as well as the genetic algorithm. Then the

v



vi Preface

following chapters will respectively introduce the expected value model, chance-
constrained programming model, entropy optimization model, cross-entropy mini-
mization model, and regret minimization model.

The purpose of this book is to provide a powerful mathematical tool to handle
the fuzzy decision problems. The book provides a self-contained and comprehen-
sive presentation of credibilistic programming models and applications. The book is
suitable for researchers, engineers, and students in the fields of management science,
operations research, financial analysis, industrial engineering, information science,
computer science, artificial intelligence, and so on. The readers will learn numer-
ous new and efficient modeling ideas, and find this work a stimulating and useful
reference.
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Chapter 1
Credibility Theory

The concept of fuzzy set was initialized by Zadeh (1965) via membership function
in 1965. In order to measure the chance of a fuzzy event occurs, Zadeh proposed
the concepts of possibility measure (Zadeh 1978) and necessity measure (Zadeh
1979). It is proved that both possibility measure and necessity measure satisfy the
properties of normality, nonnegativity and monotonicity. However, neither of them
is self-dual. Since the duality is intuitive and important in both theory and practice,
Liu and Liu (2002) defined a credibility measure as the average value of possibility
measure and necessity measure, which was redefined by Li and Liu (2006a) as a
set function satisfying the normality, monotonicity, duality, and maximality axioms.
Nowadays, credibility measure has been well applied to many definitions for fuzzy
variables, such as expected value (Liu and Liu 2002), variance (Liu 2004), skew-
ness (Li et al. 2010a), independence (Li and Liu 2006b; Liu and Gao 2007), opti-
mistic value and pessimistic value (Liu 2004), entropy (Li and Liu 2008a, 2007),
cross-entropy (Qin et al. 2009), distance (Li and Liu 2008b), and so on. Credi-
bility theory has become a branch of axiomatic mathematics for modeling fuzzi-
ness.

This chapter mainly introduces some basic concepts and important theorems
including credibility measure, fuzzy variable, credibility function, independence,
identical distribution, credibility subadditivity theorem, credibility semicontinuous
theorem, credibility extension theorem, product credibility theorem, credibility in-
version theorem, Zadeh extension theorem, and so on.

1.1 Credibility Measure

Let Θ be a nonempty set, and let A be its power set (i.e., the collection of all sub-
sets). Each element of A is called an event. Credibility measure is a set function
from A to [0,1]. For each event, its credibility indicates the chance that the event
will occur. In order to ensure that the set function has certain mathematical proper-
ties, Li and Liu (2006a) provided the following four axioms:

X. Li, Credibilistic Programming, Uncertainty and Operations Research,
DOI 10.1007/978-3-642-36376-4_1, © Springer-Verlag Berlin Heidelberg 2013
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2 1 Credibility Theory

Axiom 1 (Normality) Cr{Θ} = 1 for the universal set Θ .

Axiom 2 (Monotonicity) Cr{A} ≤ Cr{B} for any events A ⊆ B .

Axiom 3 (Duality) Cr{A} + Cr{Ac} = 1 for any event A.

Axiom 4 (Maximality) Cr{∪iAi} = supi Cr{Ai} for any collection of events {Ai}
with supi Cr{Ai} < 0.5.

Remark 1.1 The human thinking is always dominated by the duality. If someone
says a proposition is true with possibility p, then all of us will think that the propo-
sition is false with possibility 1 − p. For example, if someone tells us that “Tom
is tall with possibility 0.7”, then we will think that “Tom is not tall with possibil-
ity 0.3”.

Definition 1.1 A set function is called a credibility measure if it satisfies the nor-
mality, monotonicity, duality, and maximality axioms.

Remark 1.2 Credibility measure is a non-additive measure. For example, if
Cr{A} = 0.3 and Cr{B} = 0.4, then it follows from the maximality axiom that
Cr{A ∪ B} = 0.4, which implies that

Cr{A ∪ B} �= Cr{A} + Cr{B}.
In fact, a credibility measure is additive if and only if Θ contains at most two points
with nonzero credibilities. If there are three points θ1, θ2, θ3 with nonzero credibili-
ties, we can prove that Cr is non-additive. Without loss of generality, we assume

Cr{θ1} ≤ Cr{θ2} ≤ 0.5 ≤ Cr{θ3}.
It follows from the maximality axiom and the duality axiom that

Cr{θ1} + Cr{θ2} + Cr{θ3} > Cr{θ1, θ2} + Cr{θ3} = Cr{Θ}
which implies that Cr is non-additive.

Example 1.1 Let Θ = {θ1, θ2}, and let A be its power set including four events ∅,
{θ1}, {θ2} and Θ . Define a set function

Cr{∅} = 0, Cr{θ1} = 0.4, Cr{θ2} = 0.6, Cr{Θ} = 1.

Then Cr is a credibility measure because it satisfies the four axioms.

Example 1.2 Let Θ = {θ1, θ2, . . .} be a countable set, and let A be its power set.
Define a real function from Θ to [0,1] as follows,

ρ(θ) = 1/2 − 1/(i + 1), i = 1,2, . . .
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We will prove that the set function

Cr{A} =

⎧
⎪⎨

⎪⎩

sup
θi∈A

ρ(θi), if A is finite

1 − sup
θi∈Ac

ρ(θi), if A is infinite

is a credibility measure. Since the normality, monotonicity and maximality follow
immediately from the definition, we only prove the duality. For any event A, the
proof breaks down into three cases. If A is finite, then Ac is infinite and

Cr{A} + Cr
{
Ac
}= sup

θi∈A

ρ(θi) + 1 − sup
θi∈A

ρ(θi) = 1.

Similarly, if Ac is finite, then A is infinite and

Cr{A} + Cr
{
Ac
}= 1 − sup

θi∈Ac

ρ(θi) + sup
θi∈Ac

ρ(θi) = 1.

Otherwise, if both A and Ac are infinite, then we have

sup
θi∈A

ρ(θi) = sup
θi∈Ac

ρ(θi) = 0.5

which implies that Cr{A} + Cr{Ac} = 1 − 0.5 + 1 − 0.5 = 1.

Example 1.3 Let Θ be the unit open interval (0,1), and let A be its power set.
Define a set function

Cr{A} =
⎧
⎨

⎩

1, if A = Θ

0, if A = ∅
0.5, otherwise.

Then it is easy to prove that Cr satisfies the normality, monotonicity, duality and
maximality axioms, that is, Cr is a credibility measure.

Theorem 1.1 The empty set has a credibility measure zero, i.e., Cr{∅} = 0.

Proof Since Θ = ∅ ∪ Θ , it follows from the normality axiom Cr{Θ} = 1 and the
duality axiom that

Cr{∅} = 1 − Cr{Θ} = 0.

The proof is complete. �

Theorem 1.2 For any event A, we have 0 ≤ Cr{A} ≤ 1.

Proof It follows immediately from the monotonicity axiom because Cr{∅} = 0,
Cr{Θ} = 1 and ∅ ⊆ A ⊆ Θ . The proof is complete. �
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Theorem 1.3 For any events A and B with Cr{A ∪ B} ≤ 0.5, we have

Cr{A ∪ B} = Cr{A} ∨ Cr{B}. (1.1)

Proof We will prove the equality by using the reduction to absurdity. If it does not
hold, it follows from the maximality axiom that

Cr{A ∪ B} > Cr{A} ∨ Cr{B} ≥ 0.5.

The contradiction proves that the equality holds. The proof is complete. �

Remark 1.3 Note that the condition Cr{A ∪ B} ≤ 0.5 cannot be removed in Theo-
rem 1.3. In fact, for any event A with 0 < Cr{A} < 1, we have

Cr{Θ} > Cr{A} ∨ Cr
{
Ac
}
.

Remark 1.4 Assume α ≤ 0.5. For any events A and B , if it is known that the union
event takes a credibility α, then it follows from Theorem 1.3 that there is at least
one event has credibility α, that is, Cr{A} = α or Cr{B} = α. However, the converse
may be not true.

Theorem 1.4 For any events A and B with Cr{A ∩ B} ≥ 0.5, we have

Cr{A ∩ B} = Cr{A} ∧ Cr{B}. (1.2)

Proof It follows from the duality axiom that Cr{Ac ∪ Bc} ≤ 0.5 and

Cr{A ∩ B} = 1 − Cr
{
Ac ∪ Bc

}= 1 − Cr
{
Ac
}∨ Cr

{
Bc
}

= 1 − (1 − Cr{A})∨ (1 − Cr{B})

= Cr{A} ∧ Cr{B}.
The proof is complete. �

Remark 1.5 Note that the condition Cr{A ∩ B} ≥ 0.5 cannot be removed in Theo-
rem 1.4. In fact, for any event A with 0 < Cr{A} < 1, we have

Cr{∅} < Cr{A} ∧ Cr
{
Ac
}
.

Theorem 1.5 (Credibility Subadditivity Theorem, Liu (2004)) The credibility mea-
sure is subadditive. That is, for any events A and B , we have

Cr{A ∪ B} ≤ Cr{A} + Cr{B}. (1.3)

In fact, the credibility measure is also countably subadditive.
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Proof For any events A and B , if Cr{A} ∨ Cr{B} < 0.5, then it follows from the
maximality axiom that

Cr{A ∪ B} = Cr{A} ∨ Cr{B} ≤ Cr{A} + Cr{B}.
Otherwise, we have Cr{A} ∨ Cr{B} ≥ 0.5. Without loss of generality, we assume
Cr{A} ≥ 0.5. It follows from the duality axiom that Cr{Ac} ≤ 0.5, which implies
that

Cr
{
Ac
} = Cr

{
Ac ∩ B

}∨ Cr
{
Ac ∩ Bc

}

≤ Cr
{
Ac ∩ B

}+ Cr
{
Ac ∩ Bc

}

≤ Cr{B} + Cr
{
Ac ∩ Bc

}
.

Applying this inequality, we obtain

Cr{A} + Cr{B} = 1 − Cr
{
Ac
}+ Cr{B}

≥ 1 − Cr{B} − Cr
{
Ac ∩ Bc

}+ Cr{B}
= 1 − Cr

{
Ac ∩ Bc

}

= Cr{A ∪ B}.
The proof is complete. �

Remark 1.6 According to the subadditivity theorem, it is easy to prove that cred-
ibility measure is null-additive. That is, if Cr{A} = 0 or Cr{B} = 0, then we have
Cr{A ∪ B} = Cr{A} + Cr{B}. In other words, the credibility of an event remains
unchanged if it is enlarged or reduced by another event with measure zero.

Theorem 1.6 (Liu 2004) Let {Ai} be a sequence of events with

lim
i→∞ Cr{Ai} = 0.

Then for any event B , we have

lim
i→∞ Cr{B ∪ Ai} = lim

i→∞ Cr{B\Ai} = Cr{B}. (1.4)

Proof For any events Ai and B , it follows from the monotonicity axiom and the
subadditivity theorem that

Cr{B} ≤ Cr{B ∪ Ai} ≤ Cr{B} + Cr{Ai},
and

Cr{B\Ai} ≤ Cr{B} ≤ Cr{B\Ai} + Cr{Ai}.
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Letting i → ∞. According to the squeeze theorem, we have

lim
i→∞ Cr{B ∪ Ai} = lim

i→∞ Cr{B\Ai} = Cr{B}.

The proof is complete. �

Theorem 1.7 (Credibility Semicontinuous Theorem, Liu (2004)) For any event se-
quence {Ai} with limit A, we have

lim
i→∞ Cr{Ai} = Cr{A} (1.5)

if one of the following conditions is satisfied:

(a) limi→∞ Cr{Ai} < 0.5 and Ai ↑ A;
(b) Cr{A} ≤ 0.5 and Ai ↑ A;
(c) limi→∞ Cr{Ai} > 0.5 and Ai ↓ A;
(d) Cr{A} ≥ 0.5 and Ai ↓ A.

Proof (a) Since {Ai} is an increasing sequence, we have

sup
i

Cr{Ai} = lim
i→∞ Cr{Ai} < 0.5.

Then it follows from the maximality axiom that

Cr{A} = Cr

{⋃

i

Ai

}

= sup
i

Cr{Ai} = lim
i→∞ Cr{Ai}.

(b) If limi→∞ Cr{Ai} < 0.5, it follows immediately from conclusion (a). Other-
wise, according to the monotonicity axiom, we have

Cr{A} = 0.5 = lim
i→∞ Cr{Ai}.

(c) According to the duality axiom, we have

lim
i→∞ Cr

{
Ac

i

}
< 0.5.

Then it follows from conclusion (a) that

Cr
{
Ac
}= lim

i→∞ Cr
{
Ac

i

}
.

Again, it follows from the duality axiom that

Cr{A} = lim
i→∞ Cr{Ai}.
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(d) Based on the duality axiom, we have Cr{Ac} < 0.5. Then it follows from
conclusion (b) that

Cr{A} = 1 − Cr
{
Ac
}= 1 − lim

i→∞ Cr
{
Ac

i

}= lim
i→∞ Cr{Ai}.

The proof is complete. �

Example 1.4 Generally speaking, the credibility measure is neither lower semicon-
tinuous nor upper semicontinuous. Let us reconsider Example 1.3. Define a decreas-
ing sequence of events Ai = (0,1/i] with

lim
i→∞Ai =

∞⋂

i=1

(0,1/i] = ∅.

It is easy to prove that

lim
i→∞ Cr{Ai} = 0.5 > 0 = Cr{∅}.

On the other hand, define an increasing sequence of events Bi = (0,1 − 1/i] for
i = 1,2, . . . . Since Θ = (0,1), we have

lim
i→∞Bi =

∞⋃

i=1

(0,1 − 1/i] = Θ.

However, it is easy to prove that

lim
i→∞ Cr{Bi} = 0.5 < 1 = Cr{Θ}.

Theorem 1.8 (Credibility Asymptotic Theorem, Liu (2004)) For any event se-
quence {Ai}, i = 1,2, . . . , we have

lim
i→∞ Cr{Ai} ≥ 0.5, if Ai ↑ Θ, (1.6)

lim
i→∞ Cr{Ai} ≤ 0.5, if Ai ↓ ∅. (1.7)

Proof First, assume that {Ai} is an increasing sequence with limit Θ . If

lim
i→∞ Cr{Ai} < 0.5,

it follows from the credibility semicontinuous theorem that

Cr{Θ} = lim
i→∞ Cr{Ai} < 0.5,
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which is in contradiction with the normality axiom. Thus the first inequality is
proved. On the other hand, if Ai ↓ ∅, we have Ac

i ↑ Θ . Then it follows from (1.6)
and the duality axiom that

lim
i→∞ Cr{Ai} = 1 − lim

i→∞ Cr
{
Ac

i

}≤ 0.5.

The proof is complete. �

For a nonempty set Θ , suppose that the credibility value of each singleton set
is given. Is the credibilitymeasure fully and uniquely determined? The credibility
extension theorem will answer this question. First, we introduce the credibility ex-
tension condition.

Theorem 1.9 (Credibility Extension Condition, Li and Liu (2006a)) Suppose that
Θ is a nonempty set. If Cr is a credibility measure, then we have

sup
θ∈Θ

Cr{θ} ≥ 0.5, (1.8)

Cr
{
θ∗}+ sup

θ �=θ∗
Cr{θ} = 1 if Cr

{
θ∗}≥ 0.5. (1.9)

Proof We first prove condition (1.8) by using the reduction to absurdity. If it does
not hold, it follows from the maximality axiom that Cr{Θ} < 0.5, which contradicts
to the normality axiom. Therefore, we have

sup
θ∈Θ

Cr{θ} ≥ 0.5.

Suppose that θ∗ is a point with Cr{θ∗} ≥ 0.5. It follows from the duality axiom and
the maximality axiom that

sup
θ �=θ∗

Cr{θ} = Cr
{
Θ\{θ∗}}= 1 − Cr

{
θ∗}.

The proof is complete. �

Remark 1.7 For a credibility measure, it follows from the duality axiom that there
is at most one point with credibility value larger than 0.5. Therefore, the credibility
extension condition has the following equivalent form

sup
θ1 �=θ2

(
Cr{θ1} + Cr{θ2}

)= 1. (1.10)

Especially, if the universal set Θ contains only two points θ1 and θ2, then the credi-
bility extension condition essentially tells us that Cr{θ1} + Cr{θ2} = 1.
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Remark 1.8 Let Θ be a nonempty set containing three points θ1, θ2 and θ3, and let
A be its power set. Define a set function on A satisfying

M{θ1} = 0.6, M{θ2} = 0.3, M{θ3} = 0.2.

Then M is not a credibility measure since it does not satisfy the credibility extension
condition.

Theorem 1.10 (Credibility Extension Theorem, Li and Liu (2006a)) Suppose that
Θ is a nonempty set, and A is its power set. If Cr{θ} is a nonnegative function
satisfying the credibility extension condition, then it has a unique extension to a
credibility measure on A as follows,

Cr{A} =

⎧
⎪⎨

⎪⎩

sup
θ∈A

Cr{θ}, if sup
θ∈A

Cr{θ} < 0.5

1 − sup
θ∈Ac

Cr{θ}, if sup
θ∈A

Cr{θ} ≥ 0.5.
(1.11)

Proof We first prove that the set function (1.11) is a credibility measure, i.e., it
satisfies the normality, monotonicity, duality and maximality axioms.

Step 1: Since Cr{θ} satisfies the credibility extension condition, we have

sup
θ∈Θ

Cr{θ} ≥ 0.5.

Then it follows from (1.11) that

Cr{Θ} = 1 − sup
θ∈∅

Cr{θ} = 1 − 0 = 1

which implies that the set function Cr satisfies the normality axiom.
Step 2: This step will prove that Cr satisfies the monotonicity axiom. For any

events A ⊆ B , we have Bc ⊆ Ac, which implies that

sup
θ∈A

Cr{θ} ≤ sup
θ∈B

Cr{θ}, sup
θ∈Bc

Cr{θ} ≤ sup
θ∈Ac

Cr{θ}.

The following argument breaks down into two cases. If we have

sup
θ∈A

Cr{θ} < 0.5,

then it follows from (1.11) that

Cr{A} = sup
θ∈A

Cr{θ} ≤ sup
θ∈B

Cr{θ} ≤ Cr{B}.

Otherwise, we have

sup
θ∈B

Cr{θ} ≥ sup
θ∈A

Cr{θ} ≥ 0.5.
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For this case, it follows from (1.11) that

Cr{A} = 1 − sup
θ∈Ac

Cr{θ} ≤ 1 − sup
θ∈Bc

Cr{θ} = Cr{B}.

Step 3: This step will prove that Cr satisfies the duality axiom. For any event A,
according to the credibility extension condition, we have

sup
θ∈A

Cr{θ} ∨ sup
θ∈Ac

Cr{θ} ≥ 0.5, sup
θ∈A

Cr{θ} + sup
θ∈Ac

Cr{θ} ≤ 1.

In order to prove Cr{A} + Cr{Ac} = 1, the argument breaks down into three cases.
First, if we have

sup
θ∈A

Cr{θ} < 0.5, sup
θ∈Ac

Cr{θ} ≥ 0.5,

it follows from (1.11) that

Cr{A} + Cr
{
Ac
}= sup

θ∈A

Cr{θ} + 1 − sup
θ∈A

Cr{θ} = 1.

Similarly, if we have

sup
θ∈Ac

Cr{θ} < 0.5, sup
θ∈A

Cr{θ} ≥ 0.5,

it follows from (1.11) that

Cr{A} + Cr
{
Ac
}= 1 − sup

θ∈Ac

Cr{θ} + sup
θ∈Ac

Cr{θ} = 1.

Otherwise, we have

sup
θ∈A

Cr{θ} = sup
θ∈Ac

Cr{θ} = 0.5.

In this case, it follows from (1.11) that Cr{A} + Cr{Ac} = 0.5 + 0.5 = 1.
Step 4: This step will prove that Cr satisfies the maximality axiom. For any event

collection {Ai} with supi Cr{Ai} < 0.5, we have

Cr

{⋃

i

Ai

}

= sup
θ∈⋃i Ai

Cr{θ} = sup
i

sup
θ∈Ai

Cr{θ} = sup
i

Cr{Ai}.

Thus Cr is a credibility measure because it satisfies the four axioms.
Now, let us prove the uniqueness. Assume that there is another credibility mea-

sure M which satisfies M{θ} = Cr{θ} for each θ ∈ Θ . We will prove that M{A} =
Cr{A} for each event A. First, if we have

sup
θ∈A

Cr{θ} < 0.5,
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it follows from the maximality axiom and (1.11) that

M{A} = sup
θ∈A

Cr{θ} = Cr{A}.

Similarly, if we have

sup
θ∈Ac

Cr{θ} < 0.5,

we can prove M{Ac} = Cr{Ac}. Then it follows from the duality axiom that

M{A} = 1 − M
{
Ac
}= 1 − Cr

{
Ac
}= Cr{A}.

Finally, based on the credibility extension condition, we have

sup
θ∈A

Cr{θ} = sup
θ∈Ac

Cr{θ} = 0.5,

which implies that Cr{A} = 0.5. On the other hand, according to the monotonicity
axiom, we have M{A} ≥ 0.5 and M{Ac} ≥ 0.5. Furthermore, it follows from the
duality axiom that M{A} = 0.5. The uniqueness is proved. �

Remark 1.9 Based on the credibility extension theorem, we can define a credibility
measure by giving the credibility values of all singleton sets.

Example 1.5 Let Θ be the unit interval [0,1], and let A be its power set. Based on
the credibility extension theorem, we can define a credibility measure by construct-
ing a nonnegative real function satisfying the credibility extension condition. For
example, we define Cr{θ} = θ/2 for all θ ∈ [0,1]. Then it can be uniquely extended
to a credibility measure

Cr{A} =

⎧
⎪⎨

⎪⎩

sup
θ∈A

(θ/2), if sup
θ∈A

θ < 1

1 − sup
θ∈Ac

(θ/2), if sup
θ∈A

θ = 1

for any A ∈ A.

1.2 Credibility Space

This section introduces the concept of credibility space and the product credibility
theorem.

Definition 1.2 Let Θ be a nonempty set, A the power set, and Cr a credibility
measure. Then the triplet (Θ,A,Cr) is called a credibility space.
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Example 1.6 The triplet (Θ,A,Cr) is a credibility space if Θ = {θ1, θ2, . . .}, A is
the power set of Θ , and

Cr{θi} = 0.5, i = 1,2, . . . (1.12)

Note that for each A ∈ A, the credibility measure is produced by using the credibil-
ity extension theorem as follows,

Cr{A} =

⎧
⎪⎨

⎪⎩

0, if A = ∅
1, if A = Θ

0.5, otherwise.

Definition 1.3 Suppose that (Θk,Ak,Crk), k = 1,2, . . . , n are credibility spaces.
Let Θ = Θ1 × Θ2 × · · · × Θn, and let A be the power set of Θ . The product credi-
bility measure Cr is the credibility measure satisfying

Cr{θ} = Cr1{θ1} ∧ Cr2{θ2} ∧ · · · ∧ Crn{θn} (1.13)

for each θ = (θ1, θ2, . . . , θn).

Theorem 1.11 (Product Credibility Theorem) The function Cr{θ} defined by (1.13)
satisfies the credibility extension condition.

Proof For each k = 1,2, . . . , n, since Crk{θk} satisfies the credibility extension con-
dition, we have

sup
θ∈Θ

Cr{θ} = sup
(θ1,θ2,...,θn)∈Θ

min
1≤k≤n

Crk{θk}

= min
1≤k≤n

sup
θk∈Θk

Crk{θk}

≥ 0.5.

Suppose that θ∗ = (θ∗
1 , θ∗

2 , . . . , θ∗
n ) is a point satisfying Cr{θ∗} ≥ 0.5. Without loss

of generality, let i be the index such that

Cr
{
θ∗}= min

1≤k≤n
Crk
{
θ∗
k

}= Cri
{
θ∗
i

}
.

For each k, according to the credibility extension condition on Crk , we have

Crk
{
θ∗
k

}≥ 0.5, (1.14)

sup
θk �=θ∗

k

Crk{θk} ≤ 0.5, (1.15)

sup
θi �=θ∗

i

Cri{θi} ≥ sup
θk �=θ∗

k

Crk{θk}. (1.16)
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Then it follows from inequalities (1.14)–(1.16) that

sup
θ �=θ∗

Cr{θ} = sup
θ �=θ∗

min
1≤k≤n

Crk{θk}

= sup
1≤j≤n

sup
θj �=θ∗

j

(
Crj {θj } ∧ min

k �=j
Crk
{
θ∗
k

})

= sup
θi �=θ∗

i

(
Cri{θi} ∧ min

k �=i
Crk
{
θ∗
k

})

= sup
θi �=θ∗

i

Cri{θi}.

Therefore, by using the credibility extension condition on Cri , we have

Cr
{
θ∗}+ sup

θ �=θ∗
Cr{θ} = Cri

{
θ∗
i

}+ sup
θi �=θ∗

i

Cri{θi} = 1.

The proof is complete. �

Definition 1.4 Assume that (Θk,Ak,Crk), k = 1,2, . . . , n are credibility spaces.
Let Θ = Θ1 × Θ2 × · · · × Θn, A the power set of Θ , and Cr the product credibility
measure. Then the triplet (Θ,A,Cr) is called the product credibility space.

Remark 1.10 In what follows, we assume that all fuzzy variables are defined on the
same credibility space. Otherwise, we may embed them into the product credibility
space.

1.3 Fuzzy Variable

Roughly speaking, a fuzzy variable is a real function defined on a credibility space.
See Fig. 1.1. A formal definition is given as follows.

Definition 1.5 (Liu 2004) A fuzzy variable is a function ξ from a credibility space
(Θ,A,Cr) to the set of real numbers.

Example 1.7 Take a credibility space (Θ,A,Cr) to be {θ1, θ2} with Cr{θ1} =
Cr{θ2} = 0.5. Then the function

ξ(θ) =
{

0, if θ = θ1

1, if θ = θ2

is a fuzzy variable.
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Fig. 1.1 A fuzzy variable

Example 1.8 Take a credibility space (Θ,A,Cr) to be the closed interval [0,1] with
Cr{θ} = θ/2 for all θ ∈ [0,1]. Then the identify function

ξ(θ) = θ, ∀θ ∈ [0,1]
is a fuzzy variable.

Example 1.9 A real number c may be regarded as a special fuzzy variable. In fact,
it is the constant function ξ(θ) ≡ c on any credibility space (Θ,A,Cr).

Remark 1.11 Suppose that ξ is a fuzzy variable defined on credibility space
(Θ,A,Cr). For any Borel set B of real numbers, it is easy to prove that

{ξ ∈ B} = {θ ∈ Θ | ξ(θ) ∈ B
}

is an element of A. Therefore, the fuzzy variable ξ is essentially a measurable func-
tion from (Θ,A,Cr) to the set of real numbers.

Definition 1.6 (Liu 2004) A fuzzy variable ξ is said to be

(a) nonnegative if Cr{ξ < 0} = 0;
(b) positive if Cr{ξ ≤ 0} = 0;
(c) nonpositive if Cr{ξ > 0} = 0;
(d) negative if Cr{ξ ≥ 0} = 0;
(e) continuous if Cr{ξ = x} is a continuous function of x;
(f) simple if there is a finite sequence {x1, x2, . . . , xn} such that

Cr{ξ �= x1, ξ �= x2, . . . , ξ �= xn} = 0;
(g) discrete if there is a countable sequence {x1, x2, . . .} such that

Cr{ξ �= x1, ξ �= x2, . . .} = 0.
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Definition 1.7 Fuzzy variables ξ and η are said to be equal if and only if ξ(θ) =
η(θ) for all θ with nonzero credibility.

Definition 1.8 An n-dimensional fuzzy vector is a function from a credibility space
(Θ,A,Cr) to the set of n-dimensional real vectors.

Theorem 1.12 The vector ξ = (ξ1, ξ2, . . . , ξn) is a fuzzy vector if and only if
ξ1, ξ2, . . . , ξn are fuzzy variables.

Proof If ξ is a fuzzy vector defined on the credibility space (Θ,A,Cr), then
ξ1, ξ2, . . . , ξn are all functions from Θ to the set of real numbers. Thus they are
fuzzy variables. Conversely, suppose that ξk, k = 1,2, . . . , n are fuzzy variables on
the credibility space (Θ,A,Cr). Then ξ is a function from (Θ,A,Cr) to the set of
n-dimensional real vectors. Hence, ξ is a fuzzy vector. The theorem is proved. �

Definition 1.9 Suppose that f : �n → � is an n-dimensional function, and
ξ1, ξ2, . . . , ξn are fuzzy variables on the credibility space (Θ,A,Cr). Then ξ =
f (ξ1, ξ2, . . . , ξn) is a fuzzy variable defined as

ξ(θ) = f
(
ξ1(θ), ξ2(θ), . . . , ξn(θ)

)
, ∀θ ∈ Θ. (1.17)

Example 1.10 Let ξ1 and ξ2 be two fuzzy variables. Then (a) the sum ξ = ξ1 + ξ2
is a fuzzy variable defined by

ξ(θ) = ξ1(θ) + ξ2(θ), ∀θ ∈ Θ;
(b) the product ξ = ξ1 · ξ2 is a fuzzy variable defined by

ξ(θ) = ξ1(θ) · ξ2(θ), ∀θ ∈ Θ;
(c) the maximum ξ = ξ1 ∨ ξ2 is a fuzzy variable defined by

ξ(θ) = ξ1(θ) ∨ ξ2(θ), ∀θ ∈ Θ;
(d) the minimum ξ = ξ1 ∧ ξ2 is a fuzzy variable defined by

ξ(θ) = ξ1(θ) ∧ ξ2(θ), ∀θ ∈ Θ.

The reader may wonder whether ξ defined by (1.17) is a fuzzy variable. The
following theorem answers this question.

Theorem 1.13 Let ξ be an n-dimensional fuzzy vector, and let f : �n → � be an
n-dimensional function. Then f (ξ ) is a fuzzy variable.

Proof Since f (ξ ) is a function from a credibility space to the set of real numbers,
it is a fuzzy variable. The proof is complete. �
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Fig. 1.2 The shape of a
credibility function

1.4 Credibility Function

For a fuzzy variable ξ , its credibility function is a mapping from � to the set of
unit interval [0,1] (see Fig. 1.2). For each x ∈ �, the credibility value represents the
degree that the fuzzy variable takes value x.

Definition 1.10 Suppose that ξ is a fuzzy variable defined on the credibility space
(Θ,A,Cr). Then its credibility function is derived from the credibility measure as

ν(x) = Cr{ξ = x}, ∀x ∈ �. (1.18)

Theorem 1.14 A real function ν : � → [0,1] is a credibility function for a fuzzy
variable if and only if it satisfies

sup
x∈�

ν(x) ≥ 0.5,
(1.19)

ν
(
x∗)+ sup

x �=x∗
ν(x) = 1, if ν

(
x∗)≥ 0.5.

Proof The necessity may be similarly proved with the credibility extension con-
dition. Now, we prove the sufficiency. Assume that ν is a real function satisfying
condition (1.19). According to the credibility extension theorem, define a credibil-
ity space (Θ,A,Cr) with Θ = � and Cr{θ} = ν(θ) for all θ ∈ Θ . Define a fuzzy
variable ξ as the identify function ξ(θ) = θ . For each x ∈ �, we have

Cr{ξ = x} = ν(x).

