
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

YUI 3 Cookbook

Evan Goer

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.it-ebooks.info

http://www.it-ebooks.info/

YUI 3 Cookbook
by Evan Goer

Copyright © 2012 Yahoo! Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mary Treseler
Production Editor: Kristen Borg
Copyeditor: Rachel Monaghan
Proofreader: Kiel Van Horn

Indexer: BIM Indexing
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

June 2012: First Edition.

Revision History for the First Edition:
2012-05-22 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449304195 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. YUI 3 Cookbook, the image of a spotted cuscus, and related trade dress are trade-
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30419-5

[LSI]

1337722088

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449304195
http://www.it-ebooks.info/

Table of Contents

Preface . ix

1. Loading Modules . 1
1.1 Loading Rollups and Modules 4
1.2 Loading SimpleYUI 6
1.3 Identifying and Loading Individual Modules 8
1.4 Loading a Different Default Skin 10
1.5 Loading Gallery Modules 11
1.6 Loading a YUI 2 Widget 13
1.7 Loading Locally Hosted Builds 14
1.8 Creating Your Own Modules 17
1.9 Creating a Module with Dependencies 19

1.10 Creating Truly Reusable Modules 22
1.11 Defining Groups of Custom Modules 24
1.12 Reusing a YUI Configuration 27
1.13 Defining Your Own Rollups 30
1.14 Loading jQuery as a YUI Module 31
1.15 Loading Modules Based on Browser Capabilities 34
1.16 Monkeypatching YUI 38
1.17 Loading Modules on Demand 39
1.18 Enabling Predictive Module Loading on User Interaction 42
1.19 Binding a YUI Instance to an iframe 45
1.20 Implementing Static Loading 48

2. DOM Manipulation . 51
2.1 Getting Element References 52
2.2 Manipulating CSS Classes 55
2.3 Getting and Setting DOM Properties 57
2.4 Changing an Element’s Inner Content 59
2.5 Working with Element Collections 60
2.6 Creating New Elements 62

iii

www.it-ebooks.info

http://www.it-ebooks.info/

2.7 Adding Custom Methods to Nodes 64
2.8 Adding Custom Properties to Nodes 66

3. UI Effects and Interactions . 69
3.1 Hiding an Element 70
3.2 Fading an Element 71
3.3 Moving an Element 74
3.4 Creating a Series of Transitions 76
3.5 Defining Your Own Canned Transitions 77
3.6 Creating an Infinite Scroll Effect 80
3.7 Dragging an Element 81
3.8 Creating a Resizable Node 84
3.9 Implementing a Reorderable Drag-and-Drop Table 86

4. Events . 91
4.1 Responding to Mouseovers, Clicks, and Other User Actions 93
4.2 Responding to Element and Page Lifecycle Events 95
4.3 Controlling Event Propagation and Bubbling 97
4.4 Preventing Default Behavior 99
4.5 Delegating Events 100
4.6 Firing and Capturing Custom Events 102
4.7 Driving Applications with Custom Events 104
4.8 Using Object Methods as Event Handlers 109
4.9 Detaching Event Subscriptions 112

4.10 Controlling the Order of Event Handler Execution 113
4.11 Creating Synthetic DOM Events 116
4.12 Responding to a Method Call with Another Method 118

5. Ajax . 121
5.1 Fetching and Displaying XHR Data 122
5.2 Handling Errors During Data Transport 126
5.3 Loading Content Directly into a Node 129
5.4 Submitting Form Data with XHR 132
5.5 Uploading a File with XHR 134
5.6 Getting JSON Data Using Script Nodes (JSONP) 135
5.7 Fetching and Displaying Data with YQL 138
5.8 Scraping HTML with YQL 140
5.9 Querying Data Using DataSource 142

5.10 Normalizing DataSource Responses with a DataSchema 146

6. CSS . 149
6.1 Normalizing Browser Style Inconsistencies 150
6.2 Rebuilding Uniform Base Styles 151

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

6.3 Applying Consistent Fonts 152
6.4 Laying Out Content with Grids 154
6.5 Using Grids for Responsive Design 157
6.6 Creating Consistent Buttons 159

7. Infrastructure . 161
7.1 Managing State with Attributes 163
7.2 Creating Base Components with Y.extend() 167
7.3 Creating Base Components with Y.Base.create() 170
7.4 Creating a Basic Widget 173
7.5 Creating a Widget That Uses Progressive Enhancement 178
7.6 Rendering Remote Data with a Widget 182
7.7 Creating a Simple Plugin 185
7.8 Creating a Plugin That Alters Host Behavior 187
7.9 Bundling CSS with a Widget as a CSS Module 189

7.10 Bundling CSS with a Widget as a Skin 191
7.11 Representing Data with a Model 194
7.12 Persisting Model Data with a Sync Layer 196
7.13 Managing Models with a Syncing ModelList 201
7.14 Rendering HTML with a View 204
7.15 Rendering a Model with a View 207
7.16 Rendering a ModelList with a View 210
7.17 Saving State Changes in the URL 213
7.18 Defining and Executing Routes 216

8. Using Widgets . 221
8.1 Instantiating, Rendering, and Configuring Widgets 223
8.2 Creating an Overlay 225
8.3 Aligning and Centering an Overlay 229
8.4 Making an Overlay Draggable 231
8.5 Creating a Simple, Styled Information Panel 232
8.6 Creating a Modal Dialog or Form 234
8.7 Creating a Tooltip from an Overlay 236
8.8 Creating a Lightbox from an Overlay 239
8.9 Creating a Slider 244

8.10 Creating a Tabview 247
8.11 Creating a Basic DataTable 250
8.12 Formatting a DataTable’s Appearance 251
8.13 Displaying a Remote JSON DataSource in a DataTable 254
8.14 Plotting Data in a Chart 255
8.15 Choosing Dates with a Calendar 257
8.16 Defining Calendar Rules 260
8.17 Creating a Basic AutoComplete 262

Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/

8.18 Highlighting and Filtering AutoComplete Results 265
8.19 Using AutoComplete with Remote Data 270
8.20 Customizing the AutoComplete Result List 273

9. Utilities . 277
9.1 Determining a Variable’s Type 278
9.2 Iterating Over Arrays and Objects 280
9.3 Filtering an Array 283
9.4 Merging Objects 284
9.5 Composing and Inheriting from Other Objects 285
9.6 Automatically Caching Function Call Results 288
9.7 Templating with Simple String Substitution 289
9.8 Formatting Numbers 291
9.9 Formatting Dates 292

9.10 Parsing Arbitrary XML 293
9.11 Converting Color Values 294
9.12 Managing History and the Back Button 295
9.13 Escaping User Input 299
9.14 Assigning Special Behavior to a Checkbox Group 300
9.15 Implementing Easy Keyboard Actions and Navigation 303
9.16 Reliably Detecting Input Field Changes 304
9.17 Managing and Validating Forms 305

10. Server-Side YUI . 309
10.1 Installing and Running YUI on the Server 310
10.2 Loading Modules Synchronously on the Server 312
10.3 Using YUI on the Command Line 313
10.4 Calling YQL on the Server 316
10.5 Using the YUI REPL 317
10.6 Constructing and Serving a Page with YUI, YQL, and Handlebars 320

11. Universal Access . 323
11.1 Preventing the Flash of Unstyled Content 324
11.2 Adding ARIA to Form Error Messages 327
11.3 Building a Widget with ARIA 329
11.4 Retrofitting a Widget with an ARIA Plugin 332
11.5 Defining Translated Strings 335
11.6 Internationalizing a Widget 337

12. Professional Tools . 343
12.1 Enabling Debug Logging 345
12.2 Rendering Debug Log Output in the Page 348
12.3 Writing Unit Tests 352

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

12.4 Organizing Unit Tests into Suites 356
12.5 Testing Event Handlers by Simulating Events 359
12.6 Mocking Objects 362
12.7 Testing Asynchronously Using wait() 366
12.8 Collecting and Posting Test Results 370
12.9 Precommit Testing in Multiple Browsers 374

12.10 Testing on Mobile Devices 377
12.11 Testing Server-Side JavaScript 379
12.12 Minifying Your Code 381
12.13 Documenting Your Code 386

Index . 391

Table of Contents | vii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Welcome to the YUI 3 Cookbook. If you’re already invested in the Yahoo! User Interface
library (YUI), that’s excellent! This book is full of useful recipes and insights. Go forth
and use it to build something great!

If you’re not already invested in YUI, that’s fine too. Perhaps you picked up this book
because you like to stay informed. Or perhaps you picked up this book because you’ve
been assigned to a project that uses YUI, you’re deathly afraid of this alien technology,
and even now you’re idly wondering whether to rewrite the entire project from scratch.

Either way, you’re probably thinking to yourself, “What exactly is YUI good for?” Or
perhaps even more accurately, “What can I build with YUI that I can’t just do with
jQuery?”

The short answer is that with the help of auxiliary libraries such as Underscore and
Backbone, there’s little you can’t build with jQuery. jQuery is an excellent document
object model (DOM), events, and Ajax abstraction library, and people use it to build
beautiful pages every day.

The longer answer is that every library is designed to address a particular set of prob-
lems. YUI focuses on keeping the complexity of web applications from spiraling out of
control. Its key strengths are modularity and structure.

• “Modularity” means that YUI is not a monolithic library, but a toolkit for assem-
bling highly tailored libraries. If you need AutoComplete and Calendar, you can load
just those widgets and leave out all the others. If you need DOM manipulation but
not XHR requests, you can load just the core DOM APIs without Ajax. Modularity
is not tacked on as an afterthought, but baked deep into YUI’s design.

• “Structure” means that YUI’s APIs guide you toward building applications as a set
of orderly components. Because of this, YUI components all have very similar be-
haviors. If you know how to work with a YUI ScrollView, you already know a lot
about how to work with a Slider, a DataTable, or any other YUI widget.

ix

www.it-ebooks.info

http://www.it-ebooks.info/

The most realistic answer is that the best way to determine whether a framework or
library works for you is to try it out yourself. YUI is a powerful open source JavaScript
and CSS toolkit for building web applications, but there are many other fine choices
out there. This book aims to demystify YUI and help you make an informed decision.

YUI 2 Versus YUI 3
To begin the demystification process, let’s start with the difference between YUI 2 and
YUI 3.

YUI 2 burst on the scene at a critical moment, when the field of frontend engineering
was starting to coalesce as a discipline. Even years after YUI 3’s release, many people
still think of YUI as YUI 2.

YUI 2 code looks like this:

var nodes = YAHOO.util.Dom.getElementsByClassName('demo');

Although this looks uncomfortably like Java, bear in mind that back in early 2006,
carefully namespacing your API under objects was a cutting-edge technique. The status
quo was throwing your code into the global namespace and hoping for the best. Because
of this focus on safety, YUI 2 gained a reputation as an industrial strength but verbose
API.

YUI 3 launched in 2009 as a major revamp. The revamp not only baked modules and
module loading into the core, but also cleaned up the API and eliminated most of the
verbose method names.

YUI 3 code looks like this:

var nodes = Y.all('.demo');

which should look familiar if you are used to calling dojo.query('.demo'),
$$('.demo'), or $('.demo').

However, thanks to ancient tutorials, rotting code examples, questionable “webmas-
ter” forums, and other sources of bad advice, people who are vaguely aware of YUI
often think it means long Java-esque method names. That’s unfortunate, because in
YUI 3, the simple things are actually pretty simple. You can use YUI to manipulate the
DOM and invoke page effects with very small amounts of code.

That by itself is not a reason to use YUI, as many libraries also provide powerful APIs
for DOM manipulation and effects. Still, if you’re creating a quick prototype or a tem-
porary marketing page with a couple of fades, rest assured that you can knock that page
out with YUI just about as easily as with anything else.

Why Use YUI?
While YUI is succinct enough for “light” JavaScript work, where it really shines is in
providing a solid foundation for more maintainable code.

x | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

As an example, say your boss asks you to design a form with a JavaScript date picker.
You find a prepackaged widget that looks nice and seems to work well, so you copy
and paste it into your code. Everyone is happy.

Then your boss tells you that the requirements have changed, and what the form ac-
tually needs is a double-pane calendar. So you hack that functionality into the widget.
You manage to get it to work, but the code isn’t pretty, and worse, now you’re locked
in.

To avoid lockin, every component in YUI is designed for extension. Every YUI widget
shares the same solid API core and offers the same extension points, including a com-
mon rendering lifecycle with standard hooks to intercept or override. YUI lets you
extend components in a classlike hierarchy, mix in new methods and properties, plug
new behaviors into instances, and even inject arbitrary behavior before and after meth-
ods. In short, there is always a clean way to extend a YUI component instead of creating
an unmaintainable mess.

While YUI is a very comprehensive toolkit, its overall “size” is as small or as large as
you like. Nobody loads “all of YUI.” Instead, you load what you need: DOM manip-
ulation, custom events, animations and page effects, Ajax, widgets, function and array
utilities, templating, vector graphics, MVC—you name it, YUI probably has it.

And if YUI doesn’t have it, that’s no problem either. YUI is designed from the ground
up to run safely alongside third-party code. You can even use the YUI Loader to wrap
and load other libraries into the page as if they were ordinary YUI modules.

With this comprehensive toolkit comes comprehensive documentation and tools. YUI
includes detailed user guides, tutorials, API reference documentation, hundreds of ex-
amples, and YUI Theater, an incredible video resource that documents the evolution
of the frontend engineering profession. YUI also includes an entire suite of tools for
professional code development: a builder, a documentation generator, a test framework
and test runner, a minification and compression tool, and more.

As an open source project, YUI has accumulated a vibrant developer community. Most
active YUI community members are experienced engineers who have a broad back-
ground with other frameworks and libraries. If you have technical questions about how
to use YUI effectively, the community is a wealth of information.

Finally, YUI adheres to the bizarre, unfashionable philosophy that library code should,
as much as possible, run as-is in a wide array of environments. This is actually a bit
confusing to developers, who tend to assume that since there is no “YUI Mobile” fork
of the library, that must mean YUI doesn’t work on mobile devices. In fact, the YUI
team tests all library code on a wide selection of mobile devices, and adds methods and
synthetic events to help you abstract away differences between platforms. Likewise,
YUI runs in a Node.js server environment as-is. There is no YUI Mobile Edition or YUI
Tablet Edition or YUI Server Edition. There is just YUI.

Preface | xi

www.it-ebooks.info

http://www.it-ebooks.info/

Library or Framework?
Web developers tend to call larger projects “frameworks,” and medium-size and small-
er projects “libraries.” The line between the two is fuzzy, and tends to lead to religious
disagreements. For a large but also highly modular project such as YUI or Dojo, the
most accurate term might actually be “toolkit.” This book cheerfully refers to YUI as
all three.

There is also a mini-trend of calling small JavaScript libraries “micro-frameworks.”
However, this book will follow the last fifty years of software engineering practice and
continue to refer to them as “libraries.”

Who This Book Is For
There are two main audiences who will benefit most from this book:

• JavaScript developers who are new to YUI. These developers will most likely benefit
from reading the simpler recipes (which tend to cluster at the beginning of each
chapter) and from focusing on the “Problem” and “Solution” sections of each
recipe.

• JavaScript developers who have light to moderate YUI experience and are looking
to deepen their knowledge. These developers will most likely be interested in the
more advanced recipes and in reading the in-depth “Discussion” sections.

This book will not teach you JavaScript. It assumes that you are familiar with the basic
mechanics of the language, up through and including prototypes, anonymous func-
tions, and at least some standard ECMAScript and DOM methods. If you are an ex-
perienced engineer who picks up new languages in weeks, reading this book might help
you learn some JavaScript through osmosis, but it isn’t the best place to start. A much
better place to start is Eloquent JavaScript by Marijn Haverbeke (No Starch Press),
followed by JavaScript: The Good Parts by Douglas Crockford (O’Reilly).

The reason this book assumes you already know JavaScript is that all libraries fail. There
will be bugs. There will be situations where the library’s abstractions fall apart. Getting
yourself unstuck means being able to understand what is going on both in the library
code and beyond. Or as former Yahoo! architect Nicholas Zakas puts it, “Library
knowledge is not frontend knowledge any more than knowing how to use a hammer
makes you a carpenter.”

If you are already a YUI expert, this book probably covers a lot of familiar ground. Still,
it might help you with corners of the library that you know less well, or provide some
extra insight into why some aspect of YUI works the way it does.

This book is not a comprehensive reference manual for the entire YUI library. Some
components are explored in detail. Some get short shrift. Many don’t get mentioned
at all. Each recipe solves a specific problem, but very few cover every available method,

xii | Preface

www.it-ebooks.info

http://shop.oreilly.com/product/9780596517748.do
http://www.it-ebooks.info/

parameter, and configuration option. For that, please consult the API reference
documentation.

Resources and Community
YUI is released under a liberal BSD license and offers a wide variety of free resources.
Its source code, documentation, ticketing system, and roadmaps are all out in the open.
Some of the most useful resources include:

YUI library
The central hub for all things YUI 3, including downloads, examples, user guides,
and reference documentation.

YUI on GitHub
The master source code repository for all projects under the YUI umbrella, avail-
able for forking and contribution.

#yui IRC on freenode.net
YUI’s official IRC channel, with many core YUI team members and prolific YUI
community members available to answer questions. Alternatively, try the YUI li-
brary forums. The forums are often more useful for YUI 2 questions.

@yuilibrary and @yuirelay
@yuilibrary is YUI’s official Twitter account. @yuirelay is a Twitter bot that at-
tempts to retweet items about YUI, the JavaScript library, without including items
about Yui, the Japanese pop singer.

YUI Configurator
An online tool for calculating YUI module dependencies.

YUI Theater
An archive of video training and presentations curated over the last half decade.
Some presentations cover general frontend topics rather than YUI-specific topics.
The older videos are a fascinating record of the development of frontend engineer-
ing as a discipline. Also available as a YouTube channel.

YUI blog
Provides articles about new YUI releases, YUIConf, YUI Open Hours (a
semiregular conference call to answer questions and solicit feedback), and even
general frontend topics unrelated to YUI.

Online YUI Compressor
An online tool for safely minifying JavaScript and CSS with YUI Compressor. The
online version is handy if you just want to try out YUI Compressor, but in a pro-
duction setup, you should download and run YUI Compressor locally as part of
your build system.

Preface | xiii

www.it-ebooks.info

http://yuilibrary.com
https://github.com/yui/
http://yuilibrary.com/forum/
http://yuilibrary.com/forum/
http://yuilibrary.com/yui/configurator/
http://yuilibrary.com/theater/
http://www.youtube.com/yuilibrary
http://yuiblog.com
http://refresh-sf.com/yui/
http://www.it-ebooks.info/

YSlow
A tool for analyzing general performance problems with web applications.

JS Rosetta Stone
A reference for switching back and forth between common tasks in jQuery and
YUI 3. Maintained by Paul Irish and the YUI Team.

You can file bug reports and enhancement requests for YUI directly on the
yuilibrary.com website. Follow the instructions under “Report a Bug”.

YUI accepts code contributions through GitHub’s fork/pull request model. To con-
tribute a bug fix or feature enhancement to YUI, follow the instructions under “Con-
tribute Code to YUI”. If you are new to Git, follow the instructions under “Set Up Your
Git Environment”.

Conventions Used in This Book
About the Examples
The code examples in this book are deliberately very short. Each example focuses on
solving a single problem or introducing a tiny number of new concepts, and most are
short enough to take in at a glance. There are some longer examples, particularly in
Chapter 7, but the vast majority are 15 lines of JavaScript or fewer.

All client-side JavaScript examples run in a very lean but valid HTML5 document that
is some variation of Example P-1:

Example P-1. YUI 3 Cookbook boilerplate

<!DOCTYPE html>
<title>YUI 3 Cookbook boilerplate</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node-base', function (Y) {
 Y.one('#demo').setHTML('This is the YUI 3 Cookbook Boilerplate.');
});
</script>

The boilerplate is terse in order to keep focus on the JavaScript, while still providing a
fully self-contained, runnable code example. Most examples will work from your local
filesystem, but a handful must be run from a real web server. These are flagged
accordingly.

Some recipes contain secondary examples that omit the HTML boilerplate and just
show the JavaScript. In these cases, you can assume that the JavaScript is running in
the same HTML document as the primary example.

xiv | Preface

www.it-ebooks.info

http://developer.yahoo.com/yslow/
http://jsrosettastone.com/
http://yuilibrary.com/yui/docs/tutorials/report-bugs/
http://yuilibrary.com/yui/docs/tutorials/contribute/
http://yuilibrary.com/yui/docs/tutorials/contribute/
http://yuilibrary.com/yui/docs/tutorials/git/
http://yuilibrary.com/yui/docs/tutorials/git/
http://www.it-ebooks.info/

All code in YUI 3 Cookbook is built to run against YUI 3.5.0. Keep in mind that YUI
modules marked as “beta” can behave differently across minor versions of YUI 3.

All examples and related files in this book may be freely forked or downloaded from
GitHub.

Typesetting Conventions
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords. Also used for API, widget, and module names.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

Preface | xv

www.it-ebooks.info

https://github.com/yahoo/yui3-cookbook
https://github.com/yahoo/yui3-cookbook
http://www.it-ebooks.info/

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “YUI 3 Cookbook by Evan Goer (O’Reilly).
Copyright 2012 Yahoo! Inc., 978-1-449-30419-5.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreil.ly/yui3cookbook

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

xvi | Preface

www.it-ebooks.info

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/yui3cookbook
mailto:bookquestions@oreilly.com
http://www.it-ebooks.info/

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This book would not have been possible without the hundreds of people responsible
for the YUI project—the people who participated in the discussions, filed the bugs,
issued the pull requests, and wrote the code that makes YUI what it is today. It is a
great honor to have had the opportunity to write the first formal book for YUI 3. I only
hope this book meets their expectations.

Thanks to all the wonderful people out in the greater YUI community who provided
early review feedback: Pat Cavit, Jeff Craig, Chris George, John Iannicello, Todd
Kloots, Subramanyan Murali, Anthony Pipkin, Kim Rowan, Robert Roy, Rich Tretola,
Alberto Santini, Victor Tsaran, and Nicholas Zakas. Special thanks to Daniel Barreiro,
one of the sharpest and most thorough technical reviewers it’s ever been my pleasure
to work with.

I owe a great debt to the entire YUI team past and present for creating YUI, for shep-
herding it over the years, and for taking time out to provide me with deeper insights
about how YUI works. Thanks to Thomas Sha, Eric Miraglia, Dwight “Tripp” Bridges,
Adam Moore, Matt Sweeney, Derek Gathright, Allen Rabinovich, Satyen Desai, Jeff
Conniff, Georgiann Puckett, Dav Glass, and Reid Burke. Much thanks to Jenny Don-
nelly for instigating this book and giving me the opportunity to write it; Luke Smith,
my inside man in the YUI team; Ryan Grove and Eric Ferraiuolo for all their guidance;
and Irene Lai, without whose generosity this project would have finished sometime in
2014.

Finally, a huge thank you to my editor, Mary Treseler, my parents, friends, and
coworkers who offered so much support, and above all, my wife and best friend, Sarah.
When I was trying to decide whether to take on this project, she was the one who said
without hesitation, “Well, of course you should say yes.” Without her good humor,
unwavering support, and willingness to patiently listen to her husband rambling on
about JavaScript, this book would never have happened.

Preface | xvii

www.it-ebooks.info

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Loading Modules

Consider the humble <script> element. Introduced in 1995, it is still the gateway for
injecting JavaScript into the browser. Unfortunately, if you want to build sophisticated
applications, <script> shows its age:

• <script> conflates the concepts of loading code and executing code. Programmers
need fine-grained control over both phases.

• <script> is synchronous, blocking the browser’s flow/paint cycle until the entire
script downloads. This is why performance guides currently recommend moving
<script> to the bottom of the page. The good news is that HTML now provides
the async and defer attributes, so this issue might improve over time.

• <script> has a shared global context with no formal namespacing or security built
in. This is bad enough when you’re simply trying to protect your own code from
your own mistakes, but becomes disastrous when your code must run alongside
an unknown number of third-party scripts.

• <script> has no information about its relationships with other <script> elements.
A script might require another script as a dependency, but there is no way to express
this. If <script> elements are on the page in the wrong order, the application fails.

The root of the problem is that unlike nearly every programming environment on the
planet, JavaScript in the browser has no built-in concept of modules (defined in
Recipe 1.1). For small scripts, this is not necessarily a big deal. But small scripts have
a way of growing into full-fledged applications.

To protect code from interference, many JavaScript libraries use a global object to
contain all the library’s methods. For example, the hypothetical “Code Ninja” library
might instantiate a global object named NINJA that supplies methods such as
NINJA.throwShuriken(). Here, NINJA serves as a kind of namespace. This is a reasonable
first line of defense.

1

www.it-ebooks.info

http://www.it-ebooks.info/

YUI 3 takes things one step further. There is a global YUI object, but you work with this
object “inside out.” Instead of using YUI just as a namespace, you call YUI().use() and
then write all of your code inside a callback function nested inside use() itself. Within
this scope is a private instance of the library named Y, which provides access to YUI
methods such as Y.one() and objects such as Y.AutoComplete.

The disadvantage of YUI 3’s approach is that at first glance, it looks profoundly weird.

The advantages of YUI 3’s approach are:

• YUI can decouple loading into registration and execution phases. YUI.add() reg-
isters code as modules with the YUI global object, to be loaded on demand.
YUI().use() provides access to those modules in a safe sandbox.

• YUI can load modules synchronously or asynchronously, since registration is now
a separate phase from execution.

• Other than a few static methods, YUI avoids using the shared global context. The
Y instance that carries the API is private, impossible to overwrite from outside the
sandbox.

• YUI supports real dependency logic. When you register modules with YUI.add(),
you can include metadata about other modules, CSS resources, and more.
YUI().use() uses this information to build a dependency tree, fetching modules
that are needed to complete the tree and skipping modules that are already present.
YUI can even load modules conditionally based on browser capabilities. This
frees you up to write code optimized for different environments, enabling you to
support older, less capable browsers without serving unnecessary code to modern
browsers.

Work on YUI’s module and loader system began in the middle of 2007, and the system
was revamped for the release of YUI 3 in 2009. In the years since, JavaScript modules
have quite rightfully become a hot topic. Server-side JavaScript environments now
provide native support for the CommonJS module format. The Dojo toolkit has adop-
ted AMD modules as its native format. Future versions of the ECMAScript standard
are likely to bake support for modules into JavaScript’s core.

As mentioned in the Preface, there are many great JavaScript libraries available, each
bringing its own philosophy and strengths. If you are looking for a single feature that
captures YUI’s design goals, the module system is an excellent place to start. The mod-
ule system prioritizes code safety and encapsulation. It has intelligent defaults, but it
also grants you a tremendous amount of fine-grained control. It works well for small
page effects, but it really shines when you’re assembling larger applications. You will
see these principles expressed time and time again throughout the library.

Because the module and loader system is one of YUI’s signature features, this chapter
is extensive. If you are just starting out with YUI, you can get away with reading just
the first or second recipe, but be sure to return later to learn how to load modules
optimally and how to package your own code into modules for later reuse.

2 | Chapter 1: Loading Modules

www.it-ebooks.info

http://www.it-ebooks.info/

Most of the examples in this chapter make some visible change to the
page in order to prove that the code works. The typical example uses
Y.one("#demo") to grab the <div> with an id of demo, followed by
setHTML() to change the <div>’s contents. If you haven’t seen YUI’s
DOM manipulation API in action yet, please peek ahead at Recipes
2.1 and 2.3.

Recipe 1.1 defines the canonical way to load YUI onto the page. This is the most im-
portant recipe in the entire book.

Recipe 1.2 describes SimpleYUI, a convenient bundle of DOM manipulation, event
façades, UI effects, and Ajax. Using SimpleYUI makes loading YUI more like loading
other, more monolithic JavaScript libraries. This is a good alternative place to start if
Recipe 1.1 is making your head spin.

Recipe 1.3 explains the concept of loading individual YUI modules, rather than larger
rollups. For production-quality code, you can improve performance by identifying and
loading only the modules you really need.

Recipe 1.4 introduces the YUI configuration object, which is important for defining
your own modules and for gaining fine-grained control over the YUI Loader.

Recipes 1.5 and 1.6 describe loading different categories of modules. Recipe 1.5 ex-
plains how to load third-party modules from the YUI gallery, and Recipe 1.6 explains
how to incorporate legacy YUI 2 widgets as YUI 3 modules.

Recipe 1.7 explains how to load the YUI core modules from your own servers rather
than Yahoo! edge servers. You should strongly consider doing this if you are dealing
with private user data over SSL, as loading third-party JavaScript from servers outside
your control breaks the SSL security model.

Recipes 1.8, 1.9, 1.10, and 1.11 take you step-by-step through the process of creating
your own modules. After Recipe 1.1, these four recipes are the ones that every serious
YUI developer should know by heart. Understanding how to create modules is vital for
being able to reuse your code effectively.

Recipe 1.12 introduces the YUI_config object, which makes it easier to share complex
YUI configurations between pages and sites.

Recipe 1.13 demonstrates how to create your own custom rollups, similar to core roll-
ups such as node and io.

Recipe 1.14 explains how to load jQuery and other third-party libraries into the YUI
sandbox as if they were YUI modules. The YUI Loader and module system are flexible
enough to wrap and asynchronously load just about anything you might want to use
alongside YUI.

The next six recipes discuss more advanced loading scenarios. Recipe 1.15 covers the
concept of conditional loading, where YUI fetches a module only if a browser capability

Loading Modules | 3

www.it-ebooks.info

http://www.it-ebooks.info/

test passes. The YUI core libraries use this powerful technique to patch up old
browsers without penalizing modern ones. Recipe 1.16 is a variation of Recipe 1.15
where instead of using conditional loading to patch old browsers, you use it to patch
YUI itself.

Recipes 1.17 and 1.18 explain how to load modules in response to user actions, or even
in anticipation of user actions. The ability to fetch additional modules after the initial
page load provides you with great control over the perceived performance of your
application.

Recipe 1.19 explains how to load YUI into an iframe while still maintaining control via
the YUI instance in the parent document.

Finally, Recipe 1.20 discusses static loading. By default, YUI modules load asynchro-
nously. Static loading is an advanced technique that trades flexibility and developer
convenience for extra performance.

1.1 Loading Rollups and Modules
Problem
You want to load YUI on the page and run some code.

Solution
Load the YUI seed file, yui-min.js. Then call YUI().use(), passing in the name of a
module or rollup you want to load, followed by an anonymous callback function that
contains some code that exercises those modules.

Within the callback function, the Y object provides the tailored YUI API you just re-
quested. Technically, you can name this object anything you like, but you should stick
with the Y convention except for rare circumstances, such as Recipe 1.19.

Example 1-1 loads the YUI Node API, then uses that API to get a reference to the
<div> with an id of demo and set its content. For more information about how to select
and modify node instances, refer to Chapter 2.

Example 1-1. Loading the YUI Node API

<!DOCTYPE html>
<title>Loading the YUI Node API</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 Y.one('#demo').setHTML('Whoa.');
});
</script>

4 | Chapter 1: Loading Modules

www.it-ebooks.info

http://www.it-ebooks.info/

In YUI, you do not need to litter your pages with dozens of <script>
elements. The Loader is specifically designed to kill this antipattern. As
a corollary, you should never fetch the YUI seed file more than once.

Discussion
YUI().use() supports loading both modules and rollups.

A module in YUI is a named collection of reusable code. To learn how to create your
own modules, start with Recipe 1.8 and related recipes.

A rollup is a kind of “supermodule” that represents multiple smaller modules. For
example, node is a rollup that pulls in node-base, node-style, and several other modules
for manipulating the DOM. Rollups exist for convenience, although sometimes it pays
to be more selective and load individual modules, as described in Recipe 1.3.

But how does this even work? The line:

YUI().use('foo', function (Y) {...});

is pretty mystifying. To break this down step-by-step:

The first <script> element in Example 1-1 loads the YUI seed file, which defines the
YUI global object. YUI is not just a namespace object; it is a module registry system. It
contains just enough code to bootstrap your way to the rest of the library: some critical
YUI utility functions, the Loader code that loads scripts onto the page, and Loader
metadata that describes the core YUI modules and their dependencies.

The second <script> element calls YUI().use(). This call has two stages:

1. Calling YUI() creates a new YUI instance. A YUI instance is a host object for as-
sembling a customized YUI API. The instance starts out fairly bare bones—it does
not yet provide APIs for doing things like DOM manipulation or Ajax calls.

2. Calling use() then augments that instance with additional methods. use() takes
one or more string parameters representing the names of modules and rollups to
load, followed by a callback function (more on that a little later). Somewhat sim-
plified, the use() method works in the following manner:

a. The use() method determines which modules it actually needs to fetch. It
calculates dependencies and builds a list of modules to load, excluding any
modules already loaded and registered with the global YUI object.

b. After resolving dependencies, use() constructs a “combo load” URL, and the
Loader retrieves all the missing modules from Yahoo’s fast edge servers with
a single HTTP request. This happens asynchronously so as not to block the
UI thread of the browser.

c. When use() finishes loading modules, it decorates the YUI instance with the
complete API you requested.

1.1 Loading Rollups and Modules | 5

www.it-ebooks.info

http://www.it-ebooks.info/

d. Finally, use() executes the callback function, passing in the YUI instance as
the Y argument. Within the callback function, the Y object is a private handle
to your own customized instance of the YUI library.

In other words, a YUI instance starts out small and relies on use() to carefully build up
the API you requested. YUI().use() automatically handles dependencies and tailors its
downloads for the browser you’re running in. This is already a huge advantage over
downloading libraries as giant monolithic blocks of code.

The use() callback function is referred to as the “YUI sandbox.” It encapsulates all your
code into a private scope, making it impossible for other scripts on the page to acci-
dentally clobber one of your variables or functions. In fact, if you want to run multiple
applications on the same page, you can even create multiple independent sandboxes.
Once any sandbox loads a module, other sandboxes can use that module without in-
terference and without having to fetch the code again.

Keep in mind that any code you write directly in a use() callback function is not actually
a module itself, and is therefore not reusable. A use() callback should contain only the
code required to wire modules into that particular page. Any code that might be reus-
able, you should bundle into a custom module using YUI.add(). For more information,
refer to Recipe 1.8.

To improve performance, by default YUI loads the minified version of each module.
The minified version has been run through YUI Compressor, a utility that shrinks the
file size of each module by stripping out whitespace and comments, shortening variable
names, and performing various other optimizations described in Recipe 12.12.

As shown in the next section, Recipe 1.2, it is possible to load YUI with the simpler
pattern that other libraries use. SimpleYUI is great for learning purposes, but less ap-
propriate for production code.

In addition to the Y instance, YUI passes an obscure second parameter
to your use() callback. This object represents the response from the
Loader, and includes a Boolean success field, a string msg field that holds
a success or error message, and a data array that lists all modules that
successfully loaded. Unfortunately, this reporting mechanism is not
100% reliable in all browsers.

1.2 Loading SimpleYUI
Problem
You want to load YUI onto the page like people loaded JavaScript libraries in the good
old days, without all this newfangled module loading and sandboxing nonsense.

6 | Chapter 1: Loading Modules

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Instead of pointing <script> to yui-min.js, point it to simpleyui-min.js. SimpleYUI in-
cludes all modules in YUI’s node, event, io, and transition rollups, flattened out into
a single JavaScript file. These modules are more than enough to create interesting page
effects and simple applications.

As shown in Example 1-2, loading SimpleYUI on the page automatically instantiates a
global Y instance that provides access to the YUI API.

Example 1-2. Loading SimpleYUI

<!DOCTYPE html>
<title>Loading SimpleYUI</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/simpleyui/simpleyui-min.js"></script>
<script>
Y.one('#demo').setHTML('This message brought to you by SimpleYUI.');
</script>

Discussion
SimpleYUI provides the same functionality you would have received by loading these
modules individually, as described in Recipe 1.1. So why use SimpleYUI at all? If you
are new to YUI, SimpleYUI acts like jQuery and other popular JavaScript libraries: you
simply load a script onto the page and start calling methods from a global object. Sim-
pleYUI is a great way to try out YUI, particularly for people who are still getting used
to YUI’s idioms.

SimpleYUI is a starter kit that contains DOM, event, and Ajax functionality. However,
SimpleYUI is in no way crippled or limited to just these modules; it also includes the
Loader, so you are free to call Y.use() at any time to pull in additional modules such
as autocomplete or model. For an example of calling Y.use() from within YUI().use(),
refer to Example 1-22.

The disadvantages of using SimpleYUI are that it pulls in code that you might not
need, and that it lacks a sandbox. You can address the latter issue by wrapping your
code in an anonymous function and then immediately executing that function, as
shown in Example 1-3.

Example 1-3. Loading SimpleYUI in a generic sandbox

<!DOCTYPE html>
<title>Loading SimpleYUI in a generic sandbox</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/simpleyui/simpleyui-min.js"></script>

1.2 Loading SimpleYUI | 7

www.it-ebooks.info

http://www.it-ebooks.info/

<script>
var message = 'BOGUS MESSAGE';

(function () {
 var message = 'This message brought to you by sandboxed SimpleYUI.';
 Y.one('#demo').setHTML(message);
}());
</script>

JavaScript’s scoping rules ensure that variables outside the function can be referenced
from within the function. However, any variables redeclared inside the function will
trump any values declared outside. Or, looking at this the other way around, code
outside the sandbox cannot overwrite private variables inside the sandbox.

Experienced JavaScript developers often use this kind of generic sandbox with other
libraries. It is a fine defensive pattern in general, but less common in YUI simply because
the standard loading pattern shown in Example 1-1 provides a sandbox already.

If you search the Web, you’ll find a popular alternative pattern that
works just as well, but is a little less aesthetically pleasing:

(function(){})()

JavaScript guru Douglas Crockford refers to this as the “dogballs” pat-
tern.

Strictly speaking, you don’t need to resort to SimpleYUI to get a global Y object.
YUI().use() returns a Y instance, so you can always do:

var Y = YUI().use(...);

In any case, these caveats about performance and sandboxing might not be important
to you, depending on your situation. Some engineering groups use SimpleYUI as a way
to segment different projects: critical pages and core pieces of infrastructure use the
YUI sandbox, while prototypes and temporary marketing pages use SimpleYUI to make
life easier for designers and prototypers. SimpleYUI is also a good tool for developers
who are starting to transition code into the YUI “inside-out” sandbox pattern. Projects
in transition can load SimpleYUI and leverage those APIs in existing legacy code, rather
than having to immediately migrate large amounts of legacy JavaScript into YUI
modules.

1.3 Identifying and Loading Individual Modules
Problem
You want to load the smallest possible amount of code necessary to accomplish a given
task.

8 | Chapter 1: Loading Modules

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
The YUI API documentation indicates which modules supply which individual meth-
ods and properties. As you write your code, consult the documentation and include
only the specific modules you need in your YUI().use() call, in order to avoid loading
code that contains unnecessary functionality.

Example 1-4 illustrates loading smaller, focused modules instead of larger rollups. As
mentioned in Recipe 1.1, YUI passes a second parameter to the use() callback that
represents the response from the Loader. Example 1-4 converts this object into a string
with Y.JSON.stringify(), using stringify()’s extended signature to pretty-print the
output, and then displays the string by inserting it into a <pre> element. You could do
all of this by loading the node and json rollups, but it turns out that the script only really
requires the smaller modules node-base and json-stringify.

Example 1-4. Using individual modules

<!DOCTYPE html>
<title>Using individual modules</title>

<pre id="demo"></pre>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('json-stringify', 'node-base', function (Y, loaderResponse) {
 var pre = Y.one('#demo');
 pre.set('text', Y.JSON.stringify(loaderResponse, null, 4));
});
</script>

The example uses set('text') rather than setHTML(). Methods like
setHTML() and set('innerHTML') are insecure when used for non-HTML
strings or strings whose actual content or origin is unknown.

Discussion
YUI is broken into small modules that enable you to define very tight sets of depen-
dencies. For convenience, YUI users often load rollups, which represent a group of
related modules. For example, the node rollup is an alias for loading a list of modules
that includes node-base, node-style, node-event-delegate, and nodelist.

Likewise, the json rollup includes json-parse and json-stringify, on the assumption
that most applications that work with JSON need to convert JSON in both directions.
However, if your application only needs to convert objects into strings, you can load
json-stringify and avoid loading deadweight code from json-parse.

If you understand exactly which modules your implementation needs, you can save
bytes by loading just those modules instead of loading rollups. However, this does

1.3 Identifying and Loading Individual Modules | 9

www.it-ebooks.info

http://www.it-ebooks.info/

require checking the YUI API documentation carefully for which methods and prop-
erties come from which modules, so that you’re not caught off-guard by “missing”
features.

One option is to use rollups when prototyping and developing, then replace them with
a narrower list of modules when you are getting ready to release to production. The
YUI Configurator is a handy tool for determining an exact list of dependencies. If you
take this approach, be sure to have a test suite in place to verify that your application
still works after narrowing down your requirements. For more information about test-
ing YUI, refer to Chapter 12.

See Also
Recipe 1.13; the YUI Configurator; the YUI JSON User Guide.

1.4 Loading a Different Default Skin
Problem
You want the Loader to load the "night" skin for all YUI widgets—a darker CSS skin
that is designed to match themes that are popular on mobile devices.

Solution
Pass in a YUI configuration object that includes a skin property with an alternative
defaultSkin name. Some modules provide one or more named CSS skins. By default,
when the Loader loads a module with a skin, the Loader attempts to fetch the module’s
"sam" skin file. However, if you are loading modules that happen to have multiple skins,
you can instruct the Loader to fetch a different skin across the board.

Example 1-5 loads and instantiates a Calendar widget with its alternative, darker
"night" skin. By convention, all YUI skin styles are scoped within a class name of yui3-
skin-skinname. This means that to actually apply the night skin once it has loaded on
the page, you must add the class yui3-skin-night to the <body> or to a containing <div>.

Example 1-5. Changing YUI’s default skin

<!DOCTYPE html>
<title>Changing YUI's default skin</title>

<div id="demo" class="yui3-skin-night"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI({
 skin: { defaultSkin: 'night' }

}).use('calendar', function (Y) {
 new Y.Calendar({ width: 300 }).render('#demo');

10 | Chapter 1: Loading Modules

www.it-ebooks.info

http://yuilibrary.com/yui/configurator/
http://yuilibrary.com/yui/docs/json/
http://www.it-ebooks.info/

});
</script>

Discussion
YUI offers a great variety of configuration options that control the behavior of the
Loader and certain properties of the YUI sandbox. For example, to prevent the Loader
from dynamically loading any CSS, you can pass in a fetchCSS: false. This setting is
useful if you plan to manually add all YUI CSS resources as static <link> elements,
and you don’t want the Loader to fetch the same CSS resources twice.

One of the most important use cases is configuring metadata for custom modules. The
Loader already has metadata for core YUI modules included in the seed file, but to
properly load any modules you have created, you must provide the Loader with your
module names, dependencies, and more. For recipes that demonstrate how to do this,
refer to Recipes 1.10 and 1.11.

See Also
More information about skins and loading CSS in Recipes 7.9 and 7.10; a variety of
Slider skins shown side by side; the YUI Global Object User Guide; YUI config API
documentation; YUI Loader API documentation.

1.5 Loading Gallery Modules
Problem
You want to load a useful third-party module from the YUI gallery and use it alongside
core YUI modules.

Solution
Load the gallery module from the Yahoo! content delivery network (CDN) with
YUI().use() as you would with any other YUI module. Gallery module names all start
with the prefix gallery-. Once loaded, gallery modules attach to the Y just like core
YUI modules.

Example 1-6 loads the To Relative Time gallery module, which adds a toRelative
Time() method. This method converts Date objects to English strings that express a
relative time value, such as "3 hours ago".

To ensure that the example loads a specific snapshot of the gallery, the YUI configu-
ration specifies a gallery build tag. For more information, refer to the Discussion.

1.5 Loading Gallery Modules | 11

www.it-ebooks.info

http://yuilibrary.com/yui/docs/slider/slider-skin.html
http://yuilibrary.com/yui/docs/yui/
http://yuilibrary.com/yui/docs/api/classes/config.html
http://yuilibrary.com/yui/docs/api/classes/config.html
http://yuilibrary.com/yui/docs/api/classes/Loader.html
http://www.it-ebooks.info/

Example 1-6. Using the To Relative Time gallery module with YUI Node

<!DOCTYPE html>
<title>Using the "To Relative Time" gallery module with YUI Node</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI({
 gallery: 'gallery-2010.08.25-19-45'
}).use('gallery-torelativetime', 'node', function (Y) {
 var entryTime = new Date(2011,10,1);
 Y.one('#demo').setHTML(Y.toRelativeTime(entryTime));
});
</script>

Discussion
The YUI gallery is a repository for sharing third-party modules. Modules in the gallery
range from tiny standalone utilities to large families of related components.

YUI contributors can choose to serve their gallery modules from the Yahoo! CDN.
Developers who want to take advantage of this feature must:

• Sign and submit a YUI Contributor License Agreement (CLA)

• Release their code under the open source BSD license, the same license YUI uses

• Host their source code on GitHub, the same repository where YUI is hosted

Some gallery modules have not gone through these steps and so are not served from
the Yahoo! CDN. You can use non-CDN gallery modules by downloading and instal-
ling them on your own server. For more information about hosting modules locally,
refer to Recipe 1.7.

The main difference between gallery modules and the core modules is that for the core
modules, the YUI engineering team is fully responsible for fixing bugs, reviewing code,
and testing changes. Gallery modules have whatever level of support the module’s
owner is willing to provide.

Updates to gallery modules get picked up on the CDN when the YUI team pushes out
the gallery build, which occurs roughly every week. Each gallery build has a build tag,
such as gallery-2011.05.04-20-03. If you omit the gallery configuration option, YUI
falls back to loading a default gallery build tag associated with the particular version of
core YUI you are using. Thus, the following code works:

YUI().use('gallery-torelativetime', 'node', function (Y) {
 var entryTime = new Date(2011,10,1);
 Y.one('#demo').setHTML(Y.toRelativeTime(entryTime));
});

12 | Chapter 1: Loading Modules

www.it-ebooks.info

http://www.it-ebooks.info/

However, it is better to declare an explicit, tested gallery build tag. Otherwise, upgrad-
ing your YUI version later on will silently change the gallery tag, which might not be
what you want.

For gallery modules served from the Yahoo! CDN, the YUI engineering team lightly
examines code changes for serious security issues (such as blatant malware) and glaring
bugs. Beyond that, there is no guarantee of code quality. Non-CDN gallery modules
are completely unreviewed. Before using any gallery module, be sure to carefully eval-
uate the module’s functionality, source code, and license for yourself.

See Also
The YUI gallery; Luke Smith’s To Relative Time gallery module; the tutorial “Contrib-
ute Code to the YUI Gallery”.

1.6 Loading a YUI 2 Widget
Problem
You want to use one of your favorite widgets from YUI 2, but it hasn’t been ported over
to YUI 3 yet.

Solution
Load the widget as a YUI 3 module using its YUI 2in3 wrappers, as shown in Exam-
ple 1-7.

Example 1-7. Loading a YUI 2 TreeView in YUI 3

<!DOCTYPE html>
<title>Loading a YUI 2 TreeView in YUI 3</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('yui2-treeview', function (Y) {
 var YAHOO = Y.YUI2,
 tree = new YAHOO.widget.TreeView('demo', [
 {
 label: 'hats',
 children: [
 { label: 'bowler' },
 { label: 'fedora' }
]
 },
 {
 label: 'gloves'
 }
]);

1.6 Loading a YUI 2 Widget | 13

www.it-ebooks.info

http://yuilibrary.com/gallery/
http://yuilibrary.com/gallery/show/torelativetime
http://yuilibrary.com/yui/docs/tutorials/gallery/
http://yuilibrary.com/yui/docs/tutorials/gallery/
http://www.it-ebooks.info/

 tree.render();
});
</script>

Discussion
With YUI 2in3, core YUI 2 widgets such as ImageCropper, ColorPicker, and Progress
Bar are represented as first-class YUI 3 modules. Any YUI 2 widget you load this way
attaches to the Y object as Y.YUI2. To make this look more like classic YUI 2–style code,
you can rename Y.YUI2 to YAHOO, as shown in Example 1-7.

Although you may freely intermix YUI 3 code with YUI 2 wrapped modules, keep in
mind that just because it loads like YUI 3 doesn’t mean it behaves like YUI 3. For
example, new YUI 2 widgets take their container <div>’s id as a string, as in 'demo'.
For YUI 3 widgets, you pass in the CSS selector for the <div>, as in '#demo'.

By default, the version of YUI 2 you get is version 2.8.2. However, you can retrieve any
previous version by setting the yui2 field in the YUI object config:

YUI({ yui2: '2.7.0' }).use('yui2-treeview', function (Y) {
...
});

To load the absolute latest and greatest (and final!) version of YUI 2, use:

YUI({
 'yui2': '2.9.0',
 '2in3': '4'
}).use('yui2-treeview', function (Y) {
...
});

The 2in3 property configures the version of the YUI 2in3 wrapper to use, which must
be at version 4 to load version 2.9.0.

See Also
YUI 2in3 project source; YUI 2 TreeView documentation.

1.7 Loading Locally Hosted Builds
Problem
You want to load YUI from your own servers instead of from Yahoo! servers.

14 | Chapter 1: Loading Modules

www.it-ebooks.info

https://github.com/yui/2in3/tree/master/dist/2.9.0/build
http://developer.yahoo.com/yui/treeview/
http://www.it-ebooks.info/

Solution
By default, the YUI object is configured to fetch from Yahoo! servers. You can change
this by:

1. Downloading the latest stable YUI SDK zip file from http://yuilibrary.com.

2. Unzipping the zip file in some directory under your web server’s web root.

3. Creating a <script> element that points to the yui-min.js file.

For example, if you unzipped the SDK under the top level directory /js and pointed the
first <script> element’s src at the local seed file (as shown in Example 1-8), this auto-
matically configures YUI to load all YUI core modules locally. This also disables combo
loading (discussed shortly).

Example 1-8. Loading a local copy of YUI

<!DOCTYPE html>
<title>Loading a local copy of YUI</title>

<div id="demo"></div>

<script src="/js/yui/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 Y.one('#demo').setHTML('All politics is local.');
});
</script>

To verify that YUI is loading from your own site rather than yui.yahooapis.com, use
your browser’s component inspector (such as Firefox’s Web Inspector pane or
Chrome’s Developer Tools pane).

Discussion
Yahoo! maintains a distributed collection of servers known as a content delivery net-
work (CDN). A CDN is designed to serve files from systems that are physically close
to the user who made the request. By default, YUI uses the Yahoo! CDN, which grants
all YUI users free access to the same network that runs Yahoo’s own high-traffic sites.
This saves your own bandwidth, reduces your own server load, and greatly improves
performance thanks to browser caching and improved geographical distribution.

However, there are plenty of reasons to go it alone. Perhaps your organization forbids
loading resources from remote servers as a matter of policy. Or perhaps your pages use
SSL, in which case loading remote resources is a bad idea, as it exposes your users’
secure information to the remote site. In these cases, you can serve YUI from your own
server.

1.7 Loading Locally Hosted Builds | 15

www.it-ebooks.info

http://yuilibrary.com
http://www.it-ebooks.info/

Each release of YUI provides a full developer kit for download under http://yuilibrary
.com/downloads/. The zip file contains the library, API documentation, and example
files.

If you want the latest-and-greatest version of YUI’s source, you can
check it out by running:

git clone https://github.com/yui/yui3.git

For more information about how to send code to the upstream YUI
project, refer to the tutorial “Contribute Code to YUI”.

Download the zip file, unzip it into your preferred location under your web server’s
root, and then reference the local YUI seed file in your web page:

<script src="path/yui/yui-min.js"></script>

where path is the path under the web root in which the YUI module directories reside,
such as /js/yui/build. In addition to the core YUI 3 SDK, you can also download and
serve up the latest build of the YUI gallery and the YUI 2in3 project from your own
server.

Loading a local YUI seed file automatically reconfigures the Loader to work with local
files. Under the covers, this is like instantiating a sandbox with a configuration of:

YUI({
 base: '/js/yui/build/',
 combine: false
}).use('node', function (Y) {
 Y.one('#demo').setHTML('All politics is local.');
});

The base field defines the server name and base filepath on the server for finding YUI
modules. By default, this is http://yui.yahooapis.com/version/build. For alternative
seed files, YUI inspects your seed file URL and resets base appropriately. This means
you rarely have to set base yourself, at least at the top level. Sometimes you might need
to override base within a module group, as described in Recipe 1.11.

The combine field selects whether YUI attempts to fetch all modules in one “combo
load” HTTP request. A combo loader is a server-side script designed to accept a single
HTTP request that represents a list of modules, decompose the request, and concate-
nate all the requested JavaScript into a single response.

Loading a seed file from yui.yahooapis.com sets the combine field to true. For seed files
loaded from unknown domains, YUI changes combine to false, on the assumption that
a random server does not have a combo loader installed. Setting combine to false is a
safety measure that ensures that local installations of YUI “just work,” at the cost of
generating lots of HTTP requests. To set up a production-quality local YUI installation,
you should install your own local combo loader and set combine back to true. Imple-
mentations are available for a variety of server environments:

16 | Chapter 1: Loading Modules

www.it-ebooks.info

http://yuilibrary.com/downloads/
http://yuilibrary.com/downloads/
http://yuilibrary.com/yui/docs/tutorials/contribute/
http://www.it-ebooks.info/

• PHP Combo Loader, the reference implementation, written by the YUI team. Old
and stable, but not under active development.

• Node.js Combo Loader, written and maintained by Ryan Grove.

• Perl Combo Loader, written and maintained by Brian Miller.

• ASP.NET Combo Loader, written and maintained by Gabe Moothart.

• Python/WSGI Combo Loader, written and maintained by Chris George.

• Ruby on Rails Combo Loader, written and maintained by Scott Jungling.

To install and operate a particular combo loader, refer to that combo loader’s
documentation.

See Also
YUI 3 SDK downloads; Brian Miller’s article on locally served YUI3, which includes a
configuration for serving up local copies of the gallery and YUI 2in3.

1.8 Creating Your Own Modules
Problem
You want to bundle and reuse your own code as a YUI module.

Solution
Use YUI.add() to register your code as a module with the YUI global object. At minimum,
YUI.add() takes:

• A name for your module. By convention, YUI module names are lowercase and
use hyphens to separate words.

• A callback function that defines your actual module code. To expose a property or
function in the module’s public interface, you attach the component to the Y object.

Once YUI.add() executes, you can use your code like any other YUI module. In Exam-
ple 1-9, YUI().use() immediately follows the module definition, loading the modules
it needs and then executing module methods in a callback function.

Example 1-9. Creating and using a Hello World module

<!DOCTYPE html>
<title>Creating and using a Hello World module</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI.add('hello', function (Y) {
 Y.namespace('Hello');

1.8 Creating Your Own Modules | 17

www.it-ebooks.info

http://yuilibrary.com/projects/phploader/
https://github.com/rgrove/combohandler
https://github.com/brianjmiller/cgi-combo
https://github.com/gmoothart/NCombo
https://github.com/chrisgeo/comboloader
https://github.com/sjungling/rails-yui_loader/
http://yuilibrary.com/downloads/#yui3
http://blog.endpoint.com/2011/02/locally-served-yui3.html
http://www.it-ebooks.info/

 Y.Hello.sayHello = function () {
 return 'GREETINGS PROGRAMS';
 };
});

YUI().use('node-base', 'hello', function (Y) {
 Y.one('#demo').setHTML(Y.Hello.sayHello());
});
</script>

To help avoid naming collisions, you can use Y.namespace() to manufacture a Hello
namespace for the sayHello() method. Y.namespace() is a handy utility, though in this
simple example, the call is essentially equivalent to:

Y.Hello = {};

Example 1-9 represents only the most basic building block for creating
modules. This example is not enough to create truly reusable code. Real-
world modules declare dependencies and other metadata, and are de-
fined in a separate file from where they are used. For more information,
refer to Recipes 1.9 and 1.10.

Discussion
As mentioned in the introduction and in Recipe 1.1, YUI separates module registra-
tion from module execution. YUI.add() registers modules with the YUI global object,
while YUI().use() attaches modules to a Y instance so that you can execute the module’s
functions. YUI.add() and YUI().use() are designed to work together; first you register
some code, and then later you retrieve and execute it.

When designing your applications, always think about how to move as much code as
possible out of use() and into add(). Code in an add() callback is reusable, while code
in the use() callback is unreusable “glue” code designed to wire an application into a
particular page.

If you compare YUI().use() and YUI.add() closely, you might notice the lack of paren-
theses on the YUI for YUI.add(). This is a key distinction:

• YUI.add() is a static method that registers module code with the YUI global object.

• YUI().use() is a factory method that creates YUI instances with the given
configuration.

The YUI global object stores a common pool of available code. The Y object holds the
particular subset of code that you want to actually register in a YUI.add() or use in a
YUI().use(). Again, the name Y is just a strong convention. Within a sandbox, you can
name the instance anything you like, but you should do this only if you are creating

18 | Chapter 1: Loading Modules

www.it-ebooks.info

http://www.it-ebooks.info/

nested use() sandboxes, or if you need to inform other developers that this instance is
“weird” in some way. For an example, refer to Recipe 1.19.

The heart of YUI.add() is the callback function that defines your module code. Any
functions or objects that you attach to the Y in the add() callback function become
available later on in the use() callback function. Anything you do not attach to the
Y remains private. For an example of a private function in a module, refer to
Example 1-10.

When attaching functions and objects, consider using a namespace rather than attach-
ing directly to the Y, as this space is reserved for a small number of core YUI methods.
You can either add namespaces manually by creating empty objects, or call the Y.name
space() utility method. Y.namespace() takes one or more strings and creates corre-
sponding namespaces on the Y object. Any namespaces that already exist do not get
overwritten. Y.namespace() is convenient for creating multiple namespaces at once and
for creating nested namespaces such as Y.Example.Hello. Y.namespace() also returns
the last namespace specified, so you can use it inline:

Y.namespace('Hello').sayHello = function () { ...

You might be wondering about the YUI core modules—do they use YUI.add()? In fact,
YUI core modules all get wrapped in a YUI.add() at build time, thanks to the YUI Builder
tool. If you download and unzip the YUI SDK, you will find the raw, unwrapped source
files under the /src directory, and the wrapped module files under the /build directory.
In other words, there’s no magic here—the core YUI modules all register themselves
with the same interface as your own modules.

See Also
Instructions for using YUI Builder.

1.9 Creating a Module with Dependencies
Problem
You want to create a custom YUI module and ensure that it pulls in another YUI module
as a dependency.

Solution
Use YUI.add() to register your code as a module with the YUI global object, and pass in
a configuration object that includes your module’s dependencies. After the module
name and definition, YUI.add() takes two optional parameters:

• A string version number for your module. This is the version of your module, not
the version of YUI your module is compatible with.

1.9 Creating a Module with Dependencies | 19

www.it-ebooks.info

http://yuilibrary.com/projects/builder
http://www.it-ebooks.info/

• A configuration object containing metadata about the module. By far the most
common field in this configuration object is the requires array, which lists your
module’s dependencies. For each module name in the requires array, YUI pulls in
the requirement wherever it is needed, loading it remotely if necessary.

Example 1-10 is a variation on Example 1-9. Instead of returning a string value,
Y.Hello.sayHello() now changes the contents of a single Y.Node. The hello module
now declares a dependency on node-base to ensure that node.setHTML() is always avail-
able wherever hello runs.

To make things a little more interesting, sayHello() uses a private helper function
named setNodeMessage(). Users cannot call setNodeMessage() directly because it is not
attached to Y. setNodeMessage() uses Y.one() to normalize the input to a YUI node,
then sets the message text.

Example 1-10. Creating a module that depends on a YUI node

<!DOCTYPE html>
<title>Creating a module that depends on a YUI node</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI.add('hello', function (Y) {

 function setNodeMessage(node, html) {
 node = Y.one(node);
 if (node) {
 node.setHTML(html);
 }
 }

 Y.namespace('Hello').sayHello = function (node) {
 setNodeMessage(node, 'GREETINGS PROGRAMS');
 };

}, '0.0.1', {requires: ['node-base']});

YUI().use('hello', function (Y) {
 Y.Hello.sayHello(Y.one('#demo'));
});
</script>

Unlike Example 1-9, the use() call in Example 1-10 does not need to explicitly request
node-base. The new, improved hello module now pulls in this requirement
automatically.

20 | Chapter 1: Loading Modules

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Example 1-10 lists the module node-base in the requires array for the hello module.
This guarantees that YUI().use() loads and attaches hello to the Y after attaching node-
base (or any other modules you add to that array).

When providing requirements, take care to avoid circular dependencies. For example,
if hello declares that the goodbye module must be loaded before hello, but the good
bye module declares that hello must be loaded before goodbye, you have a problem.
The Loader does have some logic to defend against metadata with circular dependen-
cies, but you shouldn’t count on your code running correctly.

For performance reasons, you should also provide your module’s requirements in the
Loader metadata, as described in Recipe 1.10.

As mentioned earlier, requires is the most important field. Some of the other fields for
YUI.add() include:

optional
An array of module names to automatically include with your module, but only if
the YUI configuration value loadOptional is set to true. For example, autocom
plete-base declares an optional dependency on autocomplete-sources, which con-
tains extra functionality for populating an AutoComplete widget from YQL and
other remote sources. loadOptional is false by default.

Even if loadOptional is false, an optional dependency still causes a module to
activate if the module’s code happens to already be loaded on the page. Modules
can be present on the page due to an earlier YUI().use() call, or by loading module
code statically, as shown in Recipe 1.20.

skinnable
A Boolean indicating whether your module has a CSS skin. If this field is true, YUI
automatically creates a <link> element in the document and attempts to load a
CSS file using a URL of:

base/module-name/assets/skins/skin-name/module-name.css

where base is the value of the base field (discussed in Recipe 1.11) and skin-name
is the name of the skin, which defaults to the value sam. For more information about
creating skins, refer to Recipe 7.10.

use
Deprecated. An array of module names used to define “physical rollups,” an older
deprecated type of rollup. To create modern rollups, refer to Recipe 1.13.

In addition to module dependencies, Example 1-10 also illustrates a private function
within a module. Since JavaScript lacks an explicit private keyword, many JavaScript
developers signify private data with an underscore prefix, which warns other developers
that the function or variable “should” be private. In many cases, this form of privacy
is good enough.

1.9 Creating a Module with Dependencies | 21

www.it-ebooks.info

http://www.it-ebooks.info/

However, the setNodeMessage() function in the example is truly private. Once YUI
executes the add() callback, module users can call sayHello(), but they can never call
setNodeMessage() directly, even though sayHello() maintains its internal reference to
setNodeMessage(). In JavaScript, an inner function continues to have access to all the
members of its outer function, even after the outer function executes. This important
property of the language is called closure.

See Also
Recipe 7.10; Douglas Crockford on “Private Members in JavaScript”.

1.10 Creating Truly Reusable Modules
Problem
You want to create a custom YUI module by defining the module’s code in a separate
file, then reuse the module in multiple HTML pages.

Solution
Examples 1-9 and 1-10 each define a custom module, but then proceed to use() the
module in the same <script> block on the same HTML page. Truly reusable modules
are defined in a file separate from where they are used.

This creates a problem. For modules not yet on the page, Loader needs metadata about
a module before attempting to load that module, such as where the module resides and
what its dependencies are. Fortunately, you can provide this information by configuring
the YUI object, as shown in Example 1-11.

Example 1-11. Creating a reusable module

add_reusable.html: Creates a YUI instance and passes in a configuration object that
defines the hello module’s full path and dependencies.

<!DOCTYPE html>
<title>Creating a reusable module</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI({
 modules: {
 'hello': {
 fullpath: 'hello.js',
 requires: ['node-base']
 }
 }
}).use('hello', function (Y) {
 Y.Hello.sayHello(Y.one('#demo'));

22 | Chapter 1: Loading Modules

www.it-ebooks.info

http://www.crockford.com/javascript/private.html
http://www.it-ebooks.info/

});
</script>

With this metadata, you do not need to manually add an extra <script> element to
load the hello.js file. The fullpath, which can point to a local file or remote URL, is
enough information for the YUI Loader to fetch the code. Declaring node-base as a
dependency instructs the Loader to fetch node-base before fetching hello .

Since YUI module names often contain dashes, it is a YUI convention to always quote
module names in configuration metadata, even if those quotes are not strictly necessary.

hello.js: Contains only the JavaScript for the hello module, identical to the version in
Example 1-10. This file resides in the same directory as add_reusable.html.

YUI.add('hello', function (Y) {

 function setNodeMessage(node, html) {
 node = Y.one(node);
 if (node) {
 node.setHTML(html);
 }
 }

 Y.namespace('Hello').sayHello = function (node) {
 setNodeMessage(node, 'GREETINGS PROGRAMS');
 };

}, '0.0.1', {requires: ['node-base']});

Discussion
Example 1-11 is a minimal example of a single, simple module. The configuration
object gets more complex as you add more modules and more dependencies, as shown
shortly in Example 1-12.

So why doesn’t YUI need a giant configuration object to load the core YUI modules?
The answer is that YUI cheats—this information is included in the YUI seed. The de-
fault seed file includes both the Loader code and metadata for all the core YUI modules,
but you can load more minimal seeds if need be. For more information about alternate
seed files, refer to “YUI and Loader changes for 3.4.0”.

You might have noticed that the metadata requires: ['node-base'] is provided twice:
once in the YUI configuration that gets passed to the Loader, and again in the
YUI.add() that defines the module. If the Loader has this metadata, why bother re-
peating this information in YUI.add()?

The answer has to do with certain advanced use cases where the Loader is not present.
For example, if you build your own combo load URL, load a minimal seed that lacks
the Loader code, and then call YUI().use('*') as described in Recipe 1.20, the metadata
in YUI.add() serves as a fallback for determining dependencies.

1.10 Creating Truly Reusable Modules | 23

www.it-ebooks.info

http://www.yuiblog.com/blog/2011/07/01/yui-and-loader-changes-for-3-4-0/
http://www.it-ebooks.info/

1.11 Defining Groups of Custom Modules
Problem
You want to define a group of related modules that all reside under the same path on
the server.

Solution
In your YUI configuration, use the groups field to create a group of related modules
that share the same base path and other characteristics.

Example 1-12 is configured to run from a real web server. If you prefer
to open add_group.html as a local file, change the base configuration
field to be a relative filepath such as ./js/local-modules/.

Example 1-12. Defining a module group

add_group.html: Defines the local-modules module group, which contains four
modules that reside under /js/local-modules, plus a CSS skin file. The main module,
reptiles-core, pulls in the node rollup for DOM manipulation and two more local
modules for additional giant reptile-related functionality.

<!DOCTYPE html>
<title>Defining a module group</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI({
 groups: {
 'local-modules': {
 base: '/js/local-modules/',
 modules: {
 'reptiles-core': {
 path: 'reptiles-core/reptiles-core.js',
 requires: ['node', 'reptiles-stomp', 'reptiles-fiery-breath'],
 skinnable: true
 },
 'reptiles-stomp': {
 path: 'reptiles-stomp/reptiles-stomp.js'
 },
 'reptiles-fiery-breath': {
 path: 'reptiles-fiery-breath/reptiles-fiery-breath.js'
 },
 'samurai': {
 path: 'samurai/samurai.js'
 }
 }

24 | Chapter 1: Loading Modules

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 }
}).use('reptiles-core', function (Y) {
 Y.Reptiles.info(Y.one('#demo'));
});
</script>

/js/reptiles/giant-reptiles.js: Defines the reptiles-core module, which pulls in three
other modules and provides an info() method that appends a into the DOM.

YUI.add('reptiles-core', function (Y) {
 var reptiles = Y.namespace('Reptiles');

 reptiles.traits = [
 'dark eyes',
 'shiny teeth'
];

 reptiles.info = function (node) {
 var out = '', i;
 for (i = 0; i < reptiles.traits.length; i += 1) {
 out += '' + reptiles.traits[i] + '';
 };
 out += '' + reptiles.breathe() + '';
 out += '' + reptiles.stomp() + '';
 node.append('<ul class="reptile">' + out + '');
 };
}, '0.0.1', {requires: ['node', 'reptiles-stomp', 'reptiles-fiery-breath']});

/js/reptiles/stomp.js: Defines the Y.Reptiles.stomp() method.

YUI.add('reptiles-stomp', function (Y) {
 Y.namespace('Reptiles').stomp = function () {
 return 'STOMP!!';
 };
}, '0.0.1');

/js/reptiles/fiery-breath.js: Defines the Y.Reptiles.breathe() method.

YUI.add('reptiles-fiery-breath', function (Y) {
 Y.namespace('Reptiles').breathe = function () {
 return 'WHOOOSH!';
 };
}, '0.0.1');

/js/local-modules/reptiles-core/assets/skins/sam/reptiles-core.css: Defines the CSS skin
for the reptiles-core module. YUI attempts to load this file because the skinnable field
for reptiles-core is set to true. For more information about how this works, refer to
the Discussion.

.reptile li { color: #060; }

The samurai module definition is empty. Feel free to make up your own definition.

1.11 Defining Groups of Custom Modules | 25

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
For multiple custom modules, consider using this convention for your module
structure:

base/
 module-foo/
 module-foo.js
 assets/
 skins/
 sam/
 module-foo.css
 sprite.png
 module-bar/
 ...

that is, a base path with one directory per module. Each module directory contains at
least one JavaScript file, possibly more if you include the *-min.js or *-debug.js versions
of your modules. If the module has a skin, it should also contain an assets/ directory,
as shown in Recipe 7.10. If it has localized language resources, it should contain a
lang/ directory, as shown in Recipe 11.6.

Module groups create a configuration context where you can load modules from some-
where other than the Yahoo! CDN. You do not need to use module groups for logical
groupings of your own modules (“all my widgets,” “all my utility objects,” and so on).
For those kinds of logical groupings, it is more appropriate to create custom rollups,
as described in Recipe 1.13. Module groups are for providing the Loader with a different
set of metadata for loading modules from a particular server and set of paths: your own
custom modules, third-party modules on some remote server, your own local copy of
the core YUI library or YUI gallery, and so on.

In many cases, a module group is a necessity. Consider loading a local CSS skin. As
described in Recipe 1.9, setting skinnable to true causes YUI to attempt to fetch a skin
from:

base/module-name/assets/skins/skin-name/module-name.css

base defaults to the same prefix that you loaded the YUI seed file from, typically some-
thing like http://yui.yahooapis.com/3.5.0/build. So what happens if you try to load skin
CSS from your own local server without using a module group?

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI({
 modules: {
 'reptiles-core': {
 fullpath: '/js/local-modules/reptiles-core/reptiles-core.js',
 skinnable: true
 },
 ...
 }
}).use('reptiles-core', ...);

26 | Chapter 1: Loading Modules

www.it-ebooks.info

http://www.it-ebooks.info/

This configuration fails because YUI attempts to load your skin from http://yui.ya-
hooapis.com/3.5.0/build/reptiles-core/assets/skins/sam/reptiles-core.css, instead of your
local server.

What if you set base to act locally? For example:

YUI({
 base: '/js/local-modules/',
 modules: {
 'reptiles-core': {
 path: 'reptiles-core/reptiles-core.js',
 skinnable: true
 },
 ...
 }
}).use('reptiles-core', ...);

This is also undesirable because now YUI is configured to fetch all modules, including
the YUI core and gallery modules, from this local path. Using a module group enables
you to set the base path for all of your local modules without messing up the loader
configuration for the core modules.

See Also
Recipe 1.13; Recipe 7.9; Recipe 7.10; Recipe 11.6; the YUI Loader section of the YUI
Global Object User Guide.

1.12 Reusing a YUI Configuration
Problem
You want to reuse a complex configuration across multiple pages.

Solution
Before creating any YUI instances, load a separate script file containing a YUI_config
object that stores all custom module configuration and other metadata you need. If the
page contains a YUI_config object, YUI automatically applies this configuration to any
YUI instances on the page.

Example 1-13 is a variation of Example 1-12, but with the module metadata broken
out into its own reusable file.

Example 1-13 is configured to run from a real web server. If you prefer
to open add_yui_config.html as a local file, change all /js filepaths to
relative filepaths such as ./js/.

1.12 Reusing a YUI Configuration | 27

www.it-ebooks.info

http://yuilibrary.com/yui/docs/yui/#loader
http://yuilibrary.com/yui/docs/yui/#loader
http://www.it-ebooks.info/

Example 1-13. Reusing a YUI configuration

add_yui_config.html: Loads and exercises the reptiles-core module using an implicit
YUI configuration supplied by /js/yui_config.js. The key word is “implicit”—you do
not need to explicitly pass YUI_config into the YUI() constructor.

