
www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

1
Shader 101

It seems an obvious question to ask at the beginning of an HLSL and shader book; what
exactly is a shader? It’s a small program or algorithm written explicitly to run on a
computer Graphics Processing Unit (GPU). It provides a way for developers to extend
the rendering capabilities of the GPU. Any program that works closely with graphics will
benefit from using shaders. The video game industry spins off custom shaders by the
thousands, they are as vital to game projects as business entity classes are to line of
business applications. Nothing prohibits business programmers from experimenting with
shaders in their line of business (LOB) applications, in fact recent trends in user interface
(UI) design and information visualization cry out for shader use.

Because shaders run at the kernel level of the GPU they are automatically parallelized by
the GPU hardware and are extremely fast at manipulating graphic output. Typically, the
GPU can process shaders several orders of magnitude faster than if the shader code is run
on a CPU.

Why XAML developers should learn HLSL?
If you are a XAML developer, I’ll wager you’ve heard about pixel shaders. In fact, you
may be using some of these effects in your application already. WPF introduced the
DropShadowEffect and BlurEffect in .NET 3.5 SP1 and both of these classes take
advantage of pixel shaders. Silverlight added pixel shaders in Silverlight 3. The Windows
Phone team disappointed developers by dropping support for shaders before the final
release of their hardware. Microsoft had good reason to ditch phone shaders as they
caused a significant drag on performance , but their loss is still lamentable, To make up
for that setback the Silverlight 5 release includes support for XNA models and shaders.

This is awesome news as it means that you can mix XNA and Silverlight 5 together in the
same application and that gives you access to another essential shader type; the Vertex
shader.

XNA is a Microsoft framework that facilitates game development on
the PC, the Xbox 360, and Windows Phone 7. It give you access to the
power of DirectX without having to leave the comfort of your favorite

 1

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

.NET programming languages. To learn more about XNA get a copy of
Learning XNA 4.0 by Aaron Reed from:
http://shop.oreilly.com/product/0636920013709.do

As a XAML developer, do you need to write your own shaders? No, not really, you may
spend your entire career without ever using a shader. Even if you use a shader you may
never have the need to write your own as there are free shader effects included in
Microsoft Expression Blend and also in the .NET framework. While it’s nice to have
these prebuilt effects, they represent only a fraction of the possibilities discovered by
graphics programmers. Microsoft is not in the shader business, at least not directly. A
core part of their business is building flexible programming languages and frameworks.
The DirectX team follows this path and provides several shader programming languages
for custom development. So if you have an idea for an interesting effect or want to
modify an existing effect you’ll need to write a custom shader. When you cross that
threshold and decide to build a custom shader, you have some learning ahead of you. You
need to learn a new programming language called HLSL.

I’ve started using the term XAML development in the last year.
Extensible Application Markup Language (XAML) is the core markup
for Windows Presentation Foundation, Microsoft Surface, Silverlight
and Windows Phone applications. There are differences between these
technologies but they all share a common markup in XAML. Even the
new Metro application framework for Windows 8 uses XAML as its
primary markup implementation. I find that WPF and Silverlight
developers have more in common with one other than they have
differences. Since there is so much overlap in skills between these
XAML based systems I think XAML developer is a suitable umbrella
term that symbolizes this commonality.

The Tale of the Shader
To understand the history behind shaders we need to go back a few decades and look
inside the mind of George Lucas. Thirty years ago, George had produced the first movies
in his highly successful Star Wars series. These first movies relied on using miniaturized
models and special camera rigs to generate the futuristic effects. Lucas could already see
the limitations of this camera based system and he figured that generating his models in
software would be a better approach. Therefore, he established a software division at
LucasFilm and hired a team of smart people to build a graphics rendering system.
Eventually the software division he created was sold off and became Pixar.

The engineers hired by Lucas took their responsibilities seriously and were soon
generating 3-D objects within software. But these computer generated models failed
when spliced into the live action as they suffered from a lack of realism. The problem is
that a raw 3D object looks stark and unnatural to the movie viewer, and won’t blend with
the rest of the movie scene. In other words, it will be painfully obvious that there is a
computer-generated item up on the big screen. In the quest to solve this problem an
engineer named Rob Cook decided to write a ‘shading’ processor to help make the items
look more realistic. His idea was to have software analyze the 3D object and the
surrounding scene and determine where the shadows fell and light reflected onto the
model. Then the shader engine could modify the film output to imitate the real world
placement of the artificial artifact. To be fair, there were existing shade tools available

 2

www.it-ebooks.info

http://shop.oreilly.com/product/0636920013709.do
http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

but they were primitive and inflexible. Rob’s breakthrough idea was to make a scriptable
pipeline of graphic operations. These operations were customizable and easy to string
together to create a complex effect. These “shaders” eventually became part of an
infamous graphics program called Renderman, which remains the primary rendering tool
used for every Pixar movie. While you may not be familiar with the Renderman name
you certainly have seen the output from this phenomenal program in movies like Toy
Story 3.

Pixar has an informative section devoted to Renderman on their website at
http://renderman.pixar.com/products/index/renderman.html

The beginnings of this shader revolution started back in the early 1980’s and ran on
specialized hardware. But the computer industry is never idle. By the late nineties 3D
graphics accelerator cards started to show up in high end PCs. It wasn’t long before card
manufacturers figured out how to combine 2D and 3D circuits into a single chip and the
modern Graphics Processor Unit (GPU) was born. At this same time, the GPU
manufacturers came up with their own innovative idea -- real-time rendering -- which
allows processing of 3D scenes while the application is running. Prior to this
breakthrough, the rendering was performed off-line. The burgeoning game development
industry embraced this graphics advance with enthusiasm and soon 3D frameworks like
OpenGL and Microsoft Direct3D were attracting followers. This is the point in the story
where HLSL enters the picture.

HLSL and DirectX
In the early days of GPUs, the 3D features were implemented as embedded code within
the video card chips. These Fixed Functions, as they were known, were not very
customizable and so chipmakers added new features by retooling the chips and throwing
hardware at the problem. At some point Microsoft decided this was solvable with
software and devised an assembly language approach to address the problem. This
worked and made custom shaders possible but you needed developers who could work in
assembly language. Assembly language is notoriously complex and hard to read, for
example here is a small sample of shader assembly code for your reading pleasure.

Example 1-1. Shader written in Assembly Language
[c-objdump]

; A simple pixel shader
; Use the ps 2.0 instruction set and registers
ps_2_0
;
; Declare a sampler for the s0 register
dcl_2d s0
; Declare t0 to use 2D texture coordinates
dcl t0.xy
; sample the texture into the r1 register
texld r1, t0, s0
; move r1 to the output register
mov oC0, r1

 3

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

DirectX 8.0 was the first version to include programmable shaders. It
first appeared in 2000 and included the assembly level APIs.

Working in assembly takes a special breed of programmer and they are in short supply.
NVidia and Microsoft saw this as an opportunity to bolster the PC graphics market and
collaborated to create a more accessible shader language. NVidia named their language
Cg while Microsoft chose the name High Level Shader Language (HLSL) for their
version. Cg and HLSL have virtually identical syntax; they are branded differently for
each company. Both languages compile shaders for DirectX. Cg has the additional
benefit of compiling shaders for the OpenGL framework.

The Open Graphics Library, AKA OpenGL, is an open source, cross
platform 2D/3D graphics API.

These higher level languages are based on the C language (in fact the name Cg stands for
C for Graphics) and use curly braces, semicolons and other familiar C styled syntax.
HLSL also brings high-level concepts like functions, expressions, named variables and
statements to the shader programmer. HLSL debuted in DirectX 9.0 in 2002 and has seen
steady updates since its release.

Let’s contrast the assembly language shown in Example 1-1 with the equivalent code in
HLSL.

Example 1-2. Shader written in HLSL
[C#]

sampler2D ourImage;

float4 main(float2 locationInSource : TEXCOORD) : COLOR
{
 return tex2D(ourImage , locationInSource.xy);
}

Here, the first line is declaring a variable name ourImage which is the input into the
shader. The next line defines a function called main that takes a single parameter and
returns a value. That return value is vital, as it is the output of the pixel shader. That
float4 represents the RGBA values that are assigned to the pixel shown on the screen.

This is about the simplest pixel shader imaginable. Trust me, there are more details
ahead. This is a preliminary look at shader code; there are detailed discussions of HLSL
syntax throughout the remainder of this book.

This is the first HLSL example in the book but it should be obvious to
anyone with a modicum of programming experience that the HLSL
version is easier to read and understand than the assembly language
version.

Understanding the Graphics Pipeline
HLSL is the shader programming language for Direct3D, which is a part of Microsoft’s
DirectX API. Appendix A contains a detailed account of Direct3D and the graphics-

 4

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

programming pipeline. What follows is a simplified account of the important parts of the
shader workflow.

To understand pixel shaders in the XAML world requires a quick look at how they work
in their original Direct3D world. Building a 3D object starts with defining a model. In
DirectX, a model (aka mesh) is a mathematical representation of a 3D object. These
meshes are defined as arrays of vertexes. This vertex map becomes the initial input into
the rendering pipeline.

If you studied geometry, you've seen the term vertex. In solid
geometry, a vertex represents a point where three planes meet.

In the DirectX realm, a vertex is more than a 3D point however. It
represents a 3D location so it must have x, y and z coordinate
information. Vertices may also be defined with color, texture, and
lighting characteristics.

The 3D model is not viewable on screen without conversion. Currently the two most
popular conversion techniques are ray tracing and rasterization. Rasterization is
widespread on modern GPUs because it is fast, which enables high frame rates – a must
for computer games.

As I mentioned before, the DirectX graphics pipeline is complex, but for illustration
purposes, I’ll whittle it down to these few components:

Figure 1-1. Three DirectX pipeline components

DirectX injects two other important components into this pipeline. Between the model
and the rasterizer lives the vertex shader. Vertex shaders are algorithms that transform the
vertex information stored in the model before handoff to the rasterizer.

Figure 1-2. The vertex shader in the pipeline

Vertex shaders get the first opportunity to change the initial model. Vertex Shaders
simply change the values of the data, so that a vertex emerges with a different texture,

 5

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

different color, or a different position in space. Vertex shaders are a popular way to
distort the original shape and are used to apply the first lighting pass to the object. The
output of this stage is passed to the rasterizer. At this point in the pipeline the rasterized
data is ready for the computer display. This is where the pixel shader, if there is one, goes
to work.

Figure 1-3. The pixel shader in the pipeline

The pixel shader examines each rasterized pixel, applies the shader algorithm, and
outputs the final color value. They are frequently used to blend additional textures with
the original raster image. They excel at color modification and image distortion. If you
want to apply a subtle leather texture to an image the pixel shader is your tool.

XAML and Shaders
Now that you’ve learned the fundamentals of the DirectX pipeline you’re ready to take a
closer look at how Silverlight and WPF use shaders. Let’s examine what happens in the
WPF world first. In WPF, the underlying graphics engine is DirectX. That means that
even on a simple business form consisting of a few text controls the screen output travels
through the DirectX pipeline. The very same pipeline described above. WPF takes your
XAML UI tree and works its magic on it, instantiating the elements, configuring bindings
and performing other essential tasks. Once it has the UI ready it passes it off to DirectX
which rasterizes the image as described earlier. Here’s what the process looked like in the
first release of WPF.

Figure 1-4. The .NET 3.5 render process

As you can see, there were no vertex or pixel shaders available. It took another couple
years for Microsoft to add shaders to the mix. Pixel shaders appeared in .NET 3.5 in 2007
and now the process looks like this.

 6

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 1-5. .NET 4.0 adds pixel shader to the render process

Notice how the end of this pipeline is identical to the 3D model pipeline cited earlier. As
you can see the input data for a pixel shader is the output from the rasterizer. It really
doesn’t matter to the shader whether that information is a rasterized version of a complex
3D shape or the output from a XAML visual tree. The shader works the same way for
both, since it is only 2D information at this point.

You might notice that there are no Vertex shaders in the WPF pipeline. That’s not an
omission on my part. Vertex shaders are not available to WPF and there are no plans to
add them to WPF. The likely reason for this oversight was the release of XNA,
Microsoft’s managed game development platform. XNA has a tight relationship with
DirectX/Direct3D and treats 3D and models nearly the same as native DirectX.

Don’t be too sad over the loss of vertex shader, pixel shaders are still a powerful
technique and can create a variety of useful effects. In fact, since current PC hardware is
so powerful, game developers often prefer using pixel shaders for lighting calculations, a
job that use to be handled by vertex shaders.

Silverlight is similar to WPF in many respects when it comes to shaders. Silverlight
supports pixel shaders like WPF. It doesn’t support vertex shaders directly. Instead, it
uses XNA integration for 3D rendering. The Silverlight team chose to embrace the XNA
framework and integrate it into their specifications rather than write their own 3D engine.
If you are an experienced XNA developer, you should have no problem adapting to the
Silverlight version.

In Silverlight, pixel shaders are always executed on the CPU. In fact, the rasterizer also
runs on the CPU.