Therefore, ν is a credibility function. The proof is complete. �

Theorem 1.15 A continuous function ν : � → [0,1] is a credibility function if and
only if it satisfies

sup
x∈�

ν(x) = 0.5. (1.20)

Proof For a continuous function (see Fig. 1.3), it is easy to prove that condition
(1.19) and condition (1.20) are equivalent. The proof is complete. �
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Fig. 1.3 The shape of a
continuous credibility
function

Example 1.11 Suppose that ν is a simple function defined by

ν(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0.2, if x = x1

0.3, if x = x2

0.7, if x = x3

0.3, if x = x4

0.2, if x = x5.

It follows from Theorem 1.14 that ν is a credibility function.

Example 1.12 Suppose that ν is a discrete function taking values in a countable set
{x1, x2, . . .} with

ν(xi) = (i − 1)/2(i + 1), i = 1,2, . . .

It follows from Theorem 1.14 that ν is a credibility function.

Example 1.13 Let ν : [0,π] → [0,1] be a real function defined by ν(x) = α sin(x).
If α = 0.5, it follows from Theorem 1.15 that ν is a credibility function since

sup
x∈�

ν(x) = 0.5.

However, if α �= 0.5, then ν is not a credibility function.

Theorem 1.16 (Credibility Inversion Theorem) Let ξ be a fuzzy variable with cred-
ibility function ν. Then for any set B of real numbers, we have

Cr{ξ ∈ B} =

⎧
⎪⎨

⎪⎩

sup
x∈B

ν(x), if sup
x∈B

ν(x) < 0.5

1 − sup
x∈Bc

ν(x), if sup
x∈B

ν(x) ≥ 0.5.
(1.21)

Proof It follows immediately from the credibility extension theorem. �
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Fig. 1.4 Equipossible
credibility function

Example 1.14 Let ξ be a fuzzy variable defined by the credibility function

ν(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.3, if x = 1

0.4, if x = 2

0.6, if x = 3

0.1, if x = 4.

Define sets A = [1,2] and B = [1,3]. Since supx∈A ν(x) < 0.5, it follows from the
credibility inversion theorem that

Cr{ξ ∈ A} = sup
x∈A

ν(x) = 0.4.

On the other hand, since sup
x∈B

ν(x) = 0.6, we have

Cr{ξ ∈ B} = 1 − sup
x∈Bc

ν(x) = 1 − 0.1 = 0.9.

Example 1.15 An equipossible fuzzy variable ξ = (a, b) is defined by the following
credibility function (see Fig. 1.4)

ν(x) =
{

0.5, if a ≤ x ≤ b

0, otherwise,
(1.22)

which takes value from [a, b] with the same possibility.

Example 1.16 A triangular fuzzy variable ξ = (a, b, c) is defined by the following
credibility function (see Fig. 1.5)

ν(x) =

⎧
⎪⎨

⎪⎩

(x − a)/2(b − a), if a ≤ x ≤ b

(c − x)/2(c − b), if b < x ≤ c

0, otherwise.
(1.23)
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Fig. 1.5 Triangular
credibility function

Fig. 1.6 Trapezoidal
credibility function

It is clear that a triangular fuzzy variable has a unimodal credibility function, which
takes value b with the maximum credibility 0.5. Furthermore, a triangular fuzzy
variable ξ will be called symmetric if b − a = c − b.

Example 1.17 A trapezoidal fuzzy variable ξ = (a, b, c, d) is defined by the follow-
ing credibility function (see Fig. 1.6)

ν(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x − a)/2(b − a), if a ≤ x ≤ b

0.5, if b < x ≤ c

(d − x)/2(d − c), if c < x ≤ d

0, otherwise.

(1.24)

A trapezoidal fuzzy variable ξ will be called symmetric if b − a = d − c.

Example 1.18 For any m > 0, an exponential fuzzy variable ξ = EXP(m) is defined
by the following credibility function (see Fig. 1.7)

ν(x) = 1/
(
1 + exp

(
πx/(

√
6m)

))
, x ≥ 0.

It is clear that the exponential credibility function is decreasing and continuous on
[0,+∞), which takes the maximum value 0.5 at zero and tends to zero as x → ∞.
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Fig. 1.7 Exponential
credibility function with
m = 1

Fig. 1.8 Normal credibility
function with e = 0 and σ = 1

Example 1.19 For any e ∈ � and σ > 0, a normal fuzzy variable ξ = N(e,σ ) is
defined by the following credibility function (see Fig. 1.8)

μ(x) = 1/
(
1 + exp

(
π |x − e|/(√6σ)

))
, x ∈ �.

It is easy to prove that the normal credibility function is continuous, unimodal and
symmetric with respect to parameter e.

Definition 1.11 Suppose that (ξ1, ξ2, . . . , ξn) is a fuzzy vector defined on the cred-
ibility space (Θ,A,Cr). Then its joint credibility function is derived from the cred-
ibility measure as

ν(x1, x2, . . . , xn) = Cr{ξ1 = x1, ξ2 = x2, . . . , ξn = xn} (1.25)

for all (x1, x2, . . . , xn) ∈ �n.

1.5 Independence

The fuzzy independence has been discussed by many authors from different angles,
for example, De Cooman (1997), Hisdal (1978), Klir (1999), Li and Liu (2006b),
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Liu and Gao (2007), Yager (1992), Zadeh (1975), and so on. In this section, we use
the following definition.

Definition 1.12 The fuzzy variables ξ1, ξ2, . . . , ξm are said to be independent if and
only if

ν(x1, x2, . . . , xm) = min
1≤i≤m

ν(xi) (1.26)

for all (x1, x2, . . . , xm) ∈ �m.

Theorem 1.17 Fuzzy variables ξ1, ξ2, . . . , ξm are independent if and only if

Cr{ξ1 ∈ B1, ξ2 ∈ B2, . . . , ξm ∈ Bm} = min
1≤i≤m

Cr{ξi ∈ Bi} (1.27)

for any sets B1,B2, . . . ,Bm of real numbers.

Proof Assume that fuzzy variables ξ1, ξ2, . . . , ξm are independent. For any sets
B1,B2, . . . ,Bm of real numbers, the proof of equation (1.27) breaks down into two
cases.

Case 1. Cr{ξ1 ∈ B1, ξ2 ∈ B2, . . . , ξm ∈ Bm} < 0.5. In this case, according to the
monotonicity axiom, we have

sup
xi∈Bi,1≤i≤m

ν(x1, x2, . . . , xm) < 0.5.

Furthermore, it follows from the maximality axiom that

Cr{ξ1 ∈ B1, ξ2 ∈ B2, . . . , ξm ∈ Bm}
= sup

xi∈Bi,1≤i≤m

ν(x1, x2, . . . , xm)

= sup
xi∈Bi,1≤i≤m

min
1≤i≤m

νi(xi)

= min
1≤i≤m

sup
xi∈Bi

νi(xi)

= min
1≤i≤m

Cr{ξi ∈ Bi}.

Case 2. Cr{ξ1 ∈ B1, ξ2 ∈ B2, . . . , ξm ∈ Bm} ≥ 0.5. For this case, according to the
duality axiom, we have

Cr
{(

ξ1 ∈ Bc
1

)∪ (ξ2 ∈ Bc
2

)∪ · · · ∪ (ξm ∈ Bc
m

)}≤ 0.5.

Furthermore, it follows from Theorem 1.3 that

Cr{ξ1 ∈ B1, ξ2 ∈ B2, . . . , ξm ∈ Bm}
= 1 − Cr

{(
ξ1 ∈ Bc

1

)∪ (ξ2 ∈ Bc
2

)∪ · · · ∪ (ξm ∈ Bc
m

)}
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= 1 − max
1≤i≤m

Cr
{
ξi ∈ Bc

i

}

= min
1≤i≤m

Cr{ξi ∈ Bi}.

Conversely, assume that (1.27) holds for any sets B1,B2, . . . ,Bm of real numbers.
Then for any (x1, x2, . . . , xm) ∈ �m, we have

ν(x1, x2, . . . , xm) = Cr{ξ1 = x1, ξ2 = x2, . . . , ξm = xm}
= min

1≤i≤m
Cr{ξi = xi}

= min
1≤i≤m

νi(xi),

which implies that fuzzy variables ξ1, ξ2, . . . , ξm are independent. The proof is com-
plete. �

Theorem 1.18 Fuzzy variables ξ1, ξ2, . . . , ξm are independent if and only if

Cr
{
(ξ1 ∈ B1) ∪ (ξ2 ∈ B2) ∪ · · · ∪ (ξm ∈ Bm)

}= max
1≤i≤m

Cr{ξi ∈ Bi} (1.28)

for any sets B1,B2, . . . ,Bm of real numbers.

Proof If fuzzy variables ξ1, ξ2, . . . , ξm are independent, it follows from Theo-
rem 1.17 and the duality axiom that

Cr
{
(ξ1 ∈ B1) ∪ (ξ2 ∈ B2) ∪ · · · ∪ (ξm ∈ Bm)

}

= 1 − Cr
{
ξ1 ∈ Bc

1, ξ2 ∈ Bc
2, . . . , ξm ∈ Bc

m

}

= 1 − min
1≤i≤m

Cr
{
ξi ∈ Bc

i

}

= max
1≤i≤m

Cr{ξi ∈ Bi}.

Conversely, assume that (1.28) holds. For any sets B1,B2, . . . ,Bm of real numbers,
it follows from the duality axiom that

Cr{ξ1 ∈ B1, ξ2 ∈ B2, . . . , ξm ∈ Bm}
= 1 − Cr

{(
ξ1 ∈ Bc

1

)∪ (ξ2 ∈ Bc
2

)∪ · · · ∪ (ξm ∈ Bc
m

)}

= 1 − max
1≤i≤m

Cr
{
ξi ∈ Bc

i

}

= min
1≤i≤m

Cr{ξi ∈ Bi}.

According to Theorem 1.17, fuzzy variables ξ1, ξ2, . . . , ξm are independent. The
proof is complete. �
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Theorem 1.19 Suppose that ξ1, ξ2, . . . , ξm are independent fuzzy variables. Then
for any real functions f1, f2, . . . , fm, fuzzy variables f1(ξ1), f2(ξ2), . . . , fm(ξm)

are also independent.

Proof For any (x1, x2, . . . , xm) ∈ �m, according to Theorem 1.17, we have

Cr
{
f1(ξ1) = x1, f2(ξ2) = x2, . . . , fm(ξm) = xm

}

= Cr
{
ξ1 ∈ f −1

1 (x1), ξ2 ∈ f −1
2 (x2), . . . , ξm ∈ f −1

m (xm)
}

= min
1≤i≤m

Cr
{
ξi ∈ f −1

i (xi)
}

= min
1≤i≤m

Cr
{
fi(ξi) = xi

}
.

Thus f1(ξ1), f2(ξ2), . . . , fm(ξm) are independent. The proof is complete. �

Example 1.20 If fuzzy variables ξ and η are independent, then it follows from above
theorem that fuzzy variables ξ2 and (η + 1)3 are also independent.

Theorem 1.20 (Zadeh Extension Theorem) Suppose that fuzzy variables ξ1,

ξ2, . . . , ξm are independent. If f is a function from �m to �, then fuzzy variable
f (ξ1, ξ2, . . . , ξm) has the credibility function

μ(z) =

⎧
⎪⎨

⎪⎩

sup
f (x)=z

min
1≤i≤m

νi(xi), if sup
f (x)=z

min
1≤i≤m

νi(xi) < 0.5

1 − sup
f (x)�=z

min
1≤i≤m

νi(xi), if sup
f (x)=z

min
1≤i≤m

νi(xi) ≥ 0.5
(1.29)

for all z ∈ �, where νi is the credibility function of ξi for i = 1,2, . . . ,m.

Proof Since fuzzy variables ξ1, ξ2, . . . , ξm are independent, the fuzzy vector
(ξ1, ξ2, . . . , ξm) has a joint credibility function

ν(x) = min
1≤i≤m

νi(xi), ∀x ∈ �m.

For each z ∈ �, it follows from the credibility extension theorem that

μ(z) =

⎧
⎪⎨

⎪⎩

sup
f (x)=z

ν(x), if sup
f (x)=z

ν(x) < 0.5

1 − sup
f (x)�=z

ν(x), if sup
f (x)=z

ν(x) ≥ 0.5.

The proof is complete. �

Remark 1.12 The independence condition cannot be removed in Zadeh extension
theorem. For example, define ξ = (0,1,2) and η = −ξ . It is clear that ξ + η = 0.
However, if we apply the Zadeh extension theorem, we have ξ + η = (−2,0,2).
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Example 1.21 Suppose that ξ is a nonnegative fuzzy variable with credibility func-
tion ν(x). Then for any α, β ∈ � with α �= 0, fuzzy variable αξ +β has a credibility
function

μ(x) = ν
(
(x − β)/α

)
,

fuzzy variable n
√

ξ has a credibility function

μ(x) = ν
(
xn
)
,

and fuzzy variable ξn has a credibility function

μ(x) = ν
(

n
√

x
)
.

For example, if ξ is an equipossible fuzzy variable taking values in [a, b], then we
have 2ξ + 1 = (2a + 1,2b + 1), ξ2 = (a2, b2), and

√
ξ = (

√
a,

√
b).

Example 1.22 Suppose that fuzzy variables ξ1 = (a1, b1) and ξ2 = (a2, b2) are inde-
pendent with credibility functions ν1 and ν2, respectively. Then for any nonnegative
real numbers α1 and α2, we have

α1ξ1 + α2ξ2 = (α1a1 + α2a2, α1b1 + α2b2). (1.30)

For simplicity, we denote a = α1a1 +α2a2 and b = α1b1 +α2b2. We will prove that
fuzzy variable α1ξ1 + α2ξ2 has the following credibility function

ν(x) =
{

0.5, if a ≤ x ≤ b

0, otherwise.

When α2 = 0, the conclusion is trivial. Therefore, we assume that α2 �= 0 in the
following proof. The argument breaks down into three cases.

Case 1. x < a. In this case, for any α1x1 +α2x2 = x, we have x1 < a1 or x2 < a2.
Then it follows from the Zadeh extension theorem that

ν(x) = sup
α1x1+α2x2=x

(
ν1(x1) ∧ ν2(x2)

)= 0.

Case 2. a ≤ x ≤ b. Define x∗
1 = a1 and x∗

2 = (x − α1a1)/α2. It is easy to prove
that a2 ≤ x∗

2 ≤ b2. It follows from the Zadeh extension theorem that

ν(x) = ν1
(
x∗

1

)∧ ν2
(
x∗

2

)= 0.5.

Case 3. x > b. For any α1x1 + α2x2 = x, we have x1 > b1 or x2 > b2. It follows
from the Zadeh extension theorem that ν(x) = 0.

Example 1.23 Suppose that triangular fuzzy variables ξ1 = (a1, b1, c1) and ξ2 =
(a2, b2, c2) are independent with credibility functions ν1 and ν2, respectively. Then
for any nonnegative real numbers α1 and α2, we have

α1ξ1 + α2ξ2 = (α1a1 + α2a2, α1b1 + α2b2, α1c1 + α2c2). (1.31)
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For simplicity, we denote a = α1a1 + α2a2, b = α1b1 + α2b2, and c = α1c1 + α2c2.
If we use ν to denote the credibility function of fuzzy variable α1ξ1 + α2ξ2, we will
prove that

ν(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if x < a

(x − a)/2(b − a), if a ≤ x < b

(c − x)/2(c − b), if b ≤ x < c

0, if x ≥ c.

The proof is trivial if α1 = 0 or α2 = 0. In what follows, we assume that α1α2 �= 0.
The argument breaks down into four cases.

Case 1. x < a. For any α1x1 + α2x2 = x, we have x1 < a1 or x2 < a2. Then it
follows from the Zadeh extension principle that ν(x) = 0.

Case 2. a ≤ x < b. It follows from the Zadeh extension theorem that

ν(x) = sup
a1≤y1≤b1,a2≤y2≤b2,α1y1+α2y2=x

(
ν1(y1) ∧ ν2(y2)

)
.

Since ν1 is increasing on the interval [a1, b1] and ν2 is increasing on the interval
[a2, b2], the vector (y1, y2) which maximizes the binary function ν1 ∧ ν2 should
satisfy the following equations

α1y1 + α2y2 = x, (y1 − a1)/(b1 − a1) = (y2 − a2)/(b2 − a2).

It is solved that

y2 = x(b2 − a2) + α1((b1 − a1)a2 − a1(b2 − a2))

α1(b1 − a1) + α2(b2 − a2)
.

Taking it into the credibility function ν2, we get

ν(x) = (x − a)/2(b − a).

Case 3. b ≤ x < c. It follows from the Zadeh extension theorem that

ν(x) = sup
b1≤y1≤c1,b2≤y2≤c2,α1y1+α2y2=x

(
ν1(y1) ∧ ν2(y2)

)
.

Since ν1 is decreasing on the interval [b1, c1] and ν2 is decreasing on the interval
[b2, c2], the vector (y1, y2) which maximizes the binary function ν1 ∧ ν2 should
satisfy the following equations

α1y1 + α2y2 = x, (c1 − y1)/(c1 − b1) = (c2 − y2)/(c2 − b2).

It is solved that

y2 = x(c2 − b2) + α1((c1 − b1)c2 − c1(c2 − b2))

α1(c1 − b1) + α2(c2 − b2)
.
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Taking it into the credibility function ν2, we get

ν(x) = (c − x)/2(c − b).

Case 4. x ≥ c. For any α1x1 + α2x2 = x, we have x1 ≥ c1 or x2 ≥ c2. It follows
from the Zadeh extension theorem that ν(x) = 0.

Remark 1.13 Similarly, suppose that trapezoidal fuzzy variables ξ1 = (a1, b1, c1, d1)

and ξ2 = (a2, b2, c2, d2) are independent. Then for any nonnegative real numbers α1

and α2, we have

α1ξ1 + α2ξ2 = (α1a1 + α2a2, α1b1 + α2b2, α1c1 + α2c2, α1d1 + α2d2).

Example 1.24 Suppose that exponential fuzzy variables ξ1 = EXP(m1) and ξ2 =
EXP(m2) are independent. Then for any α1 > 0 and α2 > 0, we have

α1ξ1 + α2ξ2 = E(α1m1 + α2m2). (1.32)

Let ν1, ν2, and ν be the credibility functions of fuzzy variables ξ1, ξ2, and a1ξ1 +
a2ξ2, respectively. Since both ν1 and ν2 are strictly decreasing, for any x > 0, the
vector (y1, y2) maximizing the binary function ν1 ∧ ν2 under the constraint α1y1 +
α2y2 = x should satisfy

ν1(y1) = ν2(y2).

It is solved that y1 = m1x/(a1m1 +a2m2). Taking it into the credibility function ν1,
we get

ν(x) = 1/
(
1 + exp

(
πx/

√
6(a1m1 + a2m2)

))

which implies that a1ξ1 + a2ξ2 is an exponential fuzzy variable with parameter
a1m1 + a2m2.

Example 1.25 Suppose that normal fuzzy variables ξ1 = N(e1, σ1) and ξ2 =
N(e2, σ2) are independent. Then for any α1, α2 ∈ �, we have

α1ξ1 + α2ξ2 = N
(
α1e1 + α2e2, |α1|σ1 + |α2|σ2

)
. (1.33)

Let ν1, ν2, and ν be the credibility functions of fuzzy variables ξ1, ξ2, and a1ξ1 +
a2ξ2, respectively. For simplicity, we denote e = α1e1 + α2e2 and σ = |α1|σ1 +
|α2|σ2. In what follows, we will prove that

ν(x) = 1/
(
1 + exp

(
π |x − e|/√6σ

))
, x ∈ �.

First, we assume α1 ≥ 0 and α2 ≥ 0. If x > e, since ν1 is strictly decreasing on
the interval [e1,+∞) and ν2 is strictly decreasing on the interval [e2,+∞), the



1.6 Identical Distribution 27

vector (y1, y2) maximizing the binary function ν1 ∧ ν2 should satisfy the following
equations

α1y1 + α2y2 = x, (y1 − e1)/σ1 = (y2 − e2)/σ2,

which implies that

y2 = xσ2 + α1σ1e2 − α1σ2e1

α1σ1 + α2σ2
.

Taking it into the credibility function ν2, we get

ν(x) = 1/
(
1 + exp

(
π(x − e)/

√
6σ
))

.

On the other hand, if x ≤ e, since ν1 is strictly increasing on the interval (−∞, e1]
and ν2 is strictly increasing on the interval (−∞, e2], the vector which maximizes
the binary function ν1 ∧ ν2 should satisfy

α1y1 + α2y2 = x, (e1 − y1)/σ1 = (e2 − y2)/σ2,

which implies that

y2 = xσ2 + α1σ1e2 − α1σ2e1

α1σ1 + α2σ2
.

Taking it into the credibility function ν2, we get

ν(x) = 1/
(
1 + exp

(
π(e − x)/

√
6σ
))

.

Let μ1 be the credibility function of fuzzy variable −ξ1. For any x ∈ �, it follows
from the Zadeh extension theorem that

μ1(x) = ν1(−x) = 1/
(
1 + exp

(
π |x + e1|/

√
6σ1
))

.

Therefore, for any α1, α2 ∈ �, we have

ν(x) = 1/
(
1 + exp

(
π |x − e|/√6σ

))
, x ∈ �.

1.6 Identical Distribution

This section introduces the concept of identical distribution for fuzzy variables.

Definition 1.13 Suppose that fuzzy variables ξ and η have credibility functions μ

and ν, respectively. Then ξ and η are said to be identically distributed if and only if

ν(x) = μ(x), ∀x ∈ �. (1.34)
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Theorem 1.21 If fuzzy variables ξ and η are identically distributed, then for any
set B of real numbers, we have

Cr{ξ ∈ B} = Cr{η ∈ B}. (1.35)

Proof It follows immediately from the credibility inversion theorem. �

Theorem 1.22 If fuzzy variables ξ and η are identically distributed, then for any
real function f , fuzzy variables f (ξ) and f (η) are also identically distributed.

Proof It follows immediately from the Zadeh extension theorem. �

Example 1.26 If fuzzy variables ξ and η are identically distributed, then it follows
from above theorem that ξ2 and η2 are also identically distributed.

Remark 1.14 Suppose that fuzzy variables ξ and η have credibility functions ν and
μ, respectively. If ξ = η, then for any x ∈ �, we have

ν(x) = Cr
{
θ ∈ Θ | ξ(θ) = x

}= Cr
{
θ ∈ Θ | η(θ) = x

}= μ(x),

which implies that ξ and η are identically distributed. However, the inverse may
be not true. For example, take a credibility space (Θ,A,Cr) to be {θ1, θ2} with
Cr{θ1} = Cr{θ2} = 0.5. Define fuzzy variables

ξ =
{

1, if θ = θ1

−1, if θ = θ2,
η =

{−1, if θ = θ1

1, if θ = θ2.

It is clear that ξ �= η, but they have the same credibility function

ν(x) = μ(x) =
{

0.5, if x ∈ {−1,1}
0, otherwise.

Remark 1.15 Fuzzy variables ξ1, ξ2, . . . , ξm are said to be identically distributed if
and only if each pair of them are identically distributed.

Example 1.27 Suppose that ξi = (a, b, c), i = 1,2, . . . ,m are independent and iden-
tically distributed triangular fuzzy variables. For any positive numbers x1, x2, . . . , xm

with x1 + x2 + · · · + xm = 1, we have

ξ1x1 + ξ2x2 + · · · + ξmxm = (a, b, c).

That is, the weighted sum is identically distributed with each element. The con-
clusion still holds if the triangular fuzzy variables are changed to be equipossi-
ble fuzzy variables, trapezoidal fuzzy variables, normal fuzzy variables, or expo-
nential fuzzy variables.
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Chapter 2
Credibilistic Programming

The decision analysis with fuzzy objective or fuzzy constraints is natural in some
real-world applications, and sometimes such analysis seems to be inevitable. Cred-
ibilistic programming is a type of mathematical programming for handling the
fuzzy decision problems. In the past years, researchers have proposed various ef-
ficient modeling approaches based on different fuzzy ranking criteria. For exam-
ple, Liu and Liu (2002) introduced a concept of expected value operator and then
provided a spectrum of expected value model to maximize the average objective
under certain expected constraints. Liu and Iwamura (1998a,b) introduced a max-
imax chance-constrained programming model, and Liu (1998) provided a max-
imin chance-constrained programming model, which respectively maximizes the
optimistic objective and pessimistic objective under certain credibility constraints.
Based on the concepts of fuzzy entropy, Li et al. (2011) formulated an entropy opti-
mization model, which was extended by Qin et al. (2009) to the cross-entropy min-
imization model. Recently, Li et al. (2012) introduced a regret minimization model
to minimize the distance between the fuzzy objective values and the best values.

This chapter mainly provides a general description on nonlinear programming,
multi-objective programming, and credibilistic programming. In addition, a brief
introduction on the solution methods will also be given, including the Kuhn-Tucker
conditions and genetic algorithm.

2.1 Mathematical Programming

As one of the most widely used technique in operations research, mathematical
programming is defined as a means of maximizing a quantity known as objective
function, subject to a set of constraints. It is impossible that this section covers
all concepts of mathematical programming. Therefore, this section only introduces
some basic concepts and techniques such that readers can gain an understanding of
them throughout the book.

X. Li, Credibilistic Programming, Uncertainty and Operations Research,
DOI 10.1007/978-3-642-36376-4_2, © Springer-Verlag Berlin Heidelberg 2013
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2.1.1 Single-Objective Programming

In mathematical terms, the general form of a single-objective programming can be
written as follows:

{
max f (x)

s.t. gi(x) ≤ 0, i = 1,2, . . . , n
(2.1)

where x = (x1, x2, . . . , xm) is the decision vector, the first line defines the objective
function to be maximized, and the second line defines the inequality constraints.

Definition 2.1 For the single-objective programming model (2.1), the set

S = {x ∈ �m | gi(x) ≤ 0, i = 1,2, . . . , n
}

(2.2)

is called the feasible set. An element x in S is called a feasible solution.

Definition 2.2 For the single-objective programming model (2.1), a feasible solu-
tion x∗ is called the local optimal solution if and only if there is a real number ε > 0
such that

f
(
x∗)≥ f (x) (2.3)

for all feasible solution x with ‖x − x∗‖ < ε.

Definition 2.3 For the single-objective programming model (2.1), a feasible solu-
tion x∗ is called the global optimal solution if and only if

f
(
x∗)≥ f (x) (2.4)

for all feasible solution x ∈ S.

Remark 2.1 Note that a global optimal solution must be a local optimal solution,
but a local optimal solution may be not a global optimal solution.

Example 2.1 In order to illustrate the concepts of feasible solution, local optimal
solution, and global optimal solution, we consider the following single-objective
programming problem

{
max max

{
(x − 1)(2 − x),1 − x2,−(x + 1)(x + 2)

}

s.t. (x + 2)(x − 2) ≤ 0.

It is easy to prove that the feasible set is a closed interval S = [−2,2]. There are
three local optimal solutions x1 = −1.5, x2 = 0, x3 = 1.5, among which x2 = 0 is
the global optimal solution. See Fig. 2.1.
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Fig. 2.1 Local optimal
solution and global optimal
solution

One of the most outstanding contributions to mathematical programming is
known as the Kuhn-Tucker conditions. In order to introduce them, we first give
some definitions. An inequality constraint gi ≤ 0 is said to be active at a point x
if gi(x) = 0. A feasible point x is said to be regular if the gradient vector �gi(x)

of all active constraints are linearly independent.
Suppose that x∗ is a regular point of the single-objective programming model

(2.1), and all the functions f and gi , i = 1,2, . . . , n are differentiable. If x∗ is a
local optimal solution, then there exist Lagrangian multipliers λi , i = 1,2, . . . , n

such that the following Kuhn-Tucker conditions hold,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�f (x∗) −
n∑

i=1

λigi

(
x∗)= 0

λigi

(
x∗)= 0, i = 1,2, . . . , n

λi ≥ 0, i = 1,2, . . . , n.

(2.5)

Furthermore, if functions gi , i = 1,2, . . . , n are all convex and the objective function
f is concave, then a regular point x∗ is the global optimal solution if and only if it
satisfies the Kuhn-Tucker conditions.

Example 2.2 In this example, we apply the Kuhn-Tucker conditions to solve the
following single-objective programming problem

⎧
⎪⎨

⎪⎩

max −x2
1 − x2

2 − x2
3

s.t. 1 − x1 − x2 − x3 ≤ 0

x1, x2, x3 ≥ 0.

It is clear that the objective function f = −x2
1 − x2

2 − x2
3 is differentiable and con-

cave, and the constraint function g = 1 − x1 − x2 − x3 is differentiable and convex.
Therefore, a point is the global optimal solution if and only if it satisfies the Kuhn-
Tucker conditions

⎧
⎨

⎩

−2xi + λ = 0, i = 1,2,3
λ(1 − x1 − x2 − x3) = 0
λ ≥ 0
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where λ is the Lagrangian multiplier. According to the inequality constraint, there
is at least one index i such that xi > 0, which implies that λ > 0 and

x1 + x2 + x3 = 1.

Taking xi = λ/2 into this equation, it is solved that the global optimal solution is
x1 = x2 = x3 = 1/3, and the Lagrangian multiplier is λ = 2/3.

2.1.2 Multi-Objective Programming

In multi-objective programming, also known as multi-attribute programming or
multi-criteria programming, we attempt to simultaneously maximize two or more
conflicting objectives subject to certain constraints, which is formulated as follows,

{
max

[
f1(x), f2(x), . . . , fp(x)

]

s.t. gi(x) ≤ 0, i = 1,2, . . . , n.
(2.6)

Similarly, the set S = {x ∈ �m | gi(x) ≤ 0, i = 1,2, . . . , n} is called the feasible
set, and each element x of S is called a feasible solution.

For a nontrivial multi-objective programming problem, one cannot identify a so-
lution that simultaneously maximizes all objectives. If the decision-maker has a real
preference function which aggregates all the objectives, then we may maximize the
preference function under the same set of constraints. The obtained single-objective
programming model is called a compromise model whose solution is called a com-
promise solution.

The first well-known compromise model is formulated to maximize the linearly
weighted objective function

⎧
⎪⎪⎨

⎪⎪⎩

max
p∑

i=1

λifi(x)

s.t. gi(x) ≤ 0, i = 1,2, . . . , n

(2.7)

where λ1, λ2, . . . , λp are nonnegative real numbers, which denote the preferences
of the decision-maker on different objectives. Taking a two-objective programming
model for example, if the first objective is more important than the second one, we
set λ1 > λ2. Otherwise, we set λ1 ≤ λ2.

The second way is formulated to minimize the distance between the objective
vector and an ideal vector (f ∗

1 , f ∗
2 , . . . , f ∗

p ), where f ∗
i is the maximum value for

the ith objective without considering other objectives. If the Euclidean distance is
used, we have

⎧
⎪⎪⎨

⎪⎪⎩

min

√
√
√
√

p∑

i=1

(
fi(x) − f ∗

i

)2

s.t. gi(x) ≤ 0, i = 1,2, . . . , n.