<!DOCTYPE html>
<title>Reusing a YUI configuration</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script src="/js/yui_config.js"></script>
<script>
YUI().use('reptiles-core', function (Y) {
 Y.Reptiles.info(Y.one('#demo'));
});
</script>

/js/yui_config.js: Provides the configuration data for loading a set of custom modules.

var YUI_config = {
 groups: {
 'local-modules': {
 base: '/js/local-modules/',
 modules: {
 'reptiles-core': {
 path: 'reptiles-core/reptiles-core.js',
 requires: ['node', 'reptiles-stomp', 'reptiles-fiery-breath'],
 skinnable: true
 },
 'reptiles-stomp': {
 path: 'reptiles-stomp/reptiles-stomp.js'
 },
 'reptiles-fiery-breath': {
 path: 'reptiles-fiery-breath/reptiles-fiery-breath.js'
 },
 'samurai': {
 path: 'samurai/samurai.js'
 }
 }
 }
 }
};

The other JavaScript files in this example are identical to the ones in Example 1-12.

Discussion
At construction time, each YUI instance attempts to merge the common YUI_config
object into the configuration object you passed into the YUI() constructor. Thus, some-
thing like:

<script src="/js/yui_config.js"></script>
<script>

28 | Chapter 1: Loading Modules

www.it-ebooks.info

http://www.it-ebooks.info/

YUI({ lang: 'jp' }).use('reptiles-core', function (Y) {
 Y.Reptiles.info(Y.one('#demo'));
});
</script>

would safely add the lang property without clobbering the module metadata. Properties
you supply to the constructor override properties in YUI_config.

If you’re careful about how you merge configuration data, you can add new module
groups or even new modules within an existing module group, as shown in
Example 1-14.

Example 1-14. Merging common and page-specific YUI configuration

add_yui_config_merged.html: Loads and exercises the reptiles-core module using an
implicit YUI configuration supplied by /js/yui_config_incomplete.js, and merges some
extra configuration information into the YUI() constructor.

<!DOCTYPE html>
<title>Merging common and page-specific YUI configuration</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script src="/js/yui_config_incomplete.js"></script>
<script>
YUI({
 groups: {
 'local-modules': {
 base: '/js/local-modules/',
 modules: {
 'reptiles-stomp': {
 path: 'reptiles-stomp/reptiles-stomp.js'
 }
 }
 }
 }
}).use('reptiles-core', function (Y) {
 Y.Reptiles.info(Y.one('#demo'));
});
</script>

/js/yui_config.js: Provides some (intentionally incomplete) configuration data for load-
ing a set of custom modules. The configuration is broken in two places: first, the
reptiles-stomp module definition is missing, and second, the base path is incorrect.
However, the configuration object provided in the HTML file fixes both problems.

// WARNING: Config intentionally incomplete/broken
var YUI_config = {
 groups: {
 'local-modules': {
 base: '/js/BOGUS_PATH',
 modules: {
 'reptiles-core': {
 path: 'reptiles-core/reptiles-core.js',

1.12 Reusing a YUI Configuration | 29

www.it-ebooks.info

http://www.it-ebooks.info/

 requires: ['node', 'reptiles-stomp', 'reptiles-fiery-breath'],
 skinnable: true
 },
 'reptiles-fiery-breath': {
 path: 'reptiles-fiery-breath/reptiles-fiery-breath.js'
 },
 'samurai': {
 path: 'samurai/samurai.js'
 }
 }
 }
 }
};

Example 1-14 supplies an incomplete YUI_config object in order to demonstrate that
the merging actually works. More generally, you would use YUI_config to provide a
complete, working configuration for everything that is common across your site, and
then supply additional page-specific information either in the YUI instance constructor,
or by modifying YUI_config (which would affect all instances on the page).

Once you’re within a YUI instance, you can call Y.applyConfig() at any time to merge
in additional configuration. You can even call Y.applyConfig() to load more module
metadata, perhaps along with on-demand loading techniques such as those shown in
Recipes 1.17 and 1.18.

1.13 Defining Your Own Rollups
Problem
You would like to define a particular stack of modules under a friendly alias for con-
venient reuse.

Solution
Define an empty module and provide it with a use field containing an array of other
module or rollup names. Then load and use it as you would any other module.

Example 1-15 represents a simple rollup that serves as an alias for node-base and json
(which is itself a rollup of json-parse and json-stringify). The custom my-stack rollup
behaves like any of the other popular core YUI rollups, such as node, io, json, or
transition.

Example 1-15. Defining your own rollups

<!DOCTYPE html>
<title>Defining your own rollups</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>

30 | Chapter 1: Loading Modules

www.it-ebooks.info

http://www.it-ebooks.info/

<script>
YUI({
 modules: {
 'my-stack': {
 use: ['node-base', 'json']
 }
 }
}).use('my-stack', function (Y) {
 var dataStr = '{ "rollups": "are neat" }',
 data = Y.JSON.parse(dataStr);

 Y.one('#demo').setHTML(data.rollups);
});
</script>

Discussion
As Example 1-15 demonstrates, a rollup is just an alias for a list of other rollups and
modules. The example uses core YUI modules, but you can also include gallery mod-
ules, your own custom modules, or anything else.

Rollups are great for logically grouping modules that represent major components of
your application stack, or for grouping modules that are closely related, but don’t
strictly depend on each other. For example, json-parse and json-stringify are com-
pletely independent modules, but applications often end up using both anyway.

Another benefit of rollups is that they free you up to encapsulate your code into even
smaller chunks than you otherwise might have. You can use rollups to bundle very tiny
modules into larger units, making it easier for others to use your code without having
to worry about the fiddly details of what to include.

See Also
Recipe 1.1; Recipe 1.10.

1.14 Loading jQuery as a YUI Module
Problem
You want to load jQuery and some jQuery plugins into the sandbox alongside YUI,
just like any YUI module.

Solution
Create a module group that defines module metadata for the main jQuery library and
any other jQuery-related code that you want to load as well. Use base and path (or
fullpath) to point to the remote files.

1.14 Loading jQuery as a YUI Module | 31

www.it-ebooks.info

http://www.it-ebooks.info/

If you need to load multiple jQuery files in a particular order, use requires to specify
the dependency tree, and set async: false for the overall module group. Setting async:
false is necessary for loading any code that is not wrapped in a YUI.add()—it ensures
that third-party code loads synchronously, in the correct file order.

After defining jQuery files as YUI modules, you can then use() them alongside any
ordinary YUI modules you like. Example 1-16 pulls in the YUI calendar module along
with jQuery and jQuery UI, which includes the jQuery Datepicker plugin. Unlike YUI
core widgets, the jQuery Datepicker’s CSS does not get loaded automatically, so you
must load it as a separate CSS module. For more information about loading arbitrary
CSS as a YUI module, refer to Recipe 7.9.

Experienced jQuery developers might have noticed that the example
simply renders the Datepicker without bothering to wrap it in a $(docu
ment).ready(). The standard YUI loading pattern with JavaScript at the
bottom of the page usually makes DOM readiness a nonissue. However,
if you modify elements that occur after your <script> element or load
YUI in an unusual way, you might need to wait for DOM readiness. For
YUI’s equivalent of jQuery’s ready(), refer to Recipe 4.2.

Example 1-16. Loading jQuery as a YUI module

<!DOCTYPE html>
<title>Loading jQuery as a YUI module</title>
<style>
h4 { margin: 25px 0px 10px 0px; }
div.container { width: 300px; }
</style>

<body class="yui3-skin-sam">

<h4>YUI 3 Calendar Widget</h4>
<div class="container" id="ycalendar"></div>

<h4>jQuery UI Calendar Plugin</h4>
<div class="container" id="datepicker"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI({
 groups: {
 'jquery': {
 base: 'http://ajax.googleapis.com/ajax/libs/',
 async: false,
 modules: {
 'jquery': {
 path: 'jquery/1.7/jquery.min.js'
 },
 'jquery-ui': {
 path: 'jqueryui/1.8/jquery-ui.min.js',
 requires: ['jquery', 'jquery-ui-css']

32 | Chapter 1: Loading Modules

www.it-ebooks.info

http://www.it-ebooks.info/

 },
 'jquery-ui-css': {
 path: 'jqueryui/1.8/themes/base/jquery-ui.css',
 type: 'css'
 }
 }
 }
 }
}).use('calendar', 'jquery-ui', function (Y) {
 new Y.Calendar().render('#ycalendar');
 $('#datepicker').datepicker();
 Y.one('body').append('<p>YUI and jQuery, living together, mass hysteria!</p>');
});
</script>
</body>

As with any module, it’s critical to define your dependencies correctly. Here, the
jquery-ui module declares a dependency on jquery and jquery-ui-css, which ensures
that YUI adds jQuery’s code to the page above jQuery UI’s code. If you somehow got
the dependencies backward and declared that jquery depended on jquery-ui, then YUI
would add jQuery below jQuery UI, which would break the Datepicker plugin.

Of course, you’re not restricted to just core jQuery and jQuery UI. As long as you
declare your paths and dependencies correctly, you can load any third-party jQuery
plugin (or any other library code, for that matter).

Discussion
Loading jQuery, Dojo, Scriptaculous, or any other major framework into a YUI sand-
box is not exactly a recipe for great efficiency. If you’ve loaded the code necessary to
do both Y.one('#demo') and $('#demo') in the same page, you’ve loaded an awful lot
of duplicate code for rummaging around the DOM.

That said, the YUI Loader is an excellent standalone script and CSS loader. It can load
any third-party JS or CSS file you like, in any order you like, as long as you provide the
correct metadata. Some reasons you might want to do this include:

Easy code reuse
You have found some critical feature or component that is available only in some
other library.

Better collaboration
You are working primarily in YUI, but you have teammates or contractors who
have written non-YUI code that you need to quickly integrate, or vice versa.

Improving perceived performance
Your non-YUI pages are currently littered with blocking <script> and <link>
elements at the top of the document. You’re looking for a quick way to migrate
over to a more advanced loading pattern, and perhaps even take advantage of some
advanced YUI Loader tricks such as those covered in Recipes 1.15 and 1.17.

1.14 Loading jQuery as a YUI Module | 33

www.it-ebooks.info

http://www.it-ebooks.info/

In fact, if you want to use the Loader to load non-YUI scripts only, and you are sure
that you don’t need to load any core YUI modules, consider loading the yui-base-
min.js seed rather than the yui-min.js seed:

<script src="http://yui.yahooapis.com/3.5.0/build/yui-base/yui-base-min.js"></script>

The yui-base-min.js seed includes the YUI module registry and the YUI Loader, but
leaves out all the metadata for the core YUI modules. This makes it a little more efficient
to load the YUI seed solely for loading and managing third-party scripts.

YUI is designed to be compatible with most major libraries, although you might run
into strange conflicts here and there. The most common reason for bugs is when the
other library modifies the prototype of a native JavaScript or native DOM object. YUI
provides solid abstraction layers around native objects, but these abstractions can break
if the other library changes object behavior at a deep level.

The other thing to watch out for is forgetting that different libraries use different ab-
stractions. For example, you can’t pass a YUI Node instance directly into some other
library for further DOM manipulation. If you are building some kind of Frankenstein’s
Monster application that does some DOM manipulation with YUI and some in Dojo,
keep a close eye on each point where the two libraries communicate.

See Also
jQuery; jQuery UI.Datepicker; jCarousel; the jQuery–YUI 3 Rosetta Stone; an explan-
ation of the different seed files in YUI and Loader changes for 3.4.0.

1.15 Loading Modules Based on Browser Capabilities
Problem
You want YUI to supply additional fallback code to support users who have legacy
browsers, but without penalizing users who have modern browsers. (This is called
capability-based loading.)

Solution
In your YUI configuration, use the condition field to flag a module as conditional. A
conditional module loads only if some other module specified by trigger is present,
and then only if the test function returns true.

Example 1-17 demonstrates a simple suitcase module that can store data on the client.
By default, the module tries to use localStorage, but if the browser is too old to support
this feature natively, YUI loads an extra module that stores data using cookies instead.

34 | Chapter 1: Loading Modules

www.it-ebooks.info

http://docs.jquery.com
http://docs.jquery.com/UI/Datepicker
http://sorgalla.com/projects/jcarousel/
http://www.jsrosettastone.com/
http://www.yuiblog.com/blog/2011/07/01/yui-and-loader-changes-for-3-4-0/
http://www.it-ebooks.info/

Example 1-17. Loading modules based on browser capabilities

add_capability.html: Creates a YUI instance and passes in a configuration object that
defines metadata for the suitcase module and for the suitcase-legacy conditional
module.

<!DOCTYPE html>
<title>Loading modules based on browser capabilities</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI({
 modules: {
 'suitcase': {
 fullpath: 'suitcase.js'
 },
 'suitcase-legacy': {
 fullpath: 'suitcase-legacy.js',
 condition: {
 trigger: 'suitcase',
 test: function () {
 try {
 return window.localStorage ? false : true;
 } catch(ex) {
 return true;
 }
 }
 },
 requires: ['suitcase', 'cookie']
 }
 }
}).use('node', 'suitcase', function (Y) {
 var type = Y.Cookie ? 'battered, legacy' : 'sleek, ultra-modern';
 Y.Suitcase.set('foo', 'bar');
 Y.one('#demo').setHTML('In your ' + type + ' suitcase: ' + Y.Suitcase.get('foo'));
});
</script>

The suitcase-legacy module has a trigger condition. If the suitcase module is passed
into use(), YUI executes suitcase-legacy’s test function. If the browser does not sup-
port localStorage, the function returns true, which causes YUI to also fetch suitcase-
legacy and all its dependencies. If the function does support localStorage, YUI skips
fetching suitcase-legacy.

Within the use() callback, the presence of Y.Cookie is a quick way to check whether
suitcase-legacy was successfully triggered.

suitcase.js: Defines a simple get/set API for storing data on the client using local
Storage. Note that the suitcase module is written without any “knowledge” of the
suitcase-legacy API. Capability-based loading is designed to help you avoid having to
include extra conditionals or other unnecessary code in your main modules.

1.15 Loading Modules Based on Browser Capabilities | 35

www.it-ebooks.info

http://www.it-ebooks.info/

YUI.add('suitcase', function (Y) {
 Y.Suitcase = {
 get: function (name) {
 return localStorage.getItem(name);
 },
 set: function (name, value) {
 localStorage.setItem(name, value);
 }
 };
}, '0.0.1');

suitcase-legacy.js: Defines the legacy cookie-based get/set API. Because of dependency
ordering, YUI must load suitcase-legacy after suitcase, which means that the get()
and set() methods from suitcase-legacy always overwrite the get() and set() meth-
ods from suitcase. In other words, if both modules are loaded on the page, calling
Y.Suitcase.get() will use cookies, not localStorage.

YUI.add('suitcase-legacy', function (Y) {
 Y.Suitcase = {
 get: function (name) {
 return Y.Cookie.get(name);
 },
 set: function (name, value) {
 Y.Cookie.set(name, value);
 }
 };
}, '0.0.1', { requires: ['suitcase', 'cookie'] });

Fortunately for users (but unfortunately for demonstration purposes), localStorage is
widely available in most browsers. If you don’t have a really old browser available that
can show the legacy module in action, feel free to hack the example and change the test
function to just return true.

The Suitcase object is a toy example. YUI already provides more pro-
fessional storage APIs called Cache and CacheOffline. Like Suitcase,
CacheOffline is able to use localStorage when that feature is available.

Discussion
Supporting older, less capable browsers often requires supplying extra JavaScript to
correct for bugs and to emulate more advanced native features. After writing and testing
code to correct older browsers, the last thing you want to do is penalize cutting-edge
users by forcing them to download extra code.

YUI’s capability-based loading solves this problem by enabling you to break legacy
code out into separate modules. Older browsers can load and execute the extra code
they need, while newer browsers suffer only the small performance hit of evaluating a
few conditionals.

36 | Chapter 1: Loading Modules

www.it-ebooks.info

http://www.it-ebooks.info/

The core YUI library uses capability-based loading to do things like:

• Avoid loading support for physical keyboard events on iPhones

• Make DOM-ready events safer on old versions of Internet Explorer, without
penalizing other browsers

• Seamlessly use the best graphics feature available for the given browser: SVG,
Canvas, or VML

While capability-based loading was originally designed for patching up legacy brows-
ers, you can also flip this idea around and serve up extra code that unlocks features in
a more capable browser. For example, let’s say your application must perform an ex-
pensive calculation. Older browsers run the calculation directly and suffer an annoying
UI freeze. However, if the browser supports the Web Worker API, YUI could trigger a
conditional module that uses workers to run the calculation in the background. Usually
you want to avoid “penalizing” newer browsers with an extra download, but if the
benefits are high enough, it might be worth doing.

Most conditional modules should be abstracted behind another API. In Exam-
ple 1-17, the modules are designed so that developers can call Y.Suitcase.get() and
Y.Suitcase.set() without knowing whether the legacy implementation was in effect.
Of course, this abstraction can be slower than the native implementation, or break
down at the edges in some other way. For example, anyone who tries to store a 3 MB
object in Y.Suitcase using a legacy browser will be sorely disappointed.

For obvious reasons, capability test functions should execute quickly. A typical capa-
bility test either checks for the existence of an object property, or creates a new DOM
element and runs some subsequent operation on that element. Unfortunately, touching
the DOM is expensive, and even more unfortunately, sometimes capability tests need
to do substantial work, since just because a browser exposes a certain property or
method doesn’t mean that the feature works properly. As an example, the test function
in Example 1-17 needs a try/catch statement in order to work around an edge-case bug
in older versions of Firefox.

Capability testing can be a surprisingly deep rabbit hole. In extreme cases where ca-
pability testing has become hopelessly complex or slow, you might consider using the
Y.UA object. Y.UA performs user-agent sniffing, which many web developers regard as
evil. Still, Y.UA is there, just in case you really do need to use the Dark Side of the Force.
Y.UA can also be useful when capability testing isn’t helpful for answering the question,
such as when you need to detect certain CSS or rendering quirks.

See Also
The W3C standard for web storage; the YUI Cookie API.

1.15 Loading Modules Based on Browser Capabilities | 37

www.it-ebooks.info

http://www.w3.org/TR/webstorage/
http://yuilibrary.com/yui/docs/cookie/
http://www.it-ebooks.info/

1.16 Monkeypatching YUI
Problem
You want to conditionally load extra code at runtime to patch a YUI bug or hack new
behavior into YUI.

Solution
In your YUI configuration, define one or more patch modules, using the condition field
to flag those modules as conditional. Set the trigger field to the name of the module
to patch, and create a test function that simply returns true.

Example 1-18 loads a module that patches node-base, changing the behavior of
setHTML(). Ordinarily, setHTML() is a safer version of setting innerHTML; before blowing
away the node’s internal contents, setHTML() walks the DOM and cleanly detaches any
event listeners. For whatever reason, you’ve decided this safer behavior is undesirable.
The “patch” clobbers setHTML(), turning it into a simple alias for setting innerHTML.

Example 1-18 is configured to run from a real web server. If you prefer
to open add_monkeypatching.html as a local file, change the base con-
figuration field to be a relative filepath such as ./js/patches/.

Example 1-18. Monkeypatching YUI

add_monkeypatching.html: Creates a YUI instance and passes in a configuration object
that defines metadata for the node-patches conditional module.

<!DOCTYPE html>
<title>Monkeypatching YUI</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI({
 groups: {
 patches: {
 base: '/js/patches/',
 modules: {
 'node-patches' : {
 path: 'node-patches/node-patches.js',
 condition: {
 name: 'node-patches',
 trigger : 'node-base',
 test : function () { return true; }
 }
 }
 }
 }

38 | Chapter 1: Loading Modules

www.it-ebooks.info

http://www.it-ebooks.info/

 }
}).use('node-base', function (Y) {
 Y.one('#demo').setHTML("Hmmm, setHTML() is unusually fast these days.");
});
</script>

/js/patches/node-patches/node-patches.js: Provides additional code that overrides Node’s
setHTML() method. The patch module loads only if node-base is loaded.

YUI.add('node-patches', function (Y) {
 Y.Node.prototype.setHTML = function (content) {
 this.set('innerHTML', content);
 }
});

Discussion
Monkeypatching refers to modifying the behavior of a program at runtime without
altering the upstream source. Monkeypatching can be useful for implementing quick
fixes, but as the name implies, it isn’t necessarily the best approach for long-term
stability.

Example 1-18 represents a somewhat contrived behavior change. More generally, you
could use monkeypatching to temporarily address a serious bug in the YUI library, or
to inject behavior that you need in a development or staging environment, but not in
production.

When patching someone else’s code, you can use Y.Do.before() and
Y.Do.after() to cleanly inject behavior into a program without clob-
bering an existing method. For more information, refer to Recipe 4.12.

See Also
Recipe 1.15; YUI Tutorial: “Report a Bug”.

1.17 Loading Modules on Demand
Problem
You have a feature that your application needs only some of the time. You want to load
this code only for users who need it, without affecting the initial page load.

Solution
Instead of loading the optional code up front, call Y.use() within the top-level
YUI().use() sandbox to load the optional code on demand.

1.17 Loading Modules on Demand | 39

www.it-ebooks.info

http://yuilibrary.com/yui/docs/tutorials/report-bugs/
http://www.it-ebooks.info/

For example, suppose you need to display a confirmation pane when the user clicks
a button. The straightforward approach is to load the overlay module with
YUI().use(), create a new Overlay instance, and then bind a click event to the button
that will show() the overlay. For examples of using overlays, refer to Recipe 8.2.

Although there’s nothing wrong with that approach, users still have to load the over
lay module and its dependencies even if they never click the button. You can improve
the performance of the initial page view by deferring loading and executing code until
the moment the user needs it, as shown in Example 1-19:

1. Create a top-level showOverlay() function.

2. Within showOverlay(), call Y.use() to load the overlay module.

3. Within the Y.use() callback function:

a. Create a new Overlay instance, initially set to be invisible.

b. Redefine the showOverlay() function to do something else. The next time show
Overlay() is called, it will simply show the hidden overlay instance.

c. Call the newly redefined showOverlay() from within showOverlay() to make
the overlay instance visible.

4. Bind “hide” and “show” callback functions as click events for the two respective
buttons:

• The “hide” callback first checks whether the overlay has been created.

• The “show” callback calls showOverlay(). The first button click invokes the
“heavy” version of showOverlay(), the version that loads the overlay module,
instantiates an overlay, and then redefines itself. Subsequent clicks invoke the
“light” version of showOverlay(), which flips the overlay into the visible state.

Example 1-19. Loading the overlay module on demand

<!DOCTYPE html>
<title>Loading the overlay module on demand</title>
<style>
.yui3-overlay-content {
 padding: 2px;
 border: 1px solid #000;
 border-radius: 6px;
 background-color: #afa;
}
</style>

<button id="show">Show Overlay</button>
<button id="hide">Hide Overlay</button>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node-base', function (Y) {
 var overlay;

40 | Chapter 1: Loading Modules

www.it-ebooks.info

http://www.it-ebooks.info/

 var showOverlay = function () {
 Y.use('overlay', function () {
 overlay = new Y.Overlay({
 bodyContent: 'Hello!',
 centered: true,
 height: 100,
 render: true,
 visible: false,
 width: 200,
 zIndex: 2
 });

 showOverlay = function () {
 overlay.show();
 };

 showOverlay();
 });
 };

 Y.one('#hide').on('click', function () {
 if (overlay) {
 overlay.hide();
 }
 });

 Y.one('#show').on('click', function () {
 showOverlay();
 });
});
</script>

Discussion
Example 1-19 illustrates two concepts. The first is the ability of functions in JavaScript
to redefine themselves. A function calling itself (recursion) is common enough, but a
function that redefines and then calls itself is less common. This pattern is useful if you
have a function that needs to do one thing the first time it is called, and something else
on subsequent calls. Use this technique sparingly, as there’s a good chance you’ll con-
fuse people who read your code later on—including, possibly, yourself.

The second concept is the difference between the exterior YUI().use(), which creates
a new YUI sandbox, and the interior Y.use(), which loads modules into the existing
sandbox that’s referenced by the Y variable. Y.use() enables you to load and attach
additional modules at any time, for any reason. This is sometimes called lazy loading.

Lazy-loading modules can greatly improve your application’s perceived performance.
Native applications have a great advantage in that they start out with most or all of
their code preloaded, while web applications have to bootstrap themselves over the
network.

1.17 Loading Modules on Demand | 41

www.it-ebooks.info

http://www.it-ebooks.info/

To compensate for this, you can divide your application into two pieces: a minimal
interactivity core that provides just enough functionality to render the application, and
additional components that you can lazy-load in the background as the user starts
poking around. Example 1-19 attempts to be “smart” by loading extra code only if it
is needed, but your application doesn’t have to be this fancy. You could wait for your
interactivity core to finish loading and then start loading all secondary components in
the background, in order of priority.

Loading modules in response to user actions can cause a delay at the moment when
the user triggers the loading. If this becomes a problem, you can just lazy-load all mod-
ules in the background regardless of whether they are needed, or alternatively, you can
try to improve performance with predictive loading, as described in Recipe 1.18.

See Also
Eric Ferraiuolo’s gallery-base-componentmgr module, which makes it easy to lazy-load
Y.Base-derived objects and their dependencies.

1.18 Enabling Predictive Module Loading on User Interaction
Problem
You have a feature that your application needs only some of the time, but that requires
a lot of extra code to run. You want to load this code only for users who need it, without
impacting the initial page load. You want to minimize any delay that occurs if a user
does invoke the feature.

Solution
Use predictive loading to load the necessary code after the initial page load, but just
before the user tries to invoke the feature.

In Example 1-19, the application defers loading the overlay module until the user clicks
the button, which improves the initial page load time. However, this could cause an
annoying delay when the user makes the first click.

Example 1-20 adds a refinement to the previous example. It calls Y.use() to load the
overlay module in the background, but only if the user’s mouse hovers over the Show
Overlay button or if the button acquires focus. If the user then clicks on the button and
the module has not yet loaded, the click event gets queued up until the Overlay widget
is ready. To do this, the example separates loading from execution by creating a load
Overlay() function and a showOverlay() function.

1. The loadOverlay() function has different behavior depending on whether the over-
lay has already been instantiated, the overlay module is currently loading, or the
overlay module needs to start loading.

42 | Chapter 1: Loading Modules

www.it-ebooks.info

http://yuilibrary.com/gallery/show/base-componentmgr
http://www.it-ebooks.info/

a. loadOverlay() takes a callback function, which turns out to be showOver
lay(). If the overlay has already been instantiated, loadOverlay() executes the
callback and returns immediately.

b. If the overlay module is currently loading, this means the overlay is not yet
ready to show. loadOverlay() queues the callback up in the callbacks array
and returns immediately.

c. If both of these conditions fail, this means the loadOverlay() function has been
invoked for the first time. It is therefore time to start loading the overlay mod-
ule. loadOverlay() calls Y.use() to load the overlay module on the fly.

d. The Y.use() callback instantiates the overlay, sets overlayLoading to false
(indicating that it is permissible to show the overlay), and finally executes any
showOverlay() callbacks that have queued up while the code was loading.

2. The showOverlay() function is considerably simpler. If the overlay is already
instantiated, the function shows the overlay. Otherwise, showOverlay() calls load
Overlay() with itself as the callback, which guarantees that loadOverlay() has at
least one instance of showOverlay() queued up and ready to fire as soon as the
overlay is instantiated.

3. The hideOverlay() function is simpler still. If the overlay is already instantiated,
the function shows the overlay.

4. Finally, the script attaches event handlers to the Show Button and Hide Button.
The on() method attaches an event handler, while the once() method attaches an
event listener that automatically detaches itself the first time it is called.

Example 1-20. Loading the overlay module predictively

<!DOCTYPE html>
<title>Loading the overlay module predictively</title>
<style>
.yui3-overlay-content {
 padding: 2px;
 border: 1px solid #000;
 border-radius: 6px;
 background-color: #afa;
}
</style>

<button id="show">Show Overlay</button>
<button id="hide">Hide Overlay</button>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node-base', function (Y) {
 var callbacks = [],
 overlay,
 overlayLoading,
 showButton = Y.one('#show'),
 hideButton = Y.one('#hide');

1.18 Enabling Predictive Module Loading on User Interaction | 43

www.it-ebooks.info

http://www.it-ebooks.info/

 var loadOverlay = function (callback) {
 if (overlay) {
 if (callback) {
 callback();
 }
 return;
 }

 if (callback) {
 callbacks.push(callback);
 }

 if (overlayLoading) {
 return;
 }

 overlayLoading = true;

 Y.use('overlay', function () {
 var callback;

 overlay = new Y.Overlay({
 bodyContent: 'Hello!',
 centered: true,
 visible: false,
 height: 100,
 width: 200,
 zIndex: 2
 }).render();

 overlayLoading = false;

 while (callback = callbacks.shift()) {
 if (Y.Lang.isFunction(callback)) {
 callback();
 }
 }
 });
 };

 var showOverlay = function () {
 if (overlay) {
 overlay.show();
 } else {
 loadOverlay(showOverlay);
 }
 };

 var hideOverlay = function () {
 if (overlay) {
 overlay.hide();
 callbacks = [];
 }
 };

44 | Chapter 1: Loading Modules

www.it-ebooks.info

http://www.it-ebooks.info/

 showButton.once('focus', loadOverlay);
 showButton.once('mouseover', loadOverlay);
 showButton.on('click', showOverlay);
 hideButton.on('click', hideOverlay);
});
</script>

For more information about the Overlay widget, refer to Recipe 8.2.

Discussion
While on-demand loading modules can help reduce initial load times, it can cause a
delay when the user triggers the main event that requires the extra code. The goal of
predictive loading is to start the loading a little earlier by using some other, related
browser event that signals the user’s possible intent to use the feature.

A reasonable way to predict that the user is likely to click a button is to listen for
mouseover or focus events on the button or its container. You must listen for both events,
since some users may use the mouse while others may use the keyboard. To get an even
earlier indication of the user’s intent, you could attach the focus and mouseover listeners
to the button’s container. For more information about using on() and once() to attach
event handlers, refer to Chapter 4.

Thanks to these event handlers, the loadOverlay() function is called when the user is
about to click the Show Overlay button. Since dynamic script loading is an asynchro-
nous operation, loadOverlay() accepts an optional callback function as an argument,
and calls that function once the overlay is ready to use.

To ensure that user clicks don’t get lost while the overlay module is loading, multiple
calls to loadOverlay() just add more callbacks to the queue, and all queued callbacks
will be executed in order as soon as the overlay is ready. By the time the user actually
clicks, the overlay should be ready to go, but if the user does manage to click while the
code is loading, the overlay still appears as expected.

1.19 Binding a YUI Instance to an iframe
Problem
You want to manipulate an iframe using JavaScript in the parent document, without
actually having to directly load YUI into the iframe.

Solution
Create a child YUI instance within your main YUI instance and bind the child instance
to the iframe, as shown in Example 1-21. Every YUI instance has a win and a doc con-
figuration value. By default, these values point to the native DOM window and

1.19 Binding a YUI Instance to an iframe | 45

www.it-ebooks.info

http://www.it-ebooks.info/

document that are hosting YUI, but you can change them to point to the window and
document of a different frame.

To set win and doc, use document.getElementById() to get a DOM reference to the
iframe, then set win to the frame’s contentWindow and doc to the frame’s content
Window.document. Note that win and doc are core configuration values and cannot be set
to be YUI Node objects, as this would presuppose that every YUI instance has the
node rollup loaded and available.

Example 1-21. Binding a YUI instance to an iframe

<!DOCTYPE html>
<title>Binding a YUI instance to an iframe</title>

<iframe src="iframe.html" id="frame"></iframe>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 var frame = document.getElementById('frame'),
 win = frame.contentWindow,
 doc = frame.contentWindow.document;

 YUI({ win: win, doc: doc }).use('node', function (innerY) {
 var innerBody = innerY.one('body');
 innerBody.addClass('foo');
 innerBody.append('<p>YUI3 was loaded!</p>');
 });
});
</script>

Nested instances are one of the few reasons to name the callback something other than
Y. innerY is a fully functional YUI instance bound to the iframe’s window and docu-
ment. It has all the capabilities of a conventional Y instance, but scoped to the iframe.
For example, calling innerY.one('body') gets the iframe’s body, not the parent’s body.

For security reasons, modern browsers prevent a parent document from
manipulating a framed document with JavaScript unless the URLs of
both documents have the same domain, protocol, and port. For this
reason, be sure to host your iframes on the same server as the parent
document.

If you try out Example 1-21 on your local filesystem using Chrome,
the example fails due to Chrome’s strict security policies around local
files and JavaScript. In this case, just copy the example files to a real web
server.

46 | Chapter 1: Loading Modules

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
If win and doc are not configured properly, iframes can be tricky to work with. For
instance, the following code fails:

var frame = Y.one('#foo');
var h1 = frame.one('h1');

The first line is just fine: it retrieves a Y.Node instance for the iframe with an id of foo.
But a naive call to frame.one() or frame.all() fails because YUI is scoped to work on
the parent document.

One approach would be to add <script> markup and JavaScript code directly in the
iframe, but this is clunky. The better strategy is to bind the iframe’s window and docu-
ment objects to a nested YUI instance. Within that instance, the YUI Node API works
as expected on the iframe’s content. Driving the iframe from the parent keeps all your
code in one place and avoids having to fetch all your JavaScript code a second time
from within the iframe. The iframe also has access to the Y instance for easy commu-
nication with the parent document.

If the iframe needs additional modules, you can first load them into the parent instance
with a Y.use(), and then in the Y.use() callback, call innerY.use() to attach the module
to the inner YUI instance. Example 1-22 is identical to Example 1-21, except that it
also pulls in the event rollup in order to set a click event on the body of the iframe.

Example 1-22. Loading additional modules into an iframe

<!DOCTYPE html>
<title>Loading additional modules into an iframe</title>

<iframe src="iframe.html" id="frame"></iframe>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 var frame = document.getElementById('frame'),
 win = frame.contentWindow,
 doc = frame.contentWindow.document;

 YUI({ win: win, doc: doc }).use('node', function (innerY) {
 var innerBody = innerY.one('body');
 innerBody.addClass('foo');
 innerBody.append('<p>YUI3 was loaded!</p>');

 Y.use('event', function () {
 innerY.use('event', function () {
 innerBody.on('click', function () {
 innerBody.replaceClass('foo', 'bar');
 });
 });
 });
 });

1.19 Binding a YUI Instance to an iframe | 47

www.it-ebooks.info

http://www.it-ebooks.info/

});
</script>

If your application makes heavy use of iframes, consider using Y.Frame, a utility included
in the YUI Rich Text Editor widget.

See Also
“Security in Depth: Local Web Pages” and Chromium Issue 47416, which describe the
Chrome team’s security concerns around local files, JavaScript, and frames; Andrew
Wooldridge’s “Hidden YUI
Gem—Frame” (http://andrewwooldridge.com/blog/2011/04/14/hidden-yui-gem-frame/),
which discusses a handy utility for working with iframes.

1.20 Implementing Static Loading
Problem
You want to improve YUI’s initial load time by first loading all the modules you need
in a single HTTP request, then attaching all modules to the Y instance at once.

Solution
Use the YUI Configurator to handcraft a combo load URL for the YUI seed file and the
exact list of modules you need. Then use this URL to fetch all YUI code in a single
HTTP request. Once the code has downloaded, call use('*') to attach all YUI modules
in the registry.

Ordinarily, the callback function passed into use() executes asynchronously after YUI
calculates dependencies and fetches any missing resources. However, if you know that
you have already loaded all modules you need onto the page, you can provide the special
value '*' to use(), as shown in Example 1-23. This special value means that all neces-
sary modules have already been loaded statically, and instructs YUI to simply attach
every module in the registry to the Y. Even conditional modules, described in
Recipe 1.15, get attached right away—regardless of the results of their test function.

Example 1-23. Loading node-base and dependencies statically

<!DOCTYPE html>
<title>Loading node-base and dependencies statically</title>

<div id="demo"></div>

<script type="text/javascript" src="http://yui.yahooapis.com/combo?
3.5.0/build/yui-base/yui-base-min.js&3.5.0/build/oop/oop-min.js&
3.5.0/build/event-custom-base/event-custom-base-min.js&
3.5.0/build/features/features-min.js&3.5.0/build/dom-core/dom-core-min.js&
3.5.0/build/dom-base/dom-base-min.js&3.5.0/build/selector-native/selector-native-min.js&

48 | Chapter 1: Loading Modules

www.it-ebooks.info

http://blog.chromium.org/2008/12/security-in-depth-local-web-pages.html
http://code.google.com/p/chromium/issues/detail?id=47416
http://andrewwooldridge.com/blog/2011/04/14/hidden-yui-gem-frame/
http://yuilibrary.com/yui/configurator/
http://www.it-ebooks.info/

3.5.0/build/selector/selector-min.js&3.5.0/build/node-core/node-core-min.js&
3.5.0/build/node-base/node-base-min.js&3.5.0/build/event-base/event-base-min.js"></script>
<script>
YUI({
 bootstrap: false,
}).use('*', function (Y) {
 Y.one('#demo').setHTML('Real Programmers manage their dependencies manually.');
});
</script>

For good measure, the example sets bootstrap to false, which prevents the Loader
from filling in any missing dependencies.

This technique can improve performance, but not without tradeoffs.
For more information, refer to this recipe’s Discussion.

Discussion
Static loading is yet another tool in your toolbox for managing application performance.

The YUI module system is designed to break large frameworks into tiny, digestible
chunks that can be loaded asynchronously. This flexibility provides a huge performance
advantage over monolithic libraries that force you to download the entire API whether
you need it or not.

However, while dynamically constructing a custom library improves performance tre-
mendously, it brings its own performance cost. First, calculating dependencies does
not come for free. It is reasonably fast when done on the client side and very fast when
done on the server side, but the cost is not zero. Second, loading YUI requires a mini-
mum of two HTTP requests: one call to load the YUI seed file and one call to fetch the
combo-loaded YUI modules.

If you are willing to throw the flexibility of the module system away, it is possible to
squeeze a little extra performance from YUI. By listing all modules in the combo load
URL, you can fetch everything in a single HTTP request and eliminate the need to
calculate dependencies.

The disadvantage of this technique is that you are now responsible for managing your
own dependencies across your entire application. If you want to upgrade to a new YUI
minor version, add a YUI module to support a new feature, or remove a module that
is no longer needed, you must recalculate your dependencies and update all your combo
URLs yourself. If different pages might have different module requirements, you will
have to maintain multiple distinct combo URLs. Static loading also makes it harder to
take advantage of capability-based loading and other advanced techniques. If you are
considering static loading, be sure to measure the real-world performance difference
and weigh it against these increased maintenance costs.

1.20 Implementing Static Loading | 49

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

DOM Manipulation

The document object model (DOM) is not a particularly pleasant API to program against.

The main reason for this is that historically, browser DOM implementations have been
incredibly buggy and inconsistent. Although JavaScript itself has its share of design
flaws, many common complaints about JavaScript are actually complaints about the
DOM.

A perhaps less appreciated reason is that the DOM is a low-level API that exposes only
basic capabilities. By design, low-level APIs avoid making too many assumptions about
how developers might want to use the underlying objects. Certain popular DOM ex-
tensions such as innerHTML and querySelector could be considered more mid-level, as
they evolved based on what developers were actually doing.

JavaScript libraries have the advantage of being free to provide higher-level APIs that
are more intuitive and terse than the lower-level DOM. However, each library comes
with a strong mental model for how to work with the DOM. It would be a mistake to
bake those models deeply into the DOM itself. (Imagine how unhappy jQuery devel-
opers would be if the only way to work with the DOM was the YUI way, or vice versa.)

In any case, the rise of JavaScript libraries has made it far easier to manipulate the DOM.
A good DOM abstraction layer can:

• Correct for bugs and implementation differences in specific browsers. YUI accom-
plishes this using feature detection (testing for the existence of a feature) and ca-
pability detection (verifying whether the feature works properly). If a behavior is
missing or incorrect, YUI corrects the problem. YUI’s sophisticated Loader can
fetch extra code to correct bugs, if and only if that code is needed.

• Enable you to use advanced features from newer specifications, even if the browser
doesn’t implement those features natively. If the feature is present, YUI uses the
fast native implementation. If not, YUI implements the feature in JavaScript, pro-
viding you with a uniform interface.

51

www.it-ebooks.info

http://www.it-ebooks.info/

• Provide a much more pleasant and capable API. Although stock DOM methods
can get the job done, YUI and other frameworks offer friendly façades and helper
methods that provide powerful capabilities with only a small amount of code.

Before JavaScript libraries, most web developers would learn about browser bugs the
hard way, slowly building up their own personal bag of tricks. Individual browser bugs
are not always difficult to work around, but some bugs are nastier than others, and it
takes a special kind of thick-headedness to want to spend your time solving the cross-
browser problem in general. Fortunately, YUI and its cousins all bake in years of hard-
won experience around writing portable code, freeing up your time for the fun stuff—
actually writing your application.

Recipe 2.1 describes how to retrieve a single element reference using CSS selector syn-
tax. This recipe introduces the Node object, a façade that provides a consistent, easy-to-
use API for working with the DOM. Whenever this book refers to a Node object, it is
referring to a YUI node as opposed to a native DOM node (unless explicitly stated
otherwise).

Recipe 2.2 explains how to manipulate CSS classes. For this common operation, YUI
supplies sugar methods that properly handle elements with multiple classes.

Recipe 2.3 demonstrates how to exercise the Node API to get and set element attributes.

Recipe 2.4 explains how to use the browser’s internal HTML parser to serialize and
deserialize string content in and out of the DOM.

Recipe 2.5 covers CSS selectors that return multiple nodes as a NodeList object. You
can iterate through a NodeList and operate on individual Node objects, or you can use
the NodeList to perform bulk operations on every member.

Recipe 2.6 describes how to create new elements in the DOM. This is one of the fun-
damental operations that enable you to construct and display complex widgets and
views.

Finally, Recipes 2.7 and 2.8 describe how to augment the Node API itself. This is some-
thing of a power-user feature, but it is straightforward enough to consider using in your
own applications.

2.1 Getting Element References
Problem
You want to retrieve a reference to an element so that you can manipulate the element
further.

Solution
Use a CSS selector with the Y.one() method to retrieve a single Node reference.

52 | Chapter 2: DOM Manipulation

www.it-ebooks.info

http://www.it-ebooks.info/

Loading Example 2-1 in a browser displays an unimpressive blank page. The code
retrieves a Node reference to the demo <div> element, but doesn’t actually do any work
with that reference. Don’t worry—in Recipe 2.2, the example actually starts calling
Node methods, and things will get a little more interesting.

Example 2-1. Getting an element by ID

<!DOCTYPE html>
<title>Getting an element by ID</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 var demo = Y.one('#demo');
});
</script>

Discussion
Y.one() is your standard entry point for manipulating the DOM with YUI. Exam-
ple 2-1 illustrates one of the most common patterns, retrieving a single node by its
unique ID. This is like the workhorse DOM method document.getElementById(), with
two key differences:

• Y.one() is shorter.

• Y.one() returns a YUI Node façade object that wraps the underlying native DOM
Element object.

However, Y.one() doesn’t just mimic document.getElementsById(). As shown in Ex-
ample 2-2, Y.one() takes any CSS selector, returning the first node that matches. If the
selector fails to match any elements, Y.one() returns null. This enables you to sift
through the DOM using familiar CSS selector syntax. This technique wasn’t conceived
of when the DOM was originally designed, but it has proven to be so useful that most
browsers now offer native support.

There is a counterpart to Y.one() named Y.all(), which returns all nodes that match
the selector. For more information, refer to Recipe 2.5.

Example 2-2. Getting an element with various selectors

<!DOCTYPE html>
<title>Getting an element with various selectors</title>

<div id="demo" dir="rtl"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 var aDiv1 = Y.one('#demo'); // the demo <div>
 var aDiv2 = Y.one('div'); // the demo <div> (the first and only <div>)

2.1 Getting Element References | 53

www.it-ebooks.info

http://www.it-ebooks.info/

 var aDiv3 = Y.one('body div.bar'); // null; there's no <div class="bar">
 var aScript = Y.one('body script'); // the first <script> in the <body>
 var aDiv4 = Y.one('html > div'); // null; there's no <div> direct child of <html>
 var aDiv5 = Y.one('body > div'); // the demo <div> again
 var aDiv6 = Y.one('div[dir=rtl]'); // the demo <div> one last time
});
</script>

If you pass in a CSS selector that matches multiple elements, Y.one() returns the first
match. By default, YUI keeps its selector engine light by using CSS 2.1 as its baseline.
If you need the extra power of CSS3 selectors, load the optional selector-css3 module.

Y.one() returns a YUI Node instance, which smooths over browser inconsistencies and
offers a more capable interface than the native DOM Node and DOM Element. Once
you have a YUI Node reference, you can:

• Add classes to the node by calling addClass(), as described in Recipe 2.2

• Hide the node by calling hide(), as described in Recipe 3.1

• Remove the node from its parent entirely by calling remove()

• Destroy the node, all its children, and remove all its plugins and event listeners by
calling destroy(true)

• Change the node’s properties by calling set(), as described in Recipe 2.3

• Move the node on the page by calling setXY(), which normalizes element positions
to use YUI’s unified, cross-browser coordinate system

and perform many other operations, as described in the Node API.

You can often chain methods when working with Node. For example, instead of doing:

var demo = Y.one('#demo');
demo.remove();

to retrieve the Node reference and then remove the node from the document, you can
chain these operations:

Y.one('#demo').remove();

From any given node, you can walk down the DOM tree by calling one() or all() on
the node itself. This returns the first child node (or a list of multiple child nodes) that
matches the selector. To walk up the tree, call ancestor() or ancestors() on the node;
this returns the first ancestor node (or a list of multiple ancestor nodes) that matches
the selector. To walk sideways, call next() or previous(). The next() and previous()
methods are like native DOM nextSibling() and previousSibling(), but they always
return a sibling element as a YUI node, and they ignore adjacent text nodes in all
browsers.

Alternatively, you can walk the DOM by successively calling get("parentNode") or
get("children"). For more information about get(), refer to Recipe 2.3.

54 | Chapter 2: DOM Manipulation

www.it-ebooks.info

http://www.it-ebooks.info/

The input for Y.one() can take a CSS selector string or a native HTMLElement. You can
use this to create methods that accept flexible input by filtering arguments through
Y.one():

function foo(node, bar) {
 node = Y.one(node);
 if (node) { ...

In addition to the Node API methods, a Node is also a YUI EventTarget. Among other
things, this means you can attach event listeners to the element by calling the on()
method. Chapters 3 and 4 discuss events in detail.

Every YUI node wraps a native DOM object, which you can retrieve by calling getDOM
Node(), as shown in Recipe 3.6. YUI uses this pattern of wrapping native objects in
façade objects throughout the library, in Recipe 2.5, in Chapter 4, and elsewhere.

Use caution when mixing the YUI Node API with native DOM opera-
tions, particularly destructive native DOM operations. For example, if
an event handler holds a YUI Node reference, and you destroy the
underlying native DOM node with a native innerHTML assignment or
similar operation, this can lead to memory leaks.

See Also
The Node User Guide.

2.2 Manipulating CSS Classes
Problem
You want to dynamically change one or more classes on an element.

Solution
Call Node’s addClass() and removeClass() methods to add and remove classes without
affecting other classes on the element.

Example 2-3 correctly adds and removes classes without clobbering the original
garish class. Note that you do not need to wrap addClass() or removeClass() in a
hasClass() check, as these methods perform this check for you internally.

Example 2-3. Manipulating CSS classes

<!DOCTYPE html>
<title>Manipulating CSS classes</title>
<style>
.garish { color: #f00; }
.moregarish { background: #0f0; }

2.2 Manipulating CSS Classes | 55

www.it-ebooks.info

http://yuilibrary.com/yui/docs/node/
http://www.it-ebooks.info/

.ohpleasegodno { text-decoration: blink; overflow-x: -webkit-marquee; }
</style>

<div id="demo" class="garish ohpleasegodno">Things could always be worse...</div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 var div = Y.one('#demo');

 div.addClass('moregarish');
 if (div.hasClass('moregarish')) {
 Y.log('Lime green FTW!');
 }
 div.removeClass('ohpleasegodno');
});
</script>

Discussion
The native DOM attribute className enables you to easily set an element’s class to
whatever value you like. However, since elements may have multiple classes in any
order, blindly getting and setting className is usually a bad idea. hasClass(), add
Class(), and removeClass() all correctly handle multiple class names on an element.

In addition to those methods, Node provides replaceClass() for swapping one class for
another, and toggleClass() for alternately adding and removing a class. All five meth-
ods are also available on the NodeList API, enabling you to manipulate classes in bulk.
For more information, refer to Recipe 2.5.

Alternatively, you can change an element’s appearance by calling setStyle() to set an
individual CSS declaration, or do a mass string assignment of all CSS declarations by
calling setStyles(). However, addClass() is a more powerful technique because it
avoids hardcoding presentation information in JavaScript. setStyle() is arguably use-
ful as a quick way to toggle an element between display:block and display:none, but
YUI provides sugar methods for hiding elements, as described in Recipe 3.1.

For most widgets and views, you will want to make a distinction between “core” styles
and “skin” styles. For example, in a floating overlay or lightbox, position:absolute is
a core style, and background-color:silver is a skin style. Both types of styles should be
encapsulated in classes. setStyle() is not ideal for manipulating skin styles. In some
cases you can use setStyle() with core styles, but often it is better to use higher-level
methods such as hide(), show(), and setXY().

56 | Chapter 2: DOM Manipulation

www.it-ebooks.info

http://www.it-ebooks.info/

When it comes to controlling presentation, you can get even more ab-
stract than calling addClass(). For example, all YUI widgets have a
visible attribute that, when set to false, adds the class yui3-widget
name-hidden to the bounding box. However, this class doesn’t include
any CSS rules by default; it simply flags the widget as “hidden” and
enables you, the designer of the widget, to choose what that means. It
could mean display:none, an animated fade, minimizing the widget into
an icon, or anything else. For more information about widgets, refer to
Chapter 8.

2.3 Getting and Setting DOM Properties
Problem
You want to change a link on the fly to point to a new location.

Solution
Use Node’s set() method to set the link’s href property, as shown in Example 2-4.

Example 2-4. Setting DOM properties

<!DOCTYPE html>
<title>Setting DOM properties</title>

Quo vadimus?

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 Y.one('#demo').set('href', 'http://yuilibrary.com');
});
</script>

Node has an equivalent get() method that retrieves the value of a DOM property as a
string.

Discussion
The get() and set() methods are generic YUI methods for viewing and modifying
DOM properties. A DOM property is a JavaScript concept that is related to, but not
quite the same thing as, an HTML attribute. For example, the native DOM property
src:

someImg.src = 'http://example.com/foo.gif';

is related to the HTML attribute src:

2.3 Getting and Setting DOM Properties | 57

www.it-ebooks.info

http://www.it-ebooks.info/

However, in general the relationship is not one-to-one. An image’s DOM properties
include (but are definitely not limited to): align, alt, border, className, height, hspace,
id, innerHTML, isMap, parentNode, src, tagName, useMap, vspace, and width. From this list,
you can see that:

• Many properties, such as src and border, correspond directly to an HTML attribute
name

• Some properties, such as className, map to an HTML attribute but under a dif-
ferent name

• Other properties, such as parentNode and innerHTML, have no corresponding HTML
attribute

• Some HTML attributes, such data-* attributes, currently have no corresponding
DOM property

To make matters more confusing, although most JavaScript developers
refer to img.src and img.innerHTML as DOM “properties,” the official
W3C terminology for img.src and img.innerHTML is in fact DOM “at-
tributes” .This book refers to them as “properties.”

If a property represents a Node or a NodeList, get() retrieves the YUI wrapper object
(Node or NodeList) rather than a native DOM object. Unless you explicitly call getDOM
Node() to get the underlying native object, YUI always maintains the Node façade.

Unfortunately, the exact property list varies from element to element and from browser
to browser. Most browsers support a large set of properties defined by the W3C, plus
a few useful nonstandard ones. Recent W3C specifications have folded in some popular
extensions, such as innerHTML.

In addition to get() and set() for manipulating DOM properties, Node also provides
getAttribute(), setAttribute(), and removeAttribute() for manipulating HTML at-
tributes. These YUI methods are thin wrappers around the native methods of the same
name, but have slightly different semantics:

• Calling get() on a DOM property that does not exist returns undefined. Calling
set() on a made-up property has no effect. get() and set() also support several
useful properties that cannot be accessed via getAttribute() and setAttribute(),
such as text, children, and options.

• Calling getAttribute() on an HTML attribute that does not exist returns an empty
string. This adheres to the W3C DOM specification, correcting for the fact that
native browser implementations of getAttribute() actually return null in this case.
Calling setAttribute() on a made-up attribute works just fine. This means you
can use getAttribute() and setAttribute() to store string metadata on nodes.
However, a better approach would be to use getData() and setData(), which stores
data on the YUI façade object and avoids disturbing the DOM. You can also use

58 | Chapter 2: DOM Manipulation

www.it-ebooks.info

http://www.w3.org/TR/DOM-Level-2-HTML/html.html#ID-642250288
http://www.w3.org/TR/DOM-Level-2-HTML/html.html#ID-642250288
http://www.it-ebooks.info/

getAttribute() and setAttribute() (but not get() and set()) to access the new
data-* HTML5 attributes.

See Also
Recipes 8.7 and 8.8 for working with data-* attributes; Recipe 11.4 to see the
setAttrs() sugar method and the removeAttribute() method setting up and tearing
down multiple attributes at once; Marko Dugonjić’s blog post, “The Difference Be-
tween href and getAttribute(‘href’) in JavaScript”.

2.4 Changing an Element’s Inner Content
Problem
You want to retrieve an element’s content and conditionally replace that content with
something else.

Solution
Use Y.one() to get a node reference. Then call the getHTML() method to inspect the
element’s inner content as a string, followed by setHTML() to change the element’s
contents. If the demo <div> is empty, the script immediately replaces the contents with
a different string. See Example 2-5.

Example 2-5. Changing an element’s inner content

<!DOCTYPE html>
<title>Changing an element’s inner content</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 var demo = Y.one('#demo'),
 hi = 'HELLO from the ' + demo.get('tagName')
 + ' with id=' + demo.get('id');

 if (demo.getHTML() === '') {
 demo.setHTML(hi);
 }
});
</script>

The and tags in the string get parsed and written into the DOM as an
 element. As an alternative to calling setHTML(), you can get and set the
innerHTML DOM property:

2.4 Changing an Element’s Inner Content | 59

www.it-ebooks.info

http://www.maratz.com/blog/archives/2005/08/29/the-difference-between-href-and-getattributehref-in-javascript/
http://www.maratz.com/blog/archives/2005/08/29/the-difference-between-href-and-getattributehref-in-javascript/
http://www.it-ebooks.info/

if (demo.get('innerHTML') === '') {
 demo.set('innerHTML', hi);
}

Methods like setHTML() and set('innerHTML') are insecure when used
for non-HTML strings or strings whose actual content or origin is un-
known. When you need to guard against unknown content, you can use
set('text'). See also Y.Escape, discussed in Recipe 9.13.

Discussion
First introduced by Internet Explorer, innerHTML has long been standard equipment in
browsers, and has recently been codified as a standard. innerHTML is a powerful feature
that grants you direct access to the browser’s fast HTML parser, serializing and de-
serializing strings in and out of the DOM.

Some browsers have buggy implementations of innerHTML that behave strangely in cases
where HTML has implicit “wrapper” elements. For example, some browsers might fail
if you use innerHTML to insert a <tr> string directly into a <table> without a <tbody>
wrapper. YUI uses feature detection to make innerHTML safer to use, adding wrapper
elements for browsers that require it.

The setHTML() method is a YUI sugar method. It has the same semantics as
innerHTML, but it first walks old child nodes and cleanly detaches them from the parent.
The more aggressive innerHTML simply destroys and replaces the old elements. Using
setHTML() is a bit slower, but it avoids breaking references to the old nodes and prevents
memory leaks in old versions of Internet Explorer.

An alternative approach for creating elements is to use Y.Node.create() to create indi-
vidual Node objects. For a comparison of setHTML(), Y.Node.create(), and other meth-
ods for modifying the DOM, refer to Recipe 2.6.

2.5 Working with Element Collections
Problem
You want to add the class highlight to all list elements within the demo <div>.

Solution
Use Y.all() to retrieve a NodeList containing all list elements that match the criteria.
Then call addClass() on the NodeList to add the class to each member Node, as shown
in Example 2-6.

Example 2-6. Operating on a collection of elements

<!DOCTYPE html>
<title>Operating on a collection of elements</title>

60 | Chapter 2: DOM Manipulation

www.it-ebooks.info

http://www.it-ebooks.info/

<style>
.highlight { background: #c66; }
</style>

<div id="demo">

 Apples
 Bananas
 Cherries

 Strawberries
 Tomatoes

</div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 var listItems = Y.all('#demo li');
 listItems.addClass('highlight');
});
</script>

If you didn’t need to reuse the reference to the NodeList later on, an even more compact
solution would be to replace the two lines of JavaScript with simply:

Y.all('#demo li').addClass('highlight');

Discussion
In Example 2-1, Y.one() retrieved a Node instance representing the one element matched
by the "#demo" CSS selector:

var demo = Y.one('#demo');

Similarly, Example 2-6 uses Y.all() to retrieve a NodeList instance representing all the
elements matched by the "#demo li" CSS selector:

var listItems = Y.all('#demo li');

If the selector fails to match any elements, Y.all() returns an empty NodeList. This
enables you to safely do things like Y.all('script').remove() to remove all <script>
elements—if there are no <script> elements on the page, nothing happens.

This is deliberately different behavior from Y.one(), which returns null if no match is
found. Y.one() is designed to make it easy to perform node existence tests, while
Y.all() is designed to make it easy to do bulk operations. YUI is interesting in that it
has two abstractions for fetching DOM nodes. Some libraries rely on a single abstrac-
tion (reaching into the DOM always returns a collection), but the choice of Y.one() and
Y.all() enables you to write cleaner code—you know ahead of time whether you will
receive a single node or a collection.

2.5 Working with Element Collections | 61

www.it-ebooks.info

http://www.it-ebooks.info/

As the suffix “List” implies, NodeList is an arraylike collection, providing methods such
as pop(), shift(), push(), indexOf(), and slice(). NodeList also includes a subset of
the more popular Node methods, such as addClass(), on(), and remove(). This enables
you to perform bulk operations on every member node in only a few lines of code,
without having to manually loop over the NodeList’s contents. For example:

• Y.all(selector).on(type, fn) attaches an event listener to every element matched
by the selector. However, it is often better to use event delegation, described in
Recipe 4.5.

• Y.all(selector).transition(config) runs a CSS Transitions-based animation on
every element matched by the selector. For more information about the YUI Tran
sition API, refer to Chapter 3.

• Y.all(selector).each(fn) executes an arbitrary function on each element matched
by the selector.

The one() and all() methods are also available on each Node object. The difference is
that calling Y.all(selector) queries the entire document for matches, while calling
node.all(selector) restricts the query to search only through that node’s descendants.
For an example of this in action, refer to Example 2-8.

See Also
Recipe 9.2, which describes some useful static Y.Array methods that also work with
NodeLists.

2.6 Creating New Elements
Problem
You want to create a new element and add it to the document.

Solution
Retrieve a Node instance and call append(child) to add the new node to the document
as a child of the selected node, as shown in Example 2-7.

Example 2-7. Creating a new element and adding it to the DOM

<!DOCTYPE html>
<title>Creating a new element and adding it to the DOM</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 Y.one('#demo').append("<h1>Don't Forget the Heading!</h1>");

62 | Chapter 2: DOM Manipulation

www.it-ebooks.info

http://www.it-ebooks.info/

});
</script>

Alternatively, create the node and then call appendTo(selector) on the new node:

var heading = Y.Node.create("<h1>Don't Forget the Heading!</h1>");
heading.appendTo('#demo');

Discussion
Creating new elements is a key operation in any web application. For example, if you
inject a visible widget onto a page, the widget is responsible for bootstrapping itself
into existence by creating, modifying, and appending elements into the document as
needed.

Many developers use a design strategy called progressive enhancement to ensure that
their pages provide at least basic functionality when JavaScript is turned off or broken.
The idea is to first provide a working skeleton of static markup and only then enhance
the page’s behavior with JavaScript. Certain types of projects such as games, book-
marklets, or internal business applications might not need progressive enhancement,
but in general, failing to follow this strategy can lead to costly errors. YUI includes
several patterns that directly or indirectly support progressive enhancement, such as
feature detection and Widget’s HTML_PARSER attribute, described in Recipe 7.5.

Even today, many older tutorials and scripts rely on the document.write() method,
which compiles strings into elements and writes those elements into the DOM as the
document is loading. Calling document.write() after the document has loaded wipes
out and replaces the entire page content, which can lead to surprising bugs. Calling
document.write() before the document has loaded makes it difficult for the browser to
optimize how it fetches resources and renders the page.

YUI’s Node API provides much better approaches than document.write() for creating
new elements. These approaches fall into several families:

• The static Y.Node.create() method, which creates a new node disconnected from
the document. This is the workhorse method for creating Y.Node objects in YUI.

• cloneNode(), which can create a shallow copy of a Y.Node (only copy the open and
close tags) or a deep copy (copy all attributes and internal contents). Cloning is a
useful optimization when you need to create several similar nodes: use Y.Node.
create() to create a template node, and then clone the template. Like
Y.Node.create(), cloned nodes are created outside the document.

• setHTML() and the innerHTML DOM property, discussed in Recipe 2.4. These meth-
ods use the browser’s HTML parser to compile a string into elements and insert
those elements into the DOM all in one step, completely replacing the element’s
inner contents.

2.6 Creating New Elements | 63

www.it-ebooks.info

http://www.it-ebooks.info/

Although setHTML() and innerHTML might seem superficially similar
to document.write(), these approaches are scoped to an individual
element and are fine to use after the document has loaded.

• appendChild(), insertBefore(), and replaceChild(). These are YUI DOM façade
methods. They act like the similarly named native DOM methods, but return YUI
Node objects. Use these methods if you feel more comfortable working with an API
that looks more like the DOM.

• append(), prepend(), insert(), and replace(). These are YUI sugar methods. In
addition to having shorter names, they are also chainable. These methods can ei-
ther attach existing Node objects, or compile strings into objects and then attach
the results.

Y.Node.create() and cloneNode() involve a two-step process: first you create the Node
objects you want, and then you assemble them into a tree and add them to the document
with append() or a similar method. Appending a tree of Node objects into the document
makes them visible, but requires the browser to run an expensive reflow and repaint
operation. It is therefore best to use append() “off document” to completely assemble
a Node structure, then perform a final append() to add the entire structure into the
document in one operation.

The other approach is to pass raw strings of HTML into innerHTML, setHTML(), or
append() and its cousins. It can be very efficient to serialize strings directly into the
DOM without needing to mess with intermediate Node objects. However, if you want
to manipulate the nodes later, you must then incur the overhead of flagging the markup
to be locatable (by adding classes and IDs) and calling Y.one() or Y.all() to get node
references. The more methodical Y.Node.create() ensures that you already have refer-
ences to everything you need. Often, the choice between compiling and parsing HTML
strings versus assembling nodes as objects boils down to which approach yields the
cleanest code.

See Also
Mike Davies on the costs of ignoring progressive enhancement.

2.7 Adding Custom Methods to Nodes
Problem
You want to be able to determine whether an individual node contains one of the new
elements that were added in the HTML5 specification.

64 | Chapter 2: DOM Manipulation

www.it-ebooks.info

http://isolani.co.uk/blog/javascript/BreakingTheWebWithHashBangs
http://www.it-ebooks.info/

Solution
Use Y.Node.addMethod() to add a hasHTML5() method to all Node objects, as shown in
Example 2-8. addMethod() takes three arguments: the string name of the method to bind
to Node, a function that actually becomes the method, and an optional context with
which to call the method.

To determine whether an element is new in HTML5:

1. Define a string that lists all HTML5 element names. This string serves as a CSS
selector.

2. Use Node.all() to return a NodeList of all child elements that match this selector.
Within addMethod(), the this object refers to the YUI node where the method is
operating, and the domNode parameter represents the native DOM object that un-
derlies the YUI node.

3. Return true if any HTML5 elements were found; false otherwise.

Example 2-8. Adding the hasHTML5() method

<!DOCTYPE html>
<title>Adding the hasHTML5() method</title>

<article id="demo"><p>Hello</p></article>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 Y.Node.addMethod('hasHTML5', function(node) {
 var html5elements = 'article, aside, audio, bdi, canvas, command, ' +
 'datalist, details, figcaption, figure, footer, header, ' +
 'hgroup, keygen, mark, meter, nav, output, progress, rp, rt, ' +
 'ruby, section, source, summary, time, video, wbr';

 return (this.one(html5elements) !== null);
 });

 Y.log(Y.one('#demo').hasHTML5());
 Y.log(Y.one('body').hasHTML5());
});
</script>

Y.log() logs debug messages to the browser console. For more infor-
mation, refer to Recipe 12.1.

Strictly speaking, most HTML 4.01 elements are also HTML5 elements, so perhaps
this method should have been named hasNewInHTML5() or the even more horrible has
ElementNewInHTML5().

2.7 Adding Custom Methods to Nodes | 65

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Having a Node façade makes it straightforward to augment the DOM. The YUI team
uses Node to make it easy to fix browser bugs, normalize browser behaviors, and add
features. There is no reason why you can’t also use this abstraction layer for your own
purposes.

When you use addMethod(), any values you return from your function automatically
get normalized to maintain the façade:

• If you return a native DOM node, addMethod() wraps it as a YUI node.

• If you return a native DOM collection or array, addMethod() wraps it as a YUI
NodeList.

• If you return some other value (other than undefined), the value passes through
unaltered.

• If you declare no return value, addMethod() returns the underlying Node instance,
which enables your method to be chained.

There is also an equivalent Y.NodeList.addMethod() for augmenting NodeLists. Any
method you add in this manner will automatically get iterated over the NodeList’s
members when that method is called.

Augmenting Node with new methods is probably the kind of thing you should bundle
into a module for reuse. For more information, refer to Recipe 1.8.

2.8 Adding Custom Properties to Nodes
Problem
To celebrate International Talk Like a Pirate Day (September 19), you want to create
a custom property that provides the pirate-speak version of the element’s text.

Solution
Add the property to Y.Node.ATTRS. A custom property is an object that contains a
getter function, and optionally a setter function if the property is writable.

In Example 2-9, the getter function uses a simple object as a map for replacing English
words with pirate-speak. It acts by:

1. Getting the Node’s text property, which represents the plain-text content. The
text property is a YUI abstraction over browser native properties such as inner
Text and textContent. (Within Y.Node.ATTRS, the this object refers to the node in
question.)

2. Creating an object to serve as a mapping between English words and pirate words.
The mapping in Example 2-9 is pretty short; you should feel free to expand it.

66 | Chapter 2: DOM Manipulation

www.it-ebooks.info

http://www.it-ebooks.info/

3. Performing a String.replace() on the normal text. The regular expression matches
all words in the string. For each word matched, replace() calls a function that
replaces the word with a pirate word or leaves the word alone, depending on the
contents of the map.

4. Returning the pirate text, with a bonus “Arrrr!” thrown in.

To prove that the property works, the example sets the demo <div>’s content to an
English sentence, then immediately turns around and uses the pirate property to
change the <div> to the pirate-speak equivalent.

Example 2-9. Adding a read-only pirate property

<!DOCTYPE html>
<title>Adding a read-only pirate property</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 var demo = Y.one('#demo');

 Y.Node.ATTRS.pirate = {
 getter: function() {
 var normalText = this.get('text'),
 pirateMap = {'hello':'ahoy', 'my':'me', 'the':"th'",
 'you':'ye', 'to':"t'", 'is':'be', 'talk':"be talkin'"},
 pirateText = normalText.replace(/\b\w*\b/g, function (word) {
 return pirateMap[word] || word;
 });

 return pirateText + ' Arrrr!';
 }
 };

 demo.setHTML('It is fun to talk like a pirate!');
 demo.setHTML(demo.get('pirate'));
});
</script>

Discussion
Although converting an element’s text to pirate-speak is an admittedly silly example,
there are all sorts of other simple text transformations that you might want to imple-
ment as custom properties. For example, the ROT13 transformation replaces each let-
ter with the letter 13 places further in the alphabet: a (letter 1) becomes n (letter 14),
u (letter 21) wraps around to h (letter 8), and so on. ROT13 is useful for obscuring joke
punchlines, plot spoilers, and answers to puzzles. Other possibly interesting transfor-
mations on node text include disemvowelling, reversing text, pretty-printing code in
<pre> elements, and more.

2.8 Adding Custom Properties to Nodes | 67

www.it-ebooks.info

http://www.it-ebooks.info/

Custom properties also don’t necessarily have to revolve around the element’s text
content. For example, you could have designed the hasHTML5() method from
Recipe 2.7 as a custom property with a getter function.

As with the hasHTML5() method described in Recipe 2.7, you should probably register
the pirate property in a custom YUI module using YUI.add(). For more information,
refer to Recipe 1.8.

Keep in mind that custom YUI node properties do not end up as custom properties in
the DOM, so you can access them only by calling get() and set() on the YUI node.
You cannot retrieve custom properties by accessing myNode.myProperty, either on the
YUI node or the underlying native DOM node.

68 | Chapter 2: DOM Manipulation

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

UI Effects and Interactions

Originally, JavaScript provided only small niceties like the occasional animation, fade,
or rollover. Today’s browsers have advanced to the point where it is possible to build
and maintain sophisticated applications. But sometimes, the small niceties are all you
need.

Many YUI developers are frontend engineers who tend to take an application-centric
view of the code they are writing. The amount of work that goes into JavaScript dom-
inates all else, and the HTML and CSS is something to tweak later or (hopefully) hand
off to a designer.

But if you’re a designer who codes, or you’re working on a very content-heavy page, it
might be the HTML and CSS that dominates. In this more page-centric view, the HTML
page needs only some snippets of JavaScript to sprinkle in some user interface effects.

To support this kind of use case, YUI enables you to add interesting UI effects with
little overhead. You can make an element draggable in one line of code. You can fade
an element in response to a click in just three lines of code. You can perform an inter-
esting sequence of animations in only a few lines of code.

In some ways, YUI is actually better suited for the page-centric world than you might
expect. If the JavaScript is meant to be a light cosmetic addition to the page, then the
worst thing you can do is load a huge monolithic library just to do a fade. YUI’s flexible
module system enables you to be far more selective about which components you load
to create a particular effect.

Recipe 3.1 demonstrates how to hide and show an element immediately.

Recipe 3.2 introduces a slightly fancier approach to hiding and showing, by explaining
how to gracefully fade an element in and out of visibility.

Recipe 3.3 builds on these concepts by introducing the YUI Transition API, which
makes it easy to do basic DOM animations.

Recipe 3.4 demonstrates a more complicated transition that animates multiple prop-
erties on independent timers, and chains a second transition after the first.

69

www.it-ebooks.info

http://www.it-ebooks.info/

Recipe 3.5 describes how to register slide effects and other custom transitions with YUI
under a string name.

Recipe 3.6 uses the handy Y.DOM.inViewportRegion() to create a simple “infinite scroll”
interaction.

Recipe 3.7 explains how to make an element draggable and several variations on this
behavior. It also covers the concept of plugins, which are discussed in more detail in
Chapter 8.

Recipe 3.8 introduces the resize module, an extension of the Drag and Drop (DD) API
that makes elements and widgets resizable.

Recipe 3.9 provides a complete working example of a table with rows that you can
reorder by dragging. In addition to showing how to use drop targets, this example
introduces some new event-related concepts, such as inspecting the event object and
using a central event manager for event handlers.

3.1 Hiding an Element
Problem
When the user clicks a button, you want to hide an element from view.

Solution
Use Y.one() to get the <button> and the <div> as a YUI node. Then add a click event
listener to the button using Node’s on() method. When the user clicks the button, the
callback function executes and calls hide() on the demo <div>. See Example 3-1.

Example 3-1. Hiding an element in response to a click

<!DOCTYPE html>
<title>Hiding an element in response to a click</title>
<style>
#demo { width: 100px; height: 100px; border: 1px #000 solid; background: #d72; }
</style>

<button id="hide">Hide</button>
<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 var hideButton = Y.one('#hide'),
 demo = Y.one('#demo');

 hideButton.on('click', function () {
 demo.hide();
 });

70 | Chapter 3: UI Effects and Interactions

www.it-ebooks.info

http://www.it-ebooks.info/

});
</script>

If you use Y.one() inline, the code is even more compact:

YUI().use('node', function (Y) {
 Y.one('#hide').on('click', function () {
 Y.one('#demo').hide();
 });
});

Discussion
Not surprisingly, YUI offers a show() method as a counterpart to hide(). If you need to
hide and show the <div>, add a second HTML <button> with an id of show. Then add
another event listener:

YUI().use('node', function (Y) {
 Y.one('#hide').on('click', function () {
 Y.one('#demo').hide();
 });

 Y.one('#show').on('click', function () {
 Y.one('#demo').show();
 });
});

Technically speaking, you can always set display: none yourself by setting the style, as
described in Chapter 2. Calling hide() is more elegant than setting the style manually,
and it also offers some extra functionality as described in Recipe 3.2.

