
M
arczak

Neagle
Enterprise M

acM
anaged Preferences

Companion
eBook
Available

Learn how to build Java-based BlackBerry
applications from scratch

The definitive guide to Apple’s
Managed Client technology

Enterprise Mac
Managed Preferences

Edward Marczak | Greg Neagle
 COMPANION eBOOK SEE LAST PAGE FOR DETAILS ON $10 eBOOK VERSION

Shelve in
Mac Programming

User level:
Intermediate-Advancedwww.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Many Mac OS X system administrators need a way to manage machine
con guration after initial setup and deployment. Apple’s Managed

Preferences system (also known as MCX) is under-documented, often misun-
derstood, and sometimes outright unknown by sys admins. MCX is usually
deployed in conjunction with Mac OS X server, but it can also be used in Win-
dows environments or where no dedicated server exists at all.

Enterprise Mac Managed Preferences is the de nitive guide to Apple’s Managed Cli-
ent technology. With this book, you’ll get the following:

• An example-driven guide to Mac OS X Managed Preferences/Client
technology

• Recipes for common use case studies and patterns

• a targeted approach appropriate for any sys admin who manages Macs
in a Mac OS X or Windows environment

This is the only book that focuses on this facet of Mac OS X exclusively. If you’re a
sys admin, this book will take away much of the pain of working with Mac OS X
client systems. Both authors are involved in the Mac community: Greg Neagle is
part of the MacEnterprise steering committee. Ed Marczak is the executive editor
of and an author for MacTech magazine. He works at Google and is also a member
of the Apple Consultants network.

What you’ll learn:

• All about directory services, local directory services, and how to work
with property list � les

• How to deliver � les with Open Directory, Active Directory, Local Scripts,
third-party utilities, LANrev, and Casper

• How to work with compositing preferences, including the hierarchy of
preferences, and how to write a plist for management using Workgroup
Manager and a Dock example

• How and when to enforce managed preferences and how to
understand manifests

• When, how, and where to use mcxquery, System Pro� ler, and MCX
cache � ushing

This book is for all systems administrators using Mac OS X clients.

RE
LA

TE
D

 T
IT

LE
S

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

Enterprise Mac
Managed Preferences

■ ■ ■
Edward Marczak and Greg Neagle

www.it-ebooks.info

http://www.it-ebooks.info

Enterprise Mac Managed Preferences

Copyright © 2010 by Edward Marczak and Greg Neagle

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-2937-7

ISBN-13 (electronic): 978-1-4302-2938-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Clay Andres
Technical Reviewer: Nigel Kersten
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan
Parkes, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Anita Castro
Copy Editor: Mary Ann Fugate
Production Support: Patrick Cunningham
Indexer: Potomac Indexers, LLC
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

www.it-ebooks.info

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com
http://www.it-ebooks.info

iii

Contents at a Glance

■About the Authors ... ix
■About the Technical Reviewer .. x
■Acknowledgments ... xi
■Preface .. xiii

■Chapter 1: Why Manage? ... 1
■Chapter 2: What Is the Managed Preferences System? ... 9
■Chapter 3: Understanding Directory Services .. 17
■Chapter 4: Property List Files ... 29
■Chapter 5: Writing a Property List for Management .. 49
■Chapter 6: Delivering Managed Preferences .. 67
■Chapter 7: Local MCX ... 101
■Chapter 8: Compositing Preferences .. 123
■Chapter 9: Enforcing Managed Preferences ... 135
■Chapter 10: Preference Manifests and “Raw” Preferences ... 149
■Chapter 11: Recipes ... 167
■Chapter 12: Managing Mobile Accounts .. 197
■Chapter 13: Troubleshooting Managed Preferences .. 227

■Index ... 243

www.it-ebooks.info

http://www.it-ebooks.info

iv

Contents

■About the Authors ... ix
■About the Technical Reviewer .. x
■Acknowledgments ... xi
■Preface .. xiii

■Chapter 1: Why Manage? ... 1

Predictability Means Less Work over Time ... 2
Maintaining Company Policy .. 2
Removing Unused Functions .. 3
Keeping Your Sanity ... 3
Preference Delivery .. 4
Client Management Alternatives .. 5

Scripting .. 5
Managing Everything Else ... 7

Summary .. 8
■Chapter 2: What Is the Managed Preferences System? ... 9

How Did We Get Here? ... 9
Where Are We Now? ... 11
The Heart of Managed Preferences .. 12
What Can You Manage? .. 13
What You Will Need .. 14
Summary .. 15

www.it-ebooks.info

http://www.it-ebooks.info

■ CONTENTS

v

■Chapter 3: Understanding Directory Services .. 17
What Are Directory Services? ... 17

Directory Services and Managed Preferences .. 19
Directory Services Supported by Mac OS X .. 20

Open Directory ... 20
Active Directory ... 21
LDAPv3 .. 21
NIS ... 21
Local Directory Services .. 22

Directory Service Configurations .. 22
Local Only .. 22
Network Directory Service ... 23
Multiple Network Directory Services ... 25

Summary .. 27
■Chapter 4: Property List Files ... 29

What Are Property List Files? ... 29
Property List Example ... 33

Digging Deeper 33
Working with Property List Files ... 36

Property List Editor.app ... 36
Creating a Property List from Scratch with Property List Editor .. 38
Command-Line Utilities ... 39

Cocoa for Scripters ... 44
Altering .plist Files in Memory ... 46

Summary .. 46
Resources ... 47

■Chapter 5: Writing a Property List for Management .. 49
Where Do Managed Preferences Reside? .. 49
Preferred Tools for Creating, Testing, and Deploying Managed Preferences ... 51

Using Workgroup Manager .. 52
The dscl Command .. 60
The defaults Command Refresher ... 66

Summary .. 66
■Chapter 6: Delivering Managed Preferences .. 67

Directory Choices ... 67
Delivery with Open Directory .. 68

Binding Mac OS X Clients to Open Directory ... 68
Accessing the Directory ... 70

www.it-ebooks.info

http://www.it-ebooks.info

■ CONTENTS

vi

Delivery with Active Directory .. 71
Binding Mac OS X Clients to Active Directory .. 72
Extending the Active Directory Schema .. 74
Importing the LDIF File .. 88
Managing Preferences in Active Directory .. 88

Delivery with OpenLDAP ... 90
Add the Apple Schema to OpenLDAP... 90
Consider Indexing .. 90
Bind Mac OS X to OpenLDAP ... 91
Further OpenLDAP Considerations .. 97

Delivery Without a Centralized Directory .. 98
Help! I Can't Use MCX at All .. 99
Summary .. 100
Additional Resources .. 100

■Chapter 7: Local MCX ... 101
Delivery Without a Centralized Directory .. 101
Introducing Local MCX .. 102

Getting Started .. 104
Creating a Computer Group ... 107
Adding Managed Preferences ... 109
Extending the Managed Preferences to Other Machines .. 110
Local MCX Checklist .. 112

Advanced Local MCX .. 112
Dynamic Group Membership (or “Smart Groups”) .. 113
Local MCX Issues ... 114
MCX in Alternate Directory Nodes ... 115
More Local DS Node Tricks ... 121

Summary .. 122
■Chapter 8: Compositing Preferences .. 123

Managed Preference Interactions .. 123
Preferences Precedence .. 124
Preferences and Group Hierarchy ... 125
MCXCompositor .. 126

Viewing Composited MCX Data with mcxquery ... 131
Viewing Composited MCX Data with System Profiler .. 132

Summary .. 133
■Chapter 9: Enforcing Managed Preferences ... 135

Management Frequency ... 135
Choosing a Management Frequency .. 140
Enforcing the Managed Preferences Configuration .. 144
Protecting Your Managed Preference Configuration .. 145
Summary .. 147

www.it-ebooks.info

http://www.it-ebooks.info

■ CONTENTS

vii

■Chapter 10: Preference Manifests and “Raw” Preferences ... 149
Preferences Overview .. 149
Importing a Preference Manifest .. 154
Working with Preference Manifests ... 155
Importing “Raw” Preferences .. 158
Third-Party Applications ... 162
Summary .. 166

■Chapter 11: Recipes ... 167
Finder Sidebar .. 168
Adding Preferences to Manage the Finder Sidebar .. 170
Login Window Preferences ... 171
Managing Bluetooth ... 174
Security Preferences .. 175

Screen Saver ... 175
Managing the Screen Saver in Snow Leopard .. 178
FileVault ... 180
Secure Virtual Memory .. 185
Managing iTunes ... 186

Managing Office 2008 .. 190
Default Save File Formats ... 191
Microsoft AutoUpdate .. 192
Office Setup Assistant ... 192
Importing Office Preferences for Management ... 193

Summary .. 196
■Chapter 12: Managing Mobile Accounts .. 197

Mobile Accounts Review .. 198
Prerequisites ... 198
Definitions ... 199
Manual Setup of Mobile Accounts ... 199
Automatic Setup of Mobile Accounts... 202

Limitations of Workgroup Manager’s Preferences Overview ... 220
Using the Preference Details Editor .. 222
Summary .. 226

■Chapter 13: Troubleshooting Managed Preferences .. 227
Troubleshooting Triage ... 228

Triage Step 1: Did It Ever Work? .. 228
Triage Step 2: Machine- or User-Specific? ... 229
Triage Step 3: Simplify .. 230

www.it-ebooks.info

http://www.it-ebooks.info

■ CONTENTS

viii

Examining Delivered Managed Preferences ... 230
mcxquery ... 231
Managed Preference Interaction Example .. 232
System Profiler .. 232

MCX Caching .. 234
Troubleshooting Local MCX .. 235

No Managed Preferences Data .. 235
Wrong or Old Managed Preferences Data ... 238

mcxrefresh ... 239
One More Thing… .. 241
Summary .. 241

■Index ... 243

www.it-ebooks.info

http://www.it-ebooks.info

ix

About the Authors

Ed Marczak is a frequent speaker at technology conferences and the
co-founder of MacTech Conference. He writes a monthly column
for, and is the Executive Editor of MacTech Magazine. His days are
currently spent on the Mac team at Google. Past the technology, Ed
is a husband and father and enjoys travelling and playing music.

Greg Neagle is currently a senior systems engineer at a large
animation studio. He has presented on Mac OS X management
topics several times at the Macworld San Francisco and Apple's
World Wide Developer Conferences, and is a columnist for MacTech
magazine. Greg has been working with the Mac since 1984, and with
OS X since its release. Greg also enjoys backpacking in the Grand
Canyon and holds a black belt in taekwondo.

www.it-ebooks.info

http://www.it-ebooks.info

x

About the Technical
Reviewer

Nigel Kersten is currently a Systems Administrator, specializing in Configuration Management
at Google™.

www.it-ebooks.info

http://www.it-ebooks.info

xi

Acknowledgments

While there are too many people for me to acknowledge, there are people that rise so high on my
landscape that they can't escape my thanks. First thanks goes to my wife, Dorothy, and all of my
family for always supporting my endeavors, even if it means seeing me a bit less while I'm
sequestered away while writing and working. Immediately following that, I need to thank my co-
author Greg Neagle. Choosing a partner for any project is often a make or break decision. I clearly
chose the right person.

Technology is compelling, but only to a point. There are people that keep me interested beyond
the technology. On that front, a big 'thank you' to Clay Caviness, Nigel Kersten and Dave Dribin.

There are people that inspire and lend their help when they are simply not required to. For that, I
am very grateful to Neil Ticktin, Schoun Regan and Jussi-Pekka Mantere.

I wouldn't be where I am at all without teachers. There are people that have mentored me directly
or indirectly, and have made me a better person in one way or another: Joseph Dries, Jonathan
"Wolf" Rentzsch and Dr. Robert Marose, thank you.

Finally, thanks to everyone at Apress who believed in this topic and made this book a reality.

I'm sure I've forgotten some people that belong on this list. However, because I only know
wonderful people, I'm sure they'll forgive the omission.

Edward Marczak

www.it-ebooks.info

http://www.it-ebooks.info

■ ACKNOWLEDGMENTS

xii

First, thanks to my co-author, Edward Marczak, for inviting me to join him in writing this book.

Thanks to members of the MacEnterprise group. Through mailing list and face-to-face
discussions, I learned so much about Macintosh management techniques, Unix scripting, and
more.

Thanks also to Nigel Kirsten, our technical reviewer for this book. Besides providing invaluable
input on the this book's technical content, he's been a source of help, ideas and advice for as long
as I've known him. It was during an informal discussion with Nigel and a few others that the
original ideas for Local MCX were born.

Finally, I'd like to thank my wife, Allison, and my kids, Wyatt, Cassie, and Emma for putting up
with me while I spent even more time than usual on the computer while working on this book.

Greg Neagle

www.it-ebooks.info

http://www.it-ebooks.info

xiii

Preface

Our goal in writing this book is to have a single definitive guide to Apple's Managed Preferences.
We speak at conferences, participate on mailing lists, write blogs and magazine columns and
work in Mac-heavy environments. We see Mac administrators on a daily basis asking questions
about this facet of the operating system. The number one misconception about Apple’s Managed
Preferences is that in order to use it, you must have an OS X Server. This is not the case! You can
take advantage of Managed Preferences no matter your environment: from one stand-alone
Macintosh, to a handful of Macs in a Windows environment, to thousands of Macs surrounded
by Unix servers. All it takes is a little knowledge, and a little elbow grease.

Owing to the phrase, "Give a man a fish and he will eat for a day. Teach a man to fish and he will
eat for a lifetime," we want to both teach you to fish and give you a fish. We teach you the inner
workings of Managed Preferences and everything it relies on. We also want to get you up and
running quickly, so, there is also a chapter with Managed Preference recipies: step-by-step
instructions that help you tackle the most common management issues straight away.

We've written this book using Mac OS X version 10.6, "Snow Leopard" as a guide, but all of the
information is applicable to version 10.5, also. Much of it likely applies to 10.4, too, but we didn't
test on that revision, as Apple no longer supports Mac OS X v10.4.

If you're a Windows administrator that just had a bunch of Macs thrust into your environment
and are now responsible for dealing with them, this book is for you. While it's not quite Group
Policy, Macs are manageable.

Many of you may already use an off the shelf system to manage Macintosh machines. Is this book
for you? Yes, of course! Managed Preferences allow you to work in conjunction with your existing
management system.

We've absolutely tried to wring out every facet of Managed Preferences that you must know
about. This makes you a more complete Mac administrator and, in turn, makes your job easier.
When you have your delivery infrastructure set up, being able to quickly deploy preferences when
needed can make you a technological super hero. Enjoy your newfound powers!

Ed and Greg

www.it-ebooks.info

http://www.it-ebooks.info

1Chapter

Why Manage?
A personal computer is a wonderful thing. Not only do you have the tools available to
perform your tasks, but you are also largely able to customize the tools and the
computer environment itself. This is ideal when it’s your one single personal computer.
When that computer belongs to a fleet of machines-----10, 50, 1,000, or more-----variances
among them may prove problematic. This is where client management comes in.

Client management, however, does not necessarily mean that every setting is locked
down and the person who is ultimately using the machine can’t change a thing (although
it may). It may be set up as a convenience-----to prepare a machine in a manner that
people expect, even though it may be just freshly unboxed.

This book is about managing Macintosh OS X machines, focusing on Leopard and Snow
Leopard. If you’re a long-time Macintosh administrator in a completely OS X
environment, we hope we have something a little deeper to share. If you’re a longtime
Macintosh administrator, but now find yourself in an environment without a Mac OS X
server to manage the machines in your fleet, we can show you how-----no matter if this is
because you’re in an all Windows environment, or if you don’t have any formal server at
all. Finally, if you’re a Windows admin suddenly finding more and more Macintosh
machines under your purview, never fear! Macintosh machines are manageable.

Mac OS X supports Managed Preferences, also called ‘‘MCX’’ by many administrators
(this is because the directory record that stores the information are named
‘‘MCXSettings’’ and "MCXFlags," which purportedly stands for ‘‘Managed Client for (OS)
X’’). The Managed Preferences system is very powerful and extensible. However, it’s
somewhat under-documented and-----we find-----misunderstood. Managed Preferences is
akin to Windows’ Group Policy. It’s similar in concept, but different in execution. In this
chapter, we’ll look at specific reasons for client management and take a high-level look
at what’s involved:

 The benefits you gain by managing machines

 The need to deliver these preferences to client machines

 Alternate ways to manage client machines outside of Managed
Preferences proper

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Why Manage? 2

Predictability Means Less Work over Time
One great reason to manage is offering predictability to the people who will be using
their machines. In a smaller company, people may not change machines too often, but
correspondingly, the tech support staff will likely be smaller in number and might not
want to manually set up each machine every time it is handed to someone. In a larger
organization, the scale just becomes impossible to handle. Client management allows a
machine to set certain default values for users so it’s ready (or nearly ready) for use
without much manual work.

For example, if there is an application that is used company-wide, it is convenient to
have an icon for it in the Dock. Rather than rely on the end-users to add the icon,
wouldn’t it be nice if it could just appear there for them with no additional work on their
part? This is just one way client management turns out to make computer use easier for
both the end-user and the administrators.

Predictability also ties into your organization’s default settings. If your company has
decided to use Microsoft Word 2008, but keep the older non-XML formats for
compatibility, you can set that automatically for all users. It’s better to have it set from
the start than to require people to remember to update the setting (and possibly having
a few documents saved in the wrong format).

Maintaining Company Policy
Another reason to manage a machine is to align it with the policies of the company.
Often, the policies enforced are security-related. This may mean automatically enabling
FileVault on accounts as they are created, and disallowing the user to turn it off. It may
mean enforcing a proxy for web traffic to pass though. There won’t be a lecture here
about how or why to have or follow a company policy, just to say that you can.

Sometimes, security policies are in place because they’re solving a direct problem. In
the example of enforcing FileVault for accounts, laptops are lost or stolen every day. It’s
useful to know that to the new person possessing the machine, it’s just a shell, rather
than a vessel to company data. Enforcing a password-protected screensaver is further
protection for machines that are left logged-in and merely put to sleep by closing the lid.
At other times, certain security policies exist to protect less tech-heavy users. For
example, salespeople often travel outside of the office; they visit client sites, and work in
hotel lobbies, conference rooms, and coffee shops, all of which are typical locations to
use a laptop. They’re also locations where one may step away from a laptop to refill a
beverage or throw away trash, or get distracted by a conversation. A managed machine
could be set to require a password for unlocking the screen saver and after waking from
sleep, protecting the machine from passers-by who may want to sneak a peek at the
screen or use it for unknown purposes while the owner is away.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Why Manage? 3

Removing Unused Functions
Sometimes, people can find themselves lost in a sea of menu choices, check boxes,
and other user-interface elements that they will simply never use for one reason or
another. Sometimes these choices are against company policy. At other times, they lead
the user down the wrong path.

Mac OS X’s Managed Preferences system can often solve this. When a preference is set
to never allow change, that option is typically then either grayed-out in the GUI, or
hidden altogether. Alternatively, there may be an option that just gets in the way.

You may have a policy that all Apple software updates need to be tested before anyone
in the company installs them. You may also have a way of forcing clients to install
certain updates. In either case, you’d prefer that people don’t install these updates.
Apple doesn’t help you here: a dialog box will pop up in front of the user, letting him or
her know that there are updates waiting. Managed Preferences will let you disable this
update check from ever occurring, if that’s your approach.

Another example is one that we’ve had people ask us about repeatedly: ‘‘How can
I turn off the ‘Shared’ computers in the sidebar?!?’’ For many people, seeing this list
is annoying, and worse, possibly confusing. In a large organization, this list can grow
too large to be useful-----it simply wasn’t designed to scale to large environments. As
an administrator, Managed Preferences will help you eliminate this detritus if you so
deem it.

Keeping Your Sanity
As a systems administrator, you face a huge number of challenges on a daily basis.
Wouldn’t you rather be looking at the big picture than handing the minutia of every
machine on an individual basis? The idea with client management is that you have a
central location to specify policy for groups of machines, or your entire fleet. Once
specified, the policy applies itself, with no further work from you, the administrator. How
it does this, as we’ll find out, is a little situation-dependent. Once configured, though,
policy should simply flow from the central location to client machines as they ‘‘check-in’’
with the management node.

Let’s imagine that your company implements a new ‘‘green energy’’ policy that requires
all desktop machines to enter sleep mode after being idle for 15 minutes. If you have
200 desktop machines across the company, possibly in different physical locations, how
can you accomplish this?

You could walk to each machine yourself, of course. However, you may approach a
machine only to find that it’s busy and the owner asks you to come back another time.
You’re not going to meet any deadlines this way.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Why Manage? 4

You could send out an e-mail to everyone in the company, asking them to open up the
Energy Saver preference pane and make the adjustments themselves. However, you
have no real guarantee that people will actually abide by this.

You could write a script that used SSH to connect to each machine, or use Apple
Remote Desktop’s ‘‘Send UNIX command’’ feature to send out a UNIX command to set
the Energy Saver preferences. But that wouldn’t reach machines that were off or asleep,
or laptops that were out of the office. You’d need to keep checking for machines that
didn’t have this set and send the commands again.

With any of these strategies, you’d still have to remember to configure any new
machines you purchased and deployed as well.

With a way to manage this centrally, though, you’re in luck: you can apply the
preference once, in one location, and have each machine under management respect
your wishes. New machines would get the management settings as well. Isn’t that a
relief?

Another way that Managed Preferences can help your sanity as an administrator goes
back to predictability: the machine should be predictable for you, too. When tech
personnel need to alter settings manually for each machine they set up, often, certain
settings are mistakenly skipped. Automating this allows the preference to be set
properly once-----in one central location-----and it won’t be forgotten. This cuts down on
repeat visits after machine deployment.

Preference Delivery
The good news is that the Managed Preferences system for OS X is relatively easy to
understand and implement. It’s largely misunderstood by system administrators, due to
a lack of exposure and convenient, thorough documentation. One thing you do need is a
way to deliver these preferences to your fleet. Chapter 6, ‘‘Delivering Managed
Preferences’’ is dedicated to just this topic and will dive into it more deeply.

If you’re using OS X end-to-end (OS X Server and OS X clients), you bind your clients to
Open Directory, set preferences using Apple tools, and it all just works. However, we’re
finding that there are more and more companies adding Macintosh computers to their
fleet with no other Mac OS X infrastructure at all. Moving away from the pure Apple tool-
chain can be a little confounding. While we’ll cover the all-Apple scenario-----which can
be extended even past what Apple supplies you with-----through this book, we’re really
focusing on the lone Mac in a Windows or Unix world variety.

The point is that preferences don’t just magically appear on a client machine. You’ll
need some kind of infrastructure for delivery. That infrastructure may take the form of a
directory service that clients can bind to, such as Open Directory or ActiveDirectory. It
may even take the form of a script that runs periodically on a client (an ‘‘agent’’) that
pulls preferences from a central location. Understand that this is a critical part of how
you will deliver preferences.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Why Manage? 5

Client Management Alternatives
This book is about managed preferences. You’ll sometimes hear the phrase ‘‘client
management’’ used interchangeably with ‘‘managed preferences.’’ But ‘‘client
management’’ can, and often does, refer to a wider range of management topics, like
software installation, OS patch management, account creation and more.

There are many tools out there to help OS X administrators manage client machines.
Some cover some aspects of client management; some cover other aspects. Some ship
with OS X, some are available from Apple, some are open-source, and some are
commercial third-party tools.

Scripting
Experienced UNIX administrators are often tempted to just write a bunch of scripts to
help manage machines, and scripts can be used to manage preferences and settings.

Using scripts to manage OS X client machines is very powerful, but also presents many
challenges. If you choose to write a script to configure or manage a certain setting in OS
X, here are some of the problems you’ll need to solve:

 Figuring out where the setting is stored; which file or datastore
contains the settings you are interested in.

 Choosing the right tools to modify the setting. Do you need to use
defaults, PlistBuddy, systemsetup, networksetup, dscl, or some
combination of tools?

 Choosing a scripting language: OS X gives you an embarrassment of
riches here. You have several different variations of shell languages
(sh, csh, tsch, bash, and zsh), Perl, Python, Ruby, PHP, and even the
old Mac stand-by, AppleScript, at your disposal. Some languages are
better fits for certain tasks than others.

 Writing, testing, and debugging the script itself.

 Delivering the script to each machine.

 Getting the script to run in the appropriate context (e.g., as root, or as
the current GUI user).

 Getting the script to run at the appropriate time (e.g., at startup, at
login, or on a repeating basis).

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Why Manage? 6

For these last points, there are several Apple-supported ways to run scripts at specific
times. Here are some:

 StartupItems: Available since OS X version 10.0, StartupItems are now
deprecated, but still available for use. While we don’t recommend
using StartupItems for much of anything these days, you may find
them around as a holdover from days gone by. Unfortunately,
StartupItems are installed too often by commercial vendors who
haven’t learned the newer way of handling this under OS X.
StartupItems run at boot time, before any user logs into the system.

 Login Hooks: When login hooks became available in OS X, many
administrators rejoiced. A single script can be set to run when a user
logs in. This script runs as root and is passed the ID of the user who is
logging in (console logins only). This gives login hooks tremendous
flexibility. Login hooks are a valuable part of OS X management.
Huzzah!

 Login items: Most people are familiar with login items------programs set
to run at user login. Users have control over adding to the list of items
that run when they log in. This can be managed via the Dock, by
choosing the ‘‘Open at Login’’ item from the contextual menu for a
process on the Dock, or via the Accounts Preference Pane in System
Preferences. Nicely, Apple’s Managed Preferences can add to this list
also.

 Launchd Jobs: Apple’s launchd replaces the time-honored Unix cron
daemon for job management. Actually, it replaces much more, with the
ability to start jobs based on time (cron), to start jobs by listening to a
socket (inetd), or to restart crashed jobs automatically (watchdog).
Launchd is an excellent------and preferred------way to start jobs
automatically at boot or based on the aforementioned criteria.

 cron and periodic: Even though launchd can replace the functionality
of these traditional UNIX tools, if you are a seasoned UNIX
administrator and comfortable with cron and periodic, they are still
available and useful for running scripts on a repeating basis. However,
cron and periodic have definite weaknesses when it comes to
machines that may be off or asleep from time to time------if it’s vital that
a task run on a periodic basis, using launchd is a better choice.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1: Why Manage? 7

This huge array of choices and options may be daunting, especially if you are new to
managing OS X machines! Using Apple’s Managed Preferences gives you a solid
framework in which many of the previous challenges have been solved for you.

NOTE: Using Apple’s Managed Preferences tools may not free you entirely from the need to
write scripts. In fact, in all likelihood, for a complete client management solution, you’ll almost
certainly need to use a combination of tools. Apple’s Managed Preferences are just one more
tool in your toolbox.

Managing Everything Else
Apple’s Managed Preferences won’t help you install software, or update the OS, or
count the number of machines that have Photoshop installed, or manage software
licensing. For those tasks, and others not mentioned here, you’ll need to use other tools.
We’ll mention other tools at various places in this book, but here’s a brief list of some of
the more popular tools related to client management on OS X. These tools each have
their own feature sets, but all cover some other elements of client management.

Apple Tools
 Apple Remote Desktop

If you have no other management tool at your disposal, consider this
one. A ‘‘jack-of-all-trades,’’ it combines remote screen sharing with
report generation, remote software installation, and more.

 Apple Software Update Server
Part of OS X Server, this allows you to mirror Apple updates on a
server inside your organization, saving the bandwidth costs of all your
clients going out over the Internet to Apple’s servers for updates. You
can also choose to approve updates individually.

Open-Source Tools
 Puppet

www.puppetlabs.com/
Open-source systems configuration management

 Radmind
http://rsug.itd.umich.edu/software/radmind/
Filesystem management; used on OS X to install and remove software,
and ensure the startup disk is always in a known state.

www.it-ebooks.info

http://www.puppetlabs.com
http://rsug.itd.umich.edu/software/radmind
http://www.it-ebooks.info

CHAPTER 1: Why Manage? 8

Third-Party Commercial Software
 Casper Suite

www.jamfsoftware.com/

 FileWave
www.filewave.com/

 KACE Management Appliances
www.kace.com/

 LANrev
www.lanrev.com/

This is not an exhaustive list. There are many more tools available, both open-source
and commercial. All of these third-party packages do software installation and OS patch
management. Some also support software inventory and license management. See each
vendor’s web site for more information.

A special mention for the Casper Suite: one of its many features is that it can provide a
way to distribute managed preferences to client machines without needing an Open
Directory server and without modifying an Active Directory or third-party LDAP service.

Summary
There are many reasons for wanting to manage a fleet of computers, and there are many
ways to perform that management with Mac OS X. This chapter touched on just a few.
While full management will likely require utilizing several methods at your disposal-----
Managed Preferences, scripting, and so on-----Apple supplies the Managed Preferences
system that is built right into Mac OS X, which is the focus of this book.

If you haven’t yet looked into formal management of the machines in your purview, once
you have, you’ll wonder how you ever got along without it.

www.it-ebooks.info

http://www.jamfsoftware.com
http://www.filewave.com
http://www.kace.com
http://www.lanrev.com
http://www.it-ebooks.info

2Chapter

What Is the Managed
Preferences System?
You’re reading this book, so it’s likely that you have some inkling of what the Managed
Preferences system is. We’ve found that while many Mac administrators have a vague
idea of what Managed Preferences are, they’re looking for a deeper understanding of
the system and some concrete examples of how to implement preferences that help
them in their day-to-day tasks.

Apple’s Managed Preferences in Mac OS X is a policy framework. As a framework, it
doesn’t really do anything on its own, but, rather, it lets you build what you require
around it. Yes, this means a little work.

In this chapter, you’ll learn how Managed Preferences came to be, what Managed
Preferences actually are, what you can manage, and what you’ll need to do so.

How Did We Get Here?
Pre-OS X Macintosh machines were, of course, revolutionary: a computer for ‘‘the rest
of us.’’ However, there was one thing they lacked in comparison to their DOS and
Windows-running brethren-----manageability. As computers populated businesses more
and more, the ability to control the end-user experience helped DOS and Windows
machines win the spot on business users’ desks. Remember that the Macintosh had no
lack of word processors, and Microsoft Excel showed up first on the Mac.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2: What Is the Managed Preferences System? 10

Typically, this manageability came in the form of DOS batch scripts that ran on machine
startup, or at network login (the then-popular Novell NetWare allowed a central login
script to run when a user successfully authenticated). Any Macintosh machines-----usually
located in an art department-----were adrift and often required a dedicated admin.
Naturally, businesses didn’t like that too much.

NOTE: Apple did make an early attempt at centralized management of Macintosh computers.
The aptly named ‘‘Macintosh Manager’’ saw usage primarily in education environments. It was
fairly expensive and Macintosh wasn’t used heavily enough in most businesses for them to
make the investment. By today’s standards it would be considered crude, but it largely had the
management features desired at the time. Managed Preferences are a bit of an outgrowth from
this effort.

Macintosh Manager managed only Mac OS 9 and the Classic environment. Apple supported
this utility up through Mac OS X Server 10.3. It officially wouldn’t run any longer under 10.4.
While some lamented this decision, it’s mostly because they liked to stick with what they
knew. The contemporary technology is much better in terms of granularity and effectiveness
than Macintosh Manager ever was.

Mac OS X, however, was built with the concepts of networking, multiple users, and
permissions firmly in mind. Initially relying on a very traditional Unix model, Apple has
now firmly put its own thumbprint on the methods that Mac OS X uses to support
manageability in a modern setting.

The initial versions of Mac OS X understood the concepts, but not all of them were quite
fully baked. That’s enough history-----fast-forward to today, when we’re writing this book.
Mac OS X v10.6, ‘‘Snow Leopard’’ is the current release. OS X is ten-----happy birthday!
Ten years is a good amount of time for a computer operating system to mature-----and
mature it has.

Apple’s ‘‘thumbprint’’ on the course of Mac OS X has seen the transition from
subsystems that were taken straight from BSD Unix to more modern, scalable
subsystems. The new subsystems that Apple has put in place include the configuration
daemon (configd), which is responsible for automatically configuring Mac OS X for its
environment, the launch daemon (launchd), which is responsible for all manner of
launching jobs and applications, and, of course, the Managed Preferences system (also
called ‘‘MCX’’).

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2: What Is the Managed Preferences System? 11

NOTE: When we talk about ‘‘modern systems,’’ we’re referring to being better suited to run on
more contemporary architecture designs. Also, Unix has long been known to be scalable----but
we need to stress that OS X is now designed to scale up and down. It’s a single OS that runs
on eight core MacPro machines with 8GB (or more) of RAM, down to a phone with an ARM
processor and 256MB of RAM. How interesting is it that QuickTime X was originally written for
the iPhone and then ported to full Mac OS X?

Where Are We Now?
Being the seventh version of a radical new operating system (Mac OS 9 it is not), Mac
OS X v10.6 has solidified everything about the original Mac OS X v10.0 experience.
Among these changes, the Managed Preferences system-----introduced in Mac OS X
10.3-----is Apple’s solution to allow a centralized way of shaping the end-user’s
experience. As mentioned in Chapter 1, this may take the form of restrictions for security
purposes. This may also take the form of creating a familiar environment that lets people
hit the ground running when they use a new machine.

Since managed systems have existed for Windows for a longer period of time, it’s easy
to compare and contrast. Microsoft Windows uses Group Policy to manage Windows
machines bound to Active Directory. These policy decisions are pushed down from the
central Active Directory controller to Windows computers. Similarly, the easiest way to
use Managed Preferences is to have Mac OS X Server running on your network. Once
your computers are bound to this server running Apple’s Open Directory, you can easily
apply basic preferences to computers, groups of users, individual users, or in
combination. This is often a reason that a Mac OS X Server is running on a network-----
the ease of client management.

Of course, the addition of a new server to a network may not be welcome. In many
smaller shops, all-OS X may be the norm. In larger companies, though, there may
already be a large investment in Unix or Windows servers that are not going to be
removed for Mac OS X Server. Further, if Mac OS X clients are in the minority, it may be
a burden on support staff to keep a Macintosh-based server up and running just for one
purpose. (Of course, a smaller company may be in the same position, not wanting to
invest in an additional server simply for client management.)

Fortunately, with a little additional work, but just as effectively, we can deliver managed
preferences even without a Mac OS X Server. This will be demonstrated in later
chapters.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2: What Is the Managed Preferences System? 12

The Heart of Managed Preferences
The very short answer to ‘‘what are managed preferences’’ is this: a managed
preference is XML that is applied to a user, group, or computer record that alters the
default behavior of the system or of an application. Managed preferences are stored in a
directory service. This directory can be remote (Open Directory running on Mac OS X
Server or ActiveDirectory on Windows Server, for example) or local (the local directory
that’s running on every Mac OS X 10.5 and 10.6 machine).

While the proper definition of managed preferences is the XML-in-a-directory just
mentioned, we’re going to extend it slightly. Mac OS X has a programmatic way to
support preferences, called User Defaults.

A well-behaved OS X application uses the User Defaults methods to save and restore
preferences. These preferences will be created in the user’s own ~/Library/Preferences
directory. It’s essentially these preferences that are being managed with Managed
Preferences (‘‘MCX’’). These preferences can be read outside of any application with
either the GUI-based Property List Editor.app or the defaults command-line tool. These
two utilities can read, alter, and write preference files, which are stored in the property
list format.

As mentioned, Managed Preferences can be applied to an individual user (based on his
or her credentials), to a group (based on group membership in a directory), to a
computer (based on its UUID or MAC address (primary Ethernet)), or to a group of
computers (based on membership in a directory). Since Mac OS X supports both
network directory services and local directory services, you shouldn’t be surprised to
find that Managed Preferences don’t need a network directory to function. You’ll learn
more about implementing Managed Preferences with different directory services in
Chapter 6, ‘‘Delivering Managed Preferences.’’

When Managed Preferences are applied to a user, his or her session may behave
differently than anyone else who logs into that particular machine. It will also be applied
to the session no matter which directory-bound machine the user authenticates to via
the GUI. Similarly, when Managed Preferences are applied to a group, all members of
that group will have the same changes applied to their sessions no matter which
directory-bound computer they log into. Finally, when Managed Preferences are applied
to a computer or a computer that is a member of a managed computer group, anyone
logging into that computer-----without respect to user credentials or the groups that he or
she belongs to-----will have the same preferences applied. While this may sound a little
complicated, it’s pretty straightforward in practice. In each chapter, we’ll cover a bit
more about how these preferences are applied, how they interact with each other and,
ultimately, how to debug them when they’re not behaving as you’d expect. There’s also
an entire chapter dedicated to practical examples to guide you in creating your own
preferences.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2: What Is the Managed Preferences System? 13

What Can You Manage?
You may be thinking, ‘‘Great! There’s a management system built into OS X. But what
exactly can it manage?’’

The short answer is that Apple’s Managed Preferences can help you manage almost
anything that stores its settings in an Apple property list (‘‘.plist’’) file in the user’s
Library/Preferences directory.

More specifically, Managed Preferences can help you manage the following (not a
complete list):

 System-wide settings

 Energy Saver

 Network

 Bluetooth

 Time Machine

 Software Update server

 Mobility settings (Portable Home Directories)

 Security

 Login window

 FileVault

 Screen saver

 Wake-from-sleep password

 Secure VM

 User experience

 Available applications

 Available preference panes

 Available printers

 Use of removable disks

 Desktop, Finder, Dashboard, and Dock

 Automatic user account setup for Mail, iCal, and iChat

 Web proxies

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2: What Is the Managed Preferences System? 14

 Application settings

 Save formats

 Available features

 Parental controls

 Registration info

 Suppress application updates

When it comes to individual applications, what you can manage varies greatly. Some
Apple applications have lots of settings you can manage via managed preferences-----
others, not so many. Third-party applications can sometimes be managed as well. If the
application stores a preference in a .plist file in the user’s Library/Preferences folder,
you will be able to manage that preference at some level.

What You Will Need
Everything you need to work with managed preferences is built into OS X. Other useful
resources are available, but fortunately, they all come at little to no monetary cost. You
should consider downloading and installing the following tools; they will be helpful when
reviewing upcoming chapters:

 Server Admin Tools: This free download from Apple comes with
several applications, but you’ll need only one from the bundle-----
Workgroup Manager. As of this writing, the current Server Admin Tools
package is version 10.6.3 and available from http://support.apple.
com/kb/DL1032. Other versions are available from Apple’s support
section of their web site (http://support.apple.com). You may need
an older version-----for example, if you are still running Mac OS X v10.5.

 Apple’s Developer Tools: This large download isn’t strictly necessary.
Like the Server Admin Tools package, there’s only one thing you’ll
need from here-----Property List Editor.app. (Technically, you can get by
without that as well!) Apple provides the developer tools free of
charge. You can either install them from the Mac OS X DVD that came
with your computer, or download the most recent version from Apple’s
developer web site (http://developer.apple.com).

 Your favorite programmer’s editor: You likely call this a ‘‘text editor,’’
however, certain editors-----like Text Edit.app or Microsoft Word-----either
don’t save in plain text or use auto-correct to your disadvantage. You
want a text editor that’s on your side and makes your job easier. This
could be vim (Ed’s preferred editor, built into OS X and free), or a
commercial product like TextMate (Greg’s favorite), or BBEdit. Ideally,
you’ll have a good reason for choosing your editor.

www.it-ebooks.info

http://support.apple
http://support.apple.com
http://developer.apple.com
http://www.it-ebooks.info

CHAPTER 2: What Is the Managed Preferences System? 15

You will also need the following:

 Some scripting skills: We’re not asking you to become the next Donald
Knuth. However, as a system administrator, you will always be better
served by learning even the most basic scripting. Depending on how
you plan to deliver managed preferences to your clients, some
scripting may be involved. We’ll present some sample scripts, and do
our best to explain what is going on in them, but we can’t cover shell
scripting in depth in this book.