(2.8)
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Table 2.1 Database for
notebook computer selection Candidate Price (RMB) Weight (kg) Size (inch)

x1 6730 2.2 15.4

x2 6980 2.2 15.4

x3 9200 1.3 12.1

x4 13000 2.2 12.1

The term of Pareto optimality and the related terms of Pareto dominance, Pareto
solution, and Pareto set are the most basic concepts in multi-objective programming
theory (Ehrgott 2000; Farina and Amato 2004; Li and Wong 2009; Pierro et al. 2007)
and algorithms (Chou et al. 2008; Delgado et al. 2008; Ewald et al. 2008; Hung et al.
2008; Tan et al. 2005; Zou et al. 2008). Roughly speaking, Pareto optimality means
that when we attempt to improve an objective further, other objectives suffer as a
result.

Definition 2.4 For any feasible solutions x,y ∈ S, x is said to Pareto dominate y

if and only if

(a) fi(x) ≥ fi(y) for all i ∈ {1,2, . . . , p};
(b) fj (x) > fj (y) for at least one index j ∈ {1,2, . . . , p}.

Definition 2.5 A feasible solution x is said to be a Pareto solution if there is no
feasible solution y which Pareto dominates x . The set of all Pareto solutions is
called the Pareto set.

Example 2.3 Suppose that we would like to select a cheap, light and small notebook
computer from the candidates {x1, x2, x3, x4}. The detailed data about each candi-
date is shown in Table 2.1. It is easy to prove that x1 and x3 are Pareto solutions.
Note that x2 is not a Pareto solution since it is dominated by x1, and x4 is not a
Pareto solution since it is dominated by x3.

Remark 2.2 The global optimal solution x∗ of compromise model (2.7) must be a
Pareto solution. Otherwise, according to Definition 2.5, there is a feasible solution
x such that fi(x) ≥ fi(x

∗) for all i = 1,2, . . . , p, and the strict inequality holds for
at least one index. Then it is easy to prove that

p∑

i=1

λifi(x) >

p∑

i=1

λifi

(
x∗),

which is in contradiction with the fact that x∗ is the global optimal solution. Sim-
ilarly, we can prove that the global optimal solution of compromise model (2.8) is
also a Pareto solution.
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2.2 Credibilistic Programming

Fuzzy programming is the mathematical programming in fuzzy environment, that
is, the objective function f or constraint functions gi, i = 1,2, . . . , n contain fuzzy
parameters. Assume that x is a decision vector, and ξ is a fuzzy vector, then the
general fuzzy programming model can be written as

{
max f (x, ξ)

s.t. gi(x, ξ) ≤ 0, i = 1,2, . . . , n.
(2.9)

Example 2.4 In this example, we consider the portfolio selection problem. The term
portfolio refers to any collection of financial assets such as stocks, bonds, and cash.
Portfolio may be held by individual investors or managed by financial professionals,
banks and other financial institutions.

Assume that there are m stocks, and we use ξi to denote the return of the ith stock.
In general, ξi is given as (p′

i + di − pi)/pi where pi is the closing price at present,
p′

i is the closing price in the next year, and di is the dividend during the coming
year. Note that the values of p′

i and di in a future time period are clearly unknown
at present. If they are estimated as fuzzy quantities, then ξi is a fuzzy variable.
Furthermore, for each portfolio (x1, x2, . . . , xm), where xi denotes the proportion of
the total capital invested in stock i, the total return

f (x, ξ ) = ξ1x1 + ξ2x2 + · · · + ξmxm

is also a fuzzy variable. In this case, if the investor would like to maximize the total
return, we get the following fuzzy programming model

⎧
⎪⎨

⎪⎩

max ξ1x1 + ξ2x2 + · · · + ξmxm

s.t. x1 + x2 + · · · + xm = 1

xi ≥ 0, i = 1,2, . . . ,m

(2.10)

where the first constraint implies that all the capital will be invested to the m stocks,
and the next set of constraints implies that short sale and borrowing are not allowed.

Generally speaking, it is meaningless to maximize a fuzzy objective since there
is not a natural ordership in fuzzy world. Therefore, we need to define a credibilistic
mapping from the collection of fuzzy variables to the set of real numbers, such that
we can rank fuzzy variables according to the natural ordership of real numbers. For
the fuzzy programming model (2.9), if the credibilistic mappings U,U1,U2, . . . ,Un

are taken, we get the following model
{

max U
[
f (x, ξ)

]

s.t. Ui

[
gi(x, ξ)

]≤ 0, i = 1,2, . . . , n.
(2.11)

Note that (2.11) is a crisp nonlinear programming model since the objective function
and constraints are both well defined. In what follows, we will call it a credibilis-
tic programming model. The following chapters will introduce some mainly used
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credibilistic mappings including the expected value operator, optimistic value, pes-
simistic value, entropy, cross-entropy, and distance.

Definition 2.6 For the credibilistic programming model (2.11), the set

S = {x ∈ �m | Ui

[
gi(x, ξ )

]≤ 0, i = 1,2, . . . , n
}

(2.12)

is called the feasible set. An element x in S is called a feasible solution.

Definition 2.7 For the credibilistic programming model (2.11), a feasible solution
x∗ is called the local optimal solution if and only if there is a real number ε > 0
such that

U
[
f
(
x∗, ξ

)]≥ U
[
f (x, ξ )

]
(2.13)

for all feasible solution x with ‖x − x∗‖ < ε.

Definition 2.8 For the credibilistic programming model (2.11), a feasible solution
x∗ is called the global optimal solution if and only if

U
[
f
(
x∗, ξ

)]≥ U
[
f (x, ξ )

]
(2.14)

for all feasible solution x ∈ S.

If there are multiple objective functions f1, f2, . . . , fp , we can define the follow-
ing multi-objective credibilistic programming model,

{
max

[
U
[
f1(x, ξ)

]
,U
[
f2(x, ξ)

]
, . . . ,U

[
fp(x, ξ)

]]

s.t. Ui

[
gi(x, ξ)

]≤ 0, i = 1,2, . . . , n.
(2.15)

Definition 2.9 For any feasible solutions x,y ∈ S, x is said to Pareto dominate y

if and only if

(a) U [fi(x, ξ )] ≥ U [fi(y, ξ )] for all i ∈ {1,2, . . . ,m};
(b) U [fj (x, ξ )] > U [fj (y, ξ )] for at least one index j ∈ {1,2, . . . ,m}.

Definition 2.10 A feasible solution x is said to be a Pareto solution for the multi-
objective credibilistic programming model (2.15) if there is no feasible solution y

which Pareto dominates x . The set of all Pareto solutions is called the Pareto set.

Example 2.5 Let us reconsider the portfolio selection problem. Suppose that there
are three stocks and the returns are independent triangular fuzzy variables ξ1 =
(0,3,6), ξ2 = (2,3,4), and ξ3 = (−1,0,1). See Fig. 2.2.

It is clear that the second stock has a better return than the third stock since it
follows from the credibility inversion theorem that Cr{ξ2 ≥ ξ3} = 1. However, it is
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Fig. 2.2 Credibility
functions for ξ1, ξ2 and ξ3

difficult to compare the returns arising from the second stock and the first stock.
As a result, if we take portfolios x = (1,0,0) and y = (0,1,0), it is difficult to
decide which one is better. In fact, it follows form the independence that fuzzy
vector (ξ1, ξ2) has a joint credibility function ν = ν1 ∧ ν2. Then according to the
credibility inversion theorem, event {ξ1 ≥ ξ2} has a credibility

Cr{ξ1 ≥ ξ2} = 1 − sup
x1<x2

ν(x1, x2)

= 1 − sup
x1<3,x2=3

(
ν1(x1) ∧ ν2(x2)

)

= 0.5,

and event {ξ2 ≥ ξ1} has a credibility

Cr{ξ2 ≥ ξ1} = 1 − sup
x2<3,x1=3

(
ν1(x1) ∧ ν2(x2)

)= 0.5.

If there is a credibilistic mapping such that U(ξ) = a for each triangular fuzzy
variable ξ = (a, b, c), then the credibilistic programming model is

⎧
⎪⎨

⎪⎩

max 2x2 − x3

s.t. x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0.

It is easy to calculate that the optimal portfolio is x∗ = (0,1,0). If there is another
credibilistic mapping which takes value c for each triangular fuzzy variable ξ =
(a, b, c), we have the following credibilistic programming model

⎧
⎪⎨

⎪⎩

max 6x1 + 4x2 + x3

s.t. x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0.

In this case, the optimal portfolio is x∗ = (1,0,0).
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2.3 Genetic Algorithm

For a general credibilistic programming model, if the credibilistic mappings have
analytical expressions and the objective and constraint functions have good math-
ematical properties, such as differentiability and convexity, we can design efficient
solution algorithms by using the Kuhn-Tucker conditions. However, the credibilis-
tic mappings generally have no analytical expressions or the expressions have bad
properties. In this case, we can try to obtain suboptimal solution by using the genetic
algorithm.

Genetic algorithm is a stochastic search method for optimization problems based
on the mechanics of natural selection and natural genetics, i.e., survival of the fittest,
which has been well-documented in the literatures, such as in Holland (1975), Gold-
berg (1989), Michalewicz (1996), Koza (1992, 1994), and so on. In the past decades,
genetic algorithm has obtained considerable success in providing satisfactory solu-
tions to many complex optimization problems and received more and more atten-
tions. This section introduces the basic steps for genetic algorithm including repre-
sentation structure, initialization, evaluation function, selection process, crossover
operation, and mutation operation. At the end of this section, a general procedure of
the genetic algorithm is also given.

2.3.1 Representation Structure

The first problem for genetic algorithm is how to construct a one to one mapping
between the solution space and the chromosome space such that the following op-
erations such as crossover and mutation, can be simplified. The mapping from the
solution space to the chromosome space is called encoding, and the mapping from
the chromosome space to the solution space is called decoding.

The representation of solution is generally problem dependent, while binary en-
coding and floating encoding are two mainly used representation structures. Taking
the floating encoding for example, let x = (x1, x2, . . . , xm) be a solution vector in
the solution space satisfying

{
x1 + x2 + · · · + xm = 1

xi ≥ 0, i = 1,2, . . . ,m.
(2.16)

We may encode the solution by a chromosome v = (v1, v2, . . . , vm) satisfying

vi ≥ 0, i = 1,2, . . . ,m. (2.17)

Then the encoding and decoding processes are determined by the equations

x1 = v1

v1 + v2 + · · · + vm

, i = 1,2, . . . ,m. (2.18)
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2.3.2 Initialization

Define an integer pop-size as the size of population, which generally depends on the
nature of the problem. Randomly generate pop-size chromosomes for the initialized
population. Usually, it is difficult to produce feasible chromosomes explicitly for
complex optimization problems with irregular feasible set. However, if the decision-
maker can predetermine a region with regular sharp which contains the optimal
solution, we may initialize the population in the regular field.

We generate a random point from the region and check its feasibility. If it is
feasible, then it will be accepted as a chromosome. If not, we regenerate a point ran-
domly until a feasible one is obtained. We repeat this procedure pop-size times, and
generate the first population. The initialization process is summarized as follows.

Algorithm 2.1 (Initialization Process)

Step 1. Set i = 1.
Step 2. Randomly generate a chromosome from the predetermined region.
Step 3. If it is feasible, set i = i + 1. Otherwise, go to step 2.
Step 4. If i ≤ pop-size, go to step 2.
Step 5. Return the initialized population vi , i = 1,2, . . . ,pop-size.

2.3.3 Evaluation Function

Evaluation function assigns each chromosome a probability of reproduction so that
its likelihood of being selected is proportional to its fitness relative to the other
chromosomes in the population. That is, the chromosomes with higher fitness will
have more chance to produce offspring.

Assume that the decision-maker can give an order relationship among these
pop-size chromosomes such that they are rearranged from good to bad. For example,
for a single-objective programming problem, a chromosome with a larger objective
value is better, while for a multi-objective programming problem, a chromosome
with a larger aggregating preference function is better. One well-known evaluation
function is based on allocation of reproductive trials according to rank rather than
actual objective values. For each α ∈ (0,1), we define the rank-based evaluation
function as follows,

Eval(vi ) = α(1 − α)i−1, i = 1,2, . . . ,pop-size. (2.19)

Note that v1 is the best chromosome, and vpop-size is the worst one.

Algorithm 2.2 (Evaluation Process)

Step 1. Initialize a real number α ∈ (0,1).
Step 2. Calculate the objective values fi for all chromosomes.
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Step 3. Reorder these chromosomes according to their objective values.
Step 4. Set i = 1.
Step 5. Calculate the evaluation value for the ith chromosome

Eval(vi ) = α(1 − α)i−1.

Step 6. If i < pop-size, set i = i + 1, and goto step 5.

2.3.4 Selection Process

During each successive generation, a proportion of the existing population is se-
lected to breed a new generation. The selection process is based on spinning the
roulette wheel pop-size times, and selecting a single chromosome at each time. The
roulette wheel is a fitness-proportional selection, where fitter chromosomes (as mea-
sured by the objective value) are typically more likely to be selected. The selection
process is summarized as follows.

Algorithm 2.3 (Selection Process)

Step 1. Calculate the reproduction probability qi for each chromosome vi ,

q0 = 0, qi =
i∑

j=1

Eval(vj ), i = 1,2, . . . ,pop-size.

Step 2. Generate a random number r in (0, qpop-size].
Step 3. Select the chromosome vi such that qi−1 < r ≤ qi .
Step 4. Repeat the second and third steps pop-size times and obtain pop-size chro-

mosomes.

2.3.5 Crossover Operation

Crossover is one of the mainly used operations for generating a second population.
First, we define a parameter Pc to denote the probability of crossover. Then we
randomly select some chromosomes as parents from the pool selected previously.
Repeat the following process pop-size times: generate a random number r from
[0,1], and select the chromosome vi if r < pc. Note that not all chromosomes can
be selected, and different chromosomes have the equal chance to be selected. Denote
the selected parents by u1,u2,u3, . . . ,uc and divide them into the following pairs:

(u1,u2), (u3,u4), (u5,u6), . . .
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Let us illustrate the crossover operation by the first pair (u1,u2). Generate a random
number λ from the open interval (0,1), then the crossover operator on u1 and u2
will produce two children x and y as follows:

x = λu1 + (1 − λ)u2, y = (1 − λ)u1 + λu2.

We check the feasibility for each child before accepting it. If both children are fea-
sible, then we replace the parents with them. If not, we keep the feasible one if it
exists, and then redo the crossover operator until two feasible children are obtained
or a number of cycles is finished.

Algorithm 2.4 (Crossover Operation)

Step 1. Initialize a crossover probability Pc , and set i = 1.
Step 2. Generate a random number r from [0,1].
Step 3. If r ≤ Pc , select chromosome vi as the parent, and set i = i + 1.
Step 4. If i ≤ pop-size, go to step 2.
Step 5. Denote the selected parents by u1,u2,u3, . . . ,uc, and set j = 1.
Step 6. Generate a random number λ from (0,1), and produce two children

x = λuj + (1 − λ)uj+1, y = (1 − λ)uj + λuj+1.

Redo this operation until two feasible children are obtained or a number of
cycles is finished.

Step 7. Replace the parents with the feasible children, and set j = j + 2.
Step 8. If j ≤ c, go to step 6.

2.3.6 Mutation Operation

Mutation is another operation for updating the chromosomes. We define a parameter
Pm to denote the probability of mutation, and randomly select some chromosomes
as parents in a similar way to the process of selecting parents for crossover.

For each selected parent v, we mutate it in the following way. Let λ be an ap-
proximate large positive number, and let d be a mutation direction. If v + λd is not
feasible, then we randomly decrease the value of λ until it is feasible. If the above
process cannot find a feasible solution in a predetermined number of iterations, we
set λ = 0. Anyway, we replace the parent chromosome v with its child v + λd . The
mutation operation is summarized as follows.

Algorithm 2.5 (Mutation Operation)

Step 1. Initialize a mutation probability Pm, and set i = 1.
Step 2. Generate a random number r from [0,1].
Step 3. If r ≤ Pm, generate a mutation direction d and a parameter λ such that

vi + λd is a feasible chromosome. Replace vi with vi + λd .
Step 4. Set i = i + 1.
Step 5. If i ≤ pop-size, go to step 2.
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2.3.7 General Procedure

Following selection, crossover and mutation operations, a new population is gener-
ated. Genetic algorithm will terminate after a given number of cyclic iterations of
the above steps. We now summarize the general procedure for genetic algorithm as
follows.

Algorithm 2.6 (Genetic Algorithm)

Step 1. Randomly Initialize pop-size chromosomes.
Step 2. Calculate the objective values for all chromosomes.
Step 3. Evaluate the fitness of each chromosome via the objective values.
Step 4. Select the chromosomes by spinning the roulette wheel.
Step 5. Update the chromosomes by using crossover and mutation.
Step 6. Repeat the second to fifth steps for a given number of cycles.
Step 7. Report the best found chromosome as the suboptimal solution.
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Chapter 3
Expected Value Model

Expected value (or mean value) of a fuzzy variable is the weighted average of all
possible values in the sense of credibility measure, which is one of the most well-
known credibilistic mappings for ranking fuzzy variables (see literatures (Dubois
and Prade 1987; González 1990; Heilpern 1992; Liu and Liu 2002; Zhu and Ji
2006)). Based on the concept of expected value, Liu and Liu (2002) proposed an
expected value model, which had been widely used in many real-life applications,
such as newsboy problem (Ji and Shao 2006; Shao and Ji 2006), facility location
problem (Zhou and Liu 2007), parallel machine scheduling problem (Peng and Liu
2004), portfolio selection problem (Li et al. 2010a), project scheduling problem (Ke
and Liu 2010), risk assessment problem (Feng et al. 2008), shortest path problem
(Ji and Iwamura 2007), system reliability design (Zhao and Liu 2005), supply chain
design (Das et al. 2007), train scheduling problem (Yang et al. 2009), and so on.

This chapter mainly introduces the concepts of expected value, variance, skew-
ness, moment, as well as the fuzzy simulation technique, expected value model and
applications in fuzzy portfolio analysis.

3.1 Expected Value

This section introduces the concepts of expected value, variance, skewness, and
moment. Some important theorems are also proved, including the expected value
linearity theorem, maximum variance theorem, and so on.

Definition 3.1 (Liu and Liu 2002) Let ξ be a fuzzy variable on credibility space
(Θ,A,Cr). Then its expected value is defined by

E[ξ ] =
∫ +∞

0
Cr{ξ ≥ r}dr −

∫ 0

−∞
Cr{ξ ≤ r}dr (3.1)

provided that at least one of the two integrals is finite.
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Remark 3.1 Let ξ be a positive fuzzy variable. For any r ≤ 0, we have Cr{ξ ≤ r} =
0. Then it follows from Definition 3.1 that

E[ξ ] =
∫ +∞

0
Cr{ξ ≥ r}dr

which is clear a positive quantity.

Remark 3.2 Let ξ be a negative fuzzy variable. For any r ≥ 0, we have Cr{ξ ≥ r} =
0. Then it follows from Definition 3.1 that

E[ξ ] = −
∫ 0

−∞
Cr{ξ ≤ r}dr

which is a negative quantity.

Remark 3.3 It is possible that the expected values for some fuzzy variables are
infinite. For example, let ξ be a nonnegative fuzzy variable defined by the following
credibility function

ν(x) =
{

1/(2 + x), if x ≥ 0
0, if x < 0.

According to the credibility inversion theorem, it is easy to prove that

Cr{ξ ≥ r} = 1/(2 + r)

for all r > 0. Then it follows form Definition 3.1 that

E[ξ ] =
∫ ∞

0
1/(2 + r)dr = +∞.

On the other hand, let ξ be a negative fuzzy variable with credibility function

ν(x) =
{

1/(2 − x), if x < 0
0, if x ≥ 0.

According to the credibility inversion theorem, it is easy to prove that

Cr{ξ ≤ r} = 1/(2 − r)

for all r < 0. Then it follows form Definition 3.1 that

E[ξ ] = −
∫ 0

−∞
1/(2 − r)dr = −∞.

Remark 3.4 The expected value may not exist for some fuzzy variables. For exam-
ple, a fuzzy variable defined by the following credibility function

ν(x) = 1/
(
2 + |x|), x ∈ �

does not have expected value since
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∫ ∞

0
Cr{ξ ≥ r}dr =

∫ ∞

0
1/(2 + r)dr = +∞,

∫ 0

−∞
Cr{ξ ≤ r}dr =

∫ 0

−∞
1/(2 − r)dr = +∞.

Example 3.1 Assume that ξ = (a, b) is an equipossible fuzzy variable. If a ≥ 0,
then for any r ≥ 0, we have

Cr{ξ ≥ r} =
⎧
⎨

⎩

1, if 0 ≤ r ≤ a

0.5, if a < r ≤ b

0, if b < r < ∞,

which implies that ξ has expected value

E[ξ ] =
∫ +∞

0
Cr{ξ ≥ r}dr = a + (b − a)/2 = (a + b)/2.

If b ≤ 0, then for any r ≤ 0, we have

Cr{ξ ≤ r} =
⎧
⎨

⎩

1, if b ≤ r ≤ 0
0.5, if a ≤ r < b

0, if − ∞ < r < a,

which implies that ξ has expected value

E[ξ ] = −
∫ 0

−∞
Cr{ξ ≤ r}dr = b − (b − a)/2 = (a + b)/2.

Otherwise, we have a < 0 < b. In this case, it is easy to prove that

E[ξ ] =
∫ b

0
0.5 dr −

∫ 0

a

0.5 dr = (a + b)/2.

In general, an equipossible fuzzy variable (a, b) has expected value (a + b)/2.

Example 3.2 Assume that ξ is a simple fuzzy variable taking district values in
{x1, x2, . . . , xm}. If ξ has the following credibility function

ν(x) =

⎧
⎪⎪⎨

⎪⎪⎩

ν1, if x = x1
ν2, if x = x2
· · · · · ·
νm, if x = xm,

then it has the expected value

E[ξ ] =
m∑

i=1

wixi (3.2)

where for each 1 ≤ i ≤ m, the weight is given by
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wi = max
xj ≤xi

νj ∧ 0.5 − max
xj <xi

νj ∧ 0.5 + max
xj ≥xi

νj ∧ 0.5 − max
xj >xi

νj ∧ 0.5.

For example, if simple fuzzy variable ξ has the following credibility function

ν(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0.3, if x = 1
0.4, if x = 2
0.6, if x = 3
0.2, if x = 4,

then it is easy to prove that w1 = 0.3, w2 = 0.1, w3 = 0.4, w4 = 0.2, and

E[ξ ] = 0.3 × 1 + 0.1 × 2 + 0.4 × 3 + 0.2 × 4 = 2.5.

Especially, if both {xi} and {νi} are increasing sequences, we have

w1 = ν1, wi = νi − νi−1, i = 2,3, . . . ,m − 1, wm = 1 − νm−1.

Theorem 3.1 (Expected Value Linearity Theorem (Liu 2004)) Let ξ and η be two
independent fuzzy variables with finite expected values. Then for any real numbers
a and b, we have

E[aξ + bη] = aE[ξ ] + bE[η]. (3.3)

Proof Step 1: We first prove E[aξ ] = aE[ξ ] for any real number a. If a = 0, then
the equation holds trivially. If a > 0, we have

E[aξ ] =
∫ ∞

0
Cr{aξ ≥ r}dr −

∫ 0

−∞
Cr{aξ ≤ r}dr

=
∫ ∞

0
Cr{ξ ≥ r/a}dr −

∫ 0

−∞
Cr{ξ ≤ r/a}dr

= a

∫ ∞

0
Cr{ξ ≥ s}ds − a

∫ 0

−∞
Cr{ξ ≤ s}ds

= aE[ξ ].
Similarly, if a < 0, it follows from Definition 3.1 that

E[aξ ] =
∫ ∞

0
Cr{aξ ≥ r}dr −

∫ 0

−∞
Cr{aξ ≤ r}dr

=
∫ ∞

0
Cr{ξ ≤ r/a}dr −

∫ 0

−∞
Cr{ξ ≥ r/a}dr

= −a

∫ 0

−∞
Cr{ξ ≤ s}ds + a

∫ ∞

0
Cr{ξ ≥ s}ds

= aE[ξ ].
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Step 2: We prove that E[ξ + b] = E[ξ ] + b for any real number b. If b ≥ 0,
according to the duality axiom of credibility measure, we have

E[ξ + b] =
∫ ∞

0
Cr{ξ + b ≥ r}dr −

∫ 0

−∞
Cr{ξ + b ≤ r}dr

=
∫ ∞

0
Cr{ξ ≥ r − b}dr −

∫ 0

−∞
Cr{ξ ≤ r − b}dr

=
∫ ∞

−b

Cr{ξ ≥ s}ds −
∫ −b

−∞
Cr{ξ ≤ s}ds

=
∫ 0

−b

Cr{ξ ≥ s}ds +
∫ 0

−b

Cr{ξ ≤ s}ds + E[ξ ]

= E[ξ ] + b.

Similarly, in case of b < 0, we have

E[ξ + b] = E[ξ ] −
∫ −b

0
Cr{ξ ≥ s}ds −

∫ −b

0
Cr{ξ ≤ s}ds = E[ξ ] + b.

Step 3: We prove that E[ξ + η] = E[ξ ] + E[η] when both ξ and η are simple
fuzzy variables with the following credibility functions,

μ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

μ1, if x = a1
μ2, if x = a2
· · · · · ·
μm, if x = am,

ν(x) =

⎧
⎪⎪⎨

⎪⎪⎩

ν1, if x = b1
ν2, if x = b2
· · · · · ·
νn, if x = bn.

It is clear that ξ + η is also a simple fuzzy variable taking values ai + bj with
credibility μi ∧ νj for i = 1,2, . . . ,m, j = 1,2, . . . , n. Now we define

w′
i = max

ak≤ai

μk ∧ 0.5 − max
ak<ai

μk ∧ 0.5 + max
ak≥ai

μk ∧ 0.5 − max
ak>ai

μk ∧ 0.5,

w′′
j = max

bl≤bj

νl ∧ 0.5 − max
bl<bj

νl ∧ 0.5 + max
bl≥bj

νl ∧ 0.5 − max
bl>bj

νl ∧ 0.5,

wij = max
ak+bl≤ai+bj

μk ∧ νl ∧ 0.5 − max
ak+bl<ai+bj

μk ∧ νl ∧ 0.5

+ max
ak+bl≥ai+bj

μk ∧ νl ∧ 0.5 − max
ak+bl>ai+bj

μk ∧ νl ∧ 0.5.

It is easy to prove that

w′
i =

n∑

j=1

wij , w′′
j =

m∑

i=1

wij
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for all i = 1,2, . . . ,m, j = 1,2, . . . , n. If {ai}, {bj } and {ai + bj } are sequences
consisting of distinct elements, then

E[ξ ] =
m∑

i=1

aiw
′
i , E[η] =

n∑

j=1

bjw
′′
j , E[ξ + η] =

m∑

i=1

n∑

j=1

(ai + bj )wij .

Thus E[ξ + η] = E[ξ ] + E[η]. Otherwise, we may give them a small perturbation
such that they are distinct, and then prove the linearity by letting the perturbation
tend to zero.

Step 4: We prove that E[ξ + η] = E[ξ ]+ E[η] when ξ and η are fuzzy variables
such that

lim
y↑0

Cr{ξ ≤ y} ≤ 0.5 ≤ Cr{ξ ≤ 0}, lim
y↑0

Cr{η ≤ y} ≤ 0.5 ≤ Cr{η ≤ 0}. (3.4)

We define sequences of simple fuzzy variables {ξi} and {ηi} satisfying

Cr{ξi ≤ r} ↑ Cr{ξ ≤ r}, Cr{ηi ≤ r} ↑ Cr{η ≤ r}, if r ≤ 0,

Cr{ξi ≥ r} ↑ Cr{ξ ≥ r}, Cr{ηi ≥ r} ↑ Cr{η ≥ r}, if r ≥ 0.

It is clear that {ξi + ηi} is a sequence of simple fuzzy variables. Furthermore, when
r ≤ 0, it follows from (3.4) that

lim
i→∞ Cr{ξi + ηi ≤ r} = lim

i→∞ sup
x≤0,y≤0,x+y≤r

(
Cr{ξi ≤ x} ∧ Cr{ηi ≤ y})

= sup
x≤0,y≤0,x+y≤r

lim
i→∞

(
Cr{ξi ≤ x} ∧ Cr{ηi ≤ y})

= sup
x≤0,y≤0,x+y≤r

(
Cr{ξ ≤ x} ∧ Cr{η ≤ y})

= Cr{ξ + η ≤ r}.
A similar way may prove that

Cr{ξi + ηi ≥ r} ↑ Cr{ξ + η ≥ r}, if r ≥ 0.

Since the expected values E[ξ ] and E[η] exist, we have

lim
i→∞

∫ ∞

0
Cr{ξi ≥ r}dr =

∫ ∞

0
Cr{ξ ≥ r}dr

lim
i→∞

∫ 0

−∞
Cr{ξi ≤ r}dr =

∫ 0

−∞
Cr{ξ ≤ r}dr

lim
i→∞

∫ ∞

0
Cr{ηi ≥ r}dr =

∫ ∞

0
Cr{η ≥ r}dr

lim
i→∞

∫ 0

−∞
Cr{ηi ≤ r}dr =

∫ 0

−∞
Cr{η ≤ r}dr
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lim
i→∞

∫ ∞

0
Cr{ξi + ηi ≥ r}dr =

∫ ∞

0
Cr{ξ + η ≥ r}dr

lim
i→∞

∫ 0

−∞
Cr{ξi + ηi ≤ r}dr =

∫ 0

−∞
Cr{ξ + η ≤ r}dr.

It follows from step 3 that E[ξ + η] = E[ξ ] + E[η].
Step 5: We prove that E[ξ +η] = E[ξ ]+E[η] holds for arbitrary fuzzy variables

ξ and η. Since they have finite expected values, there exist two real numbers c and
d such that

lim
y↑0

Cr{ξ + c ≤ y} ≤ 0.5 ≤ Cr{ξ + c ≤ 0},

lim
y↑0

Cr{η + d ≤ y} ≤ 0.5 ≤ Cr{η + d ≤ 0}.

It follows from steps 2 and 4 that

E[ξ + η] = E
[
(ξ + c) + (η + d) − c − d

]

= E
[
(ξ + c) + (η + d)

]− c − d

= E[ξ + c] + E[η + d] − c − d

= E[ξ ] + E[η].
Step 6: Finally, for any a, b ∈ �, it follows from steps 1, 2 and 5 that

E[aξ + bη] = E[aξ ] + E[bη] = aE[ξ ] + bE[η].
The theorem is proved. �

Remark 3.5 The expected value linearity theorem may be not true if fuzzy variables
ξ and η are not independent. For example, take a credibility space (Θ,A,Cr) to
be {θ1, θ2, θ3} with Cr{θ1} = 0.7, Cr{θ2} = 0.3 and Cr{θ3} = 0.2. Define two fuzzy
variables

ξ1(θ) =
⎧
⎨

⎩

1, if θ = θ1
0, if θ = θ2
2, if θ = θ3,

η1(θ) =
⎧
⎨

⎩

0, if θ = θ1
0, if θ = θ2
3, if θ = θ3.

It is easy to prove that E[ξ1] = 0.9, E[η1] = 0.8, and E[ξ1 + η1] = 1.9, which
implies that

E[ξ1 + η1] > E[ξ1] + E[η1].
On the other hand, if we define

ξ2(θ) =
⎧
⎨

⎩

0, if θ = θ1
1, if θ = θ2
2, if θ = θ3,

η2(θ) =
⎧
⎨

⎩

0, if θ = θ1
3, if θ = θ2
1, if θ = θ3,
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we have E[ξ2] = 0.5, E[η2] = 0.9, and E[ξ2 + η2] = 1.2, which implies that

E[ξ2 + η2] < E[ξ2] + E[η2].