Nearly all page effects are triggered by some sort of event—a button click, a mouseover,
or some other action by the user or the system. Most of the examples in this chapter
use the on() method for setting an event listener on that node. This method takes a
string representing the type of the event (such as 'click' or 'mouseover') and a function
to execute when the event occurs.

The node rollup exposes a small amount of event functionality via on(), but to get the
full power of the YUI Event API, you must use event-base and related modules, or pull
in the event rollup. For much more information about how the YUI event system works
in general, refer to Chapter 4.

3.2 Fading an Element
Problem
You want to make an element disappear a little more gracefully, as having it disappear
immediately is kind of jarring.

3.2 Fading an Element | 71

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Use the hide() method as before, but load the transition module as well. Among other
features, the transition module augments hide() and show() with additional func-
tionality, enabling you to fade the element in and out by passing true to hide() and
show(). See Example 3-2.

Example 3-2. Fading an element in response to a click

<!DOCTYPE html>
<title>Fading an element in response to a click</title>
<style>
#demo { width: 100px; height: 100px; border: 1px #000 solid; background: #d72; }
</style>

<button id="hide">Hide</button> <button id="show">Show</button>
<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', 'transition', function (Y) {
 Y.one('#hide').on('click', function () {
 Y.one('#demo').hide(true);
 });

 Y.one('#show').on('click', function () {
 Y.one('#demo').show(true);
 });
});
</script>

Passing true to hide() and show() without loading the transition module has no effect.

Discussion
The transition module enables you to perform simple animations. It relies on the API
defined by the CSS3 Transitions specification, which describes how to change CSS
values over time. The YUI transition module presents you with the same API regardless
of whether the browser supports CSS3 Transitions natively.

With the transition module enabled, hide() and show() support three optional argu-
ments. You can invoke a fade by passing in true as the first argument to hide(). This
activates a default transition that fades the element over a period of 0.5 seconds.

You can also change the behavior of the default fade. For example, you can change the
duration by passing in a configuration object instead of true:

YUI().use('node', 'transition', function (Y) {
 Y.one('#hide').on('click', function () {
 Y.one('#demo').hide({ duration: 2.0 });
 });

72 | Chapter 3: UI Effects and Interactions

www.it-ebooks.info

http://www.it-ebooks.info/

 Y.one('#show').on('click', function () {
 Y.one('#demo').show({ duration: 1.5 });
 });
});

This stretches the duration to 2.0 seconds for the hide(), and 1.5 seconds for the
show(). In general, you can pass in:

• true, as in hide(true). This triggers hide()’s default transition. It is sugar for
hide('fadeOut').

• A string name for a predefined transition, as in hide('fadeOut'). In addition to
fadeIn and fadeOut, YUI also ships with a sizeIn and sizeOut transition, which
means you can call hide('sizeOut') to shrink an element to oblivion. For more
information about how to register your own custom transitions, refer to Recipe 3.5.

• An arbitrary transition object. For examples, refer to Recipes 3.3 and 3.4.

You can also provide a callback function to execute when the transition completes, as
shown in Example 3-3. For example, when the hide() completes, you can remove the
element from the DOM entirely by calling remove() on the node. As long as you save
the node reference, you can still reverse the hide() operation by inserting the node back
into the DOM and then calling show().

Example 3-3. Fading and removing an element in response to a click

YUI().use('node', 'transition', function (Y) {
 var demo = Y.one('#demo');

 Y.one('#hide').on('click', function () {
 demo.hide({ duration: 2.0 }, function () {
 demo.remove();
 });
 });

 Y.one('#show').on('click', function () {
 Y.one('#show').insert(demo, 'after');
 demo.show({ duration: 1.5 });
 });
});

The code is not symmetric—the node gets removed in a callback for demo.hide(), but
it gets reinserted just before calling demo.show(). If you tried to make the show() code
mirror the hide() code, then the <div> would appear to pop into existence after 1.5
seconds, which is not the desired effect.

See Also
Recipe 3.5; the CSS3 Transitions specification.

3.2 Fading an Element | 73

www.it-ebooks.info

http://www.w3.org/TR/css3-transitions/
http://www.it-ebooks.info/

3.3 Moving an Element
Problem
You want to animate an element and move it across the page.

Solution
Set the element’s CSS position property to absolute. Then load the transition module
and call the node’s transition() method, passing in a configuration object. As you can
see in Example 3-4, the configuration object includes these properties:

delay
An optional delay in seconds before starting the transition.

duration
The time in seconds to run the transition.

easing
The optional name of a predefined mathematical function for controlling the ele-
ment’s acceleration.

left
The final state of the element’s left CSS property. You can animate a large number
of CSS properties, including the size, position, text color, and more.

Example 3-4. Moving an element across the screen

<!DOCTYPE html>
<title>Moving an element across the screen</title>
<style>
#demo {
 width: 100px; height: 100px; border: 1px #000 solid; background: #d72;
 position: absolute;
}
</style>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', 'transition', function (Y) {
 Y.one('#demo').transition({
 delay: 1.0,
 duration: 2.0,
 easing: 'ease-in',
 left: '500px'
 });
});
</script>

74 | Chapter 3: UI Effects and Interactions

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Calling hide(true) is convenient for simply fading an element. For more general access
to CSS3 Transitions, use the transition() method.

JavaScript has always had timers and DOM manipulation, so it’s easy to think about
creating basic animations by changing an element in many small steps over a certain
timeframe. But the devil is in the details. JavaScript timers are unreliable over short
time slices. Constant DOM repaints are expensive and compete with myriad other tasks
the browser might be trying to do. In short, creating robust, nonjittery animations in
older browsers is not easy. CSS3 Transitions greatly simplifies DOM animations by
natively handling many of these fiddly details for you.

Naturally, the YUI Transition API has you covered either way. For all browsers, YUI
presents a consistent, friendly interface for configuring transitions. If the browser does
not support transitions natively, YUI loads additional fallback code that implements
the API in pure JavaScript.

The basic concept of CSS transitions is that over a certain duration, using a certain
easing function, the transition() method transitions an element from one CSS state to
another. The easing function, also known as a transition timing function, controls how
the element accelerates from one CSS state to another over the specified time period.
Here, the concept of “acceleration” doesn’t just apply to the element’s position. An
element transitioning from red to green could stay red for most of the transition,
then quickly accelerate into green—or vice versa. For a complete list of available timing
functions and CSS properties you can animate, refer to the CSS3 Transitions
specification.

Example 3-4 starts the animation one second after the page loads. You can, of course,
trigger this from an event instead:

YUI().use('node', 'transition', function (Y) {
 var demo = Y.one('#demo');

 demo.on('mouseover', function () {
 demo.transition({
 duration: 2.0,
 easing: 'ease-in',
 left: '500px'
 });
 });
});

The transition() method can also animate different CSS properties independently. It
is even possible to chain transitions together, as shown in Recipe 3.4.

To simply jump an element to a new location without any animation,
use the setXY() method. setXY() works on elements regardless of wheth-
er you remembered to set the CSS position.

3.3 Moving an Element | 75

www.it-ebooks.info

http://www.it-ebooks.info/

See Also
The CSS3 Transitions specification’s sections on transition timing functions and ani-
matable properties.

3.4 Creating a Series of Transitions
Problem
You want to perform a series of transitions that work together to create an effect.

Solution
Use durations and delays to animate CSS properties independently. In the configuration
object, you can specify CSS properties as simple values. But if you specify a CSS property
as an object, each CSS property can have its own delay, duration, and easing function
that overrides the default.

In addition to playing tricks with durations and delays, Example 3-5 chains a second
transition after the first one by creating an on object with an end function. YUI calls this
event handler function after all animations in the first transition finish.

Example 3-5. A series of transitions

<!DOCTYPE html>
<title>A series of transitions</title>
<style>
#demo {
 width: 200px; height: 200px; border: 1px #000 solid; background: #d72;
 position: absolute;
 text-align: center;
 opacity: 0.3;
}
</style>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', 'transition', function (Y) {
 var demo = Y.one('#demo');

 demo.transition({
 duration: 2.5,
 width: '100px',
 height: '100px',
 left: {
 easing: 'ease-in',
 value: '500px'
 },

76 | Chapter 3: UI Effects and Interactions

www.it-ebooks.info

http://www.w3.org/TR/css3-transitions/#transition-timing-function_tag
http://www.w3.org/TR/css3-transitions/#animatable-properties-
http://www.w3.org/TR/css3-transitions/#animatable-properties-
http://www.it-ebooks.info/

 opacity: {
 delay: 1.0,
 duration: 1.75,
 value: 1.0
 },
 on: {
 start: function () {
 demo.setHTML("It's just a jump to the left...");
 },
 end: function () {
 demo.setHTML('And then a step to the riiight!');
 demo.transition({
 duration: 2.0,
 left: '0px',
 easing: 'linear'
 });
 }
 }
 });
});
</script>

Discussion
Moving the <div> back and forth across the screen requires changing the left CSS
property twice. Since you can’t define the same property twice in the same configuration
object, this requires calling another transition() function.

Naively, you might try chaining the second transition() immediately after the first, as
in: node.transition({...}).transition({...}). Here the second transition() func-
tion gets called almost immediately after the first, so the two animations clobber each
other. Instead, set the second transition() in an end callback, as shown in the example.
This ensures that the second transition() picks up properly where the first one leaves
off.

You can also use start and end to set and remove extra CSS properties that you need
for the transition, such as overflow or position. For an example of this, refer to
Recipe 3.5.

Use caution when trying out complex transitions in older browsers. The fallback code
handles simple transitions smoothly, but more complex series of transitions can cause
jumps and jitters. As mentioned in Recipe 3.3, emulating CSS transitions in pure Java-
Script is inherently less precise than the real thing.

3.5 Defining Your Own Canned Transitions
Problem
You have a standard animation configuration that you want to use over and over, but
passing the full config to transition() each time is cumbersome.

3.5 Defining Your Own Canned Transitions | 77

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Append your named transition to the Y.Transition.fx object. Example 3-6 adds two
named transitions: a slideFadeIn for hiding elements, and a slideFadeOut for reversing
the operation. This registers the transition and enables you to refer to it by name, like
fadeIn and fadeOut.

For this particular slide effect, the element must have its CSS position set to rela
tive. The example uses the start callback to just clobber the element’s position prop-
erty, whatever it might be. A more sophisticated transition could be more careful about
applying and removing this property.

Example 3-6. Defining a named slideFadeOut transition

<!DOCTYPE html>
<title>Defining a named slideFadeOut transition</title>
<style>
#demo { width: 100px; height: 100px; border: 1px #000 solid; background: #d72; }
</style>

<button id="hide">Hide</button>
<button id="show">Show</button>
<div id="demo"></div>

<script src='http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js'></script>
<script>
YUI().use('node', 'transition', function (Y) {
 function setRelativePosition() {
 this.setStyle('position', 'relative');
 }

 Y.Transition.fx.slideFadeOut = {
 opacity: 0,
 right: '-100px',
 easing: 'ease-out',
 on: { start: setRelativePosition }
 };

 Y.Transition.fx.slideFadeIn = {
 opacity: 1.0,
 right: '0px',
 easing: 'ease-in',
 on: { start: setRelativePosition }
 };

 Y.one('#hide').on('click', function () {
 Y.one('#demo').hide('slideFadeOut');
 });

 Y.one('#show').on('click', function () {
 Y.one('#demo').show('slideFadeIn');
 });
});
</script>

78 | Chapter 3: UI Effects and Interactions

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Registering a named transition makes it easy to reuse that code, particularly for people
with less JavaScript expertise than you have. If you are a frontend engineer or lead
prototyper, Y.Transition.fx makes it easy to register a whole host of canned transitions
for other designers and prototypers on your team to use.

Example 3-6 demonstrates using named transitions in hide() and show(), but you can
always use named transitions in a general transition() call as well.

To simplify things even further, you can redefine the default transition behavior of
hide() and show(), as Example 3-7 illustrates. This enables your team to simply call
hide(true) without having to care whether this causes a fade, resize, slide, or something
more complex.

Example 3-7. Redefining the default hide and show transition

YUI().use('node', 'transition', function (Y) {
 function setRelativePosition() {
 this.setStyle('position', 'relative');
 }

 Y.Transition.fx.slideFadeOut = {
 opacity: 0,
 right: '-100px',
 easing: 'ease-out',
 on: { start: setRelativePosition }
 };

 Y.Transition.fx.slideFadeIn = {
 opacity: 1.0,
 right: '0px',
 easing: 'ease-in',
 on: { start: setRelativePosition }
 };

 Y.Transition.HIDE_TRANSITION = 'slideFadeOut';
 Y.Transition.SHOW_TRANSITION = 'slideFadeIn';

 Y.one('#hide').on('click', function () {
 Y.one('#demo').hide(true);
 });

 Y.one('#show').on('click', function () {
 Y.one('#demo').show(true);
 });
});

3.5 Defining Your Own Canned Transitions | 79

www.it-ebooks.info

http://www.it-ebooks.info/

3.6 Creating an Infinite Scroll Effect
Problem
You want to create an “infinite scroll” interaction that appends new results as the user
scrolls down the page.

Solution
Load the dom module, which provides the Y.DOM.inViewportRegion() method. Then
define two functions: addContent(), which is responsible for adding new content to the
page, and fillToBelowViewport(), which is responsible for calling addContent() until
the last paragraph is no longer in the viewport.

Then add a scroll event listener that calls fillToBelowViewport() as the user scrolls.
Finally, call addContent() to initially populate the page, followed by fillToBelow
Viewport() to guarantee that the viewport starts out overfilled. The initial fillToBelow
Viewport() might do nothing, depending on the size of the user’s screen.

One slightly tricky aspect to inViewportRegion() is that Y.DOM is designed to work in-
dependently of YUI Node, which means its methods all operate on native HTMLElement
objects. For convenience, Example 3-8 loads the Node API anyway. The scroll listener
uses Y.one() to fetch a Node instance, and then calls getDOMNode() to get the underlying
native HTMLElement object, to be passed into Y.DOM.inViewportRegion().

The YUI Node API also has a handy generateID() method, which the example uses to
generate a unique ID on the last paragraph. Every time new content gets added, a new
ID gets saved as a handle for use in the scroll listener.

Example 3-8. Creating an infinite scroll effect

<!DOCTYPE html>
<title>Creating an infinite scroll effect</title>
<style>
p { font-family: courier; color: #333; }
</style>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('dom-core', 'node', function (Y) {
 var lastParaId;

 function addContent(numParas) {
 var i, content = '',
 para = '<p>All work and no play makes Jack a dull boy.</p>';

 for (i = 0; i < numParas; i += 1) {
 content += para;
 }

80 | Chapter 3: UI Effects and Interactions

www.it-ebooks.info

http://www.it-ebooks.info/

 Y.one('#demo').append(content);
 return Y.one('#demo p:last-child').generateID();
 }

 function fillToBelowViewport() {
 var lastPara = Y.one('#' + lastParaId).getDOMNode();
 if (Y.DOM.inViewportRegion(lastPara)) {
 lastParaId = addContent(10);
 }
 }

 Y.on('scroll', fillToBelowViewport);

 lastParaId = addContent(20);
 fillToBelowViewport();
});
</script>

Discussion
Example 3-8 is the skeleton of an infinite scroll interaction. Most real-world infinite
scrolls use Ajax to fetch new content. Since Ajax requests can take a noticeable amount
of time, you could add a spinner or some other animation to indicate that the page is
fetching more data. You could also improve perceived performance by fetching Ajax
data a bit earlier, perhaps by triggering off of an element a few positions above the last
paragraph or by tracking scroll velocity.

Y.DOM contains a few methods for creating elements and manipulating classes, which
means that in a pinch, you can use it as a lightweight substitute for the full YUI Node
API. However, it is really more useful for doing things like checking whether an element
is in a certain region or whether two elements intersect.

See Also
The ImageLoader User Guide; YUI DOM API documentation.

3.7 Dragging an Element
Problem
You want to enable users to drag an element around the screen.

Solution
The easiest way to make an element draggable is to load the dd-drag module, create a
new Y.DD.Drag instance, and configure that instance to work on a particular node, as
shown in Example 3-9.

3.7 Dragging an Element | 81

www.it-ebooks.info

http://yuilibrary.com/yui/docs/imageloader/
http://yuilibrary.com/yui/docs/api/classes/DOM.html
http://www.it-ebooks.info/

Example 3-9. Creating a draggable node

<!DOCTYPE html>
<title>Creating a draggable node</title>
<style>
#demo { width: 100px; height: 100px; border: 1px #000 solid; background: #d72; }
</style>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('dd-drag', function (Y) {
 var dd = new Y.DD.Drag({ node: '#demo' });
});
</script>

Alternatively, you can load the dd-plugin module and plug the Y.Plugin.Drag plugin
into the Node instance, as shown in Example 3-10. Every node exposes a method named
plug() that can augment that node with additional behavior. Plugins enable you to add
behavior to a YUI object in a reversible, nondestructive way.

Example 3-10. Creating a draggable node using a plugin

YUI().use('dd-plugin', function(Y) {
 Y.one('#demo').plug(Y.Plugin.Drag);
});

In YUI, a plugin is a specialized object designed to augment or change the behavior of
another object. YUI has a specific interface for consuming plugins (the plug() and
unplug() methods), and a dedicated API for writing plugins. For more information,
refer to Recipes 7.7 and 7.8.

Discussion
When you create a DD.Drag instance, you can configure the drag behavior by passing a
configuration object into the constructor. For example, if you want the element to be
draggable only by a <p> handle within the <div>, you can configure that by setting the
handles attribute, as Example 3-11 shows.

Example 3-11. Creating a draggable node with a handle

<!DOCTYPE html>
<title>Creating a draggable node with a handle</title>
<style>
#demo { width: 100px; height: 100px; border: 1px #000 solid; background: #d72; }
#demo p { margin: 0px; padding 3px; border-bottom: 1px #000 solid; background: #e9e; }
</style>

<div id="demo"><p>handle</p></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>

82 | Chapter 3: UI Effects and Interactions

www.it-ebooks.info

http://www.it-ebooks.info/

<script>
YUI().use('dd-drag', function (Y) {
 var dd = new Y.DD.Drag({
 node: '#demo',
 handles: ['p']
 });
});
</script>

In addition to drag functionality, a DD.Drag instance gains new methods such as add
Handle() and stopDrag(). For example, an equivalent to Example 3-11 would be to
create the DD.Drag instance, then call the dd.addHandle() method:

YUI().use('dd-drag', function (Y) {
 var dd = new Y.DD.Drag({ node: '#demo' });
 dd.addHandle('p');
});

While DD.Drag defines a particular set of dragging functionality, you can change its
behavior by loading yet more modules and plugging plugins into the drag instance.

For example, by default the dragged element follows your mouse or finger around the
screen. To change the behavior so that the element stays in place and a “ghost” proxy
element follows the pointer around instead, load the dd-proxy module and plug the
drag instance with Plugin.DDProxy, as shown in Example 3-12.

Example 3-12. Creating a draggable-by-proxy node

<!DOCTYPE html>
<title>Creating a draggable-by-proxy node</title>
<style>
#demo { width: 100px; height: 100px; border: 1px #000 solid; background: #d72; }
</style>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('dd-drag', 'dd-proxy', function (Y) {
 var dd = new Y.DD.Drag({ node: '#demo' });
 dd.plug(Y.Plugin.DDProxy);
});
</script>

You can also use a plugin to constrain the draggable area, as shown in Example 3-13.
(By default, the user can drag the element anywhere on the screen.) To constrain a
draggable element inside a container element, load the dd-constrain module, plug the
instance with the Plugin.DDConstrained plugin, and configure Plugin.DDConstrained to
use the box <div> as the container.

3.7 Dragging an Element | 83

www.it-ebooks.info

http://www.it-ebooks.info/

Example 3-13. Creating a constrained draggable node

<!DOCTYPE html>
<title>Creating a constrained draggable node</title>
<style>
#demo { width: 100px; height: 100px; border: 1px #000 solid; background: #d72; }
#box { width: 400px; height: 300px; border: 1px #000 dashed; background: #ccc; }
</style>

<div id="box"><div id="demo"></div></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('dd-drag', 'dd-constrain', function (Y) {
 var dd = new Y.DD.Drag({ node: '#demo' });
 dd.plug(Y.Plugin.DDConstrained, { constrain2node: '#box' });
});
</script>

Plugins are powerful because you can mix and match them for different situations.
Example 3-14 combines the functionality of Examples 3-12 and 3-13 to create a con-
strained draggable-by-proxy node.

Example 3-14. Creating a constrained draggable-by-proxy node

<!DOCTYPE html>
<title>Creating a constrained draggable-by-proxy node</title>
<style>
#demo { width: 100px; height: 100px; border: 1px #000 solid; background: #d72; }
#box { width: 400px; height: 300px; border: 1px #000 dashed; background: #ccc; }
</style>

<div id="box"><div id="demo"></div></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('dd-drag', 'dd-proxy', 'dd-constrain', function (Y) {
 var dd = new Y.DD.Drag({ node: '#demo' });
 dd.plug(Y.Plugin.DDProxy);
 dd.plug(Y.Plugin.DDConstrained, { constrain2node: '#box' });
});
</script>

3.8 Creating a Resizable Node
Problem
You want to enable users to resize a node by dragging its edges and corners.

84 | Chapter 3: UI Effects and Interactions

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Make sure the node has a CSS position of relative, then plug it with Y.Plugin
.Resize, as shown in Example 3-15.

Example 3-15. Making an element resizable

<!DOCTYPE html>
<title>Making an element resizable</title>
<style>
#demo {
 width: 100px; height: 100px; border: 1px #000 solid; background: #d72;
 position: relative;
}
</style>

<div id="demo"></div>

<script src='http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js'></script>
<script>
YUI().use('resize', function (Y) {
 var resize = new Y.Resize({ node: '#demo' });
});
</script>

Similar to Drag and Drop, an alternative to using the plugin approach is to create a new
Resize instance and configure it to work on a particular node:

YUI().use('resize-plugin', function (Y) {
 Y.one('#demo').plug(Y.Plugin.Resize);
});

Discussion
The Resize API uses the Drag and Drop API under the hood and has similar semantics.
You can use Resize as a plugin to a node or widget, or use it as a standalone instance.
Also like Drag and Drop, Resize supports resize constraints and resizing by proxy. For
instance, Example 3-16 uses a “plug the plugin” approach to constrain the resize to a
width between 50 and 200 pixels. The height is unconstrained. (That’s right—plugins
are themselves pluggable.)

Example 3-16. Creating a constrained resizable node

YUI().use('resize-plugin', 'resize-constrain', function (Y) {
 var demo = Y.one('#demo');
 demo.plug(Y.Plugin.Resize);
 demo.resize.plug(Y.Plugin.ResizeConstrained, {
 minWidth: 50,
 maxWidth: 200
 });
});

3.8 Creating a Resizable Node | 85

www.it-ebooks.info

http://www.it-ebooks.info/

When a user resizes an element, you can also listen for resize events that bubble up to
the Resize instance (not the node the resize is acting on). Here, it’s a little more con-
venient to create an explicit Resize instance rather than plugging the node. Exam-
ple 3-17 illustrates how to toggle the node’s appearance when the user starts and stops
the resize.

Example 3-17. Responding to resize events

<!DOCTYPE html>
<title>Responding to resize events</title>
<style>
#demo {
 width: 100px; height: 100px; border: 1px #000 solid; background: #d72;
 position: relative;
}
#demo.resizing { background: #27d; }
</style>

<div id="demo"></div>

<script src='http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js'></script>
<script>
YUI().use('resize', function (Y) {
 var resize = new Y.Resize({ node: '#demo' });
 resize.on('resize:start', function () {
 this.get('node').addClass('resizing');
 });
 resize.on('resize:end', function () {
 this.get('node').removeClass('resizing');
 });
});
</script>

Conveniently, the Resize instance stores a handle to the node it is acting on, which you
can retrieve by calling get('node'). This handle is actually a YUI attribute, not to be
confused with an HTML attribute. For more information about the Attribute API, refer
to Recipe 7.1.

See Also
The Resize User Guide; Resize API documentation.

3.9 Implementing a Reorderable Drag-and-Drop Table
Problem
You want to enable the user to reorganize a table’s rows using Drag and Drop.

86 | Chapter 3: UI Effects and Interactions

www.it-ebooks.info

http://yuilibrary.com/yui/docs/resize/
http://yuilibrary.com/yui/docs/api/modules/resize.html
http://www.it-ebooks.info/

Solution
Use Y.all() and each() to configure each row in the table body as a draggable node
and as a drop target, as shown in Example 3-18. Constrain each row to the interior of
the table, and set each row not only to be draggable by proxy, but to stay in place when
the user drops the proxy on the target.

This means that there are three main elements of concern:

The dragged element
The row the user is trying to drag, which stays in place

The proxy element
A “ghost” row that follows the user’s mouse or finger

The drop target
The row that the proxy is hovering over, or that has been dropped on

After configuring drag and drop targets, use the Drag and Drop Manager, Y.DD.DDM, to
handle events that bubble up from dragged elements and drop targets. The most im-
portant event is the drop:hit event, which fires when the user drops the element over
a drop target. Here the handler function checks whether the proxy’s midpoint was
above or below the drop target’s midpoint. Based on this check, it inserts the dragged
element either before or after the drop target. The proxy automatically disappears, and
the DOM change causes the browser to slide the dragged row into its new position.
Other events such as drag:start and drag:end need listeners only for cosmetic reasons.

Example 3-18. Reorderable drag-and-drop table

<!DOCTYPE html>
<title>Reorderable drag-and-drop table</title>
<style>
table.dd {
 border: 1px #000 solid; border-spacing: 1px;
 background: #844; width: 25em;
}
table.dd th { background: #999; padding: 0.2em; }
table.dd td { background: #ddd; padding: 0.2em; }
table.dd td.over { background: #9c9; }
table.dd tr.being-dragged { opacity: 0.5; }
</style>

<table class="dd">
<thead>
 <tr><th>Type</th><th>From</th><th>Weaknesses</th></tr>
</thead>
<tbody>
 <tr><td>Vampires</td><td>Transylvania</td><td>Crosses, Garlic</td></tr>
 <tr><td>Werewolves</td><td>The Forest</td><td>Silver, Teen Angst</td></tr>
 <tr><td>Zombies</td><td>Unwise Experiments</td><td>Headshots</td></tr>
 <tr><td>Robots</td><td>The Distant Future</td><td>Illogic</td></tr>
 <tr><td>Ninjas</td><td>Feudal Japan</td><td>Dishonor</td></tr>

3.9 Implementing a Reorderable Drag-and-Drop Table | 87

www.it-ebooks.info

http://www.it-ebooks.info/

 <tr><td>Pirates</td><td>The High Seas</td><td>Rum</td></tr>
 <tr><td>Bob</td><td>Human Resources</td><td>None Known</td></tr>
</tbody>
</table>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('dd-drag', 'dd-drop', 'dd-proxy', 'dd-constrain', function (Y) {
 var rows = Y.all('table.dd tbody tr');
 rows.each(function (row) {
 var rowDrop = new Y.DD.Drop({ node: row }),
 rowDrag = new Y.DD.Drag({ node: row });

 rowDrag.plug(Y.Plugin.DDConstrained, { constrain2node: 'table.dd' });
 rowDrag.plug(Y.Plugin.DDProxy, { moveOnEnd: false });
 });

 function midpoint(node) {
 return node.getY() + (node.get('offsetHeight') / 2);
 }

 Y.DD.DDM.on('drop:hit', function (ev) {
 var drop = ev.drop.get('node'),
 drag = ev.drag.get('node'),
 proxy = ev.drag.get('dragNode');

 if (midpoint(proxy) >= midpoint(drop)) {
 drop.insert(drag, 'after');
 }
 else {
 drop.insert(drag, 'before');
 }
 drop.all('td').removeClass('over');
 });

 Y.DD.DDM.on('drag:start', function (ev) {
 ev.target.get('node').addClass('being-dragged');
 });

 Y.DD.DDM.on('drag:end', function (ev) {
 ev.target.get('node').removeClass('being-dragged');
 });

 Y.DD.DDM.on('drop:over', function (ev) {
 ev.drop.get('node').all('td').addClass('over');
 });

 Y.DD.DDM.on('drop:exit', function (ev) {
 ev.target.get('node').all('td').removeClass('over');
 });
});
</script>

88 | Chapter 3: UI Effects and Interactions

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
If you’ve read Recipe 2.5, you should be familiar with using Y.all() and NodeList to
work with a collection of nodes. The each() method applies a function to each node in
the NodeList. Conveniently, the <table> markup supplies an explicit <thead> and
<tbody>, making it easy to exclude the header rows in the Y.all().

Chapter 4 discusses events in much more detail, but the key concept in Exam-
ple 3-18 is Y.DD.DDM, which listens for all Drag and Drop custom events, signified with
the prefix drag:. The Drag and Drop Manager provides a central point of control for
handling Drag and Drop events. For more information about how to configure custom
events to bubble up to a particular event target, refer to Recipe 4.7.

Each event handler function receives an event object representing the drag event. The
event object provides a target object representing the node that is being acted upon,
and the Drag and Drop API may further decorate the event object with a drag object,
a drop object, and even a dragNode object (which can represent the proxy). This enables
you to modify the relevant nodes as Drag and Drop events occur.

As mentioned in the solution, drop:hit is the core event handler that is actually re-
sponsible for inserting the row into a new location in the DOM. Keep in mind that if
you want to implement a reorderable table, list, or anything else with YUI, you must
use a Drag and Drop proxy and set moveOnEnd to false. When Drag and Drop moves a
dragged node, it changes the node’s position to be absolute and animates its xy coor-
dinates appropriately. In a reorderable list or table, this is undesirable for two reasons.

First, as soon as the drag begins, the table will try to close on the missing row. You can
solve this by using a proxy, preventing the table from closing on the row.

Second, when the user drops the row, the row continues to float at its current xy co-
ordinates and will look incorrect, even if your code inserts the row into the correct DOM
location. You can solve this by setting moveOnEnd to false, which prevents Drag and
Drop from artificially changing the row’s position and xy coordinates, and by listening
for drop:hit as the signal to change the structure of the table. When the row drops, the
browser simply reflows and displays all table rows in their natural, correct position.

The other event handlers are there to improve aesthetics and usability. For example,
the drag:start handler clarifies which row is being dragged, while the drop:over han-
dler highlights the current target to help the user see where the row will be dropped.

Some variations you could make to this recipe include:

• Instead of inserting the row into the DOM on a drop:hit, insert it into the DOM
on every drop:over event. In this implementation, the dragged row appears to slide
its way through its neighbors as the user drags the row around.

• The current implementation is a bit touchy when the user is trying to drag and
insert an element at the top or bottom. You can make this action a little easier by
expanding the possible drop targets beyond just the rows containing table data.

3.9 Implementing a Reorderable Drag-and-Drop Table | 89

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Events

Browser applications operate inside an event loop. The event loop is a browser thread
that collects events such as mouse actions and keypresses and passes these events back
to the JavaScript engine. To handle events, applications must register callback functions
that listen or subscribe to different event types. Since events are the only way for appli-
cations to respond to user actions, they are a fundamental component in almost any
client-side JavaScript program.

Event handling has evolved over the years, with browsers accreting different behaviors
and quirks around working with events. Despite well-meaning attempts to clean things
up, many of these inconsistencies persist to the present day. In fact, the Event API is
arguably even more volatile between different browsers than the Node API. Any appli-
cation that relies on events needs to protect itself against this volatility.

YUI addresses the problem using the same strategy described in Chapter 2: by wrapping
event objects in a consistent façade that replicates the W3C DOM Level 2 Event object,
with the exception that all native HTMLElement references are replaced with YUI Node
references. The YUI event façade normalizes all sorts of browser inconsistencies around
event propagation and event object properties.

Beyond offering normalization and more pleasant APIs, the YUI event façade opens up
the possibility of defining entirely new event types. YUI supports four basic categories
of events:

• DOM events, which enable your application to respond to user interactions

• Special DOM events, which enable you to subscribe to interesting moments as a
page loads and renders

• Synthetic events, which enable you to define brand-new DOM events, expanding
how users can communicate with your application

• Custom events, which enable components to communicate with each other by
firing and subscribing to application-specific messages

91

www.it-ebooks.info

http://www.it-ebooks.info/

Both synthetic events and custom events behave like ordinary DOM events, with the
same API for attaching, detaching, delegating, and so on.

The ability to define new synthetic events and publish new custom events is one of the
more powerful facets of YUI, right up there with the Loader (Chapter 1) and the Base
object (Chapter 7). Custom events enable you to design your applications so that they
harmonize with the browser’s natural event-driven architecture. You can use custom
events to implement the Observer pattern and other popular strategies for controlling
message flow.

Recipe 4.1 explains how to subscribe to basic DOM events, such as clicks and
mouseovers.

Recipe 4.2 describes how to subscribe to interesting moments in the lifecycle of an
element or page, such as the moment when an element becomes available in the DOM.

DOM events propagate through the DOM in a certain prescribed manner, and often
include some sort of default behavior, such as adding a character to a text field, or
navigating the user away from the page. Recipes 4.3 and 4.4 explain how to interfere
with these processes, either by stopping an event from bubbling up through the DOM
or by preventing the event’s default action.

Recipe 4.5 discusses delegation, a technique for efficiently managing large numbers of
event subscriptions by delegating control to a parent container element.

Recipe 4.6 introduces custom events, which pass information around your application
without involving the DOM. Recipe 4.7 demonstrates how to create more complex
custom events and use them in a custom bubbling tree.

It is easy to use ordinary named functions or anonymous functions as event handlers,
but object methods are tricky because assigning them as a handler causes them to lose
their object context. Recipe 4.8 explains how to fix this problem by binding the method
to the correct context.

Recipe 4.9 lists the many ways you can detach event subscriptions.

Recipe 4.10 describes the order in which event handlers execute, and introduces the
after() method, an alternative event subscriber method that is useful when you are
working with custom events.

Recipe 4.11 introduces synthetic events. Synthetic events behave like DOM events ex-
ternally, but are internally a wrapper for other DOM events plus some custom logic.

Recipe 4.12 explains how to use YUI’s aspect-oriented programming (AOP) API. This
API is not strictly event-related, but it does enable you to apply behavior in response
to some other behavior…which is kind of like responding to an event. But not really.

92 | Chapter 4: Events

www.it-ebooks.info

http://www.it-ebooks.info/

4.1 Responding to Mouseovers, Clicks, and Other User Actions
Problem
When the user hovers over a <div>, you want to change the element’s background color.

Solution
Load the node rollup, then use Y.one() to select the node, followed by Y.Node’s on()
method to set an event handler. The first argument of on() specifies the event to listen
for—in this case, a mouseover event. The second argument provides an event handler
function for YUI to execute when the event occurs.

Within the event handler function, the argument ev represents the event, and ev.
target refers to the node where the event originally occurred. The target enables you
to manipulate the target node—in this case, by adding and removing a class. See
Example 4-1.

Example 4-1. Changing the background color on mouseover

<!DOCTYPE html>
<title>Changing the background color on mouseover</title>
<style>
div { border: 1px #000 solid; background: #a22; height: 100px; width: 100px; }
.over { background: #2a2; }
</style>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node-base', function (Y) {
 Y.one('#demo').on('mouseover', function (ev) {
 ev.target.addClass('over');
 });
 Y.one('#demo').on('mouseout', function (ev) {
 ev.target.removeClass('over');
 });
});
</script>

Although node and node-base perform DOM manipulation, they also pull in basic event
handling support. For the most part, you need to load event-* modules only if you need
specialized event features, such as synthetic events.

Within the event handler function, by default YUI sets the this object
to be the same node as ev.currentTarget, discussed next. You could
therefore rewrite Example 4-1 to call this.addClass() instead. To over-
ride the value of this in the event handler, refer to Recipe 4.8.

4.1 Responding to Mouseovers, Clicks, and Other User Actions | 93

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
The event object ev contains a variety of useful properties, depending on the type of
event.

For example, charCode represents a character generated during a keyboard event, while
keyCode represents a key pressed during a keyboard event. Browsers can be wildly in-
consistent about the values they report for keyCode and charCode in response to key
down, keypress, and keyup events. The YUI event façade harmonizes these differences
away.

Events may also include pageX and pageY, which represent the coordinates of the user’s
mouse. Example 4-2 uses pageX and pageY to create a <div> that jumps to wherever the
user clicks on the page. The setXY() method moves the node on YUI’s normalized
coordinate system, which avoids cross-browser confusion over left, scrollLeft,
offsetLeft, clientLeft, and different box models.

Example 4-2. Following the user’s click

YUI().use('node', function (Y) {
 Y.one('document').on('click', function (ev) {
 Y.one('#demo').setXY([ev.pageX, ev.pageY]);
 });
});

As described in Recipe 4.3, events start at their originating element and bubble upward
through the DOM. All event objects carry two (and sometimes three) properties that
track which nodes were involved:

ev.target
Refers to the node where the event originated. When using native methods, brows-
ers disagree on whether to return ev.target as a text node or an element node under
certain circumstances. YUI always normalizes ev.target to refer to a YUI element
Node, never a text node.

ev.currentTarget
Refers to the node where the event handler function was listening. Alternatively,
you can think of ev.currentTarget as the element where the event has bubbled to.
See also Recipe 4.5, which resets ev.currentTarget in an interesting way.

ev.relatedTarget
Refers to a secondary target, if any. This property is relevant only for events that
involve motion across the screen, such as a mouse move, drag, or swipe. For ex-
ample, in a mouseover, this property represents the node where the mouse exited,
while in a mouseout, it represents the node where the mouse entered.

In Example 4-2, ev.target is either the <div> or the <body> depending on where you
click, while ev.currentTarget is always the document node, since that’s where the lis-
tener was set. For more information about how events propagate through the DOM,
refer to Recipe 4.3.

94 | Chapter 4: Events

www.it-ebooks.info

http://www.it-ebooks.info/

While you can count on most browsers supporting a core set of popular DOM events,
use caution when listening for unusual or proprietary DOM events. YUI maintains a
whitelist of supported DOM events in the static property Y.Node.DOM_EVENTS. If a native
DOM event does not appear in Y.Node.DOM_EVENTS, or if the browser does not natively
support that DOM event, the YUI event simply won’t trigger when that event is fired.
If necessary, you can always mix additional native DOM event names into the whitelist.

You can also invent your own DOM events, as described in Recipe 4.11. YUI provides
a number of highly useful premade synthetic events, including valueChange, mouseenter,
mouseleave, hover, and touch. YUI automatically registers synthetic events in the
Y.Node.DOM_EVENTS whitelist.

Beyond DOM events, YUI also has a powerful custom event infrastructure that enables
you to handle events that don’t necessarily have anything to do with the DOM. For
more information, refer to Recipes 4.6 and 4.7.

See Also
The YUI DOM event whitelist; Peter Paul Koch’s event compatibility tables, which
attempts to catalog which DOM events are available in which browsers.

4.2 Responding to Element and Page Lifecycle Events
Problem
Rather than waiting for the entire page to load, you want to run some JavaScript on an
element as soon as that element is available.

Solution
Set an event handler for the available event. The available event triggers as soon as
the element is present in the DOM.

In the previous recipe, Example 4-1 fetched a node with Y.one() and then called the
resulting YUI Node’s on() method. But if the document hasn’t loaded yet, this approach
fails—the first call to Y.one() will fail to find the node, and just return null.

Example 4-3 solves this problem by listening for the available event on the top-level
Y object, using Y.on(). To specify where it should listen, Y.on() takes a third argument
that can be a CSS selector, similar to Y.one().

Example 4-3. Changing an element immediately on availability

<!DOCTYPE html>
<title>Changing an element immediately on availability</title>

<script src="http://yui.yahooapis.com/combo?3.5.0/build/yui-base/yui-base-min.js
&3.5.0/build/oop/oop-min.js&3.5.0/build/event-custom-base/event-custom-base-min.js
&3.5.0/build/features/features-min.js&3.5.0/build/dom-core/dom-core-min.js

4.2 Responding to Element and Page Lifecycle Events | 95

www.it-ebooks.info

http://yuilibrary.com/yui/docs/event/#event-whitelist
http://www.quirksmode.org/dom/events/index.html
http://www.it-ebooks.info/

&3.5.0/build/dom-base/dom-base-min.js&3.5.0/build/selector-native/selector-native-min.js
&3.5.0/build/selector/selector-min.js&3.5.0/build/node-core/node-core-min.js
&3.5.0/build/node-base/node-base-min.js&3.5.0/build/event-base/event-base-min.js"></script>
<script>
YUI().use('*', function (Y) {
 if (Y.one('#demo') === null) {
 Y.log("We're sorry, the #demo node is currently not available.");
 Y.log('Your function() call is very important to us. Please try again later.');
 }

 Y.on('available', function () {
 Y.one('#demo').setHTML('Sorry, I changed the div as fast as I could!');
 }, '#demo');
});
</script>

<div id="demo"></div>

Example 4-3 is constructed specifically so that JavaScript loads and executes before the
browser has a chance to parse the demo <div>. First, the JavaScript appears near the
top of the page, rather than the bottom as is the norm for YUI. Second, rather than
using the Loader to dynamically construct a combo load URL, the example explicitly
includes the combo URL in the static HTML. Calling use('*') then statically attaches
whatever modules are already on the page, namely node-base and its dependencies.
This is the same pattern shown in Recipe 1.20.

If the example had used the standard pattern of “load the small YUI seed, then use()
the node-base module,” node-base would have loaded asynchronously, most likely giv-
ing the browser enough time to parse the rest of the document, which would make
waiting for the available event unnecessary.

Discussion
Browsers already provide a load event, but sometimes you might want to begin inter-
acting before that event fires. For example:

• The page contains a great deal of complex markup that takes a long time to render,
but you want to interact with an element very early.

• The page loads some large image files, and you want to interact with the page before
all these resources finish loading.

• Your site serves its markup in stages: first sending over the heading and navigation
markup, then sending over the content. This improves perceived performance, as
the user now has something to look at while the backend is busy retrieving data.
However, you also want to modify certain elements on the page as soon as they
become available.

96 | Chapter 4: Events

www.it-ebooks.info

http://www.it-ebooks.info/

To help you interact with the page earlier, YUI provides three additional lifecycle
events:

• available fires as soon as YUI can detect its presence in the DOM. This is the
earliest moment when you can interact with an element in the DOM.

• contentready fires as soon as YUI can detect an element and its nextSibling in the
DOM. This ensures that the element’s children are in the DOM tree as well.

• domready fires as soon as the entire DOM has loaded and is ready to modify. This
event fires before image files and other resources have loaded, while the native
load event waits until all page resources are finally available.

If you use the standard YUI sandbox pattern with scripts at the bottom, there is a
good chance that the domready moment will occur after it is time to attach event
handlers, and possibly even after the load event. domready is more likely to be useful
in situations where you choose to load blocking scripts at the top of the page.

Internet Explorer 7 and below can crash if you modify content before
the DOM is complete. In these situations, YUI ensures that available
and contentready fire after domready.

Y.on() provides a unified interface for assigning event handlers in YUI, while the
on() method for Y.Node and Y.NodeList is a useful shortcut for assigning event handlers
to nodes.

Y.on() is particularly useful for events that are not related to specific nodes, such as the
domready lifecycle event, and custom events that are configured to bubble or broadcast
to Y. For more information about controlling how custom events bubble and broadcast,
refer to Recipe 4.7.

Y.on() can also assign event handlers to nodes that do not yet exist. For example, if
you call Y.on('click', callback, '#myelement') in the <head> of the document,
Y.on() polls for the existence of myelement in the DOM for several seconds before finally
giving up. Note that calling Y.one('#myelement').on(...) before myelement exists
would fail, since Y.one('#myelement') would just return null. Take care to avoid as-
signing many listeners for nonexistent elements, as excessive polling can affect
performance.

4.3 Controlling Event Propagation and Bubbling
Problem
You would like to stop an event from bubbling up to a certain element in the DOM.

4.3 Controlling Event Propagation and Bubbling | 97

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
At some lower level in the DOM tree, assign an event handler to catch the event and
call ev.stopPropagation() to prevent the event from bubbling up any further (see Ex-
ample 4-4).

Example 4-4. Controlling event propagation and bubbling

<!DOCTYPE html>
<title>Controlling event propagation and bubbling</title>

<div id="i-want-candy">
 <ul id="candy-filter">
 <li class="veggie">Broccoli
 <li class="candy">Chocolate Bar
 <li class="veggie">Eggplant
 <li class="candy">Lollipops

</div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node-base', function (Y) {
 Y.one('#candy-filter').on('click', function (ev) {
 if (! ev.target.hasClass('candy')) {
 ev.stopPropagation();
 }
 });
 Y.one('#i-want-candy').on('click', function (ev) {
 Y.one('body').append('Yum! ');
 });
});
</script>

Ordinarily, any click event that happens within the <div> would bubble up to the top
of the DOM tree, causing the <div> to respond with a “Yum!” as the event passes
through.

However, the ’s click event handler interferes with the bubbling. If the original
target node does not have a class of "candy", the ’s event handler calls ev.stop
Propagation(), which prevents the parent <div> from ever receiving the click event.

Discussion
When a user clicks on an element, the element’s container also receives a click, as does
that element’s container, and so on out to the document. All of these should receive a
click event, but in what order should the browser report these events? Early on, Internet
Explorer chose to report events inside-to-out, which we now call bubbling. Netscape
initially reported events outside-to-in, which we now call capturing, but shortly there-
after adopted IE’s bubbling model as well.

98 | Chapter 4: Events

www.it-ebooks.info

http://www.it-ebooks.info/

The benefit of bubbling is that it enables you to efficiently handle events by placing
event handlers on containers. Consider a table with 100 draggable rows. You could
assign 100 event handlers to each individual row, or you could set a single event handler
on the common container. Asking the question, “which of my children is of interest?”
is more efficient than assigning many individual event handler functions, and takes
advantage of commonality between instances. Bubbling also means that the contents
of the container can change without forcing you to add and remove more event listeners.
YUI events support an advanced version of this concept called delegation. For more
information, refer to Recipe 4.5.

Child elements can use stopPropagation() to prevent their parents from discovering
events that occurred lower down in the tree. However, any other event handlers on the
current target still execute for that event. To stop bubbling upward and prevent other
event handlers at the same level from executing, call stopImmediatePropagation().

While stopPropagation() and stopImmediatePropagation() affect how the event bub-
bles through the DOM, they do not prevent any default behaviors associated with the
event. For more information, refer to Recipe 4.4.

See Also
More information about bubbling, capturing, and stopPropagation() in Ilya Kantor’s
tutorial, “Bubbling and capturing”.

4.4 Preventing Default Behavior
Problem
When a user clicks a link, you want to handle the click event in your own application
and prevent the user from navigating away.

Solution
Use ev.preventDefault() to prevent the default behavior of the link from taking effect,
as shown in Example 4-5.

Example 4-5. Preventing default behavior

<!DOCTYPE html>
<title>Preventing default behavior</title>

The End of the Internet

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node-base', function (Y) {

4.4 Preventing Default Behavior | 99

www.it-ebooks.info

http://javascript.info/tutorial/bubbling-and-capturing
http://www.it-ebooks.info/

 Y.one('a').on('click', function (ev) {
 ev.preventDefault();
 Y.one('body').append('<p>Now why would you ever go there?</p>');
 });
});
</script>

Discussion
Once an event finishes bubbling, the browser might also carry out some default be-
havior associated with the originating element. For example:

• Clicking a form submit button submits the form data to the server.

• Clicking a form reset button resets all form fields to their default values.

• Pushing a key when focused on a textarea adds that character to the textarea.

JavaScript enables you to trap these behaviors and do something different. For example,
if the default browser behavior would be to submit a form, you can call ev.prevent
Default() to keep the user on the page and perhaps do some other work instead.

The key thing to remember is that bubbling and default behaviors occur in separate
phases and can be canceled separately. To completely stop an event, call the conve-
nience method ev.halt(), which is the equivalent of calling both ev.stopPropaga
tion() and ev.preventDefault().

4.5 Delegating Events
Problem
You have a region on the page whose content changes frequently, but which contains
elements that need to respond to user interaction. You want to avoid manually de-
taching old subscriptions and attaching new event subscriptions as the content
changes.

Solution
Use the node’s delegate() method to assign the event handler. delegate()’s first two
parameters are the same as on()’s, specifying the name of the event and the handler
function to call. The third parameter is a filter that specifies which child elements the
handler should be listening for.

Example 4-6 implements Recipe 4.3 with fewer lines of code. It also adds two buttons
that enable the user to dynamically add more candy or veggies to the list. Thanks to
event delegation, there is no need to attach new event subscriptions to newly created
list items—all “candy” list items automatically gain the correct click behavior for free.

100 | Chapter 4: Events

www.it-ebooks.info

http://www.it-ebooks.info/

Example 4-6. Delegating with a CSS selector

<!DOCTYPE html>
<title>Delegating with a CSS selector</title>

<div id="i-want-candy">

 <li class="veggie">Broccoli
 <li class="candy">Chocolate Bar
 <li class="veggie">Eggplant
 <li class="candy">Lollipops

</div>

<p><button name="candy">+ candy</button> <button name="veggie">+ veggie</button></p>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node-event-delegate', function (Y) {
 Y.one('#i-want-candy').delegate('click', function () {
 Y.one('body').append('Yum! ');
 }, 'li.candy');

 Y.all('button').on('click', function (ev) {
 var name = ev.target.get('name'),
 item = '<li class="' + name + '">' + name + '';
 Y.one('#i-want-candy ul').append(item);
 });
});
</script>

As with on(), the event handler triggers for click events that have bubbled up to the
<div>. However, the CSS selector 'li.candy' causes the event handler to trigger only
for events from an element with a class of candy. In the handler function, YUI also
automatically sets the this object and ev.currentTarget to be the element matched by
the filter. The overall effect is that delegate() makes the handler function behave as
if it were subscribed on the list item, even though in reality, there is only one subscrip-
tion on the parent element.

Even though Examples 4-4 and 4-6 appear to behave the same way to
the user, there is a key difference in that the former actually calls
ev.stopPropagation() to stop the event from bubbling.

Discussion
Delegation in YUI is a kind of advanced treatment of bubbling that offers extra con-
venience and performance over assigning individual listeners.

As described earlier, bubbling enables you to handle many child events with a single
event subscription on a parent container. Delegation takes this concept one step further

4.5 Delegating Events | 101

www.it-ebooks.info

http://www.it-ebooks.info/

by providing a handy filtering mechanism for designating the child elements of interest,
and by setting ev.currentTarget to be the matched child element. The latter helps create
the illusion that the event handler is subscribed directly on the child element instead
of the container. If you end up needing a reference to the container anyway, dele
gate() stores that in the event property ev.container.

Internally, delegate() assigns a single event handler to the container element. When
an event bubbles up to the container, YUI invokes a test function on the event, only
calling the event handler function if the test passes. The default test function compares
the child element against the CSS selector you provided. If you provide a custom test
function instead of a CSS selector string, YUI executes that test function instead, as
shown in Example 4-7.

Example 4-7. Delegating with a function

YUI().use('node-event-delegate', function (Y) {
 function isCandy(node, ev) {
 return node.hasClass('candy');
 }

 Y.one('#i_want_candy').delegate('click', function (ev) {
 Y.one('body').append('Yum! ');
 }, isCandy);
});

For each node that the event bubbles through on its way to the parent, the test function
receives the currentTarget node and the event as parameters. Of course, there’s no need
to create a custom test function if a CSS selector will do the trick.

Besides being much more efficient than assigning lots of individual event handlers,
delegate() is ideal for dynamic content. As Example 4-6 illustrates, when you add
another child element to the container, it gets a “subscription” for free, since the ele-
ment will pass the test just like its siblings. Likewise, if you remove a child element,
you don’t need to worry about cleaning up its event handler.

4.6 Firing and Capturing Custom Events
Problem
When something interesting in your application occurs, you want to send a message
to some other component in your application.

Solution
Use Y.on() to listen for a particular custom event. Then use Y.fire() to generate and
fire a custom event.

102 | Chapter 4: Events

www.it-ebooks.info

http://www.it-ebooks.info/

Y.fire()’s first argument is the name of the event. YUI custom event names may include
a prefix with a colon to help identify the origin of the event, although this is not strictly
necessary.

All subsequent arguments to Y.fire() are optional and get passed into the event handler
function as additional arguments. Example 4-8 passes custom data as fields on a single
object in order to look more like a familiar DOM event, but you may pass data (or not)
any way you like.

For obvious reasons, take care to declare all your event handlers before actually firing
the event.

Example 4-8. Firing and capturing a custom event

<!DOCTYPE html>
<title>Firing and capturing a custom event</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', 'event-custom', function (Y) {
 function theEagleHasLanded() {
 return true;
 }

 Y.on('moon:landing', function (ev) {
 var msg = Y.Lang.sub("{first} {last}: That's one small step for [a] man...", ev);
 Y.one('#demo').setHTML(msg);
 });

 if (theEagleHasLanded()) {
 Y.fire('moon:landing', {first: 'Neil', last: 'Armstrong'});
 }
});
</script>

The example uses Y.Lang.sub() to substitute the values of ev.first and ev.last into
the message string. This is equivalent to:

var msg = ev.first + " " + ev.last + ": That's one small step for [a] man...";

For more information about Y.Lang.sub() templating, refer to Recipe 9.7.

Discussion
YUI’s custom event system is designed for creating event-driven applications. After all,
the DOM itself is an event-driven architecture; custom events just extend this idea to
be more general, enabling you to program “with the grain” of the system.

A custom event can represent any interesting moment you like. At their simplest, they
are easy to generate; Y.fire('foo:bar') is often all you need. However, in general,
custom events have all the behaviors and flexibility of DOM events. You can change

4.6 Firing and Capturing Custom Events | 103

www.it-ebooks.info

http://www.it-ebooks.info/

how custom events bubble and propagate, as shown in Example 4-9. You can set default
behaviors for custom events, and users of your event can then choose to suppress those
default behaviors.

As with DOM events, if you have multiple event handlers listening for an event, YUI
executes the event handlers in the order in which they were subscribed. In addition to
on(), custom events also provide an after() subscriber that can execute handlers af-
ter the event’s default behavior executes. For more information, refer to Recipe 4.10.

A common pattern in YUI is to use custom events with Base, as shown in Recipe 4.7.
When you extend Base, you must provide a NAME static property, which then becomes
the prefix for any custom events that the object fires. For more information about the
Base family of objects, refer to Chapter 7.

Take care not to confuse custom event prefixes with event categories, discussed in
Recipe 4.9.

4.7 Driving Applications with Custom Events
Problem
You want to create relationships between objects in your system that allow events to
bubble from child to parent like DOM events.

Solution
Create your application components by extending Y.Base using the Y.Base.create()
method (discussed in Recipe 7.3). Objects that extend Base gain the EventTarget in-
terface, which adds methods for firing events and hosting event subscriptions. These
methods include:

• on() for defining listeners and detach() for removing listeners

• fire() for firing custom events

• publish() for defining custom events that can bubble and have other behaviors

• addTarget() and removeTarget() for controlling which objects events will bubble to

Example 4-9 illustrates how to use these methods to create a system of objects that pass
messages using custom events.

Example 4-9 shows off only a subset of the Base object’s functionality
relating to events. For more information about this very important ob-
ject, refer to Chapter 7.

104 | Chapter 4: Events

www.it-ebooks.info

http://www.it-ebooks.info/

Example 4-9. Driving applications with custom events

<!DOCTYPE html>
<title>Driving applications with custom events</title>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI.add('apollo', function (Y) {
 var Apollo = Y.namespace('Apollo');

 Apollo.LunarModule = Y.Base.create('eagle', Y.Base, [], {
 initializer: function () {
 this.publish('landing', {
 broadcast: 2,
 defaultFn: function () {
 Y.log("ARMSTRONG -- That's one small step for [a] man...");
 }
 });
 },
 reportLanding: function (status) {
 this.fire('landing', { ok: status });
 },
 tellJoke: function () {
 this.fire('joke');
 }
 });

 Apollo.CommandModule = Y.Base.create('columbia', Y.Base, [], {
 initializer: function () {
 this.on('eagle:joke', function (ev) {
 ev.stopPropagation();
 Y.log('COLLINS -- Haha Buzz, you crack me up!');
 });
 }
 });

 Apollo.MissionControl = Y.Base.create('houston', Y.Base, [], {
 initializer: function () {
 this.on('eagle:landing', function (ev) {
 if (ev.ok) {
 Y.log('HOUSTON -- We copy you down, Eagle.');
 }
 else {
 ev.halt();
 }
 });
 this.on('eagle:joke', function () {
 Y.log('HOUSTON -- Stop goofing around and get back to work.');
 });
 }
 });
}, '11', {requires: ['base-build']});

YUI().use('event-custom', function (Y){
 Y.Global.on('eagle:landing', function () {
 Y.log('WORLD -- Yay!');

4.7 Driving Applications with Custom Events | 105

www.it-ebooks.info

http://www.it-ebooks.info/

 });
});

YUI().use('apollo', function (Y) {
 var lunarModule = new Y.Apollo.LunarModule(),
 commandModule = new Y.Apollo.CommandModule(),
 missionControl = new Y.Apollo.MissionControl();

 lunarModule.addTarget(commandModule);
 commandModule.addTarget(missionControl);

 lunarModule.tellJoke(); // => COLLINS -- Haha Buzz, you crack me up!

 lunarModule.reportLanding(true); // => HOUSTON -- We copy you down, Eagle.
 // => ARMSTRONG -- That's one small step for [a] man.
 // => WORLD -- Yay!
});
</script>

Y.Base.create() is covered in Recipe 7.3. For now, the most important things to know
are that Y.Base.create():

• Creates a new class derived from Base, which includes the EventTarget API

• Provides a prefix for events fired from that class, such as eagle

• Enables you to define extra methods and add them to the class’s prototype

The module code defined inside YUI.add() uses Y.Base.create() to create a LunarMod
ule object that can fire two events: eagle:landing and eagle:joke. When a Base-derived
object fires an event, the custom event name automatically includes the NAME property
as a prefix, which identifies the source of the event.

eagle:joke is a vanilla custom event. To define an event with any specialized behavior,
you must call the publish() method. When LunarModule initializes itself, it publishes
an eagle:landing custom event with:

• A broadcast of 2, indicating that event:landing should be broadcast globally. If
broadcast is 0, the event is received only by objects in the event’s bubble tree. A
value of 1 means that YUI also broadcasts the event to the top-level Y object, which
means Y.on() can handle the custom event. A value of 2 means that the event is
also broadcast to the Y.Global object, which means any YUI instance on the page
can respond to the event. Events fired from an EventTarget have a default broadcast
of 0.

• A defaultFn to trigger for the event. A default function is analogous to the default
actions that browsers take in response to DOM events, such as link clicks and form
submits. As with DOM events, you can suppress the default function for custom
events.

106 | Chapter 4: Events

www.it-ebooks.info

http://www.it-ebooks.info/

The YUI.add() callback also defines objects for the CommandModule and MissionCon
trol. These objects don’t publish or fire any events of their own, but they do define
some event listeners for eagle:joke and eagle:landing.

The page then creates two YUI sandboxes with YUI().use(). The first sandbox defines
a listener using Y.Global, so it receives any events with a broadcast of 2.

The second sandbox creates an instance for each of these three objects and then uses
addTarget() to wire up a chain of event targets. The LunarModule instance sends its
events to the CommandModule instance, and the CommandModule instance sends its events
onward to the MissionControl instance. This works exactly like event bubbling in the
DOM; an event fired by an <a> bubbles up to its parent <p>, which in turn bubbles up
to its parent <div>. addTarget() is how you set up the default flow of information within
an event-driven application.

Finally, the second YUI sandbox fires both events in turn. The browser console displays
how the objects respond:

1. The eagle:joke event bubbles to the CommandModule instance…and then stops. As
with DOM events, you can control the bubbling behavior of custom events using
ev.halt() and ev.stopPropagation(). If you comment out the call to stopPropaga
tion(), eagle:joke continues on up to MissionControl, which responds with
disapproval.

2. The eagle:landing event bubbles up to CommandModule, which has no particular
response, and then up to MissionControl. As with DOM events, custom events can
carry payloads of additional information. In this case, the event façade passed to
eagle:landing subscribers will also have a Boolean ok property indicating success
or failure:

• If the landing succeeds, MissionControl acknowledges the landing, the default
function fires, and the event also gets broadcast to Y.Global. Because the first
YUI sandbox set a listener using Y.Global.on(), it responds as well.

• If the landing fails, MissionControl calls ev.halt(), which is the equivalent of
calling ev.stopPropagation() and ev.preventDefault(). The eagle:landing
default function does not fire and Y.Global never receives the event at all. (Let
the conspiracy theories begin.)

Discussion
As shown in Recipe 4.6, with only a few lines of code, you can pass messages around
an application by firing off simple “throwaway” custom events and catching them with
Y.on().

However, EventTarget’s publish() and addTarget() methods enable you to take the
event-driven concept much further. If you have worked with the DOM, it is natural to
think of applications in the same way: components wired together in a tree, firing off
events with various payloads and default behaviors, catching these events as they

4.7 Driving Applications with Custom Events | 107

www.it-ebooks.info

http://www.it-ebooks.info/

bubble through the tree, and so on. Components in the core YUI library such as Cache,
DataSource, and Y.log() make heavy use of custom events and default functions. For
that matter, Node instances are also EventTargets—the event façade is the same whether
you are working with DOM events or custom events.

Exposing custom events decouples component code from its use in implementation
code. Component designers should call publish() and fire(), but component users
should rarely fire() events themselves. Instead, component users should call compo-
nent methods that internally call fire(). Likewise, component designers are encour-
aged to publish custom events with default functions, but should rarely need to prevent
those functions. Calling preventDefault() on a custom event is a hook meant for com-
ponent users.

Unlike elements in the DOM, it is not immediately obvious where a custom object
should bubble its events to. This is why addTarget() exists—to help you define your
own bubbling hierarchy. Alternatively, you can use broadcast and rely on Y.on() or
Y.Global.on() to handle events. Y.on() is useful if you want to use Y as a “master switch”
for handling custom events, while Y.Global.on() is useful for passing messages between
sandboxes. For example, if you have a “dashboard” page that runs multiple applica-
tions, setting broadcast to 2 would enable you to pass information to a master control
component that uses Y.Global. Using addTarget() gives you more fine-grained control,
while using broadcast is a bit simpler.

As mentioned in Recipe 4.3, bubbling is a mechanism for the order in which you report
events that affect all objects in a tree. One way to think about addTarget() is as a way
to help represent that one object is a part of another. Thus, if you store objectChild as
a property of objectParent or in a collection that belongs to objectParent, you might
set up a bubble chain by calling objectChild.addTarget(objectParent).

The publish() method provides a great deal of flexibility for defining custom events.
Example 4-9 demonstrates broadcast and defaultFn, but many other configuration
options exist. For example:

• The emitFacade field controls whether the custom event sets emitFacade to true,
which in turn means that the event can have more complex behaviors that allow
it to bubble, execute default functions, and so on. In a simple Y.fire(), event
Facade is false. However, if you publish and fire events from an object derived
from Base, eventFacade defaults to true.

• The bubbles field controls whether the event is permitted to bubble. By default,
bubbles is true. If bubbles is false, the event ignores the chain created by add
Target(). In that case, the only way to allow the event to be caught by another
object is to set broadcast to 1 or 2.

• The preventedFn field specifies a function to fire if and only if ev.preventDe
fault() is called. This provides a fallback action in case the default action is
prevented.

108 | Chapter 4: Events

www.it-ebooks.info

http://www.it-ebooks.info/

You can also configure custom objects to have a different prefix, to be unpreventable,
to execute a function when something stops their propagation, and more. To learn
more about defining custom events, refer to the EventTarget API documentation.

So why does Example 4-9 show off using Base instead of just extending EventTarget
directly? The main reason is that in the real world, experienced YUI developers tend to
prefer using Base and its children over using EventTarget by itself. In addition to
EventTarget, Base also includes the important Attribute API and other methods that
work together to create a stable foundation for constructing application components.
However, if you are sure you only need EventTarget, feel free to use Y.augment() or
Y.extend() to add just that functionality. For more information about how the core
YUI objects all work together, refer to Chapter 7.

One subtle point to think about is whether to define event behavior for an entire class,
or only for particular instances. In the example, CommandModule and MissionControl set
their event listeners in their own initializer() function, which ensures that all in-
stances of CommandModule listen for eagle:joke. To define an event listener only for
a particular instance of CommandModule, you could call commandModule.on() in the
YUI().use().

4.8 Using Object Methods as Event Handlers
Problem
You want to use an object method as an event handler. The method works fine when
you call it directly, but fails mysteriously when called as an event handler.

Solution
The method fails because when used as an event handler, the method is bound to the
wrong context.

Ordinarily within a method, the this object contains a reference to the method’s parent
object. This enables the method to use other properties and methods on the object.

However, assigning an object method as an event handler changes the value of this. In
a native DOM addEventListener(), this gets set to be the DOM node where the event
occurred, while in Internet Explorer’s attachEvent() method, this gets set to the
global window object. In a YUI on() subscriber, YUI sets this to be the Y.Node instance
where the event occurred. In all these cases, the method will now fail if it makes any
internal reference to this.

Fortunately, the on() method provides a simple fix. After you specify the handler func-
tion, the next parameter to on() overrides the value of this within the handler function.
See Example 4-10.

4.8 Using Object Methods as Event Handlers | 109

www.it-ebooks.info

http://www.it-ebooks.info/

Example 4-10. Using object methods as event handlers

<!DOCTYPE html>
<title>Using object methods as event handlers</title>
<style>
.notice { color: #00c; }
.warning { color: #e80; }
.caution { color: #f00; }
</style>

<p>"Though this be madness, there is method in it."</p>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 var notifier = {
 msgType: 'caution',
 mark: function (ev) {
 ev.target.addClass(this.msgType);
 }
 };
 Y.one('p').on('click', notifier.mark, notifier);
});
</script>

Example 4-10 uses the third parameter in on() to bind the handler function to the
correct context—in this case, the method’s parent object.

To see the example fail, remove the last parameter. this.type falls back to looking for
a type property on the Node instance, rather than on the notifier object.

Discussion
The reason this changes inside event handlers is a fundamental behavior of JavaScript.
When you pass a reference to a method like notifier.mark to some other function, the
JavaScript engine:

1. Finds an object named notifier.

2. Finds an object property on that object named mark.

3. Extracts the value of that property. In this case, function(ev) { ev.target.add
Class(this.msgType); }

4. Passes that value in to the function.

In other words, JavaScript rips the method free of its initial context and passes it in as
a simple function. It is as if the code were:

Y.one('p').on('click', function (ev) {
 ev.target.addClass(this.msgType);
});

which is bad, because this.msgType is undefined for the paragraph node.

110 | Chapter 4: Events

www.it-ebooks.info

http://www.it-ebooks.info/

After the context override parameter, any extra parameters provided to on() get
passed in as arguments to the event handler function. Example 4-11 is a variation of
the previous example where notifier now maintains an array of message types, and
the mark() method now takes an integer level to pick out the right type.

Example 4-11. Passing arguments to an object method in an event handler

YUI().use('node', function (Y) {
 var notifier = {
 msgType: ['notice', 'warning', 'caution'],
 mark: function (ev, level) {
 ev.target.addClass(this.msgType[level]);
 }
 };
 Y.one('p').on('click', notifier.mark, notifier, 2);
});

Since correcting the context is a problem that goes beyond just event handlers, YUI
provides a general solution. The Y.bind() method takes a function and a context object,
and returns a wrapped function, with the wrapper now properly bound to the new
context. Example 4-12 demonstrates an equivalent solution to Example 4-10.

Example 4-12. Fixing the context with Y.bind()

YUI().use('node', function (Y) {
 var notifier = {
 msgType: 'caution',
 mark: function (ev, level) {
 ev.target.addClass(this.msgType);
 }
 };
 var fn = Y.bind(notifier.mark, notifier);
 Y.one('p').on('click', fn);
});

Like the extended syntax for on(), Y.bind() also supports passing in additional
arguments:

var fn = Y.bind(notifier.mark, notifier, 2);

However, these arguments get passed into the callback before the event argument, ev.
To pass in extra arguments after the ev argument, use Y.rbind().

For event handlers, you can use on()’s extended signature or Y.bind(), depending on
which syntax you prefer.

Also note that the ECMAScript 5 standard defines a native Function.prototype
.bind() method. Y.bind() enables you to cover your bases in both older and newer
browsers.

4.8 Using Object Methods as Event Handlers | 111

www.it-ebooks.info

http://www.it-ebooks.info/

4.9 Detaching Event Subscriptions
Problem
You want to remove an event handler from an event target.

Solution
Calling on() returns the subscription’s handle object. Saving this object enables you to
call detach() on the handle later to remove the subscription. See Example 4-13.

Example 4-13. Detaching event subscriptions

<!DOCTYPE html>
<title>Detaching event subscriptions</title>

<button id="annoying_patron">Boy Howdy!</button>
<button id="librarian">Sssh!</button>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node-base', function (Y) {
 var handle = Y.on('click', function () {
 Y.one('body').append('<p>Boy howdy, this sure is a nice library!</p>');
 }, '#annoying_patron');

 Y.on('click', function () {
 Y.one('body').append('<p>Sssh!</p>');
 handle.detach();
 }, '#librarian');
});
</script>

YUI also provides once(), a sugar method for creating single-use event subscriptions.
As written, Example 4-13 allows the librarian to say “Sssh!” multiple times. You could
use once() as an easy way to configure the librarian event handler to fire once, then
detach itself.

Discussion
YUI provides a great variety of ways to detach events—possibly more than it should.

In old browsers, it was important to detach event subscriptions in order to avoid mem-
ory leaks. This is a mostly solved problem today, but it is still possible to create pages
that consume lots of memory because they fail to clean up node references and other
objects.

One common reason to detach event subscriptions is when you are implementing an
object destructor, such as the destroy() method of a Widget or Plugin. To make mass
detachments easier, YUI allows you to add an arbitrary prefix to the event type when

112 | Chapter 4: Events

www.it-ebooks.info

http://www.it-ebooks.info/

subscribing to events. For example, ordinarily you might subscribe to a click event by
calling:

someNode.on('click', ...)

but you are also free to add a prefix foo, separated by a vertical bar:

someNode.on('foo|click', ...)

This prefix is called an event category. If you assign many event listeners under the same
category, you can detach them in one step by supplying a wildcard:

someNode.detach('foo|*');

Other YUI detaching techniques include, but are by no means limited to:

node.remove(true)
Removes that node from the DOM. Passing in true destroys that node as well,
nulling out internal node references and removing all plugins and event listeners.

node.empty()
Destroys all of a node’s child nodes.

node.detach(type)
Removes any event handlers on the node that match the specified type.

node.detach(type, function)
Removes any event handlers that match the specified type and handler function.
This requires duplicating the signature of the original subscription, so it is usually
easier to just save the subscription handle in the first place.

Y.detach(type, function, selector)
Removes any DOM event handlers in the sandbox that match the specified type
and handler function, and that reside on a node that matches the CSS selector.

See Also
Tony Gentilcore’s blog post “Finding memory leaks”.

4.10 Controlling the Order of Event Handler Execution
Problem
You have multiple event handlers listening for an event on the same event target, and
you want to make sure the handlers all execute in a particular order.

Solution
Specify your on() event listeners in the order in which you would like the handlers to
execute, as shown in Example 4-14.

4.10 Controlling the Order of Event Handler Execution | 113

www.it-ebooks.info

http://gent.ilcore.com/2011/08/finding-memory-leaks.html
http://www.it-ebooks.info/

Example 4-14. Controlling event handler execution order (DOM events)

<!DOCTYPE html>
<title>Controlling event handler execution order (DOM events)</title>

<p>Click me, then check your browser error console for exciting log action!</p>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node-base', function (Y) {
 var p = Y.one('p');
 p.on('click', function () { Y.log('I will execute first.') });
 p.on('click', function () { Y.log('I will execute second.') });
 p.on('click', function () { Y.log('I will execute third.') });
});
</script>

For custom events, you can also use the after() method to execute handlers in a sep-
arate sequence that runs after the ordinary sequence of on() handlers. In Exam-
ple 4-15, the two on() handlers execute in the order they were assigned, and then the
after() handler executes. after() handlers also have special behavior around prevent
Default(), as described in the upcoming Discussion.

Example 4-15. Controlling event handler execution order (custom events)

<!DOCTYPE html>
<title>Controlling event handler execution order (custom events)</title>

<p>Check your browser error console for exciting log action!</p>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('event-base', function(Y) {
 Y.on('my:example', function () { Y.log('I will execute first.') });
 Y.after('my:example', function () { Y.log('I will execute third.') });
 Y.on('my:example', function () { Y.log('I will execute second.') });

 Y.fire('my:example');
});
</script>

Unlike custom events, for DOM events after() is just a synonym for on() with no
special behavior. To avoid confusion, do not use after() with DOM events.

Discussion
For custom events, and custom events only, after() has two key features. First, if your
on() handlers are scattered around your code, after() can help create order out of
chaos. Second, if you call preventDefault() from an on() subscriber to prevent a custom
event’s default function, no after() handlers are notified about the event.