WPF, on the other hand, runs the shaders on the GPU, falling back to CPU only in rare
cases. Because Silverlight uses the CPU, you might worry about performance. You may
suspect that Silverlight is slower when processing shaders and you’d be correct.
Silverlight mitigates some of the performance woes by running shaders on multiple cores
(when available) and by using the CPUs fast SSE instruction set. Yes, Silverlight shaders
are slower than their WPF counterparts. When it comes to pixel manipulation, Silverlight
shaders are still the fastest option though, beating other venues like WriteableBitmap by a
substantial margin. If you want to see the performance ramifications for yourself, René
Schulte has an illuminating Silverlight performance demo that you should check out
when you have the time.

http://kodierer.blogspot.com/2009/08/silverlight-3-writeablebitmap.html

Summary
Pixel shaders have revolutionized the computer graphics industry. The powerful special
effects and digital landscapes shown in modern movies and games would not be possible

 7

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

 8

without them. Adobe Photoshop and other designer applications are jammed with effects
that are implemented with pixel shaders. They are a magnificent way to create your own
custom effects. Granted, the HLSL syntax is a bit cumbersome and difficult to understand
at first, but it’s worth learning. Once you master HLSL, you can create shaders for
DirectX, XNA, WPF, Silverlight and Windows 8 Metro. In the next chapter, I’ll show
you how to create your first XAML shader project. By the end of this book, you’ll be
able to add the title “HLSL ninja” to your resume.

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

2
Getting Started

In this chapter, you get your first look at using shaders in an XAML application. Using
the prebuilt shaders in .NET is a snap. It's not much harder than using a drag and drop UI
designer. You will also get a miniature tutorial on creating a simple custom shader.

Setting up your development computer
If you are a .NET developer, you know a lot about managed code and the .NET
framework libraries. If Microsoft statistics are accurate, you write your code in either C#
or Visual Basic. Moreover, if you are like me, you are a Visual Studio junkie, spending
countless hours living inside the Visual Studio environment. Given these facts and the
possibility that you are also an experienced XAML developer it's likely that you already
have your computer ready to create HLSL shaders. But I'm going to be methodical and
show you what you need to make sure your development computer is set up correctly.

Silverlight development

One thing you can say about the Silverlight team; they produce high quality releases on a
tight schedule. Silverlight 5 is the newest version available at this time. It requires a
Visual Studio 2010 installation in order to build a Silverlight 5 project. If you are cheap,
all you need is a copy of the free Visual Web Developer 2010 Express edition
(http://www.microsoft.com/express/web/) to be ready to create Silverlight applications. If
you have access to your corporate credit card, buy Visual Studio 2010 pro, premium or
ultimate. You get a lot more tools in these editions and they are indispensable for real
world development. To be fair though, there is nothing in the more expensive editions
that makes HLSL development any easier.

Since Silverlight 5 shipped after Visual Studio 2010 you need to visit
http://www.silverlight.net/getting-started and install the Silverlight 5 tools and SDK
before you are completely ready to start coding.

WPF development

To get the most out of your shader code use the .NET 4.0 version of WPF. That's because
4.0 supports a more recent shader specification (PS_3_0) and that gives you more shader

 1

www.it-ebooks.info

http://www.microsoft.com/express/web/
http://www.silverlight.net/getting-started
http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

power. For the skinflints in the audience, look at the Visual C# 2010 Express
(http://bit.ly/VCS2010Express) or Visual Basic 2010 Express
(http://bit.ly/VB2010Express) editions. Both express editions are fully capable of creating
WPF applications and incorporating your shader code. Just like with Silverlight 5, you
can use the commercial editions of Visual Studio for development
(http://bit.ly/wEUD17).

The Visual Studio install takes about an hour. I suspect most readers have gone through
the installation process many times so I'll assume you know what you are doing and don't
need step by step instructions.

Expression Blend 4

I highly recommend that XAML developers learn Expression Blend
(http://bit.ly/expressionblend4/). It contains dozens of tools that simplify XAML UI
development and it is a perfect companion for Visual Studio. For the shader developer, it
is useful for two reasons. First, it ships with nice set of prebuilt shader effects. Second, it
provides a preview feature, making it easy to see the effect without having to run the
application first.

Installing Blend is a ten-minute exercise. Download the installer from the Microsoft site
and follow the prompts.

Choosing a Shader Compiler
Your HLSL shader source code is just text, any text editor will suffice for code creation.
Before you can use the shader it must be compiled into a binary file and added the GPU
during runtime. Thus, you need a compiler.

DirectX Compiler

Visual Studio is such a powerhouse that many assume it has compilers for any
programming language, but neither Visual Studio 2010 nor Expression Blend 4 includes
a shader compiler. There is good news on the horizon though; the next version of Visual
Studio has some remarkable 3D editors, and it will have a shader compiler. In the
meantime, you need to find a compiler before you can continue.

Since HLSL is a part of DirectX you can use the FXC.exe compiler in the DirectX SDK.
FXC.exe is a small file; it's less than 200KB in size. Regrettably, the FXC compiler is
only available as part of the SDK and that SDK is a monster, using up over one gigabyte
of your hard drive space.

I use the FXC compiler for some of the examples in this book. If you want to follow
along you can find the DirectX SDK at http://msdn.microsoft.com/directx/.

WPF Build Task

The good folks on the WPF team have a few open source projects on Codeplex
(http://wpf.codeplex.com/). If you snoop around their Codeplex site you'll find a shader
build task that doesn't require having the DirectX SDK installed
(http://wpf.codeplex.com/releases/view/14962/). Here's what is does. If it is installed it
enhances the normal MSBuild build process. It looks for any files with an .fx extension
within your WPF project. It compiles the source in that .fx file into a binary file (*.ps). It
has two exasperating limitations however; it not available for Silverlight projects and it
doesn't compile to the newer PS_3_0 specifications.

 2

www.it-ebooks.info

http://bit.ly/VB2010Express
http://bit.ly/wEUD17
http://bit.ly/expressionblend4/
http://msdn.microsoft.com/directx/
http://wpf.codeplex.com/
http://wpf.codeplex.com/releases/view/14962/
http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Shazzam Shader Editor

Shazzam Shader Editor is a free stand-alone tool for writing XAML shaders. If you
install Shazzam, you don't need to install the massive DirectX SDK as it has its own
compiler. It contains an HLSL code editor that has intellisense and code completion. That
might not seem like a big deal; until you learn that Visual Studio doesn't have intellisense
for HLSL files. Earlier in this chapter I mentioned the effect preview feature in
Expression Blend. Shazzam does Blend one better, featuring a spate of preview,
animation and comparison features. Shazzam has been available for the last four years
and has thousands of users around the world. It's the recommend shader tool in nearly
every Silverlight book on the market.

I have to tell you, in the interest of full disclosure, I'm the primary developer for
Shazzam. Of course I think it's the best tool available for learning XAML specific HLSL.
I encourage you to download a free copy from http://shazzam-tool.com and see for
yourself. I use Shazzam extensively throughout this book, so be sure and read Chapter 6
to learn more about the tool.

Figure 2-1. Shazzam Shader Editor IDE

To install Shazzam, download the installer from shazzam-tool.com and follow the
prompts. The install takes less than a minute on most computers.

 3

www.it-ebooks.info

http://shazzam-tool.com/
http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Other Tools to Consider
FX Composer

NVidia has a stake in the shader community and have a number of developer tools. One
of their more impressive applications is the FX Composer tool. It is aimed squarely at the
game development community and has tons of remarkable features. It boasts a shader
debugger, supports easy importation of 3D models, has a particle system generator, test
harness and many other cool enhancements.

Figure 2-2. NVidia FX Composer IDE

It's an impressive tool but I find it overkill for creating pixel shaders for Silverlight or
WPF. You can find it on the NVidia site at http://developer.nvidia.com/fx-composer/ .

NShader

NShader (http://nshader.codeplex.com/) is a Visual Studio extension, which provides
syntax highlighting for assorted shader languages including HLSL, Cg and GLSL. If you
write HLSL in Visual Studio, you may find this tool useful. It's strangely incomplete
though and misses some obvious HLSL functions like sampler2D().

Visual Studio Next

The next version of Visual Studio, code name Visual Studio 11, is available in a
developer preview. I've looked at the 3D tools and I'm impressed. Download a free copy
of the developer preview (http://bit.ly/vs11devpreview) to see what's coming.

 4

www.it-ebooks.info

http://nshader.codeplex.com/
http://bit.ly/vs11devpreview
http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

A First Shader Project
Traditionally the first application in most programming books is the ubiquitous "hello
world" application. Boring! I'll have none of that dreary code in this book. The cynical
reader will point out that writing text to the screen with a shader is nearly impossible but
let's not go there. I need a graphical demo that shows a shader in action, but also is
graphical in nature. With that in mind I decided to make the first project an image
transition application.

I want to say a couple words about terminology before going any
further. The terms shader and effect are pervasive and often used
interchangeably. On the .NET side of the aisle, the common term is
effect. Examine the UIElement class and you'll see that it has an Effect
dependency property. Tour the class libraries and you'll discover the
prebuilt DropShadowEffect and BlurEffect classes tucked amidst the
other familiar XAML types. In addition, there is the ShaderEffect base
class, which is used when creating your own custom effects.

On the HLSL side of the house the word effect has special meaning; in
this realm you can think of an effect as a shader package containing
multiples shaders targeting different hardware. The shader is the actual
algorithm run on the GPU. To summarize, when you write a custom
effect you create a .NET effect class and an HLSL shader.

Using prebuilt effects

Silverlight and WPF have two built-in effects: dropshadow and blur. These effects are
applicable to any UIElement, which includes any element in the visual tree. When an
effect is applied to an element it affects the element and all of its children elements. In
our first project, you'll place the effect on an Image element.

To begin, open your Visual Studio edition and choose File→New Project from the menu
bar (or press Ctrl-Shift-N). The New Project dialog opens, offering a number of options,
as shown in Figure 2-3.

 5

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 2-3. The New Project dialog

Select the Silverlight Application template. Enter a name of your choosing and click OK.
Visual Studio will start creating a Silverlight application for you.

The New Silverlight Application dialog box will appear, asking whether you want to host
the application in a new Web site (Figure 2-4). For simple Silverlight applications, I
rarely create a host Web Project so I recommend unselecting that check box. Leave the
other options set to their defaults for now and click OK.

 6

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 2-4. New Silverlight Application dialog

Use the Project→Add Existing Item menu bar to add a couple image files to the project.

Next, open the MainPage.xaml file and modify the following values on the UserControl
element.

[XML]
 d:DesignHeight="600" d:DesignWidth="800"

Setting the DesignHeight and DesignWidth properties make it easier to see the images on
the Visual Studio designer.

Add the following XAML to the MainPage.xaml file.

Example 2-1. Add Images and Slider XAML
[C#]

 <Grid x:Name="LayoutRoot"
 Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height='380' />
 <RowDefinition Height='40' />
 </Grid.RowDefinitions>
 <!-- set the Source to a valid path in your project -->
 <Image x:Name='StartImage'
 Source='garden1.jpg'
 Width='500'

 7

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

 Opacity='1'></Image>

 <!-- set the Source to a valid path in your project -->
 <Image x:Name='EndImage'
 Source='garden2.jpg'
 Width='480'
 Opacity='0'></Image>
 <Slider x:Name='TransitionSlider'
 Grid.Row='1'
 Width='500' />
 </Grid>

The XAML in Example 2-1 creates two Image elements, one superimposed over the
other. The width of the EndImage is smaller than the StartImage to accentuate the
transition. There is also a Slider element, located at the bottom of the grid, which is used
to control the transition amount.

Here is what the UI looks like at this stage.

Figure 2-5. Transition project, phase 1

In the next phase you will add a couple lines of code to fade between the two images
when the slider is moved. Start by adding a ValueChanged event handler to the existing
XAML. Experienced XAML developers know that Visual Studio shows a New Event
Handler prompt (Figure 2-6) when adding event attributes in the XAML editor. Pressing
Tab at the prompt stubs in the correct attributes value and writes an event procedure in
the code behind.

 8

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 2-6. The Insert New Event Handler prompt

When you are done, your XAML for the slider should look like Example 2-2.

Example 2-2. ValueChanged event text
[XML]

<Slider x:Name='TransitionSlider'
 Grid.Row='1'
 Width='500'
 ValueChanged='TransitionSlider_ValueChanged' />

Press F7 to switch to the code behind view and add the following code to the C# file.

Example 2-3. The TransitionSlider_ValueChanged event code
[C#]

private void TransitionSlider_ValueChanged(object sender,
 RoutedPropertyChangedEventArgs<double> e) {
 // transition the images
 var max = TransitionSlider.Maximum;
 EndImage.Opacity = e.NewValue / max;
 StartImage.Opacity = 1 - EndImage.Opacity;
}

As you can see, this code changes the opacity of the two Image elements. Opacity accepts
a value between 0.0 and 1.0 so the code uses a calculation to normalize the current slider
value to that range.

[C#]
e.NewValue / max

The last line ensures that when StartImage.Opacity is at 0.0, the EndImage.Opacity is set
to 1.0 and vice versa.

[C#]
StartImage.Opacity = 1 - EndImage.Opacity;

Run the application and drag the slider to change the value. The first image gradually
disappears as the second image fades into view.

Adding Effects

To make the transition more interesting you can apply a BlurEffect during the fade-in and
fade-out. The BlurEffect is nice choice for your first look at a built-in effect. It's one of
the built-in effects, it's available for Silverlight and WPF, and is quite simple to use.
There are different types of blur effects used in the graphics industry (motion blur, zoom
blur, Gaussian blur). The BlurEffect class is one of the simplest implementations,

 9

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

providing a uniform unfocused look to the affected pixels. If you've ever looked through
a frosted translucent screen, you've seen the effect.