Example 3.3 For a triangular fuzzy variable ξ = (a, b, c), we will prove that its
expected value is

E[ξ ] = (a + 2b + c)/4. (3.5)

Especially, if ξ is a symmetric fuzzy variable with b − a = c − b, we have E[ξ ] =
b. First, we assume a ≥ 0. For any r ≥ 0, according to the credibility inversion
theorem, we have

Cr{ξ ≥ r} =

⎧
⎪⎪⎨

⎪⎪⎩

1, if 0 ≤ r ≤ a

(2b − a − r)/2(b − a), if a < r ≤ b

(c − r)/2(c − b), if b < r ≤ c

0, if c < r < +∞.

Then it follows from the definition of expected value that

E[ξ ] =
∫ c

0
Cr{ξ ≥ r}dr = (a + 2b + c)/4.

In case of a < 0, we denote η = ξ − a = (0, b − a, c − a). Based on above analysis,
we have

E[η] = (0 + 2(b − a) + (c − a)
)
/4.

According to the expected value linearity theorem, it is easy to prove that

E[ξ ] = E[η] + a = (a + 2b + c)/4.

Example 3.4 For a trapezoidal fuzzy variable ξ = (a, b, c, d), we will prove that its
expected value is

E[ξ ] = (a + b + c + d)/4.

Especially, if ξ is a symmetric fuzzy variable with b − a = d − c, we have

E[ξ ] = (a + d)/2 = (b + c)/2.

First, we assume a ≥ 0. For any r ≥ 0, according to the credibility inversion theo-
rem, it is easy to prove that

Cr{ξ ≥ r} =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if 0 ≤ r ≤ a

(2b − a − r)/2(b − a), if a < r ≤ b

0.5, if b < r ≤ c

(d − r)/2(d − c), if c < r ≤ d

0, if d < r < +∞.
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It follows from Definition 3.1 that ξ has the expected value

E[ξ ] =
∫ d

0
Cr{ξ ≥ r}dr = (a + b + c + d)/4.

In case of a < 0, we define η = ξ − a = (0, b − a, c − a, d − a). Based on above
analysis, we have

E[η] = (0 + (b − a) + (c − a) + (d − a)
)
/4.

According to the expected value linearity theorem, it is easy to prove that

E[ξ ] = E[η] + a = (a + b + c + d)/4.

Example 3.5 For an exponential fuzzy variable ξ with credibility function

ν(x) = 1/
(
1 + exp(πx/

√
6m)

)
, ∀x ≥ 0,

it follows from the credibility inversion theorem that

Cr{ξ ≥ r} = ν(r)

for any r ≥ 0. Then according to Definition 3.1, we have

E[ξ ] =
∫ ∞

0
ν(r)dr = δ1m

where δ1 = (
√

6 ln 2)/π .

Example 3.6 For a normal fuzzy variable ξ with credibility function

ν(x) = 1/
(
1 + exp

(
π |x − e|/√6σ

))
, ∀x ∈ �,

according to the credibility inversion theorem, we have

Cr{ξ ≥ r} = ν(r), ∀r ≥ e,

Cr{ξ ≤ r} = ν(r), ∀r ≤ e.

Then it follows from Definition 3.1 that

E[ξ ] =
∫ e

0

(
Cr{ξ ≥ r} + Cr{ξ ≤ r})dr +

∫ ∞

e

ν(r)dr −
∫ e

−∞
ν(r)dr

=
∫ e

0

(
Cr{ξ ≥ r} + Cr{ξ ≤ r})dr

= e.

In fact, for any continuous fuzzy variable with a symmetric and unimodal credibility
function, a similar way may prove that its expected value is the symmetric center.
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Variance

The variance provides a spread degree of the fuzzy variable around its expected
value. A small value of variance indicates that the fuzzy variable is tightly concen-
trated around its expected value; and a large value of variance indicates that the
fuzzy variable has a wide spread around its expected value.

Definition 3.2 (Liu 2004) Let ξ be a fuzzy variable with finite expected value. Then
its variance is defined as

V [ξ ] = E
[(

ξ − E[ξ ])2]. (3.6)

This definition tells us that the variance is just the expected value of the nonneg-
ative fuzzy variable (ξ − E[ξ ])2, that is,

V [ξ ] =
∫ ∞

0
Cr
{(

ξ − E[ξ ])2 ≥ r
}

dr. (3.7)

Example 3.7 Let ξ = (a, b) be an equipossible fuzzy variable. Then we have
E[ξ ] = (a + b)/2. For any r ≥ 0, according to the credibility inversion theorem,
we have

Cr
{(

ξ − E[ξ ])2 ≥ r
}=

{
0.5, if r ≤ (b − a)2/4
0, if r > (b − a)2/4.

Thus, it follows from (3.7) that its variance is

V [ξ ] = (b − a)2/8.

Example 3.8 Let ξ = (a, b, c) be a triangular fuzzy variable. Define α = max{b −
a, c − b} and β = min{b − a, c − b}. It is easy to prove that

V [ξ ] = 33α3 + 21α2β + 11αβ2 − β3

384α
. (3.8)

Especially, if ξ is a symmetric fuzzy variable with α = β , then we have

V [ξ ] = (c − a)2/24.

Example 3.9 Let ξ = (a, b, c, d) be a symmetric trapezoidal fuzzy variable. It fol-
lows from (3.7) that its variance is

V [ξ ] = ((d − a)2 + (d − a)(c − b) + (c − b)2)/24.

Example 3.10 Let ξ = EXP(m) be an exponential fuzzy variable. Example 3.5 has
shown that it has an expected value

e = (
√

6m ln 2)/π.
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Then it follows from (3.7) that

V [ξ ] =
∫ ∞

0
Cr
{
(ξ − e)2 ≥ r

}
dr

=
∫ e2

0
Cr{ξ ≤ e − √

r}dr +
∫ ∞

e2
Cr{ξ ≥ e + √

r}dr

=
∫ e

0
Cr{ξ ≤ e − s}ds2 +

∫ ∞

e

Cr{ξ ≥ e + s}ds2

=
∫ e

0

4s

2 + exp(πs/
√

6m)
ds +

∫ ∞

e

2s

1 + 2 exp(πs/
√

6m)
ds

= δ2m
2

where δ2 is a constant value

12

π

(∫ ln 2

0

2s

2 + exp(s)
ds +

∫ ∞

ln 2

s

1 + 2 exp(s)
ds

)

≈ 2.0031.

Example 3.11 For a normal fuzzy variable ξ = N(e,σ ), we will prove that it has a
variance σ 2. First, according to the maximality axiom, we have

Cr
{
(ξ − e)2 ≥ x

}= Cr{ξ − e ≥ √
x}

for any x ≥ 0. Then it follows from (3.7) that

V [ξ ] =
∫ ∞

0
Cr{ξ − e ≥ √

x}dx

=
∫ ∞

0
2xCr{ξ − e ≥ x}dx

=
∫ ∞

e

2(x − e)ν(x)dx

= σ 2.

This example tells us that the parameter σ appearing in the normal credibility func-
tion denotes the standard variance.

Theorem 3.2 (Liu 2004) Let ξ be a fuzzy variable with finite expected value. For
any real numbers a and b, we have

V [aξ + b] = a2V [ξ ]. (3.9)

Proof Suppose that ξ has finite expected value e. According to the expected value
linearity theorem, we have E[aξ + b] = ae + b. Then it follows from the definition
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of variance that

V [aξ + b] = E
[(

aξ + b − (ae + b)
)2]= a2E

[
(ξ − e)2]= a2V [ξ ].

The proof is complete. �

Theorem 3.3 (Liu 2004) Suppose that ξ is a fuzzy variable with finite expected
value e. Then we have V [ξ ] = 0 if and only if Cr{ξ = e} = 1, i.e., ξ is essentially the
constant number e.

Proof We first assume V [ξ ] = 0. It follows from (3.7) that
∫ ∞

0
Cr
{
(ξ − e)2 ≥ r

}
dr = 0

which implies Cr{(ξ − e)2 ≥ r} = 0 for any r > 0. Hence we have

Cr
{
(ξ − e)2 = 0

}= 1.

That is, Cr{ξ = e} = 1. Conversely, we assume Cr{ξ = e} = 1. Then we immediately
have Cr{(ξ − e)2 ≥ r} = 0 for any r > 0. Thus

V [ξ ] =
∫ ∞

0
Cr
{
(ξ − e)2 ≥ r

}
dr = 0.

The theorem is proved. �

Let ξ be a fuzzy variable that takes values in [a, b], but whose credibility function
is otherwise arbitrary. If its expected value is given, above theorem tells us that
its minimum variance is zero. On the other hand, what is the possible maximum
variance? The following maximum variance theorem will answer this question.

Theorem 3.4 (Li et al. 2010c) Let f be a convex function on [a, b], and let ξ be a
fuzzy variable taking values in [a, b]. Then we have

E
[
f (ξ)

]≤ b − E[ξ ]
b − a

f (a) + E[ξ ] − a

b − a
f (b). (3.10)

Proof Suppose that ξ is a fuzzy variable defined on the credibility space (Θ,A,Cr).
For each θ ∈ Θ , we have a ≤ ξ(θ) ≤ b and

ξ(θ) = b − ξ(θ)

b − a
a + ξ(θ) − a

b − a
b.

It follows from the convexity of f that

f
(
ξ(θ)

)≤ b − ξ(θ)

b − a
f (a) + ξ(θ) − a

b − a
f (b).

Taking expected values on both sides, we obtain the inequality. �
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Theorem 3.5 (Maximum Variance Theorem (Li et al. 2010c)) Let ξ be a fuzzy
variable that takes values in [a, b] and has finite expected value e. Then we have

V [ξ ] ≤ (e − a)(b − e) (3.11)

and the equality holds if the fuzzy variable ξ has credibility function

ν(x) =
{

(b − e)/(b − a), if x = a

(e − a)/(b − a), if x = b.
(3.12)

Proof First, inequality (3.11) follows from Theorem 3.4 immediately by defining
f (x) = (x − e)2. In addition, it is also easy to verify that the fuzzy variable deter-
mined by credibility function (3.12) has variance (e − a)(b − e). The theorem is
proved. �

Skewness

Skewness is used to measure the preference that fuzzy variable ξ takes a larger value
than its expected value.

Definition 3.3 (Li et al. 2010a) Let ξ be a fuzzy variable with finite expected value.
Then its skewness is defined as

S[ξ ] = E
[(

ξ − E[ξ ])3]. (3.13)

Example 3.12 Let ξ = (a, b) be an equipossible fuzzy variable with a = 0. Then it
has expected value E[ξ ] = b/2 and skewness

S[ξ ] =
∫ ∞

0
Cr
{
(ξ − b/2)3 ≥ r

}
dr −

∫ 0

−∞
Cr
{
(ξ − b/2)3 ≤ r

}
dr

=
∫ ∞

0
3r2Cr{ξ − b/2 ≥ r}dr −

∫ 0

−∞
3r2Cr{ξ − b/2 ≤ r}dr

=
∫ b/2

0
1.5r2 dr −

∫ 0

−b/2
1.5r2 dr

= 0.

If a �= 0, it follows from the expected value linearity theorem that

S[ξ ] = E
[(

ξ − E[ξ ])3]= E
[(

(ξ − a) − E[ξ − a])3]= 0.

Example 3.13 Let ξ = (a, b, c) be a triangular fuzzy variable. In what follows, we
will prove that

S[ξ ] = (c − a)2((c − b) − (b − a)
)
/32. (3.14)
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Denote e = (a + 2b + c)/4. For simplicity, we assume that c − b ≥ b − a and a > 0.
In this case, it follows from the definition of skewness that

S[ξ ] =
∫ c−e

0
Cr{ξ − e ≥ r}dr3 −

∫ 0

a−e

Cr{ξ − e ≤ r}dr3

=
∫ c−e

0

c − e − r

2(c − b)
dr3 −

∫ b−e

a−e

e + r − a

2(b − a)
dr3 −

∫ 0

b−e

c − 2b + e + r

2(c − b)
dr3

= (c − e)4 − (b − e)4

8(c − b)
+ (b − e)4 − (a − e)4

8(b − a)

= (c − a)2((c − b) − (b − a)
)
/32.

It is clear that the skewness takes value zero if ξ is a symmetric triangular fuzzy
variable with c − b = b − a.

Example 3.14 A trapezoidal fuzzy variable ξ = (a, b, c, d) has a skewness

S[ξ ] = (d + c − a − b)
(
(d − c)2 − (b − a)2)/32. (3.15)

For simplicity, we only consider the case of a > 0 and b ≤ e ≤ c where e = (a +
b + c + d)/4 is the expected value of ξ . It follows from (3.13) that

S[ξ ] =
∫ d−e

0
Cr{ξ − e ≥ r}dr3 −

∫ 0

a−e

Cr{ξ − e ≤ r}dr3

=
∫ d−e

c−e

d − e − r

2(d − c)
dr3 −

∫ b−e

a−e

e + r − a

2(b − a)
dr3 + (c − e)3

2
+ (b − e)3

2

= (d − e)4 − (c − e)4

8(d − c)
+ (b − e)4 − (a − e)4

8(b − a)

= (d + c − a − b)
(
(d − c)2 − (b − a)2)/32.

It is clear that the skewness takes value zero if ξ is a symmetric trapezoidal fuzzy
variable with d − c = b − a.

Example 3.15 Let ξ = N(e,σ ) be a normal fuzzy variable. For any real number r ,
it follows from the credibility inversion theorem that

Cr{ξ ≤ r} = 1

1 + exp(π(e − r)/
√

6σ)
,

Cr{ξ ≥ r} = 1

1 + exp(π(r − e)/
√

6σ)
.



3.1 Expected Value 59

Then it follows form (3.13) that

S[ξ ] =
∫ +∞

0
Cr{ξ − e ≥ r}dr3 −

∫ 0

−∞
Cr{ξ − e ≤ r}dr3

=
∫ +∞

0

1

1 + exp(πr/
√

6σ)
dr3 −

∫ 0

−∞
1

1 + exp(−πr/
√

6σ)
dr3

=
∫ +∞

0

1

1 + exp(πr/
√

6σ)
dr3 −

∫ +∞

0

1

1 + exp(πr/
√

6σ)
dr3

= 0.

Example 3.16 Let ξ = EXP(m) be an exponential fuzzy variable. For any real num-
ber r , it follows from the credibility inversion theorem that

Cr{ξ ≤ r} = 1 − 1

1 + exp(πr/
√

6m)
, Cr{ξ ≥ r} = 1

1 + exp(πr/
√

6m)
.

Then it follows form (3.13) that

S[ξ ] = 18
√

6

π3

(∫ +∞

ln 2

(r − ln 2)2

1 + exp(r)
dr −

∫ ln 2

0

(r − ln 2)2

1 + exp(−r)
dr

)

m3 = δ3m
3.

It is calculated that δ3 ≈ 2.914, which tells us that the exponential fuzzy variable
always has a positive skewness.

Theorem 3.6 (Li et al. 2010a) Let ξ be a fuzzy variable with finite expected value.
For any real numbers a and b, we have

S[aξ + b] = a3S[ξ ]. (3.16)

Proof First, it follows from the expected value linearity theorem that E[aξ + b] =
aE[ξ ] + b. Then according to Definition 3.3, we have

S[aξ + b] = E
[(

(aξ + b) − (aE[ξ ] + b
))3]

= a3E
[(

ξ − E[ξ ])3]

= a3S[ξ ].
The proof is complete. �

Theorem 3.7 (Li et al. 2010a) Let ξ be a symmetric fuzzy variable with finite ex-
pected value. Then we have S[ξ ] = 0.

Proof Suppose that ξ has a credibility function ν. Since ξ is a symmetric fuzzy
variable, there is a real number e such that ν(x − e) = ν(x + e) for any x ∈ �.
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According to the credibility inversion theorem, we have

Cr{ξ ≥ e + r} = Cr{ξ ≤ e − r} (3.17)

for any r ∈ �. We will prove that E[ξ ] = e. In fact, it follows from the definition of
expected value that

E[ξ ] =
∫ +∞

0
Cr{ξ ≥ r}dr −

∫ 0

−∞
Cr{ξ ≤ r}dr

=
∫ +∞

−e

Cr{ξ ≥ r + e}dr −
∫ e

−∞
Cr{ξ ≤ r − e}dr

=
∫ +∞

−e

Cr{ξ ≥ r + e}dr −
∫ +∞

e

Cr{ξ ≤ e − r}dr

=
∫ 0

−e

Cr{ξ ≥ r + e}dr +
∫ e

0
Cr{ξ ≤ e − r}dr

=
∫ e

0

(
Cr{ξ ≥ e − r} + Cr{ξ < e − r})dr.

Then it follows from the duality axiom that E[ξ ] = e. Finally, it follows from the
definition of skewness and (3.17) that

S[ξ ] =
∫ +∞

0
Cr{ξ ≥ r + e}dr3 −

∫ 0

−∞
Cr{ξ ≤ r + e}dr3

=
∫ +∞

0
Cr{ξ ≥ r + e}dr3 −

∫ +∞

0
Cr{ξ ≤ e − r}dr3

= 0.

The proof is complete. �

Moment

Definition 3.4 (Liu 2007) Let ξ be a fuzzy variable with finite expected value e,
and let k be a positive integer. Then

(a) the expected value E[ξk] is called the kth moment;
(b) the expected value E[|ξ |k] is called the kth absolute moment;
(c) the expected value E[(ξ − e)k] is called the kth central moment;
(d) the expected value E[|ξ − e|k] is called the kth absolute central moment.

Note that the first moment is the expected value, the second central moment is
the variance, and the third central moment is the skewness.
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Example 3.17 Let ξ = EXP(m) be an exponential fuzzy variable. It follows from
the credibility inversion theorem that

Cr{ξ ≥ r} = ν(r)

for all r > 0. Then according to Definition 3.1, we have

E
[
ξ2] =

∫ ∞

0
2rCr{ξ ≥ r}dr =

∫ ∞

0

2r

1 + exp(πr/(
√

6m))
dr = m2.

This example tells us that the parameter m appearing in the exponential credibility
function denotes the standard second moment.

3.2 Expected Value Model

As one of the most important credibilistic mappings, expected value is used to de-
note the average value for each fuzzy quantity. If the decision-maker would like to
obtain a maximum average objective value subject to a set of expected constraints,
we have the following credibilistic programming model (Liu and Liu 2002),

{
max E

[
f (x, ξ)

]

s.t. E
[
gi(x, ξ)

]≤ 0, i = 1,2, . . . , n.
(3.18)

For simplicity, we call it an expected value model.

Remark 3.6 The concepts of feasible solution, local optimal solution, and global
optimal solution are given by Definitions 2.6, 2.7, and 2.8.

Theorem 3.8 Assume that ξ1, ξ2, . . . , ξm are independent fuzzy variables. If the ob-
jective function and constraint functions satisfy

f (x, ξ) = f0(x) + f1(x)ξ1 + f2(x)ξ2 + · · · + fm(x)ξm,

gi(x, ξ) = gi0(x) + gi1(x)ξ1 + gi2(x)ξ2 + · · · + gim(x)ξm,

for all i = 1,2, . . . , n, then model (3.18) has the following crisp equivalent,

{
max f

(
x,E[ξ ])

s.t. gi

(
x,E[ξ ])≤ 0, i = 1,2, . . . , n

(3.19)

where E[ξ ] = (E[ξ1],E[ξ2], . . . ,E[ξm]).

Proof It follows immediately from the expected value linearity theorem. �
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In many cases, there are multiple objectives. Then we have the following multi-
objective expected value model

{
max

[
E
[
f1(x, ξ)

]
,E
[
f2(x, ξ)

]
, . . . ,E

[
fp(x, ξ)

]]

s.t. E
[
gi(x, ξ)

]≤ 0, i = 1,2, . . . , n.
(3.20)

Theorem 3.9 Assume that ξ1, ξ2, . . . , ξm are independent fuzzy variables. If the ob-
jective functions and constraint functions satisfy

fj (x, ξ) = fj0(x) + fj1(x)ξ1 + fj2(x)ξ2 + · · · + fjm(x)ξm, j = 1,2, . . . , p,

gi(x, ξ) = gi0(x) + gi1(x)ξ1 + gi2(x)ξ2 + · · · + gim(x)ξm, i = 1,2, . . . , n,

then the multi-objective expected value model has the following crisp equivalent,
{

max
[
f1
(
x,E[ξ ]), f2

(
x,E[ξ ]), . . . , fp

(
x,E[ξ ])]

s.t. gi

(
x,E[ξ ])≤ 0, i = 1,2, . . . , n.

(3.21)

Proof It follows immediately from the expected value linearity theorem. �

3.3 Fuzzy Simulation

In order to solve the general fuzzy expected value models, this section introduces a
fuzzy simulation technique (Liu and Liu 2002; Liu 2006) to approximate the credi-
bilistic mapping

U : x → E
[
f (x, ξ )

]
(3.22)

where f is a real valued function.
Assume that the fuzzy vector ξ has a joint credibility function ν. We first in-

troduce the simulation method on the credibility values of fuzzy events. Generate
vectors y1,y2, . . . ,yN randomly, and calculate the credibilities

νk = ν(yk), k = 1,2, . . . ,N.

For any real number r , according to the credibility inversion theorem, the credibility
Cr{f (x, ξ ) ≥ r} can be estimated by

{
max

{
νk | f (x,yk) ≥ r

}
, if max

{
νk | f (x,yk) ≥ r

}
< 0.5

1 − max
{
νk | f (x,yk) < r

}
, if max

{
νk | f (x,yk) ≥ r

}≥ 0.5,
(3.23)

and the credibility Cr{f (x, ξ ) ≤ r} can be estimated by
{

max
{
νk | f (x,yk) ≤ r

}
, if max

{
νk | f (x,yk) ≤ r

}
< 0.5

1 − max
{
νk | f (x,yk) > r

}
, if max

{
νk | f (x,yk) ≤ r

}≥ 0.5.
(3.24)

Then the expected value may be estimated by the following procedure.
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Algorithm 3.1 (Fuzzy simulation for expected value)

Step 1. Set e = 0.
Step 2. Randomly generate vectors y1,y2, . . . ,yN and calculate the credibilities

ν1, ν2, . . . , νN .
Step 3. Set two numbers a = f (x,y1) ∧ f (x,y2) ∧ · · · ∧ f (x,yN) and b =

f (x,y1) ∨ f (x,y2) ∨ · · · ∨ f (x,yN).
Step 4. Randomly generate a real number r from [a, b].
Step 5. If r ≥ 0, set e → e + Cr{f (x, ξ ) ≥ r}.
Step 6. If r ≤ 0, set e → e − Cr{f (x, ξ ) ≤ r}.
Step 7. Repeat the fourth to sixth steps for N times.
Step 8. Return E = a ∨ 0 + b ∧ 0 + e · (b − a)/N .

Example 3.18 The parameter N has a great influence on the simulation accuracy.
Generally speaking, a larger value can obtain a better approximation with a longer
computation time. Since the accuracy and the computation time are both crucial
when we apply the fuzzy simulation method to solve the expected value model,
it is meaningful to find the smallest value of N which can obtain a satisfactory
approximation. For the triangular fuzzy variable ξ = (1,2,3) with expected value
E[ξ ] = 1, we perform Algorithm 3.1 by changing N from 100 to 5000 with step
of 100. The simulated results are illustrated by Fig. 3.1. It is shown that when N is
larger than 3000, the simulated results are stable and satisfactory.

Fig. 3.1 Expected value simulation with variable parameter N
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Table 3.1 Expected value simulation of different fuzzy variables

Fuzzy variables Simulated value Exact value Relative error

(0.0,1.0) 0.5000 0.5000 0.0000

(−1.0,2.0) 0.4949 0.5000 0.0101

(3.5,7.8) 5.6501 5.6500 0.0000

(−50,−10) −29.9980 −30.0000 0.0000

(−0.3,1.8,2.3) 1.3998 1.4000 0.0002

(1.5,3.0,4.1) 2.8887 2.9000 0.0039

(10,15,20) 15.0652 15.0000 0.0043

(25,40,50) 38.4305 38.7500 0.0082

(1.0,2.0,3.0,4.0) 2.4766 2.5000 0.0094

(3.1,4.2,4.5,6.0) 4.5277 4.4500 0.0172

(2.4,3.6,3.7,5.6) 3.6832 3.8250 0.0371

(10,25,30,45) 27.9256 27.5000 0.0152

N(1.5,1.0) 1.4857 1.5000 0.0095

N(2.5,1.0) 2.3787 2.5000 0.0485

N(3.7,2.1) 3.6231 3.7000 0.0208

N(6.0,1.3) 6.0611 6.0000 0.0101

E(1.3) 0.7100 0.7026 0.0105

E(1.0) 0.5675 0.5404 0.0477

E(3.5) 1.9099 1.8916 0.0096

E(7.6) 4.0873 4.1074 0.0049

Example 3.19 Taking N = 3000, we perform Algorithm 3.1 on twenty fuzzy vari-
ables, including equipossible fuzzy variables, triangular fuzzy variables, trapezoidal
fuzzy variables, exponential fuzzy variables, and normal fuzzy variables. We record
the simulated values by Table 3.1, and make comparisons with the exact values.
If we use s to denote the simulated value and use t to denote the exact value, the
relative error is defined as

δ = (|s − t |/max
(|s|, |t |))× 100 %. (3.25)

In Table 3.1, the last column records the relative error which ranges from 0.00 %
to 4.85 % and the average value is 1.34 %. These results imply that the simulation
algorithm can obtain a satisfactory approximation.

Example 3.20 Note that Algorithm 3.1 is essentially a combination of the Monte
Carlo simulation and the numerical integration. Therefore, we may get different
values if we perform the algorithm more than one times on the same fuzzy vari-
able. In this example, we take N = 3000, and perform Algorithm 3.1 fifty times on
triangular fuzzy variable ξ = (−0.3,1.8,2.3). The simulated results are shown by
Table 3.2, where the second and the fifth columns records the simulated values, and
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Table 3.2 Expected value simulation on ξ = (−0.3,1.8,2.3)

No. Simulated value Error No. Simulated value Error

1 1.2976 0.0731 26 1.4186 0.0133

2 1.4144 0.0103 27 1.5179 0.0842

3 1.4621 0.0444 28 1.3921 0.0056

4 1.3894 0.0076 29 1.3623 0.0269

5 1.4122 0.0087 30 1.5074 0.0767

6 1.4500 0.0357 31 1.3677 0.0231

7 1.4193 0.0138 32 1.4788 0.0563

8 1.3920 0.0057 33 1.3648 0.0251

9 1.3846 0.0110 34 1.3314 0.0490

10 1.4116 0.0083 35 1.3333 0.0476

11 1.3441 0.0399 36 1.4399 0.0285

12 1.3807 0.0138 37 1.3128 0.0623

13 1.3998 0.0000 38 1.4003 0.0000

14 1.3715 0.0204 39 1.3184 0.0583

15 1.3664 0.0240 40 1.3755 0.0175

16 1.4683 0.0488 41 1.3779 0.0158

17 1.4703 0.0502 42 1.3971 0.0021

18 1.4366 0.0261 43 1.4059 0.0042

19 1.4597 0.0426 44 1.4593 0.0424

20 1.3630 0.0264 45 1.3418 0.0416

21 1.3778 0.0159 46 1.4101 0.0072

22 1.3352 0.0463 47 1.3657 0.0245

23 1.4250 0.0179 48 1.3755 0.0175

24 1.4842 0.0601 49 1.2555 0.1032

25 1.3691 0.0221 50 1.4754 0.0539

the third and the sixth columns record the relative errors compared with the exact
value (−0.3 + 2 × 1.8 + 2.3)/4 = 1.4.

3.4 Applications

As an application, this section applies the expected value model to study the fuzzy
portfolio selection problems. See Examples 2.4 and 2.5. Generally speaking, most of
the investors prefer the portfolio with larger investment return and lower investment
risk. Following Markowitz’s work (Markowitz 1952), we can quantify the invest-
ment return by the expected value

E
[
f (x, ξ )

]= E[ξ1x1 + ξ2x2 + · · · + ξmxm],
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and quantify the investment risk by the variance

V
[
f (x, ξ )

]= V [ξ1x1 + ξ2x2 + · · · + ξmxm].
Furthermore, Samuelson (1970) showed that almost all investors prefer the portfo-
lio with a larger skewness, which means that it is more possible to obtain a larger
return than the expected value. Based on above analysis, we get the following multi-
objective credibilistic programming model,

⎧
⎪⎨

⎪⎩

max
[
E
[
f (x, ξ)

]
,−V

[
f (x, ξ)

]
, S
[
f (x, ξ)

]]

s.t. x1 + x2 + · · · + xm = 1

xi ≥ 0, i = 1,2, . . . ,m.

(3.26)

If the investor is capable of providing the preference parameters on the invest-
ment return, investment risk and skewness, then we can get the following linearly
weighted compromise model

⎧
⎪⎨

⎪⎩

max λ1E
[
f (x, ξ)

]− λ2V
[
f (x, ξ)

]+ λ3S
[
f (x, ξ)

]

s.t. x1 + x2 + · · · + xm = 1

xi ≥ 0, i = 1,2, . . . ,m

where λ1, λ2, λ3 are nonnegative real numbers. Generally speaking, a rational in-
vestor will assign the largest preference value to the most important objective, and
set λi = 0 if he/she does not concern the objective. For example, if he/she only
concern the investment return but does not care the investment risk, we may set
λ1 = 0.8, λ2 = 0, and λ3 = 0.2.

If the investor would like to minimize the distance between the objective values
and the ideal values, i.e., the optimal values of each objective function without con-
sidering other objectives under the portfolio constraints, we can get the following
ideal point compromise model

⎧
⎪⎨

⎪⎩

min
√
(
E
[
f (x, ξ)

]− e
)2 + (V [f (x, ξ)

]− v
)2 + (S[f (x, ξ)

]− s
)2

s.t. x1 + x2 + · · · + xm = 1

xi ≥ 0, i = 1,2, . . . ,m

where e, v and s are the ideal values of the investment return, investment risk and
skewness, respectively.

When the minimal skewness level γ and the maximal risk level β are given, we
have the following mean-variance-skewness model (Li et al. 2010a)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max E[ξ1x1 + ξ2x2 + . . . + ξmxm]
s.t. V [ξ1x1 + ξ2x2 + · · · + ξmxm] ≤ β

S[ξ1x1 + ξ2x2 + · · · + ξmxm] ≥ γ

x1 + x2 + · · · + xm = 1

xi ≥ 0, i = 1,2, . . . ,m

(3.27)
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which maximizes the expected return under the risk and skewness constraints. The
first variation of the mean-variance-skewness model is formulated to minimize risk
under the expected return and skewness constraints

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min V [ξ1x1 + ξ2x2 + · · · + ξmxm]
s.t. E[ξ1x1 + ξ2x2 + · · · + ξmxm] ≥ α

S[ξ1x1 + ξ2x2 + · · · + ξmxm] ≥ γ

x1 + x2 + · · · + xm = 1

xi ≥ 0, i = 1,2, . . . ,m

(3.28)

where α is the minimal return level. The second variation of the mean-variance-
skewness model is the following,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max S[ξ1x1 + ξ2x2 + · · · + ξmxm]
s.t. E[ξ1x1 + ξ2x2 + · · · + ξmxm] ≥ α

V [ξ1x1 + ξ2x2 + · · · + ξmxm] ≤ β

x1 + x2 + · · · + xm = 1

xi ≥ 0, i = 1,2, . . . ,m.