 The desire to learn: I know this one sounds trite, but like anything, the
amount you get out of any book or lesson depends on you. We’ve
been somewhat surprised at how little managed preferences are used
or understood by many Macintosh administrators. If you’re willing,
though, you’ll find it isn’t difficult at all, and it can make your job as a
system administrator much easier.

Nicely, these are all available at no cost. (Of course, BBEdit and TextMate are
commercial products, but you can find similar functionality in products that are free,
such as MacVim and TextWrangler.)

Summary
The Managed Preferences system (‘‘MCX’’) has evolved over a period of time. It also
continues to evolve, and what we see now is only the current manifestation. Everything
that you need to work with MCX is either built into OS X or freely available. Of course,
you can choose to use products that you purchase. You will be repaid for your study,
tenacity, and experimentation with all of the facets of Managed Preferences, making
your job as a system administrator easier.

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

3Chapter

Understanding Directory
Services
In Mac OS X, managed preferences and directory services are intertwined. Managed
preferences data is stored in directory services. Mac OS X machines use directory
services to obtain information about users, groups, computers, services, and more. In
this chapter, we’ll discuss directory services, some common directory service
configurations, and how directory services relate to managed preferences.

What Are Directory Services?
The term ‘‘directory service’’ refers to a store of information used by the operating
system. Typically, this information store contains information about users and groups. It
often contains information about computers and resources like printers and services,
and may contain information about any entity that an administrator deems necessary. If
this all sounds like a database, it effectively is. The difference is that a directory service
refers only to the interface that allows access to this information without specifying the
database or storage mechanism. Apple’s Directory Service framework uses plug-ins that
allow it to access many different data stores and other directory services. These include
local flat files (‘‘BSD’’), local property list files, NIS, Microsoft’s Active Directory, and
LDAPv3.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Understanding Directory Services 18

The most common information stored in a directory service is user account information.
As an example, for each user of a machine, the computer needs to keep track of items
like the following:

 User name

 Password

 Location of the user’s home directory

The computer needs to know the names of the users allowed to log in and their
passwords, so it can verify that the person trying to log in is who he or she claims to be.
Once a person has logged in, the computer needs to know where to find the user’s data
so it can make it available to the user.

In most cases, much more information is actually stored for each user, but this should
get the basic idea across.

A directory service can, and usually does, keep track of information about things other
than users. Information about user groups, computer objects, computer groups, network
mounts, and service configurations is commonly stored in directory services.

Early in the history of computing, data like this was stored locally on each machine. This
was a reasonable arrangement if there were a small number of ‘‘mainframe’’-style
computers that were accessed via dumb terminals. In an organization, if a user needed
to be able to log in to multiple machines, the user account and other information needed
to be created on each machine, or possibly copied from one master machine to all the
others. If a user changed a password on one machine or for one server, the user would
have to remember to log in to all of the other machines and servers and change the
passwords there, or else keep track of multiple passwords. If the user were lucky, the
organization’s systems administrators might have implemented an automatic method of
copying password files between machines.

But with the growth of computer networks and the personal computer revolution,
organizations were quickly overwhelmed by the number of individual machines, each
with its own local store of user account information.

This situation led to the development of centralized systems for storing this type of data.
By storing the data in a central location that all the computers in an organization could
access, the problem of keeping user information consistent across machines went
away. With a consistent source of information about users and groups, access to shared
resources became easier and more secure.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Understanding Directory Services 19

Central directory services granted additional advantages. With all the user account
information stored in one place, it became possible to manage user access centrally.
You could easily manage which computers and services a user had access to by making
changes in the central directory. A user’s password could be reset, or password
complexity could be enforced. Employees leaving a company could have all computer
access quickly removed.

But even today, small organizations may not use central directory services. If each
machine typically has a single user, and there are few shared resources, account
information may be local to each machine.

All Mac OS X machines have a local store of directory information, and they can be
configured to use one or more centralized stores of directory information. If you are
working in an organization that already has a central directory service, it’s likely you can
configure your OS X machines to use that service. If you don’t currently have a central
directory service, and you think your organization could benefit from one, Apple offers a
network directory service as part of Mac OS X Server. It’s probably not the best choice
for a very large organization, but it is more than serviceable for workgroups and small to
medium-sized organizations.

NOTE: Setting up a central directory service is a huge topic. We cannot possibly do it justice
within these pages. If you are interested in setting up Open Directory on Mac OS X Server,
check out Apple’s extensive documentation on the topic:

http://images.apple.com/server/macosx/docs/Getting_Started_v10.6.pdf

http://images.apple.com/server/macosx/docs/

Open_Directory_Admin_v10.6.pdf

http://images.apple.com/server/macosx/docs/User_Management_v10.6.pdf

Directory Services and Managed Preferences
Mac OS X’s implementation of managed preferences relies on directory services. All of
the data required to implement a managed preference policy is stored in a directory
service.

If you have any experience with managing Microsoft Windows clients, this might sound
familiar: Windows has a management system known as ‘‘Group Policy Objects’’ or
‘‘GPO,’’ which is usually stored in Active Directory.

www.it-ebooks.info

http://images.apple.com/server/macosx/docs/Getting_Started_v10.6.pdf
http://images.apple.com/server/macosx/docs/%EF%83%89
http://images.apple.com/server/macosx/docs/User_Management_v10.6.pdf
http://www.it-ebooks.info

CHAPTER 3: Understanding Directory Services 20

On Mac OS X, to manage preferences for a given user, group, computer, or group of
computers, you’ll need to store managed preferences data in a directory service. The
directory service used for this is often a network directory service, but it can also be the
local directory store. Since Mac OS X can communicate with multiple directory services
at the same time, it’s possible to store managed preferences in any available directory,
not just the directory that contains your primary store of users and groups.

Directory Services Supported by Mac OS X
Mac OS X supports several different network directory services. It’s no surprise that
Apple’s own Open Directory is supported, but it’s also possible to use Mac OS X with
several popular third-party directory services. Every Mac OS X machine also has a local
directory service.

Open Directory
Open Directory is Apple’s native centralized directory service. Hosted on Mac OS X
Server, Open Directory is Apple’s implementation of the LDAPv3 directory service and a
secure password server, which allows OS X to store passwords in the various formats
required by different network services in a secure fashion. Open Directory also includes
a tightly integrated implementation of Kerberos 5, a popular system for providing a
‘‘single-sign-on’’ experience, where a user logs in once and is granted access to other
Kerberos-aware services without having to log in for each service. Since Open Directory
is part of Mac OS X Server, it supports Apple’s Managed Preferences out of the box; no
additional configuration is needed.

NOTE: You’ll see the term ‘‘Open Directory’’ used to mean two different things, which can lead
to some confusion. Most commonly, ‘‘Open Directory’’ refers to Apple’s network directory
system hosted on Mac OS X Server, and based on OpenLDAP and MIT Kerberos. You may also
see the term ‘‘Open Directory’’ used to refer to the flexible Directory Service framework
available on Mac OS X, which uses plug-ins to communicate with various directory services
(thus making it ‘‘open’’). This flexible framework can be thought of as similar in concept to the
NSS (Name Service Switch) modules available on other UNIX-like operating systems.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Understanding Directory Services 21

Active Directory
Active Directory is Microsoft’s network directory service. It is probably the most
commonly implemented network directory service, especially in the commercial world.
Apple’s support for Active Directory has steadily improved with each major release of
Mac OS X. Active Directory does not natively support Apple’s Managed Preferences, but
it can be extended to do so. Later in this book, we’ll show you how.

There are also third-party directory service plug-ins that replace or augment Apple’s
Active Directory support. These include Thursby ADmitMac, Likewise Enterprise, and
Centrify DirectControl. You can use many of the techniques in this book with these
alternate Active Directory plug-ins, but these plug-ins also provide additional options.
For example, ADmitMac allows Active Directory administrators to use AD Group Policy
to manage some things on Macs, and also allows Mac administrators to use Workgroup
Manager and Apple’s Managed Preferences. Likewise and Centrify’s products are
similar in this regard.

LDAPv3
LDAPv3 is a directory service protocol-----that is, LDAPv3 describes a method for
communicating with a directory service and a format for the results. LDAP stands for
Lightweight Directory Access Protocol, so, technically, any directory service that can be
accessed via the LDAP protocol can be called an LDAP server. There are many directory
service implementations that are LDAPv3-compatible. Among them are Novell’s
eDirectory, OpenLDAP, and Red Hat Directory Server. In fact, Mac OS X uses the
LDAPv3 protocol to communicate with Apple’s own Open Directory. This shouldn’t be
surprising, since Apple’s Open Directory is based on OpenLDAP. It is even possible to
use the LDAPv3 protocol to work with Microsoft’s Active Directory. You can store
managed preferences data in any LDAPv3 directory by extending the schema. (A
schema describes the records and attributes stored in the directory, so ‘‘extending the
schema’’ refers to adding to the descriptions of records and attributes.)

NIS
NIS was one of the first popular centralized directory services. It was developed by Sun
Microsystems and was very popular with organizations that had shared
Solaris/UNIX/Linux infrastructures, especially those that used NFS as a shared file
system. It has been largely replaced by the various LDAP implementations, but it is still
supported in Mac OS X through Snow Leopard. It’s not possible to use NIS as a source
of managed preferences data, so if your organization uses NIS as its central directory
store, you’ll need to store managed preferences data in another directory. We’ll discuss
using multiple directories later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Understanding Directory Services 22

Local Directory Services
Every Mac OS X computer has a local directory service. This only makes sense, since
not every Mac is used in a large organization. Since even Macs used at home have
support for multiple users and access controls for various services, the OS needs a local
place to keep track of such information. This is often referred to as ‘‘Local DS,’’ which is
short for ‘‘Local Directory Service.’’ (You’ll also see ‘‘DSLocal,’’ which is another name
for the same thing. In OS X 10.5 and later, the local directory service stores its data in
/private/var/db/dslocal, thus the name ‘‘DSLocal.’’)

Additionally, since laptops are not always on an organization’s network, the local
directory service takes on additional significance. A network directory service quickly
loses its appeal on a laptop that’s not connected to the organization’s network. A laptop
user who can’t log in to his or her machine when at home isn’t going to get much work
done. On laptops, user accounts, at least, must be stored in the local directory service
to allow access at all times. But this could bring us right back to the original problem of
keeping the user account information consistent across an organization. If the user
changes the password on his or her laptop, but doesn’t remember (or know) to change it
in the network directory as well, the user may be puzzled or annoyed (or worse) when he
or she can’t log in to his or her email account.

Mac OS X has a solution for this particular problem: mobile accounts. A mobile account
is a user account whose information originates in a network directory service, but is
cached in the local directory service. This provides the benefits of a network account,
while still allowing access when the laptop is offline. Changes in the network account
information are synchronized with the locally-cached account, and vice-versa. Mobile
accounts retain their managed preferences when the machine is not connected to the
enterprise network. Apple has also provided useful mobile account---specific preferences
you can manage to help implement mobile accounts in your organization.

Directory Service Configurations
We’ve seen that Mac OS X supports multiple directory services. You can configure a
Mac to talk to Open Directory or Active Directory, or rely only on a local directory
service. But there’s more-----Mac OS X can utilize multiple directory services at the same
time. Let’s look at some possible configurations.

Local Only
The simplest configuration is the one every Mac has when you take it out of the box-----a
single directory service, the local directory. In fact, you cannot remove this directory
service-----Mac OS X always uses it. This is where information for all the local users is
stored. These are the users you can see in the Accounts pane of System Preferences.
There are also local users that do not appear in the Accounts pane. One example is
‘‘root,’’ the most powerful user on OS X and other UNIX-like systems. There are many
other hidden, special-purpose users and groups, and other information stored in the
local directory service.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Understanding Directory Services 23

Network Directory Service
It’s common to think that when you configure OS X to use a network directory service,
such as Open Directory or Active Directory, this is the only directory service. But that’s
not the case-----the local directory service is still there and still being used. In fact, OS X
gives the local directory service higher priority than a network directory. This comes into
play if there are directory records of the same name in multiple directory services. A user
record for ‘‘jsmith’’ in the local directory service would take precedence over a user
record for ‘‘jsmith’’ in a network directory service.

We can see a visual representation of the order of precedence in Directory Utility,
Apple’s tool for configuring OS X’s connections to directory services. In Figure 3-1, you
can see that ‘‘/Local/Default’’ and ‘‘/BSD/local’’ have a higher precedence than the Open
Directory server ‘‘ldap.pretendco.com’’. (We’ll ignore ‘‘/BSD/local’’ for now; it is not used
by default in OS X and can usually be safely ignored.)

Figure 3-1. Directory search path in Directory Utility

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Understanding Directory Services 24

NOTE: Are you still curious about /BSD/local, even though I said we can safely ignore it? This
directory service node represents the traditional UNIX ‘‘flat file’’ storage of user, group, and
other information. If your organization uses UNIX flat files on other platforms, you can configure
Mac OS X to also use these files. Traditionally on most UNIX-like operating systems, these files
live in /etc and have names like the following:

/etc/master.passwd
/etc/group
/etc/hosts
/etc/networks
/etc/aliases
/etc/netgroup

The /BSD/local node is not normally used on Mac OS X. You can use Directory Utility to activate
this node by configuring the ‘‘BSD Flat File and NIS’’ service. The /BSD/local node will then be
searched after the /Local/Default node, but before any network directory services.

Remember that since /Local/Default has a higher precedence than /BSD/local, a root
password (for example) in /etc/master.passwd will not be consulted, since there is (normally) a
record for root in /Local/Default.

Since managed preferences aren’t a traditional UNIX service, it should come as no surprise that
there’s no way to store managed preferences data in the /BSD/local node.

See Apple’s Open Directory documentation, http://images.apple.com/server/
macosx/docs/Open_Directory_Admin_v10.6.pdf, if you’d like more info on the
/BSD/local node.

You’ll notice also that the local sources are grayed out-----you cannot remove them, nor
can you change their order. The order in which directory services are searched for
information is called the ‘‘search path.’’ If user ‘‘John Smith’’ tried to log in to this Mac,
first the local directory would be searched for information on John. If no information for
John Smith was found in the local directory service, then the Open Directory server
‘‘ldap.pretendco.com’’ would be queried for information about John.

www.it-ebooks.info

http://images.apple.com/server
http://www.it-ebooks.info

CHAPTER 3: Understanding Directory Services 25

What happens if more than one directory service has information about John Smith?
The first one in the search path ‘‘wins.’’ That is to say, if there are user accounts for John
Smith in both /Local/Default and in the LDAPv3 directory, when John Smith tries to log
in, he’d better use the password stored in the local directory. If he uses the password for
his network account, it will fail to authenticate him, as OS X will never consult the
LDAPv3 directory for his account information, since it found account information for him
in the local directory. Assuming he uses the password from the local directory, he’ll be
authenticated and get the home directory that is also defined in the local directory. It is
as if the account information in the LDAPv3 directory doesn’t even exist.

A special case of an account that exists in both a local and network directory is a mobile
account, as discussed earlier in this chapter. In this case, the account information is
kept synchronized between the two directory services, allowing a laptop user to use his
or her network credentials, even when not connected to the company’s network. A
mobile account can be thought of as a network account that is cached in the local
directory service. It retains an attribute that allows the OS to find the original record in
the network directory service when needed and available.

Multiple Network Directory Services
Even when you are using a single network directory, Mac OS X is consulting multiple
directories. As we’ve seen, Mac OS X searches the /Local/Default node in addition to a
network directory. You can take this concept one step further and configure multiple
network directory services.

One common configuration is sometimes known as the ‘‘Magic Triangle’’ or "Dual
Directory" (Figure 3-2). This is one solution to the problem of not being able to add Mac-
specific data to a central directory service. In the magic triangle, a Mac is configured to
use two network directory services. Often one service is Active Directory, and the
second is Open Directory. This allows the Mac to get company-wide user and group
information from the enterprise directory service (Active Directory), and to get Mac-
specific information from Open Directory on Mac OS X.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Understanding Directory Services 26

Figure 3-2. The ‘‘Magic Triangle’’

The two directories need not be Active Directory and Open Directory; you might set up a
magic triangle where both directories were LDAPv3 directories. One LDAPv3 directory
service might be a large education site’s central directory, and the other LDAPv3
directory might be a small department’s directory server running on a Fedora box.

Starting with Mac OS X 10.5 ‘‘Leopard,’’ Apple extended the ideas behind the Magic
Triangle or Dual Directory by introducing ‘‘augmented records.’’ Augmented records
allow a Mac OS X administrator to ‘‘virtually’’ add additional attributes to a record in an
existing directory service by creating a related record in a secondary directory service.
For example, this allows you to add Mac-specific attributes to user records coming from
a central network directory service without having to modify the records in the central
service. Mac OS X virtually merges the data coming from both directory services to
make a single virtual record containing all the attributes from both directories. You could
use augmented records on an Open Directory server to store managed preferences data
for a user account stored in an Active Directory domain.

Later in this book, we’ll also look at another variation on the idea of supplementing a
central directory by storing managed preferences data in another directory. Specifically,
we’ll describe using a local directory data store for managed preferences data in
conjunction with Active Directory or a third-party LDAPv3 directory.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3: Understanding Directory Services 27

Summary
In this chapter we’ve presented a quick introduction to directory services. We discussed
the various directory services supported by Mac OS X and talked about common
directory service configurations. We also noted how directory services and managed
preferences are connected-----on Mac OS X, managed preferences are stored in a
directory service. We’ll get into the details of this in Chapter 5, ‘‘Delivering Managed
Preferences.’’

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

4Chapter

Property List Files
The property list file format (.plist) is at the heart of many operations in Mac OS X. As a
well-structured XML document, the .plist format is easy to parse programmatically.
The format is important to understand, as Apple’s preferences are currently stored in
.plist files (however, Apple makes no guarantees of this format going forward). Not
coincidentally, Managed Preferences are stored and delivered in a formatted .plist file,
too. There are several tools available on Mac OS X that allow you to work with .plist
files. These include Property List Editor.app and the plutil, defaults, and PlistBuddy
command-line tools. Because .plist is the native format for Managed Preferences, it’s
essential for an administrator to understand the contents of a .plist file, and how to
work with them.

Therefore, we start this chapter with an overview of the .plist format, followed by an
actual example that shows how Managed Preferences are stored and delivered in a
.plist file. We then walk through the aforementioned tools that will help you deal with
the .plist format.

What Are Property List Files?
Simply put, property list files are well-formed (‘‘structured’’) XML files that store keys and
values. Keys are like labels or variable names. .plist files store simple hierarchies of
data. The types of data that can be stored in a .plist file are ostensibly limited to a few
chosen types, but one type-----binary data-----can effectively store any binary value. The
basic types that a .plist file can store are strings, numbers, binary data, dates, and
Boolean values. There are also container types. A container isn’t any type itself, but
contains basic types or other containers. The container types are arrays and
dictionaries.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Property List Files 30

NOTE: These types weren’t chosen arbitrarily: each type in a property list file has a
corresponding class in Apple’s programming frameworks, specifically the NSDictionary
class. The NSDictionary class has methods that read and write .plist files (Table 4-1).

Table 4-1. Valid XML Types for a Property List

XML/Plist Type Cocoa Class

<array> NSArray – Container for other classes

<dict> NSDictionary – Container for other classes.

<string> NSString – Stores string data.

<data> NSData – Stores arbitrary data. This data is base-64 encoded once written to the
.plist file.

<date> NSDate – For storing date values.

<integer> NSNumber (intValue) – Class to store integer values.

<real> NSNumber (floatValue) – Class for floating point values.

<true/> or
<false/>

NSNumber (boolValue == YES or boolValue == NO) – The <true/ > and <false />
elements are interpreted as Boolean values.

NOTE: NSDictionary is the perfect partner for .plist files. If you need to access .plist files
programmatically, make your best effort to use a language that can use Cocoa----namely,
Objective-C, Python, or Ruby. To get the contents of a .plist file into an NSDictionary, use
the dictionaryWithContentsOfFile: or dictionaryWithContentsOfURL: methods.
To write an NSDictionary as a .plist file, use the writeToFile:atomically: method.
See the ‘‘Resources’’ section at the end of this chapter for links to further documentation.

In Apple’s Cocoa framework, the corresponding classes are NSString, NSDate, NSData,
NSNumber, NSArray, and NSDictionary itself. These classes map directly to the value-
types in a .plist file. In short, it’s no mistake that Mac OS X developers store data in
.plist files. There happens to be one other reason, too.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Property List Files 31

Mac OS X developers have another useful routine in their toolbox: the user defaults
system. Anytime a well-behaved Mac OS X program wants to save its preferences, it
uses the user defaults system. As it turns out, the user defaults system is optimized
for-----and will work only with-----values that can be stored in .plist files. (See where we’re
going with this?)

These preferences are stored in well-defined places:

 Preferences for just one user are stored in that user’s home directory
in Library/Preferences. An example of this would be iTunes
preferences. Each person on a single system will have a different
iTunes setup: window position, artwork hidden or displayed, and so
on. This is stored as ~/Library/Preferences/com.apple.iTunes.plist.

 Inside the user’s Library/Preferences folder is another folder named
ByHost. Inside it are per-user preferences that apply only to a specific
machine. The intent of these ‘‘ByHost’’ preferences is for users who
have network or portable home directories, and who also use multiple
machines, to be able to have unique preferences for each machine
they use. An example is the com.apple.preference.displays set of
preferences (or preference domain)-----if you had a network home
directory, and sometimes logged into a machine that had two 19-inch
displays connected to it, and sometimes logged into a machine that
had a single 30-inch display connected, it’s far more useful to be able
to keep your display preferences separate for each machine.
These ‘‘ByHost’’ preferences are named in the format
com.apple.preference.displays.XXXXXXXXX.plist, where XXXXXXXXX is
a unique identifier for each machine.

NOTE: Apple has used two different methods to generate the unique machine identifier for
ByHost preference names. The older style used the machine’s Media Access Control (MAC)
address. This was silently switched to use the machine’s Universally Unique Identifier (UUID) to
support the new MacBook Air which didn't have a built-in Ethernet port. Changing the AirPort
card on these machines would also change the en0 MAC address, even if the motherboard was
untouched.

The current machine UUID is stored in the I/O Registry and can be retrieved using System
Profiler, or the ioreg command:

ioreg -rd1 -c IOPlatformExpertDevice | grep IOPlatformUUID

This perhaps should make the point clear: the best method of managing these preferences is
with Managed Preferences!

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Property List Files 32

 Preferences for everyone on the machine are stored in
/Library/Preferences (note the leading slash character, denoting that
this Library folder is at the root of the drive). An example of a
preference that is used system-wide is the Login Window. The way the
Login Window is configured affects everyone on the system. Since it is
typically displayed even before any single user logs in, its preferences
can’t be tied to any one user. Login Window preferences are stored as
/Library/Preferences/com.apple.loginwindow.plist.

 Network-based preferences can be implemented by storing property
lists in /Network/Library/Preferences. This works only for computers
that are bound to a central directory service. It’s not often used and
has largely been supplanted by Managed Preferences. This location is
merely mentioned for completeness.

You may notice that each of the example file names uses a similar naming scheme. This
is called ‘‘reverse DNS naming.’’ This helps identify where a preference file originated.
Both the company URL and specific program name are part of the file name. It’s not just
Apple that follows this convention. For example, you may also find on your system
com.microsoft.Word.plist, com.vmware.fusion.plist, and
com.omnigroup.OmniFocus.plist.

NOTE: The convention of using reverse DNS naming is just that----a convention. It is not
enforced by the operating system on any level. Less informed developers have been known to
shirk this unwritten rule and store their preferences in a file with a name that is obviously not
like the others. Admin beware.

All of that said, .plist files are not restricted to the defaults system. Even Apple makes
use of them outside of the paths listed previously for all sorts of data storage needs. For
example, the bulk of the local directory is implemented via .plist files. (Take a peek in
/var/db/dslocal/nodes/Default/Users-----you’ll need to be root to do so.) Another
example is Apple’s own launchd daemon. It is fed information about which jobs to run
and when by .plist files. (Again, go peek in /System/Library/LaunchAgents and look at
the types of files in there.)

Now that you’ve heard so much about property lists and their virtues, let’s dive into the
format itself.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Property List Files 33

Property List Example
Let’s take a look at a very simple but realistic .plist file. This is plain text and can be
(re)created in any text editor:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>color</key>
 <string>blue</string>
 <key>count</key>
 <integer>15</integer>
 <key>style</key>
 <string>fruit</string>
</dict>
</plist>

If you’re familiar with any markup, particularly HTML, this should all look a little familiar.
The words contained in angle brackets are called ‘‘tags’’ and are part of the roadmap to
the XML parser that is reading this file. Certain tags are ‘‘one-offs’’-----they appear and
make a specification, but don’t have a close. Other tags have an opening tag, enclose
some value, and then must be explicitly closed. Closing tags match opening tags but
start with a slash character after the opening angle bracket. In the example presented,
this is illustrated by the ‘‘<key>…</key>’’ tags.

Indentation is a convention for human readability. In Apple .plist files, indents are
formed by tabs, not spaces. In fact, some Apple utilities will tidy a .plist file on write to
use tab indents where none existed before. While not strictly required, indenting
according to hierarchy is good practice.

Now that we’re on the same page terminology-wise, let’s look more closely at the
example presented.

Digging Deeper . . .
The header portion of the file declares this file as an XML file type:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

www.it-ebooks.info

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.it-ebooks.info

CHAPTER 4: Property List Files 34

Ultimately, this header isn’t up to you. Apple’s Cocoa APIs will properly generate and
write this part of a property list. If you’re creating a .plist file from scratch in a text
editor, you should just copy this portion from another valid .plist file. For more
information about XML, see the specification page at http://xml.org, or the Wikipedia
entry at http://en.wikipedia.org/wiki/Xml.

NOTE: Currently, different Apple utilities write the header with slight differences. Some launchd
.plist files use the following:

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

NSDefaults writes .plist files with the following:

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

While either header is perfectly valid and won’t stop the .plist file from being used, it can
trip you up if you’re expecting a certain header. For instance, if you use Puppet or Radmind to
manage your machines, take note that the same .plist information created with different
Apple tools may cause your management system to detect a change and rewrite the file.

The .plist tag wraps the entire file:

<plist version="1.0">

Again, Apple’s APIs will write this out as appropriate, and you should have this line in
any .plist file that you create. Next, we find a dictionary tag:

<dict>

As mentioned earlier, one of the Cocoa classes that is easily transferrable to and from a
.plist file is an NSDictionary, and that is what is shown here.

Wrapped in the dictionary are its keys and their corresponding values:

<key>color</key>
<string>blue</string>
<key>count</key>
<integer>15</integer>
<key>style</key>
<string>fruit</string>

www.it-ebooks.info

http://xml.org
http://en.wikipedia.org/wiki/Xml
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.it-ebooks.info

CHAPTER 4: Property List Files 35

This dictionary contains three keys: ‘‘color,’’ ‘‘count,’’ and ‘‘style.’’ The ‘‘color’’ and
‘‘style’’ keys are string types, while ‘‘count’’ is an integer type. The value of the ‘‘count’’
key is ‘‘15’’.

Following this, the tags are closed and the file ends:

</dict>
</plist>

Each tag should lead to a new level of indentation, making it easy to see the hierarchical
structure. Best of all, it’s easily human-readable.

However, beginning with OS X 10.5, the bulk of .plist files found on the system are
stored in a binary format, not plain text. While this does have the effect of using less
space on disk and producing faster load times, it takes the human-readable part out of
the picture. Of course, there are ways to deal with that, discussed in the following
section.

NOTE: You’ll know a binary .plist file when you see one: it looks like gibberish as plain text.
Apple’s defaults command can properly read plain-text (‘‘XML1’’) or binary .plist files.
The defaults command will always write a .plist file as binary, however.

If you’re going to use the Cocoa NSDictionary class to read, manipulate, and write .plist
files, you probably won’t be surprised to find no problems here. Property lists written with
writeToFile:atomically are written as XML1 (human-readable text) and files read with
dictionaryWithContentsOfFile can be either XML1 or binary1.

Note that if you’re a Python or Ruby programmer, not all libraries support the binary .plist
format.

As the use of property lists has evolved, the format has changed slightly. Property list
files actually hearken back to the days of NeXT Computer and NeXTStep/OpenStep.
Due to this, Apple supports three different variations of .plist files. The oldest of these
is an ASCII-style .plist format inherited from NeXT. Its use is deprecated and we won’t
discuss it further. The two types you’ll find present on a contemporary Mac OS X system
are the XML representation and a binary format. The XML .plist format is represented
in the example given previously. A purely visual display of a binary .plist format doesn’t
really make sense, so we won’t show it here.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Property List Files 36

Each .plist format has advantages. XML-based .plist files are human-readable and
easily portable. Binary .plist files are more compact and, therefore, use less memory
and can be read and written more quickly. It’s pretty clear why Apple has largely moved
to the binary-based .plist format.

Working with Property List Files
Now that you know what property lists are supposed to look like, there must be some
way to read and write them. Apple provides several ways to do so (Property List
Editor.app and the plutil, defaults, and PlistBuddy command line tools), all of which
are discussed in the next sections.

NOTE: If you haven’t installed the developer tools mentioned in Chapter 2, now is the time to
do so. You’ll need to install them to use Property List Editor, shown next, and in subsequent
chapters throughout the book.

Property List Editor.app
One of the utilities that Apple provides to manipulate property list files is Property
List Editor.app. Property List Editor can create, read, and write property lists. It’s
often the easiest way to visualize a .plist file. It’s also useful for creating a .plist file
from scratch, as Property List Editor.app will write the XML header and basic structure
for you.

The Property List Editor application is installed as part of Apple’s developer tools.
Instructions for installing the developer tools are in Chapter 2. Once it is installed, you’ll
find it, along with a host of other tools, in the /Developer/Applications/Utilities folder
(Figure 4-1).

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Property List Files 37

Figure 4-1. Property List Editor.app displaying our example .plist file

Using Property List Editor is very straightforward. If you read a .plist file, the structure
and keys are displayed along the column on the left, and values are displayed in the
column on the right. A center column lists the data type of the corresponding value in a
given row. The two buttons in the top toolbar allow additions and deletions to the
current .plist file. The delete button will remove an entire nested hierarchy, so be
careful with it.

When saving a .plist file for the first time, or, by choosing Save As… from the File
menu, you can choose a .plist format for the file (Figure 4-2). Property List Editor
handles some very specific cases, and offers you five types of formats to save in.
However, this book is concerned only with the first two offered: XML and binary.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Property List Files 38

Figure 4-2. Save dialog displaying the file format choices

Creating a Property List from Scratch with Property List
Editor
Property List Editor is useful for initially creating .plist files. Here’s a quick overview:

1. Open Property List Editor.app from the /Developer/Applications/
Utilities folder on your local drive. (You’ve installed Apple’s Developer
Tools by now, haven’t you? Without them, you won’t have Property List
Editor.app.)

2. By default, a new, untitled window is displayed. If you just want the
framework for a .plist file with the proper headers, you can save this
‘‘empty’’ file with the Save… menu item in the File menu. See step 5 for
more information about the Save dialog.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Property List Files 39

3. You can add keys and values with the Add Child button in the toolbar.
Everything is a child of the root, so even an initial entry is a child with a
parent entry to refer to.

4. Once you’re done adding entries, save the file using the Save… menu
item in the File menu.

5. Choose the type of .plist file you want to save, as shown in Figure 4-2.
XML is human-readable text, useful if you’re going to perform further
editing or need a way to inspect the text without using Property List
Editor.app. Binary is more efficient, but not human-readable, so is more
appropriate for a .plist file in a final state.

It’s a straightforward process; however, Property List Editor isn’t easily automated. To
automate manipulating .plist files, see the following section on command-line utilities.

Command-Line Utilities
Property List Editor is useful for getting your feet wet and very basic tasks. It has some
shortcomings, though. Namely, the problem is scalability. If you need to manipulate a
.plist file on more than one machine-----let’s say 500-----Property List Editor would be a
tedious way to manage. What if you need to update these .plist files from home, all
automatically? This is what shell scripts and command-line utilities were designed for.
There are three command-line tools that ship with Mac OS X: plutil, defaults, and
PlistBuddy. Each has a different purpose and different capabilities.

plutil
plutil is the most basic and utilitarian of the three. plutil, the .plist utility, converts
.plist files between text (XML) and binary formats and can also verify the structure of a
.plist file. An example is in order. If you want to view the contents of a binary .plist
file-----com.apple.nat.plist, for example-----but don’t want to open it in Property List
Editor, you can run the following:

plutil -convert xml1 -o - /Library/Preferences/com.apple.nat.plist

Running this command tells plutil to convert the .plist file to text (‘‘xml1’’) and send
the output (‘‘-o’’) to standard out. If you wanted to store the file, you could write the
output to a file on disk.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Property List Files 40

plutil can also ‘‘lint’’ a file-----that is, check it for consistency and basic errors. What it
cannot do is verify that your key-names and data are correct. Running a lint check is as
simple as using the -lint switch:

$ plutil -lint /Library/Preferences/com.apple.loginwindow.plist
/Library/Preferences/com.apple.loginwindow.plist: OK

If the lint process encounters an error (or errors, perhaps), you’re told the error and on
which line:

$ plutil -lint someplist
someplist: Encountered unknown tag stringblue</string on line 6

defaults
The defaults command gives you access to the user defaults system. As mentioned,
the ‘‘user defaults system’’ is a fancy way of saying ‘‘preferences,’’ which, as you know
by now, is just data stored in a .plist (for today: Apple reserves the right to change this
format). The name is derived from the Cocoa API that performs the same task:
NSUserDefaults. The defaults utility allows for reading and writing individual keys and
their data to and from a .plist file, reading a .plist file in whole, and more.

Perhaps the simplest use of the defaults command is reading an entire .plist file. This
is equivalent to the plutil command given earlier:

$ defaults read /Library/Preferences/com.apple.nat
{
 NatPortMapDisabled = 0;
}

You’ll note that the output of the defaults command is concerned only with keys and
their values. It does not output the XML header and closing tags.

The defaults command reads .plist files of either XML or binary. However, it will write
a .plist file out only in the binary variety. It will even go so far as to convert an XML
.plist file into binary if used to update a value in that .plist file.

As it's intdended to be used to manage "defaults" (Core Foundation Preferences) and
not .plist files, the defaults command is very particular-----when you ask it to operate
on a specific .plist file, you must give it the absolute path and leave off the .plist
extension. This is very unlike most command-line tools that operate on files, and it takes
some getting used to. The fact that the defaults command operates on .plist files is a
happy coincidence that we can take advantage of.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Property List Files 41

NOTE: If you’re using the defaults command in a script, you should be aware of certain
behaviors (in addition to the leave-the-.plist-extension-off-of-the-file-name oddity). First,
you shouldn’t change the defaults of a running application. If you make a change to a running
application, at best, the change won’t be recognized. At worst, it may save on exit and wipe out
your change or possibly corrupt the .plist file. Secondly, the defaults command does not
have a wide range of exit codes: 0 for success and 1 for a failure of any type.

If you do not specify an absolute path, defaults looks for a preference domain for the
current user. The following command will read the HomeSync preferences for the
current user, not a file named com.apple.homeSync or com.apple.homeSync.plist in the
current directory.

defaults read com.apple.homeSync

The defaults command, therefore, is not exactly a general-purpose .plist utility like
plutil or Property List Editor.app. As mentioned, it works within the bounds of the user
defaults system. The upshot of this is that it expects .plist files to reside in specific
places: one of the Library/Preferences directories on the system. Apple does not
recommend using the defaults command to read and write arbitrary .plist files. (While
in 10.5 and 10.6, accessing arbitrary .plist files is possible, as part of the user defaults
system, this functionality may go away.)

CAUTION: The defaults command will be changed in an upcoming major release to operate
only on preferences domains. General .plist manipulation utilities will be folded into a
different command-line program.

You have been warned! Fortunately, Apple does ship another general .plist manipulation
command-line program, PlistBuddy, which we’ll examine shortly.

To read one particular key from a .plist file, specify that key as an argument:

defaults read com.apple.finder WarnOnEmptyTrash
0

NOTE: When requesting a specific key, the defaults command does not need to reprint that
information and just gives the value.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Property List Files 42

To write a value to a .plist file, specify the key and the value, separated by spaces, as
arguments on the command line:

defaults write com.apple.safari IncludeDebugMenu 1

It’s good practice to include the data type of the value. For example, to ensure that a
value is treated as an integer and not a string, use the -int specifier:

defaults write com.apple.safari includeDebugMenu -int 1

When no type is specified, the defaults command assumes a type of string. If you don’t
know the correct type for a given key, defaults can tell you:

defaults read-type com.apple.homeSync periodicSyncOn
Type is boolean

Since it’s primarily designed to work with preference domains, and not actual files, the
defaults command can also easily work with the ByHost preferences we mentioned
earlier, without you having to figure out the specific file:

defaults -currentHost read com.apple.screensaver askForPassword
1

This can be more challenging with other tools, since you have to figure out the unique
identifier for the current machine and use that to determine the correct file name to
operate on.

One other small problem with defaults: it’s clumsy to work with values in nested
dictionaries.

PlistBuddy
PlistBuddy started off as a utility that was found embedded only in packages for Apple
updates. Clearly, Apple realized they needed a utility like this and developed it for their
own use. As of Leopard, though, it became a real part of the OS: it is found at
/usr/libexec/PlistBuddy and even has a main page. While the defaults command can
handle most tasks, PlistBuddy excels at editing keys and values in a nested dictionary.

NOTE: The /usr/libexec path is not in the $PATH variable supplied by a default Mac OS X
install. You’ll always need to specify the full path to PlistBuddy in this case.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Property List Files 43

We need a slightly more complex example, so use the following .plist file, which
contains a nested dictionary:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>color</key>
 <string>blue</string>
 <key>count</key>
 <integer>15</integer>
 <key>cust_info</key>
 <dict>
 <key>pid</key>
 <string>98234573</string>
 <key>uid</key>
 <string>348576</string>
 </dict>
 <key>style</key>
 <string>fruit</string>
</dict>
</plist>

Notice that the key ‘‘cust_info’’ is a dictionary, rather than a simple, single value.
PlistBuddy can easily update the values in this nested dictionary. PlistBuddy can also
work interactively, which we won’t cover here. You can, however, pass in all commands
using the ‘‘-c’’ switch.

Here is an example: to set the value of a key, you need the path to the key and the ‘‘Set’’
command. The path to the key starts with a colon (‘‘:’’) and uses a colon as the
separator for each level in the hierarchy. Here’s how to change (‘‘set’’) the value of the
existing ‘‘pid’’ key to 94758476, in the file com.apress.example.plist:

/usr/libexec/PlistBuddy -c "Set :cust_info:pid 94758476" com.apress.example.plist

NOTE: If you run PlistBuddy from a directory other than the one containing the .plist file
you’re manipulating, you’ll need to specify the full path of the .plist file to edit.

See the PlistBuddy main page (note the capitalization) for more information on the
utility. PlistBuddy is capable of much, much more, including copying values and
merging .plist files.

www.it-ebooks.info

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.it-ebooks.info

CHAPTER 4: Property List Files 44

Cocoa for Scripters
As alluded to earlier in this chapter, Apple’s Cocoa framework has native methods for
reading and writing property list files. Cocoa is exposed to Python, Ruby, and Perl via
the Objective-C bridge.