The BlurEffect uses a simplistic blur algorithm, which is effective but
slower than other potential blur implementations. A custom BoxBlur or
optimized Gaussian Blur outperforms the built-in WPF blur.

Each UIElement has an Effect property. In this project, the potential candidates for the
effect are the UserControl, Grid, Slider and the two Image elements. When you apply an
effect to a parent element, like the Grid, it affects all the children elements. Each element
can have only one effect set directly in its Effect property but can inherit other effects
from its parents. Imagine applying a BlurEffect to the parent Grid (LayoutRoot) and an
InvertColorEffect to StartImage. StartImage would have both effects applied while
EndImage would only show the blur effect.

The BlurEffect has one interesting property: Radius. You can think of Radius as the
strength of the blur effect. The higher the Radius value the fuzzier the output.

Here's how to add a BlurEffect in XAML.

Example 2-4. Add BlurEffect in XAML
[XML]

<Image x:Name='StartImage'
 Source='garden1.jpg'
 Width='500'
 Opacity='1'>
 <Image.Effect>
 <BlurEffect
 Radius='20' />
 </Image.Effect>
 </Image>

Of course, you can apply the effect in the code behind too.

Example 2-5. Add BlurEffect in code
[C#]

var blur = new System.Windows.Media.Effects.BlurEffect();
blur.Radius = 20;
StartImage.Effect = blur;

Now that the effect is applied, run the application. The UI should look similar to Figure
2-7.

 10

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 2-7. Image element with blur effect

Are you ready to add the blur effect to the transition? Begin by setting the Radius value
to zero for the existing blur effect. Then add a blur to the EndImage (Example 2-6).

Example 2-6. Blur effect for both images
[XML]

 <Image x:Name='StartImage'
 Source='garden1.jpg'
 Width='500'
 Opacity='1'>
 <Image.Effect>
 <BlurEffect x:Name='StartImageBlur'
 Radius='0' />
 </Image.Effect>
 </Image>
 <Image x:Name='EndImage'
 Source='garden2.jpg'
 Width='480'
 Opacity='0'>
 <Image.Effect>
 <BlurEffect x:Name='EndImageBlur'
 Radius='0' />
 </Image.Effect>
 </Image>

 11

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Next, write some code to apply the blur gradually as the opacity level changes. Modify
the ValueChanged event handler as follows:

Example 2-7. Value Changed event procedure code
[C#]

 // transition the images
 var max = TransitionSlider.Maximum;
 EndImage.Opacity = e.NewValue / max;
 StartImage.Opacity = 1 - EndImage.Opacity;

 // opacity is between 0.0 and 1.0
 // we want a max blur radius of 20 so will multiply
 // by 20
 StartImageBlur.Radius = EndImage.Opacity * 20;
 EndImageBlur.Radius = StartImage.Opacity * 20;

The project is finished. Run the application and watch the transition. As the first image
fades away it gets more blurry while the second image fades in and snaps into focus. Nice
effect! (pun intended). I'll show you how to create a custom effect soon, but first a word
about performance.

Debrief

I have a few quibbles with this code, for one, the performance might be improved by
consolidating the effects. There are two blur effects applied to an overlapped area of the
screen. If you are seeing perf issues during testing this is an area worthy of further
research. To consolidate, you could remove the image effects, wrap the two Images
inside another container and apply the blur to the parent container. You can't use the
current grid (LayoutRoot), because the blur would alter all children including the slider
element. The solution is to add another grid and place the images in the new grid. You'd
have to change the transition code too.

Custom Shader
Now that you have some rudimentary experience working with a prebuilt effect, it's time
to consider writing a custom one. Custom shaders are necessary when an existing effect
doesn't do what you need. Let's say you read an article describing a faster blur algorithm
and you decide to alter the BlurEffect to use the newer algorithm. If you wait for
Microsoft to release a new version, who knows how long you'll have to wait. In this
situation, you are better off writing your own effect.

For your first custom shader I picked a simple color modification effect. The shader code
is childishly simple, just to give you an overview of the custom shader process. I promise
there are more details coming as you read deeper into this book.

There are a few common steps necessary in creating a custom shader.

• Create a text file containing your HLSL code
• Compile the HLSL into a binary file
• Add the binary shader file to a XAML project and mark as project resource
• Create a .NET wrapper class to expose the shader to your project

 12

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

• Compile the project
• Instantiate your shader and assign to an element Effect property

Create a Shader Algorithm

Crafting a custom shader starts by creating a text file and adding some HLSL code.
Example 2-8 shows how to write a simple InvertColor shader.

Example 2-8. HLSL code for InvertColor shader
[C#]

sampler2D InputTexture;

flo n(float2 TEXCOORD) : COLOR { at4 mai uv :
 float4 color = tex2D(InputTexture, uv);
 float4 invertedColor = float4(color.a - color.rgb, color.a);

 return invertedColor;
}

There is not much code in this example, but it's sufficient to reverse the color on every
pixel in the input stream.

The first line declares the input source, InputTexture, for the shader.

[C#]
sampler2D InputTexture;

In your sample application, this InputTexture corresponds to pixels contained in the
Image elements. Next is a function declaration.

[C#]
float4 main(float2 uv : TEXCOORD) : COLOR {

As you can see the function is named main and returns a float4 value. That float4
represents the color value for the modified pixel, which is destined for the computer
screen. You can think of a float4 as containing four values corresponding to the color
values (red, green, blue, alpha). The next two lines sample a pixel from the input source
and calculate the new output color, which is stored in the invertedColor variable.

[C#]
float4 color = tex2D(InputTexture, uv);
float4 invertedColor = float4(color.a - color.rgb, color.a);

Finally, the inverted color is returned from the function call.

[C#]
return invertedColor;

Compile the HLSL Code

Next, it is necessary to compile the InvertColor shader code into a binary file. By
convention, this binary file ends with a .ps extension. There are a number of ways to
compile shader source code. For this first walkthrough, you will use the FXC.EXE
compiler that ships with the DirectX SDK. If you have the SDK installed you can open a
DirectX command prompt from the Windows Start menu as shown in Figure 2-8.

 13

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 2-8. The DirectX Command prompt on the Start menu

At the DirectX prompt run the FXC compiler with this entry.
fxc /T ps_2_0 /E main /Fo output.ps invertcolor.txt

The compiler takes the code in the invertcolor.txt file and compiles it into the output.ps
file. There are various switches specified that tell the compiler to use the main function as
the shader entry point and to compile with the ps_2_0 shader specification.

Be forewarned, FXE is finicky about encoding types for the input file, it prefers ASCII
and doesn't like Unicode encoded text files.

Add to Visual Studio XAML Project

The next step in the process is to add the ps file to a XAML project. Be sure and set the
Build Action for the file to Resource as shown in Figure 2-9 .

 14

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 2-9. Set the Build Action property to Resource

Create a .NET wrapper class

To use a pixel shader you need a way for .NET code to interact with it. The prescribed
means to accomplish this is to write a wrapper class. The class derives from the
ShaderEffect base class and exposes dependency properties to manipulate shader

 15

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

properties. The simple InvertColor shader doesn't provide any shader properties so the
example wrapper class will be small.

Add a class to the project and insert the following code.

Example 2-9. InvertColorEffect wrapper class
[C#]

public class InvertColorEffect : ShaderEffect
 {
 private PixelShader pixelShader = new PixelShader();

 public InvertColorEffect() {

 pixelShader.UriSource =
 new Uri("/Ch02_CustomEffect;component/output.ps", UriKind.Relative);
 this.PixelShader = pixelShader;

 this.UpdateShaderValue(InputProperty);
 }

 public static readonly DependencyProperty InputProperty =
 ShaderEffect.RegisterPixelShaderSamplerProperty("Input",
 typeof(InvertColorEffect), 0);

 // represents the InputSource for the shader
 public Brush Input {
 get {
 return ((Brush)(this.GetValue(InputProperty)));
 }
 set {
 this.SetValue(InputProperty, value);
 }
 }
 }

You may recall that the .NET wrapper must instruct Silverlight or WPF to load the binary
resource. In WPF, the binary is loaded into the GPU, in Silverlight it's loaded into the
virtualized GPU. You can see the loader code in the constructor.

[C#]
pixelShader.UriSource =
 new Uri("/Ch02_CustomEffect;component/output.ps",
 UriKind.Relative);

There is also a single dependency property name InputProperty. This property
represents the input into the shader. In other words, it's the data provided by the
rasterizer. The dependency property follows the XAML convention and looks like you
would expect; with one small difference.

[C#]
public static readonly DependencyProperty InputProperty =
 ShaderEffect.RegisterPixelShaderSamplerProperty("Input",
 typeof(InvertColorEffect), 0);

 16

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

The ShaderEffect.RegisterPixelShaderSampler property is how the dependency property
is associated with the pixel shader sampler register. Don't fret too much about the details
of this class for now. It's ready to compile.

Compile the project

Build the project and verify that everything compiles.

Instantiate the shader

How do you want add the InvertColorEffect to the image? If you want to add it in code,
you just instantiate the effect and assign it to the correct element property.

[C#]
var invert = new InvertColorEffect();
StartImage.Effect = invert;

To add the effect in your XAML file, add a custom XML namespace to the UserControl.
This xmlns should reference the .NET namespace that contains your wrapper class.

[XML]
<UserControl x:Class="Ch02_CustomEffect.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local='clr-namespace:Ch02_CustomEffect'
 mc:Ignorable="d" >

Then apply the effect to the image.

[XML]
<Image x:Name='StartImage'
 Source='garden1.jpg'
 Width='500'
 Opacity='1'>
 <Image.Effect>
 <local:InvertColorEffect />
 </Image.Effect>
</Image>

Be sure and comment out the code in the TransitionSlider_ValueChanged event
handler or you will get a runtime error.

Here's what the InvertColorEffect looks like when you run the application.

 17

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 2-10. InvertColorEffect applied to image

Summary
Effects are one of the strong points of XAML development. As a former Windows Forms
developer, I struggled with the severe limitations of GDI programming and I never want
to go back. I embrace the new rendering capabilities in WPF and Silverlight with gusto
and appreciate the benefits provide by the custom shader API.

Welcome to the marvelous world of shader development.

Shader Scenario
You are working on a Silverlight project for a large media client. Their lead
designer is fascinated with steam punk and insists that the spring campaign
reflect his new love. In conjunction with the promotion is a user submitted
product video contest. Winners of the best video will take home a cash prize.
Your job is to create the video viewer for the contest entries. But there is a
requirement that is making your manager anxious. All the videos need to look
like movies from the early 1900's. None of the submitted videos have the correct
look and there is no budget to for video post-production on the submissions

Shader Solution

 18

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

 19

The solution, of course, is to create an old movie shader. The shader takes the
video output, converts it to a monotone color and tints it an antique brown tone.
Next, it apply a vignette mask to the output. Vignette is a photography term that
describes an effect often seen in wedding shots and other glamour pictures. The
corners of the picture are tinted slightly darker than the center of the image.
Just apply the old movie shader to the video player output and you are done.

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

3
Commonplace Pixel Shaders

"What is an example of a real world pixel shader?" That's a question I hear all the time
when teaching the concepts of shaders to XAML programmers. The trouble, as I see it, is
that most computer users wouldn't recognize a pixel shader if they saw one. Make no
mistake, they are out there — pixel shaders are found in a wide range of software
products. Most consumers happily use them without knowing that they are working with
a feature that was implemented with an effect.

Certain application categories are prime candidates for pixel shaders. The game
development world is one obvious example. Image manipulation software is another
fertile area for shaders. Academics have studied the problem of image filtering and pixel
manipulation for decades. All modern image processing software, think Photoshop or
Paintshop Pro, have ranks of shaders hiding behind the application facade.

Common effects include blurring, distorting, image enhancement and color blend. This
chapter provides an overview of the types of effects that are common in the shader realm.

Shaders are often applied after the render phase, so are also known as
post-processing effects.

Pixel shaders fall into a few general categories.

• Color modification / Color transformation
• Displacement / Spatial transformation
• Blurs
• Generative / Procedural
• Multiple Inputs

A Word about Pseudocode
A couple words before diving into the shader descriptions. It is still early in the book and
you haven't seen a lot of HLSL syntax. With that in mind most of the code listed in this

 1

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

chapter is pseudocode which is useful for explaining the general idea behind a shader
implementation but doesn't use the official HLSL syntax. Here is a simple example.

Example 3-1. Pseudocode and HLSL compared
// pseudocode
originalColor = color.r
average = (color.r + color.b + color.g)/3

// HLSL syntax
float4 originalColor = tex2D(InputTexture, uv);
originalColor = color.r ;

float average;
average = color.rgb/3;

The HLSL in this example is more precise than the pseudocode version of that same
code. First, it gets the color using the text2D function. Then, it defines the variables with
the float4 and float keywords. Leaving the last line to employ the HLSL swizzle syntax to
calculate the average.

Swizzling, in HLSL, provides a unique way to access members of a
vector. While the word conjures images of fruity drinks around a
tropical pool, it’s just a way to perform operations on any combination
of vector items.

Our Sample Image

For many of the examples in this chapter, I will use the color photo you see in Figure 3-1.
I picked this photo because it is colorful and has a nice composition. Furthermore, it has
a black background which works well with some of the color replacement shaders.

