|
Developing Graphical Applications with OpenGL ES

Philip Rideout
O,REILLY® Foreword by Serban Porumbescu

www.it-ebooks.info

http://www.it-ebooks.info/

9

Mobile Programming/iPhone

iPhone 3D Programming

What does it take to build an iPhone app with stunning 3D

graphics? This book will show you how to apply OpenGL graphics

programming techniques to any device running the iPhone OS—
including the iPad and iPod Touch—with no iPhone development
or 3D graphics experience required. iPhone 3D Programming
provides clear step-by-step instructions, as well as lots of practical
advice, for using the iPhone SDK and OpenGL ES.

You'll build several graphics programs—progressing from simple
that focus on lighting, textures,

to more complex examples
blending, augmented reality, optimization for performance and
speed, and much more. All you need to get started is a solid
understanding of C++ and a great idea for an app.

B Learn fundamental graphics concepts, including
transformation matrices, quaternions, and more

B Get set up for iPhone development with the Xcode
environment

B Become familiar with versions 1.1 and 2.0 of the OpenGL ES
API, and learn to use vertex buffer objects, lighting,
texturing, and shaders

B Use the iPhone’s touch screen, compass, and accelerometer
to build interactivity into graphics applications

E Build iPhone graphics applications such as a 3D wireframe
viewer, a simple augmented reality application, a spring
system simulation, and more

This book received valuable community input through O'Reilly’s
Open Feedback Publishing System (OFPS). Learn more at
bttp://labs.oreilly.com/ofps.html.

Programming experience with C++ is highly recommended; experience with
Objective-C is useful but not necessary.

“Philip has done

a Jantastic job of

Jocusing on the

content most crucial
fo getting you
productive with
OpenGL ES on the
iPhone as quickly as
possible.”

—Serban Porumbescu, PhD
Senior Gameplay Engineer,
Tapulous Inc.

Philip Rideout has held
positions at several pioneer-
ing graphics companies,
including Intergraph, 3Dlabs,
and NVIDIA. He currently
works at Medical Simulation
Corporation in Denver, devel-
oping graphically rich training
software for heart surgeons.

O’REILLY"

oreilly.com

US $39.99 CAN $49.99
ISBN: 978-0-596-80482-4

53999
T

780596"80482

www.it-ebooks.info

Safari’

Books Online

Free online edition
for 45 days with purchase of
this book. Details on last page.

http://www.it-ebooks.info/

iPhone 3D Programming

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

iPhone 3D Programming

Developing Graphical Applications
with OpenGL ES

Philip Rideout

foreword by Serban Porumbescu

O’REILLY"

Beijing - Cambridge - Farnham - KéIn - Sebastopol - Taipei « Tokyo

www.it-ebooks.info

http://www.it-ebooks.info/

iPhone 3D Programming
by Philip Rideout

Copyright © 2010 Philip Rideout. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Jepson Indexer: Ellen Troutman Zaig
Production Editor: Loranah Dimant Cover Designer: Karen Montgomery
Copyeditor: Kim Wimpsett Interior Designer: David Futato
Proofreader: Teresa Barensfeld lllustrator: Robert Romano

Production Services: Molly Sharp

Printing History:
May 2010: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. iPhone 3D Programming, the image of a grasshopper, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

RepKover.
== This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-80482-4
(M]
1272645927

www.it-ebooks.info

http://www.it-ebooks.info/

Frank and Doris Rideout
1916-1998 and 1919-2007

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

o = 7 T« <

1. Quick-Start Guide

Table of Contents

Transitioning to Apple Technology

Objective-C

A Brief History of OpenGL ES
Choosing the Appropriate Version of OpenGL ES
Getting Started

Installing the iPhone SDK
Building the OpenGL Template Application with Xcode
Deploying to Your Real iPhone

HelloArrow with Fixed Function

Layering Your 3D Application

Starting from Scratch

Linking in the OpenGL and Quartz Libraries
Subclassing UlView

Hooking Up the Application Delegate
Setting Up the Icons and Launch Image
Dealing with the Status Bar

Defining and Consuming the Rendering Engine Interface
Implementing the Rendering Engine
Handling Device Orientation

Animating the Rotation

HelloArrow with Shaders

Shaders

Frameworks

GLView

RenderingEngine Implementation

Wrapping Up

O 0NN Ut bW W=

AW W W WWWWNNNNDNRF P~/
MNP BRAR, OANANDNDDN O WND R~ O

www.it-ebooks.info

vii

http://www.it-ebooks.info/

2. MathandMetaphorscooiiiiiiiiiiiiiii ittt iieieenenan, 43

The Assembly Line Metaphor 43
Assembling Primitives from Vertices 44
Associating Properties with Vertices 47
The Life of a Vertex 49
The Photography Metaphor 51
Setting the Model Matrix 55
Setting the View Transform 58
Setting the Projection Transform 59
Saving and Restoring Transforms with Matrix Stacks 62
Animation 64
Interpolation Techniques 64
Animating Rotation with Quaternions 65
Vector Beautification with C++ 66
HelloCone with Fixed Function 69
RenderingEngine Declaration 69
OpenGL Initialization and Cone Tessellation 71
Smooth Rotation in Three Dimensions 75
Render Method 77
HelloCone with Shaders 78
Wrapping Up 81
3. Verticesand TouchPoints ..., 83
Reading the Touchscreen 83
Saving Memory with Vertex Indexing 89
Boosting Performance with Vertex Buffer Objects 94
Creating a Wireframe Viewer 98
Parametric Surfaces for Fun 100
Designing the Interfaces 104
Handling Trackball Rotation 106
Implementing the Rendering Engine 108
Poor Man’s Tab Bar 111
Animating the Transition 115
Wrapping Up 117
4, AddingDepthandRealismccooiiiniiiiiiiiiiiiiiiiiiiiinienns 119
Examining the Depth Buffer 119
Beware the Scourge of Depth Artifacts 121
Creating and Using the Depth Buffer 123
Filling the Wireframe with Triangles 125
Surface Normals 128
Feeding OpenGL with Normals 128
The Math Behind Normals 129
viii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Normal Transforms Aren’t Normal
Generating Normals from Parametric Surfaces
Lighting Up
Ho-Hum Ambiance
Matte Paint with Diffuse Lighting
Give It a Shine with Specular
Adding Light to ModelViewer
Using Light Properties
Shaders Demystified
Adding Shaders to ModelViewer
New Rendering Engine
Per-Pixel Lighting
Toon Shading
Better Wireframes Using Polygon Offset
Loading Geometry from OB]J Files
Managing Resource Files
Implementing ISurface
Wrapping Up

Texturesand Image Captureoovvviinniiniiniinnenns
Adding Textures to ModelViewer
Enhancing IResourceManager
Generating Texture Coordinates
Enabling Textures with ES1::RenderingEngine
Enabling Textures with ES2::RenderingEngine
Texture Coordinates Revisited
Fight Aliasing with Filtering
Boosting Quality and Performance with Mipmaps
Modifying ModelViewer to Support Mipmaps
Texture Formats and Types
Hands-On: Loading Various Formats
Texture Compression with PVRTC
The PowerVR SDK and Low-Precision Textures
Generating and Transforming OpenGL Textures with Quartz
Dealing with Size Constraints
Scaling to POT
Creating Textures with the Camera
CameraTexture: Rendering Engine Implementation
Wrapping Up

Blending and Augmented Realitycovvvenninnn.

Blending Recipe
Wrangle Premultiplied Alpha

131
133
135
136
136
138
139
142
144
147
149
152
154
155
157
159
162
163

............ 165

165
167
169
172
175
180
181
184
186
187
188
191
198
201
204
206
208
214
219

............ 221
222
224

www.it-ebooks.info

Table of Contents | ix

http://www.it-ebooks.info/

Blending Caveats 226

Blending Extensions and Their Uses 227
Why Is Blending Configuration Useful? 228
Shifting Texture Color with Per-Vertex Color 229
Poor Man’s Reflection with the Stencil Buffer 230
Rendering the Disk to Stencil Only 232
Rendering the Reflected Object with Stencil Testing 235
Rendering the “Real” Object 236
Rendering the Disk with Front-to-Back Blending 236
Stencil Alternatives for Older iPhones 236
Anti-Aliasing Tricks with Offscreen FBOs 238
A Super Simple Sample App for Supersampling 239
Jittering 247
Other FBO Effects 252
Rendering Anti-Aliased Lines with Textures 252
Holodeck Sample 256
Application Skeleton 257
Rendering the Dome, Clouds, and Text 260
Handling the Heads-Up Display 264
Replacing Buttons with Orientation Sensors 269
Overlaying with a Live Camera Image 275
Wrapping Up 279
7. Spritesand Textoouiriiiii ittt i et 281
Text Rendering 101: Drawing an FPS Counter 282
Generating a Glyphs Texture with Python 284
Rendering the FPS Text 288
Simplify with glDrawTexOES 293
Crisper Text with Distance Fields 295
Generating Distance Fields with Python 296
Use Distance Fields Under ES 1.1 with Alpha Testing 300
Adding Text Effects with Fragment Shaders 300
Smoothing and Derivatives 301
Implementing Outline, Glow, and Shadow Effects 304
Animation with Sprite Sheets 306
Image Composition and a Taste of Multitexturing 308
Mixing OpenGL ES and UIKit 310
Rendering Confetti, Fireworks, and More: Point Sprites 313
Chapter Finale: SpringyStars 314
Physics Diversion: Mass-Spring System 314
C++ Interfaces and GLView 318
ApplicationEngine Implementation 319
OpenGL ES 1.1 Rendering Engine and Additive Blending 322

x | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Point Sprites with OpenGL ES 2.0
Wrapping Up

Advanced Lighting and Texturing

Texture Environments under OpenGL ES 1.1
Texture Combiners
Bump Mapping and DOT3 Lighting
Another Foray into Linear Algebra
Generating Basis Vectors
Normal Mapping with OpenGL ES 2.0
Normal Mapping with OpenGL ES 1.1
Generating Object-Space Normal Maps
Reflections with Cube Maps
Render to Cube Map
Anisotropic Filtering: Textures on Steroids
Image-Processing Example: Bloom
Better Performance with a Hybrid Approach
Sample Code for Gaussian Bloom
Wrapping Up

Optimizing ...ovvvinriiiiiiiii it eieeiaeaaes

Instruments
Understand the CPU/GPU Split
Vertex Submission: Above and Beyond VBOs
Batch, Batch, Batch
Interleaved Vertex Attributes
Optimize Your Vertex Format
Use the Best Topology and Indexing
Lighting Optimizations
Object-Space Lighting
DOTS3 Lighting Revisited
Baked Lighting
Texturing Optimizations
Culling and Clipping
Polygon Winding
User Clip Planes
CPU-Based Clipping
Shader Performance
Conditionals
Fragment Killing
Texture Lookups Can Hurt!
Optimizing Animation with Vertex Skinning
Skinning: Common Code

324
327

.................. 329

330
332
335
337
338
340
343
345
347
351
352
354
358
358
364

.................. 365

365
366
367
367
369
370
371
372
372
372
373
373
374
374
375
376
376
376
377
377
377
379

www.it-ebooks.info

Table of Contents | xi

http://www.it-ebooks.info/

Skinning with OpenGL ES 2.0

Skinning with OpenGL ES 1.1

Generating Weights and Indices

Watch Out for Pinching
Further Reading

Appendix: C++ VectorLibraryoovviiiiiiiiiiiiiiiiii it

381
383
386
387
387

xii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

I’m sitting at my kitchen table writing this foreword on the eve of yet another momen-
tous occasion for Apple. Today, February 23, 2010, marks the day the 10-billionth song
was downloaded from the iTunes Music Store. Take a moment to really think about
that number and keep in mind that the iTunes Music Store was launched just shy of
seven years ago back in April 2003. That’s right. Ten billion songs downloaded in just
under seven years.

The news gets even better. If you’re holding this book, you’re probably interested in
iPhone application development, and the next number should really get you excited.
On January 5, 2010, Apple announced that 3 billion applications had been downloaded
from its App Store in just under 18 months. Phenomenal!

Months before I was asked to review this book, I had started putting together an outline
and researching material for my own iPhone graphics book. When I was asked whether
[was interested in being a technical reviewer for a book that seemed so similar to what
[was planning, I definitely hesitated. But I’ve always been a big fan of O’Reilly books
and quickly changed my mind once I realized it was the publisher backing the book.

Philip has done a fantastic job of focusing on the content most crucial to getting you
productive with OpenGL ES on the iPhone as quickly as possible. In the pages that
follow you’ll learn the basics of using Xcode and Objective-C, move through the fixed
function (OpenGL ES 1.1) and programmable (OpenGL ES 2.0) graphics pipelines,
experiment with springs and dampeners, and learn advanced lighting techniques.
You’ll even learn about distance fields and pick up a bit of Python along the way. By
the end of this book, you’ll find yourself resting very comfortably on a solid foundation
of OpenGL ES knowledge. You’ll be well-versed in advanced graphics techniques that
are applicable to the iPhone and beyond.

[knew from the moment I read the first partial manuscript that this was the book I
wish I had written. Now that I’ve read the book in its entirety, I'm certain of it. 'm
confident you’ll feel the same way.

— Serban Porumbescu, PhD
Senior Gameplay Engineer
Tapulous Inc.

Xiii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

How to Read This Book

“It makes programming fun again!” is a cliché among geeks; all too often it’s used to
extol the virtues of some newfangled programming language or platform. But L honestly
think there’s no better aphorism to describe iPhone graphics programming. Whether
you’re a professional or a hobbyist, I hope this book can play a small role in helping
you rediscover the joy of programming.

This book is not an OpenGL manual, but it does teach many basic OpenGL concepts
as a means to an end, namely, 3D graphics programming on the iPhone and iPod touch.
Much of the book is written in a tutorial style, and I encourage you to download the
sample code and play with it. Readers don’t need a graphics background, nor do they
need any experience with the iPhone SDK. A sound understanding of C++ is required;
fluency in Objective-C is useful but not necessary. A smidgen of Python is used in
Chapter 7, but don’t let it scare you off.

[tried to avoid making this book math-heavy, but, as with any 3D graphics book, you
at least need a fearless attitude toward basic linear algebra. I'll hold your hand and jog
your memory along the way.

If you’re already familiar with 3D graphics but haven’t done much with the iPhone,
you can still learn a thing or two from this book. There are certain sections that you
can probably skip over. Much of Chapter 2 is an overview of general 3D graphics con-
cepts; I won’t be offended if you just skim through it. Conversely, if you have iPhone
experience but are new to 3D graphics, you can gloss over some of the Objective-C and
Xcode overviews given in Chapter 1.

In any case, I hope you enjoy reading this book as much as I enjoyed writing it!

Xv

www.it-ebooks.info

http://www.it-ebooks.info/

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions. It also
indicates the parts of the user interface, such as buttons, menus, and panes.
Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.
Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

N
\
. This icon signifies a tip, suggestion, or general note.
qs
g
N
15

This icon indicates a warning or caution.

=

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “iPhone 3D Programming by Philip Rideout.
Copyright 2010 Philip Rideout, 978-0-596-80482-4.”

If you feel your use of the code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

xvi | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Safari® Books Online

Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

Safari

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9780596804831
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Acknowledgments

Harsha Kuntur planted the seed for this book by lighting up every dinner conversation
with his rabid enthusiasm for the iPhone. Equally important are Stephen Holmes (who
unintentionally made me into an Apple fanboy) and David Banks (who inspired me to
get into graphics).

Preface | xvii

www.it-ebooks.info

http://www.it-ebooks.info/

I’d also like to thank my editor and personal champion at O’Reilly, Brian Jepson. Much
thanks to both John T. Kennedy and Jon C. Kennedy for their valuable suggestions
(can’t the Irish be more creative with names?). I was joyous when Serban Porumbescu
agreed to review my book—I needed his experience. I'm also supremely grateful to
Alex MacPhee and David Schmitt of Medical Simulation Corporation, who have been
accommodating and patient as I tried to juggle my time with this book. Thanks, Alex,
for catching those last-minute bugs!

Finally, I’d like to thank Mona, who had 1-800-DIVORCE on speed dial while I was
having an affair with this book, but she managed to resist the temptation. In fact, with-
out her limitless support and encouragement, there’s absolutely no way I could’ve done
this.

xvii | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1
Quick-Start Guide

Rumors of my assimilation are greatly exaggerated.

—Captain Picard, Star Trek: First Contact

In this chapter, you’ll plunge in and develop your first application from scratch. The
goal is to write a HelloArrow program that draws an arrow and rotates it in response
to an orientation change.

You’ll be using the OpenGL ES API to render the arrow, but OpenGL is only one of
many graphics technologies supported on the iPhone. At first, it can be confusing which
of these technologies is most appropriate for your requirements. It’s also not always
obvious which technologies are iPhone-specific and which cross over into general Mac
OS X development.

Apple neatly organizes all of the iPhone’s public APIs into four layers: Cocoa Touch,
Media Services, Core Services, and Core OS. Mac OS X is a bit more sprawling, but it
too can be roughly organized into four layers, as shown in Figure 1-1.

At the very bottom layer, Mac OS X and the iPhone share their kernel architecture and
core operating system; these shared components are collectively known as Darwin.

Despite the similarities between the two platforms, they diverge quite a bit in their
handling of OpenGL. Figure 1-1 includes some OpenGL-related classes, shown in bold.
The NSOpenGLView class in Mac OS X does not exist on the iPhone, and the iPhone’s
EAGLContext and CAEGLLayer classes are absent on Mac OS X. The OpenGL APl itself is
also quite different in the two platforms, because Mac OS X supports full-blown
OpenGL while the iPhone relies on the more svelte OpenGL ES.

The iPhone graphics technologies include the following:

Quartz 2D rendering engine
Vector-based graphics library that supports alpha blending, layers, and anti-
aliasing. This is also available on Mac OS X. Applications that leverage Quartz
technology must reference a framework (Apple’s term for a bundle of resources
and libraries) known as Quartz Core.

www.it-ebooks.info

http://www.it-ebooks.info/

Mac 0S X iPhone SDK
4 N 4 ™\
Cocoa Cocoa Touch
AppKit . §
NSOpenGLView UlKit MapKit
\ S \ J
4 N\ 4 N\
Application Services Media
Core Core OpenGLES Quartz Core
Graphics L A TS y Graphics EAGLContext CAEGLLayer
4 N 4 N\
Core Services Core Services
Foundation Core Data | ... Foundation Core Data Corg
Location
\ / \ 7
4 7\ 4 N\
Core 0S Core 0S
BSI,] Posix Functions | ... BSI,] Posix Functions | ...
Functions Functions
/ . /

Figure 1-1. Mac OS X and iPhone programming stacks

Core Graphics
Vanilla C interface to Quartz. This is also available on Mac OS X.

UIKit
Native windowing framework for iPhone. Among other things, UIKit wraps Quartz
primitives into Objective-C classes. This has a Mac OS X counterpart called
AppKit, which is a component of Cocoa.

Cocoa Touch
Conceptual layer in the iPhone programming stack that contains UIKit along with
a few other frameworks.

Core Animation
Objective-C framework that facilitates complex animations.

OpenGL ES
Low-level hardware-accelerated C API for rendering 2D or 3D graphics.

EAGL
Tiny glue API between OpenGL ES and UIKit. Some EAGL classes (such as
CAEGLLayer) are defined in Quartz Core framework, while others (such as EAGLCon
text) are defined in the OpenGL ES framework.

This book chiefly deals with OpenGL ES, the only technology in the previous list that
isn’t Apple-specific. The OpenGL ES specification is controlled by a consortium of
companies called the Khronos Group. Different implementations of OpenGL ES all
support the same core API, making it easy to write portable code. Vendors can pick

2 | Chapter1: Quick-Start Guide

www.it-ebooks.info

http://www.it-ebooks.info/

and choose from a formally defined set of extensions to the API, and the iPhone sup-
ports a rich set of these extensions. We’ll cover many of these extensions throughout

this book.

Transitioning to Apple Technology

Yes, you do need a Mac to develop applications for the iPhone App Store! Developers
with a PC background should quell their fear; my own experience was that the PC-to-
Apple transition was quite painless, aside from some initial frustration with a different

keyboard.

Xcode serves as Apple’s preferred development environment for Mac OS X. If you are
new to Xcode, it might initially strike you as resembling an email client more than an
IDE. This layout is actually quite intuitive; after learning the keyboard shortcuts, I
found Xcode to be a productive environment. It’s also fun to work with. For example,
after typing in a closing delimiter such as), the corresponding (momentarily glows
and seems to push itself out from the screen. This effect is pleasant and subtle; the only
thing missing is a kitten-purr sound effect. Maybe Apple will add that to the next version
of Xcode.

Objective-C

Now we come to the elephant in the room. At some point, you’ve probably heard that
Objective-C is a requirement for iPhone development. You can actually use pure C or
C++ for much of your application logic, if it does not make extensive use of UIKit. This
is especially true for OpenGL development because it is a C API. Most of this book uses
C++; Objective-Cis used only for the bridge code between the iPhone operating system
and OpenGL ES.

The origin of Apple’s usage of Objective-C lies with NeXT, which was another Steve
Jobs company whose technology was ahead of its time in many ways—perhaps too far
ahead. NeXT failed to survive on its own, and Apple purchased it in 1997. To this day,
you can still find the NS prefix in many of Apple’s APIs, including those for the iPhone.

Some would say that Objective-C is not as complex or feature-rich as C++, which isn’t
necessarily a bad thing. In many cases, Objective-C is the right tool for the right job.
It’s a fairly simple superset of C, making it quite easy to learn.

However, for 3D graphics, I find that certain C++ features are indispensable. Operator
overloading makes it possible to perform vector math in a syntactically natural way.
Templates allow the reuse of vector and matrix types using a variety of underlying
numerical representations. Most importantly, C++ is widely used on many platforms,
and in many ways, it’s the lingua franca of game developers.

Transitioning to Apple Technology | 3

www.it-ebooks.info

http://www.it-ebooks.info/

A Brief History of OpenGL ES

In 1982, a Stanford University professor named Jim Clark started one of the world’s
first computer graphics companies: Silicon Graphics Computer Systems, later known
as SGI. SGl engineers needed a standard way of specifying common 3D transformations
and operations, so they designed a proprietary API called IrisGL. In the early 1990s,
SGI reworked IrisGL and released it to the public as an industry standard, and OpenGL
was born.

Over the years, graphics technology advanced even more rapidly than Moore’s law
could have predicted.” OpenGL went through many revisions while largely preserving
backward compatibility. Many developers believed that the API became bloated. When
the mobile phone revolution took off, the need for a trimmed-down version of OpenGL
became more apparent than ever. The Khronos Group announced OpenGL for Em-
bedded Systems (OpenGL ES) at the annual SIGGRAPH conference in 2003.

OpenGL ES rapidly gained popularity and today is used on many platforms besides the
iPhone, including Android, Symbian, and PlayStation 3.

All Apple devices support at least version 1.1 of the OpenGL ES API, which added
several powerful features to the core specification, including vertex buffer objects and
mandatory multitexture support, both of which you’ll learn about in this book.

In March 2007, the Khronos Group released the OpenGL ES 2.0 specification, which
entailed a major break in backward compatibility by ripping out many of the fixed-
function features and replacing them with a shading language. This new model for
controlling graphics simplified the API and shifted greater control into the hands of
developers. Many developers (including myself) find the ES 2.0 programming model
to be more elegant than the ES 1.1 model. Butin the end, the two APIs simply represent
two different approaches to the same problem. With ES 2.0, an application developer
needs to do much more work just to write a simple Hello World application. The 1.x
flavor of OpenGL ES will probably continue to be used for some time, because of its
low implementation burden.

Choosing the Appropriate Version of OpenGL ES

Apple’s newer handheld devices, such as the iPhone 3GS and iPad, have graphics hard-
ware that supports both ES 1.1 and 2.0; these devices are said to have a programmable
graphics pipeline because the graphics processor executes instructions rather than per-
forming fixed mathematical operations. Older devices like the first-generation iPod
touch, iPhone, and iPhone 3G are said to have a fixed-function graphics pipeline because
they support only ES 1.1.

* Hart, John C. Ray Tracing in Graphics Hardware. SPEC Presentation at SSIGGRAPH, 2003.

4 | Chapter1: Quick-Start Guide

www.it-ebooks.info

http://www.it-ebooks.info/

Before writing your first line of code, be sure to have a good handle on your graphics
requirements. It’s tempting to use the latest and greatest API, but keep in mind that
there are many 1.1 devices out there, so this could open up a much broader market for
your application. It can also be less work to write an ES 1.1 application, if your graphical
requirements are fairly modest.

Of course, many advanced effects are possible only in ES 2.0—and, as I mentioned, I
believe it to be a more elegant programming model.

To summarize, you can choose from among four possibilities for your application:

* Use OpenGLES 1.1 only.
* Use OpenGL ES 2.0 only.

* Determine capabilities at runtime; use ES 2.0 if it’s supported; otherwise, fall back
to ES1.1.

* Release two separate applications: one for ES 1.1, one for ES 2.0. (This could get
messy.)

Choose wisely! We’ll be using the third choice for many of the samples in this book,
including the HelloArrow sample presented in this chapter.

Getting Started

Assuming you already have a Mac, the first step is to head over to Apple’s iPhone
developer site and download the SDK. With only the free SDK in hand, you have the
tools at your disposal to develop complex applications and even test them on the iPhone
Simulator.

The iPhone Simulator cannot emulate certain features such as the accelerometer, nor
does it perfectly reflect the iPhone’s implementation of OpenGL ES. For example, a
physical iPhone cannot render anti-aliased lines using OpenGL’s smooth lines feature,
but the simulator can. Conversely, there may be extensions that a physical iPhone
supports that the simulator does not. (Incidentally, we’ll discuss how to work around
the anti-aliasing limitation later in this book.)

Having said all that, you do not need to own an iPhone to use this book. I've ensured
that every code sample either runs against the simulator or at least fails gracefully in
the rare case where it leverages a feature not supported on the simulator.

If you do own an iPhone and are willing to cough up a reasonable fee ($100 at the time
of this writing), you can join Apple’s iPhone Developer Program to enable deployment
to a physical iPhone. When 1 did this, it was not a painful process, and Apple granted
me approval almost immediately. If the approval process takes longer in your case, I
suggest forging ahead with the simulator while you wait. I actually use the simulator
for most of my day-to-day development anyway, since it provides a much faster debug-
build-run turnaround than deploying to my device.

Getting Started | 5

www.it-ebooks.info

http://www.it-ebooks.info/

The remainder of this chapter is written in a tutorial style. Be aware that some of the
steps may vary slightly from what’s written, depending on the versions of the tools that
you’re using. These minor deviations most likely pertain to specific actions within the
Xcode UL, for example, a menu might be renamed or shifted in future versions. How-
ever, the actual sample code is relatively future-proof.

Installing the iPhone SDK
You can download the iPhone SDK from here:
http://developer.apple.com/iphone/

It’s packaged as a .dmg file, Apple’s standard disk image format. After you download
it, it should automatically open in a Finder window—if it doesn’t, you can find its disk
icon on the desktop and open it from there. The contents of the disk image usually
consist of an “about” PDF, a Packages subfolder, and an installation package, whose
icon resembles a cardboard box. Open the installer and follow the steps. When con-
firming the subset of components to install, simply accept the defaults. When you’re
done, you can “eject” the disk image to remove it from the desktop.

As an Apple developer, Xcode will become your home base. I recommend dragging it
to your Dock at the bottom of the screen. You'll find Xcode in /Developer/Applications/
Xcode.

W

Sg If you’re coming from a PC background, Mac’s windowing system may
"‘:‘ seem difficult to organize at first. I highly recommend the Exposé and
T s Spaces desktop managers that are built into Mac OS X. Exposé lets you
" switch between windows using an intuitive “spread-out” view. Spaces
can be used to organize your windows into multiple virtual desktops.
I've used several virtual desktop managers on Windows, and in my

opinion Spaces beats them all hands down.

Building the OpenGL Template Application with Xcode

When running Xcode for the first time, it presents you with a Welcome to Xcode dialog.
Click the Create a new Xcode project button. (If you have the welcome dialog turned
off, go to File»New Project.) Now you’ll be presented with the dialog shown in Fig-
ure 1-2, consisting of a collection of templates. The template we’re interested in is
OpenGL ES Application, under the iPhone OS heading. It’s nothing fancy, but it is a
fully functional OpenGL application and serves as a decent starting point.

6 | Chapter1: Quick-Start Guide

www.it-ebooks.info

http://www.it-ebooks.info/

T@le)

[New Project

Choose a template for your new project:

U iPhone 05

Application

Library

‘QMacosx

Application

Framework & Library
Application Plug-in
System Plug-in
Other

- W

OpenGL ES
Application

Mavigation-based

Split View-based
Application

Application

3 .

Tab Bar Utility Application View-based '
Application Application i
v

Product | iPhone &

%y OpenGL ES Application

This template provides a starting point for an application that
uses an OpenGL ES-based view. It provides a view into which you
render your OpenGL ES scene, and a timer to allow you to
animate the view.

(Cancel) (Choose...)

4

Figure 1-2. New Project dialog

In the next dialog, choose a goofy name for your application, and then you’ll finally
see Xcode’s main window. Build and run the application by selecting Build and Run
from the Build menu or by pressing $8-Return. When the build finishes, you should see
the iPhone Simulator pop up with a moving square in the middle, as in Figure 1-3.
When you’re done gawking at this amazing application, press -Q to quit.

Getting Started | 7

www.it-ebooks.info

http://www.it-ebooks.info/

il Carrier = 11:10 AM

Figure 1-3. OpenGL ES Application template

Deploying to Your Real iPhone

This is not required for development, but if you want to deploy your application to a
physical device, you should sign up for Apple’s iPhone Developer Program. This ena-
bles you to provision your iPhone for developer builds, in addition to the usual software
you get from the App Store. Provisioning is a somewhat laborious process, but thank-
fully it needs to be done only once per device. Apple has now made it reasonably
straightforward by providing a Provisioning Assistant applet that walks you through
the process. You’ll find this applet after logging into the iPhone Dev Center and entering
the iPhone Developer Program Portal.

When your iPhone has been provisioned properly, you should be able to see it in
Xcode’s Organizer window (Control-8-O). Open up the Provisioning Profiles tree node
in the left pane, and make sure your device is listed.

8 | Chapter1: Quick-Start Guide

www.it-ebooks.info

http://www.it-ebooks.info/

Now you can go back to Xcode’s main window, open the Overview combo box in the
upper-left corner, and choose the latest SDK that has the Device prefix. The next time
you build and run (88-Return), the moving square should appear on your iPhone.

HelloArrow with Fixed Function

In the previous section, you learned your way around the development environment
with Apple’s boilerplate OpenGL application, but to get a good understanding of the
fundamentals, you need to start from scratch. This section of the book builds a simple
application from the ground up using OpenGL ES 1.1. The 1.x track of OpenGL ES is
sometimes called fixed-function to distinguish it from the OpenGL ES 2.0 track, which
relies on shaders. We’ll learn how to modify the sample to use shaders later in the
chapter.

Let’s come up with a variation of the classic Hello World in a way that fits well with
the theme of this book. As you’ll learn later, most of what gets rendered in OpenGL
can be reduced to triangles. We can use two overlapping triangles to draw a simple
arrow shape, as shown in Figure 1-4. Any resemblance to the Star Trek logo is purely
coincidental.

Figure 1-4. Arrow shape composed from two triangles

To add an interesting twist, the program will make the arrow stay upright when the
user changes the orientation of his iPhone.

Layering Your 3D Application

If you love Objective-C, then by all means, use it everywhere you can. This book sup-
ports cross-platform code reuse, so we leverage Objective-C only when necessary.

HelloArrow with Fixed Function | 9

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-5 depicts a couple ways of organizing your application code such that the guts
of the program are written in C++ (or vanilla C), while the iPhone-specific glue is
written in Objective-C. The variation on the right separates the application engine (also
known as game logic) from the rendering engine. Some of the more complex samples
in this book take this approach.

Portable (++ Portable (++
[RenderingEngine]
RenderingEngine ‘
[ApplicationEngine]
2
OpenGL ES 4 OpenGL ES i
Objective-C Objective-C
[AppDelegate ” GLView] [AppDelegate][GLView]
UIKit EAGL UIKit EAGL
A 4 A4 A A A 4 Y

Figure 1-5. Layered 3D iPhone applications

The key to either approach depicted in Figure 1-6 is designing a robust interface to the
rendering engine and ensuring that any platform can use it. The sample code in this
book uses the name IRenderingEngine for this interface, but you can call it what you
want.