While a full-out course on any of these scripting languages is beyond the scope of this
book, we can give an overview for people who have some experience and just need
examples of creating, writing, and reading .plist files.

Why, though, would you want to use a language like Ruby or Python instead of the other
command-line tools (plutil, PlistBuddy, and, particularly, defaults) and bash
scripting? From time to time, as a system administrator, you’ll find yourself in a position
where you’d like a script to store its own preferences. Or, you’d like to simply have a
script analyze a .plist file and act on the contents in some manner. In many cases,
bash scripting will be perfectly acceptable. However, for anything with a little more
complexity, you may already be scripting in Python, Perl, or Ruby. While you can
successfully use any of these, for demonstration purposes, we’re going to use Python.

NOTE: PyObjC is built into OS X 10.5 and above, and only with Python 2.5 and above. It’s
possible to use PyObjC with 10.4-based machines, but you’ll need to compile and install
PyObjC yourself. Mac OS X 10.5 ships with both Python 2.4 and 2.5, so be sure to stick with
the default version of 2.5. Mac OS X 10.6 ships with both Python 2.5 and 2.6; both contain the
Objective-C bridge support.

Python, with PyObjC (the Objective-C bridge), turns working with property list files into a
pretty trivial operation. Most importantly, you get the best of both worlds: Apple’s APIs,
along with Python’s ease of use and the speed of the edit and run cycle (skipping the
compile step of C-based languages). To see this in action, let’s start with nearly the
simplest example possible. Listing 4-1 contains write_plist.py, which demonstrates
creating a dictionary that gets written to a .plist file.

Listing 4-1. write_plist.py

#!/usr/bin/python2.5

from Foundation import NSMutableDictionary

my_dict = NSMutableDictionary.dictionary()

my_dict['color'] = 'blue'
my_dict['count'] = 15
my_dict['style'] = 'fruit'

success = my_dict.writeToFile_atomically_('com.apress.example.plist', 1)

if not success:
 print "plist failed to write!"
 sys.exit(1)

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Property List Files 45

Upon running this program, com.apress.example.plist will be created in the same
working directory as the program itself. The .plist file will match the output that is
shown in Listing 4-1. Let’s examine this line by line to see how it works.

The very first line-----#!/usr/bin/python2.5-----is a good reminder that Python version 2.5
or higher is required for PyObjC integration. This will not work on Tiger systems out of
the box.

from Foundation import NSMutableDictionary

This import is responsible for all of the magic here. While we could import all of
Foundation, we’ll import just the portion we need: NSMutableDictionary.

my_dict = NSMutableDictionary.dictionary()

Typically, creating a dictionary in Python would use curly braces, like this:

new_dict = {}

Or, you can even fill it on creation:

new_dict = {'color':'blue', 'count':15, 'style':'fruit'}

However, we need to create a real Cocoa NSMutableDictionary object, so that’s what
we’ve done. Nicely, we can now go on and treat that just like a Python dictionary:

my_dict['color'] = 'blue'
my_dict['count'] = 15
my_dict['style'] = 'fruit'

You can use the Cocoa API for adding entries to a dictionary as well:

my_dict.setValue_forKey_('stop', 'state')

This would set the key ‘‘state’’ to store the value ‘‘stop,’’ and add the following to the
.plist file once written out:

<key>state</key>
<string>stop</string>

Honestly, though, if you’re using Python, take advantage of it where you can! (I suggest
using the Python method shown.) You will need to use the Cocoa API to write the
dictionary out to disk as a .plist file:

success = my_dict.writeToFile_atomically_('com.apress.example.plist', 1)

The Cocoa writeToFile:atomically: method of NSDictionary (and, by extension,
NSMutableDictionary) writes a property list representation of the contents of the
dictionary to the path given.

if not success:
 print "plist failed to write!"
 sys.exit(1)

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Property List Files 46

This final conditional tests to see if the writeToFile:atomically: method returned a true
(‘‘success’’) or false (‘‘failure’’) value. While not strictly necessary for this program to run,
checking these values is a good habit to get into.

Altering .plist Files in Memory
Once you create the NSMutableDictionary in memory, you can use standard Python
mechanisms to manipulate and traverse it. Adding a key with a dictionary as its value is
as simple as you’d expect. Just create the dictionary and then assign it to the parent
dictionary. For example, to recreate com.apress.example.plist shown earlier, we would
add the following to our program, after creating the initial dictionary:

sub_dict = {}
sub_dict['uid'] = '348576'
sub_dict['pid'] = '98234573'
my_dict['cust_info'] = sub_dict

Also, as shown earlier, you can also use all of the Cocoa APIs available to you to
manipulate the dictionary as well. The style you choose may be situation-dependent.
Some situations may call for using the Cocoa way, while others may favor more
Pythonic writing. When working with any Cocoa API, though, as always, you’ll want to
keep the documentation handy.

Summary
Property list files, also known as ‘‘.plist’’ files because they use the .plist extension,
are pervasive throughout the entire operating system. Managed Preferences are no
exception to this and use the .plist format to store the preferences that you want to
deliver to clients. If you plan to work with Managed Preferences, you should have a
good understanding of what .plist files are, and the inner workings of the .plist
format.

This chapter covered property list files in detail: what they are, where they reside, and
ways to work with them. Apple provides built-in tools, both GUI-based and command-
line-based, to manipulate property lists. Property List Editor is installed with Apple’s
Developer Tools. It provides a no-frills GUI that allows you to create and alter .plist
files. There are several command-line tools that each have particular strengths for given
tasks. The one you’ll use most often is the defaults command, which allows alterations
to .plist files in preference domains. Finally, we showed some sample Python code
that creates a .plist file as a dictionary and then saves it to disk. We can’t stress
enough how much some basic scripting abilities will aid you as a system administrator,
especially when dealing with file types that are native to the operating system.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4: Property List Files 47

Resources
NSDictionary Class Reference: http://developer.apple.com/mac/library/
documentation/Cocoa/Reference/Foundation/Classes/NSDictionary_Class/
Reference/Reference.html

Property List Programming Guide: http://developer.apple.com/mac/library/
documentation/Cocoa/Conceptual/PropertyLists/Introduction/
Introduction.html#//apple_ref/doc/uid/10000048i

www.it-ebooks.info

http://developer.apple.com/mac/library
http://developer.apple.com/mac/library
http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

5Chapter

Writing a Property List for
Management
Now that you know what a property list file (‘‘.plist’’) is, what one should look like, and
the basic tools for working with them, it’s time to get more specific.

This chapter introduces the tools and methods used to create Managed Preferences.
You’ll learn what makes up a Managed Preferences .plist file, where this is stored, and
how to get it there.

Managed Preferences rely on a directory service, and, therefore, these tools interact
with a local or remote directory to enforce preferences. So, before delving into the tools
themselves, let’s first examine where Managed Preferences reside.

Where Do Managed Preferences Reside?
It’s important to understand the location Managed Preferences call home. Managed
Preferences work properly only if they’re stored in the right place. If you’re going to write
a .plist file that will be used for management, where do you store it?

Apple’s Managed Preferences rely on a directory service to work, which is why we
gave an introduction to the topic in Chapter 3. Any directory that you work with will be
laid out hierarchically, much like the file systems that you’re used to. There’s a root level
that contains objects. (On a file system-----ignoring files for now-----these would be
directories. In a directory service, these are typically organizational unit containers.)
These objects can contain sub-objects. In both cases, you’re allowed to use the
structure to organize your data. When you’re using Mac OS X, Apple has provided a
structure that it expects to have available. Figure 5-1 shows a simplified and not fully
complete sample directory tree.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Writing a Property List for Management 50

/etc/passwd
/etc/group

ldap.example.com

LDAPv3

Default

Local

/(Root)

Users

Groups

Computers

Groups

Users

staff

everyone

Computers

marczak

gneagle

_amavisd

_jabber

BSD

Figure 5-1. Simplistic (and incomplete) example view of Apple’s directory hierarchy

In Figure 5-1, you’ll note the root, represented by the forward slash character (/). Other
branches of this tree descend from the root. In this diagram, the level just below the root
represents the different directory service plug-ins-----BSD, LDAP, and the local node. If a
machine had Active Directory configured, it would appear here, too. Each of these
branches can have other branches, and will ultimately end in leaf nodes or individual
records. For example, under the path /Local/Default/Users are the user records for
‘‘_amavisd,’’ ‘‘_jabberd,’’ ‘‘gneagle,’’ and ‘‘marczak.’’ Each object in the hierarchy is
either a container, or a record that resides in some specific container.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Writing a Property List for Management 51

To further that point, the local record for the group staff would be said to be found at
/Local/Default/Groups/staff. ‘‘staff’’ is the actual record. Each record is comprised of
a set of attributes and values. Each record in a given container will be constructed from
the same set of attributes. It’s the values given to those attributes that make each record
unique-----like a record in a database. When we query the contents of this record (‘‘staff’’),
we see the following attributes and values:

AppleMetaNodeLocation: /Local/Default
GeneratedUID: ABCDEFAB-CDEF-ABCD-EFAB-CDEF00000014
GroupMembers: AF54E0FF-7F61-A537-B51A-670997A5E774
GroupMembership: root
Password: *
PrimaryGroupID: 20
RealName: Staff
RecordName: staff
RecordType: dsRecTypeStandard:Groups
SMBSID: S-1-5-32-545

In this record, the value of ‘‘RecordName’’-----in other words, the group name-----is ‘‘staff’’.
Each group in Mac OS X gets a Generated UID associated with it, and this is stored in
the ‘‘GeneratedUID’’ attribute. The PrimaryGroupID attribute is the glue between Apple’s
internal record-keeping and POSIX groups. However, there’s only one thing to
understand with respect to our needs: Managed Preferences (MCX) are just more
attributes and values that get associated with a given record. There are two attributes
needed: MCXFlags and MCXSettings.

The MCXFlags attribute simply alerts Mac OS X to the fact that this record has MCX
data to be applied. The MCXSettings attribute contains the actual settings to be applied.
Both attributes store these values as-----you guessed it-----property list files (.plist). The
MCXSettings attribute in a record stores an XML-based .plist file containing the actual
XML plists to be delivered to clients.

Preferred Tools for Creating, Testing, and Deploying
Managed Preferences
We’ve already looked at utilities to help write a general .plist file. There are additional
utilities that allow you to work with this .plist information in the context of the directory.
Let’s explore those now.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Writing a Property List for Management 52

Using Workgroup Manager
Workgroup Manager is the easiest of the tools to use. As an Apple GUI tool, it basically
just does the right thing. However, it’s not solely a property list editor. As primarily a GUI
for configuring users, groups and computers, It’s not really much of a traditional editor at
all. Workgroup Manager does know all about Managed Preferences, though.

NOTE: If you haven’t installed the Server Admin Tools as mentioned in Chapter 2, ‘‘What You'll
Need,’’ you’ll need to do that to follow along in this chapter. Go download the installer and set
yourself up now.

Creating a Property List File
Workgroup Manager.app is found in the /Applications/Server directory. Launch it now
and you should be looking at a login dialog box similar to that shown in Figure 5-2.

Figure 5-2. Workgroup Manager sign-in dialog

Don’t worry-----for our purposes you won’t need to log in at all. To move forward here,
click on the Server menu, and then choose the View Directories menu item. (Command-
D is a shortcut for this menu command). Once done, you’ll see a warning displayed, as
shown in Figure 5-3.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Writing a Property List for Management 53

Figure 5-3. Workgroup Manager local-only warning

Since 5.30 Workgroup Manager is typically used to work on centralized, network-
based directories, this warning is just letting you know that you’re now looking at
the local directory on your Macintosh. Despite Apple’s intentions, this is exactly
what we want right now, as we do want to be looking at the local ‘‘not-visible-to-the-
network’’ directory. Since we’re going to be doing this a fair amount, you may want to
check the ‘‘Do not show this warning again’’ check box before clicking OK. Once you’ve
cleared the warning, you’ll be looking at the main Workgroup Manager window shown in
Figure 5-4.

Figure 5-4. Workgroup Manager’s main window in its default state

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Writing a Property List for Management 54

This window is divided into a toolbar across the top of the window, a left-side pane, and
a right-side pane. The left-side pane represents the object that you’ve chosen from the
tabs at the top of that pane representing a user, group, computer, or computer group
object. The right-side pane will show the details of the operation you’ve chosen to
perform from the toolbar (working with accounts or preferences).

If you’ve worked with OS X Server before, you’ve likely used Workgroup Manager and
are familiar with this view. However, many people who use Workgroup Manager don’t
realize that it can be used to manage the local directory, too. For the purposes of our
work in this book regarding Managed Preferences, we’re concerned only with one area
of Workgroup Manager: the Preferences section, accessed by clicking the
‘‘Preferences’’ button in the top toolbar. When you do so, the right-side pane will reveal
the preferences panel (Figure 5-5).

Figure 5-5. Workgroup Manager’s preference panel exposed

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Writing a Property List for Management 55

Apple has categorized several different types of preferences on this panel that an admin
would like to manage-----you’ll see them in the pane on the right (‘‘Applications,’’
‘‘Classic,’’ ‘‘Dock,’’ and so on). However, you first need to choose the user, group,
computer, or computer group you want the preferences applied to. For our purposes,
choose a local user. When you click a category-----for example, ‘‘Dock’’-----you’ll be
presented with a new panel that lists predefined preferences that Apple has chosen to
expose for the selected category (Figure 5-6).

Figure 5-6. Preferences for the Dock

Initially, these preferences are grayed out. This is because you’re not managing them;
notice the status of ‘‘Manage’’ at the top of the pane-----‘‘Never’’ is selected. Chapter 8
will go deeper into the meanings of never, once, and always as they apply to Managed
Preferences. For now, just select ‘‘Always’’ in order to inspect the offered preferences
further. Click the ‘‘Dock Display’’ tab (you can see this tab in Figure 5-6). Notice that
once you are viewing the "Dock Display" tab, that the preferences on each tab are
managed separately and that you’ll need to select ‘‘Always’’ again. Enable the check
box for ‘‘Automatically Show and Hide the Dock’’ and click ‘‘Apply.’’ There! You just
wrote a .plist file for management!

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Writing a Property List for Management 56

Displaying the Inspector Tab
Apple’s tools strive to make all of this simple. How, though, can you see what the GUI is
actually doing to make this work? While this is generally good, geeky knowledge to
have, we will need to take advantage of it when we want to have greater control over our
preferences and simply do things the GUI can’t on its own.

You’ll need to ensure that you’ve configured Workgroup Manager to display the
inspector tab. Choose ‘‘Preferences…’’ from the Workgroup Manager menu (Figure 5-4
shows the results of displaying the inspector tab) or you can press Command. Ensure
that ‘‘Show ‘All Records’ tab and inspector’’ has a check mark next to it (Figure 5-7) and
then click OK to close the dialog.

Figure 5-7. Workgroup Manager Preferences

This will add a ‘‘bulls-eye’’ tab to the tab-group of four tabs representing User, Group,
Computer, and Computer group, making it five.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Writing a Property List for Management 57

NOTE: While we’re looking at Workgroup Manager’s preferences, let’s examine an additional
one. If you’re in any kind of large environment----400 user accounts or more----you should take
advantage of the ‘‘List a maximum of ______ records’’ preference. This stops Workgroup
Manager from requesting the entire user list each time you launch the application and limits it
to the count you specify. This speeds up Workgroup Manager’s operations significantly,
especially once you’re around the threshold of 1,000 users and higher.

If you do decide to implement this option, you’ll need to search for the user record that you
want to work with if it’s outside the bounds of the count you’ve chosen. Simply start typing the
name of the record into the ‘‘Name Contains’’ field directly above the record list.

While this doesn’t impact Managed Preferences in any way, it’s useful to know about.

The inspector tab allows you to look at directory raw data records and edit them in
place. Clicking the ‘‘Inspector’’ tab now will reveal a list that looks very much like that in
Figure 5-8.

Figure 5-8. Using Workgroup Manager’s inspector tab to look at raw directory data

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Writing a Property List for Management 58

Ensure that the drop-down menu displays the type of directory record you’re looking for,
and choose the object. You should find a record named ‘‘MCXSettings.’’ Highlight that
record and click the ‘‘Edit…’’ button underneath the list of attributes. The screen in
Figure 5-9 will appear.

Figure 5-9. Editing the value of a directory record attribute in Workgroup Manager

Ah ha! This is the result of our earlier work in the pure-GUI portion of Workgroup
Manager: it did write an XML .plist file. It takes that .plist file and writes it to a record
in the directory. Better yet, you can edit it here, too. This includes copy and paste. If
you’re using a third-party directory to manage your Mac OS X machines, and have
extended the schema of its directory with the Apple extensions, don’t ignore Workgroup
Manager as a utility. You can still create your preferences using Workgroup Manager,
inspect the raw data, copy it, and then paste it into the directory that your machines are
actually bound to.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Writing a Property List for Management 59

NOTE: Speaking of directories, the directory you’re using likely has an LDAP interface. This
includes Apple’s Open Directory, Microsoft’s Active Directory, OpenLDAP, and others. If you’re
an advanced user, you may be tempted to use the ldapsearch command or other LDAP tools
to reach into the directory and manipulate MCX data. The Apple tools actually encode and
decode MCX data as needed, so you may not be successful. Outside of the ldapmodify
command, to get a blob of information into a record, the standard array of ldap commands
will be of little use when it comes to MCX attributes.

Often, you’ll need to get at these raw property lists in order to manage third-party, ‘‘non-
Apple’’ preferences.

Managing Non-Apple Preferences
As shown earlier in Figure 5-5, Workgroup Manager has many predefined categories of
preferences. Inherently, though, these categories are limiting. Only the preferences that
Apple thought to display are exposed (purposefully or otherwise). Additionally, there are
many non-Apple preferences that you may want to manage. Thankfully, Apple did
include a way to handle this.

As mentioned in Chapter 4, preferences are part and parcel of Mac OS X’s user defaults
system. A well-behaved application will use the proper programming interface to save
preferences according to Apple’s guidelines and not come up with a new scheme of the
developer's choosing. Fortunately, most every modern application will actually conform
to the user defaults method. How do we allow Workgroup Manager to work with these
non-Apple preferences? After choosing an object to set preferences for and clicking the
‘‘Preferences’’ button in the toolbar (shown earlier in Figure 5-5), the default view
presents the ‘‘Overview’’ panel. Choosing the ‘‘Details’’ tab on this panel reveals a way
to add arbitrary preferences (Figure 5-10).

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Writing a Property List for Management 60

Figure 5-10. Workgroup Manager’s preference details tab allows you to add arbitrary preferences.

Using the Preference Details view, you can import preferences from any application that
stores its preferences in the standard Apple .plist format. This includes third-party
applications.

We’ll delve into this topic in more depth in Chapter 9, and Chapter 10, ‘‘Recipes,’’
contains several concrete examples that should solidify this for you.

The dscl Command
The dscl command-----short for ‘‘directory service command line’’-----is the command-line
equivalent of Workgroup Manager. Some steps may be a bit more tedious, but there
certainly is one huge advantage that dscl has over Workgroup Manager: the ability to be
used in a script and automated. Of course, that doesn’t mean you should ignore
Workgroup Manager in favor of dscl; they complement each other nicely.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Writing a Property List for Management 61

Originally introduced in Mac OS X 10.4, as of Mac OS X 10.5, the dscl utility gained
specific extensions to handle MCX data. This coincided with another change in moving
from 10.4 to 10.5: gone is the proprietary Apple-only NeXT-holdover of the NetInfo
directory that existed prior to 10.5, replaced with the current local directory service
based on open XML .plist files. dscl is your command-line interface to this directory.
Let’s look at how this command can be used to manipulate directory information.

Choosing a Directory to Work with
The dscl command can list a directory container using the list command. This works
with the local directory, or any directory Mac OS X can bind to, such as Open Directory,
generic LDAP, or Active Directory. In any case, you need to specify which directory
you’re trying to work with. For example, to list all user records in the local directory in
the default node, use the list command like this:

dscl /Local/Default list /Users

Notice that we need to specify the directory, then the command (list) and the container
that we want to list. The full path to the container must be specified relative to the base
directory that you supply. Similarly, if your Mac is bound to an Open Directory server,
the command would need to specify that remote directory:

dscl /LDAPv3/server.example.com list /Groups

There’s a shortcut to specifying the local default node: the ‘‘.’’ character. Our original list
example command could be rewritten like this:

dscl . list /Users

We’ll be using this shortcut for any further examples that reference the local default
directory.

To read a specific record in a container, use the read command:

$ dscl . read /Users/root
AppleMetaNodeLocation: /Local/Default
GeneratedUID: FFFFEEEE-DDDD-CCCC-BBBB-AAAA00000000
NFSHomeDirectory: /var/root
Password: *
PrimaryGroupID: 0
RealName:
 System Administrator
RecordName: root
RecordType: dsRecTypeStandard:Users
SMBSID: S-1-5-18
UniqueID: 0
UserShell: /bin/sh

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Writing a Property List for Management 62

It’s also possible to read one single attribute from a record. Specify the attribute after
the record name:

$ dscl /Local/Default read /Users/marczak RealName
RealName:
 Edward R. Marczak

The dscl command can also be used to add an attribute/value pair to a record by
creating it:

$ sudo dscl . create /Users/mike flagged 1
Password:
$ dscl . read /Users/mike flagged
dsAttrTypeNative:flagged: 1

One perfect use for this in relation to Managed Preferences is to create a record for the
local machine in order to apply preferences to it.

sudo dscl . -create /Computers/local_computer
sudo dscl . -create /Computers/local_computer RealName ”Local Computer”
sudo dscl . -create /Computers/local_computer GeneratedUID $(uuidgen)
sudo dscl . -create /Computers/local_computer ENetAddress $(ifconfig en0 | awk /ether/
'{print $2}')
sudo dscl . -create /Computers/local_computer IPAddress 127.0.0.1

First, we create the record ‘‘local_computer.’’ From there, we create the attributes
‘‘RealName,’’ ‘‘GeneratedUID,’’ ‘‘ENetAddress,’’ and ‘‘IPAddress,’’ and fill them with
appropriate values-----values specific to this machine. This is a great example of a task
that would be completely manual with Workgroup Manager but is able to be automated
using dscl.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Writing a Property List for Management 63

NOTE: If you’re going to be automating tasks with dscl and checking exit codes (as you
should), not everything works as you may expect. Most obvious errors return a non-zero exit
code:

[~]$ dscl . list /User ; echo $?

list: Invalid Path

<dscl_cmd> DS Error: -14009 (eDSUnknownNodeName)

185

 [~]$ dscl . read /Users/missinguser ; echo $?

<dscl_cmd> DS Error: -14136 (eDSRecordNotFound)

56

However, an unknown attribute in a record is not considered an error, apparently:

[~]$ dscl . read /Users/marczak MISSINGATTRIBUTE ; echo $?

No such key: MISSINGATTRIBUTE

0

It’s something to be very aware of. You may need to employ more parsing to get useful results.

Working with MCX
Since we know that our managed preferences are just another attribute-----named
MCXSettings-----we can certainly use dscl read to read its value:

dscl . read /Computers/guest MCXSettings

However, as mentioned, beginning with Mac OS X 10.5, dscl has MCX-specific
extensions. Let’s take a look at those.

Even as of Mac OS X 10.6.3, the MCX extensions to dscl are conspicuously absent from
dscl’s main page. You can get fairly detailed help, however, by using the -mcxhelp
switch:

dscl . -mcxhelp

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Writing a Property List for Management 64

Note that you still need to supply a directory with the ---mcxhelp switch, even though
you’re not operating on any directory. The local directory is represented in the example
above by the ‘‘.’’ between the dscl command and the ‘‘-mcxhelp’’ switch.

How do these extensions help you over the base set of dscl commands?

The MCX commands are largely convenience functions, though they shine a light on the
actual nature of the records they’re working with. There are six functions available to
help you with MCX: mcxread, mcxset, mcxedit, mcxdelete, mcxexport, and mcximport.

The mcxread command does what you’d expect: present you with the attributes and
values that make up the MCXSettings attribute in a given record. It also gives some
information regarding those attributes. Take a look at an example:

dscl . mcxread /Computers/guest com.apple.sidebarlists
Key: networkbrowser
State: often
Value: {
 Controller = CustomListItems;
 CustomListProperties = {
 "com.apple.NetworkBrowser.backToMyMacEnabled" = 1;
 "com.apple.NetworkBrowser.bonjourEnabled" = 1;
 "com.apple.NetworkBrowser.connectedEnabled" = 1;
 };
}

The mcxset command provides an easy way to set MCX values for a given record. For
example, to set the Dock’s display type to the 2D non-glass look for an entire computer,
set the value in MCX for the local_computer computer record (see previous instructions
on how to create the local_computer computer record):

sudo dscl . mcxset /Computers/local_computer com.apple.dock no-glass always -boolean
true

Note the use of sudo in this command, as writing into the directory is a privileged
operation. For the local directory, we use sudo. For a remote directory, you would need
to provide credentials that have write access. dscl provides the -u flag for this. This
example shows you how:

dscl -u adminuser /LDAPv3/ldap.example.com mcxset /Computers/localhost com.apple.dock
no-glass always -boolean true

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Writing a Property List for Management 65

The mcxedit command allows you to update the value of a preference key without
disturbing the rest of the MCX setting. For example, if the Dock’s autohide preference
key is already being managed for the local_computer object, the following command
would edit that value:

sudo dscl . mcxedit /Computers/localhost com.apple.dock autohide -bool 1

If you try to edit a key that doesn’t exist, dscl will exit with a code of 64 and print to
standard error, ‘‘Key does not already exist.’’

mcxdelete will delete a single preference key from a given preference domain. It’s
effectively the opposite of mcxset. For example, if you no longer wanted to manage the
Dock autohide setting for the local_computer object, the following command would
remove that setting:

sudo dscl . mcxdelete /Computers/local_computer com.apple.dock autohide

mcxexport and mcximport allow you to store and reapply entire preference settings.
While similar to mcxread, mcxexport will allow the MCX record to be stored as a .plist
file of a given type. The output of mcxexport is also ready to be imported using
mcximport. In some ways, this is analogous to copying and pasting MCX settings
between records in Workgroup Manager. This even works between directories. Let’s
look at an example.

If you’ve been testing settings on a local machine and are ready to use these settings for
all computers bound to a centralized, network-based directory, there’s no need to
recreate this configuration from scratch. First, export the values from the local directory:

dscl . mcxexport /Computers/local_computer -o comp_settings.plist

This will export a plain text .plist file of all MCX settings applied to the local_computer
object from the local directory. This is a great opportunity to store this .plist file of
values in your company’s version control system. (You are using version control, right?)
From there, we can import these preferences into another directory. For example, if your
central directory is Microsoft’s Active Directory and you (or your Active Directory
administrator) have extended the schema, you could import it with this command:

dscl -u adminuser mcximport /ActiveDirectory/Computers -o comp_settings.plist

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5: Writing a Property List for Management 66

This is an incredible way to store and set Managed Preferences. Prior to adding these
subcommands to dscl, it was difficult to perform any of this. Now, we have a way to
manage the .plist files that make up our preferences. One possible workflow for
creating, storing, and deploying a single managed preference could look like this:

1. Use Workgroup Manager to create a new preference. This preference
doesn’t need to be created on a specific machine------all you need is
Workgroup Manager.

2. Export the preference using dscl –mcxexport. Once exported, this XML
snippet can be stored outside of any directory service; it can be stored
in a version control system. This is a way to ensure consistency and
verify changes.

3. The exported preference can now be imported using dscl -mcximport
into the appropriate record in any properly configured directory service.

The mcx commands added to dscl are a welcome improvement.

The defaults Command Refresher
The defaults command was covered in depth in Chapter 4. This section serves as a
reminder and way to reinforce how the defaults command interacts with our
preferences and how it can be used.

The defaults command is used to alter .plist-based preference files in a given user
defaults domain. Managed Preferences also interact in this space. If you’re just
formulating ideas for a Managed Preferences control, using the defaults command to
set a value locally is useful for testing. From there, you may want to examine the .plist
file in order to copy the .plist-formatted information to be used in Workgroup Manager
or set via a dscl mcxset command.

Do note, though, that if you’re already using Managed Preferences on a given machine,
the MCX controls put in place will outrank the values set with defaults if there’s a clash
in a given preference. This is, of course, as it should be. Chapter 7 will contain more
information on this order of rules.

Summary
This chapter introduced tools to manage property lists for Managed Preferences.
Workgroup Manager is an optional, Apple-supplied utility intended to manage a Mac OS
X Server. It works nicely to manage preferences for the local directory, too. The
command-line equivalent to Workgroup Manager is dscl------the directory services
command line. Its major advantages over Workgroup Manager are its speed and that it
can be scripted.

www.it-ebooks.info

http://www.it-ebooks.info

6Chapter

Delivering Managed
Preferences
In the previous chapter, you saw how to create preferences and how to store them in a
directory. But how do you deliver the preferences to the client machine being managed?

In this chapter, you’ll learn about several ways to deliver these preferences. Depending
on your environment, you may use just one of these techniques, or a combination of
them all. We’ll start with the common case of using Apple’s own Open Directory running
on Mac OS X Server. From there, we’ll introduce Microsoft’s Active Directory as a way
to manage your Macs.

Finally, we’ll show you ways to deliver Managed Preferences even in the case where you
don’t have a centralized directory service available to you for the purpose of storing
MCX data.

Directory Choices
In this chapter, we’ll talk about several different centralized directory services to use in
conjunction with delivering Managed Preferences. We’ll specifically talk about the
following:

 Apple’s Open Directory

 Microsoft’s Active Directory

 OpenLDAP

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 68

We’re covering these particular directory services as they’re some of the most prevalent,
but ideally, you can use any directory service that is accessible over LDAP, or one that
has a plug-in for Open Directory. The trick is in the configuration of the service and
binding of the client machines. Once that step is done, each directory service is largely
equal.

Delivery with Open Directory
Delivering Managed Preferences inside an all-Apple environment largely just works. It’s
all as Apple intended it: an easy to use GUI creates preferences and delivers them to
bound machines. This is the case where you have an end-to-end Mac OS X
environment: Mac OS X Server running Open Directory and your Mac OS X client
machines. The first thing to do is bind the clients to the server.

Binding Mac OS X Clients to Open Directory
Binding a computer to a directory service is the process of associating that computer
with a directory. This association connects the client machine so it is able to look up
resources in the directory automatically. It uses this information for local authentication,
group information, and more.

It’s beyond the scope of this book to detail every way possible to bind your clients to
Open Directory. We’d be remiss, though, if we didn’t detail any, so we’ll show the basic
GUI method of binding to Open Directory. Under Mac OS X 10.6, these steps are easy:

1. Open the Accounts preferences pane from System Preferences-
>Accounts.

2. Authenticate by clicking the lock icon in the lower left corner if
necessary.

3. Click the ‘‘Login Options’’ tab and then the ‘‘Join…’’ button (highlighted
in Figure 6-1).

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 69

Figure 6-1. The Accounts preferences pane provides the entry point to binding.

4. Provide the fully qualified DNS name of the Open Directory server in the
resulting dialog box.

5. The client machine and the server will configure settings and perform
the binding. Once complete, you’ll see the successful binding reflected
in the resulting Directory Server sheet. Look for the green light in the
upper left corner. In the case of Figure 6-2, it appears to the left of
‘‘abyss.rdiotope.com.’’

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 70

Figure 6-2. Directory Service sheet showing an active binding to an Open Directory server

In an all-Apple environment, that’s pretty much it. From here, you can launch Workgroup
Manager on this machine to ensure that you can access network resources.

Accessing the Directory
At the initial Workgroup Manager authentication dialog, supply the name of the Open
Directory server and credentials that have administrative rights in that directory. Browse
the data in the User and Group tabs. You should be seeing data from the server, as
shown in Figure 6-3.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 71

Figure 6-3. Viewing network data via Workgroup Manager

Notice that Workgroup Manager lists the directory you’re viewing. In this case, we’ve
‘‘Authenticated as diradmin to directory /LDAPv3/127.0.0.1.’’

From this point, you can create managed preferences for user, group, computer, or
computer group records using the techniques shown in the rest of this book. While we’d
prefer that you keep reading straight through, if you’re really anxious, feel free to try
some of the recipes in Chapter 10.

Delivery with Active Directory
Microsoft’s Active Directory (‘‘AD’’) presents an interesting opportunity-----one that Apple
needed to take advantage of. In an environment with any investment in Active Directory,
it’s unlikely that a company will just rip out Windows servers and replace them with Mac
OS X Server just for the sake of client management. Fortunately, there’s no need.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 72

Apple debuted the Active Directory plug-in for Open Directory in Mac OS X 10.3.
Working with the plug-in in its early incarnations was imperfect at best. However, those
days are gone, and, as of the writing of this book, working with Active Directory from
Mac OS X 10.6 is a breeze.

NOTE: Sometimes, I believe the Active Directory plug-in gets more attention than some of
Apple’s native tools. It’s that good. In some ways, that makes sense: Apple’s entry into the
enterprise isn’t going to be in supplying servers, but rather in making Mac OS X the best client
on the planet. Being a good client means working well with others.

Binding Mac OS X Clients to Active Directory
To manage Mac OS X with Active Directory alone, each Mac will need to be bound to
Active Directory.

Binding to Active Directory is simple: open Directory Utility.app, either directly from
/System/Library/CoreServices, or via the Accounts preferences pane (you’ll need to
click ‘‘Login Options’’ and then the ‘‘Network Account Server’’ button). Authenticate with
an admin-level account and then double-click the ‘‘Active Directory’’ entry. Provide the
information requested and click OK.

NOTE: We fully realize that the information that one must provide to the Active Directory plug-
in will differ based on environment. However, the plug-in does a great job of figuring out how it
needs to bind even with the most basic of information in all but a few cases. Those cases tend
to be complex multi-forest setups. If this is your case, there’s also likely a dedicated Windows
or Active Directory administrator that can help you with the correct values for the plug-in. Keep
in mind that binding a Mac OS X computer to Active Directory means that it will use that
directory for not only preferences, but also authentication information.

Once bound, you’ll find a host of options. However, if you try to use any centralized
managed preferences, you won’t get very far. If you load up Workgroup Manager as
shown earlier, and try to use the Preferences tab, you’ll be greeted with a dialog like that
in Figure 6-4.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 73

Figure 6-4. Attempting to set preferences for the user “czak” in Active Directory

Since Mac OS X-----even ones bound to Active Directory-----does not utilize Group Policy
(the Windows equivalent to Managed Preferences), we need a way to implement the
‘‘Apple way’’ with Active Directory alone. The solution for this is to extend Active
Directory’s schema so it can hold the Apple attributes necessary for Managed
Preferences. If you’re a Mac-only person, you may want to find and hire someone who
can help you with this process. If you’re a Windows admin, you’re either already familiar
with this, or have always wanted to try it (right?).

NOTE: Before we go further, modifying any directory service schema can have potentially bad
consequences. This shouldn’t dissuade you from doing so. However, testing and a proper
rollback plan are critical. Again, if this is your first time using these tools, you may want to hire
someone who can help with the process. If not, practice, practice, practice until fear turns to
boredom.

In the next section, we walk you through the basic steps of extending the schema. Like
the Active Directory plug-in itself, the tools that exist for this now are much better than
they once were.

NOTE: We performed this procedure using the latest operating systems available to us at the
time: Mac OS X Server 10.6.3 and Microsoft Windows Server 2008 R2. Earlier versions of
Windows introduce slight variations. Future versions of either system may also have
differences. Be aware of this.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 74

Extending the Active Directory Schema
Each directory service contains a map of the attributes it supports, called a schema.
Apple’s schema for Open Directory contains all of the attributes needed to support
Managed Preferences. On the other hand, by default, Microsoft’s Active Directory does
not contain any room for these attributes. The Active Directory schema maps out
attributes that are important only to Windows clients. Like any good directory service,
though, the Active Directory schema can be extended. Specifically, you need to add the
Apple attributes for management. This also involves creating and importing an LDAP
Data Interchange Format (LDIF) file that will ultimately be imported into Active Directory
to extend the AD schema, which we show you here as well. Microsoft provides all of the
tools that you’ll need to perform this task. You’ll also need an Open Directory server,
your Windows Server, and the Windows Active Directory Application Mode tools. (If you
don’t have a Mac OS X Server running Open Directory, beg or borrow one. If that
doesn’t work, we have sample files for you at http://mcxbook.com.)

Adding Apple’s Attributes
To begin with, you’ll need to log in to your master Active Directory controller. (Actually,
to begin with, you should have a good night’s rest, a clear mind, and full stomach. Then
you’ll need to log in to your master controller.) If not already configured, install the
Lightweight Directory Services (LDS) role on the master controller. This installs the
Active Directory Application Mode (ADAM) tools. From there, follow these steps.

1. Run C:\Windows\ADAM\ADSchemaAnalyzer.exe. You should then see
this ugly-looking LDAP icon:

Double-click it to launch the LDAP Schema Analyzer tool.

2. In the schema analyzer, choose File->Load Target Schema. This allows
us to load the schema from another LDAP server. In this case, we’re
going to point it to our server running Open Directory. (If you don’t have
an Open Directory Server anywhere, you can download our Mac OS X
Server 10.6.3 Schema from http://mcxbook.com and choose ‘‘Load
LDIF…’’ in the Load Target Schema dialog. Really, though, it’s best to
actually perform this step.)

3
www.it-ebooks.info

http://mcxbook.com
http://mcxbook.com
http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 75

3. Fill in the IP address of the Open Directory Server (Figure 6-5). Leave the
Username and Password fields empty and ensure that the Bind type
parameter is set to ‘‘Simple.’’

Figure 6-5. Loading a target schema into the Schema Analyzer tool

4. Click OK and the utility will import the schema from your Open Directory
server. The main window will populate with Classes, Attributes, and
Property Sets containers, as shown in Figure 6-6.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 76

Figure 6-6. After loading the target schema, the Schema Analyzer tool will display the contents.

5. Choose File->Load Base Schema. Now that the target schema is
loaded, we can compare it to a baseline in order to find the differences
between the two.

6. The Load Base Schema dialog box is the same as the Load Target
Schema dialog (Figure 6-5). Unlike the first run-through, where we
targeted Open Directory, we’re going to point it at our Active Directory
master controller. Fill in the Server field with your Active Directory
domain. Fill in the Username and Password fields with credentials that
have the ability to read the entire schema. (This is typically your
‘‘administrator’’ account, but in many cases, an Active Directory admin
will change this. Talk to your Active Directory admin if you are unsure
what to use here.)

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 77

7. Change the Bind type to ‘‘Secure’’ and the Server type to ‘‘AD DS/LDS,’’
and then click OK.

8. Choose Schema->Hide Present Elements. This will hide elements that
match between the two directories, but still display only elements that
differ.