114 | Chapter 4: Events

www.it-ebooks.info

http://www.it-ebooks.info/

In general, for custom events (not DOM events!), you can think of the relationship as:

1. on() handlers act before a state change.

2. The default function carries out a state change.

3. after() handlers view and respond to a state change, if that state change occurs.

This is a fundamental pattern when you are using Base-derived objects. Calling set()
to change an attribute fires a change event, but calling preventDefault() cancels the
requested value change. This means that if you need to respond to the attribute’s value
actually changing (as opposed to a change attempt), you should set an after() listener
rather than an on() listener.

If you need a single-use after() listener, use the onceAfter() sugar
method. This is the equivalent of the once() method, which creates a
single-use on() listener.

For DOM events, the overall execution sequence is:

1. All on() and after() event handlers on the target execute in order of specification,
unless an event handler calls stopImmediatePropagation().

2. If there is another event target to bubble to and no event handler has called stop
Propagation() or stopImmediatePropagation() yet, the event bubbles upward. Re-
turn to the previous step.

3. The default behavior for that DOM event executes, unless an event handler calls
preventDefault().

For custom events, the overall execution sequence is:

1. All on() event handlers on the target execute in order of specification, unless an
event handler calls stopImmediatePropagation().

2. If there is another event target to bubble to and no event handler has called stop
Propagation() or stopImmediatePropagation() yet, the event bubbles upward. Re-
turn to the previous step.

3. The default function for that custom event executes, unless an event handler calls
preventDefault().

4. If preventDefault() was not called, bubbling starts again for all the after()
handlers:

a. All after() event handlers on the target execute in order of specification,
unless an event handler calls stopImmediatePropagation() or preventDe
fault() had been called earlier.

b. If there is another event target to bubble to and no event handler has called
stopPropagation() or stopImmediatePropagation() yet, the event bubbles up-
ward. Return to the previous step.

4.10 Controlling the Order of Event Handler Execution | 115

www.it-ebooks.info

http://www.it-ebooks.info/

There is also a before() method, but it is just a synonym for on() for
both DOM events and custom events. Y.before() should not be con-
fused with Y.Do.before(). For more information about Y.Do, refer to
Recipe 4.12.

4.11 Creating Synthetic DOM Events
Problem
You want to handle a DOM event that the browser does not support directly.

Solution
Use Y.Event.define() to define a synthetic event, an event composed of ordinary DOM
events (or other synthetic events) and custom logic to determine when to actually fire
the event. A YUI synthetic event behaves like an ordinary DOM event and can be
handled with the same API. A synthetic event must define its own on() method to define
how to listen for the event, its own detach() method to define how to remove its event
handlers, and so on.

Example 4-16 defines a middleclick event. The synthetic event is built using mouseup
rather than click because, in many browsers, click events do not report accurate in-
formation in event.button. To demonstrate that ordinary subscription and delegation
both work, the example sets an on() listener and a delegate() listener.

If your mouse does not have a middle button, you can convert this ex-
ample to a rightclick synthetic event by changing the conditional to
ev.button === 3. Suppressing the browser context menu is left as an
exercise for the reader.

Example 4-16. Defining a middleclick synthetic event

<!DOCTYPE html>
<title>Defining a middleclick synthetic event</title>

<div id="container">
<p id="demo">Middle-click this paragraph.</p>
<p>Or this paragraph.</p>
<p>Or perhaps even this one.</p>
</div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', 'event-synthetic', function (Y) {
 Y.Event.define('middleclick', {
 _handler: function (ev, notifier) {
 if (ev.button === 2) {
 notifier.fire(ev);

116 | Chapter 4: Events

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 },
 on: function (node, sub, notifier) {
 sub.handle = node.on('mouseup', this._handler, this, notifier);
 },
 delegate: function (node, sub, notifier, filter) {
 sub.delegateHandle = node.delegate('mouseup', this._handler,
 filter, this, notifier);
 },
 detach: function (node, sub, notifier) {
 sub.handle.detach();
 },
 detachDelegate: function (node, sub, notifier) {
 sub.delegateHandle.detach();
 }
 });

 Y.one('#demo').on('middleclick', function () {
 Y.one('body').append('Awesome! ');
 });
 Y.one('#container').delegate('middleclick', function () {
 Y.one('body').append('Thanks! ');
 }, 'p');
});
</script>

The on() method receives three parameters:

node
The node where the caller subscribed to the event. Often (but not always!) you will
attach ordinary event listeners to this node. The middleclick example assigns a
mouseup event to the target node. Some synthetic events need to assign multiple
listeners to a node, or assign listeners to the node’s children, parents, or even the
document object.

sub
An object that represents the subscription to the synthetic event. Since synthetic
events often involve multiple DOM events interacting with each other, the sub
object is a handy place for sharing information between events and for storing event
handles, so that the event is easy to detach later on.

notifier
The object from which to fire the synthetic event. For any synthetic event, there is
some set of conditions that indicate the synthetic event has occurred. In Exam-
ple 4-16, the conditions are very simple—a single DOM event and a single condi-
tional. Once the conditions are satisfied, on() must call notifier.fire() to indicate
that the synthetic event has occurred.

4.11 Creating Synthetic DOM Events | 117

www.it-ebooks.info

http://www.it-ebooks.info/

The detach() method receives the same three parameters—including sub, which should
ideally contain all the handles required to detach the event. In this case, there is only a
single mouseup event to detach, but in general, a synthetic event may have event handlers
scattered all over the document.

The middleclick event also supports event delegation. Since middleclick is so simple,
its delegate() is almost identical to on(), with common logic factored out into a “pro-
tected” _handler() method. However, some synthetic events require different logic for
delegation versus basic subscription. If a synthetic event does not implement a dele
gate() method, Y.delegate() and node.delegate() will not work for that event. The
same is true for detach() and other methods in the interface.

Discussion
At first glance, synthetic events might seem esoteric. Shouldn’t click, mouseover, and
submit be good enough for anybody? Synthetic events turn out to have an enormous
range of use cases, such as:

• Correctly implementing tricky edge behavior that browsers handle poorly. For ex-
ample, YUI provides a synthetic valueChange event that handles atomic changes to
input fields and textareas. Unlike the standard DOM change event, valueChange
fires when the field value changes, not when the field loses focus. Unlike
the input event and the various key events, valueChange reliably handles
multikeystroke inputs, copy-and-paste operations, mouse operations, and a variety
of input method editors. valueChange was invented for the AutoComplete widget,
but is a useful component in its own right.

• Harmonizing between touch events and mouse events. Rather than creating a spe-
cialized “YUI Mobile” library to program against, YUI’s philosophy around mobile
device support is to present a single unified API. To that end, YUI provides an
assortment of synthetic events such as gesturemovestart and gesturemoveend that
encapsulate touch events and mouse events in a single interface.

• Bringing newly standardized DOM events to older browsers. For example, HTML
now defines an invalid event for form elements. A synthetic invalid event would
enable you to use a consistent scheme for client-side error checking.

• Handling complex combinations of clicks, drags, swipes, and keyboard combina-
tions for power users.

4.12 Responding to a Method Call with Another Method
Problem
Each time your application creates a node with Y.Node.create(), you want to log this
information to the browser console using Y.log().

118 | Chapter 4: Events

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Use Y.Do.after() to configure YUI to automatically call a function after each call to
Y.Node.create(). Automatically inserting a method before or after another method is
a technique borrowed from a software methodology named aspect-oriented program-
ming (AOP). As Example 4-17 shows, the first parameter of Y.Do.after() specifies the
advice function to call, and the second and third parameters specify the object and the
method name where the advice function should be inserted, known in AOP as the
joinpoint.

Example 4-17. Using AOP to log node creation

<!DOCTYPE html>
<title>Using AOP to log node creation</title>

<script src='http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js'></script>
<script>
YUI().use('node', function (Y) {
 var logCreate = function (fragment) {
 Y.log('CREATED: ' + fragment);
 };
 var logHandle = Y.Do.after(logCreate, Y.Node, 'create');

 var musketeers = Y.Node.create('');
 Y.Node.create('Athos').appendTo(musketeers);
 Y.Node.create('Porthos').appendTo(musketeers);
 Y.Node.create('Aramis').appendTo(musketeers);

 logHandle.detach();
 Y.Node.create("d'Artagnan").appendTo(musketeers);

 musketeers.appendTo(Y.one('body'));
});
</script>

Like assigning an event handler with on(), calling Y.Do.after() returns a handle that
you can use to tear down the configuration. Example 4-17 adds “d’Artagnan” after
detaching the handle, so the browser console displays only four entries: one for the
empty and one each for Athos, Porthos, and Aramis, but nothing for d’Artagnan.

As the example illustrates, logCreate() (the advice function) receives the same argu-
ments as Y.Node.create() (the method called at the joinpoint). As with the on() meth-
od, you can provide the advice function a different execution context with the fourth
parameter, or pass in extra arguments with the fifth and subsequent parameters. For
more information about binding functions to a new context, refer to Recipe 4.8.

There is also a Y.Do.before() method with the same signature as Y.Do.after().

4.12 Responding to a Method Call with Another Method | 119

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Although good developers try to neatly encapsulate the separate concerns of their code,
programs often have crosscutting concerns that foil these efforts, such as data persistence
or logging. AOP is a strategy for dealing with crosscutting concerns by altering the
program’s behavior. In AOP, you apply advice (typically a method) at certain points of
interest called joinpoints (typically some other method), as mentioned earlier.

For example, you have a variety of objects designed to hold data. Each time one of these
objects calls a set() method to change an internal value, you want to save off the old
value so that it is possible to undo the change. You could try manually hacking this
extra “save” behavior into each object’s set() method, but the AOP approach would
be to inject the save() behavior as an advice function, right before the set() joinpoint.

Y.Do.before() and Y.Do.after() are useful for situations where you want to add be-
havior around some method that, by its nature, might be scattered through your ap-
plication. You can also use them just to add behavior around a method when you can’t
or don’t want to change the method’s internals (either by pasting new behavior directly
in the method, or by altering the method to fire off a custom event).

For example, you are using a DataSource to fetch some remote data. If the fetch suc-
ceeds, you need to call another function in response. You could fire a custom event on
success and listen for that, but AOP provides a clean, concise way to call your reactTo
Success() function immediately afterward:

myDataSource.on('request', function (ev) {
 Y.Do.after(reactToSuccess, ev.callback, 'success');
});

You can also use Y.Do.before() to modify the arguments the intercepted method will
receive or prevent an event from executing, and you can use Y.Do.after() to read and
possibly modify the return value. This can be a simpler way to modify an object—rather
than creating an extension, you can use AOP to just modify a few of the object’s in-
stances. This technique is particularly useful in plugins that change the behavior of
their host object. For an example, refer to Recipe 7.8.

120 | Chapter 4: Events

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Ajax

Originally, browsers could not easily fetch more data without triggering a full page
refresh. Perhaps the most important early approach for solving the I/O problem came
from Internet Explorer 5, which introduced a scriptable ActiveX control for perform-
ing asynchronous HTTP requests. This feature evolved into a common cross-browser
object called XmlHttpRequest (XHR).

Injecting XHR data into the DOM became more and more popular, and in 2005, de-
signer Jesse James Garrett dubbed the technique “Ajax,” for “Asynchronous JavaScript
+ XML.” Today, “Ajax” more loosely means any technique that makes asynchronous
remote calls, ranging from classic XHR to other techniques such as JSONP (“JSON
with Padding”) and iframe injection. The response can be HTML partials, data in JSON
or XML, or any number of other formats.

Fetching more data with JavaScript is a powerful technique, but opens up the possibility
of injecting harmful content into the page. To foil script injection attacks, XHR is sub-
ject to the same origin policy. By default, an XHR call to a server with a different domain
will fail. However, it is possible to coerce XHR to make cross-domain calls, and there
are other non-XHR techniques that bypass this restriction entirely. This chapter ex-
plores various techniques for making same-domain and cross-domain calls with YUI.

Recipe 5.1 introduces Y.io(), YUI’s wrapper for the classic XHR object.

Recipe 5.2 runs through the various events in the XHR lifecycle. Listening for these
events provides more fine-grained control over what is happening during the
transaction.

Recipe 5.3 explains how to use Node’s load() method as an easy way to populate an
element with HTML content from another page.

One of the primary motivators for XHR is asynchronous form submissions.
Recipe 5.4 describes how to submit general form data using XHR, while Recipe 5.5
explains how to upload a file.

121

www.it-ebooks.info

http://www.it-ebooks.info/

Recipe 5.6 introduces JSONP, an alternative method for fetching remote data. JSONP
doesn’t work with all web services, but when available, it is an elegant way to make
cross-domain requests.

YQL is a proxy service that enables easy cross-domain requests for nearly any source
of data on the Web you can think of. Recipes 5.7 and 5.8 explain how to use YQL to
access web services and scrape HTML.

Finally, Recipes 5.9 and 5.10 introduce DataSource and DataSchema. DataSource is a
universal adapter for fetching and processing data from nearly any remote or local
source, while DataSchema helps normalize data within DataSource objects and
elsewhere.

5.1 Fetching and Displaying XHR Data
Problem
You want to fetch and display data from a web service that resides on your own domain.

Solution
First, you need a web service to access. Example 5-2 relies on the script in Exam-
ple 5-1, which you can drop into any server that runs PHP.

Example 5-1. Example PHP web service

<?php
header('Content-type: application/json');

$response = array();
if (isset($_GET['suspect']) && $_GET['suspect'] === 'butler') {
 $response['guilty'] = 'YES';
 $response['comment'] = 'We are as shocked as you are.';
}
else {
 $response['guilty'] = 'NO';
 $response['comment'] = 'Perhaps this murder will never be solved.';
}
echo json_encode($response);
?>

Alternatively, you can rewrite this trivial web service in JavaScript or whatever server-
side language suits your fancy.

Once this web service is working, create an HTML page that loads the io-base module
along with node-base and json-parse. Then call Y.io(), passing in:

122 | Chapter 5: Ajax

www.it-ebooks.info

http://www.it-ebooks.info/

• A URI (uniform resource identifier) or path to a web service running on the same
domain

• A configuration object with a data property specifying the name/value parameters
to pass in, and an on property containing one or more callback functions to execute
in response to different events in the XHR lifecycle.

Example 5-2 is a simple example that sets a callback function for the complete event
and makes a request to the local io.php web service, passing in a single GET parameter
named suspect. The callback receives two arguments:

id
A unique transaction ID object from which you can call isInProgress() to check
whether the transaction is still running, or abort() to stop the transaction.

response
An object containing the response status, headers, and content. The string content
is stored in the responseText property.

In this example, the complete handler is responsible for dealing with success and failure.
However, you can also divide up your logic more cleanly by setting callbacks for suc
cess, failure, and other events, as shown shortly in Recipe 5.2.

Example 5-2. Fetching and displaying data with XHR

<!DOCTYPE html>
<title>Fetching and displaying data with XHR</title>
<style>
h1 { font: bold 300px tahoma, sans-serif; text-align: center; margin: 0px; }
p { font: 13px tahoma, sans-serif; text-align: center; color: #444; }
.NO { color: red; }
.YES { color: green; }
</style>

<h1 id="guilty"></h1>
<p id="comment"></p>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('io-base', 'node-base', 'json-parse', function (Y) {
 function showAnswer(answer) {
 Y.one('#guilty').setHTML(answer.guilty).addClass(answer.guilty);
 Y.one('#comment').setHTML(answer.comment);
 }

 Y.io('io.php', {
 data: 'suspect=butler',
 on: {
 complete: function (id, response) {
 if (response.status >= 200 && response.status < 300) {
 showAnswer(Y.JSON.parse(response.responseText));
 }

5.1 Fetching and Displaying XHR Data | 123

www.it-ebooks.info

http://www.it-ebooks.info/

 else {
 showAnswer({
 guilty: 'NO',
 comment: 'Something terrible has happened.'
 });
 }
 }
 }
 });
});
</script>

You must run this example from a real web server, not the local
filesystem.

A common pitfall when you are working with Ajax is handling only the success case.
At a minimum, your code should at least attempt to handle failure in some way. Ex-
ample 5-2 listens for the complete event and reacts to success or failure within a single
event handler. Alternatively, YUI also fires separate success and failure events, which
you can use to divide your success and failure logic into separate handlers. For more
information, refer to Recipe 5.2.

Discussion
Y.io() is YUI’s wrapper for “classic Ajax,” the XmlHttpRequest object (XHR). Of all the
different APIs YUI provides for fetching remote data, Y.io() grants you the most fine-
grained control.

The key to this fine-grained control is the Y.io() configuration object. Example 5-2
represents a simple configuration, but more generally, the configuration can include:

method
A string that specifies the HTTP method. The default is GET. For an example that
uses POST, refer to Example 5-9.

data
A string of data to send to the web service. The string should be serialized according
to the Content-Type in the header (the default serialization is url-encoded). For a
POST or PUT request, the data can be JSON, XML, or any other format the web
service accepts.

form
An object that identifies an HTML form to submit via XHR. For more information,
refer to Examples 5-7 and 5-9.

124 | Chapter 5: Ajax

www.it-ebooks.info

http://www.it-ebooks.info/

on
An object that assigns event subscriptions for the XHR transaction. For an example
of listening to multiple Y.io() lifecycle events, refer to Recipe 5.2.

context
An object that specifies the this object in the event callbacks, which is important
if your callbacks are object methods. For more information about object methods,
callbacks, and context, refer to Recipe 4.8.

sync
A Boolean that selects whether the transaction should be done synchronously,
blocking all JavaScript execution until the call returns.

headers
An object containing HTTP header name/value pairs to send with the transaction.
Some web services require a particular set of HTTP headers to function properly.
By default, YUI sends an X-Requested-With: XMLHttpRequest header, a convention
used by nearly all Ajax libraries.

timeout
A number that specifies the threshold in milliseconds before the transaction should
time out.

arguments
A value that Y.io() will pass as the second argument to the io:start and io:end
callbacks, and the third argument to the io:complete, io:success, and io:fail
ure callbacks. You must quote "arguments" in the configuration object, as argu
ments is a reserved word in JavaScript.

Y.io() is excellent for communicating with web services that you own. Its main draw-
back is that historically, XHR cannot easily do cross-domain requests. If you need to
fetch data from another domain, subdomain, or port, you can try JSONP or YQL,
introduced in Recipes 5.6 and 5.7, respectively.

Another way to work around the XHR cross-domain restriction is to provide Y.io()
with a transport that makes HTTP requests on the browser’s behalf. For many years,
YUI has provided a premade transport in the form of a Flash component named
io.swf. Unfortunately, Flash doesn’t work on iOS devices and many Android devices.
Unless you are building apps for a very locked-down, well-known browser environ-
ment, don’t use io.swf.

Instead, use JSONP where possible, or use YQL as a proxy, or build yourself a custom
server-side transport for Y.io(). One promising development in newer browsers is na-
tive support for cross-domain XHR, via a W3C standard called cross-origin resource
sharing (CORS). YUI’s io-xdr module wraps CORS support for a variety of browsers,
although IE 6, IE 7, and WebKit on iOS 3 are unsupported.

5.1 Fetching and Displaying XHR Data | 125

www.it-ebooks.info

http://www.it-ebooks.info/

See Also
The IO User Guide; IO API documentation; “Example: Request JSON using Yahoo!
Pipes”; Nicholas Zakas’s article, “Cross-domain Ajax with Cross-Origin Resource
Sharing”; MSDN’s article on the XDomainRequest object.

5.2 Handling Errors During Data Transport
Problem
You want to respond to failures and other events that can occur over the XHR lifecycle.

Solution
Load the io-base module and set listeners for the success and failure events. One of
these two events fires shortly after complete. If the HTTP status is 2XX, success fires;
otherwise, failure fires. While there is nothing wrong with simply listening for
complete, success and failure can help you separate your success and failure logic more
cleanly.

Example 5-3 listens for the five main events in the YUI XHR lifecycle, appending mes-
sages into the DOM as the events occur. The most significant callback function in this
function is the one for failure, which customizes its message depending on the HTTP
error state.

Unlike the toy io.php web service in Recipe 5.1, this book does not provide a
candy_store.php web service. Unless you decide to write your own, no file is found on
the server, which causes the request to fail with a 404 status.

Example 5-3. Handling errors during data transport

<!DOCTYPE html>
<title>Handling errors during data transport</title>

<ol id="candy_report">

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('io-base', 'node-base', function (Y) {
 var ol = Y.one("#candy_report");

 Y.io('candy_store.php', {
 data: 'candy=licorice',
 on: {

 start: function (id) {
 ol.append('Off to the candy store... ');
 },
 complete: function (id, response) {
 ol.append('Back from the candy store!');

126 | Chapter 5: Ajax

www.it-ebooks.info

http://yuilibrary.com/yui/docs/io/
http://yuilibrary.com/yui/docs/api/classes/IO.html
http://yuilibrary.com/yui/docs/io/xdr.html
http://yuilibrary.com/yui/docs/io/xdr.html
http://www.nczonline.net/blog/2010/05/25/cross-domain-ajax-with-cross-origin-resource-sharing/
http://www.nczonline.net/blog/2010/05/25/cross-domain-ajax-with-cross-origin-resource-sharing/
http://msdn.microsoft.com/en-us/library/ie/dd573303%28v=vs.85%29.aspx
http://www.it-ebooks.info/

 },
 success: function (id, response) {
 ol.append('Yum!');
 },
 failure: function (id, response) {
 var msg;
 switch(response.status) {
 case 402:
 msg = 'Turns out, we have no candy money.';
 break;
 case 403:
 msg = 'Mom said no candy. Oh, well.';
 break;
 case 404:
 msg = 'Cannot find the store. Are you sure there is one?';
 break;
 default:
 msg = 'Could not obtain candy. ' + response.statusText;
 }
 ol.append('<li style="color: red">Oh no! ' + msg + ' :(');
 },
 end: function (id) {
 ol.append('Well, that was an adventure!');
 }
 }
 });
});
</script>

You must run this example from a real web server, not the local
filesystem.

Discussion
Y.io() breaks the XHR transaction into four main phases, represented by five events.
(For cross-domain requests, there is a sixth event named xdrReady.) As Example 5-3
demonstrates, they fire in this order:

1. start fires at the start of the transaction. The callback receives a transaction id,
but not a response object (for obvious reasons). This event is a good place to either
do any common setup work to receive the request, or update the user interface
with some indication that the page is fetching data.

2. complete fires when Y.io() receives a response from the remote resource. The call-
back receives a transaction id and a response object that provides:

• A responseText property, representing the response data as a string

• A responseXML property, representing any XML response as an XML document

5.2 Handling Errors During Data Transport | 127

www.it-ebooks.info

http://www.it-ebooks.info/

• status and statusText properties, representing the HTTP numeric status and
string status message, respectively

• A getResponseHeader(header) method, which returns an individual HTTP
header by name

• A getAllResponseHeaders() method, which returns an '\n'-delimited string of
all header names and values

You can either deal with the entire response here (including error handling), or you
can do any common UI updates here, and defer most of the response handling code
to success and failure.

3. success or failure fires right after complete, depending on the HTTP status code.
Like complete, the callback receives a transaction id and a response object. If the
HTTP status is 2XX or 304 (Not Modified) Y.io() fires success; otherwise, it fires
failure. You can use success and failure as an alternative to complete, or even
together with complete.

Internet Explorer erroneously reports a 204 status as a (nonstan-
dard) 1223 status. YUI therefore treats a 1223 status as success.

4. end fires after either success or failure has fired. The callback receives only a
transaction id. This event is a good place to either do any common teardown work
once the transaction is over, or make any final updates to the user interface that
have to happen regardless of success or failure.

The Y.io() event lifecycle enables you to structure your transaction-handling code in
a variety of ways. The simplest thing to do is to ignore this structure and just handle
everything in complete, as shown in Example 5-2. But for more complex applications,
YUI provides additional event hooks for you to use.

The bottom line is: if you use complete only, check for status there as well. If you use
success, don’t forget to use failure.

When you are handling errors, the response body is often a messy soup of HTML or
other junk, but the HTTP status and headers can be useful. For example, some re-
sponses with a 3XX status might provide a URL to redirect to, so your failure code
could attempt a retry to the new URL if for some reason the browser wasn’t able to
handle the redirect transparently. A 4XX HTTP status probably indicates something
wrong with your code, so there is usually nothing to do but fail immediately. A 5XX
code indicates a problem with the remote service—this error might be transient, so it
might be worth retrying a couple of times and then failing. Whatever you do, you should
avoid exposing low-level error codes and headers to end users.

128 | Chapter 5: Ajax

www.it-ebooks.info

http://www.it-ebooks.info/

As Y.io() transactions fire their lifecycle events, YUI also broadcasts
io:* events to the Y instance. This means that it is possible to call Y.io()
without specifying listeners in the transaction configuration, and instead
listen with Y.on():

Y.io('candy_store.php', { data: 'candy=licorice' });

 Y.on('io:success', function (id, response) {
 ...
});

Do not use this pattern. The problem is that if you execute multiple
XHR transactions, Y.on() will receive multiple io lifecycle events in an
unpredictable order, which can lead to disastrous race conditions. By
contrast, in Examples 5-2 and 5-3, each listener is safely scoped to a
single XHR transaction and handles only a single event.

See Also
RFC 2616 Section 10, Status Code Definitions.

5.3 Loading Content Directly into a Node
Problem
You want an easy way to load HTML content into a node from some other HTML page
on your server.

Solution
Load the node-load module, get a Node instance, and call the load() method, passing
in the URL to the target HTML source along with an optional CSS selector to an element
within the DOM.

Example 5-4 is a master page for an Ajax-powered documentation site. Clicking a nav-
igation link loads a new content pane without refreshing the entire page. The example
uses Y.all().on() to assign multiple event handlers. For large numbers of links, event
delegation would be more efficient.

Example 5-4. Loading HTML content into a node

<!DOCTYPE html>
<title>Loading HTML content into a node</title>

<h1>My Awesome Documentation</h1>
<ul id="nav">
 Installation
 Examples
 API Reference

5.3 Loading Content Directly into a Node | 129

www.it-ebooks.info

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.it-ebooks.info/

<div id="main">
 <p>Some great documentation is about to appear here!</p>
 <p>Boy howdy!</p>
</div>
<p id="footer">This is a footer. Copyright 2012, by ME.</p>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node-load', function (Y) {
 var main = Y.one('#main');

 Y.all('#nav a').on('click', function (ev) {
 ev.preventDefault();
 main.load(ev.target.get('href'), '#content');
 Y.one('h1').setHTML(ev.target.getHTML());
 });
});
</script>

You must run this example from a real web server, not the local
filesystem.

This example relies on loading content from static HTML files that resemble Exam-
ple 5-5. Strictly speaking, these static files only need to contain the markup for the
content. However, providing the header and footer markup means that if the user has
JavaScript turned off, the site continues to work with almost the same fidelity.

Example 5-5. Example static HTML page (install.html)

<!DOCTYPE html>
<title>My Awesome Documentation</title>

<h1>Installation</h1>
<ul id="nav">
 Installation
 Examples
 API Reference

<div id="main">
 <div id="content">
 <p>Here is how to install my awesome project.</p>
 <p>Blah blah blah...</p>
 </div>
</div>
<p id="footer">This is a footer. Copyright 2012, by ME.</p>

130 | Chapter 5: Ajax

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
The node-load module is a high-level utility that uses Y.io() under the hood to fetch
local HTML pages. It might be a little odd to think of a static HTML page as a “web
service,” but that’s essentially what the load() method is doing.

You can use load() and its handy CSS selector feature to slice and dice HTML from all
over your server, any way you please. For example, load() could help you upgrade the
user experience of an old site where rearchitecting or regenerating existing pages would
be difficult and expensive. You could also use load() to access a web service designed
to return HTML partials.

Example 5-4 uses load() as a simple form of progressive enhancement, where JavaScript
provides a better user experience but is not essential for using the site. The basic mech-
anism for loading content is sound, but there are some important missing features—
in particular, the document title and the URL in the location bar don’t change. To fix
that, you would need to write a little more code and get some help from the YUI
History or YUI Router utilities.

The load() method’s optional third argument is a callback function to execute when
loading is complete. Example 5-6 uses this feature to provide a fadeOut/fadeIn transi-
tion when loading content. The click handler starts a fadeOut transition. When the
transition completes, it executes a callback that loads content into the node. When
load() completes, it executes a final callback that starts a fadeIn transition.

Example 5-6. Loading HTML content into a node with a fade

YUI().use('node-load', 'transition', function (Y) {
 var main = Y.one('#main');

 Y.all('#nav a').on('click', function (ev) {
 ev.preventDefault();
 main.transition('fadeOut', function () {
 main.load(ev.target.get('href'), '#content', function () {
 Y.one('h1').setHTML(ev.target.getHTML());
 main.transition('fadeIn');
 });
 });
 });
});

For an alternative to using load() directly, YUI also has a dedicated
component named Pjax, which uses progressive enhancement to load
page content with Ajax. Pjax was designed to support the YUI App
Framework, but it is easy to use standalone.

5.3 Loading Content Directly into a Node | 131

www.it-ebooks.info

http://www.it-ebooks.info/

See Also
Recipe 3.2; Recipe 7.17; Recipe 9.12; API documentation for node.load(); the Pjax User
Guide.

5.4 Submitting Form Data with XHR
Problem
You want to submit a form without reloading the page.

Solution
Load the io-form module and add a submit listener that stops the form submission with
preventDefault() and invokes Y.io() instead. In the Y.io() configuration, replace the
data object with a form object that has its id set to a YUI Node instance for the <form>
element. When the user submits the form, Y.io() uses the name attribute on each field
to automatically serialize all form field values for you, submitting the data to the server
using the HTTP method you specify.

Example 5-7 submits data to Example 5-1, the same toy web service first shown in
Recipe 5.1. The example explicitly sets a method of GET, even though this is the default.
On the server side, the script receives a single GET parameter with a name of
"suspect" and a value of "butler", "lord", or "lady".

Example 5-7. Submitting form data with XHR

<!DOCTYPE html>
<title>Submitting form data with XHR</title>
<style>
.YES { color: green; }
.NO { color: red; }
</style>

<form id="form" action="io.php">
<fieldset>
 <legend>Murder Most Foul</legend>
 <label><input type="radio" name="suspect" value="butler" checked> Jeeves</label>
 <label><input type="radio" name="suspect" value="lord"> Mr. Blackstone</label>
 <label><input type="radio" name="suspect" value="lady"> Lady Haversham</label>
</fieldset>
<input type="submit" value="Who dunnit?">
</form>
<p id="answer">Scotland Yard says...</p>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('io-form', 'json-parse', function (Y) {
 function submitForm(ev) {
 ev.preventDefault();

132 | Chapter 5: Ajax

www.it-ebooks.info

http://yuilibrary.com/yui/docs/api/classes/Node.html#method_load
http://yuilibrary.com/yui/docs/pjax/
http://yuilibrary.com/yui/docs/pjax/
http://www.it-ebooks.info/

 Y.io('io.php', {
 method: 'GET',
 form: { id: Y.one('#form') },
 on: {
 complete: function(id, response) {
 var answer = Y.JSON.parse(response.responseText);
 Y.one('#answer').setHTML(answer.guilty + '. ' + answer.comment)
 .set('className', answer.guilty);
 }
 }
 });
 }

 Y.on('submit', submitForm, '#form');
});
</script>

You must run this example from a real web server, not the local
filesystem.

Discussion
To keep Y.io() lean and modular, io-base provides the core wrapper for the XmlHttp
Request object, on the assumption that you want to make asynchronous requests
without using the Node API. The io-form module augments Y.io() with the ability to
serialize HTML form data, and to that end, also pulls in some of YUI’s core node
modules.

Along with id, form can include two optional properties. The useDisabled property, if
set to true, includes key-value pairs of disabled form fields. By default, disabled fields
are excluded. If you load the io-upload-iframe module instead of the io-form module,
there is also an upload property that enables Ajax file uploads from <input
type="file"> form elements. For more information, refer to Recipe 5.5.

One feature of Y.io() is that its URI overrides the form’s action attribute. This provides
an easy way to segment Ajax and non-Ajax requests: plain HTML form submissions
use the action attribute’s URI, which could return HTML representing a confirmation
screen, while XHR form submissions use Y.io()’s URI, which could return raw JSON
data to be handled by JavaScript.

Alternatively, you could use the same URI for both kinds of requests, and have the web
service return JSON or HTML depending on whether the X-Requested-With: XMLHttp
Request request header is present. Or, if you don’t want your company’s web services
architect to yell at you, the less lazy and more technically correct option would be to
have Y.io() add an Accept: application/json request header and have the web service
switch off of that.

5.4 Submitting Form Data with XHR | 133

www.it-ebooks.info

http://www.it-ebooks.info/

5.5 Uploading a File with XHR
Problem
You want to submit a form that uploads a file without reloading the page.

Solution
First, you need a web service to access that can handle file uploads. Example 5-9 relies
on the script in Example 5-8, which you can drop into any server that runs PHP.

Example 5-8. Example PHP web service that accepts file uploads

<?php
header('Content-type: application/json');

$response = array();
if (isset($_FILES['ode'])) {
 $response['name'] = filter_var($_FILES['ode']['name'], FILTER_SANITIZE_STRING);
 $response['size'] = $_FILES['ode']['size'];
}
echo json_encode($response);
?>

Alternatively, you can rewrite this trivial web service in JavaScript or whatever server-
side language suits your fancy.

Once this web service is working, create an HTML page that loads the io-upload-
iframe module and any extra modules you need to parse and display the data, such as
json-parse. Add a submit listener that calls preventDefault() to stop the form submis-
sion and invoke Y.io() instead.

In the Y.io() configuration, set the method to POST and provide a form object with an
id that references the <form> element, and an upload set to true. When the user submits
the form, Y.io() seamlessly uses an <iframe> to upload the file to the server.

Example 5-9. Uploading a file with XHR

<!DOCTYPE html>
<title>Uploading a file with XHR</title>

<p>Please upload a poem, essay, or image expressing your
thoughts about your favorite JavaScript library.</p>
<form id="form" enctype="multipart/form-data" action="io_fileupload.php" method="POST">
 <input type="hidden" name="MAX_FILE_SIZE" value="30000">
 File: <input name="ode" type="file">
 <input type="submit" value="Upload File">
</form>
<p id="uploaded">File not yet uploaded...</p>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>

134 | Chapter 5: Ajax

www.it-ebooks.info

http://www.it-ebooks.info/

YUI().use('io-upload-iframe', 'json-parse', function (Y) {
 function submitForm(ev) {
 ev.preventDefault();
 Y.io('io_fileupload.php', {
 method: 'POST',
 form: {
 id: Y.one('#form'),
 upload: true
 },
 on: {
 complete: function(id, response) {
 var file = Y.JSON.parse(response.responseText),
 msg = 'Uploaded: ' + file.name + ' (' + file.size + ' bytes)';
 Y.one('#uploaded').setHTML(msg);
 }
 }
 });
 }

 Y.on('submit', submitForm, '#form');
});
</script>

You must run this example from a real web server, not the local
filesystem.

Discussion
While the io-form module handles most <form> elements, the glaring exception is
<input type="file">. Historically, browser JavaScript could not access local files,
which means browsers could not directly POST this data using an ordinary XHR request.
Newer browsers that support the File API can in fact read files into memory and post
them using Ajax.

For browsers that do not support the File API, there is a well-known workaround that
involves creating a hidden <iframe> and using that as a transport for the file data. The
io-upload-iframe module encapsulates this workaround for you. Because most forms
don’t require file uploads, this extra code is broken out into its own module in order
to save page weight.

5.6 Getting JSON Data Using Script Nodes (JSONP)
Problem
You want to request JSON data from a remote web service. The web service resides on
a different domain, but it happens to support the JSONP protocol for supporting cross-
domain calls.

5.6 Getting JSON Data Using Script Nodes (JSONP) | 135

www.it-ebooks.info

http://www.it-ebooks.info/

The solution assumes you understand what JSONP is and how the
mechanism works. For more background, refer to the Discussion.

Solution
First, construct a JSONP web service URL, but don’t provide an explicit callback func-
tion name. Instead, provide a placeholder string, "{callback}". For example, if the
JSONP call to fetch info about the user "brad" is supposed to look like:

http://vimeo.com/api/v2/brad/info.json?callback=myExampleCallback

you should instead specify the URL as:

http://vimeo.com/api/v2/brad/info.json?callback={callback}

Once you have determined the URL, load the jsonp module and call Y.jsonp(), passing
in the URL and a function to handle the response. Any JSON that the web service
returns will reside as direct properties of the response object.

Example 5-10 fetches and displays user info from the Vimeo video hosting service.
Clicking the button causes the example to extract the current value of the username
input box, construct a JSONP URL, fetch information about the user, and use
Y.Lang.sub() templating to display some of the returned data in the page. As with the
previous examples, you must call preventDefault() to avoid a page refresh. For example
usernames, try brad, joanna, jason, or barbie.

Example 5-10. Fetching and displaying data with JSONP

<!DOCTYPE html>
<title>Fetching and displaying data with JSONP</title>
<style>
.user { width: 20em; background: #eee; border: 1px solid #888; min-height: 75px;}
.user img { float: right; }
.user h2 { font: normal 14px verdana; margin: 0.2em; }
.user p { font: 12px verdana; color: #333; margin: 0.2em; }
</style>

<form>
<input id='username' value='brad'> <button>Get Vimeo User</button>
</form>
<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('jsonp', 'node-base', function (Y) {

 Y.one('button').on('click', function (ev) {
 var user = Y.one('#username').get('value'),
 url = 'http://vimeo.com/api/v2/' + user + '/info.json?callback={callback}';

136 | Chapter 5: Ajax

www.it-ebooks.info

http://www.it-ebooks.info/

 Y.jsonp(url, function (response) {
 var template = '<div class="user">'
 + '<h2>{display_name} ({location})</h2>'
 + '<p>{bio}</p>'
 + '<p>Videos Uploaded: {total_videos_uploaded}</p></div>'

 Y.one('#demo').setHTML(Y.Lang.sub(template, response));
 });
 ev.preventDefault();
 });
});
</script>

Discussion
If you’re used to the cross-domain restrictions around XHR, JSONP might seem like
magic. In fact, it is a little like magic, although it does require some special assistance
from the server.

The basic JSONP mechanism works not through XHR, but through a different tech-
nique called script loading, the same technique that powers the YUI Loader. In script
loading, YUI dynamically inserts a <script> element into the DOM to fetch a remote
script. For example, YUI could insert the element:

<script src="http://vimeo.com/api/v2/brad/info.json">

Once the remote script from Vimeo finishes loading, this is the equivalent of:

<script>{ "id": 101193, "display_name": "Brad Dougherty", ... }</script>

The <script> element has just inserted bare JSON into the environment, which unless
assigned to a variable or wrapped somehow, can cause a JavaScript error.

Fortunately, script loading is only half of the solution. Over on the server side, a web
service that supports JSONP takes an extra parameter, typically named something like
callback, cb, or cbFunc. Providing this parameter instructs the web service to wrap the
response in the specified function. In other words:

<script src="http://vimeo.com/api/v2/brad/info.json?callback=foo">

instructs Vimeo to return the “JSON padded” version of the response:

<script>foo({ "id": 101193, "display_name": "Brad Dougherty", ... })</script>

This means that as long as your page defines a foo() function further up on the page,
the cross-domain JSON data is wrapped in a function call—and through foo(), you
can do anything you like with that data. Magic!

Be wary of black magic, though. Making a cross-domain JSONP call
means that if the remote site is malicious (or gets hacked by malicious
people), attackers can easily inject arbitrary JavaScript onto your page.

5.6 Getting JSON Data Using Script Nodes (JSONP) | 137

www.it-ebooks.info

http://www.it-ebooks.info/

YUI’s jsonp module adds a little more magic. The reason you need to provide a {call
back} placeholder in the URL is that Y.jsonp() sends its own callback to the remote
web service. The Y.jsonp callback takes care of some housekeeping around the YUI
use() sandbox, then passes the JSON data on to your callback to process the
response object.

Example 5-10 shows the simplest approach, passing in a single callback function to
handle all possible responses. If you want more control, you can pass in a configuration
object instead, much like Y.io(). The configuration object enables you to assign dif-
ferent functions to handle success, failure, and timeout:

Y.jsonp(url, {
 on: {
 success: jsonpSuccess,
 failure: jsonpFailure,
 timeout: jsonpTimeout
 },
 timeout: 3000
});

For an example of a widget that puts this into practice, refer to Recipe 7.6.

Y.jsonp() offers a number of additional configuration options beyond these, as dis-
cussed in the API documentation. Keep in mind that Y.jsonp() has fewer options for
fine-grained control than Y.io(), since dynamic script insertion provides less low-level
control than XHR. For example, you cannot abort a JSONP request in progress or
reliably control the execution order of multiple JSONP calls.

See Also
Recipe 5.7; Recipe 7.6; Recipe 9.7; the Get User Guide; the JSONP User Guide; JSONP
API documentation.

5.7 Fetching and Displaying Data with YQL
Problem
You want to interact with several web services, but it’s a pain to have to remember their
respective URLs, parameters, and other conditions. You are looking for a normalized
way to fetch cross-domain data.

Solution
Load the yql module and call Y.YQL(), passing in a YQL query string and callback
function to handle the response.

138 | Chapter 5: Ajax

www.it-ebooks.info

http://yuilibrary.com/yui/docs/get/
http://yuilibrary.com/yui/docs/jsonp/
http://yuilibrary.com/yui/docs/api/modules/jsonp.html
http://yuilibrary.com/yui/docs/api/modules/jsonp.html
http://www.it-ebooks.info/

Example 5-11 queries Yahoo! Local for address information about pizza restaurants in
Palo Alto. For any YQL query, the actual JSON payload you care about will be nested
under response.query.results.someobject, where the name of someobject depends on
the particular YQL data table you are using. Other response object properties provide
metadata about the request.

Example 5-11. Fetching and displaying data with YQL

<!DOCTYPE html>
<title>Fetching and displaying data with YQL</title>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('yql', 'node-base', function (Y) {
 var query = 'select * from local.search where zip="94301" and query="pizza"';

 Y.YQL(query, function (response) {
 var ol = Y.Node.create('');
 results = response.query.results.Result;

 Y.each(results, function (r) {
 ol.append('' + r.Title + ' — ' + r.Phone + '');
 });
 Y.one('body').append(ol);
 });
});
</script>

It is easy to register new web services with YQL, and many services are already available.
To explore these services, use the YQL Console.

Discussion
If JSONP is a little like magic, YQL is wizardry of the highest order. YQL has been
referred to as “the Swiss Army Knife of the Web,” and “crack for developers.”

To be a bit more prosaic, YQL is an important piece of plumbing used by many pro-
duction Yahoo! services, exposed for external use. At its core, YQL is:

• A collection of Yahoo! servers that can make requests on your behalf, perform
server-side transformations on the data for you, and cache the results.

• A common SQL-like query language for making REST calls.

Supporting a particular web service requires defining a YQL data table that specifies
how to map REST web service URLs to YQL query strings. YQL provides over a hun-
dred data tables for Yahoo! web services, and over a thousand data tables for non-
Yahoo! services, written by members of the YQL developer community.

As an example, the local.search data table defines how to take a string query like:

'select * from local.search where zip="94301" and query="pizza"'

5.7 Fetching and Displaying Data with YQL | 139

www.it-ebooks.info

http://developer.yahoo.com/yql/console/
http://www.it-ebooks.info/

and construct the native REST URL for the Yahoo! Local Search API, passing in the
zip and query parameters correctly. In addition to defining the basic transformation
between the YQL query and the REST URL, data tables can do further transformations
such as renaming parameters or even restructuring the data by executing your own
JavaScript on the YQL servers. For more information, consult the YQL User Guide.

YQL is a useful service with any language, but it especially shines with client-side
JavaScript:

• XHR has tight restrictions around cross-domain requests, and JSONP works only
if the owner of the web service decides to help you out. YQL blows right past these
restrictions. Because YQL serves as your proxy for making cross-domain calls, it
always supports JSONP, regardless of whether the original web service does.

• When called through Y.YQL(), the YQL servers always return results as JSON,
regardless of what the original web service returned.

• Fetching and transforming large amounts of data is expensive to do on the client
side, particularly if the client has a weak network connection or a low-powered
browser. YQL uses Yahoo!’s fast backbone and edge network to fetch and relay
data, and it can run computations for you before sending the data to the client.

Y.YQL() is built on top of Y.jsonp(). You could actually make YQL calls using
Y.jsonp() directly, but Y.YQL() does some extra housekeeping for you and provides
some YQL-specific configuration options.

YQL does have usage limits per requesting client. These limits might
not be important for end users, since requests would be distributed
among many clients. However, it is possible to run into these limits
during development and testing, and they are definitely important with
YUI under Node.js (discussed in more detail in Chapter 10), assuming
all requests come from the same server.

See Also
Recipe 5.8; Recipe 10.4; the YQL User Guide; “Example: Reusing a YQL query”; gen-
eral YQL documentation in the YQL Guide; test your YQL queries in the YQL Console.

5.8 Scraping HTML with YQL
Problem
You want to retrieve data from a site that hasn’t even heard of REST web services.

140 | Chapter 5: Ajax

www.it-ebooks.info

http://yuilibrary.com/yui/docs/yql/
http://yuilibrary.com/yui/docs/yql/yql-requery.html
http://developer.yahoo.com/yql/guide/
http://developer.yahoo.com/yql/console/
http://www.it-ebooks.info/

Solution
Load the yql module and call Y.YQL(), passing in a YQL query string that uses the
html YQL table. You can include an optional XPath expression to isolate a subsection
of the page. The response includes a JSON representation of all HTML content that
matches the XPath.

Example 5-12 extracts and displays product information about handmade Klein bottles
from KleinBottle.com. The XPath grabs the first <table> element on the page (XPath
is 1-based, not 0-based) and returns the child <tr>s as a JSON array. Most of the code
is involved in reformatting the raw data, picking out individual cells in a vertical
<td> column and reassembling that data into horizontal s. The example uses
Y.Lang.sub() templates to construct the YQL query and to construct the HTML to
display.

Example 5-12. Scraping HTML with YQL

<!DOCTYPE html>
<title>Scraping HTML with YQL</title>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('yql', 'node-base', function (Y) {
 var query = 'select * from html where url="{url}" and xpath="{xpath}"',
 params = {};

 params.url = 'http://kleinbottle.com/specs_for_nice_klein_bottles.htm';
 params.xpath = '//table[1]/tr';
 query = Y.Lang.sub(query, params);

 Y.YQL(query, function (response) {
 var ol = Y.Node.create(''),
 rows = response.query.results.tr,
 template = '{product}:'
 + ' {height} x {diameter}, just {price}!',
 data, col, colMax = 8;

 for (col = 1; col <= colMax; col += 1) {
 data = {};
 data.href = 'http://kleinbottle.com/' + rows[0].td[col].p.a.href;
 data.product = rows[0].td[col].p.a.content;
 data.height = rows[1].td[col].p;
 data.diameter = rows[2].td[col].p;
 data.price = rows[8].td[col].p;
 ol.append(Y.Lang.sub(template, data));
 }
 Y.one('body').append(ol);
 });
});
</script>

5.8 Scraping HTML with YQL | 141

www.it-ebooks.info

http://kleinbottle.com/
http://www.it-ebooks.info/

Readers with a background in mathematics or physics are encouraged
to purchase a Klein bottle from KleinBottle.com at their earliest conve-
nience. The confirmation email and packing slip materials are worth the
price of admission by themselves.

Discussion
The html YQL table is useful for quick-and-dirty data gathering. Keep in mind that data
published using web service APIs might have different copyright considerations than
data published using HTML. Also, sites typically at least make some kind of announce-
ment before making breaking changes to their web service APIs, while website markup
is usually much more fluid.

YQL handles invalid HTML by tidying and transforming the contents into well-formed
XML, running the XPath expression against the document, and returning the results
to you as JSON. Extreme cases of pathologically bad markup can defeat YQL, but in
general the process is fairly robust.

In addition to the html table, YQL provides a number of generic data tables that work
with different data formats found across the Web. These include an xml table for fetch-
ing XML, a csv table for CSV data, a microformats table that extracts microformat data
from web pages, and a feed table for extracting data from RSS and Atom feeds. For
example, the following code fetches a list of the most recently posted YUI Theater
videos from the YUI project’s YouTube channel.

var url = 'http://gdata.youtube.com/feeds/base/users/yuilibrary/uploads?alt=rss',
 query = 'select * from feed where url="' + url + '"';

Y.YQL(query, function (response) {
 // ... display video links and titles here ...
});

See Also
Recipe 9.7; the XPath 1.0 specification.

5.9 Querying Data Using DataSource
Problem
You want to supply an application with data using an abstraction layer, so that you can
change the source of the data with minimal impact on the rest of your code.

Solution
Load the datasource rollup or one of its modules such as datasource-local, datasource-
function, datasource-io, or datasource-get. Instantiate a new DataSource object of the

142 | Chapter 5: Ajax

www.it-ebooks.info

http://kleinbottle.com/
http://www.w3.org/TR/xpath/
http://www.it-ebooks.info/

appropriate type and set its source attribute to some local data, a JavaScript function
that returns data, or a URL for making a web service request. Then call sendRe
quest() to fetch the data. sendRequest() is asynchronous for DataSource.IO and Data
Source.Get, and synchronous for DataSource.Function and DataSource.Local.

Example 5-13 uses DataSource to make a JSONP request to GitHub, fetching live data
about issues filed against the JSLint project. The example instantiates a Y.Data
Source.Get object and configures the source to be a web service URL. It then calls
sendRequest(), providing a callback method for success that writes the returned data
into the DOM.

Example 5-13. Using a remote JSON DataSource

<!DOCTYPE html>
<title>Using a remote JSON DataSource</title>

<h1>JSLint: Recently closed issues</h1>
<ol id="issues">

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('datasource-get', 'node-base', function (Y) {
 var src = 'https://api.github.com/repos/douglascrockford/JSLint/issues?state=closed',
 dataSource = new Y.DataSource.Get({ source: src });

 function displayIssues(rsp) {
 var issues = rsp.response.results[0].data,
 template = '{id} {title}',
 ol = Y.one('#issues');
 Y.Array.each(issues, function (issue) {
 ol.append(Y.Lang.sub(template, issue));
 });
 }

 dataSource.sendRequest({
 on: {
 success: displayIssues
 }
 });
});
</script>

Unlike Y.jsonp(), Y.DataSource.Get tacks the JSON callback function
onto the URL automatically. The default name for the JSONP parameter
is "callback". To change this assumption, set the scriptCallbackParam
attribute before making the request:

dataSource.set('scriptCallbackParam', 'cbFunc');

Example 5-14 illustrates how to use a local DataSource. Instead of a URL, the src vari-
able represents locally stored data about issues.

5.9 Querying Data Using DataSource | 143

www.it-ebooks.info

http://www.it-ebooks.info/

Example 5-14. Using a local DataSource

<!DOCTYPE html>
<title>Using a local DataSource</title>

<h1>JSLint: Recently closed issues</h1>
<ol id="issues">

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('datasource-local', 'node-base', function (Y) {
 var src = [
 { 'id': 2318990, 'html_url':'#', 'title':'Bug? inconsistent whitespace flagging' },
 { 'id': 2092345, 'html_url':'#', 'title':'newcap has no effect on `this`' },
 { 'id': 1920535, 'html_url':'#', 'title':'Filtering the body of a "for in" loop' }
];
 var dataSource = new Y.DataSource.Local({ source: src });

 function displayIssues(rsp) {
 var issues = rsp.response.results,
 template = '{id} {title}',
 ol = Y.one('#issues');
 Y.Array.each(issues, function (issue) {
 ol.append(Y.Lang.sub(template, issue));
 });
 }

 dataSource.sendRequest({
 on: {
 success: displayIssues
 }
 });
});
</script>

Comparing Examples 5-13 and 5-14 side by side, notice that the displayIssues() func-
tion is almost identical. Example 5-13 has the line:

var issues = rsp.response.results[0].data,

while Example 5-14 has the line:

var issues = rsp.response.results

This is because the response object has a slightly different structure for Data
Source.Get versus DataSource.Local. It would be really nice if the response objects had
an identical structure, because then the displayIssues() function would be exactly the
same in both cases. For a solution to this problem, refer to Recipe 5.10.

Discussion
DataSource is a universal adapter for retrieving data from disparate sources and nor-
malizing it. DataSource offers:

144 | Chapter 5: Ajax

www.it-ebooks.info

http://www.it-ebooks.info/

Abstraction over multiple types of data providers
For example, a DataTable or AutoComplete widget can consume any DataSource and
display its data, regardless of whether the data originally came from a local variable,
a remote web service, or an arbitrary function.

There are four basic types of DataSources:

• DataSource.Local, for abstracting data stored in a local variable, as shown in
Example 5-14.

• DataSource.Get, for abstracting data fetched using script loading, as shown in
Example 5-13.

• DataSource.IO, for abstracting data fetched using XHR. Usage is almost iden-
tical to DataSource.Get:

var dataSource = new Y.DataSource.IO({ source: '/io.php' });

• DataSource.Function, for abstracting data provided by an arbitrary function.
This could be data from localStorage, data returned by a Web Worker, or any
number of things:

var dataSource = new Y.DataSource.Function({
 source: function (request) {
 // Lots of interesting work here
 return data;
 }
});

To fully normalize data from disparate sources, you can plug the DataSource with
a DataSchema. For more information, refer to Recipe 5.10.

Caching
If you load the module datasource-cache and plug DataSource with Y.Plugin.Data
SourceCache, you can cache results from requests. For example:

dataSource.plug(Y.Plugin.DataSourceCache, { max: 10 });

caches the first 10 unique requests. This is particularly useful for DataSource.Get
and DataSource.IO. If the browser has localStorage available, you can save Data
Source data offline:

dataSource.plug(Y.Plugin.DataSourceCache, {
 max: 10,
 cache: Y.CacheOffline
});

Polling
Ordinarily, you make a single request by calling dataSource.sendRequest(request
Config), as shown in Example 5-13. However, if you also load the datasource-
pollable module, DataSource gains additional API methods for polling. To start
polling, call:

var transactionId = dataSource.setInterval(5000, requestConfig);

5.9 Querying Data Using DataSource | 145

www.it-ebooks.info

http://www.it-ebooks.info/

This makes the specified request every five seconds, until you call:

dataSource.clearInterval(transactionId);

Take care not to confuse DataSource with other YUI objects that are meant to “hold
data” or to “represent a ‘thing’,” such as Y.Model. It is usually better to think of Data
Source as an adapter for data, rather than a concrete representation of that data.

See Also
Recipe 5.10; Recipe 8.11; Recipe 8.17; the DataSource User Guide.

5.10 Normalizing DataSource Responses with a DataSchema
Problem
You want to normalize data provided in the DataSource response object, so that other
components can use the DataSource without needing any special logic that depends on
the original source of that data.

Solution
Load the appropriate DataSource schema plugin module, such as datasource-json
schema. Before calling sendRequest(), plug the DataSource with a schema that defines a
resultListLocator string (to define a path into the data) and a resultFields array (to
select particular fields to use).

Example 5-15 solves the problem discussed in Recipe 5.9, namely that DataSource
.Get and DataSource.Local have slightly different response objects. This slight differ-
ence means that a component calling dataSource.sendRequest() must provide a differ-
ent success handler function depending on whether the DataSource is remote or local.

To normalize this difference away, you can plug the DataSource with a Y.Plugin.Data
SourceJSONSchema, providing a schema object with two properties:

• resultListLocator indicates that the fields of interest reside one level down, on a
data property on the root object.

• resultFields selects the fields of interest: html_url, id, and title. Any other fields
get thrown away.

When the user invokes sendRequest(), the DataSource.Get instance applies the schema,
which enforces this structure on the response data—it walks down one step to the
data property, selects three fields, and attaches these fields directly to rsp.response
.results. The response object now has the same structure as the response object in
Example 5-14, which means Example 5-15 can reuse the exact same displayIssues()
function.

146 | Chapter 5: Ajax

www.it-ebooks.info

http://yuilibrary.com/yui/docs/datasource/
http://www.it-ebooks.info/

This is important because other components in this application can now call data
Source.sendRequest() blindly. Thanks to the schema, the difference between local and
remote data sources has been abstracted away.

Example 5-15. Normalizing a remote JSON DataSource with a DataSchema

<!DOCTYPE html>
<title>Normalizing a remote JSON DataSource with a DataSchema</title>

<h1>JSLint: Recently closed issues</h1>
<ol id="issues">

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('datasource-get', 'datasource-jsonschema', 'node-base', function (Y) {
 var src = 'https://api.github.com/repos/douglascrockford/JSLint/issues?state=closed',
 dataSource = new Y.DataSource.Get({ source: src });

 function displayIssues(rsp) {
 var issues = rsp.response.results,
 template = '{id} {title}',
 ol = Y.one('#issues');
 Y.Array.each(issues, function (issue) {
 ol.append(Y.Lang.sub(template, issue));
 });
 }

 dataSource.plug(Y.Plugin.DataSourceJSONSchema, {
 schema: {
 resultListLocator: 'data',
 resultFields: ['html_url', 'id', 'title']
 }
 });

 dataSource.sendRequest({
 on: {
 success: displayIssues
 }
 });
});
</script>

Discussion
In addition to the datasource-jsonschema plugin, YUI provides datasource-array
schema, datasource-textschema, and datasource-xmlschema for manipulating Data
Source response data. All DataSchema implementations support a resultListLocator
string to provide a path to a list or array of data, and a resultFields array to select
individual fields within that list. The exact nature of each depends on the type of data
you are processing. For example, a DataSource.IO that fetches XML can plug itself with
Y.Plugin.DataSourceXMLSchema, in which case resultListLocator and resultFields are
XPath expressions:

5.10 Normalizing DataSource Responses with a DataSchema | 147

www.it-ebooks.info

http://www.it-ebooks.info/

dataSource.plug(Y.Plugin.DataSourceXMLSchema, {
 schema: {
 resultListLocator: '//issues',
 resultFields: ['html_url', 'id', 'title']
 }
});

resultFields can not only select fields, but also rename fields. For example, if you
didn’t like the field name 'html_url' that the GitHub API returns, you could rename
it to 'url' with this schema:

dataSource.plug(Y.Plugin.DataSourceJSONSchema, {
 schema: {
 resultListLocator: 'data',
 resultFields: [{ key: 'url', locator: 'html_url' }, 'id', 'title']
 }
});

Renaming fields is useful if you are trying to work with disparate APIs that are describing
roughly the same thing (for example, if your application is designed to display issue
data from both GitHub and Bitbucket). If renaming the field with a key and locator
isn’t enough, you can also supply a parser function to transform the field’s data.

While DataSchema plugins are designed to work with DataSource, you can also use
DataSchema standalone, calling the apply() method to apply the schema to any object.
For example, you could load the dataschema-json module to apply a JSON schema
without involving DataSource at all:

var schema = {
 resultListLocator: 'foo[2].bar',
 resultFields: [
 'baz',
 { key: 'quux', locator: 'quux.content' },
 { key: 'numFlumphs', parser: function (n) { return n.toExponential(); } }
]
};

var normalizedData = Y.DataSchema.JSON.apply(schema, data);

For more information, refer to DataSchema’s documentation.

See Also
Recipe 5.9; the DataSchema User Guide; the DataSchema class gallery module.

148 | Chapter 5: Ajax

www.it-ebooks.info

http://yuilibrary.com/yui/docs/dataschema/
http://yuilibrary.com/gallery/show/dataschema-class
http://www.it-ebooks.info/

CHAPTER 6

CSS

Although YUI is primarily a JavaScript framework, it also provides CSS resources.
YUI’s CSS support dates back to very early releases of YUI 2, and has now evolved to
include:

• YUI CSS Reset, which nulls out default browser styles.

• YUI CSS Base, which together with YUI CSS Reset, sets all browsers to have a
common baseline look and feel.

• YUI CSS Fonts, which provides a consistent set of font sizes across all browsers.

• YUI CSS Grids, which enables you to quickly create sophisticated layouts using
very minimal CSS.

Although developed alongside the YUI 3 JavaScript APIs, the YUI stylesheets are not
tied to YUI 3 JS in any way. They work just fine with legacy YUI 2 code, with other
JavaScript libraries, or with no JavaScript at all.

Like YUI JavaScript, YUI CSS can be combo loaded, minified, gzipped, and served from
the Yahoo! CDN. For example, the combo load URL for YUI CSS Reset and YUI CSS
Fonts looks like:

http://yui.yahooapis.com/combo?3.5.0/build/cssreset/reset-min.css
&3.5.0/build/cssfonts/fonts-min.css

YUI CSS Reset, Base, and Fonts come in two flavors: global and contextual. By default,
these stylesheets apply to every element in the page. To restrict them to a subsection
of the page, you can load the contextual version of the stylesheet. For example:

http://yui.yahooapis.com/3.5.0/build/cssreset/reset-context-min.css

loads a version of CSS Reset scoped to act only on elements that descend from the class
yui3-cssreset. Similarly, you can pull in base-context-min.css (scoped to act under
yui3-cssbase), and fonts-context-min.css (scoped to act under yui3-cssfonts). To
generate the exact combo load URL for your needs, use the YUI Dependency
Configurator.

149

www.it-ebooks.info

http://yuilibrary.com/yui/configurator/
http://yuilibrary.com/yui/configurator/
http://www.it-ebooks.info/

It is also possible to load YUI CSS as CSS modules, using YUI().use('css
reset', ...). However, it is much more common to load the stylesheets
using static <link> elements at the top of the document. YUI CSS is less
about functionality and much more about design, which should be ap-
plied even if JavaScript is turned off.

Recipe 6.1 explains how to eliminate default browser styles using YUI CSS Reset, and
why this is a good idea.

Recipe 6.2 explains how to restore a set of cross-browser defaults using YUI CSS Base.

Recipe 6.3 describes how to use YUI CSS Fonts to normalize fonts and font sizes without
overriding user preferences.

Recipe 6.4 introduces YUI CSS Grids, a highly efficient and easy-to-use framework for
implementing layouts.

Recipe 6.5 explains how to use YUI grid units and media queries to create a responsive
design that adjusts from phones to tablets to desktop monitors.

Recipe 6.6 demonstrates how to use the CSS component of the button-base module to
create attractive, consistent form buttons.

6.1 Normalizing Browser Style Inconsistencies
Problem
You want to tear down conflicting default browser styles so that it is easy to style your
application consistently.

Solution
Use YUI’s CSS Reset stylesheet to provide a clean foundation to build on, as shown in
Example 6-1.

Example 6-1. YUI CSS Reset

<!DOCTYPE html>
<title>YUI CSS Reset</title>
<link rel="stylesheet"
 href="http://yui.yahooapis.com/3.5.0/build/cssreset/reset-min.css">

<h1>YUI CSS Reset</h1>
<p>I like YUI CSS Reset for these three reasons:</p>

 It is minified, gzipped, and served from a central CDN.
 It can easily be combo loaded and served with other YUI stylesheets.
 It does a great job normalizing away default browser styles.

150 | Chapter 6: CSS

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
When an HTML page does not provide explicit CSS for a property, browsers fall back
to their built-in CSS defaults. These defaults help display unstyled pages in some rea-
sonable form, but they are wildly inconsistent between browsers. For example, one
browser might indent ordered lists using padding, while another might use margin. If
you just set a list’s padding, your lists will look correct in the first browser, but badly
distorted in the second.

A general solution to this problem is to reset all default styles to the same baseline.
Reset stylesheets have been around since at least 2004, and come in many different
flavors, ranging from just setting margin and padding to 0 on a few elements to more
extensive resets like YUI CSS Reset.

YUI CSS Reset lies more on the aggressive end of the spectrum, even removing bold
and italic styles from semantic inline elements like , , and <cite> (though
it does not affect elements such as and <i>). The goal is a high degree of normal-
ization and fine-grained control, at the cost of requiring more CSS to tear down styles
and to build your page back into some kind of presentable form. This kind of tight
control is useful for helping maintain cohesive layout and typography in any web page,
but is arguably even more important for web applications, where being just a pixel or
two off is often immediately noticeable.

YUI CSS Reset does not waste bytes resetting deprecated and invalid elements, so if
your page includes an <applet>, you must reset that yourself. YUI CSS Reset also avoids
common design errors found in other reset stylesheets, such as using the * universal
selector (bad for performance) or clobbering :focus (bad for accessibility).

See Also
“The History of CSS Resets”; “Should You Reset Your CSS?”.

6.2 Rebuilding Uniform Base Styles
Problem
You want to make sure that your application has a consistent CSS foundation with YUI
Reset, but you don’t want to start with a completely unstyled page.

Solution
Add YUI CSS Base to the YUI combo load URL alongside YUI CSS Reset, as shown in
Example 6-2. YUI CSS Base adds back commonly used styles such as indenting for list
items, margins for block elements, italic for and other logical inline elements,
dotted underlines for <abbr>, and more.

6.2 Rebuilding Uniform Base Styles | 151

www.it-ebooks.info

http://sixrevisions.com/css/the-history-of-css-resets/
http://sixrevisions.com/css/should-you-reset-your-css/
http://www.it-ebooks.info/

Example 6-2. YUI CSS Base (with Reset)

<!DOCTYPE html>
<title>YUI CSS Base (with Reset)</title>
<link rel="stylesheet" href="http://yui.yahooapis.com/combo
?3.5.0/build/cssreset/cssreset-min.css&3.5.0/build/cssbase/cssbase-min.css">

<h1>YUI CSS Base (with CSS Reset)</h1>
<p>I like YUI CSS Base for these three reasons:</p>

 It is minified, gzipped, and served from a central CDN.
 It can easily be combo loaded and served with other YUI stylesheets.
 It speeds up development by adding back a sensible set of default styles.

Discussion
YUI CSS Base must be used alongside (and immediately after) YUI CSS Reset. If you
prefer to rebuild your styles yourself, you can always use Reset alone.

In addition to using Base as a quick way to get back to a reasonable baseline look, you
can also use it as a kind of scaffolding during development. Add in Base at the beginning
of the development process to make the page readable, and then swap it out later for
a hand-tailored stylesheet when you are getting closer to releasing to production.

6.3 Applying Consistent Fonts
Problem
You want to use the same font in all browsers and make sure that the font size scales
up and down consistently.

Solution
Add YUI CSS Fonts to the YUI combo load URL alongside YUI CSS Reset (and op-
tionally, YUI CSS Base, as shown in Example 6-3). By default, ordinary text appears in
13px Arial with a 16px line-height, while text in <pre> and <code> elements uses the
monospace font family. You can make elements larger or smaller using the percent dec-
larations listed shortly in Table 6-1.

Example 6-3. YUI CSS Fonts (with Reset and Base)

<!DOCTYPE html>
<title>YUI CSS Fonts (with Reset and Base)</title>
<link rel="stylesheet" href="http://yui.yahooapis.com/combo
?3.5.0/build/cssreset/reset-min.css&3.5.0/build/cssbase/base-min.css
&3.5.0/build/cssfonts/fonts-min.css">

<h1>YUI CSS Fonts (with CSS Reset and Base)</h1>
<p>I like YUI CSS Fonts for these three reasons:</p>

152 | Chapter 6: CSS

www.it-ebooks.info

http://www.it-ebooks.info/

 It is minified, gzipped, and served from a central CDN.
 It can easily be combo loaded and served with other YUI stylesheets.
 It provides a consistent set of resizable fonts.

To avoid hearing your hip designer friends shriek in horror, you can override the Arial
default with a single declaration:

body { font-family: some-better-font }

Discussion
Declaring font sizes in percentages rather than pixels enables users to resize their own
fonts across more browsers. However, finding the boundaries is a tricky art; a percent-
age value that might round to 16 pixels in one browser could round to 17 pixels in
another. Table 6-1 lists optimal cross-browser percentage values from 10px to 26px.

Table 6-1. Font pixels and percent values

Pixels Percentage

10px 77%

11px 85%

12px 93%

13px 100%

14px 108%

15px 116%

16px 123.1%

17px 131%

18px 138.5%

19px 146.5%

20px 153.9%

21px 161.6%

22px 167%

23px 174%

24px 182%

25px 189%

26px 197%

For example, for 18px <h1> elements, set:

h1 { font-size: 138.5% }

6.3 Applying Consistent Fonts | 153

www.it-ebooks.info

http://www.it-ebooks.info/

YUI CSS Fonts is designed to address font size disparities in a wide variety of browsers,
going all the way back to IE 6. IE 6 only has the concept of text resizing (x-small, small,
medium, …), with large jumps in size between each stage. YUI CSS Fonts provides for
smaller jumps. Newer versions of IE and most other browsers support a separate con-
cept called “page zoom” with more graceful scaling factors. Even newer versions of IE
do not resize pixel font sizes, so YUI CSS Fonts declares its base font in pixels for all
browsers except IE.

6.4 Laying Out Content with Grids
Problem
You want to create a multicolumn layout using CSS.

Solution
Use YUI CSS Grids (optionally combo loaded with YUI CSS Reset, Base, and Fonts),
as shown in Example 6-4. YUI CSS Grids relies on a top-level grid class named yui3-
g that directly contains one or more unit classes that start with yui3-u. The Grids “unit
system” consists of classes of the form yui3-u-x-y, where x/y is some fraction that is a
multiple of 1/24. Assigning a class of yui3-u-x-y sets that column to be a fraction x/y
of the parent element’s width.

Example 6-4. YUI CSS Grids: three-column layout

<!DOCTYPE html>
<title>YUI CSS Grids: three-column layout</title>
<link rel="stylesheet"
 href="http://yui.yahooapis.com/3.5.0/build/cssgrids/cssgrids-min.css">
<style>
body { margin: auto; width: 960px; }
p { margin: 0px; border: 1px solid #000; }
</style>

<div class="yui3-g">
 <div class="yui3-u-1-3"><p>1/3 of the width</p></div>
 <div class="yui3-u-1-2"><p>1/2 of the width</p></div>
 <div class="yui3-u-1-6"><p>1/6 of the width</p></div>
</div>

Example 6-4 adds some cosmetic CSS to <p> to make the grid structure more visible,
but otherwise it is very bare bones. The example also includes some CSS on the con-
taining <body> to center the layout and set its overall width. This is entirely optional.
You can align the grid however you like, and set it to whatever width you like (or not).

You may also freely stack grids on top of other grids and nest grids inside each other
without side effects, as shown in Example 6-5.

154 | Chapter 6: CSS

www.it-ebooks.info

http://www.it-ebooks.info/

Example 6-5. YUI CSS Grids: stacked and nested layout

<!DOCTYPE html>
<title>YUI CSS Grids: stacked and nested layout</title>
<link rel="stylesheet"
 href="http://yui.yahooapis.com/3.5.0/build/cssgrids/cssgrids-min.css">
<style>
body { margin: auto; width: 960px; }
p { margin: 0px; border: 1px solid #000; }
</style>

<div class="yui3-g">
 <div class="yui3-u-1-4"><p>1/4</p></div>
 <div class="yui3-u-1-2">
 <div class="yui3-g">
 <div class="yui3-u-1-2"><p>1/2 (of my parent)</p></div>
 <div class="yui3-u-1-2"><p>1/2 (of my parent)</p></div>
 </div>
 </div>
 <div class="yui3-u-1-4"><p>1/4</p></div>
</div>
<div class="yui3-g">
 <div class="yui3-u-1-3"><p>1/3</p></div>
 <div class="yui3-u-1-2"><p>1/2</p></div>
 <div class="yui3-u-1-6"><p>1/6</p></div>
</div>

Any direct child of a yui3-g must be a container with a yui3-u* unit class
of some kind. If you add a naked <div> as a child of yui3-g, your layout
will break.

Avoid adding margins, padding, and borders directly to unit <div>s. If
you want to create gutters and other effects, the recommended pattern
is to create and style a child <div class="content"> inside the unit.

Keep in mind that you do not necessarily need to use <div>s. If you prefer to think of
grid units as list items, and you have a reset stylesheet in place, you can always do
something like:

<ul class="yui3-g">
 <li class="yui3-u-1-3">...
 <li class="yui3-u-2-3">...

Discussion
YUI CSS Grids is an extremely efficient CSS grids framework. At under 1.5K of CSS, it
is two to three times smaller than nearly all other popular grid frameworks. As with all
YUI assets, Grids is served combo loaded, minified, and gzipped from the CDN.

Grids also avoids the problem of “div-itis” and “class-itis,” thanks to its minimal
semantics: two levels of <div>s with no spacer elements or extra classes required. (If
you want to apply internal padding or borders, a third <div class="content"> is

6.4 Laying Out Content with Grids | 155

www.it-ebooks.info

http://www.it-ebooks.info/

recommended.) YUI CSS Grids does not impose any canned layouts; you can use the
provided 1/24 measurement units, or just set arbitrary pixel or percentage widths.
Nesting is easy because each unit correctly determines its width based on the width of
its container.

The main disadvantage of YUI CSS Grids is that it does not work in very old browsers.
It actually does work in IE 6, but does not work in Firefox 2 and below.