Portable C++
RenderingEngine
implements IRenderingEngine
h Y
OpenGL ES
Objective-C
: U+
A4 Yy v v
iPhone Other Platform

Figure 1-6. A cross-platform OpenGL ES application

10 | Chapter1: Quick-Start Guide

www.it-ebooks.info

http://www.it-ebooks.info/

The IRenderingEngine interface also allows you to build multiple rendering engines into
your application, as shown in Figure 1-7. This facilitates the “Use ES 2.0 if supported,
otherwise fall back” scenario mentioned in “Choosing the Appropriate Version of
OpenGL ES” on page 4. We’'ll take this approach for HelloArrow.

Portable (++

RenderingEngine1 RenderingEngine2
implements IRenderingEngine implements IRenderingEngine

A
OpenGLES 1.1 OpenGLES 2.0

Objective-C
[AppDelegate][GLView]

UIKit EAGL
\ 4 4 \ 4 h 4

Figure 1-7. An iPhone application that supports ES 1.1 and 2.0

You’ll learn more about the pieces in Figure 1-7 as we walk through the code to
HelloArrow. To summarize, you’ll be writing three classes:

RenderingEnginel and RenderingEngine2 (portable C++)
These classes are where most of the work takes place; all calls to OpenGL ES are
made from here. RenderingEngine1 uses ES 1.1, while RenderingEngine2 uses ES 2.0.

HelloArrowAppDelegate (Objective-C)
Small Objective-C class that derives from NSObject and adopts the UIApplication
Delegate protocol. (“Adopting a protocol” in Objective-C is somewhat analogous
to “implementing an interface” in languages such as Java or C#.) This does not
use OpenGL or EAGL; it simply initializes the GLView object and releases memory
when the application closes.

GLView (Objective-C)
Derives from the standard UIView class and uses EAGL to instance a valid rendering
surface for OpenGL.

Starting from Scratch

Launch Xcode and start with the simplest project template by going to File-New
Project and selecting Window-Based Application from the list of iPhone OS application
templates. Name it HelloArrow.

Xcode comes bundled with an application called Interface Builder, which is Apple’s
interactive designer for building interfaces with UIKit (and AppKit on Mac OS X). I
don’t attempt to cover UIKit because most 3D applications do not make extensive use
of it. For best performance, Apple advises against mixing UIKit with OpenGL.

HelloArrow with Fixed Function | 11

www.it-ebooks.info

http://www.it-ebooks.info/

For simple 3D applications that aren’t too demanding, it probably won’t
hurt you to add some UIKit controls to your OpenGL view. We cover
% this briefly in “Mixing OpenGL ES and UIKit” on page 310.

Optional: Creating a Clean Slate

The following steps remove some Interface Builder odds and ends from the project;
this is optional, but it’s something I like to do to start from a clean slate.

1. Interface Builder uses an XML file called a xib for defining an object graph of Ul
elements. Since you’re creating a pure OpenGL application, you don’t need this
file in your project. In the Groups & Files pane on the left, find the folder that says
Resources (or something similar such as Resources-iPhone). Delete the file ending
in .xib. When prompted, move it to the trash.

2. The xib file normally compiles to a binary file called a nib, which is loaded at run-
time to build up the UL To instruct the OS not to load the nib file, you’ll need to
remove an application property. In the Resources folder, find the HelloArrow-
Info.plist file. Click it and then remove the property called Main nib file base
name (toward the bottom of the Information Property List). You can remove a
property by clicking to select it and then pressing the Delete key.

3. The template application normally extracts the name of the application delegate
from the nib file during startup; since you’re not using a nib file, you need to pass
in an explicit string. Under Other Sources, open main.m, and change the last ar-
gument of the call to UIApplicationMain from nil to the name of your application
delegate class (for example, @"HelloArrowAppDelegate"). The @ prefix means this is
a proper Objective-C string rather than a C-style pointer to char.

4. The template includes a property in the application delegate that allows Interface
Builder to hook in. This is no longer needed. To remove the property declaration,
open HelloArrowAppDelegate.h (in the Classes folder), and remove the
@property line. To remove the implementation, open HelloArrowAppDelegate.m,
and remove the @synthesize line.

Linking in the OpenGL and Quartz Libraries

In the world of Apple programming, you can think of a framework as being similar to
a library, but technically it’s a bundle of resources. A bundle is a special type of folder
that acts like a single file, and it’s quite common in Mac OS X. For example, applications
are usually deployed as bundles—open the action menu on nearly any icon in your
Applications folder, and you’ll see an option for Show Package Contents, which allows
you to get past the fagade.

You need to add some framework references to your Xcode project. Pull down the
action menu for the Frameworks folder. This can be done by selecting the folder and

12 | Chapter1: Quick-Start Guide

www.it-ebooks.info

http://www.it-ebooks.info/

clicking the Action icon or by right-clicking or Control-clicking the folder. Next choose
Add-Existing Frameworks. Select OpenGLES.Framework, and click the Add button.
You may see a dialog after this; if so, simply accept its defaults. Now, repeat this pro-
cedure with QuartzCore.Framework.

B
. Why do we need Quartz if we’re writing an OpenGL ES application?
:‘:\ The answer is that Quartz owns the layer object that gets presented to
~ Q8¢ the screen, even though we’re rendering with OpenGL. The layer object

is an instance of CAEGLLayer, which is a subclass of CALayer; these classes
are defined in the Quartz Core framework.

Subclassing UlView

The abstract UIView class controls a rectangular area of the screen, handles user events,
and sometimes serves as a container for child views. Almost all standard controls such
as buttons, sliders, and text fields are descendants of UIView. We tend to avoid using
these controls in this book; for most of the sample code, the Ul requirements are so
modest that OpenGL itself can be used to render simple buttons and various widgets.

For our HelloArrow sample, we do need to define a single UIView subclass, since all
rendering on the iPhone must take place within a view. Select the Classes folder in
Xcode, click the Action icon in the toolbar, and select Add—New file. Under the Cocoa
Touch Class category, select the Objective-C class template, and choose UIView in the
Subclass of menu. In the next dialog, name it GLView.mm, and leave the box checked
to ensure that the corresponding header gets generated. The .mm extension indicates
that this file can support C++ in addition to Objective-C. Open GLView.h. You should
see something like this:

#import <UIKit/UIKit.h>

@interface GLView : UIView {
}

@end

For C/C++ veterans, this syntax can be a little jarring—just wait until you see the syntax
for methods! Fear not, it’s easy to become accustomed to.

#import is almost the same thing as #include but automatically ensures that the header
file does not get expanded twice within the same source file. This is similar to the
t#ipragma once feature found in many C/C++ compilers.

Keywords specific to Objective-C stand out because of the @ prefix. The @interface
keyword marks the beginning of a class declaration; the @end keyword marks the end
of a class declaration. A single source file may contain several class declarations and
therefore can have several @interface blocks.

HelloArrow with Fixed Function | 13

www.it-ebooks.info

http://www.it-ebooks.info/

As you probably already guessed, the previous code snippet simply declares an empty
class called GLView that derives from UIView. What’s less obvious is that data fields will
go inside the curly braces, while method declarations will go between the ending curly
brace and the @end, like this:

#import <UIKit/UIKit.h>

@interface GLView : UIView {
// Protected fields go here...
}

// Public methods go here...

@end

By default, data fields have protected accessibility, but you can make them private using
the @private keyword. Let’s march onward and fill in the pieces shown in bold in
Example 1-1. We’re also adding some new #imports for OpenGL-related stuff.

Example 1-1. GLView class declaration

#import <UIKit/UIKit.h>

#import <OpenGLES/EAGL.h>
#import <QuartzCore/QuartzCore.h>
#import <OpenGLES/ES1/gl.h>
#import <OpenGLES/ES1/glext.h>

@interface GLView : UIView {
EAGLContext* m_context;
}
- (void) drawView;
@end

Them_context field is a pointer to the EAGL object that manages our OpenGL context.
EAGL is a small Apple-specific API that links the iPhone operating system with
OpenGL.

W

Every time you modify API state through an OpenGL function call, you

do so within a context. For a given thread running on your system, only

Qs one context can be current at any time. With the iPhone, you’ll rarely

" need more than one context for your application. Because of the limited
resources on mobile devices, I don’t recommend using multiple
COntexts.

If you have a C/C++ background, the drawview method declaration in Example 1-1
may look odd. It’s less jarring if you’re familiar with UML syntax, but UML uses - and
+ to denote private and public methods, respectively; with Objective-C, - and + denote

14 | Chapter1: Quick-Start Guide

www.it-ebooks.info

http://www.it-ebooks.info/

instance methods and class methods. (Class methods in Objective-C are somewhat
similar to C++ static methods, but in Objective-C, the class itself is a proper object.)

Take alook at the top of the GLView.mm file that Xcode generated. Everything between
@implementation and @end is the definition of the GLView class. Xcode created three
methods for you: initWithFrame, drawRect (which may be commented out), and
dealloc. Note that these methods do not have declarations in the header file that Xcode
generated. In this respect, an Objective-C method is similar to a plain old function in
C; it needs a forward declaration only if gets called before it’s defined. I usually declare
all methods in the header file anyway to be consistent with C++ class declarations.

Take a closer look at the first method in the file:
- (id) initWithFrame: (CGRect) frame

if (self = [super initWithFrame:frame]) {
// Initialize code...
}

return self;

}

This is an Objective-C initializer method, which is somewhat analogous to a C++ con-
structor. The return type and argument types are enclosed in parentheses, similar to
C-style casting syntax. The conditional in the if statement accomplishes several things
at once: it calls the base implementation of initWithFrame, assigns the object’s pointer
to self, and checks the result for success.

In Objective-C parlance, you don’t call methods on objects; you send messages to ob-
jects. The square bracket syntax denotes a message. Rather than a comma-separated
list of values, arguments are denoted with a whitespace-separated list of name-value
pairs. The idea is that messages can vaguely resemble English sentences. For example,
consider this statement, which adds an element to an NSMutableDictionary:

[myDictionary setValue: 30 forKey: @"age"];
If you read the argument list aloud, you get an English sentence! Well, sort of.

That’s enough of an Objective-C lesson for now. Let’s get back to the HelloArrow
application. In GLView.mm, provide the implementation to the layerClass method by
adding the following snippet after the @implementation line:

+ (Class) layerClass
{

return [CAEAGLLayer class];
}

This simply overrides the default implementation of layerClass to return an OpenGL-
friendly layer type. The class method is similar to the typeof operator found in other
languages; it returns an object that represents the type itself, rather than an instance of
the type.

HelloArrow with Fixed Function | 15

www.it-ebooks.info

http://www.it-ebooks.info/

The + prefix means that this is an override of a class method rather than
an instance method. This type of override is a feature of Objective-C
* Gl rarely found in other languages.

Now, go back to initWithFrame, and replace the contents of the if block with some
EAGL initialization code, as shown in Example 1-2.

Example 1-2. EAGL initialization in GLView.mm
- (id) initWithFrame: (CGRect) frame

if (self = [super initWithFrame:frame]) {
CAEAGLLayer* eagllLayer = (CAEAGLLayer*) super.layer; @
eagllayer.opaque = YES; @

m_context = [[EAGLContext alloc] initWithAPI:kEAGLRenderingAPIOpenGLES1]; ©

if (!m_context || ![EAGLContext setCurrentContext:m_context]) { @
[self release];
return nil;

}

// Initialize code...

}

return self;
}
Here’s what’s going on:

@ Retrieve the layer property from the base class (UIView), and downcast it from
CALayer into a CAEAGLLayer. This is safe because of the override to the layerClass
method.

©® Set the opaque property on the layer to indicate that you do not need Quartz to handle
transparency. This is a performance benefit that Apple recommends in all OpenGL
programs. Don’t worry, you can easily use OpenGL to handle alpha blending.

© Create an EAGLContext object, and tell it which version of OpenGL you need, which
isES 1.1.

O Tell the EAGLContext to make itself current, which means any subsequent OpenGL
calls in this thread will be tied to it.

© If context creation fails or if setCurrentContext fails, then poop out and return nil.

16 | Chapter1: Quick-Start Guide

www.it-ebooks.info

http://www.it-ebooks.info/

Memory Management in Objective-C

The alloc-init pattern that we used for instancing EAGLContext in Example 1-2 is very
common in Objective-C. With Objective-C, constructing an object is always split into
two phases: allocation and initialization. However, some of the classes you’ll encounter
supply a class method to make this easier. For example, to convert a UTF-8 string into
a NSString using the alloc-init pattern, you could do this:

NSString* destString = [[NSString alloc] initWithUTF8String:srcString];
But I prefer doing this:
NSString* destString = [NSString stringWithUTF8String:srcString];

Not only is this more terse, it also adds autorelease semantics to the object, so there’s
no need to call release on it when you’re done.

Next, continue filling in the initialization code with some OpenGL setup. Replace the
OpenGL Initialization comment with Example 1-3.

Example 1-3. OpenGL initialization in GLView.mm

GLuint framebuffer, renderbuffer;
glGenFramebuffersOES(1, &framebuffer);
glGenRenderbuffersOES(1, &renderbuffer);

glBindFramebufferOES(GL_FRAMEBUFFER_OES, framebuffer);
glBindRenderbufferOES(GL_RENDERBUFFER_OES, renderbuffer);

[m_context
renderbufferStorage:GL_RENDERBUFFER_OES
fromDrawable: eagllayer];

glFramebufferRenderbufferOES(
GL_FRAMEBUFFER_OES, GL_COLOR_ATTACHMENTO OES,
GL_RENDERBUFFER_OES, renderbuffer);

glviewport(0, 0, CGRectGetWidth(frame), CGRectGetHeight(frame));

[self drawView];

Example 1-3 starts off by generating two OpenGL identifiers, one for a renderbuffer
and one for a framebuffer. Briefly, a renderbuffer is a 2D surface filled with some type
of data (in this case, color), and a framebuffer is a bundle of renderbuffers. You’ll learn
more about framebuffer objects (FBOs) in later chapters.

HelloArrow with Fixed Function | 17

www.it-ebooks.info

http://www.it-ebooks.info/

The use of FBOs is an advanced feature that is not part of the core
OpenGL ES 1.1 APL but it is specified in an OpenGL extension that all
* Qs iPhones support. In OpenGLES 2.0, FBOs are included in the core API.
" It may seem odd to use this advanced feature in the simple HelloArrow
program, but all OpenGL iPhone applications need to leverage FBOs to
draw anything to the screen.

The renderbuffer and framebuffer are both of type GLuint, which is the type that
OpenGL uses to represent various objects that it manages. You could just as easily use
unsigned intinlieu of GLuint, but I recommend using the GL-prefixed types for objects
that get passed to the APIL. If nothing else, the GL-prefixed types make it easier for
humans to identify which pieces of your code interact with OpenGL.

After generating identifiers for the framebuffer and renderbuffer, Example 1-3 then
binds these objects to the pipeline. When an object is bound, it can be modified or
consumed by subsequent OpenGL operations. After binding the renderbuffer, storage
is allocated by sending the renderbufferStorage message to the EAGLContext object.

\

WS

For an off-screen surface, you would use the OpenGL command
glRenderbufferStorage to perform allocation, but in this case you’re as-
Qs sociating the renderbuffer with an EAGL layer. You’ll learn more about
" off-screen surfaces later in this book.

Next, the glFramebufferRenderbufferOES command is used to attach the renderbuffer
object to the framebuffer object.

After this, the glViewport command is issued. You can think of this as setting up a
coordinate system. In Chapter 2 you’ll learn more precisely what’s going on here.

The final call in Example 1-3 is to the drawView method. Go ahead and create the
drawView implementation:

- (void) drawview

glClearColor(0.5f, 0.5, 0.5f, 1);
glClear (GL_COLOR BUFFER BIT);

[m_context presentRenderbuffer:GL_RENDERBUFFER_OES];
}

This uses OpenGL’s “clear” mechanism to fill the buffer with a solid color. First the
color is set to gray using four values (red, green, blue, alpha). Then, the clear operation
isissued. Finally, the EAGLContext object is told to present the renderbuffer to the screen.
Rather than drawing directly to the screen, most OpenGL programs render to a buffer
that is then presented to the screen in an atomic operation, just like we’re doing here.

18 | Chapter1: Quick-Start Guide

www.it-ebooks.info

http://www.it-ebooks.info/

You can remove the drawRect stub that Xcode provided for you. The drawRect method
is typically used for a “paint refresh” in more traditional UlKit-based applications; in
3D applications, you’ll want finer control over when rendering occurs.

At this point, you almost have a fully functioning OpenGL ES program, but there’s one
more loose end to tie up. You need to clean up when the GLView object is destroyed.
Replace the definition of dealloc with the following:

- (void) dealloc
{

if ([EAGLContext currentContext] == m_context)
[EAGLContext setCurrentContext:nil];

[m_context release];
[super dealloc];

}

You can now build and run the program, but you won’t even see the gray background
color just yet. This brings us to the next step: hooking up the application delegate.

Hooking Up the Application Delegate

The application delegate template (HelloArrowAppDelegate.h) that Xcode provided
contains nothing more than an instance of UIWindow. Let’s add a pointer to an instance
of the GLView class along with a couple method declarations (new/changed lines are
shown in bold):

#import <UIKit/UIKit.h>
#import "GLView.h"

@interface HelloArrowAppDelegate : NSObject <UIApplicationDelegate> {
UIWindow* m_window;
GLView* m_view;

}

@property (nonatomic, retain) IBOutlet UIWindow *m_window;

@end

If you performed the instructions in “Optional: Creating a Clean Slate” on page 12,
you won'’t see the @property line, which is fine. Interface Builder leverages Objective-
C’s property mechanism to establish connections between objects, but we’re not using
Interface Builder or properties in this book. In brief, the @property keyword declares a
property; the @synthesize keyword defines accessor methods.

Note that the Xcode template already had a window member, but I renamed it to
m_window. This is in keeping with the coding conventions that we use throughout this

book.

HelloArrow with Fixed Function | 19

www.it-ebooks.info

http://www.it-ebooks.info/

I recommend using Xcode’s Refactor feature to rename this variable
because it will also rename the corresponding property (if it exists).
~ Qs Simply right-click the window variable and choose Refactor. If you did
" not make the changes shown in “Optional: Creating a Clean
Slate” on page 12, you must use Refactor so that the xib file knows the
window is now represented by m_window.

Now open the corresponding HelloArrowAppDelegate.m file. Xcode already provided
skeleton implementations for applicationDidFinishLaunching and dealloc as part of
the Window-Based Application template that we selected to create our project.

N

Since you need this file to handle both Objective-C and C++, you must
rename the extension to .mm. Right-click the file to bring up the action
%" menu, and then select Rename.

Flesh out the file as shown in Example 1-4.

Example 1-4. HelloArrowAppDelegate.mm

#import "HelloArrowAppDelegate.h"
#import <UIKit/UIKit.h>
#import "GLView.h"

@implementation HelloArrowAppDelegate

- (BOOL) application: (UIApplication*) application
didFinishLaunchingWithOptions: (NSDictionary*) launchOptions

{
CGRect screenBounds = [[UIScreen mainScreen] bounds];
m_window = [[UIWindow alloc] initWithFrame: screenBounds];
m_view = [[GLView alloc] initWithFrame: screenBounds];
[m_window addSubview: m_view];
[m_window makeKeyAndVisible];
return YES;

}

- (void) dealloc

[m_view release];
[m window release];
[super dealloc];

}

@end

Example 1-4 uses the alloc-init pattern to construct the window and view objects,
passing in the bounding rectangle for the entire screen.

20 | Chapter1: Quick-Start Guide

www.it-ebooks.info

http://www.it-ebooks.info/

If you haven’t removed the Interface Builder bits as described in “Optional: Creating a
Clean Slate” on page 12, you’ll need to make a couple changes to the previous code
listing:

* Add a new line after @implementation:

@synthesize m_window;

As mentioned previously, the @synthesize keyword defines a set of property ac-
cessors, and Interface Builder uses properties to hook things up.

* Remove the line that constructs m_window. Interface Builder has a special way of
constructing the window behind the scenes. (Leave in the calls to
makeKeyAndVisible and release.)

Compile and build, and you should now see a solid gray screen. Hooray!

Setting Up the Icons and Launch Image

To set a custom launch icon for your application, create a 57x57 PNG file (72x72 for
the iPad), and add it to your Xcode project in the Resources folder. If you refer to a PNG
file that is not in the same location as your project folder, Xcode will copy it for you;
be sure to check the box labeled “Copy items into destination group’s folder (if nee-
ded)” before you click Add. Then, open the HelloArrow-Info.plist file (also in the
Resources folder), find the Icon file property, and enter the name of your PNG file.

The iPhone will automatically give your icon rounded corners and a shiny overlay. If
you want to turn this feature off, find the HelloArrow-Info.plist file in your Xcode
project, select the last row, click the + button, and choose Icon already includes gloss
and bevel effects from the menu. Don’t do this unless you’re really sure of yourself;
Apple wants users to have a consistent look in SpringBoard (the built-in program used
to launch apps).

In addition to the 57x57 launch icon, Apple recommends that you also provide a 29x29
miniature icon for the Spotlight search and Settings screen. The procedure is similar
except that the filename must be Icon-Small.png, and there’s no need to modify
the .plist file.

For the splash screen, the procedure is similar to the small icon, except that the filename
must be Default.png and there’s no need to modify the .plist file. The iPhone fills the
entire screen with your image, so the ideal size is 320x480, unless you want to see an
ugly stretchy effect. Apple’s guidelines say that this image isn’t a splash screen at all
but a “launch image” whose purpose is to create a swift and seamless startup experi-
ence. Rather than showing a creative logo, Apple wants your launch image to mimic
the starting screen of your running application. Of course, many applications ignore
this rule!

HelloArrow with Fixed Function | 21

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with the Status Bar

Even though your application fills the renderbuffer with gray, the iPhone’s status bar
still appears at the top of the screen. One way of dealing with this would be adding the
following line to didFinishLaunchingWithOptions:

[application setStatusBarHidden: YES withAnimation: UIStatusBarAnimationNone];

The problem with this approach is that the status bar does not hide until after the splash
screen animation. For HelloArrow, let’s remove the pesky status bar from the very
beginning. Find the HelloArrowInfo.plist file in your Xcode project, and add a new
property by selecting the last row, clicking the + button, choosing “Status bar is initially
hidden” from the menu, and checking the box.

Of course, for some applications, you’ll want to keep the status bar visible—after all,
the user might want to keep an eye on battery life and connectivity status! If your
application has a black background, you can add a Status bar style property and select
the black style. For nonblack backgrounds, the semitransparent style often works well.

Defining and Consuming the Rendering Engine Interface

At this point, you have a walking skeleton for HelloArrow, but you still don’t have the
rendering layer depicted in Figure 1-7. Add a file to your Xcode project to define the
C++ interface. Right-click the Classes folder, and choose Add—New file, select C and
C++, and choose Header File. Call it IRenderingEngine.hpp. The .hpp extension signals
that this is a pure C++ file; no Objective-C syntax is allowed.T Replace the contents of
this file with Example 1-5.

Coding Convention

Example 1-5 defines an interface in C++ using some component-oriented conventions
that we’ll follow throughout this book:
* All interface methods are pure virtual.

* Interfaces are of type struct because interface methods are always public. (Recall
in C++, struct members default to public, and class members default to private.)

* Names of interfaces are prefixed with a capital I.
* Interfaces consist of methods only; no fields are permitted.

* The construction of implementation classes is achieved via factory methods. In
this case, the factory method is CreateRenderer1.

* Allinterfaces should have a virtual destructor to enable proper cleanup.

1 Xcode doesn’t care whether you use hpp or h for headers; we use this convention purely for the benefit of
human readers.

22 | Chapter1: Quick-Start Guide

www.it-ebooks.info

http://www.it-ebooks.info/

Example 1-5. IRenderingEngine.hpp

// Physical orientation of a handheld device, equivalent to UIDeviceOrientation.
enum DeviceOrientation {

DeviceOrientationUnknown,

DeviceOrientationPortrait,

DeviceOrientationPortraitUpsideDown,

DeviceOrientationLandscapeleft,

DeviceOrientationLandscapeRight,

DeviceOrientationFaceUp,

DeviceOrientationFaceDown,

|5

// Creates an instance of the renderer and sets up various OpenGL state.
struct IRenderingEngine* CreateRendereri();

// Interface to the OpenGL ES renderer; consumed by GLView.
struct IRenderingEngine {
virtual void Initialize(int width, int height) = o;
virtual void Render() const = 0;
virtual void UpdateAnimation(float timeStep) = 0;
virtual void OnRotate(DeviceOrientation newOrientation) = 0;
virtual ~IRenderingEngine() {}

};

It seems redundant to include an enumeration for device orientation when one already
exists in an iPhone header (namely, UIDevice.h), but this makes the
IRenderingEngine interface portable to other environments.

Since the view class consumes the rendering engine interface, you need to add an
IRenderingEngine pointer to the GLView class declaration, along with some fields and
methods to help with rotation and animation. Example 1-6 shows the complete class
declaration. New fields and methods are shown in bold. Note that we removed the two
OpenGLES 1.1 #imports; these OpenGL calls are moving to the RenderingEngine1 class.
The EAGL header is not part of the OpenGL standard, but it’s required to create the
OpenGL ES context.

Example 1-6. GLView.h

#import "IRenderingEngine.hpp"
#import <OpenGLES/EAGL.h>
#import <QuartzCore/QuartzCore.h>

@interface GLView : UIView {

@private
EAGLContext* m_context;
IRenderingEngine* m_renderingEngine;
float m_timestamp;

}

- (void) drawView: (CADisplayLink*) displayLink;
- (void) didRotate: (NSNotification*) notification;

@end

HelloArrow with Fixed Function | 23

www.it-ebooks.info

http://www.it-ebooks.info/

Example 1-7is the full listing for the class implementation. Calls to the rendering engine
are highlighted in bold. Note that GLView no longer contains any OpenGL calls; we’re
delegating all OpenGL work to the rendering engine.

Example 1-7. GLView.mm

#import <OpenGLES/EAGLDrawable.h>

#import "GLView.h"

#import "mach/mach_time.h"

#import <OpenGLES/ES2/gl.h> // <-- for GL_RENDERBUFFER only

@implementation GLView
+ (Class) layerClass
{

return [CAEAGLLayer class];
}

- (id) initWithFrame: (CGRect) frame

if (self = [super initWithFrame:frame]) {
CAEAGLLayer* eagllLayer = (CAEAGLLayer*) super.layer;
eaglLayer.opaque = YES;

m_context = [[EAGLContext alloc] initWithAPI:kEAGLRenderingAPIOpenGLES1];

if (!m_context || ![EAGLContext setCurrentContext:m_context]) {
[self release];
return nil;

}

m_renderingEngine = CreateRendereri();

[m_context
renderbufferStorage:GL_RENDERBUFFER
fromDrawable: eagllLayer];

m_renderingEngine->Initialize(CGRectGetWidth(frame), CGRectGetHeight(frame));

[self drawView: nil];
m_timestamp = CACurrentMediaTime();

CADisplayLink* displayLink;
displayLink = [CADisplayLink displayLinkWithTarget:self
selector:@selector(drawView:)];

[displayLink addToRunLoop:[NSRunLoop currentRunLoop]
forMode :NSDefaultRunLoopMode];

[[UIDevice currentDevice] beginGeneratingDeviceOrientationNotifications];

[[NSNotificationCenter defaultCenter]
addObserver:self
selector:@selector(didRotate:)
name:UIDeviceOrientationDidChangeNotification

24 | Chapter1: Quick-Start Guide

www.it-ebooks.info

http://www.it-ebooks.info/

object:nil];

return self;

- (void) didRotate: (NSNotification*) notification

UIDeviceOrientation orientation = [[UIDevice currentDevice] orientation];
m_renderingEngine->OnRotate((DeviceOrientation) orientation);
[self drawView: nil];

- (void) drawview: (CADisplaylLink*) displayLink

if (displayLink != nil) {
float elapsedSeconds = displayLink.timestamp - m timestamp;
m_timestamp = displaylLink.timestamp;
m_renderingEngine->UpdateAnimation(elapsedSeconds);

}

m_renderingEngine->Render();
[m_context presentRenderbuffer:GL_RENDERBUFFER];

}

@end

This completes the Objective-C portion of the project, but it won’t build yet because
you still need to implement the rendering engine. There’s no need to dissect all the code
in Example 1-7, but a brief summary follows:

* The initWithFrame method calls the factory method to instantiate the C++ ren-
derer. It also sets up two event handlers. One is for the “display link,” which fires
every time the screen refreshes. The other event handler responds to orientation
changes.

* The didRotate event handler casts the iPhone-specific UIDeviceOrientation to our
portable DeviceOrientation type and then passes it on to the rendering engine.

* The drawView method, called in response to a display link event, computes the
elapsed time since it was last called and passes that value into the renderer’s
UpdateAnimation method. This allows the renderer to update any animations or
physics that it might be controlling.

* The drawview method also issues the Render command and presents the render-
buffer to the screen.

W

. At the time of writing, Apple recommends CADisplayLink for triggering
o OpenGL rendering. An alternative strategy is leveraging the NSTimer
T Qlav class. CADisplaylink became available with iPhone OS 3.1, so if you need

to support older versions of the iPhone OS, take a look at NSTimer in the
documentation.

HelloArrow with Fixed Function | 25

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the Rendering Engine

In this section, you’ll create an implementation class for the IRenderingEngine interface.
Right-click the Classes folder, choose Add—New file, click the C and C++ category, and
select the C++ File template. Call it RenderingEnginel.cpp, and deselect the “Also create
RenderingEnginel.h” option, since you’ll declare the class directly within the .cpp file.
Enter the class declaration and factory method shown in Example 1-8.

Example 1-8. RenderingEnginel class and factory method

#include <OpenGLES/ES1/gl.h>
#include <OpenGLES/ES1/glext.h>
#include "IRenderingEngine.hpp"

class RenderingEngine1 : public IRenderingEngine {
public:

RenderingEngine1();

void Initialize(int width, int height);

void Render() const;

void UpdateAnimation(float timeStep) {}

void OnRotate(DeviceOrientation newOrientation) {}
private:

GLuint m_framebuffer;

GLuint m_renderbuffer;

1
IRenderingEngine* CreateRendereri()

return new RenderingEngine1();

}

Fornow, UpdateAnimation and OnRotate are implemented with stubs; you’ll add support
for the rotation feature after we get up and running.

Example 1-9 shows more of the code from RenderingEnginel.cpp with the OpenGL
initialization code.

Example 1-9. Vertex data and RenderingEngine construction

struct Vertex {
float Position[2];
float Color[4];

};

// Define the positions and colors of two triangles.
const Vertex Vertices[] = {

{{-0.5, -0.866}, {1, 1, 0.5, 1}},
{{o0.5, -0.866}, {1, 1, 0.5f, 1}},
{{o, 1}, {1, 1, o.5f, 1}},
{{-0.5, -0.866}, {0.5f, 0.5f, 0.5f}},
{{o.5, -0.866}, {0.5f, 0.5f, 0.5f}},
{{o, -0.4f}, {o.5f, 0.5f, 0.5f}},

};

26 | Chapter1: Quick-Start Guide

www.it-ebooks.info

http://www.it-ebooks.info/

RenderingEngine1: :RenderingEngine1()

glGenRenderbuffersOES(1, &m_renderbuffer);
glBindRenderbufferOES(GL_RENDERBUFFER_OES, m_renderbuffer);

}

void RenderingEnginel::Initialize(int width, int height)

{
// Create the framebuffer object and attach the color buffer.

glGenFramebuffersOES(1, &m_framebuffer);

glBindFramebufferOES(GL_FRAMEBUFFER_OES, m_framebuffer);

glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
GL_COLOR_ATTACHMENTO_OES,
GL_RENDERBUFFER_OES,
m_renderbuffer);

glviewport(o, 0, width, height);
glMatrixMode(GL_PROJECTION);

// Initialize the projection matrix.

const float maxX = 2;

const float maxY = 3;

glorthof(-maxX, +maxX, -maxY, +max¥, -1, 1);

glMatrixMode(GL_MODELVIEW);
}

Example 1-9 first defines a POD type (plain old data) that represents the structure of
each vertex that makes up the triangles. As you’ll learn in the chapters to come, a vertex
in OpenGL can be associated with a variety of attributes. HelloArrow requires only two
attributes: a 2D position and an RGBA color.