9. Expand the Classes container. The class attributes will be displayed, as
shown in Figure 6-7.

Figure 6-7. Selecting the appropriate classes

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 78

10. Select the following classes (place a plus sign in each check box):

apple-computer

apple-computer-list

apple-configuration

apple-group

apple-location

apple-neighborhood

apple-serverassistant-config

apple-service

apple-user

mount

11. Expand each class that you selected, and enable the following while
disabling all other attributes (ensure there’s a black X in the check box,
as shown in Figure 6-8):

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 79

Figure 6-8. Selecting the attributes that will be used to extend the AD schema

apple-computer

 subclassOf: top

 rdnAttId: cn

 mayContain: apple-category

 mayContain: apple-computer-list-groups

 mayContain: apple-keyword apple-mcxflags

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 80

 mayContain: apple-mcxsettings

 mayContain: apple-networkview

 mayContain: apple-service-url

 mayContain: apple-xmlplist

 mayContain: macAddress

 mayContain: ttl

apple-computer-list

 subclassOf: top

 rdnAttId: cn

 mayContain: apple-computer-list-groups

 mayContain: apple-computers

 mayContain: apple-keyword

 mayContain: apple-mcxflags

 mayContain: apple-mcxsettings

apple-configuration

 subclassOf: top

 rdnAttId: cn

 mayContain: apple-data-stamp

 mayContain: apple-keyword

 mayContain: apple-xmlplist

 mayContain: ttl

apple-group

 subclassOf: top

 rdnAttId: cn

 mayContain: apple-group-homeowner

 mayContain: apple-group-homeurl

 mayContain: apple-keyword

 mayContain: apple-mcxflags

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 81

 mayContain: apple-mcxsettings

 mayContain: apple-user-picture

 mayContain: ttl

apple-location

 subclassOf: top

 rdnAttId: cn

 mayContain: apple-dns-domain

 mayContain: apple-dns-nameserver

apple-neighborhood

 subclassOf: top

 rdnAttId: cn

 mayContain: apple-category

 mayContain: apple-computeralias

 mayContain: apple-keyword

 mayContain: apple-neighborhoodalias

 mayContain: apple-nodepathxml

 mayContain: apple-xmlplist

 mayContain: ttl

apple-serverassistant-config

 subclassOf: top

 rdnAttId: cn

 mayContain: apple-xmlplist

apple-service

 subclassOf: top

 rdnAttId: cn

 mayContain: apple-dnsname

 mayContain: apple-keyword

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 82

 mayContain: apple-service-location

 mayContain: apple-service-port

 mayContain: apple-service-url

 mayContain: ipHostNumber

 mustContain: apple-service-type

apple-user

 subclassOf: top

 rdnAttId: cn

 mayContain: apple-imhandle

 mayContain: apple-keyword

 mayContain: apple-mcxflags

 mayContain: apple-mcxsettings

 mayContain: apple-user-authenticationhint

 mayContain: apple-user-class

 mayContain: apple-user-homequota

 mayContain: apple-userhomesoftquota

 mayContain: apple-user-mailattribute

 mayContain: apple-user-picture

 mayContain: apple-user-printattribute

 mayContain: apple-webloguri

mount

 subclassOf: top

 rdnAttId: cn

 mayContain: mountDirectory

 mayContain: mountDumpFrequency

 mayContain: mountOption

 mayContain: mountPassNo

 mayContain: mountType

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 83

Now we need to create an LDIF file to be imported into Active Directory.

Creating an LDIF File
Follow these steps.

1. Choose File->Create LDIF. This creates an LDIF file (‘‘LDAP Data
Interchange Format’’) that will ultimately be imported into Active
Directory to extend the AD schema. Save the file under any name you
wish. We’ll use ‘‘MCX_in_AD_Extensions.ldif.’’

2. After exporting the file, ensure that the information portion of the main
window reports that the LDIF file was created with ‘‘36 attributes, 10
classes, 0 property sets, 0 updated present elements’’ (Figure 6-9). If
you have more or less than any of these figures, stop here, double-
check your selections, and export the file again.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 84

Figure 6-9. Report of successful LDIF file creation

3. Load the resulting LDIF file into Wordpad (Figure 6-10). An LDIF file is
simply text. The exported LDIF file is largely correct; however, there are
some changes that we need to make.

NOTE: Because an LDIF is just text, you could copy the LDIF file we’re working with back to
your Macintosh to make the upcoming changes and use any text editor that you’re comfortable
with. You’ll need to copy it back to the server when finished, though.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 85

Figure 6-10. The exported LDIF displayed in Wordpad

4. In the definition for the following objectClasses, change the
objectClassCategory to ‘‘3’’ (it will be ‘‘0’’): apple-user, apple-group, and
apple-computer. This defines the object class as one that extends
current information in the schema. Since user, group, and computer
types already exist in Active Directory’s schema, we just need to extend
it, and not create it.

5. Save the file you’re working on, just to be safe.

6. Add the following lines to the very end of the LDIF file, in the section
labeled ‘‘Updating present elements’’:

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 86

dn: CN=User,CN=Schema,CN=Configuration,DC=X

changetype: modify

add: auxiliaryClass

auxiliaryClass: apple-user

-

CN=Computer,CN=Schema,CN=Configuration,DC=X

changetype: modify

add: auxiliaryClass

auxiliaryClass: apple-computer

-

CN=Group,CN=Schema,CN=Configuration,DC=X

changetype: modify

add: auxiliaryClass

auxiliaryClass: apple-group

-

NOTE: The formatting of these lines is important. The single-line hyphens are a correct part of
the file. Although you can’t easily see it in print, a return character is required after each
hyphen, including the very last one. If this final return character is not present, the LDIF file will
fail to import properly.

7. These additional lines allow our changes to be associated with
the correct object classes in Active Directory. Save the file you’re
working on.

8. Remove unnecessary attribute prefixes. As a convenience, the
ADSchemaAnalyzer prefixes our attributes with ‘‘attr-’’ and all classes
with ‘‘cls’’. This is unnecessary, though, as everything we’ve imported
already has a prefix of ‘‘apple-’’.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 87

9. Across the entire document, search for ‘‘cn=cls-’’ and replace it with
‘‘cn=’’.

10. Across the entire document, search for ‘‘cn=attr-’’ and replace it with
‘‘cn=’’.

11. Only one class that we imported did not have any vendor-specific prefix.
The mount object class needs to have the ‘‘apple-’’ prefix added.

12. Alter the mount record so it contains the following entries (prefixing each
cn with ‘‘apple-’’):

dn: cn=apple-mountDirectory,cn=Schema,cn=Configuration,dc=X
dn: cn=apple-mountDumpFrequency,cn=Schema,cn=Configuration,dc=X
dn: cn=apple-mountOption,cn=Schema,cn=Configuration,dc=X
dn: cn=apple-mountPassNo,cn=Schema,cn=Configuration,dc=X
dn: cn=apple-mountType,cn=Schema,cn=Configuration,dc=X
dn: cn=apple-mount,cn=Schema,cn=Configuration,dc=X

13. Define parent objects. For the object classes that we’re creating, we
need to define their parent, or, ‘‘superior’’ container objects. Add the
following lines to the following classes:

possSuperiors: organizationalUnit
possSuperiors: container

apple-computer-list

apple-configuration

apple-location

apple-neighborhood

apple-serverassistant-config

apple-service

apple-mount

14. Save the LDIF file one final time.

15. Update the Active Directory schema.

Now our LDIF file is ready, and we can import it into Active Directory.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 88

Importing the LDIF File
Open a Command Prompt, change the directory into the same directory that contains
the MCX_in_AD_Extensions.ldif file and run the following command:

ldifde /j . /k /i /f MCX_in_AD_Extensions.ldif /v /c "DC=X"
"DC=Controller,DC=Server,DC=com"

You’ll see some informational output initially, followed by each entry being modified:

Connecting to "WIN-KVCKK0I3VEC.bucsden.radiotope.com"
Logging in as current user using SSPI
Importing directory from file "MCX_in_AD_Extensions.ldif"
Loading entries

…output removed for brevity…

51 entries modified successfully.

The command has completed successfully

That’s it!

NOTE: Is that really it? Well, possibly not. Each Macintosh is identified by its Ethernet MAC
address. This is what will be used for searching LDAP. If you have only a handful of machines,
you’re done. However, if you ever plan on growing the number of machines in Active Directory
or already have a large deployment, the ‘‘macAddress’’ attribute should be indexed for faster
lookups. Microsoft has a knowledge-base article on indexing attributes in AD here:
http://technet.microsoft.com/en-us/library/aa995762(EXCHG.65).aspx.

Managing Preferences in Active Directory
Once the Active Directory schema is extended, now you’ll be able to use Workgroup
Manager-----or any of the other methods we present-----to alter MCX within Active
Directory no differently than you would for a network-based Open Directory or local
directory node. However, you’ll need to perform these actions from a Macintosh that is
bound to Active Directory.

www.it-ebooks.info

http://technet.microsoft.com/en-us/library/aa995762
http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 89

When you launch Workgroup Manager, you’ll need to ignore the request to authenticate
and choose Server->View Directories. Alternatively, just press command-D when
presented with the authentication dialog.

Choose the target directory by clicking the globe icon, as shown in Figure 6-11.

Figure 6-11. Clicking the globe icon presents a drop-down menu of target directories.

Choose ‘‘Active Directory/All Domains’’ from the menu (or pick it from ‘‘Other…’’ if
necessary). Then click the lock icon in the upper right corner to authenticate to the given
directory (Figure 6-12).

Figure 6-12. Clicking the lock icon allows authentication to the target directory.

Just like other directories, from this point, you can create managed preferences for user,
group, computer, or computer group records using the techniques shown in the rest of
this book. Though we’d prefer that you keep reading straight through to the end, feel
free to jump ahead to Chapter 10 and try some of the recipes.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 90

Delivery with OpenLDAP
OpenLDAP (http://openldap.org) is an open-source LDAP implementation. In fact, it’s
the exact open-source component that Apple uses in Mac OS X Server’s Open
Directory. This means that you can take advantage of OpenLDAP, too, for delivery of
Managed Preferences.

While there are some basic changes you need to make to an OpenLDAP schema in
order to deliver Managed Preferences to Macintosh computers, there are too many
possible configurations to go through each one, or to present a single solution that fits
every need. If you’re using OpenLDAP as a centralized directory service, we can only
assume you are an advanced user with a good knowledge of your LDAP server setup
and network environment. We can only give you pointers for getting started. If this is not
the case, or updating OpenLDAP is beyond your comfort zone, check in with the person
who configures this service in your organization, or hire someone with the background
to assist you.

No matter your setup, though, you’ll need to add the basic Apple schema additions to
your OpenLDAP configuration.

Add the Apple Schema to OpenLDAP
Because Apple itself uses OpenLDAP, the schema additions that it uses are available for
the taking. In the /etc/openldap/schema/ directory on any Mac OS X machine, you’ll
find the apple.schema and apple_auxilliary.schema files. These are the basic additions
needed to add the Apple attributes to the LDAP directory. You will need to include these
attributes in your LDAP offerings to be able to deploy Managed Preferences.

From a Mac OS X machine, copy /etc/openldap/schema/apple.schema to the schema
directory on your OpenLDAP server. This is typically /etc/ldap/schema, but it may be
different in your configuration.

Consider Indexing
In a small or test environment, you may not ever notice the lookup patterns that Mac OS
X uses, as LDAP lookups can still be relatively fast, even with data that are not indexed.
However, in a larger environment with hundreds of user and group records, LDAP
lookups can become noticeably slow for Mac OS X clients if the attributes that it looks
up are not indexed. At the very least, you must ensure that uid, uidNumber, apple-
generateduid, and-----for groups-----apple-group-memberguid are indexed in LDAP.

www.it-ebooks.info

http://openldap.org
http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 91

Bind Mac OS X to OpenLDAP
Once OpenLDAP is configured properly, you can treat it like any directory. You’ll need to
bind your Mac OS X client machines to the server. Start by opening Directory Utility.app
from /System/Library/CoreServices (or /Applications/Utilities under 10.5).

1. Open Directory Utility.app. Click the lock icon in the lower left-hand
corner to authenticate, if necessary. Double-click the entry for the LDAP
service (Figure 6-13).

Figure 6-13. Directory Utility showing available directory services.

2. You’ll be presented with a dialog box that asks for the server’s name or
IP address (Figure 6-14). Enter the fully-qualified domain name or IP
address in the box. Once entered, the dialog expands to verify the LDAP
mappings you wish to use. Ensure that the ‘‘Pick a Template’’ menu
displays ‘‘RFC 2307 (Unix).’’ You should also double-check that the
LDAP search base meets your needs. Click the ‘‘Continue’’ button.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 92

NOTE: When using an OpenLDAP server, even though the schema extensions for Managed
Preferences have been added, it doesn't quite make it an "Open Directory" server. The RFC
2307 mapping still have the best match to the standard LDAP attributes, although it has no
concept of the extensions we're adding. We address this via the bindings on the client;
specifically starting in step 4.

Figure 6-14. Configuring an LDAP connection.

3. Once you click ‘‘Continue,’’ you’ll be given the chance to name
the LDAP configuration. In this example, we’ve called it ‘‘openldap’’
(Figure 6-15).

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 93

Figure 6-15. A directory binding as shown in Directory Utility.app.

4. In the drop-down menu under the ‘‘LDAP Mappings’’ column, you can
now change the type to ‘‘Custom’’ (Figure 6-16). This will open a dialog
box that gives you more detail on the LDAP mappings being used, and
allow us to make the mapping aware of the extensions to the schema
that support Managed Preferences.

REMEMBER: We're using the base RFC2307 mapping to match the standard OpenLDAP
schema, but then extending it to understand the extensions we've added for Managed
Preferences.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 94

Figure 6-16. LDAP mapping template choices.

5. After choosing a custom mapping, you should verify that the mappings
meet the needs of your environment. One typically important change is
to verify that the search base for Users and Groups matches your
OpenLDAP configuration. In this example, we’ve set the search base for
users to ‘‘ou=people,dc=radiotope,dc=com’’ in the text field and set the
scope to the ‘‘first level only’’ via the radio buttons for ‘‘Search in:’’
(Figure 6-17). Click OK when you’re finished making changes, and you’ll
be returned to the Directory Utility main screen.

NOTE: We're recommending that the search base be set as specifically as possible for
performance reasons (in the example in step 5, we use the ou of "people". However, it's
entirely possible to start the search from the top of the tree and descend through all branches
in search of a specific record.

NOTE: We've mentioned configuration of Users and Groups here, but you'll likely need to adjust
the mapping for Mounts if you're using automounter. Since there are several different
standards for doing this, you'll need to coordinate this setup with your LDAP admin.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 95

Figure 6-17. LDAP Search and Mappings customization.

6. Clicking on the Security tab reveals some common options when
binding to an LDAP directory. Take note of the options listed here, as
it's likely they'll need to be adjusted to match your environment.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 96

Figure 6-18. Security options used for LDAP bindings.

7. If you’re using OpenLDAP for authentication (and not just delivering
Managed Preferences), you’ll need to make sure the new entry will be
consulted. Click the ‘‘Search Policy’’ tab on the Directory Utility. Under
the Authentication tab, the entry you just created should be listed by
default, as shown in Figure 6-19.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 97

Figure 6-19. Authentication search path shown graphically in Directory Utility.app.

Further OpenLDAP Considerations
You may or may not be using a centralized directory for authentication purposes. In a
multiple-directory environment-----Active Directory and OpenLDAP, for example-----only
one directory service will handle authentication. In this case, you have several choices:

 Use one directory solely for delivering Managed Preferences.

 Extend the LDAP schema for Managed Preferences on whichever
directory provides authentication.

 Don’t extend any schema and use the local directory.

Your choice depends entirely on your environment and comfort level with the options.
Sometimes, the best advice is, ‘‘don’t use it just because you have it.’’ If OpenLDAP is a
secondary directory service in your environment, you may not have to force it into the
role of providing Managed Preferences or interacting with your Mac population at all.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 98

The option to use one directory applies to a scenario where the schema of the directory
used for authentication can’t be extended (for technical or political reasons). In this case,
the main directory could be augmented with an OpenLDAP server whose only job is to
deliver Managed Preferences.

The second option is exactly what is described earlier in this chapter; use your main
directory to deliver Managed Preferences, ignoring any other directory services in the
environment. This works well for OpenLDAP and also for Active Directory when the
schema can be extended.

Of the three options listed, though, the final one-----use the local directory-----just may be
the most compelling. This allows an administrator to keep OpenLDAP unmodified for the
purposes of Managed Preferences. The next section describes this technique and the
next chapter focuses solely on using the local directory to deliver Managed Preferences.

Delivery Without a Centralized Directory
It’s easy to deliver Managed Preferences to all your managed machines if they are
connected to an Apple Open Directory server, either as the sole directory service, or as
part of a ‘‘dual directory’’ configuration, where your managed computers are connected
to an Open Directory server in addition to another directory. If you don’t have an Open
Directory server, it’s also possible, as we’ve seen, to modify Active Directory or third-
party LDAP implementations to contain Managed Preferences data.

But what can you do if the following is true?

 You don’t have an Apple Open Directory server.

 You don’t have a central directory service.

 You have a central directory you can’t or don’t want to modify to
contain Managed Preferences data.

Are you out of luck? No. You can still deliver Managed Preferences data to the local
directory service. If you look back to Chapter 3, you’ll remember that we discussed the
local directory service and the directory service search path. Figure 6-20 might serve as
a reminder.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 99

Figure 6-20. Directory authentication search path

Looking at the search order, we’re reminded that OS X looks in the local directory first,
in addition to the network directory, here named /LDAPv3/ldap.pretendco.com.

We can take advantage of this arrangement and insert our Managed Preferences data
into the local directory service. Regardless of whether we have a network directory, the
Managed Preferences data will be available to the local machine. This approach is often
referred to as ‘‘Local MCX,’’ the topic of our next chapter.

Help! I Can't Use MCX at All
Well, this is a book on managing Macs with Managed Preferences (MCX). However,
there may be some scenarios where you can't, or don't want to use MCX-proper for one
reason or another. Fortunately, you're not entirely out of luck for fleet management.
We've mentioned some third-party products, like Puppet, and Casper that take on the
role of managing a fleet of Macintosh machines. Those products provide one possible
option. There is one other option, though, that we think you should consider.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 6: Delivering Managed Preferences 100

In the previous two chapters of this book, we've introduced plist files and the tools that
allow one to manipulate them. It’s certainly possible to simply use defaults write in a
script on a Mac to simulate delivery of MCX. Mac OS X's launchd system could be used
to trigger scripts for this purpose based on different criteria (like time, or a change in a
file). While a management system like this is beyond the scope of this book, we could at
least point you in the right direction.

Summary
We covered a lot of ground in this chapter. You learned that since managed preferences
reside in a directory, computers must be bound to the directory where you’re hosting
the preferences. In addition, any non-Apple directory services such as the two noted in
this chapter, Microsoft’s Active Directory and OpenLDAP, must be configured
specifically to hold managed preferences. From then on, though, you can use all of the
familiar tools to create and manipulate managed preferences.

Finally, we introduced you working without a centralized directory service, just to get
your feet wet. This technique is pretty recent in the scope of Mac OS X’s life and can be
incredibly flexible. In the next chapter, we will delve deeper into it. You may even choose
to use it over a centralized directory if you have other infrastructure in place to run local
scripts that can work with the local directory.

Additional Resources
Your environment may be more complex than a simple single Open Directory server or
straightforward Active Directory configuration. Additionally, you may need to automate
binding for hundreds of machines. These topics are a little beyond the scope of this
book. Never fear! There are other resources that cover these topics. One excellent
resource is Enterprise Mac Administrator’s Guide, by Charles Edge, Zack Smith, and
Beau Hunter (http://apress.com/book/view/9781430224433).

Learning at least basic scripting skills is important to all system administrators in order
to automate tasks. This and other chapters in this book provide some scripts that will
get you started with specific tasks; however, you should be able to not only read these
scripts, but also customize them for your specific needs. A good way to get started is
bash shell scripting. One excellent resource for learning bash is ‘‘The bash Scripting
Guide,’’ provided free thanks to the Linux Documentation Project
(http://tldp.org/LDP/Bash-Beginners-Guide/html). Since the basics of bash are
common no matter which platform you’re using, don’t be put off by seeing ‘‘Linux’’ in
the title; it’ll be just the same under Mac OS X.

If you need greater details on the implementation of how Directory Services work in Mac
OS X, Apple Training Series: Mac OS X Directory Services v10.6: A Guide to Configuring
Directory Services on Mac OS X and Mac OS X Server v10.6 Snow Leopard, by Arek
Dreyer and Ben Greisler, is a perfect guide.

www.it-ebooks.info

http://apress.com/book/view/9781430224433
http://tldp.org/LDP/Bash-Beginners-Guide/html
http://www.it-ebooks.info

7Chapter

Local MCX
In the previous chapter, we looked at using commonly available centralized network
directories to deliver Managed Preferences data to your managed machines. But not all
organizations have a centralized directory. In this chapter, we’ll show how you can
manage preferences for your machines without a network directory service.

Delivery Without a Centralized Directory
It’s easy to deliver Managed Preferences data to all your managed machines if they are
connected to an Apple Open Directory server, either as the sole directory service, or as
part of a ‘‘magic triangle’’ or "dual directory" configuration, where your managed
computers are connected to an Open Directory server in addition to another directory. If
you don’t have an Open Directory server, it’s also possible, as we saw in the previous
chapter, to modify Active Directory or third-party LDAP implementations to contain
Managed Preferences data.

But what can you do if either of the following is true?

 You don’t have a central directory service.

 You have a central directory you can’t or don’t want to modify to
contain Managed Preferences data.

Are you out of luck? No. You can still deliver Managed Preferences data to the local
directory service. If you look back to Chapter 3, you’ll remember that we discussed the
local directory service and the directory service search path. Figure 7-1 might serve as a
reminder.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Local MCX 102

Figure 7-1. Directory authentication search path

Looking at the search order, we’re reminded that OS X looks in the local directory first,
in addition to the network directory, here named /LDAPv3/ldap.pretendco.com.

We can take advantage of this arrangement and insert our Managed Preferences data
into the local directory service. Regardless of whether we have a network directory, the
Managed Preferences data will be available to the local machine. This approach is often
referred to as ‘‘Local MCX.’’

Introducing Local MCX
In Chapter 5, we used Apple’s Workgroup Manager to create Managed Preferences
records in the local directory service. We’ll use this technique again, but this time,
instead of using the local directory as a temporary workspace, we’ll actually implement
our managed preferences in the local directory service. We’re going to outline a fairly
specific strategy for using the local directory for Managed Preferences records. This
does not mean that there aren’t other ways to accomplish this goal, but the strategies
here have worked well for many organizations.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Local MCX 103

If you have a central directory, almost certainly you have user and group information
coming from that central directory. Therefore, we won’t be able to manage preferences
for individual users using the local directory. So our options are as follows:

 We could create groups in the local directory and add network users
to the local groups. The problem with this approach is that as new
network users are added and other network users are removed
(because they leave your organization), you must constantly update
the membership of these local groups. This option is unmaintainable in
any but the smallest organizations.

 A better approach would be to instead create network groups and add
these network groups to the local groups (making ‘‘nested’’ groups).
This would allow you to leave the local group membership alone, and
change the membership of the network group in a centralized place.

 You can manage preferences for a local computer object. That is, you
can create a record in the local directory that refers to the local
computer. We used the dscl command to do just that in Chapter 5.
Later in this chapter, we’ll use Workgroup Manager to do the same
thing.

 You can also manage preferences for computer groups. You can
create computer groups with a single member-----the local computer-----
and add your Managed Preferences data to the computer groups.
Preferences managed for the local computer or a computer group
containing the local computer will affect all users of the machine-----
network users and local users-----even if they are created at a later date.

The approach we will take for this chapter is to use computer groups.

At first blush, using computer groups seems like overkill. Why not just add all your
managed preferences to the local computer object and be done with it?

If you need to manage only a handful of preferences, just adding them to the local
computer record might be an acceptable approach. But if you have a large number of
managed preferences, want to apply some to some machines, and other preferences to
other machines, and want the ability to modify or test a group of preferences without
affecting another group of preferences, using computer groups gives you a lot of
flexibility and modularity.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Local MCX 104

By using computer groups, we can group related preferences together and mix and
match them. We can create a computer group for login window preferences and apply
that to all our machines. We can create another group for mobile account preferences
and apply that only to laptops.

It’s also possible to design this implementation so you can just deliver all the relevant
Managed Preferences .plist files to every client, and use a client-side script to
‘‘automatically’’ decide which sets of preferences are relevant for the current client. This
takes a lot of potential human error out of the equation. We’ll look at one such
implementation later in this chapter.

NOTE: As it turns out, grouping managed preferences into computer groups also works pretty
well for ‘‘traditional’’ managed preferences deployment using a network directory service.

First, we’ll need to set up several things in order to use Local MCX.

Getting Started
Let’s begin with the local computer record. Launch Workgroup Manager, and from the
Server menu, choose ‘‘View Directories.’’ Click the padlock icon on in the upper right
portion of the Workgroup Manager window to authenticate to the local directory. Enter a
local administrator username and password.

Switch to the computer accounts by clicking the icon that looks like a single screen (the
third icon from the left) in the left pane. Create a new computer account by clicking the
‘‘New Computer’’ button in the toolbar and name it ‘‘local_computer.’’ Your work so far
should look like Figure 7-2.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Local MCX 105

Figure 7-2. Newly created local_computer account in local directory service

Now click the ‘‘Network’’ tab in the right pane. In order for the OS to treat this computer
account as the computer account for the current local machine, the ‘‘Ethernet ID’’ field
must contain the MAC layer address of the primary Ethernet interface. We can get that
from the Network preferences pane shown in Figure 7-3, which displays the primary
Ethernet ID for my computer-----yours will differ.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Local MCX 106

Figure 7-3. Ethernet ID

Another way to get this is a one-liner in the Terminal:

ifconfig en0 | awk '/ether/ { print $2 }'
00:26:4a:0a:61:62

Once you have the Ethernet ID, copy it into the field of the same name for the
local_computer account in Workgroup Manager, as in Figure 7-4. Leave the other fields
in the Network pane empty, and then click the ‘‘Save’’ button.

NOTE: Some other implementations of this concept set the IP Address for the local_computer
record to 127.0.0.1, also known as the ‘‘loopback’’ address, which always refers to the local
machine. We haven’t found this to be needed, and in fact, have seen some issues with this
approach. Further, in Snow Leopard, the OS creates a localhost.plist in the default local
directory service, and this localhost record does have its IP address set to 127.0.0.1. This is a
conflict waiting to happen, so we're avoiding it by leaving the 127.0.0.1 address out of the
equation. This is also the same reason we're avoiding the ‘‘localhost’’ name, which you may
also see in alternate implementations of this concept.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Local MCX 107

Figure 7-4. local_computer’s Ethernet ID

Think about what we’ve just done for a moment. We’ve added the primary Ethernet ID
for this specific computer to the local_computer account. We won’t be able to use this
account on any other computer; instead we’ll need a way to create an equivalent
account on each of our managed computers, each with the Ethernet ID specific to that
computer. We can solve this problem, but we’ll save that for a bit later.

Creating a Computer Group
Now that we have a local_computer record, we can create one or more computer
groups. Let’s start simply. Switch to the view of computer groups by clicking the icon
that looks like two screens in the top left pane of Workgroup Manager. Click the ‘‘New
Computer Group’’ icon in the toolbar, and name the new group ‘‘loginwindow.’’ It should
look like the example in Figure 7-5.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Local MCX 108

Figure 7-5. loginwindow computer group

Click the ‘‘Members’’ tab in the right pane, and click the plus button on the right. A
drawer will slide out, listing the local computer accounts. Drag ‘‘local_computer’’ into the
membership list for this computer group. Click the ‘‘Save’’ button. The result should
resemble Figure 7-6.

Figure 7-6. local_computer added to loginwindow computer group

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Local MCX 109

Adding Managed Preferences
Now that the preparation work is out of the way, we can finally add some managed
preferences. With the ‘‘loginwindow’’ computer group still selected, click the
‘‘Preferences’’ button in the toolbar to see the Preferences overview. Since we named
this computer group ‘‘loginwindow,’’ it shouldn’t be surprising that we’re going to
manage some login window preferences. Click the ‘‘Login’’ preference group.

You’ll now see a set of controls for specifying login window preferences. Leave the
‘‘Window’’ tab selected. In the set of radio buttons next to ‘‘Manage,’’ click the ‘‘Always’’
button. Make some changes to the managed settings. In Figure 7-7, we’ve changed the
Heading to display the serial number instead of the machine name, added a message to
the Login Window, and changed the Style to show only name and password fields
(instead of the default list of users).

Figure 7-7. loginwindow managed preferences

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Local MCX 110

Click the ‘‘Apply Now’’ button. If you log out, the login window should now reflect the
changes you’ve made, just like in Figure 7-8.

Figure 7-8. The login window with managed preferences applied

If you have other groups of preferences you wish to manage, you can create additional
computer groups and attach additional managed preferences to each group.

Extending the Managed Preferences to Other Machines
We now have managed preferences working in the local directory service for this
particular machine. We certainly don’t want to have to repeat all our work on each
machine we manage-----so how do we deliver these preferences to all the machines we
want to manage?

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Local MCX 111

As it turns out, the data for the local directory service is stored as simple .plist files.
(Yes, there they are again-----.plist files are everywhere in OS X!) By default, local
computer accounts are in /private/var/db/dslocal/nodes/Default/computers/ and
local computer groups are in /private/var/db/dslocal/nodes/Default/
computergroups/. For the computer groups, we can just copy the files in /private/var/
db/dslocal/nodes/Default/computergroups/ to all our machines. We can’t just copy
local_computer.plist from /private/var/db/dslocal/nodes/Default/computers/,
however, since, as you might remember, this record has data specific to one machine.

NOTE: While it's true that local directory service data is stored in .plist files in Mac OS X
10.5 and 10.6, there's no guarantee Apple will always do this. We're taking advantage of a
current implementation detail, but it's one that could change in the future.

For the local_computer account, we’ll have to use a different strategy. In Chapter 5, we
used the dscl command to create a local_computer account. We’ll do that again now,
but in a script:

#!/bin/sh
GUID="15BEE70A-A32D-4A33-B740-93CBE95F75A4"
/usr/bin/dscl . -create /Computers/local_computer
/usr/bin/dscl . -create /Computers/local_computer RealName ”Local Computer”
/usr/bin/dscl . -create /Computers/local_computer GeneratedUID $GUID
/usr/bin/dscl . -create /Computers/local_computer ENetAddress $(ifconfig en0 | awk
'/ether/ {print $2}')

You must run this script at least once on each machine you wish to manage in order to
create a working local_computer account. You can run it more than once without
problem; I actually have it set to run at each startup.

This script performs the equivalent of what we did earlier with Workgroup Manager, with
one key difference. Instead of allowing the computer to create a GeneratedUID, we’re
populating this field with a specific value. The specific value itself doesn’t matter; but it
must match the GeneratedUID of the local_computer account you used when creating
your computer groups and their managed preferences. This is because the
GeneratedUID of the local_computer account is stored in the computer groups as part
of the membership information. Look at the GroupMembers attribute here:

> dscl . read /ComputerGroups/loginwindow
AppleMetaNodeLocation: /Local/Default
Computers: local_computer
GeneratedUID: F4E181C7-5BFD-4572-9BBB-F659588FD74D
GroupMembers: 15BEE70A-A32D-4A33-B740-93CBE95F75A4
GroupMembership: local_computer
PrimaryGroupID: 1030
RealName: loginwindow
RecordName: loginwindow
RecordType: dsRecTypeStandard:ComputerGroups

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Local MCX 112

The name and GeneratedUID for the local_computer account must match the
GroupMembership and GroupMembers in the local computer groups for the
membership to work correctly.

In case you are a bit worried that we are using the same GeneratedUID on multiple
machines, don’t worry. These objects will be used only in the local directory node, which
is not visible to other machines-----it’s seen only by the local machine. Making the
GeneratedUIDs consistent across all the machines you manage makes things easier on
you, the administrator.

Local MCX Checklist
You’ll need three things to use managed preferences in the local directory service:

 Computer group .plist files copied from /private/var/db/dslocal/
nodes/Default/computergroups/

 A script to create the local_computer account

 A way to deliver the first two items to each machine

With any luck, that last item isn’t a showstopper. If you manage multiple OS X machines,
you probably have a way to deliver software or at least copy files to each machine you
manage. Some commercial software packages that can help you with this include the
following:

 Apple Remote Desktop: www.apple.com/remotedesktop/

 Casper Suite: www.jamfsoftware.com/

 FileWave: www.filewave.com/

 KACE Management Appliance: www.kace.com/

 Absolute Manage (formerly LANrev): www.lanrev.com/

There are open-source options as well: Puppet (www.puppetlabs.com/) and Radmind
(http://rsug.itd.umich.edu/software/radmind/) are among the most popular. If you
are an experienced UNIX hand, you can get away with nothing more than the command-
line scp utility, which securely copies files to remote machines.

Advanced Local MCX
So far, we’ve described a basic Local MCX setup, but there are at least a few more cool
tricks to consider.

www.it-ebooks.info

http://www.apple.com/remotedesktop
http://www.jamfsoftware.com
http://www.filewave.com
http://www.kace.com
http://www.lanrev.com
http://www.puppetlabs.com
http://rsug.itd.umich.edu/software/radmind
http://www.it-ebooks.info

CHAPTER 7: Local MCX 113

Dynamic Group Membership (or ‘‘Smart Groups’’)
One reason to organize your managed preferences into computer groups is so that you
can more easily deploy one set of managed preferences to one group of machines, and
another set to another group of machines. In an education environment, for example,
you may want to manage preferences for lab and/or student machines one way, and
staff machines another way. Grouping your managed preferences into computer groups
makes this easy.

In my environment, though, I found that I really had only two groups of preferences and
two groups of machines: managed preferences I wanted to apply to desktop machines,
and managed preferences I wanted to apply to laptops.

Rather than having to keep track of each type of machine and make sure the correct set
of preferences was deployed, I wanted each computer to figure this sort of thing out for
itself.

To do this, instead of creating a single local_computer account, I created a
local_desktop account and a local_laptop account. I then added one, the other, or both
accounts to each of the computer groups, depending on whether I wanted those
preferences to apply to desktops, laptops, or both.

I then wrote a modified version of the script that creates the local computer accounts on
each machine. This modified script determines if the machine is a laptop or desktop,
and then adds the Ethernet ID to the correct computer record. Here’s an example:

#!/bin/sh

these GUIDs must match those referred to in the /ComputerGroups groupmembership
desktop_GUID="B4247B97-F249-4409-8EA3-BA8E168BA0DA"
laptop_GUID="15BEE70A-A32D-4A33-B740-93CBE95F75A4"

create local computer object records
/usr/bin/dscl /Local/Default -create /Computers/local_desktop GeneratedUID $desktop_GUID
/usr/bin/dscl /Local/Default -create /Computers/local_laptop GeneratedUID $laptop_GUID

get MAC layer address of primary Ethernet interface
macAddress=`/sbin/ifconfig en0 | /usr/bin/awk '/ether/ { print $2 }'`

use system profiler to determine if this machine is a laptop
is_laptop=`/usr/sbin/system_profiler SPHardwareDataType | grep "Model Identifier" | grep
"Book"`

determine which record to use
if ["$is_laptop" != ""]; then
 computerRecord=local_laptop
 otherRecord=local_desktop
else
 computerRecord=local_desktop
 otherRecord=local_laptop
fi

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Local MCX 114

add MAC layer address to the correct computer record
/usr/bin/dscl /Local/Default -create /Computers/$computerRecord ENetAddress $macAddress
/usr/bin/dscl /Local/Default -create /Computers/$computerRecord comment "Auto-Created
Computer Acct"
make sure the other computer record has no MAC layer address
/usr/bin/dscl /Local/Default -delete /Computers/$otherRecord ENetAddress

This script is similar to the one presented earlier in this chapter, but uses the output of
/usr/sbin/system_profiler to determine if the machine is a desktop or a laptop. It then
adds the Ethernet ID to the correct computer account (local_desktop or local_laptop),
and makes sure the Ethernet ID is empty in the other account for good measure.

With this configuration, it’s possible to push out all the computer groups (holding
managed preferences) to all machines. But since the machine dynamically connects
itself to either the local_laptop or local_desktop, only those preferences applicable to it
are applied.

You might use the same ideas to automatically categorize a machine as a ‘‘staff’’
machine or a ‘‘student’’ machine. Of course, in this case, system_profiler will be of no
help, but you might have some other way of telling, based on machine name or some file
placed on each machine.

If you are counting on managed preferences to enforce organizational policies, then
you’ll also need a configuration management solution that ensures this script is in place
and stays unaltered, and that all your computer group .plist files remain in place. Some
candidates for this job include Radmind and Puppet.

Local MCX Issues
When you create computer records in the default local directory containing Managed
Preferences data, you’ll start seeing some warnings in the system log that will resemble
these:

Mar 6 17:43:56 macbookpro com.apple.loginwindow[39]: MCXCCacheGraph(local_computer,
dsRecTypeStandard:Computers): Cannot cache because an existing record named
"local_computer" has conflicting attributes and must be deleted before caching.

Mar 6 17:43:56 macbookpro com.apple.loginwindow[39]: MCXD.getComputerInfoFromStartup:
MCXCCacheGraph() == -2 (MCXCCacheGraph(local_computer, dsRecTypeStandard:Computers):
Cannot cache because an existing record named "local_computer" has conflicting
attributes and must be deleted before caching.)

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Local MCX 115

Mar 6 19:48:52 macbookpro
/System/Library/CoreServices/ManagedClient.app/Contents/MacOS/ManagedClient[92889]:
MCXCCacheGraph(local_computer, dsRecTypeStandard:Computers): Cannot cache because an
existing record named "local_computer" has conflicting attributes and must be deleted
before caching.

Mar 6 19:48:52 macbookpro
/System/Library/CoreServices/ManagedClient.app/Contents/MacOS/ManagedClient[92889]:
MCXD.getComputerInfoFromStartup: MCXCCacheGraph() == -2 (MCXCCacheGraph(local_computer,
dsRecTypeStandard:Computers): Cannot cache because an existing record named
"local_computer" has conflicting attributes and must be deleted before caching.)

Even with these warnings, managed preferences still work, so you can ignore them if
you’d like. But there is another related issue you may see: on startup, the
local_computer account might get deleted from /private/var/db/dslocal/nodes/
Default/computers/. If you have a script that creates (or recreates) this account at
startup, you might not even notice that this happens, because your script recreates the
account after the OS deletes it. Even if you don’t have a startup script, you may not see
this issue; not every organization that is using Local MCX has encountered it.

Both of these issues are triggered by the same underlying cause. In a ‘‘traditional’’
Managed Preferences deployment, where the Managed Preferences data comes from a
network directory service, the OS creates a cache of local computer account and
Managed Preferences data in the local directory service with the same name as the
computer account from the network directory service. When the local directory service is
also the source of the Managed Preferences data, there is already a computer record in
the local directory-----the same record it’s trying to cache! This explains the
MCXCCacheGraph errors in the log. It may also explain the disappearing local computer
records, as the OS may be deleting what it thinks are stale cache files.

There is a fix for these issues, but it’s up to you if it’s worth the trouble.

MCX in Alternate Directory Nodes
You may remember from Chapter 3 that OS X supports connecting to multiple network
directory services at the same time. What’s also true, but less known, is that OS X
supports multiple local directory services as well. You may have noticed that the local
directory service we’ve used so far is located at /private/var/db/dslocal/nodes/
Default/. There’s a clue in the path name-----the directory named ‘‘nodes’’ implies
support for multiple nodes, and ‘‘Default’’ is merely the default local node.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Local MCX 116

It turns out that you can create multiple local nodes within the /private/var/db/
dslocal/nodes/ directory. So what we are going to do is create a special local node just
for MCX data and move our computers and computer groups into the new node. This
will allow the OS to cache local computer data in the Default local node, since it will not
also be the source of the MCX data. At a shell prompt, do this:

cd /var/db/dslocal/nodes
sudo mkdir MCX
sudo chmod 700 MCX
sudo mkdir MCX/computers
sudo mkdir MCX/computergroups
sudo mv Default/computers/* MCX/computers/
sudo mv Default/computergroups/* MCX/computergroups/

We create a new node named ‘‘MCX’’ simply by creating a new directory of that name in
/private/var/db/dslocal/nodes/. We change its permissions to match the existing
Default directory, and then create computer and computer groups directories under
MCX. Finally, we move the existing computer and computer group .plist files from the
Default node to the new MCX node.