 2

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 3-1. Flower photo with no effect applied

Color Modification
Color modification is a simple concept. Take an incoming pixel color, and shift that color
according to some formula. What's key to understanding this category of pixel shaders is
that the basic image structure stays the same. The algorithm doesn't move or reposition
pixels on the screen. Take a picture of a cat for example; you'll know that it’s a cat, even
though the colors are translated into shades of purple and blue.

Common Techniques
Color correction is one use of color modification that is indispensable to the film and
print industry. Most of the images you see on television or in a magazine have been color
corrected during post-production. Whether it was to adjust contrast on a marginal
exposure, create unified skin tones for a fashion spread or to apply a gloomy color palette
to a gothic novel poster, most commercial imagery undergoes color alteration before it is
released for public consumption. Color corrections largely come in two flavors: per-
channel corrections, which alter red, green, and blue components independently; and
color-blending procedures, in which the output value is determined based on combined
values in the RGB channels.

Stylizing a photo is another popular color modification technique such as utilizing sepia
tone and tinting, introducing sixties-era colors, making an image look like it’s from an
old movie, inverting colors, or using color channels.

Color removal is another commonplace technique. Grayscale and desaturation are
popular methods that fall into this category.

 3

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Photo editing applications are rife with tools in this category. Open your copy of Adobe
Photoshop and look in the Image→Adjustments menu (See Figure 3-2). It's packed with
color adjustment tools and it's likely that a pixel shader or two is employed behind the
scenes to do the real work.

Figure 3-2. Photoshop Adjustments Menu

Black, White and Gray
All the shaders in this subsection remove the natural colors from the image and replace
them with a monotone value. Creating a grayscale image, is accomplished by setting a
color value that consists of equal parts of the red, green and blue channels.

It's likely that you know this already; nevertheless, a quick review is in order. A pixel
with each RGB color set to zero results in a black pixel.

newColor = color.rgb(0,0,0); // pseudocode

When each RGB value is set to one the output renders as a white pixel.
newColor = color.rgb(1,1,1); // pseudocode

Whenever all three RGB values are set to the same value, a gray pixel is produced.

 4

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

newColor = color.rgb(0.2, 0.2, 0.2); // pseudocode

HLSL shaders normalize color values to the range 0-1, as you can see in the following
example (Example 3-2).

Example 3-2. Setting grayscale values
// pseudocode
RGB(0, 0, 0); // black
RGB(1, 1, 1); // white
RGB(0.8, 0.8, 0.8); // light gray
RGB(0.2, 0.2, 0.2); // dark gray

Black-White

You've seen black and white photos in fine art magazines or your local gallery. In most
cases, they are not pure black and white though; they are composed of multiples shades
of gray. True black and white is rare but is occasionally used for dramatic special effect.

Technique: This shader works by setting all pixels over a certain threshold to white and
the rest of the pixels to black.

Example 3-3. Black-White pseudocode
 if (color.r > .5) // use the red channel for threshold trigger
 { RGB(1,1,1);}
 else
 { RGB(0,0,0);}

Check out Figure 3-3, a reductionist version of our original image created with a shader
using the black/white technique.

Figure 3-3. Black and White effect

 5

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Grayscale

Grayscale images appear to have no color, only tones of gray. Other common names for
this image type are monochromatic and monotone.

Technique: The shader must examine the pixel and decide what value to assign to the
RGB channels. One approach is to use a single channel at the filter (See Figures 3-4 (a)
and (b)). For example, take the red value and assign to the green and blue channels.

Figure 3-4. Grayscale effect, based on different algorithms

Another approach is to average the colors channels and apply the average to each RGB
value (see Figure 3-4(c)). For the most realistic approach however, don't use a simple
average calculation. The lab-coated masterminds at ICC provide a nice weighting
formula that makes your grayscale feel authentic (see Figure 3-4(d)).

// pseudocode
gray = RGB(inputColor * 0.21, inputColor * 0.71, inputColor * 0.07)

The human eye is more sensitive to the green spectrum than other
colors. Using a grayscale formula that enhances greens results in an
image that looks closer to a picture taken with black and white film.

Color Replacement
Effects in this category seek out a color and substitute another in its place. These effects
usually have a color sensitivity dial, which tweaks how precisely you wish to match the
target color.

 6

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Other names for these effects are ColorKey and ChromaKey. In the samples included
with this book is one called ColorKeyAlpha. It transforms any pixel of the target color to
a transparent value (by setting the Alpha channel to zero).

All sci-fi and action movie buffs are familiar with green screen effects, whereby the
actors work in front of a dazzling lime green screen and the bellowing velociraptor is
added to the scene in post-production. A ChromaKey effect is a form of color
replacement. Because the replacement data is not a simple color, but a complex image
ChromaKey can also be categorized as a multi-input effect. That's because the effect
relies on having at least two samples passed into the shader; the foreground image where
the actors live and the background image where the dinosaurs roam.

Color Enhancement and Correction
How many times have you taken a picture indoors and been dismayed to see a blue cast
on the finished picture. Fluorescent lights are to blame, as they use an unnatural light
spectrum. Professional photographers understand the nuances of light and learn how to
exploit it for their craft. But even they occasionally make mistakes during photo shoots
and need to correct the image in post-production.

Color enhancement and correction can be achieved by applying one or several of the
following techniques:

• Gloom
• Hue
• Saturation
• Contrast
• Brightness
• Bright Extract
• Bloom
• Color Balance
• Vibrance
• Thresholding
• LightStreak
• Tone Mapping

If you are familiar with image processing techniques you will recognize some of the
names in this list and perhaps know what they do when applied to a picture. Other terms,
like Gloom, may be unfamiliar. In case you are curious, the Gloom effect intensifies the
dark areas of the image

This chapter mentions a lot of shader effects by name but there isn't enough room to
provide a comprehensive catalog of every effect cited. They are all included in Shazzam;
I encourage you to try them for yourself.

 7

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Distinctive Effects
Sometimes you just want to do something wacky to the output, like make the image look
frosty or apply a cartoon color palette. Shaders can handle the job with ease.

Some examples are:

• Frosty Outline
• Old Movie
• Vignette
• ParametricEdgeDetection
• Tinting
• Color Tone
• Pixilation
• Sketch
• Pencil
• Toon

Figure 3-5. Shader Effects

The Pixelate effect (Figure 3-5(a)) is used to simulate a close-up of an image, causing it
to appear coarser, blockier and less detailed. The Old Movie effect (Figure 3-5(b)) is a
combination effect. It applies a sepia tone to the image. It also uses a vignette effect,
whereby the pixels closer to the image perimeter are darkened. The Parametric Edge

 8

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Detection effect (Figure 3-5(c)) uses a convolution algorithm to detect edges of items
within the image. In this version it colors the edges with vibrant colors to make them
stand out. The last effect (Figure 3-5(d)) transforms the image into a version that looks
like it was hand sketched with a pencil.

Distortion and Displacement
Shaders in this category are less subtle than the color modification examples. They
aggressively move pixels around the screen, causing bulges and ripples to appear on an
otherwise flat output. Generally, the objective is to trick the user's brain into seeing a
real-world distortion where none exists.

The techniques used are diverse but all have one thing in common. When determining
the color to use for an output pixel, they don't use the color from its current position.
They borrow the color from a neighboring pixel or interpolate a new output color based
calculations run on nearby locations.

Be attentive when looking at HLSL code on the Internet, as a good
portion of your search results are likely vertex shader examples. This is
particularly true when researching displacement shaders and lighting
shaders. As you may recall, vertex shaders are a companion type of
shader that are part of the DirectX input pipeline. Whereas pixel
shaders change pixel colors, a vertex shader interacts with the 3D
model vertex points. Typically, a vertex shader precedes a pixel shader
in the shader pipeline. Many Internet examples consist of a mixture of
the two with the majority of the work implemented in the vertex
portion, which does us no good as we can only work with the pixel
shader portion of the pipeline.

The terms applied to this technique are varied: distortion shaders, displacement mapping,
per-pixel displacement, relief mapping, spatial transformation and parallax mapping are
some of the more common names. Let’s look at some of these effects.

Magnify
The magnify effect enlarges a subset of the image, zooming the user in for a closer look.
The enlarged area is often elliptical, though I've seen other implementations.

Figure 3-6. Two implementations of a magnify effect

 9

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 3-6 shows the flower image, with two different magnification effects applied. The
effect on the left has a hard edge to the enlargement area, while the one on the right uses
a smoothing algorithm. The smoothing makes it appear more natural and glass-like. You
may also see this called a bulge effect.

Embossed
The embossed shader is a simple displacement shader. The photo processing community
calls this the inset effect. It provides a mono-color 3D appearance to the image. This is
accomplished by making two separate monochrome versions of the image and making
the first copy lighter in color than the second copy. Then the images are displaced a few
pixels away from each other (See Figure 3-7(a)). For example, the light version is moved
two pixels to the left, the dark version two pixels to the right.

Figure 3-7. More Distortion Effects

Figure 3-7 presents a few more distortion effects. The Bands effect (Figure 3-7(b))
appears to draw vertical blinds over the image. For a glassy tiled look, chose the Glass
Tiles effect (Figure 3-7 (c)) and the Ripple effect (Figure 3-7 (d)) provides the ubiquitous
and overused water droplet effect.

Testing distortion effects
I love the colors and composition of the flower image but it is a poor choice for testing
certain distortion effects. However, it works well for testing the following mirror effect
(See Figure 3-8).

 10

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 3-8. Mirror effect

For effects like bulge or pinch it's better to test with a hard edge geometric pattern — I
find a checkerboard pattern works best. Figure 3-9 shows some sample effects applied to
a black and white checkerboard.

 11

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 3-9. Checkerboard with various distortion effects

 12

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Other Displacement Effects
Displacement shaders are a fertile area of development. Here is a listing of some of the
more interesting effects in this category. You can see a few examples in Figure 3-9.

Just a few displacement shaders are:

• Paperfold
• Pivot
• Pixelate
• Splinter
• Camera Lens Correction
• Bulge
• Pinch
• Ripples
• Swirl
• Banded Swirl
• Bands
• Tiles
• Glass Tiles
• Mirror

Once again, I must omit the detailed descriptions of each of these effects. There isn't
enough room in this book to cover them all.

Blurs
Blurs are type of a displacement effect. Rather than being dramatic, like a ripple effect,
they tend to be subtler and affect a smaller area. Some of the common blurs are named
after the technique used to create the blur. The Gaussian blur and GrowablePoissonDisk
effect fall into this bucket.

The Gaussian and Poisson algorithms are named after their inventor's
surnames, Johann Carl Friedrich Gauss and Siméon Denis Poisson

Both Silverlight and WPF have a built-in blur effect. While it is serviceable, you might
consider some of the alternative blur algorithms listed below for parts of your interface.

Motion blur
Motion blur is the apparent streaking of quickly moving objects in a photo or video
frame. It is an artifact of camera hardware limitations and appears when to trying to
capture a moving object while using a too-slow shutter speed. The graphics industry
makes frequent use of this handy effect during post-production work. You'll find it used
in computer graphics, video games, traditional and 3D animation and movie special
effects. This effect is also called a directional blur.

 13

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Zoom blur
This blur mimics the action of taking a picture while zooming the camera lens closer to
the subject. This effect is also known as the telescopic blur.

Sharpening
This effect attempts to remove blurriness from the source image by increasing the edge
contrast ratio (a well-known process for changing perceived image sharpness). This effect
is also called the unsharp mask effect.

Generative Effects
Most of the time your effect is dependent on the inbound raster image. There are times
when it is advantageous for an effect to ignore the inbound pixels and generate its own
independent output as in Figure 3-10. Choose this route when the effect generated can
benefit from the multi-core and parallelization power of the Graphics Processing Unit
(GPU). There are examples found across the Internet showing blazing fast fractal
generators. Fractal algorithms are a dead-end for the XAML developer however. We are
stuck with the PS_2 and PS_3 specification, which has an inadequate number of
instructions available for recursive functions. These limits mean that you can create a
Mandelbrot quickly, but it will be a superficial portrayal of the beauty of fractals.

Each new version of the Pixel Shader specification provides significant
upgrades over the previous version. To write HLSL code to exploit the
newest PS specification (PS_5_0) you must use the DirectX API itself
as there is no support for it in Silverlight/WPF. Silverlight supports the
PS_2_0 spec and WPF supports the PS_2_0 and PS_3_0 versions. To
learn more about the difference in these specifications try this website.
http://en.wikipedia.org/wiki/HLSL

Even though robust fractal patterns are out of the question, you can generate gradients
and fancy patterns.

Figure 3-10. Generative effects

 14

www.it-ebooks.info

http://en.wikipedia.org/wiki/HLSL
http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Multiple Inputs
Most of the effects seen in this chapter have been single input. To be more accurate they
have a single sampler input. Samplers, as you may recall, are the inbound pixels passed to
the shader from the DirectX pipeline. You don't have to be clubbed with the obvious stick
to recognize that if a shader has no input samples it doesn't have much to work with.

The generative shaders are the only useful effect that ignore input
samplers.

The PS_2 and PS_3 specifications allow additional input samplers-- up to a maximum of
four in PS_2 and a maximum of eight in PS_3. You'll learn more about input samplers
later in the book.