In more complex OpenGL applications, the vertex data is usually read from an external
file or generated on the fly. In this case, the geometry is so simple that the vertex data
is defined within the code itself. Two triangles are specified using six vertices. The first
triangle is yellow, the second gray (see Figure 1-4, shown earlier).

Next, Example 1-9 divides up some framebuffer initialization work between the con-
structor and the Initialize method. Between instancing the rendering engine and
calling Initialize, the caller (GLView) is responsible for allocating the renderbuffer’s
storage. Allocation of the renderbuffer isn’t done with the rendering engine because it
requires Objective-C.

Last but not least, Initialize sets up the viewport transform and projection matrix.
The projection matrix defines the 3D volume that contains the visible portion of the
scene. This will be explained in detail in the next chapter.

HelloArrow with Fixed Function | 27

www.it-ebooks.info

http://www.it-ebooks.info/

To recap, here’s the startup sequence:

1. Generate an identifier for the renderbuffer, and bind it to the pipeline.

2. Allocate the renderbuffer’s storage by associating it with an EAGL layer. This has
to be done in the Objective-C layer.

3. Create a framebulffer object, and attach the renderbulffer to it.

4. Set up the vertex transformation state with glViewport and glOrthof.

Example 1-10 contains the implementation of the Render method.

Example 1-10. Initial Render implementation

void RenderingEnginel::Render() const

{
glClearColor(o.5f, 0.5f, 0.5f, 1);
glClear(GL_COLOR_BUFFER BIT); @

glEnableClientState(GL_VERTEX ARRAY);@®
glEnableClientState(GL_COLOR_ARRAY);

glVertexPointer(2, GL_FLOAT, sizeof(Vertex), 8Vertices[0].Position[0]);©
glColorPointer(4, GL_FLOAT, sizeof(Vertex), &Vertices[0].Color[0]);

GLsizei vertexCount = sizeof(Vertices) / sizeof(Vertex);
glDrawArrays(GL_TRIANGLES, 0, vertexCount);@

glDisableClientState(GL_VERTEX_ARRAY);@®
glDisableClientState(GL_COLOR_ARRAY);
}

We’ll examine much of this in the next chapter, but briefly here’s what’s going on:

@ Clear the renderbuffer to gray.
@ Enable two vertex attributes (position and color).

© Tell OpenGL how to fetch the data for the position and color attributes. We’ll ex-
amine these in detail later in the book; for now, see Figure 1-8.

O Execute the draw command with glDrawArrays, specifying GL_TRIANGLES for the top-
ology, 0 for the starting vertex, and vertexCount for the number of vertices. This
function call marks the exact time that OpenGL fetches the data from the pointers
specified in the preceding gl*Pointer calls; this is also when the triangles are actually
rendered to the target surface.

O Disable the two vertex attributes; they need to be enabled only during the preceding
draw command. It’s bad form to leave attributes enabled because subsequent draw
commands might want to use a completely different set of vertex attributes. In this
case, we could get by without disabling them because the program is so simple, but
it’s a good habit to follow.

28 | Chapter1: Quick-Start Guide

www.it-ebooks.info

http://www.it-ebooks.info/

sizeof (Vertex) GL_VERTB_ARRAY (XY XYL L)+
I_I_I

Vertices|]

glVertexPointer LGL_(OLOR_ARRAY RIG|B|A RIG|B[A|---

glColorPointer

Figure 1-8. Interleaved arrays

Congratulations, you created a complete OpenGL program from scratch! Figure 1-9
shows the result.

Figure 1-9. HelloArrow!

HelloArrow with Fixed Function | 29

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Device Orientation

Earlier in the chapter, I promised you would learn how to rotate the arrow in response
to an orientation change. Since you already created the listener in the UIView class in
Example 1-7, all that remains is handling it in the rendering engine.

First add a new floating-point field to the RenderingEngine class called
m_currentAngle. This represents an angle in degrees, not radians. Note the changes to
UpdateAnimation and OnRotate (they are no longer stubs and will be defined shortly).

class RenderingEngine1 : public IRenderingEngine {
public:

RenderingEngine1();

void Initialize(int width, int height);

void Render() const;

void UpdateAnimation(float timeStep);

void OnRotate(DeviceOrientation newOrientation);

private:

};

float m_currentAngle;
GLuint m_framebuffer;
GLuint m_renderbuffer;

Now let’s implement the OnRotate method as follows:

void RenderingEnginel::OnRotate(DeviceOrientation orientation)

{

}

Note that orientations such as Unknown, Portrait, FaceUp, and FaceDown are not included
in the switch statement, so the angle defaults to zero in those cases.

Now you can rotate the arrow using a call to glRotatef in the Render method, as shown
in Example 1-11. New code lines are shown in bold. This also adds some calls to
glPushMatrix and glPopMatrix to prevent rotations from accumulating. You’ll learn
more about these commands (including glRotatef) in the next chapter.

float angle = 0;

switch (orientation) {
case DeviceOrientationLandscapeleft:
angle = 270;
break;

case DeviceOrientationPortraitUpsideDown:
angle = 180;
break;

case DeviceOrientationlandscapeRight:
angle = 90;
break;

}

m_currentAngle = angle;

30 | Chapter1: Quick-Start Guide

www.it-ebooks.info

http://www.it-ebooks.info/

Example 1-11. Final Render implementation

void RenderingEnginel::Render() const

{
glClearColor(o.5f, 0.5f, 0.5f, 1);
glClear(GL_COLOR_BUFFER BIT);

glPushMatrix();
glRotatef(m_currentAngle, 0, 0, 1);

glEnableClientState(GL_VERTEX_ ARRAY);
glEnableClientState(GL_COLOR_ARRAY);

glVertexPointer(2, GL_FLOAT, sizeof(Vertex), &Vertices[0].Position[0]);
glColorPointer(4, GL_FLOAT, sizeof(Vertex), &Vertices[0].Color[0]);

GLsizei vertexCount = sizeof(Vertices) / sizeof(Vertex);
glDrawArrays(GL_TRIANGLES, 0, vertexCount);

glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);

glPopMatrix();

Animating the Rotation

You now have a HelloArrow program that rotates in response to an orientation change,
but it’s lacking a bit of grace—most iPhone applications smoothly rotate the image,
rather than suddenly jolting it by 90°.

It turns out that Apple provides infrastructure for smooth rotation via the
UIViewController class, but this is not the recommended approach for OpenGL ES
applications. There are several reasons for this:

* For best performance, Apple recommends avoiding interaction between Core Ani-
mation and OpenGL ES.

* Ideally, the renderbuffer stays the same size and aspect ratio for the lifetime of the
application. This helps performance and simplifies code.

* In graphically intense applications, developers need to have complete control over
animations and rendering.

To achieve the animation effect, Example 1-12 adds a new floating-point field to the
RenderingEngine class called m_desiredAngle. This represents the destination value of
the current animation; if no animation is occurring, then m_currentAngle and
m_desiredAngle are equal.

Example 1-12 also introduces a floating-point constant called RevolutionsPerSecond to
represent angular velocity, and the private method RotationDirection, which I'll ex-
plain later.

HelloArrow with Fixed Function | 31

www.it-ebooks.info

http://www.it-ebooks.info/

Example 1-12. Final RenderingEngine class declaration and constructor

#include <OpenGLES/ES1/gl.h>
#include <OpenGLES/ES1/glext.h>
#include "IRenderingEngine.hpp"

static const float RevolutionsPerSecond = 1;

class RenderingEngine1 : public IRenderingEngine {
public:

RenderingEngine1();

void Initialize(int width, int height);

void Render() const;

void UpdateAnimation(float timeStep);

void OnRotate(DeviceOrientation newOrientation);
private:

float RotationDirection() const;

float m_desiredAngle;

float m_currentAngle;

GLuint m_framebuffer;

GLuint m_renderbuffer;

};

void RenderingEnginel::Initialize(int width, int height)
{
// Create the framebuffer object and attach the color buffer.
glGenFramebuffersOES(1, &m framebuffer);
glBindFramebufferOES(GL_FRAMEBUFFER _OES, m framebuffer);
glFramebufferRenderbufferOES(GL_FRAMEBUFFER OES,
GL_COLOR_ATTACHMENTO_OES,
GL_RENDERBUFFER_OES,
m_renderbuffer);

glviewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);

// Initialize the projection matrix.

const float maxX = 2;

const float maxY = 3;

glorthof(-maxX, +maxX, -max¥, +maxY, -1, 1);

glMatrixMode(GL_MODELVIEW);

// Initialize the rotation animation state.
OnRotate(DeviceOrientationPortrait);
m_currentAngle = m_desiredAngle;

}

Now you can modify OnRotate so that it changes the desired angle rather than the
current angle:

void RenderingEnginel::OnRotate(DeviceOrientation orientation)

{

32 | Chapter1: Quick-Start Guide

www.it-ebooks.info

http://www.it-ebooks.info/

float angle = 0;
switch (orientation) {

}

m_desiredAngle = angle;

}

Before implementing UpdateAnimation, think about how the application decides
whether to rotate the arrow clockwise or counterclockwise. Simply checking whether
the desired angle is greater than the current angle is incorrect; if the user changes his
device from a 270° orientation to a 0° orientation, the angle should increase up to 360°.

Thisis where the RotationDirection method comesin. Itreturns—1, 0, or +1, depending
on which direction the arrow needs to spin. Assume that m_currentAngle and
m_desiredAngle are both normalized to values between O (inclusive) and 360 (exclusive).

float RenderingEnginel::RotationDirection() const

float delta = m desiredAngle - m currentAngle;
if (delta == 0)
return 0;

bool counterclockwise = ((delta > 0 &3 delta <= 180) || (delta < -180));
return counterclockwise ? +1 : -1;

}

Now you’re ready to write the UpdateAnimation method, which takes a time step in
seconds:

void RenderingEnginel::UpdateAnimation(float timeStep)

float direction = RotationDirection();
if (direction == 0)
return;

float degrees = timeStep * 360 * RevolutionsPerSecond;
m_currentAngle += degrees * direction;

// Ensure that the angle stays within [0, 360).
if (m_currentAngle >= 360)

m_currentAngle -= 360;
else if (m_currentAngle < 0)

m_currentAngle += 360;

// If the rotation direction changed, then we overshot the desired angle.
if (RotationDirection() != direction)
m_currentAngle = m_desiredAngle;

}

This is fairly straightforward, but that last conditional might look curious. Since this
method incrementally adjusts the angle with floating-point numbers, it could easily
overshoot the destination, especially for large time steps. Those last two lines correct

HelloArrow with Fixed Function | 33

www.it-ebooks.info

http://www.it-ebooks.info/

this by simply snapping the angle to the desired position. You’re not trying to emulate
a shaky compass here, even though doing so might be a compelling iPhone application!

You now have a fully functional HelloArrow application. As with the other examples,
you can find the complete code on this book’s website (see the preface for more infor-
mation on code samples).

HelloArrow with Shaders

In this section you’ll create a new rendering engine that uses ES 2.0. This will show you
the immense difference between ES 1.1 and 2.0. Personally I like the fact that Khronos
decided against making ES 2.0 backward compatible with ES 1.1; the API is leaner and
more elegant as a result.

Thanks to the layered architecture of HelloArrow, it’s easy to add ES 2.0 support while
retaining 1.1 functionality for older devices. You’ll be making these four changes:

1. Add some new source files to the project for the vertex shader and fragment shader.
2. Update frameworks references if needed.
3. Change the logic in GLView so that it attempts initWithAPI with ES 2.0.

4. Create the new RenderingEngine2 class by modifying a copy of RenderingEngine1.

These changes are described in detail in the following sections. Note that step 4 is
somewhat artificial; in the real world, you’ll probably want to write your ES 2.0 backend
from the ground up.

Shaders

By far the most significant new feature in ES 2.0 is the shading language. Shaders are
relatively small pieces of code that run on the graphics processor, and they are divided
into two categories: vertex shaders and fragment shaders. Vertex shaders are used to
transform the vertices that you submit with glDrawArrays, while fragment shaders
compute the colors for every pixel in every triangle. Because of the highly parallel nature
of graphics processors, thousands of shader instances execute simultaneously.

Shaders are written in a C-like language called OpenGL Shading Language (GLSL), but
unlike C, you do not compile GLSL programs within Xcode. Shaders are compiled at
runtime, on the iPhone itself. Your application submits shader source to the OpenGL
APT in the form of a C-style string, which OpenGL then compiles to machine code.

N
w% Some implementations of OpenGL ES do allow you to compile your
"‘:‘ shaders offline; on these platforms your application submits binaries
T 98y rather than strings at runtime. Currently, the iPhone supports shader
" compilation only at runtime. Its ARM processor compiles the shaders
and sends the resulting machine code over to the graphics processor for
execution. That little ARM does some heavy lifting!

34 | Chapter1: Quick-Start Guide

www.it-ebooks.info

http://www.it-ebooks.info/

The first step to upgrading HelloArrow is creating a new project folder for the shaders.
Right-click the HelloArrow root node in the Groups & Files pane, and choose
Add—New Group. Call the new group Shaders.

Next, right-click the Shaders folder, and choose Add—New file. Select the Empty File
template in the Other category. Name it Simple.vert, and add /Shaders after
HelloArrow in the location field. You can deselect the checkbox under Add To Targets,
because there’s no need to deploy the file to the device. In the next dialog, allow it to
create a new directory. Now repeat the procedure with a new file called Simple.frag.

Before showing you the code for these two files, let me explain a little trick. Rather than
reading in the shaders with file I/O, you can simply embed them within your C/C++
code through the use of #include. Multiline strings are usually cumbersome in
C/C++, but they can be tamed with a sneaky little macro:

#tdefine STRINGIFY(A) #A
Later in this section, we’ll place this macro definition at the top of the rendering engine

source code, right before #including the shaders. The entire shader gets wrapped into
a single string—without the use of quotation marks on every line!

Multiline Strings

While the STRINGIFY macro is convenient for simple shaders, I don’t recommend it for
production code. For one thing, the line numbers reported by Apple’s shader compiler
may be incorrect. The gec preprocessor can also get confused if your shader string
defines functions. A common practice is to read a shader from a file into a monolithic
string, which can easily be done from the Objective-C side using the
stringhWithContentsOfFile method.

Examples 1-13 and 1-14 show the contents of the vertex shader and fragment shader.
For brevity’s sake, we’ll leave out the STRINGIFY accouterments in future shader listings,
but we’re including them here for clarity.

Example 1-13. Simple.vert
const char* SimpleVertexShader = STRINGIFY(

attribute vec4 Position;
attribute vec4 SourceColor;
varying vec4 DestinationColor;
uniform mat4 Projection;
uniform mat4 Modelview;

void main(void)

DestinationColor = SourceColor;
gl Position = Projection * Modelview * Position;

HelloArrow with Shaders | 35

www.it-ebooks.info

http://www.it-ebooks.info/

First the vertex shader declares a set of attributes, varyings, and uniforms. For now you
can think of these as connection points between the vertex shader and the outside
world. The vertex shader itself simply passes through a color and performs a standard
transformation on the position. You’ll learn more about transformations in the next
chapter. The fragment shader (Example 1-14) is even more trivial.

Example 1-14. Simple.frag

const char* SimpleFragmentShader = STRINGIFY(
varying lowp vec4 DestinationColor;

void main(void)

{

gl FragColor = DestinationColor;
}
)5

Again, the varying parameter is a connection point. The fragment shader itself does
nothing but pass on the color that it’s given.

Frameworks

Next, make sure all the frameworks in HelloArrow are referencing a 3.1 (or greater)
version of the SDK. To find out which version a particular framework is using, right-
click it in Xcode’s Groups & Files pane, and select Get Info to look at the full path.

W N

There’s a trick to quickly change all your SDK references by manually
modifying the project file. First you need to quit Xcode. Next, open
* Qs Finder, right-click HelloArrow.xcodeproj, and select Show package con-
" tents. Inside, you’ll find a file called project.pbxproj, which you can then
open with TextEdit. Find the two places that define SDKROOT, and change
them appropriately.

GLView

You might recall passing in a version constant when constructing the OpenGL context;
this is another place that obviously needs to be changed. In the Classes folder, open
GLView.mm, and change this snippet:
m_context = [[EAGLContext alloc] initWithAPI:kEAGLRenderingAPIOpenGLES1];
if (Im_context || ![EAGLContext setCurrentContext:m context]) {
[self release];

return nil;

}

m_renderingEngine = CreateRendereri();

36 | Chapter1: Quick-Start Guide

www.it-ebooks.info

http://www.it-ebooks.info/

to this:

EAGLRenderingAPI api = kEAGLRenderingAPIOpenGLES2;
m_context = [[EAGLContext alloc] initWithAPI:api];

if (!m_context || ForceES1) {
api = kEAGLRenderingAPIOpenGLES1;
m_context = [[EAGLContext alloc] initWithAPI:api];

}

if (!m_context || ![EAGLContext setCurrentContext:m context]) {
[self release];
return nil;

}

if (api == kEAGLRenderingAPIOpenGLES1) {
m_renderingEngine = CreateRendereri();
} else {
m_renderingEngine = CreateRenderer2();
}

The previous code snippet creates a fallback path to allow the application to work on
older devices while leveraging ES 2.0 on newer devices. For convenience, the ES 1.1
path is used even on newer devices if the ForceES1 constant is enabled. Add this to the
top of GLView.mm:

const bool ForceES1 = false;

There’s no need to make any changes to the IRenderingEngine interface, but you do
need to add a declaration for the new CreateRenderer2 factory method in
IRenderingEngine.hpp:

// Create an instance of the renderer and set up various OpenGL state.
struct IRenderingEngine* CreateRendereri();
struct IRenderingEngine* CreateRenderer2();

// Interface to the OpenGL ES renderer; consumed by GLView.
struct IRenderingEngine {
virtual void Initialize(int width, int height) = o;
virtual void Render() const = 0;
virtual void UpdateAnimation(float timeStep) = 0;
virtual void OnRotate(DeviceOrientation newOrientation) = 0;
virtual ~IRenderingEngine() {}
};

RenderingEngine Implementation

You’re done with the requisite changes to the glue code; now it’s time for the meat.
Use Finder to create a copy of RenderingEnginel.cpp (right-click or Control-click
RenderingEnginel.cpp and choose Reveal in Finder), and name the new file Renderin-
gEngine2.cpp. Add it to your Xcode project by right-clicking the Classes group and

HelloArrow with Shaders | 37

www.it-ebooks.info

http://www.it-ebooks.info/

choosing Add—Existing Files. Next, revamp the top part of the file as shown in Exam-
ple 1-15. New or modified lines are shown in bold.

Example 1-15. RenderingEngine2 declaration

#include <OpenGLES/ES2/gl.h>
#include <OpenGLES/ES2/glext.h>
#include <cmath>

#include <iostream>

#include "IRenderingEngine.hpp"

#define STRINGIFY(A) #A
#include "../Shaders/Simple.vert"
#include "../Shaders/Simple.frag"

static const float RevolutionsPerSecond = 1;

class RenderingEngine2 : public IRenderingEngine {
public:
RenderingEngine2();
void Initialize(int width, int height);
void Render() const;
void UpdateAnimation(float timeStep);
void OnRotate(DeviceOrientation newOrientation);
private:
float RotationDirection() const;
GLuint BuildShader(const char* source, GLenum shaderType) const;
GLuint BuildProgram(const char* vShader, const char* fShader) const;
void ApplyOrtho(float maxX, float maxY) const;
void ApplyRotation(float degrees) const;
float m_desiredAngle;
float m_currentAngle;
GLuint m_simpleProgram;
GLuint m_framebuffer;
GLuint m_renderbuffer;

|5

As you might expect, the implementation of Render needs to be replaced. Flip back to
Example 1-11 to compare it with Example 1-16.

Example 1-16. Render with OpenGL ES 2.0

void RenderingEngine2::Render() const

{
glClearColor(o.5f, 0.5f, 0.5f, 1);
glClear(GL_COLOR_BUFFER BIT);

ApplyRotation(m_currentAngle);

GLuint positionSlot = glGetAttribLocation(m_simpleProgram, "Position");
GLuint colorSlot = glGetAttribLocation(m simpleProgram, "SourceColor");

glEnableVertexAttribArray(positionSlot);
glEnableVertexAttribArray(colorSlot);

38 | Chapter1: Quick-Start Guide

www.it-ebooks.info

http://www.it-ebooks.info/

GLsizei stride = sizeof(Vertex);
const GLvoid* pCoords = 8Vertices[0].Position[0];
const GLvoid* pColors = &Vertices[0].Color[0];

glVertexAttribPointer(positionSlot, 2, GL_FLOAT, GL_FALSE, stride, pCoords);
glVertexAttribPointer(colorSlot, 4, GL_FLOAT, GL_FALSE, stride, pColors);

GLsizei vertexCount = sizeof(Vertices) / sizeof(Vertex);
glDrawArrays(GL_TRIANGLES, 0, vertexCount);

glDisableVertexAttribArray(positionSlot);
glDisableVertexAttribArray(colorSlot);

}

Asyou can see, the 1.1 and 2.0 versions of Render are quite different, but at a high level
they basically follow the same sequence of actions.

Framebuffer objects have been promoted from a mere OpenGL extension to the core
API. Luckily OpenGL has a very strict and consistent naming convention, so this change
is fairly mechanical. Simply remove the OES suffix everywhere it appears. For function
calls, the suffix is OES; for constants the suffix is _OES. The constructor is very easy
to update:

RenderingEngine2: :RenderingEngine2()

glGenRenderbuffers(1, 8m renderbuffer);
glBindRenderbuffer (GL_RENDERBUFFER, m renderbuffer);

}

The only remaining public method that needs to be updated is Initialize, shown in
Example 1-17.

Example 1-17. RenderingEngine? initialization

void RenderingEngine2::Initialize(int width, int height)
{
// Create the framebuffer object and attach the color buffer.
glGenFramebuffers(1, &m_ framebuffer);
glBindFramebuffer (GL_FRAMEBUFFER, m_framebuffer);
glFramebufferRenderbuffer(GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENTO,
GL_RENDERBUFFER,
m_renderbuffer);

glviewport(0, 0, width, height);
m_simpleProgram = BuildProgram(SimpleVertexShader, SimpleFragmentShader);
glUseProgram(m_simpleProgram);

// Initialize the projection matrix.
ApplyOrtho(2, 3);

// Initialize rotation animation state.
OnRotate(DeviceOrientationPortrait);

HelloArrow with Shaders | 39

www.it-ebooks.info

http://www.it-ebooks.info/

m_currentAngle = m_desiredAngle;

}

This calls the private method BuildProgram, which in turn makes two calls on the private
method BuildShader. In OpenGL terminology, a program is a module composed of
several shaders that get linked together. Example 1-18 shows the implementation of
these two methods.

Example 1-18. BuildProgram and BuildShader

GLuint RenderingEngine2::BuildProgram(const char* vertexShaderSource,
const char* fragmentShaderSource) const
{

GLuint vertexShader = BuildShader(vertexShaderSource, GL_VERTEX_ SHADER);
GLuint fragmentShader = BuildShader(fragmentShaderSource, GL_FRAGMENT SHADER);

GLuint programHandle = glCreateProgram();
glAttachShader (programHandle, vertexShader);
glAttachShader (programHandle, fragmentShader);
glLinkProgram(programHandle);

GLint linkSuccess;
glGetProgramiv(programHandle, GL _LINK STATUS, &linkSuccess);
if (linkSuccess == GL_FALSE) {
GLchar messages[256];
glGetProgramInfolLog(programHandle, sizeof(messages), 0, 8messages[0]);
std::cout << messages;
exit(1);

return programHandle;

}

GLuint RenderingEngine2::BuildShader(const char* source, GLenum shaderType) const

{
GLuint shaderHandle = glCreateShader(shaderType);

glShaderSource(shaderHandle, 1, &source, 0);
glCompileShader (shaderHandle);

GLint compileSuccess;
glGetShaderiv(shaderHandle, GL_COMPILE_STATUS, &compileSuccess);

if (compileSuccess == GL_FALSE) {
GlLchar messages[256];
glGetShaderInfolLog(shaderHandle, sizeof(messages), 0, 8messages[0]);
std::cout << messages;
exit(1);

}

return shaderHandle;

}

You might be surprised to see some console I/O in Example 1-18. This dumps out the
shader compiler output if an error occurs. Trust me, you’'ll always want to gracefully

40 | Chapter1: Quick-Start Guide

www.it-ebooks.info

http://www.it-ebooks.info/

handle these kind of errors, no matter how simple you think your shaders are. The
console output doesn’t show up on the iPhone screen, but it can be seen in Xcode’s
Debugger Console window, which is shown via the Run—Console menu. See Fig-
ure 1-10 for an example of how a shader compilation error shows up in the console
window.

800 [™ HelloArrow - Debugger Console =
[Simutator - 3.0 | Debug v] b ‘) U u u @ ﬁ
_Overview Build and Go Tasks Restart Pause Activate Clear Log

[Session started at 2009-07-25 23:37:56 -0600.]

2009-07=25 23:37:58.714 EelloArrow[1164:20b] Using OpenGL ES 2.0

ERROR: 0:1: 'BadWName' : undeclared identifier

ERROR: 0:1: 'assign’' : cannot convert from 'float' to 'varying 4-component vector of highp float'

Debugging terminated. @ Succeeded /

Figure 1-10. Debugger console

Note that the log in Figure 1-10 shows the version of OpenGL ES being used. To include
this information, go back to the GLView class, and add the lines in bold:
if (api == kEAGLRenderingAPIOpenGLES1) {
NSLog(@"Using OpenGL ES 1.1");
m_renderingEngine = CreateRendereri();
} else {

NSLog(@"Using OpenGL ES 2.0");
m_renderingEngine = CreateRenderer2();

}

The preferred method of outputting diagnostic information in Objective-C is NSLog,
which automatically prefixes your string with a timestamp and follows it with a carriage
return. (Recall that Objective-C string objects are distinguished from C-style strings
using the @ symbol.)

Return to RenderingEngine2.cpp. Two methods remain: ApplyOrtho and
ApplyRotation. Since ES 2.0 does not provide glOrthof or glRotatef, you need to im-
plement them manually, as seen in Example 1-19. (In the next chapter, we’ll create a
simple math library to simplify code like this.) The calls to gluniformMatrix4fv provide
values for the uniform variables that were declared in the shader source.

Example 1-19. ApplyOrtho and ApplyRotation
void RenderingEngine2::ApplyOrtho(float maxX, float maxY) const

{
float a = 1.0f / maxX;
float b = 1.0f / maxy;
float ortho[16] = {

HelloArrow with Shaders | 41

www.it-ebooks.info

http://www.it-ebooks.info/

a, 0, 0,0,
0, b) 0, 0,
0, 0, -1, 0,
0,0, 0,1

s

GLint projectionUniform = glGetUniformLocation(m_simpleProgram, "Projection");
glUniformMatrix4fv(projectionUniform, 1, 0, &ortho[0]);

}

void RenderingEngine2::ApplyRotation(float degrees) const

{
float radians = degrees * 3.14159f / 180.0f;

float s = std::sin(radians);
float ¢ = std::cos(radians);
float zRotation[16] = {

¢, s, 0,0,

-s, ¢, 0, 0,

0, 0, 1, 0,

0,0, 0, 1

};

GLint modelviewUniform = glGetUniformLocation(m_simpleProgram, "Modelview");
glUniformMatrix4fv(modelviewUniform, 1, 0, &zRotation[0]);

}

Again, don’t be intimidated by the matrix math; I'll explain it all in the next chapter.

Next, go through the file, and change any remaining occurrences of RenderingEngine1 to
RenderingEngine2, including the factory method (and be sure to change the name of
that method to CreateRenderer2). This completes all the modifications required to run
against ES 2.0. Phew! It’s obvious by now that ES 2.0 is “closer to the metal” than ES 1.1.

Wrapping Up

This chapter has been a headfirst dive into the world of OpenGL ES development for
the iPhone. We established some patterns and practices that we’ll use throughout this
book, and we constructed our first application from the ground up — using both ver-
sions of OpenGL ES!

In the next chapter, we’ll go over some graphics fundamentals and explain the various
concepts used in HelloArrow. If you’re already a computer graphics ninja, you’ll be
able to skim through quickly.

42 | Chapter1: Quick-Start Guide

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2
Math and Metaphors

There’s a pizza place near where I live that sells only
slices. In the back you can see a guy tossing
a triangle in the air.

—Stephen Wright, comedian

Computer graphics requires more mathematics than many other fields in computer
science. But if you’re a pragmatic OpenGL programmer, all you really need is a basic
grasp of linear algebra and an understanding of a few metaphors.

In this chapter, I explain these metaphors and review the relevant linear algebra con-
cepts. Along the way I'll tick off various OpenGL functions that relate to these concepts.
Several of such functions were used in the HelloArrow sample, so code that may have
seemed mysterious should now become clear.

Near the end of the chapter, we’ll leverage these math concepts to push the HelloArrow
sample into the third dimension, transforming it into HelloCone.

The Assembly Line Metaphor

You can think of any graphics API, including OpenGL ES, as an assembly line that
takes an assortment of raw materials such as textures and vertices for input and even-
tually produces a neatly packaged grid of colors.

The inputs to the assembly line are the natural starting points for learning OpenGL,
and in this chapter we’ll focus on vertices. Figure 2-1 depicts the gradual metamor-
phosis of vertices into pixels. First, a series of transformations is performed on the
vertices; next the vertices are assembled into primitives; and finally, primitives are ras-
terized into pixels.

43

www.it-ebooks.info

http://www.it-ebooks.info/

| primitve | A\ | B &

Transforms assembly v éllasterizatloné :@:
Vertex -m"--nmmul-"l'lst-transform;& """""""""""" Lo T :
buffer vertices - Primitives - Pixels

Figure 2-1. The OpenGL ES assembly line

W
- At a high level, Figure 2-1 applies to both OpenGL ES 1.1 and 2.0, but
fs. it’simportant to note that in 2.0, the Transforms block contains a vertex
T U shader, and the Rasterization block hands his output over to a fragment

" shader.

In this chapter we’ll mostly focus on the transformations that occur early on in the
assembly line, but first we’ll give a brief overview of the primitive assembly step, since
it’s fairly easy to digest.

Assembling Primitives from Vertices

The 3D shape of an object is known as its geometry. In OpenGL, the geometry of an
object constitutes a set of primitives that are either triangles, points, or lines. These
primitives are defined using an array of vertices, and the vertices are connected ac-
cording to the primitive’s topology. OpenGL ES supports seven topologies, as depicted
in Figure 2-2.

Recall the one line of code in HelloArrow from Chapter 1 that tells OpenGL to render
the triangles to the backbuffer:

glDrawArrays(GL_TRIANGLES, 0, vertexCount);

The first argument to this function specifies the primitive topology: GL_TRIANGLES tells
OpenGL to interpret the vertex buffer such that the first three vertices compose the
first triangle, the second three vertices compose the second triangle, and so on.

In many situations you need to specify a sequence of adjoining triangles, in which case
several vertices would be duplicated in the vertex array. That’s when
GL_TRIANGLE_STRIP comes in. It allows a much smaller set of vertices to expand to the
same number of triangles, as shown in Table 2-1. In the table, vis the number of vertices,
and p is the number of primitives. For example, to draw three triangles using
GL_TRIANGLES, you’d need nine vertices (3p). To draw them using GL_TRIANGLE_STRIP,
you’d need only five (p + 2).

44 | Chapter2: Mathand Metaphors

www.it-ebooks.info

http://www.it-ebooks.info/

GL_POINTS

Vu
(] V]
L]
GL_LINES GL_LINE_LOOP GL_LINE_STRIP
V3 Vu Vo
S Ve NS
v v v v
V] 1 v 3 1 v 3

2

GL_TRIANGLES

GL_TRIANGLE_STRIP

GL_TRIANGLE_FAN
v

1

v, v
?
v q
V! qu by v M\ v

4 3

Figure 2-2. Primitive topologies

Table 2-1. Primitive counts

Topology Number of primitives Number of vertices
GL_POINTS v p

GL_LINES v/2 2p

GL_LINE_LOOP v p

GL_LINE_STRIP v-1 p+1
GL_TRIANGLES v/3 3p
GL_TRIANGLE_STRIP n-2 p+2
GL_TRIANGLE_FAN n-1 p+1

Another way of specifying triangles is GL_TRIANGLE_FAN, which is useful for drawing a
polygon, a circle, or the top of a 3D dome. The first vertex specifies the apex while the
remaining vertices form the rim. For many of these shapes, it’s possible to use
GL_TRIANGLE_STRIP, but doing so would result in degenerate triangles (triangles with
Zero area).