When web designers started abandoning table-based layouts about a decade ago, they
turned to CSS floats, the most feasible strategy at the time for placing columns next to
each other. Over time, ad hoc techniques evolved into reusable frameworks, and today
there are many mature float-based grid frameworks to choose from.

Unfortunately, floats have many side effects when used for layout, which in turn require
hacks to work around. Lining up grids properly can cause rounding issues. Sizes can
vary across browsers. Older browsers can have bad interactions with scrolling and float-
based designs. It is hard to center floating <div>s with respect to each other. For
bidirectional text, you cannot simply set dir="rtl"—you have to manually fix all your
floats.

Instead of using float, YUI CSS Grids uses display: inline-block. The benefits of
inline-block include:

• Greatly reducing size and complexity. Because YUI CSS Grids doesn’t need layer
upon layer of hacks to handle edge cases, it is considerably smaller and less buggy
than traditional float-based grid frameworks.

• Alignment and centering is trivial. For example, text-align: center and even
vertical-align: middle and bottom finally work as expected.

• For bidirectional text, you can freely set dir="rtl" to a section or to the whole page.

One area where both float and inline-block layouts currently still fall short is in
equalizing column heights. The tried-and-true strategy is to use CSS colors and back-
grounds to create the illusion that the columns are equal height. Alternatively, you can
trigger table layout mode by setting the grid to be display: table and the units to
display: table-cell. This won’t work in IE 7 and below, but if necessary, you can
always fix that up with JavaScript. Aren’t you glad you didn’t give up and use tables?

See Also
Nicole Sullivan’s OOCSS; “Give Floats the Flick in CSS Layouts”; “Farewell Floats:
The Future of CSS Layout”.

156 | Chapter 6: CSS

www.it-ebooks.info

http://giveupandusetables.com/
http://oocss.org/
http://www.sitepoint.com/give-floats-the-flick-in-css-layouts/
http://designshack.co.uk/articles/css/farewell-floats-the-future-of-css-layout/
http://designshack.co.uk/articles/css/farewell-floats-the-future-of-css-layout/
http://www.it-ebooks.info/

6.5 Using Grids for Responsive Design
Problem
You want to design a layout that adapts itself to a wide variety of devices, ranging from
small phones to tablets up to large desktop computers.

Solution
Create a grid using yui3-u units. While yui3-u-x-y units take up a fixed fraction of their
parent container, by default yui3-u units collapse to the width of their inner content,
making them an ideal building block for implementing fluid layouts and for creating
fixed-size columns.

After setting up the grid, use media queries to define how the layout should respond to
different screen sizes. Example 6-6 illustrates a relatively simple responsive layout that
supports three broad classes of devices, plus a fallback for older browsers:

Phones
If the viewport is 480px or smaller, the stylesheet overrides all yui3-u units to use
display: block instead of display: inline-block. The navigation <div> appears
on top of the content, rather than to the left side.

Tablets and small desktops
If the viewport is between 481px and 960px, the stylesheet switches to a fixed
column for the navigation and a fluid column for the content area. To create a fixed
lefthand column, first make room by adding left padding to the parent container,
then set the fixed column’s width and use a negative left margin to drag it over to
the correct location. Finally, set the fluid column’s width to 100% so it can fill the
remaining space.

Larger desktops
If the viewport exceeds 960px, the stylesheet switches to a fixed size for both col-
umns, centered with respect to the viewport.

Legacy browsers
If the browser does not support media queries at all, it receives a fallback layout.
In this case, the fallback layout is identical to the “larger desktop” layout, although
in general, the fallback layout could be completely different.

The page also adds a <meta name="viewport"> element to improve presentation in mo-
bile browsers. Without this element, Safari on iOS and other mobile browsers typically
fall back to displaying a zoomed-out version of the desktop layout, rather than the
mobile layout.

To see the example in action without having to resort to multiple devices, simply resize
your browser window and watch the layout transition as the browser matches different
media queries.

6.5 Using Grids for Responsive Design | 157

www.it-ebooks.info

http://www.it-ebooks.info/

Example 6-6. Using Grids for responsive design

<!DOCTYPE html>
<title>Using Grids for responsive design</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="stylesheet"
 href="http://yui.yahooapis.com/3.5.0/build/cssgrids/cssgrids-min.css">
<style>
/* Default layout for browsers that do not support media queries */
body { margin: auto; width: 960px; }
.nav { width: 240px; }
.main { width: 720px; }

/* Phone: completely vertical layout */
@media screen and (max-width: 480px) {
 body { margin: inherit; width: inherit; }
 .yui3-u { display: block; }
 .nav { width: 100%; }
 .main { width: 100%; }
}

/* Tablet to small desktop: side nav, fluid layout */
@media screen and (min-width: 481px) and (max-width: 960px) {
 body { margin: inherit; width: inherit; }
 .layout { padding-left: 240px; }
 .nav { margin-left: -240px; width: 240px; }
 .main { width: 99%; }
}

/* Desktop: max out with a centered, 960px fixed width layout */
@media screen and (min-width: 961px) {
 body { margin: auto; width: 960px; }
 .nav { width: 240px; }
 .main { width: 720px; }
}
</style>
<div class="yui3-g layout">
 <div class="yui3-u nav">

 Chapter 1
 Chapter 2
 Chapter 3

 </div>
 <div class="yui3-u main">
 <p>The author of these Travels, Mr. Lemuel Gulliver, is my ancient and
 intimate friend; there is likewise some relation between us on the
 mother's side. About three years ago, Mr. Gulliver growing weary of the
 concourse of curious people coming to him at his house in Redriff, made a
 small purchase of land, with a convenient house, near Newark, in
 Nottinghamshire, his native country; where he now lives retired, yet in
 good esteem among his neighbours.</p>

 <p>Although Mr. Gulliver was born in Nottinghamshire...</p>
 </div>
</div>

158 | Chapter 6: CSS

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Example 6-6 is just the skeleton of a responsive design—one that only attempts to
handle layout, and in a relatively simple way. A more production-quality responsive
design would likely have a more complex layout to worry about, plus additional media
query styles for doing things like adjusting image sizes, showing and hiding different
elements, and more.

For simplicity, the example uses only three media queries. You can always design and
test your layout using a more fine-grained range of media queries, depending on your
available time and budget.

See Also
Ethan Marcotte’s original article on responsive design; Smashing Magazine’s article
“Responsive Web Design: What It Is and How To Use It”; Mozilla’s article “Using the
viewport meta tag to control layout on mobile browsers”.

6.6 Creating Consistent Buttons
Problem
You want to add buttons that have a consistent and modern look and feel across
browsers.

Solution
Load YUI’s CSS Button stylesheet and add the class yui3-button to any button that
needs styling. The stylesheet sets consistent padding, corners, and backgrounds for
buttons, in their normal state and in the :hover and :active state.

Example 6-7 demonstrates three buttons: a default grey active button, a button flagged
as disabled with the yui3-button-disabled class, and a customized error button with a
different background color and size. YUI CSS Button is designed to make it easy to
override the background colors, foreground colors, and more.

Example 6-7. Creating consistent buttons

<!DOCTYPE html>
<title>Creating consistent buttons</title>
<link rel="stylesheet"
 href="http://yui.yahooapis.com/3.5.0/build/cssbutton/cssbutton-min.css">
<style>
.giant-error { background: #c44; font-size: 150%;}
</style>

<button class="yui3-button">active</button>
<button class="yui3-button yui3-button-disabled">disabled</button>
<button class="yui3-button giant-error">error</button>

6.6 Creating Consistent Buttons | 159

www.it-ebooks.info

http://www.alistapart.com/articles/responsive-web-design/
http://coding.smashingmagazine.com/2011/01/12/guidelines-for-responsive-web-design/
https://developer.mozilla.org/en/Mobile/Viewport_meta_tag
https://developer.mozilla.org/en/Mobile/Viewport_meta_tag
http://www.it-ebooks.info/

Figure 6-1 illustrates the results of Example 6-7.

Figure 6-1. Three CSS buttons

Discussion
Like YUI CSS Grids, while on the surface YUI CSS Button might appear to be similar
to other stylesheets, under the hood it is significantly ahead of the curve. In many button
stylesheets, creating a button with a variant color means resorting to a CSS button tool
to generate dozens of redundant lines of CSS code just for that new button type. By
contrast, YUI CSS Button uses gradients intelligently, relying on highlights and shad-
ows to serve as a generic masking layer. This makes it trivial to design different buttons
simply by overriding the color and background color.

YUI also supports a wide range of browsers—legacy browsers display reasonably nice-
looking buttons, while newer browsers display rounded corners and subtle gradients.
Many popular button stylesheets degrade poorly on Internet Explorer, even versions
of Internet Explorer that do in fact support advanced CSS features.

YUI CSS Button is actually a subcomponent of the JavaScript modules button-base and
button-group. The button-base module dynamically creates buttons with correct ARIA
(Accessible Rich Internet Applications) roles and states for accessibility, and provides
some event management. The button-group module adds the ability to define groups
of buttons that act like radio buttons or checkboxes.

If you just want attractive buttons, YUI CSS Button is designed so that you can load
and use it completely standalone. If you want the richer behavior provided by button-
base and button-group, loading either of these modules will pull in the CSS automati-
cally (much like a widget).

See Also
YUI Button User Guide.

160 | Chapter 6: CSS

www.it-ebooks.info

http://yuilibrary.com/yui/docs/button/
http://www.it-ebooks.info/

CHAPTER 7

Infrastructure

If you do some cursory searches about YUI, you might hear people say that it’s “an
Ajax library with widgets.” Dig a little further, and you’ll probably hear phrases like,
“YUI supports rich web applications,” or that it “helps provide structure,” or that it
“scales well with larger code bases.”

Well, that’s easy enough to say—but what is it specifically about YUI that makes it
suitable for larger applications? Arguably, this boils down to a handful of key features.

The first is YUI’s Loader and module system, which makes it possible to efficiently
reassemble just the chunks of code you need, when you need them.

The second is YUI’s highly configurable custom event system, which provides an ob-
vious way to decouple components.

The third is YUI’s ecosystem of tools for testing, deploying, and documenting your
professional-grade code.

The fourth is YUI’s Base infrastructure, discussed in this chapter.

The YUI Base object is the fundamental building block for major YUI components and
apps. Casual users of YUI don’t necessarily need to know much about Base, but if you’re
a component builder, you should understand that much of the library either powers
Base, or is powered by it. Base’s descendants include:

• Widget, the foundation for Overlay, Slider, Calendar, and all other core widgets.
This chapter explains how to create your own widgets from scratch. For example
usage of the core widgets, refer to Chapter 8.

• Utility objects such as Cache, DataSource, RecordSet, and Plugin.Base.

• The App Framework, which was heavily inspired by the Backbone.js MVC library,
but with YUI idioms. The App Framework supports full-fledged JavaScript appli-
cations on both the client and server sides. It is loose enough to be used piecemeal,
but provides structure for managing larger apps. Like Backbone.js, the App Frame-
work isn’t strict MVC—for instance, a YUI View is more of a classical view with
some controller functionality mixed in. The App Framework has also evolved to

161

www.it-ebooks.info

http://www.it-ebooks.info/

include progressive Ajax enhancement (Pjax) and general management for single-
page apps (App).

If Backbone.js is so nifty, why not just wrap it as a YUI module and
call it a day? That approach would have a) dragged in unnecessary
dependencies that YUI already provides, and b) failed to leverage
YUI’s powerful custom event system.

If you have a lot of free time on your hands, take a look at the source code for the oldest
widgets in the YUI 2 source tree, such as TreeView or DataTable. Even as far back as
YUI 0.10.x, you will see useful patterns around state management and message passing
starting to emerge. YUI 2 started to standardize those patterns, and YUI 3 finally co-
dified them in the Base and Widget objects. Understanding this Base infrastructure is
what enables you to build your own widgets, rather than just exercising widgets de-
signed by others.

Recipe 7.1 describes the Attribute API, which helps you manage an object’s state.
Along with EventTarget (discussed in Chapter 4), this API is a critical building block
for understanding YUI infrastructure.

Recipe 7.2 builds on the previous recipe, introducing the Base object. Base includes
attribute management, event handling, easy extension and augmentation, and a stan-
dard init/destroy lifecycle. Recipe 7.3 demonstrates an easier way to define Base objects,
at the cost of loading another module.

Recipe 7.4 introduces Widget, the foundational object for visible, reusable components
in YUI. Widget extends Base, adding strong conventions for rendering and extension.

Recipes 7.5 and 7.6 cover common use cases for widgets: how to create a widget that
constructs itself from static HTML already on the page, and how to enable widgets to
communicate with remote web services. See also Recipe 11.6 on how to internationalize
a widget’s user interface strings.

The PluginHost API makes it easy to add and remove bundles of functionality to Base-
derived components. Recipe 7.7 explains how to create a simple plugin that adds
methods to the host’s prototype, while Recipe 7.8 illustrates a more complex plugin
that alters the host’s existing behavior.

Widgets and views almost always have associated CSS resources. Recipe 7.9 shows how
to use the Loader to load a widget’s CSS as a YUI module. Recipe 7.10 describes YUI
skins, an alternative mechanism that (potentially) enables users to toggle the look and
feel.

Recipe 7.11 introduces the App Framework with an example of Model, an object that
represents data as attributes.

Recipe 7.12 provides an example implementation of Model’s sync() API, which enables
you to read or persist a model’s data in local or remote data stores.

162 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

Recipe 7.13 introduces ModelList and explains how to implement a sync layer that loads
data from multiple Models at once.

Recipe 7.14 describes View, a distant cousin of Widget that renders HTML, but with
lighter conventions and some handy syntax for handling user interactions through
DOM events.

A key design pattern in the App Framework is to loosely couple models and views
together, such that changes to model data get reflected in the page. Recipe 7.15 sets up
this relationship between a single Model and View, while Recipe 7.16 sets up this rela-
tionship for an entire ModelList.

Recipe 7.17 shows how to use Router to save new URLs into browser history.

Finally, Recipe 7.18 introduces routes, which map URL paths within your application
to JavaScript functions. Together with history management, this enables you to create
full-page JavaScript applications with true URLs.

Because Base, Widget, and the App Framework are substantial APIs, the
examples in this chapter are a little different from the rest of the book.
First, the code examples are longer, ranging from 30 lines and higher.
Second, this chapter relies on YUI.add() to define reusable modules, so
please review the relevant recipes in Chapter 1 if necessary. Third, de-
spite their length, the code samples in this chapter are meant to clearly
illustrate a small number of topics. A complete widget with professional-
quality CSS or a grand finale full-page app would blow way past the size
of recipe that makes sense for this cookbook. For more examples, refer
to the Widget User Guide and the App Framework User Guide.

7.1 Managing State with Attributes
Problem
You want to manage an object’s state through a central point of control, possibly adding
special constraints and behaviors that go beyond what simple object properties provide.

Solution
Create an object to hold your state and augment it with Attribute. The Attribute API
can configure how you can get and set an attribute, which values it can take, and more.
Changing an attribute’s value also causes the host instance to fire a custom event, which
makes it easy to monitor state with event listeners. For example, attempting to change
the foo attribute fires a fooChange custom event, which you can observe, prevent, react
to, and so on.

7.1 Managing State with Attributes | 163

www.it-ebooks.info

http://yuilibrary.com/yui/docs/widget/
http://yuilibrary.com/yui/docs/app/
http://www.it-ebooks.info/

Though it is fine to use Attribute by itself, experienced YUI developers
use Base, which incorporates Attribute and adds some important func-
tionality. For more information, refer to Recipe 7.2.

The concept of “a bag of attributes” is pretty generic, so let’s pick a specific example
from the world of physics. Example 7-1 defines Electron with two attributes, charge
and energy, each with different constraints.

Example 7-1. Managing state with attributes

<!DOCTYPE html>
<title>Managing state with attributes</title>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI.add('electron', function (Y) {
 var REST_ENERGY = 511.00;

 function Electron(config) {
 this.addAttrs({
 charge: {
 value: -1,
 readOnly: true
 },
 energy: {
 value: REST_ENERGY,
 validator: function (en) {
 return (en >= REST_ENERGY);
 }
 }
 }, config);
 }

 Y.Electron = Y.augment(Electron, Y.Attribute);
}, '1.0', {requires: ['attribute']});

YUI().use('electron', function (Y) {
 var e1 = new Y.Electron({ energy: 708.72, charge: 2 });
 Y.log("e1's energy is " + e1.get('energy') + ' MeV.');
 Y.log("e1's charge is " + e1.get('charge'));

 var e2 = new Y.Electron();
 e2.on('energyChange', function (ev) {
 Y.log("Trying to change e2's energy to " + ev.newVal + ' ...');
 });
 e2.after('energyChange', function (ev) {
 Y.log("e2's energy changed from " + ev.prevVal + ' to ' + ev.newVal);
 });
 e2.set('energy', 400);
 e2.set('energy', 1200);
});
</script>

164 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

Within the Electron() constructor is a configuration object named attrs that defines
the attributes’ behavior:

• The charge attribute has a default value of –1, and cannot be changed. All electrons
in the universe have the same charge.

• The energy attribute has a default value of 511.00 MeV (million electron-volts),
and cannot drop below this value. A free electron at rest has an energy strictly
determined by its mass, per E=mc2. Any additional energy goes into the electron’s
motion.

The constructor then calls addAttrs() to actually define attributes on the object.
addAttrs() takes the attrs object to define attributes, along with an optional config
object that enables the user to set attributes to different values at construction time.

Finally, the YUI.add() callback augments Electron’s prototype with all of Attribute’s
properties and methods. This includes addAttrs() for defining multiple attributes at
once, get() and set() for reading and writing attribute values, and many others.

The YUI().use() callback creates two electron instances. The first instance attempts to
set both the energy and the charge in the constructor. Setting the energy attribute works
fine, but setting charge has no effect. Because the attribute is readOnly, the Electron
instance obeys the laws of physics and rejects the user-provided value.

The second instance creates a free electron at rest and sets two listeners: an on() listener
for when someone attempts to change the electron’s energy, and an after() listener for
when that change is successful.

Setting the energy to the illegal value of 400 MeV triggers the on() handler, but not the
after() handler. When an attribute’s validator() returns false, the set() method
prevents the change attempt.

Setting the energy to 1,200 MeV passes validation, so both the on() and after() han-
dlers execute. Every attribute change event includes a prevVal and newVal property,
representing the old value and new value, respectively.

Discussion
The primary responsibility of the Attribute API is to manage state. The first critical
feature is having centralized getters, setters, and validators, which manage how state
can be set. The second critical feature is automatic firing of change events. You can set
on() listeners to react to change attempts, at which point you can call ev.prevent
Default() to prevent the change from happening, much like calling ev.prevent
Default() on a submit event prevents a form from submitting. You can also set
after() listeners to react to changes that actually do happen.

Individual attributes support a wide range of configurations, some of which include:

7.1 Managing State with Attributes | 165

www.it-ebooks.info

http://www.it-ebooks.info/

lazyAdd
A Boolean property that, if true, defers initializing the attribute until the first
get() or set() call. This can help improve performance if you have a large number
of attributes or if an attribute requires a remote call to initialize itself.

valueFn
A function that returns a default value for the attribute, overriding value (unless
valueFn() returns undefined). valueFn is useful when you need to define the default
value at class instantiation time, or if you need access to the this object in order
to determine the default.

validator
A function that receives the value to change the attribute to, returning true if this
change should go through, and false otherwise. For simple validators, you can
often just assign one of the Y.Lang.* type checking methods discussed in Recipe 9.1.

getter and setter
Functions for normalizing the attribute, called by get() and set(), respectively.
Getters and setters are meant to normalize data, not produce side effects. For ex-
ample, a setter might take any falsy value and turn it into a real false, but it should
not change some other value or directly refresh a widget or view’s UI. For secondary
effects, use an after() listener to react to the attribute’s value successfully
changing.

broadcast
An integer that controls whether the attribute’s *Change custom events get broad-
cast, as described in Recipe 4.7. By default, an attribute’s custom events have a
broadcast of 0, but you can change this to 1 to broadcast to the top-level Y, or 2 to
broadcast to Y.Global.

If you don’t need advanced features like setting defaults, performing validation, and
listening for changes, you can always just store state in lightweight object properties.
There is also nothing wrong with using a mix of attributes and properties—attributes
when you have complex state management requirements, properties when you don’t.

Individual attributes don’t have to be primitive types. If you set an attribute to be an
object:

particle.set('vector', {
 position : {
 x : 0,
 y : 0,
 z : 0
 },
 time : 0
});

then you can get and set attribute properties using dot notation:

var t0 = particle.get('vector.time');
particle.set('vector.position.x', 10);

166 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

The Attribute API also pulls in the EventTarget API, enabling any object that hosts
attributes to publish, fire, and handle events. In addition to prevVal and newVal, change
events also include attrName and subAttrName properties, representing the name of the
attribute that changed and the full dot notation path (if any). These two APIs together
are powerful; attributes not only manage their own state, but also send and receive
messages about state changes.

As mentioned earlier, while Attribute and EventTarget make a reasonable foundation
for building event-driven applications, the preferred pattern is to go a little further and
extend Base instead of directly augmenting an object with Attribute.

See Also
Recipe 4.10 for more about how on() and after() behave for custom events;
Recipe 9.1 for information on Y.Lang.* type checking methods; Recipe 9.5 for back-
ground on Y.augment(); Luke Smith’s YUIConf 2011 talk, “Class Inheritance and
Composition Patterns in YUI”; the YUI Attribute User Guide; Attribute API docu-
mentation; Wikipedia articles on the electron and rest energy.

7.2 Creating Base Components with Y.extend()
Problem
You want to build a reusable object that can serve as a foundational component in your
application.

Solution
Load the base-base module, extend Base (or an object derived from Base such as
Widget or Model), and add custom behavior to the object’s prototype. The Base object
not only includes the highly useful Attribute and EventTarget APIs, but also enables
the object to host plugins and provides a framework for object initialization and
destruction.

Example 7-2 illustrates how to use Y.extend() to create a more sophisticated version
of the Electron from Example 7-1.

Example 7-2. Creating a Base-derived object with Y.extend()

<!DOCTYPE html>
<title>Creating a Base-derived object with Y.extend()</title>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI.add('electron', function (Y) {
 var REST_ENERGY = 511.00;

7.2 Creating Base Components with Y.extend() | 167

www.it-ebooks.info

http://www.youtube.com/watch?v=_zhQIfT7g58
http://www.youtube.com/watch?v=_zhQIfT7g58
http://yuilibrary.com/yui/docs/attribute/
http://yuilibrary.com/yui/docs/api/classes/Attribute.html
http://yuilibrary.com/yui/docs/api/classes/Attribute.html
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Invariant_mass
http://www.it-ebooks.info/

 function Electron() {
 Electron.superclass.constructor.apply(this, arguments);
 }

 Electron.NAME = 'electron';

 Electron.ATTRS = {
 charge: {
 value: -1,
 readOnly: true
 },
 energy: {
 value: REST_ENERGY,
 validator: function (en) {
 return (en >= REST_ENERGY);
 }
 }
 };

 Y.Electron = Y.extend(Electron, Y.Base, {
 initializer: function () {
 Y.log("SMASH! Here's your electron!");
 },
 getSpeed: function () {
 var e_ratio = REST_ENERGY / this.get('energy');
 return Math.sqrt(1 - e_ratio * e_ratio);
 }
 });
}, '1.0', {requires: ['base-base']});

YUI().use('electron', function (Y) {
 var e = new Y.Electron();
 Y.log('The electron is now moving at ' + e.getSpeed() + 'c.');
 e.set('energy', 850);
 Y.log('The electron is now moving at ' + e.getSpeed() + 'c.');
});
</script>

Let’s break down this example step-by-step.

First, there’s the Electron() constructor function, which includes a weird-looking Elec
tron.superclass property—where did that come from? It turns out that superclass is
a special property added by Y.extend() (which we haven’t called quite yet, but never
mind that). The full meaning of this line is, “Call my parent’s constructor and pass in
any arguments that I received.”

Next, the Electron adds a NAME static property. Every Base-derived object must have a
NAME, which, among other things, serves as the prefix for any custom events that the
object fires. This enables other objects to distinguish between, say, a menu:select event
and a treenode:select event. For another example of this, refer to Recipe 4.7.

168 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

Next is the ATTRS property, which defines the same attributes shown in Exam-
ple 7-1: a hash of attribute names, each with its own hash of attribute configuration
properties.

After that, you call Y.extend() on Electron with Base. This sets Base as the super
class for Electron, lets Electron inherit Base’s methods and properties, and adds a
couple of new methods to the prototype:

initializer()
Performs any initialization specifically required for this particular object. This is a
standard method that many (but not all) Base-derived objects implement. The
initializer() is a good place to publish() any specialized custom events that your
object needs to fire, as shown in Example 4-9. There is also an equivalent destruc
tor() method for doing teardown. For more information about the Base object
lifecycle, refer to this recipe’s Discussion.

getSpeed()
Calculates the speed of the electron as a multiple of the speed of light, c. When the
electron is at rest, the speed is 0. As the electron’s energy increases, its speed
asymptotically approaches c.

Since the speed calculation is the same for any massive relativistic
particle, it might make sense to implement getSpeed() in a separate
object and augment Electron, rather than defining getSpeed() di-
rectly on Electron’s prototype.

Discussion
Unlike DOM, events, and Ajax, the Base object doesn’t have a strong analog in other
frameworks. If you take a superficial tour through YUI, Base is easy to overlook. This
is unfortunate, as Base represents years of refinement on what constitutes a generic,
flexible building block for an application. Objects that derive from Base get:

• State management (from Attribute)

• Event handling (from EventTarget, via Attribute)

• Easy extension and augmentation of the prototype

• Class-level extensions (mixins)

• Instance-level plugins

• A standard init/destroy lifecycle

The one obvious feature Base does not provide out of the box is rendering—that is what
Widget and View are for. For more information, refer to Recipes 7.4 and 7.14.

Because Base-derived objects can have long inheritance chains, Base supplies a partic-
ular model for creating and destroying instances properly. When you call Base’s

7.2 Creating Base Components with Y.extend() | 169

www.it-ebooks.info

http://www.it-ebooks.info/

constructor, the constructor first fires an init custom event; then starting with Base
itself, it steps down through each object in the inheritance chain. If the constructor
received a config parameter, it inspects config for attributes and sets any it finds. It
then executes the object’s initializer() method (if any), passing in the config object
(if any), and steps down the chain again.

If the constructor receives a configuration object {foo:'bar'}, and foo is an attribute,
Base sets the foo attribute to 'bar' automatically. If foo is not an attribute, you can still
handle that value as you see fit in your initializer() method. This behavior makes it
easy for users to configure your objects at instantiation time.

Calling Base’s destroy() method fires a destroy custom event and then steps backward
through the object hierarchy all the way up to Base itself, executing any destructor()
methods it finds. Any given initializer() and destructor() methods should only set
up or tear down resources for the object they are defined on, not any other objects up
or down the chain. If your object does not need any special setup or teardown logic, it
is safe to omit these methods.

If you need to modify individual instances rather than the object prototype, Base pro-
vides the plug() and unplug() methods for adding and removing functionality on the
fly. For more information about how to create plugins, refer to Recipes 7.7 and 7.8.
For some examples of plugins in action, refer to Recipes 3.7 and 3.9.

When you’re reading about a Base-derived component in the API doc-
umentation, it’s sometimes helpful to uncheck the “Show inherited”
checkbox. This filters the API documentation down to just what
that specific component offers (new and overridden methods and
properties).

See Also
Recipe 4.7 for an example of Base-derived objects interacting with each other; the YUI
Base User Guide; Base API documentation; EventTarget API documentation.

7.3 Creating Base Components with Y.Base.create()
Problem
You want to extend Base using a pattern that’s easier to remember than the
Y.extend() approach. Alternatively, you want to extend Base using a pattern that makes
it easy to mix in extensions.

170 | Chapter 7: Infrastructure

www.it-ebooks.info

http://yuilibrary.com/yui/docs/base/
http://yuilibrary.com/yui/docs/base/
http://yuilibrary.com/yui/docs/api/classes/Base.html
http://yuilibrary.com/yui/docs/api/classes/EventTarget.html
http://www.it-ebooks.info/

Solution
Load the base-build module and use the static Y.Base.create() method, as shown in
Example 7-3.

Example 7-3. Creating a Base-derived component with Y.Base.create()

<!DOCTYPE html>
<title>Creating a Base-derived component with Y.Base.create()</title>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI.add('electron', function (Y) {
 var REST_ENERGY = 511.00;

 Y.Electron = Y.Base.create('electron', Y.Base, [], {
 initializer: function () {
 Y.log("SMASH! Here's your electron!");
 },
 getSpeed: function () {
 var e_ratio = REST_ENERGY / this.get('energy');
 return Math.sqrt(1 - e_ratio * e_ratio);
 }
 }, {
 ATTRS: {
 charge: {
 value: -1,
 readOnly: true
 },
 energy: {
 value: REST_ENERGY,
 validator: function (en) {
 return (en >= REST_ENERGY);
 }
 }
 }
 });
}, '1.0', { requires: ['base-build'] });

YUI().use('electron', function (Y) {
 var e = new Y.Electron();
 Y.log('The electron is now moving at ' + e.getSpeed() + 'c.');
 e.set('energy', 850);
 Y.log('The electron is now moving at ' + e.getSpeed() + 'c.');
});
</script>

Comparing Examples 7-2 and 7-3 side by side, the latter is slightly more succinct:

1. The first parameter sets the static NAME property.

2. The second parameter specifies the object to extend. When you are using
Y.Base.create(), this must be Base or a descendant such as Widget.

7.3 Creating Base Components with Y.Base.create() | 171

www.it-ebooks.info

http://www.it-ebooks.info/

3. The third parameter is an array of zero or more objects for Y.Base.create() to mix
in to the object. The example just hacks around this parameter by passing in an
empty array. However, if there were a Relativistic object with utility methods to
borrow for Electron, you could do something like:

Y.Electron = Y.Base.create("electron", Y.Base, [Y.Relativistic], { ...

This is object composition, not object inheritance. In other words, Y.Electron
instanceof Base is true, but Y.Electron instanceof Y.Relativistic would be
false.

4. The fourth parameter is an object containing anything else you want to add to the
object’s prototype. This is the equivalent of Y.extend()’s third parameter.

5. The fifth parameter contains static properties and methods to add, such as ATTRS.
Y.Base.create() already sets the name as the first parameter, so you don’t need to
define a NAME property here.

Y.Base.create() also creates a slightly different object than Y.extend()—the construc-
tor generated by Y.Base.create() has some extra logic that improves runtime perfor-
mance when the object is further extended. The cost is flexibility. Once you use
Y.Base.create(), any further extensions require using Y.Base.create().

Discussion
The main motivation for Y.Base.create() was to make it easy to add multiple mixins.
Some core YUI objects make heavy use of mixins. For example, there are a number of
standard Widget mixin objects that provide simple generic behaviors, such as Widget
Position, WidgetModality, and WidgetButtons. It turns out that the Overlay and Panel
widgets have no intrinsic behavior of their own—they just extend Widget and mix in a
large list of Widget* extension objects. In other words, Overlay and Panel are defined
as one-liners with Y.Base.create().

However, many YUI developers don’t care about this mixin feature. They prefer
Y.Base.create() simply because it is more compact than the “standard” Y.extend()
pattern.

The benefit of Y.extend() is that it comes with the YUI global object and thus avoids
having to load the base-build module. If you don’t plan to use mixins, and if the aes-
thetics don’t bother you, use Y.extend(). But if the thought of typing out the boilerplate
constructor function fills you with dread, use Y.Base.create().

This book uses Y.Base.create() from here on out.

See Also
Recipe 8.2; Recipe 8.5.

172 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

7.4 Creating a Basic Widget
Problem
You want to build a reusable object that represents some visible component in your
application.

Solution
Extend Widget and add custom behavior to the object’s prototype. Widget extends
Base, adding an API for rendering the object as HTML. The Widget API has five core
lifecycle methods to implement: initializer(), destructor(), renderUI(), bindUI(),
and syncUI().

Example 7-4 illustrates how to further enhance the Electron example from Exam-
ple 7-3, turning it into a visible widget that responds to user interactions. It might seem
a little odd to have a visible electron widget, but let’s roll with it.

Example 7-4. Creating a basic widget

<!DOCTYPE html>
<title>Creating a basic widget</title>
<style>
.yui3-electron { width: 175px; }
.yui3-electron-content { background: #ff0; border: 1px #000 solid; }
.yui3-electron-content p { margin: 5px; }
</style>

<p>Click the electron to increase its energy by 10%.</p>
<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI.add('electron', function (Y) {
 var REST_ENERGY = 511.00;

 Y.Electron = Y.Base.create('electron', Y.Widget, [], {
 destructor: function () {
 this.get('contentBox').all('p').remove(true);
 },
 getSpeed: function () {
 var e_ratio = REST_ENERGY / this.get('energy');
 return Math.sqrt(1 - e_ratio * e_ratio);
 },
 boostEnergy: function () {
 this.set('energy', 1.1 * this.get('energy'));
 },
 renderUI: function () {
 this.get('contentBox')
 .append('<p class="ch">Charge: ' + this.get('charge') + '</p>')
 .append('<p class="en">')
 .append('<p class="sp">');

7.4 Creating a Basic Widget | 173

www.it-ebooks.info

http://www.it-ebooks.info/

 },
 bindUI: function () {
 this.get('contentBox').on('click', this.boostEnergy, this);
 this.after('energyChange', this.syncUI, this);
 },
 syncUI: function () {
 var energyStr = 'Energy: ' + this.get('energy').toPrecision(5) + ' MeV',
 speedStr = 'Speed: ' + this.getSpeed().toPrecision(5) + ' c';
 this.get('contentBox').one('.en').setHTML(energyStr);
 this.get('contentBox').one('.sp').setHTML(speedStr);
 }
 }, {
 ATTRS: {
 charge: {
 value: -1,
 readOnly: true
 },
 energy: {
 value: REST_ENERGY,
 validator: function (en) {
 return (en >= REST_ENERGY);
 }
 }
 }
 });
}, '1.1', {requires: ['base-build', 'widget']});

YUI().use('electron', function (Y) {
 var e = new Y.Electron();
 e.render('#demo');
});
</script>

Figure 7-1 illustrates the results of Example 7-4.

Figure 7-1. A basic widget

The destructor() lifecycle method is from the Base API. The Electron widget does not
require any special setup logic, but it includes some teardown logic to clean up the
nodes it creates. For more information about widget destructors, refer to this recipe’s
Discussion.

The getSpeed() method is the same as it was in Example 7-2. The widget version also
includes a boostEnergy() method, to be used as an event handler.

174 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

The widget’s main render() method calls renderUI(), bindUI(), and syncUI() in that
order. Widgets should implement these three methods instead of overriding render()
itself:

1. renderUI() constructs or patches a DOM tree to define the widget’s basic structure.
Every widget has a boundingBox attribute, the node that determines the widget’s
size and position, and a contentBox attribute, the node that contains the widget’s
content and its look and feel. You do not have to create these boxes yourself; they
are containers for adding more elements.

In the example, renderUI() populates the contentBox with the initial structural
elements that Electron needs to display the charge, energy, and speed. Since the
charge is always –1, this is hardcoded into the display. For the energy and speed,
renderUI() creates two paragraphs. The bindUI() and syncUI() methods will up-
date the paragraphs as the widget’s state changes.

2. bindUI() sets event listeners that update the widget’s appearance according to
widget state changes. Thanks to the Attribute API, you can just store the widget’s
state as attributes and listen for attribute change events.

In the example, bindUI() sets two listeners:

• A click listener on the entire widget calls boostEnergy(), which increases the
energy attribute value by 10%, causing the widget to fire an energyChange event.

• An energyChange listener catches each energy boost and calls syncUI() to resync
the widget according to its current attribute state. The reason to use after()
listeners rather than on() listeners is to ensure that the UI resyncs in response
to successful state changes, rather than change attempts. A state change can be
foiled if the state change fails validation, if the user calls preventDefault(), and
so on.

3. syncUI() updates the widget’s appearance according to its current state. This
method gets called once when the user calls render(), and may be called again by
the widget’s own event listeners in response to state changes.

In the example, syncUI() updates the contents of the paragraphs that display the
electron’s energy and speed. Here, syncUI() triggers multiple page reflows—a pos-
sible optimization point, should performance become an issue.

Example 7-4 is a simple widget, so it is acceptable to refresh the entire
UI at once in the after() listener. In more complex widgets, refreshing
the entire UI on any single attribute change could lead to flickering and
slowdowns when many attributes are set at once. Complex widgets
should assign one after() listener for each attribute that affects the UI,
each after() listener should change only the piece of the UI that reflects
the attribute, and UI changes should always be done through the
after() listener, never through the attribute setter.

7.4 Creating a Basic Widget | 175

www.it-ebooks.info

http://www.it-ebooks.info/

The render() function also fires a render event as a notification.

In the YUI().use() callback, the user instantiates a new Electron and calls render(),
passing in the demo <div> as the parentNode for the widget. This causes YUI to create
the boundingBox and contentBox <div>s, appending them into the document as demo’s
first child.

When rendered, the Electron’s boundingBox automatically has the classes yui3-
widget and yui3-electron, and the child contentBox automatically has the class yui3-
electron-content. These classes are hooks for setting the widget’s size and its look and
feel.

Discussion
YUI’s two foundational objects for building visible page components are Widget and
View. A widget is a public component that other developers can reuse on a wide variety
of websites, while a view is an internal component, a “piece of a page” meant to be used
on a specific website. For more information about views, refer to Recipe 7.14.

Beyond what the Base API provides, the Widget API derives most of its power from
having well-established conventions around rendering. These conventions include:

• Breaking rendering into orderly phases described by the abstract methods ren
derUI(), bindUI(), and syncUI(). Many widgets implement all three, although as
Examples 7-5 and 7-6 illustrate, this is not strictly necessary.

• The boundingBox node, which specifies the widget’s size and position. For each
object in your Widget hierarchy, YUI stamps the bounding box with the class yui3-
name, where name is the object’s NAME property.

The bounding box should carry only sizing and positioning properties such as
width, height, top, left, display, and float; it should not carry padding, border,
background, or any other look-and-feel properties. This separation of concerns
makes it easier to maintain the widget’s size and position across different browser
box models. The bounding box can also contain any decorative HTML elements
that your widget needs, as siblings to the content box.

• The contentBox node, a child of boundingBox that contains all of the widget’s con-
tent elements. YUI stamps the content box with the class yui3-name-content, where
name is the object’s NAME property. You can use this hook to apply look-and-feel
CSS properties such as borders, padding, and colors.

By default, the content box and bounding box are <div>s. If your widget is a table,
a list, or something else entirely, you can override the CONTENT_TEMPLATE and
BOUNDING_TEMPLATE properties.

• A set of conventions for changing the widget’s visual and functional state:

— focus() toggles the focused attribute to true and adds a class on the bounding
box, yui3-name-focused. blur() reverses this.

176 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

— hide() toggles the hidden attribute to true and adds a class on the bounding
box, yui3-name-hidden. show() reverses this.

— disable() toggles the disabled attribute to true and adds a class on the bound-
ing box, yui3-name-disabled. enable() reverses this.

For each of these methods, YUI leaves it up to you to decide what actual effect
should happen. Should hide() set display:none or visibility:hidden on the entire
widget? Should the widget fade away? Should the widget animate and collapse into
some minimized state? To implement a particular effect, you can either use the
yui3-name-state class hook or listen for the stateChange event. Most core YUI
widgets provide this behavior as part of their CSS skin.

• The HTML_PARSER property, which provides a standard way to implement progres-
sive enhancement, constructing the widget from a chunk of markup in the page.
For an example of this in action, refer to Recipe 7.5.

• The strings attribute, which, along with Y.Intl, enables you to change the widget’s
UI strings based on the user’s locale. For more information, refer to Recipe 11.6.

When a widget renders, it automatically creates any boundingBox and contentBox ele-
ments it needs and sets classes on those elements. The example passed a parent node
directly into render(), causing the widget to generate a bounding box and content box
inside that node. Alternatively, you can first set the widget’s boundingBox or content
Box attribute to point to an existing node, and then call render() with no argument.
For example, if you had invoked the widget like this:

var e = new Y.Electron({boundingBox: '#demo'});
e.render();

then the demo <div> would have become the bounding box, rather than the parent of
the bounding box. If for some reason you fail to supply a boundingBox attribute, a
contentBox, or a parentNode, then the widget renders as the first child of the <body>.

As mentioned earlier in Recipe 7.2, calling destroy() invokes all destructors in the
inheritance chain. The Widget destructor removes the boundingBox and the contentBox
from the DOM, and detaches all listeners bound to those nodes. If the user calls
destroy(true), the widget recursively destroys and removes all child nodes of the
contentBox as well.

When designing a destructor(), follow the general rule of, “clean up everything you
explicitly add.” For example, Electron adds three <p> nodes, so its destructor is re-
sponsible for calling remove(true) on each node to remove it from the DOM and detach
any event listeners. If your widget sets listeners using Y.on() or Y.Global.on(), or sets
listeners on elements that lie outside the boundingBox, you must clean these up in your
destructor() method.

Custom event listeners typically don’t need special cleanup logic; as long as they reside
on the widget instances, they get cleaned up when the user calls destroy(). However,

7.4 Creating a Basic Widget | 177

www.it-ebooks.info

http://www.it-ebooks.info/

if your widget set up custom event listeners on some other object, you must detach
them manually.

When a widget fires a custom event, the event name is automatically prefixed with the
widget’s name. If you set a listener on the widget instance itself, the prefix is optional:

var electron = new Y.Electron();
electron.on('someevent', callbackFoo);

But for subscribers on any other object, the prefix is required:

Y.on('electron:someevent', callbackBar);

For DOM events that fire within the bounding box, the widget fires a corresponding
custom event, prefixed with the widget’s name. For example, if the user clicks within
the Electron’s bounding box, you can listen for an ordinary click event, or an
electron:click custom event. You can use this feature to listen only for events that
pertain to the widget. In an event handler for any widget custom event, YUI sets the
default context to be the widget instance, not the node that fired the event. To customize
the list of DOM events that get mirrored by custom events, update the widget’s
UI_EVENTS property.

There are three ways to build more features into a widget. The first is extension, which
incorporates functionality into every new instance of the widget. You can use
Y.Base.create() to extend any object derived from Base, not just vanilla Base or
Widget. The second is mixing in extension objects, demonstrated in Recipe 8.8. The
third way is to create plugins that can add functionality to specific widget instances.
For more information, refer to Recipe 7.7.

See Also
The YUI Widget User Guide; Widget API documentation; Ryan Grove’s MSDN article,
“Building Reusable Widgets with YUI 3”; Daniel Barreiro’s YUIBlog article, “The
‘MakeNode’ Widget Extension”.

7.5 Creating a Widget That Uses Progressive Enhancement
Problem
You want to create a widget that livens up an existing block of HTML on the page,
rather than constructing its nodes purely from data in JavaScript. Users with JavaScript
turned off will at least get some sort of basic HTML and CSS experience instead of an
empty <div>.

178 | Chapter 7: Infrastructure

www.it-ebooks.info

http://yuilibrary.com/yui/docs/widget/
http://yuilibrary.com/yui/docs/api/classes/Widget.html
http://msdn.microsoft.com/en-us/scriptjunkie/gg576919.aspx
http://www.yuiblog.com/blog/2011/09/12/updated-the-makenode-widget-extension/
http://www.yuiblog.com/blog/2011/09/12/updated-the-makenode-widget-extension/
http://www.it-ebooks.info/

Solution
Use the widget’s HTML_PARSER static property to extract data from HTML on the page,
then render the widget into the box that contains the static markup. Example 7-5 alters
the Electron example from Example 7-4 to progressively enhance an existing <div>.

Example 7-5. Creating a widget that uses progressive enhancement

<!DOCTYPE html>
<title>Creating a widget that uses progressive enhancement</title>
<style>
#demo, .yui3-electron { width: 175px; }
#demo, .yui3-electron-content { background: #ff0; border: 1px #000 solid; }
#demo p, .yui3-electron-content p { margin: 5px; }
</style>

<p>Click the electron to increase its energy by 10%.</p>
<div id="demo">
 <p class="ch">Charge: -1</p>
 <p class="en">Energy: 611.50 MeV</p>
 <p class="sp">Speed: 0.54926 c</p>
</div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI.add('electron', function (Y) {
 var REST_ENERGY = 511.00;

 Y.Electron = Y.Base.create('electron', Y.Widget, [], {
 destructor: function () {
 this.get('contentBox').all('p').remove(true);
 },
 getSpeed: function () {
 var e_ratio = REST_ENERGY / this.get('energy');
 return Math.sqrt(1 - e_ratio * e_ratio);
 },
 boostEnergy: function () {
 this.set('energy', 1.1 * this.get('energy'));
 },
 bindUI: function () {
 this.get('contentBox').on('click', this.boostEnergy, this);
 this.after('energyChange', this.syncUI, this);
 },
 syncUI: function () {
 var energyStr = 'Energy: ' + this.get('energy').toPrecision(5) + ' MeV';
 var speedStr = 'Speed: ' + this.getSpeed().toPrecision(5) + ' c';
 this.get('contentBox').one('.en').setHTML(energyStr);
 this.get('contentBox').one('.sp').setHTML(speedStr);
 }
 }, {
 ATTRS: {
 charge: {
 value: -1,
 readOnly: true
 },

7.5 Creating a Widget That Uses Progressive Enhancement | 179

www.it-ebooks.info

http://www.it-ebooks.info/

 energy: {
 value: REST_ENERGY,
 validator: function (en) {
 return (en >= REST_ENERGY);
 }
 }
 },
 HTML_PARSER: {
 energy: function (srcNode) {
 var enValue = srcNode.one('.en .value');
 return enValue ? parseFloat(enValue.get('text')) : REST_ENERGY ;
 }
 }
 });
}, '1.1', {requires: ['base-build', 'widget']});

YUI().use('electron', function (Y) {
 new Y.Electron({ srcNode: '#demo' }).render();
});
</script>

The changes from the original Electron include:

• The demo <div> now contains static HTML markup representing the initial state
of the widget. The CSS has also changed so that an id of "demo" is enough to style
the widget’s appearance.

• The renderUI() method is no longer needed, since the markup it created is already
on the page. The syncUI() method now sets the widget’s appearance, both on initial
rendering and in response to state changes. If you wanted a widget that could
render around existing markup or populate an empty <div>, you could add
renderUI() back.

• The widget includes an HTML_PARSER static property. HTML_PARSER maps the initial
state of one or more attributes to information that can be parsed out of the docu-
ment. In this case, the widget extracts a float value for the electron’s energy attribute
out of the page’s markup. To make this easier to do, the markup wraps the energy
value in a .

• The widget is configured with a srcNode set to be the demo <div>. In general, the
srcNode is an existing node in the document used for progressive enhancement. By
default, the widget treats srcNode as the content box. Calling render() automati-
cally creates the bounding box around this node and stamps them both with widget
classes and generated IDs.

This example behaves just like the original Electron, albeit with a different starting
energy. To really see the difference between the two, turn JavaScript off. The original
example is completely broken, while the progressively enhanced example displays stat-
ic HTML, though it does not respond to clicks.

180 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Progressive enhancement isn’t just for human users who have JavaScript turned off.
For example, if you have a fancy menu widget that provides navigation for your site,
progressive enhancement would help ensure that your site has a basic, friendly linking
scheme for search engines to crawl. Progressive enhancement can also save you from
the nightmare of a single JavaScript bug causing your entire site to implode. A simpler
experience of text, links, and graphics is better than no experience at all.

One way to think about progressive enhancement is that it is simply another
configuration option for a widget. You can set the Electron’s configuration by calling
new Y.Electron({ energy: 550 }), or you can parse that { energy: 550 } out of the
markup. To help you extract configuration out of markup, HTML_PARSER is a hash of
configuration property names mapped to one of three parsing methods:

• A CSS selector, as in attribute: '#foo .bar'. This sets the initial attribute value
to a node on the page. This option is useful for selecting an individual node the
widget needs, such as an informational pane or button.

• A CSS selector in an array, as in attribute: ['#foo .bar']. This sets the initial
value to a NodeList on the page. This option is useful for selecting and updating
multiple similar nodes, such as a group of list items or rows in a table.

• An arbitrary function, as in Example 7-5. This sets the initial value to a string, a
number, or really any interesting data structure that you can extract from the page.
The function receives the srcNode as an argument.

At initialization time, the widget automatically sets the values of any HTML_PARSER prop-
erties that correspond to attributes. If an HTML_PARSER property name does not corre-
spond to an attribute, you can still handle that property with some custom logic in your
initializer().

In Example 7-5, the static markup is deliberately styled to look exactly like the widget
will after rendering. This might not always be convenient to do, particularly if your
widget loads its CSS as a module or as a skin. The goal of progressive enhancement is
not full fidelity, but basic functionality.

Also note that the example takes a particular approach of just reusing the existing
markup on the page, leaving out the renderUI() phase. An alternative approach is to
use renderUI() to construct the widget in JavaScript, and then make the widget visible
in the document only when the entire structure is ready. For more information about
these strategies, refer to the YUI Widget User Guide.

See Also
Recipe 8.10; Recipe 11.1; the Progressive Enhancement section of the YUI Widget User
Guide; Nicholas Zakas’s tech talk on progressive enhancement.

7.5 Creating a Widget That Uses Progressive Enhancement | 181

www.it-ebooks.info

http://yuilibrary.com/yui/docs/widget/#progressive
http://yuilibrary.com/yui/docs/widget/#progressive
http://vimeo.com/25491048
http://www.it-ebooks.info/

7.6 Rendering Remote Data with a Widget
Problem
You want to display a Twitter status widget on your page, but you don’t want the widget
to break or slow the page down when Twitter is throwing fail whales.

Solution
Create a widget that uses the JSONP utility to request tweets asynchronously and dis-
play them in a list, as shown in Example 7-6. When a request times out or returns an
error, the widget handles the problem gracefully and displays a friendly message.

Example 7-6. Resilient Twitter status widget

<!DOCTYPE html>
<title>Resilient Twitter status widget</title>

<div id="tweets"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI.add('twitter', function (Y) {

 Y.Twitter = Y.Base.create('twitter', Y.Widget, [], {
 TWITTER_URL: 'http://api.twitter.com/1/statuses/user_timeline.json?' +
 'screen_name={username}&count={maxTweets}&trim_user=1&callback={callback}',
 TWEET_TEMPLATE: '<li class="{classes}">{content}',

 renderUI: function () {
 var tweetList = Y.Node.create('').addClass(this.getClassName('list'));
 this._set('tweetList', tweetList);
 this.get('contentBox').append(tweetList);
 },
 syncUI: function () {
 this.renderTweets('Loading tweets...');
 this.refresh();
 },
 refresh: function () {
 var url = Y.Lang.sub(this.TWITTER_URL, this.getAttrs([
 'maxTweets', 'username'
]));

 Y.jsonp(url, {
 context: this,
 on: {
 success: function (tweets) {
 this.set('tweets', tweets);
 this.renderTweets();
 },
 failure: function () { this.renderTweets('Error fetching tweets.'); },
 timeout: function () { this.renderTweets('Request timed out.'); }

182 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

 },
 timeout: this.get('timeout')
 });
 },
 renderTweets: function (message) {
 var tweetList = this.get('tweetList'),
 tweets = this.get('tweets');

 tweetList.empty();
 tweetList.setHTML((!message && tweets.length) ?
 this.buildTweets(tweets) : this.buildMessage(message)
);
 },
 buildTweets: function (tweets) {
 return Y.Array.map(tweets, function (tweet) {
 return Y.Lang.sub(this.TWEET_TEMPLATE, {
 content: tweet.text,
 classes: this.getClassName('tweet')
 });
 }, this).join('');
 },
 buildMessage: function (message) {
 return Y.Lang.sub(this.TWEET_TEMPLATE, {
 content: message || 'No tweets to display.',
 classes: this.getClassName('msg')
 });
 }
 }, {
 ATTRS: {
 username: { },
 maxTweets: { value: 5 },
 timeout: { value: 3000 },
 tweetList: { readOnly: true },
 tweets: { value: [] }
 }
 });
}, '1.0.0', {requires: ['base-build', 'widget', 'jsonp', 'array-extras']});

YUI().use('twitter', function (Y) {
 new Y.Twitter({ username: 'yuilibrary' }).render('#tweets');
});
</script>

As a template for making API requests, the widget stores TWITTER_URL and TWEET_
TEMPLATE as prototype properties, so that they can be overridden by instances or by
extending the widget further. The template strings are parameterized so that they can
be processed by Y.Lang.sub(). For more information about substitution, refer to
Recipe 9.7.

The renderUI() method creates an unordered list, stamps it with a generated class name
of yui3-twitter-list, and appends it to the content box. The node reference to the
tweet list is also stored in the tweetList attribute. Note that the tweetList attribute is
defined as read only, so renderUI() sets it by calling _set() rather than set() in order

7.6 Rendering Remote Data with a Widget | 183

www.it-ebooks.info

http://www.it-ebooks.info/

to bypass the read-only check. This pattern creates a “protected” attribute—an at-
tribute that your widget updates internally, but that users of your widget shouldn’t
normally be messing with.

The syncUI() method displays a “Loading” message and calls refresh() to fetch data
from Twitter. The widget skips providing a bindUI() method because it does not re-
spond to user interactions.

After substituting in the username and desired number of tweets to TWITTER_URL,
refresh() uses the JSONP module to fetch data from Twitter. On success, the widget
stores the results as an array in the tweets attribute and renders the results. Otherwise,
it renders an error message. For more information about JSONP and YUI, refer to
Recipe 5.6.

Finally, the workhorse renderTweets() method is responsible for clearing out the tweet
List and generating new list items using either buildTweets() or buildMessage(). If all
has gone well, the method iterates over the array of raw tweet data and renders the
tweets as list items. Otherwise, the method displays a single list item containing a mes-
sage. To see these messages in action, you can break the TWITTER_URL or change time
out to some extremely small value.

Discussion
Example 7-6 is quick to render and doesn’t completely fall down if a network failure
occurs. The widget could refresh itself every few minutes, or it could provide users a
button to manually refresh tweets, in which case you should add bindUI() to add the
event listener. To make the widget even more robust, you could cache tweets in local
Storage so that the widget has even better fallback behavior in the face of network
failures.

As for styling, the rendered tweets aren’t very fancy. The widget does provide a number
of CSS hooks; in addition to the classes on the bounding box and content box, the
widget decorates the list and list items with getClassName(), a utility method that gen-
erates a class name with a prefix based on the widget’s name. This approach is better
than hardcoding class names, because if you extend the widget further, the class names
would update appropriately.

Naturally, you could always ignore the Widget API and just write a set of functions to
fetch Twitter data and add some s and s to the DOM. As a one-time solution,
that’s a fine approach. The goal of the Widget API is to make your code easier to use
and extend. You can internationalize the loading and error messages, as shown in
Recipe 11.6, or add progressive enhancement, as shown in Recipe 7.5. You can add
skins that get automatically loaded, as shown in Recipe 7.10. You can add mixins and
plugins that make your widget modal, or draggable, or any number of things.

184 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

See Also
Twitter API documentation.

7.7 Creating a Simple Plugin
Problem
You want to add a couple of methods or properties to individual instances of a widget,
without having to create a full-fledged extension that affects every instance.

Solution
Create a plugin object and use the widget’s plug() method to add the plugin to that
instance. By convention, YUI plugins should reside in the Plugin namespace.

Example 7-7 defines a plugin for the Chart widget. The example chart helps visualize
a set of data about a group of software engineers and their commits for the most recent
sprint. The Plugin.Stats enhances the Chart instance with the ability to calculate sta-
tistics about the underlying data set.

Example 7-7. Creating a simple plugin

<!DOCTYPE html>
<title>Creating a simple plugin</title>
<style>
#demo { height: 300px; width: 300px;}
</style>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI.add('stats-plugin', function (Y) {
 Y.Plugin.Stats = function (config) {
 this.chart = config.host;
 this.values = this.chart.getAxisByKey('values').get('data');
 };

 Y.Plugin.Stats.NS = 'stats';

 Y.Plugin.Stats.prototype = {
 getMean: function () {
 var i, sum = 0;
 for (i = 0; i < this.values.length; i += 1) {
 sum += this.values[i];
 }
 return sum / this.values.length;
 }
 };

7.7 Creating a Simple Plugin | 185

www.it-ebooks.info

https://dev.twitter.com/docs
http://www.it-ebooks.info/

}, '1.0', { requires: ['charts'] });

YUI().use('stats-plugin', function (Y) {
 var data = [
 ['Alice', 'Bob', 'Carol', 'Donald', 'Edgar', 'Frieda'],
 [27, 9, 85, 40, 55, 48]
];

 var chart = new Y.Chart({
 dataProvider: data,
 type: 'column',
 render: '#demo'
 });

 chart.plug(Y.Plugin.Stats);
 Y.one('body').append('<p>Mean = ' + chart.stats.getMean() + ' commits</p>');
});
</script>

In its most basic form, a plugin is a generic object with:

• A constructor function. Plugging the instance invokes the plugin’s constructor and
passes in a configuration object that includes a host property. The host property
points to the object instance hosting the plugin. Most plugins store this reference
at this point so that they can access their host object’s methods and properties later
on.

• A static NS property. The entire plugin is stored as a property of the host object
under that namespace. This means you must never use a name that could be a
member of the host, and plugins that happen to have the same namespace cannot
occupy the same host instance. If you forget to provide a namespace, host objects
that derive from Base will silently ignore your plugin.

• One or more properties or methods on the prototype. This defines the API that the
plugin provides to the host.

From the instance, you can access plugin methods and properties through the name-
space: instance.namespace.method(). In the example, you can calculate the mean by
calling charts.stats.mean(). Presumably a real stats plugin would provide a richer va-
riety of statistical methods.

For more information about the Chart widget, refer to Recipe 8.14.

Discussion
The plug() method and the corresponding unplug() method are provided by the
Plugin.Host API. YUI mixes Plugin.Host into Node and any object derived from Base,
which means that a great variety of core YUI objects are pluggable. YUI includes plugins
for making objects draggable, for animating widgets, and much more. Plugins make it
easy to decompose a complex widget into a simpler base widget with a suite of plugins,
which enables your widget’s users to mix and match what they need.

186 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

Plugins are designed to modify individual object instances. Technically, the Plugin
.Host API does allow you to plug objects at the prototype level, but you should probably
use Y.augment(), Y.extend(), or Y.Base.create() for that.

The plugin approach described in this recipe is just a constructor and namespace, plus
one or more arbitrary methods and properties. If you need to design plugins with richer
behavior, refer to Recipe 7.8.

See Also
The YUI Plugin User Guide; Plugin.Host API
documentation (http://yuilibrary.com/yui/docs/api/classes/Plugin.Host.html); Plugin
.Drag (http://yuilibrary.com/yui/docs/api/classes/Plugin.Drag.html) and Plugin.WidgetA
nim (http://yuilibrary.com/yui/docs/api/classes/Plugin.WidgetAnim.html) for making a
widget draggable or animatable, respectively.

7.8 Creating a Plugin That Alters Host Behavior
Problem
You want to create a “title plugin” that adds a title to any widget by hijacking the
rendering phase of the host object.

Solution
Extend Plugin.Base and call the afterHostMethod() to inject code that will execute just
after the host widget’s renderUI() method, as shown in Example 7-8.

Example 7-8. Creating a plugin that alters host behavior

<!DOCTYPE html>
<title>Creating a plugin that alters host behavior</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI.add('title-plugin', function (Y) {
 Y.Plugin.Title = Y.Base.create('titlePlugin', Y.Plugin.Base, [], {
 initializer: function () {
 if (this.get('rendered')) {
 this.addTitle();
 } else {
 this.afterHostMethod('renderUI', this.addTitle);
 }
 },
 destructor: function () {
 this.titleNode.remove(true);
 },

7.8 Creating a Plugin That Alters Host Behavior | 187

www.it-ebooks.info

http://yuilibrary.com/yui/docs/plugin/
http://yuilibrary.com/yui/docs/api/classes/Plugin.Host.html
http://yuilibrary.com/yui/docs/api/classes/Plugin.Drag.html
http://yuilibrary.com/yui/docs/api/classes/Plugin.WidgetAnim.html
http://www.it-ebooks.info/

 addTitle: function () {
 var boundingBox = this.get('host').get('boundingBox');
 this.titleNode = Y.Node.create(this.get('titleElement'));
 this.titleNode.setHTML(this.get('title'));
 boundingBox.prepend(this.titleNode);
 },
 titleNode: null,
 }, {
 NS: 'title',
 ATTRS: {
 title: { value: '' },
 titleElement: { value: '<h3/>' }
 }
 });
}, '1.0', { requires: ['base-build', 'plugin'] });

YUI().use('title-plugin', 'calendar', function (Y) {
 var calendar = new Y.Calendar({ width: '300px'});
 Y.one('body').addClass('yui3-skin-sam');

 calendar.plug(Y.Plugin.Title, { title: 'Example Calendar' });
 calendar.render('#demo');
});
</script>

Example 7-8 implements an initializer() function to inject additional behavior into
the host. If the widget is already rendered, the plugin adds the title as the first child of
the widget’s bounding box; otherwise, the plugin automatically adds the title when the
widget is rendered. The corresponding destructor() function ensures that unplugging
the widget also destroys the title node.

When plug() is called, the second argument is an object that gets passed to the plugin’s
constructor at initialization time, which in turn sets the plugin’s title attribute. For
more information about the init phase and attributes, refer to Recipe 7.2.

Unlike Example 7-7, there is no code in the constructor to store a reference to the
plugin’s host. Instead, the plugin just retrieves the host attribute as needed. The widget
automatically sets this attribute when the plugin is instantiated.

For simplicity, the plugin leaves out the code for changing the title’s appearance after
the widget is plugged, by calling widget.title.set(). Since the plugin derives from
Base, this is easy to fix—just add a listener on the plugin for titleChange and title
ElementChange events, and update the title node accordingly.

Discussion
While the generic approach in Recipe 7.7 is often all you need, extending Plugin
.Base adds all the familiar benefits of the Base API, such as attributes, the ability to
publish and listen for events, and the init/destroy lifecycle. Interestingly, as Base-
derived objects, advanced plugins can themselves host plugins. That’s right: plugins
themselves are pluggable. Theoretically, the plugins that plug the plugin could have

188 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

plugins, but if you’re thinking about going down that road, you should probably quit
while you’re ahead.

Beyond the Base API, advanced plugins offer a few extra methods for altering or re-
sponding to the behavior of the host. These include onHostEvent(), afterHostEvent(),
beforeHostMethod(), and afterHostMethod(). The latter two methods are a variation of
the AOP techniques discussed in Recipe 4.12. When you unplug the host, any event
listeners and advice functions injected by these methods automatically detach
themselves.

A common mistake when you are writing advanced plugins is to make
NS a static property of the ATTRS object. Always remember that NS should
be a static property of the plugin itself, not ATTRS.

See Also
Recipe 8.15; the YUI Plugin User Guide; Plugin.Base API documentation; Pat Cavit’s
YUI 3 plugin tutorial.

7.9 Bundling CSS with a Widget as a CSS Module
Problem
You want YUI to automatically load CSS resources along with your widget’s JavaScript.

Solution
Define a custom module group with two modules:

• A module containing your CSS, with type: 'css'. This instructs the Loader to fetch
the file with a <link> element rather than a <script> element.

• A module containing your JavaScript, with the CSS module declared as a depend-
ency. This ensures that if a user loads the JavaScript module, the CSS resources
automatically load as well.

Then set base and path so that YUI loads the appropriate files for each module. For
more information about how to configure module groups and why they are necessary
here, refer to Recipe 1.11.

Example 7-9 illustrates how you might break up Example 7-4 into three parts: an HTML
file that contains module metadata and renders the module, a JavaScript module that
defines the widget’s behavior, and a CSS module that defines the widget’s presentation.

7.9 Bundling CSS with a Widget as a CSS Module | 189

www.it-ebooks.info

http://yuilibrary.com/yui/docs/plugin/
http://yuilibrary.com/yui/docs/api/classes/Plugin.Base.html
http://patcavit.com/2010/07/01/simple-yui3-plugin-tutorial/
http://www.it-ebooks.info/

Example 7-9. Creating a widget with a CSS module

./widget_css_module.html: Defines the metadata for the electron module and its cor-
responding electron-css module. Also includes a use() call that instantiates and ren-
ders an Electron.

<!DOCTYPE html>
<title>Creating a widget with a CSS module</title>

<p>Click the electron to increase its energy by 10%.</p>
<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI({
 groups: {
 localModules: {
 base: './ex1/',
 modules: {
 'electron': {
 path: 'electron/js/electron.js',
 requires: ['base-build', 'widget', 'electron-css']
 },
 'electron-css': {
 path: 'electron/css/electron.css',
 type: 'css'
 }
 }
 }
 }
}).use('electron', function (Y) {
 var e = new Y.Electron();
 e.render('#demo');
});
</script>

./ex1/electron/js/electron.js: Provides the YUI.add() statement that contains the Java-
Script code for Electron. See Example 7-4 for the complete contents of the YUI.add().

YUI.add('electron', function (Y) {
 var REST_ENERGY = 511.00;

 ...

}, '1.1', { requires: ['base', 'widget', 'electron-css'] });

./ex1/electron/css/electron.css: Provides the CSS to load.

.yui3-electron { width: 175px; }

.yui3-electron-content { background: #ff0; border: 1px #000 solid; }

.yui3-electron-content p { margin: 5px; }

190 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
The YUI Loader not only can load CSS, but it can also be very fine-grained in its be-
havior, fetching only the assets required by the JS modules on a particular page. Even
if you do something tricky like loading a widget conditionally, you can load the widget’s
CSS conditionally as well.

There are two basic strategies for fetching CSS with the Loader. The first is to create a
CSS module, as shown in Example 7-9. The second is to flag a JavaScript module as
skinnable, as discussed in Example 7-10.

See Also
Recipe 1.11; Recipe 7.10; Recipe 11.6; widget class names and CSS.

7.10 Bundling CSS with a Widget as a Skin
Problem
You want YUI to automatically load a CSS skin along with your widget’s JavaScript,
possibly with an eye on supplying different themes for different situations.

Solution
Define a custom module group, setting base and path so that YUI loads your module’s
JavaScript from the correct filepath. Make sure that your CSS skin assets are in the
correct location according to YUI’s conventions for loading skin files and set skinnable:
true. See Example 7-10.

For more information about how to configure module groups and why
they are necessary here, refer to Recipe 1.11.

Example 7-10. Creating a widget with a skin

./widget_css_skin.html: Defines the electron module’s metadata: its name, its require-
ments, its paths, and the fact that it is skinnable. Also includes a use() call that instan-
tiates and renders the Electron.

<!DOCTYPE html>
<title>Creating a widget with a skin</title>

<body class="yui3-skin-sam">

<p>Click the electron to increase its energy by 10%.</p>
<div id="demo"></div>

7.10 Bundling CSS with a Widget as a Skin | 191

www.it-ebooks.info

http://yuilibrary.com/yui/docs/widget/#CSS
http://www.it-ebooks.info/

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI({
 groups: {
 localModules: {
 base: './ex2/',
 modules: {
 'electron': {
 path: 'electron/js/electron.js',
 requires: ['base-build', 'widget'],
 skinnable: true
 }
 }
 }
 }
}).use('electron', function (Y) {
 var e = new Y.Electron();
 e.render('#demo');
});
</script>
</body>

./ex1/electron/js/electron.js: Provides the YUI.add() statement that contains the Java-
Script code for Electron. See Example 7-4 for the complete contents of the YUI.add().

YUI.add('electron', function (Y) {
 var REST_ENERGY = 511.00;

 ...

}, '1.1', { requires: ['base-build', 'widget'], skinnable: true });

./example1/electron/assets/skins/sam/electron.css: Provides the CSS file to load. The CSS
file contains a mix of core styles that apply to all widgets, and skin styles that vary the
widget’s appearance. A skin should provide a cohesive set of decorative CSS styles, but
not affect the widget’s general layout.

Since this CSS file defines styles for the 'sam' skin, all styles are scoped within the class
yui3-skin-sam. Users must add this class to their markup for the skin to take effect.

/* Core styles */
.yui3-electron { width: 175px; }
.yui3-electron-content { background: #ff0; border: 1px #000 solid; }
.yui3-electron-content p { margin: 5px; }

/* Skin styles */
.yui3-skin-sam .yui3-electron-content { background: #0ff;}

Discussion
YUI’s skinning system is, to put it kindly, rather baroque.

192 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

Per YUI convention, skin styles are scoped to work under a class of yui3-skin-skin-
name. Users can then apply a skin by stamping that class on the <body> or on a <div>,
as shown in Example 7-10.

The default YUI 3 skin is the sam skin, named after its designer, Sam Lind. If you create
only one skin, you should always name it 'sam' unless you really know what you’re
doing.

As mentioned in Recipe 1.11, setting skinnable to true instructs the Loader to auto-
matically create a <link> element and load a CSS file using a URL of:

base/module-name/assets/skins/skin-name/module-name.css

The complicated path to the CSS file is due to the Loader, which constructs a unique
skin path just based on the module name and the current skin, without needing any
extra metadata. The YUI Builder tool supports the Loader’s behavior, taking CSS files
with this layout:

srcpath/module-name/assets/module-name-core.css
srcpath/module-name/assets/skins/skin-name/module-name-skin.css

and minifying and concatenating the core CSS and skin CSS into a single file, one for
each skin. In other words, if you have a build process that mimics what the core YUI
team does to build YUI 3, this system makes a lot of sense. If not, then…probably not.

While all core widgets provide a sam skin, some core widgets also ship with a night
skin—a darker skin designed to look nice on mobile devices. To apply an alternative
skin across the board, users can change the default skin in the YUI configuration, as
shown in Example 7-11.

Example 7-11. Configuring the “night” skin as the default

YUI({
 skin: {
 defaultSkin: 'night'
 }
 // more config here
}).use('example-widget', function (Y) {
 // exercise the widget here
});

It is also possible to load “override” skins just for particular widgets, or even mix dif-
ferent skins for different components on the same page—though this probably won’t
win you any awards for design or good taste. For more information, refer to the YUI
Config object’s API documentation.

See Also
Recipe 1.9; Recipe 1.11; Recipe 7.9; Recipe 11.6; the “Understanding Skinning” tuto-
rial; Config API documentation for the skin property; YUI Scaffolding, which includes
an example widget that pulls in a skin; Luke Smith’s pattern for loading a local skin.

7.10 Bundling CSS with a Widget as a Skin | 193

www.it-ebooks.info

http://yuilibrary.com/yui/docs/tutorials/skins/
http://yuilibrary.com/yui/docs/tutorials/skins/
http://yuilibrary.com/yui/docs/api/classes/config.html#property_skin
https://github.com/evangoer/yui3-scaffolding
https://gist.github.com/1244430
http://www.it-ebooks.info/

7.11 Representing Data with a Model
Problem
You want to represent a bundle of related data as a model that you can perhaps reuse
in an MVC-style (Model/View/Controller) application.

Solution
Extend Model and add an attribute for each data field you want to represent. Model
extends Base, adding a few utility methods and a sync lifecycle (discussed in
Recipe 7.12).

Example 7-12 is a simple representation of bookmark data that uses two attributes: a
title and a url. On initialization, the bookmark sets a titleChange listener that logs
the new value and the previous value.

The demo <div> displays the bookmark’s current title in the markup. The bookmark
instance adds the demo <div> as a target for any custom events it emits, and the
<div> has an after() event listener that responds to any successful change to the book-
mark’s title by updating the <div>’s contents. The model uses the getAsHTML() utility
method to escape any possibly dangerous HTML. For this reason, the in the
example gets escaped to .

For good measure, the example includes a button that calls the bookmark’s undo()
method. If you view the browser console alongside the browser page and click the
button, you can watch the bookmark and its <div> toggle back and forth between two
states.

Example 7-12. Representing data with a model

<!DOCTYPE html>
<title>Representing data with a model</title>

<div id="demo"></div>
<button id="undo">Undo</button>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI.add('bookmark', function (Y) {

 Y.Bookmark = Y.Base.create('bookmark', Y.Model, [], {
 initializer: function () {
 this.after('titleChange', function (ev) {
 Y.log('Was: ' + ev.prevVal + ', Now: ' + ev.newVal);
 });
 }
 }, {

194 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

 ATTRS: {
 title: {},
 url: {}
 }
 });
}, '1.0', { requires: ['model'] });

YUI().use('bookmark', 'node-base', function (Y) {
 var bookmark = new Y.Bookmark({
 title: 'YUI Library',
 url: 'http://yuilibrary.com'
 });
 bookmark.after('titleChange', function () {
 Y.one('#demo').setHTML(bookmark.getAsHTML('title'));
 });
 bookmark.set('title', 'YUI Library -- now with MVC!');

 Y.one('#undo').on('click', function () { bookmark.undo(); });
});
</script>

Discussion
Any object that carries the Attribute API serves as a pretty good model already. As
mentioned in Recipe 7.1, attributes have a variety of rich behaviors that include custom
getters and setters, custom validators, and perhaps most important of all, automatically
fired change events. The Model API adds a few more capabilities:

• On any attribute change, Model fires a coalesced change event in addition to the
individual attribute change events. This makes it convenient to re-render a view or
widget whenever its underlying model changes, as you only need to set one listener.