What can you do with multiple inputs? Here's a short list, though there are many more
ideas to explore on your own.

• Sampler Transition
• Color Combination
• Texture Map
• Photoshop Blend modes

Sampler Transition
The last decade has seen pervasive changes in UI metaphors. Touch input is without a
doubt the most transformative shift I've seen since starting my tech career. Another
trendy change is transitional animation, whereby the user is moved from one state to
another though a helpful animation. In the XAML world this is frequently done with a
storyboard. Let's envision a fade animation that transitions from a list of products to a
products detail page. The accepted way to accomplish this in XAML is to layer the list UI
over the detail UI and animate the opacity value of the top layer.

That's one way to accomplish a UI transition. Let's consider how you could implement
this transition as a multi-input shader. You'd provide two inputs to the shader, on for each
UI section. In the HLSL, you take the two inbound samplers and output one result. That
result is either the first sampler, the second sampler or some transitional value between
the two. In your .NET effect class provide a Progress dependency property. Then
animate the Progress property and let the shader provide the fancy transition effect.
Figure 3-11 shows a few stages of a transition effect implement in this manner.

 15

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 3-11. Multi-input shader, showing four stages of transition

Texture Map
Texture mapping takes the values stored in one input texture and uses them to manipulate
other input textures. Let’s look at an example that uses the values in the a geometric
pattern image to manufacture a glass like embossing effect on the flowers image.

 16

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 3-12. Shape and final output for ApplyTextureMap effect

In Figure 3-12 example, the Texture map is the five squares shown in Figure 3-12(a).
The effect combines the purple pixels of the texture map with the flower pixels from the
other image to create a glass like texture overlay (Figure 3-12(b)).

Mapping can get more sophisticated, you could use the colors in the map file to recolor
the colors in the target image. For this example I've created a map file containing bands
of colors.

Figure 3-13. The Source map file

Start on the left edge of Figure 3-13 and look at the first pixel on the top row. What color
do you see? I see a lustrous emerald green. Continue moving right on the top row of
pixels and you see green pixels for a short stretch, then a few yellow pixels, then green
again, followed by a strip of black. The colors change as they move rightward but stay
limited to the three colors (green, yellow and black).

There are exactly 256 pixels in that first row and they are going to serve as a lookup table
for a shader.

Often times a map file is only one pixel high by 256 pixels wide. It
might help to think of it as a one-dimensional array with 256 elements.
The image in Figure 3-13 is actually 20 pixels high. That extra height
serves no purpose for the shader, but it does make it easier to see the
picture in a book!

Some of you are thinking ahead and know why there are 256 pixels in the first row. Yes,
that’s the number of unique gray values in an 8-bit grayscale color range. Now if you
replace each pixel in a grayscale image with a lookup color from the color map you are
performing a texture mapping. Black is replaced with pixel[0], which on our texture map
is green. White is replaced with pixel[255] which is also green. The other 254 gray values
use the lookup color found at their respective location. Figure 3-14 shows before and
after versions of three images with the color map applied.

 17

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 3-14. Three images with texture map applied

Wait a minute. The picture of the flower on the last row in Figure 3-12 isn't a grayscale.
How does that mapping work? It's quite simple if you recall the earlier discussion on
creating monochromatic shaders. The shader code converts the pixels to grayscale values
before applying the texture map.

 18

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Examples, and source code for of each of the shader types discussed in
this chapter can be found in the Shazzam Shader Editor.

Color Combination
Color combining is straightforward. Take a pixel from the same location in multiple
sources and combine into a new color. The color algorithm here is the key. For an overtly
simple algorithm just average the RGBA channels across all input sources.

Example 3-4. Sample color combination shader
// pseudocode

color1 = GetColor(sourceA);
color2 = GetColor(sourceB);

combinedColor.r = (color1.r + color2.r) /2;
combinedColor.g = (color1.g + color2.g) /2;
combinedColor.b = (color1.b + color2.b) /2;
combinedColor.a = (color1.a + color2.a) /2;

This works but produces a low contrast and muddy output. A more desirable approach is
to determine what kind of color combination is best for the intended image effect.
Luckily, there is a set of well-tested and respected formulas available. I'm referring to the
Adobe Photoshop blend-mode algorithms. You see, the Photoshop developers have been
thinking about the problem for a long time. As a result, their color blend-mode
implementation is top-notch.

In many situations, your input samplers will not have the same
dimensions. In that case, there won't be a one-to-one relationship
between pixels. WPF and Silverlight handle this situation by enlarging
the smaller source to match the larger.

Photoshop Blend Modes
Adobe Photoshop is considered by most design shops to be 'the' premier photo-editing
tool and knowing how to exploit its toolset is a considered a badge of honor in the
designer community. If you ask me to name the single most important feature in
Photoshop, I would vote for the layers feature. Without layers, you'd be hard pressed to
make editable parts of your image and get any work done.

When you have multiple layers in a Photoshop project, you can configure how the pixels
in an upper layer combine with the pixels on the next layer down the stack. This feature is
called Blending Mode. On a many-layered project conceptualizing each layer and its
blend can get complex so for this discussion I'll assume that there are only two layers.

Before explaining the modes, it's helpful to define the three colors as defined in
Photoshop documentation. The lower layer contains the base color, the upper layer
contains the blend color and the output color is termed the result color.

The current version of Photoshop boasts over twenty blend modes (see Figure 3-15) and
each one uses a different formula to blend colors between layers. You can read details
about each mode on the Adobe website (http://adobe.ly/cs5blendmodes).

 19

www.it-ebooks.info

http://adobe.ly/cs5blendmodes
http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 3-15. Photoshop blend modes

Darken modes
Each of these modes results in of darkening the base image.

• Darken

 20

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

• Multiply
• Color Burn
• Linear Burn

I'll examine the Darken blend mode here. A detailed discussion of all thirty modes is
beyond the scope of this book so I encourage you to learn more about the modes at the
Adobe site.

The darken mode examines the base and blend colors for each pixel. The darker of the
two is selected as the result color of that pixel. Figure 3-16 show the results from using
the four darken effects.

 21

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 3-16. Darken blend modes

 22

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Lighten modes
Each of these modes results in a lightening of the base image.

• Lighten
• Color Dodge
• Screen
• Linear Dodge

Contrast Modes
Each of the contrast modes lightens some pixels and darkens others in the base image,
heightening the contrast.

• Hard Light
• Hard Mix
• Linear Light
• Overlay
• Pin Light
• Soft Light
• Vivid Light

Comparative Modes
Each of these modes compares the two layers, looking for regions that are identical in
both.

• Difference
• Exclusion

Other Modes
Each of these modes uses a unique formula to blend the pixels. Some of these are
addendums to the Photoshop blend algorithms and were provided by third party tools or
community members.

• Glow
• Negation
• Phoenix
• Reflect

Figure 3-17 shows a potpourri of blend effects.

 23

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 3-17. Sample of other blend effects

Blend modes in HLSL
Recreating these blend modes in HLSL is a productive exercise and provides a great
example of the usefulness of multiple input shaders. My favorite implementation of blend
modes comes from Cory Plotts. His original library is available at
http://www.cplotts.com/2009/06/16/blend-modes-part-i/ and they are included in the
latest Shazzam release.

Practical uses for shader effects
It’s a good bet that you are considering using custom effects in you application, otherwise
you'd not be reading this book. Effects are exciting and an obvious choice for certain
families of applications (I'm thinking of the photo editors and video tools among other
"fancy" UX applications).

 24

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Still, I suspect some readers are wondering about practical examples in business
applications so here are a few ideas to consider before you move into the next chapter.

Motion blur in moving parts
Think about the parts of your UI that move. An obvious place to look is where you have
animated elements. Adding a motion blur to the element while it is moving across the
screen can make it seem livelier. It's done all the time in the movie and cartoon industry
and it’s worth considering in your application, too. Don't forget to consider other non-
animated areas like listboxes and scrolling areas as candidates for motion blurs.

Blurs to emphasize UI focus
You can use a blur to focus attention toward a section of the UI. For example, when you
show a Popup or Dialog in your application apply a blur to the UI in the background.
This will draw more attention to the dialog as the rest of the UI is blurry and the
background appears to fade into the distance. Note that this technique works best when
the main UI is maximized. I've used this technique for the dialogs in Shazzam Shader
Editor. Check out Figure 3-18 to see a telescopic blur in action.

Figure 3-18. Using blur for dialog background

 25

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

 26

Desaturate for emphasis
The Windows OS used this technique a few years back. When you switched from one OS
theme another, the UI would desaturate slowly to gray, then saturate the colors back to
your new theme. You could do a similar stunt in your application.

For example, reimagine the dialog shown in Figure 3-18 with a desaturated background,
instead of the blurred one.

Summary
Creating a UI that is informative, yet delightful, is a delicate balancing act. On the
practical side, you need input controls and access to the business data or the UI is just a
pretty plaything. On the designer side, you want to follow time-tested design principles,
choose beautiful typefaces and create an inspiring layout for the interface. Shaders are an
enhancement to the designer mindset and provide unique tools for enriching an
application. Be cautious when using bold effects or you might find your users are
nauseated instead of elated with your rippling, oversaturated workspace. On the
Silverlight side, you also need to consider the performance ramifications for shaders.
Because they run on the CPU, Silverlight shaders are not as fast as their WPF brethren.

Shaders speak to my artistic side; I love the power and beauty inherent in these potent
graphical nuggets. When I look at a shader example, my mind's eye sees the UI potential
hiding in each effect. I'm sure you felt the tingle of inspiration while thumbing through
the assortment of shader effects in this chapter. Now that you know what shaders can do,
let's see how to use them in your Silverlight or WPF application.

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

4
How WPF and Silverlight Use

Shaders

You can spend your programming days happily working within the comforting confines
of .NET’s managed code libraries without ever seeing a smidgen of unmanaged code.
The framework team is not stupid though, they know there are times when you have to
call out to a COM library or Win32 DLL to get your job done. So they created hooks in
the framework to enable the flow of code between the sheltered world of managed code
and the mysterious unmanaged realm. It’s the same story when interoping between HLSL
code and Silverlight/WPF classes.

In this chapter, we look at the .NET parts that facilitate the use of unmanaged HLSL
shaders in the visual tree. The UIElement.Effect property is our first stop. It provides a
way to assign a ShaderEffect to a visual element. Next, we look at some of the classes in
the System.Windows.Media.Effects namespace. These classes (ShaderEffect,
PixelShader, etc.) enable the flow of information to the HLSL world. We’ll examine
how to create your own managed wrappers for HLSL and investigate the prebuilt effects
in the System.Windows.Media.Effects namespace and the Expression Blend libraries.

Remember, on the .NET side the customary term is effect, on the HLSL
side the preferred term is shader.

Framework Effects
It’s easiest to start our discussion of framework effects by looking at the two shaders
included in the System.Windows.Media.Effects namespace (see Figure 4-1). By starting
with the BlurEffect and DropShadowEffect we can concentrate on the XAML syntax
and not worry about custom classes and resource management.

 1

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 4-1. Effect classes included in the framework

All visual elements derive from the UIElement class, which makes it an ideal location to
surface the Effect property. With a few lines of XAML you can apply an effect to any
UIElement, as shown in Example 4-1.

[XML]
Example 4-1. Applying BlurEffect to Image element

...
<TextBlock Opacity='1'>
 <Image.Effect>
 <BlurEffect Radius='12' />
 </Image.Effect>
 </Image>
...

BlurEffect
In an earlier chapter, I showed how to use the BlurEffect. It is one of the simpler effects.
It applies a blur algorithm to the output, resulting in; you guessed it, a blurry output. The
Silverlight version has one property, Radius: which influences the blurriness of the
effect.

The WPF version adds two additional properties. The KernelType property is used to
specify the blurring algorithm. The default algorithm is the infamous Gaussian blur. To
switch to the simpler and less smooth Box kernel type simply change the value as shown
here (Example 4-2).

Example 4-2. Setting BlurEffect Properties
[XML]

<CheckBox>
 <CheckBox.Effect>
 <BlurEffect KernelType='Box'
 RenderingBias='Quality' />
 </CheckBox.Effect>

 2

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

</CheckBox>

There are tradeoffs in shaders, just as in other areas of programming. Blur algorithms can
affect rendering speed so the WPF BlurEffect provides the RenderingBias property as a
means to choose performance or quality output for the effect. To get better quality output
alter the property as shown in Example 4-2.

DropShadowEffect
The UI design community has a turbulent relationship with the drop shadow. One decade
it’s a beloved tool in UI design and it pervades the popular design metaphors and the next
it isn’t. Designers are restless and inquisitive and eventually the drop shadow falls from
favor and is viewed as an anachronism by the same community. If you long to add a
shadowy aspect to your UI, reach for the DropShadowEffect class.

The Silverlight version contains a few properties that are self-explanatory (Color,
Opacity and ShadowDepth) so I won’t burden you with a description. The Direction
property represents the angled direction of the shadow. A direction of zero draws a
shadow to the right of the host element. Higher values rotate the shadow
counterclockwise with the default value (315) placing the shadow in the lower right
position. The BlurRadius property configures the blurriness of the shadow. Set the
BlurRadius to zero and the shadow has a crisp, sharp edge, crank up the value for
maximum shadow fuzziness.

WPF adds one additional property, RenderingBias, over the Silverlight version, which
provides the same services as seen in the BlurEffect.RenderingBias property described
earlier.