Assembling Primitives from Vertices | 45

www.it-ebooks.info

http://www.it-ebooks.info/

For example, suppose you wanted to draw a square shape using two triangles, as shown
in Figure 2-3. (Incidentally, full-blown OpenGL has a GL_QUADS primitive that would
come in handy for this, but quads are not supported in OpenGL ES.) The following
code snippet draws the same square three times, using a different primitive topology
each time:

const int stride = 2 * sizeof(float);

float triangles[][2] = { {0, o}, {o, 1}, {1, 1}, {1, 1}, {1, 0}, {0, O} };
glVertexPointer(2, GL_FLOAT, stride, triangles);
glDrawArrays(GL_TRIANGLES, 0, sizeof(triangles) / stride);

float triangleStrip[][2] = { {o, 1}, {o, O}, {1, 1}, {1, 0} };
glVertexPointer(2, GL_FLOAT, stride, triangleStrip);
glDrawArrays(GL_TRIANGLE STRIP, 0, sizeof(triangleStrip) / stride);

float trianglefFan[][2] = { {o, o}, {o, 1}, {1, 1}, {1, o} };
glVertexPointer(2, GL_FLOAT, stride, triangleFan);
glDrawArrays(GL_TRIANGLE FAN, 0, sizeof(triangleFan) / stride);

(17

(0,0)

Figure 2-3. Square from two triangles

Triangles aren’t the only primitive type supported in OpenGL ES. Individual points
can be rendered using GL_POINTS. The size of each point can be specified individually,
and large points are rendered as squares. Optionally, a small bitmap can be applied to
each point; these are called point sprites, and we’ll learn more about them in Chapter 7.

OpenGL supports line primitives using three different topologies: separate lines, strips,
and loops. With strips and loops, the endpoint of each line serves as the starting point
for the following line. With loops, the starting point of the first line also serves as the
endpoint of the last line. Suppose you wanted to draw the border of the square shown
in Figure 2-3; here’s how you could do so using the three different line topologies:

46 | Chapter2: Mathand Metaphors

www.it-ebooks.info

http://www.it-ebooks.info/

const int stride = 2 * sizeof(float);

float lines[][2] = { {o, 0}, {o, 1},

{o, 1}, {1, 1},

{1, 1}, {1, o},

{1, o}, {o, o} };
glVertexPointer(2, GL_FLOAT, stride, lines);
glDrawArrays(GL_LINES, 0, sizeof(lines) / stride);

float linestrip[][2] = { {o, o}, {o, 1}, {1, 1}, {1, o}, {0, 0} };
glVertexPointer(2, GL_FLOAT, stride, lineStrip);
glDrawArrays(GL_LINE_STRIP, 0, sizeof(lineStrip) / stride);

float lineloop[][2] = { {0, o}, {o, 1}, {1, 1}, {1, O} };

glVertexPointer(2, GL_FLOAT, stride, lineLoop);
glDrawArrays(GL_LINE LOOP, 0, sizeof(lineLoop) / stride);

Associating Properties with Vertices

Let’s go back to the assembly line and take a closer look at the inputs. Every vertex that
you hand over to OpenGL has one or more attributes, the most crucial being its posi-
tion. Vertex attributes in OpenGL ES 1.1 can have any of the forms listed in Table 2-2.

Table 2-2. Vertex attributes in OpenGL ES

Attribute OpenGL enumerant OpenGL function call ~ Dimensionality ~ Types

Position GL_VERTEX_ARRAY glVertexPointer 2,3,4 byte, short, fixed,
float

Normal GL_NORMAL_ARRAY glNormalPointer 3 byte, short, fixed,
float

Color GL_COLOR_ARRAY glColorPointer 4 ubyte, fixed, float

Point Size GL_POINT_SIZE_ARRAY_OES glPointSizePointerOES 1 fixed, float

Texture Coordinate GL_TEXTURE_COORD_ARRAY glTexCoordPointer 2,3,4 byte, short, fixed,
float

Generic Attribute N/A glVertexAttribPointer ~ 1,2,3,4 byte, ubyte, short,

(ES2.0) ushort, fixed, float

With OpenGLES 2.0, only the last row in Table 2-2 applies; it needs you to define your
own custom attributes however you see fit. For example, recall that both rendering
engines in HelloArrow enabled two attributes:

// OpenGL ES 1.1

glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);

// OpenGL ES 2.0
glEnableVertexAttribArray(positionSlot);
glEnableVertexAttribArray(colorSlot);

Associating Properties with Vertices | 47

www.it-ebooks.info

http://www.it-ebooks.info/

The ES 1.1 backend enabled attributes using constants provided by OpenGL, while the
ES 2.0 backend used constants that were extracted from the shader program (position
Slot and colorSlot). Both backends specified the dimensionality and types of the vertex
attributes that they enabled:

// OpenGL ES 1.1

glVertexPointer(2, GL_FLOAT, ...);
glColorPointer(4, GL_FLOAT, ...);

// OpenGL ES 2.0
glVertexAttribPointer(positionSlot, 2, GL_FLOAT, ...);
glVertexAttribPointer(colorSlot, 4, GL_FLOAT, ...);

The data type of each vertex attribute can be one of the forms in Table 2-3. With ES
2.0, all of these types may be used; with ES 1.1, only a subset is permitted, depending
on which attribute you are specifying (see the far right column in Table 2-2).

Table 2-3. Vertex attribute data types

OpenGLtype OpenGL enumerant Typedef of Length in bits

GLbyte GL_BYTE signed char 8
GLubyte GL_UNSIGNED_BYTE unsigned char 8
GLshort GL_SHORT short 16
GLushort GL_UNSIGNED_SHORT unsigned short 16
GLfixed GL_FIXED int 32
GLfloat GL_FLOAT float 32

The position attribute in OpenGL ES 1.1 is a bit of a special case because it’s the only
required attribute. It can be specified as a 2D, 3D, or 4D coordinate. Internally, the
OpenGL implementation always converts it into a 4D floating-point number.

Four dimensional? This might conjure images of Dr. Who, but it actually has nothing
to do with time or anything else in physics; it’s an artificial construction that allows all
transformations to be represented with matrix multiplication. These 4D coordinates
are known as homogeneous coordinates. When converting a 3D coordinate into a ho-
mogeneous coordinate, the fourth component (also known as w) usually defaults to
one. A w of zero is rarely found but can be taken to mean “point at infinity.” (One of
the few places in OpenGL that uses w = 0 is light source positioning, as we’ll see in
Chapter 4.) Specifying a vertex with a negative w is almost never useful.

Homogeneous Coordinates

Homogeneous coordinates came into existence in 1827 when August Ferdinand Mo-
bius published Der barycentrische Calciil. This is the same Mobius of Mébius strip
fame. Just for fun, we’ll discuss how to render a Mébius strip later in this book. Inci-
dentally, Mobius also invented the concept of barycentric coordinates, which is lever-
aged by the graphics chip in your iPhone when computing the interior colors of

48 | Chapter2: Mathand Metaphors

www.it-ebooks.info

http://www.it-ebooks.info/

triangles. This term stems from the word barycentre, the archaic word for center of
mass. If you place three weights at the corners of a triangle, you can compute the balance
point using barycentric coordinates. Their derivation is beyond the scope of this book
but an interesting aside nonetheless!

So, shortly after entering the assembly line, all vertex positions become 4D; don’t they
need to become 2D at some point? The answer is yes, at least until Apple releases an
iPhone with a holographic screen. We’ll learn more about the life of a vertex and how
it gets reduced to two dimensions in the next section, but for now let me mention that
one of the last transformations is the removal of w, which is achieved as shown in
Equation 2-1.

Equation 2-1. Perspective transform
x J =z
(x3 _y; z, w) H(w: ws E)

This divide-by-w computation is known as the perspective transform. Note that we
didn’t discard z; it’'ll come in handy later, as you’ll see in Chapter 4.

The Life of a Vertex

Figure 2-4 and Figure 2-5 depict the process of how a vertex goes from being 4D to
being 2D. This portion of the assembly line is commonly known as transform and
lighting, or T&L. We'll discuss lighting in Chapter 4; for now let’s focus on the
transforms.

After each transform, the vertex is said to be in a new “space.” The original input vertices
are in object space and are called object coordinates. In object space, the origin typically
lies at the center of the object. This is also sometimes known as model space.

When object coordinates are transformed by the model-view matrix, they enter eye
space. In eye space, the origin is the camera position.

Next, the vertex position is transformed by the projection matrix to enter clip space.
It’s called clip space because it’s where OpenGL typically discards vertices that lie out-
side the viewing frustum. This is one of the places where the elusive W component
comes into play; if the X or Y components are greater than +W or less than -W, then
the vertex is clipped.

With ES 1.1, the steps in Figure 2-4 are fixed; every vertex must go through this process.
With ES 2.0, it’s up to you to do whatever transforms you’d like before clip space.
Typically you’ll actually want to perform these same transforms anyway.

After clipping comes the perspective transform mentioned earlier in the chapter. This
normalizes the coordinates to [-1, +1], so they’re known as normalized device coordi-
nates at this point. Figure 2-5 depicts the transforms that take place after clip space.
Unlike the steps in Figure 2-4, these transforms are integral to both ES 1.1 and ES 2.0.

The Life of a Vertex | 49

www.it-ebooks.info

http://www.it-ebooks.info/

. . e

oooo oooo oooo

oooo oooo | Dooo
ooom ooom | Doom
|:||:||:||:|| |:||:||:||:|| O | |:||:||:||:||

Object space Model matrix World space View matrix Eye space Projection matrix Clip space
oooo oooo
oooo oooo
S3Ee 228 | 5

Object space M%ﬂ{{‘;}i‘?"" Eye space P'ﬂgt‘l‘if" Clip space

Figure 2-4. Early life of a vertex. Top row is conceptual; bottom row is OpenGL’s view

(0, -w) (0,-1) (160, 0)
@ @ @
(-w,0) @ +w, 0) (-1.0@ @+1,00 (0,2400@ @ (320, 240)
Perspective Viewport
transform transform
Clip space Normalized device space Window space

Figure 2-5. Last three stages of a vertex before rasterization

The last transform before rasterization is the viewport transform, which depends on
some values supplied from the application. You might recognize this line from
GLView.mm in HelloArrow:

glViewport(0, 0, CGRectGetWidth(frame), CGRectGetHeight(frame));

The arguments to glViewport are left, bottom, width, and height. On the iPhone you’ll
probably want width and height to be 320 and 480, but to ensure compatibility with
future Apple devices (and other platforms), try to avoid hardcoding these values by
obtaining the width and height at runtime, just like we did in HelloArrow.

The glviewport function controls how X and Y transform to window space (somewhat
inaptly named for mobile devices; you’ll rarely have a nonfullscreen window!). The
transform that takes Z into window space is controlled with a different function:

glDepthRangef(near, far);

In practice, this function is rarely used; its defaults are quite reasonable: near and far
default to zero and one, respectively.

50 | Chapter2: Mathand Metaphors

www.it-ebooks.info

http://www.it-ebooks.info/

So, you now have a basic idea of what happens to vertex position, but we haven’t yet
discussed color. When lighting is disabled (as it is by default), colors are passed straight
through untouched. When lighting is enabled, these transforms become germane again.
We'll discuss lighting in detail in Chapter 4.

The Photography Metaphor

The assembly line metaphor illustrates how OpenGL works behind the scenes, but a
photography metaphor is more useful when thinking about a 3D application’s work-
flow. When my wife makes an especially elaborate Indian dinner, she often asks me to
take a photo of the feast for her personal blog. T usually perform the following actions
to achieve this:

1. Arrange the various dishes on the table.
. Arrange one or more light sources.
. Position the camera.
. Aim the camera toward the food.

. Adjust the zoom lens.

AN L W N

. Snap the picture.

It turns out that each of these actions have analogues in OpenGL, although they typi-
cally occur in a different order. Setting aside the issue of lighting (which we’ll address
in a future chapter), an OpenGL program performs the following actions:

1. Adjust the camera’s field-of-view angle; this is the projection matrix.
2. Position the camera and aim it in the appropriate direction; this is the view matrix.
3. For each object:
a. Scale, rotate, and translate the object; this is the model matrix.
b. Render the object.
The product of the model and view matrices is known as the model-view matrix. When
rendering an object, OpenGL ES 1.1 transforms every vertex first by the model-view
matrix and then by the projection matrix. With OpenGL ES 2.0, you can perform any

transforms you want, but it’s often useful to follow the same model-view/projection
convention, at least in simple scenarios.

Later we’ll go over each of the three transforms (projection, view, model) in detail, but
first we need to get some preliminaries out of the way. OpenGL has a unified way of
dealing with all transforms, regardless of how they’re used. With ES 1.1, the current
transformation state can be configured by loading matrices explicitly, like this:

The Photography Metaphor | 51

www.it-ebooks.info

http://www.it-ebooks.info/

float projection[16] = { ... };
float modelview[16] = { ... };

glMatrixMode(GL_PROJECTION);
glLoadMatrixf(projection);

glMatrixMode(GL_MODELVIEW);
glloadMatrixf(modelview);

With ES 2.0, there is no inherent concept of model-view and projection; in fact,
glMatrixMode and gllLoadMatrixf do not exist in 2.0. Rather, matrices are loaded into
uniform variables that are then consumed by shaders. Uniforms are a type of shader
connection that we’ll learn about later, but you can think of them as constants that
shaders can’t modify. They’re loaded like this:

float projection[16] = { ... };
float modelview[16] = { ... };

GLint projectionUniform = glGetUniformLocation(program, "Projection");
gluniformMatrix4fv(projectionUniform, 1, 0, projection);

GLint modelviewUniform = glGetUniformLocation(program, "Modelview");
glUniformMatrix4fv(modelviewUniform, 1, 0, modelview);

OpenGL Function Suffixes

By now you might be wondering why so many OpenGL functions end in f or fv. Many
functions (including gluniform*) can take floating-point arguments, integer arguments,
or other types. OpenGL is a C API, and C does not support function overloading; the
names of each function variant must be distinct. The suffix of the function call denotes
the type shown in Table 2-4. Additionally, if the suffix is followed by v, then it’s a
pointer type.

Table 2-4. OpenGL ES function endings

Suffix ~ Type

i 32-bitinteger

X 16-bit fixed-point

f 32-bit floating-point

ub 8-bit unsigned byte

ui 32-bit unsigned integer

ES 1.1 provides additional ways of manipulating matrices that do not exist in 2.0. For
example, the following 1.1 snippet loads an identity matrix and multiplies it by two
other matrices:

52 | Chapter2: Mathand Metaphors

www.it-ebooks.info

http://www.it-ebooks.info/

float view[16] = { ... };
float model[16] = { ... };

glMatrixMode(GL_MODELVIEW);

glloadIdentity();

glMultMatrixf(view);

glMultMatrixf(model);
The default model-view and projection matrices are identity matrices. The identity
transform is effectively a no-op, as shown in Equation 2-2.

Equation 2-2. Identity transform
1000

vI=(z, v, v, 1)x 8 [1)(1)8 =(*19"1 3,*1 1)=v
0001

For details on how to multiply a vector with a matrix, or a matrix with
another matrix, check out the code in the appendix.

[t’simportant to note that this book uses row vector notation rather than column vector
notation. In Equation 2-2, both the left side of (vx v, v, 1) and right side of (v,*1
vy*1 v,*1 1) are 4D row vectors. That equation could, however, be expressed in column
vector notation like so:

1000\ [z (%'l
0100 f#|_ v)*1 Y
v

0010 2 | %]
0001 1 1

Sometimes it helps to think of a 4D row vector as being a 1x4 matrix, and a 4D column
vector as being a 4x1 matrix. (nxm denotes the dimensions of a matrix where # is the
number of rows and m is the number of columns.)

Figure 2-6 shows a trick for figuring out whether it’s legal to multiply two quantities
in a certain order: the inner numbers should match. The outer numbers tell you the
dimensions of the result. Applying this rule, we can see that it’s legal to multiply the
two matrices shown in Equation 2-2: the 4D row vector (effectively a 1x4 matrix) on
the left of the * and the 4x4 matrix on the right are multiplied to produce a 1x4 matrix
(which also happens to be a 4D row vector).

From a coding perspective, I find that row vectors are more natural than column vectors
because they look like tiny C-style arrays. It’s valid to think of them as column vectors
if you’d like, but if you do so, be aware that the ordering of your transforms will flip
around. Ordering is crucial because matrix multiplication is not commutative.

The Photography Metaphor | 53

www.it-ebooks.info

http://www.it-ebooks.info/

Result dimensions

Match

iXZI * flxt‘i = 1x4

Figure 2-6. Matrix multiplication dimensionality

Consider this snippet of ES 1.1 code:

glLoadIdentity();
glMultMatrix(A);
glMultMatrix(B);
glMultMatrix(C);
glDrawArrays(...);

With row vectors, you can think of each successive transform as being premultiplied
with the current transform, so the previous snippet is equivalent to the following:

(v, v, v, 1)*C*B*A=vCBA =V

With column vectors, each successive transform is postmultiplied, so the code snippet
is actually equivalent to the following:

yx

A*B*C* :J’ =ABCv=v
Z
1

Regardless of whether you prefer row or column vectors, you should always think of
the last transformation in your code as being the first one to be applied to the vertex.
To make this apparent with column vectors, use parentheses to show the order of
operations:

ABCv = (A(B(Cv))) =V

This illustrates another reason why I like row vectors; they make OpenGL’s reverse-
ordering characteristic a little more obvious.

Enough of this mathematical diversion; let’s get back to the photography metaphor
and see how it translates into OpenGL. OpenGL ES 1.1 provides a set of helper func-
tions that can generate a matrix and multiply the current transformation by the result,
all in one step. We’'ll go over each of these helper functions in the coming sections.
Since ES 2.0 does not provide helper functions, we’ll also show what they do behind
the scenes so that you can implement them yourself.

54 | Chapter2: Mathand Metaphors

www.it-ebooks.info

http://www.it-ebooks.info/

Recall that there are three matrices involved in OpenGL’s setup:
1. Adjust the camera’s field-of-view angle; this is the projection matrix.
2. Position the camera and aim it in the appropriate direction; this is the view matrix.

3. Scale, rotate, and translate each object; this is the model matrix.

We'll go over each of these three transforms in reverse so that we can present the
simplest transformations first.

Setting the Model Matrix

The three most common operations when positioning an object in a scene are scale,
translation, and rotation.

Scale

The most trivial helper function is glScalef:

float scale[16] = { sx, 0, 0, O,
0) Sy) O) 0)
0, 0, sz, 0
0, 0, 0, 1}

// The following two statements are equivalent.
glMultMatrixf(scale);
glScalef(sx, sy, sz);

The matrix for scale and its derivation are shown in Equation 2-3.

Equation 2-3. Scale transform

5,000
05,00

v8= (v, v, v, 1)* 0‘3’%0 =(v, "5, 0, %5, v, "5,)=
0001

Figure 2-7 depicts a scale transform where s, = s, = 0.5.

’—_ Nonuniform scale is the case where the x, y, and z scale factors are not

@ all equal to the same value. Such a transformation is perfectly valid, but

it can hurt performance in some cases. OpenGL has to do more work

to perform the correct lighting computations when nonuniform scale is
applied.

Translation

Another simple helper transform is glTranslatef, which shifts an object by a fixed
amount:

The Photography Metaphor | 55

www.it-ebooks.info

http://www.it-ebooks.info/

(1.1)
(0.5,0.5)

0,0) # 0,0

Figure 2-7. Scale transform

float translation[16] = {

)

-

b
b OJ

-

o O O
-

)

0
1
0,
ty, tz, 1 };

1
0
0,
tx,
// The following two statements are equivalent.
glMultMatrixf(translation);

glTranslatef(tx, ty, tz);

Intuitively, translation is achieved with addition, but recall that homogeneous coordi-
nates allow us to express all transformations using multiplication, as shown in Equa-
tion 2-4.

Equation 2-4. Translation transform

1000
0100

vI= (v, 0,0, 1) % 0010|=Wxtt v+t v+, 1)=V
tetyt, 1

Figure 2-8 depicts a translation transform where t, = 0.25 and t, = 0.5.

Rotation

You might recall this transform from the fixed-function variant (ES 1.1) of the
HelloArrow sample:

glRotatef(m_currentAngle, 0, 0, 1);
This applies a counterclockwise rotation about the z-axis. The first argument is an angle

in degrees; the latter three arguments define the axis of rotation. The ES 2.0 renderer
in HelloArrow was a bit tedious because it computed the matrix manually:

#include <cmath>

56 | Chapter2: Mathand Metaphors

www.it-ebooks.info

http://www.it-ebooks.info/

float radians = m_currentAngle * Pi / 180.0f;
float s = std::sin(radians);
float c = std::cos(radians);
float zRotation[16] = { ¢, s, 0, O,
-s, ¢, 0, 0,
0, 0, 1, O,
0, 0, 0, 1};

GLint modelviewUniform = glGetUniformLocation(m_simpleProgram, "Modelview");
glUniformMatrix4fv(modelviewUniform, 1, 0, &8zRotation[0]);

(1.25,1.5)

(1.1)

(0.25,0.5)
(0,0) '

Figure 2-8. Translation transform

Figure 2-9 depicts a rotation transform where the angle is 45°.

(0, 1.414)
(1.1)

0,0) # (0,0)

Figure 2-9. Rotation transform

Rotation about the z-axis is relatively simple, but rotation around an arbitrary axis
requires a more complex matrix. For ES 1.1, glRotatef generates the matrix for you,

The Photography Metaphor | 57

www.it-ebooks.info

http://www.it-ebooks.info/

so there’s no need to get too concerned with its contents. For ES 2.0, check out the
appendix to see how to implement this.

By itself, glRotatef rotates only around the origin, so what if you want to rotate around
an arbitrary point p? To accomplish this, use a three-step process:

1. Translate by -p.
2. Perform the rotation.

3. Translate by +p.

For example, to change HelloArrow to rotate around (0, 1) rather than the center, you
could do this:

glTranslatef(o, +1, 0);

glRotatef(m_currentAngle, 0, 0, 1);

glTranslatef(o, -1, 0);
glDrawArrays(...);

Remember, the last transform in your code is actually the first one that gets applied!

Setting the View Transform

The simplest way to create a view matrix is with the popular LookAt function. It’s not
built into OpenGL ES, but it’s easy enough to implement it from scratch. LookAt takes
three parameters: a camera position, a target location, and an “up” vector to define the
camera’s orientation (see Figure 2-10).

Using the three input vectors, LookAt produces a transformation matrix that would
otherwise be cumbersome to derive using the fundamental transforms (scale, transla-
tion, rotation). Example 2-1 is one possible implementation of LookAt.

Example 2-1. LookAt

mat4 LookAt(const vec3& eye, const vec3& target, const vec3& up)
{

vec3 z = (eye - target).Normalized();

vec3 x = up.Cross(z).Normalized();

vec3 y = z.Cross(x).Normalized();

mat4 m;

m.x = vecd(x, 0);

m.y = veca(y, 0);

m.z = vec4(z, 0);

m.w = vec4(0, 0, 0, 1);

vec4 eyePrime = m * -eye;
m = m.Transposed();
m.w = eyePrime;

return m;

58 | Chapter2: Mathand Metaphors

www.it-ebooks.info

http://www.it-ebooks.info/

Up vector Framebuffer

=

Figure 2-10. The LookAt transform

Note that Example 2-1 uses custom types like vec3, vec4, and mat4. This isn’t pseudo-
code; it’s actual code from the C++ vector library in the appendix. We’ll discuss the
library later in the chapter.

Setting the Projection Transform

Until this point, we’ve been dealing with transformations that are typically used to
modify the model-view rather than the projection. ES 1.1 operations such as
glRotatef and glTranslatef always affect the current matrix, which can be changed at
any time using glMatrixMode. Initially the matrix mode is GL_MODELVIEW.

What’s the distinction between projection and model-view? Novice OpenGL program-
mers sometimes think of the projection as being the “camera matrix,” but this is an
oversimplification, if not completely wrong; the position and orientation of the camera
should actually be specified in the model-view. I prefer to think of the projection as
being the camera’s “zoom lens” because it affects the field of view.

Camera position and orientation should always go in the model-view,
‘Eﬂ@ not the projection. OpenGL ES 1.1 depends on this to perform correct

lighting calculations.

Two types of projections commonly appear in computer graphics: perspective and or-
thographic. Perspective projections cause distant objects to appear smaller, just as they
do in real life. You can see the difference in Figure 2-11.

The Photography Metaphor | 59

www.it-ebooks.info

http://www.it-ebooks.info/

Perspective Orthographic

Figure 2-11. Types of projections

An orthographic projection is usually appropriate only for 2D graphics, so that’s what
we used in HelloArrow:
const float maxX = 2;

const float maxY = 3;
glOorthof(-maxX, +maxX, -maxY, +maxY, -1, 1);

The arguments for glOrthof specify the distance of the six bounding planes from the
origin: left, right, bottom, top, near, and far. Note that our example arguments create
an aspect ratio of 2:3; this is appropriate since the iPhone’s screen is 320x480. The ES
2.0 renderer in HelloArrow reveals how the orthographic projection is computed:
float a = 1.0f / maxX;
float b = 1.0f / maxY;
float ortho[16] = {
a) 0) O) O)
0) b) O) O)
0, 0, -1, 0,
0,0, 0,1
1
When an orthographic projection is centered around the origin, it’s really just a special
case of the scale matrix that we already presented in “Scale” on page 55:
sx = 1.0f / maxX

sy = 1.0f / maxY
sz = -1

float scale[16] = { sx, 0, 0, O,
OJ Sy) 0) o’
0, 0, sz, 0
0, 0, 0, 1}
Since HelloCone (the example you’ll see later in this chapter) will have true 3D ren-
dering, we’ll give it a perspective matrix using the glFrustumf command, like this:

glFrustumf(-1.6f, 1.6, -2.4, 2.4, 5, 10);
The arguments to glFrustumf are the same as glOrthof. Since glFrustum does not exist
in ES 2.0, HelloCone’s 2.0 renderer will compute the matrix manually, like this:

void ApplyFrustum(float left, float right, float bottom,
float top, float near, float far)

60 | Chapter2: Mathand Metaphors

www.it-ebooks.info

http://www.it-ebooks.info/

float a = 2 * near / (right - left);

float b = 2 * near / (top - bottom);

float ¢ = (right + left) / (right - left);
float d = (top + bottom) / (top - bottom);
float e = - (far + near) / (far - near);
float f = -2 * far * near / (far - near);
mat4 m;

M.X.X = a; m.Xx.y = 0; m.x.z = 0; m.X.w = 0;
m.y.x = 0; m.y.y = b; m.y.z = 0; m.y.w = 0;
m.z.x = ¢; m.z.y = d; m.z.z = e; m.z.w = -1;
m.w.x = 0; mw.y = 0; mw.z = f; m.w.w = 1;

glUniformMatrix4fv(projectionUniform, 1, 0, m.Pointer());

}

When a perspective projection is applied, the field of view is in the shape of a frustum.
The viewing frustum is just a chopped-off pyramid with the eye at the apex of the
pyramid (see Figure 2-12).

Framebuffer

Figure 2-12. Viewing frustum

A viewing frustum can also be computed based on the angle of the pyramid’s apex
(known as field of view); some developers find these to be more intuitive than specifying

The Photography Metaphor | 61

www.it-ebooks.info

http://www.it-ebooks.info/

all six planes. The function in Example 2-2 takes four arguments: the field-of-view
angle, the aspect ratio of the pyramid’s base, and the near and far planes.
Example 2-2. VerticalFieldOfView

void VerticalFieldOfView(float degrees, float aspectRatio,
float near, float far)

{
float top = near * std::tan(degrees * Pi / 360.0f);
float bottom = -top;
float left = bottom * aspectRatio;
float right = top * aspectRatio;
glFrustum(left, right, bottom, top, near, far);
}

For perspective projection, avoid setting your near or far plane to zero
%@ or a negative number. Mathematically this just doesn’t work out.

[

Saving and Restoring Transforms with Matrix Stacks

Recall that the ES 1.1 renderer in HelloArrow used glPushMatrix and glPopMatrix to
save and restore the transformation state:

void RenderingEngine::Render()
glPushMatrix();
glDrawArrays(GL_TRIANGLES, 0, vertexCount);

glPopMatrix();

It’s fairly standard practice to wrap the Render method in a push/pop block like this,
because it prevents transformations from accumulating from one frame to the next.

In the previous example, the matrix stack is never more than two entries deep, but the
iPhone allows up to 16 stack entries. This facilitates complex sequences of transforms,
such as those required to render the articulated arm in Figure 2-13, or any other hier-
archical model. When writing code with frequent pushes and pops, it helps to add extra
indentation, as in Example 2-3.

Example 2-3. Hierarchical transforms

void DrawRobotArm()

glPushMatrix();
glRotatef(shoulderAngle, 0, 0, 1);
glDrawArrays(...); // Upper arm
glTranslatef(upperArmLength, 0, 0);
glRotatef(elbowAngle, 0, 0, 1);

62 | Chapter2: Mathand Metaphors

www.it-ebooks.info

http://www.it-ebooks.info/

glDrawArrays(...); // Forearm

glTranslatef(forearmLength, 0, 0);

glPushMatrix();
glRotatef(fingeroAngle, 0, 0, 1);
glDrawArrays(...); // Finger o

glPopMatrix();

glPushMatrix();
glRotatef(-fingeriAngle, 0, 0, 1);
glDrawArrays(...); // Finger 1

glPopMatrix();

glPopMatrix();

Figure 2-13. Robot arm

Each matrix mode has its own stack, as depicted in Figure 2-14; typically
GL_MODELVIEW gets the heaviest use. Don’t worry about the GL_TEXTURE stacks; we’ll cover
them in another chapter. Earlier we mentioned that OpenGL transforms every vertex
position by the “current” model-view and projection matrices, by which we meant the
topmost element in their respective stacks. To switch from one stack to another, use
glMatrixMode.

Matrix stacks do not exist in ES 2.0; if you need them, you’ll need to create them in
your application code or in your own math library. Again, this may seem cruel, but
always keep in mind that ES 2.0 is a “closer to the metal” API and that it actually gives
you much more power and control through the use of shaders.

Saving and Restoring Transforms with Matrix Stacks | 63

www.it-ebooks.info

http://www.it-ebooks.info/

M, - M
My - My M, - M
My e My M, - M My oo My
M, M, M, - Mu_ M, - My M, - M,
GL_MODELVIEW GL_PROJECTION | 0 n
GL_TEXTURE

Figure 2-14. Matrix stacks

Animation

As we’ve seen so far, OpenGL performs quite a bit of math behind the scenes. But
ultimately OpenGL is just a low-level graphics API and not an animation API. Luckily,
the math required for animation is quite simple.

To sum it up in five words, animation is all about interpolation. An application’s ani-
mation system will often take a set of keyframes from an artist, user, or algorithm. At
runtime, it computes values between those keyframes. The type of data associated with
keyframes can be anything, but typical examples are color, position, and rotation.

Interpolation Techniques

The process of computing an intermediate frame from two keyframes is called tween-
ing. If you divide elapsed time by desired duration, you get a blend weight between zero
and one. There are three easing equations discussed here, depicted in Figure 2-15. The
tweened value for blending weight ¢ can be computed as follows:

float LinearTween(float t, float start, float end)
{

}

Certain types of animation should not use linear tweening; a more natural look can
often be achieved with one of Robert Penner’s easing equations. Penner’s quadratic
ease-in is fairly straightforward:

return t * start + (1 - t) * end;

float QuadraticEaseIn(float t, float start, float end)
{

}

return LinearTween(t * t, start, end);

64 | Chapter2: Mathand Metaphors

www.it-ebooks.info

http://www.it-ebooks.info/

End— End—+ End—+

Start— Start— Start—

t=0 =1 t=0 =1 t=0 t=1

Figure 2-15. Easing equations: linear, quadratic ease-in, and quadratic ease-in-out
Penner’s “quadratic ease-in-out” equation is a bit more complex but relatively easy to
follow when splitting it into multiple steps, as in Example 2-4.