• The utility methods getAsHTML() and getAsURL() help to safely display model data
in an HTML or URL context.

• The toJSON() method converts a model into a chunk of easy-to-parse JSON data.
You can also pass the model instance directly to Y.JSON.stringify().

• As demonstrated in Example 7-12, models support a single level of undo. The
undo() method reverts the last change, and change events carry the previous value
and the new value.

• Finally, models support a syncing layer that enables you to sync attribute values
with some kind of persistence layer or remote data source. For more information,
refer to Recipe 7.12.

Comparing Model to DataSource, you can think of Model as a tangible “thing” that holds
data, while DataSource is more of an adapter for moving data from one place to another.
Another key difference is that developers typically instantiate and use DataSource di-
rectly, while Model is meant to be extended.

7.11 Representing Data with a Model | 195

www.it-ebooks.info

http://www.it-ebooks.info/

All models have two built-in “infrastructure” attributes: id and clientId. The id at-
tribute is a unique, persistent ID that you set yourself when implementing a syncing
layer. The clientId attribute is automatically generated for you and is useful for re-
trieving Models from ModelLists, but it does not persist across page views.

Beyond id and clientId, any attributes you add to a model are “data” attributes.
Attributes, Models, and ModelLists provide great flexibility in modeling your data. For
example, if a bookmark had tags, you could design the tags attribute as a simple array
of strings, an array of objects, or even a ModelList containing Models, each of which is
a tag. With this in mind, it’s usually best to design your data structures by starting small
and building something simple that works, rather than committing upfront to some
kind of grand architecture.

See Also
The YUI Model User Guide; Model API documentation; the YUI DataSource User Guide.

7.12 Persisting Model Data with a Sync Layer
Problem
You want to represent a bundle of related data as a model that you can persist or sync
to some storage layer.

Solution
Extend Model and implement the sync() method. The sync() method takes three pa-
rameters: an action string, an options object, and a callback method to execute when
the operation is complete.

Example 7-13 uses localStorage as a sync layer. This example does not display changes
in the HTML, just in the browser console. However, it does include a handy button to
clear localStorage, making it easy to replay the example from the beginning.

The example first creates a new, empty Bookmark with a particular ID. The example
then calls load() to fetch the bookmark’s data from localStorage, with a callback
function to execute on completion. Under the hood, load() calls sync() with an action
of "read".

• If localStorage does not return anything for the given ID, the load() callback re-
ceives an error. The callback responds to that error by creating a new Y.Bookmark
object and calling save(). (This error handling behavior is deliberately contrived:
it is just meant to show how the API works.)

Because the bookmark does not yet have an ID, it is considered “new.” Under the
hood, calling save() on a “new” model calls sync() with an action of "create". The
sync() implementation sets the bookmark’s id attribute and adds the stringified

196 | Chapter 7: Infrastructure

www.it-ebooks.info

http://yuilibrary.com/yui/docs/model/
http://yuilibrary.com/yui/docs/api/classes/Model.html
http://yuilibrary.com/yui/docs/datasource/
http://www.it-ebooks.info/

version of the bookmark to localStorage. Subsequent page views will retrieve the
saved bookmark, rather than creating a fresh one.

• If localStorage successfully retrieves data for the given ID, the empty bookmark’s
title and url are set with the stored data. Note that the sync() implementation
just needs to fetch the data as a string and pass it into the callback function. Once
that happens, Model automatically parses the string and sets the bookmark’s data
for you.

Example 7-13. Persisting model data with a sync layer

<!DOCTYPE html>
<title>Persisting model data with a sync layer</title>

<button id="clear">Clear localStorage</button>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI.add('bookmark', function (Y) {

 Y.Bookmark = Y.Base.create('bookmark', Y.Model, [], {
 sync: function (action, options, callback) {
 var data, err = null;

 switch(action) {
 case 'create':
 this.set('id', 'ID_' + this.get('url'));
 data = this._update();
 break;
 case 'update':
 data = this._update();
 break;
 case 'read':
 data = localStorage.getItem(this.get('id'));
 if (! data) {
 err = '"' + this.get('id') + '" not found in localStorage.';
 }
 break;
 default:
 err = 'Invalid action';
 }

 if (Y.Lang.isFunction(callback)) {
 callback(err, data);
 }
 },
 _update: function () {
 var data = this.toJSON();
 localStorage.setItem(data.id, Y.JSON.stringify(data));
 return data;
 }
 }, {

7.12 Persisting Model Data with a Sync Layer | 197

www.it-ebooks.info

http://www.it-ebooks.info/

 ATTRS: {
 title: {},
 url: {}
 }
 });
}, '1.0', { requires: ['model', 'json-stringify'] });

YUI().use('bookmark', 'node-base', function (Y) {
 var bookmark;

 Y.one('#clear').on('click', function () {
 localStorage.clear();
 Y.log('Cleared localStorage. Please reload the page.');
 });

 bookmark = new Y.Bookmark({ id: 'ID_http://yuilibrary.com' });
 bookmark.load(function (err, data) {
 if (err) {
 var bmark = new Y.Bookmark({
 title: 'YUI Library',
 url: 'http://yuilibrary.com'
 });
 Y.log(err);
 bmark.save(function (err, data) {
 Y.log('Bookmark data persisted. Please reload the page.');
 });
 }
 else {
 Y.log('Retrieved: ' + bookmark.get('title') + ', ' + bookmark.get('url'));
 }
 });
});
</script>

Discussion
A “sync layer” is anything that persists data for your model: localStorage, a web service,
even a cookie. If your model is designed to run on a server, it could sync directly with
an RDBMS or with a NoSQL database. If your sync layer is read only, it could be a
scraped web page.

Users should never call sync() directly. Instead, they should call load(), save(), and
destroy(). These methods are somewhat analogous to SQL queries:

• load() is analogous to SELECT * FROM table WHERE ID = '...'. Here, load() calls
sync() with an action of "read". Your read logic must fetch data from the sync layer
and pass it into the sync() callback.

The model’s id attribute acts like a primary key. If you have a known, valid id
already, you can create an empty Model instance and use the ID to load() the
contents:

var bookmark = new Y.Bookmark({ id: 'some_unique_id' });
bookmark.load(myLoadCallback);

198 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

Users should not call load() on a new, empty Model instance and expect that to
work—that would be like trying to fetch a single row from a table without knowing
the row’s primary key. To check whether a model has had its id set yet, call
isNew(). As mentioned in Recipe 7.11, all models have an automatically generated
clientId attribute, but the clientId is not suitable for use with a sync layer.

• save() on a model with an id is analogous to UPDATE table SET (column assign
ments) WHERE ID = '...'. Here, save() calls validate() to verify that the model is
in a good state, and then calls sync() with an action of "update". Your update logic
must update the existing object in the sync layer.

Calling save() with a known id enables a user to manipulate an existing model’s
data and commit the changes back to the sync layer:

bookmark.set('url', 'http://jsfiddle.net');
bookmark.save(mySaveCallback); // action is 'update'

• save() on a model without an id is analogous to INSERT INTO table (columns)
VALUES (values). Here, save() calls validate() to verify that the model is in a good
state, and then calls sync() with an action of "create". Your create logic is re-
sponsible for assigning the model a unique ID and adding a new object to the sync
layer.

Thus, a user who doesn’t yet have the model’s id can construct a new Model in
memory and commit it to the sync layer. When mySaveCallback() returns, the
bookmark has an id attribute, provided by the sync() method:

var bookmark = new Y.Bookmark({
 url: 'http://jsperf.com',
 title: 'My framework vs. your framework: FIGHT!'
});
bookmark.save(mySaveCallback); // action is 'create'

This is somewhat similar to how an RDBMS can autogenerate primary keys for
newly inserted rows. The difference is that the responsibility for generating unique
IDs falls to you, the sync() implementer.

Once the new bookmark is saved, its id attribute has been set, which means
isNew() returns false and subsequent save() calls are invoked as an update, not a
create.

Sometimes, the only difference between the update handler and the
create handler is that the latter needs to assign a new ID. However,
if the semantics for create and update are not the same—for ex-
ample, the sync layer requires an HTTP PUT for creates and an HTTP
POST for updates—then you can account for that here as well.

7.12 Persisting Model Data with a Sync Layer | 199

www.it-ebooks.info

http://www.it-ebooks.info/

• destroy() destroys the local object instance, as destroy() does for any Base-derived
object. However, if a user calls delete(options, callback), and the options object
has a delete property of true, destroy() also calls sync() with an action of
"delete", as in:

bookmark.destroy({ 'delete': true }, myDestroyCallback);

Sync implementations can use this to allow the user to optionally delete data from
the sync layer. The operation then becomes analogous to DELETE FROM table WHERE
ID = '...'.

When implementing a model, do not override load(), save(), or destroy(). Your job
is to implement a sync() method that handles one or more of the four actions, de-
pending on your use case. For example, if a model scrapes its data from a web page, it
only needs to implement the "read" action.

The one thing a sync() implementation must do is execute the callback function that
it received. This callback wraps the user-provided callback function (if any) and pro-
vides some additional behavior:

• If you pass in a falsy err such as false, null, or undefined, this indicates that the
sync operation succeeded. Model calls parse() to parse the data. If parsing succeeds,
Model sets its attribute values accordingly and fires a load or save event. If not,
Model fires an error event. Either way, Model then executes the user’s callback.

To work with parse(), the data parameter must be either a hash suitable for passing
into setAttrs(), or a JSON string that can be parsed into said hash. If your sync
layer returns XML or some other format, you should override the model’s
parse() method so that it returns an attribute hash. If massaging your data into an
attribute hash requires heavy manipulation, that logic should reside in parse(), not
sync().

• If you pass in a truthy err such as a nonempty string or object, this indicates that
the sync operation failed. Model fires an error event and executes the user’s call-
back. parse() does not get called, and the model’s data does not change.

It is up to you to determine what “failure” means and what to report. Ideally, err
should be a string or an object containing meaningful error information for other
components in your application to use. For example, if you call a REST API and
receive a 400 Bad Request, err could include the HTTP response code, a string error
explanation, and any relevant HTTP headers.

Besides parse(), another customization point is the validate() method, which Model
calls asynchronously at the start of a save(). Your validate() function receives two
parameters: an attrs parameter representing a hash of all the model’s attributes, and
a callback function. When you are done validating the contents of attrs, execute the
callback function. If you pass anything other than null or undefined, Model aborts the
save and fires an error.

200 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

By default, a model’s ID is the id attribute. However, you can change this by overriding
the model’s idAttribute property on the prototype. For example, in Example 7-13,
setting idAttribute to 'url' would mean that the URL is the bookmark’s unique iden-
tifier, that an unset url attribute represents a “new” bookmark, and so on. This would
simplify Example 7-13 by eliminating the 'ID_' prefix.

See Also
The YUI Model User Guide; Model API documentation; the YQL Model Sync gallery
module; the REST Model Sync gallery module.

7.13 Managing Models with a Syncing ModelList
Problem
You want to load a group of models from a storage layer and manage them as a list.

Solution
Extend ModelList and implement the sync() method. Unlike with Model, a Model
List’s sync() implementation only needs to handle the read action.

Example 7-14 defines a Bookmark object and a BookmarkList that can contain bookmark
objects.

Bookmark’s sync() method can perform creates, reads, and updates. The implementa-
tion is somewhat similar to the sync() implementation in Example 7-13. The main
difference is that here sync() stores all bookmarks in a stringified array in localStor
age, under the key name "bookmarks". This ends up creating some annoying extra work
involving array and JSON manipulation.

BookmarkList’s sync() method performs only bulk reads. Thanks to the way that indi-
vidual bookmarks are stored, retrieving the entire list is a snap; just retrieve the raw
string data from localStorage and parse it into an array.

When the example runs, it calls load() on the ModelList to fetch all bookmark data
from localStorage. If there are no bookmarks stored, it calls the ModelList’s create()
method twice to create two new bookmarks. This convenience method creates a new
Model instance, calls the Model’s save() method to persist the data, and calls add() to
add the Model to the ModelList.

Example 7-14. Managing models with a syncing ModelList

<!DOCTYPE html>
<title>Managing models with a syncing ModelList</title>

<button id="clear">Clear localStorage</button>

7.13 Managing Models with a Syncing ModelList | 201

www.it-ebooks.info

http://yuilibrary.com/yui/docs/model/
http://yuilibrary.com/yui/docs/api/classes/Model.html
http://yuilibrary.com/gallery/show/model-sync-yql
http://yuilibrary.com/gallery/show/model-sync-yql
http://yuilibrary.com/gallery/show/model-sync-rest
http://www.it-ebooks.info/

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI.add('bookmark-list', function (Y) {

 Y.Bookmark = Y.Base.create('bookmark', Y.Model, [], {
 sync: function (action, options, callback) {
 var data,
 index,
 err = null,
 bookmarks = Y.JSON.parse(localStorage.getItem('bookmarks')) || [];

 function findIndex(id) {
 for (var ix = 0; ix < bookmarks.length; ix += 1) {
 if (id === bookmarks[ix].id) {
 return ix;
 }
 }
 err = '"' + this.get('id') + '" not found in localStorage';
 return -1;
 }

 switch(action) {
 case 'create':
 this.set('id', 'ID_' + this.get('url'));
 data = this.toJSON();
 bookmarks.push(data);
 localStorage.setItem('bookmarks', Y.JSON.stringify(bookmarks));
 break;
 case 'update':
 index = findIndex(this.get('id'));
 if (index != -1) {
 data = this.toJSON();
 bookmarks[index] = data;
 localStorage.setItem('bookmarks', Y.JSON.stringify(bookmarks));
 }
 break;
 case 'read':
 index = findIndex(this.get('id'));
 if (index != -1) {
 data = bookmarks[index];
 }
 break;
 default:
 err = 'Invalid action';
 }

 if (Y.Lang.isFunction(callback)) {
 callback(err, data);
 }
 },
 }, {

202 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

 ATTRS: {
 title: {},
 url: {}
 }
 });

 Y.BookmarkList = Y.Base.create('bookmarkList', Y.ModelList, [], {
 model: Y.Bookmark,
 comparator: function (bookmark) {
 return bookmark.get('title');
 },
 sync: function (action, options, callback) {
 var data, err = null;

 if (action === 'read') {
 data = Y.JSON.parse(localStorage.getItem('bookmarks')) || [];
 }
 else {
 err = 'Invalid action';
 }

 if (Y.Lang.isFunction(callback)) {
 callback(err, data);
 }
 }
 });

}, '1.0', { requires: ['model', 'model-list', 'json'] });

YUI().use('bookmark-list', 'node-base', function (Y) {
 var list = new Y.BookmarkList();

 Y.one('#clear').on('click', function () {
 localStorage.clear();
 Y.log('Cleared localStorage. Please reload the page.');
 });

 list.load(function (err, data) {
 if (list.size() === 0) {
 Y.log("No bookmarks saved yet. Let's create some...");
 list.create({ url: 'http://yuilibrary.com', title: 'YUI Library' });
 list.create({ url: 'http://yuiblog.com', title: 'YUI Blog' });
 Y.log('Two bookmarks persisted. Please reload the page.')
 }
 else {
 list.each(function (bookmark) {
 Y.log('Retrieved: ' + bookmark.get('title') + ', ' + bookmark.get('url'));
 });
 }
 });
});
</script>

7.13 Managing Models with a Syncing ModelList | 203

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
At its core, ModelList is just an ArrayList of Models. You can iterate through models
using each() or some(), append a model using add(), get an individual model using
item(), filter out unwanted models using filter(), and much more. ModelLists are
ideal for filtering and paging through a large group of Models.

Besides ArrayList methods, ModelList offers a few key features:

• The model property. If a ModelList is designed to always contain the same type of
Model, set the model property to that class. This enables you to call add(), cre
ate(), and reset() using attribute hashes, as shown in Example 7-14.

• Model events automatically bubble up to all ModelLists that contain that Model.
This feature makes ModelList an ideal “switchboard” for listening and responding
to attribute change events. ModelLists themselves fire six events: add, error, remove,
reset, load, and create.

• The load() method, which is analogous to SELECT * FROM table. As with Model,
load() for ModelList calls sync() with an action of "read". Your read logic must
fetch data from the sync layer and pass it into the sync() callback. Ideally, a Model
List’s load() should do a single read request that returns all models in the data
store, as shown in Example 7-14.

ModelList does not currently expose a save() method, although you can always im-
plement one yourself. A naive ModelList save() might iterate through all Models, calling
save() on each one. However, it is probably more efficient to write some logic that
takes into account the capabilities of your sync layer.

Keep in mind the difference between model.save(), modellist
.add(model), and modellist.create(model). Calling save() persists an
individual model. Calling add() appends a Model to a ModelList. Calling
create() combines both operations.

See Also
The YUI ModelList User Guide; ModelList API documentation; ArrayList API docu-
mentation.

7.14 Rendering HTML with a View
Problem
You want to represent a piece of a page as a simple, self-contained, renderable object
with its own set of events.

204 | Chapter 7: Infrastructure

www.it-ebooks.info

http://yuilibrary.com/yui/docs/model-list/
http://yuilibrary.com/yui/docs/api/classes/ModelList.html
http://yuilibrary.com/yui/docs/api/classes/ArrayList.html
http://yuilibrary.com/yui/docs/api/classes/ArrayList.html
http://www.it-ebooks.info/

Solution
Extend View and implement its render() method, as shown in Example 7-15. You can
also use the events property as a shorthand for configuring the view’s event listeners.

Example 7-15. Rendering HTML with a view

<!DOCTYPE html>
<title>Rendering HTML with a view</title>
<style>
.error { border: 1px #600 solid; padding: 2px; background: #faa; color: #400; }
</style>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().add('errorpane', function (Y) {
 Y.ErrorPane = Y.Base.create('errorpane', Y.View, [], {
 events: {
 'button': {'click': 'fadeOut'}
 },
 fadeOut: function () {
 this.get('container').hide(true, Y.bind(this.destroy, this));
 },
 render: function () {
 var container = this.get('container');
 container.setHTML('<button>Ignore</button> ' + this.get('msg'));
 Y.one('body').append(container);
 return this;
 }
 }, {
 ATTRS: {
 msg: {}
 }
 });
}, '1.0', { requires: ['view', 'transition'] });

YUI().use('errorpane', function (Y){
 var errorpane = new Y.ErrorPane({
 msg: 'kernel: lp0 on fire',
 container: Y.Node.create('<div class="error"/>')
 });
 errorpane.render();
});
</script>

Discussion
Like Widget, View is a component that renders HTML. Both extend Base and inherit the
powerful Attribute, EventTarget, and PluginHost APIs. However, widgets and views
serve different purposes.

A widget is a generic visible component designed to be reused across different websites,
such as a table, calendar, menu, or chart. For this reason, the Widget API has rich

7.14 Rendering HTML with a View | 205

www.it-ebooks.info

http://www.it-ebooks.info/

behavior and strong conventions that make it easy for other YUI developers to get up
to speed quickly with any new widget they need to use.

A view is a convenient wrapper around a chunk of HTML. A view could represent your
site’s footer, a blog post, a set of controls, or even an entire page (which can in turn
contain child views). Unlike widgets, which solve a common problem for everybody,
views solve a particular problem with building your site. This means that views can get
away with having a lighter, less structured API.

Another way to think about this is, a widget is something you might submit to the
gallery; a view, probably not.

This is not to say that you can’t use widgets and views in the same application. You
could have a view sidebar that renders a widget calendar, or construct a widget using
views as internal building blocks. For example, the DataTable widget now uses views
to control the overall presentation of the table’s head, foot, and body, along with models
to hold individual rows of data.

Though View has few conventions, the one method you must implement is render().
This method is very loose, lacking the three-phase structure of Widget’s render() meth-
od. It is up to you to define how and where the view should render its markup. Likewise,
View has no conventions around bounding boxes or content boxes, just an optional
container attribute that represents the element that contains the view. By default,
container is a <div>, but you can set this to be any CSS selector string, native DOM
node, or YUI node. When a View instantiates, container automatically becomes a
Node instance (if it isn’t already).

The events property is a helper for attaching events. It is a hash of CSS selectors rep-
resenting nodes to listen on, each of which contains a hash of event names and handler
functions (or string method names). Any event handlers you specify here reside on the
container node and use event delegation. This not only assigns event listeners to lots
of child nodes efficiently, but also enables you to destroy and re-render the internal
contents of the container node without losing event listeners.

To set after() listeners, use the view’s initializer() method.

To generate the view’s HTML, you can use the optional template property to hold a
template string, and then use Y.Lang.sub() or a more sophisticated templating scheme
such as Handlebars.js to generate the HTML. Alternatively, you can build up a DOM
structure using Y.Node.create() and similar methods.

Views lack a built-in convention around internationalization like the Widget strings
attribute that will be discussed in Recipe 11.6. However, there is no reason you can’t
use Y.Intl or even follow the Widget strings convention to the hilt. Likewise, views

206 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

lack Widget’s HTML_PARSER, so progressive enhancement is something you must imple-
ment yourself.

Ultimately, you should use View if its API makes your life easier. If you can solve most
of a problem by calling setHTML() on a node, View is overkill.

See Also
The YUI View User Guide; View API documentation.

7.15 Rendering a Model with a View
Problem
You want to represent a model as a chunk of HTML that changes appearance in re-
sponse to changes in the model’s data.

Solution
Create a model and a view. Then, in the view’s initializer() method:

1. Use addTarget() to configure the model to send its custom events to the view.

2. Assign after() event handlers that listen for attribute changes and re-render all or
part of the view’s HTML.

Example 7-16 returns to the example of the bookmark model. Not only are bookmarks
finally visible in the page (hooray!), but they also now have a title, a URL, and an array
of string tags. The model includes an addTag() utility method that adds new tags
without creating duplicates and escapes the user’s input data to prevent cross-site
scripting exploits.

When instantiating a view, you can pass in a model attribute in the constructor, which
creates a handy reference to a Model instance. BookmarkView relies on this feature to
associate itself with an underlying Bookmark model. Data flows through this miniature
application as follows:

1. The page loads. The view displays the underlying model data, along with a form
for adding tags.

2. The user enters a new tag and clicks the Add button.

3. The click triggers the view’s addTag() method, which updates the model’s tags
attribute. Note that addTag() does not need to create a local copy of the tags array—
the Attribute API handles this for you.

4. The model responds by automatically firing a bookmark:tagsChange event.

7.15 Rendering a Model with a View | 207

www.it-ebooks.info

http://yuilibrary.com/yui/docs/view/
http://yuilibrary.com/yui/docs/api/classes/View.html
http://www.it-ebooks.info/

5. Thanks to addTarget(), the view receives the model’s events. The view responds
to the bookmark:tagsChange event by re-rendering just the section of the view that
displays the list of tags.

For extra robustness, BookmarkView’s initializer() also sets a listener for the model
Change event. If you decide to associate the view with a different model after instantia-
tion time, the view will automatically call removeTarget() and addTarget() accordingly.

Example 7-16. Rendering a model with a view

<!DOCTYPE html>
<title>Rendering a model with a view</title>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI.add('bookmark', function (Y) {

 Y.Bookmark = Y.Base.create('bookmark', Y.Model, [], {
 addTag: function (tag) {
 var tags = this.get('tags');
 if (! Y.Lang.isString(tag)) { return; }
 tag = Y.Escape.html(Y.Lang.trim(tag));
 if (Y.Array.indexOf(tags, tag) !== -1) { return; }

 tags.push(tag);
 this.set('tags', tags);
 }
 }, {
 ATTRS: {
 title: {},
 url: {},
 tags: { value: [] }
 }
 });

 Y.BookmarkView = Y.Base.create('bookmarkView', Y.View, [], {
 events: {
 '.add button': { click: 'addTag' }
 },
 template: '<dt>{title}</dt>'
 + '<dd class="tags">Tags: {tags}</dd><dd class="add">'
 + '<form><input type="text"><button>Add Tag</button></form></dd>',
 initializer: function () {
 var model = this.get('model');

 this.after('bookmark:tagsChange', this.reRenderTags, this);
 this.after('modelChange', function (ev) {
 ev.prevVal && ev.prevVal.removeTarget(this);
 ev.newVal && ev.newVal.addTarget(this);
 });

 model && model.addTarget(this);
 },

208 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

 destructor: function () {
 var model = this.get('model');
 model && model.addTarget(this);
 },
 render: function () {
 var model = this.get('model'),
 bookmarkData = {
 url: model.get('url'),
 title: model.get('title'),
 tags: model.get('tags').join(', ')
 },
 content = Y.Lang.sub(this.template, bookmarkData),
 container = this.get('container')

 container.setHTML(content);
 if (! container.inDoc()) {
 Y.one('body').append(container);
 }
 return this;
 },
 addTag: function (ev) {
 var input = this.get('container').one('.add input');
 this.get('model').addTag(input.get('value'));
 input.set('value', '');
 ev.preventDefault();
 },
 reRenderTags: function () {
 var tags = this.get('container').one('dd.tags');
 tags.setHTML('Tags: ' + this.get('model').get('tags').join(', '));
 }
 }, {
 ATTRS: {
 container: { value: Y.Node.create('<dl/>') }
 }
 });
}, '1.0', { requires: ['model', 'view'] });

YUI().use('bookmark', 'node-base', function (Y) {
 var bookmark = new Y.Bookmark({
 title: 'YUI Library',
 url: 'http://yuilibrary.com',
 tags: ['javascript', 'yui']
 });
 var bookmarkView = new Y.BookmarkView({ model: bookmark });
 bookmarkView.render();
});
</script>

If your render() method uses templates, you can often just use Model’s
toJSON() method to substitute in values, as in Y.Lang.sub(this.tem
plate, this.model.toJSON()). Example 7-16 does a little extra work to
set up a bookmarkData object, because it’s doing something a little more
complicated with tags.

7.15 Rendering a Model with a View | 209

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
addTarget() is your friend for working with the YUI App Framework. addTarget() and
event listeners enable you to wire together an application that consists of loosely cou-
pled models and views.

This architecture means you can refactor your rendering code without having to worry
very much about how your data management code works, and vice versa. You can
rewrite a view’s render() method without having to touch the model, or change how
an attribute’s validator function works without affecting the view.

Breaking your application into models and views also makes it easy to represent the
same data in multiple ways. For example, a single bookmark model could have a
read-only “standard” view, an “editor” view for changing bookmark data, and a “tag
summary” view that aggregates tag data for multiple bookmarks. If the user edits a
bookmark’s data, all views that are wired up to that model automatically reflect the
changes.

Setting model in the View’s constructor sets the View’s model attribute,
but events from the Model do not bubble to the View unless you configure
this relationship with addTarget(). Also note that from a Model instance
you cannot tell which views are listening to the model’s events, unless
you set these references manually.

See Also
Model API documentation; View API documentation; Nicholas Zakas’s “YUI Theater:
Scalable JavaScript Application Architecture”; Daniel Barreiro’s YUIBlog article “A
Recipe for a YUI 3 Application”. The last two links don’t discuss the App Framework
specifically, but do talk about how to organize larger JavaScript applications and pre-
vent components from getting too tightly coupled.

7.16 Rendering a ModelList with a View
Problem
You want to represent multiple models as chunks of HTML that change appearance in
response to changes to the list.

Solution
Create a model and two views: one view to render an individual model’s data, and one
view to render the entire list of models. In the second view, store a reference to a
ModelList instance using the modelList attribute, and call addTarget() in the initial
izer() to ensure that the ModelList’s coalesced change events bubble to the view.

210 | Chapter 7: Infrastructure

www.it-ebooks.info

http://yuilibrary.com/yui/docs/api/classes/Model.html
http://yuilibrary.com/yui/docs/api/classes/View.html
http://yuilibrary.com/theater/nicholas-zakas/zakas-architecture/
http://yuilibrary.com/theater/nicholas-zakas/zakas-architecture/
http://www.yuiblog.com/blog/2011/04/01/a-recipe-for-a-yui-3-application/
http://www.yuiblog.com/blog/2011/04/01/a-recipe-for-a-yui-3-application/
http://www.it-ebooks.info/

Example 7-17 is a variation of the approach used in Recipe 7.15. Here, addTarget()
creates a relationship between a single master view and a ModelList, rather than be-
tween individual views and models. Also note that instead of extending ModelList, the
example just uses a vanilla ModelList instance. Unlike with Model, extending Model
List is not required. This particular app only handles adding new bookmarks, but could
be fleshed out to handle edits and deletes.

The BookmarkView defines its default container to be an rather than a <div>. To
override the default, you must use valueFn rather than value. By default, View already
sets container with its own valueFn, which takes priority over value.

The optional template property is helpful for holding template strings,
but string concatenation gets ever more awkward as your templates get
more complex. For sophisticated applications, consider using a basic
helper function, as shown in Recipe 9.7, or even a full-fledged templat-
ing system such as Handlebars.js. You can also use the trick of storing
template strings in a <script type="text/x-template> element, as dis-
cussed in Recipe 9.7.

Example 7-17. Rendering a ModelList with a view

<!DOCTYPE html>
<title>Rendering a ModelList with a view</title>

<script src='http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js'></script>
<script>
YUI.add('bookmark', function (Y) {

 Y.Bookmark = Y.Base.create('bookmark', Y.Model, [], {
 initializer: function () { Y.log('Added: ' + this.get('url')) }
 }, {
 ATTRS: {
 title: {},
 url: {},
 }
 });

 Y.BookmarkView = Y.Base.create('bookmarkView', Y.View, [], {
 template: '{title}',
 render: function (parentContainer) {
 var content = Y.Lang.sub(this.template, this.get('model').toJSON()),
 container = this.get('container');

 container.setHTML(content);
 if (container.get('parent') !== parentContainer) {
 parentContainer.append(container);
 }
 return this;
 }
 }, {

7.16 Rendering a ModelList with a View | 211

www.it-ebooks.info

http://www.it-ebooks.info/

 ATTRS: {
 container: {
 valueFn: function () { return Y.Node.create(''); }
 }
 }
 });

 Y.BookmarksView = Y.Base.create('bookmarksView', Y.View, [], {
 template: '<form action="#">' +
 '<label>Title: <input type="text" name="linkTitle"></label>' +
 '<label>URL: <input type="text" name="linkURL"></label>' +
 '<input type="submit" value="Add Bookmark">' +
 '</form> ',
 events: {
 'form': { 'submit': 'addBookmark' }
 },
 initializer: function () {
 var modelList = this.get('modelList');

 this.after('modelList:add', this.renderBookmark, this);
 this.after('modelListChange', function (ev) {
 ev.prevVal && ev.prevVal.removeTarget(this);
 ev.newVal && ev.newVal.addTarget(this);
 });

 modelList && modelList.addTarget(this);
 },
 destructor: function () {
 var modelList = this.get('modelList');
 modelList && modelList.addTarget(this);
 },
 render: function () {
 var container = this.get('container');
 if (! container.inDoc()) {
 container.append(this.template);
 Y.one('body').append(container);
 }
 return this;
 },
 addBookmark: function (ev) {
 this.get('modelList').add({
 title: ev.target.get('linkTitle').get('value'),
 url: ev.target.get('linkURL').get('value')
 });
 ev.preventDefault();
 },
 renderBookmark: function (ev) {
 var view = new Y.BookmarkView({ model: ev.model });
 view.render(this.get('container').one('ul'));
 }
 }, {
 ATTRS: {
 modelList: { value: new Y.ModelList({ model: Y.Bookmark }) }
 }
 });

212 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

}, '1.0', { requires: ['model', 'model-list', 'view'] });

YUI().use('bookmark', function (Y) {
 var bookmarks = new Y.BookmarksView();
 bookmarks.render();
});
</script>

Discussion
A View that represents a ModelList is particularly useful for displaying aggregated
Model data. For example, individual views could display quantities and subtotals for
each line item in a shopping cart, while a master view could render the container for
the line items and display the total for the cart.

When juggling Models, ModelLists, and Views in the same application, avoid using a
verbose naming scheme like, “ BookmarkModel, BookmarkModelView, BookmarkModelList
View.” Let the base model be a Bookmark, rendered by a BookmarkView, and build from
there. To indicate a ModelList, use the plural form of the model’s name (Bookmarks) or
append “List” (BookmarkList). Alternatively, if you prefer to think of the view as fun-
damental, let the base view be a Bookmark, backed by a BookmarkModel.

As with models, you can associate a ModelList with a view in the constructor:

var view = new ExampleView({ modelList: someModelList });

As with the model attribute, the modelList attribute is just a convention. You must still
call addTarget() yourself and implement render() yourself.

See Also
Model API documentation; ModelList API documentation; View API documentation;
the YUI TODO List example app; Photos Near Me, another example YUI app; GitHub
Users, an extremely minimal app.

7.17 Saving State Changes in the URL
Problem
You want to use Node’s load() method to dynamically replace sections of a page in
response to user clicks, but you also want to store those state changes in browser history
so that the Back button continues to work.

Solution
Use event delegation to wrap a click handler around every link on the page that serves
as a “navigation link”—in this case, any link within the nav . In the event handler,
use Node’s load() method to fetch the content from the target page. Then use Router’s

7.17 Saving State Changes in the URL | 213

www.it-ebooks.info

http://yuilibrary.com/yui/docs/api/classes/Model.html
http://yuilibrary.com/yui/docs/api/classes/ModelList.html
http://yuilibrary.com/yui/docs/api/classes/View.html
http://yuilibrary.com/yui/docs/app/app-todo.html
https://github.com/ericf/photosnear.me
http://jsfiddle.net/ericf/SzxJv/
http://jsfiddle.net/ericf/SzxJv/
http://www.it-ebooks.info/

save() method to set a new URL in the user’s location bar and update the browser
history.

Example 7-18 is similar to Example 5-4. Besides using event delegation, the main dif-
ference between the two is that Example 7-18 extracts the filepath of the loaded file
and saves that path as a new state in the browser’s history.

removeRoot() is a handy utility method for extracting the path component of a URL.
The save() method is designed to work with paths such as /jack.html, not full URLs
such as http://localhost:8000/jack.html.

Like its predecessor, Example 7-18 is an example of progressive enhancement. If Java-
Script is active, clicking a navigation link dynamically replaces the content pane with
new markup and updates the URL as the user would expect. If JavaScript is inactive,
navigation links still work, but they reload the entire page.

Example 7-18. Using Router to save state changes in the URL

<!DOCTYPE html>
<title>Using Router to save state changes in the URL</title>

<h1>Nursery Rhymes</h1>
<ul id="nav">
 Jack Be Nimble
 Little Bo Peep
 Row, Row, Row Your Boat

<div id="main"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('router', 'node-event-delegate', 'node-load', function (Y) {
 var router = new Y.Router();

 Y.one('body').delegate('click', function (ev) {
 var url = ev.target.get('href'),
 path = router.removeRoot(url);

 ev.preventDefault();

 Y.one('#main').load(url, '#main');
 router.save(path);
 }, '#nav a');
});
</script>

Because this example uses HTML History, it must be served from a web
server, not the local filesystem.

214 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

The example relies on loading content from static HTML files that resemble Exam-
ple 7-19.

Example 7-19. Sample static HTML page (jack.html)

<!DOCTYPE html>
<title>Jack Be Nimble</title>

<h1>Nursery Rhymes</h1>
<ul id="nav">
 Jack Be Nimble
 Little Bo Peep
 Row, Row, Row Your Boat

<div id="main">
<p>
 Jack be nimble,

 Jack be quick,

 Jack jump over

 The candlestick.
</p>
</div>

While Example 7-18 creates and uses a Router instance, you can also extend Router, as
shown in Recipe 7.18.

Discussion
Router is a machine that maps URLs to application state. Its two main features are:

• Recording application state changes using URLs, as shown in Example 7-18. The
example calls save() in response to a link click, but the general idea is that you
would call save() whenever you want to save some interesting moments in your
application.

• Responding to URL path changes by executing one or more JavaScript functions;
in other words, URL-based routing. For more information, refer to Recipe 7.18.

save() is the workhorse method for updating browser history. There is a similar
replace() method; save() adds a new entry to history, while replace() overwrites the
current history entry. replace() is useful when you need to update the URL and possibly
dispatch to a new route, but you don’t want to clutter browser history with yet another
event. For both methods, Router also includes a good deal of defensive code to work
around buggy native pushState() implementations.

By default, Router configures its history behavior according to the browser’s capabili-
ties. If the browser supports HTML History, save() and replace() update history using
the browser’s native pushState() method, which generates a real URL. If not, save()
and replace() update history with a hash-based URL. For example, in a legacy browser,
save('/foo') saves a URL of http://example.com/#foo rather than http://example.com/
foo.

7.17 Saving State Changes in the URL | 215

www.it-ebooks.info

http://www.it-ebooks.info/

Providing good URLs for good browsers and bad URLs for bad browsers is usually the
correct approach. However, if you need to override this behavior, you can explicitly set
Router’s html5 attribute:

• To force all browsers to use real URLs, call router.set('html5', true). Browsers
that do not support pushState() will make a request to the server that results in a
full page load.

• To force all browsers to use legacy hash URLs, call router.set('html5', false).
This essentially declares that you have no server-side logic for handling inbound
requests, so you are giving up any hope of having robust, reusable URLs.

Do not set html5 to false unless you fully understand the consequences
for maintaining your application in the months and years to come.

Saving state changes as URLs is a powerful technique. Properly used, browser history
management addresses a number of usability issues around web applications, such as
supporting the Back button and allowing bookmarking and link sharing. However,
handling inbound links requires at least some server-side logic, as discussed in “Dis-
cussion” on page 219.

You can use Router independently from or together with the other components in the
App Framework. How you manage your application’s state is orthogonal to how you
choose to render your application’s HTML or sync your application’s data.

See Also
Recipe 9.12; the YUI Router User Guide; Router API documentation; “Are hashbang
URLs a recommended practice?”.

7.18 Defining and Executing Routes
Problem
You want to render different screens within your application, and possibly even dif-
ferent sections within each page, based on some kind of URL hierarchy.

Solution
Use Router to define a set of routes that map URL paths within your application to
JavaScript functions that generate the appropriate HTML.

Example 7-20 represents a fake blog management application that illustrates how to
configure routes. The application uses event delegation to trap clicks on navigation
links and call the router’s save() method. Calling save() not only updates the location

216 | Chapter 7: Infrastructure

www.it-ebooks.info

http://yuilibrary.com/yui/docs/router/
http://yuilibrary.com/yui/docs/api/classes/Router.html
http://www.quora.com/Are-hashbang-URLs-a-recommended-practice
http://www.quora.com/Are-hashbang-URLs-a-recommended-practice
http://www.it-ebooks.info/

bar and browser history, but also dispatches the URL path to the router, evaluating the
path against its routes in order and executing the callback for the first route that
matches.

Example 7-20. Defining and executing routes

<!DOCTYPE html>
<title>Defining and executing routes</title>

<div id="nav">Admin | Blog Posts</div>
<div id="subnav"></div>
<div id="main"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().add('blog', function (Y) {
 Y.Blog = Y.Base.create('blog', Y.Router, [], {
 initializer: function () {
 Y.one('body').delegate('click', function (ev) {
 var path = this.removeRoot(ev.target.get('href'));
 ev.preventDefault();
 this.save(path);
 }, 'a', this);
 },
 showAdminScreen: function (req, res, next) {
 Y.one('#subnav').setHTML('<p>(admin buttons)</p>');
 Y.one('#main').setHTML('<p>(general admin functions)</p>');
 },
 listPosts: function (req, res, next) {
 Y.one('#subnav').setHTML(''
 + 'Blogging is Hard'
 + 'What I Had For Lunch Today'
 + 'Hello World'
 + '');
 Y.one('#main').setHTML('');
 next();
 },
 editPost: function (req, res, next) {
 Y.one('#main').setHTML('Editing post ' + req.params.id);
 }
 }, {
 ATTRS: {
 routes: {
 value: [
 { path: '/admin', callback: 'showAdminScreen' },
 { path: /^\/posts/, callback: 'listPosts' },
 { path: '/posts/:id', callback: 'editPost' }
]
 }
 }
 });
}, '1.0', { requires: ['router', 'node-event-delegate'] });

YUI().use('blog', function (Y) {
 var blog = new Y.Blog();

7.18 Defining and Executing Routes | 217

www.it-ebooks.info

http://www.it-ebooks.info/

});
</script>

This example must be served from a web server, not the local filesystem.

Each route callback receives three parameters:

• A req parameter representing the request. It contains:

— A path string representing the original URL path

— A url string representing the full URL

— A query object containing a hash of HTTP query parameter names and values

— A params property that is either a hash of captured string parameters or an array
of captured regex matches

— A src string that is "popstate" when the user hits the Forward or Back button;
"add" for other user actions such as link clicks

In Example 7-20, the path of "/posts/:id" causes Router to capture the substring
after /posts/ as a named parameter, passing it into editPost() as req.params.id.
In a real blog application, this parameter could be used to fetch blog post data from
a database.

• A res parameter. In YUI 3.5.0, route callbacks receive three parameters: req, res,
and next—but to maintain backward compatibility with legacy code, res and
next are actually identical. In future versions of YUI, res will carry information
about the response, breaking compatibility with legacy code.

• A next parameter that is an executable function. By default, a router executes only
the first route that matches, but calling next() causes it to continue evaluating
routes. This technique is called route chaining.

In Example 7-20, the listPosts() method is responsible only for painting a section
of the page. Because listPosts() calls next(), a path such as /posts/2 not only
triggers listPosts(), but continues on to editPost() as well.

Thus:

1. Navigating to the /admin path displays a fake “admin screen.”

2. Navigating to any URL underneath /posts displays a hardcoded fake list of the most
recent “blog posts.” Executing next() causes Router to continue looking for pos-
sible matching routes.

3. Navigating to a particular post ID such as /posts/2 not only displays the list of
current blog posts, but also displays a fake “edit screen” for the specified post
beneath that.

218 | Chapter 7: Infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

It’s worth emphasizing that the callbacks shown in Example 7-20 are fake and contain
only throwaway code. Real routing callbacks might fetch data using Ajax, or use views
to render some well-crafted HTML. Those views in turn could rely on models to supply
data such as titles, body content, and categories. The models could sync to a storage
layer, and so on.

Discussion
Router’s client-side routing is inspired by the Express web serving framework for
Node.js. Router does not currently work on the server and lacks some of Express’s
advanced server-side routing features. However, if you use Router on the client and
Express on the server, you should be able to share some routing code.

When writing a single-page app, you will need to have at least some server-side backing.
For example, if your Products page resides at the path /products, and a user bookmarks
a link to a particular product such as http://example.com/products/hotdogs, that link will
404 unless the server routes GET /products/hotdogs to the /products page.

In Router, a route is defined as a mapping between a URL path and a callback function.
Paths can be:

• Simple string matches, as in "/admin"

• Placeholders, as in "/posts/:id", where id matches everything up to the next /
character

• “Splat” placeholders, as in "/posts/*path", where path matches everything includ-
ing subsequent / characters

• Regular expression matches, as in /^\/posts/

You can specify a callback as a named function, as an anonymous function, or as the
string name of a method on the Router object. For more information about route syntax
and parameter capturing, refer to the Router API documentation.

Although route chaining is optional, it is a useful technique for dividing responsibility
between different functions. For example, an application with hierarchical URLs of the
form /mainnav/subnav/content could use route chaining to designate one function to
display the main navigation, which chains to a function that displays the subnavigation,
which chains to a third function that displays the main content.

You can add routes by:

1. Extending Router and setting the routes attribute to an array of route definitions,
as shown in Example 7-20.

2. Providing routes at construction time:

var router = new Y.Router({
 routes: [
 { path: "/foo", function: "fooHandler" },
 ...

7.18 Defining and Executing Routes | 219

www.it-ebooks.info

http://www.it-ebooks.info/

]
});

3. Calling the route() method after instantiation to add an individual route:

router.route("/foo", function () { ... });

If you have paths that chain from another path, their handlers must call
next()! Route chaining does not occur by default.

Calling save() or replace() not only updates the URL, but also triggers a dispatch,
causing the router to evaluate routes. In browsers that do not support HTML His
tory, the router triggers a dispatch on initial page load, since this is necessary to support
hash-based URLs. To manually trigger a dispatch at any time without changing the
URL, call dispatch().

As an example of when to call dispatch(), consider a single-page application that
physically resides under the URL /app. You’ve also added some server-side logic to
direct all requests to any path under /app to this single page. A user copies a link within
your application, http://example.com/app/foo/bar/123, and shares it with a friend.
When the friend clicks the link, the server directs the request of GET /app/foo/bar/
123 to your app. Without an initial dispatch, the friend will be directed to your appli-
cation’s home page, not the expected page. An initial router.dispatch() resolves this
problem by evaluating routes and constructing the correct page for that URL.

The advantage of the “redirect and do an initial dispatch()” pattern is that almost all
router code resides on the client. You need only a relatively small amount of server-side
code to redirect requests to /app.

The disadvantage of this pattern is that almost all router code resides on the client. If
the user has JavaScript turned off, or if the “user” is actually a search engine spider
crawling your site, your site will break.

It is also a good practice to call upgrade() on initial page load. In browsers that support
HTML History, this checks whether the URL is a hash-based URL (possibly copied
and pasted from a legacy browser) and automatically upgrades the URL to a real URL,
triggering a dispatch. In browsers that do not support HTML History, calling
upgrade() has no effect.

See Also
The YUI Router User Guide; Router API documentation; Express JS.

220 | Chapter 7: Infrastructure

www.it-ebooks.info

http://yuilibrary.com/yui/docs/router/
http://yuilibrary.com/yui/docs/api/classes/Router.html
http://expressjs.com/
http://www.it-ebooks.info/

CHAPTER 8

Using Widgets

One of the most popular features YUI offers is its suite of prepackaged widgets. As
discussed in previous chapters, in YUI parlance, a widget is a generic visible component
designed to be reused across different websites, such as a table, calendar, menu, or
chart. Conceptually, a YUI widget is similar to a Dojo widget or a jQuery UI plugin.

The YUI Widget API is unique in that it provides strong conventions. Despite being
designed to address wildly different tasks, all YUI widgets share a huge number of
common behaviors:

• All YUI widgets use the same conventions for rendering.

• All YUI widgets use the same approach for configuring the widget at construction
time and for changing the configuration later on.

• All YUI widgets share a large group of common configuration settings and meth-
ods. The external API works the same way for hiding a widget, disabling a widget,
controlling a widget’s size, destroying a widget instance, and many other common
functions.

• All YUI widgets follow the same basic structural conventions for their container
elements and the CSS classes on those containers.

• All YUI widgets fire custom events when their configuration state changes and at
other interesting moments.

• All YUI widgets can receive custom events and can be added to an event target
chain.

• All YUI widgets can add plugins to augment a particular widget instance’s behav-
ior. Features such as being “draggable” or “resizable” are broken out into plugins,
which means that you add and use those features in the same way for every widget.

• All YUI widgets use the same mechanisms for changing the widget at the prototype
level, either by extending the widget or by mixing new methods into the widget’s
prototype. The core library provides a large number of mixins—in fact, some
widgets are composed solely from mixins and don’t have any unique methods or
properties of their own.

221

www.it-ebooks.info

http://www.it-ebooks.info/

In other words, if you’ve used one YUI widget, it’s easy to learn how to use another. If
you are designing new widgets, you get a rich set of behaviors for free, and other YUI
developers can get up and running with your widget quickly.

This chapter explains how to exercise some of the core widgets. To learn how to create
new widgets from scratch, refer to Chapter 7.

Understanding the YUI infrastructure APIs is critical for getting
the most out of YUI. Even if you aren’t planning to build a new YUI
widget right this second, it’s a good idea to read through Chapter 7, or
at least its first four recipes, to understand how the common Base,
Attribute, and Widget APIs work.

Recipe 8.1 demonstrates how to instantiate, render, and configure widgets. If you don’t
have time to read Chapter 7, this recipe should at least get you started on basic widget
usage.

Recipes 8.2, 8.3, and 8.4 explain how to use Overlay, the most generic core widget.
Overlay is a simple, unskinned container object designed to hold and move around any
markup you like.

Recipes 8.5 and 8.6 introduce Panel, a superset of Overlay with a skin. Panel is designed
for creating message panels, dialogs, and small forms.

Recipe 8.7 shows how to use Overlay to implement a fancy reusable tooltip.

Recipe 8.8 goes much further than the previous recipe, using Overlay as the foundation
for a lightbox/slideshow-style interaction. This recipe illustrates how to mix in addi-
tional widget extensions. It also demonstrates how to listen for state changes and up-
date the UI in response, rather than the more brittle method of reacting directly to UI
events.

Recipe 8.9 introduces Slider, a widget for selecting a range of numeric values.

Recipe 8.10 explains how to use TabView to provide tab navigation.

Recipes 8.11, 8.12, and 8.13 describe how to display tabular data with the DataTable
widget, ranging from basic usage to fetching remote data using DataSource.

Recipe 8.14 explains how to display data in a graph using the Chart widget.

Recipe 8.15 discusses Calendar, which enables users to select dates. Recipe 8.16 ex-
plains how to create Calendar rules to disable date ranges and otherwise customize date
cells.

Finally, Recipes 8.17 through 8.20 discuss AutoComplete, covering everything from
fetching remote data to highlighting and formatting.

222 | Chapter 8: Using Widgets

www.it-ebooks.info

http://www.it-ebooks.info/

8.1 Instantiating, Rendering, and Configuring Widgets
Problem
You want to add a YUI widget to your page.

Solution
Load the module that provides the widget, instantiate a widget instance (optionally
passing in any configuration attributes) and call the render() method to append the
widget into the DOM. Example 8-1 illustrates basic widget usage, instantiating a 300-
pixel-wide calendar and rendering it into the demo <div>.

Example 8-1. Instantiating and rendering a 300-pixel-wide calendar

<!DOCTYPE html>
<title>Instantiating and rendering a 300-pixel-wide calendar</title>

<body class="yui3-skin-sam">
<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('calendar', function (Y) {
 var calendar = new Y.Calendar({
 width: 300
 });
 calendar.render('#demo');
});
</script>
</body>

Figure 8-1 illustrates the results of Example 8-1.

Figure 8-1. A 300-pixel-wide calendar

You can do this more compactly by chaining render() off the constructor. Many ex-
amples in this book use the chained pattern:

var calendar = new Y.Calendar({ width: 300 }).render('#demo');

8.1 Instantiating, Rendering, and Configuring Widgets | 223

www.it-ebooks.info

http://www.it-ebooks.info/

This is the equivalent of:

var calendar = new Y.Calendar({ width: 300, render: '#demo' });

In other words, you can render the calendar into the demo <div> by setting the
render configuration attribute, or by calling the render() method, either chained di-
rectly off the constructor, or sometime later on.

Many YUI methods that you might otherwise think return nothing, such
as addClass(), append(), and render(), actually return a reference to
their own object instance so that you can use chaining. These methods
are flagged as “chainable” in the API documentation.

Usually, it’s a good idea to save a handle to the widget so that you can manipulate it
later on. However, if you don’t need the handle, you can leave it out:

new Y.Calendar({ width: 300 }).render('#demo');

The reason to set the calendar’s width is that most widgets expand to fill their containing
box. If you’ve already set the demo <div>’s size using CSS (or simply don’t care), the
JavaScript could be even more compact:

new Y.Calendar().render('#demo');

Where do a YUI widget’s CSS resources come from? By default, when you load a YUI
core widget module, the Loader also loads that widget’s sam skin, a CSS file with that
widget’s styles, all scoped to the class yui3-skin-sam. Since the sam skin is the default
for all core widgets and most third-party widgets, it is usually good practice to add
yui3-skin-sam to the <body> in any page where you are loading widgets. However,
there’s also nothing wrong with adding yui3-skin-sam to any element that contains the
widget. For an example of using an alternative skin for just one widget, refer to Exam-
ple 8-12.

Discussion
The widget’s constructor takes an optional configuration object that sets the widget’s
attributes. An attribute is like a “super property”—it can have special getters, setters,
validators, and other behaviors. Perhaps most important of all, attributes fire events
whenever they are changed.

Some attributes are present for all widgets, while others are specific to a particular type
of widget. For example, width is a common widget attribute, while maximumDate only
applies to Calendar widgets. In the YUI API documentation, a widget’s attributes will
have their own section alongside the widget’s methods, properties, and events. For
more information about the Attribute API, refer to Recipe 7.1.

224 | Chapter 8: Using Widgets

www.it-ebooks.info

http://www.it-ebooks.info/

Setting initial attribute values in the constructor is convenient, but you can also set
them later on by calling set():

var calendar = new Y.Calendar();
calendar.set('width', 300);
calendar.render('#demo');

The render() method can take a CSS selector string or a YUI node.

As a technical point, every YUI widget creates a bounding box and a content box, which
are usually (but not always) <div>s. If you call render('#demo'), the bounding box and
content box <div>s render inside the demo <div>, creating a structure of:

demo div
 bounding box div
 content box div
 calendar elements ...

If you instead set the demo <div> as the contentBox attribute and just call render(), the
content box becomes the demo <div>. Thus, instantiating a widget like this:

var calendar = new Y.Calendar({
 width: 300,
 contentBox: '#demo',
}).render();

yields a structure of:

bounding box div
 content box div (aka the demo div, same thing)
 calendar elements ...

Along with the contentBox, there is also a srcNode attribute for widgets that use pro-
gressive enhancement to construct themselves from existing HTML markup. For ex-
ample, you can build a TabView widget from pure JavaScript, or from s and
<div>s on the page. To see the difference, compare Example 8-13 to Example 8-14.

If you haven’t specified where render() should append the widget, YUI defaults to
appending the widget into the <body>. For absolutely positioned widgets such as Over
lay and Panel, this is fine. Widgets without an absolute position should usually be
rendered into a specific container.

See Also
Recipe 4.6; Recipe 7.1; Recipe 7.2; Recipe 7.4; Recipe 8.15; the Widget User Guide.

8.2 Creating an Overlay
Problem
You want to create a generic, absolutely positioned container for markup.

8.2 Creating an Overlay | 225

www.it-ebooks.info

http://yuilibrary.com/yui/docs/widget/
http://www.it-ebooks.info/

Solution
Instantiate an Overlay widget, specifying its xy position and populating its header,
body, and footer content in the constructor, as shown in Example 8-2.

Example 8-2. Creating an overlay from JavaScript

<!DOCTYPE html>
<title>Creating an overlay from JavaScript</title>
<style>
.yui3-overlay { width: 200px; border: 1px #259 solid; border-radius: 5px; }
.yui3-widget-hd { background: #00cccc; padding: 2px; }
.yui3-widget-bd { background: #47a3ff; padding: 2px; }
.yui3-widget-ft { background: #0a85ff; padding: 2px; }
</style>

<button id="hide">Hide</button> <button id="show">Show</button>
<p>Dear Overlay: I'm feeling a bit smothered. Respectfully yours, P.</p>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('overlay', function (Y) {
 var overlay = new Y.Overlay({
 headerContent: 'Head',
 bodyContent: 'Body',
 footerContent: 'Foot',
 xy: [20, 40]
 }).render();

 Y.one('#hide').on('click', function () { overlay.hide(); });
 Y.one('#show').on('click', function () { overlay.show(); });
});
</script>

Figure 8-2 illustrates the results of Example 8-2.

Figure 8-2. An overlay from JavaScript

As Example 8-2 demonstrates, an Overlay widget, well…overlays. The user can’t select
the obscured region of the paragraph until you hide the overlay again.

Alternatively, you can set the srcNode attribute to create an overlay from preexisting
markup on the page. In this case, you can add some extra CSS to handle the case where
JavaScript is not yet loaded. Example 8-3 creates an overlay from an existing <div>, but
hides the markup it uses until the moment the overlay instantiates.

226 | Chapter 8: Using Widgets

www.it-ebooks.info

http://www.it-ebooks.info/

Example 8-3. Creating an overlay from markup

<!DOCTYPE html>
<title>Creating an overlay from markup</title>
<style>
#overlay { display: none; }
#overlay.yui3-overlay-content { display: block; }
.yui3-overlay { width: 200px; border: 1px #259 solid; border-radius: 5px; }
.yui3-widget-hd { background: #00cccc; padding: 2px; }
.yui3-widget-bd { background: #47a3ff; padding: 2px; }
.yui3-widget-ft { background: #0a85ff; padding: 2px; }
</style>

<button id="hide">Hide</button> <button id="show">Show</button>
<p>Dear Overlay: I'm feeling a bit smothered. Respectfully, P.</p>

<div id="overlay">
 <div class="yui3-widget-hd">Head</div>
 <div class="yui3-widget-bd">Body</div>
 <div class="yui3-widget-ft">Foot</div>
</div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('overlay', function (Y) {
 var overlay = new Y.Overlay({ srcNode: '#overlay', xy: [20, 40] }).render();

 Y.one('#hide').on('click', function () { overlay.hide(); });
 Y.one('#show').on('click', function () { overlay.show(); });
});
</script>

While overlays support a header/body/footer structure, you don’t have to follow this
convention. Example 8-4 illustrates perhaps the simplest possible overlay. It is unstyled
and positioned in the top-left corner, partially covering the Hide and Show buttons.

Example 8-4. Creating an extremely basic overlay

<!DOCTYPE html>
<title>Creating an extremely basic overlay</title>

<button id="hide">Hide</button> <button id="show">Show</button>

<div id="overlay">Generic Overlay</div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('overlay', function (Y) {
 var overlay = new Y.Overlay({ srcNode: '#overlay' }).render();

 Y.one('#hide').on('click', function () { overlay.hide(); });
 Y.one('#show').on('click', function () { overlay.show(); });
});
</script>

8.2 Creating an Overlay | 227

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-3 illustrates the results of Example 8-4.

Figure 8-3. An extremely basic overlay

You can always set() the headerContent, bodyContent, or footerContent attributes later
on by any means you like, perhaps even by making a remote I/O or YQL call.

Discussion
Interestingly, the Overlay object has no intrinsic properties or methods of its own. You
build up Overlay by extending the fundamental Widget object and by mixing in small,
general-purpose widget extensions that provide additional behaviors. These extensions
include:

WidgetPosition
Makes a widget positionable, adding x and y attributes and a move() method for
moving the widget around

WidgetPositionAlign
Enables a widget to be centered within or aligned with respect to a node or the
viewport

WidgetPositionConstrain
Enables a widget to be constrained within a node or the viewport

WidgetStack
Manages a widget’s z-index, including extra shim support that activates only for
IE6

WidgetStdMod
Adds header, body, and footer sections to a widget’s contentBox

In other words, while you can move an overlay to a new position by setting its x or y
attribute or by calling the move() method, you can easily add these features to any YUI
widget you create or extend. The simplest way to mix attributes, methods, and prop-
erties into your own custom widgets is the Y.Base.create() method. For more infor-
mation, refer to Recipe 7.3.

An overlay is a generic container. Its CSS provides only basic structural behavior such
as setting visibility: hidden when the widget is in the hidden state. Since Overlay is
one of the very few core widgets that does not ship with a look and feel, it is also one
of the very few core widgets that doesn’t need a yui3-skin-sam class added to the
<body>. For a widget similar to Overlay that includes more features and comes with a
skin, refer to Recipe 8.5.

228 | Chapter 8: Using Widgets

www.it-ebooks.info

http://www.it-ebooks.info/

See Also
The Overlay User Guide; Overlay API documentation; Kevin Isom’s “Getting to Know
the YUI 3 Overlay”.

8.3 Aligning and Centering an Overlay
Problem
You want to move an overlay to appear just below a form control.

Solution
Instantiate an Overlay and snap it to the desired location by calling the align() method.
The align() method takes two parameters:

node
A Node reference or CSS selector for a node to align the widget against.

points
An array containing two points to align: a point on the widget, followed by a point
on the target node. There are nine alignment points, defined as static properties
on Y.WidgetPositionAlign. For example, Y.WidgetPositionAlign.TR is the top-right
corner, while Y.WidgetPositionAlign.CC is the center of the object.

In Example 8-5, the overlay starts out visible and centered with respect to the viewport.
Clicking the first button calls align(), moving the top-left corner of the widget to the
bottom center of the target node. Clicking the second button calls the sugar method
centered(), which returns the overlay to the current center of the viewport. (Calling
centered(node) centers the overlay within a node.)

Example 8-5. Aligning and centering an overlay

<!DOCTYPE html>
<title>Aligning and centering an overlay</title>
<style>
.yui3-overlay { width: 200px; border: 1px #c02727 solid; border-radius: 5px; }
.yui3-widget-hd { background: #3b5bdf; padding: 2px; }
.yui3-widget-bd { background: #fff64c; padding: 2px; }
.yui3-widget-ft { background: #c02727; padding: 2px; }
</style>

<button id="kneel">Come to ME, Overlay!</button>
<button id="flyaway">No, I defy you</button>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('overlay', function (Y) {
 var overlay = new Y.Overlay({

8.3 Aligning and Centering an Overlay | 229

www.it-ebooks.info

http://yuilibrary.com/yui/docs/overlay/
http://yuilibrary.com/yui/docs/api/classes/Overlay.html
http://kevinisom.info/post/11056899037/getting-to-know-the-yui-3-overlay
http://kevinisom.info/post/11056899037/getting-to-know-the-yui-3-overlay
http://www.it-ebooks.info/

 headerContent: 'Head',
 bodyContent: 'Body',
 footerContent: 'Foot',
 centered: true
 }).render();

 Y.one('#kneel').on('click', function () {
 overlay.align('#kneel', [Y.WidgetPositionAlign.TL, Y.WidgetPositionAlign.BC]);
 });
 Y.one('#flyaway').on('click', function () { overlay.centered(); });
});
</script>

Figure 8-4 illustrates the results of Example 8-5 just after a user clicks the “Come to
ME, Overlay!” button.

Figure 8-4. A centered and aligned overlay

Discussion
Aligning and centering rely on absolute positioning. If you center a widget within the
viewport, and the user resizes the window, the widget stays where it is. If you call
set('x', 350) to move the overlay to a new absolute x coordinate, the y coordinate
stays the same.

Like all features in Overlay, alignment and centering are provided by a generic extension
object, WidgetPositionAlign. You can mix in this functionality to any other widget by
using Y.Base.create() or Y.Base.mix() to mix in WidgetPosition and WidgetPosition
Align. For example, making Calendar widgets alignable is as easy as:

Y.Base.mix(Y.Calendar, [Y.WidgetPosition, Y.WidgetPositionAlign]);
new Y.Calendar({ width: 200, centered: true }).render('#demo');

Mixing and matching features like this is one of the more powerful aspects of YUI’s
infrastructure.

See Also
Recipe 7.3; WidgetPositionAlign API documentation.

230 | Chapter 8: Using Widgets

www.it-ebooks.info

http://yuilibrary.com/yui/docs/api/classes/WidgetPositionAlign.html
http://www.it-ebooks.info/

8.4 Making an Overlay Draggable
Problem
You want to create a generic container for markup that the user can drag around.

Solution
Instantiate an Overlay and plug it with the Y.Plugin.Drag plugin.

Example 8-6 creates two overlapping overlays. It reuses the same CSS from Exam-
ple 8-2, but visually distinguishes between the two by omitting the footer from the first
overlay, and the header from the second. overlayTop also calls plug(Y.Plugin.Drag) to
make the instance draggable. overlayBottom is a little bit more advanced, passing in a
second config object to plug() that defines a drag handle, a variation of the technique
shown in Example 3-11. Unlike overlayTop, you can drag overlayBottom only from its
head <div>.

Example 8-6. Creating two draggable overlays

<!DOCTYPE html>
<title>Creating two draggable overlays</title>
<style>
.yui3-overlay { width: 200px; border: 1px #259 solid; border-radius: 5px; }
.yui3-widget-hd { background: #00cccc; padding: 2px; }
.yui3-widget-bd { background: #47a3ff; padding: 2px; }
.yui3-widget-ft { background: #0a85ff; padding: 2px; }
</style>

<p>Dear Overlay: I'm feeling a bit smothered. Respectfully, P.</p>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('overlay', 'dd-plugin', function (Y) {
 var overlayBottom = new Y.Overlay({
 headerContent: 'Head [drag handle!]',
 bodyContent: 'Body'
 });

 var overlayTop = new Y.Overlay({
 bodyContent: 'Body',
 footerContent: 'Foot',
 xy: [30,30],
 zIndex: 1
 });

 overlayBottom.plug(Y.Plugin.Drag, { handles: ['.yui3-widget-hd'] });
 overlayTop.plug(Y.Plugin.Drag);
 overlayBottom.render();
 overlayTop.render();
});
</script>

8.4 Making an Overlay Draggable | 231

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-5 illustrates the results of Example 8-6.

Figure 8-5. Two draggable overlays

Discussion
The key difference between extensions like WidgetStack and plugins like Plugin.Drag
is that extensions add behavior to all instances of an object, while plug() and
unplug() add and remove behavior from particular instances.

Note that along with setting a drag handle, overlayTop also sets a higher zIndex at-
tribute. By default, both overlays would have a zIndex of 0, and so the first object to
render would be the one on the top of the stack. zIndex, provided by the WidgetStack
extension, provides control over the stack order.

See Also
Recipe 3.7; Recipe 7.7; WidgetStack API documentation.

8.5 Creating a Simple, Styled Information Panel
Problem
You want to provide the user an informational message in a styled pane, without having
to resort to using a gross alert() box.

Solution
Instantiate a Panel widget, setting the bodyContent to whatever HTML message you
need to display. Unlike the bare-bones Overlay, Panel ships with a skin that looks more
like a panel an operating system might display, with colors, gradients, and controls.

Example 8-7 displays a centered Panel widget with a cautionary message. Unlike a
native alert() box, a panel does not have to be modal; you can choose whether the
user is blocked from interacting with other elements on the screen. Clicking the “x”
button or pressing the Escape key dismisses the panel. As an alternative to setting
centered: true, you can use WidgetPosition to set the panel at a particular x,y coordi-
nate, or WidgetPositionAlign to snap the panel against some other element, just like
you can with an overlay.

232 | Chapter 8: Using Widgets

www.it-ebooks.info

http://yuilibrary.com/yui/docs/api/classes/WidgetStack.html
http://www.it-ebooks.info/

Example 8-7. Creating a simple, styled informational panel

<!DOCTYPE html>
<title>Creating a simple, styled informational panel</title>

<body class="yui3-skin-sam">

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('panel', function (Y) {
 var panel = new Y.Panel({
 width: 300,
 centered: true,
 bodyContent: 'CAUTION: Watch out for random panels.'
 }).render();
});
</script>
</body>

Figure 8-6 illustrates the results of Example 8-7.

Figure 8-6. A simple, styled informational panel

Discussion
Panel is a superset of Overlay. Like Overlay, Panel has no intrinsic properties or methods
of its own—it is a Widget, plus a long list of generic Widget extensions, plus a fancy skin.
Panel includes the five extensions Overlay uses (described in Recipe 8.2), and adds:

WidgetAutohide
Makes it easy to configure listeners for click events and keystrokes that hide the
widget

WidgetButtons
Makes it easy to add buttons to the widget’s header and footer

WidgetModality
Enables modal widgets that darken the screen and mask out interactions with other
elements on the page

Panel’s extra functionality derives from these three additional extensions and their de-
fault behavior. The WidgetAutohide extension uses its hideOn attribute to set a default
hide listener for the Escape key. The WidgetButtons extension creates a default button
in the header (if available) that closes the panel. The WidgetModality extension provides

8.5 Creating a Simple, Styled Information Panel | 233

www.it-ebooks.info

http://www.it-ebooks.info/

the modal attribute for flagging the panel as modal, along with a focusOn attribute that
controls how to direct focus to the panel.

For an example that demonstrates a more complex modal panel with buttons, refer to
Recipe 8.6. For an example that demonstrates modality with a custom hideOn attribute,
refer to Recipe 8.8.

See Also
The Panel User Guide; Panel API documentation.

8.6 Creating a Modal Dialog or Form
Problem
You want to force the user’s attention onto a modal dialog or form.

Solution
Define buttons as simple objects, including an action field that specifies the dialog or
form’s behavior. Then instantiate a Panel with whatever HTML content you like, set-
ting modal and centered to true, passing in the buttons as an array to the buttons at-
tribute. See Example 8-8.

If your form accepts and redisplays user input, be sure to pass that input
through Y.Escape.html() so that the resulting string cannot be used in
a cross-site scripting attack.

Example 8-8. Creating a modal dialog or form

<!DOCTYPE html>
<title>Creating a modal dialog or form</title>
<style>
#houndReleaseForm { display: none; }
.yui3-widget-bd #houndReleaseForm { display: block; }
</style>

<body class="yui3-skin-sam">
<form id="houndReleaseForm" action="#">
 <label for="hounds">Hounds to release:</label>
 <input type="text" name="hounds" id="hounds" value="all of them">
</form>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('panel', 'escape', function (Y) {
 var okButton = {
 value: 'ok',
 section: Y.WidgetStdMod.FOOTER,

234 | Chapter 8: Using Widgets

www.it-ebooks.info

http://yuilibrary.com/yui/docs/panel/
http://yuilibrary.com/yui/docs/api/classes/Panel.html
http://www.it-ebooks.info/

 action: function (ev) {
 var numHounds = Y.Escape.html(Y.one('#hounds').get('value'));
 Y.one('body').append('<p>Hounds released: ' + numHounds + '</p>');
 ev.preventDefault();
 this.hide();
 }
 };

 var cancelButton = {
 value: 'cancel',
 section: Y.WidgetStdMod.FOOTER,
 action: function (ev) {
 ev.preventDefault();
 this.hide();
 }
 };

 var panel = new Y.Panel({
 width: 300,
 centered: true,
 modal: true,
 headerContent: 'Release the hounds?',
 bodyContent: Y.one('#houndReleaseForm'),
 buttons: [okButton, cancelButton]
 }).render();
});
</script>
</body>

Figure 8-7 illustrates the results of Example 8-8 before the form is submitted.

Figure 8-7. A modal dialog or form

The rest of the screen behind the panel is dark grey and cannot be interacted with while
the modal panel is active. The dotted border indicates that the panel currently has focus.

Discussion
Example 8-8 is pretty simple, but if you’re just looking for a classic OK/Cancel dialog,
you can strip it down further. Replace the form HTML with a message, and change the
OK button’s action to whatever is appropriate. Ideally, you should come up with more
informative labels than “OK” and “Cancel.”

8.6 Creating a Modal Dialog or Form | 235

www.it-ebooks.info

http://www.it-ebooks.info/

WidgetButtons includes one predefined button: an “x” button that closes the widget.
You can create that button with:

var button = { type: 'close' };

This is the only predefined type available, although you can define more button types
by adding them to the WidgetButtons.DEFAULT_BUTTONS hash. As shown in Exam-
ple 8-8, a button object is just a simple object with these fields:

value
Specifies the button’s HTML or string label

section
Selects whether the button appears in the Y.WidgetStdMod.HEADER or Y.WidgetStd
Mod.FOOTER

href
Specifies a URL to navigate to when the button is invoked

action
Provides a custom callback function to execute when the button is clicked

classNames
Specifies a string class name or array of string class names to add to the button

In Example 8-8, the form markup is embedded on the page rather than generated purely
in JavaScript. To avoid a flash of unstyled content, the example uses a trick similar to
the one used in Example 8-3. CSS initially sets the form to display:none, then flips the
form back to display:block once the widget renders.

See Also
WidgetButtons API documentation; WidgetModality API documentation; WidgetAuto
hide API documentation.

8.7 Creating a Tooltip from an Overlay
Problem
HTML already provides a title attribute that creates a generic but limited browser
tooltip. You want to create a tooltip that can hover below any HTML element and that
is easy to style however you like.

Solution
A naive solution would be to instantiate one Overlay widget for each element on the
page that needs a tooltip, storing the tooltip information in a JavaScript array of strings.

236 | Chapter 8: Using Widgets

www.it-ebooks.info

http://yuilibrary.com/yui/docs/api/classes/WidgetButtons.html
http://yuilibrary.com/yui/docs/api/classes/WidgetModality.html
http://yuilibrary.com/yui/docs/api/classes/WidgetAutohide.html
http://yuilibrary.com/yui/docs/api/classes/WidgetAutohide.html
http://www.it-ebooks.info/

However, there’s a better approach lurking in plain sight. The plain old title attribute
has two key virtues: it embeds tooltip information right next to the content it is de-
scribing, and it makes it easy for nonengineers to add tooltips.

To mimic this approach, you can use custom data attributes with the tooltip widget.
A custom data attribute has a prefix of data- and can legally be added to any HTML
element. You can use this HTML feature to store tooltip strings in a custom data-
tooltip attribute. Also note that since only one tooltip is shown at a time, it’s possible
to create one instance and reuse it, rather than creating dozens of copies.

Example 8-9 starts by defining CSS for the tooltip, including advanced features such
as border-radius and box-shadow. The traditional morass of vendor CSS prefixes has
been omitted for clarity. Older browsers will still see a tooltip, but get a mildly degraded
experience.

The example then instantiates the tooltip with the visible attribute set to false. When
the tooltip renders, its markup will be on the page, ready to be shown.