Next, we need to make Directory Service aware of the changes we made. We could
reboot, but that takes too long, so instead we just kill Directory Service------launchd will
restart it for us.

sudo killall DirectoryService

Next, we need to tell Directory Service to actually use the new node. Launch the
Directory Utility application. You can find it in /Applications/Utilities on Leopard, and
in /System/Library/CoreServices on Snow Leopard. If you can’t see the toolbar at the
top of the Directory Utility window, click ‘‘Show Advanced Settings.’’ Click the ‘‘Search
Policy’’ icon in the toolbar. Click the padlock icon and authenticate. Make sure the
‘‘Search’’ pop-up is set to ‘‘Custom path.’’ The results should be similar to those shown
earlier in Figure 7-2.

Let’s add our new local node to our search path. Click the plus button under the list of
directory domains. A sheet should appear like the one in Figure 7-9.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Local MCX 117

Figure 7-9. Adding the new directory node to the search path

Select the /Local/MCX directory domain and click the ‘‘Add’’ button. The new node will
appear at the bottom of the search list. If you have a network directory in your list, move
/Local/MCX above it, so it looks like Figure 7-10. Click the ‘‘Apply’’ button.

NOTE: Moving the /Local/MCX directory above any network directory is probably not strictly
necessary. Managed Preferences will still work if /Local/MCX is at the bottom of the search
path. But for performance reasons, you’ll probably want to make sure all the local nodes are
searched before any network node. Searching local nodes is faster than searching a network
node. Therefore, I move the new local node before any network nodes.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Local MCX 118

Figure 7-10. The /Local/MCX node added to the search path

If you now log out and back in, you’ll find that all your managed preferences behave
exactly as before. And they should-----the managed preferences themselves haven’t
changed; they are just coming from a different source. But-----and this is the whole point
of this exercise-----you’ll find the MCXCCacheGraph errors are no longer being written to
your system log.

If you launch Workgroup Manager and View Directories, you’ll find you can view the new
/Local/MCX node by clicking the global icon or text that reads ‘‘Viewing local directory:
/Local/Default’’ in the top left of the window. A pop-up menu will appear, and you can
select ‘‘Other’’ from the list, as shown in Figure 7-11.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Local MCX 119

Figure 7-11. Selecting another directory in Workgroup Manager

After selecting ‘‘Other’’ from the pop-up menu, a list of available directories will appear.
Under ‘‘Local,’’ select the new ‘‘MCX’’ node, as shown in Figure 7-12.

Figure 7-12. Selecting the /Local/MCX directory

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Local MCX 120

When you choose /Local/MCX, the text will change to ‘‘Viewing local directory:
/Local/MCX. Not authenticated,’’ as in Figure 7-13.

Figure 7-13. Viewing the /Local/MCX node

You can now view the computer and computer group records, but you cannot change
them. If you click the padlock icon on the right side of the window to authenticate, you’ll
probably discover that you cannot authenticate. Ugh! Does that mean we’re resigned to
using the command line to edit Managed Preferences in this new /Local/MCX node?

No. You can still use Workgroup Manager; you just need to create one more record in
the new /Local/MCX directory. When Workgroup Manager prompts for authentication for
a directory, it’s looking for an administrator from the directory you are trying to access.
So we need to create a local admin account in the new /Local/MCX node. The only
purpose for this account is to be able to authenticate in Workgroup Manager, so it
doesn’t need a home directory or working shell.

Since we can’t yet use Workgroup Manager to edit records in the /Local/MCX node
(this is the chicken-and-the-egg problem), we’ll have to do this next step from the
command line.

sudo dscl /Local/MCX create /Users/mcxadmin
sudo dscl /Local/MCX create /Users/mcxadmin uid 8080
sudo dscl /Local/MCX create /Users/mcxadmin gid 80
sudo dscl /Local/MCX create /Users/mcxadmin shell /usr/bin/false
sudo dscl /Local/MCX create /Users/mcxadmin home /var/empty
sudo dscl /Local/MCX passwd /Users/mcxadmin
New Password: <enter a password for the account>

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Local MCX 121

We’ve created a user named ‘‘mcxadmin’’ in the /Local/MCX node. We assigned it an
arbitrary uid of 8080 (it’s best to pick one not in use by any other local account in the
/Local/Default node, or any network directory service your machines may be using). By
assigning it a gid of 80, we’ve placed it into the ‘‘admin’’ group in /Local/Default, which
has a gid of 80. We set its shell to /usr/bin/false, which prevents anyone from using
this account to log into the machine, and set the home directory to /var/empty for good
measure. Finally, we set a password for the account.

Returning to Workgroup Manager, we can now use the new mcxadmin account
to authenticate against the /Local/MCX node, and now we can edit directory records
as well.

That was a lot of effort to get rid of a seemingly harmless warning message. If you
decide to go forward with this change, you’ll need to modify any scripts you have that
create or modify the local computer record, since it now is in a different directory node.
You’ll need to modify your delivery mechanisms to deliver the computer and computer
group .plist files to their new location as well, which might entail building all new
packages for your software delivery system. You’ll need to find a way to add the new
/Local/MCX node to the Directory Service search path on all your managed machines.
This can be done with dscl by manipulating the CSPSearchPath in the /Search node:

dscl /Search create / CSPSearchPath /Local/Default /BSD/local /Local/MCX
/LDAPv3/ldap.pretendco.com

You could even add this to your script that creates the local computer record.

So, yes, this is a non-trivial change (which is why it’s in the ‘‘Advanced’’ section of this
chapter). But now caching of local computer Managed Preferences data works as
designed, and MCXCCacheGraph is happy.

More Local DS Node Tricks
There are some other things you can do with an alternate local directory node. One that
might be useful to you is to use it for a hidden administrator account. We already
created an mcxadmin account in the /Local/MCX node, but we set it up so it’s not usable
as a login account. You could decide to make it a full-blown login account by giving it a
home directory and a valid shell:

sudo mkdir /var/mcxadmin
sudo chown mcxadmin /var/mcxadmin
sudo dscl /Local/MCX create /Users/mcxadmin home /var/mcxadmin
sudo dscl /Local/MCX create /Users/mcxadmin shell /bin/bash

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 7: Local MCX 122

You should now be able to log in as ‘‘mcxadmin.’’ But this account will not show up in
the Accounts preferences pane, or in the login window list. Since we’ve created the
home directory under /var, it doesn’t show up under /Users. It is hidden from all but the
cleverest users. (Like ones who have read this book!) One more benefit-----users cannot
boot off an OS X install CD and reset the password for this account.

Summary
This chapter covers some pretty advanced topics. The Local MCX approach is a
powerful and useful way to manage preferences if you cannot use a central directory
service. But it requires some knowledge of scripting, and absolutely relies on some
method to distribute files or software packages to each client.

Using Local MCX is also a great way to experiment with various Managed Preferences
configurations without worrying about affecting a bunch of machines in your
organization. You can test a configuration on a single machine, and only when you are
happy with it, replicate it to other machines.

www.it-ebooks.info

http://www.it-ebooks.info

8Chapter

Compositing Preferences
In previous chapters, we’ve mentioned that you can manage preferences for users,
groups, computers, and computer groups. But what happens if a given preference is
managed for multiple objects? For example, let’s say you manage the Dock settings for
the ‘‘MyOrgUsers’’ group, which contains all the users in your organization, and also
manage the Dock settings for ‘‘Joe User,’’ a specific user in your organization, who also
happens to be a member of ‘‘MyOrgUsers.’’

In this chapter, we’ll be looking at the answers to questions like this. We’ll examine how
managed preferences are combined, or ‘‘composited,’’ and how preferences set at one
level may override those set at another level. We’ll also make some recommendations
for organizing your managed preferences to make it easy to apply policy to most of the
machines in your organization, while still having the flexibility to handle exceptions to
that policy.

Managed Preference Interactions
There are three types of managed preference interactions you should be aware of:

 Inheritance: Groups can contain users and other groups. Computer
groups can contain computers and other computer groups. So
preferences managed for a parent group or computer group are
inherited by the children of that group. If Joe User is a member of
the MyOrgUsers group, preferences set for MyOrgUsers will be
inherited by Joe.

 Combined: Some sets of managed preferences can be combined.
These mostly involve lists of items. For example, you specify that
members of the group MyOrgUsers should have an icon for Firefox
in their Docks, and you also specify that Joe User should have an
icon for Thunderbird in his Dock. Joe will have both Firefox and
Thunderbird in his Dock because these preferences have been
combined from the MyOrgUsers group and the user record for
Joe User.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Compositing Preferences 124

 Override: Most managed preferences don’t lend themselves to
combining because they are a single value rather than a list, and
instead will override the same preference set at another level. If you
had set the Dock for MyOrgUsers to autohide, but set the Dock for Joe
User to not autohide, the user-level setting overrides the group-level
setting, and, so, for Joe, his Dock would not autohide.

Preferences Precedence
The managed preference interactions of ‘‘Inheritance’’ and ‘‘Combined’’ are fairly easy to
understand. A user inherits managed preferences from all the objects the user or the
user’s computer is a member of-----groups of users, computer groups, and the specific
user and computer objects that correspond to the user account and the computer.
Managed preferences that don’t conflict with one another are combined.

However, in the case where preferences set at one level conflict with preferences set at
another level, it’s helpful to know the order of precedence-----that is, the order in which
one level overrides another. Here’s the order, with highest precedence on top:

 User

 Computer

 Computer Group

 Group (of users)

A preference set at the computer level would override a preference set at the group
level. Preferences set for individual users have the highest precedence. This is a useful
arrangement that neatly solves a common problem. Let’s say your organization has
decided, in the interests of security, to enforce a password-protected screen saver to
activate after five minutes of inactivity. Since this policy should apply to all machines,
you apply it at the computer group level, to a group that includes all the computers in
your organization. Shortly after your implementation, an executive vice president calls
tech support to complain about this screen saver. After heated discussion, it is decided
to relax the policy for this user only. You could then set a more relaxed screen saver
policy at the user level for the vice president. Since user-level managed preferences
have precedence over computer group---level managed preferences, the vice president
gets what he wants.

This precedence of managed preferences suggests a strategy to use when
implementing your managed preferences. Preferences that should apply to all users in
your organization might be best applied at the computer group level. These managed
preferences will take effect for all users of a given machine-----even local users that do
not have network directory accounts.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Compositing Preferences 125

NOTE: This is an important point to remember. Preferences managed for computers or
computer groups apply to all users of a given machine. If you need to make sure that even
newly created local users on a machine get certain settings, managing those settings at the
computer or computer group level is the way to go.

Preferences that affect a certain group of users (like a department, or students vs.
teachers), but not another group of users, should be applied at the group level. This is
most useful when different users might log into a single machine. Students might log
into a machine and find a very locked-down environment with a tightly restricted list of
available applications. But a teacher could log into the same machine and have more
options available to him or her.

These are not either/or, but can be used in combination. You can set the preferences
that apply to everyone at the computer group level, and set preferences for groups with
special needs at the group level, as long as you remember that groups have the lowest
priority-----that is, preferences you set for computer groups will always take precedence
over similar preferences set for a group of users.

Finally, exceptions to general policies can then be applied at the computer or user level.
You might disable CD/DVD burning on all your machines as a policy, and then override
that policy on one specific machine by managing the preferences for its specific
computer object differently.

Preferences and Group Hierarchy
Users can belong to more than one group. Computers can belong to more than one
computer group. Groups can be members of other groups, and computer groups can be
members of other computer groups. While powerful and flexible, this arrangement can
also lead to complexity and confusion. If a computer is a member of two computer
groups-----one set to autohide the Dock and the other set to not autohide the Dock-----it
can be hard to predict which preferences the individual computer will get. (While you
might be able to discern a pattern in this scenario, the rules for how these conflicts are
resolved have not been documented by Apple and so may change in a future release of
OS X.)

Your best strategy is to avoid this situation. Keep your group and computer group
memberships simple and easy to understand. I like to create computer groups for very
specific sets of managed preferences: a computer group called ‘‘LoginWindow’’
contains all our organization’s managed login window preferences, and all computers
are added to this group. I don’t use hierarchical computer groups (where a computer
group contains other computer groups), but if you do, keep the structure as simple as
you can to prevent unintended managed preference interactions.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Compositing Preferences 126

MCXCompositor
We’ve seen that it is possible to define managed preferences at a variety of levels: user,
group, computer, and computer group. Further, users and computers can be members
of multiple groups. So there is a lot of potential managed preferences data to sort
through to determine which managed preferences actually apply to a given user.
MCXCompositor is a process that runs at login (and other times as well) that does the
work of sorting through all the available managed preferences and compositing them
together for the current user. You do not have to worry about running this tool. Mac OS
X runs it automatically as needed------generally at system startup and at each user login------
but you may be interested in its results.

When MCXCompositor runs, it caches the composited preferences in /Library/Managed
Preferences. This is considered an implementation detail, not to be relied on, and
subject to change in the future. Still, it can be interesting and instructive to browse the
contents of this directory on a managed client.

At the root level of /Library/Managed Preferences, you are likely to see several .plist
files, and one or more subdirectories, each named after a user that has logged into this
machine. An example is shown in Figure 8-1.

Figure 8-1. /Library/Managed Preferences

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Compositing Preferences 127

One .plist file on my machine is /Library/Managed Preferences/com.apple.
loginwindow.plist. We can examine it using the defaults command:

> defaults read /Library/Managed\ Preferences/com.apple.loginwindow
{
 AdminHostInfo = HostName;
 AdminMayDisableMCX = 0;
 DisableConsoleAccess = 0;
 EnableExternalAccounts = 1;
 HideAdminUsers = 0;
 HideLocalUsers = 0;
 HideMobileAccounts = 0;
 IncludeNetworkUser = 0;
 RestartDisabled = 0;
 RetriesUntilHint = 0;
 SHOWFULLNAME = 1;
 "SHOWOTHERUSERS_MANAGED" = 1;
 ShutDownDisabled = 0;
 UseComputerNameForComputerRecordName = 0;
 "com.apple.login.mcx.DisableAutoLoginClient" = 1;
 "mcx_UseLoginWindowText" = 0;
}

We can use dscl with ---mcxread to compare this with the managed preferences I’ve
assigned to a computer group that my machine is a member of:

> dscl /Search -mcxread /ComputerGroups/loginwindow com.apple.loginwindow
Key: HideLocalUsers
State: always
Value: 0

Key: AdminHostInfo
State: always
Value: HostName

Key: SHOWFULLNAME
State: always
Value: 1

Key: SHOWOTHERUSERS_MANAGED
State: always
Value: 1

Key: HideMobileAccounts
State: always
Value: 0

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Compositing Preferences 128

Key: mcx_UseLoginWindowText
State: always
Value: 0

Key: RestartDisabled
State: always
Value: 0

Key: HideAdminUsers
State: always
Value: 0

Key: RetriesUntilHint
State: always
Value: 0

Key: EnableExternalAccounts
State: always
Value: 1

Key: AdminMayDisableMCX
State: always
Value: 0

Key: ShutDownDisabled
State: always
Value: 0

Key: com.apple.login.mcx.DisableAutoLoginClient
State: always
Value: 1

Key: DisableConsoleAccess
State: always
Value: 0

Key: IncludeNetworkUser
State: always
Value: 0

Key: UseComputerNameForComputerRecordName
State: always
Value: 0

Key: LoginwindowText
State: unset
Value:

We can see it’s a good match. So we can surmise that the current managed preferences
are being cached in the /Library/Managed Preferences directory.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Compositing Preferences 129

The subdirectories in /Library/Managed Preferences that are named after users hold
cached preferences for individual users. Let’s look in mine, at /Library/Managed
Preferences/gneagle:

> ls /Library/Managed\ Preferences/gneagle/
.GlobalPreferences.plist com.apple.screensaver.ByHost.plist
com.apple.MCX.plist com.apple.screensaver.plist
com.apple.MCX.sidebar.plist com.apple.systempreferences.plist
com.apple.dock.plist complete.plist
com.apple.homeSync.plist mcxMobility.plist
com.apple.loginwindow.plist

Most of the .plist files correspond to various preference domains we are managing,
but there’s one specific .plist file of interest-----the one named complete.plist. Let’s
use defaults to examine it:

> defaults read /Library/Managed\ Preferences/gneagle/complete
{
 ".GlobalPreferences" = {
 MultipleSessionEnabled = {
 mcxdomain = always;
 source = (
 "mcx_computergroup_loginwindow_0"
);
 value = 0;
 };
 "com.apple.autologout.AutoLogOutDelay" = {
 mcxdomain = always;
 source = (
 "mcx_computergroup_loginwindow_0"
);
 value = 0;
 };
 };
 "com.apple.MCX" = {
 DisableGuestAccount = {
 mcxdomain = always;
 source = (
 "mcx_computergroup_loginwindow_0"
);
 value = 1;
 };
 "cachedaccounts.WarnOnCreate.allowNever" = {
 mcxdomain = always;
 source = (
 "mcx_computergroup_mobileaccounts-laptops_0"
);
 value = 1;
 };

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Compositing Preferences 130

 "cachedaccounts.create.encrypt" = {
 mcxdomain = always;
 source = (
 "mcx_computergroup_mobileaccounts-laptops_0"
);
 value = 1;
 };
 "cachedaccounts.create.encrypt.requireMasterPassword" = {
 mcxdomain = always;
 source = (
 "mcx_computergroup_mobileaccounts-laptops_0"
);
 value = 0;
 };

In my case, the output actually goes on for 793 lines, so I won’t show the whole thing
here. But if you examine it, you’ll see it is a ‘‘complete’’ composite of all the managed
preferences for that particular user.

NOTE: We’ll talk more about managing preferences ‘‘always,’’ ‘‘often,’’ and ‘‘once’’ in Chapter
9, but if you pay close attention to the contents of /Library/Managed Preferences, you
might notice that apart from complete.plist, the other .plist files seem to correspond
only with those preference domains for which you are managing ‘‘always.’’ Where are the
‘‘often’’ and ‘‘once’’ preferences? The answer is that these preferences are written directly to
the user’s home folder in Library/Preferences, either as a one-time event (‘‘once’’) or at
each login if the preference is managed ‘‘often.’’

Feel free to look and learn, but you generally don’t want to directly modify anything in
the /Library/Managed Preferences folder. Again, while it’s interesting to poke around in
this folder and see what is being cached, Apple does not want you to rely on its
contents.

NOTE: One troubleshooting technique that makes use of this location: sometimes when
managed preferences don’t behave as you’d expect, you’d like to wipe things clean and start
with an empty slate. We discuss some tools you can use in Chapter 13, but a brute force
approach that sometimes works is to delete the entire /Library/Managed Preferences
folder and restart. This clears out any managed preferences that are stored in
/Library/Managed Preferences and forces the OS to re-read the managed preferences
from the directory service.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Compositing Preferences 131

Viewing Composited MCX Data with mcxquery
Rather than reading the contents of /Library/Managed Preferences/ and
/Library/Managed Preferences/username/, there are two better tools you can use to
query the results of an MCXCompositor operation, and, therefore, get a clearer picture
of what is currently being managed. The first, mcxquery, is run from the command-line:

> mcxquery –user localadmin
com.apple.dock
 MCXDockSpecialFolders localadmin (User) once ()
 persistent-apps localadmin (User) once ({ "mcx_typehint" = 1;
"tile-data" = { "file-data" = { "_CFURLString" =
"/Applications/Safari.app"; "_CFURLStringType" = 0; }; "file-label" = Safari; }; "tile-
type" = "file-tile"; }, { "mcx_typehint" = 1; "tile-data" = { "file-data" =
{ "_CFURLString" = "/Applications/TextEdit.app"; "_CFURLStringType" = 0; }; "file-label"
= TextEdit; }; "tile-type" = "file-tile"; }, { "mcx_typehint" = 1; "tile-data" =
{ "file-data" = { "_CFURLString" = "/Applications/System Preferences.app";
"_CFURLStringType" = 0; }; "file-label" = "System Preferences"; }; "tile-type" = "file-
tile"; }, { "mcx_typehint" = 1; "tile-data" = { "file-data" = {
"_CFURLString" = "/Applications/Utilities/Console.app"; "_CFURLStringType" = 0; };
"file-label" = Console; }; "tile-type" = "file-tile"; }, { "mcx_typehint" = 1; "tile-
data" = { "file-data" = { "_CFURLString" =
"/Applications/Utilities/Terminal.app"; "_CFURLStringType" = 0; }; "file-label" =
Terminal; }; "tile-type" = "file-tile"; }, { "mcx_typehint" = 1; "tile-data" = {
"file-data" = { "_CFURLString" = "/Applications/Utilities/radmind/Radmind
Assistant.app"; "_CFURLStringType" = 0; }; "file-label" = "Radmind Assistant"; }; "tile-
type" = "file-tile"; })
 persistent-others localadmin (User) once ({ "mcx_typehint" = 2;
"tile-data" = { "file-data" = { "_CFURLString" =
"/Library/FA/Applications"; "_CFURLStringType" = 0; }; "file-label" = Applications; };
"tile-type" = "directory-tile"; }, { "mcx_typehint" = 2; "tile-data" = { "file-
data" = { "_CFURLString" = "/var/madmin/Downloads"; "_CFURLStringType" = 0;
}; "file-label" = Downloads; }; "tile-type" = "directory-tile"; })
 static-apps dock (Computer Group) always ()
 static-others dock (Computer Group) always ({ "mcx_typehint" = 2;
"tile-data" = { "file-data" = { "_CFURLString" =
"/Library/FA/Applications"; "_CFURLStringType" = 0; }; "file-label" = Applications; };
"tile-type" = "directory-tile"; })

The preceding text is a partial output of mcxquery for a local admin user on my machine.
This user has managed preferences for the Dock to set a certain default Dock. There are
also managed preferences for the Dock for a computer group this machine is a member
of. If you look carefully at the output of mcxquery for com.apple.dock, you’ll see the
values for the MCXDockSpecialFolders, persistent-apps, and persistent-others keys are
coming from the user record for the ‘‘localadmin’’ user. The other keys (static-apps,
static-others) are coming from the ‘‘dock’’ computer group record. MCXCompositor has
composited the managed preferences from the localadmin user record and the ‘‘dock’’
computer group.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Compositing Preferences 132

As a comparison, let’s look at the output from mcxquery for my username:

> mcxquery –user gneagle
com.apple.dock
 contents-immutable dock (Computer Group) always 0
 MCXDockSpecialFolders dock (Computer Group) always ()
 static-apps dock (Computer Group) always ()
 static-only dock (Computer Group) always 0
 static-others dock (Computer Group) always ({ "mcx_typehint" = 2;
"tile-data" = { "file-data" = { "_CFURLString" =
"/Library/FA/Applications"; "_CFURLStringType" = 0; }; "file-label" = Applications; };
"tile-type" = "directory-tile"; })

For me, all the managed preferences data is coming from the ‘‘dock’’ computer group;
there’s no managed preferences data in my user record.

Viewing Composited MCX Data with System Profiler
Managed Preferences information is also available from System Profiler. Launch System
Profiler, and select ‘‘Managed Client’’ under ‘‘Software’’ in the list of contents. In the
upper right pane, a list of managed preferences will be displayed. If you select one,
additional details for that managed preference will appear in the lower right pane. On my
machine, it looks like Figure 8-2.

Figure 8-2. System Profiler’s Managed Client data view

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 8: Compositing Preferences 133

Figure 8-2 shows ‘‘Managed Client’’ selected on the left. In the list of managed
preferences in the top right pane, ‘‘.GlobalPreferences’’ is selected, which causes more
detail on those preferences to be displayed in the bottom right pane. In this case, we
can see that ‘‘MultipleSessionEnabled’’ is set to 0, managed ‘‘always,’’ and that these
settings come from the computer group named ‘‘loginwindow.’’
(‘‘MultipleSessionEnabled’’ is another name for ‘‘Fast User Switching,’’ the feature that
allows multiple users to be logged in at once.)

NOTE: For the command-line inclined, the system_profiler utility can also fetch this data for
you. The SPManagedClientDataType will call this out specifically. Running

system_profiler SPManagedClientDataType

will display the same data that the System Profiler GUI does. Using system_profiler's -xml flag
may be of more use to those needing to parse this output.

Either tool (mcxquery or System Profiler) can be useful in figuring out unexpected
managed preferences interactions, since you can easily see the source of a given
managed preference. We’ll visit these tools again in Chapter 13, ‘‘Troubleshooting,’’ as
they are invaluable for this purpose.

Summary
Preferences can be managed at several different levels, and users and computers can
belong to multiple groups. All of these potential sources for managed preferences must
be composited together to determine the final set of managed preferences for a user
and/or computer. Planning and consideration should go into your decisions about where
to apply managed preferences-----at the user, group, computer, or computer group level.

The strategy we recommend is to manage most preferences at the most general level
possible-----at the computer group or user group level. This allows you to handle special
cases and exceptions by changing the preference management for the more specific
level-----the individual computer or user object.

You can use mcxquery or System Profiler to view the end results of the managed
preferences compositing action and make sure the end result matches your intentions.

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

9Chapter

Enforcing Managed
Preferences
‘‘Enforcing managed preferences’’ can have two meanings. The first meaning pertains to
when and how often managed preferences are applied. With Apple’s tools, you can
select how often managed preferences are set to the values you choose. But ‘‘enforcing
managed preferences’’ can also refer to making sure your management settings remain
in place, and are not removed or altered by a user.

In this chapter, we’ll look at both meanings of the term. First, we’ll explore setting how
often managed preferences are enforced, or the ‘‘management frequency.’’ We’ll also
consider things you can do to prevent changes to your managed preferences
configuration. This is especially important if you are storing your managed preferences
data in the local directory service as described in Chapters 6 and 7.

While it is almost impossible to completely prevent admin users from making changes
that could affect preference management, you can implement methods to reverse these
changes. Far simpler, and reasonably effective, is to avoid granting administrative
privileges to users except those you trust or at least can rely on to not make your job
harder, which is always good advice when managing large numbers of computer
systems.

Management Frequency
In earlier chapters, we’ve seen some options for managing preferences with words like
‘‘Never,’’ ‘‘Once,’’ ‘‘Often,’’ and ‘‘Always.’’ These labels refer to the frequency or strength
with which the preference is managed.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Enforcing Managed Preferences 136

 Never is easy to understand, and this is the default setting for all
managed preferences------it means that the preference is not managed
for the current user, group, computer, or computer group object.
Choose a management frequency of ‘‘Never’’ to allow users to control
a preference themselves. Remember, though, that the same
preference could be managed at a different level. Dock management
might be set to ‘‘Never’’ for a computer group, but it could still be
managed for a specific user. In Figure 9-1, using Workgroup Manager,
we can see that the Dock Display preferences are not being managed,
therefore the management frequency is ‘‘Never.’’

Figure 9-1. Managing the Dock Display preferences “Never”

 Once causes your managed preference to be applied once, and then
left alone for the users to change as they see fit. This is useful to set
certain default preferences for your users, but allows them to change
the preferences later. Not all preferences can be managed ‘‘Once.’’
Specifically, preferences that affect the computer as a whole instead
of individual users cannot be managed ‘‘Once.’’ Some examples of
preferences that affect the computer as a whole include Energy Saver
settings, Time Machine settings, and login window options.
In Figure 9-2, we’re adding icons for Mail, Safari, and Preview to the
user’s Dock. We don’t care if the user later removes these, so we set
the management frequency to ‘‘Once.’’

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Enforcing Managed Preferences 137

Figure 9-2. Managing Dock items “Once”

NOTE: Preferences managed ‘‘Once’’ are applied once, but if you change the value of the
managed preference in the directory service, it will be applied once again. The file
com.apple.MCX.plist in the user’s Library/Preferences directory keeps track of when
each ‘‘Once’’ preference was last applied; if the version in the directory service has been
updated since it was last applied, it will be applied again. It’s important to be aware of this; if
you change a preference that is managed ‘‘Once,’’ thinking the change will be applied only to
new users, you might be surprised when it overwrites a preference already customized by
existing users.

You can also use this knowledge to your advantage. If you are testing preferences that are
managed ‘‘Once,’’ you can delete the com.apple.MCX.plist file in the test user’s
Library/Preferences folder to cause preferences that are managed ‘‘Once’’ to be applied
again.

 Often reapplies the managed preferences at each login. In Workgroup
Manager, this option appears only in the Details editor. The users can
change the preference, but when they log out and back in, the
preference is reset to your managed setting. Apple’s documentation
describes this management frequency as useful for training
environments, but it also can be useful for preferences that don’t
respond to the ‘‘Always’’ setting.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Enforcing Managed Preferences 138

In Figure 9-3, we prevent Microsoft AutoUpdate from running
automatically by setting it to run manually. By setting the management
frequency to ‘‘Often,’’ this preference is reapplied at each login.
(Microsoft AutoUpdate does not respect the ‘‘Always’’ setting.)

Figure 9-3. Managing a preference “Often”

 Always sets the managed preference to your desired value and
prevents the user from changing it. In some cases the user interface is
updated to indicate that the preference is no longer modifiable. For
example, in Figure 9-4 the ‘‘Turn Off FileVault…’’ button is grayed out
because we are managing Mobility preferences, and have set the
mobile account to require FileVault encryption. Since the users are not
allowed to turn FileVault off for their mobile account’s home directory,
this option has been disabled in the user interface. Figure 9-5 shows
the related managed preferences settings in Workgroup Manager with
a management frequency of ‘‘Always.’’

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Enforcing Managed Preferences 139

Figure 9-4. Disabled FileVault control

Figure 9-5. Managing FileVault encryption “Always”

Not all preferences respond properly to the ‘‘Always’’ setting. In particular, very few
third-party applications support preferences managed ‘‘Always.’’ For these, the best you
can do is set the management frequency to ‘‘Often.’’ Users will still be able to change
the preference, but when they log out and back in, your managed setting will be
restored. This isn’t the best user experience, as users might find it perplexing or
frustrating when their preference settings don’t ‘‘stick.’’ But we must work with what we
have. If this is an issue for you, consider filing a bug or feature request with your
software vendors, encouraging them to support preferences managed ‘‘Always.’’

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Enforcing Managed Preferences 140

Choosing a Management Frequency
You owe it to your users to carefully consider whether you should manage a given
preference as ‘‘Never,’’ ‘‘Once,’’ ‘‘Often,’’ or ‘‘Always.’’ Ask yourself why you want to
manage each preference. Here are some common reasons:

 User experience: You want to manage a preference to help provide
your users with a better user experience: adding certain applications
to their Docks so they can find them faster, disabling features that
aren’t useful in your organization, or configuring certain initial settings
for an application for better compatibility with other users in your
organization.

For this category of managed preferences, consider managing
‘‘Once.’’ You are trying to help your users and guide them to useful
settings for your organization, but the user may have good reasons to
choose different settings. You want to give the user a helpful starting
point, but not force him or her to work a certain way.

Preferences that might fall into this category include the following:

 Default desktop picture (maybe one unique to your organization)

 Default screen saver module (but not the timing or whether a
screen saver is required)

 Application save settings (to ensure compatibility across
versions)

 Suppressing application setup assistants, registration dialogs,
and auto-updaters (because you’ve already performed those
tasks)

 Dock items (to help users find useful or organization-standard
applications-----see Figure 9-6)

 Finder sidebar items (to help users find servers and resources)

 Portable Home Directory HomeSync include/exclude lists

 Default email application and web browser (to direct users to
applications you can best support)

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Enforcing Managed Preferences 141

Figure 9-6. Adding Microsoft Office apps to the user’s dock so they can be easily found

 Organization-specific settings: There are some preferences you may
manage because they are required to make things actually work in
your organization, and, until they are configured, the user may find it
difficult to do his or her job. These probably should be managed
‘‘Always’’ if possible, or ‘‘Often’’ if it’s not possible to manage
‘‘Always.’’ Some examples include the following:

 Network proxy settings (see Figure 9-7)

 VPN settings

 Folder redirection

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Enforcing Managed Preferences 142

Figure 9-7. Configuring machines to use a proxy server

 Company policy or security: If you want to manage a preference to
enforce a company policy or make a computer meet certain security
standards, you almost certainly want to manage this preference
‘‘Always.’’ You are protecting your organization by managing certain
settings, and it’s important that these settings are enforced. For
applications that don’t support preferences managed ‘‘Always,’’ you’ll
have to settle for managing the preference ‘‘Often.’’ Preferences that
might fit into the "policy or security" category include the following:

 FileVault

 Screen saver activation

 Accounts/Loginwindow settings

 Allowed/Disallowed applications

 Allowed/Disallowed System Preferences

 Software Update

 Energy Saver settings (Figure 9-8)

 Media access

 Bluetooth and AirPort

7
www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Enforcing Managed Preferences 143

Figure 9-8. Setting managed Energy Saver preferences

 Third-party applications: Always carefully test any managed
preferences for third-party applications to ensure they actually do what
you expect. As noted before, many third-party applications do not
work properly with preferences managed ‘‘Always.’’ If you find that to
be the case for the application you wish to manage, that leaves
‘‘Once’’ and ‘‘Often’’ as possible choices. Consider carefully if you
want to annoy or confuse the user with a preference that is managed
‘‘Often.’’ From the user’s point of view, he or she may make a change
to an application preference, and later he or she may notice it has
changed back. The user changes it again, and later sees that it has
changed back. Unless managing this setting is very important-----it
enforces a company policy or security guideline, or prevents the user
from running into serious trouble-----consider managing the preference
‘‘Once’’ as a useful or appropriate default for your organization. Figure
9-9 shows the management of the document save format for Microsoft
Word 2008.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Enforcing Managed Preferences 144

Figure 9-9. Setting Microsoft Word 2008’s default save format

You may be tempted to manage everything ‘‘Always’’ or ‘‘Often.’’ But consider that,
while well-intentioned, your ideas of the ‘‘right’’ configuration might not be optimal for
all users in your organization. Manage only what you need to, and as infrequently as
you can.

Enforcing the Managed Preferences Configuration
When managed preferences data is coming from a network directory, it can be very
difficult or counterproductive for users to circumvent the management of client
preferences. If a user has admin rights on a local machine, the obvious way to disable
preference management is to reconfigure the machine to no longer use the network
directory service. Presumably, this would also keep the user from using any network
resources, so the downside of doing this probably makes it unattractive to mischief-
makers. However, there are more advanced methods available to administrative users
that involve editing directory service mappings for LDAP directories that could
effectively turn off preference management for a client.

With a ‘‘magic triangle’’ or "dual directory" setup, administrative users could determine
which directory service is supplying managed preferences information, and remove that
directory from the search path. This would maintain access to user and group
information from the primary directory, so this might actually be attractive to a
miscreant.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Enforcing Managed Preferences 145

If the managed preferences data is kept in a local directory node, a user with
administrative rights might be able to use Workgroup Manager to directly change or
remove managed preferences settings. At the very least, a user with administrative
rights could delete the local files that are the source of the managed preferences data.

So if you really, truly need to enforce certain preferences for security or company policy
reasons, you need to protect your machines from having the source of managed
preferences removed or altered.

NOTE: Protecting the managed preferences configuration is really just a subset of the larger
issue of securing the machines for which you are responsible. To truly cover all the issues and
approaches to securing managed machines would require another book. Ultimately, your
managed preferences configuration is only as secure as the rest of the administrator-protected
data on your machines.

Protecting Your Managed Preference Configuration
The simplest way to protect your managed preferences configuration is to never give
admin rights to regular users. This prevents a user from making changes to the Directory
Service configuration, and from removing any local files that contain managed
preferences data. This also prevents the user from doing a host of other things that are
contrary to security best practices, completely separate from managed preferences.
This is your first, best line of defense. This is not complete protection, as a truly
malicious user might still be able to gain administrative or root access, especially on
machines that are not physically secured, but it is an important first step.

Unfortunately, it is not always possible to withhold admin rights from all of your users.
There are always those users who may insist on administrative rights on ‘‘their’’
machines, and for political or organizational reasons, you must acquiesce. Or, you may
have users who, due to their job requirements, must be able to install or reconfigure
software on their machines. With any luck, though, those to whom you must give admin
rights can be trusted not to intentionally circumvent security measures.

That leaves the possibility of administrative users accidentally or inadvertently
‘‘breaking’’ managed preferences, by ‘‘playing around’’ with Directory Utility or
Workgroup Manager, or even by deleting files from /Library/Preferences/
DirectoryService, or the local directory service store in /private/var/db/dslocal.
You’ll need to decide if it’s worth the effort to implement a method of ensuring the
configuration that delivers your managed preferences is preserved. Here are a few ideas
and methods to pursue if you need this level of enforcement.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 9: Enforcing Managed Preferences 146

 Systems configuration management: The problem of maintaining a
specific, consistent configuration is not unique to managed
preferences. There are entire suites of software designed to help
systems administrators for large numbers of machines maintain
configurations. Some of the more popular:

 Cfengine (http://cfengine.org/): Open-source. One of the
earliest and most mature configuration management frameworks.

 Puppet (www.puppetlabs.com/): Open-source. Written in Ruby,
but uses its own configuration language. Has some native types
for working with managed preferences data.

 Chef (http://wiki.opscode.com/display/chef/Home): Open-
source. Written in Ruby, and also uses Ruby as its configuration
language. Currently, the least mature tool of the three.

These are all conceptually similar. You create a document (known as a policy, manifest,
or recipe) that describes the desired configuration of a machine. The configuration
engine then ensures the actual configuration matches the desired configuration.

 Radmind (http://rsug.itd.umich.edu/software/radmind/): Radmind
can scan a filesystem, find changes, and (optionally) reverse those
changes to a known state. If you are already using Radmind to
manage your Macs, it can easily ensure your managed preferences
configuration stays intact. Radmind is also a good match for managed
preferences stored in the local directory service, since local directory
service records are just .plist files.

 Custom scripts: In Chapters 6 and 7, in our exploration of storing
managed preferences data in the local directory service, we used a
script to create the needed local computer record. This script could be
set to run at every startup, and extended to ensure the other resources
needed were present. If you aren’t using Local MCX, you could still
write a script that ensured your network directory service was in the
authentication search path, and made sure the applicable Directory
Service configuration files in /Library/Preferences/DirectoryService
were present and had the right contents. This is a lot of work. If you
really have a hostile environment that would require this level of
enforcement, we recommend implementing a configuration
management solution, such as those described earlier.

s

www.it-ebooks.info

http://cfengine.org/):
http://www.puppetlabs.com/):
http://wiki.opscode.com/display/chef/Home):
http://rsug.itd.umich.edu/software/radmind/):
http://www.it-ebooks.info

CHAPTER 9: Enforcing Managed Preferences 147

Even with these additional precautions, it’s still possible for a malicious user to
circumvent your configuration and management systems. Our recommendation is to
configure your systems and implement something to protect you from accidental or
inadvertent modifications. Consider locking down access to the Directory Utility
application, as that’s the most likely way a curious admin user could accidently break
managed preferences. (Denying access to Directory Utility.app can be done with
managed preferences!) Grant admin rights to as few users as possible, and rely on
human engineering to deal with the problems admin users cause.