Example 2-4. Quadratic ease-in-out

float QuadraticEaseInOut(float t, float start, float end)

{
float middle = (start + end) / 2;
t=2%*t;
if (t <= 1)
return LinearTween(t * t, start, middle);
t -=1;
return LinearTween(t * t, middle, end);
}

Animating Rotation with Quaternions

For position and color keyframes, it’s easy to perform interpolation: simply call one
the aforementioned tweening functions on each of the XYZ or RGB components. At
first, rotation seems simple, too; it’s just a matter of tweening the angle. But what if
you’re interpolating between two orientations that don’t have the same axis of rotation?

Picture the robot arm example in Figure 2-13. This example was restricted to the plane,
but consider what you’d need if each joint were a ball joint. Storing an angle for each
joint would be insufficient—you’d also need the axis of rotation. This is known as axis-
angle notation and requires a total of four floating-point values for each joint.

It turns out there’s an artful way to represent an arbitrary rotation using the same
number of floats as axis-angle, but in a way that often better lends itself to interpolation.
This type of 4D vector is called a quaternion, and it was conceived in 1843. Quaternions
were somewhat marginalized when modern vector algebra came about, but they
experienced a revival in the computer graphics era. Ken Shoemake is one of the people
who popularized them in the late 1980s with his famous slerp equation for interpolating
between two quaternions.

Animation | 65

www.it-ebooks.info

http://www.it-ebooks.info/

Shoemake’s method is actually only one of several methods of quatern-

“"m ion interpolation, but it’s the most popular, and it’s the one we use in
our vector library. Other methods, such as normalized quaternion lerp
and log-quaternion lerp, are sometimes more desirable in terms of
performance.

Having said all this, be aware that quaternions aren’t always the best way to handle an
animation problem. Sometimes it suffices to simply compute the angle between two
vectors, find an axis of rotation, and interpolate the angle. However, quaternions solve
a slightly more complex problem. They don’t merely interpolate between two vectors;
they interpolate between two orientations. This may seem pedantic, but it’s an impor-
tant distinction. Hold your arm straight out in front of you, palm up. Now, bend your
arm at the elbow while simultaneously rotating your hand. What you’ve just done is
interpolate between two orientations.

It turns out that quaternions are particularly well suited to the type of “trackball” ro-
tation that we’ll be using in much of our sample code. I won’t bore you with a bunch
of equations here, but you can check out the appendix to see how to implement qua-
ternions. We’ll leverage this in the HelloCone sample and in the wireframe viewer
presented in the next chapter.

Vector Beautification with C++

Recall the vertex structure in HelloArrow:

struct Vertex {
float Position[2];
float Color[4];
1
If we kept using vanilla C arrays like this throughout this book, life would become very
tedious! What we really want is something like this:
struct Vertex {

vec2 Position;
vec4 Color;

b
This is where the power of C++ operator overloading and class templates really shines.
It makes it possible (in fact, it makes it easy) to write a small class library that makes
much of your application code look like it’s written in a vector-based language. In fact,
that’s what we’ve done for the samples in this book. Our entire library consists of only
three header files and no .cpp files:

Vector.hpp
Defines a suite of 2D, 3D, and 4D vector types that can be either float-based or
integer-based. Has no dependencies on any other header.

66 | Chapter2: Mathand Metaphors

www.it-ebooks.info

http://www.it-ebooks.info/

Matrix.hpp
Defines classes for 2x2, 3x3, and 4x4 matrices. Depends only on Vector.hpp.

Quaternion.hpp
Defines a class for quaternions and provides several methods for interpolation and
construction. Depends on Matrix.hpp.

These files are listed in their entirety in the appendix, but to give you a taste of how the
library is structured, Example 2-5 shows portions of Vector.hpp.

Example 2-5. Vector.hpp

#pragma once
#include <cmath>

template <typename T>
struct Vector2 {
Vector2() {}
Vector2(T x, Ty) : x(x), y(y) {}
T x;
Ty;
b

template <typename T>

struct Vector3 {
Vector3() {}
Vector3(T x, Ty, T2) : x(x), y(y), 2(z) {}
void Normalize()

float length = std::sqrt(x * x +y *y + z * z);

x /= length;
y /= length;
z /= length;
}
Vector3 Normalized() const
{
Vector3 v = *this;
v.Normalize();
return v;
}

Vector3 Cross(const Vector3& v) const

return Vector3(y * v.z - z * v.y,
z *v.x - x *v.z,
X ¥ vy -y *v.x);

% Dot(const Vector3& v) const

{ return x * v.x +y ¥ viy + z ¥ v.z;
5ector3 operator-() const

i return Vector3(-x, -y, -z);

Vector Beautification with C++ | 67

www.it-ebooks.info

http://www.it-ebooks.info/

bool operator==(const Vector3& v) const

return x == v.x 88 y == v.y 8& z == v.z;

|5

template <typename T>
struct Vectors {

};

typedef Vector2<int> ivec2;
typedef Vector3<int> ivec3;
typedef Vector4<int> ivecs;

typedef Vector2<float> vec2;
typedef Vector3<float> vec3;
typedef Vector4<float> vec4;

Note how we parameterized each vector type using C++ templates. This allows the
same logic to be used for both float-based vectors and integer-based vectors.

Even though a 2D vector has much in common with a 3D vector, we chose not to share
logic between them. This could’ve been achieved by adding a second template argu-
ment for dimensionality, as in the following:

template <typename T, int Dimension>
struct Vector {

T components[Dimension];
b
When designing a vector library, it’s important to strike the right balance between
generality and readability. Since there’s relatively little logic in each vector class and
since we rarely need to iterate over vector components, defining separate classes seems
like a reasonable way to go. It’s also easier for readers to understand the meaning of,
say, Position.y than Position[1].

Since a good bit of application code will be making frequent use of these types, the
bottom of Example 2-5 defines some abbreviated names using typedefs. Lowercase
names such as vec2 and ivec4 break the naming convention we’ve established for types,
but they adopt a look and feel similar to native types in the language itself.

The vec2/ivec2 style names in our C++ vector library are directly pilfered from key-
words in GLSL. Take care not to confuse this book’s C++ listings with shader listings.

In GLSL shaders, types such as vec2 and mat4 are built into the language

%@ itself. Our C++ vector library merely mimics them.

68 | Chapter2: Mathand Metaphors

www.it-ebooks.info

http://www.it-ebooks.info/

HelloCone with Fixed Function

We’'re finally ready to upgrade the HelloArrow program into HelloCone. We’ll not go
only from rendering in 2D to rendering in 3D; we’ll also support two new orientations
for when the device is held face up or face down.

Even though the visual changes are significant, they’ll all occur within RenderingEn-
ginel.cpp and RenderingEngine2.cpp. That’s the beauty of the layered, interface-based
approach presented in the previous chapter. First we’ll deal exclusively with the ES 1.1
renderer, RenderingEnginel.cpp.

RenderingEngine Declaration

The implementations of HelloArrow and HelloCone diverge in several ways, as shown
in Table 2-5.

Table 2-5. Differences between HelloArrow and HelloCone

HelloArrow HelloCone

Rotation state is an angle on the z-axis. Rotation state is a quaternion.

One draw call. Two draw calls: one for the disk, one for the cone.
Vectors are represented with small Carrays. Vectors are represented with objects like vec3.

Triangle data is small enough to be hardcoded within the program. Triangle data is generated at runtime.

Triangle data is stored in a C array. Triangle data is stored in an STL vector.

STL: To Use or Not to Use?

I decided to use the C++ Standard Template Library (STL) in much of this book’s
sample code. The STL simplifies many tasks by providing classes for commonly used
data structures, such as resizeable arrays (std::vector) and doubly linked lists
(std::1ist). Many developers would argue against using STL on a mobile platform like
the iPhone when writing performance-critical code. It’s true that sloppy usage of STL
can cause your application’s memory footprint to get out of hand, but nowadays,
C++ compilers do a great job at optimizing STL code. Keep in mind that the iPhone
SDK provides a rich set of Objective-C classes (e.g., NSDictionary) that are analogous
to many of the STL classes, and they have similar costs in terms of memory footprint
and performance.

With Table 2-5 in mind, take a look at the top of RenderingEnginel.cpp, shown in
Example 2-6 (note that this moves the definition of struct Vertex higher up in the file
than it was before, so you’ll need to remove the old version of this struct from this file).

HelloCone with Fixed Function | 69

www.it-ebooks.info

http://www.it-ebooks.info/

If you’d like to follow along in code as you read, make a copy of the
HelloArrow project folder in Finder, and save it as HelloCone. Open the
% project in Xcode, and then select Rename from the Project menu.
" Change the project name to HelloCone, and click Rename. Next, visit
the appendix, and add Vector.hpp, Matrix.hpp, and Quaternion.hpp to
the project. RenderingEnginel.cpp will be almost completely different,
so open it and remove all its content. Now you’re ready to make the
changes shown in this section as you read along.

Example 2-6. RenderingEnginel class declaration

#include <OpenGLES/ES1/gl.h>
#include <OpenGLES/ES1/glext.h>
#include "IRenderingEngine.hpp"
#include "Quaternion.hpp"
#include <vector>

static const float AnimationDuration = 0.25f;

using namespace std;

struct Vertex {

|5

vec3 Position;
vec4 Color;

struct Animation {@

};

Quaternion Start;
Quaternion End;
Quaternion Current;
float Elapsed;
float Duration;

class RenderingEnginel : public IRenderingEngine {
public:

RenderingEngine1();

void Initialize(int width, int height);

void Render() const;

void UpdateAnimation(float timeStep);

void OnRotate(DeviceOrientation newOrientation);

private:

};

vector<Vertex> m_cone;e
vector<Vertex> m disk;
Animation m animation;

GLuint m_framebuffer;

GLuint m_colorRenderbuffer;
GLuint m_depthRenderbuffer;®

@ The Animation structure enables smooth 3D transitions. It includes quaternions for

three orientations: the starting orientation, the current interpolated orientation, and

70

| Chapter2: Mathand Metaphors

www.it-ebooks.info

http://www.it-ebooks.info/

the ending orientation. It also includes two time spans: Elapsed and Duration, both

of which are in seconds. They’ll be used to compute a slerp fraction between 0 and
1.

@ The triangle data lives in two STL containers, m_cone and m_disk. The vector con-
tainer is ideal because we know how big it needs to be ahead of time, and it guar-
antees contiguous storage. Contiguous storage of vertices is an absolute requirement
for OpenGL.

© Unlike HelloArrow, there are two renderbuffers here. HelloArrow was 2D and
therefore only required a color renderbuffer. HelloCone requires an additional ren-
derbuff for depth. We’ll learn more about the depth buffer in a future chapter;
briefly, it’s a special image plane that stores a single Z value at each pixel.

OpenGL Initialization and Cone Tessellation

The construction methods are very similar to what we had in HelloArrow:

IRenderingEngine* CreateRendereri()

return new RenderingEngine1();

}
RenderingEnginel: :RenderingEngine1()

// Create & bind the color buffer so that the caller can allocate its space.
glGenRenderbuffersOES(1, &m_colorRenderbuffer);
glBindRenderbufferOES(GL_RENDERBUFFER_OES, m_colorRenderbuffer);

}

The Initialize method, shown in Example 2-7, is responsible for generating the vertex
data and setting up the framebulffer. It starts off by defining some values for the cone’s
radius, height, and geometric level of detail. The level of detail is represented by the
number of vertical “slices” that constitute the cone. After generating all the vertices, it
initializes OpenGL’s framebuffer object and transform state. It also enables depth test-
ing since this a true 3D app. We'll learn more about depth testing in Chapter 4.

Example 2-7. RenderingEngine initialization

void RenderingEnginel::Initialize(int width, int height)

{
const float coneRadius = O.S'F;c

const float coneHeight = 1.866f;
const int coneSlices = 40;

{

// Generate vertices for the disk.

// Generate vertices for the body of the cone.

HelloCone with Fixed Function | 71

www.it-ebooks.info

http://www.it-ebooks.info/

—

// Create the depth buffer.
glGenRenderbuffersOES(1, &m_depthRenderbuffer);@®
glBindRenderbufferOES(GL_RENDERBUFFER_OES, m_depthRenderbuffer);
glRenderbufferStorageOES(GL_RENDERBUFFER_OES,
GL_DEPTH_COMPONENT16_OES,
width,
height);

// Create the framebuffer object; attach the depth and color buffers.
glGenFramebuffersOES(1, &m_framebuffer);©
glBindFramebufferOES(GL_FRAMEBUFFER OES, m framebuffer);
glFramebufferRenderbufferOES(GL_FRAMEBUFFER OES,
GL_COLOR_ATTACHMENTO_OES,
GL_RENDERBUFFER_OES,
m_colorRenderbuffer);
glFramebufferRenderbufferOES(GL_FRAMEBUFFER OES,
GL_DEPTH_ATTACHMENT_OES,
GL_RENDERBUFFER_OES,
m_depthRenderbuffer);

// Bind the color buffer for rendering.
glBindRenderbufferOES(GL_RENDERBUFFER OES, m_colorRenderbuffer); @

glViewport(0, 0, width, height);®
glEnable(GL_DEPTH_TEST);®

glMatrixMode(GL_PROJECTION); @
glFrustumf(-1.6f, 1.6, -2.4, 2.4, 5, 10);

glMatrixMode(GL_MODELVIEW);
glTranslatef(0, 0, -7);
}

Much of Example 2-7 is standard procedure when setting up an OpenGL context, and
much of it will become clearer in future chapters. For now, here’s a brief summary:

@ Define some constants to use when generating the vertices for the disk and cone.

@ Generate an ID for the depth renderbutffer, bind it, and allocate storage for it. We’ll
learn more about depth buffers later.

© Generate an ID for the framebuffer object, bind it, and attach depth and color to it
using glFramebufferRenderbufferOES.

O Bind the color renderbuffer so that future rendering operations will affect it.
© Set up the left, bottom, width, and height properties of the viewport.
O Turn on depth testing since this is a 3D scene.

@ Set up the projection and model-view transforms.

72 | Chapter2: Mathand Metaphors

www.it-ebooks.info

http://www.it-ebooks.info/

Example 2-7 replaces the two pieces of vertex generation code with ellipses because
they deserve an in-depth explanation. The problem of decomposing an object into
triangles is called triangulation, but more commonly you’ll see the term tessellation,
which actually refers to the broader problem of filling a surface with polygons. Tessel-
lation can be a fun puzzle, as any M.C. Escher fan knows; we’ll learn more about it in
later chapters.

For now let’s form the body of the cone with a triangle strip and the bottom cap with
a triangle fan, as shown in Figure 2-16.

Figure 2-16. Tessellation in HelloCone

To form the shape of the cone’s body, we could use a fan rather than a strip, but this
would look strange because the color at the fan’s center would be indeterminate. Even
if we pick an arbitrary color for the center, an incorrect vertical gradient would result,
as shown on the left in Figure 2-17.

AN

Figure 2-17. Left: Cone with triangle fan. Right: Cone with triangle strip

Using a strip for the cone isn’t perfect either because every other triangle is degenerate
(shown in gray in Figure 2-16). The only way to fix this would be resorting to

HelloCone with Fixed Function | 73

www.it-ebooks.info

http://www.it-ebooks.info/

GL_TRIANGLES, which requires twice as many elements in the vertex array. It turns out
that OpenGL provides an indexing mechanism to help with situations like this, which
we’ll learn about in the next chapter. For now we’ll use GL_TRIANGLE_STRIP and live with
the degenerate triangles. The code for generating the cone vertices is shown in Exam-
ple 2-8 and depicted visually in Figure 2-18 (this code goes after the com-
ment // Generate vertices for the body of the cone in RenderingEnginel::Initial
ize). Two vertices are required for each slice (one for the apex, one for the rim), and
an extra slice is required to close the loop (Figure 2-18). The total number of vertices
is therefore (n+1)*2 where n is the number of slices. Computing the points along the
rim is the classic graphics algorithm for drawing a circle and may look familiar if you
remember your trigonometry.

Figure 2-18. Vertex order in HelloCone

Example 2-8. Generation of cone vertices

m_cone.resize((coneSlices + 1) * 2);

// Initialize the vertices of the triangle strip.
vector<Vertex>::iterator vertex = m_cone.begin();

const float dtheta = TwoPi / coneSlices;

for (float theta = 0; vertex != m_cone.end(); theta += dtheta) {

// Grayscale gradient
float brightness = abs(sin(theta));
vec4 color(brightness, brightness, brightness, 1);

// Apex vertex

vertex->Position = vec3(0, 1, 0);
vertex->Color = color;

vertex++;

// Rim vertex
vertex->Position.x = coneRadius * cos(theta);

74 | Chapter2: Mathand Metaphors

www.it-ebooks.info

http://www.it-ebooks.info/

vertex->Position.y = 1 - coneHeight;
vertex->Position.z = coneRadius * sin(theta);
vertex->Color = color;

vertex+t+;

}

Note that we’re creating a grayscale gradient as a cheap way to simulate lighting:

float brightness = abs(sin(theta));
vec4 color(brightness, brightness, brightness, 1);

This is a bit of a hack because the color is fixed and does not change as you reorient
the object, but it’s good enough for our purposes. This technique is sometimes called
baked lighting, and we’ll learn more about it in Chapter 9. We'll also learn how to
achieve more realistic lighting in Chapter 4.

Example 2-9 generates vertex data for the disk (this code goes after the com-
ment // Generate vertices for the disk in RenderingEnginel::Initialize). Since it
uses a triangle fan, the total number of vertices is n+2: one extra vertex for the center,
another for closing the loop.

Example 2-9. Generation of disk vertices

// Allocate space for the disk vertices.
m_disk.resize(coneSlices + 2);

// Initialize the center vertex of the triangle fan.
vector<Vertex>: :iterator vertex = m_disk.begin();
vertex->Color = vec4(0.75, 0.75, 0.75, 1);
vertex->Position.x = 0;

vertex->Position.y = 1 - coneHeight;
vertex->Position.z = 0;

vertex++;

// Initialize the rim vertices of the triangle fan.

const float dtheta = TwoPi / coneSlices;

for (float theta = 0; vertex != m_disk.end(); theta += dtheta) {
vertex->Color = vec4(0.75, 0.75, 0.75, 1);
vertex->Position.x = coneRadius * cos(theta);
vertex->Position.y = 1 - coneHeight;
vertex->Position.z = coneRadius * sin(theta);
vertex++;

Smooth Rotation in Three Dimensions

To achieve smooth animation, UpdateAnimation calls Slerp on the rotation quaternion.
When a device orientation change occurs, the OnRotate method starts a new animation
sequence. Example 2-10 shows these methods.

HelloCone with Fixed Function | 75

www.it-ebooks.info

http://www.it-ebooks.info/

Example 2-10. UpdateAnimation and OnRotate

void RenderingEnginel::UpdateAnimation(float timeStep)

if (m_animation.Current == m_animation.End)
return;

m_animation.Elapsed += timeStep;

if (m_animation.Elapsed >= AnimationDuration) {
m_animation.Current = m_animation.End;

} else {
float mu = m_animation.Elapsed / AnimationDuration;
m_animation.Current = m_animation.Start.Slerp(mu, m_animation.End);

}

void RenderingEnginel::OnRotate(DeviceOrientation orientation)

{

vec3 direction;

switch (orientation) {
case DeviceOrientationUnknown:
case DeviceOrientationPortrait:
direction = vec3(0, 1, 0);
break;

case DeviceOrientationPortraitUpsideDown:
direction = vec3(0, -1, 0);
break;

case DeviceOrientationFaceDown:
direction = vec3(0, 0, -1);
break;

case DeviceOrientationFaceUp:
direction = vec3(0, 0, 1);
break;

case DeviceOrientationLandscapeleft:
direction = vec3(+1, 0, 0);
break;

case DeviceOrientationLandscapeRight:
direction = vec3(-1, 0, 0);
break;

m_animation.Elapsed = 0;
m_animation.Start = m_animation.Current = m_animation.End;
m_animation.End = Quaternion::CreateFromVectors(vec3(0, 1, 0), direction);

76 | Chapter2: Mathand Metaphors

www.it-ebooks.info

http://www.it-ebooks.info/

Render Method

Last but not least, HelloCone needs a Render method, as shown in Example 2-11. It’s
similar to the Render method in HelloArrow except it makes two draw calls, and the
glClear command now has an extra flag for the depth buffer.

Example 2-11. RenderingEnginel::Render

void RenderingEnginel::Render() const

{

}

glClearColor(0.5f, 0.5f, 0.5f, 1);
glClear(GL_COLOR BUFFER BIT | GL_DEPTH BUFFER BIT);
glPushMatrix();

glEnableClientState(GL_VERTEX ARRAY);
glEnableClientState(GL_COLOR_ARRAY);

mat4 rotation(m_animation.Current.ToMatrix());
glMultMatrixf(rotation.Pointer());

// Draw the cone.

glVertexPointer(3, GL_FLOAT, sizeof(Vertex), &m_cone[0].Position.x);
glColorPointer(4, GL_FLOAT, sizeof(Vertex), &m_cone[0].Color.x);
glDrawArrays(GL_TRIANGLE STRIP, 0, m_cone.size());

// Draw the disk that caps off the base of the cone.
glvertexPointer(3, GL_FLOAT, sizeof(Vertex), &m disk[0].Position.x);
glColorPointer(4, GL FLOAT, sizeof(Vertex), &m disk[0].Color.x);
glDrawArrays(GL_TRIANGLE FAN, 0, m disk.size());

glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);

glPopMatrix();

Note the call to rotation.Pointer(). In our C++ vector library, vectors and matrices
have a method called Pointer (), which exposes a pointer to the first innermost element.
This is useful when passing them to OpenGL.

W
- We could’ve made much of our OpenGL code more succinct by chang-
ing the vector library such that it provides implicit conversion operators

918 in lieu of Pointer() methods. Personally, I think this would be error
" prone and would hide too much from the code reader. For similar rea-
sons, STL’s string class requires you to call its ¢_str() when you want
to get a char*.

Because you’ve implemented only the 1.1 renderer so far, you’ll also need to enable the
ForceES1 switch at the top of GLView.mm. At this point, you can build and run your
first truly 3D iPhone application! To see the two new orientations, try holding the

HelloCone with Fixed Function | 77

www.it-ebooks.info

http://www.it-ebooks.info/

iPhone over your head and at your waist. See Figure 2-19 for screenshots of all six device
orientations.

Figure 2-19. Left to right: Portrait, UpsideDown, FaceUp, FaceDown, LandscapeRight, and
LandscapeLeft

HelloCone with Shaders

Rather than modify the version of RenderingEngine2.cpp from HelloArrow, it will be
more instructive if we can start our ES 2.0 backend by copying the contents of
RenderingEnginel.cpp over whatever is already in RenderingEngine2.cpp, with two ex-
ceptions: you’ll need to save the BuildShader and BuildProgram methods from the ex-
isting RenderingEngine2.cpp from HelloArrow, so copy them somewhere safe for the
moment. If you’re following along, do that now, and then you’ll be ready to make some
changes to the file. Example 2-12 shows the top part of RenderingEngine2.cpp. New
and changed lines are shown in bold. Some sections of unchanged code are shown
as ..., so don’t copy this over the existing code in its entirety (just make the changes
and additions shown in bold).

Example 2-12. RenderingEngine2 class declaration

#include <OpenGLES/ES2/gl.h>
#include <OpenGLES/ES2/glext.h>
#include "IRenderingEngine.hpp"
#include "Quaternion.hpp"
#include <vector>

#include <iostream>

#define STRINGIFY(A) #A
#include "../Shaders/Simple.vert"
#include "../Shaders/Simple.frag"

static const float AnimationDuration = 0.25f;

class RenderingEngine2 : public IRenderingEngine {
public:
RenderingEngine2();

78 | Chapter2: Mathand Metaphors

www.it-ebooks.info

http://www.it-ebooks.info/

void Initialize(int width, int height);
void Render() const;
void UpdateAnimation(float timeStep);
void OnRotate(DeviceOrientation newOrientation);
private:
GLuint BuildShader(const char* source, GLenum shaderType) const;
GLuint BuildProgram(const char* vShader, const char* fShader) const;
vector<Vertex> m_cone;
vector<Vertex> m_disk;
Animation m_animation;
GLuint m_simpleProgram;
GLuint m_framebuffer;
GLuint m_colorRenderbuffer;
GLuint m_depthRenderbuffer;
};

The Initialize method almost stays as is, but this bit is no longer valid:

glMatrixMode(GL_PROJECTION);
glFrustumf(-1.6f, 1.6, -2.4, 2.4, 5, 10);

glMatrixMode(GL_MODELVIEW);
glTranslatef(o, 0, -7);

For ES 2.0, this changes to the following:

m_simpleProgram = BuildProgram(SimpleVertexShader,
SimpleFragmentShader);
glUseProgram(m_simpleProgram);

// Set the projection matrix.
GLint projectionUniform = glGetUniformLocation(m_simpleProgram,
"Projection");
mat4 projectionMatrix = mat4::Frustum(-1.6f, 1.6, -2.4, 2.4, 5, 10);
glUniformMatrix4fv(projectionUniform, 1, o,
projectionMatrix.Pointer());

The BuildShader and BuildProgram methods are the same as they were for the ES 2.0
version of HelloArrow; no need to list them here. The shaders themselves are also the
same as HelloArrow’s shaders; remember, the lighting is “baked,” so simply passing
through the colors is sufficient.

We set up the model-view within the Render method, as shown in Example 2-13. Re-
member, glUniformMatrix4fv plays a role similar to the glLoadMatrix functionin ES 1.1.

Example 2-13. RenderingEngine2::Render

void RenderingEngine2::Render() const
{
GLuint positionSlot = glGetAttribLocation(m_simpleProgram,
"Position");
GLuint colorSlot = glGetAttriblLocation(m_simpleProgram,
"SourceColor");

glClearColor(o.5f, 0.5f, 0.5f, 1);
glClear(GL_COLOR BUFFER BIT | GL_DEPTH BUFFER BIT);

HelloCone with Shaders | 79

www.it-ebooks.info

http://www.it-ebooks.info/

}

The sequence of events in Example 2-13 is actually quite similar to the sequence in

glEnableVertexAttribArray(positionSlot);
glEnableVertexAttribArray(colorSlot);

mat4 rotation(m_animation.Current.ToMatrix());
mat4 translation = mat4::Translate(o, 0, -7);

// Set the model-view matrix.

GLint modelviewUniform = glGetUniformLocation(m_simpleProgram,
"Modelview");

mat4 modelviewMatrix = rotation * translation;

glUniformMatrix4fv(modelviewUniform, 1, 0, modelviewMatrix.Pointer());

// Draw the cone.
{
GLsizei stride = sizeof(Vertex);
const GLvoid* pCoords = &m_cone[0].Position.x;
const GLvoid* pColors = &m_cone[0].Color.x;
glVertexAttribPointer(positionSlot, 3, GL_FLOAT,
GL_FALSE, stride, pCoords);
glVertexAttribPointer(colorSlot, 4, GL_FLOAT,
GL_FALSE, stride, pColors);
glDrawArrays(GL_TRIANGLE STRIP, 0, m_cone.size());
}

// Draw the disk that caps off the base of the cone.
{
GLsizei stride = sizeof(Vertex);
const GLvoid* pCoords = &m_disk[0].Position.x;
const GLvoid* pColors = &m disk[0].Color.x;
glVertexAttribPointer(positionSlot, 3, GL_FLOAT,
GL_FALSE, stride, pCoords);
glVertexAttribPointer(colorSlot, 4, GL_FLOAT,
GL_FALSE, stride, pColors);
glDrawArrays(GL_TRIANGLE_FAN, 0, m_disk.size());
}

glDisableVertexAttribArray(positionSlot);
glDisableVertexAttribArray(colorSlot);

Example 2-11; only the details have changed.

Next, go through the file, and change any remaining occurrences of RenderingEngine1 to
RenderingEngine2, including the factory method (and be sure to change the name of
that method to CreateRenderer2). You also need to remove any occurrences of OES and
OES. Now, turn off the ForceES1 switch in GLView.mm; this completes the changes
required for the shader-based version of HelloCone. It may seem silly to have added
an ES 2.0 renderer without having added any cool shader effects, but it illustrates the

differences between the two APIs.

80 | Chapter2: Mathand Metaphors

www.it-ebooks.info

http://www.it-ebooks.info/

Wrapping Up

This chapter was perhaps the most academic part of this book, but we disseminated
some fundamental graphics concepts and cleared up some of the sample code that was
glossed over in the first chapter.

Understanding transforms is perhaps the most difficult but also the most crucial hurdle
to overcome for OpenGL newbies. I encourage you to experiment with HelloCone to
get a better feel for how transformations work. For example, try adding some hard-
coded rotations and translations to the Render method, and observe how their ordering
affects the final rendering.

In the next chapter, you’ll learn more about submitting geometry to OpenGL, and
you’ll get a primer on the iPhone’s touchscreen.

WrappingUp | 81

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3
Vertices and Touch Points

Second star to the right...and straight on til morning.

—Peter Pan,].M. Barrie

The iPhone has several input devices, including the accelerometer, microphone, and
touchscreen, but your application will probably make the most use of the touchscreen.
Since the screen has multitouch capabilities, your application can obtain a list of several
touch points at any time. In a way, your 3D application is a “point processor”: it con-
sumes points from the touchscreen and produces points (for example, triangle vertices)
for OpenGL. So, I thought I’d use the same chapter to both introduce the touchscreen
and cover some new ways of submitting vertices to OpenGL.

This chapter also covers some important best practices for vertex submission, such as
the usage of vertex buffer objects. I would never argue with the great man who decreed
that premature optimization is the root of all evil, but I want to hammer in good habits
early on.

Toward the end of the chapter, you’ll learn how to generate some interesting geometry
using parametric surfaces. This will form the basis for a fun demo app that you’ll grad-
ually enhance over the course of the next several chapters.

Reading the Touchscreen

In this section, I'll introduce the touchscreen API by walking through a modification
of HelloCone that makes the cone point toward the user’s finger. You’ll need to change
the name of the app from HelloCone to TouchCone, since the user now touches the
cone instead of merely greeting it. To do this, make a copy of the project folder in
Finder, and name the new folder TouchCone. Next, open the Xcode project (it will still
have the old name), and select Project—-Rename. Change the name to TouchCone, and
click Rename.

83

www.it-ebooks.info

http://www.it-ebooks.info/

Apple’s multitouch API is actually much richer than what we need to expose through
our IRenderingEngine interface. For example, Apple’s API supports the concept of
cancellation, which is useful to robustly handle situations such as an interruption from
a phone call. For our purposes, a simplified interface to the rendering engine is suffi-
cient. In fact, we don’t even need to accept multiple touches simultaneously; the touch
handler methods can simply take a single coordinate.

For starters, let’s add three methods to IRenderingEngine for “finger up” (the end of a
touch), “finger down” (the beginning of a touch), and “finger move.” Coordinates are
passed to these methods using the ivec2 type from the vector library we added in
“RenderingEngine Declaration” on page 69. Example 3-1 shows the modifications to
IRenderingEngine.hpp (new lines are in bold).