The enter() and leave() callback functions handle the mouseenter and mouseleave
events, respectively. The enter() function snaps the tooltip’s top-left corner to the
bottom center of the target node, sets the bodyContent to the value of the target node’s
tooltip, and shows the tooltip. The leave() function hides the tooltip, but does not
bother to move it.

The example uses event delegation to listen for mouseenter and mouseleave events. Any
mouseenter or mouseleave event on an element that has a data-tooltip attribute will
trigger the corresponding callback function. Delegation is particularly useful in this
example, where you don’t know ahead of time how many elements to be listening on,
and where the number could potentially be very large. For more information about
how delegation works, refer to Recipe 4.5.

Example 8-9. Creating a tooltip from an overlay

<!DOCTYPE html>
<title>Creating a tooltip from an overlay</title>
<style>
.yui3-overlay {
 background: #ff5;
 padding: 3px;
 border: 1px #a92 solid;
 border-radius: 5px;
 box-shadow: 3px 3px 2px #a92;
}
p { width: 300px; padding: 5px; background: #d72; }
</style>

<p data-tooltip="Floss every day.">This is some text with a helpful tooltip.</p>
<p>Sorry, no tooltip here.</p>
<p data-tooltip="Only own identical socks.">More text with a helpful tooltip.</p>

8.7 Creating a Tooltip from an Overlay | 237

www.it-ebooks.info

http://www.it-ebooks.info/

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('overlay', 'event-mouseenter', function (Y) {
 var tooltip = new Y.Overlay({ width: 200, visible: false });

 function enter(ev) {
 var node = ev.currentTarget;
 tooltip.align(node, [Y.WidgetPositionAlign.TL, Y.WidgetPositionAlign.BC]);
 tooltip.set('bodyContent', node.getAttribute('data-tooltip'));
 tooltip.show();
 }
 function leave(ev) {
 tooltip.hide();
 }
 Y.delegate('mouseenter', enter, 'body', '*[data-tooltip]');
 Y.delegate('mouseleave', leave, 'body', '*[data-tooltip]');

 tooltip.render();
});
</script>

Figure 8-8 illustrates the results of Example 8-9.

Figure 8-8. A tooltip created from an overlay

Discussion
The event-mouseenter module (included in the larger event rollup) provides the
mouseenter and mouseleave YUI synthetic events. These two events are abstractions over
the lower-level mouseover and mouseout events. The mouseover event is much more
“chatty” than mouseenter; mouseover fires for every child element in the container of
interest, while mouseenter fires only for the top-level container. This makes
mouseenter more suitable for an interaction that involves hovering over a container.

The generic overlay is easy enough to tweak and turn into a tooltip with just a small
amount of code. It could be enhanced further by:

• Making the location of the tooltip configurable (above, below, right, left), perhaps
by using a second, optional data-* attribute.

• Adding more CSS to include some kind of graphical arrow or other pointer to the
target node.

• Hiding the tooltip if the user’s mouse hasn’t moved after n seconds.

238 | Chapter 8: Using Widgets

www.it-ebooks.info

http://www.it-ebooks.info/

• Providing a fade transition rather than a simple hide and show, perhaps by using
the gallery-overlay-transition module or the WidgetAnim plugin.

If the tooltip becomes very fancy, you could refactor it to use Y.extend() or Y.Base.cre
ate() to create a full-fledged, self-contained Tooltip object. The enter() and leave()
functions could be methods on the Tooltip’s prototype. You could set the delegation
in the widget’s initializer(), store the handles, and then detach them in the widget’s
destructor(). For an example of incorporating the tooltip code into a widget, complete
with ARIA attributes for accessibility, refer to Recipe 11.3.

If you create a Y.Tooltip by mixing in Widget extensions instead of ex-
tending Overlay, you will end up leaving out Overlay’s CSS. This is a
fine way to go, but you will have to add a few basic structural CSS rules
such as setting the visibility when the object is hidden.

See Also
Recipe 4.5; Recipe 4.11; Recipe 11.3; Plugin.WidgetAnim API documentation; basic
CSS3 transition support in the gallery-overlay-transition module; a nice-looking and
fully featured tooltip in the gallery-yui-tooltip module; custom data attributes de-
scribed in the HTML5 elements specification.

8.8 Creating a Lightbox from an Overlay
Problem
You want to display one or more images in a modal lightbox, similar to Lokesh Dhakar’s
Lightbox2 project.

Solution
Use Y.Base.mix() to mix the WidgetModality and WidgetAutohide extensions into Over
lay. Then create a single, centered, modal overlay that indexes links to images and
enables the user to page through the list.

Like Example 8-9, Example 8-10 acts as a form of progressive enhancement, using
information in the markup to construct itself. And like the tooltip, the lightbox creates
only one, reusable instance to handle all the images on the page. Here is how it works
step-by-step:

1. For modal widgets, YUI creates a masking <div> behind the widget to prevent users
from interacting with other elements on the page. The <div> has a class of yui3-
widget-mask. Panel’s skin styles this masking <div> by setting the background color
and opacity. However, Overlay’s very minimal skin doesn’t include this CSS, so
the lightbox has to re-create this rule.

8.8 Creating a Lightbox from an Overlay | 239

www.it-ebooks.info

http://yuilibrary.com/yui/docs/api/classes/Plugin.WidgetAnim.html
http://yuilibrary.com/gallery/show/overlay-transition
http://yuilibrary.com/gallery/show/yui-tooltip
http://dev.w3.org/html5/spec/elements.html
http://www.it-ebooks.info/

2. After mixing in extensions, the example creates a new modal, invisible widget.
hideOn is a sugar attribute provided by WidgetAutohide that makes it easy to define
events for hiding the widget. The lightbox assigns the Escape key and the click
outside event as hide events.

3. The lightbox defines two methods. The display() method just recenters and shows
the lightbox. The setNewImage() method is for regenerating the lightbox’s internal
 element, attaching a listener to the image’s load event, and setting that image
as the lightbox’s new body content. Of course, images come in all sizes, but thanks
to the event handler, the lightbox displays itself only after its image is done loading
the src. This ensures that by the time the lightbox recenters itself, its dimensions
are stable again.

4. After creating an empty image, the lightbox stores a list of all <a> elements that
have a rel="lightbox" (thus following Lightbox2’s convention). It then defines an
index attribute to keep track of which image the lightbox is displaying. Since no
images are currently selected, the lightbox sets the attribute to a default value of
–1.

5. The lightbox then sets two attribute change listeners:

• When the visible attribute changes to false, Overlay’s default CSS automat-
ically hides the lightbox, but there is a little extra work to do. First, the index
attribute must be reset to –1 (no image). Second, the lightbox’s internal image
needs to be destroyed and re-created.

• When the index attribute changes to something other than –1, the lightbox
fetches the corresponding <a> from its anchors property, gets the href value,
and sets that to be the element’s src attribute. The loads the image
file, which fires a load event, which redisplays the lightbox.

6. The remainder of the code defines more event handlers for users. Y.delegate()
listens for click events on all elements, indicating that the user
has invoked the lightbox. A Y.on() keydown listener provides right- and left-arrow
navigation through the list images, handling the edges by wrapping the index back
to the beginning or end, as appropriate.

Example 8-10. Creating a lightbox from an overlay

<!DOCTYPE html>
<title>Creating a lightbox from an overlay</title>
<style>
.yui3-widget-mask { background-color: #000; opacity: 0.8; }
.yui3-overlay { background: #fff; padding: 10px; }
.yui3-overlay img { max-width: 450px; max-height: 450px; }
.yui3-overlay:focus { outline: none; }
</style>

<a href="http://apod.nasa.gov/apod/image/9905/ngc4603_hst.jpg"
 rel="lightbox">NGC 4603
<a href="http://apod.nasa.gov/apod/image/9906/trifidjet_hst.jpg"
 rel="lightbox">Trifid Jet

240 | Chapter 8: Using Widgets

www.it-ebooks.info

http://www.it-ebooks.info/

<a href="http://apod.nasa.gov/apod/image/9907/jupiter_vg1.jpg"
 rel="lightbox">Jupiter

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('overlay', 'base', 'widget-modality', 'widget-autohide', function (Y) {
 Y.Base.mix(Y.Overlay, [Y.WidgetModality, Y.WidgetAutohide]);

 var lightbox = new Y.Overlay({
 modal: true,
 visible: false,
 hideOn: [
 { eventName: 'key', keyCode: 'esc', node: Y.one('document') },
 { eventName: 'clickoutside' }
]
 });
 lightbox.display = function () {
 this.centered();
 this.show();
 };
 lightbox.setNewImage = function (destroy) {
 var img = Y.Node.create('');
 if (destroy) {
 this.get('bodyContent').destroy(true);
 }
 img.on('load', this.display, this);
 this.set('bodyContent', img);
 };

 lightbox.setNewImage();
 lightbox.anchors = Y.all('a[rel=lightbox]');
 lightbox.addAttr('index', { value: -1 });

 lightbox.after('visibleChange', function (ev) {
 if (ev.newVal === false) {
 this.setNewImage(true);
 this.set('index', -1);
 }
 });

 lightbox.after('indexChange', function (ev) {
 var anchors, ix = ev.newVal;
 if (ix !== -1) {
 anchor = this.anchors.item(ix);
 this.get('bodyContent').set('src', anchor.get('href'));
 };
 });

 Y.delegate('click', function (ev) {
 var clickedIndex = lightbox.anchors.indexOf(ev.currentTarget);
 lightbox.set('index', clickedIndex);
 ev.preventDefault();
 }, 'body', 'a[rel=lightbox]');

8.8 Creating a Lightbox from an Overlay | 241

www.it-ebooks.info

http://www.it-ebooks.info/

 Y.on('keydown', function(ev) {
 var max = lightbox.anchors.size() - 1,
 index = lightbox.get('index');

 if (! lightbox.get('visible')) { return };

 switch(ev.keyCode) {
 case 37: // left arrow
 index = (index === 0) ? max : index - 1;
 break;
 case 39: // right arrow
 index = (index === max) ? 0 : index + 1;
 break;
 }
 lightbox.set('index', index);
 });

 lightbox.render();
});
</script>

Figure 8-9 shows the results of Example 8-10 after a user selects one of the image links.

Figure 8-9. A lightbox created from an overlay

242 | Chapter 8: Using Widgets

www.it-ebooks.info

http://www.it-ebooks.info/

Instead of destroying and re-creating the element, why not reuse
the element and just reset its src attribute? It turns out that in WebKit,
changing src does not fire a load event if the actual value of src does
not change. This leads to a subtle bug where if you dismiss the lightbox
and then click on the same image you were just looking at, the lightbox
does not reappear in Chrome or Safari.

Discussion
At only 70 lines of custom JS and CSS, Example 8-10 isn’t as full featured and attractive
as the real-deal Lightbox2. That said, Lightbox2 pulls in all of Prototype+Scriptaculous
and adds many kilobytes of custom JS and images. If you’re already building a Prototype
+Scriptaculous page, that’s probably not an issue, but if you’re building a YUI page,
it’s worth thinking about reusing the code you already have.

The core of the lightbox’s behavior is the after('indexChange') listener. When (and
only when!) the index number changes, the lightbox responds by setting a new
with a new src value, but does not redisplay the lightbox. As mentioned earlier in the
solution, the lightbox waits for the load event in order to ensure that its dimensions
have reset.

The reason the lightbox is built this way is to make it easy to add more navigation
methods. You can add Previous and Next buttons, a row of numbered links, navigation
that jumps to the beginning or end, more keystrokes or gestures, whatever you like.
They all work the same way: change the index number, and everything else handles
itself. This technique also helps isolate the lightbox from unwanted DOM events. Even
if the user generates a huge number of key events, only a tiny number of them really
affect the lightbox.

This is a common pattern with YUI widgets, models, and views. Rather than reacting
directly to a user’s click, the click changes some underlying piece of data, which then
causes the widget or view to refresh its appearance. For more examples of this pattern,
refer to Recipes 7.15 and 7.16.

Of course, the example lightbox is bare bones, providing just enough code to illustrate
the core slideshow mechanism and to supply enough controls to make the lightbox
work. It could be enhanced by:

• Adding more visible UI controls, such as Previous and Next navigation, and an
explicit close button.

• Adding touch and swipe support for tablet viewing.

• Adding captions, perhaps by fetching the string from the title attribute.

• Providing nice animations, such as a “loading” spinner, fades, or perhaps even a
version of the “glide” transition that Lightbox2 uses.

8.8 Creating a Lightbox from an Overlay | 243

www.it-ebooks.info

http://www.it-ebooks.info/

• Improving runtime performance by caching previously used images and by pre-
fetching the next few images in the list.

On mobile devices, be careful about prefetching too aggressively,
as this can severely impact users who have limited data plans.

• Using Y.Base.create() or Y.extend() to extend Overlay and create a full-fledged,
self-contained Lightbox object. The example is halfway there already, with many
of the relevant methods already attached to the lightbox instance. You would need
to define these methods on the lightbox’s prototype instead, and assign and detach
event listeners in the initializer() and destructor(). Also note that mixing in
WidgetModality and WidgetAutohide changes the behavior of every Overlay instance,
so creating a self-contained lightbox would prevent that change from interfering
with other overlays on the page.

See Also
WidgetAutohide API documentation; event-outside API documentation; Lokesh Dha-
kar’s Lightbox2 project.

8.9 Creating a Slider
Problem
You want to enable the user to set a range of numeric values by dragging or sliding.

Solution
Instantiate a Slider widget and listen for the slideStart, valueChange, or slideEnd
events. Unlike many widgets, Slider is a rather than a <div>, so you can use it
inline alongside form labels or other inline form elements.

Example 8-11 represents the simplest possible slider, plus an after() listener that dy-
namically writes the current value of the slider into the DOM. This slider’s attributes
are all at their defaults: a range of 0 to 100, a start value of 0, a horizontal orientation,
and so on.

Example 8-11. Creating a default horizontal slider

<!DOCTYPE html>
<title>Creating a default horizontal slider</title>

<body class="yui3-skin-sam">
<p>Grade: </p>
<p>I award you 0 points.</p>

244 | Chapter 8: Using Widgets

www.it-ebooks.info

http://yuilibrary.com/yui/docs/api/classes/WidgetAutohide.html
http://yuilibrary.com/yui/docs/api/modules/event-outside.html
http://www.huddletogether.com/projects/lightbox2/
http://www.it-ebooks.info/

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('slider', function (Y) {
 var slider = new Y.Slider().render('#slider'),
 points = Y.one('#points');

 slider.after('valueChange', function (ev) {
 points.setHTML(ev.newVal);
 });
});
</script>
</body>

Figure 8-10 illustrates the results of Example 8-11.

Figure 8-10. A default horizontal slider

Example 8-12 illustrates a slider with several attributes changed from the default. In
addition to the axis changing to 'y' to create a vertical slider, the range and start values
have changed, and min is intentionally set higher than max in order to flip the slider’s
orientation around. Even though the slider is vertical, it is still an inline element.

As a final touch, the example pulls in a different skin for the slider, named audio-
light, by declaring an override skin for Slider in the YUI config. If an ordinary YUI
widget gets loaded onto the page, YUI loads that module’s sam skin. But if the slider-
base module gets loaded, YUI loads the audio-light skin for Slider instead of the sam
skin. The <body> applies the yui3-skin-sam class to handle widgets in general, while
the slider is wrapped in a <div> with the yui3-skin-audio-light class that it needs.

Example 8-12. Creating a vertical slider with an audio-light skin

<!DOCTYPE html>
<title>Creating a vertical slider with an audio-light skin</title>
<style>
span.volume { vertical-align: top; }
</style>

<body class="yui3-skin-sam">
<div class="yui3-skin-audio-light">

 Volume: 4
</div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI({
 skin: {

8.9 Creating a Slider | 245

www.it-ebooks.info

http://www.it-ebooks.info/

 overrides: {
 'slider-base': ['audio-light']
 }
 }
}).use('slider', function (Y) {
 var audioSlider = new Y.Slider({
 axis: 'y',
 min: 11,
 max: 0,
 value: 4
 }).render('#slider');

 var volume = Y.one('#value');
 audioSlider.after('valueChange', function (ev) {
 volume.setHTML(ev.newVal);
 });
});
</script>
</body>

Figure 8-11 illustrates the results of Example 8-12.

Figure 8-11. A vertical slider with an audio-light skin

Discussion
One option for making Example 8-12 simpler is to apply the yui3-skin-audio-light
class to the <body>, get rid of the wrapper <div>, and pass in a YUI config like:

YUI({
 skin: 'audio-light'
}).use('slider', function (Y) {

Changing the default skin is easier, but it has the side effect of destroying the appearance
of all widgets that lack an audio-light skin (read: most widgets). Use this approach
only if you are sure that the page will not be loading any other components that require
the sam skin, now or in the foreseeable future.

Slider is one of the few widgets that does have a wide variety of skins. It includes a
base sam skin with an arrow button, a round skin with a round button, a capsule skin
with a capsule-shaped button and tick marks along the slider, and an audio skin that

246 | Chapter 8: Using Widgets

www.it-ebooks.info

http://www.it-ebooks.info/

looks like an audio control, plus “dark” versions of each. To compare all the Slider
skins side-by-side, refer to Example: Alternate Skins.

See Also
Recipe 11.3; Recipe 11.4; the Slider User Guide; Slider API documentation.

8.10 Creating a Tabview
Problem
You want to add tab navigation to your site.

Solution
Instantiate a TabView and create the label and content of each tab either dynamically
through JavaScript, or by parsing HTML on the page.

Example 8-13 takes the dynamic approach, setting the tabview’s children attribute to
an array of objects and fixing the width at 500 pixels. After rendering the tabview, the
example adds a third tab with the add() method. The add() method takes a tab object
to add and an index number where the tab should be inserted. There is also a corre-
sponding remove() method.

Example 8-13. Creating a tabview from JavaScript

<!DOCTYPE html>
<title>Creating a tabview from JavaScript</title>

<body class="yui3-skin-sam">
<div id="tabview"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('tabview', function (Y) {
 var tabview = new Y.TabView({
 width: 400,
 children: [{
 label: 'A',
 content: '<p>This is Tab A.</p>'
 }, {
 label: 'B',
 content: '<p>This is Tab B.</p>'
 }]
 }).render('#tabview');

 tabview.add({
 label: 'C',
 content: '<p>This is Tab C. Surprised?</p>'
 }, tabview.size());
});

8.10 Creating a Tabview | 247

www.it-ebooks.info

http://yuilibrary.com/yui/docs/slider/slider-skin.html
http://yuilibrary.com/yui/docs/slider/
http://yuilibrary.com/yui/docs/api/classes/Slider.html
http://www.it-ebooks.info/

</script>
</body>

Figure 8-12 illustrates the results of Example 8-13.

Figure 8-12. A tabview created from JavaScript

Example 8-14 constructs itself by parsing markup on the page. This enables users with
screen readers or browsers with JavaScript turned off to at least be able to use the plain
navigation links to skip around the page. For more information about progressive en-
hancement and widgets, refer to Recipe 7.5.

Since all the data is defined in HTML, instantiating the tabview from markup is just a
one-liner in JavaScript. To make things a little more interesting, Example 8-14 also sets
a selectionChange listener on the tabs. Like many widgets, the default width for a tab-
view is 100%, so the second example runs across the viewport.

Example 8-14. Creating a tabview from markup

<!DOCTYPE html>
<title>Creating a tabview from markup</title>

<body class="yui3-skin-sam">
<div id="tabview">

 A
 B
 C

 <div>
 <div id="a">
 <p>This is Tab A.</p>
 <p>There have been 0 tab switches so far.</p>
 </div>
 <div id="b"><p>This is Tab B.</p></div>
 <div id="c"><p>This is Tab C. Surprised?</p></div>
 </div>
</div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('tabview', function (Y) {
 var tabview = new Y.TabView({ srcNode: '#tabview' }).render(),
 numSwitches = 0;

248 | Chapter 8: Using Widgets

www.it-ebooks.info

http://www.it-ebooks.info/

 tabview.after('selectionChange', function (ev) {
 numSwitches += 1;
 Y.one('#num').setHTML(numSwitches);
 });
});
</script>
</body>

Discussion
Similar to Overlay and Panel, much of TabView’s functionality comes from a generic
mixin object named WidgetParent. WidgetParent provides the children attribute, the
add() and remove() methods, and the selectionChange event. WidgetParent and Widget
Child are useful for constructing tabs, menus, trees, and other widgets that contain
other widgets.

Since WidgetParent has a selection attribute that tracks the currently selected Widget
Child, Example 8-14 can just set a selectionChange listener to capture tab switches.

Alternatively, you could try to detect tab switches by listening for DOM click events:

Y.all('.yui3-tabview li').on('click', function (ev) {
 ...
}

However, this is a bad idea for three reasons.

First, repeated clicks on the same label do not indicate a tab switch.

Second, a tabview might supply additional ways to navigate to different tabs such as
keystrokes or gestures, which a click listener would miss. This is the same reason why
Example 8-10 relies on its own indexChange events to display a new image, rather than
responding directly to DOM events.

Third, it is poor practice to depend on the internal structure of a widget’s HTML. The
HTML produced by a widget is a reflection of the data the widget represents, and the
UI elements produced are a consequence of that data. Changes to the widget’s data can
trigger the widget to refresh its internal HTML, which in turn can destroy any DOM
event listeners you might have set. If you need to react to widget state changes, listen
directly for those state change events, not the DOM events that might have triggered
the state change.

See Also
The TabView User Guide; TabView API documentation.

8.10 Creating a Tabview | 249

www.it-ebooks.info

http://yuilibrary.com/yui/docs/tabview/
http://yuilibrary.com/yui/docs/api/classes/TabView.html
http://www.it-ebooks.info/

8.11 Creating a Basic DataTable
Problem
You want to display data in tabular form.

Solution
Instantiate a DataTable and provide it with a columns definition for its columns and a
data definition for its rows, where the elements of the columns array match keys in the
data. To hide certain columns, just leave the key out of the columns array.

Example 8-15. Creating a basic DataTable

<!DOCTYPE html>
<title>Creating a basic DataTable</title>

<body class="yui3-skin-sam">
<div id="datatable"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('datatable', function (Y) {
 var data = [
 { id: 290, sev: 5, title: 'Sidebar misaligned in IE6' },
 { id: 819, sev: 1, title: 'Site is down' },
 { id: 100, sev: 3, title: 'Deployment is taking too long' },
 { id: 784, sev: 3, title: 'Marketing page has D YSlow grade' }
];

 var table = new Y.DataTable({
 columns: ['id', 'sev', 'title'],
 data: data
 });
 table.render('#datatable');
});
</script>
</body>

Figure 8-13 illustrates the results of Example 8-15.

Figure 8-13. A basic DataTable

250 | Chapter 8: Using Widgets

www.it-ebooks.info

http://www.it-ebooks.info/

In Example 8-15, the strings 'id', 'sev', and 'title' are doing double duty—they are
mapping directly to keys in the table’s data, and they are also displayed directly as
column labels. For a quick-and-dirty DataTable, this might be OK, but for friendly
column labels, you should provide columns as an array of objects rather than a simple
array of strings:

columns: [{ key: 'id', label: 'Ticket' }, { key: 'sev', label: 'Severity' } ...

Discussion
DataTable isn’t just about generating HTML tables with a pretty skin. Using Data
Table opens up a wide variety of features, including:

• Everything the standard Widget API has to offer, including the ability to mix in
extensions, changing a table’s behavior through plugins, and so on.

• Flexibility in formatting and filtering table data. For an example of a formatted
DataTable, refer to Recipe 8.12.

• Integration with DataSource, a standard YUI adapter for a wide variety of data
sources. For an example of fetching remote data and displaying it on the fly with
DataTable, refer to Recipe 8.13.

Under the hood, DataTable represents its data as a ModelList, where each row is a
Model. Each DataTable stores its ModelList under a data property, which means you can
freely call table.data.indexOf() and other ModelList methods. Related properties in-
clude head, foot, and body, which grant you direct access to the View objects that control
the table’s general HTML structure.

See Also
Recipe 7.14, Recipe 7.11, and related recipes; the DataTable User Guide; the DataTa
ble 3.5.0+ Migration Guide; DataTable API documentation.

8.12 Formatting a DataTable’s Appearance
Problem
You want to create a more complex table with a caption, column labels, nested table
headings, and special formatting for table cell content.

Solution
Use the caption attribute to provide a caption. Change columns from a simple array of
strings to an array of objects, including a label and a formatter.

Example 8-16 demonstrates how to create a table with more complex formatting. Col-
umns now have a key and a label. The columns also now have a nested structure: the

8.12 Formatting a DataTable’s Appearance | 251

www.it-ebooks.info

http://yuilibrary.com/yui/docs/datatable/
http://yuilibrary.com/yui/docs/datatable/migration.html
http://yuilibrary.com/yui/docs/datatable/migration.html
http://yuilibrary.com/yui/docs/api/classes/DataTable.html
http://www.it-ebooks.info/

second “column” is actually just a label with an array of child columns. The third
column has a simple formatter property that substitutes the value of the cell into a
string template, while the fourth column has a formatter function—in this case, one
that truncates the content.

For good measure, the table also flags three of the four columns with sortable: true.
Alternatively, there is a sortable attribute for the overall table, where you can either
supply an array of column keys to make individual columns sortable, or just set
sortable: true to make all columns sortable.

Example 8-16. Creating a formatted DataTable

<!DOCTYPE html>
<title>Creating a formatted DataTable</title>

<body class="yui3-skin-sam">
<div id="datatable"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('datatable', function (Y) {
 var truncate = function (o) {
 if (o.value.length > 30) {
 var trunc = o.value.slice(0, 27) + '...';
 return '' + trunc + '';
 }
 return o.value;
 };
 var cols = [
 { key: 'id', label: 'Ticket' },
 { label: 'Ticket Overview', children: [
 { key: 'cat', label: 'Cat', sortable: true },
 { key: 'sev', label: 'Sev', sortable: true, formatter: 'S{value}' },
 { key: 'title', label: 'Description', formatter: truncate, allowHTML: true }
] }
];
 var data = [
 { id: 290, sev: 5, cat: 'UI', title: 'Sidebar misaligned in IE6' },
 { id: 819, sev: 1, cat: 'Ops', title: 'Site is down' },
 { id: 100, sev: 3, cat: 'Devel', title: 'Deployment is taking too long' },
 { id: 784, sev: 3, cat: 'UI', title: 'Marketing page has D YSlow grade' }
];

 var table = new Y.DataTable({
 columns: cols,
 data: data,
 caption: 'Open Tickets'
 });
 table.render('#datatable');
});
</script>
</body>

252 | Chapter 8: Using Widgets

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-14 illustrates the results of Example 8-16 just after a user sorts the Sev column.

Figure 8-14. A formatted DataTable

Discussion
When creating a nested set of columns, keep in mind that any parent columns should
have only the properties label and children, and should not have properties that con-
trol cell behavior such as key, formatter, or sortable. The columns that really matter
are the lowest-level columns (i.e., the leaves of the tree).

Each column in the table has a formatter function that is responsible for returning the
innerHTML for each cell in that column. The formatter function receives an “info” object
containing various properties about the table cell, including the cell’s value. The default
formatter simply outputs the cell value. However, you can override formatter in any
column with:

• A template string designed to be passed through Y.Lang.sub(). In Example 8-16,
the Severity column generates cells of the form, “S1,” “S2,” …

• An arbitrary function that generates whatever content you like. In Example 8-16,
the Title column calls a custom truncate() function to truncate long values. If the
value is truncated, the function wraps the value in a so that the user can
access it in full by hovering over the cell.

A formatter function can either a) return a value, or b) just change o.value directly
(and not have any return value). By default, DataTable HTML-escapes the cell’s
content. If you want to directly set the cell’s innerHTML, then be sure to set
allowHTML: true, as shown in Example 8-16.

If you want to get even more aggressive about changing cell markup, DataTable exposes
a more advanced nodeFormatter function. However, this function has some perfor-
mance implications. Consult the documentation for details.

See Also
The DataTable User Guide’s “Formatting Cell Data”.

8.12 Formatting a DataTable’s Appearance | 253

www.it-ebooks.info

http://yuilibrary.com/yui/docs/datatable/#formatters
http://www.it-ebooks.info/

8.13 Displaying a Remote JSON DataSource in a DataTable
Problem
You want to display data from a remote web service API in tabular form.

Solution
Instantiate a DataSource.Get object and set the source to the API URL. Plug the Data
Source instance with Plugin.DataSourceJSONSchema and apply a schema that locates the
result data and selects the fields you are interested in displaying.

Then instantiate a DataTable, making sure that its columns values matches the result
Field keys you specified in the schema. Plug the DataTable instance with Plugin.Data
TableDataSource, and set the plugin’s datasource attribute to the DataSource instance.

Finally, call the plugged DataSource’s load() method, passing in any request parameters
that the API call needs. See Example 8-17.

Example 8-17. Displaying a remote JSON DataSource in a DataTable

<!DOCTYPE html>
<title>Displaying a remote JSON DataSource in a DataTable</title>

<body class="yui3-skin-sam">
<div id="datatable"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('datatable', 'datasource-get', 'datasource-jsonschema', function (Y) {
 var src, table;
 src = new Y.DataSource.Get({
 source: 'https://api.github.com/repos/isaacs/npm/issues'
 });
 src.plug(Y.Plugin.DataSourceJSONSchema, {
 schema: {
 resultListLocator: 'data',
 resultFields: [{ key:'number' }, { key:'title' }]
 }
 });

 table = new Y.DataTable({ columns: ['number', 'title'] });
 table.plug(Y.Plugin.DataTableDataSource, { datasource: src });
 table.render('#datatable');

 table.datasource.load({ request: '?per_page=10' });
});
</script>
</body>

254 | Chapter 8: Using Widgets

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Assuming you already have some basic experience with DataSource and DataSchema, the
trickiest part of this recipe is setting the correct resultListLocator in the schema. First,
you must understand the structure of the data returned, which you can usually figure
out by inspecting the returned object in your browser console. Once you understand
the structure and have identified an array that you are interested in, set resultList
Locator to a string that represents a JavaScript property lookup to that array. You can
also use resultFields to select the fields of interest.

If you’re making a call to a cross-domain web service that does not support JSONP,
you can still use DataSource.Get by proxying through YQL instead of hitting the web
service directly. In the case of YQL, the correct resultListLocator path should start
with 'query.results.Result'.

See Also
Recipe 5.6; Recipe 5.7; Recipe 5.9; Recipe 5.10; “Example: DataTable + Data-
Source.Get + JSON Data”; “Example: DataTable + DataSource.IO + XML Data”.

8.14 Plotting Data in a Chart
Problem
You want to plot data in a chart, using the best vector graphics technology the user’s
browser has to offer.

Solution
Create an array of objects to represent your data. Then, as shown in Example 8-18,
load the charts module and instantiate a Chart widget, specifying these attributes:

• The dataProvider containing the data to plot

• The categoryKey within the dataset to label the “category axis” of the chart (in this
case, the x-axis)

• An explicit height and width (or alternatively, set these as CSS properties on the
containing <div>)

Example 8-18. Creating a basic line chart

<!DOCTYPE html>
<title>Creating a basic line chart</title>

<div id="chart"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('charts', function (Y) {

8.14 Plotting Data in a Chart | 255

www.it-ebooks.info

http://yuilibrary.com/yui/docs/datatable/datatable-dsget.html
http://yuilibrary.com/yui/docs/datatable/datatable-dsget.html
http://yuilibrary.com/yui/docs/datatable/datatable-dsio.html
http://www.it-ebooks.info/

 var dataProvider = [
 { date: '1/15/2012', revenue: 45000, expenses: 22700 },
 { date: '2/15/2012', revenue: 38935, expenses: 23150 },
 { date: '3/15/2012', revenue: 36500, expenses: 23000 },
 { date: '4/15/2012', revenue: 43500, expenses: 23150 },
 { date: '5/15/2012', revenue: 57500, expenses: 24350 },
 { date: '6/15/2012', revenue: 79550, expenses: 23890 }
];

 var lineChart = new Y.Chart({
 dataProvider: dataProvider,
 categoryKey: 'date',
 width: 400,
 height: 300,
 }).render('#chart');
});
</script>

Figure 8-15 illustrates the results of Example 8-18.

Figure 8-15. A basic line chart

Discussion
Chart is essentially a Graphic wrapped in a Widget. The Graphic utility is a vector graphics
abstraction layer that draws images with SVG, Canvas, or VML, depending on what
the browser supports. Graphic uses the capability-based loading technique described
in Recipe 1.15 to load only the code it needs.

A chart contains one category axis and one or more series of data. Each series is plotted
against the category axis. Charts can identify and parse these data structures:

• An array of key-indexed objects, as shown in Example 8-18.

• A multidimensional array. In this case, Chart selects the first array as the category
axis, so you should omit the categoryKey:

256 | Chapter 8: Using Widgets

www.it-ebooks.info

http://www.it-ebooks.info/

var dataProvider2 = [
 ['1/15/2012', '2/15/2012', '3/15/2012', '4/15/2012', '5/15/2012'],
 [45000, 38935, 36500, 43500, 57500],
 [22700, 23150, 23000, 23150, 24350]
];

There is a dizzying variety of attributes for configuring a chart’s appearance. To start
with, there are 10 basic types of chart, controlled by the type attribute. You can specify
a type of 'bar' for a horizontal bar chart, 'column' for a vertical bar chart, 'markerseries'
for a disconnected scatter plot, 'area' to fill in the area under the points, and even
'pie' for a pie chart, along with several other options.

Beyond these basic types, each chart provides numerous attributes that control its ap-
pearance at a more granular level, some of which themselves are highly complex. The
tooltip attribute sets highly configurable tooltips that appear as the user hovers the
mouse over the data. The axes attribute can control the minimum, maximum, labeling,
position, styling, and other features of the chart’s axes, while the series attribute pro-
vides similar control over each of the chart’s series. For more information, refer to the
Chart User Guide and take a look at its examples.

See Also
Recipe 7.7; Chart API documentation.

8.15 Choosing Dates with a Calendar
Problem
You want to enable users to select a date to be submitted in a form or to be consumed
elsewhere in your application.

Solution
Instantiate a Calendar widget and listen for the selectionChange event. The event’s
newSelection property is an array of Date objects representing the dates the user cur-
rently has selected. Example 8-19 permits only one date to be selected at a time, but
you can easily configure calendars that permit multiple dates to be selected (which is
why newSelection is an array of Dates and not a single Date).

Example 8-19. Creating a basic calendar with selectionChange listener

<!DOCTYPE html>
<title>Creating a basic calendar with selectionChange listener</title>

<body class="yui3-skin-sam">
<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>

8.15 Choosing Dates with a Calendar | 257

www.it-ebooks.info

http://yuilibrary.com/yui/docs/charts/
http://yuilibrary.com/yui/docs/api/modules/charts.html
http://www.it-ebooks.info/

<script>
YUI().use('calendar', function (Y) {
 var calendar = new Y.Calendar({ width: 300 }).render('#demo');

 calendar.after('selectionChange', function (ev) {
 var date = ev.newSelection[0];
 date = Y.DataType.Date.format(date, { format: '%B %e, %Y' });
 Y.one('body').append('<p>You selected ' + date + '.</p>');
 });
});
</script>
</body>

Figure 8-16 illustrates the results of Example 8-19 after the user selects a date.

Figure 8-16. A basic calendar with selectionChange listener

Like most core widgets, Calendar has a variety of attributes that control its appearance
and behavior. Example 8-20 illustrates some of these options in action:

• In the YUI configuration, lang is set to 'ru', which triggers the calendar’s inter-
nationalization strings to display in Russian.

• showPrevMonth and showNextMonth are true, which means that the calendar shows
trailing dates from the previous month and leading dates from the upcoming
month, though these dates are not selectable.

• selectionMode is 'multiple-sticky', which enables users to select multiple dates
with multiple clicks. The other selectionMode options are 'single' (the default)
and 'multiple' (enables users to select multiple dates by Control-/Command-
clicking and Shift-clicking).

• date is set to May 7, 2012, which sets the month the calendar opens to at render
time to May 2012.

• maximumDate is set to December 21, 2012, which means that users cannot navigate
to any months that occur after December 2012. There is also a corresponding
minimumDate attribute, not set here.

258 | Chapter 8: Using Widgets

www.it-ebooks.info

http://www.it-ebooks.info/

• Finally, the calendar’s CONTENT_TEMPLATE property is set to CalendarBase.TWO_
PANE_TEMPLATE. When the calendar renders, May 2012 will be displayed on the left
side and June 2012 will be displayed on the right.

Example 8-20. Creating a two-pane calendar with more options set

<!DOCTYPE html>
<title>Creating a two-pane calendar with more options set</title>

<body class="yui3-skin-sam">
<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI({ lang: 'ru' }).use('calendar', function (Y) {
 Y.CalendarBase.CONTENT_TEMPLATE = Y.CalendarBase.TWO_PANE_TEMPLATE;

 var calendar = new Y.Calendar({
 width: 400,
 showPrevMonth: true,
 showNextMonth: true,
 selectionMode: 'multiple-sticky',
 date: new Date(2012, 4, 7),
 maximumDate: new Date(2012, 11, 21),
 }).render('#demo');
});
</script>
</body>

Figure 8-17 illustrates the results of Example 8-20.

Figure 8-17. A two-pane calendar with more options set

Discussion
Although HTML standards now define new <input> types for selecting dates, these
types have only very basic capabilities. Calendar is a dead-simple way to provide a much
better user experience around date selection.

Calendar is entirely driven by string templates. As shown in Example 8-20, it is easy to
create a two-pane calendar by overriding the CONTENT_TEMPLATE, and there is also a

8.15 Choosing Dates with a Calendar | 259

www.it-ebooks.info

http://www.it-ebooks.info/

premade three-pane template available. With only a small amount of work, you can
construct a full-year template.

Beyond that, it is possible to completely redo the rendering of Calendar. The default
design is to help users select dates, but there is a reason the widget is named “Calendar”
and not “DatePicker”—the engine that powers Calendar is flexible enough to be used
in a wide variety of date-related applications, including a full-fledged calendar
application.

If you do want to use Calendar to help users select dates in forms, it might be useful to
align the widget with particular form fields. To do this, you can use Y.Base.mix() to
mix in the WidgetPosition and WidgetPositionAlign extensions:

Y.Base.mix(Y.Calendar, [Y.WidgetPosition, Y.WidgetPositionAlign]);

This would grant all calendars access to the methods shown in Recipe 8.3.

The Calendar widget also loads the DataType.Date object, which pro-
vides date formatting and other useful date-related utility methods.

See Also
The Calendar User Guide; CalendarBase API documentation; DataType.Date API doc-
umentation; YUI Theater: Allen Rabinovich’s “YUI Calendar — A Case Study of Build-
ing Modules with Style”.

8.16 Defining Calendar Rules
Problem
You want to create a calendar with arbitrary sets of dates disabled or styled differently.

Solution
Define an object that contains a set of named calendar rules. Calendar rules are how
Calendar provides convenient names for a range of dates, a set of repeating dates, or
any combination thereof. Once you define a rule, you can use it to disable all dates that
match the rule, disable all dates that don’t match the rule, or apply custom rendering
to every date that matches the rule.

To bind rules to your calendar, use set() to set the customRenderer attribute. The at-
tribute value must be an object with a rules property that references your rules object.
If all you are doing is enabling or disabling dates, this is enough. If you need to do
custom cell rendering, add a filterFunction property that references a filtering
function.

260 | Chapter 8: Using Widgets

www.it-ebooks.info

http://yuilibrary.com/yui/docs/calendar/
http://yuilibrary.com/yui/docs/api/classes/CalendarBase.html
http://yuilibrary.com/yui/docs/api/classes/DataType.Date.html
http://yuilibrary.com/yui/docs/api/classes/DataType.Date.html
http://www.youtube.com/watch?v=dQfOuOUUYus
http://www.youtube.com/watch?v=dQfOuOUUYus
http://www.it-ebooks.info/

Example 8-21 defines two rules. The end_of_days rule matches December 31, 1999,
plus all dates from 2000 to 9999. The calendar sets its disabledDatesRule attribute to
'end_of_days', disabling all dates that match this rule.

The band_practice rule matches all Tuesdays and Fridays in October, November, and
December of any year. Whenever a calendar date matches at least one rule, this triggers
the specified filterFunction and passes in the date, the node of the calendar cell, and
the array of rule names that matched. In this case, the filter() implementation checks
whether the match was for 'band_practice', and if so, adds a class to the table cell.

Example 8-21. Defining calendar rules

<!DOCTYPE html>
<title>Defining calendar rules</title>
<style>
.band-practice { color: #a00; }
</style>

<body class="yui3-skin-sam">
<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script type="text/javascript">
YUI().use('calendar', 'datatype-date', 'datatype-date-math', function (Y) {
 var calendar = new Y.Calendar({
 width: 300,
 disabledDatesRule: 'end_of_days',
 date: new Date(1999, 11, 1),
 }).render('#demo');

 calendar.set('customRenderer', {
 rules: {
 '1999': {
 '11': {
 '31': 'end_of_days'
 }
 },
 '2000-9999': {
 'all': 'end_of_days'
 },
 'all': {
 '9,10,11': {
 'all': {
 '2,5': 'band_practice'
 }
 }
 }
 },
 filterFunction: function (date, node, rules) {
 if (rules.indexOf('band_practice') !== -1) {
 node.addClass('band-practice');
 }
 }
 });

8.16 Defining Calendar Rules | 261

www.it-ebooks.info

http://www.it-ebooks.info/

});
</script>
</body>

Figure 8-18 illustrates the results of Example 8-21, with Tuesdays and Fridays marked
red, and December 31 greyed out.

Figure 8-18. Calendar rules

Discussion
Calendar rules enable you to express large and complex groups of dates with very little
syntax. Consider a more naive implementation where you disable dates by passing in
an array of Date objects; the system would quickly break down if you needed to express
very large numbers of dates or complicated repeating groups of dates.

A calendar rule is a nested object consisting of years, months, days, or weekdays. A
weekday of 0 can refer to Sunday or Monday, depending on your locale. The syntax
supports lists of comma-separated values ('2,3,4,7,23'), ranges separated by dashes
('2-4'), and combinations of the two, plus the keyword 'all'. As shown in Exam-
ple 8-21, you can assign multiple nested structures to the same rule name:
'end_of_days' includes a single date in 1999, and then all dates for the years 2000–
9999. (Eight thousand years should be a good enough apocalypse for anybody.)

8.17 Creating a Basic AutoComplete
Problem
You want to help users select from a long list of options using keyboard input.

Solution
Load the autocomplete-plugin module, then plug a text <input> node or <textarea>
node with Y.Plugin.AutoComplete and configure the plugin’s source to be an array of
strings that will appear in the AutoComplete drop-down.

262 | Chapter 8: Using Widgets

www.it-ebooks.info

http://www.it-ebooks.info/

Example 8-22 creates a simple AutoComplete from a text <input> node and sets a
select event listener on the AutoComplete instance. AutoComplete fires the select custom
event whenever the user selects a result from the drop-down via keyboard, mouse, or
touch. The event includes a result object with information about the user’s selection.

Example 8-22. Plugging an input node with basic AutoComplete

<!DOCTYPE html>
<title>Plugging an input node with basic AutoComplete</title>

<form class="yui3-skin-sam">
 <label>Fruit: <input type="text" id="demo"></label>
</form>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('autocomplete-plugin', function (Y) {
 var input = Y.one("#demo").plug(Y.Plugin.AutoComplete, {
 source: ['apple', 'banana', 'cantaloupe', 'durian fruit']
 });

 input.ac.on('select', function (ev) {
 Y.one('body').append('<p>Yum, ' + ev.result.text + '!</p>');
 });
});
</script>

Figure 8-19 illustrates the results of Example 8-22.

Figure 8-19. An input node with basic AutoComplete

As shown in Example 8-22, the 'ac' namespace on the input node enables you to
subsequently call AutoComplete methods. For example, to change the AutoComplete’s
source after instantiation:

input.ac.set('source', ['blueberry', 'cherry', 'strawberry']);

If you prefer to use AutoComplete directly as a widget, you can load autocomplete-
list, as shown in Example 8-23. To assign the widget to its input node, set the input
Node attribute (not the srcNode attribute!). You must also explicitly render the widget,
either by calling render() or by setting render: true.

8.17 Creating a Basic AutoComplete | 263

www.it-ebooks.info

http://www.it-ebooks.info/

Example 8-23. Using AutoComplete as a widget

YUI().use('autocomplete-list', function (Y) {
 var autocomplete = new Y.AutoComplete({
 inputNode: '#demo',
 source: ['apple', 'banana', 'cantaloupe', 'durian fruit']
 }).render();

 autocomplete.on('select', function (ev) {
 Y.one('body').append('<p>Yum, ' + ev.result.text + '!</p>');
 });
});

In this case, you would call methods on the widget instance directly:

autocomplete.set('source', ['blueberry', 'cherry', 'strawberry']);

Discussion
YUI AutoComplete was one of the first open source JavaScript autocomplete widgets,
dating back to the first public release of YUI (0.10.0). It pioneered the APIs and inter-
action patterns that people take for granted today, and continues to be one of the most
popular widgets that YUI offers. The latest version of AutoComplete is mobile-ready out
of the box and fully accessible, with ARIA roles added for you automatically.

Within the basic concept of an “autocomplete widget,” there are a number of different
interaction patterns. You might expect “autocomplete” to be a simple text drop-down,
possibly with highlighting or filtering. Or “autocomplete” could assist users in nar-
rowing down their search query by providing images and other structured data in the
result drop-down. “Autocomplete” could even mean abandoning the drop-down con-
cept and instead rewriting large sections of the page as the user types.

The YUI 2 AutoComplete widget was monolithic. It included lots of code for the classic
list-style interaction, even if you were building something very different. By contrast,
YUI 3 AutoComplete is broken out into many different modules that let you choose the
features you need. For example, AutoComplete provides a full array of keyboard func-
tionality, but uses conditional module loading to avoid loading keyboard code that is
not needed for iPhones and many Android phones. You can use this solid foundation
and extension points to build all sorts of interesting autocomplete applications.

AutoComplete is extremely flexible about how it receives its source data. While the ex-
amples in this recipe all use a simple array, in general AutoComplete can use an array,
an object, a function, a node representing an HTML <select>, a DataSource, an XHR
URL, a JSONP URL, or a YQL query string. For more information, refer to Recipe 8.19.

See Also
Recipe 8.18; Recipe 8.19; Recipe 8.20; the AutoComplete User Guide; AutoCompleteL
ist API documentation.

264 | Chapter 8: Using Widgets

www.it-ebooks.info

http://yuilibrary.com/yui/docs/autocomplete/
http://yuilibrary.com/yui/docs/api/classes/AutoCompleteList.html
http://yuilibrary.com/yui/docs/api/classes/AutoCompleteList.html
http://www.it-ebooks.info/

8.18 Highlighting and Filtering AutoComplete Results
Problem
You want to alter the appearance of the autocomplete drop-down as the user types,
either by highlighting results that match the query, or by filtering out results that don’t.

Solution
Load the autocomplete-plugin module along with the autocomplete-highlighters mod-
ule, the autocomplete-filters module, or both. When plugging the text <input> node
or <textarea> node, specify the filtering behavior or highlighting behavior you want
with the resultFilters or resultHighlighter attribute.

Example 8-24 augments a text input field with highlighting autocompletion. The ex-
ample loads the autocomplete-highlighters module and sets the resultHighlighter
attribute to 'phraseMatch'. As the user types a query, the drop-down highlights any
results containing that consecutive sequence of characters. For example, typing 'an'
highlights that sequence in 'banana', 'cantaloupe', and 'durian fruit'.

Example 8-24. Plugging an input node with highlighting AutoComplete

<!DOCTYPE html>
<title>Plugging an input node with highlighting AutoComplete</title>

<form class="yui3-skin-sam">
 <label>Fruit: <input type="text" id="demo"></label>
</form>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('autocomplete-plugin', 'autocomplete-highlighters', function (Y) {
 var input = Y.one("#demo").plug(Y.Plugin.AutoComplete, {
 resultHighlighter: 'phraseMatch',
 source: ['apple', 'banana', 'cantaloupe', 'durian fruit']
 });
});
</script>

Figure 8-20 illustrates the results of Example 8-24.

Figure 8-20. An input node with highlighting AutoComplete

8.18 Highlighting and Filtering AutoComplete Results | 265

www.it-ebooks.info

http://www.it-ebooks.info/

While highlighting is a great way to draw the user’s attention to results that match the
query, you can also do the opposite, filtering out results that don’t match the query.
Filtering can be particularly useful if you have a fixed number of results, but the com-
plete list is too long to scan comfortably.

The code in Example 8-25 is almost the same as in Example 8-24, except that it loads
the autocomplete-filters module and sets the resultFilters attribute to 'phrase
Match'. As the user types a query, the drop-down filters out any results that lack that
consecutive sequence of characters. For example, typing 'an' filters out 'apple' while
preserving 'banana', 'cantaloupe', and 'durian fruit'.

Example 8-25. Plugging an input node with filtering AutoComplete

YUI().use('autocomplete-plugin', 'autocomplete-filters', function (Y) {
 var input = Y.one("#demo").plug(Y.Plugin.AutoComplete, {
 resultFilters: 'phraseMatch',
 source: ['apple', 'banana', 'cantaloupe', 'durian fruit']
 });
});

Figure 8-21 illustrates the results of Example 8-25.

Figure 8-21. An input node with filtering AutoComplete

You can always combine filtering and highlighting by loading both autocomplete-
filters and autocomplete-highlighters and setting both resultHighlighter and
resultFilters.

There is an asymmetry here in that resultFilters is plural, which means
you can supply a single filter or an array of filters. resultHighlighter is
singular, which means you can supply only a single highlighter.

Discussion
To keep AutoComplete modular, all prepackaged highlighters and filters are broken out
into autocomplete-filters and autocomplete-highlighters. These modules provide the
following case-insensitive filters and highlighters:

266 | Chapter 8: Using Widgets

www.it-ebooks.info

http://www.it-ebooks.info/

charMatch
Matches individual characters anywhere in the result in any order, consecutive or
not.

phraseMatch
Matches the complete query as a phrase anywhere in the result. If you’re not sure
which matching scheme to use, phraseMatch is a good default choice.

startsWith
Matches the complete query as a phrase at the start of the result.

subWordMatch
Matches individual words or subwords in the result, consecutive or not, ignoring
nonword characters such as whitespace and punctuation.

wordMatch
Matches individual words in the result, consecutive or not, ignoring nonword
characters such as whitespace and punctuation.

For each of these highlighters and filters, there is also a case-sensitive version (phrase
MatchCase) and an accent folding version (phraseMatchFold). An accent folding high-
lighter or filter ignores diacritical marks, such as umlauts, circumflexes, and cedillas.
In other words, a query string of “facade” would match “façade.” This functionality
is broken out into separate autocomplete-filters-accentfold and autocomplete-
highlighters-accentfold modules. Accent folding can be handy if your user base be-
longs to a culture where it is acceptable to borrow foreign words without learning how
to spell those words correctly.

YUI’s client-side accent folding handles only a small subset of Unicode.
If you need more extensive support, use a server-side accent folding
library.

If you don’t need any of these prepackaged highlighters and filters, you can easily define
your own. A result filter is just a function that gets called each time the query value
changes, taking the current query and an array of result objects as arguments, and
returning a filtered array of result objects. As Example 8-26 demonstrates, you could
write a custom "endsWith" result filter that returns only results that end with the current
query.

Example 8-26. Writing a custom AutoComplete filter

<!DOCTYPE html>
<title>Writing a custom AutoComplete filter</title>

<form class="yui3-skin-sam">
 <label>Fruit: <input type="text" id="demo"></label>
</form>

8.18 Highlighting and Filtering AutoComplete Results | 267

www.it-ebooks.info

http://www.it-ebooks.info/

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('autocomplete-plugin', function (Y) {
 function endsWith(query, results) {
 query = query.toLowerCase();

 return Y.Array.filter(results, function(result) {
 var resultText = result.text.toLowerCase(),
 suffixIndex = resultText.length - query.length;

 return resultText.lastIndexOf(query) === suffixIndex;
 });
 }

 var input = Y.one("#demo").plug(Y.Plugin.AutoComplete, {
 resultFilters: endsWith,
 source: ['apple', 'banana', 'cantaloupe', 'durian fruit']
 });
});
</script>

Figure 8-22 illustrates the results of Example 8-26.

Figure 8-22. A custom AutoComplete filter

Likewise, a result highlighter is a function that takes the current query and an array of
result objects as arguments, and returns an array of HTML strings to be displayed to
the user. As Example 8-27 shows, you can load the handy highlight module and call
Y.Highlight.all() to automatically add HTML markup to the result string.

Example 8-27. Writing a custom AutoComplete highlighter

<!DOCTYPE html>
<title>Writing a custom AutoComplete highlighter</title>

<form class="yui3-skin-sam">
 <label>Fruit: <input type="text" id="demo"></label>
</form>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('autocomplete-plugin', 'highlight', function (Y) {
 function endsWith(query, results) {
 query = query.toLowerCase();

 return Y.Array.map(results, function(result) {
 var resultText = result.text.toLowerCase(),
 suffixIndex = resultText.length - query.length;

268 | Chapter 8: Using Widgets

www.it-ebooks.info

http://www.it-ebooks.info/

 if (resultText.lastIndexOf(query) === suffixIndex) {
 return Y.Highlight.all(result.text, query);
 }
 else {
 return result.text;
 }
 });
 }

 var input = Y.one("#demo").plug(Y.Plugin.AutoComplete, {
 resultHighlighter: endsWith,
 source: ['apple', 'banana', 'cantaloupe', 'durian fruit']
 });
});
</script>

Figure 8-23 illustrates the results of Example 8-27.

Figure 8-23. A custom AutoComplete highlighter

As written, Example 8-27 has an awkward edge-case bug where a query of 'na' high-
lights the 'nana' in 'banana'. Unfortunately, the Highlight utility provides the methods
all() for highlighting all substrings, word() for highlighting words within strings, and
start() for highlighting at the beginning…but no end() for highlighting at the end of
strings.

The Highlight methods all wrap the highlighted text in a rather than a ,
since is the closest thing semantically to HTML5’s <mark> element. If you are
willing to use an HTML5 shim or if you don’t need to support older versions of
Internet Explorer, you can change the markup by overriding Y.Highlight._TEMPLATE.

In addition to the highlight module, developing AutoComplete generated other useful
standalone utilities:

• The text-accentfold module, which provides general accent folding capabilities
through methods such as Y.Text.Accentfold.fold().

• The text-wordbreak module, which provides utility methods for splitting strings
on word breaks and determining whether a character index represents a word
boundary.

• The escape module, which provides HTML and regex escaping methods, discussed
in Recipe 9.13.

8.18 Highlighting and Filtering AutoComplete Results | 269

www.it-ebooks.info

http://www.it-ebooks.info/

See Also
Recipe 8.17; Recipe 8.19; Recipe 8.20; Recipe 9.13; Text.AccentFold API documenta-
tion; Text.WordBreak API documentation.

8.19 Using AutoComplete with Remote Data
Problem
You want to load AutoComplete’s data from a remote search API, changing the displayed
results as the user types the query.

Solution
Load the autocomplete-plugin and autocomplete-sources modules. When configuring
the AutoComplete plugin, set the source attribute to a JSONP URL, including place-
holders for the {query} and the {callback} parameters:

http://example.com/api/search.json?q={query}&callback={callback}

Test the results with a few example queries and make sure you understand the JSON
response that the search service returns. If necessary, add a resultListLocator to drill
down into the JSON to find the desired array of data, a resultTextLocator to identify
a field within that array, or both. This concept is extremely similar to the resultList
Locator and resultFields seen in Y.DataSchema.JSON. For more information, refer to
Recipe 5.10.

Example 8-28 illustrates how to make a JSONP request to the Twitter Search API. This
is a great API to experiment with, because it is one of the very few publicly available
search APIs that does not require an API key. Within the JSON response, the results
array holds the list of matching tweets, and within that array, the text property holds
the actual tweet text. Setting resultListLocator and resultTextLocator to those values
causes AutoComplete to display the correct array of strings in the drop-down.

To make things more interesting, the example also listens for the select event. Unlike
the simpler result object in Example 8-22, in this example the result object carries
structured information about the tweet, used to construct the tweet’s permalink URL
and navigate the user off the page.

Example 8-28. Fetching JSONP data for AutoComplete

<!DOCTYPE html>
<title>Fetching JSONP data for AutoComplete</title>

<form class="yui3-skin-sam">
 <label>Go to tweet: <input type="text" id="demo" style="width: 40em"></label>
</form>

270 | Chapter 8: Using Widgets

www.it-ebooks.info

http://yuilibrary.com/yui/docs/api/classes/Text.AccentFold.html
http://yuilibrary.com/yui/docs/api/classes/Text.AccentFold.html
http://yuilibrary.com/yui/docs/api/classes/Text.WordBreak.html
http://www.it-ebooks.info/

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('autocomplete-plugin', 'autocomplete-sources', function (Y) {
 var input = Y.one("#demo").plug(Y.Plugin.AutoComplete, {
 resultListLocator: 'results',
 resultTextLocator: 'text',
 source: 'http://search.twitter.com/search.json?q={query}&callback={callback}',
 });

 input.ac.on('select', function (ev) {
 var urlTemplate = 'http://twitter.com/{from_user}/status/{id_str}';
 window.location = Y.Lang.sub(urlTemplate, ev.result.raw);
 });
});
</script>

As an alternative to JSONP, you can use YQL. Example 8-29 searches through news
articles belonging to the Guardian, a news site that, like Twitter, permits search API
access without strictly requiring an API key.

The code turns out to be very similar to Example 8-28. Instead of setting a JSONP URL
as the source, however, you provide a YQL query string. There is no need for a
{callback} parameter, as YQL handles this detail for you. The resultListLocator and
resultTextLocator are different (no surprise), and the select listener is actually a little
simpler, because the Guardian’s API helpfully provides the full article URL directly in
the response data. To test the example, try a query like 'football'.

Example 8-29. Fetching YQL data for AutoComplete

<!DOCTYPE html>
<title>Fetching YQL data for AutoComplete</title>

<form class="yui3-skin-sam">
 <label>Read article: <input type="text" id="demo" style="width: 40em;"></label>
</form>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('autocomplete-plugin', 'autocomplete-sources', function (Y) {
 var input = Y.one('#demo').plug(Y.Plugin.AutoComplete, {
 resultListLocator: 'query.results.content',
 resultTextLocator: 'web-title',
 source: 'select * from guardian.content.search where q="{query}"',
 });

 input.ac.on('select', function (ev) {
 window.location = ev.result.raw['web-url'];
 });
});
</script>

8.19 Using AutoComplete with Remote Data | 271

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
If you are considering calling a remote API to populate AutoComplete, there are two
basic interaction types to think about.

In a “search assist”-like interaction, demonstrated in Examples 8-28 and 8-29, Auto
Complete hits the API and returns new result sets as the user types.

In a “list select”-like interaction, demonstrated in Example 8-22, the result list data
could be local or remote—but if it is remote, it is fetched only once. As the user types,
AutoComplete helps the user sift through this static list of results.

AutoComplete’s source attribute is very flexible, providing many different methods to
support these interactions:

• If you pass source a simple array of strings, AutoComplete uses those strings in the
drop-down:

source: ['apple', 'banana', 'cherry']

• If you pass source an object with properties that are arrays of strings, AutoCom
plete uses the user’s query to match object properties, then displays that array in
the drop-down:

source: { small: ['micro', 'nano'], tiny: ['femto', 'atto'] }

• If you pass source a URL string, AutoComplete attempts to make a JSONP or XHR
call on each query, depending on whether you provide a {callback} placeholder:

source: 'http://xhrexample.com/search?q={query}'

or:

source: 'http://jsonpexample.com/search?q={query}&callback={callback}

• If you pass source a YQL query string, AutoComplete attempts to make a YQL call
on each query:

source: 'select * from some.table where q="{query}"'

• If you pass source a function, AutoComplete executes that function on each query,
passing in a query and callback parameter. The function can return synchronously:

source: function (query) {
 // custom logic
 return ['This', 'is', 'synchronous', 'data'];
}

Or the function can return asynchronously, in which case it must execute the
callback parameter when the array of results is ready:

source: function (query, callback) {
 someObject.on('someEvent', function (ev) {
 // custom logic, possibly involving the event object
 callback(['This', 'is', 'asynchronous', 'data']);
 });
}

272 | Chapter 8: Using Widgets

www.it-ebooks.info

http://www.it-ebooks.info/

• If you pass source any DataSource instance, AutoComplete loads data from the Data
Source. This enables you to reuse data sources that you might have been using
elsewhere in your code, apply schemas, and more. To handle the variable query
part of the URL, set the requestTemplate attribute, which AutoComplete appends
to the DataSource URL before each fetch:

requestTemplate: '?q={query}',
source: new Y.DataSource.Get({ source: 'http://example.com/search' });

See Also
Recipe 5.9; Recipe 8.17; Recipe 8.18; Recipe 8.20; “Example: Remote Data via Data-
Source”.

8.20 Customizing the AutoComplete Result List
Problem
Instead of a boring list of strings, you want a result list that displays rich data using
arbitrary HTML.

Solution
Set resultFormatter to a function that takes the current query and list of results as
arguments, and returns an array of HTML strings that contain <div>s, images, links,
or whatever markup you need. Then add CSS to make the results attractive.

Example 8-30 provides rich formatting for results from Yahoo! Local, pulled in using
YQL. The formatter function defines a template string and then uses Y.Array.map()
and Y.Lang.sub() to create a new array of HTML strings from the result object. For
this particular example, substituting result.raw works perfectly as-is. More generally,
you might need to fiddle with result’s data before executing Y.Lang.sub().

Example 8-30. Returning local search results with a custom result formatter

<!DOCTYPE html>
<title>Returning local search results with a custom result formatter</title>
<style>
input#demo { width: 20em; }
.vcard { font-size: 11px; font-family: verdana; color: #555; }
.fn { font-size: 13px; background: #ddd; color: #000; padding: 2px; }
.yui3-aclist-item-active .vcard { color: #fff; }
.yui3-aclist-item-active .fn { background: #ddf; }
</style>

<form class="yui3-skin-sam">
 <label>In Palo Alto, find: <input type="text" id="demo"></label>
</form>

8.20 Customizing the AutoComplete Result List | 273

www.it-ebooks.info

http://yuilibrary.com/yui/docs/autocomplete/ac-datasource.html
http://yuilibrary.com/yui/docs/autocomplete/ac-datasource.html
http://www.it-ebooks.info/

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('autocomplete-plugin', 'autocomplete-sources', function (Y) {
 function formatter(query, results) {
 var template = '<div class="vcard">'
 + '<div class="adr">'
 + '<div class="org fn"><div class="organization-name">{Title}</div></div>'
 + '{Address}, '
 + '{City}, '
 + '{State} '
 + '</div>'
 + '<div class="tel">Tel: {Phone}</div>';

 return Y.Array.map(results, function (result) {
 return Y.Lang.sub(template, result.raw);
 });
 };

 var input = Y.one("#demo").plug(Y.Plugin.AutoComplete, {
 resultListLocator: 'query.results.Result',
 resultTextLocator: 'Title',
 resultFormatter: formatter,
 source: 'select * from local.search where zip="94301" and query="{query}"'
 });
});
</script>

Figure 8-24 illustrates the results of Example 8-30.

Figure 8-24. Local search results with a custom result formatter

For extra nerd points, the template string provides its markup using the
hCard microformat.

274 | Chapter 8: Using Widgets

www.it-ebooks.info

http://microformats.org/wiki/hcard
http://www.it-ebooks.info/

Discussion
The custom formatter in Example 8-30 and the custom highlighter in Example 8-27
have some basic similarities. They both receive the query string and results array, they
both return an array of HTML strings, and they both use Y.Array.map() for conve-
nience. The difference is that highlighters generally use methods on Y.Highlight, while
formatters typically use Y.Lang.sub() or some other templating system such as
Handlebars. If you want to apply highlighting and formatting, you can use Y.High
light.all() in your formatter along with your template logic (this is one of the reasons
the formatter receives query as an argument).

Example 8-30 is, of course, a toy example. For one thing, there is no reason to hardcode
Palo Alto, California, as the zip code. The example could also be improved with better
CSS, by adding more information about the business, by showing the rating as graphical
stars, and so on.

Using a formatter to display thumbnail images can be powerful, but take care to show
images only if they are easy to recognize at a small size and visually distinct when shown
alongside lots of other search results. Classic examples where thumbnail images are
helpful include lists of photos, videos, and people (specifically, headshots or distinct
avatars, not full-body photos).

See Also
Recipe 8.17; Recipe 8.18; Recipe 8.19; Recipe 9.7; “Example: Find Photos on Flickr”.

8.20 Customizing the AutoComplete Result List | 275

www.it-ebooks.info

http://yuilibrary.com/yui/docs/autocomplete/ac-flickr.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Utilities

Compared to other programming languages, JavaScript has historically included only
a very small number of core utility methods. For years, if you wanted to trim whitespace
from a string or enumerate an object’s keys, you had to implement that functionality
yourself.

Recently, JavaScript has been evolving to fill in some of these feature gaps. Newer
JavaScript engines still provide very minimal core APIs, but the environment at least is
starting to look a little more like what developers coming over from other languages
might expect.

As a comprehensive JavaScript framework, YUI provides a large number of utility
methods. Some YUI utility methods mirror a native ECMAScript method, enabling you
to use native code when that is available, but falling back to YUI code in older browsers.
Other YUI utility methods provide a nicer or more powerful wrapper around a lower-
level native API. Finally, some YUI utility methods provide high-level features or solve
common problems that aren’t yet addressed by W3C or ECMAScript specifications.

This chapter provides a brief survey of some key YUI utilities, including language help-
ers (type checking, array and object manipulation) data converters, and formatters,
application development (browser history), and form utilities (validation, keyboard
and input change events).

As always, be sure to consult the YUI documentation in order to fully understand the
API. Many recipes in this chapter show off only a small subset of what a particular
utility can do. Also note that some of the utilities in this chapter come from the gallery.
The gallery is a great place to look for high-quality components that were designed to
scratch a particular itch.

Recipe 9.1 explains how to reliably determine a variable’s type, a fundamental problem
that has plagued JavaScript developers since the creation of the language.

Recipe 9.2 demonstrates how to iterate over arrays using YUI’s built-in ECMAScript
mirror methods provided by YUI’s Array API.

277

www.it-ebooks.info

http://www.it-ebooks.info/

Recipe 9.3 introduces the collection module, which fills out Array with additional
ECMAScript mirror methods and adds extra power for filtering through arrays.

Recipe 9.4 explains how to merge multiple objects together.

Recipe 9.5 introduces the oop module, which fills out the YUI Object API with addi-
tional ECMAScript mirror methods and provides new ways to derive objects from other
objects.

Recipe 9.6 describes function memoization and explains why this technique is useful.

Recipe 9.7 provides a simple substitution-based technique for templating.

Recipe 9.8 explains how to format numbers, which is useful for displaying currencies
and other values that have units.

Recipe 9.9 introduces the datatype-date module, which provides strftime style date
formatting and several other date manipulation methods.

Recipe 9.10 explains how to easily convert an XML string into an XMLDocument object.

Recipe 9.11 provides a handy utility for converting between keyword, hex, and RGB
color representations.

Recipe 9.12 introduces the history module, which enables you to map complex Java-
Script states back to real URLs and real browser history entries.

Recipe 9.13 shows how to sanitize user input with the escape module.

Recipe 9.14 explains how to use the gallery-checkboxgroups module as a helper for
creating groups of checkboxes that share some specialized behavior.

Recipes 9.15 and 9.16 introduce two types of synthetic events that are useful when you
are working with forms. The gallery-event-nav-keys module provides some nice sugar
events for handling keyboard navigation, while the event-valuechange module solves
the tricky problem of handling input changes in form fields—a use case that native
DOM events like change and input fail to deal with properly.

Finally, Recipe 9.17 provides a brief overview of the gallery-formmgr module, which
provides a great deal of control over most aspects of a form’s lifecycle.

9.1 Determining a Variable’s Type
Problem
You want to reliably determine the type of a variable, even if it was created in the context
of another window or iframe.

278 | Chapter 9: Utilities

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Use Y.Lang’s type-detection utility methods. Y.Lang is part of the YUI seed file, so you
don’t need to load any extra modules in order to use it. Example 9-1 provides a whirl-
wind tour of YUI’s type-detection features.

Example 9-1. Checking types

<!DOCTYPE html>
<title>Checking types</title>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use(function (Y) {
 var typeChecks = [
 Y.Lang.isArray([]), // => true
 Y.Lang.isArray(arguments), // => false
 Y.Lang.isArray('string'), // => false

 Y.Lang.isBoolean(true), // => true
 Y.Lang.isBoolean(0), // => false

 Y.Lang.isDate(new Date()), // => true
 Y.Lang.isDate(123), // => false

 Y.Lang.isFunction(function () {}), // => true
 Y.Lang.isFunction('test'), // => false

 Y.Lang.isNull(null), // => true
 Y.Lang.isNull(undefined), // => false

 Y.Lang.isNumber(42), // => true
 Y.Lang.isNumber('42'), // => false
 Y.Lang.isNumber(NaN), // => false

 Y.Lang.isObject({}), // => true
 Y.Lang.isObject([]), // => true (yep, arrays are objects!)
 Y.Lang.isObject('test'), // => false
 Y.Lang.isObject(function () {}), // => true
 Y.Lang.isObject(function () {}, true), // => false ('failFn' flag)

 Y.Lang.isString('string'), // => true
 Y.Lang.isString(42), // => false

 Y.Lang.isUndefined(undefined), // => true
 Y.Lang.isUndefined(null), // => false

 Y.Lang.isValue(false), // => true
 Y.Lang.isValue(0), // => true
 Y.Lang.isValue(''), // => true
 Y.Lang.isValue(null), // => false
 Y.Lang.isValue(undefined), // => false

9.1 Determining a Variable’s Type | 279

www.it-ebooks.info

http://www.it-ebooks.info/

 Y.Lang.type([]), // => array
 Y.Lang.type(true), // => boolean
 Y.Lang.type(new Date()), // => date
 Y.Lang.type(new Error()), // => error
 Y.Lang.type(function () {}), // => function
 Y.Lang.type(null), // => null
 Y.Lang.type(42), // => number
 Y.Lang.type({}), // => object
 Y.Lang.type(/regexp/), // => regexp
 Y.Lang.type('string'), // => string
 Y.Lang.type(undefined) // => undefined
];

 Y.Array.each(typeChecks, function (result) {
 Y.log(result);
 });
});
</script>

Example 9-1 also uses Y.Array.each() to iterate over the array. For more information,
refer to Recipe 9.2.

Discussion
Type detection in JavaScript is tricky, since the native typeof operator doesn’t always
return what you might expect. For example, typeof null and typeof [] both return
the string 'object'. The native instanceof operator also doesn’t work as expected when
used with values that were instantiated in another context, such as a different window
or iframe. Y.Lang smooths out these and many other type-checking inconsistencies and
provides a reliable set of utility functions to use.

Keep in mind that loose typing is one of the things that makes JavaScript flexible. It’s
often best to use type checking to determine how a function should operate on a given
value rather than to enforce strict control over what kinds of values a function should
accept.

See Also
Juriy Zaytsev’s “Unnecessarily comprehensive look into a rather insignificant issue of
global objects creation”.

9.2 Iterating Over Arrays and Objects
Problem
You want to iterate over members of an array or members of an object and do some
work on each item.

280 | Chapter 9: Utilities

www.it-ebooks.info

http://perfectionkills.com/unnecessarily-comprehensive-look-into-a-rather-insignificant-issue-of-global-objects-creation/
http://perfectionkills.com/unnecessarily-comprehensive-look-into-a-rather-insignificant-issue-of-global-objects-creation/
http://www.it-ebooks.info/

Solution
Beyond JavaScript’s built-in for and while loop statements, YUI provides the static
methods Y.Array.each(), Y.Array.some(), Y.Object.each(), and Y.Object.some(). As
Example 9-2 shows, you can use these methods to cleanly iterate over an array or object,
calling a function on each iteration.

Example 9-2. Iterating over arrays and objects

<!DOCTYPE html>
<title>Iterating over arrays and objects</title>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use(function (Y) {
 var fruits = ['apple', 'mango', 'kiwi'],
 veggies = { 'carrots': 0, 'radishes': 7, 'squash': 3 };

 Y.Array.each(fruits, function (fruit, index) {
 Y.log(index + ' = ' + fruit);
 });
 Y.Array.some(fruits, function (fruit, index) {
 Y.log('Hunting for mango... fruit was ' + fruit);
 return fruit === 'mango';
 });

 Y.Object.each(veggies, function (quantity, veggie) {
 Y.log('There are ' + quantity + ' ' + veggie);
 });
 Y.Object.some(veggies, function (quantity, veggie) {
 Y.log('Do we have any ' + veggie + '?');
 if (quantity > 0) {
 Y.log("Well, at least we're not out of " + veggie + '.');
 return true;
 }
 });
});
</script>

Y.Array.each() calls a function once for each item in an array, passing in as arguments
the item, its index, and the array itself. Y.Object.each() calls a function once for each
key in the object, passing in as arguments the key’s value, the key, and the object itself.