Summary
There are four types or frequencies of preference management. Managed preferences
can be applied as a one-time change. This is useful for setting certain defaults you’d like
the users in your organization to have. This is known as managing a preference ‘‘Once.’’
You can also apply a managed preference at every login, as a way to revert preferences
to a known value at regular intervals. This is referred to as managing a preference
‘‘Often.’’ Third, some preferences can be managed so they not only take a value you
decide, but users are prevented from changing the preference at all. This is managing a
preference ‘‘Always.’’ Finally, choosing not to manage a preference for a given user,
group, computer, or computer group is managing the preference ‘‘Never.’’

Once you are managing preferences, you might want to take steps to ensure that users
do not (on purpose or accidentally) disable or alter preference management. This might
be as simple as denying administrative rights to your users, or as complex as the
implementation of a configuration management system like Puppet.

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

10Chapter

Preference Manifests and
“Raw” Preferences
In Chapter 5, we introduced the use of Apple’s Workgroup Manager application for
creating managed preference .plist files. Workgroup Manager covers a lot of ground,
but at its heart it is a tool for working with directory service data. There are panes for
working with user accounts, user groups, computer accounts, and computer groups.
Since preferences can be managed for each of these types of directory objects,
Workgroup Manager also features a managed preferences editor.

The editors provided by Apple are very helpful for the preferences they cover. But what
if you want to manage additional preferences beyond those covered by the Workgroup
Manager Preferences overview? In this chapter, we’ll explore ways to use Workgroup
Manager to edit even more managed preferences. First, we’ll look at using ‘‘preference
manifests,’’ which provide a useful guide to manageable preferences. Finally, we’ll show
you how to manage preferences for any application that stores its preferences in Apple’s
.plist format. For this, we’ll import ‘‘raw’’ preference files.

First, let’s review the editors provided by Apple in the Workgroup Manager Preferences
Overview.

Preferences Overview
The Preferences Overview, shown in Figure 10-1, provides a friendly, easy-to-
understand user interface for managing various preferences.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: Preference Manifests and "Raw" Preferences 150

Figure 10-1. Workgroup Manager Preferences Overview

NOTE: You may not see every preference that is shown in Figure 10-1. If you are editing
managed preferences for a user object or group of users, Energy Saver and Time Machine will
not be displayed as they can be managed only for computers of computer groups.

Here, preferences are placed in logical groups. When you select a preference group,
such as Login, you’ll see a set of controls (i.e., editors) specifically designed for that
group of preferences, as in Figure 10-2.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: Preference Manifests and "Raw" Preferences 151

Figure 10-2. Login managed preferences editor

These Apple-provided managed preferences editors are a great convenience. The
options are specified in language similar to the language you see in the equivalent
System Preferences pane. For example, the preferences to display the login window
that contains a list of users is described with similar terminology as you’d see in the
Accounts pane of the System Preferences application (where the option appears as
‘‘Display login window as: List of users’’). Figure 10-3 shows the System Preferences
Accounts pane, so you can compare.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: Preference Manifests and "Raw" Preferences 152

Figure 10-3. System Preferences Accounts pane

Apple’s managed preferences editors contain pop-up menus, radio buttons, and check
boxes to guide you through the available options. Apple has also provided some hints
that help you understand which options are effective with which versions of Mac OS X.
This is important if you are managing Macs running different major releases of Mac OS
X. For example, you may have a mix of Tiger, Leopard, and Snow Leopard machines
that you must support, and not all preferences apply to all versions of Mac OS X.

However, the editors available in the Preferences Overview do not cover every single
preference that can be managed. You can manage additional preferences by using
Workgroup Manager’s Details tab in the Preferences pane, shown here in Figure 10-4.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: Preference Manifests and "Raw" Preferences 153

Figure 10-4. Workgroup Manager Preferences Details

If you look in Workgroup Manager on your Mac and don’t see a list of preference
domains in the Preferences Details as in Figure 10-4 (that is, the list of preference
domains is empty or nearly so), don’t worry. By default, this list is pretty empty. This list
gets populated in two ways:

 by importing preference manifests

 by importing raw preferences

Let’s explore each option in the following sections.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: Preference Manifests and "Raw" Preferences 154

Importing a Preference Manifest
Apple provides a number of interesting and useful preference manifests that you can
import from ManagedClient.app. A preference manifest is yet another type of .plist file,
distinct from preferences themselves, which are also stored in .plist files. A preference
manifest describes which manageable preference keys are available for a given
application, and what type of data they must contain. In other words, a preference
manifest is a sort of guide to what can be managed for a specific application.

Apple provides a nice set of manifests that you can import all in one fell swoop. In
Workgroup Manager, select an item (user, group, computer, or computer group) and
click the Preferences icon in the toolbar. Click the ‘‘Details’’ tab, and you should find
yourself in the Preferences Details pane (shown in Figure 10-4). To import a set of
preference manifests, click the plus button below the list, and navigate to
/System/Library/CoreServices. Select the ManagedClient application and click the
‘‘Add’’ button, as shown in Figure 10-5.

Figure 10-5. Importing preference manifests from ManagedClient.app

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: Preference Manifests and "Raw" Preferences 155

Once you’ve imported the preference manifests from ManagedClient.app, your list
of preference domains should look a lot more like the ones shown previously in
Figure 10-4.

Working with Preference Manifests
As you can see, there are now several new interesting things available to manage. As an
example, let’s look at Desktop Picture. Let’s say we wanted to give all our users an initial
desktop picture that was specific to our organization. With Workgroup Manager and our
newly imported preference manifests, this is pretty easy.

Start by double-clicking the Desktop Picture entry in the list of preference names (again,
as shown in Figure 10-4). You’ll see a preferences details editor like the one in Figure
10-6. You may also notice that the title of the preferences details editor matches the
‘‘preference domain’’ you are editing-----in this case, com.apple.desktop.

Figure 10-6. Desktop Picture preferences details editor

If this looks familiar, it may be because this editor greatly resembles Apple’s Property
List Editor application, introduced in Chapter 4. (See Figure 4-1 from that chapter for a
visual comparison.) Like Property List Editor, the preferences details editor provides an
outline-like structure for the preference keys you are managing. Figure 10-6 shows three
empty dictionaries to start-----one each for ‘‘Once,’’ ‘‘Often,’’ and ‘‘Always.’’ These are
three of the four preference management frequencies discussed in Chapter 9.

NOTE: The fourth----‘‘Never’’----doesn’t get its own dictionary. If you want to manage a
preference ‘‘Never,’’ just don’t add it to the managed preferences!

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: Preference Manifests and "Raw" Preferences 156

NOTE: Remember, in this context, a dictionary is a collection of items, each with a name. As
we saw in our introduction to property lists, dictionaries can contain other dictionaries as well
as arrays or lists, and simple types like strings, numbers, and Boolean values.

For our example, we want to set the desktop picture only as an initial default, but allow
our users to change it if they desire. So we’ll add our managed preference to the ‘‘Once’’
dictionary.

Select the ‘‘Once’’ dictionary by clicking it, and click the disclosure triangle next to the
word ‘‘Once,’’ turning it downwards. Once you do this, the ‘‘New Key’’ button will
become available. Click it. A new item should appear below ‘‘Once,’’ as in Figure 10-7.

Figure 10-7. Adding an item in the preferences details editor

Click the name ‘‘New Item,’’ and a pop-up menu will appear with a few choices. Select
‘‘Background.’’ Turn down the disclosure triangle next to ‘‘Background,’’ and a nested
key named ‘‘Default Image’’ will appear, itself a dictionary. Click the disclosure triangle
next to ‘‘Default Image,’’ and you’ll see the final nested key, named ‘‘Image Path.’’ This
key is a string, and defaults to /Library/Desktop Pictures/Aqua Blue.jpg. Double-click
the path to edit it, and change it to the desktop picture of your choice.

NOTE: If you have some experience at the command line, you might wonder if spaces or other
special characters need to be ‘‘escaped’’ in path names entered in the preferences editors.
They do not.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: Preference Manifests and "Raw" Preferences 157

Make sure the path to your desired desktop picture is correct and points to a file that
actually exists and is readable by all the users to whom you might assign this managed
preference. Figure 10-8 shows one possibility (although not very interesting).

Figure 10-8. Setting a custom desktop picture

In Figure 10-8, you can see some of the features that make preference manifests useful.
When we added a new key to the ‘‘Once’’ dictionary, we were shown a list of valid keys
in plain English (‘‘Background,’’ ‘‘Default Image,’’ and ‘‘Image Path’’ in this example). You
can also see some descriptive text about the ‘‘Image Path’’ key near the bottom of the
window.

Preference manifests help the administrator discover the preferences that are available
to manage for a given application or preference domain and help to document their use
and expected values.

Sadly, preference manifests are not common. Outside of the preference manifests you
can import from ManagedClient.app, only a handful of Apple applications, including
Safari and VoiceOver Utility, include preference manifests. The iLife and iWork suites are
maddeningly preference manifest---free, and we are not aware of any third-party
application that ships with a preference manifest, though there may be one or two out
there.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: Preference Manifests and "Raw" Preferences 158

NOTE: Apple has documented the preference manifest file format here:
http://developer.apple.com/mac/library/documentation/MacOSXServer/Conc

eptual/Preference_Manifest_Files/Preference_Manifest_Files.pdf.

Given this information, it is possible to create a preference manifest yourself. The excellent
folks at AFP548.com have provided a little more info on the process at
http://www.afp548.com/article.php?story=manifest-destiny.

More importantly, they’ve also set up a repository of preference manifests created by other
Mac OS X administrators called ‘‘Manifest Destiny.’’ Here you’ll find a selection of preference
manifests for some Apple software not covered by the ones in ManagedClient and a few third-
party applications. Hopefully, this will grow over time. You’ll find the Manifest Destiny
repository at http://code.google.com/p/manifestdestiny/.

Importing ‘‘Raw’’ Preferences
We mentioned early on that you can use Apple’s managed preferences system to
manage the preferences of any piece of software that stores its preferences in a
standard Apple .plist file in the user’s Library/Preferences directory. This is true even
if the software is not supported in Workgroup Manager’s Preferences Overview, or even
if the software has no preference manifest. Those methods of editing managed
preferences are helpful, but not required.

So how do you manage preferences for software that does not have an editor built into
Workgroup Manager, and has no preference manifest? The answer is simple. Just
configure the software the way you’d like it-----typically using the application’s own
preferences dialogs, or via System Preferences preference panes. Then use Workgroup
Manager to import the actual preference .plist file for the application. We’ll call this
‘‘importing ‘raw’ preferences.’’ This is the second way managed preferences get added
to the Preferences Details view in Workgroup Manager.

Let’s say we wanted to configure Apple’s TextEdit application so that new documents
were in plain text by default instead of the usual rich text format.

We’ll start by moving the current preferences aside. Make sure TextEdit is not running,
then find the file com.apple.TextEdit.plist in your Library/Preferences directory and
move it to your desktop. (This is just a handy place to move it temporarily; we’ll move it
back later.)

www.it-ebooks.info

http://developer.apple.com/mac/library/documentation/MacOSXServer/Conc
http://www.afp548.com/article.php?story=manifest-destiny
http://code.google.com/p/manifestdestiny
http://www.it-ebooks.info

CHAPTER 10: Preference Manifests and "Raw" Preferences 159

NOTE: Why do we start by moving aside the current preferences? It’s likely that this preference
file contains all sorts of preferences, and over time, many application preference files gain
more and more data as they keep track of window positions, recently opened files, and all
sorts of things. By moving the existing preference file out of the way, we force the application
to create a new, clean file, which should make it easier to manage only the preferences we’re
interested in managing.

Now launch TextEdit by double-clicking its icon in the Finder and choose
‘‘Preferences…’’ from the TextEdit menu. Under the New Document tab, select ‘‘Plain
text’’ as the format. Close the Preferences window and quit TextEdit. See Figure 10-9 for
an illustration.

Figure 10-9. Setting TextEdit format preferences to plain text

In Workgroup Manager, select an object to manage (I usually just create a dummy
computer group while I’m testing, and delete it later), and click the Preferences
icon in the toolbar. Select Details in the Preferences editor. Click the plus button.
To import the TextEdit preferences, you have two choices. The first is to navigate
to and select the TextEdit application in /Applications. The second is to navigate
to and choose the actual .plist file in your Library/Preferences folder. In this
case it would be Library/Preferences/com.apple.TextEdit.plist. If you decide
to choose the application itself, you have one additional item to be aware of, and
you’ll see it in Figure 10-10. You’ll see a check box for ‘‘Import my preferences for this

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: Preference Manifests and "Raw" Preferences 160

application,’’ and it should be checked by default. Leave it checked, because that
indeed is what we wish to do.

NOTE: If you de-select ‘‘Import my preferences for this application,’’ this is an indication that
you’d like Workgroup Manager to import any preference manifests it can find inside the
application bundle. Feel free to try this on applications you’d like to manage, but, as we’ve said
before, very few applications ship with pre-defined preference manifests.

Figure 10-10. Importing “raw” preferences for an application

In either case-----selecting the application itself, or selecting its preference .plist file-----
we want to set this as an initial default, but allow users to change it later if they want.
Therefore we’ll manage these imported preferences ‘‘Once.’’

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: Preference Manifests and "Raw" Preferences 161

NOTE: If you wanted to keep this setting all the time, you might be tempted to set the
management to ‘‘Always,’’ but you may find that doesn’t work as expected. Few applications----
and very few third-party applications----respond properly to being managed ‘‘Always.’’ You’ll
have to experiment to determine if a given application can be managed ‘‘Always.’’ For those
that cannot, managing the preference ‘‘Often’’ is your best bet.

Ideally, the advantage of managing a preference “Always” is that the user is prevented from
changing the preference’s value. But applications that support managing a preference “Always”
may not properly disable the related GUI controls. Don’t rely on that behavior—always test.

You might have noticed a disabled option in the dialog in Figure 10-10— ‘‘Import as ByHost
preferences.’’ If you take a look in your ~/Library/Preferences/ByHost folder, you’ll see
preferences for a subset of the software installed on your computer. These are items that have
preferences not only for each user, but for each computer that the user may use. ‘‘ByHost’’
preferences are designed for use with network home directories (where the user can access
the same home directory from multiple computers). They allow users to have different
preferences on different computers. Even if your users don’t have network home directories,
these preferences still exist, and may need to be managed.

If the software you want to manage supports ByHost preferences (and if it does, it will almost
certainly have a existing preference file in the user’s Library/Preferences/ByHost
folder), you can use this option to manage those preferences as well.

Click ‘‘Add’’ to import the preferences into Workgroup Manager. You’ll see a new
com.apple.TextEdit item in the list of preference domains. Double-click it so we can
examine it. If you expand the ‘‘Once’’ dictionary, you should see a single key named
RichText, with its value set to False. Figure 10-11 shows the result.

Figure 10-11. Imported com.apple.TextEdit preferences

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: Preference Manifests and "Raw" Preferences 162

You can now apply these managed preferences to any user, group, computer, or
computer group you manage.

NOTE: If you change your mind about the management frequency—for example, if you
imported some preferences as ‘‘Once,’’ but later decide it would be better to manage them
‘‘Often’’—you can cut and paste entries to move them from one management frequency to
another.

If you’d like, you can now move the original com.apple.TextEdit.plist file from your
desktop back into your Library/Preferences folder, restoring your original preferences.
(Make sure TextEdit isn’t running when you do this!)

We really got lucky with this example. We started with a clean slate, opened TextEdit,
made our configuration change, and quit TextEdit right away. When we imported the
preferences into Workgroup Manager, we got only the single preference we wanted to
manage. You will rarely be that lucky. Usually, along with the preferences you are
interested in, you will also import a bunch of other preferences that just happen to be in
the .plist file, but aren’t among the preferences you want to manage. In that case,
you’ll have to examine all of the imported preferences and delete those you do not want.
This can be tedious and confusing-----all the more reason to give yourself a little help by
starting with an empty preferences file as we did in this example.

Third-Party Applications
So far, we’ve limited ourselves to managing Apple software. But we’ve claimed that you
can also manage third-party applications, as long as they store their preferences in
Apple .plist files. So let’s look at an example.

Many applications attempt to check for updates for themselves. For home users, or
computers that are unmanaged (meaning it’s up to the primary user of the computer to
manage it), this can be a helpful feature. But in a managed environment, applications
that check for and notify the user of available updates can be an annoyance. If the user
does not have administrative rights, they can’t apply the update anyway, so it’s
annoying to the user. And it can be annoying to the administrator as well, as they field
calls from users asking why application ‘‘WhizBang’’ hasn’t been updated to the latest
and greatest.

Presumably, as an administrator, you want to control the timing and availability of
updates. Updates should be tested before mass deployment, and there may be reasons
that a certain update should not be deployed at this time.

So if you are managing application updates, it’s helpful to configure applications to not
check for updates. This saves bandwidth (so all your machines aren’t individually
checking over the Internet for each application’s updates), and administrator time (not
having to respond to each user’s questions about the update notices).

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: Preference Manifests and "Raw" Preferences 163

Let’s use VideoLAN Client as an example. VideoLAN Client (also known simply as
‘‘VLC’’) is a popular open-source media player that handles many audio and video
formats not handled by QuickTime Player. It can check for updates on each launch.
Since it stores its preferences in a .plist file, it is an excellent candidate for preference
management.

If you don’t already have a copy of VLC installed, go download and install one now. As
of this writing, the current version is 1.0.5, and comes on a ‘‘drag-n-drop’’ disk image.
As with our TextEdit example, it will be easier if we start with ‘‘clean’’ preferences. If you
have an existing org.videolan.vlc.plist file in your Library/Preferences folder, move
it aside temporarily by moving it to your desktop. Also move aside the VLC folder inside
Library/Preferences.

Launch VLC by double-clicking its icon in the Finder. If you truly did move aside any
previous VLC preferences, you should see a dialog asking if you want VLC to check for
preferences automatically, as in Figure 10-12.

Figure 10-12. VLC check for updates dialog

Click the ‘‘No’’ button, and then quit VLC.

NOTE: If you don’t see the dialog in Figure 10-12, choose ‘‘Check for Update…’’ from the VLC
menu, and then uncheck ‘‘Automatically check for updates’’ in the Check for Updates dialog.
Quit VLC.

In Workgroup Manager, again select an object (user, group, computer, computer group)
to manage, and then click the Preferences icon in the toolbar. Click the ‘‘Details’’ tab in
the Preferences view. Click the plus button to import some preferences.

As before, we can either select the VLC application, or navigate to our
Library/Preferences folder and select the org.videolan.vlc.plist file. For this
example, we’ll do the latter. We want to (as much as possible) enforce this setting all the
time, so we’ll choose ‘‘Often’’ as the management frequency. This will reset the
managed preferences to our desired values at least at every login if not more frequently.
(It’s possible that ‘‘Always’’ would work, but it’s rare for third-party applications to

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: Preference Manifests and "Raw" Preferences 164

respect this setting, so I didn’t even bother trying.) If, on the other hand, you just wanted
to turn off checking for updates by default, but also wanted to let users turn it back on if
they desired, you could choose a management frequency of ‘‘Once.’’ As seen in Figure
10-13, the management frequency choices appear in a pop-up menu labeled ‘‘Managed
imported preferences.’’

Figure 10-13. Importing VLC preferences

A new org.videolan.vlc item will appear in the list of preference domains. If
you double-click it and expand the ‘‘Often’’ section, it should look something like
Figure 10-14.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: Preference Manifests and "Raw" Preferences 165

Figure 10-14. Imported VLC preferences

This is probably a more typical example of what you’ll encounter when importing
preferences from an application than the TextEdit example. You’ll see that not only do
we get the preference we’re interested in (‘‘UpdateOnStartup’’), but also several
preferences we have no interest in managing. Just select each of the preferences you
don’t want to manage by clicking them, and delete them by clicking the ‘‘Delete’’ button,
or by simply pressing the Delete key on your keyboard. When you are done, you should
have only the ‘‘UpdateOnStartup’’ preference remaining, and it should resemble Figure
10-15. Click ‘‘Apply Now’’ to save your changes to the managed preferences.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 10: Preference Manifests and "Raw" Preferences 166

Figure 10-15. VideoLAN Client UpdateOnStartup preferences

As with the TextEdit example, you can now apply these managed preferences to any
user, group, computer, or computer group object. It probably makes the most sense to
apply these preferences to a computer group comprising all of your machines.

Summary
In this chapter, we looked at ways to use Workgroup Manager to edit managed
preferences beyond those exposed in the Preferences Overview. We demonstrated
importing preference manifests as a way of extending Workgroup Manager’s preference
editing abilities. The preference manifests included with ManagedClient.app add a huge
number of useful manageable preferences. Finally, we discussed importing ‘‘raw’’
preference files as a way to manage preferences for any application that stores its
preferences in Apple’s .plist format.

www.it-ebooks.info

http://www.it-ebooks.info

11Chapter

Recipes
In this chapter, we’ll present step-by-step ‘‘recipes’’ for accomplishing certain common
preference management tasks, and briefly discuss the rationale behind managing many
of these items.

We’ll first look at managing the Finder sidebar, as an example of preference
management used to improve the user experience by hiding items that are not relevant
to your organization.

Another reason systems administrators are asked to begin managing certain computer
preferences or settings is in the name of security. Organizations want to reduce the risk
of sensitive or confidential information being disclosed to the wrong individuals, and also
to protect the privacy of their employees. So the next set of recipes we present will
demonstrate configuring the login window, the screen saver, FileVault, and more to
make your managed Macs more secure.

Yet another common reason to manage preferences is to help users adhere to
organizational policies. Our example here will be iTunes. You can use managed
preferences to disable features of iTunes that may get your users into trouble.

In some cases, you’ll be managing preferences to help your users work better as a
team. The last recipe in this chapter demonstrates managing Microsoft Office 2008 to
save its documents by default in the older Office 97---2004 format. You might do this to
guide users toward a file format the majority of people in your organization can read and
write, especially if not everyone in your organization has been updated to the latest
versions of Office. Our look at managing Microsoft Office will also include turning off the
Auto Updater and Setup Assistants, again, to improve the end-user experience by
removing needless distractions.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 168

Finder Sidebar
For our first recipe, we’ll look at a task that falls under ‘‘user experience,’’ where an
administrator manages some preferences to help guide the users to better choices or
hide items that are not relevant in the current environment.

The Finder sidebar (Figure 11-1) contains a preset list of commonly used folders, drives,
and network locations that Apple feels are the most useful. However, many
administrators want to be able to manage it in a way that better suits their needs. The
administrator could add useful items for end-users, or remove the ‘‘Shared’’ section,
which tends to confuse many people with its visual clutter.

Figure 11-1. The Finder sidebar

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 169

The sidebar is pretty easily manually configured via preferences in the Finder itself
(Figure 11-2).

Figure 11-2. Finder sidebar preferences

While Workgroup Manager contains Finder preferences, it doesn’t have any
preconfigured way to manage the sidebar. We can add those preferences, though, by
importing them into Workgroup Manager. We show you how in the next section. This
way, if you want to manage these preferences for your fleet of Macintosh machines,
you’ll easily be able to.

i
www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 170

Adding Preferences to Manage the Finder Sidebar
First, open Workgroup Manager, select a user, group, or computer, and then choose
Preferences. This should bring you to the typical ‘‘Overview’’ panel (Figure 11-3). For our
purposes, we need to click the ‘‘Details’’ tab.

Figure 11-3. Workgroup Manager Details tab in Preferences

Click the ‘‘Add’’ button (the ‘‘+’’). In the resulting file open dialog, from your home
directory, choose the Library/Preferences/com.apple.sidebarlists.plist file and click
the ‘‘Add’’ button.

The new preference will be displayed in the details list. From there, you should edit the
imported preferences to match your needs by clicking the edit icon (the pencil,
underneath the list). Importing a .plist file will import the preferences as set in that
.plist file. If the .plist file you imported was in use by a user who had adjusted his or
her sidebar preferences, you’ll see this reflected in the values when you edit the list.

To remove only the ‘‘Shared’’ section of the sidebar, you’ll want to delete the
‘‘savedsearches,’’ ‘‘systemitems,’’ and ‘‘useritems’’ keys (listed under the ‘‘Name’’
column). Do so by highlighting the key to delete and clicking the ‘‘Delete’’ button at the
top of the panel, or by pressing the delete key.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 171

Expand the ‘‘networkbrowser’’ key and the ‘‘CustomListProperties’’ beneath that. There,
you’ll see three values that make up the ‘‘Shared’’ grouping in the Finder sidebar:
‘‘com.apple.NetworkBrowser.backToMyMacEnabled,’’ ‘‘com.apple.NetworkBrowser.
bonjourEnabled,’’ and ‘‘com.apple.NetworkBrowser.connectedEnabled’’ (Figure 11-4). If
all three values are set to False, the entire ‘‘Shared’’ grouping is not displayed.

Figure 11-4. Preferences that relate to the Finder’s Shared grouping in the sidebar

Once you’ve configured these preferences the way you need, click ‘‘Apply Now’’ and
then the ‘‘Done’’ button. You’ll likely want to copy these preferences out to be applied to
other groups.

Using Workgroup Manager, click the inspector tab (the bulls-eye target) and find the
user, group, or computer that you just applied this preference to. (The drop-down list
defaults to Users, but you can change it to Computers or Groups as needed.)

Once the user, group, or computer is selected, the list that you’re looking at will contain
a record named ‘‘MCXSettings.’’ This, unsurprisingly, contains the managed preferences
that you just applied. Highlight the MCXSettings record and click the ‘‘Edit’’ button.
You’ll be shown the plain-text XML version of the preferences. From here, they can be
copied and pasted into other records, on this local node or on a remote directory.

Login Window Preferences
The default appearance and behavior of the Mac OS X login window is not a good fit for
an enterprise environment. By default, when you take a Mac out the box, start it up, and
run through the Mac OS X Setup Assistant, automatic login is enabled for the account
created in the assistant. Automatic login is rarely a desirable setting in an enterprise
setting. But if you turn it off, you’ll see the next undesirable default: the login window
shows a list of users for the machine.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 172

A list of users is a friendly format for the login window and is very appropriate for a home
environment. It may also be appropriate in some other environments, like a primary
education setting where you’d like a child to be able to simply choose his or her name
(and picture) rather than having to remember and type a user ID. However, providing a
list of users at the login window violates a basic security concept-----given a list of valid
users, all an attacker needs to guess is a password. So most organizations will want to
set the login window to show the name and password text fields, requiring a potential
user of the machine to know both a valid user ID and the correct password.

To enforce the ‘‘name and password fields’’ format for the login window, you’ll use
Workgroup Manager to manage login window preferences for a computer or computer
group. (This preference cannot be managed for specific users or groups of users for
obvious reasons.) In the Preferences view, select the Login preferences. You’ll see a set
of controls like those in Figure 11-5.

Figure 11-5. Login preferences

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 173

Set the management to ‘‘Always.’’ Under ‘‘Style,’’ you’ll see the choice ‘‘Name and
password text fields.’’ That’s the one you want. While we’re on this panel, note the
‘‘Message’’ field. It’s a common requirement in enterprise environments for computers
to display a ‘‘pre-login’’ message. Here’s your place to specify that message if needed.

NOTE: If you need to discourage users from restarting or shutting down machines while at the
login window, you’ll see there are options for that in this panel as well.

We still need to turn off automatic login. To do so, select the ‘‘Options’’ tab near the top
of the pane. See Figure 11-6 for the result.

Figure 11-6. Login options

Make sure you set the management to ‘‘Always,’’ and then uncheck ‘‘Enable automatic
login.’’ While you’re here, take a moment to look at the other options and see if they
might be useful for your organization. ‘‘Show password hint’’ is not recommended for
security reasons; neither is ‘‘Enable guest account,’’ but your situation may require them.

The other three tabs in the Login preferences don’t control the look or behavior of the
login window, but are related to actions that happen at or immediately after login. The
controls in the ‘‘Access’’ tab can help you control which network users can log into a
computer or group of computers. The ‘‘Scripts’’ tab allows you specify a script to run at
login or logout, and the controls under the ‘‘Items’’ tab allow you to specify Login
Items-----the same type of items a user can specify in the Accounts pane in System
Preferences, or by control-clicking an item in the Dock and choosing ‘‘Open at Login.’’
Unlike the other login-related preferences, Login Items can be managed for users and
groups as well as computers and computer groups.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 174

Managing Bluetooth
If you have a need to turn off Bluetooth in your organization to prevent unauthorized
sharing of data over Bluetooth, Apple’s Managed Preferences can help you.

Bluetooth can be managed only at the computer or computer group level, not for users
and groups. You’ll find the relevant settings under the Network preferences overview.
Select the ‘‘Sharing & Interfaces’’ tab, set the management state to ‘‘Always,’’ and check
‘‘Disable Bluetooth,’’ as shown in Figure 11-7.

Figure 11-7. Disabling Bluetooth via Network preferences

As you can see, management of Bluetooth is limited and inflexible. If you just need
Bluetooth to be turned off by default, but you want to allow users to turn it back on if
actually needed, Apple’s preference management is of no help here. You’d need to
resort to a single-run script that turned Bluetooth off.

Implementing such a script is beyond the scope of this book, but one way to do this is
via a post-flight script in a payload-free Installer package.

The script might look something like this:

#!/bin/sh
this is designed to be run as a postflight script of a
payload-free installer package.
run this on Leopard or later, please.

turn off Bluetooth
BLUETOOTHDOMAIN="$3/Library/Preferences/com.apple.Bluetooth"
defaults write "$BLUETOOTHDOMAIN " ControllerPowerState 0
defaults write "$BLUETOOTHDOMAIN " DiscoverableState 0
defaults write "$BLUETOOTHDOMAIN " BluetoothAutoSeekHIDDevices -bool False

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 175

if ["$3" == "/"]; then
 # we're installing on the boot volume
 # restart bluetooth daemon to pick up our changes
 killall -HUP blued
fi

You can find a template for a payload-free package here:

http://managingosx.wordpress.com/2010/02/18/payload-free-package-template/

Security Preferences
The next set of recipes covers items that, if you were to configure them manually, would
be done via the Security pane in System Preferences. It is very common to manage at
least some of these in an enterprise environment because of their security focus. We’ll
look at managing screen saver activation under both Leopard and Snow Leopard,
enforcing FileVault-protected home directories, and implementing secure virtual
memory.

Screen Saver
Managing the screen saver is a common security step: many organizations would like
the screen saver to come on after a period of inactivity, but, more importantly, require a
password to clear the screen saver. This provides a measure of protection against
unauthorized people snooping around on an unattended computer.

In Leopard, after you add the preference manifests in /System/Library/
CoreServices/ManagedClient.app, a ‘‘Screen Saver (com.apple.screensaver.ByHost)’’
item becomes available in the Preferences Details editor in Workgroup Manager. But to
enforce requiring a password when clearing the screen saver, you’ll need to do a little
more work.

First, manually configure ‘‘Require Password’’ in the Security pane of System
Preferences. Next, import the com.apple.screensaver.xxxxxxxxxxx.plist file from
Library/Preferences/ByHost/ in the user home directory, making sure to de-select
‘‘Import as ByHost preferences’’ before importing. The result is two preference domains
for the Screen Saver in the Preferences Details view in Workgroup Manager. One will be
labeled ‘‘com.apple.screensaver (com.apple.screensaver),’’ and the other will be the
‘‘Screen Saver (com.apple.screensaver.ByHost)’’ preferences domain that is part of the
ManagedClient.app preference manifests. Figure 11-8 shows both preference domains
as they should appear in Workgroup Manager.

www.it-ebooks.info

http://managingosx.wordpress.com/2010/02/18/payload-free-package-template
http://www.it-ebooks.info

CHAPTER 11: Recipes 176

Figure 11-8. Screen Saver preferences

Double-click the com.apple.screensaver domain, and make sure it looks like
Figure 11-9.

Figure 11-9. com.apple.screensaver preferences

Finally, double-click the com.apple.screensaver.ByHost domain, and make sure it looks
like Figure 11-10.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 177

Figure 11-10. com.apple.screensaver.ByHost preferences

NOTE: The ManagedClient preference manifests (covered in Chapter 10) would lead you to
think that you needed to manage only com.apple.screensaver.ByHost, but in practice you’ll
need to manage both preference domains to get the password behavior you want under
Leopard.

Fortunately, this is more straightforward in Snow Leopard, and we’ll look at that shortly.

If you’d like to manage the actual screen saver module and the activation time, you
can do this in the com.apple.screensaver.ByHost domain, but you’ll have to do it
with a frequency of ‘‘Often.’’ ‘‘Always’’ doesn’t work, unfortunately. The downside of
managing these preferences ‘‘Often’’ is that users can change them during their current
login setting. They will be reset at the next login, however. An example is shown in
Figure 11-11.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 178

Figure 11-11. Managing the Screen Saver module and activation time

Managing the Screen Saver in Snow Leopard
Some of the quirks of managing the screen saver have been ironed out in Snow
Leopard, and some new options have been added.

First, if you are managing the ‘‘Require password’’ setting, you can import the
preference manifests from ManagedClient.app, and make your settings in the
com.apple.screensaver domain. There’s no longer a need to also manage the
com.apple.ByHost domain.

Secondly, Apple added a new feature to the Security preference pane to set a delay
after sleep or screen saver activation before the password is required. If you manage the
‘‘Require password’’ setting, you should also manage the delay. Unfortunately, the
imported preference manifests do not list the appropriate key for this.

To manage this preference, we begin by setting it manually in the Security preference
pane, as shown in Figure 11-12. By examining the com.apple.screensaver.plist file
after setting this preference manually, we can determine the key we’re looking for is
called ‘‘askForPasswordDelay.’’

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 179

Figure 11-12. Require password and its delay in Snow Leopard

In Workgroup Manager, choose the Screen Saver Loginwindow (com.apple.screensaver)
preference domain, and add the Require Password key. To manage the
askForPasswordDelay key, just add a new key, click its name, and choose Edit. This
allows us to add key names that aren’t in the preference manifest. You can type
askForPasswordDelay as the name of the key. Change its type to Integer, and for the
value, type the number of seconds you’d like as the delay before a password is required.
When you’re done, it should look like Figure 11-13. Note the ‘‘Name doesn’t match
preference manifest’’ warning-----we can ignore this since we added this key intentionally.

Figure 11-13. Managing the screen saver password and its delay

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 180

FileVault
Many large organizations require encryption of user data on mobile devices to decrease
the risk of sensitive data disclosure should a device be lost or stolen.

Mac OS X offers FileVault-----a technology that encrypts a user’s home directory via
encrypted disk images. This is not as comprehensive as a ‘‘whole-disk encryption’’
solution, one that encrypts everything on a startup disk. While FileVault does encrypt a
user’s home folder, users may still store sensitive data in other locations; for example in
/Users/Shared, or in other writable directories outside of their home directory. Whole-
disk encryption can cover these areas as well. But whole-disk encryption can also have
its downsides, and FileVault is often an acceptable and sometimes a preferable
approach. It certainly has the advantage of being included with the operating system at
no additional cost.

We’ll now present recipes for automating the creation of FileVault-protected home
directories for both mobile users and purely-local users.

FileVault for Mobile Users
If you are already managing mobile accounts (accounts that are locally-cached copies of
network accounts) on Mac OS X, it’s easy to also require that on creation, these
accounts are protected with FileVault.

In Workgroup Manager, select the user, group, computer, or computer group you wish
to manage, click the Preferences icon, and select the Mobility preferences. Under
Account Creation, click the ‘‘Options’’ tab, and you should see a set of controls like
those in Figure 11-14.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 181

Figure 11-14. Workgroup Manager Mobility Account Creation Options pane

Since these preferences are applied when creating mobile accounts, ‘‘Never’’ and
‘‘Always’’ are the only frequency options that make sense.

Checking ‘‘Encrypt contents with FileVault’’ causes all new mobile accounts to be
created with FileVault turned on-----the user is not given a choice in the matter.

In an enterprise environment, it is also common to use a managed FileVault master
password to allow password and data recovery if the account password is lost. In the
Action Creation Options pane, this password is referred to as a ‘‘computer master
password.’’ Selecting ‘‘Require computer master password’’ prevents the creation of
FileVault-protected accounts without a FileVault master password in place.
Unfortunately, there is no method using MCX to manage the actual FileVault master
password.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 182

Fortunately, it’s fairly simple to manage the FileVault master password without MCX.
Just set the master password on one machine, and then copy the following two files to
all your managed machines:

/Library/Keychains/FileVaultMaster.cer

/Library/Keychains/FileVaultMaster.keychain

Note that you must do this before creating any mobile accounts on a given machine;
adding or changing these files later does not retroactively change the FileVault master
password for an account created earlier.

FileVault for Local Users
If you are protecting mobile account data on laptops by using FileVault, it makes sense
to extend that protection to purely local accounts. Rather than making it an
organizational policy to be sure to turn on FileVault for all local accounts on laptops, you
want to use the managed preferences system to make it automatic, just like for mobile
accounts.

Unfortunately, Workgroup Manager provides no obvious way to enforce this particular
preference. But don’t worry-----you can manage this by importing preferences from the
System Preferences application.

You’ll need to use the ‘‘Details’’ view in the Preferences editor in Workgroup Manager to
directly manage specific preferences. This preference makes sense only at the computer
or computer group level (since you are managing a setting relevant to the computer as a
whole, and not a particular user). Choose a computer or computer group to manage,
click the Preferences icon in the toolbar, and then select the Details pane. Click the ‘‘+’’
button to add a new preference domain. Navigate to /Applications and double-click the
System Preferences app. The results should look something like Figure 11-15.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 183

Figure 11-15. Preferences imported for com.apple.systempreferences

Double-click the entry for com.apple.systempreferences and delete all the imported
keys-----you don’t want any of them, as none of them are related to managing FileVault.
Expand the ‘‘Always’’ dictionary, and add a new key called ‘‘com.apple.preferences.
accounts.forceFVForNewUsers’’ with a Boolean value of true. Figure 11-16 shows the
results.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 184

Figure 11-16. com.apple.preferences.accounts.forceFVForNewUsers key

Apply your changes, and log into a computer that is a member of the computer group
for which you are managing this preference. Open the Accounts pane in System
Preferences and attempt to create a new account. You should see that ‘‘Turn on
FileVault protection’’ is selected and disabled, as in Figure 11-17.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 185

Figure 11-17. Enforced FileVault for new local accounts

Secure Virtual Memory
If you are securing laptop user data with FileVault, you should consider securing the
virtual memory swap file. This file contains data temporarily swapped out from RAM, and
so could contain user data. Encrypting this file makes it less likely that a thief could find
anything of interest.

Again, Workgroup Manger does not provide an obvious way to manage this preference,
so you’ll need to use a technique similar to the one we used to manage FileVault for
local accounts. The preference domain is ‘‘com.apple.virtualMemory,’’ and the
preference key is ‘‘UseEncryptedSwap.’’

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 186

Via the command line, it looks like this:

dscl /Search mcxread /ComputerGroups/managed_laptops com.apple.virtualMemory

Key: UseEncryptedSwap

State: always

Value: 1

In Workgroup Manager, it looks like Figure 11-18.

Figure 11-18. Managing encrypted virtual memory

Managing iTunes
iTunes is an important part of the Mac experience, at least from Apple’s viewpoint. One
could argue that it has no place on a ‘‘business’’ computer, and you may be tempted to
remove it from all the computers you manage. With any luck, you and your organization
aren’t that draconian. So if you leave iTunes on your managed Macs, you may want to
manage certain features of iTunes to make it easier to support, or to disable functionality
that might be inappropriate for your organization. It’s not uncommon for organizations to
disable shared music, or block access to the iTunes Store, to prevent users from buying
and downloading music onto company-owned computers. If your organization has
usage policies that apply to applications like iTunes, you might want to manage at least
some iTunes preferences.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 187

When you import the preference manifests from /System/Library/CoreServices/
ManagedClient.app under Leopard or Snow Leopard, you get a preference manifest for
iTunes. It does contain a number of useful keys to manage, as shown in Figure 11-19.