Example 3-1. IRenderingEngine interface for TouchCone
#include "Vector.hpp"

struct IRenderingEngine {
virtual void Initialize(int width, int height) = o;
virtual void Render() const = 0;
virtual void UpdateAnimation(float timeStep) = 0;
virtual void OnRotate(DeviceOrientation newOrientation) = 0;
virtual void OnFingerUp(ivec2 location) = 0;
virtual void OnFingerDown(ivec2 location) = 0;
virtual void OnFingerMove(ivec2 oldLocation, ivec2 newLocation) = 0;
virtual ~IRenderingEngine() {}

|5

The iPhone notifies your view of touch events by calling methods on your UIView class,
which you can then override. The three methods we’re interested in overriding are
touchesBegan, touchedEnded, and touchesMoved. Open GLView.mm, and implement
these methods by simply passing on the coordinates to the rendering engine:

- (void) touchesBegan: (NSSet*) touches withEvent: (UIEvent*) event
UITouch* touch = [touches anyObject];
CGPoint location = [touch locationInView: self];
m_renderingEngine->OnFingerDown(ivec2(location.x, location.y));
- (void) touchesEnded: (NSSet*) touches withEvent: (UIEvent*) event
UITouch* touch = [touches anyObject];
CGPoint location = [touch locationInView: self];
m_renderingEngine->OnFingerUp(ivec2(location.x, location.y));

- (void) touchesMoved: (NSSet*) touches withEvent: (UIEvent*) event

UITouch* touch = [touches anyObject];
CGPoint previous = [touch previousLocationInView: self];

84 | Chapter3: Vertices and Touch Points

www.it-ebooks.info

http://www.it-ebooks.info/

CGPoint current = [touch locationInView: self];
m_renderingEngine->OnFingerMove(ivec2(previous.x, previous.y),
ivec2(current.x, current.y));

}

The RenderingEnginel implementation (Example 3-2) is similar to HelloCone, but the
OnRotate and UpdateAnimation methods become empty. Example 3-2 also notifies the
user that the cone is active by using glScalef to enlarge the geometry while the user is
touching the screen. New and changed lines in the class declaration are shown in bold.
Note that we’re removing the Animation structure.

Example 3-2. RenderingEnginel.cpp in TouchCone

class RenderingEnginel : public IRenderingEngine {
public:

RenderingEngine1();

void Initialize(int width, int height);

void Render() const;

void UpdateAnimation(float timeStep) {}

void OnRotate(DeviceOrientation newOrientation) {}

void OnFingerUp(ivec2 location);

void OnFingerDown(ivec2 location);

void OnFingerMove(ivec2 oldLocation, ivec2 newlLocation);
private:

vector<Vertex> m_cone;

vector<Vertex> m_disk;

GLfloat m_rotationAngle;

GLfloat m_scale;

ivec2 m_pivotPoint;

GLuint m_framebuffer;

GLuint m_colorRenderbuffer;

GLuint m_depthRenderbuffer;

};
RenderingEnginel::RenderingEngine1() : m_rotationAngle(0), m_scale(1)

glGenRenderbuffersOES(1, &m_colorRenderbuffer);
glBindRenderbufferOES(GL_RENDERBUFFER_OES, m_colorRenderbuffer);

}
void RenderingEnginel::Initialize(int width, int height)
{
m_pivotPoint = ivec2(width / 2, height / 2);
}
void RenderingEnginel::Render() const
{

glClearColor(0.5f, 0.5f, 0.5f, 1);
glClear(GL_COLOR BUFFER BIT | GL DEPTH BUFFER BIT);
glPushMatrix();

glEnableClientState(GL_VERTEX ARRAY);
glEnableClientState(GL_COLOR_ARRAY);

Reading the Touchscreen | 85

www.it-ebooks.info

http://www.it-ebooks.info/

glRotatef(m_rotationAngle, 0, 0, 1); // Replaces call to rotation()
glScalef(m_scale, m_scale, m_scale); // Replaces call to glMultMatrixf()

// Draw the cone.

glVertexPointer(3, GL_FLOAT, sizeof(Vertex), &m_cone[0].Position.x);
glColorPointer(4, GL_FLOAT, sizeof(Vertex), &m_cone[0].Color.x);
glDrawArrays(GL_TRIANGLE_STRIP, 0, m_cone.size());

// Draw the disk that caps off the base of the cone.
glVertexPointer(3, GL_FLOAT, sizeof(Vertex), &m_disk[0].Position.x);
glColorPointer(4, GL_FLOAT, sizeof(Vertex), &m disk[0].Color.x);
glDrawArrays(GL_TRIANGLE_FAN, 0, m_disk.size());

glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);

glPopMatrix();
}
void RenderingEngine1::0nFingerUp(ivec2 location)
{
m_scale = 1.0f;
}
void RenderingEnginel::0nFingerDown(ivec2 location)
{
m_scale = 1.5f;
OnFingerMove(location, location);
}

void RenderingEnginel::0OnFingerMove(ivec2 previous, ivec2 location)

{

vec2 direction = vec2(location - m_pivotPoint).Normalized();

// Flip the y-axis because pixel coords increase toward the bottom.
direction.y = -direction.y;

m_rotationAngle = std::acos(direction.y) * 180.0f / 3.14159f;
if (direction.x > 0)
m_rotationAngle = -m_rotationAngle;

}

The only bit of code in Example 3-2 that might need some extra explanation is the
OnFingerMove method; it uses some trigonometric trickery to compute the angle of ro-
tation. The best way to explain this is with a diagram, as shown in Figure 3-1. Recall
from high-school trig that the cosine is “adjacent over hypotenuse.” We normalized
the direction vector, so we know the hypotenuse length is exactly one. Since
cos(6)=y, then acos(y)=0. If the direction vector points toward the right of the screen,
then the rotation angle should be reversed, as illustrated on the right. This is because

rotation angles are counterclockwise in our coordinate system.

86 | Chapter3: Vertices and Touch Points

www.it-ebooks.info

http://www.it-ebooks.info/

touchpoint touchpoint
xy (x.y)

wse=y ws(-@)=y

Figure 3-1. Trigonometry in OnFingerMove

Note that OnFingerMove flips the y-axis. The pixel-space coordinates that come from
UIView have the origin at the upper-left corner of the screen, with +Y pointing down-
ward, while OpenGL (and mathematicians) prefer to have the origin at the center, with
+Y pointing upward.

That’s it! The 1.1 ES version of the Touch Cone app is now functionally complete. If
you want to compile and run at this point, don’t forget to turn on the ForceES1 switch
at the top of GLView.mm.

Let’s move on to the ES 2.0 renderer. Open RenderingEngine2.cpp, and make the
changes shown in bold in Example 3-3. Most of these changes are carried over from
our ES 1.1 changes, with some minor differences in the Render method.

Example 3-3. RenderingEngine2.cpp in TouchCone

class RenderingEngine2 : public IRenderingEngine {
public:

RenderingEngine2();

void Initialize(int width, int height);

void Render() const;

void UpdateAnimation(float timeStep) {}

void OnRotate(DeviceOrientation newOrientation) {}

void OnFingerUp(ivec2 location);

void OnFingerDown(ivec2 location);

void OnFingerMove(ivec2 oldLocation, ivec2 newlLocation);
private:

GLfloat m_rotationAngle;
GLfloat m_scale;
ivec2 m_pivotPoint;

};

Reading the Touchscreen | 87

www.it-ebooks.info

http://www.it-ebooks.info/

RenderingEngine2: :RenderingEngine2() : m_rotationAngle(0), m_scale(1)

}

glGenRenderbuffersOES(1, &m_colorRenderbuffer);
glBindRenderbufferOES(GL_RENDERBUFFER_OES, m_colorRenderbuffer);

void RenderingEngine2::Initialize(int width, int height)

{

}

m_pivotPoint = ivec2(width / 2, height / 2);

void RenderingEngine2::Render() const

{

GLuint positionSlot = glGetAttribLocation(m_simpleProgram,
"Position");
GLuint colorSlot = glGetAttribLocation(m_simpleProgram,
"SourceColor");

glClearColor(0.5f, 0.5f, 0.5f, 1);
glClear (GL_COLOR BUFFER BIT | GL_DEPTH BUFFER BIT);

glEnableVertexAttribArray(positionSlot);
glEnableVertexAttribArray(colorSlot);

mat4 rotation = mat4::Rotate(m_rotationAngle);
mat4 scale = mat4::Scale(m_scale);
mat4 translation = mat4::Translate(o, 0, -7);

// Set the model-view matrix.

GLint modelviewUniform = glGetUniformLocation(m_simpleProgram,
"Modelview");

mat4 modelviewMatrix = scale * rotation * translation;

gluniformMatrix4fv(modelviewUniform, 1, 0, modelviewMatrix.Pointer());

// Draw the cone.
{
GLsizei stride = sizeof(Vertex);
const GLvoid* pCoords = 8m_cone[0].Position.x;
const GLvoid* pColors = &m_cone[0].Color.x;
glVertexAttribPointer(positionSlot, 3, GL_FLOAT,
GL_FALSE, stride, pCoords);
glVertexAttribPointer(colorSlot, 4, GL_FLOAT,
GL_FALSE, stride, pColors);
glDrawArrays(GL_TRIANGLE_STRIP, 0, m_cone.size());

}

// Draw the disk that caps off the base of the cone.
{
GLsizei stride = sizeof(Vertex);
const GLvoid* pCoords = &m_disk[0].Position.x;
const GLvoid* pColors = &m_disk[0].Color.x;
glVertexAttribPointer(positionSlot, 3, GL_FLOAT,

88 | Chapter3: Vertices and Touch Points

www.it-ebooks.info

http://www.it-ebooks.info/

GL_FALSE, stride, pCoords);
glVertexAttribPointer(colorSlot, 4, GL_FLOAT,

GL_FALSE, stride, pColors);
glDrawArrays(GL_TRIANGLE_FAN, 0, m_disk.size());

glDisableVertexAttribArray(positionSlot);
glDisableVertexAttribArray(colorSlot);
}

// See Example 3-2 for OnFingerUp, OnFingerDown, and OnFingerMove.

You can now turn off the ForceES1 switch in GLView.mm and build and run TouchCone
on any Apple device. In the following sections, we’ll continue making improvements
to the app, focusing on how to efficiently describe the cone geometry.

Saving Memory with Vertex Indexing

So far we’ve been using the glDrawArrays function for all our rendering. OpenGL ES
offers another way of kicking off a sequence of triangles (or lines or points) through the
use of the glDrawElements function. It has much the same effect as glDrawArrays, but
instead of simply plowing forward through the vertex list, it first reads a list of indices
from an index buffer and then uses those indices to choose vertices from the vertex

buffer.

To help explain indexing and how it’s useful, let’s go back to the simple “square from
two triangles” example from the previous chapter (Figure 2-3). Here’s one way of ren-
dering the square with glDrawArrays:
vec2 vertices[6] = { vec2(0, 0), vec2(0, 1), vec2(1, 1),
vec2(1, 1), vec2(1, 0), vec2(0, 0) };
glVertexPointer(2, GL_FLOAT, sizeof(vec2), (void*) vertices);
glDrawArrays(GL_TRIANGLES, 0, 6);

Note that two vertices—(0, 0) and (1, 1)—appear twice in the vertex list. Vertex in-
dexing can eliminate this redundancy. Here’s how:

vec2 vertices[4] = { vec2(0, 0), vec2(0, 1), vec2(1, 1), vec2(1, 0) };

GLubyte indices[6] = { o, 1, 2, 2, 3, O};

glVertexPointer(2, GL_FLOAT, sizeof(vec2), vertices);

glDrawElements (GL_TRIANGLES, 6, GL_UNSIGNED BYTE, (void*) indices);

So, instead of sending 6 vertices to OpenGL (8 bytes per vertex), we’re now sending 4
vertices plus 6 indices (one byte per index). That’s a total of 48 bytes with
glDrawArrays and 38 bytes with glDrawIndices.

You might be thinking “But I can just use a triangle strip with glDrawArrays and save
just as much memory!” That’s true in this case. In fact, a triangle strip is the best way
to draw our lonely little square:

Saving Memory with Vertex Indexing | 89

www.it-ebooks.info

http://www.it-ebooks.info/

vec2 vertices[6] = { vec2(0, 0), vec2(0, 1), vec2(1, 0), vec2(1, 1) };
glVertexPointer(2, GL_FLOAT, sizeof(vec2), (void*) vertices);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

That’s only 48 bytes, and adding an index buffer would buy us nothing.

However, more complex geometry (such as our cone model) usually involves even more
repetition of vertices, so an index buffer offers much better savings. Moreover,
GL_TRIANGLE_STRIP is great in certain cases, but in general it isn’t as versatile as
GL_TRIANGLES. With GL_TRIANGLES, a single draw call can be used to render multiple
disjoint pieces of geometry. To achieve best performance with OpenGL, execute as few
draw calls per frame as possible.

Let’s walk through the process of updating Touch Cone to use indexing. Take a look
at these two lines in the class declaration of RenderingEngine1:

vector<Vertex> m_cone;
vector<Vertex> m_disk;

Indexing allows you to combine these two arrays, but it also requires a new array for
holding the indices. OpenGL ES supports two types of indices: GLushort (16 bit) and
GLubyte (8 bit). In this case, there are fewer than 256 vertices, so you can use GLubyte
for best efficiency. Replace those two lines with the following:

vector<Vertex> m_coneVertices;

vector<GLubyte> m_coneIndices;

GLuint m_bodyIndexCount;
GlLuint m_diskIndexCount;

Since the index buffer is partitioned into two parts (body and disk), we also added some
counts that will get passed to glDrawElements, as you’ll see later.

Next you need to update the code that generates the geometry. With indexing, the
number of required vertices for our cone shape isn*2+1, where n is the number of slices.
There are n vertices at the apex, another n vertices at the rim, and one vertex for the
center of the base. Example 3-4 shows how to generate the vertices. This code goes
inside the Initialize method of the rendering engine class; before you insert it, delete
everything betweenm_pivotPoint = ivec2(width / 2, height / 2); and// Create the
depth buffer.

Example 3-4. Vertex generation

const float coneRadius = 0.5F;

const float coneHeight = 1.866f;

const int coneSlices = 40;

const float dtheta = TwoPi / coneSlices;
const int vertexCount = coneSlices * 2 + 1;

m_coneVertices.resize(vertexCount);
vector<Vertex>::iterator vertex = m_coneVertices.begin();

// Cone's body
for (float theta = 0; vertex != m_coneVertices.end() - 1; theta += dtheta) {

90 | Chapter3: Vertices and Touch Points

www.it-ebooks.info

http://www.it-ebooks.info/

// Grayscale gradient
float brightness = abs(sin(theta));
vec4 color(brightness, brightness, brightness, 1);

// Apex vertex

vertex->Position = vec3(0, 1, 0);
vertex->Color = color;

vertex+t+;

// Rim vertex

vertex->Position.x = coneRadius * cos(theta);
vertex->Position.y = 1 - coneHeight;
vertex->Position.z = coneRadius * sin(theta);
vertex->Color = color;

vertex++;

}

// Disk center
vertex->Position = vec3(0, 1 - coneHeight, 0);
vertex->Color = vec4(1, 1, 1, 1);

In addition to the vertices, you need to store indices for 2n triangles, which requires a
total of 6n indices.

Figure 3-2 uses exploded views to show the tessellation of a cone with n = 10. The
image on the left depicts the ordering of the vertex buffer; the image on the right depicts
the ordering of the index buffer. Note that each vertex at the rim is shared between four
different triangles; that’s the power of indexing! Remember, the vertices at the apex
cannot be shared because each of those vertices requires a unique color attribute, as
discussed in the previous chapter (see Figure 2-17).

Example 3-5 shows the code for generating indices (again, this code lives in our
Initialize method). Note the usage of the modulo operator to wrap the indices back
to the start of the array.

Example 3-5. Index generation

m_bodyIndexCount = coneSlices * 3;
m_diskIndexCount = coneSlices * 3;

m_coneIndices.resize(m_bodyIndexCount + m_diskIndexCount);
vector<GLubyte>::iterator index = m_coneIndices.begin();

// Body triangles
for (int i = 0; 1 < coneSlices * 2; 1 += 2) {

*index++ = i;
*index++ = (1 + 1) % (2 * coneSlices);
*index++ = (i + 3) % (2 * coneSlices);

}

// Disk triangles
const int diskCenterIndex = vertexCount - 1;
for (int i = 1; 1 < coneSlices * 2 + 1; 1 += 2) {

Saving Memory with Vertex Indexing | 91

www.it-ebooks.info

http://www.it-ebooks.info/

*index++

*index++ =

*index++

diskCenterIndex;
i;
(i+2) % (2 * coneSlices);

—_

1

0 s o o B
24 1nn
57 8

10

30 2
" 1 - 33 36 39 i
32:4 :43
34 41

5 7 3537 3840

—_

Vertices Indices

n=10

Figure 3-2. Indexed cone tessellation with GL_TRIANGLES

Now it’s time to enter the new Render () method, shown in Example 3-6. Take a close
look at the core of the rendering calls (in bold). Recall that the body of the cone has a
grayscale gradient, but the cap is solid white. The draw call that renders the body should
heed the color values specified in the vertex array, but the draw call for the disk should
not. So, between the two calls to glDrawElements, the GL_COLOR ARRAY attribute is turned
off with glDisableClientState, and the color is explicitly set with glColor4af. Replace

the definition of Render () in its entirety with the code in Example 3-6.

Example 3-6. RenderingEnginel::Render()

void RenderingEnginel::Render() const

{
GlLsizei stride = sizeof(Vertex);
const GLvoid* pCoords = 8m_coneVertices[0].Position.x;
const GLvoid* pColors = &m_coneVertices[0].Color.x;

glClearColor(0.5f, 0.5f, 0.5f, 1);
glClear(GL_COLOR BUFFER BIT | GL DEPTH BUFFER BIT);
glPushMatrix();

glRotatef(m_rotationAngle, 0, 0, 1);
glScalef(m_scale, m_scale, m_scale);
glVertexPointer(3, GL_FLOAT, stride, pCoords);

92 | Chapter3: Vertices and Touch Points

www.it-ebooks.info

http://www.it-ebooks.info/

glColorPointer(4, GL_FLOAT, stride, pColors);
glEnableClientState(GL_VERTEX_ ARRAY);

const GLvoid* bodyIndices = 8m_coneIndices[0];
const GLvoid* diskIndices = 8m_coneIndices[m_bodyIndexCount];

glEnableClientState(GL_COLOR_ARRAY);

glDrawElements(GL_TRIANGLES, m_bodyIndexCount, GL_UNSIGNED_BYTE, bodyIndices);
glDisableClientState(GL_COLOR_ARRAY);

glColoraf(1, 1, 1, 1);

glDrawElements(GL_TRIANGLES, m_diskIndexCount, GL_UNSIGNED BYTE, diskIndices);

glDisableClientState(GL_VERTEX_ARRAY);
glPopMatrix();
}

You should be able to build and run at this point. Next, modify the ES 2.0 backend by
making the same changes we just went over. The only tricky part is the Render method,
shown in Example 3-7. From a 30,000-foot view, it basically does the same thing as its
ES 1.1 counterpart, but with some extra footwork at the beginning for setting up the
transformation state.

Example 3-7. RenderingEngine2::Render ()

void RenderingEngine2::Render() const

{
GLuint positionSlot = glGetAttribLocation(m_simpleProgram, "Position");
GLuint colorSlot = glGetAttribLocation(m_simpleProgram, "SourceColor");

mat4 rotation = mat4::Rotate(m_rotationAngle);

mat4 scale = mat4::Scale(m_scale);

mat4 translation = mat4::Translate(o, 0, -7);

GLint modelviewUniform = glGetUniformLocation(m_simpleProgram, "Modelview");
mat4 modelviewMatrix = scale * rotation * translation;

GlLsizei stride = sizeof(Vertex);
const GLvoid* pCoords = 8m_coneVertices[0].Position.x;
const GLvoid* pColors = &m_coneVertices[0].Color.x;

glClearColor(o.5f, 0.5f, 0.5f, 1);

glClear(GL_COLOR BUFFER BIT | GL_DEPTH BUFFER_BIT);
gluniformMatrix4fv(modelviewUniform, 1, 0, modelviewMatrix.Pointer());
glVertexAttribPointer(positionSlot, 3, GL_FLOAT, GL_FALSE, stride, pCoords);
glVertexAttribPointer(colorSlot, 4, GL_FLOAT, GL_FALSE, stride, pColors);
glEnableVertexAttribArray(positionSlot);

const GLvoid* bodyIndices = 8m_coneIndices[0];
const GLvoid* diskIndices = 8m_coneIndices[m_bodyIndexCount];

glEnableVertexAttribArray(colorSlot);

glDrawElements(GL_TRIANGLES, m_bodyIndexCount, GL_UNSIGNED BYTE, bodyIndices);
glDisableVertexAttribArray(colorSlot);

glvertexAttribaf(colorSlot, 1, 1, 1, 1);

glDrawElements (GL_TRIANGLES, m_diskIndexCount, GL_UNSIGNED BYTE, diskIndices);

Saving Memory with Vertex Indexing | 93

www.it-ebooks.info

http://www.it-ebooks.info/

glDisableVertexAttribArray(positionSlot);
}

That covers the basics of index buffers; we managed to reduce the memory footprint
by about 28% over the nonindexed approach. Optimizations like this don’t matter
much for silly demo apps like this one, but applying them to real-world apps can make
a big difference.

Boosting Performance with Vertex Buffer Objects

OpenGL provides a mechanism called vertex buffer objects (often known as VBOs)
whereby you give it ownership of a set of vertices (and/or indices), allowing you to free
up CPU memory and avoid frequent CPU-to-GPU transfers. Using VBOs is such a
highly recommended practice that I considered using them even in the HelloArrow
sample. Going forward, all sample code in this book will use VBOs.

Let’s walk through the steps required to add VBOs to Touch Cone. First, remove these
two lines from the RenderingEngine class declaration:

vector<Vertex> m_coneVertices;
vector<GLubyte> m_conelndices;

They’re no longer needed because the vertex data will be stored in OpenGL memory.
You do, however, need to store the handles to the vertex buffer objects. Object handles
in OpenGL are of type GLuint. So, add these two lines to the class declaration:

GLuint m_vertexBuffer;
GLuint m_indexBuffer;

The vertex generation code in the Initialize method stays the same except that you
should use a temporary variable rather than a class member for storing the vertex list.
Specifically, replace this snippet:

m_coneVertices.resize(vertexCount);
vector<Vertex>::iterator vertex = m_coneVertices.begin();

// Cone's body
for (float theta = 0; vertex != m_coneVertices.end() - 1; theta += dtheta) {

m_coneIndices.resize(m bodyIndexCount + m_diskIndexCount);
vector<GLubyte>::iterator index = m_coneIndices.begin();

with this:

vector<Vertex> coneVertices(vertexCount);
vector<Vertex>::iterator vertex = coneVertices.begin();

// Cone's body
for (float theta = 0; vertex != coneVertices.end() - 1; theta += dtheta) {

94 | Chapter3: Vertices and Touch Points

www.it-ebooks.info

http://www.it-ebooks.info/

vector<GLubyte> coneIndices(m bodyIndexCount + m_diskIndexCount);
vector<GLubyte>::iterator index = coneIndices.begin();

Next you need to create the vertex buffer objects and populate them. This is done with
some OpenGL function calls that follow the same Gen/Bind pattern that you’re already
using for framebuffer objects. The Gen/Bind calls for VBOs are shown here (don’t add
these snippets to the class just yet):

void glGenBuffers(GLsizei count, GLuint* handles);
void glBindBuffer(GLenum target, GLuint handle);

glGenBuffers generates a list of nonzero handles. count specifies the desired number of
handles; handles points to a preallocated list. In this book we often generate only one
handle at a time, so be aware that the glGen* functions can also be used to efficiently
generate several handles at once.

The glBindBuffer function attaches a VBO to one of two binding points specified with
the target parameter. The legal values for target are GL_ELEMENT_ARRAY BUFFER (used
for indices) and GL_ARRAY_BUFFER (used for vertices).

Populating a VBO that’s already attached to one of the two binding points is accom-
plished with this function call:

void glBufferData(GLenum target, GLsizeiptr size,
const GLvoid* data, GLenum usage);

target is the same as it is in glBindBuffer, size is the number of bytes in the VBO
(GLsizeiptr is a typedef of int), data points to the source memory, and usage gives a
hint to OpenGL about how you intend to use the VBO. The possible values for usage
are as follows:

GL_STATIC_DRAW
This is what we’ll commonly use in this book; it tells OpenGL that the buffer never
changes.

GL_DYNAMIC_DRAW
This tells OpenGL that the buffer will be periodically updated using glBufferSub
Data.

GL_STREAM_DRAW (ES 2.0 only)
This tells OpenGL that the buffer will be frequently updated (for example, once
per frame) with glBufferSubData.

To modify the contents of an existing VBO, you can use glBufferSubData:

void glBufferSubData(GLenum target, GLintptr offset,
GLsizeiptr size, const GLvoid* data);

The only difference between this and glBufferData is the offset parameter, which
specifies a number of bytes from the start of the VBO. Note that glBufferSubData should
be used only to update a VBO that has previously been initialized with glBufferData.

Boosting Performance with Vertex Buffer Objects | 95

www.it-ebooks.info

http://www.it-ebooks.info/

We won’t be using glBufferSubData in any of the samples in this book. Frequent up-
dates with glBufferSubData should be avoided for best performance, but in many sce-
narios it can be very useful.

Getting back to Touch Cone, let’s add code to create and populate the VBOs near the
end of the Initialize method:

// Create the VBO for the vertices.
glGenBuffers(1, &m vertexBuffer);
glBindBuffer(GL_ARRAY BUFFER, m_vertexBuffer);
glBufferData(GL_ARRAY BUFFER,
coneVertices.size() * sizeof(coneVertices[0]),
&coneVertices[0],
GL_STATIC_DRAW);

// Create the VBO for the indices.
glGenBuffers(1, &m indexBuffer);
glBindBuffer(GL_ELEMENT ARRAY BUFFER, m_indexBuffer);
glBufferData(GL_ELEMENT ARRAY BUFFER,
conelndices.size() * sizeof(coneIndices[0]),
&conelndices[0],
GL_STATIC_DRAW);

Before showing you how to use VBOs for rendering, let me refresh your memory on
the gl*Pointer functions that you’ve been using in the Render method:
/] ES 1.1

glVertexPointer(3, GL_FLOAT, stride, pCoords);
glColorPointer(4, GL_FLOAT, stride, pColors);

// ES 2.0
glVertexAttribPointer(positionSlot, 3, GL_FLOAT, GL_FALSE, stride, pCoords);
glVertexAttribPointer(colorSlot, 4, GL_FLOAT, GL_FALSE, stride, pColors);

The formal declarations for these functions look like this:

// From <OpenGLES/ES1/gl.h>

void glVertexPointer(GLint size, GLenum type, GLsizei stride, const GlLvoid* pointer);
void glColorPointer(GLint size, GLenum type, GlLsizei stride, const GLvoid* pointer);
void glNormalPointer(GLenum type, GlLsizei stride, const GLvoid* pointer);

void glTexCoordPointer(GLint size, GLenum type, GlLsizei stride, const GLvoid* pointer);
void glPointSizePointerOES(GLenum type, GlLsizei stride, const GlLvoid* pointer);

// From <OpenGLES/ES2/gl.h>

void glVertexAttribPointer(GLuint attributeIndex, GLint size, GLenum type,
GLboolean normalized, GlLsizei stride,
const GLvoid* pointer);

The size parameter in all these functions controls the number of vector components
per attribute. (The legal combinations of size and type were covered in the previous
chapter in Table 2-1.) The stride parameter is the number of bytes between vertices.
The pointer parameter is the one to watch out for—when no VBOs are bound (that is,
the current VBO binding is zero), it’s a pointer to CPU memory; when a VBO is bound
toGL_ARRAY_ BUFFER, it changes meaning and becomes a byte offset rather than a pointer.

96 | Chapter3: Vertices and Touch Points

www.it-ebooks.info

http://www.it-ebooks.info/

The gl*Pointer functions are used to set up vertex attributes, but recall that indices are
submitted through the last argument of glDrawElements. Here’s the formal declaration
of glDrawElements:

void glDrawElements(GLenum topology, GLsizei count, GLenum type, GLvoid* indices);

indices is another “chameleon” parameter. When a nonzero VBO is bound to
GL_ELEMENT_ARRAY_ BUFFER, it’s a byte offset; otherwise, it’s a pointer to CPU memory.

\

W

The shape-shifting aspect of gl*Pointer and glDrawElements is an indi-
cator of how OpenGL has grown organically through the years; if the
%s" API were designed from scratch, perhaps these functions wouldn’t be
so overloaded.

To see glDrawElements and gl*Pointer being used with VBOs in Touch Cone, check
out the Render method in Example 3-8.

Example 3-8. RenderingEnginel::Render with vertex buffer objects

void RenderingEnginel::Render() const

{
glClear (GL_COLOR BUFFER BIT | GL_DEPTH BUFFER BIT);
glPushMatrix();
glRotatef(m_rotationAngle, 0, 0, 1);
glScalef(m_scale, m_scale, m_scale);
const GLvoid* colorOffset = (GLvoid*) sizeof(vec3);
glBindBuffer (GL_ELEMENT ARRAY BUFFER, m_indexBuffer);
glBindBuffer(GL_ARRAY BUFFER, m_vertexBuffer);
glvertexPointer(3, GL_FLOAT, sizeof(Vertex), 0);
glColorPointer(4, GL_FLOAT, sizeof(Vertex), colorOffset);
glEnableClientState(GL_VERTEX ARRAY);
const GlLvoid* bodyOffset = 0;
const GLvoid* diskOffset = (GLvoid*) m_bodyIndexCount;
glEnableClientState(GL_COLOR_ARRAY);
glDrawElements(GL_TRIANGLES, m_bodyIndexCount, GL_UNSIGNED BYTE, bodyOffset);
glDisableClientState(GL_COLOR_ARRAY);
glColor4f(1, 1, 1, 1);
glDrawElements(GL_TRIANGLES, m_diskIndexCount, GL_UNSIGNED BYTE, diskOffset);
glDisableClientState(GL_VERTEX_ARRAY);
glPopMatrix();

}

Example 3-9 shows the ES 2.0 variant. From 30,000 feet, it basically does the same
thing, even though many of the actual OpenGL calls are different.

Boosting Performance with Vertex Buffer Objects | 97

www.it-ebooks.info

http://www.it-ebooks.info/

Example 3-9. RenderingEngine2::Render with vertex buffer objects

void RenderingEngine2::Render() const

{
GLuint positionSlot = glGetAttribLocation(m_simpleProgram, "Position");
GLuint colorSlot = glGetAttribLocation(m simpleProgram, "SourceColor");

mat4 rotation = mat4::Rotate(m_rotationAngle);

mat4 scale = mat4::Scale(m_scale);

mat4 translation = mat4::Translate(o, 0, -7);

GLint modelviewUniform = glGetUniformLocation(m_simpleProgram, "Modelview");
mat4 modelviewMatrix = scale * rotation * translation;

GLsizei stride = sizeof(Vertex);
const GLvoid* colorOffset = (GLvoid*) sizeof(vec3);

glClear(GL_COLOR BUFFER BIT | GL_DEPTH BUFFER BIT);
glUniformMatrix4fv(modelviewUniform, 1, 0, modelviewMatrix.Pointer());

glBindBuffer(GL_ELEMENT ARRAY BUFFER, m_indexBuffer);
glBindBuffer(GL_ARRAY BUFFER, m_vertexBuffer);
glVertexAttribPointer(positionSlot, 3, GL_FLOAT, GL_FALSE, stride, 0);
glVertexAttribPointer(colorSlot, 4, GL_FLOAT, GL_FALSE, stride, colorOffset);
glEnableVertexAttribArray(positionSlot);

const GlLvoid* bodyOffset

0;
const GLvoid* diskOffset = (GLvoid*) m_bodyIndexCount;

glEnableVertexAttribArray(colorSlot);

glDrawElements(GL_TRIANGLES, m bodyIndexCount, GL_UNSIGNED BYTE, bodyOffset);
glDisableVertexAttribArray(colorSlot);

glVertexAttrib4f(colorSlot, 1, 1, 1, 1);

glDrawElements(GL_TRIANGLES, m diskIndexCount, GL_UNSIGNED BYTE, diskOffset);

glDisableVertexAttribArray(positionSlot);
}

That wraps up the tutorial on VBOs; we’ve taken the Touch Cone sample as far as we
can take it!

Creating a Wireframe Viewer

Let’s use vertex buffer objects and the touchscreen to create a fun new app. Instead of
relying on triangles like we’ve been doing so far, we’ll use GL_LINES topology to create
a simple wireframe viewer, as shown in Figure 3-3. The rotation in Touch Cone was
restricted to the plane, but this app will let you spin the geometry around to any ori-
entation; behind the scenes, we’ll use quaternions to achieve a trackball-like effect.
Additionally, we’ll include a row of buttons along the bottom of the screen to allow
the user to switch between different shapes. They won’t be true buttons in the UIKit
sense; remember, for best performance, you should let OpenGL do all the rendering.