(3.29)

In what follows, we only consider the mathematical properties and numerical exam-
ples on model (3.27). The others may be discussed similarly.

Remark 3.7 Suppose that the stock returns ξi = N(ei, σi), i = 1,2, . . . ,m are mu-
tually independent normal fuzzy variables. Then it is easy to prove that the total
return is also a normal fuzzy variable, which has expected value

E
[
f (x, ξ )

]= e1x1 + e2x2 + · · · + emxm,

and has variance

V
[
f (x, ξ )

]= (σ1x1 + σ2x2 + · · · + σmxm)2.

In addition, it follows from the symmetry that the total return has skewness zero.
Thus model (3.27) has the following crisp equivalent,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max e1x1 + e2x2 + · · · + emxm

s.t. σ1x1 + σ2x2 + · · · + σmxm ≤ √
β

x1 + x2 + · · · + xm = 1

xi ≥ 0, i = 1,2, . . . ,m.

(3.30)

If the stock returns ξi = (ai, bi, ci), i = 1,2, . . . ,m are mutually independent trian-
gular fuzzy variables, then for each portfolio (x1, x2, . . . , xm), the total return is a
triangular fuzzy variable denoted as

f (x, ξ ) =
(

m∑

i=1

aixi,

m∑

i=1

bixi,

m∑

i=1

cixi

)

.
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It follows from (3.5), (3.8) and (3.14) that the mean-variance-skewness model (3.27)
has the following crisp equivalent,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
m∑

i=1

xi(ai + 2bi + ci)

s.t.

∣
∣
∣
∣
∣

m∑

i=1

m∑

j=1

m∑

k=1

6
(
(ci −bi)(cj −bj )+ (bi −ai)(bj −aj )

)
(ck +ak −2bk)xixj xk

∣
∣
∣
∣
∣

+
m∑

i=1

m∑

j=1

m∑

k=1

16
(
(ci −bi)(cj −bj )+ (bi −ai)(bj −aj )

)
(ck −ak)xixj xk

+
∣
∣
∣
∣
∣

m∑

i=1

m∑

j=1

m∑

k=1

11(ci − ai)(cj − aj )(ck + ak − 2bk)xixj xk

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

m∑

i=1

192β(ci + ai − 2bi)xi

∣
∣
∣
∣
∣
+

m∑

i=1

192β(ci − ai)xi

m∑

i=1

m∑

j=1

m∑

k=1

(ci − ai)(cj − aj )(ck + ak − 2bk)xixj xk ≥ γ

x1 + x2 + · · · + xm = 1

xi ≥ 0, i = 1,2, . . . ,m.

If ξi = (ai, bi), i = 1,2, . . . ,m are mutually independent equipossible fuzzy vari-
ables, then model (3.27) has the following crisp equivalent,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max (a1 + b1)x1 + (a2 + b2)x2 + · · · + (am + bm)xm

s.t. (b1 − a1)x1 + (b2 − a2)x2 + · · · + (bm − am)xm ≤ √
8β

x1 + x2 + · · · + xm = 1

xi ≥ 0, i = 1,2, . . . ,m.

If ξi = (ai, bi, ci, di), i = 1,2, . . . ,m are mutually independent symmetric trape-
zoidal fuzzy variables, model (3.27) has the following crisp equivalent,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
m∑

i=1

(ai + bi + ci + di)xi

s.t.
m∑

i=1

m∑

j=1

(
(di − ai)(dj − aj ) + (di − ai + ci − bi)(cj − bj )

)
xixj ≤ 24β

x1 + x2 + · · · + xm = 1

xi ≥ 0, i = 1,2, . . . ,m.
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Table 3.3 Normal fuzzy
returns Stock Expected value Standard variance

1 1.1 1.0

2 1.3 1.1

3 1.5 1.3

4 1.0 1.4

If ξi = EXP(mi), i = 1,2, . . . ,m are mutually independent exponential fuzzy vari-
ables, then model (3.27) has the following crisp equivalent,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max m1x1 + m2x2 + · · · + mmxm

s.t. m1x1 + m2x2 + · · · + mmxm ≤ √
β/δ2

m1x1 + m2x2 + · · · + mmxm ≥ 3
√

γ /δ3

x1 + x2 + · · · + xm = 1

xi ≥ 0, i = 1,2, . . . ,m.

In order to solve an expected value model, we first check whether there is a crisp
equivalent such that we can apply the classical nonlinear programming algorithms to
solve the optimal solution. If not, we can solve the suboptimal solution by using the
genetic algorithm integrated with the fuzzy simulation, which is used to approximate
the expected value operator.

Example 3.21 Suppose that there are four stocks with independent normal fuzzy
returns. Table 3.3 shows the expected values and standard variances for these fuzzy
quantities. If the investor would like to maximize the investment return with risk
level 1.44, then we get the following mean-variance model

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max 1.1x1 + 1.3x2 + 1.5x3 + x4

s.t. x1 + 1.1x2 + 1.3x3 + 1.4x4 ≤ 1.2

x1 + x2 + x3 + x4 = 1

x1, x2, x3, x4 ≥ 0.

We use the Matlab function Linprog to solve the linear programming model. The
optimal investment return is 1.3836, and the optimal portfolio is

x1 = 0.1641, x2 = 0.2538, x3 = 0.5821, x4 = 0.0000.

Note that the optimal portfolio distributes no capital on the fourth stock since it has
the lowest return but has the highest risk.

Example 3.22 In this example, the mean-variance-skewness model (3.27) is applied
to the data shown in Table 3.4, which is composed of two triangular fuzzy variables,
and two normal fuzzy variables. The genetic algorithm is used to solve the subop-
timal solution, which is coded in Matlab programming language under the running



70 3 Expected Value Model

Table 3.4 Fuzzy returns of
four stocks Stock Fuzzy return

1 (−0.3,1.8,2.3)

2 (−0.4,2.0,2.2)

3 N(1.3,0.8)

4 N(1.5,1.2)

environment: a Windows 7 platform of personal computer with processor speed
2.4 GHz and memory size 2 GB.

Assume that the maximum risk level is 1.3 and the minimum skewness level
is 0.4. In order to obtain a portfolio which maximizes the investment return, we
formulate the following model,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max E[ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4]
s.t. V [ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4] ≤ 1.3

S[ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4] ≥ 0.4

x1 + x2 + x3 + x4 = 1

x1, x2, x3, x4 ≥ 0.

Take N = 3000, G = 30, Pc = 0.4, Pm = 0.2 and pop-size = 100. A run of the
genetic algorithm shows that the best found portfolio is

x1 = 0.0046, x2 = 0.0202, x3 = 0.5095, x4 = 0.4657,

and the investment return is 1.3966.
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Chapter 4
Chance-Constrained Programming Model

Chance-constrained programming (Charnes and Cooper 1961) provides a power-
ful means of modeling decision systems on the assumption that the constraints will
hold at least α of time, where α is the confidence level provided as an approx-
imate safety margin by the decision-maker. For fuzzy decision problems, Liu and
Iwamura (1998a,b) introduced a maximax chance-constrained programming model,
and Liu (1998) provided a maximin chance-constrained programming model, which
respectively maximize the optimistic value and the pessimistic value of the fuzzy
objective under certain credibility constraints. Nowadays, fuzzy chance-constrained
programming models have been widely used in many real-life applications, such
as facility location problem (Zhou and Liu 2007), newsboy problem (Shao and Ji
2006), portfolio selection problem (Li et al. 2010b), project scheduling problem
(Ke et al. 2010), quadratic assignment problem (Liu and Li 2006), vehicle routing
problem (Zheng and Liu 2006), and so on.

This chapter mainly introduces the concepts of optimistic value and pessimistic
value, chance-constrained programming models, fuzzy simulation, and applications
in fuzzy portfolio analysis.

4.1 Optimistic Value

Optimistic value and pessimistic value are two important credibilistic mappings
which can be used to rank fuzzy variables. This section first introduces the opti-
mistic value.

Definition 4.1 (Liu 2004) Let ξ be a fuzzy variable, and α ∈ (0,1]. Then

ξsup(α) = sup
{
r | Cr{ξ ≥ r} ≥ α

}
(4.1)

is called the α-optimistic value to ξ .

X. Li, Credibilistic Programming, Uncertainty and Operations Research,
DOI 10.1007/978-3-642-36376-4_4, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 4.1 The α-optimistic
value

Remark 4.1 The α-optimistic value is the supremum value that the fuzzy variable
achieves with credibility α.

Remark 4.2 Denote Ψ (r) = Cr{ξ ≥ r}. For any r1 ≤ r2, according to the mono-
tonicity axiom of credibility measure, we have

Ψ (r1) ≥ Ψ (r2),

which implies that Ψ is a decreasing function (see Fig. 4.1). Furthermore, if function
Ψ is strictly decreasing and continuous, then it is clear that the optimistic value
function ξsup(α) is the inverse function of Ψ .

Example 4.1 Suppose that ξ is a simple fuzzy variable defined by the following
credibility function

ν(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1, if x = x1

c2, if x = x2

· · · · · ·
cn, if x = xn.

For simplicity, we assume that x1 < x2 < · · · < xn and c1 ≤ c2 ≤ · · · ≤ cn. It follows
from the credibility inversion theorem that

Cr{ξ ≥ r} =

⎧
⎪⎨

⎪⎩

1, if r ≤ x1

1 − ci, if xi < r ≤ xi+1, 1 ≤ i ≤ n − 1

0, if r > xn.

According to Definition 4.1, the optimistic value is calculated to be

ξsup(α) =

⎧
⎪⎨

⎪⎩

xn, if 0 < α ≤ 1 − cn−1

xi, if 1 − ci < α ≤ 1 − ci−1, 2 ≤ i ≤ n − 1

x1, if 1 − c1 < α ≤ 1

which is a decreasing and left-continuous function (see Fig. 4.2).
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Fig. 4.2 Optimistic value of
a simple fuzzy variable

Example 4.2 Let ξ = (a, b) be an equipossible fuzzy variable. It follows from the
credibility inversion theorem that

Cr{ξ ≥ r} =

⎧
⎪⎨

⎪⎩

1, if r ≤ a

0.5, if a < r ≤ b

0, if r > b.

First, assume α ≤ 0.5. For any r ≤ b, it is easy to prove that

Cr{ξ ≥ r} ≥ 0.5 ≥ α,

and for any r > b, we have

Cr{ξ ≥ r} = 0 < α.

Then according to Definition 4.1, we have

ξsup(α) = sup
{
r | Cr{ξ ≥ r} ≥ α

}= b.

Now, assume α > 0.5. For any r ≤ a, it is easy to prove that

Cr{ξ ≥ r} = 1 ≥ α,

and for any r > a, we have

Cr{ξ ≥ r} ≤ 0.5 < α.

Then it follows from Definition 4.1 that ξsup(α) = a. In general, the α-optimistic
value for an equipossible fuzzy variable is

ξsup(α) =
{

b, if α ≤ 0.5

a, if α > 0.5

which is shown by Fig. 4.3.
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Fig. 4.3 Optimistic value of
an equipossible fuzzy variable

Example 4.3 Let ξ = (a, b, c) be a triangular fuzzy variable. It follows from the
credibility inversion theorem that

Cr{ξ ≥ r} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if r ≤ a

(2b − a − r)/2(b − a), if a < r ≤ b

(c − r)/2(c − b), if b < r ≤ c

0, if r > c,

which is a strictly decreasing and continuous function on interval [a, c]. For any
α ≤ 0.5, it is easy to prove that

ξsup(α) = sup
{
b < r ≤ c | (c − r)/2(c − b) ≥ α

}= 2αb + (1 − 2α)c.

Similarly, for any α > 0.5, we have

ξsup(α) = sup
{
a < r ≤ b | (2b − a − r)/2(b − a) ≥ α

}

= (2α − 1)a + (2 − 2α)b.

In general, the α-optimistic value for a triangular fuzzy variable is

ξsup(α) =
{

2αb + (1 − 2α)c, if α ≤ 0.5

(2α − 1)a + (2 − 2α)b, if α > 0.5

which is shown by Fig. 4.4.

Example 4.4 Suppose that ξ = (a, b, c, d) is a trapezoidal fuzzy variable. It follows
from the credibility inversion theorem that

Cr{ξ ≥ r} =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if r ≤ a

(2b − a − r)/2(b − a), if a < r ≤ b

0.5, if b < r ≤ c

(d − r)/2(d − c), if c < r ≤ d

0, if r > d.
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Fig. 4.4 Optimistic value of
a triangular fuzzy variable

Fig. 4.5 Optimistic value of
a trapezoidal fuzzy variable

For any α < 0.5, it is easy to prove that

ξsup(α) = sup
{
c < r ≤ d | (d − r)/2(d − c) ≥ α

}

= 2αc + (1 − 2α)d.

Similarly, for any α > 0.5, we have

ξsup(α) = sup
{
a < r ≤ b | (2b − a − r)/2(b − a) ≥ α

}

= (2α − 1)a + (2 − 2α)b.

Especially, when α = 0.5, we have ξsup(α) = c. In general, the α-optimistic value
for a trapezoidal fuzzy variable is

ξsup(α) =
{

2αc + (1 − 2α)d, if α ≤ 0.5

(2α − 1)a + (2 − 2α)b, if α > 0.5

which is shown by Fig. 4.5.

Example 4.5 Let ξ = EXP(m) be an exponential fuzzy variable. Then it follows
from the credibility inversion theorem that

Cr{ξ ≥ r} =
{

1, if r ≤ 0

1/(1 + exp(πr/
√

6m)), if r > 0.
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Fig. 4.6 Optimistic value of
an exponential fuzzy variable

According to Definition 4.1, for any α < 0.5, we have

ξsup(α) = sup
{
r | 1/

(
1 + exp(πr/

√
6m)

)≥ α
}

= (ln(1 − α) − lnα
)√

6m/π.

Otherwise, when α ≥ 0.5, we have ξsup(α) = 0. In general, the optimistic value
function for an exponential fuzzy variable is

ξsup(α) = max
{(

ln(1 − α) − lnα
)√

6m/π,0
}

which is shown by Fig. 4.6.

Example 4.6 Suppose that ξ is a normal fuzzy variable N(e,σ ). It follows from the
credibility inversion theorem that

Cr{ξ ≥ r} = 1/
(
1 + exp

(
π(r − e)/

√
6σ
))

which is a strictly decreasing and continuous function. For any α ∈ (0,1], according
to Definition 4.1, we have

ξsup(α) = sup
{
r | 1/

(
1 + exp

(
π(r − e)/

√
6σ
))≥ α

}

= e + (ln(1 − α) − lnα
)√

6σ/π

which is shown by Fig. 4.7.

Theorem 4.1 (Liu 2004) The α-optimistic value is a decreasing and left-continuous
function with respect to α.

Proof It is easy to prove that ξsup(α) is a decreasing function of α. Next, we prove
the left-continuity. Let αi be an arbitrary sequence of positive numbers such that
αi ↑ α. Then {ξsup(αi)} is a decreasing sequence. If the limitation is equal to ξsup(α),
then the left-continuity is proved. Otherwise, there exists a number z such that

lim
i→∞ ξsup(αi) > z > ξsup(α).
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Fig. 4.7 Optimistic value of
a normal fuzzy variable

According to the definition of optimistic value, we have Cr{ξ ≥ z} ≥ αi for each αi .
Letting i → ∞, we get Cr{ξ ≥ z} ≥ α. Hence z ≤ ξsup(α). The contradiction proves
the left-continuity. The proof is complete. �

Theorem 4.2 (Liu 2004) Suppose that ξsup(α) is the α-optimistic value of fuzzy
variable ξ . For any α > 0.5, we have

Cr
{
ξ ≥ ξsup(α)

}≥ α. (4.2)

Proof For any α > 0.5, it follows from the definition of α-optimistic value that there
exists an increasing sequence {xi} with limit ξsup(α) such that Cr{ξ ≥ xi} ≥ α for
all i = 1,2, . . . . Since {ξ ≥ xi} ↓ {ξ ≥ ξsup(α)} and

lim
i→∞ Cr{ξ ≥ xi} > 0.5,

it follows from the credibility semicontinuous theorem that

Cr
{
ξ ≥ ξsup(α)

}= lim
i→∞ Cr{ξ ≥ xi} ≥ α.

The proof is complete. �

Remark 4.3 When α ≤ 0.5, it is possible that Cr{ξ ≥ ξsup(α)} < α. For example, let
ξ be a fuzzy variable with credibility function

ν(x) = 0.5, ∀x ∈ (0,1).

For any 0 < α ≤ 0.5, it is easy to prove that ξsup(α) = 1. However, we have

Cr{ξ ≥ 1} = 0 < α.
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Theorem 4.3 If ξ is a continuous fuzzy variable, then we have

Cr
{
ξ ≥ ξsup(α)

}≥ α. (4.3)

Proof For any α ∈ (0,1], according to Definition 4.1, there exists an increasing
sequence {xi} with limit ξsup(α) such that Cr{ξ ≥ xi} ≥ α for all i = 1,2, . . . . Since
ξ has a continuous credibility function, it is easy to prove that the function Cr{ξ ≥ r}
is also continuous with respect to r . Then it follows from the continuity that

Cr
{
ξ ≥ ξsup(α)

}= lim
i→∞ Cr{ξ ≥ xi} ≥ α.

The proof is complete. �

Theorem 4.4 (Li and Liu 2006b) Suppose that fuzzy variables ξ and η are mutually
independent. Then for any α ∈ (0,1], we have

(ξ + η)sup(α) = ξsup(α) + ηsup(α). (4.4)

Proof For any given number ε > 0, it is easy to prove the following relations
{
ξ + η ≥ ξsup(α) + ηsup(α) − ε

} ⊇ {ξ ≥ ξsup(α) − ε/2
}∩ {η ≥ ηsup(α) − ε/2

}
,

{
ξ + η ≥ ξsup(α) + ηsup(α) + ε

} ⊆ {ξ ≥ ξsup(α) + ε/2
}∪ {η ≥ ηsup(α) + ε/2

}
.

According to the definition of optimistic value, for any α ∈ (0,1], we have

Cr
{
ξ ≥ ξsup(α) − ε/2

}≥ α > Cr
{
ξ ≥ ξsup(α) + ε/2

}
,

Cr
{
η ≥ ηsup(α) − ε/2

}≥ α > Cr
{
η ≥ ηsup(α) + ε/2

}
.

Since fuzzy variables ξ and η are mutually independent, it follows from the mono-
tonicity axiom that

Cr
{
ξ + η ≥ ξsup(α) + ηsup(α) − ε

}≥ α > Cr
{
ξ + η ≥ ξsup(α) + ηsup(α) + ε

}

which implies that ξsup(α) + ηsup(α) + ε ≥ (ξ + η)sup(α) ≥ ξsup(α) + ηsup(α) − ε.
Letting ε → 0, we obtain equation (4.4). The proof is complete. �

Example 4.7 The independence assumption cannot be removed in above theo-
rem. For example, take a credibility space (Θ,A,Cr) to be {θ1, θ2} with Cr{θ1} =
Cr{θ2} = 0.5. Define fuzzy variables ξ and η as follows,

ξ(θ) =
{

2, if θ = θ1

1, if θ = θ2,
η(θ) =

{
1, if θ = θ1

2, if θ = θ2.

Taking α = 0.6, it is easy to prove that ξsup(α) = ηsup(α) = 1 and (ξ +η)sup(α) = 3,
which implies that

(ξ + η)sup(α) > ξsup(α) + ηsup(α).
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Theorem 4.5 (Li and Liu 2006b) Suppose that ξ and η are two independent non-
negative fuzzy variables. Then for any α ∈ (0,1], we have

(ξη)sup(α) = ξsup(α)ηsup(α). (4.5)

Proof For any given real number ε > 0, since fuzzy variables ξ and η are both
nonnegative, it is easy to prove that

{
ξη ≥ (ξsup(α) + ε

)(
ηsup(α) + ε

)}⊆ {ξ ≥ ξsup(α) + ε
}∪ {η ≥ ηsup(α) + ε

}
.

It follows from the monotonicity axiom and the independence that

Cr
{
ξη ≥ (ξsup(α) + ε

)(
ηsup(α) + ε

)}

≤ Cr
{
ξ ≥ ξsup(α) + ε

}∨ Cr
{
η ≥ ηsup(α) + ε

}

< α.

Then according to the definition of optimistic value, we have

(ξη)sup(α) ≤ (ξsup(α) + ε
)(

ηsup(α) + ε
)
.

When ξsup(α)ηsup(α) = 0, letting ε → 0, we obtain (ξη)sup(α) = 0. Otherwise, let
ε0 be a positive number with ε0 < ε such that

ξsup(α) − ε0 > 0, ηsup(α) − ε0 > 0.

Based on the relation

{
ξη ≥ (ξsup(α) − ε0

)(
ηsup(α) − ε0

)}⊇ {ξ ≥ ξsup(α) − ε0
}∩ {η ≥ ηsup(α) − ε0

}
,

it follows from the monotonicity axiom and the independence that

Cr
{
ξη ≥ (ξsup(α) − ε0

)(
ηsup(α) − ε0

)}

≥ Cr
{
ξ ≥ ξsup(α) − ε0

}∧ Cr
{
η ≥ ηsup(α) − ε0

}

≥ α

which implies that (ξη)sup(α) ≥ (ξsup(α) − ε0)(ηsup(α) − ε0). In general, we get

(
ξsup(α) − ε0

)(
ηsup(α) − ε0

)≤ (ξη)sup(α) ≤ (ξsup(α) + ε
)(

ηsup(α) + ε
)
.

Letting ε → 0, we obtain (4.5). The proof is complete. �

Example 4.8 Similarly, the independence condition cannot be removed in Theo-
rem 4.5. Let us reconsider Example 4.7 It is easy to prove that

(ξη)sup(0.6) = 2 > 1 = ξsup(0.6)ηsup(0.6).
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Theorem 4.6 Suppose that fuzzy variables ξ and η are mutually independent. Then
for any α ∈ (0,1], we have

(ξ ∧ η)sup(α) = ξsup(α) ∧ ηsup(α). (4.6)

Proof Like Theorem 4.5 except that the “×” is replaced with “∧”. �

Theorem 4.7 Suppose that fuzzy variables ξ and η are mutually independent. Then
for any α ∈ (0,1], we have

(ξ ∨ η)sup(α) = ξsup(α) ∨ ηsup(α). (4.7)

Proof Like Theorem 4.5 except that the “×” is replaced with “∨”. �

4.2 Pessimistic Value

This section introduces the concept of pessimistic value, which has some similar
properties with the optimistic value.

Definition 4.2 (Liu 2004) Let ξ be a fuzzy variable, and α ∈ (0,1]. Then

ξinf(α) = inf
{
r | Cr{ξ ≤ r} ≥ α

}
(4.8)

is called the α-pessimistic value to ξ .

Remark 4.4 The α-pessimistic value is the infimum value that the fuzzy variable
achieves with credibility α.

Remark 4.5 Denote Φ(r) = Cr{ξ ≤ r}. For any r1 ≤ r2, according to the mono-
tonicity axiom of credibility measure, we have

Φ(r1) ≤ Φ(r2)

which implies that Φ(r) is an increasing function with respect to r . See Fig. 4.8.
Furthermore, if it is strictly increasing and continuous, then it is clear that ξinf(α) is
the inverse function of Φ .

Example 4.9 Suppose that ξ is a simple fuzzy variable defined by the following
credibility function

ν(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1, if x = x1

c2, if x = x2

· · · · · ·
cn, if x = xn.
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Fig. 4.8 The α-pessimistic
value

Fig. 4.9 Pessimistic value of
a simple fuzzy variable

For simplicity, we assume that x1 < x2 < · · · < xn and c1 ≤ c2 ≤ · · · ≤ cn. It follows
from the credibility inversion theorem that

Cr{ξ ≤ r} =

⎧
⎪⎨

⎪⎩

0, if r < x1

ci, if xi ≤ r < xi+1, 1 ≤ i ≤ n − 1

1, if r ≥ xn.

According to Definition 4.2, the pessimistic value is calculated to be

ξinf(α) =

⎧
⎪⎨

⎪⎩

x1, if 0 < α ≤ c1

xi, if ci < α ≤ ci+1, 1 ≤ i ≤ n − 1

xn, if cn < α ≤ 1

which is an increasing and left-continuous function. See Fig. 4.9.

Example 4.10 Let ξ = (a, b) be an equipossible fuzzy variable. It follows from the
credibility inversion theorem that

Cr{ξ ≤ r} =

⎧
⎪⎨

⎪⎩

0, if r < a

0.5, if a ≤ r < b

1, if r ≥ b.
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Fig. 4.10 Pessimistic value
of an equipossible fuzzy
variable

First, we assume α ≤ 0.5. For any r ≥ a, it is easy to prove that

Cr{ξ ≤ r} ≥ 0.5 ≥ α,

and for any r < a, we have

Cr{ξ ≤ r} = 0 ≤ α.

Then according to Definition 4.2, we have

ξinf(α) = inf
{
r | Cr{ξ ≤ r} ≥ α

}= a.

Similarly, for any α > 0.5, we can prove ξinf(α) = b. In general, the α-pessimistic
value for an equipossible fuzzy variable is

ξinf(α) =
{

a, if α ≤ 0.5

b, if α > 0.5

which is shown by Fig. 4.10.

Example 4.11 Let ξ = (a, b, c) be a triangular fuzzy variable. It follows from the
credibility inversion theorem that

Cr{ξ ≤ r} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if r < a

(r − a)/2(b − a), if a ≤ r < b

(c − 2b + r)/2(c − b), if b ≤ r < c

1, if r ≥ c,

which is a strictly increasing and continuous function on interval [a, c]. For any
α ≤ 0.5, it is easy to prove that

ξinf(α) = inf
{
a ≤ r ≤ b | (r − a)/2(b − a) ≥ α

}= 2αb + (1 − 2α)a.

Similarly, for any α > 0.5, we have

ξinf(α) = inf
{
b ≤ r ≤ c | (c − 2b + r)/2(c − b) ≥ α

}

= (2α − 1)c + (2 − 2α)b.
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Fig. 4.11 Pessimistic value
of a triangular fuzzy variable

In general, the α-pessimistic value for a triangular fuzzy variable is

ξinf(α) =
{

2αb + (1 − 2α)a, if α ≤ 0.5

(2α − 1)c + (2 − 2α)b, if α > 0.5

which is shown by Fig. 4.11.

Example 4.12 Let ξ = (a, b, c, d) be a trapezoidal fuzzy variable. It follows from
the credibility inversion theorem that

Cr{ξ ≤ r} =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, if r < a

(r − a)/2(b − a), if a ≤ r < b

0.5, if b ≤ r < c

(d − 2c + r)/2(d − c), if c ≤ r < d

1, if r ≥ d.

First, for any α ≤ 0.5, it is easy to prove that

ξinf(α) = inf
{
a ≤ r ≤ b | (r − a)/2(b − a) ≥ α

}= 2αb + (1 − 2α)a.

Similarly, for any α > 0.5, we have

ξinf(α) = inf
{
c ≤ r ≤ d | (d − 2c + r)/2(d − c) ≥ α

}

= (2α − 1)d + (2 − 2α)c.

In general, the pessimistic value function for a trapezoidal fuzzy variable is

ξinf(α) =
{

2αb + (1 − 2α)a, if α ≤ 0.5

(2α − 1)d + (2 − 2α)c, if α > 0.5

which is shown by Fig. 4.12.
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Fig. 4.12 Pessimistic value
of a trapezoidal fuzzy
variable

Example 4.13 Let ξ = EXP(m) be an exponential fuzzy variable. It follows from
the credibility inversion theorem that

Cr{ξ ≤ r} =
{

0, if r < 0

1/(1 + exp(−πr/
√

6m)), if r ≥ 0.

For any α > 0.5, according to Definition 4.2, we have

ξinf(α) = inf
{
r | 1/

(
1 + exp(−πr/

√
6m)

)≥ α
}

= (lnα − ln(1 − α)
)√

6m/π.

Otherwise, we have ξinf(α) = 0. In general, the pessimistic value function for an
exponential fuzzy variable is

ξinf(α) = max
{(

lnα − ln(1 − α)
)√

6m/π,0
}

which is shown by Fig. 4.13.

Example 4.14 Let ξ = N(e,σ ) be a normal fuzzy variable. For any r ∈ �, it follows
from the credibility inversion theorem that

Cr{ξ ≤ r} = 1/
(
1 + exp

(
π(e − r)/

√
6σ
))

.

Then for any α ∈ (0,1], according to Definition 4.2, we have

ξinf(α) = inf
{
r | 1/

(
1 + exp

(
π(e − r)/

√
6σ
))≥ α

}

= e − (ln(1 − α) − lnα
)√

6σ/π

which is shown by Fig. 4.14.

Theorem 4.8 (Liu 2004) The pessimistic value ξinf(α) is an increasing and left-
continuous function of α.



4.2 Pessimistic Value 87

Fig. 4.13 Pessimistic value
of an exponential fuzzy
variable

Fig. 4.14 Pessimistic value
of a normal fuzzy variable

Proof It is easy to prove that ξinf(α) is an increasing function with respect to α.
Next, we prove the left-continuity. Let αi be an arbitrary sequence of positive num-
bers such that αi ↑ α. Then {ξinf(αi)} is an increasing sequence. If the limitation is
equal to ξinf(α), then the left-continuity is proved. Otherwise, there exists a num-
ber z such that

lim
i→∞ ξinf(α) < z < ξinf(α).

According to Definition 4.2, we have Cr{ξ ≤ z} ≥ αi . Letting i → ∞, we get Cr{ξ ≤
z} ≥ α, which implies that z ≥ ξinf(α). The contradiction proves the left-continuity.
The proof is complete. �

Theorem 4.9 (Liu 2004) Let ξ be a fuzzy variable. If α > 0.5, then we have

Cr
{
ξ ≤ ξinf(α)

}≥ α. (4.9)

Proof It follows from the definition of α-pessimistic value that there exists a de-
creasing sequence {xi} with limit ξinf(α) such that Cr{ξ ≤ xi} ≥ α for all i =
1,2, . . . . Since {ξ ≤ xi} ↓ {ξ ≤ ξinf(α)} and
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lim
i→∞ Cr{ξ ≤ xi} > 0.5,

it follows from the credibility semicontinuous theorem that

Cr
{
ξ ≤ ξinf(α)

}= lim
i→∞ Cr{ξ ≤ xi} ≥ α.

The proof is complete. �

Remark 4.6 When α ≤ 0.5, it is possible that (4.9) does not hold. For example, let
ξ be a fuzzy variable defined by credibility function

ν(x) = 0.5, ∀x ∈ (0,1).

For any 0 < α ≤ 0.5, it is easy to prove that ξinf(α) = 0. However, we have

Cr{ξ ≤ 0} = 0 < α.

Theorem 4.10 If ξ is a continuous fuzzy variable, then we have

Cr
{
ξ ≤ ξinf(α)

}≥ α. (4.10)

Proof For any α ∈ (0,1], it follows from Definition 4.2 that there exists a decreasing
sequence {xi} with limit ξinf(α) such that Cr{ξ ≤ xi} ≥ α for all i = 1,2, . . . . Since
ξ has a continuous credibility function, it is easy to prove that Cr{ξ ≤ r} is also
continuous with respect to r , which implies that

Cr
{
ξ ≤ ξinf(α)

}= lim
i→∞ Cr{ξ ≤ xi} ≥ α.