Nested Effects
When an effect is applied to a framework element, it affects that element and all of its
children. In many circumstances, this is the appropriate approach and the UI looks as
expected. Other times the nested effects give an undesirable look to the UI. Figure 4-2
shows two stack panels with a drop shadow applied. The first stack panel has the desired
look, because its background brush is fully opaque. The second stack panel uses a solid
color background brush with the alpha channel set to a non-opaque value. Because the
brush is semi-transparent the drop shadows for the child elements are visible.

 3

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 4-2. Two StackPanels with dropshadow

Take heed, once an effect is set on a parent element, there is no way to
disable the effect on its children elements.

Multiple Effects on One Element
On a sophisticated interface there might be effects applied at different levels of the visual
tree. It’s likely that at some point you will want to apply multiple effects to a single
element. The Effect property has some limitations, which you should understand before
proceeding. The primary constraint on your creativity is that the Effect property can only
have a single effect in scope at any time. In other words, there is no collection of effects
permitted on a UIElement.

Imagine that you want to apply a blur and drop shadow to a button. The work-around for
the single effect problem is to nest the button inside another element and apply the
second effect to the containing element. Example 4-3 shows some XAML that
demonstrates this technique.

Example 4-3. Using a Canvas to add second effect to a Button
[XML]

<Canvas>
 <Canvas.Effect>
 <DropShadowEffect />
 </Canvas.Effect>
 <Button Content='Blurred and Shadowed'
 Width='180'
 Height='50'>
 <Button.Effect>

 4

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

 <BlurEffect />
 </Button.Effect>
 </Button>
</Canvas>

It's a bit underwhelming to learn that Microsoft only includes these two simple effects in
the framework. With the vast number of shaders known to the graphics programming
crowd I was expecting a lot more out of the box. Fortunately, Expression Blend fills in
the gaps and provides many supplementary effects.

Expression Blend Effects
The Expression Blend team is constantly looking for tools to enhance the XAML design
experience. A few years ago, they decided to cherry-pick the best shader effects and
package them for use in Silverlight/WPF projects (see Figure 4-3). In the Blend interface
you can easily add these effects to elements via the Assets panel. You are not limited to
using Expression Blend to access them as you can always add a reference to the
Microsoft.Expression.Effects DLL to bring them into any XAML project.

Figure 4-3. Expression Blend effects

Using a Blend Effect
The first step to using a Blend effect is to add a reference to the Blend effect library
(Microsoft.Expression.Effects.dll). If you have installed Expression Blend in the default
location the Silverlight DLL is in the C:\Program Files\Microsoft

 5

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

SDKs\Expression\Blend\Silverlight\v4.0\Libraries directory and the WPF version is in the
C:\Program Files\Microsoft SDKs\Expression\Blend\.NETFramework\v4.0\Libraries
directory.

To use the effect in a XAML file add the Blend namespace as shown in the following
XAML (Example 4-4).

Example 4-4. Add Blend effects namespace to XAML file
[XML]

<UserControl
 x:Class="Demo.Examples.UseBlendEffectPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:ee="http://schemas.microsoft.com/expression/2010/effects"
...

Now it’s just a matter of setting the Effect property and configuring some parameters as
shown here in Figure 4-4.

 6

www.it-ebooks.info

http://schemas.microsoft.com/winfx/2006/xaml
http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 4-4. Using a Blend effect in the Visual Studio XAML editor

There are about a dozen standard effects in the Blend library. Blend also includes
specialized effects known as transition effects. I won’t detail either type of effect in this
chapter, but you will see more of the standard and transition effects in chapter 5.

You may encounter the BitmapEffect class and its derived types
(BevelBitmapEffect, BlurBitmapEffect, DropShadowBitmapEffect,
EmbossBitmapEffect, and OuterGlowBitmapEffect) while exploring
the WPF libraries. Don’t be fooled by the name, these are legacy
effects from the early days of WPF; they are not implemented with

 7

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

pixel shaders. They are slow and inefficient when compared to their
speedy ShaderEffect relatives and are ultimately destined for the .NET
dustbin.

Custom Effects
The process of creating a custom effect starts by creating an unmanaged pixel shader. As
you may recall, pixel shaders are written in their own quirky programming language
called HLSL. Once the HLSL shader code is finished, it is compiled into a binary .ps file.
To use the shader, it has to be loaded into the rendering engine input stream. To
accomplish this task you need to work with the .NET ShaderEffect and PixelShader
classes.

The ShaderEffect is the abstract class that serves as a base for your custom effect class.
It is a dependency object, so you can populate it with dependency properties. It works in
conjunction with the PixelShader class. The PixelShader class is a managed wrapper
around your HLSL pixel shader. Internally, the ShaderEffect keeps a reference to the
PixelShader class, so that it can inject the unmanaged shader into the graphics pipeline.
You will have little interaction with the PixelShader class, other than configuring it to
load the shader. Most of the customization of your effect revolves around the
ShaderEffect class.

The ShaderEffect offers a handful of member that we’ll examine in this chapter.

• RegisterPixelShaderSamplerProperty
• UpdateShaderValue
• PixelShaderSamplerCallback
• PixelShaderConstantCallback
• Padding

Creating a custom ShaderEffect
Consider the following code definition:

 public class BareBones : ShaderEffect {}

While this might technically be considered a ShaderEffect it is an empty shell, incapable
of influencing any pixels. The first step in turning the class into a useful effect is to load
an unmanaged pixel shader file.

This chapter concentrates on understanding the .NET code and leaves
the in-depth discussion of unmanaged pixel shaders for another chapter.
To that end, the examples in this section assume that a pixel shader has
been compiled into a .ps file and is ready to use in the custom effect.

Loading the .ps file

The compiled pixel shader is stored inside a binary file. It is common to name this file
with a .ps extension but that is not a requirement. To make it accessible to your
ShaderEffect add it to your .NET project and mark it as a project resource. It’s still not
usable until your ShaderEffect extracts the .ps file and associates it with the managed

 8

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

PixelShader class. The syntax for locating the .ps file is the same as retrieving any other
project resource file. Here is some sample code (see Example 4-5) demonstrating how to
extract the resource.

Example 4-5. Extracting the .ps file and assigning to PixelShader
[C#]

public class LoadingPsFileEffect : ShaderEffect {

 public LoadingPsFileEffect() {

 // the PixelShader class provides a
 // managed wrapper for the unmanaged pixel shader
 var pixelShader = new PixelShader();

 // retrieve the .ps resource with a URI
 // the .ps file needs to be marked as resource in Build Action

 var psFileUri = new Uri
 ("/CustomShaderEffects;component/PsFiles/BlueTintEffect.ps",
 UriKind.Relative);

 pixelShader.UriSource = psFileUri;

 // store the reference to the PixelShader instance
 // in the ShaderEffect.PixelShader property
 this.PixelShader = pixelShader;
 }
}

The code starts by creating an instance of the PixelShader class in the class constructor.
Next, a new URI is created and assigned to the PixelShader.UriSource. This example
assumes that the assembly containing the resource is named CustomShaderEffects and
that the .ps file is in the PsFiles project folder. Finally, the PixelShader reference is
assigned to the ShaderEffect PixelShader property. From this point forward, the
ShaderEffect will manage the communication with the GPU.

For simplicity sake, I’ll use the term GPU in this chapter to refer to
both the WPF and Silverlight rendering engine. The purists in the
audience will be offended but it makes it easier to talk about the
process in this chapter.

The LoadingPsFileEffect class is a functional effect so let’s see how to use it in a
XAML page.

Use the ShaderEffect

Using your custom effect is similar to working with the Blend effects. Start by compiling
your project and then adding a custom xmlns namespace to the XAML file. This xmlns
attribute indicates which assembly contains the preferred effect. Once you have the xmlns
namespace configured you can use it as the following code reveals (Example 4-6).

Example 4-6. Using the effect on an Image element
[XML]

 9

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

...
<!-- In the root element add this namespace-->
 xmlns:effects='clr-namespace:HLSL.Book.Ch04.TheEffects'

<!-- Use the Effect in your application-->
<Image Source='/Images/garden1.jpg'>
 <Image.Effect>
 <effects:LoadingPsFileEffect />
 </Image.Effect>
</Image>
...

Once the project is compiled, you can see the effect result by running the application or
viewing it in the Visual Studio designer as shown in Figure 4-5.

Figure 4-5. Viewing the custom effect in Visual Studio designer

Working with Samplers
In the preceding example, the ShaderEffect was applied to the entire image. Clearly, that
implies that the pixels from the Image element are passed to the HLSL shader. How does
that happen?

 10

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

To understand how this works we need to look at the sampler2D concept in the HLSL
specification and the ShaderEffect.RegisterPixelShaderSamplerProperty in the
managed libraries.

Lets’ start by examining the HLSL (Example 4-7) for the BlueTintEffect:

Example 4-7. HLSL code for a blue tint shader
[C#]

sampler2D input : register(s0);
float4 main(float2 uv : TEXCOORD) : COLOR {

 float4 Color;
 Color = tex2D(input , uv.xy);
 Color.b += 1 + uv.y;
 return Color;
}

It’s a simple color alteration shader. It applies a slight blue tint to each inbound pixel.
Direct your attention to the first line of the example. It’s in that first line that you see how
the HLSL code gets the inbound pixels.

The HLSL specification states that pixel shaders have access to bitmap information via
samplers. A sampler is a bitmap that is stored in video memory. In the early days of
shaders the sampler was often used to store a small texture file (for example an image
containing; bricks, stones, moss or cloth) that was mapped or painted onto a 3D object to
make the model look realistic. The early graphics pioneers called it a sampler because it
was a way to sample a texturemap within the shader. The terminology persists to this day.
In a XAML application, the HLSL sampler usually contains the rasterized output of the
effected UI elements.

Samplers are passed into the HLSL program by means of the GPU registers. To do this in
HLSL you declare a program level variable and associate it with a shader register as
shown here:

[C#]
sampler2D input : register(s0);

In this example, the variable name is input and the associated shader register is s0. The
sampler2D variable type signals that the accompanying GPU register contains bitmap
data.

Samplers and other inputs to the shader are declared at the top of the
HLSL code and are considered global variables by the HLSL
specification. Be aware that the shader term global variable has a
different connotation here, especially when compared to your favorite
.NET language. Global variables are settable during the shader
initialization phase, but cannot be changed during the shader execution.
This guarantees that the parameter value is constant for all the pixels
processed by the shader.

The Pixel Shader 2.0 specification permits up to 16 shader registers. Unfortunately, .NET
restricts the number of accessible sampler registers to a smaller number. Silverlight and
WPF 3.5 limit you to a maximum of four inputs while WPF 4.0 is more generous and ups
the input limit to eight.

 11

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Implicit Input from ShaderEffect

We’ve just seen that the HLSL shader uses the sampler2D type for its texture input. That
won’t work on the .NET side; we need a Silverlight/WPF specific type instead. The good
news is that .NET uses the familiar Brush type for this purpose. Several types of XAML
brushes can be used as input but we’ll start by looking at a special, effect-friendly one
called ImplicitInputBrush.

Example 4-8 shows one of the most common scenarios for using an effect by setting the
Effect property on an element.

Example 4-8. Use the ImplicitInput brush
[XML]

<TextBox>
 <!-- Use the ImplicitInput brush feature of the Effect base class -->
 <TextBox.Effect>
 <effects:BlueTintEffect />
 </TextBox.Effect>
</TextBox>

In this circumstance, the “sampler” that the shader gets as input is the rasterization of the
Textbox. As mentioned above, a brush is used to send the information to the shader. A
close inspection of the XAML in Example 4-8 reveals no trace of a brush however.
What’s happening?

The ShaderEffect base class has some default behavior that creates a special
ImplicitInputBrush in this situation. This implicit brush contains the rasterized Textbox
pixels, which are eventually sent over to the shader for processing.

To take advantage of this implicit brush feature requires nothing more than registering
the shader .ps file as you saw in Example 4-5. To assign any other type of brush to the
shader texture requires creating an explicit DependencyProperty in your custom effect.

Explicit Input from ShaderEffect

Start by creating a dependency property within the custom ShaderEffect and marking the
property type as System.Windows.Media.Brush. Traditionally this property is named
Input, but the choice of name is entirely up to you and your imagination. To integrate this
Input property with the HLSL shader you must associate the dependency property with
the correct GPU s register. For convenience, the ShaderEffect class exposes the static
RegisterPixelShaderSamplerProperty method for this purpose.

 12

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Here is the explicit way to achieve the association:

Example 4-9. Writing a DependencyProperty that uses the “s” register
[C#]

 // the last argument (0) refers to the HLSL s register

 public static readonly DependencyProperty InputProperty =
 ShaderEffect.RegisterPixelShaderSamplerProperty("Input",
 typeof(AddingInputTextureEffect), 0);

With this dependency property in place, the custom effect is applied to any brush
assigned to the Input property

Even though the effect has an explicit Input property, you can still use
the syntax shown in Example 4-8 to apply the implicit brush.

At this point in the story, you know how to create an explicit input property. I’ll show
how to assign other brushes to it but first let’s look at a small scenario that highlights
shader input and output within the visual tree.

Pipeline trivia

To explore these concepts I’ll use a sample UI with four elements placed inside a Canvas
panel. Look at the screenshot of the sample elements in the Visual Studio designer
(Figure 4-6).