98 | Chapter3: Vertices and Touch Points

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-3. Wireframe viewer

This application will provide a good foundation upon which to learn many OpenGL
concepts, and we’ll continue to evolve it in the coming chapters.

If you’re planning on following along with the code, you’ll first need to start with the
WireframeSkeleton project from this book’s example code (available at http://oreilly
.com/catalog/9780596804831). In the Finder, make a copy of the directory that contains
this project, and name the new directory SimpleWireframe. Next, open the project (it
will still be named WireframeSkeleton), and then choose Project—Rename. Rename it
to SimpleWireframe.

This skeleton project includes all the building blocks you saw (the vector library from
the appendix, the GLView class, and the application delegate). There are a few differences
between this and the previous examples, so be sure to look over the classes in the project
before you proceed:

1. The application delegate has been renamed to have a very generic name,
AppDelegate.

2. The GLView class uses an application engine rather than a rendering engine. This is
because we’ll be taking a new approach to how we factor the ES 1.1— and ES 2.0—
specific code from the rest of the project; more on this shortly.

(reating a Wireframe Viewer | 99

www.it-ebooks.info

http://www.it-ebooks.info/

Parametric Surfaces for Fun

You might have been put off by all the work required for tessellating the cone shape in
the previous samples. It would be painful if you had to figure out a clever tessellation
for every shape that pops into your head! Thankfully, most 3D modeling software can
export to a format that has post-tessellated content; the popular .obj file format is one
example of this. Moreover, the cone shape happens to be a mathematically defined
shape called a parametric surface; all parametric surfaces are relatively easy to tessellate
in a generic manner. A parametric surface is defined with a function that takes a 2D
vector for input and produces a 3D vector as output. This turns out to be especially
convenient because the input vectors can also be used as texture coordinates, as we’ll
learn in a future chapter.

The input to a parametric function is said to be in its domain, while the output is said
to be in its range. Since all parametric surfaces can be used to generate OpenGL vertices
in a consistent manner, it makes sense to create a simple class hierarchy for them.
Example 3-10 shows two subclasses: a cone and a sphere. This has been included in
the WireframeSkeleton project for your convenience, so there is no need for you to add
it here.

Example 3-10. ParametricEquations.hpp

#include "ParametricSurface.hpp"”

class Cone : public ParametricSurface {
public:
Cone(float height, float radius) : m_height(height), m radius(radius)
{
ParametricInterval interval = { ivec2(20, 20), vec2(TwoPi, 1) };
SetInterval(interval);

}

vec3 Evaluate(const vec2& domain) const

float u = domain.x, v = domain.y;
float x = m_radius * (1 - v) * cos(u);
float y = m_height * (v - 0.5f);
float z = m_radius * (1 - v) * -sin(u);
return vec3(x, y, z);
}
private:
float m_height;
float m_radius;
|5
class Sphere : public ParametricSurface {
public:
Sphere(float radius) : m_radius(radius)

ParametricInterval interval = { ivec2(20, 20), vec2(Pi, TwoPi) };
SetInterval(interval);

vec3 Evaluate(const vec2& domain) const

100 | Chapter3: Verticesand Touch Points

www.it-ebooks.info

http://www.it-ebooks.info/

float u = domain.x, v = domain.y;
float x = m_radius * sin(u) * cos(v);
float y = m_radius * cos(u);

float z = m_radius * -sin(u) * sin(v);
return vec3(x, y, z);

}

private:
float m_radius;
b

/...

The classes in Example 3-10 request their desired tessellation granularity and domain
bound by calling SetInterval from their constructors. More importantly, these classes
implement the pure virtual Evaluate method, which simply applies Equation 3-1 or 3-2.

Equation 3-1. Cone parameterization
x = r(1 — v)cosu
y=hv-"1)

z =r(l — v) —sinu

Equation 3-2. Sphere parameterization

X = 7 sinu cosv

_ Su<m
Jy=roosu g<y<2n
Z = 7-Sinu cosy

Each of the previous equations is only one of several possible parameterizations for
their respective shapes. For example, the z equation for the sphere could be negated,
and it would still describe a sphere.

In addition to the cone and sphere, the wireframe viewer allows the user to see four
other interesting parametric surfaces: a torus, a knot, a Mobius strip,” and a Klein bottle
(see Figure 3-4). I've already shown you the classes for the sphere and cone; you can
find code for the other shapes at this book’s website. They basically do nothing more
than evaluate various well-known parametric equations. Perhaps more interesting is
their common base class, shown in Example 3-11. To add this file to Xcode, right-click
the Classes folder, choose Add—New file, select C and C++, and choose Header File.
Call it ParametricSurface.hpp, and replace everything in it with the code shown here.

* True Mobius strips are one-sided surfaces and can cause complications with the lighting algorithms presented
in the next chapter. The wireframe viewer actually renders a somewhat flattened Mébius “tube.”

(reating a Wireframe Viewer | 101

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-4. Parametric gallery

Example 3-11. ParametricSurface.hpp

#include "Interfaces.hpp"

struct ParametricInterval {
ivec2 Divisions;@
vec2 UpperBound; ®

)

class ParametricSurface : public ISurface {
public:
int GetVertexCount() const;
int GetLineIndexCount() const;
void GenerateVertices(vector<float>& vertices) const;
void GeneratelineIndices(vector<unsigned short>& indices) const;
protected:
void SetInterval(const ParametricInterval® interval);©
virtual vec3 Evaluate(const vec2& domain) const = 0;@
private:
vec2 ComputeDomain(float i, float j) const;
vec2 m_upperBound;
ivec2 m_slices;
ivec2 m_divisions;

|5

I'll explain the ISurface interface later; first let’s take a look at various elements that

are controlled by subclasses:

@ The number of divisions that the surface is sliced into. The higher the number, the
more lines, and the greater the level of detail. Note that it’s an ivec2; in some cases
(like the knot shape), it’s desirable to have more slices along one axis than the other.

@ The domain’s upper bound. The lower bound is always (0, 0).
© Called from the subclass to describe the domain interval.

O Abstract method for evaluating the parametric equation.

Example 3-12 shows the implementation of the ParametricSurface class. Add a new
C++ file to your Xcode project called ParametricSurface.cpp (but deselect the option

to create the associated header file). Replace everything in it with the code shown.

102 | Chapter3: Verticesand Touch Points

www.it-ebooks.info

http://www.it-ebooks.info/

Example 3-12. ParametricSurface.cpp

#include "ParametricSurface.hpp"

void ParametricSurface::SetInterval(const ParametricInterval® interval)
{

m_upperBound = interval.UpperBound;

m_divisions = interval.Divisions;

m_slices = m_divisions - ivec2(1, 1);

}

int ParametricSurface::GetVertexCount() const

{ return m_divisions.x * m_divisions.y;

}

int ParametricSurface::GetLineIndexCount() const
i return 4 * m_slices.x * m_slices.y;

vec2 ParametricSurface::ComputeDomain(float x, float y) const

return vec2(x * m_upperBound.x / m_slices.x,
y * m_upperBound.y / m_slices.y);

}

void ParametricSurface::GenerateVertices(vector<float>& vertices) const
{
vertices.resize(GetVertexCount() * 3);
vec3* position = (vec3*) &vertices[o0];
for (int j = 0; j < m_divisions.y; j++) {
for (int i = 0; i < m divisions.x; i++) {
vec2 domain = ComputeDomain(i, j);
vec3 range = Evaluate(domain);
*position++ = range;

}

void ParametricSurface::GenerateLineIndices(vector<unsigned short>& indices) const
{
indices.resize(GetLineIndexCount());
vector<unsigned short>::iterator index = indices.begin();
for (int j = 0, vertex = 0; j < m_slices.y; j++) {
for (int i = 0; i < m_slices.x; i++) {
int next = (i + 1) % m_divisions.x;

*index++ = vertex + i;

*index++ = vertex + next;

*index++ = vertex + i;

*index++ = vertex + i + m_divisions.x;

}

vertex += m_divisions.x;

(reating a Wireframe Viewer | 103

www.it-ebooks.info

http://www.it-ebooks.info/

The GeneratelLineIndices method deserves a bit of an explanation. Picture a globe of
the earth and how it has lines for latitude and longitude. The first two indices in the
loop correspond to a latitudinal line segment; the latter two correspond to a longitu-
dinal line segment (see Figure 3-5). Also note some sneaky usage of the modulo operator
for wrapping back to zero when closing a loop.

i+ m_divisions.x

Figure 3-5. Generating line indices for a parametric surface

Designing the Interfaces

In the HelloCone and HelloArrow samples, you might have noticed some duplication
of logic between the ES 1.1 and ES 2.0 backends. With the wireframe viewer sample,
we're raising the bar on complexity, so we’ll avoid duplicated code by introducing a
new C++ component called ApplicationEngine (this was mentioned in Chapter 1; see
Figure 1-5). The application engine will contain all the logic that isn’t coupled to a
particular graphics APL

Example 3-13 shows the contents of Interfaces.hpp, which defines three component
interfaces and some related types. Add a new C and C++ header file to your Xcode
project called Interfaces.hpp. Replace everything in it with the code shown.

Example 3-13. Interfaces.hpp

#pragma once

#include "Vector.hpp"
#include "Quaternion.hpp"
#include <vector>

104 | Chapter3: Vertices and Touch Points

www.it-ebooks.info

http://www.it-ebooks.info/

using std::vector;

struct IApplicationEngine {@
virtual void Initialize(int width, int height) = o;
virtual void Render() const = 0;
virtual void UpdateAnimation(float timeStep) = 0;
virtual void OnFingerUp(ivec2 location) = 0;
virtual void OnFingerDown(ivec2 location) = 0;
virtual void OnFingerMove(ivec2 oldLocation, ivec2 newlocation) = 0;
virtual ~IApplicationEngine() {}

|5

struct ISurface {@®
virtual int GetVertexCount() const = 0;
virtual int GetLineIndexCount() const = 0;
virtual void GenerateVertices(vector<float>& vertices) const = 0;
virtual void GeneratelineIndices(vector<unsigned short>& indices) const = 0;
virtual ~ISurface() {}
b

struct Visual {©
vec3 Color;
ivec2 LowerlLeft;
ivec2 ViewportSize;
Quaternion Orientation;

};

struct IRenderingEngine {@
virtual void Initialize(const vector<ISurface*>& surfaces)
virtual void Render(const vector<Visual>& visuals) const =
virtual ~IRenderingEngine() {}

= 0;

0;

b

IApplicationEngine* CreateApplicationEngine(IRenderingEngine* renderingEngine); @

namespace ES1 { IRenderingEngine* CreateRenderingEngine(); }@®@
namespace ES2 { IRenderingEngine* CreateRenderingEngine(); }

@ Consumed by GLView; contains logic common to both rendering backends.

® Consumed by the rendering engines when they generate VBOs for the parametric
surfaces.

© Describes the dynamic visual properties of a surface; gets passed from the application
engine to the rendering engine at every frame.

O Common abstraction of the two OpenGL ES backends.

© Factory method for the application engine; the caller determines OpenGL capabil-
ities and passes in the appropriate rendering engine.

O Namespace-qualified factory methods for the two rendering engines.

In an effort to move as much logic into the application engine as possible,
IRenderingEngine has only two methods: Initialize and Render. We’ll describe them
in detail later.

(reating a Wireframe Viewer | 105

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Trackball Rotation

To ensure high portability of the application logic, we avoid making any OpenGL calls
whatsoever from within the ApplicationEngine class. Example 3-14 is the complete
listing of its initial implementation. Add a new C++ file to your Xcode project called
ApplicationEngine.cpp (deselect the option to create the associated .h file). Replace ev-
erything in it with the code shown.

Example 3-14. ApplicationEngine.cpp

#include "Interfaces.hpp"
#include "ParametricEquations.hpp”

using namespace std;
static const int SurfaceCount = 6;

class ApplicationEngine : public IApplicationEngine {
public:
ApplicationEngine(IRenderingEngine* renderingEngine);
~ApplicationEngine();
void Initialize(int width, int height);
void OnFingerUp(ivec2 location);
void OnFingerDown(ivec2 location);
void OnFingerMove(ivec2 oldLocation, ivec2 newlLocation);
void Render() const;
void UpdateAnimation(float dt);
private:
vec3 MapToSphere(ivec2 touchpoint) const;
float m_trackballRadius;
ivec2 m_screenSize;
ivec2 m_centerPoint;
ivec2 m_fingerStart;
bool m_spinning;
Quaternion m_orientation;
Quaternion m_previousOrientation;
IRenderingEngine* m_renderingEngine;

1
IApplicationEngine* CreateApplicationEngine(IRenderingEngine* renderingEngine)

return new ApplicationEngine(renderingEngine);

}

ApplicationEngine::ApplicationEngine(IRenderingEngine* renderingEngine) :
m_spinning(false),
m_renderingEngine(renderingEngine)

{

}

ApplicationEngine::~ApplicationEngine()

delete m_renderingEngine;

106 | Chapter3: Verticesand Touch Points

www.it-ebooks.info

http://www.it-ebooks.info/

void ApplicationEngine::Initialize(int width, int height)

}

m_trackballRadius = width / 3;
m_screenSize = ivec2(width, height);
m_centerPoint = m_screenSize / 2;

vector<ISurface*> surfaces(SurfaceCount);
surfaces[0] = new Cone(3, 1);

surfaces[1] = new Sphere(1.4f);
surfaces[2] = new Torus(1.4, 0.3);
surfaces[3] = new TrefoilKnot(1.8f);
surfaces[4] = new KleinBottle(0.2f);

surfaces[5] = new MobiusStrip(1);

m_renderingEngine->Initialize(surfaces);

for (int i = 0; i < SurfaceCount; i++)
delete surfaces[i];

void ApplicationEngine::Render() const

}

void ApplicationEngine::UpdateAnimation(float dt)

}

void ApplicationEngine::OnFingerUp(ivec2 location)

}

void ApplicationEngine::0nFingerDown(ivec2 location)

}

Visual visual;

visual.Color = m_spinning ? vec3(1, 1, 1) : vec3(0, 1,

visual.LowerLeft = ivec2(0, 48);
visual.ViewportSize = ivec2(320, 432);
visual.Orientation = m_orientation;
m_renderingEngine->Render (8visual);

m_spinning = false;

m_fingerStart = location;
m_previousOrientation = m orientation;
m_spinning = true;

1);

void ApplicationEngine::OnFingerMove(ivec2 oldLocation, ivec2 location)

if (m_spinning) {

vec3 start = MapToSphere(m fingerStart);

vec3 end = MapToSphere(location);

Quaternion delta = Quaternion::CreateFromVectors(start, end);
m_orientation = delta.Rotated(m_previousOrientation);

www.it-ebooks.info

(reating a Wireframe Viewer | 107

http://www.it-ebooks.info/

vec3 ApplicationEngine::MapToSphere(ivec2 touchpoint) const
vec2 p = touchpoint - m_centerPoint;

// Flip the y-axis because pixel coords increase toward the bottom.
p.y = -p.y;

const float radius = m_trackballRadius;
const float safeRadius = radius - 1;

if (p.Length() > safeRadius) {
float theta = atan2(p.y, p.x);
p.x = safeRadius * cos(theta);
p.y = safeRadius * sin(theta);

float z = sqrt(radius * radius - p.LengthSquared());
vec3 mapped = vec3(p.X, p.y, z);
return mapped / radius;

}

The bulk of Example 3-14 is dedicated to handling the trackball-like behavior with
quaternions. I find the CreateFromVectors method to be the most natural way of con-
structing a quaternion. Recall that it takes two unit vectors at the origin and computes
the quaternion that moves the first vector onto the second. To achieve a trackball effect,
these two vectors are generated by projecting touch points onto the surface of the virtual
trackball (see the MapToSphere method). Note that if a touch point is outside the cir-
cumference of the trackball (or directly on it), then MapToSphere snaps the touch point
to just inside the circumference. This allows the user to perform a constrained rotation
around the z-axis by sliding his finger horizontally or vertically near the edge of the
screen.

Implementing the Rendering Engine

So far we’ve managed to exhibit most of the wireframe viewer code without any
OpenGL whatsoever! It’s time to remedy that by showing the ES 1.1 backend class in
Example 3-15. Add a new C++ file to your Xcode project called RenderingEn-
gine.ES1.cpp (deselect the option to create the associated .k file). Replace everything in
it with the code shown. You can download the ES 2.0 version from this book’s com
panion website (and it is included with the skeleton project mentioned early in this
section).

Example 3-15. RenderingEngine.ES1.cpp

#include <OpenGLES/ES1/gl.h>
#include <OpenGLES/ES1/glext.h>
#include "Interfaces.hpp"
#include "Matrix.hpp"

namespace ES1 {

108 | Chapter3: Vertices and Touch Points

www.it-ebooks.info

http://www.it-ebooks.info/

struct Drawable {
GLuint VertexBuffer;
GLuint IndexBuffer;
int IndexCount;

|5

class RenderingEngine : public IRenderingEngine {
public:

RenderingEngine();

void Initialize(const vector<ISurface*>& surfaces);

void Render(const vector<Visual>& visuals) const;
private:

vector<Drawable> m drawables;

GLuint m_colorRenderbuffer;

mat4 m_translation;

b
IRenderingEngine* CreateRenderingEngine()

return new RenderingEngine();

}
RenderingEngine: :RenderingEngine()

glGenRenderbuffersOES(1, &m_colorRenderbuffer);
glBindRenderbufferOES(GL_RENDERBUFFER_OES, m_colorRenderbuffer);

}

void RenderingEngine::Initialize(const vector<ISurface*>& surfaces)
{
vector<ISurface*>::const_iterator surface;
for (surface = surfaces.begin();
surface != surfaces.end(); ++surface) {

// Create the VBO for the vertices.
vector<float> vertices;
(*surface)->GenerateVertices(vertices);
GLuint vertexBuffer;
glGenBuffers(1, &vertexBuffer);
glBindBuffer (GL_ARRAY_BUFFER, vertexBuffer);
glBufferData(GL_ARRAY BUFFER,
vertices.size() * sizeof(vertices[o0]),
&vertices[o0],
GL_STATIC_DRAW);

// Create a new VBO for the indices if needed.
int indexCount = (*surface)->GetLineIndexCount();
GLuint indexBuffer;
if (!m_drawables.empty() &&
indexCount == m_drawables[0].IndexCount) {
indexBuffer = m_drawables[0].IndexBuffer;
} else {
vector<GLushort> indices(indexCount);

(reating a Wireframe Viewer | 109

www.it-ebooks.info

http://www.it-ebooks.info/

}

(*surface)->GeneratelLineIndices(indices);
glGenBuffers(1, &indexBuffer);
glBindBuffer(GL_ELEMENT_ARRAY BUFFER, indexBuffer);
glBufferData(GL_ELEMENT ARRAY BUFFER,
indexCount * sizeof(GLushort),
&indices[0],
GL_STATIC DRAW);
}

Drawable drawable = { vertexBuffer, indexBuffer, indexCount};
m_drawables.push_back(drawable);

}

// Create the framebuffer object.

GLuint framebuffer;

glGenFramebuffersOES(1, &framebuffer);

glBindFramebufferOES(GL_FRAMEBUFFER_OES, framebuffer);

glFramebufferRenderbufferOES(GL_FRAMEBUFFER OES,
GL_COLOR_ATTACHMENTO_OES,
GL_RENDERBUFFER_OES,
m_colorRenderbuffer);

glBindRenderbufferOES(GL_RENDERBUFFER_OES, m_colorRenderbuffer);

glEnableClientState(GL_VERTEX ARRAY);
m_translation = mat4::Translate(o, 0, -7);

void RenderingEngine::Render(const vector<Visual>& visuals) const

{

glClear(GL_COLOR_BUFFER BIT);

vector<Visual>::const_iterator visual = visuals.begin();
for (int visualIndex = 0;

visual != visuals.end();

++visual, ++visualIndex)

// Set the viewport transform.

ivec2 size = visual->ViewportSize;

ivec2 lowerleft = visual->LowerlLeft;
glviewport(lowerLeft.x, lowerLeft.y, size.x, size.y);

// Set the model-view transform.

mat4 rotation = visual->Orientation.ToMatrix();
mat4 modelview = rotation * m_translation;
glMatrixMode(GL_MODELVIEW);
glLoadMatrixf(modelview.Pointer());

// Set the projection transform.

float h = 4.0f * size.y / size.x;

mat4 projection = mat4::Frustum(-2, 2, -h / 2, h / 2, 5, 10);
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(projection.Pointer());

// Set the color.
vec3 color = visual->Color;

110 | Chapter3: Vertices and Touch Points

www.it-ebooks.info

http://www.it-ebooks.info/

glColorsf(color.x, color.y, color.z, 1);

// Draw the wireframe.

int stride = sizeof(vec3);

const Drawabled drawable = m_drawables[visualIndex];
glBindBuffer(GL_ARRAY_BUFFER, drawable.VertexBuffer);
glVertexPointer(3, GL_FLOAT, stride, 0);
glBindBuffer(GL_ELEMENT_ARRAY BUFFER, drawable.IndexBuffer);
glDrawElements (GL_LINES, drawable.IndexCount, GL_UNSIGNED_SHORT, 0);

}
}

There are no new OpenGL concepts here; you should be able to follow the code in
Example 3-15. We now have all the big pieces in place for the wireframe viewer. At this
point, it shows only a single wireframe; this is improved in the coming sections.

Poor Man’s Tab Bar

Apple provides the UITabBar widget as part of the UIKit framework. This is the familiar
list of gray icons that many applications have along the bottom of the screen, as shown
in Figure 3-6.

—i

Categories

Figure 3-6. UITabBar

Since UIKit widgets are outside the scope of this book, you’ll be using OpenGL to create
a poor man’s tab bar for switching between the various parametric surfaces, as in

A ®@O® O

Figure 3-7. Poor man’s tab bar

In many situations like this, a standard UITabBar is preferable since it creates a more
consistent look with other iPhone applications. But in our case, we’ll create a fun tran-
sition effect: pushing a button will cause it to “slide out” of the tab bar and into the
main viewport. For this level of control over rendering, UIKit doesn’t suffice.

The wireframe viewer has a total of six parametric surfaces, but the button bar has only
five. When the user touches a button, we’ll swap its contents with the surface being

(reating a Wireframe Viewer | 111

www.it-ebooks.info

http://www.it-ebooks.info/

displayed in the main viewport. This allows the application to support six surfaces with
only five buttons.

The state for the five buttons and the button-detection code lives in the application
engine. New lines in the class declaration from ApplicationEngine.cpp are shown in bold
in Example 3-16. No modifications to the two rendering engines are required.

Example 3-16. ApplicationEngine declaration with tab bar

#include "Interfaces.hpp"
#include "ParametricEquations.hpp"
#include <algorithm>

using namespace std;

static const int SurfaceCount = 6;
static const int ButtonCount = SurfaceCount - 1;

class ApplicationEngine : public IApplicationEngine {
public:
ApplicationEngine(IRenderingEngine* renderingEngine);
~ApplicationEngine();
void Initialize(int width, int height);
void OnFingerUp(ivec2 location);
void OnFingerDown(ivec2 location);
void OnFingerMove(ivec2 oldLocation, ivec2 newlLocation);
void Render() const;
void UpdateAnimation(float dt);
private:
void PopulateVisuals(Visual* visuals) const;
int MapToButton(ivec2 touchpoint) const;
vec3 MapToSphere(ivec2 touchpoint) const;
float m_trackballRadius;
ivec2 m_screenSize;
ivec2 m_centerPoint;
ivec2 m_fingerStart;
bool m_spinning;
Quaternion m_orientation;
Quaternion m_previousOrientation;
IRenderingEngine* m_renderingEngine;
int m_currentSurface;
ivec2 m_buttonSize;
int m_pressedButton;
int m_buttonSurfaces[ButtonCount];

};

Example 3-17 shows the implementation. Methods left unchanged (such as
MapToSphere) are omitted for brevity. You’ll be replacing the following methods:
ApplicationEngine::ApplicationEngine, Initialize, Render, OnFingerUp, OnFinger
Down, and OnFingerMove. There are two new methods you’ll be adding: ApplicationEn
gine: :PopulateVisuals and MapToButton.

112 | Chapter3: Vertices and Touch Points

www.it-ebooks.info

http://www.it-ebooks.info/

Example 3-17. ApplicationEngine implementation with tab bar

ApplicationEngine::ApplicationEngine(IRenderingEngine* renderingEngine) :
m_spinning(false),
m_renderingEngine(renderingEngine),
m_pressedButton(-1)

{
m_buttonSurfaces[0] = 0;
m_buttonSurfaces[1] = 1;
m_buttonSurfaces[2] = 2;
m_buttonSurfaces[3] = 4;
m_buttonSurfaces[4] = 5;
m_currentSurface = 3;

}

void ApplicationEngine::Initialize(int width, int height)

m_trackballRadius = width / 3;

m_buttonSize.y = height / 10;

m_buttonSize.x = 4 * m_buttonSize.y / 3;

m_screenSize = ivec2(width, height - m_buttonSize.y);
m_centerPoint = m_screenSize / 2;

vector<ISurface*> surfaces(SurfaceCount);
surfaces[0] = new Cone(3, 1);
surfaces[1] = new Sphere(1.4f);
surfaces[2] = new Torus(1.4f, 0.3f);
surfaces[3] = new TrefoilKnot(1.8f);
surfaces[4] = new KleinBottle(0.2f);
surfaces[5] = new MobiusStrip(1);
m_renderingEngine->Initialize(surfaces);
for (int i = 0; i < SurfaceCount; i++)
delete surfaces[i];

void ApplicationEngine::PopulateVisuals(Visual* visuals) const

for (int buttonIndex = 0; buttonIndex < ButtonCount; buttonIndex++) {
int visualIndex = m_buttonSurfaces[buttonIndex];
visuals[visualIndex].Color = vec3(0.75f, 0.75f, 0.75f);
if (m_pressedButton == buttonIndex)
visuals[visualIndex].Color = vec3(1, 1, 1);

visuals[visualIndex].ViewportSize = m_buttonSize;
visuals[visualIndex].LowerLeft.x = buttonIndex * m buttonSize.x;
visuals[visualIndex].LowerLeft.y = 0;
visuals[visualIndex].Orientation = Quaternion();

}

visuals[m currentSurface].Color = m_spinning ? vec3(1, 1, 1) : vec3(0, 1, 1);
visuals[m currentSurface].LowerLeft = ivec2(0, 48);

visuals[m currentSurface].ViewportSize = ivec2(320, 432);

visuals[m currentSurface].Orientation = m_orientation;

Creating a Wireframe Viewer

www.it-ebooks.info

| 113

http://www.it-ebooks.info/

void ApplicationEngine::Render() const

vector<Visual> visuals(SurfaceCount);
PopulateVisuals(8visuals[0]);
m_renderingEngine->Render(visuals);

}

void ApplicationEngine::OnFingerUp(ivec2 location)
m_spinning = false;

if (m_pressedButton != -1 8% m_pressedButton == MapToButton(location))
swap(m_buttonSurfaces[m_pressedButton], m_currentSurface);

m_pressedButton = -1;

}
void ApplicationEngine::OnFingerDown(ivec2 location)

m_fingerStart = location;
m_previousOrientation = m_orientation;
m_pressedButton = MapToButton(location);
if (m_pressedButton == -1)

m_spinning = true;

}
void ApplicationEngine::OnFingerMove(ivec2 oldLocation, ivec2 location)

if (m_spinning) {
vec3 start = MapToSphere(m fingerStart);
vec3 end = MapToSphere(location);
Quaternion delta = Quaternion::CreateFromVectors(start, end);
m_orientation = delta.Rotated(m_previousOrientation);

}

if (m _pressedButton != -1 &% m_pressedButton != MapToButton(location))
m_pressedButton = -1;

}
int ApplicationEngine::MapToButton(ivec2 touchpoint) const

if (touchpoint.y < m_screenSize.y - m_buttonSize.y)
return -1;

int buttonIndex = touchpoint.x / m_buttonSize.x;
if (buttonIndex >= ButtonCount)
return -1;

return buttonIndex;

}

Go ahead and try it—at this point, the wireframe viewer is starting to feel like a real
application!

114 | Chapter3: Vertices and Touch Points

www.it-ebooks.info

http://www.it-ebooks.info/

Animating the Transition

The button-swapping strategy is clever but possibly jarring to users; after playing with
the app for a while, the user might start to notice that his tab bar is slowly being re-
arranged. To make the swap effect more obvious and to give the app more of a fun
Apple feel, let’s create a transition animation that actually shows the button being
swapped with the main viewport. Figure 3-8 depicts this animation.

e

¢ e <

Looboieo 3 400 3 4 00 3 4 00 3 400 3 4 00 3 4 00

&

2 400%®0

Figure 3-8. Transition animation in wireframe viewer

Again, no changes to the two rendering engines are required, because all the logic can
be constrained to ApplicationEngine. In addition to animating the viewport, we’ll also
animate the color (the tab bar wireframes are drab gray) and the orientation (the tab
bar wireframes are all in the “home” position). We can reuse the existing Visual class
for this; we need two sets of Visual objects for the start and end of the animation. While
the animation is active, we’ll tween the values between the starting and ending visuals.
Let’s also create an Animation structure to bundle the visuals with a few other animation
parameters, as shown in bold in Example 3-18.

Example 3-18. ApplicationEngine declaration with transition animation

struct Animation {
bool Active;
float Elapsed;
float Duration;
Visual StartingVisuals[SurfaceCount];
Visual EndingVisuals[SurfaceCount];

b

class ApplicationEngine : public IApplicationEngine {
public:
/...

private:

/...

Animation m_animation;

};

Example 3-19 shows the new implementation of ApplicationEngine. Unchanged meth-
ods are omitted for brevity. Remember, animation is all about interpolation! The
Render method leverages the Lerp and Slerp methods from our vector class library to
achieve the animation in a surprisingly straightforward manner.

(reating a Wireframe Viewer | 115

www.it-ebooks.info

http://www.it-ebooks.info/

Example 3-19. ApplicationEngine implementation with transition animation

ApplicationEngine::ApplicationEngine(IRenderingEngine* renderingEngine) :

}

m_spinning(false),
m_renderingEngine(renderingEngine),
m_pressedButton(-1)
m_animation.Active = false;

// Same as in Example 3-17

void ApplicationEngine::Render() const

}

vector<Visual> visuals(SurfaceCount);

if (!m_animation.Active) {
PopulateVisuals(8visuals[0]);
} else {
float t = m_animation.Elapsed / m_animation.Duration;
for (int i = 0; i < SurfaceCount; i++) {
const Visual& start = m_animation.StartingVisuals[i];
const Visual& end = m_animation.EndingVisuals[i];
Visual®& tweened = visuals[i];

tweened.Color = start.Color.Lerp(t, end.Color);
tweened.LowerLeft = start.LowerLeft.Lerp(t, end.LowerLeft);

tweened.ViewportSize = start.ViewportSize.Lerp(t, end.ViewportSize);
tweened.Orientation = start.Orientation.Slerp(t, end.Orientation);

}

m_renderingEngine->Render(visuals);

void ApplicationEngine::UpdateAnimation(float dt)

}

if (m_animation.Active) {
m_animation.Elapsed += dt;
if (m_animation.Elapsed > m_animation.Duration)
m_animation.Active = false;

void ApplicationEngine::OnFingerUp(ivec2 location)

m_spinning = false;

if (m_pressedButton != -1 &% m_pressedButton == MapToButton(location) &&

Im_animation.Active)

{
m_animation.Active = true;
m_animation.Elapsed = 0;
m_animation.Duration = 0.25f;

116 | Chapter3: Vertices and Touch Points

www.it-ebooks.info

http://www.it-ebooks.info/

PopulateVisuals(8m_animation.StartingVisuals[o0]);
swap(m_buttonSurfaces[m_pressedButton], m_currentSurface);
PopulateVisuals(8m_animation.EndingVisuals[0]);

}

m_pressedButton = -1;

}

That completes the wireframe viewer! As you can see, animation isn’t difficult, and it
can give your application that special Apple touch.

Wrapping Up

This chapter has been a quick exposition of the touchscreen and OpenGL vertex sub-
mission. The toy wireframe app is great fun, but it does have a bit of a 1980s feel to it.
The next chapter takes iPhone graphics to the next level by explaining the depth buffer,
exploring the use of real-time lighting, and showing how to load 3D content from the
popular .obj file format. While this chapter has been rather heavy on code listings, the
next chapter will be more in the style of Chapter 2, mixing in some math review with
a lesson in OpenGL.