The proof is complete. �

Theorem 4.11 (Liu 2004) Suppose that ξ is a fuzzy variable. Then

(a) if α > 0.5, we have ξinf(α) ≥ ξsup(α);
(b) if α ≤ 0.5, we have ξinf(α) ≤ ξsup(α).

Proof Write z = (ξinf(α) + ξsup(α))/2. (a) If ξinf(α) < ξsup(α), we have

1 ≥ Cr{ξ < z} + Cr{ξ > z} ≥ α + α > 1.

The contradiction proves that ξinf(α) ≥ ξsup(α).
(b) If ξinf(α) > ξsup(α), it follows from the duality axiom that

1 ≤ Cr{ξ ≤ z} + Cr{ξ ≥ z} < α + α ≤ 1.

The contradiction proves that ξinf(α) ≤ ξsup(α). The proof is complete. �
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Theorem 4.12 (Liu 2004) Suppose that ξ is a fuzzy variable. Then

(a) if c ≥ 0, we have (cξ)sup(α) = cξsup(α) and (cξ)inf(α) = cξinf(α);
(b) if c < 0, we have (cξ)sup(α) = cξinf(α) and (cξ)inf(α) = cξsup(α).

Proof (a) If c = 0, the conclusions obviously hold. When c > 0, we have

(cξ)sup(α) = sup
{
r | Cr{cξ ≥ r} ≥ α

}

= c sup
{
r/c | Cr{ξ ≥ r/c} ≥ α

}

= cξsup(α).

A similar way may prove that (cξ)inf(α) = cξinf(α).
(b) In order to prove (b), it is sufficient to prove that (−ξ)sup(α) = −ξinf(α) and

(−ξ)inf(α) = −ξsup(α). In fact, for any α ∈ (0,1], we have

(−ξ)sup(α) = sup
{
r | Cr{−ξ ≥ r} ≥ α

}

= − inf
{−r | Cr{ξ ≤ −r} ≥ α

}

= −ξinf(α).

A similar way may prove that (−ξ)inf(α) = −ξsup(α). The proof is complete. �

Theorem 4.13 (Li and Liu 2006b) Suppose that ξ and η are mutually independent
fuzzy variables. Then for any α ∈ (0,1], we have

(ξ + η)inf(α) = ξinf(α) + ηinf(α). (4.11)

Proof According to Theorems 4.4 and 4.12, it is easy to prove that

(ξ + η)inf(α) = −(−ξ − η)sup(α) = −(−ξ)sup(α) − (−η)sup(α)

= ξinf(α) + ηinf(α).

The proof is complete. �

Example 4.15 Note that the independence condition cannot be removed in The-
orem 4.13. In Example 4.7, it is easy to prove that ξinf(0.6) = ηinf(0.6) = 2 and
(ξ + η)inf(0.6) = 3, which implies that

(ξ + η)inf(0.6) < ξinf(0.6) + ηinf(0.6).

Theorem 4.14 (Li and Liu 2006b) Suppose that ξ and η are independent fuzzy
variables. Then we have

(a) (ξη)inf(α) = ξinf(α)ηinf(α), if ξ ≥ 0 and η ≥ 0;
(b) (ξη)inf(α) = ξsup(α)ηsup(α), if ξ ≤ 0 and η ≤ 0;
(c) (ξη)inf(α) = ξsup(α)ηinf(α), if ξ ≥ 0 and η ≤ 0.
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Proof (a) For any given number ε > 0, since fuzzy variables ξ and η are both non-
negative, it is easy to prove that
{
ξη ≤ (ξinf(α) + ε

)(
ηinf(α) + ε

)}⊇ {ξ ≤ ξinf(α) + ε
}∩ {η ≤ ηinf(α) + ε

}
.

Then it follows from the independence and the monotonicity axiom that

Cr
{
ξη ≤ (ξinf(α) + ε

)(
ηinf(α) + ε

)}

≥ Cr
{
ξ ≤ ξinf(α) + ε

}∧ Cr
{
η ≤ ηinf(α) + ε

}≥ α

which implies that (ξη)inf(α) ≤ (ξinf(α) + ε)(ηinf(α) + ε). When ξinf(α)ηinf(α) =
0, letting ε → 0, we obtain (ξη)inf(α) = 0. Otherwise, we have ξinf(α) > 0 and
ηinf(α) > 0. Let ε0 ∈ (0, ε) be a small real number such that ξinf(α) − ε0 > 0 and
ηinf(α) − ε0 > 0. Based on the relation
{
ξη ≤ (ξinf(α) − ε0

)(
ηinf(α) − ε0

)}⊆ {ξ ≤ ξinf(α) − ε0
}∪ {η ≤ ηinf(α) − ε0

}
,

it follows from the independence and the monotonicity axiom that

Cr
{
ξη ≤ (ξinf(α) − ε0

)(
ηinf(α) − ε0

)}

≤ Cr
{
ξ ≥ ξinf(α) − ε0

}∨ Cr
{
η ≤ ηinf(α) − ε0

}
< α

which implies that (ξη)inf(α) ≥ (ξinf(α) − ε0)(ηinf(α) − ε0). In general, we get
(
ξinf(α) − ε0

)(
ηinf(α) − ε0

)≤ (ξη)inf(α) ≤ (ξinf(α) + ε
)(

ηinf(α) + ε
)
.

Letting ε → 0, we obtain (ξη)inf(α) = ξinf(α)ηinf(α).
(b) Since ξ ≤ 0, η ≤ 0, we have −ξ ≥ 0,−η ≥ 0. It follows from (a) that

(ξη)inf(α) = ((−ξ)(−η)
)

inf(α) = (−ξ)inf(α)(−η)inf(α)

= ξsup(α)ηsup(α).

(c) Since ξ ≥ 0 and −η ≥ 0, it follows from Theorems 4.5 and 4.12 that

(ξη)inf(α) = −(ξ(−η)
)

sup(α) = −ξsup(α)(−η)sup(α)

= ξsup(α)ηinf(α).

The proof is complete. �

Example 4.16 Similarly, the independence condition cannot be removed in Theo-
rem 4.14. Let us reconsider Example 4.7. It is easy to prove that

ξsup(0.6) = 1, ξinf(0.6) = 2, (−ξ)sup(0.6) = −2,

ηinf(0.6) = 2, (−η)sup(0.6) = −2, (−η)inf(0.6) = −1,

(ξη)inf(0.6) = 2, (ξ(−η))inf(0.6) = −2, ((−ξ)(−η))inf(0.6) = 2,
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which implies that (ξη)inf(0.6) �= ξinf(0.6)ηinf(0.6), (ξ(−η))inf(0.6) �= ξsup(0.6)

(−η)inf(0.6), and ((−ξ)(−η))inf(0.6) �= (−ξ)sup(0.6)(−η)sup(0.6).

Theorem 4.15 (Li and Liu 2006b) Suppose that ξ and η are independent fuzzy
variables. Then for any α ∈ (0,1], we have

(ξ ∧ η)inf(α) = ξinf(α) ∧ ηinf(α). (4.12)

Proof According to Theorem 4.7, it is easy to prove that

(ξ ∧ η)inf(α) = −((−ξ) ∨ (−η)
)

sup(α)

= −((−ξ)sup(α) ∨ (−η)sup(α)
)

= ξinf(α) ∧ ηinf(α).

The proof is complete. �

Theorem 4.16 (Li and Liu 2006b) Suppose that ξ and η are independent fuzzy
variables. Then for any α ∈ (0,1], we have

(ξ ∨ η)inf(α) = ξinf(α) ∨ ηinf(α). (4.13)

Proof According to Theorem 4.6, it is easy to prove that

(ξ ∨ η)inf(α) = −((−ξ) ∧ (−η)
)

sup(α)

= −((−ξ)sup(α) ∧ (−η)sup(α)
)

= ξinf(α) ∨ ηinf(α).

The proof is complete. �

4.3 Chance-Constrained Programming Model

Generally speaking, the α-optimistic value denotes the maximum value the fuzzy
variable can reach with credibility α. For fuzzy decision problems, since some
decision-makers prefer to maximize the optimistic value of the objective subject
to a set of chance constraints, Liu and Iwamura (1998a,b) proposed the following
maximax chance-constrained programming model,

{
max f (x, ξ)sup(α)

s.t. Cr
{
gi(x, ξ) ≤ 0, i = 1,2, . . . , n

}≥ β
(4.14)

where α and β are the predetermined confidence levels. On the other hand, the
decision-makers can also maximize the pessimistic objective. In this case, Liu
(1998) proposed the maximin chance-constrained programming model,
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{
max f (x, ξ)inf(α)

s.t. Cr
{
gi(x, ξ) ≤ 0, i = 1,2, . . . , n

}≥ β.
(4.15)

For simplicity, we will call both the maximax model (4.14) and the maximin model
(4.15) as the chance-constrained programming model when no ambiguity is possi-
ble.

Remark 4.7 Generally speaking, the confidence parameter β is selected to be
greater than 0.5. In this case, it follows from Theorem 1.4 that

Cr
{
gi(x, ξ ) ≤ 0, i = 1,2, . . . , n

}≥ β

if and only if

Cr
{
gi(x, ξ ) ≤ 0

}≥ β, i = 1,2, . . . , n.

Remark 4.8 The concepts of feasible solution, local optimal solution, and global
optimal solution are given by Definitions 2.6, 2.7, and 2.8.

Remark 4.9 For the chance-constrained programming models, the feasibility and
optimality depend on the value of confidence level β . It is possible that a solution is
global optimal when β = 0.8, but even unfeasible when β = 0.9.

In what follows, we discuss the crisp equivalents for the maximax chance-
constrained programming model (4.14) with the following conditions:

(c1) confidence level β > 0.5;
(c2) objective function f (x, ξ ) = f0(x) + f1(x)ξ1 + f2(x)ξ2 + · · · + fq(x)ξq ;
(c3) constraint function gi(x, ξ ) = gi0(x) + gi1(x)ξ1 + gi2(x)ξ2 + · · · + giq(x)ξq ,

where fk and gik are nonnegative functions for all 1 ≤ i ≤ n and 0 ≤ k ≤ q .

Theorem 4.17 Suppose that ξi = (ai, bi, ci), i = 1,2, . . . ,m are mutually indepen-
dent triangular fuzzy variables. If model (4.14) satisfies conditions (c1–c3), then it
has the following crisp equivalent,

{
max f

(
x, ξ sup(α)

)

s.t. gi

(
x, (3 − 2β)c − (2 − 2β)b

)≤ 0, i = 1,2, . . . , n.

where ξ sup(α) = ((ξ1)sup(α), (ξ2)sup(α), . . . , (ξm)sup(α)).

Proof Since fuzzy variables ξ1, ξ2, . . . , ξm are mutually independent, it follows
from the linearity of optimistic value that

f (x, ξ )sup(α) = f
(
x, ξ sup(α)

)
.

In addition, for each i = 1,2, . . . , n, it is easy to prove that gi(x, ξ ) is a triangular
fuzzy variable (gi(x,a), gi(x,b), gi(x, c)). Since β > 0.5, we have
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Cr
{
gi(x, ξ ) ≤ 0

}≥ β

if and only if gi(x, (3 − 2β)c − (2 − 2β)b) ≤ 0. The proof is complete. �

Remark 4.10 In Theorem 4.17, if the triangular fuzzy variables are changed to be
equipossible fuzzy variables, the crisp equivalent is

{
max f

(
x, ξ sup(α)

)

s.t. gi(x,b) ≤ 0, i = 1,2, . . . , n.

If the triangular fuzzy variables are changed to be trapezoidal fuzzy variables, the
crisp equivalent is

{
max f

(
x, ξ sup(α)

)

s.t. gi

(
x, (3 − 2β)d − (2 − 2β)c

)≤ 0, i = 1,2, . . . , n.

For normal fuzzy variables, the crisp equivalent is
{

max f
(
x, ξ sup(α)

)

s.t. gi(x, e) ≤ λ
(
gi(x, σ ) − gi0(x)

)
, i = 1,2, . . . , n

where λ = (
√

6/π) ln(1/β − 1).

Remark 4.11 The crisp equivalents for the maximin chance-constrained program-
ming model can be proved similarly. In addition, if the objective function has the
following form

f (x, ξ) = max
{
f0(x), f1(x)ξ1, f2(x)ξ2, . . . , fm(x)ξm

}
,

f (x, ξ) = min
{
f0(x), f1(x)ξ1, f2(x)ξ2, . . . , fm(x)ξm

}
,

these crisp equivalents still hold.

In many cases, there are multiple conflicting objectives. If the decision-maker
prefers to get a solution with the maximum optimistic values for all objectives,
we have the following multi-objective maximax chance-constrained programming
model

{
max

[
f1(x, ξ)sup(α1), f2(x, ξ)sup(α2), . . . , fp(x, ξ)sup(αp)

]

s.t. Cr
{
gi(x, ξ) ≤ 0, i = 1,2, . . . , n

}≥ β.

On the other hand, if the decision-maker prefers to get a solution with the maxi-
mum pessimistic values for all objectives, we have the following multi-objectives
maximin chance-constrained programming model

{
max

[
f1(x, ξ)inf(α1), f2(x, ξ)inf(α2), . . . , fp(x, ξ)inf(αp)

]

s.t. Cr
{
gi(x, ξ) ≤ 0, i = 1,2, . . . , n

}≥ β.
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Remark 4.12 For the multi-objective chance-constrained programming models, we
can also discuss the crisp equivalents when fuzzy parameters ξ1, ξ2, . . . , ξm are inde-
pendent equipossible fuzzy variables, triangular fuzzy variables, trapezoidal fuzzy
variables, and normal fuzzy variables.

4.4 Fuzzy Simulation

In order to solve the general chance-constrained programming models, this section
introduces a fuzzy simulation technique for approximating the optimistic value and
the pessimistic value

Usup : x → f (x, ξ)sup(α) (4.16)

Uinf : x → f (x, ξ)inf(α) (4.17)

where f is a real function, and ξ is a fuzzy vector with joint credibility function ν.

4.4.1 Optimistic Value Simulation

We first randomly generate vector yi and calculate the credibility νi for all i =
1,2, . . . ,N . For any r ∈ �, according to the credibility inversion theorem, the cred-
ibility Cr{f (x, ξ ) ≥ r} can be estimated by

C(r) =
{

max{νi | f (x,yi ) ≥ r}, if max{νi | f (x,yi ) ≥ r} < 0.5

min{1 − νi | f (x,yi ) < r}, if max{νi | f (x,yi ) ≥ r} ≥ 0.5.

According to Definition 4.1, the α-optimistic value can be simulated as the maximal
value of r satisfying C(r) ≥ α. Since C is a decreasing function, we can solve the
maximal value by using a bisection search. The procedure is listed as follows.

Algorithm 4.1 (Fuzzy simulation for optimistic value)

Step 1. Initialize a small positive number ε.
Step 2. Randomly generate y i with credibilities νi for all i = 1,2, . . . ,N .
Step 3. Calculate the minimum and maximum objective values

a = min
{
f (x,y i ) | 1 ≤ i ≤ N

}
, b = max

{
f (x,y i ) | 1 ≤ i ≤ N

}
.

Step 4. Set r = (a + b)/2.
Step 5. If C(r) ≥ α, set a = r . Otherwise, set b = r .
Step 6. If b − a > ε, go to step 4.
Step 7. Return (a + b)/2 as the α-optimistic value.
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Fig. 4.15 Optimistic value simulation with variable parameter N

Example 4.17 For the triangular fuzzy variable ξ = (1,2,3), we perform Algo-
rithm 4.1 by changing N from 100 to 5000 with step of 100, and take α from
{0.6,0.4,0.2,0.8}. The simulated results are illustrated by Fig. 4.15. It is shown
that when N is larger than 3500, the simulated results are stable.

Example 4.18 Taking N = 3500 and α = 0.4, we perform Algorithm 4.1 on twenty
fuzzy variables, including equipossible fuzzy variables, triangular fuzzy variables,
trapezoidal fuzzy variables, normal fuzzy variables, and exponential fuzzy variables.
We record the results by Table 4.1, and make comparisons with the exact values. The
last column shows the relative error (3.25), which ranges from 0.00 % to 4.71 % and
the average value is calculated to be 0.4 %. These results imply that the simulation
algorithm can obtain a very satisfactory approximation for the optimistic value.

Example 4.19 Note that the optimistic value simulation is essentially a combina-
tion of the Monte Carlo simulation and the bisection search. Therefore, we may
get different values if we perform the algorithm more than one times on the same
fuzzy variable. In this example, we take N = 3500 and α = 0.4, and perform Al-
gorithm 4.1 fifty times on the triangular fuzzy variable ξ = (−0.3,1.8,2.3). The
results are recorded by Table 4.2. Compared with the exact value 1.9, the maximum
relative error is 0.12 %.
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Table 4.1 Simulation results on optimistic value

Fuzzy variables Simulated value Exact value Relative error

(0.0, 1.0) 0.9988 1.0000 0.0012

(−1.0, 2.0) 1.9996 2.0000 0.0002

(3.5, 7.8) 7.7954 7.8000 0.0006

(−50, −10) −10.0090 −10.0000 0.0009

(−0.3, 1.8, 2.3) 1.9000 1.9000 0.0000

(1.5, 3.0, 4.1) 3.2197 3.2200 0.0001

(10, 15, 20) 15.9969 16.0000 0.0002

(25, 40, 50) 41.9933 42.0000 0.0002

(1.0, 2.0, 3.0, 4.0) 3.1994 3.2000 0.0002

(3.1, 4.2, 4.5, 6.0) 4.7996 4.8000 0.0001

(2.4, 3.6, 3.7, 5.6) 4.0796 4.0800 0.0001

(10, 25, 30, 45) 32.9837 33.0000 0.0005

N(1.5, 1.0) 1.8150 1.8161 0.0001

N(2.5, 1.0) 2.8161 2.8161 0.0000

N(3.7, 2.1) 4.1583 4.3639 0.0471

N(6.0, 1.3) 6.3588 6.4110 0.0081

E(1.3) 0.4105 0.4110 0.0013

E(1.0) 0.3113 0.3161 0.0154

E(3.5) 1.1031 1.1065 0.0031

E(7.6) 2.3990 2.4027 0.0015

4.4.2 Pessimistic Value Simulation

The pessimistic value simulation has a similar process with the optimistic value
simulation, which is also a combination of the Monte Carlo simulation and the bi-
section search. First, we randomly generate vectors yi and calculate the credibilities
νi for all i = 1,2, . . . ,N . Then for any r ∈ �, the credibility Cr{f (x, ξ ) ≤ r} can
be estimated by

L(r) =
{

max{νi | f (x,yi ) ≤ r}, if max{νi | f (x,yi ) ≤ r} < 0.5

min{1 − νi | f (x,yi ) > r}, if max{νi | f (x,yi ) ≤ r} ≥ 0.5.

According to Definition 4.2, the α-pessimistic value is the minimal value which sat-
isfies L(r) ≥ α. Since L(r) is an increasing function, we can calculate the minimal
value by using the bisection search.

Algorithm 4.2 (Fuzzy simulation for pessimistic value)

Step 1. Initialize a small positive number ε.
Step 2. Randomly generate y i with credibilities νi for all i = 1,2, . . . ,N .
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Table 4.2 Simulation on the 0.4-optimistic value of ξ = (−0.3.1.8,2.3)

Simulated value Error Simulated value Error

1 1.8974 0.0014 26 1.8997 0.0002

2 1.8993 0.0004 27 1.8998 0.0001

3 1.8998 0.0001 28 1.8985 0.0008

4 1.8993 0.0004 29 1.8990 0.0005

5 1.9002 0.0001 30 1.8986 0.0008

6 1.8982 0.0010 31 1.8982 0.0009

7 1.8999 0.0001 32 1.8991 0.0005

8 1.8984 0.0008 33 1.9000 0.0000

9 1.8978 0.0012 34 1.8991 0.0005

10 1.9000 0.0000 35 1.8996 0.0002

11 1.8990 0.0005 36 1.8984 0.0009

12 1.9001 0.0001 37 1.8991 0.0005

13 1.8963 0.0019 38 1.8979 0.0011

14 1.9001 0.0001 39 1.8997 0.0001

15 1.8988 0.0006 40 1.8995 0.0003

16 1.8991 0.0005 41 1.8988 0.0007

17 1.8996 0.0002 42 1.8993 0.0004

18 1.8999 0.0001 43 1.8994 0.0003

19 1.8995 0.0003 44 1.8998 0.0001

20 1.8993 0.0004 45 1.8997 0.0002

21 1.8987 0.0007 46 1.8977 0.0012

22 1.8997 0.0001 47 1.9001 0.0001

23 1.9000 0.0000 48 1.8985 0.0008

24 1.8991 0.0005 49 1.8997 0.0002

25 1.8996 0.0002 50 1.8986 0.0007

Step 3. Calculate the minimum and maximum objective values

a = min
{
f (x,y i ) | 1 ≤ i ≤ N

}
, b = max

{
f (x,y i ) | 1 ≤ i ≤ N

}
.

Step 4. Set r = (a + b)/2.
Step 5. If L(r) ≥ α, set b = r . Otherwise, set a = r .
Step 6. If b − a > ε, go to step 4.
Step 7. Return (a + b)/2 as the α-pessimistic value.

Example 4.20 For the triangular fuzzy variable ξ = (1,2,3), we perform Algo-
rithm 4.2 by changing N from 100 to 5000 with step of 100, and take α in the set
of {0.6,0.4,0.2,0.8}. The simulated results are illustrated by Fig. 4.16. It is shown
that when N ≥ 2500, the simulated results are stable.
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Fig. 4.16 The pessimistic value simulation with variable parameter N

Example 4.21 Taking N = 2500 and α = 0.6, we perform Algorithm 4.2 on twenty
fuzzy variables, including equipossible fuzzy variables, triangular fuzzy variables,
trapezoidal fuzzy variables, normal fuzzy variables, and exponential fuzzy variables.
We record the results by Table 4.3, and make comparisons with the exact values. The
relative error ranges from 0.00 % to 4.72 % and the average value is 0.45 %, which
implies that the fuzzy simulation can obtain a very satisfactory approximation for
the pessimistic value.

Example 4.22 In this example, we take N = 2500 and α = 0.6, and perform Algo-
rithm 4.2 fifty times on fuzzy variable ξ = (−0.3,1.8,2.3). The results are recorded
by Table 4.4. Compared with the exact value 1.9, the maximum relative error is
0.21 %.

4.5 Applications

This section applies the maximax chance-constrained programming model to the
fuzzy portfolio selection problem. See Examples 2.4 and 2.5. If the decision-maker
prefers a portfolio with larger optimistic return under certain chance constraints, we
get the following maximax chance-constrained programming model,



4.5 Applications 99

Table 4.3 Simulation results on pessimistic value

Fuzzy variables Simulated value Exact value Relative error

(0.0, 1.0) 0.9988 1.0000 0.0012

(−1.0, 2.0) 1.9985 2.0000 0.0008

(3.5, 7.8) 7.7997 7.8000 0.0001

(−50, −10) −10.0050 −10.0000 0.0005

(−0.3, 1.8, 2.3) 1.8998 1.9000 0.0001

(1.5, 3.0, 4.1) 3.2189 3.2200 0.0003

(10, 15, 20) 15.9635 16.0000 0.0023

(25, 40, 50) 41.9735 42.0000 0.0006

(1.0, 2.0, 3.0, 4.0) 3.1966 3.2000 0.0011

(3.1, 4.2, 4.5, 6.0) 4.7925 4.8000 0.0016

(2.4, 3.6, 3.7, 5.6) 4.0778 4.0800 0.0005

(10, 25, 30, 45) 32.9999 33.0000 0.0000

N(1.5, 1.0) 1.8149 1.8161 0.0007

N(2.5, 1.0) 2.8164 2.8161 0.0001

N(3.7, 2.1) 4.1581 4.3639 0.0472

N(6.0, 1.3) 6.3483 6.4110 0.0098

E(1.3) 0.4076 0.4110 0.0081

E(1.0) 0.3126 0.3161 0.0111

E(3.5) 1.1018 1.1065 0.0042

E(7.6) 2.4011 2.4027 0.0006

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max (ξ1x1 + ξ2x2 + · · · + ξmxm)sup(α)

s.t. Cr{ξi1xi1 + ξi2xi2 + · · · + ξis xis ≥ γ } ≥ β

x1 + x2 + · · · + xm = 1

xi ≥ 0, i = 1,2, . . . ,m

(4.18)

where the first constraint denotes that the return from stocks i1, i2, . . . , is should be
larger than γ with credibility β .

Example 4.23 Suppose that there are four stocks with independent normal fuzzy
returns (see Table 3.3). Taking α = 0.8, β = 0.5, γ = 1.2 and i1 = 3, i2 = 4 in
model (4.18), we get the following linear programming model

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max 0.0191x1 + 0.111x2 + 0.0948x3 − 0.5133x4

s.t. 1.5x3 + x4 ≥ 1.2

x1 + x2 + x3 + x4 = 1

x1, x2, x3, x4 ≥ 0.
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Table 4.4 Simulation on the 0.6-pessimistic value of ξ = (−0.3.1.8,2.3)

Simulated value Error Simulated value Error

1 1.9001 0.0000 26 1.8992 0.0004

2 1.8986 0.0007 27 1.8988 0.0006

3 1.8997 0.0002 28 1.8982 0.0009

4 1.8971 0.0015 29 1.9000 0.0000

5 1.8997 0.0001 30 1.8997 0.0002

6 1.8988 0.0007 31 1.8990 0.0006

7 1.8999 0.0001 32 1.8993 0.0004

8 1.8983 0.0009 33 1.8960 0.0021

9 1.8998 0.0001 34 1.8971 0.0015

10 1.8985 0.0008 35 1.8984 0.0008

11 1.8975 0.0013 36 1.8969 0.0016

12 1.8974 0.0014 37 1.8989 0.0006

13 1.8990 0.0005 38 1.8976 0.0013

14 1.8988 0.0006 39 1.9000 0.0000

15 1.8992 0.0004 40 1.8989 0.0006

16 1.8994 0.0003 41 1.8988 0.0007

17 1.8998 0.0001 42 1.9000 0.0000

18 1.8997 0.0001 43 1.8985 0.0008

19 1.8995 0.0003 44 1.8948 0.0027

20 1.9000 0.0000 45 1.8974 0.0014

21 1.8999 0.0001 46 1.8994 0.0003

22 1.8992 0.0004 47 1.8992 0.0004

23 1.8995 0.0003 48 1.8981 0.0010

24 1.8977 0.0012 49 1.8989 0.0006

25 1.8993 0.0004 50 1.8997 0.0002

We use the Matlab function Linprog to solve the linear programming model. The
optimal objective value is 0.0980, and the optimal portfolio is

x1 = 0, x2 = 0.2, x3 = 0.8, x4 = 0.

Note that the optimal portfolio distributes no capital on the first and the fourth
stocks.

Example 4.24 In this example, the chance-constrained programming model (4.18)
is applied to the data shown in Table 3.4, which is composed of two triangular fuzzy
variables and two normal fuzzy variables. Taking α = 0.8, β = 0.7, γ = 0.6 and
i1 = 3, i2 = 4, we get the following model
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max (ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4)sup(α)

s.t. Cr{ξ3x3 + ξ4x4 ≥ 0.6} ≥ 0.7

x1 + x2 + x3 + x4 = 1

x1, x2, x3, x4 ≥ 0.

Since the model has no crisp equivalent, the genetic algorithm is used to solve the
model, which is coded in Matlab programming language under the running environ-
ment: a Windows 7 platform of personal computer with processor speed 2.4 GHz
and memory size 2 GB.

Take N = 3000, G = 30, Pc = 0.4, Pm = 0.2 and pop-size = 100. A run of the
genetic algorithm shows that the optimal portfolio is

x1 = 0.1393, x2 = 0.0885, x3 = 0.4075, x4 = 0.3647,

and the maximum optimistic value is 1.6622.
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Chapter 5
Entropy Optimization Model

Fuzzy entropy is used to characterize the uncertainty on the possible values of fuzzy
variables, which has been studied by many researchers such as Bhandari and Pal
(1993), De Luca and Termini (1972), Kaufmann (1975), Kosko (1986), Liu (1992),
Pal and Pal (1992), Pal and Bezdek (1994), Szmidt and Kacprzyk (2001), and Yager
(1979). Within the framework of credibility theory, Li and Liu (2008a) presented
a Shannon-like entropy for both discrete fuzzy variable and continuous fuzzy vari-
able. Li and Liu (2007) proposed the maximum entropy principle, and proved that
out of all the credibility functions with fixed expected value and variance, the nor-
mal credibility function has the maximum entropy. Based on the concept of fuzzy
entropy, Li et al. (2011) proposed an entropy optimization model by minimizing the
uncertainty of the fuzzy objective under certain expected constraints.

This chapter mainly includes the definition of fuzzy entropy, maximum entropy
theorems, entropy optimization model and its crisp equivalents, fuzzy simulation,
and applications in portfolio selection problem.

5.1 Entropy

This section introduces the definitions of entropy for discrete fuzzy variable and
continuous fuzzy variable, respectively.

Definition 5.1 (Li and Liu 2008a) Suppose that ξ is a discrete fuzzy variable taking
values in {x1, x2, . . .}. Then its entropy is defined by

H [ξ ] =
∞∑

i=1

S
(
Cr{ξ = xi}

)
(5.1)

where S(t) = −t ln t − (1 − t) ln(1 − t).

It is easy to prove that the continuous and differentiable function S(t) has the
following properties (see Fig. 5.1):
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Fig. 5.1 The shape of
function S(t) = −t ln t −
(1 − t) ln(1 − t)

(a) it is a nonnegative, unimodal and concave function;
(b) it takes the minimum value zero at t = 0 and t = 1;
(c) it takes the maximum value ln 2 at t = 0.5.

Remark 5.1 It is clear that the fuzzy entropy does not depend on the actual values
that the fuzzy variable takes, but only depends on the credibilities.

Example 5.1 Take (Θ,A,Cr) to be a credibility space {θ1, θ2, θ3} with Cr{θ1} =
0.4, Cr{θ2} = 0.6, and Cr{θ3} = 0.2. Define two fuzzy variables

ξ =

⎧
⎪⎨

⎪⎩

1, if θ = θ1

0, if θ = θ2

−1, if θ = θ3,

η =

⎧
⎪⎨

⎪⎩

5, if θ = θ1

3, if θ = θ2

−2, if θ = θ3.

It is clear that ξ �= η since they take different values on each point θ . However,
according to Definition 5.1, we have

S(0.4) = −0.4 ln 0.4 − 0.6 ln 0.6 = 0.6730,

S(0.6) = −0.6 ln 0.6 − 0.4 ln 0.4 = 0.6730,

S(0.2) = −0.2 ln 0.2 − 0.8 ln 0.8 = 0.3570,

which implies that the entropy is

H [ξ ] = H [η] = 0.6730 + 0.6730 + 0.3570 = 1.7030.

This example tells us that fuzzy variables may have the same entropy even if they
have different credibility functions.