Figure 11-19. iTunes preference manifest available preferences

But there are more preferences you can manage; you’ll need to add them manually from
the list in Table 11-1.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 188

Table 11-1. Additional iTunes Preferences to Manage

Preference Key Type Where to find in iTunes
preferences

Notes

allowiTunesUAccess Boolean Parental Control

disableAppleTV Boolean Apple TV

disableAutomaticDeviceSync Boolean Devices “Prevent … from syncing”

disableCheckForUpdates Boolean General See following note

disableDeviceRegistration Boolean Devices

disableGeniusSidebar Boolean General

disableGetAlbumArtwork Boolean Store

disableMusicStore Boolean Parental Control

disablePodcasts Boolean Parental Control

disableRadio Boolean Parental Control

disableSharedMusic Boolean Parental Control

gamesLimit integer Parental Control See following note

moviesLimit integer Parental Control See following note

restrictExplicit Boolean Parental Control

restrictMovies Boolean Parental Control

restrictTVShows Boolean Parental Control

ratingSystemID integer Parental Control “Ratings for:”

restrictGames Boolean Parental Control Content Restrictions:
Applications

tvShowsLimit integer Parental Control See following note

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 189

NOTE: If you set ‘‘disableCheckForUpdates’’ to true, this also turns off checking for
iPhone/iPod touch software updates and disables the ability to restore the software on an
iPhone/iPod touch (at least through iTunes version 9.1.1.)

The integer values for ‘‘gamesLimit,’’ ‘‘moviesLimit,’’ and ‘‘tvShowsLimit’’ are seemingly
arbitrary, but control the limits selected in the related pop-up menus in the iTunes Parental
Control preferences. Since what is displayed in these menus depends on which country’s
ratings system you are using, you will have to experiment with setting the values to what you
want using iTunes’ preferences dialog, and then using defaults read com.apple.iTunes
<preferencekey> to discover the value you need.

Even though many of these keys are not in the iTunes 7 preference manifest, you can
add them manually if you need to manage them. To add a key, click ‘‘Always’’ in the
Name column and click the ‘‘New Key’’ button. An item named ‘‘New Item’’ will appear
in the list. Click its name and a pop-up menu will appear-----choose the ‘‘Edit’’ item. Type
the name of the new key you’d like to add. Click the type to change the type to Boolean
or integer as applicable, and finally set the value as desired. Ignore the ‘‘Name doesn’t
match preference manifest’’ warning.

NOTE: We covered preference manifests in Chapter 10. They can help administrators discover
useful preference keys to manage, but they rarely contain every possible key you can manage.
If you add a key to the management list for a preference domain that is not in the preference
manifest (if there is one), you’ll see a warning. This warning doesn’t mean that what you are
trying to manage won’t work; it means only that the key is not in the manifest.

Figure 11-20 has an example of a preference manifest key and a manually added key.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 190

Figure 11-20. Adding an additional iTunes preference key with manifest warning

Managing Office 2008
So far, we’ve focused on managing preferences for elements of the operating system, or
Apple applications. But any application that stores its preferences as standard .plist
files in the user’s Library/Preferences folder is a candidate for management.

As an example, we’ll look at Microsoft Office 2008. Many of the Office 2008 applications
now use .plist files to store their preferences. (A major exception is Entourage, which
still stores a lot of its preferences in the monolithic Entourage database.) The use of
.plist files means we can use the managed preferences system to manage many of
Office 2008’s preferences.

Here are some Office 2008 preferences you might want to manage in an enterprise
environment:

 Default save file formats

 Microsoft AutoUpdate checks

 Office Setup Assistant

To manage these preferences, we’ll use Workgroup Manager to import the .plist files,
and then edit the MCX settings that result.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 191

Default Save File Formats
One of the management challenges with Microsoft Office is that different versions of
Office use different file formats. While newer versions of Office can usually read and
write the older file formats without issues, the converse is not true. Once you’ve
upgraded a few users to a newer version of Office, you may start running into support
issues because the users of the new version of Office are creating documents in the new
file format versions. Therefore, you might want configure the Office 2008 applications to
save to the older Office 97---2004 formats by default. This will maximize compatibility
with users in your organization who are still using older versions of Office.

Start by opening each application and making the preference changes you want, and
then quit each app in turn. So, open Microsoft Word; open its Preferences dialog, and in
the Save pane, set ‘‘Save Word files’’ to ‘‘Word 97---2007 Document (.doc).’’ See Figure
11-21 for an example.

Figure 11-21. Microsoft Word 2008 Save preferences

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 192

Click OK and quit Microsoft Word. Repeat with Excel and Powerpoint, making the
equivalent changes to the Save settings for these applications.

Microsoft AutoUpdate
If you are managing software updates for your organization, you may not want
AutoUpdate alerting your users as well.

Microsoft AutoUpdate can be found in /Library/Application Support/Microsoft/
MAU2.0/. Open it and set it to check for updates manually, as in Figure 11-22. This turns
off the automatic, periodic check. Now it will run only when a user specifically checks for
updates manually.

Figure 11-22. Microsoft AutoUpdate

Office Setup Assistant
Microsoft Office 2008 has a Setup Assistant that runs on first launch after installation.
This assistant walks the user through some initial setup tasks and prompts them
register, among other things. Presumably as the systems administrator, you’ve already
performed many or most of these tasks, and so do not want to bother your end-users
with this Assistant.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 193

After installing Office 2008, let the Setup Assistant run once (or run it manually from
/Applications/Microsoft Office 2008/Office/) and set things up as appropriate for
your organization. Then take our word for it that the preference you need to manage is
stored in ~/Library/Preferences/com.microsoft.office.plist under the key
‘‘2008\FirstRun\SetupAssistCompleted’’. We’ll import that .plist file in a moment.

Importing Office Preferences for Management
Now that we’ve manually configured our desired preferences for the various Office
applications, we’re ready to import them into Workgroup Manager so we can manage
them. Open Workgroup Manager and create a new computer group called ‘‘Office2008’’
(you may choose to do this at a workgroup level instead). Click the Preferences icon,
and then the ‘‘Details’’ tab.

Click the ‘‘+’’ button and import the following .plist files:

~/Library/Preferences/com.microsoft.Excel.plist

~/Library/Preferences/com.microsoft.Powerpoint.plist

~/Library/Preferences/com.microsoft.Word.plist

~/Library/Preferences/com.microsoft.autoupdate2.plist

~/Library/Preferences/com.microsoft.office.plist

You can’t import them all at once; you’ll need to import each .plist file one by one. As
you import each one, you are given the choice of importing the preferences as ‘‘Once,’’
‘‘Often,’’ or ‘‘Always.’’

Apple warns that ‘‘Always’’ may not work with third-party applications, and that ‘‘Often’’
is often the better choice. If you want your users to be able to change the default save
format, import the Word, Excel, and PowerPoint preferences as ‘‘Once.’’ The other two
you should import as ‘‘Often,’’ which causes MCX to re-apply the desired preferences at
each login.

When you are done importing, it should look like Figure 11-23.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 194

Figure 11-23. Imported Office preferences in Workgroup Manager

Unfortunately, when you import preferences this way, you get everything that’s currently
in the .plist file. Simply delete the preferences you aren’t interested in managing, but
be careful not to delete the ones you want to keep! If you make a mistake, just import
the original .plist file and try again.

The Word preferences after deleting everything except the default save format key are
shown in Figure 11-24.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 195

Figure 11-24. Managed Microsoft Word 2008 preferences

Managed preferences for Microsoft AutoUpdate are shown in Figure 11-25.

Figure 11-25. Managed Microsoft AutoUpdate preferences

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 11: Recipes 196

Here are the preference keys for the other Microsoft applications we’ve discussed:

com.microsoft.Excel:

2008\Default Save\Default Format

Value: 57

State: once

com.microsoft.Powerpoint:

2008\Default Save\Default Save\Default Format

Value: Microsoft PowerPoint 98 Presentation

State: once

com.microsoft.office:

2008\FirstRun\SetupAssistCompleted

Value: 1

State: often

Summary
We presented ‘‘recipes’’------step-by-step directions------for common preferences that
system administrators typically want to manage. These recipes can be used directly, but
we hope that they serve as guides for other preferences you want to manage.

Managing the items that appear in, and in appearance of, the Finder sidebar is an
example of preference management done to improve the user experience for your
organization.

Implementing security policies is another common use of managed preferences; we
presented recipes for more secure configurations of the login window, Bluetooth, the
Screen Saver, FileVault, and secure virtual memory.

Some organizations have ‘‘appropriate use’’ policies, where users are expected to use IT
resources in a manner appropriate for an organization. Managed preferences can help
users comply with these policies. We looked at some ways to restrict some of the
features of Apple’s iTunes application to help users comply with organizational policies.

Finally, we demonstrated using managed preferences to provide a better user
experience for Microsoft Office 2008 and to help avoid issues with file format
incompatibilities between different versions of Office. This is an example of using
Apple’s Managed Preferences framework to manage third-party applications.

www.it-ebooks.info

http://www.it-ebooks.info

12Chapter

Managing Mobile
Accounts
A very common use for managed preferences on Mac OS X is to manage mobile
accounts. In fact, it was precisely this need that caused one of your humble authors to
implement Local MCX in his organization-----he had previously managed a lot of things
through the use of various scripts that directly manipulated preference files. But a desire
to automate the creation of mobile accounts and the enforcement of FileVault protection
for these accounts led him to implement managed preferences. This then trickled down
and replaced most of the homegrown management scripts used earlier.

Apple has provided many useful controls for configuring and controlling the creation and
management of mobile accounts in their Managed Preferences framework. Many of the
things that are relatively straightforward to implement using Managed Preferences are
difficult if not impossible to implement any other way.

Chapter 11 contains several small, self-contained recipes for using managed
preferences to address common administrative tasks. This chapter can be thought of as
a bigger recipe devoted to a single subject, mobile accounts. We’ll explore using
managed preferences to simplify the creation of mobile accounts, the enforcement of
FileVault security, and the setup of HomeSync preferences. We’ll also discuss some of
the major choices to consider when implementing a management policy for mobile
accounts.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 198

Mobile Accounts Review
You may remember that a mobile account is a user account whose information
originates in a network directory service, but is cached in the local directory service. This
provides the benefits of a network account, such as centralized administration,
consistent access to internal network resources, and the same username and password
regardless of machine. However, since the account information is cached locally on the
machine, a user can still log in and use the computer even if it’s not connected to the
organization’s network. Changes in the network account information are synchronized
with the locally cached account, and vice versa.

Mobile accounts are especially useful on laptops, which, due to their nature, are
frequently not on the organization’s network. In the past, laptops were difficult to
manage with management systems that relied on a continuously available network
connection. This was less of a problem when laptops were relatively uncommon. But
today, laptops are a larger percentage of machines in many organizations, making it
increasingly important to develop and implement effective management strategies.
Because they may regularly leave the premises of your organization, laptops introduce
new things to worry about, making consistently managing these devices even more
important.

Prerequisites
There are certain prerequisites for mobile accounts. Most importantly, you must have a
network directory service already in place. In most cases, you’ll also want to have
network home directories available. Setting up a network account/network home
infrastructure is beyond the scope of this book. But if your organization already has in
place a network directory service such as Open Directory, Active Directory, or an
LDAPv3 directory, you should be able to configure mobile accounts, using this chapter
as a guide.

NOTE: For best results, if you are using an LDAPv3 directory you may need to extend the LDAP
schema to include the apple-generateduid attribute for all user objects (and index this attribute
as well!). Refer to Chapter 6 for more information about LDAP schema extension.

If, in addition, user accounts in the network directory service have network home
directories, you can also create ‘‘portable home directories,’’ in which a subset of the
network home is kept in sync with a local home directory.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 199

Definitions
Let’s step back a bit and discuss three terms that sometimes get mashed up: mobile
accounts, portable home directories, and HomeSync.

Mobile Accounts
The term ‘‘mobile accounts’’ refers to the actual account itself: a locally cached copy of
account information that originates from a network directory service. The local account
information is kept in sync with the network account information. Mobile accounts have
local home directories; these local home directories may or may not be synchronized
with a network home.

Portable Home Directories
Portable home directories is Apple’s term for local home directories that are
synchronized with a network home. They require a mobile account. Mobile accounts and
portable home directories can be of use even on desktop machines. Since they have a
local home directory, they are a solution for issues with applications that are not
compatible with network home directories. Local home directories can also provide a
performance boost, especially in organizations with slow networks.

HomeSync
HomeSync is the process that makes portable home directories possible. It keeps the
local home directory and network home directory in sync, using synchronization rules
that specify which folders to synchronize and any exceptions or exclusions. It can run at
login, logout, periodically in the background, and on user demand.

Manual Setup of Mobile Accounts
Let’s begin by walking through a manual setup of a mobile account, so that we can see
some of the issues around mobile accounts, portable home directories, and HomeSync.
We’ll start by assuming the client Mac is already connected to a network directory
service, and that network users are able to log in.

First, log in using a network account. While logged in, open the System Preferences
application and choose the Accounts pane. Unlock the pane by clicking the padlock in
the lower left corner and providing the credentials of an administrator. Figure 12-1
shows the result so far.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 200

Figure 12-1. Accounts pane with mobile account “Create…” button available

Next, click the mobile account ‘‘Create…’’ button. A dialog like the one in Figure 12-2
will appear.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 201

Figure 12-2. Mobile account creation dialog

A variety of options are now available, enabling you to

 Choose where to create the local home folder, if there are multiple
volumes available

NOTE: ‘‘Folder’’ and ‘‘directory’’ are synonyms in most cases; you’ll see these terms used
interchangeably in many contexts.

 Enable FileVault

 Specify the frequency of periodic synchronization, and whether
synchronization occurs at login and/or logout

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 202

 Choose to sync the entire home folder, or just a subset of folders in
the home

 Choose whether to show the HomeSync status in the menu bar

As we’ve just seen, we can create and configure mobile accounts manually, but there
are some issues. The first is that we need administrative credentials to unlock the button
that allows us to create a mobile account from the currently logged-in network account.
This might mean that you’ll need a support person to assist. Second, the number of
available options when creating a mobile account makes consistent setup difficult.
When mobile accounts are set up manually, they may not always be set up with the
same options. Finally, the controls for choosing which items are synchronized are not
very flexible. There is no way to specify exceptions to the synchronization; you can only
choose to sync the entire home folder, or a subset of the top-level folders within the
home folder.

To deal with some of these issues, you must turn to Managed Preferences. Managed
Preferences can help with mobile account setup and configuration, and they provide
more precise control of HomeSync options than is found in the Mobile Account
Preferences pane (shown in Figure 12-2) available to regular end-users.

Automatic Setup of Mobile Accounts
In an enterprise environment, manually setting up mobile accounts for every computer
that needs them would consume a lot of time and effort. This is the sort of task an
enterprise systems administrator would want to automate as much as possible. Using
Apple’s Managed Preferences is the best way to accomplish this goal.

Using Managed Preferences, we can configure a group of machines so that

 On first login with their network accounts, users are asked if they’d like
to create a mobile account.

 If the user agrees, a mobile account is created. The local home
directory is protected with FileVault.

 The mobile account is initially and consistently set up with
synchronization settings appropriate to our organization.

With such a configuration, we should no longer need a technician to configure mobile
accounts for our users; instead they should be able to log in to a new laptop and it will
be configured for them.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 203

Configuring Managed Preferences for Mobile Users
Before we begin actually setting up the managed preferences, we should take a moment
and decide exactly at what level we should manage these settings. One logical choice
would be to create a computer group containing all (or a subset of) the laptop
computers in your organization. With this configuration, we will be able to set things up
so that when any user logs into a laptop, he or she is prompted to create a mobile
account (or have a mobile account created without asking). If that same user logs into a
desktop machine, he or she will get his or her network home directory.

The other choice would be to manage mobile user preferences for a specific group of
users. For these users, no matter what computer they logged into, they would get a
mobile account (or at least the option to create one).

If your users log into only a single computer, and each computer has only a single user
(a ‘‘one-to-one deployment,’’ common in many businesses), both arrangements are
essentially the same, and you could choose to manage mobile accounts via computer
groups or groups of users.

If you assign laptops to certain users, but these same users occasionally log into
desktop machines, then managing mobile accounts via computer groups is probably a
better choice. This way they can have a mobile account when they log into their laptops,
but a network account and network home when they log into a desktop Mac.

With either arrangement, you can handle special cases by adding managed mobile
account settings to a specific computer or user account as needed.

For the discussions in this chapter, we’ll add our managed mobile account settings to
computer groups, but if a group of users makes more sense in your environment, feel
free to use that instead. You can also mix and match, but remember the rules of MCX
precedence: computer groups have a higher precedence than groups of users.

For maximum flexibility, we’ll separate our mobile account settings into three groupings.
Each of these groupings will be assigned to a separate computer group or group of
users (depending on your preference):

 Mobile Account Creation: These are the preferences that control the
initial creation of mobile accounts. These can be managed only
‘‘Never’’ (that is, not managed at all) or ‘‘Always.’’

 Mobile Account Expiration: These are preferences that allow you to
automatically remove mobile accounts from a machine after a certain
amount of time. Like the Account Creation settings, these can be
managed only ‘‘Never’’ or ‘‘Always.’’

 Home Synchronization settings: These dictate what gets synchronized
and when. Sync rules can be managed ‘‘Never,’’ ‘‘Once,’’ or ‘‘Always.’’

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 204

Depending on your environment and users, you may not need all of these groupings.
The advantage of having these separate groupings is that you could, for example, make
mobile account creation mandatory on one group of machines, optional, but still
managed, on another group of machines, and completely manual on another group of
machines. For all of these machines, though, you could manage synchronization in the
same way, so that if a mobile account is manually created on a desktop machine, it
behaves the same way as a mobile account automatically created on a laptop. Having
separate computer groups for these preference groupings allows you to more easily mix
and match preference management for different sets of machines.

Let’s take a deeper look at each grouping of managed preferences.

Mobile Account Creation
In Workgroup Manager, start by creating a computer group named
‘‘MobileAccountCreation.’’ Switch to the Preferences Overview by clicking the
Preferences icon in the toolbar. See Figure 12-3 for an illustration.

Figure 12-3. Workgroup Manager Preferences Overview

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 205

In the Preferences Overview, click the Mobility icon. The pane will change to a set of
managed preferences editors, as shown in Figure 12-4. If necessary, select the
‘‘Account Creation’’ and ‘‘Creation’’ tabs.

Figure 12-4. Mobile Account Creation preferences editor

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 206

Choose to manage these preferences ‘‘Always,’’ and select ‘‘Create mobile account
when user logs in to network account.’’ Now the choices begin:

 If ‘‘Require confirmation before creating mobile account’’ is checked,
the user will be asked if he or she wants to create a mobile account
when the user logs in using his or her network account. If you’d like
the account to be automatically created without asking, uncheck this.

 The ‘‘Show ‘Don’t ask me again’ check box’’ allows users to turn off
the mobile account confirmation dialog for future logins. If they don’t
check ‘‘Don’t ask me again,’’ or you don’t enable this option, users will
be asked at every network login if they want to create a mobile
account.

 If you select ‘‘Create home using: network home and default sync
settings,’’ when a mobile account is created, the local home will be
created based on the current contents of the network home and the
Mac OS X default sync settings will be applied (if no other sync
settings are managed). This is a good choice if you plan to support
portable home directories.

 Selecting ‘‘Create home using: local home template’’ causes the local
home to be set up the same way a home directory is initially set up for
new local-only users. Unless you have managed synchronization rules,
there will be no home synchronization. This is the option to choose if
you do not want the local home synchronized with a network home.

NOTE: Consider carefully the consequences of your choices in this pane. In our environment,
we require confirmation on creation. This allows the primary user of a laptop to create a mobile
account, but also allows other users, especially support personnel, to be able to log in without
necessarily creating a mobile account. On the other hand, creating a mobile account without
confirmation on laptops is probably the right thing to do most of the time, and avoids either an
extra call to the help desk or the end-user making the ‘‘wrong’’ choice.

If you are managing the creation of mobile accounts in user groups instead of computer
groups, you could have a group of ‘‘regular’’ users who get a mobile account automatically
when logging in, and, for your group of tech support personnel, require confirmation before
creating a mobile account.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 207

Once you’ve made your choices here, click the tab control labeled ‘‘Options.’’ You’ll see
a set of controls like those in Figure 12-5.

Figure 12-5. Mobile Account Creation Options pane

We discussed the FileVault options in Chapter 10, so we won’t repeat them here. If you
do choose to encrypt with FileVault, since the contents of the local home are stored in a
disk image, an option to restrict the size becomes available. You can restrict the size to
either a fixed number of megabytes, or a percentage of the network home quota. This
can be useful as a way to prevent the local home from growing too large to completely
sync with the network home. When we look at the synchronization rules, we’ll also see
another strategy for dealing with potentially large local homes: excluding certain folders
from the synchronization.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 208

The last set of choices here is the location of the local home. By default, the local home
is created in the familiar Users folder of the startup disk. But you can specify an alternate
path. For example, if you’ve partitioned the internal disk on all your Macs so there are
multiple volumes, you could force the creation of the mobile account’s home folder on a
secondary partition. Such an arrangement makes it easier to ‘‘wipe and reinstall’’ a
problematic machine without affecting user data, since the user data is stored on a
different partition from the OS and applications.

The final choice in this set prompts the user to choose the volume for the home. The
pop-up menu allows you to let the user choose any volume, or you may restrict the
choices to any internal volume or any external (or removable) volume. Choosing an
external volume adds an interesting new wrinkle. This type of mobile account, that is,
one where the home folder is created on a removable volume, is called an ‘‘external
account.’’ This allows a user to store the home folder and account information on a
removable drive-----a FireWire or USB disk, or even a USB keychain drive. This can be a
useful arrangement in an education environment, where the sheer number of students or
the network infrastructure makes traditional network home directories problematic. For
example, each student is supplied (or is required to purchase) his or her own USB
keychain drive. The students connect their drives to managed computers, log in, and
have access to their data. No matter which computer they use, their home directories
are available, and when they leave the school, they can take their data with them.

If you want to force the creation of external accounts, select ‘‘user chooses: any external
volume’’ for the home folder location. If you do use external accounts, give some
thought to the security implications. Since it’s trivial to access anything on an external
disk, you may want to consider using FileVault to secure the contents of the home
directory on the external volume. On the other hand, in an education environment, using
FileVault might be more trouble than it is worth.

Once you’ve made all your choices for mobile account creation, click the ‘‘Apply Now’’
button. If you’ve made the same choices as we’ve shown in Figures 12-4 and 12-5, any
computers added to the MobileAccountCreation computer group will have the following
behaviors:

 Network users will be asked if they want to create a mobile account
upon login.

 Users can check the ‘‘Don’t ask me again’’ check box if they don’t
want a mobile account and don’t want to be asked again in the future.

 The local home will be created based on the contents of the network
home, and the default synchronization settings will be used.

 The local home will be encrypted with FileVault, and the FileVault
master password will be used if it is set. (Setting a FileVault master
password for all your machines was covered in Chapter 10.)

 The local home will be created on the startup volume.

 The size of the local home will not be restricted, and could grow to fill
the startup volume.

x
www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 209

Mobile Account Expiry
If you’ve configured your machines to create a mobile account for each network user as
he or she logs in, and your users often move from machine to machine (as is common in
an education or training environment), you may be faced with the problem of multiplying
mobile accounts. Over time, as your users use different machines, they leave copies of
their mobile accounts on each machine they use. In the worst case, eventually every
machine has a mobile account for every user in your organization, filling up the startup
disks on every machine. Obviously, this is not an ideal situation. Prior to the release of
Mac OS X Leopard, administrators had to deal with this situation on their own, writing
scripts to clean up, or visiting each machine to remove old mobile accounts.

With Mac OS X Leopard, Apple added a new feature to the management of mobile
accounts: Account Expiry. Let’s explore this feature.

Using Workgroup Manager, create a new computer group called
‘‘MobileAccountExpiry.’’ Switch to the Preferences Overview and select the Mobility
preferences. Refer back to Figure 12-3 if you’ve forgotten what the Preferences
Overview looks like. After selecting the Mobility preferences, select the ‘‘Account Expiry’’
tab, and click ‘‘Always’’ in the choices to manage ‘‘Never,’’ ‘‘Once’’ (which is dimmed), or
‘‘Always.’’ See Figure 12-6 for an example.

Figure 12-6. Mobile Account Expiry options

The options here are easy to understand; you can choose the number of hours, days, or
weeks after which a mobile account will be deleted, and choose to delete only after a
successful sync with the network home. This last option can help prevent user data
loss-----a mobile account that did not have a successful sync may have the only copy of
some user data, so deleting it would cause that data to be lost. Note that this option
does not mean that a sync will be attempted before deletion; instead it means that it
considers the status of the synchronization that occurred when the user was last logged
in. Consider using this option especially if you are very aggressive in deleting mobile

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 210

accounts. If, on the other hand, you wait weeks before deleting old mobile accounts, it
may be less important to ensure a successful sync before deletion.

Mobile account expiry may not be applicable to your organization at all. If you have a
one-to-one deployment, where each machine has a single primary user, mobile account
expiry is probably not needed.

Managing Home Synchronization
The last group of settings we can manage for mobile accounts deals with the
synchronization of the local home directory and the network home directory.

Before we delve into the details of managing home synchronization, we should cover
some general concepts.

There are two sets of file system items that are synchronized-----preferences, and
everything else in the home folder. In Workgroup Manager in Mac OS X 10.6, these sets
are referred to as ‘‘Preference Sync’’ and ‘‘Home Sync,’’ respectively. There are four
times synchronization can happen: at login, logout, periodically in the background, and
when manually started.

NOTE: Originally (in Mac OS X 10.4), the preference set was synced only at login and logout,
and everything else was synced during periodic and manual syncs. So in some documentation
and in older versions of Workgroup Manager, you may see ‘‘Login & Logout Sync’’ used
interchangeably with ‘‘Preferences Sync,’’ and ‘‘Background Sync’’ used interchangeably with
‘‘Home Sync.’’

Since preference files are typically read by an application when it first launches, and are
not written until the application quits, syncing these during periodic background syncs is
not likely to have the desired effect for applications that are open when the sync occurs.
Preference files and other files an application keeps open are best synchronized when
they are not in use. Since no user-level applications are in use during the login and
logout processes, this is an ideal time to synchronize these items.

Why not just synchronize everything at login and logout, since presumably no
application is using files in your home at these times? While this might be a safe
strategy, it increases the amount of time needed at login and logout, leading to a poorer
user experience. Apple’s strategy is to sync as much as possible during periodic
background syncs so the user does not notice; then use login and logout syncs to
synchronize only what is absolutely necessary in order to speed up the login and logout
process. Keep that in mind if you decide to change what is synced at login and logout.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 211

Each set of synchronized items-----the ‘‘Preference Sync’’ set and the ‘‘Home Sync’’ set-----
is specified by two lists, a list of folders to be synchronized, and a list of exclusions. You
can use managed preferences to specify the contents of these lists and thus customize
exactly what is synchronized.

You can also use managed preferences to specify how often background syncs occur,
and which sets (‘‘Preference Sync’’ and ‘‘Home Sync’’) are synchronized at login, logout,
in the background, and manually.

NOTE: These options are available in Mac OS X 10.6. If you are using Mac OS X 10.5 or earlier,
you have less precise control over these combinations.

All of the options available through managed preferences allow you great flexibility
in customizing home synchronization. However, the controls available to the end-
user are much more limited, as we saw in Figure 12-2 when configuring a mobile
account manually. This means that if you want to allow the user to be able to make
changes to the Mobile Account preferences, you may not be able to use some of the
managed preferences options, because doing so will either prevent user changes, or
cause what the user sees in the Mobile Accounts preferences dialog to not match the
effective settings, leading to user confusion, and in the worst case, data loss, as we’ll
explain next.

Synchronization Management Strategies
To deal with some of the issues just raised, we can recommend four possible strategies
for managing synchronization.

 Stick with the defaults: The first strategy is to specify no managed
synchronization settings at all, and to rely on Mac OS X’s default
behavior. With each release of Mac OS X, Apple has refined the
default sync rules, and in Mac OS X 10.6 ‘‘Snow Leopard,’’ the default
rules are a very good starting point for many organizations. Some of
the advantages of this approach are the following:

 The end-user is free to customize the synchronization behavior
using the Mobile Account Preferences dialog, available from the
Accounts pane in System Preferences. Refer to Figure 12-2 for
an example of this dialog.

 Settings in the Mobile Account Preferences dialog are certain to
match the effective settings; there’s less likelihood of user
confusion about expected synchronization behavior.

And a big disadvantage is

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 212

 There is no way to add exclusions to the sync rules. For
example, if you’d rather not synchronize all of your users’ iTunes
music libraries, you have no way to exclude the Music folder
other than politely asking your users to turn synchronization off
for that folder.

 Set initial sync rules only (Manage ‘‘Once’’): This strategy relies on
managing the synchronization preferences ‘‘Once.’’ This is actually
similar to the first strategy, with the added advantage that you get to
customize the synchronization rules that the user starts with.

You must be careful with the initial sync rules; it is possible to specify initial sync
rules that cannot be properly displayed in the Mobile Account Preferences dialog.

A major disadvantage is that if you later discover you need to add
additional exclusions, or add additional folders to the synchronization
lists, this can be difficult to do without erasing any changes made by
the user. (Recall that if you change a managed preference that is
managed ‘‘Once,’’ it is reapplied to all computers and/or users.) Later,
we’ll show an advanced technique to deal with this issue.

 Manage sync rules ‘‘Always’’: With this strategy, you take away the
ability of the user to customize the synchronization rules. You take
complete responsibility for managing the sync rules. In this case, you
don’t have to worry about the relationship between what is displayed
in the Mobile Account Preferences dialog and the actual behavior,
though it still might be confusing or frustrating to your users. When
you manage the rules ‘‘Always,’’ the controls in the Mobile Account
Preferences dialog will appear disabled to indicate that they are not
modifiable by the user.

 Manage some rules ‘‘Once’’ and some ‘‘Always’’: In theory, this could
be the best strategy. You could add certain organization-specific
changes to the exclusion lists, and even update them as needed,
managing these ‘‘Always.’’ The initial list of folders to synchronize
could be managed ‘‘Once,’’ allowing the users to modify the list if they
would like.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 213

However, in practice, not all combinations you can make with
Workgroup Manager lead to configurations that provide good user
feedback in the Mobile Account Preferences dialog. For example, let’s
say you added ~/Music to the Home Sync exclusion list, managed
‘‘Once,’’ to turn off sync of the iTunes library. No indication of this
setting would appear in the Mobile Account Preferences dialog. Your
users might then assume their Music folder was being synchronized,
and might be confused (or worse) when they discovered it was not.
You’ll need to very carefully select which preferences to manage
‘‘Always,’’ which to manage ‘‘Once,’’ and test their interaction with the
Mobile Account Preferences dialog to make sure your managed
settings don’t lead to user confusion or frustration.

Table 12-1 shows how some of the combinations of managing some preferences
‘‘Once,’’ and other preferences ‘‘Always’’ affect the availability of controls in the Mobile
Account Preferences dialog.

Table 12-1. How Mobility Rules Management Affects the Mobile Accounts Preferences Dialog

Workgroup Manager Mobility Rules Mobile Account Preferences Behavior

 Preferences Sync Home Sync Options

Manage: Once Once Once All controls enabled

Manage: Always (Merge
with user’s
settings selected)

Once Once Sync at login/logout checked, but
inaccessible

Manage: Always Always Once Only sync frequency and menu bar
status available

Manage: Always Always Always All controls disabled

Managing Synchronization Preferences Walkthrough
Let’s do a step-by-step walkthrough of setting managed preferences for mobile account
synchronization. We’ll use the strategy of managing some rules ‘‘Once’’ and some
‘‘Always.’’ This is the most complex of the suggested strategies-----if you choose to
implement one of the simpler strategies you should be able to follow this and make
some simpler choices.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 214

Using Workgroup Manager, start by creating a computer group named ‘‘HomeSync.’’
Add one or more computers to this group for testing. Figure 12-7 shows an example.

Figure 12-7. HomeSync computer group in Workgroup Manager

Switch to the Preferences Overview by clicking the Preferences icon in the toolbar. Click
the Mobility icon to go to the editors for mobile account preferences. Select the ‘‘Rules’’
and ‘‘Preference Sync’’ tabs, as shown in Figure 12-8.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 215

Figure 12-8. Preference Sync settings

Select ‘‘Manage: Always.’’ Since there is no end-user interface for changing the settings
for preference sync, if you manage this, you might as well manage it always. For this
walkthrough, we’ll leave everything here with its default value(s). If you have applications
that create temporary files, caches, or indexes in ~/Library that should not be
synchronized, you would add exclusions to the ‘‘Skip items that match any of the
following’’ list. But for now, click ‘‘Apply Now’’ and select the ‘‘Home Sync’’ tab. The
view should change to match Figure 12-9.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 216

Figure 12-9. Home Sync settings

Again, set the management frequency to ‘‘Always’’ and leave everything else at its
default value(s). Click ‘‘Apply Now’’ and then click the ‘‘Options’’ tab, which should
change the view to match Figure 12-10.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 217

Figure 12-10. Synchronization options

For this group of preferences, we want the user to be able to change the
synchronization frequency and remove the HomeSync menu from the menu bar if
desired, so we’ll manage this set of preferences ‘‘Once.’’ Set the background sync time
to 20 minutes, and check ‘‘Show status in menu bar.’’ Click the ‘‘Apply Now’’ button.

Log in with a mobile account into a computer that is a member of the HomeSync
computer group you just created. The Mobile Accounts Preferences dialog should look
something like Figure 12-11.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 218

Figure 12-11. Mobile Accounts Preferences dialog, part of System Preferences/Accounts

The dialog does a fair job of reflecting the current managed settings. You can alter the
periodic sync time, but cannot deselect login and logout sync, as these are managed
‘‘Always.’’ The list of folders to synchronize looks like it could be changed, but if you
click the ‘‘Only selected folders’’ radio button, you’ll see that all of the subfolders are
selected, but disabled.

What if we’d like the user to be able to modify more items in this dialog? For
example, what if we’d like the user to be able to select only a few folders in his
or her home for synchronization instead of the entire home? One solution would
be to manage the Preference Sync items ‘‘Always,’’ and manage the Home Sync
items either ‘‘Never’’ or ‘‘Once.’’ If we are using the default settings, ‘‘Once’’ gets
us the same place as ‘‘Never,’’ but if we need to customize the exclusion list, we’ll
want to use ‘‘Once.’’ See Figure 12-12.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 219

Figure 12-12. Setting Home Sync management to “Once”

Once we apply these changes and refresh preference management on our test machine
(we can use mcxrefresh, or just restart), we should see that a user can now change
which folders are synced as part of the Home Sync, as shown in Figure 12-13. Note that
when ‘‘Only selected folders’’ is chosen, that ‘‘Library’’ is selected, but disabled. This is
because the Library folder is part of the managed Preferences Sync, and so the user
cannot modify synchronization for that folder.

Note also that the Mobile Account Preferences dialog does not display the exception
list. This can lead to user confusion. If you were to add ~/Pictures to the exclusion list,
the contents of the user’s Pictures folder would not be synced with the network home.
Yet there would be no indication of this in the Mobile Account Preferences dialog. The
user could choose to sync the home folder, or a set of specific folders including the
Pictures folder, yet the invisible-to-the-end-user exclusion list would cause the
Pictures folder to be excluded from synchronization. For this reason, you should be
careful about adding items to the exclusion list that could cause confusion or possible
data loss.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 220

Figure 12-13. User modification of Home Sync folders

Limitations of Workgroup Manager’s Preferences
Overview
When using the Apple-provided preference editors, all of the settings on a single ‘‘page’’
are managed as a group. This is important to remember, especially when managing
certain preferences ‘‘Once.’’ Recall that if you make changes to a group of preferences
managed ‘‘Once,’’ they are applied once again.

Here is a specific example. In Figure 12-12, we managed the Home Sync settings
‘‘Once.’’ We specified ‘‘~’’ as the sync folder, and we had a list of exclusions. If we apply
these preferences ‘‘Once,’’ the users are able to alter the list of folders to sync. Perhaps
they decide they don’t want to sync the entire home folder, and use the Mobile
Accounts Preferences dialog (shown in Figure 12-13) to set synchronization only for their
Desktop and Documents folders.

Later we determine that we need to add an item to the Home Sync exclusion list: we
have an application that creates lock files for its documents, and the names of these
lock files end with ‘‘.lockfile’’. If we add this exclusion to the exclusion list, as seen in
Figure 12-14, and then apply these changes, the user who had set a list of synced
folders to only the Desktop and Document folders will find the list reset to sync the entire
home folder.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 221

Figure 12-14. Adding an item to the exclusion list

The list of folders to sync is replaced because all of the preferences in Figure 12-14 are
managed together as a set, and when you update one, they are all reapplied. This is
probably not what we wanted. We probably intended for a change in the exclusion list to
be applied by itself, leaving other settings alone. To get the flexibility we desire, we need
to do a little more upfront planning and leave the comfortable world of the Preference
Overview and its Apple-supplied preference editors.

What we want is to manage the list of synced folders and the exception list separately.
We can do that by separating these settings into two computer groups.

Previously, we created a computer group named ‘‘HomeSync.’’ Return to the Accounts
editor in Workgroup Manager and create a new group called ‘‘HomeSyncExclusions.’’
To this group add the same computer or computers that are members of the HomeSync
computer group.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 222

Switch to the Preferences Overview, and select the Mobility preferences. Select the
‘‘Rules’’ and ‘‘Home Sync’’ tabs, and manage these settings ‘‘Once.’’ It should look the
same as Figure 12-12, when we were editing the preferences in the ‘‘HomeSync’’
computer group. Click ‘‘Apply Now,’’ and then the ‘‘Done’’ button.

Using the Preference Details Editor
Click the ‘‘Details’’ tab. It should now look something like Figure 12-15.

Figure 12-15. Workgroup Manager Preferences Details pane

NOTE: If the Preferences Details pane doesn’t look anything like Figure 12-15, you probably
haven’t yet imported the preference manifests from Managed Client.app. For a review on
importing a preference manifest, refer back to Chapter 10 (and please do so before continuing).

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 223

We’re going to do some detail editing of the Home Sync preferences, so double-
click the ‘‘Home Sync’’ entry. The details editor should look like the one shown in
Figure 12-16.

NOTE: The gray circle with a white mouse pointer is an indication that there are some
preferences already defined for that category. These were defined when we used the
Preferences Overview Mobility editor.

Figure 12-16. Home Sync preferences detail

We’re interested in managing only the exclusion list, so delete everything except
‘‘Managed Background Sync Exclusions.’’ The result appears in Figure 12-17.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 224

Figure 12-17. Edited preferences list

Click the ‘‘Apply Now’’ and ‘‘Done’’ buttons. To complete the division of the preferences,
select the original ‘‘HomeSync’’ computer group, switch to the Preferences Details
editor, and remove ‘‘Managed Background Sync Exclusions’’ from the ‘‘Once’’ section of
the ‘‘Home Sync’’ preferences. The result should resemble Figure 12-18. The exact
contents might vary; the important thing is to ensure the ‘‘Managed Background Sync
Exclusions’’ are removed.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 225

Figure 12-18. Edited Home Sync preferences

We now have two computer groups with managed preferences for Home Sync. One
contains most of our Home Sync settings except for the exclusion list. The second
group contains just the exclusion list. We can now update the exclusion list without
worrying that it will reset other Home Sync choices made by our users.