Figure 4-6. Four elements in a canvas

The first two elements on the left side have no effects configured. As you can see from
the following XAML snippet (Example 4-10), there is nothing especially notable about
these two elements.

Example 4-10. Two elements
[XML]

...
<!-- Normal Image.
 Drawn at Location(0,0) Size(40,40) -->

<Image Source='/Images/garden1.jpg'
 x:Name='GardenImage'
 Width='40'

 13

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

 Height='40'
 Canvas.Top='0'
 Canvas.Left='0'
 Stretch="UniformToFill" />

<!-- Normal Rectangle.
 Drawn at Location(0,80) Size(40,40) -->
<Rectangle x:Name='RectangleWithoutEffect'
 Fill='Orange'
 Width='40'
 Height='40'
 Stroke='Black'
 StrokeThickness='2'
 Canvas.Top='0'
 Canvas.Left='80' />
...

Silverlight/WPF processes these two elements (GardenImage and
RectangleWithoutEffect) during the layout phase. Once that phase is finished, it knows
the location and size for both elements and rasterizes their UI for consumption by
rendering engine.

It’s a similar process for elements with effects. Take, for example, the two rectangles
defined in the following XAML snippet (Example 4-11). They are similar to the prior
example, but have the distinction of having the BlueTintEffect applied.

Example 4-11. Two rectangles with effects applied
[XML]

...
<!-- Rectangle with Effect applied. Output from pixel shader
 is drawn at Location(0,180) Size(60,60)
 Raster input into the pixel shader comes from the Rectangle -->
<Rectangle x:Name='RectangleWithEffect1'
 Fill='Orange'
 Width='60'
 Height='60'
 Stroke='Black'
 StrokeThickness='2'
 Canvas.Top='0'
 Canvas.Left='180'>
 <Rectangle.Effect>
 <effects:BlueTintEffect />
 </Rectangle.Effect>
</Rectangle>

<!-- Rectangle with Effect applied. Output from pixel shader
 is drawn at Location(0,280) Size(60,60)
 Raster input into the pixel shader comes from the ImageBrush -->
<Rectangle x:Name='RectangleWithEffect2'
 Fill='Orange'
 Width='60'
 Height='60'
 Stroke='Black'
 StrokeThickness='2'
 Canvas.Top='0'
 Canvas.Left='280'>

 14

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

 <Rectangle.Effect>
 <effects:BlueTintEffect>
 <effects:BlueTintEffect.Input>
 <ImageBrush ImageSource='{Binding
 ElementName= GardenImage,Path=Source}' />
 </effects:BlueTintEffect.Input>
 </effects:BlueTintEffect>
 </Rectangle.Effect>
</Rectangle>
...

Once Silverlight/WPF has finished the layout pass, it knows the location and size for
RectangleWithEffect1 and RectangleWithEffect2. During the rasterization phase, it
passes the rasterized output data into the elements associated shader. The pixel shader
does its pixel voodoo and the resultant output is placed in the regions reserved for these
two rectangles.

To hammer home the point -- RectangleWithEffect1 is drawn at the
same location and size regardless of whether it has an effect or not.

Explicit Input Revisited

So where do the inbound pixels for the pixel shader come from? That depends on a few
factors. BlueTintEffect has an Input DependencyProperty defined as seen previously in
Example 4-9.

Lets’ apply the effect and dissect where the input comes from. Example 4-12 shows the
BlueTintEffect applied to a Rectangle.

Example 4-12. Using the BlueTintEffect on an Rectangle element
[XML]

<Rectangle.Effect>
 <effects:BlueTintEffect />
</Rectangle.Effect>

Even though the effect has an explicit input property, it is not used when using this
syntax; instead, it uses the implicit input. You can verify this is true by checking the Input
property as seen in the code in Example 4-13.

Example 4-13. Checking explicit Input brush
[C#]

var brush =
(RectangleWithEffect1.Effect as CustomShaderEffects.InputTestEffect).Input;

// brush is null, indicating that the Input property was not set

Because the BlueTintEffect exposes an explicit Input property it’s possible to pass in
other brushes to the shader input as shown in this XAML (Example 4-14).

Example 4-14. Assigning an ImageBrush to the explicit Input property
[XML]

 15

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

 <Rectangle.Effect>
 <effects:BlueTintEffect>
 <effects:BlueTintEffect.Input>
 <ImageBrush ImageSource='{Binding
 ElementName=GardenImage,Path=Source}' />
 </effects:BlueTintEffect.Input>
 </effects:BlueTintEffect>
 </Rectangle.Effect>

As you can see, the pixel shader input is coming from an ImageBrush but you can also
use a VisualBrush, or BitmapCacheBrush in the same manner.

When an effect is applied to an element, the output of the shader is
exactly the same size as the original input size. If the rectangle is 60 x
80 pixels, the output of the shader is also sized at 60 x 80 pixels.
Choosing implicit or explicit input has no bearing on the output size.

The only exception to the sizing rule is when an effect uses the effect
padding properties.

Multi Input Shaders
A pixel shader can have up to 16 input samplers defined in the HLSL. WPF 4.0 limits
you to 8 however.

Here is a HLSL example with two input samplers defined (Example 4-15).

Example 4-15. Pixel shader with two sampler2D inputs
[C#]

sampler2D BaseImage: register(s0);
sampler2D TextureMap : register(s1);

float4 main(float2 uv : TEXCOORD) : COLOR
{

 float hOffset = frac(uv.x / 1 + 1);
 float vOffset = frac(uv.y / 1 + 1);
 float2 offset = tex2D(TextureMap, float2(hOffset, vOffset)).xy * 4 - 1/2;

 float4 outputColor = tex2D(BaseImage, frac(uv + offset));
 return outputColor;
}

The first sample2D variable is using the s0 register while the second sample2D variable
maps to the s1 register.

Be pragmatic and thoughtful when naming your HLSL variables.
Readability is just as important in HLSL code as in other programming
languages.

In this example, the first sample2D variable name reflects its status as the base image.
The second variable name, TextureMap, indicates that it holds a bitmap containing
lookup textures. The HLSL in the sample uses a simple mapping technique to blend the
pixels from the two sampler inputs.

 16

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

On the .NET side, you need to create two dependency properties and call
ShaderEffect.RegisterPixelShaderSamplerProperty on both. The registration code
will be similar to the code shown in Example 4-9.

To use these inputs in XAML use syntax like this:

Example 4-16. Assigning some ImageBrushes to the input properties
[XML]

...
<Rectangle x:Name='RectangleWithEffect1'
 Width='256'
 Height='170'
 Stroke='Black'
 StrokeThickness='2'>
 <Rectangle.Effect>
 <effects:TwoInputEffect>

 <effects:TwoInputEffect.BaseImage>
 <ImageBrush ImageSource='{Binding
 ElementName=GardenImage2,Path=Source}' />
 </effects:TwoInputEffect.BaseImage>

 <effects:TwoInputEffect.TextureMap>
 <ImageBrush ImageSource='{Binding
 ElementName=GardenImage1,Path=Source}' />
 </effects:TwoInputEffect.TextureMap>
 </effects:TwoInputEffect>

 </Rectangle.Effect>
</Rectangle>
...

This is a beautiful effect as you can see in the screenshot below (Figure 4-7). It shows
four images, the left two being the original images and the right two showing the texture
mapping.

 17

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 4-7. Two original images and two blended images

Understanding Sampler Size
All sampler inputs into the shader are resized by the Silverlight/WPF runtime to match
the render size of the host element.

Consider the following XAML:

Example 4-17. Effect brushes with mismatched size
[XML]

...
<Rectangle x:Name='Rectangle1'
 Width='400'
 Height='400'>
 <Rectangle.Effect>
 <effects:TwoInputEffect>

 <effects:TwoInputEffect.BaseImage>

 <!-- flowers_wide.jpg is 925 x 260 pixels -->
 <ImageBrush ImageSource='/Images/flowers_wide.jpg' />
 </effects:TwoInputEffect.BaseImage>
 <effects:TwoInputEffect.TextureMap>

 <!-- garden_small.jpg is 150 x 200 pixels -->
 <ImageBrush ImageSource='/Images/garden_small.jpg' />
 </effects:TwoInputEffect.TextureMap>
 </effects:TwoInputEffect>
 </Rectangle.Effect>

 18

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

</Rectangle>
...

This example uses the TwoInputEffect and assigns an ImageBrush to each sampler
input. During the layout pass, the runtime determines the render size and location for the
host rectangle, in this case, a 400 x 400 square. When each ImageBrush is readied for
the shader, its sized is constrained to the same 400 x 400 size as the host rectangle;
causing the larger image to be compressed and the smaller image to be enlarged. As far
as the HLSL shader is concerned, it gets two 400 x 400 textures assigned to its s registers.
If you could debug the shader pipeline and look at the two textures stored in video
memory, you’d see that this is true.

Use a transform to manipulate an input brush before the scaling occurs as shown in
Example 4-18:

Example 4-18. Transforming a brush before sending to shader
[XML]

...
<effects:TwoInputEffect.TextureMap>
 <ImageBrush ImageSource='/Images/flowers_wide.jpg'>
 <ImageBrush.Transform>
 <CompositeTransform ScaleX = '.4'
 ScaleY = '.4'
 TranslateX = '100' />
 </ImageBrush.Transform>
 </ImageBrush>
</effects:TwoInputEffect.TextureMap>
...

Now that you’ve seen how to pass bitmap parameters to the shader it’s time to expand
your horizons and see how to pass other types of parameters into the shader.

Creating Parameterized Effects
Parameters are the lifeblood of a flexible programming model. Can you imagine how dull
and impractical it would be to work in a programming language without parameters?
Luckily for us, HLSL accepts various types of input data into the shader.

You’ve already seen how to pass bitmap data to the pixel shader through the GPU
registers. To be more precise, we used the sampler registers for this purpose. They are
designated with the “s” nomenclature (s0, s1, s2, etc.). You are not limited to passing
bitmap data into the shader as HLSL sports another set of registers known as the constant
registers (c0, c1, c2 etc.). A constant parameter is similar to a readonly field in C#. The
value is changeable during the pixel shader initialization period, but remains constant
throughout the execution of the shader. In other words, once the value is set it will be the
same for every pixel processed by the pixel shader. You can have up to 32 constant
registers in PS_2_0. PS_3_0 expands that to 224, but is only accessible in WPF 4.0.

Let’s rewrite the multi input shader as follows:

Example 4-19. Adding constant registers to the HLSL shader
[C#]

 19

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

sampler2D BaseImage: register(s0);
sampler2D TextureMap : register(s1);
float vertScale : register(c0);
float horzScale : register(c1);
float translateX : register(c30);
float translateY : register(c31);

float4 main(float2 uv : TEXCOORD): COLOR
{

 float hOffset = frac(uv.x / vertScale + translateX);
 float vOffset = frac(uv.y / horzScale + translateY);
 float2 offset = tex2D(TextureMap, float2(hOffset, vOffset)).xy * 4 - (1/2);

 float4 outputColor = tex2D(BaseImage, frac(uv + offset));
 return outputColor;
}

In addition to the sampler2D inputs shown earlier in Example 4-15, the refactored code
contains four additional input values declared at the top of the pixel shader. If you look
closely, you can see that these new items are float values, which are loaded into registers
c0, c1, c30 and c31 and then used inside the main function.

The ShaderEffect class transmits parameter information to a HLSL constant register
through a DependencyProperty. It does this by using the special
PixelShaderConstantCallback method. The trip is one-way, from the effect class to the
pixel shader. The parameter value never travels back to the effect class.

Now, let’s focus on how to write the effect to take advantage of these parameters. Here is
a snippet (Example 4-20) that shows the DependencyProperty registration:

Example 4-20. Binding the “c” registers with PixelShaderConstantCallback
[C#]

...
public static readonly DependencyProperty VertScaleProperty =
 DependencyProperty.Register("VerticalScale", typeof(double),
 typeof(InputParametersEffect),
 new PropertyMetadata(((double)(0D)),
 PixelShaderConstantCallback(0)));

public static readonly DependencyProperty HorzScaleProperty =
 DependencyProperty.Register("HorizontalScale", typeof(double),
 typeof(InputParametersEffect),
 new PropertyMetadata(((double)(0D)),
 PixelShaderConstantCallback(1)));

// ... continue in this manner for other dependency properties

The last argument on each registration line is the important one for this discussion. We
call the PixelShaderConstantCallback method and pass in the appropriate constant
register. PixelShaderConstantCallback sets up a PropertyChangedCallback delegate,
which is invoked whenever the DependencyProperty is changed. Example 4-21 shows
how easy it is to use these new properties.

Example 4-21. Setting some shader parameters via DependencyProperties

 20

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

[XML]

...
<Rectangle x:Name='RectangleWithEffect2'
 Width='Auto'
 Height='Auto'
 Margin='3'
 Grid.Row='1'>
<Rectangle.Effect>
 <effects:InputParametersEffect
 HorizontalScale='{Binding ElementName= horzSlider, Path=Value}'
 VerticalScale='{Binding ElementName=vertSlider, Path=Value}'
 TranslateX='{Binding ElementName=xSlider,Path=Value}'
 TranslateY='{Binding ElementName=ySlider,Path=Value}'>

 <effects:InputParametersEffect.BaseImage>
 <ImageBrush ImageSource='/Images/Garden1.jpg' />
 </effects:InputParametersEffect.BaseImage>

 <effects:InputParametersEffect.TextureMap>
 <ImageBrush ImageSource='/Images/Garden2.jpg' />
 </effects:InputParametersEffect.TextureMap>
 </effects:InputParametersEffect>
</Rectangle.Effect>
</Rectangle>
...