WrappingUp | 117

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Adding Depth and Realism

Lumos!

—Harry Potter and the Chamber of Secrets,
J.K. Rowling

When my wife and T go out to see a film packed with special effects, I always insist on
sitting through the entire end credits, much to her annoyance. It never ceases to amaze
me how many artists work together to produce a Hollywood blockbuster. I'm often
impressed with the number of artists whose full-time job concerns lighting. In Pixar’s
Up, at least five people have the title “lighting technical director,” four people have the
title “key lighting artist,” and another four people have the honor of “master lighting
artist.”

Lighting is obviously a key aspect to understanding realism in computer graphics, and
that’s much of what this chapter is all about. We’ll refurbish the wireframe viewer
sample to use lighting and triangles, rechristening it to Model Viewer. We’ll also throw
some light on the subject of shaders, which we’ve been glossing over until now (in
ES 2.0, shaders are critical to lighting). Finally, we’ll further enhance the viewer app by
giving it the ability to load model files so that we’re not stuck with parametric surfaces
forever. Mathematical shapes are great for geeking out, but they’re pretty lame for
impressing your 10-year-old!

Examining the Depth Buffer

Before diving into lighting, let’s take a closer look at depth buffers, since we’ll need to
add one to wireframe viewer. You might recall the funky framebuffer object (FBO)
setup code in the HelloCone sample presented in Example 2-7, repeated here in Ex-
ample 4-1.

119

www.it-ebooks.info

http://www.it-ebooks.info/

Example 4-1. Depth buffer setup

// Create the depth buffer.
glGenRenderbuffersOES(1, &m_depthRenderbuffer); @
glBindRenderbufferOES(GL_RENDERBUFFER OES, m_depthRenderbuffer);@®
glRenderbufferStorageOES(GL_RENDERBUFFER OES,©
GL_DEPTH_COMPONENT16_OES,
width,
height);

// Create the framebuffer object; attach the depth and color buffers.
glGenFramebuffersOES(1, &m framebuffer);
glBindFramebufferOES(GL_FRAMEBUFFER_OES, m_framebuffer);
glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
GL_COLOR_ATTACHMENTO_OES,
GL_RENDERBUFFER_OES,
m_colorRenderbuffer);
glFramebufferRenderbufferOES(GL_FRAMEBUFFER OES,@
GL_DEPTH_ATTACHMENT_OES,
GL_RENDERBUFFER_OES,
m_depthRenderbuffer);

// Bind the color buffer for rendering.
glBindRenderbufferOES(GL_RENDERBUFFER_OES, m_colorRenderbuffer);

glviewport(0, 0, width, height);
glEnable(GL_DEPTH TEST);®

@ Create a handle to the renderbuffer object that stores depth.

@ Bind the newly created handle, making it affected by subsequent renderbuffer
commands.

© Allocate storage for the depth buffer using 16-bit precision.
O Attach the depth bulffer to the framebuffer object.
© Enable depth testing—we’ll explain this shortly.

Why does HelloCone need a depth buffer when wireframe viewer does not? When the
scene is composed of nothing but monochrome lines, we don’t care about the visibility
problem; this means we don’t care which lines are obscured by other lines. HelloCone
uses triangles rather than lines, so the visibility problem needs to be addressed. OpenGL
uses the depth buffer to handle this problem efficiently.

Figure 4-1 depicts ModelViewer’s depth buffer in grayscale: white pixels are far away,
black pixels are nearby. Even though users can’t see the depth buffer, OpenGL needs
it forits rendering algorithm. If it didn’t have a depth buffer, you’d be forced to carefully
order your draw calls from farthest to nearest. (Incidentally, such an ordering is called
the painter’s algorithm, and there are special cases where you’ll need to use it anyway,
as you’ll see in “Blending Caveats” on page 226.)

120 | Chapter4: Adding Depth and Realism

www.it-ebooks.info

http://www.it-ebooks.info/

40000

Figure 4-1. Depth buffer in ModelViewer

OpenGL uses a technique called depth testing to solve the visibility problem. Suppose
you were to render a red triangle directly in front of the camera and then draw a green
triangle directly behind the red triangle. Even though the green triangle is drawn last,
you’d want to the red triangle to be visible; the green triangle is said to be occluded.
Here’s how it works: every rasterized pixel not only has its RGB values written to the
color buffer but also has its Z value written to the depth buffer. OpenGL “rejects”
occluded pixels by checking whether their Z value is greater than the Z value that’s
already in the depth buffer. In pseudocode, the algorithm looks like this:

void WritePixel(x, y, z, color)
if (DepthTestDisabled || z < DepthBuffer[x, y]) {

DepthBuffer[x, y] = z;
ColorBuffer[x, y] = color;

}
}

Beware the Scourge of Depth Artifacts

Something to watch out for with depth buffers is Z-fighting, which is a visual artifact
that occurs when overlapping triangles have depths that are too close to each other (see
Figure 4-2).

Examining the Depth Buffer | 121

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-2. Z-fighting in the Mébius strip

Recall that the projection matrix defines a viewing frustum bounded by six planes
(“Setting the Projection Transform” on page 59). The two planes that are perpendicular
to the viewing direction are called the near plane and far plane. In ES 1.1, these planes
are arguments to the glOrtho or glPerspective functions; in ES 2.0, they’re passed to
a custom function like the mat4: :Frustum method in the C++ vector library from the
appendix.

It turns out that if the near plane is too close to the camera or if the far plane is too
distant, this can cause precision issues that result in Z-fighting. However this is only
one possible cause for Z-fighting; there are many more. Take a look at the following
list of suggestions if you ever see artifacts like the ones in Figure 4-2.

Push out your near plane.
For perspective projections, having the near plane close to zero can be detrimental
to precision.

Pull in your far plane.
Similarly, the far plane should still be pulled in as far as possible without clipping
away portions of your scene.

Scale your scene smaller.
Try to avoid defining an astronomical-scale scene with huge extents.

Increase the bit width of your depth buffer.
All iPhones and iPod touches (at the time of this writing) support 16-bit and 24-
bit depth formats. The bit width is determined according to the argument you pass
to glRenderbufferStorageOES when allocating the depth buffer.

Are you accidentally rendering coplanar triangles?
The fault might not lie with OpenGL but with your application code. Perhaps your
generated vertices are lying on the same Z plane because of a rounding error.

122 | Chapter4: Adding Depth and Realism

www.it-ebooks.info

http://www.it-ebooks.info/

Do you really need depth testing in the first place?
In some cases you should probably disable depth testing anyway. For example,
you don’t need it if you’re rendering a 2D heads-up display. Disabling the depth
test can also boost performance.

Creating and Using the Depth Buffer

Let’s enhance the wireframe viewer by adding in a depth buffer; this paves the way for
converting the wireframes into solid triangles. Before making any changes, use Finder
to make a copy of the folder that contains the SimpleWireframe project. Rename the
folder to ModelViewer, and then open the copy of the SimpleWireframe project inside
that folder. Select Project—Rename, and rename the project to ModelViewer.

Open RenderingEngine.ES1.cpp, and add GLuint m_depthRenderbuffer; to the pri
vate: section of the class declaration. Next, find the Initialize method, and delete
everything from the comment // Create the framebuffer object to the glBindRender
bufferOES call. Replace the code you deleted with the code in Example 4-2.

Example 4-2. Adding depth to ES1::RenderingEngine::Initialize

// Extract width and height from the color buffer.

int width, height;

glGetRenderbufferParameterivOES(GL_RENDERBUFFER_OES,
GL_RENDERBUFFER_WIDTH_OES, &width);

glGetRenderbufferParameterivOES(GL_RENDERBUFFER_OES,
GL_RENDERBUFFER_HEIGHT_OES, &height);

// Create a depth buffer that has the same size as the color buffer.

glGenRenderbuffersOES(1, &m_depthRenderbuffer);

glBindRenderbufferOES(GL_RENDERBUFFER_OES, m_depthRenderbuffer);

glRenderbufferStorageOES(GL_RENDERBUFFER OES, GL_DEPTH_COMPONENT16_OES,
width, height);

// Create the framebuffer object.

GLuint framebuffer;

glGenFramebuffersOES(1, &framebuffer);

glBindFramebufferOES(GL_FRAMEBUFFER_OES, framebuffer);

glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES, GL_COLOR_ATTACHMENTO_OES,
GL_RENDERBUFFER_OES, m_colorRenderbuffer);

glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES, GL_DEPTH_ATTACHMENT OES,
GL_RENDERBUFFER_OES, m_depthRenderbuffer);

glBindRenderbufferOES(GL_RENDERBUFFER OES, m_colorRenderbuffer);

// Enable depth testing.
glEnable(GL_DEPTH_TEST);

The ES 2.0 variant of Example 4-2 is almost exactly the same. Repeat the process in
that file, but remove all _OES and OES suffixes.

Creating and Using the Depth Buffer | 123

www.it-ebooks.info

http://www.it-ebooks.info/

Next, find the call to glClear (in both rendering engines), and add a flag for depth:
glClear (GL_COLOR BUFFER BIT | GL_DEPTH_BUFFER BIT);

At this point, you should be able to compile and run, although depth testing doesn’t
buy you anything yet since the app is still rendering in wireframe.

By default, the depth buffer gets cleared to a value of 1.0; this makes sense since you
want all your pixels to initially pass the depth test, and OpenGL clamps the maximum
window-space Z coordinate to 1.0. Incidentally, if you want to clear the depth buffer
to some other value, you can call glClearDepthf, similar to glClearColor. You can even
configure the depth test itself using glDepthFunc. By default, pixels “win” if their Z is
less than the value in the depth buffer, but you can change the test to any of these
conditions:

GL_NEVER
Pixels never pass the depth test.

GL_ALWAYS
Pixels always pass the depth test.

GL_LESS
Pixels pass only if their Z value is less than the Z value in the depth buffer. This is
the default.

GL_LEQUAL
Pixels pass only if their Z value is less than or equal to the Z value in the depth buffer.
GL_EQUAL
Pixels pass only if their Z value is equal to the Z value in the depth buffer. This
could be used to create an infinitely thin slice of the scene.

GL_GREATER
Pixels pass only if their Z value is greater than the Z value in the depth buffer.

GL_GEQUAL
Pixels pass only if their Z value is greater than or equal to the Z value in the depth
bulffer.

GL_NOTEQUAL
Pixels pass only if their Z value is not equal to the Z value in the depth buffer.

The flexibility of glDepthFunc is a shining example of how OpenGLis often configurable
to an extent more than you really need. I personally admire this type of design philos-
ophy in an API; anything that is reasonably easy to implement in hardware is exposed
to the developer at a low level. This makes the API forward-looking because it enables
developers to dream up unusual effects that the API designers did not necessarily
anticipate.

124 | Chapter4: Adding Depth and Realism

www.it-ebooks.info

http://www.it-ebooks.info/

Filling the Wireframe with Triangles

In this section we’ll walk through the steps required to render parametric surfaces with
triangles rather than lines. First we need to enhance the ISurface interface to support
the generation of indices for triangles rather than lines. Open Interfaces.hpp, and make
the changes shown in bold in Example 4-3.

Example 4-3. Enhanced ISurface interface

struct ISurface {
virtual int GetVertexCount() const = 0;
virtual int GetLineIndexCount() const = 0;
virtual int GetTriangleIndexCount() const = 0;
virtual void GenerateVertices(vector<float>& vertices) const = 0;
virtual void GeneratelLineIndices(vector<unsigned short>& indices) const = 0;
virtual void
GenerateTriangleIndices(vector<unsigned short>& indices) const = 0;
virtual ~ISurface() {}
b

You’ll also need to open ParametricSurface.hpp and make the complementary changes
to the class declaration of ParametricSurface shown in Example 4-4.

Example 4-4. Enhanced ParametricSurface interface

class ParametricSurface : public ISurface {
public:
int GetVertexCount() const;
int GetLineIndexCount() const;
int GetTriangleIndexCount() const;
void GenerateVertices(vector<float>& vertices) const;
void GeneratelineIndices(vector<unsigned short>& indices) const;
void GenerateTriangleIndices(vector<unsigned short>& indices) const;

Next open ParametericSurface.cpp, and add the implementation of GetTriangleIndex
Count and GenerateTriangleIndices per Example 4-5.

Example 4-5. ParametricSurface::GenerateTriangleIndices

int ParametricSurface::GetTriangleIndexCount() const

{
}

return 6 * m_slices.x * m_slices.y;

void
ParametricSurface::GenerateTriangleIndices(vector<unsigned short>& indices) const
{
indices.resize(GetTriangleIndexCount());
vector<unsigned short>::iterator index = indices.begin();
for (int j = 0, vertex = 0; j < m_slices.y; j++) {
for (int i = 0; 1 < m_slices.x; i++) {
int next = (i + 1) % m_divisions.x;
*index++ = vertex + i;
*index++ = vertex + next;

Filling the Wireframe with Triangles | 125

www.it-ebooks.info

http://www.it-ebooks.info/

*index++ = vertex + i + m_divisions.x;
*index++ = vertex + next;

*index++ = vertex + next + m_divisions.x;
*index++ = vertex + i + m_divisions.x;

}

vertex += m_divisions.x;

}

Example 4-5 is computing indices for two triangles, as shown in Figure 4-3.

Figure 4-3. Generating triangle indices for a parametric surface

Now we need to modify the rendering engine so that it calls these new methods when
generating VBOs, as in Example 4-6. The modified lines are shown in bold. Make these
changes to both RenderingEngine.ES1.cpp and RenderingEngine.ES2.cpp.

Example 4-6. RenderingEngine Modifications for triangles

void RenderingEngine::Initialize(const vector<ISurface*>& surfaces)
{
vector<ISurface*>::const_iterator surface;
for (surface = surfaces.begin(); surface != surfaces.end(); ++surface) {

// Create the VBO for the vertices.
vector<float> vertices;
(*surface)->GenerateVertices(vertices);
GLuint vertexBuffer;

glGenBuffers(1, &vertexBuffer);
glBindBuffer (GL_ARRAY_BUFFER, vertexBuffer);
glBufferData(GL_ARRAY_BUFFER,

126 | Chapter4: Adding Depth and Realism

www.it-ebooks.info

http://www.it-ebooks.info/

vertices.size() * sizeof(vertices[0]),
&vertices[o0],
GL_STATIC_DRAW);

// Create a new VBO for the indices if needed.
int indexCount = (*surface)->GetTriangleIndexCount();
GLuint indexBuffer;
if (!m_drawables.empty() &8 indexCount == m_drawables[0].IndexCount) {
indexBuffer = m_drawables[0].IndexBuffer;
} else {
vector<GLushort> indices(indexCount);
(*surface)->GenerateTriangleIndices(indices);
glGenBuffers(1, &indexBuffer);
glBindBuffer(GL_ELEMENT_ARRAY BUFFER, indexBuffer);
glBufferData(GL_ELEMENT ARRAY BUFFER,
indexCount * sizeof(GLushort),
&indices[o0],
GL_STATIC_ DRAW);
}

Drawable drawable = { vertexBuffer, indexBuffer, indexCount};
m_drawables.push back(drawable);

}
}
void RenderingEngine::Render(const vector<Visual>8 visuals) const
{
glClearColor(0.5, 0.5f, 0.5f, 1);
glClear(GL_COLOR BUFFER BIT | GL_DEPTH_BUFFER_BIT);
vector<Visual>::const_iterator visual = visuals.begin();
for (int visualIndex = 0;
visual != visuals.end();
++visual, ++visualIndex)
{
/...
// Draw the surface.
int stride = sizeof(vec3);
const Drawabled drawable = m_drawables[visualIndex];
glBindBuffer (GL_ARRAY_BUFFER, drawable.VertexBuffer);
glVertexPointer(3, GL_FLOAT, stride, 0);
glBindBuffer (GL_ELEMENT_ARRAY_BUFFER, drawable.IndexBuffer);
glDrawElements(GL_TRIANGLES, drawable.IndexCount, GL_UNSIGNED_SHORT, 0);
}
}

Getting back to the sample app, at this point the wireframe viewer has officially become
ModelViewer; feel free to build it and try it. You may be disappointed—the result is
horribly boring, as shown in Figure 4-4. Lighting to the rescue!

Filling the Wireframe with Triangles | 127

www.it-ebooks.info

http://www.it-ebooks.info/

A O ¢ O

Figure 4-4. ModelViewer without lighting

Surface Normals

Before we can enable lighting, there’s yet another prerequisite we need to get out of the
way. To perform the math for lighting, OpenGL must be provided with a surface nor-
mal at every vertex. A surface normal (often simply called a normal) is simply a vector
perpendicular to the surface; it effectively defines the orientation of a small piece of the
surface.

Feeding OpenGL with Normals

You might recall that normals are one of the predefined vertex attributes in OpenGL
ES 1.1. They can be enabled like this:

// OpenGL ES 1.1
glEnableClientState(GL_NORMAL_ARRAY);
glNormalPointer(GL_FLOAT, stride, offset);
glEnable(GL_NORMALIZE);

// OpenGL ES 2.0
glEnableVertexAttribArray(myNormalSlot);
glVertexAttribPointer(myNormalSlot, 3, GL_FLOAT, normalize, stride, offset);

I snuck in something new in the previous snippet: the GL_NORMALIZE state in ES 1.1 and
the normalize argument in ES 2.0. Both are used to control whether OpenGL processes

128 | Chapter4: Adding Depth and Realism

www.it-ebooks.info

http://www.it-ebooks.info/

your normal vectors to make them unit length. If you already know that your normals
are unit length, do not turn this feature on; it incurs a performance hit.

Don’t confuse normalize, which refers to making any vector into a unit
“‘#@ vector, and normal vector, which refers to any vector that is perpendic-
ular to a surface. It is not redundant to say “normalized normal.”

Even though OpenGL ES 1.1 can perform much of the lighting math on your behalf,
it does not compute surface normals for you. At first this may seem rather ungracious
on OpenGL’s part, but as you’ll see later, stipulating the normals yourself give you the
power to render interesting effects. While the mathematical notion of a normal is well-
defined, the OpenGL notion of a normal is simply another input with discretionary
values, much like color and position. Mathematicians live in an ideal world of smooth
surfaces, but graphics programmers live in a world of triangles. If you were to make the
normals in every triangle point in the exact direction that the triangle is facing, your
model would looked faceted and artificial; every triangle would have a uniform color.
By supplying normals yourself, you can make your model seem smooth, faceted, or
even bumpy, as we’ll see later.

The Math Behind Normals

We scoff at mathematicians for living in an artificially ideal world, but we can’t dismiss
the math behind normals; we need it to come up with sensible values in the first place.
Central to the mathematical notion of a normal is the concept of a tangent plane, de-
picted in Figure 4-5.

The diagram in Figure 4-5 is, in itself, perhaps the best definition of the tangent plane
that I can give you without going into calculus. It’s the plane that “just touches” your
surface at a given point P. Think like a mathematician: for them, a plane is minimally
defined with three points. So, imagine three points at random positions on your surface,
and then create a plane that contains them all. Slowly move the three points toward
each other; just before the three points converge, the plane they define is the tangent
plane.

The tangent plane can also be defined with tangent and binormal vectors (u and v in
Figure 4-5), which are easiest to define within the context of a parametric surface. Each
of these correspond to a dimension of the domain; we’ll make use of this when we add
normals to our ParametricSurface class.

Finding two vectors in the tangent plane is usually fairly easy. For example, you can
take any two sides of a triangle; the two vectors need not be at right angles to each
other. Simply take their cross product and unitize the result. For parametric surfaces,
the procedure can be summarized with the following pseudocode:

p = Evaluate(s, t)
u = Evaluate(s + ds, t) - p

Surface Normals | 129

www.it-ebooks.info

http://www.it-ebooks.info/

<
n

Evaluate(s, t + dt) - p
Normalize(u x v)

=
n

Figure 4-5. Normal vector with tangent plane

Don’t be frightened by the cross product; I'll give you a brief refresher. The cross prod-
uct always generates a vector perpendicular to its two input vectors. You can visualize
the cross product of A with B using your right hand. Point your index finger in the
direction of A, and then point your middle finger toward B; your thumb now points
in the direction of AxB (pronounced “A cross B,” not “A times B”). See Figure 4-6.

Here’s the relevant snippet from our C++ library (see the appendix for a full listing):

template <typename T>
struct Vector3 {

/] ...

Vector3 Cross(const Vector3d v) const

{

return Vector3(y * v.z - z * v.y,

z¥v.ox - x *v.z,
X * vy -y *v.x);

}

/] ...

Tx Y, z;

};

130 | Chapter4: Adding Depth and Realism

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-6. Righthand rule

Normal Transforms Aren’t Normal

Let’s not lose focus of why we’re generating normals in the first place: they’re required
for the lighting algorithms that we cover later in this chapter. Recall from Chapter 2
that vertex position can live in different spaces: object space, world space, and so on.
Normal vectors can live in these different spaces too; it turns out that lighting in the
vertex shader is often performed in eye space. (There are certain conditions in which
it can be done in object space, but that’s a discussion for another day.)

So, we need to transform our normals to eye space. Since vertex positions get trans-
formed by the model-view matrix to bring them into eye space, it follows that normal
vectors get transformed the same way, right? Wrong! Actually, wrong sometimes. This
is one of the trickier concepts in graphics to understand, so bear with me.

Look at the heart shape in Figure 4-7, and consider the surface normal at a point in the
upper-left quadrant (depicted with an arrow). The figure on the far left is the original
shape, and the middle figure shows what happens after we translate, rotate, and uni-
formly shrink the heart. The transformation for the normal vector is almost the same

Surface Normals | 131

www.it-ebooks.info

http://www.it-ebooks.info/

as the model’s transformation; the only difference is that it’s a vector and therefore
doesn’t require translation. Removing translation from a 4x4 transformation matrix is
easy. Simply extract the upper-left 3x3 matrix, and you’re done.

€
W

Figure 4-7. Normal transforms

Now take a look at the figure on the far right, which shows what happens when
stretching the model along only its x-axis. In this case, if we were to apply the upper
3x3 of the model-view matrix to the normal vector, we’d get an incorrect result; the
normal would no longer be perpendicular to the surface. This shows that simply ex-
tracting the upper-left 3x3 matrix from the model-view matrix doesn’t always sulffice.
[won’t bore you with the math, but it can be shown that the correct transform for
normal vectors is actually the inverse-transpose of the model-view matrix, which is the
result of two operations: first an inverse, then a transpose.

The inverse matrix of M is denoted M1; it’s the matrix that results in the identity matrix
when multiplied with the original matrix. Inverse matrices are somewhat nontrivial to
compute, so again I'll refrain from boring you with the math. The transpose matrix, on
the other hand, is easy to derive; simply swap the rows and columns of the matrix such
that M[i][j] becomes M[j][1].

Transposes are denoted MT, so the proper transform for normal vectors looks like this:
N =NxM")"

Don’t forget the middle shape in Figure 4-7; it shows that, at least in some cases, the
upper 3x3 of the original model-view matrix can be used to transform the normal vector.
In this case, the matrix just happens to be equal to its own inverse-transpose; such
matrices are called orthogonal. Rigid body transformations like rotation and uniform
scale always result in orthogonal matrices.

Why did I bore you with all this mumbo jumbo about inverses and normal transforms?
Two reasons. First, in ES 1.1, keeping nonuniform scale out of your matrix helps per-
formance because OpenGL can avoid computing the inverse-transpose of the model-
view. Second, for ES 2.0, you need to understand nitty-gritty details like this anyway
to write sensible lighting shaders!

132 | Chapter4: Adding Depth and Realism

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Normals from Parametric Surfaces

Enough academic babble; let’s get back to coding. Since our goal here is to add lighting
to ModelViewer, we need to implement the generation of normal vectors. Let’s tweak
ISurface in Interfaces.hpp by adding a flags parameter to GenerateVertices, as shown
in Example 4-7. New or modified lines are shown in bold.

Example 4-7. Modifying ISurface with support for normals

enum VertexFlags {
VertexFlagsNormals = 1 << 0,
VertexFlagsTexCoords = 1 << 1,

|5

struct ISurface {
virtual int GetVertexCount() const = 0;
virtual int GetLineIndexCount() const = 0;
virtual int GetTriangleIndexCount() const = 0;
virtual void GenerateVertices(vector<float>& vertices,
unsigned char flags = 0) const = 0;
virtual void GeneratelLineIndices(vector<unsigned short>& indices) const = 0;
virtual void
GenerateTriangleIndices(vector<unsigned short>& indices) const = 0;
virtual ~ISurface() {}

};

The argument we added to GenerateVertices could have been a boolean instead of a
bit mask, but we’ll eventually want to feed additional vertex attributes to OpenGL,
such as texture coordinates. For now, just ignore the VertexFlagsTexCoords flag; it’ll
come in handy in the next chapter.

Next we need to open ParametricSurface.hpp and make the complementary change to
the class declaration of ParametricSurface, as shown in Example 4-8. We'll also add a
new protected method called InvertNormal, which derived classes can optionally
override.

Example 4-8. ParametricSurface class declaration

class ParametricSurface : public ISurface {
public:

int GetVertexCount() const;

int GetLineIndexCount() const;

int GetTriangleIndexCount() const;

void GenerateVertices(vector<float>& vertices, unsigned char flags) const;

void GeneratelineIndices(vector<unsigned short>& indices) const;

void GenerateTriangleIndices(vector<unsigned short>& indices) const;
protected:

void SetInterval(const ParametricInterval® interval);

virtual vec3 Evaluate(const vec2& domain) const = 0;

virtual bool InvertNormal(const vec2& domain) const { return false; }
private:

vec2 ComputeDomain(float i, float j) const;

vec2 m_upperBound;

Surface Normals | 133

www.it-ebooks.info

http://www.it-ebooks.info/

ivec2 m_slices;
ivec2 m_divisions;

|5

Next let’s open ParametericSurface.cpp and replace the implementation of Generate
Vertices, as shown in Example 4-9.

Example 4-9. Adding normals to ParametricSurface::GenerateVertices

void ParametricSurface::GenerateVertices(vector<float>& vertices,
unsigned char flags) const
{

int floatsPerVertex = 3;
if (flags & VertexFlagsNormals)
floatsPerVertex += 3;

vertices.resize(GetVertexCount() * floatsPerVertex);
float* attribute = (float*) &vertices[o0];

for (int j = 0; j < m_divisions.y; j++) {
for (int i = 0; 1 < m_divisions.x; i++) {

// Compute Position@

vec2 domain = ComputeDomain(i, j);
vec3 range = Evaluate(domain);
attribute = range.Write(attribute);®

// Compute Normal
if (flags & VertexFlagsNormals) {
float s = i, t = j;

// Nudge the point if the normal is indeterminate.©
if (1 == 0) s += 0.01f;

if (i == m_divisions.x - 1) s -= 0.01f;

if (3 0) t += 0.01f;

if (j == m_divisions.y - 1) t -= 0.01f;

// Compute the tangents and their cross product.@
vec3 p = Evaluate(ComputeDomain(s, t));

vec3 u = Evaluate(ComputeDomain(s + 0.01f, t)) - p;
vec3 v = Evaluate(ComputeDomain(s, t + 0.01f)) - p;
vec3 normal = u.Cross(v).Normalized();

if (InvertNormal(domain))@®

normal = -normal;
attribute = normal.Write(attribute);®

}

@ Compute the position of the vertex by calling Evaluate, which has a unique imple-
mentation for each subclass.

@ Copy the vec3 position into the flat floating-point buffer. The Write method returns
an updated pointer.

134 | Chapter4: Adding Depth and Realism

www.it-ebooks.info

http://www.it-ebooks.info/

© Surfaces might be nonsmooth in some places where the normal is impossible to
determine (for example, at the apex of the cone). So, we have a bit of a hack here,
which is to nudge the point of interest in the problem areas.

O As covered in “Feeding OpenGL with Normals” on page 128, compute the two
tangent vectors, and take their cross product.

© Subclasses are allowed to invert the normal if they want. (If the normal points away
from the light source, then it’s considered to be the back of the surface and therefore
looks dark.) The only shape that overrides this method is the Klein bottle.

@ Copy the normal vector into the data buffer using its Write method.

This completes the changes to ParametricSurface. You should be able to build
ModelViewer at this point, but it will look the same since we have yet to put the normal
vectors to good use. That comes next.

Lighting Up
Drawing is deception.

—M. C. Escher

The foundations of real-time graphics are rarely based on principles from physics and
optics. In a way, the lighting equations we’ll cover in this section are cheap hacks,
simple models based on rather shallow empirical observations. We’ll be demonstrating
three different lighting models: ambient lighting (subtle, monotone light), diffuse light-
ing (the dull matte component of reflection), and specular lighting (the shiny spot on
a fresh red apple). Figure 4-8 shows how these three lighting models can be combined
to produce a high-quality image.

&L D

Figure 4-8. Ambient + diffuse + specular = final

Of course, in the real world, there are no such things as “diffuse photons” and “specular
photons.” Don’t be disheartened by this pack of lies! Computer graphics is always just

LightingUp | 135

www.it-ebooks.info

http://www.it-ebooks.info/

a great big hack at some level, and knowing this will make you stronger. Even the fact
that colors are ultimately represented by a red-green-blue triplet has more to do with
human perception than with optics. The reason we use RGB? It happens to match the
three types of color-sensing cells in the human retina! A good graphics programmer
can think like a politician and use lies to his advantage.

Ho-Hum Ambiance

Realistic ambient lighting, with the soft, muted shadows that it conjures up, can be
very complex to render (you can see an example of ambient occlusion in “Baked Light-
ing” on page 373), but ambient lighting in the context of OpenGL usually refers to
something far more trivial: a solid, uniform color. Calling this “lighting” is questionable
since its intensity is not impacted by the position of the light source or the orientation
of the surface, but it is often combined with the other lighting models to produce a
brighter surface.

Matte Paint with Diffuse Lighting

The most common form of real-time lighting is diffuse lighting, which varies its bright-
ness according to the angle between the surface and the light source. Also known as
lambertian reflection, this form of lighting is predominant because it’s simple to com-
pute, and it adequately conveys depth to the human eye. Figure 4-9 shows how diffuse
lighting works. In the diagram, L is the unit length vector pointing to the light source,
and N is the surface normal, which is a unit-length vector that’s perpendicular to the
surface. We'll learn how to compute N later in the chapter.

The diffuse factor (known as df in Figure 4-9) lies between 0 and 1 and gets multiplied
with the light intensity and material color to produce the final diffuse color, as shown
in Equation 4-1.

Equation 4-1. Diffuse color

DiffuseColor = LightIntensity * Material Color * df

df is computed by taking the dot product of the surface normal with the light direction
vector and then clamping the result to a non-negative number, as shown in Equa-
tion 4-2.

Equation 4-2. Diffuse coefficient
df =max (0O, NeL)

The dot product is another operation that you might need a refresher on. When applied
to two unit-length vectors (which is what we’re doing for diffuse lighting), you can
think of the dot product as a way of measuring the angle between the vectors. If the
two vectors are perpendicular to each other, their dot product is zero; if they point away

136 | Chapter4: Adding Depth and Realism

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-9. Diffuse lighting

from each other, their dot product is negative. Specifically, the dot product of two unit
vectors is the cosine of the angle between them. To see how to compute the dot product,
here’s a snippet from our C++ vector library (see the appendix for a complete listing):

template <typename T>
struct Vector3 {

/...
T Dot(const Vector3& v) const
{
return x * v.x +y ¥ viy + z ¥ v.z;
}
/...
TXx,Y, z;

Don’t confuse the dot product with the cross product! For one thing,

};
“*‘@ cross products produce vectors, while dot products produce scalars.

With OpenGL ES 1.1, the math required for diffuse lighting is done for you behind the
scenes; with 2.0, you have to do the math yourselfin a shader. You’ll learn both methods
later in the chapter.

The L vector in Equation 4-2 can be computed like this:

LightingUp | 137

www.it-ebooks.info

http://www.it-ebooks.info/

L = normalize (LightPosition — VertexPosition)

In practice, you can often pretend that the light is so far away that all vertices are at the
origin. The previous equation then simplifies to the following:

L = normalize (LightPosition)

When you apply this optimization, you’re said to be using an infinite light so