Example 5.2 Let ξ be a discrete fuzzy variable with credibility function

ν(xi) =
{

1/2, if i = 1

1/2(i − 1), if i ≥ 2.
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It is easy to prove that S(ν(x1)) = S(ν(x2)) = ln 2, and for all i ≥ 3, we have

S
(
ν(xi)

) = − 1

2(i − 1)
ln

1

2(i − 1)
−
(

1 − 1

2(i − 1)

)

ln

(

1 − 1

2(i − 1)

)

≥ 1

2(i − 1)
ln
(
2(i − 1)

)

≥ 1

2(i − 1)
.

According to Definition 5.1, the entropy of fuzzy variable ξ is

H [ξ ] =
∞∑

i=1

S
(
ν(xi)

)= +∞.

Theorem 5.1 (Li and Liu 2008a) Suppose that ξ is a discrete fuzzy variable taking
values in {x1, x2, . . .}. Then we have

H [ξ ] ≥ 0

and the equality holds if and only if ξ is a constant number.

Proof It follows from the nonnegativity of function S(t) that H [ξ ] ≥ 0. Further-
more, the equality holds if and only if ν(xi) = 0 or ν(xi) = 1 for all i = 1,2, . . . .
According to the credibility extension condition, there exists one and only one in-
dex i with ν(xi) = 1 and ν(xj ) = 0 for all j �= i. That is, ξ degenerates to the
constant number xi . The proof is complete. �

This theorem states that the entropy of a discrete fuzzy variable reaches its min-
imum value zero when it degenerates to a constant number. In this case, there is no
uncertainty on it.

Theorem 5.2 (Li and Liu 2008a) Suppose that ξ is a simple fuzzy variable taking
values in {x1, x2, . . . , xn}. Then we have

H [ξ ] ≤ n ln 2

and the equality holds if and only if ν(xi) = 0.5 for all i = 1,2, . . . , n.

Proof Since function S(t) reaches its maximum value ln 2 at t = 0.5, it is easy to
prove that

H [ξ ] =
n∑

i=1

S
(
ν(xi)

)≤ n ln 2

and the equality holds if and only if ν(xi) = 0.5 for all i = 1,2, . . . , n. The proof is
complete. �
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This theorem states that the entropy of a simple fuzzy variable reaches its maxi-
mum value when it has an equipossible credibility function. In this case, there is no
preference among all values that the fuzzy variable will take. That is, the uncertainty
has the maximum value.

Definition 5.2 (Li and Liu 2008a) Suppose that ξ is a continuous fuzzy variable
with credibility function ν. Then its entropy is defined by

H [ξ ] =
∫ +∞

−∞
S
(
ν(x)

)
dx (5.2)

where S(t) = −t ln t − (1 − t) ln(1 − t).

Example 5.3 Let ξ be an equipossible fuzzy variable taking values in [a, b]. De-
note ν as its credibility function. Then for any x ∈ [a, b], we have

S
(
ν(x)

)= −0.5 ln 0.5 − (1 − 0.5) ln(1 − 0.5) = ln 2,

which implies that the entropy is

H [ξ ] =
∫ b

a

S
(
ν(x)

)
dx = (b − a) ln 2.

Example 5.4 Let ξ be a triangular fuzzy variable (a, b, c) with credibility func-
tion ν. According to the theorem of integration by parts, we have

∫ b

a

S
(
ν(x)

)
dx =

∫ b

a

S
(
(x − a)/2(b − a)

)
dx = (b − a)/2,

∫ c

b

S
(
ν(x)

)
dx =

∫ c

b

S
(
(c − x)/2(c − b)

)
dx = (c − b)/2,

which implies that the entropy is

H [ξ ] =
∫ b

a

S
(
ν(x)

)
dx +

∫ c

b

S
(
ν(x)

)
dx = (c − a)/2.

Example 5.5 Let ξ be a trapezoidal fuzzy variable (a, b, c, d). According to the
theorem of integration by parts, we have

∫ b

a

S
(
ν(x)

)
dx =

∫ b

a

S
(
(x − a)/2(b − a)

)
dx = (b − a)/2,

∫ c

b

S
(
ν(x)

)
dx =

∫ c

b

S(0.5)dx = (c − b) ln 2,

∫ d

c

S
(
ν(x)

)
dx =

∫ d

c

S
(
(d − x)/2(d − c)

)
dx = (d − c)/2,
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which implies that the entropy is

H [ξ ] =
∫ b

a

S
(
ν(x)

)
dx +

∫ c

b

S
(
ν(x)

)
dx +

∫ d

c

S
(
ν(x)

)
dx

= (b − a)/2 + (c − b) ln 2 + (d − c)/2.

Example 5.6 Let ξ = EXP(m) be an exponential fuzzy variable. For any x ≥ 0, it is
easy to prove that

S
(
ν(x)

)= ln
(
1 + exp(t)

)− t exp(t)/
(
1 + exp(t)

)

where t = πx/
√

6m. According to Definition 5.2, we have

H [ξ ] =
√

6m

π

∫ +∞

0
ln
(
1 + exp(t)

)− t exp(t)/
(
1 + exp(t)

)
dt = πm√

6
.

This example tells us that the entropy for an exponential fuzzy variable is propor-
tional to parameter m.

Example 5.7 Let ξ = N(e,σ ) be a normal fuzzy variable. For any x ≥ 0, it is easy
to prove that

S
(
ν(x)

)= ln
(
1 + exp(t)

)− t exp(t)/
(
1 + exp(t)

)

where t = π |x − e|/√6σ . According to Definition 5.2, we have

H [ξ ] = 2
√

6σ

π

∫ +∞

0
ln
(
1 + exp(t)

)− t exp(t)/
(
1 + exp(t)

)
dt =

√
6πσ

3
.

Therefore, the entropy for a normal fuzzy variable is proportional to the standard
variance, but has no relation with its expected value.

Theorem 5.3 (Li and Liu 2008a) Let ξ be a continuous fuzzy variable. Then we
have

H [ξ ] > 0.

Proof For any 0 < ε < 0.5, according to the credibility extension condition, there is
a real number c with ν(c) > ε. It follows from the continuity that there is a number
δ > 0 such that ν(x) ≥ ε for all |x − c| ≤ δ. Then we have

H [ξ ] ≥ δ × S(ε) > 0.

The proof is complete. �
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Theorem 5.4 (Li and Liu 2008a) Let ξ be a continuous fuzzy variable taking values
in the interval [a, b]. Then we have

H [ξ ] ≤ (b − a) ln 2 (5.3)

and the equality holds if and only if ξ is an equipossible fuzzy variable.

Proof Since function S(t) reaches its maximum ln 2 at t = 0.5, we have

H [ξ ] ≤
∫ b

a

ln 2 dx = (b − a) ln 2,

and the equality holds if and only if ν(x) = 0.5 for all x ∈ [a, b], that is, ξ is an
equipossible fuzzy variable. The proof is complete. �

Theorem 5.5 (Li and Liu 2008a) Let ξ be a continuous fuzzy variable. Then for any
real numbers a and b, we have

H [aξ + b] = |a|H [ξ ]. (5.4)

Proof Suppose that fuzzy variables ξ and aξ + b have credibility functions ν and
μ, respectively. If a = 0, then (5.4) is trivial. Otherwise, for any x ∈ �, it is easy to
prove that

μ(x) = Cr{aξ + b = x} = Cr
{
ξ = (x − b)/a

}= ν
(
(x − b)/a

)
.

It follows from the definition of entropy that

H [aξ + b] =
∫ +∞

−∞
S
(
ν(x − b)/a

)
dx

=
∫ +∞

−∞
|a|S(ν(x)

)
dx

= |a|H [ξ ].
The theorem is proved. �

5.2 Maximum Entropy Principle

Let ξ be a fuzzy variable with some given information, for example, the values
of expected value and variance. Generally speaking, there is an infinite number of
credibility functions satisfying this information, and each of these has a different
amount of entropy associated with it. The problem is which one we should take?
In order to answer this problem, Li and Liu (2007) proposed the maximum entropy
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principle: out of all the credibility functions satisfying the given constraints, choose
the one that has the maximum entropy.

The reason for this principle is quite simple. If we choose a credibility function
with a smaller entropy, we may have used some additional information consciously
or unconsciously. However, it is not correct to use such information because this is
not given to us.

Theorem 5.6 (Li and Liu 2007) Let ξ be a continuous nonnegative fuzzy variable
with second moment m2. Then we have

H [ξ ] ≤ πm/
√

6 (5.5)

and the maximum entropy attains if ξ is an exponential fuzzy variable.

Proof Assume that continuous function ν is the credibility function of ξ . The proof
is based on the following two steps.

Step 1. Suppose that ν is a decreasing function on [0,+∞). In this case, accord-
ing to the credibility inversion theorem, we have ν(0) = 0.5 and Cr{ξ ≥ x} = ν(x)

for any x > 0. Thus the second moment is

E
[
ξ2] =

∫ +∞

0
Cr
{
ξ2 ≥ x

}
dx

=
∫ +∞

0
2xCr{ξ ≥ x}dx

=
∫ +∞

0
2xν(x)dx.

The maximum entropy credibility function ν should maximize the entropy

−
∫ +∞

0

(
ν(x) lnν(x) + (1 − ν(x)

)
ln
(
1 − ν(x)

))
dx

subject to the moment constraint

∫ +∞

0
2xν(x)dx = m2.

The Lagrangian is

L ≡ −
∫ +∞

0

(
ν(x) lnν(x) + (1 − ν(x)

)
ln
(
1 − ν(x)

))
dx

− λ

(∫ +∞

0
2xν(x)dx − m2

)

.
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Euler-Lagrange equation tells us that the maximum entropy credibility function
meets lnν(x) − ln(1 − ν(x)) + 2λx = 0, and has the form

ν(x) = 1/
(
1 + exp(2λx)

)
.

Substituting it into the moment constraint, we get λ = π/(2
√

6m) and then

ν(x) = 1/
(
1 + exp

(
πx/(

√
6m)

))
, x ≥ 0,

which is just the exponential credibility function with second moment m2, and the
entropy is πm/

√
6.

Step 2. Let ξ be a general fuzzy variable with second moment m2. Now we define
a fuzzy variable η via credibility function

μ(x) = sup
y≥x

ν(y), x ≥ 0.

Then μ(x) is a decreasing function on [0,+∞), and

Cr
{
η2 ≥ x

}= sup
y≥√

x

μ(y) = sup
y≥√

x

sup
z≥y

ν(z) = sup
y≥√

x

ν(y) ≤ Cr
{
ξ2 ≥ x

}

for any x > 0. Thus we have

E
[
η2]=

∫ +∞

0
Cr
{
η2 ≥ x

}
dx ≤

∫ +∞

0
Cr
{
ξ2 ≥ x

}
dx = m2.

It follows from ν(x) ≤ μ(x) and step 1 that

H [ξ ] ≤ H [η] ≤ π

√

E
[
η2
]
/6 ≤ πm/

√
6.

The proof is complete. �

Theorem 5.7 (Li and Liu 2007) Let ξ be a continuous fuzzy variable with expected
value e and variance σ 2. Then we have

H [ξ ] ≤ √
6πσ/3 (5.6)

and the maximum entropy attains if ξ is a normal fuzzy variable.

Proof Assume that continuous function ν is the credibility function of ξ . The proof
is based on the following two steps.

Step 1. Suppose that ν(x) is a unimodal and symmetric function about x = e. For
any x ≥ 0, it follows from Theorem 1.3 that

Cr
{
(ξ − e)2 ≥ x

} = Cr
{
(ξ − e ≥ √

x) ∪ (ξ − e ≤ −√
x)
}

= Cr{ξ − e ≥ √
x}.
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Then, according to the definition of variance, we have

V [ξ ] =
∫ +∞

0
Cr{ξ − e ≥ √

x}dx

=
∫ +∞

e

2(x − e)Cr{ξ ≥ x}dx

=
∫ +∞

e

2(x − e)ν(x)dx.

The maximum entropy credibility function ν should maximize the entropy

H [ξ ] = −
∫ +∞

e

2
(
ν(x) lnν(x) + (1 − ν(x)

)
ln
(
1 − ν(x)

))
dx

subject to the variance constraint. The Lagrangian is

L ≡ −
∫ +∞

e

2
(
ν(x) lnν(x) + (1 − ν(x)

)
ln
(
1 − ν(x)

))
dx

− λ

(∫ +∞

e

2(x − e)ν(x)dx − σ 2
)

.

Euler-Lagrange equation gives that the maximum entropy credibility function meets
the following equation

lnν(x) − ln
(
1 − ν(x)

)+ λ(x − e) = 0,

and has the form ν(x) = 1/(1 + exp(λ(x − e))). Substituting it into the variance
constraint, we get

ν(x) = 1/
(
1 + exp

(
π |x − e|/(√6σ)

))
, x ∈ �

which is just the normal credibility function with expected value e and variance σ 2,
and the entropy is

√
6πσ/3.

Step 2. Let ξ be a general fuzzy variable with expected value e and variance σ 2.
We define a fuzzy variable η by the credibility function

μ(x) =
⎧
⎨

⎩

sup
y≤x

(
ν(y) ∨ ν(2e − y)

)
, if x ≤ e

sup
y≥x

(
ν(y) ∨ ν(2e − y)

)
, if x > e.

(5.7)

It is easy to prove that μ(x) is a unimodal and symmetric function about x = e.
Furthermore, for any r > 0, we have

Cr
{
(η − e)2 ≥ r

} = sup
x≥e+√

r

μ(x) = sup
x≥e+√

r

sup
y≥x

(
ν(y) ∨ ν(2e − y)

)
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= sup
x≥e+√

r

(
ν(x) ∨ ν(2e − x)

)= sup
(x−e)2≥r

ν(x)

≤ Cr
{
(ξ − e)2 ≥ r

}

which implies that

V [η] =
∫ +∞

0
Cr
{
(η − e)2 ≥ r

}
dr ≤

∫ +∞

0
Cr
{
(ξ − e)2 ≥ r

}
dr = σ 2.

It follows from ν(x) ≤ μ(x) and step 1 that

H [ξ ] ≤ H [η] ≤ π
√

6V [η]/3 ≤ √
6πσ/3.

The proof is complete. �

5.3 Entropy Optimization Model

For fuzzy decision problems, some decision-makers prefer the solution which has
the minimum uncertainty on possible values of the objective function. If we use
entropy to denote the uncertainty, we get the following entropy optimization model
with expected constraints,

⎧
⎪⎨

⎪⎩

min H
[
f (x, ξ)

]

s.t. E
[
f (x, ξ)

]≥ α

E
[
gi(x, ξ)

]≤ 0, i = 1,2, . . . , n

(5.8)

where α is a predetermined constant.

Remark 5.2 The concepts of feasible solution, local optimal solution, and global
optimal solution are given by Definitions 2.6, 2.7, and 2.8.

In what follows, we discuss the crisp equivalents for the entropy optimization
model satisfying the following conditions:

(c1) objective function f (x, ξ ) = f0(x) + f1(x)ξ1 + f2(x)ξ2 + · · · + fq(x)ξq ;
(c2) constraint function gi(x, ξ ) = gi0(x) + gi1(x)ξ1 + gi2(x)ξ2 + · · · + giq(x)ξq ,

where fk and gik are nonnegative functions for all 1 ≤ i ≤ n and 0 ≤ k ≤ q .

Theorem 5.8 Assume that ξ1, ξ2, . . . , ξq are independent triangular fuzzy variables.
If the entropy optimization model satisfies conditions (c1–c2), then it has the follow-
ing crisp equivalent,
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⎧
⎪⎨

⎪⎩

min f
(
x,H [ξ ])− f0(x)

s.t. f
(
x,E[ξ ])≥ α

gi

(
x,E[ξ ])≤ 0, i = 1,2, . . . , n

(5.9)

where H [ξ ] = (H [ξ1],H [ξ2], . . . ,H [ξm]) and E[ξ ] = (E[ξ1],E[ξ2], . . . ,E[ξm]).

Proof Since fuzzy variables ξ1, ξ2, . . . , ξq are independent, for each feasible solu-
tion x , the objective value is a triangular fuzzy variable

f (x, ξ ) = (f (x,a), f (x,b), f (x, c)
)
,

which has the expected value

E
[
f (x, ξ )

]= (f (x,a) + 2f (x,b) + f (x, c)
)
/4 = f

(
x,E[ξ ])

and has the entropy

H
[
f (x, ξ )

]= (f (x, c) − f (x,a)
)
/2 = f

(
x,H [ξ ])− f0(x).

Similarly, for each feasible solution x , the constraint function gi(x, ξ ) is a triangular
fuzzy variable with expected value

E
[
gi(x, ξ )

]= (gi(x,a) + 2gi(x,b) + gi(x, c)
)
/4 = gi

(
x,E[ξ ])

for each i = 1,2, . . . , n. The proof is complete. �

Remark 5.3 Note that Theorem 5.8 also holds for equipossible fuzzy variables,
trapezoidal fuzzy variables, and normal fuzzy variables.

In many cases, there are multiple conflicting objectives. If the decision-maker
prefers to get a solution with the minimum uncertainty for all objectives, we have
the following multi-objective entropy optimization model

⎧
⎪⎨

⎪⎩

min
[
H
[
f1(x, ξ)

]
,H
[
f2(x, ξ)

]
, . . . ,H

[
fp(x, ξ)

]]

s.t. E
[
fj (x, ξ)

]≥ αj , j = 1,2, . . . , p

E
[
gi(x, ξ)

]≤ 0, i = 1,2, . . . , n.

5.4 Fuzzy Simulation

In order to solve the general entropy optimization models, this section introduces a
fuzzy simulation technique to approximate the fuzzy entropy

U : x → H
[
f (x, ξ )

]
(5.10)

where f is a real function, and ξ is a fuzzy vector.
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Fig. 5.2 Entropy simulation with variable parameter N

Suppose that ξ has a joint credibility function ν. Randomly generate vectors y i

with credibilities νi for all i = 1,2, . . . ,N . According to Definition 5.2, the entropy
can be simulated as the numerical integration of function S(ν(x)). The procedure is
listed as follows.

Algorithm 5.1 (Fuzzy simulation for entropy)

Step 1. Set h = 0 and k = 0.
Step 2. Randomly generate y i with credibilities νi for all i = 1,2, . . . ,N .
Step 3. Calculate the minimum and maximum values

a = min
{
f (x,y i ) | 1 ≤ i ≤ N

}
, b = max

{
f (x,y i ) | 1 ≤ i ≤ N

}
.

Step 4. Calculate sk = −νk lnνk − (1 − νk) ln(1 − νk).
Step 5. Set h → h + sk . If k < N , set k = k + 1 and go to step 4.
Step 6. Return h(b − a)/N as the entropy.

Example 5.8 Taking ξ = (1,2,3), we study the convergence of the entropy simu-
lation algorithm by changing N from 100 to 5000 with step of 100. The results are
illustrated by Fig. 5.2. It is shown that when N ≥ 2000, the simulated results are
stable and converge to the exact value H [ξ ] = 1.

Example 5.9 Taking N = 2000, we perform Algorithm 5.1 on twenty fuzzy vari-
ables, including equipossible fuzzy variables, triangular fuzzy variables, trapezoidal
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Table 5.1 Simulation results on entropy

Fuzzy variables Simulated value Exact value Relative error

(0.0, 1.0) 0.6931 0.6931 0.0000

(−1.0, 2.0) 2.0794 2.0794 0.0000

(3.5, 7.8) 2.9803 2.9805 0.0001

(−50, −10) 27.7233 27.7259 0.0001

(−0.3, 1.8, 2.3) 1.3017 1.3000 0.0013

(1.5, 3.0, 4.1) 1.2833 1.3000 0.0128

(10, 15, 20) 4.9387 5.0000 0.0123

(25, 40, 50) 12.5234 12.5000 0.0019

(1.0, 2.0, 3.0, 4.0) 1.6843 1.6931 0.0052

(3.1, 4.2, 4.5, 6.0) 1.5002 1.5079 0.0051

(2.4, 3.6, 3.7, 5.6) 4.0464 4.0763 0.0073

(10, 25, 30, 45) 1.5867 1.6193 0.0201

N(1.5, 1.0) 2.5464 2.5651 0.0073

N(2.5, 1.0) 2.5688 2.5651 0.0014

N(3.7, 2.1) 5.4003 5.3867 0.0025

N(6.0, 1.3) 3.3310 3.3346 0.0011

E(1.3) 1.6476 1.6673 0.0118

E(1.0) 1.2907 1.2825 0.0063

E(3.5) 4.4391 4.4889 0.0111

E(7.6) 9.7563 9.7474 0.0009

fuzzy variables, exponential fuzzy variables, and normal fuzzy variables. We record
the simulated results by Table 5.1, and make comparisons with the exact values. The
last column records the relative error (3.25), which ranges from 0.00 % to 2.01 %
and the average error is 0.54 %. These results imply that the simulation algorithm
can obtain a very satisfactory approximation for entropy.

Example 5.10 In this example, we take N = 2000, and perform Algorithm 5.1 fifty
times on the triangular fuzzy variable ξ = (−0.3,1.8,2.3). The results are recorded
by Table 5.2. Compared with the exact value H [ξ ] = 1.3, the relative error ranges
from 0.00 % to 0.50 %. This example tells us that the entropy simulation is a stochas-
tic algorithm such that we may get different values if we perform the algorithm more
than one times.

5.5 Applications

This section applies the entropy optimization model to study the fuzzy portfolio
selection problem. See Examples 2.4 and 2.5.
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Table 5.2 Entropy simulation on ξ = (−0.3,1.8,2.3)

Simulated value Error Simulated value Error

1 1.2962 0.0030 26 1.3002 0.0001

2 1.3016 0.0012 27 1.3006 0.0005

3 1.2951 0.0038 28 1.3009 0.0007

4 1.3013 0.0010 29 1.2994 0.0005

5 1.3047 0.0036 30 1.3004 0.0003

6 1.3036 0.0028 31 1.3026 0.0020

7 1.3014 0.0011 32 1.3029 0.0022

8 1.2989 0.0008 33 1.3049 0.0038

9 1.2938 0.0048 34 1.2946 0.0041

10 1.3033 0.0025 35 1.3017 0.0013

11 1.3043 0.0033 36 1.3016 0.0012

12 1.3015 0.0011 37 1.2990 0.0008

13 1.3025 0.0019 38 1.3010 0.0008

14 1.2992 0.0006 39 1.3002 0.0001

15 1.2984 0.0012 40 1.2974 0.0020

16 1.2944 0.0043 41 1.3043 0.0033

17 1.3004 0.0003 42 1.3016 0.0013

18 1.3013 0.0010 43 1.3026 0.0020

19 1.2993 0.0005 44 1.2992 0.0006

20 1.2995 0.0004 45 1.3007 0.0006

21 1.2936 0.0050 46 1.3023 0.0017

22 1.2991 0.0007 47 1.2987 0.0010

23 1.2994 0.0005 48 1.3012 0.0009

24 1.3015 0.0011 49 1.2963 0.0029

25 1.2955 0.0035 50 1.2961 0.0030

Example 5.11 Suppose that there are four stocks with independent normal fuzzy
returns (see Table 3.3). If the investor would like to minimize the entropy with return
level 1.4, then we get the following formulation

⎧
⎪⎪⎨

⎪⎪⎩

min x1 + 1.1x2 + 1.3x3 + 1.4x4

s.t. 1.1x1 + 1.3x2 + 1.5x3 + x4 ≥ 1.4
x1 + x2 + x3 + x4 = 1
x1, x2, x3, x4 ≥ 0.

We use the Matlab function Linprog to solve the linear programming model. It is
shown that the optimal portfolio is

x1 = 0, x2 = 0.5, x3 = 0.5, x4 = 0,

and the objective value is 1.2.
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Example 5.12 In this example, the entropy optimization model is applied to the
data shown in Table 3.4, which is composed of two triangular fuzzy variables and
two normal fuzzy variables. With expected return level 1.4, if the decision-maker
prefers a portfolio with a smaller entropy, we have the following entropy optimiza-
tion model,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min H [ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4]
s.t. E[ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4] ≥ 1.4

x1 + x2 + x3 + x4 = 1

x1, x2, x3, x4 ≥ 0.

Take N = 3000, G = 30, Pc = 0.4, Pm = 0.2 and pop-size = 100. A run of the
genetic algorithm shows that the optimal portfolio is

x1 = 0.1271, x2 = 0.1630, x3 = 0.1042, x4 = 0.6057,

and the entropy is 6.2707.
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Chapter 6
Cross-Entropy Minimization Model

Cross-entropy is used to characterize the divergence between two fuzzy variables. In
1992, Kapur and Kesavan (1992) proposed a cross-entropy minimization model to
minimize the divergence of the distribution on objective values from a priori distri-
bution. From then on, many researchers accepted and investigated this new model-
ing method (Cherny and Maslov 2003; Fang et al. 1997; Qin et al. 2009; Rubinstein
2008; Simonelli 2005). Based on the concepts of fuzzy entropy, Bhandari and Pal
(1993) defined the cross-entropy for fuzzy set by using membership function, and
Li and Liu (2012) defined the cross-entropy for fuzzy variable by using credibil-
ity function. Furthermore, Qin et al. (2009) proposed a cross-entropy minimization
model to study the fuzzy portfolio selection problems.

This chapter mainly includes the definition of cross-entropy, minimum cross-
entropy principle, cross-entropy minimization model, fuzzy simulation and applica-
tions.

6.1 Cross-Entropy

This section defines a concept of fuzzy cross-entropy for quantifying the diver-
gences of fuzzy variables from a priori one.

Definition 6.1 Let ξ and η be two discrete fuzzy variables taking values in
{x1, x2, . . .}. Then the fuzzy cross-entropy of ξ from η is defined as

D[ξ ;η] =
∞∑

i=1

T
(
Cr{ξ = xi},Cr{η = xi}

)
(6.1)

where T : [0,1] × [0,1] → [0,∞) is a binary function defined as

T (s, t) = s ln(s/t) + (1 − s) ln
(
(1 − s)/(1 − t)

)
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Fig. 6.1 The shape of
function T (s, t)

with boundary conditions

T (s,0) =
{

0, if s = 0
+∞, if s > 0,

T (s,1) =
{

0, if s = 1
+∞, if s < 1.

If fuzzy variables ξ and η have credibility functions ν and μ, respectively, then
the cross-entropy of ξ from η is

D[ξ ;η] =
∞∑

i=1

T
(
ν(xi),μ(xi)

)
. (6.2)

It is easy to prove that function T has a gradient function

∇T (s, t) =
(

ln

(
s

t

)

− ln

(
1 − s

1 − t

)

,
1 − s

1 − t
− s

t

)

, (6.3)

and has a Hessian matrix

H(s, t) =

⎛

⎜
⎜
⎝

1

s(1 − s)
− 1

t (1 − t)

− 1

t (1 − t)

s

t2
+ 1 − s

(1 − t)2

⎞

⎟
⎟
⎠ . (6.4)

Then the following properties about T (s, t) can be easily proved (see Fig. 6.1):
(a) it is a strictly convex function with respect to (s, t) and attains its minimum
value zero when s = t ; (b) for any 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1, we have T (s, t) =
T (1 − s,1 − t).

Remark 6.1 It is easy to prove that the cross-entropy is permutationally symmetric,
that is, the value does not change if the outcomes are labeled differently.



6.1 Cross-Entropy 121

Remark 6.2 The concept of cross-entropy measures the divergence of a fuzzy vari-
able from a priori one instead of the distance. Hence, the symmetry property is not
necessary. That is, we may have D[ξ ;η] �= D[η; ξ ]. For example, let ξ and η be two
simple fuzzy variables with credibility functions

ν(x) =
⎧
⎨

⎩

0.3, if x = x1
0.4, if x = x2
0.6, if x = x3,

μ(x) =
⎧
⎨

⎩

0.2, if x = x1
0.5, if x = x2
0.5, if x = x3,

respectively. First, it is easy to prove that

T (0.3,0.2) = 0.0282, T (0.4,0.5) = 0.0201, T (0.6,0.5) = 0.0201.

Then according to Definition 6.1, we have the cross-entropy of ξ from η is
D[ξ ;η] = 0.0684. On the other hand, it follows from

T (0.2,0.3) = 0.0257, T (0.5,0.4) = 0.0204, T (0.5,0.6) = 0.0204

that the cross-entropy of η from ξ is D[η; ξ ] = 0.0665.

Definition 6.2 Let ξ and η be two continuous fuzzy variables. Then the cross-
entropy of ξ from η is defined as

D[ξ ;η] =
∫ ∞

−∞
T
(
ν(x),μ(x)

)
dx

where ν and μ are the credibility functions of ξ and η, respectively.

Example 6.1 Let ξ = (a, b, c) be a triangular fuzzy variable with credibility func-
tion ν, and let τ = (a, c) be an equipossible fuzzy variable. According to Defini-
tion 6.2, it is easy to prove that

D[ξ ; τ ] =
∫ c

a

ν(x) ln
(
ν(x)/0.5

)+ (1 − ν(x)
)

ln
((

1 − ν(x)
)
/0.5

)
dx

=
∫ c

a

ν(x) lnν(x) + (1 − ν(x)
)

ln
(
1 − ν(x)

)
dx +

∫ c

a

ln 2 dx

= (ln 2 − 0.5)(c − a).

Now, we consider the cross-entropy of fuzzy variable τ from ξ . First, we have

D[τ ; ξ ] =
∫ c

a

0.5 ln
(
0.5/ν(x)

)+ 0.5 ln
(
0.5/

(
1 − ν(x)

))
dx

=
∫ c

a

−0.5 lnν(x) − 0.5 ln
(
1 − ν(x)

)
dx −

∫ c

a

ln 2 dx

= (a − c) ln 2 − 0.5
∫ c

a

lnν(x) + ln
(
1 − ν(x)

)
dx.
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Furthermore, it follows from the theorem of integration by parts that

∫ b

a

lnν(x) + ln
(
1 − ν(x)

)
dx

=
∫ b

a

ln
(
(x − a)/2(b − a)

)+ ln
(
1 − (x − a)/2(b − a)

)
dx

= −2(b − a),

and
∫ c

b

lnν(x) + ln
(
1 − ν(x)

)
dx

=
∫ c

b

ln
(
(c − x)/2(c − b)

)+ ln
(
1 − (c − x)/2(c − b)

)
dx

= −2(c − b),

which implies that the cross-entropy of τ from ξ is

D[τ ; ξ ] = (1 − ln 2)(c − a).

Example 6.2 Let ξ = (a, b, c, d) be a trapezoidal fuzzy variable with credibility
function ν, and let τ = (a, c) be an equipossible fuzzy variable. It is easy to prove
that

∫ b

a

T
(
ν(x),0.5

)
dx = (ln 2 − 0.5)(b − a),

∫ c

b

T
(
ν(x),0.5

)
dx =

∫ c

b

0.5 ln(0.5/0.5) + 0.5 ln(0.5/0.5)dx = 0,

∫ d

c

T
(
ν(x),0.5

)
dx = (ln 2 − 0.5)(d − c).

According to Definition 6.2, the cross-entropy of ξ from τ is

D[η; τ ] = (ln 2 − 0.5)(b − a) + (ln 2 − 0.5)(d − c)

= (ln 2 − 0.5)(d − c + b − a).