UpdateShaderValue

There is one more step necessary to make a functional ShaderEffect. You need to invoke
the UpdateShaderValue method in the class constructor for every bound
DependencyProperty otherwise the pixel shader won’t be initialized with the default
values for the property. Call the method for every effect property, as shown in Example
4-22, to ensure that the initial value for each property is set in the pixel shader.

Example 4-22. Using the UpdateShaderValue method in the effect constructor
[C#]

this.UpdateShaderValue(InputProperty);
this.UpdateShaderValue(TextureMapProperty);
this.UpdateShaderValue(VerticalScaleProperty);
this.UpdateShaderValue(HorizontalScaleProperty);

Property Types

On the HLSL side, the constant register works with various types of float values. When
you register a ShaderEffect DependencyProperty with the
PixelShaderConstantCallback method you are limited to a short list of .NET types.
Table 4-1 lists the permitted .NET types, and the matching HLSL types.

Table 4-1. Comparing WPF, Silverlight and HLSL property types

WPF Silverlight HLSL
Single Single float
Double Double float

 21

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

 22

WPF Silverlight HLSL
Point Point float2
Size Size float2
Color Color float4
Vector NA float2
Point3D NA float3
Vector3D NA float3
Point4D NA float4

Padding
Normally an effect is applied to an elements actual render size. Therefore an effect for a
200 x 200 Image will modify pixels in a 200 x 200 region. Certain affects, like the drop
shadow, need additional space outside the normal render area. Use the ShaderEffect
padding properties (PaddingTop, PaddingLeft, PaddingRight, PaddingBottom) to
increase the size passed into the pixel shader.

The padding properties are marked as protected scope so you cannot access them outside
your ShaderEffect. The typical pattern is to set the padding within your type and expose
other dependency properties for client code to access. The built-in DropShadowEffect
uses the ShadowDepthProperty in this manner.

Effect Mapping
Distortion effects are a popular use of pixel shaders (see Figure 4-8).

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 4-8. Three distortion effects applied to checkerboard.

Distortion effects require extra work if you want them to behave in a predictable fashion.
When you apply a distortion effect to an interactive element like a list box (Figure 4-
9(a)), the touch, stylus and mouse events won’t work as expected. The pixel shader is
rearranging the output pixels but the Silverlight/WPF hit-testing infrastructure is unaware
that the pixels are in a new location (Figure 4-9(b)).

 23

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

Figure 4-9. UI with Distortion Effect

The EffectMapping property provides a way to synchronize the input coordinates
between the two worlds. It takes the raw input coordinates and maps them to the pixel
shader coordinates. This is accomplished by creating a custom GeneralTransform class.

Before we examine the customized GeneralTransform let’s look at the sample
compression shader (Example 4-23) that lives on the HLSL side.

Example 4-23. A compression shader
[C#]

sampler2D input : register(s0);
float CrushFactor : register(c0);

float4 main(float2 uv : TEXCOORD) : COLOR
{

 if (uv.y >= CrushFactor)
 {
 float crushAmount = lerp(0, 1, (uv.y - CrushFactor)/(1 - CrushFactor));
 float2 float2(uv.x, crushAmount); pos =
 return tex2D(input, pos);
 }
 else return float4(0,0,0,0);
}

 24

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

This HLSL example takes the incoming pixels and compresses the pixel shader output
toward the bottom of the element. The higher the CrushFactor property value, the
shorter the output image will be.

In the XAML snippet shown below (Example 4-24) the CrushEffect causes the Image to
be rendered at 30% of its original height.

Example 4-24. Applying the CrushEffect
[XML]

...
<Border BorderBrush='Red'
 BorderThickness='4'
 Width='240'
 Height='120'
 Margin='5'
 Grid.Row='2'>
 <Image Stretch='Fill'
 Source='/Images/garden1.jpg'
 MouseMove='distortedImage2_MouseMove'
 MouseLeftButtonUp='distortedImage2_MouseLeftButtonUp'
 Name='distortedImage2'>
 <Image.Effect>
 <effects:CrushWithMappingEffect CrushFactor='.7'/>
 </Image.Effect>
 </Image>
</Border>
...

Figure 4-10 shows the output of the CrushEffect, when applied to an Image element.
The image is wrapped in a Border element, which shows the size of the Image if it
didn’t have the effect applied.

Figure 4-10. CrushEffect applied to Image element

If there is no EffectMapping provided, the image mouse events will fire when the mouse
is within the white area, even though it’s evident in the screenshot that the image pixels
are no longer visible in that region. To fix this shortcoming, create an EffectMapping
property. The ImageMapping property is responsible for returning a custom
GeneralTransform class to the Silverlight/WPF engine as seen in this code scrap.

Example 4-25. Creating an EffectMapping property

 25

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

[C#]

private CrushTransform _transform = new CrushTransform();
protected override GeneralTransform EffectMapping {
 get {

 _transform.CrushFactor = CrushFactor;

 return _transform;
 }
}

GeneralTransform Class

The GeneralTransform class is one of the XAML transform classes. Though not as
familiar as other transform like CompositeTransform it is used by the framework during
certain transform actions like TransformToVisual and EffectMapping. It contains a
few members of interest. It has two transform methods, Transform and TryTransform.
Both methods take an incoming point and return a transformed point. The difference
between the two is that the TryTransform method returns a Boolean, instead of
throwing an exception if the transform fails for any reason, and it uses an out parameter
to deliver the transformed point back to the caller. Example 4-26 shows a few of the
member of the GeneralTransform class.

Example 4-26. Prototyping the GeneralTransform class
[C#]

public class GeneralTransform
{
 // a few of the class members
 public Point Transform(Point point) {
 Point point1;
 if (this.TryTransform(point, out point1)) {
 return point1;
 }
 else {
 throw new InvalidOperationException("Could not transform");
 }}

public abstract bool TryTransform(Point inPoint, out Point outPoint);
}
// sub-classing the GeneralTransform class
public class SampleTransform : GeneralTransform {}

Were you to create an instance of the SampleTransform class shown in Example 4-26,
you could easily get a transformed point with code similar to the following (Example 4-
27).

Example 4-27. Getting a transformed point
[C#]

var transform = new SampleTransform();
var originalPoint = new Point(10, 20);
Point transformedPoint;

 26

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

if (transform.TryTransform(originalPoint, out transformedPoint)) {
 // do something with the out parameter
 Console.WriteLine(transformedPoint.Y);
}

The GeneralTransform class also has an Inverse property. This property is utilized
whenever an inverted version of the transform is needed and it is this property that is
called during the effect mapping operations. It returns a reference to another transform as
shown in Example 4-28.

Example 4-28. Getting the inverse transform from the general transform class
[C#]

 var t1 = new CrushTransform();
 var t2 = crushTransform.Inverse as InverseCrushTransform;

GeneralTransform and EffectMapping property

The ShaderEffect EffectMapping property tells the Silverlight/WPF framework which
GeneralTransform class to use during hit-testing and other input events. The framework
follows this workflow. When a mouse event is detected (mousemove) the framework get
the transform from the EffectMapping property. Next, it calls the Inverse method to get
the undo transform. Finally, it calls the TryTransform method on the inverted transform
to get the corrected mouse location.

For every distortion action in the pixel shader you provide a undo action in the Inverse
transformation class. For intricate shaders, the transformation code can get quite
complex. The different algorithms available in the HLSL and .NET frameworks
exacerbate the problem. Nevertheless, it is your responsibility to write the transform to
make hit testing work correctly.

Here is some code (Example 4-29) that demonstrates the transforms that reverse the
CrushEffect.

Example 4-29. General and Inverse transforms
[C#]

 public class CrushTransform : GeneralTransform
 {
 // create a DependencyProperty that matches the DependencyProperty
 // in the CrushEffect ShaderEffect class.
 // Is used to pass information from the ShaderEffect to the Transform
 public static readonly DependencyProperty CrushFactorProperty =
 DependencyProperty.Register("CrushFactor", typeof(double),
 typeof(CrushTransform),
 new PropertyMetadata(new double()));

 public double CrushFactor {
 get { return (double)GetValue(CrushFactorProperty); }
 set { SetValue(CrushFactorProperty, value); }
 }
 protected bool IsTransformAvailable(Point inPoint) {

 27

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

 if (inPoint.Y < CrushFactor) {
 return false; // No transform available for this point location
 }
 else {
 return true;
 }
 }
 public override bool TryTransform(Point inPoint, out Point outPoint) {
 outPoint = new Point();

 // normal transform actions
 double ratio = inPoint.X;
 outPoint.Y = CrushFactor + (1 - CrushFactor) * ratio;
 outPoint.X = inPoint.X;

 return IsTransformAvailable(inPoint);
 }

 public override GeneralTransform Inverse {
 get {
 // this method is called by framework
 // when it needs a inverse version of the transform
 return new InverseCrushTransform { CrushFactor = CrushFactor };
 }
 }

 public override Rect TransformBounds(Rect rect) {
 throw new NotImplementedException();
 }
 }
 public class InverseCrushTransform : CrushTransform
 {
 public override bool TryTransform(Point inPoint, out Point outPoint) {
 outPoint = new Point();

 // inverse transform actions
 double ratio = (inPoint.Y - CrushFactor) / (1 - CrushFactor);
 outPoint.Y = inPoint.Y * ratio;
 outPoint.X = inPoint.X;
 return base.IsTransformAvailable(inPoint);
 }
 }

Summary
Silverlight/WPF has a nice system for integrating shaders and .NET effects. This chapter
showed you how to make the managed wrapper for the HLSL shader.

Let’s review the steps needed to create your own shaders.

• Write a shader in HLSL
• Compile the shader to a binary file (.ps) with FXC.exe or other HLSL compiler
• Add the .ps file to your Silverlight/WPF project and set the build action to Resource
• Create a .NET effect class that derives from ShaderEffect
• Load the .ps file into the effect class and assign to its PixelShader property

 28

www.it-ebooks.info

http://www.it-ebooks.info/

O’Reilly Media, Inc. 4/5/2012

 29

• Setup one or more input dependency properties of type Brush and use the
ShaderEffect.RegisterPixelShaderSamplerProperty method to map the input to
the correct GPU s register

• If the shader has parameters map each parameter to a dependency property and bind
to the correct GPU c register with the PixelShaderConstantCallback method

• In the effect constructor call UpdateShaderValue for each DependencyProperty in
the class

• For certain shader types create Padding or EffectMapping code
• Apply the effect to any UIElement

The WPF and Silverlight teams took different routes when creating the
ShaderEffect and PixelShader classes. Looking at the public interfaces
of the implementation, the classes look nearly identical, but a quick
look at the internal implementation shows some differences. If you plan
on creating shaders that work in both systems be cognizant of the
potential internal differences and test accordingly.

As you’ve seen in this chapter, there are many steps necessary to create a working shader
effect class. To ease the development of custom shaders I created specialized utility
called Shazzam Shader Editor. It automates most of the steps needed to make effects. A
detailed tour of Shazzam is imminent but first comes a chapter showing how to use
Expression Blend to add effects to any Silverlight/WPF project.

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Chapter 1. Shader 101
	Why XAML developers should learn HLSL?
	The Tale of the Shader
	HLSL and DirectX
	Understanding the Graphics Pipeline
	XAML and Shaders
	Summary

	Chapter 2. Getting Started
	Setting up your development computer
	Silverlight development
	WPF development
	Expression Blend 4

	Choosing a Shader Compiler
	DirectX Compiler
	WPF Build Task
	Shazzam Shader Editor

	Other Tools to Consider
	FX Composer
	NShader
	Visual Studio Next

	A First Shader Project
	Using prebuilt effects
	Adding Effects
	Debrief

	Custom Shader
	Create a Shader Algorithm
	Compile the HLSL Code
	Add to Visual Studio XAML Project
	Create a .NET wrapper class
	Compile the project
	Instantiate the shader

	Summary

	Chapter 3. Commonplace Pixel Shaders
	A Word about Pseudocode
	Our Sample Image

	Color Modification
	Black, White and Gray
	Black-White
	Grayscale

	Color Replacement
	Color Enhancement and Correction
	Distinctive Effects

	Distortion and Displacement
	Magnify
	Embossed
	Testing distortion effects
	Other Displacement Effects

	Blurs
	Motion blur
	Zoom blur
	Sharpening

	Generative Effects
	Multiple Inputs
	Sampler Transition
	Texture Map
	Color Combination
	Photoshop Blend Modes
	Darken modes
	Lighten modes
	Contrast Modes
	Comparative Modes
	Other Modes
	Blend modes in HLSL

	Practical uses for shader effects
	Motion blur in moving parts
	Blurs to emphasize UI focus
	Desaturate for emphasis

	Chapter 4. How WPF and Silverlight Use Shaders
	Framework Effects
	BlurEffect
	DropShadowEffect

	Nested Effects
	Multiple Effects on One Element

	Expression Blend Effects
	Using a Blend Effect

	Custom Effects
	Working with Samplers
	Understanding Sampler Size
	Creating Parameterized Effects
	Padding
	Effect Mapping
	Summary