This points out a general strategy when managing preferences ‘‘Once.’’ The editors
available via the Preferences Overview group sets of preferences together. If you think
you may need to update a subset of these preferences without affecting user choices
made for other items in this group of preferences, you should not use the editors in the
Preferences Overview. Instead, you should use the Preferences Details editor and target
the specific preferences you want to manage, instead of a larger group of related
preferences.

NOTE: You must also use the Preferences Details editor if you want to manage some items in a
preference group ‘‘Once,’’ and some ‘‘Always.’’ With the editor in the Preference Overview, all
the items in a particular group can be managed only one way: ‘‘Never,’’ ‘‘Once,’’ or ‘‘Always.’’
Using the Preference Details editor gives you more precise control.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 12: Managing Mobile Accounts 226

Once you’ve edited preferences with the Preference Details editor, there’s no going
back. If you try to edit the same preferences again with the Preferences Overview
editors, you’ll almost certainly undo your hard work.

Summary
Apple’s Managed Preferences give you ways to manage mobile accounts that are
difficult, if not impossible, to do any other way. You can use Managed Preferences to
make it possible for end-users to create mobile accounts for themselves without the
need for tech support assistance.

Other managed preferences can be utilized to enforce FileVault, cause mobile accounts
to be created on removable media, and even limit the disk space used by the mobile
home folder. Administrators can also automate the removal of old mobile accounts
created on lab machines or other multi-user machines.

Managed preferences can be used to control the synchronization of the local home
directory with the network home. You can control which folders are synchronized, how
often the synchronization occurs, and specify exceptions to the synchronization.

Finally, we looked at ways to use advanced features of Workgroup Manager to provide
more precise control over managed preferences to allow you to manage as much as
possible while still allowing the end-user the ability to make changes. These strategies
have uses outside of managing mobile accounts, and can be used for detailed
management of other items.

www.it-ebooks.info

http://www.it-ebooks.info

13Chapter

Troubleshooting Managed
Preferences
Whenever you start working with a new piece of software, be it a word processor, a
video editor, a programming language, or a systems management framework, like
Apple’s Managed Preferences, you may run into problems.

Sometimes the problems you encounter will be of your own making-----you
misunderstand a feature, or you have not yet learned the proper way to accomplish a
certain task. To fix these problems, you just need to do some more learning: re-read the
documentation, find better documentation, ask for help on an Internet forum, or take a
training class.

Sometimes the problems will be the fault of the software or its documentation-----a
feature doesn’t really work as described, or wasn’t properly implemented. You might be
able to confirm the bug with the software vendor, or at least with other users of the
same software. You then may need to figure out workarounds for these problems, or
how to avoid the situations that trigger them.

Other problems fall somewhere in the middle: you may discover that the software wasn’t
really designed to do the thing you want it to do. Depending on your point of view, that
might be a problem with your understanding, or a problem with the design of the
software. In any case, you may find you’ll have to turn to other tools to accomplish the
thing you have in mind.

If you’ve read the book this far, we hope you now have a pretty good idea what Apple’s
Managed Preferences tools can do and what they can’t. If you understand what Apple’s
Managed Client tools were designed for, you’ll be able to avoid the problem of ‘‘wrong
tool for the job.’’ We also hope we’ve helped you develop a useful mental model of how
Managed Preferences work. And as we’ve discussed various features and strategies,
we’ve attempted to point out some potential pitfalls and problems you might encounter.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 13: Troubleshooting Managed Preferences 228

In this chapter, we’ll show you where to look and what to look for when things aren’t
working as you’d expect.

Troubleshooting Triage
If you’ve managed or administered computer systems for a while, you may have
developed some basic high-level troubleshooting techniques that help you quickly
narrow down where to look for the source of a problem. Many of those same high-
level techniques can help when troubleshooting Managed Preferences problems.
So let’s review a few now. Steps 1 and 2 are depicted in Figures 13-1 and 13-2,
followed by step 3.

Triage Step 1: Did It Ever Work?

Figure 13-1. Triage step 1: Did it ever work?

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 13: Troubleshooting Managed Preferences 229

Triage Step 2: Machine- or User-Specific?

Figure 13-2. Triage step 2: Machine- or user-specific?

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 13: Troubleshooting Managed Preferences 230

Triage Step 3: Simplify
Another important technique when triaging a problem is to simplify:

 Try to eliminate all other factors and reproduce the problem in as
simple a manner as possible. Applied to managed preferences, this
could mean creating a new user or computer object and managing a
single preference. If you can verify that it works as expected, you can
systematically add additional managed preferences into the mix until it
breaks. This can help you discover a preferences interaction that is the
cause of your undesired results.

 On the other hand, if it still doesn’t work when boiled down to its
simplest elements, you’ve probably encountered a bug, either in the
software or in your understanding of the software.

You might be surprised how often stressed systems administrators skip the high-level
triage steps and get lost in the details, sifting through logs and checking anything and
everything they can think of, without taking a breath, stepping back, and doing some
steps to narrow down the places to look.

Examining Delivered Managed Preferences
Let’s assume you’ve done your troubleshooting triage and have narrowed down your
areas of investigation. You believe it to be a problem with a certain managed preference.

Most managed preferences problems fall into one of two categories:

1. The managed preference is not being delivered to the machine/user.

2. The managed preference is not behaving as you expect.

To determine which type of problem you have, the first thing you’ll want to do is
examine what managed preferences, if any, are currently in effect on the computer with
the problem you are troubleshooting. If you can confirm the managed preference you
are troubleshooting is actually in effect, you probably have the second kind of problem.
Otherwise, your problem falls into the first category. You have two main tools for
examining which preferences have been delivered to your computers: mcxquery and
System Profiler, both of which were introduced and discussed in Chapter 8. Refer back
to that chapter for a quick refresher, if needed. Let’s look at them again right now in the
context of the two problems.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 13: Troubleshooting Managed Preferences 231

mcxquery
The first tool is run from the command line on the troublesome computer: mcxquery. If
you call it without any additional options, it will return all the managed preferences data
in effect for the current user, current workgroup, and current computer-----in other words,
all the managed preferences currently in effect.

> mcxquery
com.apple.virtualMemory
 UseEncryptedSwap securevm

(Computer
Group)

often 1

com.microsoft.autoupdate2
 HowToCheck office2008

(Computer
Group)

often Manual

com.microsoft.Excel
 2008\Default Save\Default Format office2008

(Computer
Group)

once 57

com.microsoft.office
 2008\FirstRun\SetupAssistCompleted office2008

(Computer
Group)

often 1

com.microsoft.Powerpoint
 2008\Default Save\Default Save\Default Format office2008

(Computer
Group)

once Microsoft
PowerPoint 98
Presentation

com.microsoft.Word
 2008\Default Save\Default Format office2008

(Computer
Group)

once Doc97

Here we can easily see (among other things) the Office 2008---related managed
preferences that are in effect for the current user of this machine. So we know at least
that some managed preferences are being delivered.

For each managed preference, you are given information on what directory service
record the data is coming from, the management frequency, and the value of the
preference. In this example, the Office 2008 managed preferences are coming from the
‘‘office2008’’ computer group. If we expected to see Office 2008 preferences, but did
not, we’d then want to check to make sure the current computer was a member of the
‘‘office2008’’ computer group.

If the current user did not have the Office 2008 preferences we expected, the output of
mcxquery might show us a managed preference interaction we weren’t aware of or had
forgotten.

NOTE: We covered managed preference interactions in Chapter 8, ‘‘Compositing Preferences.’’

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 13: Troubleshooting Managed Preferences 232

Managed Preference Interaction Example
Here’s an example of a managed preference interaction. Let’s say user John Doe kept
having the Microsoft AutoUpdate application notify him of available Office updates. As a
non-admin user, he has no way to install these, so he finds the notifications just
annoying. (And he’s starting to wonder why you, the systems administrator, haven’t
already taken care of these updates!) Worse, even though every time it comes up he
sets it to check only manually, it keeps getting reset to check automatically. As the
administrator, you thought you had managed preferences for all your machines to
disable automatic checking for Office updates, and indeed, no one else is reporting this
issue. So to begin troubleshooting, let’s check the managed preferences for John.

> sudo mcxquery –user jdoe

com.microsoft.autoupdate2
 HowToCheck jdoe

(User)
often Automatic

 WhenToCheck jdoe
(User)

often 1

com.microsoft.Excel
 2008\Default Save\Default Format office2008

(Computer
Group)

once 57

com.microsoft.office
 2008\FirstRun\SetupAssistCompleted office2008

(Computer
Group)

often 1

com.microsoft.Powerpoint
 2008\Default Save\Default Save\Default Format office2008

(Computer
Group)

once Microsoft
PowerPoint 98
Presentation

com.microsoft.Word
 2008\Default Save\Default Format office2008

(Computer
Group)

once Doc97

We quickly see that there is managed preferences data in John Doe’s user record in the
directory, and the com.microsoft.autoupdate2 settings in his user record take
precedence over those in the office2008 computer group. With this new information, we
can now delete the managed preferences for com.microsoft.autoupdate2 in John Doe’s
user record to allow the preferences we want to take effect. We can use Workgroup
Manager or dscl to make these changes; most likely you’ll use the same tool you use to
create and edit all of your managed preferences data.

System Profiler
The other tool you can use to examine managed preferences data on a client machine is
Apple’s System Profiler application. You’ll find this application in the /Applications/
Utilities folder on your startup disk. One of the many pieces of data it can retrieve for
you is Managed Client information, which is an Apple term for what we’ve been calling
managed preferences. (You may remember that ‘‘MCX’’ apparently stands for ‘‘Managed

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 13: Troubleshooting Managed Preferences 233

Client for OS X’’.) Figure 13-3 shows some of the same Office 2008 managed
preferences data we were looking at with mcxquery.

Figure 13-3. System Profiler displaying managed preferences data

If you’re paying close attention, you’ll notice that the ‘‘com.microsoft’’ managed
preferences displayed in System Profiler are a subset of those returned by mcxquery.
Further investigation shows that only items managed ‘‘often’’ or ‘‘always’’ are shown
here. Items managed ‘‘once’’ might appear, but only during the login session during
which they were initially applied.

NOTE: We covered preference management frequencies----‘‘Never,’’ ‘‘Once,’’ ‘‘Often,’’ and
‘‘Always’’----in Chapter 9.

Though perhaps easier to use than mcxquery, System Profiler gives less complete data.
Still, it can be a quick and convenient way to confirm that managed preferences are at
least being delivered to the machine. You should not rely on the data from System
Profiler as definitive; use mcxquery for a more accurate view of managed preferences.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 13: Troubleshooting Managed Preferences 234

NOTE: System Profiler (and its command-line equivalent, system_profiler) has an
additional limitation. System Profiler actually displays only the preferences cached in
/Library/Managed Preferences. If you have deleted these while troubleshooting,
System Profiler may display ‘‘No information available’’ when asked to show Managed
Client data. Generally, a restart will repopulate the contents of /Library/Managed
Preferences. mcxquery does not rely on this cached data; instead it gets its information
from the directory service.

MCX Caching
In Mac OS X 10.4 Tiger, some frequently seen problems with managed preferences were
caused by MCX caching. Tiger cached MCX preferences locally for performance
reasons. Occasionally, changes to managed preferences on the directory server were
not immediately applied to local machines because the local machine was still using
cached settings. Administrators could clear the local MCX cache with a special
command:

sudo /System/Library/CoreServices/mcxd.app/Contents/Resources/MCXCacher –f

This command flushes the local cache, forcing the machine to re-read its managed
preferences data from the network directory service, and causing the cached data to
match the data available from the directory service.

The MCXCacher command was removed in Mac OS X 10.5 Leopard. In Leopard and
Snow Leopard, MCX is cached only for offline use, and not for performance. According
to Apple, when the managed preferences directory service is available, the MCX cache
is not used. Therefore, clearing the cache should almost never be needed. But theory
rarely matches practice. If, as part of troubleshooting, you want to remove any locally
cached MCX data, you can do the following (where <localcomputerrecord> corresponds
to the local computer record):

sudo dscl . -delete /Computers/<localcomputerrecord>

This does not clear cached MCX data for mobile accounts. If you have any users with
mobile accounts on the machine you are troubleshooting, you can clear the cached
MCX data for those accounts by deleting the ‘‘MCXSettings,’’ ‘‘MCXFlags,’’ and
‘‘cached_groups’’ attributes from the mobile account record. You can use dscl for this
task, but be careful.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 13: Troubleshooting Managed Preferences 235

CAUTION: Do not use dscl to delete the /Computers/<localcomputerrecord> from the local
directory service if you are storing your managed preferences data in the default local directory
node, as described in Chapter 7. In this configuration, the data in the local directory’s
/Computers objects is not a cache, but the actual data itself!

In Snow Leopard, there is a ‘‘localhost’’ computer record in the local directory service. Don’t
delete that record.

Likewise, be extra careful when using dscl to delete MCX attributes from mobile accounts. A
typo could easily delete the entire user record.

Troubleshooting Local MCX
Since storing managed preferences data in the local directory service is a special
configuration, there are a few special troubleshooting techniques that do not apply to
more traditional network directory configurations. We discuss them here.

No Managed Preferences Data
One of the more common issues you might see with Local MCX, especially when you
are first setting it up, is that no managed preferences data is being applied. You can see
this with mcxquery or System Profiler-----neither will show managed preferences data.
Here are some things to check.

Directory Service Search Path
If you are using a non-default local node, like /Local/MCX instead of /Local/Default, did
you remember to add the node to the Directory Service authentication search path? See
Chapter 6 if you don’t recall how to do this.

You can use Directory Utility, or the dscl command to check:

dscl /Search read / SearchPath

(The space between the forward slash and ‘‘SearchPath’’ is important.)

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 13: Troubleshooting Managed Preferences 236

Local Computer Record
If you are managing preferences at the computer or computer group level, is there a
local computer record with the current machine’s Ethernet ID?

Here’s how to find a computer record for the current machine. First, get the Ethernet ID
for the machine:

> ifconfig en0 | awk '/ether/ {print $2}'
00:26:4a:0a:61:62

Next, use dscl to search for a computer record with that value for the ENetAddress:

> dscl /Search search /Computers ENetAddress 00:26:4a:0a:61:62
local_laptop ENetAddress = (
 "00:26:4a:0a:61:62"
)
local_laptop ENetAddress = (
 "00:26:4a:0a:61:62"
)

There appear to be two computer records with this machine’s Ethernet ID, both named
‘‘local_laptop’’. Let’s find out which directories they are in:

> dscl /Search read /Computers/local_laptop dsAttrTypeStandard:AppleMetaNodeLocation
AppleMetaNodeLocation: /Local/Default
AppleMetaNodeLocation: /Local/MCX

One record is in /Local/Default, and the other is in the /Local/MCX node (I’m using an
alternate local node, as described in Chapter 7, under ‘‘Advanced Local MCX’’). Since
the MCX framework caches computer data in a computer record in the /Local/Default
node, this is expected. In fact, if our applicable computer record was on a network
directory service, we’d still have a local cached copy in the local directory service in
/Local/Default.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 13: Troubleshooting Managed Preferences 237

NOTE: The fact that the currently active computer record is cached in the default local node
(unless you are storing MCX data for computers and computer groups there) suggests another
way to check the computer record.

First, list the computer records in the default local node:

> dscl . list /Computers

local_desktop

localhost

In Snow Leopard, the operating system creates a localhost record, so we can ignore that for
now. So our cached local computer object must be called ‘‘local_desktop’’. We can use dscl
to find out where it was cached from:

> dscl . read /Computers/local_desktop

dsAttrTypeStandard:OriginalNodeName

OriginalNodeName: /Local/MCX

So the original ‘‘local_desktop’’ record is in the /Local/MCX directory node, and is being
cached in /Local/Default. If your managed preferences data is coming from a network
directory service, you’d see the name of that service:

OriginalNodeName: /LDAPv3/od.pretendco.com

OriginalNodeName: /Active Directory/ad.pretendco.com

Of course, as the systems administrator, you probably won’t have to go through all
these gyrations to find the local computer record, since presumably you are the one who
created it! Just look in the same place you created it and verify it has the right Ethernet
ID, as in Figure 13-4.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 13: Troubleshooting Managed Preferences 238

Figure 13-4. Local computer record with our Ethernet ID

If you can’t find a functional computer record for the current machine, you’d better
create one, or add the correct Ethernet ID to one. With any luck, as in Chapter 7, you
have a script for just that purpose.

Wrong or Old Managed Preferences Data
Another commonly encountered issue is wrong or old managed preferences data on a
particular machine. Remember that in this configuration you are storing managed
preferences data in a node of the local directory service. In other words, the data is just
.plist files in directories under /private/var/db/dslocal/nodes/. So the most common
reason for wrong or old MCX data is that updated versions of these .plist files have not
been pushed out to the current machine via whatever file/software delivery mechanism
you have: Puppet, Radmind, ARD, a package-based installer, or whatever. Or, equally
likely, you have old data here that used to be managed, but that has been forgotten or
abandoned.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 13: Troubleshooting Managed Preferences 239

To fix this issue, make sure your file/software delivery mechanism is running and has
delivered the latest versions of the appropriate .plist files. If your file/software delivery
mechanism doesn’t clean up old data, you may need to do it manually.

This actually brings up another point: if you are using a file or software delivery
mechanism to update your Local MCX data, Directory Service may not see your
changes right away, and the managed preferences in effect will not update right away,
either.

To make Directory Service re-read the .plist files and pick up any changes, issue this
command:

> sudo killall DirectoryService

This causes Directory Service to quit and relaunch. Upon relaunching, Directory Service
will re-read all the .plist files in the local directory nodes.

NOTE: Our technical reviewer assures us that ‘‘killall --HUP DirectoryService’’ works as well in
most cases, and avoids terminating the Directory Service process.

Even after forcing Directory Service to re-read all its local data, managed preferences
settings that you have changed may not be applied until the current user logs out and
back in.

NOTE: This behavior is not unique to Local MCX. Most managed preferences changes don’t
take effect until the next login, or until mcxrefresh is executed.

mcxrefresh
This brings us to a new tool introduced in Mac OS X 10.6 Snow Leopard, mcxrefresh. As
we’ve mentioned, under normal circumstances, new or updated managed preferences
don’t usually take effect immediately. In many cases, changed managed preferences are
not applied until the next login. If you are testing some changes to managed
preferences, it can be tedious and time-consuming to log out and back in after each
change you make. You can use mcxrefresh to force a client to re-read its managed
preferences from the server (or directory service) without needing to log out and back in.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 13: Troubleshooting Managed Preferences 240

The syntax is simple:

sudo mcxrefresh –n usershortname
sudo mcxrefresh –u <uid>

mcxrefresh must be run as root or via sudo. If your managed preferences data is coming
from an Active Directory server, add the –a flag, which will ask for authentication to pass
to Active Directory:

sudo mcxrefresh –n shortusername –a

If there are no errors, mcxrefresh just silently returns without printing anything to the
Terminal.

Most mcxrefresh error messages are pretty easy to understand:

> sudo mcxrefresh -n freddykrueger
2010-03-31 16:50:43.303 mcxrefresh[322:903] mcxrefresh: unable to locate 'freddykrueger'
2010-03-31 16:50:43.307 mcxrefresh[322:903] mcxrefresh- returned error status 3

(There is no user named ‘‘freddykrueger’’ in the available directories.)

> sudo mcxrefresh
2010-03-31 16:51:16.706 mcxrefresh[351:903] mcxrefresh- requires uid or username
parameter
2010-03-31 16:51:16.709 mcxrefresh[351:903] mcxrefresh- returned error status 1

(You forgot to pass a username or uid.)

There is one error that’s a little less obvious:

> sudo mcxrefresh -n gneagle
Wed Mar 31 16:50:55 macbookpro.pretendco.com ManagedClient[324] <Error>:
kCGErrorFailure: Set a breakpoint @ CGErrorBreakpoint() to catch errors as they are
logged.

This actually isn’t an error from mcxrefresh; it’s coming from ManagedClient, yet another
Mac OS X process that deals with managed preferences. Some clues about what
triggers this error are the names kCGErrorFailure and CGErrorBreakpoint(). The ‘‘CG’’ in
each of these names refers to CoreGraphics, one of the subsystems of OS X. A little
experimentation shows us that this error is generated if you run mcxrefresh and give it
the name or uid of a user who isn’t currently logged in at a GUI session. If I log in at the
login window as ‘‘gneagle’’ and run the command again, it returns quietly:

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 13: Troubleshooting Managed Preferences 241

> sudo mcxrefresh -n gneagle
>

A quiet return like this is a good sign. Managed preferences data has been successfully
refreshed for user gneagle.

One More Thing…
If using mcxrefresh doesn’t work, or you’re working with a Mac OS X 10.5 machine
(which doesn’t have mcxrefresh), there is one more option. In Chapter 8, we talked
about MCXCompositor. MCXCompositor composites or brings together an aggregate of
all preferences from all sources that are applied to the machine or users of that machine.
It then stores the result in /Library/Managed Preferences. We’ve seen cases where this
cache of data is a bit more tenacious than it should be. Since this is ultimately where
Mac OS X is deriving its preference information from (for the specific cases that the
Managed Preferences override), if /Library/Managed Preferences has old or incorrect
data, you’ll see behavior other than you’d expect.

You may find that you’ve updated Managed Preferences at the source-----in other words,
in a directory-----but a user is saying that the previous behavior still exists, even after a
logout and login. In this case, don’t be afraid to wipe the contents of /Library/Managed
Preferences and then reboot. The contents of this directory will be regenerated by
MCXCompositor.

NOTE: Be sure to run mcxrefresh (if available) or reboot after clearing the contents of
/Library/Managed Preferences. If you don’t, managed preferences will not be in effect.

If this is happening often, you can use mcxquery to see if the changes you expect are
reflected in the cache at /Library/Managed Preferences. Often, though, it’s not worth
the trouble, as this tends to be a rare condition. If this does happen more than once to
users of a particular machine, deeper investigation is warranted into other subsystems
(e.g., have you run a disk check lately?).

Summary
In this chapter, we looked at some troubleshooting strategies and tools to use when
investigating the cause of a managed preferences problem. We described some high-
level troubleshooting steps one can do to narrow down the number of places to look.
We demonstrated the use of both mcxquery and the System Profiler application to
determine which managed preferences are being applied to a given client machine.

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 13: Troubleshooting Managed Preferences 242

Next, we looked at the special problem of troubleshooting managed preferences data
stored in the local directory store (Local MCX) and gave tips on troubleshooting that
somewhat unique configuration.

Finally, we wrapped up with a quick examination of the mcxrefresh tool, which can help
troubleshoot a problem faster by allowing you to test newly changed managed
preferences on a client machine without taking the time to log out/in or reboot.

www.it-ebooks.info

http://www.it-ebooks.info

Index

■A
Absolute Manage, 112

Active Directory, 11, 71–89

binding Mac OS X clients to, 72–73

creating LDIF file to be imported, 83–87

extending schema, 74–83

indexing attributes, 88

managing preferences in, 88–89

Active Directory, 19, 21

Active Directory Application Mode (ADAM),

74

ADAM (Active Directory Application Mode),

74

administrative privileges

and preference changes, 135

preventing for regular users, 145

administrator account, hidden, 121

Always option, 138

Apple, adding attributes to Active Directory

schema, 74

Apple Remote Desktop, 7, 112

Apple schema, adding to OpenLDAP, 90

Apple Software Update Server, 7

Apple tools for client management, 7

Apple's Developer Tools, 14

<array> XML/Plist type, 30

augmented records, 26

authentication, OpenLDAP for, 96

automounter, 94

■B
bash shell scripting, 100

BBEdit, 14

binary format

for .plist files, 35

for .plist files, converting, 39

binding Mac OS X clients

to Active Directory, 72–73

to Open Directory, 68

to OpenLDAP, 91–96

BSD/local, 24

ByHost folder, 31

■C
cache of composited preferences, 126

Casper Suite, 8, 112

central directory

MCX delivery without, 98–99, 101

resources on setup, 19

centralized systems for data storage, 18

Centrify DirectControl, 21

Cfengine, 146

Chef, 146

client management, 1

client management alternatives, 5–8

Apple tools, 7

open source tools, 7

scripting, 5–7

third-party commercial software, 8

closing tags, 33

Cocoa framework, 30, 44

243
www.it-ebooks.info

http://www.it-ebooks.info

Index 244

com.apple.MCX.plist file, 137

combined managed preferences, 123

command-line utilities for property list

files, 39–43

company policy, 2

preference management frequency, 142

complete.plist, 129

composited preferences

cache of, 126

viewing with System Profiler, 132–33

computer accounts, creating, 104

computer groups

adding managed preferences, 109

creating, 107

managed preferences for, 103

computers, Managed Preferences applied

to, 12

configd daemon, 10

configuration management, 7

configuration of managed preferences

enforcing, 144

protecting, 145

container types, 29

copying files to multiple OS X machines,

112

cron, 6

■D
data types in defaults command, 42

<data> XML/Plist type, 30

<date> XML/Plist type, 30

defaults command, 66

defaults command-line tool, 12, 40

deleting the /Library/Managed Preferences

folder, 130

Desktop Picture entry, 155

<dict> XML/Plist type, 30

dictionary, 156

creating .plist file, 44

dictionary tag, 34

directories

LDAP interface for, 59

listing, 61

Workgroup Manager prompts for

authentication, 120

directory service, 49

use of new node, 116

directory services, 67

Active Directory, 71–89. See also Active

Directory

basics, 17–19

and managed preferences, 12, 19

forcing re-read of managed

preferences, 130

Open Directory, 68–71

directory services configuration, 22–26

local only, 22

multiple network directory services, 25

network directory service, 23

Directory utility, 23

locking down access to, 147

documentation for preference manifest file

format, 158

domain name for OpenLDAP, 91

dscl command, 60–66, 127

to read MCXSettings attribute value, 63

to read records, 61

DSLocal, 22

dynamic group membership, 113

■E
enforcing managed preferences, 135

frequency, 135–39

Enterprise Mac Administrator's Guide

(Edge, Smith & Hunter), 100

/etc/openldap/schema/ directory, 90

Ethernet ID field, 105

exception list, for synchronization, 219

www.it-ebooks.info

http://www.it-ebooks.info

Index 245

exclusion list, for synchronization, 219

exit codes for dscl command, 63

external account, 208

■F
<false> XML/Plist type, 30

filesystem management, 7

FileVault, 2

FileWave, 8, 112

frequency for managing preferences, 135–

39

choosing, 140–44

functions, removing unused, 3

■G
Generated UID, 51, 111

Group Policy, 11

Group Policy Objects (GPO), 19

groups

dynamic membership, 113

hierarchy, preferences and, 125

local, 103

Managed Preferences applied to, 12

■H
headers, .plist files, 33

hidden administrator account, 121

home synchronization, 210–11

HomeSync, 199

■I
importing

LDIF file, 88

preference manifests, 154

“raw” preferences, 158–62

indentation in .plist files, 33

indexing for LDAP, 90

inetd daemon, 6

inheritance, 123

<integer> XML/Plist type, 30

interactions of managed preferences, 123–

24

IP address

for local computer record, 106

for OpenLDAP, 91

■K
KACE Management Appliance, 8, 112

keys

in .plist files, 29, 34

reading from .plist file, 41

■L
LANrev, 8

laptops

local directory services on, 22

mobile accounts on, 198

launchd daemon, 6, 10, 32

.plist file header from, 34

LDAP (Lightweight Directory Access

Protocol), 20, 21. See also

OpenLDAP

indexing for, 90

interface for directories, 59

LDAP Data Interchange Format (LDIF), 74

LDAP Schema Analyzer tool, 74

LDIF (LDAP Data Interchange Format), 74

creating file to be imported to Active

Directory, 83–87

importing file, 88

return character in file, 86

/Library/Managed Preferences folder, 126

deleting, 130

Library/Preferences folder, 31

Likewise Enterprise, 21

Linux Documentation Project, 100

list command (dscl), 61

Load Base Schema dialog box, 76

www.it-ebooks.info

http://www.it-ebooks.info

Index 246

local admin account, creating, 120

local computer account, script to create,

111

local computer object

IP address for, 106

for managing preferences, 103

local desktop account, 113

local directory services, 98

implementing managed preferences in,

102

.plist files for data, 111

Workgroup Manager for managing, 54

local directory services, 22

local groups, 103

local home, location for mobile account,

208

local laptop account, 113

local MCX, 99, 101–7

checklist, 112

issues, 114

local nodes, searching before network, 117

local record, 51

Local/Default, 24

/Local/MCX node, creating user in, 121

localhost record, 106

login, applying managed preferences at,

137

login account, 121

login hooks, for running scripts, 6

login items, for running scripts, 6

Login managed preferences editor, 150

login window

configuration, 32

preferences, 109

loopback address, 106

■M
MAC (Media Access Control) address, 31

for searching LDAP, 88

Mac machines, pre-OS X, 9

Mac OS X machines

binding to Active Directory, 72–73

binding to Open Directory, 68

copying files to multiple, 112

directory services supported, 20–22

local store or central directory service,

19

manageability support, 10

scalability, 11

Macintosh Manager, 10

manageability, 9

managed preferences

configuring for mobile users, 203

for mobile account synchronization,

213–19

Managed Preferences (MCX), 1, 10

adding to computer group, 109

in alternate directory modes, 115–21

delivery without centralized

directory, 98–99, 101

and directory services, 19

enforcing configuration, 144

extending to other machines, 110

location, 49–51

protectng configuration, 145

settings managed with, 13

tools. See dscl command; Workgroup

Manager

workflow for creating, storing and

deploying, 66

ManagedClient.app, importing preference

manifests from, 154

MCXCCacheGraph errors, 115

MCXCompositor, 126–30

mcxdelete command, 65

mcxedit command, 65

mcxexport command, 65

MCXFlags attribute, 51

mcximport command, 65

mcxread command, 64

mcxset command, 64

www.it-ebooks.info

http://www.it-ebooks.info

Index 247

MCXSettings attribute, 51

dscl to read value, 63

Media Access Control (MAC) address, 31

memory, altering .plist files in, 46

Microsoft Group Policy, 11

mobile account expiry, 209–10

Mobile Account Preferences dialog, 211,

217

mobile accounts, 22

automatic setup, 202

basics, 198

configuring managed preferences, 203–

4

creating, 204–8

local home location, 208

managing synchronization preferences,

213–19

manual setup, 199–202

prerequisites, 198

term definition, 199

■N
nested groups, 103

network nodes, searching local nodes

before, 117

/Network/Library/Preferences, 32

Never option (managing preferences), 136

NIS, 21

NSArray class, 30

NSData class, 30

NSDate class, 30

NSDefaults, .plist file header from, 34

NSDictionary class, 30, 35

reference resource, 47

NSNumber class, 30

NSString class, 30

NSUserDefaults, 40

■O
Objective-C bridge, 44

Often option (managing preferences), 137

Once option (managing preferences), 136,

220–22, 225

one-off tags, 33

Open Directory, 4, 20, 68–71

accessing directory, 70

binding Mac OS X clients to, 68

open source tools for client management,

7

opening tags, 33

OpenLDAP

adding Apple schema, 90

binding Mac OS X to, 91–96

delivery with, 90

operating system, and directory services, 17

organization-specific settings, preference

management and, 141

overriding managed preferences, 124

■P
parent objects, 87

performance, searching local and network

nodes, 117

Perl, 44

.plist format. See property list files

plist tag, 34

PlistBuddy, 42

plutil, 39

policy framework, 9

portable home directories, 199

precedence of preferences, 124–25

predictability, client management for, 2

Preference Details Editor, 222–26

preference manifests

documentation for file format, 158

importing, 154

working with, 155–57

www.it-ebooks.info

http://www.it-ebooks.info

Index 248

preferences

delivery of, 4

saving, 31

preferences details editor, 155

Preferences Overview, 149–53

limitations, 220–22

PrimaryGroupID attribute, 51

/private/var/db/dslocal/nodes/ directory,

multiple local nodes in, 116

Property List Editor.app, 12, 14, 36–39

creating property list from scratch, 38

property list files (.plist format), 29

altering in memory, 46

Apple support of variations, 35

basics, 29–32

binary format for, 35

creating in Workgroup Manager, 52

dictionary creation for, 44

example, 33–36

header portion, 33

indentation, 33

for local directory service data, 111

saving, 37

valid XML types, 29

working with, 36–43

Property List Programming Guide, 47

Puppet, 7, 112, 146

PyObjC, 44

Python, 44

■R
Radmind, 7, 112, 146

read command (dscl), 61

reading key from .plist file, 41

<real> XML/Plist type, 30

records

adding attribute/value pair to, 62

augmented, 26

dscl command to read, 61

removable drive, account information on,

208

return character in LDIF file, 86

reverse DNS naming, 32

root, in directory hierarchy, 50

Ruby, 44

■S
saving

.plist files, 37

preferences, 31

schema, 21

extending for Active Directory, 74–83

scripting, 15, 146

for client management, 5–7

to create local computer account, 111,

113

learning basic, 100

security

options for binding to LDAP directory,

95

preference management frequency, 142

security-related policies, 2

Server Admin Tools, 14

sleep mode, 3

smart groups, 113

StartupItems for running scripts, 6

<string> XML/Plist type, 30

sudo command, 64

Sun Microsystems, 21

synchronization

of local and network home directories,

210–11

management strategies, 211–13

of mobile accounts, managed

preferences walkthrough, 213–19

timing for, 210

system log warnings, 114

System Preferences Accounts pane, 151

www.it-ebooks.info

http://www.it-ebooks.info

Index 249

System Profiler, viewing composited MCX

data with, 132–33

systems administrator, sanity of, 3–4

systems configuration management, 146

■T
tags, 33

text editor, 14

TextEdit preferences, importing, 159

TextMate, 14

third-party applications

for client management, 8

managing, 162–66

preference management frequency, 143

Thursby ADmitMac, 21

timing of application updates, controlling,

162

<true> XML/Plist type, 30

■U
Universally Unique Identifier (UUID), 31

updates, user notification of, 162

user accounts, directory services for

information storage, 18

user defaults system, 12, 31

defaults command to access, 40

user notification of application updates,

162

users

cached preferences for, 129

Managed Preferences applied to, 12

and preference management frequency,

140

preventing changes to managed

preferences, 138

/usr/sbin/system_profiler, 113

■V
VideoLAN Client preferences, 163–66

vim, 14

■W
warnings in system log, 114

watchdog, 6

Wordpad, loading LDIF file into, 84

Workgroup Manager, 14, 52–60, 104, 149

creating property list file, 52

Details tab, 152

Inspector tab, 56–59

main window, 53

for managing local directory, 54

managing non-Apple preferences, 59

preference panel, 54

Preferences Overview limitations, 220–

22

prompts for directory authentication,

120

user list display, 57

warnings, 53

writeToFile:atomically:method

(NSDictionary), 45

writing value

PlistBuddy for, 43

to .plist file, 42

■X
XML

managed preference as, 12

specification page, 34

www.it-ebooks.info

http://www.it-ebooks.info

	Prelim
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Preface
	Why Manage?
	Predictability Means Less Work over Time
	Maintaining Company Policy
	Removing Unused Functions
	Keeping Your Sanity
	Preference Delivery
	Client Management Alternatives
	Scripting
	Managing Everything Else

	Summary

	What Is the Managed Preferences System?
	How Did We Get Here?
	Where Are We Now?
	The Heart of Managed Preferences
	What Can You Manage?
	What You Will Need
	Summary

	Understanding Directory Services
	What Are Directory Services?
	Directory Services and Managed Preferences

	Directory Services Supported by Mac OS X
	Open Directory
	Active Directory
	LDAPv3
	NIS
	Local Directory Services

	Directory Service Configurations
	Local Only
	Network Directory Service
	Multiple Network Directory Services

	Summary

	Property List Files
	What Are Property List Files?
	Property List Example
	Digging Deeper . . .

	Working with Property List Files
	Property List Editor.app
	Creating a Property List from Scratch with Property List Editor
	Command-Line Utilities

	Cocoa for Scripters
	Altering .plist Files in Memory

	Summary
	Resources

	Writing a Property List for Management
	Where Do Managed Preferences Reside?
	Preferred Tools for Creating, Testing, and Deploying Managed Preferences
	Using Workgroup Manager
	The dscl Command
	The defaults Command Refresher

	Summary

	Delivering Managed Preferences
	Directory Choices
	Delivery with Open Directory
	Binding Mac OS X Clients to Open Directory
	Accessing the Directory

	Delivery with Active Directory
	Binding Mac OS X Clients to Active Directory
	Extending the Active Directory Schema
	Importing the LDIF File
	Managing Preferences in Active Directory

	Delivery with OpenLDAP
	Add the Apple Schema to OpenLDAP
	Consider Indexing
	Bind Mac OS X to OpenLDAP
	Further OpenLDAP Considerations

	Delivery Without a Centralized Directory
	Help! I Can't Use MCX at All
	Summary
	Additional Resources

	Local MCX
	Delivery Without a Centralized Directory
	Introducing Local MCX
	Getting Started
	Creating a Computer Group
	Adding Managed Preferences
	Extending the Managed Preferences to Other Machines
	Local MCX Checklist

	Advanced Local MCX
	Dynamic Group Membership (or ‘‘Smart Groups’’)
	Local MCX Issues
	MCX in Alternate Directory Nodes
	More Local DS Node Tricks

	Summary

	Compositing Preferences
	Managed Preference Interactions
	Preferences Precedence
	Preferences and Group Hierarchy
	MCXCompositor
	Viewing Composited MCX Data with mcxquery
	Viewing Composited MCX Data with System Profiler

	Summary

	Enforcing Managed Preferences
	Management Frequency
	Choosing a Management Frequency
	Enforcing the Managed Preferences Configuration
	Protecting Your Managed Preference Configuration
	Summary

	Preference Manifests and “Raw” Preferences
	Preferences Overview
	Importing a Preference Manifest
	Working with Preference Manifests
	Importing ‘‘Raw’’ Preferences
	Third-Party Applications
	Summary

	Recipes
	Finder Sidebar
	Adding Preferences to Manage the Finder Sidebar
	Login Window Preferences
	Managing Bluetooth
	Security Preferences
	Screen Saver
	Managing the Screen Saver in Snow Leopard
	FileVault
	Secure Virtual Memory
	Managing iTunes

	Managing Office 2008
	Default Save File Formats
	Microsoft AutoUpdate
	Office Setup Assistant
	Importing Office Preferences for Management

	Summary

	Managing Mobile Accounts
	Mobile Accounts Review
	Prerequisites
	Definitions
	Manual Setup of Mobile Accounts
	Automatic Setup of Mobile Accounts

	Limitations of Workgroup Manager’s Preferences Overview
	Using the Preference Details Editor
	Summary

	Troubleshooting Managed Preferences
	Troubleshooting Triage
	Triage Step 1: Did It Ever Work?
	Triage Step 2: Machineor User-Specific?
	Triage Step 3: Simplify

	Examining Delivered Managed Preferences
	mcxquery
	Managed Preference Interaction Example
	System Profiler

	MCX Caching
	Troubleshooting Local MCX
	No Managed Preferences Data
	Wrong or Old Managed Preferences Data

	mcxrefresh
	One More Thing…
	Summary

	Index
	¦A ¦B
	¦C
	¦D
	¦E
	¦F
	¦K
	¦G ¦L
	¦H
	¦I
	¦M
	¦O
	¦N
	¦P
	¦S
	¦R
	¦V
	¦T ¦W
	¦U
	¦X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