Now, we consider the cross-entropy of fuzzy variable τ from ξ . First, we have

D[τ ; ξ ] =
∫ d

a

0.5 ln
(
0.5/ν(x)

)+ 0.5 ln
(
0.5/

(
1 − ν(x)

))
dx

=
∫ d

a

−0.5 lnν(x) − 0.5 ln
(
1 − ν(x)

)
dx −

∫ d

a

ln 2 dx

= (a − d) ln 2 − 0.5
∫ d

a

lnν(x) + ln
(
1 − ν(x)

)
dx.
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Furthermore, it follows from the theorem of integration by parts that

∫ b

a

lnν(x) + ln
(
1 − ν(x)

)
dx = −2(b − a),

∫ c

b

lnν(x) + ln
(
1 − ν(x)

)
dx =

∫ c

b

ln 0.5 + ln 0.5 dx = 2(c − b) ln 0.5,

∫ d

c

lnν(x) + ln
(
1 − ν(x)

)
dx = −2(d − c),

which implies that

D[τ ; ξ ] = (d − c + b − a)(1 − ln 2).

Theorem 6.1 For any fuzzy variables ξ and η, we have

D[ξ ;η] ≥ 0

and the equality holds if and only if ξ and η are identically distributed.

Proof Let ν and μ be the credibility functions of fuzzy variables ξ and η, respec-
tively. It follows from the nonnegativity of function T (s, t) that

D[ξ ;η] =
∫ ∞

−∞
T
(
ν(x),μ(x)

)
dx ≥ 0.

Furthermore, the equality holds if and only if T (ν(x),μ(x)) = 0, i.e., ν(x) = μ(x)

for all x ∈ �, which implies that ξ and η are identically distributed. If ξ and η are
discrete fuzzy variables, the theorem can be proved in a similar way. The proof is
complete. �

Theorem 6.2 Let ξ and η be two continuous fuzzy variables. For any real numbers
a and b, we have

D[aξ + b;aη + b] = |a|D[ξ ;η].

Proof The conclusion is trivial when a = 0. In what follows, we assume that a �= 0.
Let ν and μ be the credibility functions of fuzzy variables ξ and η, respectively. It
follows from Definition 6.2 that

D[aξ + b;aη + b] =
∫ ∞

−∞
T
(
ν
(
(x − b)/a

)
,μ
(
(x − b)/a

))
dx

=
∫ ∞

−∞
|a|T (ν(t),μ(t)

)
dt

= |a|D[ξ ;η].
The proof is complete. �
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Theorem 6.3 Let τ = (a, b) be an equipossible fuzzy variable. Then for any con-
tinuous fuzzy variable ξ taking values in [a, b], we have

D[ξ, τ ] = H [τ ] − H [ξ ].

Proof Let ν be the credibility function of ξ . It follows from the definition of cross-
entropy that

D[ξ, τ ] =
∫ b

a

ν(x) ln
(
2ν(x)

)+ (1 − ν(x)
)

ln
(
2 − 2ν(x)

)
dx

=
∫ b

a

ln 2 + ν(x) lnν(x) + (1 − ν(x)
)

ln
(
1 − ν(x)

)
dx

= (b − a) ln 2 − H [ξ ]
= H [τ ] − H [ξ ].

The proof is complete. �

Theorem 6.4 Let τ be an equipossible fuzzy variable taking values in {x1, x2, . . . ,

xn}. For any fuzzy variable ξ taking values in {x1, x2, . . . , xn}, we have

D[ξ, τ ] = H [τ ] − H [ξ ].

Proof It may be proved similarly with Theorem 6.3. �

6.2 Minimum Cross-Entropy Principle

In many real problems, the credibility function of a fuzzy variable is unavailable
except some partial information, for example, moment constraints, which may be
based on observations. In this case, the maximum entropy principle tells us that out
of all the credibility functions satisfying given constraints, choose the one that has
maximum entropy. However, there may be another type of information, for example,
a prior credibility function, which may be based on intuition or experience with the
problem. If both the a prior credibility function and the moment constraints are
given, which credibility function should we choose? The following minimum cross-
entropy principle tells us that: out of all credibility functions satisfying given moment
constraints, choose the one that is closest to the given a priori credibility function.

There is nothing mysterious about this principle. It is just based on common
sense. Our credibility function must be consistent with observations, and if there are
many credibility functions consistent with these observations, we choose the one
that is nearest to the intuition and experience.

Remark 6.3 If there is no a priori experience or intuition to guide us, we choose
the credibility function that is nearest to the equipossible one τ . In this sense, the
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maximum entropy principle and the minimum cross-entropy principle are consistent
because

H [ξ ] = H [τ ] − D[ξ ; τ ].

6.3 Cross-Entropy Minimization Model

For the fuzzy programming problems, it is possible that some decision-makers could
provide a priori credibility function for the fuzzy objective. In this case, Qin et al.
(2009) proposed a cross-entropy minimization model, which minimizes the diver-
gence from the prior fuzzy variable η under certain expected constraints

{
min D

[
f (x, ξ);η]

s.t. E
[
gi(x, ξ)

]≤ 0, i = 1,2, . . . , n.
(6.5)

Remark 6.4 The concepts of feasible solution, local optimal solution, and global
optimal solution are given by Definitions 2.6, 2.7, and 2.8.

In many cases, there are multiple conflicting objectives. If the decision-maker
prefers to get a solution with the minimum cross-entropy for all objectives, we have
the following multi-objective cross-entropy minimization model

{
min

[
D
[
f1(x, ξ);η1

]
,D
[
f2(x, ξ);η2

]
, . . . ,D

[
fp(x, ξ);ηp

]]

s.t. E
[
gi(x, ξ)

]≤ 0, i = 1,2, . . . , n.

Remark 6.5 The expected value constraints can be changed to chance constraints if
the decision-maker prefers to ensure the feasibility of solution with certain credibil-
ities.

6.4 Fuzzy Simulation

Generally speaking, it is difficult to calculate the cross-entropy analytically. This
section introduces a simulation method to approximate the cross-entropy

U : x → D
[
f (x, ξ );η]. (6.6)

For each feasible solution x , suppose that f (x, ξ ) has a credibility function ν, and
fuzzy variable η has a credibility function μ. According to Definition 6.2, the cross-
entropy can be simulated as the numerical integration of function

T (ν,μ) = ν ln(ν/μ) + (1 − ν) ln
(
(1 − ν)/(1 − μ)

)
.
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Fig. 6.2 The cross-entropy simulation with variable parameter N

Randomly generate vectors yi and calculate the objective values fi = f (x,y i ) for
all i = 1,2, . . . ,N . Furthermore, calculate the credibilities νi and μi for all i =
1,2, . . . ,N . Then the cross-entropy can be simulated as

D
[
f (x, ξ );η]=

N∑

i=1

T (νi,μi)(b − a)/N

provided that N is sufficient large, where

a = min
{
f (x,y i ) | 1 ≤ i ≤ N

}
, b = max

{
f (x,y i ) | 1 ≤ i ≤ N

}
.

The procedure is listed as follows.

Algorithm 6.1 (Fuzzy simulation for cross-entropy)

Step 1. Set c = 0 and k = 0.
Step 2. Randomly generate y i for all i = 1,2, . . . ,N .
Step 3. Calculate the objective values fi = f (x,y i ) and the credibilities

μi = Cr{η = fi}, i = 1,2, . . . ,N,

νi = Cr
{
f (x, ξ) = fi

}
, i = 1,2, . . . ,N.

Step 4. Calculate the minimum and maximum objective values a and b.
Step 5. Calculate tk = νk ln(νk/μk) + (1 − νk) ln((1 − νk)/(1 − μk)).
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Table 6.1 Simulation results on fuzzy cross-entropy

Fuzzy variable ξ Fuzzy variable η D[ξ ;η] D[η; ξ ]

(0.0, 1.0) (0.0, 0.5, 1.0) 0.3112 0.1925

(−1.0, 2.0) (−1.0, 0.0, 1.0, 2.0) 0.6204 0.3931

(3.5, 7.8) (3.5, 4.0, 7.8) 1.3214 0.8387

(−50.0, −10.0) (−50.0, −30.0, −10.0) 12.1506 7.5892

(−0.3, 1.8, 2.3) (−0.3, 2.3) 0.5068 0.7956

(1.5, 3.0, 4.1) (1.5, 3.7, 4.1) 0.1092 0.1215

(10.0, 15.0, 20.0) (10.0, 18.0, 20.0) 0.4653 0.5006

(25.0, 40.0, 50.0) (25.0, 50.0) 4.8068 7.5264

(1.0, 2.0, 3.0, 4.0) (1.0, 1.3, 3.8, 4.0) 0.2156 0.2749

(3.1, 4.2, 4.5, 6.0) (3.1, 6.0) 0.4986 0.8060

(2.4, 3.6, 3.7, 5.6) (2.4, 4.6, 4.7, 5.6) 0.1661 0.1718

(10.0, 25.0, 30.0, 45.0) (10.0, 15.0, 45.0) 2.5277 2.5976

N(1.5, 1.0) N(2.0, 1.7) 0.2007 0.2624

N(2.5, 1.0) N(4.0, 1.0) 1.0895 1.0151

N(3.7, 2.1) N(0.0, 1.5) 4.0891 2.9882

N(6.0, 1.3) N(5.0, 3.0) 0.5707 0.8555

E(1.3) E(3.1) 0.1416 0.2188

E(1.0) E(3.2) 0.2336 0.3873

E(3.5) E(2.0) 0.0948 0.0703

E(7.6) E(10.0) 0.0333 0.0388

Step 6. Set c → c + tk . If k < N , set k = k + 1 and go to step 5.
Step 7. Return c(b − a)/N as the value of cross-entropy.

Example 6.3 Taking triangular fuzzy variables ξ = (1,2,3) and η = (1,1.5,3) for
example, we study the convergence of the cross-entropy simulation algorithm. We
change N from 100 to 5000 with step of 100, and illustrate the simulated results by
Fig. 6.2. It is shown that the algorithm converges when N is larger than 3000.

Example 6.4 This example applies the simulation algorithm with N = 3000 to ap-
proximate the cross-entropy for twenty pairs of fuzzy variables. In Table 6.1, each
line records one pair of simulated results, where the third column is the cross-
entropy of ξ from η, and the last column is the cross-entropy of η from ξ . Taking
the first line for example, there are an equipossible fuzzy variable ξ = (0,1) and a
triangular fuzzy variable η = (0,0.5,1). The cross-entropy of ξ from η is 0.3112,
and the cross-entropy of η from ξ is 0.1925.

Example 6.5 Since the cross-entropy simulation is a stochastic algorithm, the sim-
ulated results obtained from different performances are generally different. In this
example, we take N = 3000, and perform Algorithm 6.1 fifty times on the triangular
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Table 6.2 Cross-entropy simulation of (−0.3,1.8,2.3) from (−0.3,2.3)

No. Simulated value Error No. Simulated value Error

1 0.5030 0.0016 26 0.4997 0.0050

2 0.5025 0.0005 27 0.5015 0.0014

3 0.5035 0.0025 28 0.5006 0.0031

4 0.5021 0.0003 29 0.5037 0.0029

5 0.5003 0.0037 30 0.5025 0.0007

6 0.5008 0.0028 31 0.5026 0.0008

7 0.5006 0.0031 32 0.5003 0.0037

8 0.5027 0.0011 33 0.5008 0.0028

9 0.5023 0.0002 34 0.5022 0.0000

10 0.5033 0.0022 35 0.4998 0.0048

11 0.5019 0.0005 36 0.5033 0.0021

12 0.5023 0.0002 37 0.5025 0.0006

13 0.5006 0.0031 38 0.4997 0.0048

14 0.5041 0.0038 39 0.5025 0.0006

15 0.5040 0.0037 40 0.5023 0.0002

16 0.5032 0.0021 41 0.5012 0.0019

17 0.5004 0.0035 42 0.5021 0.0002

18 0.5024 0.0005 43 0.5006 0.0032

19 0.5005 0.0033 44 0.5036 0.0027

20 0.5025 0.0007 45 0.5001 0.0041

21 0.5016 0.0011 46 0.5011 0.0021

22 0.5034 0.0025 47 0.5031 0.0019

23 0.5038 0.0032 48 0.5045 0.0046

24 0.5035 0.0027 49 0.5020 0.0004

25 0.5023 0.0002 50 0.5011 0.0021

fuzzy variable ξ = (−0.3,1.8,2.3) and equipossible fuzzy variable η = (−0.3,2.3).
The results are recorded by Table 6.2. We also show the relative error between the
simulated value and the exact value 0.5022. It is shown that the relative error ranges
from 0.00 % to 0.50 %, and the average value is 0.21 %.

6.5 Applications

This section applies the cross-entropy minimization model to study the fuzzy portfo-
lio selection problem. See Examples 2.4 and 2.5. Suppose that there are four stocks
with fuzzy returns. See Table 3.4. With the expected return level 1.4, if the decision-
maker prefers a portfolio with a smaller divergence from a prior normal fuzzy return
η = N(1.5,0.8), we have the following cross-entropy minimization model,
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min D[ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4;η]
s.t. E[ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4] ≥ 1.4

x1 + x2 + x3 + x4 = 1

x1, x2, x3, x4 ≥ 0.

Take N = 3000, G = 30, Pc = 0.4, Pm = 0.2 and pop-size = 100. A run of the
genetic algorithm shows that the optimal portfolio is

x1 = 0.1609, x2 = 0.0864, x3 = 0.3635, x4 = 0.3892,

and the minimum cross-entropy is 1.9066.
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Chapter 7
Regret Minimization Model

Distance between fuzzy quantities, used to represent the degree of difference, is
a powerful concept in many disciplines of science and engineering. In 1983, Puri
and Ralescu (1983) proposed the first Hausdorff-like distance, which takes the
supremum of the Hausdorff distances between corresponding level sets. From then
on, Hausdorff-like distance was studied and developed by many researchers such
as Boxer (1997), Chaudhuri and Rosenfeld (1996, 1999), Diamond and Kloeden
(1990), Fan (1998), Klement et al. (1986), and Rosenfeld (1985). Within the frame-
work of credibility theory, Liu (2004) gave an Euclidean distance based on the con-
cept of expected value. Furthermore, Li and Liu (2008b) proved the triangle in-
equality and the completeness of the fuzzy metric space. Based on the worst regret
criterion (Inuiguchi and Ramík 2000; Inuiguchi and Tanino 2000), Li et al. (2012)
proposed a fuzzy regret minimization model to minimize the distance between the
fuzzy objective values and the best values.

This chapter mainly introduces the concept of distance, regret minimization
model, and applications in the portfolio selection problem.

7.1 Distance

Fuzzy distance is used to measure the dissimilarity or difference between two fuzzy
variables. Generally speaking, a distance function should satisfy the nonnegativity,
identification, symmetry and triangle inequality.

Definition 7.1 (Liu 2004) The distance between fuzzy variables ξ and η is defined
as

d[ξ, η] = E
[|ξ − η|]. (7.1)
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Example 7.1 Take (Θ,A,Cr) to be a credibility space {θ1, θ2} with Cr{θ1} = 0.4
and Cr{θ2} = 0.6. Define fuzzy variables

ξ(θ) =
{

1, if θ = θ1

0, if θ = θ2,
η(θ) =

{
2, if θ = θ1

−2, if θ = θ2.
(7.2)

Since the absolute difference between ξ and η is

|ξ − η|(θ) =
{

1, if θ = θ1

2, if θ = θ2,
(7.3)

it follows from Example 3.2 that the distance is d(ξ, η) = 0.4 × 1 + 0.6 × 2 = 1.6.

Example 7.2 Suppose that ξ = (a1, b1) and η = (a2, b2) are two independent
equipossible fuzzy variables. Then it has been proved that both ξ − η and η − ξ

are equipossible fuzzy variables with

ξ − η = (a1 − b2, b1 − a2), η − ξ = (a2 − b1, b2 − a1).

If a1 > b2, then ξ − η is a positive fuzzy variable such that

d(ξ, η) = E[ξ − η] = (a1 − b2 + b1 − a2)/2.

If b1 < a2, then ξ − η is a negative fuzzy variable such that

d(ξ, η) = E[η − ξ ] = (b2 − a1 + a2 − b1)/2.

Otherwise, we have a1 − b2 ≤ 0 ≤ b1 − a2. In this case, |ξ − η| is an equipossible
fuzzy variable taking values in [0, (b2 − a1) ∨ (b1 − a2)], and the distance is

d(ξ, η) = ((b2 − a1) ∨ (b1 − a2)
)
/2.

In general, the distance between ξ and η is

d(ξ, η) =

⎧
⎪⎨

⎪⎩

(a1 − b2 + b1 − a2)/2, if a1 > b2

(b2 − a1 + a2 − b1)/2, if b1 < a2

((b2 − a1) ∨ (b1 − a2))/2, otherwise.

Example 7.3 Let ξ = (a1, b1, c1) and η = (a2, b2, c2) be two independent triangular
fuzzy variables such that (a1, c1) ∩ (a2, c2) = ∅ (see Fig. 7.1). First, it follows from
the independence that ξ −η is also a triangular fuzzy variable (a1 −c2, b1 −b2, c1 −
a2). If c1 ≤ a2, then ξ − η is a nonpositive variable, and it follows from the Zadeh
extension theorem that

|ξ − η| = (a2 − c1, b2 − b1, c2 − a1).
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Fig. 7.1 Triangular fuzzy variables with (a1, c1) ∩ (a2, c2) = ∅

Fig. 7.2 Two trapezoidal fuzzy variables with (a1, d1) ∩ (a2, d2) = ∅

According to Definition 7.1, we have

d(ξ, η) = ((a2 − c1) + 2(b2 − b1) + (c2 − a1)
)
/4.

Similarly, if c2 ≤ a1, then ξ − η is a nonnegative variable such that

|ξ − η| = (a1 − c2, b1 − b2, c1 − a2).

According to Definition 7.1, the distance between ξ and η is

d(ξ, η) = ((a1 − c2) + 2(b1 − b2) + (c1 − a2)
)
/4.

In general, the distance between triangular fuzzy variables ξ and η is

d(ξ, η) = (|a1 − c2| + 2|b1 − b2| + |c1 − a2|
)
/4.

Example 7.4 Suppose that ξ = (a1, b1, c1, d1) and η = (a2, b2, c2, d2) are two inde-
pendent trapezoidal fuzzy variables such that (a1, d1) ∩ (a2, d2) = ∅ (see Fig. 7.2).
It has been proved that ξ − η is also a trapezoidal fuzzy variable, denoted by
(a1 − d2, b1 − c2, c1 − b2, d1 − a2). The argument breaks down into two cases.
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If d1 ≤ a2, then ξ − η is a nonpositive variable, and it follows from the Zadeh ex-
tension theorem that

|ξ − η| = (a2 − d1, b2 − c1, c2 − b1, d2 − a1).

According to Definition 7.1, we have

d(ξ, η) = ((a2 − d1) + (b2 − c1) + (c2 − b1) + (d2 − a1)
)
/4.

Similarly, if d2 ≤ a1, then ξ − η is a nonnegative variable such that

|ξ − η| = (a1 − d2, b1 − c2, c1 − b2, d1 − a2).

According to Definition 7.1, the distance between ξ and η is

d(ξ, η) = ((a1 − d2) + (b1 − c2) + (c1 − b2) + (d1 − a2)
)
/4.

In general, the distance between trapezoidal fuzzy variables ξ and η is

d(ξ, η) = (|a1 − d2| + |b1 − c2| + |c1 − b2| + |d1 − a2|
)
/4.

Example 7.5 Suppose that normal fuzzy variables ξ = N(e1, σ1) and η = N(e2, σ2)

are mutually independent. Then ξ − η is also a normal fuzzy variable with expected
value e = e1 − e2 and standard variance σ = σ1 + σ2. First, we assume e1 ≥ e2.
It follows from the Zadeh extension theorem that fuzzy variable |ξ − η| has the
credibility function

ν(x) = 1/
(
1 + exp

(
π |x − e|/√6σ

))
, x ≥ 0.

Then it follows from the equations

∫ ∞

e

ν(x)dx =
√

6σ

π
ln 2,

∫ e

0
ν(x)dx = e +

√
6σ

π

(
ln 2 − ln

(
1 + exp(πe/

√
6σ)
))

that the distance between fuzzy variables ξ and η is

d(ξ, η) =
∫ ∞

0
Cr
{|ξ − η| ≥ r

}
dr

=
∫ e

0

(
1 − ν(x)

)
dx +

∫ ∞

e

ν(x)dx

=
√

6σ

π
ln
(
1 + exp(πe/

√
6σ)
)
.



7.1 Distance 135

Similarly, if e1 < e2, we have

d(ξ, η) =
√

6σ

π
ln
(
1 + exp(−πe/

√
6σ)
)
.

In general, the distance between two normal fuzzy variables is

d(ξ, η) =
√

6(σ1 + σ2)

π
ln
(
1 + exp

(
π |e1 − e2|/

√
6(σ1 + σ2)

))
.

Example 7.6 Suppose that ξ = EXP(m1) and η = EXP(m2) are two exponential
fuzzy variables with credibility functions ν1 and ν2, respectively. Denote μ as
the credibility function of |ξ − η|. The argument breaks down into two cases. If
m1 ≥ m2, we have ν1(x) ≥ ν2(x) for all x ≥ 0. It follows from the Zadeh extension
theorem that

μ(x) = sup
|y1−y2|=x

(
ν1(y1) ∧ ν2(y2)

)

= sup
y1≥0,y2≥0,y1−y2=x

(
ν1(y1) ∧ ν2(y2)

)

= ν1(x) ∧ ν2(0)

= ν1(x)

for any x ≥ 0. According to Definition 7.1, we have

d(ξ, η) =
∫ ∞

0
ν1(x)dx =

√
6 ln 2

π
m1.

Similarly, if m1 < m2, we can prove that

d(ξ, η) =
√

6 ln 2

π
m2.

In general, the distance between two exponential fuzzy variables is

d(ξ, η) =
√

6 ln 2

π
(m1 ∨ m2).

Theorem 7.1 (Li and Liu 2008b) For any fuzzy variables ξ, η and τ , we have

(a) (Nonnegativity) d(ξ, η) ≥ 0;
(b) (Identification) d(ξ, η) = 0 if and only if ξ = η;
(c) (Symmetry) d(ξ, η) = d(η, ξ);
(d) (Triangle Inequality) d(ξ, η) ≤ 2d(ξ, τ ) + 2d(τ, η).
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Proof The nonnegativity and symmetry follow immediately from the definition.
(b) If ξ = η, it is obvious that d(ξ, η) = 0. Conversely, suppose that d(ξ, η) = 0.
If ξ �= η, then there is a point θ with Cr{θ} > 0 such that ξ(θ) �= η(θ). Thus we have

d(ξ, η) = E
[|ξ − η|]≥ Cr{θ}∣∣ξ(θ) − η(θ)

∣
∣> 0.

The contradiction proves that ξ = η. Now we prove the part (d). In fact, for any
positive numbers a and b with a+b = 1, it follows from the credibility subadditivity
theorem that

d(ξ, η) =
∫ ∞

0
Cr
{|ξ − η| ≥ r

}
dr ≤

∫ ∞

0
Cr
{|ξ − τ | + |τ − η| ≥ r

}
dr

≤
∫ ∞

0
Cr
{{|ξ − τ | ≥ ar

}∪ {|τ − η| ≥ br
}}

dr

≤
∫ ∞

0

(
Cr
{|ξ − τ | ≥ ar

}+ Cr
{|τ − η| ≥ br

})
dr

=
∫ ∞

0
Cr
{|ξ − τ | ≥ ar

}
dr +

∫ ∞

0
Cr
{|τ − η| ≥ br

}
dr

= E[|ξ − τ |]
a

+ E[|τ − η|]
b

= d(ξ, τ )

a
+ d(τ, η)

b
.

Especially, if we set a = b = 0.5, then we obtain d(ξ, η) ≤ 2d(ξ, τ )+ 2d(τ, η). The
proof is complete. �

Definition 7.2 (Li and Liu 2008b) Let F be the set of fuzzy variables. The set F
with distance d is called a metric space of fuzzy variables, and is denoted by (F, d).

Theorem 7.2 (Li and Liu 2008b) Metric space (F, d) is complete. That is, if
ξ1, ξ2, . . . are fuzzy variables on credibility space (Θ,A,Cr) and

lim
i,j→∞d(ξi, ξj ) = 0, (7.4)

then there is a fuzzy variable ξ on (Θ,A,Cr) such that

lim
i→∞d(ξi, ξ) = 0. (7.5)

Proof For any θ ∈ Θ with nonzero credibility value, since

lim
i,j→∞

∣
∣ξi(θ) − ξj (θ)

∣
∣≤ lim

i,j→∞
E[|ξi − ξj |]

Cr{θ} = 0,
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we know that {ξi(θ)} is a Cauchy sequence. Let ξ(θ) be the limit such that

lim
i→∞ ξi(θ) = ξ(θ).

It is clear that ξ is a fuzzy variable. For any k ≥ 1, let ik be the integer such that
E[|ξi − ξj |] ≤ 1/4k for any i, j ≥ ik . Without loss of generality, we assume that
i1 < i2 < · · · < ik < · · · . For any k ≥ 1, it follows from the credibility subadditivity
theorem that

E
[|ξik − ξ |] = E

[∣
∣
∣
∣

∑

l≥k

(ξil − ξil+1)

∣
∣
∣
∣

]

≤ E

[∑

l≥k

|ξil − ξil+1 |
]

≤
∫ +∞

0
Cr

{⋃

l≥k

|ξil − ξil+1 | ≥
r

2l

}

dr

≤
∫ +∞

0

∑

l≥k

Cr

{

|ξil − ξil+1 | ≥
r

2l

}

dr

=
∑

l≥k

2lE
[|ξil − ξil+1 |

]

≤ 1

2k−1

which implies that the subsequence {ξik } converges to ξ , that is,

lim
k→∞d(ξik , ξ) = 0.

Finally, according to the triangle inequality, we have

d(ξi, ξ) ≤ 2d(ξ, ξik ) + 2d(ξik , ξi).

Then, letting i, ik → ∞, we get

lim
i→∞d(ξi, ξ) = 0.

The proof is complete. �

7.2 Regret Minimization Model

This section introduces the regret minimization model based on the worst regret
criterion (Inuiguchi and Ramík 2000; Inuiguchi and Tanino 2000). Suppose that x

is a solution of the fuzzy programming model. If it is known that the fuzzy vector ξ
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takes value c, then the decision-maker will have a regret as the distance between the
maximum objective value and f (x, c), will be

max
y

f (y, c) − f (x, c). (7.6)

At the decision-making stage, the value for fuzzy vector ξ are clearly unknown for
the decision-maker, except their possibility distributions as suggested by experts.
Then the regret should be a fuzzy variable defined as

R(x, ξ ) = max
y

f (y, ξ ) − f (x, ξ ),

which will be called the regret variable, and its expected value will be called the
regret degree.

Generally speaking, a decision-maker would like to make decision on the basis
of the consideration that the regret variable should be minimized. However, since
it is meaningless to minimize a fuzzy quantity, we can minimize the regret degree,
and get the following expected regret minimization model,

⎧
⎨

⎩

min E
[
max
y

f (y, ξ) − f (x, ξ)
]

s.t. E
[
gi(x, ξ)

]≤ 0, i = 1,2, . . . , n.

(7.7)

Remark 7.1 The expected constraints can also be changed to chance constraints
according to the preference of the decision-maker. In this case, a predetermined
confidence level should be given.

Remark 7.2 The concepts of feasible solution, local optimal solution, and global
optimal solution are given by Definitions 2.6, 2.7, and 2.8.

Remark 7.3 For simplicity, we denote

F(ξ ) = max
y

f (y, ξ ).

For each feasible solution x , since fuzzy variables F(ξ ) and f (x, ξ ) are dependent,
we generally have

E
[
F(ξ ) − f (x, ξ )

] �= E
[
F(ξ )

]− E
[
f (x, ξ )

]
.

Therefore, the regret minimization model and the expected value model are not
equivalent.

7.3 Fuzzy Simulation

Since the regret degree is defined by the expected value, the simulation can be
viewed as a specific application of the expected value simulation algorithm. The
main steps are listed as follows.
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Algorithm 7.1 (Fuzzy simulation for regret degree)

Step 1. Set r = 0.
Step 2. Randomly generate vectors y i and calculate the credibilities νi for i =

1,2, . . . ,N .
Step 3. Calculate R(x,y i ) for all i = 1,2, . . . ,N .
Step 4. Set a = min{R(x,y i ) | 1 ≤ i ≤ N} and b = max{R(x,y i ) | 1 ≤ i ≤ N}.
Step 5. Randomly generate s from [a, b].
Step 6. Set r → r + Cr{R(x, ξ ) ≥ s}.
Step 7. Repeat the fifth to sixth steps for N times.
Step 8. Return R = a + r(b − a)/N .

7.4 Applications

This section applies the regret minimization modeling approach to study the fuzzy
portfolio selection problem. See Examples 2.4 and 2.5.

Assume that there are m stocks with fuzzy returns ξ = (ξ1, ξ2, . . . , ξm). Then for
each portfolio x = (x1, x2, . . . , xm), the regret variable is

R(x, ξ ) = max
1≤i≤m

ξi −
m∑

i=1

ξixi .

If the investor prefers to minimize the regret degree, we get the following expected
regret minimization model (Li et al. 2012)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min E

[

max
1≤i≤m

ξi −
m∑

i=1

ξixi

]

s.t. x1 + x2 + · · · + xm = 1

xi ≥ 0, i = 1,2, . . . ,m.

Remark 7.4 Suppose that ξ1, ξ2, . . . , ξm are independent and identically distributed
fuzzy variables. For each portfolio (x1, x2, . . . , xm), it follows from the Zadeh ex-
tension theorem that fuzzy variables

τi = ξi −
∑

j �=i

ξj xj /(1 − xi), i = 1,2, . . . ,m

are identically distributed. Since the regret variable is nonnegative, we have

E
[
R(x, ξ)

] =
∫ +∞

0
Cr

{

max
1≤i≤m

ξi −
m∑

i=1

ξixi ≥ r

}

dr

=
∫ +∞

0
Cr

{
m⋃

i=1

{

ξi −
m∑

i=1

ξixi ≥ r

}}

dr
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=
∫ +∞

0
Cr

{⋃

i

{
τi ≥ r/(1 − xi)

}
}

dr

=
∫ +∞

0
max

1≤i≤m
(1 − xi)Cr{τi ≥ r}dr

= max
1≤i≤m

(1 − xi)

∫ +∞

0
Cr{τ1 ≥ r}dr.

Then it is easy to prove that the regret minimization model may be simplified to the
following nonlinear programming model,

⎧
⎪⎨

⎪⎩

min max
1≤i≤m

(1 − xi)

s.t. x1 + x2 + · · · + xm = 1

xi ≥ 0, i = 1,2, . . . ,m,

whose optimal solution is (1/m,1/m, . . . ,1/m). That is, the optimal portfolio
should invest uniformly among different stocks.

Example 7.7 Suppose that there are four stocks with fuzzy returns (see Table 3.4).
We have the following regret minimization model,

⎧
⎪⎨

⎪⎩

min E
[
max{ξ1, ξ2, ξ3, ξ4} − (ξ1x1 + ξ2x2 + ξ3x3 + ξ4x4)

]

s.t. x1 + x2 + x3 + x4 = 1

x1, x2, x3, x4 ≥ 0.

Take N = 3000, G = 30, Pc = 0.4, Pm = 0.2 and pop-size = 100. A run of the
genetic algorithm shows that the optimal portfolio is

x1 = 0.1440, x2 = 0.1889, x3 = 0.6591, x4 = 0.0080,

and the minimum regret degree is 0.7769.
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