Y.Array.some() and Y.Object.some() work like each(), but they stop iterating if the
function returns true. This is similar to creating a break statement inside a native loop.

Discussion
When your needs are simple and can be accomplished with a small amount of inline
code, the native for and while statements are usually fine, and are the fastest way to
go. However, if each iteration involves a lot of work, or if each iteration will simply be
calling another function anyway, then each() and some() can make your code more

9.2 Iterating Over Arrays and Objects | 281

www.it-ebooks.info

http://www.it-ebooks.info/

manageable. Y.Array.each() and Y.Array.some() are also convenient for working with
NodeLists, discussed in Recipe 2.5.

Behind the scenes, Y.Array.each() and Y.Array.some() call the native Array.proto
type.forEach() and Array.prototype.some() methods if those methods are available.
These methods are part of ECMAScript 5, and have already gained wide support.
Otherwise, YUI falls back to its own built-in implementations that work in older
browsers. Y.Object.each() and Y.Object.some() both use a native for...in loop and
both rely on hasOwnProperty() to avoid iterating over inherited properties like
Object.toString.

Y.Array and Y.Object also provide a number of additional utility methods that mirror
functions in ECMAScript 5. These include:

Y.Array(object)
Returns a true JavaScript array representation of the specified “arraylike” object.
Examples of arraylike objects include a function’s arguments variable and native
HTMLElement collections.

Y.Array.hash(keyArray, valueArray)
Returns an object that uses the first array as keys and the second as values.

Y.Array.indexOf(array, value)
Returns the first array index where the value was found, or –1 if the value is not in
the array.

Y.Object.hasValue(value)
Returns true if the object contains the specified value; false otherwise.

Y.Object.keys(object)
Return an array containing the object’s keys and values, respectively.

Y.Object.owns(object, property)
Returns true if an object directly owns the property. Y.Object.owns() is safer than
calling the object’s native hasOwnProperty() directly, as it avoids errors caused by
poorly written third-party code that clobbers hasOwnProperty().

These methods and several others are part of the basic set of Y.Array and Y.Object
methods included in the YUI seed file. As with Y.Lang, you don’t need to load any extra
modules in order to use them. For additional object and array methods, refer to Recipes
9.3 and 9.5.

See Also
Ryan Grove on why you shouldn’t extend JavaScript natives.

282 | Chapter 9: Utilities

www.it-ebooks.info

http://wonko.com/post/extending-javascript-natives
http://www.it-ebooks.info/

9.3 Filtering an Array
Problem
You want to filter out some unwanted contents from an array.

Solution
Load the array-extras module and call Y.Array.filter() to iterate through the array,
executing a filter function on each array item (as shown in Example 9-3). The fil
ter() method returns a new array that contains each item where the filter function
returned a truthy value.

Example 9-3. Filtering an array

<!DOCTYPE html>
<title>Filtering an array</title>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('array-extras', function (Y) {
 var patrons = ['person', 'rope', 'frayed knot'];

 var acceptablePatrons = Y.Array.filter(patrons, function (p) {
 return p !== 'rope';
 });

 Y.Array.each(acceptablePatrons, function (p) {
 Y.log(p);
 });
});
</script>

Discussion
If you need more power when working with arrays, the array-extras module augments
Y.Array with extra array utility methods, many of which are also reflected in ECMA-
Script 5. These extra methods help you filter or otherwise transform the array. They
include:

Y.Array.grep(array, pattern)
Returns a new array with members that matched the specified regular expression.

Y.Array.map(array, mapFunction)
Applies mapFunction to every member of an array, returning another array that
represents the return value of each mapFunction call. Differs from Y.Array.each()
in that it returns an array.

Y.Array.partition(array, filter)
Returns an object containing two arrays: the items that passed the filter and those
that were rejected by the filter.

9.3 Filtering an Array | 283

www.it-ebooks.info

http://www.it-ebooks.info/

Y.Array.reduce(array, init, reduceFunction)
Applies reduceFunction to every member of an array, building up a return value.
Each reduceFunction call receives the return value of the previous call, the current
element, the current array index, and the array itself. The init parameter provides
an initial value to the first call of reduceFunction.

Y.Array.unique(array)
Returns a new array with all duplicate items removed. For simple arrays of strings,
you can use Y.Array.dedupe() for better performance.

For even more array methods, load the larger collection rollup, which includes mod-
ules such as array-extras, array-invoke, and arraylist. For example, array-invoke
provides Y.Array.invoke(array, methodName, args*), which iterates through the array
and attempts to call the specified method on each member object, passing in zero or
more specified arguments. If the object does not have the method, it is skipped.
Y.Array.invoke() is a good way to initialize, plug, or destroy a large number of widgets
at once.

9.4 Merging Objects
Problem
You want to merge multiple objects to create another object.

Solution
Use Y.merge() to combine one or more objects into a new merged object, as demon-
strated in Example 9-4.

For primitive properties like numbers and strings, Y.merge() clones the value over to
the merged object. Changing the property on the merged object does not affect the
supplier object, and vice versa.

For properties that are objects, arrays, or functions, Y.merge() creates a reference to the
value. Changing the property on the merged object changes the supplier object, and
vice versa.

Example 9-4. Merging objects

<!DOCTYPE html>
<title>Merging objects</title>

<script src='http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js'></script>
<script>
YUI().use(function (Y) {
 var reptileHouse = { reptiles: 47 },
 giraffeExhibit = { giraffes: 4 },
 aviary = {
 birds: 103,

284 | Chapter 9: Utilities

www.it-ebooks.info

http://www.it-ebooks.info/

 repairs: {
 reason: 'plumbing',
 completion: '21-Dec-2012'
 }
 },
 zoo = Y.merge(reptileHouse, giraffeExhibit, aviary);

 zoo.giraffes += 1;
 Y.log('increasing zoo.giraffes to ' + zoo.giraffes);
 Y.log('giraffeExhibit.giraffes remains at ' + giraffeExhibit.giraffes);

 zoo.repairs.reason = 'remodel';
 Y.log('changing zoo.repairs.reason to "' + zoo.repairs.reason + '"');
 Y.log('changes aviary.repairs.reason to "' + aviary.repairs.reason + '"');
});
</script>

Discussion
If you merge multiple objects, later values override earlier values. In Example 9-4, if
giraffeExhibit and aviary had a naming collision, aviary’s value would win.

One helpful trick with Y.merge() is to call it on a single simple data object to create a
shallow clone:

var reptileHouse2 = Y.merge(reptileHouse);

Another useful pattern for Y.merge() is if you have a simple configuration object, and
you want to allow users to override your defaults:

function doSomething(userConfig) {
 var defaults = {
 hidden: true,
 width: 100
 };

 var config = Y.merge(defaults, userConfig);
}

Y.merge() can safely merge a userConfig that is null or undefined.

YUI also provides a method named Y.mix(). In its simplest form, Y.mix() acts almost
exactly like Y.merge(). Calling Y.mix(foo, bar) mixes the properties of bar directly into
foo, returning the object passed in as the first parameter.

9.5 Composing and Inheriting from Other Objects
Problem
You want to create objects that reuse code from other objects, by inheritance or by
composition.

9.5 Composing and Inheriting from Other Objects | 285

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Load the oop module to bring in some additional tools for working with objects. Use
Y.extend() to create a traditional inheritance hierarchy of objects, Y.augment() to aug-
ment an object instance or prototype with another object’s capabilities, and Y.aggre
gate() to do deep merges of object instances.

Example 9-5 illustrates how you can use these methods:

1. A base Plant object has a climbs property on its prototype. Any new Plant() in-
stance will have a climbs property of false.

2. A Vine object calls Plant’s constructor and uses Y.extend() to extend Plant.
Vine’s prototype gains Plant’s prototype properties, and then overrides climbs on
the prototype to be true. Any new Vine() instance is an instance of a Vine, and also
an instance of a Plant. In classical terms, Y.extend() creates an “is a” relationship:
a Vine is a kind of Plant.

3. A Leaves object has a leafStatus() method. Calling Y.augment() supplies Vine with
the capabilities of Leaves. As with Y.extend(), this copies Leaves’s prototype prop-
erties over to Vine’s prototype. The difference is that with Y.augment(), a Vine
instance does not also become a Leaves instance. In classical terms, Y.augment()
creates a “has a” or “uses a” relationship—a Vine has Leaves, but it isn’t a kind of
leaf.

4. The example creates a new Vine instance named vine, along with two ad hoc ob-
jects, lemon and lime. Y.aggregate() then adds in all properties and methods of
lemon and lime into vine. Although lemon and lime each contain an object named
pick, Y.aggregate() successfully merges pick.lemons() and pick.limes() into
vine without clobbering anything.

Example 9-5. Extending, augmenting, and aggregating

<!DOCTYPE html>
<title>Extending, augmenting, and aggregating</title>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('oop', function (Y) {
 var vine, lemon, lime;

 function Plant(name) {
 this.name = name;
 }
 Plant.prototype.climbs = false;

 function Vine(name) {
 Vine.superclass.constructor.call(this, name);
 }
 Y.extend(Vine, Plant, {climbs: true});

286 | Chapter 9: Utilities

www.it-ebooks.info

http://www.it-ebooks.info/

 function Leaves() {
 Y.log('CONSTRUCTOR: I have leaves.');
 }
 Leaves.prototype.leafStatus = function () { return 'green' };

 Y.augment(Vine, Leaves);

 vine = new Vine('hybridvine');
 lemon = { pick: { lemons: function () { return 'Tangy!' } } };
 lime = { pick: { limes: function () { return 'Mojitos please!' } } };
 Y.aggregate(vine, lemon);
 Y.aggregate(vine, lime);

 Y.log(vine.name + ' can climb: ' + vine.climbs);
 Y.log(vine.name + " also has leaves. They're " + vine.leafStatus() + '.');
 Y.log('In fact, by default any Vine can climb: ' + Vine.prototype.climbs);
 Y.log(vine.name + ' produces lemons: ' + vine.pick.lemons());
 Y.log(vine.name + ' produces limes: ' + vine.pick.limes());
 Y.log('Is ' + vine.name + ' a Plant? ' + (vine instanceof Plant));
 Y.log('Is ' + vine.name + ' a Vine? ' + (vine instanceof Vine));
 Y.log('But is ' + vine.name + ' a Leaf? ' + (vine instanceof Leaves));
});
</script>

Believe it or not, in the real world you can graft together plants to create
lemon/lime vines and even lemon/lime/orange vines.

Discussion
The official YUI documentation often refers to “classes.” Strictly speaking, JavaScript
doesn’t yet have built-in classes—but this doesn’t matter much, as you can use Java-
Script prototypes to implement patterns that look an awful lot like classes in other
languages. Y.extend() and Y.augment() are convenient tools for working with and
thinking about JavaScript in a more classical way.

If you are working with the Base object or its descendants, you can use
Y.Base.create() as an alternative to the generic Y.extend() and Y.aug
ment(). For more information, refer to Recipe 7.3.

In Example 9-5, the console log reveals that the constructor for Leaves gets called just
before vine.leafStatus() executes. This is a feature of Y.augment(), which has special
logic for handling constructors. When Y.augment() copies methods from the supplier
to the receiver, it sequesters all copied methods and delays calling the supplier’s con-
structor until just before you first call one of the copied methods.

9.5 Composing and Inheriting from Other Objects | 287

www.it-ebooks.info

http://www.it-ebooks.info/

This ensures proper usage of the supplier object, but also enables you to augment the
receiver multiple times without the performance hit of executing multiple supplier
constructors at once. If you need to pass arguments to a supplier’s constructor, use
Y.augment()’s extended signature.

Y.aggregate() copies object properties rather than prototype properties. One of its key
features is that it can do “deep merges” of the supplier’s properties with properties
already on the receiver. As shown in Example 9-5, for colliding properties that are
objects, Y.aggregate() attempts to augment the receiver’s object with the supplier’s.
For colliding properties that are arrays, Y.aggregate() appends the values in the sup-
plier’s array to the receiver’s. If a true naming collision occurs, Y.aggregate()’s default
behavior is to preserve the existing property on the receiver.

See Also
Luke Smith’s YUIConf 2011 talk, “Class Inheritance and Composition Patterns in
YUI”.

9.6 Automatically Caching Function Call Results
Problem
You have a function that, given the same input, always returns the same output value.
Each time your function is called, you would like to cache the output and try to look
up that value on subsequent calls (a technique called memoization).

Solution
Use Y.cached() to return a wrapped version of your function that automatically per-
forms memoization. When you call the wrapper function with a certain parameter list,
it first checks to see if it has a cached value stored for those input parameters, and if so,
returns the results immediately. Otherwise, the wrapper function executes the original
function, stores the results in the cache, and returns the results.

An example that benefits from caching is the classic recursive algorithm for calculating
the nth number in the Fibonacci sequence:

function fib(n) {
 return (n === 1 || n === 2) ? 1 : fib(n - 1) + fib(n - 2);
}

The algorithm is correct, but the number of function calls grows exponentially with
n. Depending on your browser and system, a value of n as low as 40 might cause a
noticeable slowdown or a “hanging script” error.

Example 9-6 implements the same algorithm, but uses Y.cached() to return a wrapper
function that stores previously calculated results.

288 | Chapter 9: Utilities

www.it-ebooks.info

http://www.youtube.com/watch?v=_zhQIfT7g58
http://www.youtube.com/watch?v=_zhQIfT7g58
http://www.it-ebooks.info/

Example 9-6. Efficiently calculating Fibonacci numbers

<!DOCTYPE html>
<title>Efficiently calculating Fibonacci numbers</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node-base', function (Y) {
 var fib = Y.cached(function (n) {
 return (n === 1 || n === 2) ? 1 : fib(n - 1) + fib(n - 2);
 });

 Y.one('#demo').append(fib(100));
});
</script>

The wrapper function makes it possible to calculate Fibonacci numbers that would
choke the original function. When fib(n) calls fib(n - 1), this looks up a previously
calculated answer instead of recursively spawning thousands or even millions of other
function calls.

Discussion
When it comes to scientific computing, JavaScript isn’t exactly FORTRAN. However,
if you do need to run expensive, repetitive calculations in JavaScript, memoization
can help. Example 9-6 is a particularly dramatic example where memoization elimi-
nates huge numbers of recursive function calls at a single stroke. More generally,
Y.cached() can help address certain hot spots in your code, such as templating functions
or string transformations that need to run frequently on a small set of values.

Take care to use Y.cached() only on functions that lack side effects.

Do not confuse Y.cached() with Y.Cache. The former is a generic func-
tion memoization utility, included with the core YUI object. The latter
is an API that abstracts techniques for storing data in the browser, in-
cluded with the cache module.

9.7 Templating with Simple String Substitution
Problem
You want to generate chunks of HTML from data stored in an object. Instead of con-
catenating strings over and over, you want to use some sort of simple templating
scheme.

9.7 Templating with Simple String Substitution | 289

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Use Y.Lang.sub(), which scans a template string for tokens surrounded by curly braces.
If a token in the string matches a property in a data object, Y.Lang.sub() replaces the
token with the corresponding value from the object. Tokens that do not match any
property in the object are left untouched. See Example 9-7.

Example 9-7. Templating with simple string substitution

<!DOCTYPE html>
<title>Templating with simple string substitution</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node-base', function (Y) {
 var template = '<p>{name}: {job} of {loc}; In a relationship with {mate}</p>';
 var people = [
 { name: 'John Carter', job: 'Adventurer', loc: 'Virginia', mate: 'Dejah Thoris' },
 { name: 'Dejah Thoris', job: 'Princess', loc: 'Helium', mate: 'John Carter' },
 { name: 'Tars Tarkas', job: 'Jeddak', loc: 'Thark', mate: 'Gozava' }
];

 Y.Array.each(people, function (person) {
 var html = Y.Lang.sub(template, person);
 Y.one('#demo').append(html);
 });
});
</script>

Discussion
For small templates, defining a template string in JavaScript is usually fine. For larger
template strings, you can use the <script> element to embed template markup inline
within the HTML document:

<script id="template" type="text/x-template">
<p>
 {name}: {job} of {loc} |
 In a relationship with {mate}
</p>
</script>

and then retrieve the template string with Y.one():

var template = Y.one('#template').getHTML();

This technique, dubbed “micro-templating” by jQuery creator John Resig, makes com-
plex templates easier to visualize and manage. Be sure to set the type attribute to some
non-JavaScript MIME-type such as text/x-something so that the browser does not at-
tempt to execute the <script> block.

290 | Chapter 9: Utilities

www.it-ebooks.info

http://www.it-ebooks.info/

If you need more advanced string processing, you can load the substitute module
to make Y.substitute() available. Y.substitute() does simple substitution like
Y.Lang.sub(), but also lets you supply custom functions for processing tokens. If you
prefer to use a real templating language with conditionals, loops, and partials, load the
handlebars module, which is a YUI wrapper for the third-party Handlebars.js project.
For server-side JavaScript, Jade is a template engine that works well with the popular
Express framework.

See Also
Y.Lang.sub() API documentation; Y.substitute() API documentation; Handle-
bars.js; the Jade Node Template Engine; John Resig’s original article on JavaScript
micro-templating.

9.8 Formatting Numbers
Problem
You want to format a number into a string that displays some currency value.

Solution
Load the datatype-number module and call Y.DataType.Number.format(), passing in the
number and a configuration object that specifies how to format the number.

Example 9-8 defines a US dollar format object, using the decimalPlaces property to
zero-pad numbers out by two decimal places. You can use thousandsSeparator and
decimalSeparator (not shown) to create different format objects for different locales.

Example 9-8. Formatting a number into a currency string

<!DOCTYPE html>
<title>Formatting a number into a currency string</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('datatype-number', 'node-base', function (Y) {
 var usdFormat = {
 prefix: '$',
 suffix: ' (USD)',
 decimalPlaces: 2,
 thousandsSeparator: ','
 };

 function displayDollars(pennies) {
 return Y.DataType.Number.format(pennies/100, usdFormat);
 }

9.8 Formatting Numbers | 291

www.it-ebooks.info

http://yuilibrary.com/yui/docs/api/classes/Lang.html#method_sub
http://yuilibrary.com/yui/docs/api/classes/YUI~substitute.html
http://www.handlebarsjs.com/
http://www.handlebarsjs.com/
http://jade-lang.com/
http://ejohn.org/blog/javascript-micro-templating/
http://ejohn.org/blog/javascript-micro-templating/
http://www.it-ebooks.info/

 Y.one('#demo').append(displayDollars(115380));
});
</script>

Discussion
Representing arbitrary decimal numbers in 64 bits as JavaScript does is inherently im-
perfect. To ensure precision in currency calculations, always store values and perform
operations using integers, and show only decimal values at the very last moment, when
displaying results to users. For example, if you are working with US dollars, you should
operate in integers representing pennies and then divide by 100 at the very end of the
calculation, as shown in Example 9-8.

See Also
The DataType User Guide.

9.9 Formatting Dates
Problem
You want to format standard JavaScript Date objects into a readable string.

Solution
Load the datatype-date module and call Y.DataType.Date.format(), passing in the
Date object and an object with a format property, as shown in Example 9-9. The format
string can contain any strftime format specifier, plus some extensions devised by the
PHP project, plus some more extensions devised by YUI.

Example 9-9. Formatting dates

<!DOCTYPE html>
<title>Formatting dates</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('datatype-date', 'node-base', function (Y) {
 var dateStr = Y.DataType.Date.format(new Date(), { format: '%A, %B %e, %Y' });
 Y.one('#demo').append('Today is ' + dateStr + '.');
});
</script>

Discussion
The format() method returns month and weekday names according to the current value
of the YUI instance’s lang property. For example, if the lang is 'fr', format() returns

292 | Chapter 9: Utilities

www.it-ebooks.info

http://yuilibrary.com/yui/docs/datatype/
http://www.it-ebooks.info/

weekday strings like 'lundi' and 'mardi'. Strings such as 'am' and 'pm' and format
specifiers such as %x and %X are also locale-specific. The datatype-date module currently
defines over 80 sets of language strings.

Beyond format(), DataType.Date provides several other date utility methods that make
it easy to compare dates and add months and years to dates.

See Also
The gallery-toRelativeTime module in Recipe 1.5; Recipe 8.15; the DataType User
Guide; the complete list of format specifiers in the DataType.Date.format() API docu-
mentation.

9.10 Parsing Arbitrary XML
Problem
You want to parse a string into an XML document.

Solution
Load the datatype-xml module and call Y.DataType.XML.parse(), passing in the string
to parse (see Example 9-10). The method returns a native XMLDocument object repre-
senting the XML. If the string does not represent well-formed XML, the XMLDocument
will contain errors rather than data you can walk through.

Example 9-10. Parsing arbitrary XML

<!DOCTYPE html>
<title>Parsing arbitrary XML</title>

<div id="book"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('datatype-xml', 'node-base', function (Y) {
 var xmlString = '<book><title>The YUI 3 Cookbook</title>'
 + '<chapter id="loading"><title>Loading Modules</title>'
 + '<para>Consider the humble script element...</para></chapter></book>';

 var xml = Y.DataType.XML.parse(xmlString),
 ch1 = xml.firstChild.childNodes[1];

 Y.one('#book').append('<h1>Chapter 1: ' + ch1.childNodes[0].textContent + '</h1>');
 Y.one('#book').append('<p>' + ch1.childNodes[1].textContent + '</p>');
});
</script>

9.10 Parsing Arbitrary XML | 293

www.it-ebooks.info

http://yuilibrary.com/yui/docs/datatype/
http://yuilibrary.com/yui/docs/datatype/
http://yuilibrary.com/yui/docs/api/classes/DataType.Date.html#method_format
http://yuilibrary.com/yui/docs/api/classes/DataType.Date.html#method_format
http://www.it-ebooks.info/

Discussion
There is also a Y.DataType.XML.format() method that can transform an XMLDocument
object into a string of angle brackets. This method does not provide any pretty-printing
or other fancy formatting options.

See Also
The DataType User Guide; DOM Core Document.

9.11 Converting Color Values
Problem
You want to convert CSS color values between hex and RGB, or vice versa.

Solution
Load the dom-style module and call Y.Color.toHex() or Y.Color.toRGB(), as shown in
Example 9-11.

Example 9-11. Converting color values

<!DOCTYPE html>
<title>Converting color values</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('dom-style', 'node', function (Y) {
 var color = 'fuchsia',
 colorHex = Y.Color.toHex(color),
 colorRGB = Y.Color.toRGB(colorHex);

 Y.one('#demo').setStyle('color', colorRGB)
 .setHTML(color + ' === ' + colorHex + ' === ' + colorRGB);
});
</script>

Discussion
The dom-style module provides some of Y.DOM’s utility methods. Y.Color is buried in-
side Y.DOM—obscure, but simple and useful.

294 | Chapter 9: Utilities

www.it-ebooks.info

http://yuilibrary.com/yui/docs/datatype/
http://www.w3.org/TR/DOM-Level-2-Core/core.html#i-Document
http://www.it-ebooks.info/

9.12 Managing History and the Back Button
Problem
You want to enable users to navigate your web application using the Back button.

Solution
Load the history module, which can add new entries to browser history that corre-
spond to different states of your application. This module wraps the native pushState
API. For browsers that don’t support this API natively, the YUI history module falls
back to a “hash”-based history technique.

Example 9-12 represents a control panel where the user can enable or disable an alarm
of some kind. The example instantiates a HistoryHash object, which stores state using
hash URLs. Hash URLs are brittle, but they work in old browsers and don’t require
any special support on the server side.

The example includes two event listeners. The first listener acts when the user selects
a radio button, calling addValue() to create an entry in the browser history and store
some metadata along with that history entry.

The second listener acts on the history:change event, which fires when the user selects
a radio button (because history.addValue() was called) and when the user clicks the
Back or Forward button, or otherwise changes the URL in the location bar. To avoid
doing unnecessary DOM manipulation, the event listener checks whether a) the history
:change event came from the user changing the URL in the location bar, and b) the
history:change event represents a change to the alarm status.

The addAlarm() function is responsible for extracting the page’s current state from the
browser history and syncing the page’s appearance accordingly. If the state is valid,
addAlarm() sets the radio buttons; otherwise, it restores both radio buttons to their
pristine, unchecked state. The page calls addAlarm() on page load to sync the page with
the initial URL, and later on in response to (some) history:change events.

Example 9-12. Using hash history to store interstitial state

<!DOCTYPE html>
<title>Alarm Control</title>

<form id="demo">
 <p>Alarm:
 <label><input type="radio" name="alarm" value="enabled"> Enabled</label>
 <label><input type="radio" name="alarm" value="disabled"> Disabled</label>
 </p>
</form>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>

9.12 Managing History and the Back Button | 295

www.it-ebooks.info

http://www.it-ebooks.info/

<script>
YUI().use('history', 'node', function (Y) {
 var history = new Y.HistoryHash();

 function setAlarm() {
 var alarm = history.get('alarm');
 if (alarm === 'enabled' || alarm === 'disabled') {
 Y.one('input[value=' + alarm + ']').set('checked', true);
 }
 else {
 Y.all('input[type=radio]').set('checked', false);
 }
 }

 Y.one('#demo').on('change', function (ev) {
 history.addValue('alarm', ev.target.get('value'));
 });

 Y.on('history:change', function (ev) {
 if (ev.src === Y.HistoryHash.SRC_HASH && ev.changed.alarm) {
 setAlarm();
 }
 });

 setAlarm();
});
</script>

Example 9-13 is a variation that attempts to simulate real URLs instead of storing state
in hash parameters. The differences include:

• The example instantiates a History instance, rather than a HistoryHash instance.
History is a superset of HistoryHash—it causes YUI to use the advanced HTML
History API in browsers that support this API, and fall back to using hash URLs
otherwise.

• The history:change listener checks whether the event came from an HTML History
popstate event.

• addValue() supplies a third parameter, a configuration object that contains a url
property. If the browser supports the HTML History API, this sets the URL in the
browser’s location bar, creating the illusion that this particular application state is
backed by a physical file. In less capable browsers, YUI ignores the url parameter
and generates a hash-based URL.

Thus, in browsers that support HTML History, Example 9-13 generates “pages” of
the form http://localhost/enabled.html and http://localhost/disabled.html. These “pages”
are actually just states in a JavaScript application, not physical files. However, they
behave a lot like physical files: Back/Forward navigation works, and in browsers that
support HTML History, the location bar even displays a “pretty” URL for each state.

296 | Chapter 9: Utilities

www.it-ebooks.info

http://www.it-ebooks.info/

This example should be served from a real web server, not the local
filesystem.

Example 9-13. Using HTML History to simulate real URLs

YUI().use('history', 'node', function (Y) {
 var history = new Y.History();

 function setAlarm() {
 var alarm = history.get('alarm');
 if (alarm === 'enabled' || alarm === 'disabled') {
 Y.one('input[value=' + alarm + ']').set('checked', true);
 }
 else {
 Y.all('input[type=radio]').set('checked', false);
 }
 }

 Y.one('#demo').on('change', function (ev) {
 var alarm = ev.target.get('value')
 history.addValue('alarm', alarm, { url: alarm + '.html' });
 });

 Y.on('history:change', function (ev) {
 if (ev.src === Y.HistoryHTML5.SRC_POPSTATE && ev.changed.alarm) {
 setAlarm();
 }
 });

 setAlarm();
});

Discussion
The simplest model of a web server is that each URL corresponds to a single physical
file in a directory. Server-side logic breaks this model; a single endpoint can handle
many types of requests, and might be distributed across many different physical or
virtual servers. Nevertheless, well-designed server-side applications go to great lengths
to hide this internal complexity and present clean, bookmarkable URLs.

Any sufficiently complex client-side application faces a similar problem. In a web ap-
plication, a link click or other user action might represent some internal client-side state
in a JavaScript application. So how do you map JavaScript application states to user-
friendly URLs?

This is the problem that the HTML History API attempts to solve. The basic idea is:

1. A user clicks a link or takes some other action that results in a nontrivial state
change.

9.12 Managing History and the Back Button | 297

www.it-ebooks.info

http://www.it-ebooks.info/

2. Your application responds with an API call to create a new browser history entry,
with a unique URL and title.

3. That same API call enables you to store metadata with that browser history entry.

4. When history changes for any reason, such as a user clicking a link or the Back
button, you retrieve that history entry’s stored metadata and use it to reconstruct
the state of the application.

This last step is critical. Both Examples 9-12 and 9-13 are careful to update the
application’s appearance in response to history:change events. A common pitfall
when working with HTML History is to do this backward, changing the applica-
tion’s appearance and then adding a history entry. This leads to horrible state
inconsistencies. Reacting to history change events helps ensure consistency re-
gardless of the origin of the change.

HTML History enables you to write responsive web applications without losing the
benefits of having clean URLs. You can fetch and repaint just the part of the page that
needs to change, and still provide users with the URL behavior that they expect.

While the preceding examples store only a single string key/value pair, HTML
History enables you to store arbitrary objects with each history entry. Generally, it is
best to store just the data you need to reconstruct the application’s state, not the entire
state itself. If you need to store a lot of state information, consider caching this infor-
mation in localStorage and using the History metadata as a pointer into that cache.

Setting the URL is nifty, but has some limitations. For security reasons, you can set
only URLs that have the same origin as your web server. Also, generating URLs on the
client is a lot less useful unless you have at least some server-side logic to support these
URLs. Without routing support from the server, sharing the link http://example.com/
enabled.html with someone else would result in a 404.

For browsers that lack true HTML History support, History resorts to a hash-based
technique. Each time you create a history entry and set some metadata, YUI stores that
metadata in the URL as simple string key/value pairs, as in #alarm=enabled. Keep in
mind that since browsers never pass hash parameters to the web server, hash-based
URLs are extremely difficult to handle with server-side logic, which in turn leads to
many other problems. To force YUI to always use one technique or the other, instantiate
a HistoryHTML5 object or a HistoryHash object (as shown in Example 9-12) instead of a
History object.

Alongside the url parameter, HTML History also supports setting a title parameter.
Unfortunately, this parameter is a bit troubled. The HTML History specification dis-
tinguishes between a history entry title (a string that appears in the browser’s History
menu) and a document title (a string that appears in the browser title bar, derived from
the familiar <title> element). In theory, setting the title parameter means setting the
former, but not necessarily the latter. In reality, all browsers silently ignore the title

298 | Chapter 9: Utilities

www.it-ebooks.info

http://www.it-ebooks.info/

parameter. If you want to set the document title, you should probably do it manually
by calling Y.one('title').set('text', text).

See Also
Recipe 7.17; Recipe 7.18; the YUI History User Guide; Best Practices for History and
Hash-based URLs; the HTML History specification.

9.13 Escaping User Input
Problem
You want to allow users to enter strings that will be reflected on your pages, but you
don’t want to allow them to hijack your site by inserting arbitrary markup.

Solution
Load the escape module and call Y.Escape.html() to escape dangerous characters, as
shown in Example 9-14. Y.Escape.html() escapes HTML characters, replacing them
with harmless character entities. (This is conceptually a bit different from a sanitizer,
which would remove unsafe HTML completely.)

Example 9-14. Sanitizing user input

<!DOCTYPE html>
<title>Sanitizing user input</title>

<form id="demo">
 <label for="text">Type something:</label>
 <input type="text" id="text" value="<marquee>OH NO!</marquee>">
 <input type="submit">
</form>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('escape', 'node-base', function (Y) {

 Y.one('#demo').on('submit', function (ev) {
 var raw = Y.one('#text').get('value'),
 sanitized = Y.Escape.html(raw);

 Y.one('body').append(sanitized);
 ev.preventDefault();
 });
});
</script>

9.13 Escaping User Input | 299

www.it-ebooks.info

http://yuilibrary.com/yui/docs/history/
http://yuilibrary.com/yui/docs/router/index.html#best-practices
http://yuilibrary.com/yui/docs/router/index.html#best-practices
http://www.whatwg.org/specs/web-apps/current-work/multipage/history.html
http://www.it-ebooks.info/

Discussion
Without escaping, it is possible to do much more horrific things to your site than in-
serting a <marquee> (as hard as that might be to believe). An attacker that succeeds in
inserting a <script> element can control the appearance and behavior of the page, steal
credentials and other secrets, and much more. This form of attack is called cross-site
scripting (XSS).

While many developers are aware of the dangers of XSS attacks, it is easy to underes-
timate the dangers of self-XSS—a transient JavaScript injection that affects only the
user who performed the injection. Some developers dismiss self-XSS as a nonissue be-
cause there’s no harm in a user executing JavaScript on his own machine, but this
overlooks the possibility of phishing attacks. If a phisher can convince a user to paste
something into a web page, or click something, or navigate to a URL, or do something
else that executes local JavaScript in his browser, then the phisher can exploit the user’s
personal information or carry out actions on his behalf. This means you must not only
escape user input that you plan to store and redisplay later, but also any input that will
only be redisplayed locally to the same user who entered it.

Y.Escape.html() escapes strings according to the recommendations of the Open Web
Application Security Project (OWASP). There is also a Y.Escape.regex() method for
escaping strings intended for use in a regular expression.

See Also
Escape API documentation; OWASP’s XSS Prevention Cheat Sheet.

9.14 Assigning Special Behavior to a Checkbox Group
Problem
You want to create a “select all” checkbox that toggles the state of a group of other
checkboxes.

Solution
Load the gallery-checkboxgroups module from the gallery. This module enables you
to define a group of checkboxes and apply a function to control the state of the group.
It includes several predefined classes, including SelectAllCheckboxGroup. See Exam-
ple 9-15.

300 | Chapter 9: Utilities

www.it-ebooks.info

http://yuilibrary.com/yui/docs/api/classes/Escape.html
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
http://www.it-ebooks.info/

Example 9-15. Implementing a “select all” checkbox group

<!DOCTYPE html>
<title>Implementing a "select all" checkbox group</title>

<p>Yes! Please send me valuable and informative marketing information by:</p>
<form>
 <p><label><input type="checkbox" class="mkting" name="em"> Email</label></p>
 <p><label><input type="checkbox" class="mkting" name="sm"> Snail Mail</label></p>
 <p><label><input type="checkbox" class="mkting" name="tw"> Tweet</label></p>
 <p><label><input type="checkbox" class="mkting" name="cp"> Carrier Pigeon</label></p>
 <p><label><input type="checkbox" id="all" name="all"> I want it all, baby!</label></p>
</form>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('gallery-checkboxgroups', function (Y) {
 new Y.SelectAllCheckboxGroup('#all', '.mkting');
});
</script>

In Example 9-15, just instantiating a new SelectAllCheckboxGroup is enough to define
the checkbox group. The constructor takes two parameters: a CSS selector for a single
checkbox to act as the “select all” checkbox, and a CSS selector for the group of check-
boxes that is under control. Deselecting the “select all” checkbox deselects all other
checkboxes, and selecting or deselecting other checkboxes updates the “select all”
checkbox, as you might expect.

Three other predefined constraints exist. For example, to apply the constraint that at
least one checkbox must be selected, use AtLeastOneCheckboxGroup:

YUI().use('gallery-checkboxgroups', function (Y) {
 new Y.AtLeastOneCheckboxGroup('.mkting');
});

The module also includes EnableIfAnyCheckboxGroup, which enables some other group
of form fields in response to the user selecting one of the checkboxes, and AtMostOne
CheckboxGroup, which allows zero or one checkboxes to be selected (in contrast to a
radio button group, which requires exactly one option to be selected).

Discussion
Checkbox groups are just a user interface nicety. They cannot stop a truly determined
user from submitting the form with an “illegal” set of checkboxes checked, so be sure
to validate all user input on the server side.

To create a custom checkbox group, extend the base CheckboxGroup class and imple-
ment the enforceConstraints() function. YUI calls this function every time the user
selects or deselects a checkbox, passing in two parameters: an array of YUI Nodes rep-
resenting all checkboxes in the group, and the integer index of the checkbox that
changed state.

9.14 Assigning Special Behavior to a Checkbox Group | 301

www.it-ebooks.info

http://www.it-ebooks.info/

For example, the AnnoyingCheckboxGroup class in Example 9-16 implements an
enforceConstraints() function that responds to state changes by randomly changing
the state of all checkboxes in the group.

Example 9-16. Implementing a custom checkbox group

<!DOCTYPE html>
<title>Implementing a custom checkbox group</title>

<p>Yes! Please send me valuable and informative marketing information by:</p>
<form>
 <p><label><input type="checkbox" class="mkting" name="em"> Email</label></p>
 <p><label><input type="checkbox" class="mkting" name="sm"> Snail Mail</label></p>
 <p><label><input type="checkbox" class="mkting" name="tw"> Tweet</label></p>
 <p><label><input type="checkbox" class="mkting" name="cp"> Carrier Pigeon</label></p>
</form>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('gallery-checkboxgroups', function (Y) {
 function AnnoyingCheckboxGroup(checkboxes) {
 AnnoyingCheckboxGroup.superclass.constructor.call(this, checkboxes);
 }

 Y.extend(AnnoyingCheckboxGroup, Y.CheckboxGroup, {
 enforceConstraints: function (checkboxes, index) {
 Y.each(checkboxes, function (checkbox) {
 var state = Math.random() > 0.5;
 checkbox.set('checked', state);
 });
 }
 });

 new AnnoyingCheckboxGroup('.mkting');
});
</script>

As an experienced JavaScript developer, you are responsible for always
using your powers for good, not evil.

See Also
John Lindal’s gallery-checkboxgroups module; “In the YUI 3 Gallery: Checkbox Group
Behaviors”; YUI 3 Checkbox Groups Examples; Checkbox Groups API documenta-
tion.

302 | Chapter 9: Utilities

www.it-ebooks.info

http://yuilibrary.com/gallery/show/checkboxgroups
http://www.yuiblog.com/blog/2010/03/01/gallery-checkbox-group/
http://www.yuiblog.com/blog/2010/03/01/gallery-checkbox-group/
http://jafl.github.com/yui3-gallery/checkboxgroups/
http://jafl.github.com/yui3-gallery/yuidoc/module_gallery-checkboxgroups.html
http://jafl.github.com/yui3-gallery/yuidoc/module_gallery-checkboxgroups.html
http://www.it-ebooks.info/

9.15 Implementing Easy Keyboard Actions and Navigation
Problem
You want to enable the user to dismiss an overlay by pressing Escape.

Solution
Load the gallery-event-nav-keys module and listen for a synthetic DOM event named
esc. If the user presses Escape, hide the overlay. See Example 9-17.

Example 9-17. Dismissing an overlay with Escape

<!DOCTYPE html>
<title>Dismissing an overlay with Escape</title>

<style>
.yui3-overlay {
 position: absolute; width: 200px; padding: 5px;
 color: #ddd; background: #a00; box-shadow: 3px 3px 2px #600;
}
</style>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('gallery-event-nav-keys', 'overlay', function (Y) {
 var overlay = new Y.Overlay({
 bodyContent: 'Press ESC to dismiss me',
 xy: [30, 30]
 });

 Y.on('esc', function (ev) {
 overlay.hide();
 });

 overlay.render();
});
</script>

The complete list of supported key events is: backspace, down, enter, esc, left, page
Down, pageUp, tab, right, and up.

Discussion
The gallery-event-nav-keys module is tiny, but provides useful semantics for keyboard
navigation support. It is nicer to work with keystrokes as events with names like esc
and pageDown than it is to capture keydown events and inspect the keyCode.

For the particular use case of dismissing widgets using Escape, an alternative approach
would be to mix in the WidgetAutohide extension, discussed in Recipe 8.5. It depends

9.15 Implementing Easy Keyboard Actions and Navigation | 303

www.it-ebooks.info

http://www.it-ebooks.info/

on your purpose; WidgetAutohide is focused on hiding widgets, while gallery-event-
nav-keys is a simple and lightweight way to support navigation keys in general.

See Also
Recipe 4.11; Luke Smith’s gallery-event-nav-keys, gallery-event-arrow, and gallery-
event-konami modules.

9.16 Reliably Detecting Input Field Changes
Problem
You want to be notified immediately when the user types or pastes anything in a text
input field or textarea, even if she is still typing and the DOM change event hasn’t fired
yet.

Alternatively, you want a more reliable way to detect special multistroke characters
generated by an input method editor (IME), which DOM events handle poorly.

Solution
Load the event-valuechange module, then subscribe to the synthetic valueChange event
on the node you want to monitor for changes:

<!DOCTYPE html>
<title>Reliably Detecting Input Field Changes</title>

<form><input type="text" id="demo"></form>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('event-valuechange', function (Y) {
 Y.one('#demo').on('valueChange', function (ev) {
 Y.log('previously: ' + ev.prevVal + '; now: ' + ev.newVal);
 });
});
</script>

Discussion
Browsers provide a variety of events to capture changes to input fields, but each event
has serious flaws:

• The change event fires only after the input field loses focus, making it unsuitable
for capturing changes as the user types.

304 | Chapter 9: Utilities

www.it-ebooks.info

http://yuilibrary.com/gallery/show/event-nav-keys
http://yuilibrary.com/gallery/show/event-arrow
http://yuilibrary.com/gallery/show/event-konami
http://yuilibrary.com/gallery/show/event-konami
http://www.it-ebooks.info/

• Keyboard events like keydown, keyup, and keypress do fire for keyboard input, but
they fail to capture changes made by other means, such as a mouse-initiated paste.
Keyboard events are also inconsistent around IMEs and languages that require
multiple keystrokes to create a single character.

• Recent versions of Firefox, Safari, Chrome, and Opera support an input event that
handles both keyboard-triggered input and input via other means like pasting.
However, input still behaves inconsistently with IMEs and multistroke characters,
and it lacks support in Internet Explorer.

YUI’s synthetic valueChange event solves all of these problems by polling for changes
when a user is actively typing or pasting into an input field or textarea, and by using
smart sliding timeouts to provide full support for IME input. This event was originally
developed to support the AutoComplete widget, but is a useful generic component in its
own right.

valueChange polls only while the element is focused. It does not catch
value changes at other times.

See Also
Recipe 4.11; Recipe 8.17; background on input method editors.

9.17 Managing and Validating Forms
Problem
You want a general approach for validating form data on the client side and informing
the user about errors.

Solution
Load the gallery-formmgr module and create a FormManager object. Form Manager can
help manage almost all aspects of a form’s lifecycle, such as manipulating field states,
displaying error messages, and validation.

Example 9-18 assigns two form fields the CSS classes yiv-required and yiv-integer:
[0,130]. These classes flag the fields for validation by Form Manager. On form sub-
mission, the event handler validates each field’s value and automatically displays any
error messages next to each field. If any errors occur, the event handler prevents the
form’s default action, enabling the user to correct the errors before trying again.

9.17 Managing and Validating Forms | 305

www.it-ebooks.info

http://en.wikipedia.org/wiki/Input_method
http://www.it-ebooks.info/

Example 9-18. Validating forms

<!DOCTYPE html>
<title>Validating forms</title>
<style>
.formmgr-status-failure { font-weight: bold; color: #f00; }
.formmgr-haserror .formmgr-message-text { color: #f00; }
</style>

<p id="form-status"></p>
<form method="get" action="http://yuilibrary.com" name="example_form">
 <p>
 <label for="username">Username</label>
 <input type="text" id="username" class="yiv-required">
 </p>
 <p>
 <label for="age">Age</label>
 <input type="text" id="age" class="yiv-required yiv-integer:[0,130]">
 </p>
 <p><input type="submit" value="Submit Form"></p>
</form>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('gallery-formmgr', function (Y) {
 var form = new Y.FormManager('example_form', {
 status_node: '#form-status'
 });

 Y.all('form p').addClass('formmgr-row')
 Y.all('input').insert('', 'after');

 form.prepareForm();

 Y.one('form').on('submit', function (ev){
 form.validateForm();
 if (form.hasErrors()) {
 ev.preventDefault();
 };
 });
});
</script>

Discussion
Much of Form Manager’s functionality relies on strong conventions around CSS class
names. Each field (or closely related group of fields) must reside in a container with the
class formmgr-row, and each field should have a corresponding element with a formmgr-
message-text class to hold error messages and other notifications. Form Manager does
not attempt to “guess” at the structure of your form, so you must create this markup
yourself to help Form Manager out. You can embed this information in the static
markup, but since these classes are just hooks for JavaScript anyway, you should feel
free to add them with Y.all() if that seems like a cleaner option.

306 | Chapter 9: Utilities

www.it-ebooks.info

http://www.it-ebooks.info/

Form Manager uses CSS classes to stamp a field for validation. The prebuilt validators
provide canned logic and default error message strings for when validation fails. There
are four CSS-based validators: yiv-required for required fields, and yiv-length:
[x,y], yiv-integer:[x,y], and yiv-decimal:[x,y] to require a range of string lengths, in-
teger values, and decimal values, respectively.

For other validation types, you must drop down into JavaScript. Form Manager pro-
vides a compact setRegex() method for assigning a regular expression validator to a
field. Beyond that, the setFunction() method enables you to set arbitrary validator logic
on a field. There is also a postValidateForm() hook that gets called at the end of
validateForm(), which enables you to run validation logic across multiple fields (such
as requiring the user to at least provide an email address or a phone number).

It should go without saying that client-side JavaScript validation is
strictly a user interface enhancement, something that the user can easily
disable or subvert. Always validate data on the server side.

This recipe only scratches the surface of what Form Manager can do. You can use it to
inject arbitrary messages all over the form, enable and disable fields, and control form
defaults. For more information, refer to Form Manager’s documentation.

See Also
John Lindal’s gallery-formmgr module; “In the YUI 3 Gallery: John Lindal’s Form
Manager”; Form Manager API documentation; Greg Hinch’s gallery-form module,
which sets validators and can generate form fields from simple data objects; Greg
Hinch’s blog post, “The YUI 3 Form Module—Forms and Validation Made Simple”;
Murray Macchio’s gallery-formvalidator module, which is designed to support dy-
namic inline form validation.

9.17 Managing and Validating Forms | 307

www.it-ebooks.info

http://yuilibrary.com/gallery/show/formmgr
http://www.yuiblog.com/blog/2010/03/23/gallery-form-manager/
http://www.yuiblog.com/blog/2010/03/23/gallery-form-manager/
http://jafl.github.com/yui3-gallery/yuidoc/module_gallery-formmgr.html
http://yuilibrary.com/gallery/show/form
http://www.yuiblog.com/blog/2009/12/03/yui-3-gallery-form-module/
http://yuilibrary.com/gallery/show/formvalidator
http://www.alistapart.com/articles/inline-validation-in-web-forms/
http://www.alistapart.com/articles/inline-validation-in-web-forms/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Server-Side YUI

For many frontend engineers, running JavaScript on the server is an attractive notion.
Wouldn’t it be nice if you didn’t have to write reams of code in JavaScript on the client,
and then have to write much of that logic again in some other language for the server?

The good news for those engineers is that in recent years, the practice of writing server-
side JavaScript has started to cross over into the mainstream. Clearly it hasn’t become
mainstream yet, as we still have to constantly say “server-side JavaScript” instead of
just “JavaScript.” Nevertheless, the server offers us the opportunity to write some really
interesting JavaScript applications. And as a framework designed to tame JavaScript
applications, it should be no surprise that YUI has focused on the server as one of its
primary environments.

The specific server-side environment YUI targets is the popular Node.js framework. In
a nutshell, Node.js is a JavaScript platform built on top of the V8 JavaScript runtime,
with libraries for HTTP and other types of I/O. Just like a browser, Node.js runs in an
event loop. And just like the browser, the primary way to pass messages and perform
other I/O interactions in Node.js is to set listeners and respond asynchronously with
callback functions. For many longtime backend engineers, writing asynchronous code
in an event loop feels deeply weird. But for frontend engineers, this model is strikingly
familiar.

The main advantage of the event loop is that it provides a straightforward way for
ordinary mortals to write code that can handle a massive number of I/O operations.
This is not to say that event loops are necessarily the one true way to write high-
throughput apps, but they do the job and are relatively easy to reason about. That is,
if you’re a JavaScript programmer. Which you are. Yay!

Of course, event loops also bring many of the disadvantages of programming in the
browser. If you make the mistake of performing an expensive computation in the
browser, you can freeze the browser’s UI thread. If you make the mistake of performing
an expensive computation in Node.js, you can freeze your entire website. Like any
technology, Node.js involves tradeoffs.

309

www.it-ebooks.info

http://www.it-ebooks.info/

Besides I/O performance, another nice thing about Node.js is that you don’t need to
support an entire landscape of JavaScript engines with all their myriad inconsistencies
and bugs. There’s just one engine to target, and you control what that engine is and
possibly even the hardware that the engine runs on. What a breath of fresh air! But that
raises the question: if your favorite library was originally designed to correct for DOM,
event, and Ajax bugs in browsers, what good is it going to do for you on the server?

Fortunately, YUI offers a lot more than simple page effects and browser corrections.
For server-side applications, YUI provides all sorts of goodies, including:

• The powerful Base API and YUI custom event system for building decoupled
components

• The App Framework for further structuring complex applications

• Object, array, and language utilities that go well beyond what ECMAScript stand-
ards provide

• A flexible module system that works perfectly well on the server, enabling you to
select exactly what you need from an enormous library of existing code

• A suite of tools for building, deploying, testing, and documenting professional-
quality programs

This chapter provides everything you need to get up and running with YUI in a Node.js
environment.

Recipe 10.1 explains how to install and run YUI on Node.js using the familiar
YUI().use() sandbox pattern.

Recipe 10.2 introduces the useSync() method, which enables you to load YUI modules
synchronously alongside regular Node.js modules.

Recipe 10.3 demonstrates building a simple command-line tool, reusing a YUI Base
object from Chapter 7. The example also shows how to load a custom YUI module
from a separate file.

Recipe 10.4 shows how to make YQL calls on the server side.

Recipe 10.5 introduces the YUI REPL, a command-line tool for exploring JavaScript
libraries, poking at web APIs, and doing rapid prototyping.

Finally, Recipe 10.6 demonstrates how to use YQL and Handlebars.js to build up a
page with YUI and then send the results out over HTTP.

10.1 Installing and Running YUI on the Server
Problem
You want to use YUI to build a server-side component or a command-line tool.

310 | Chapter 10: Server-Side YUI

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Install the Node.js/npm/YUI 3 stack and test your work by running a simple script on
the command line:

1. Install Node.js as a package according to the instructions on the Node.js wiki. If a
suitable package is not available for your system, you can download a prepackaged
binary for your platform or install and build Node.js from source.

2. If necessary, install npm using the same package management system you used in
the previous step. By default, Node.js 0.6.3 and above includes npm. However, some
package maintainers prefer to maintain Node.js and npm as separate packages.

3. Enter a working directory and use npm to install the yui package:

$ npm install yui

4. In the same directory, write the YUI script shown in Example 10-1 and save it as
nodejs_yui.js.

Example 10-1. A trivial server-side YUI script

var YUI = require('yui').YUI;

YUI().use('substitute', function (Y) {
 Y.log(Y.substitute('Hi! You are using YUI {version}.', YUI));
});

5. Verify that the script is working:

$ node nodejs_yui.js
info: Hi! You are using YUI 3.5.0.

Discussion
The remarkable thing about Example 10-1 is that aside from the first line, it is identical
to code you would run in the browser. The YUI module system runs unchanged: the
same sandbox pattern and the same YUI().use() semantics all work on the server side.

Of course, on the server side, there’s no such thing as the <script> element. Instead,
you load libraries with a call to require(), a method defined in the CommonJS 1.1
module standard, Node.js’s native module format. Since YUI modules predate
CommonJS modules, the two formats have different semantics. However, it is still
possible to load YUI modules in a way that looks a little more “Node-ish,” as illustrated
in Recipe 10.2.

YUI actually offers several npm packages. The main package to install is yui, which
includes all of core YUI. Note that to activate YUI’s DOM capabilities, you must install
a server-side DOM implementation. For more information, refer to the Discussion in
Recipe 10.6.

10.1 Installing and Running YUI on the Server | 311

www.it-ebooks.info

https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
http://nodejs.org/#download
http://nodejs.org/#download
https://github.com/joyent/node/wiki/Installation
http://www.it-ebooks.info/

See Also
The nodejs-yui3 project; the yui3 npm package; the yui3-gallery npm package.

10.2 Loading Modules Synchronously on the Server
Problem
You want to attach YUI modules to the Y object synchronously at the top of your script,
in much the same way that CommonJS modules work.

Solution
Set Y equal to the return value of require('yui/module-name') and then run your code
directly without bothering to set up a YUI().use() sandbox.

Example 10-2 requires the os Node.js core module and the substitute YUI module,
then uses them together to display information about your system’s hardware.

Example 10-2. Loading a server-side YUI module with require()

var os = require('os'),
 Y = require('yui/substitute');

Y.Array.each(os.cpus(), function (cpu) {
 Y.log(Y.substitute('CPU: {model} @ {speed} MHz', cpu));
});

To use more than one YUI module, you have two options. The first option is to simply
call require() multiple times for the same Y instance. The results are cumulative (in
other words, the final Y has all modules and their dependencies attached):

var Y = require('yui/substitute');
Y = require('yui/array-extras');
Y = require('yui/base-build');

Alternatively, you can load multiple modules as a batch by calling require
('yui').use():

var Y = require('yui').use('substitute', 'array-extras', 'base-build');

Discussion
As shown in Recipe 10.1, on Node.js you can continue to use the standard YUI pattern
of loading modules asynchronously into a sandbox. However, server-side YUI also
supports the more common server-side pattern of loading modules synchronously at
the top of the script using require().

312 | Chapter 10: Server-Side YUI

www.it-ebooks.info

https://github.com/yui/nodejs-yui3
http://search.npmjs.org/#/yui3
http://search.npmjs.org/#/yui3-gallery
http://www.it-ebooks.info/

If you need to pass a YUI configuration into YUI(), you can break loading into two
steps. First, get a reference to the main YUI object by calling require('yui').YUI. Then
call YUI().use() and pass in a useSync: true parameter. This parameter instructs YUI
to load modules synchronously so that you can exercise the returned Y instance directly.
Example 10-3 illustrates this pattern.

Example 10-3. Breaking loading into two steps with useSync

var os = require('os'),
 YUI = require('yui').YUI,
 Y = YUI({ useSync: true }).use('substitute');

Y.Array.each(os.cpus(), function (cpu) {
 Y.log(Y.substitute('CPU: {model} @ {speed} MHz', cpu));
});

Lines 2 and 3 in Example 10-3 are functionally equivalent to calling:

var Y = require('yui').use('substitute');

The advantage of the useSync: true pattern is that it enables you to pass in additional
YUI configuration. For example, this would enable you to squash Y.log() output by
setting debug: false. The most important reason to use this pattern is of course pro-
viding YUI with metadata for custom YUI modules. For an example, refer to
Recipe 10.3.

See Also
YUI on Node.js; Node.js module documentation; Node.js os module API documenta-
tion.

10.3 Using YUI on the Command Line
Problem
You want to write a command-line tool using YUI.

Solution
Load whichever modules you need from YUI, Node.js core, and elsewhere using
require(). The useSync: true pattern discussed in Recipe 10.2 will enable you to supply
your own metadata for custom YUI modules. Use process.argv to handle command-
line arguments.

Example 10-4 illustrates a command-line tool named cyclotron.js that loads a custom
electron module from a separate file, instantiates an Electron object, and prints its
values. The electron module is an exact copy of the module shown in Recipe 7.3, saved
to a file, electron.js.

10.3 Using YUI on the Command Line | 313

www.it-ebooks.info

http://yuilibrary.com/yui/docs/yui/nodejs.html
http://nodejs.org/docs/latest/api/modules.html
http://nodejs.org/docs/latest/api/os.html
http://nodejs.org/docs/latest/api/os.html
http://www.it-ebooks.info/

When the user runs the command, he may pass in an optional -e or --energy option
to supply a different energy value for the electron. Argument parsing is simplistic, slicing
off the first two arguments ('node' and 'cyclotron.js') and then looping over any
remaining parameters, using a switch statement to handle different cases. If any un-
known options are detected, the tool prints a help statement and exits.

Example 10-4. Command-line tool that uses YUI Base

cyclotron.js: A command-line tool for generating electrons at different energies. Notice
that for fullpath, Example 10-4 uses the Node.js variable __dirname to specify the base
path to the module. In Node.js, the path is relative to the node_modules directory where
the yui package is installed, so a naive path of './electron.js' would fail.

#!/usr/bin/env node

var YUI = require('yui').YUI,
 Y = YUI({
 useSync: true,
 modules: {
 'electron': {
 fullpath: __dirname + '/electron.js',
 requires: ['base']
 }
 }
 }).use('electron');

var argv = process.argv.slice(2),
 arg,
 help = 'cyclotron.js -- Because outside CERN, we make our own fun.\n'
 + ' Usage: cyclotron.js [--energy <energy in MeV>]\n\n',
 electron,
 opts = {};

while(arg = argv.shift()) {
 switch(arg) {
 case '--energy':
 case '-e':
 opts.energy = argv.shift();
 break;

 default:
 Y.log('Unrecognized parameter: ' + arg, 'error');
 process.stdout.write(help);
 process.exit(1);
 }
}

electron = new Y.Electron(opts);
Y.log('Charge: ' + electron.get('charge'));
Y.log('Energy: ' + electron.get('energy') + ' MeV');
Y.log(' Speed: ' + electron.getSpeed().toPrecision(5) + ' c');

314 | Chapter 10: Server-Side YUI

www.it-ebooks.info

http://www.it-ebooks.info/

electron.js: The core of the Electron object, also seen in Recipe 7.3 and several other
recipes.

YUI.add('electron', function (Y) {
 var REST_ENERGY = 511.00;

 Y.Electron = Y.Base.create('electron', Y.Base, [], {
 initializer: function () {
 Y.log("SMASH! Here's your electron!");
 },
 getSpeed: function () {
 var e_ratio = REST_ENERGY / this.get('energy');
 return Math.sqrt(1 - e_ratio * e_ratio);
 }
 }, {
 ATTRS: {
 charge: {
 value: -1,
 readOnly: true
 },
 energy: {
 value: REST_ENERGY,
 validator: function (en) {
 return (en >= REST_ENERGY);
 }
 }
 }
 });
}, '1.0', { requires: ['base-build'] });

Executing the command using node yields output like:

$ node cyclotron.js --energy 792.13
info: SMASH! Here's your electron!
info: Charge: -1
info: Energy: 792.13 MeV
info: Speed: 0.76410 c

If you don’t like the "info:" prefix and the color coding provided by Y.log(), you could
substitute in console.log() instead.

Obviously this collision violates conservation of momentum. Presum-
ably this is the fault of a bad detector, a feckless grad student, or (as is
so very often the case) both.

Discussion
As Example 10-4 demonstrates, Base works beautifully on the server. Getters, setters,
validators, and other YUI-isms all operate correctly, without any need for a DOM or a
browser. Likewise, you can pull in custom YUI modules by defining your module’s
metadata for the YUI instances, just as you would in the browser.

10.3 Using YUI on the Command Line | 315

www.it-ebooks.info

http://www.it-ebooks.info/

While the Base API is a fine way to structure your code, for more complex tools, the
App Framework might be appropriate. If you have already written an app that has a
web GUI, you could potentially reuse the same models and just swap in new views that
render() strings out to the command line.

If you choose to package a command-line tool as an npm module, users might want to
install it with the -g option. This makes the command generally available on the system,
which is presumably what users want when installing a command-line tool.

However, when developing against a library, many engineers prefer to install that li-
brary in their working directory (no -g option) so that they can build against that local
isolated copy of the library. However, you can also use -g to install a single global copy
of the library, and then use npm link to create symlinks from your working directory
to the global library. For an explanation of how npm installs files on your system, run
npm help folders.

The line at the top of the script is a UNIX convenience that, along with
running chmod +x (or similar), helps make the script directly executable.
If you do this, the aforementioned approach of “blindly slicing off the
first two args” won’t work anymore. Either tweak the logic appropri-
ately, or use a real arguments parser instead of the hokey one shown
here.

See Also
Pretty terminal colors with Marak Squires’s and Alexis Sellier’s colors.js module; bet-
ter argument parsing with Isaac Z. Schlueter’s nopt module or TJ Holowaychuk’s
commander.js module.

10.4 Calling YQL on the Server
Problem
You want to fetch some data from the Web and manipulate it with YUI.

Solution
Create a Y instance with the yql module and fetch away. Example 10-5 searches the
public Arxiv repository for scientific journals, but you can use any YQL table you like,
including the popular HTML and RSS tables for scraping data from arbitrary web pages
and feeds.

316 | Chapter 10: Server-Side YUI

www.it-ebooks.info

https://github.com/Marak/colors.js
https://github.com/isaacs/nopt
https://github.com/visionmedia/commander.js
http://www.it-ebooks.info/

Example 10-5. Using YQL to search the Arxiv repository

var Y = require('yui/yql');

Y.YQL('select * from arxiv.search where search_query="all:electron"', function (r) {
 Y.each(r.query.results.entry, function (article, ix) {
 console.log((ix + 1) + '. ' + article.title);
 });
});

Discussion
Node.js provides some strong low-level utilities for working with HTTP and other
network protocols. However, if you’re looking for a higher-level abstraction for making
web requests, YUI’s YQL API offers all of the benefits described in Recipe 5.7:

• A standard syntax that helps normalize API calls across diverse systems

• A proxy and caching layer

• The ability to push the work of filtering and other preprocessing out into the YQL
cloud

Most important of all, YUI’s YQL API is asynchronous. As Node.js evangelists have
repeated ad nauseam over the last few years, Node.js is designed as a “fast, nonblocking
I/O system.” The consequence of this design is that calls to remote data sources must
be asynchronous in order to avoid stalling the main Node.js process. If you’re looking
for a feature-rich web service layer that already fits right into the Node.js I/O paradigm,
look no further than YQL.

Yahoo’s server-side framework for Node.js, “Cocktails,” uses YQL as
the unified interface for making all web service calls within the system.

10.5 Using the YUI REPL
Problem
You are a technical recruiter. You want an efficient and practical method for deter-
mining whether an engineer is looking to be contacted, so as not to waste your time or
the prospective candidate’s.

Solution
Install the npm module yui-repl. Then run the yui3 command to enter the YUI 3 REPL
(Read-Eval-Print Loop; pronounced “repple”), followed by the .io command to ping
the GitHub User API.

10.5 Using the YUI REPL | 317

www.it-ebooks.info

http://www.it-ebooks.info/

Example 10-6 answers the question: is Isaac Z. Schlueter—former YUI core team
member, now Node.js core team member, creator of npm and many other excellent
tools—hireable?

Example 10-6. Hitting the GitHub User API with the YUI REPL

$ npm install -g yui-repl
...(snip)...
$ yui3
YUI@3.4.0> .io https://api.github.com/users/isaacs
Making IO Request: https://api.github.com/users/isaacs [done]
 (200 OK): Content-Type: "application/json; charset=utf-8"

{ type: 'User',
 email: '...(snip)...',
 bio: 'I do JavaScript. All the way. I\'m really happy at Joyent. Not gonna leave. Thanks.',
 url: 'https://api.github.com/users/isaacs',
 html_url: 'https://github.com/isaacs',
 created_at: '2008-05-04T19:43:46Z',
 gravatar_id: '73a2b24daecb976af81e010b7a3ce3c6',
 public_gists: 338,
 public_repos: 173,
 login: 'isaacs',
 blog: 'http://blog.izs.me',
 location: 'Oakland CA',
 name: 'Isaac Z. Schlueter',
 company: 'Joyent (and happy here, not looking for jobs, recruiters please do not email me)',
 hireable: false,
 avatar_url: '...(snip)...',
 id: 9287,
 followers: 704,
 following: 11 }

YUI@3.4.0> .exit
$

The JSON output in this example is slightly cleaned up for readability.

Discussion
Many languages and frameworks provide a REPL. REPLs enable you to do simple in-
teractive programming: type an expression, get the results of that expression. They are
a great way to:

• Learn how a language or library works

• Inspect an API that you don’t quite have memorized yet

• Quickly test and iterate on tiny snippets of code

318 | Chapter 10: Server-Side YUI

www.it-ebooks.info

http://www.it-ebooks.info/

The default Node.js installation includes a REPL that enables you to evaluate JavaScript
expressions and exercise the Node.js API. The REPL also provides a handful of special
commands: .help, .break for breaking out of a process, .clear for clearing the local
context, and .exit for exiting the REPL (as demonstrated in Example 10-7).

Example 10-7. Basic Node.js REPL usage

$ node
> status = 'thirsty'
'thirsty'
> 'These pretzels are making me ' + status
'These pretzels are making me thirsty'
> resolve = require('path').resolve
[Function]
> resolve('.')
'/Users/goer/Documents/yui/current'
> .exit
$

The YUI REPL has the same functionality as the Node.js REPL, but provides access to
the YUI library and adds several new commands that fetch and manipulate remote
resources.

Example 10-6 illustrates the .io command, which makes an XDR I/O request to the
specified URL. If you need the full HTTP headers for a URL, use the .headers command.

Example 10-8. Retrieving HTTP headers with the YUI REPL

YUI@3.4.0> .headers https://api.github.com/users/isaacs
Making IO Request: https://api.github.com/users/isaacs [done]
 (200 OK): Content-Type: "application/json; charset=utf-8"

{ server: 'nginx/1.0.4',
 date: 'Mon, 07 Nov 2011 17:13:24 GMT',
 'content-type': 'application/json; charset=utf-8',
 connection: 'keep-alive',
 status: '200 OK',
 'x-ratelimit-limit': '5000',
 etag: '"e50d74e5568a0ea1dd775281d02b6e58"',
 'x-ratelimit-remaining': '4973',
 'content-length': '764' }

Naturally, there is also a handy shortcut command for YQL calls, .yql, as shown in
Example 10-9.

Example 10-9. Making a YQL request with the YUI REPL

YUI@3.4.0> .yql select astronomy from weather.forecast where location=94086
Making YQL Request: select astronomy from weather.forecast where location=94086 [done]
{ channel: { astronomy: { sunrise: '6:39 am', sunset: '5:04 pm' } } }

10.5 Using the YUI REPL | 319

www.it-ebooks.info

http://www.it-ebooks.info/

For inspecting HTML pages, the handy .import command fetches a remote document,
creates a server-side DOM instance of the document, and loads the object into your
REPL’s context, all in one step. You can then traverse the document’s structure with
Y.one() and Y.all(), or call any other DOM-related method you like, as demonstrated
in Example 10-10.

Example 10-10. Inspecting an HTML page with the YUI REPL

YUI@3.4.0> .import http://yuilibrary.com/yui/docs/api/classes/Base.html
Resetting Y to the default state [done]
Fetching URL: http://yuilibrary.com/yui/docs/api/classes/Base.html [done]
YUI@3.4.0> Y.all('div.method').size()
51
YUI@3.4.0> Y.all('div.method.inherited').size()
32
YUI@3.4.0> Y.all('#method_addAttr .arg code').getContent()
['name', 'config', 'lazy']

Finally, as Example 10-11 illustrates, the .use command loads a YUI module into the
context, enabling you to explore that module’s API. You can even instantiate widgets
on the server side.

Example 10-11. Instantiating a widget with the YUI REPL

YUI@3.4.0> .use calendar
Using modules: calendar [done]
YUI@3.4.0> calendar = new Y.Calendar()
{ _strs: {},
 _cssPrefix: 'yui3-calendar',
 _yuid: 'yui_3_4_0_1_1320681801000_162',
... (snip) ...
_tCfgs: null,
_tVals: null,
_handles: [[Object]] } }
YUI@3.4.0> calendar.get('date')
Tue, 01 Nov 2011 19:00:00 GMT

If you are unsure how a particular YUI module works, or if you are prototyping code
that calls a remote web service, making live calls in the YUI REPL can be a fast and
efficient way to feel out what you are trying to do.

10.6 Constructing and Serving a Page with YUI, YQL, and
Handlebars
Problem
You want to use YUI to construct an HTML page on the server and serve it up over
HTTP.

320 | Chapter 10: Server-Side YUI

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Load the Node.js http module along with any YUI modules you need to construct the
response. Use http.createServer() to create an HTTP server to receive HTTP requests
and write HTML output back to the client.

Example 10-12 makes a YQL call to fetch weather data and then uses Handlebars.js
templating to construct and serve a simple dynamic HTML page on http://localhost:
8001. The user can pass in an optional location parameter in the query string.

Example 10-12. Constructing and serving a page with YUI, YQL, and Handlebars

var Y = require('yui').use('handlebars', 'yql'),
 http = require('http'),
 parse = require('url').parse;

var templateSrc = '<!doctype html>'
 + '<title>Today\'s Sunrise/Sunset for {{loc.city}}, {{loc.region}}</title>'
 + '<h1>Today\'s Sunrise/Sunset for {{loc.city}}, {{loc.region}}</h1>'
 + 'Sunrise: {{astro.sunrise}}Sunset: {{astro.sunset}}';

var template = Y.Handlebars.compile(templateSrc);

http.createServer(function (req, res) {
 var query = parse(req.url, true).query,
 location = (query && query.location) || '94086';

 Y.YQL('select * from weather.forecast where location=' + location, function (r) {
 var channel = r.query.results.channel;
 res.writeHead(200, { 'Content-Type': 'text/html' });
 res.write(template({ loc: channel.location, astro: channel.astronomy }));
 res.end();
 });
}).listen(8001);

Discussion
Although the http module is fun to use, its API is pretty low-level. Unless you are
creating a highly tailored server from scratch, it’s usually better to use an established
web-serving framework built on top of Node.js, such as Express.

For best performance, you should construct strings on the server using string concat-
enation, Y.Lang.sub() templating, or Handlebars.js templating, as shown in the exam-
ple. Technically speaking, it is possible to use YUI’s DOM APIs to construct pages on
the server. This is an interesting feature because it not only provides some powerful
and familiar methods for manipulating HTML, but it also means you can construct
complete widgets and views on the server and serialize them over the wire.

However, to support this functionality, you must provide a server-side DOM imple-
mentation for YUI to use. The reason server-side YUI does not ship with a default DOM
implementation is because constructing pages with a pure JavaScript DOM is relatively

10.6 Constructing and Serving a Page with YUI, YQL, and Handlebars | 321

www.it-ebooks.info

http://www.it-ebooks.info/

expensive. For an example of how to wire up server-side YUI with Elijah Insua’s
jsdom project, refer to YUI, Node.js, and the DOM.

See Also
The Handlebars.js project; Node.js http module API documentation; Elijah Insua’s
jsdom project; Dav Glass’s YUIConf talk on using Node.js and YUI 3; Express JS.

322 | Chapter 10: Server-Side YUI

www.it-ebooks.info

http://yuilibrary.com/yui/docs/yui/nodejs-dom.html
http://handlebarsjs.com/
http://nodejs.org/docs/latest/api/http.html
https://github.com/tmpvar/jsdom
http://www.youtube.com/watch?v=L3gnGxtjiIY
http://expressjs.com/
http://www.it-ebooks.info/

CHAPTER 11

Universal Access

The main reason to build a web application in the first place is to make it widely
available.

In one sense, “widely available” can mean “cross-platform support.” Here, YUI breaks
from current fashion—rather than creating a variant “Server Edition” or “Mobile Ed-
ition” of the library, YUI leverages its façade APIs and the YUI Loader to abstract away
the differences between very different platforms. Whether in an old or new browser,
whether in a mobile phone, a tablet, a laptop, or on Node.js, YUI uses the same basic
strategies to present a uniform interface:

• Where there are bugs and missing features, YUI silently fills in the gaps and presents
the same interface.

• Where necessary, YUI uses conditional loading to deliver exactly the right code to
the right device.

• Where there are fundamental platform differences (such as gestures versus mouse
actions, or using YUI Loader on the server), YUI provides abstractions that enable
you to write cross-platform code.

However, “widely available” means more than just running in different environments.
Web applications should be accessible to users who rely on assistive technology such
as screenreaders. Web applications should also serve users around the world, reflecting
the user’s native language, locale, and other preferences.

Unfortunately, YUI can’t abstract away differences between English and French the
way it can abstract away differences between Firefox on Windows and Safari on iOS.
What YUI can do is offer some library methods and design patterns that make it easier
for your web applications to serve a wider audience.

323

www.it-ebooks.info

http://www.it-ebooks.info/

To aid with internationalization, YUI offers the lang configuration variable and the
Y.Intl object for managing languages and registering translated strings. Using Y.Intl,
you can bundle translated UI strings with a widget and display those strings according
to the lang configuration of the YUI instance. Some core YUI widgets ship with trans-
lated strings already, so presenting a Calendar to a Japanese or Russian audience is as
simple as setting lang to jp or ru. Changing lang has other effects, such as altering the
presentation of date format strings.

In the field of web accessibility, screenreaders are growing ever more powerful. The
Accessible Rich Internet Application (ARIA) standard provides new tools to help you
build accessible pages and applications. Some of YUI’s widgets use ARIA attributes out
of the box, and YUI’s DOM APIs make it easy to add ARIA attributes to dynamic
content.

ARIA attributes augment HTML elements with additional information so that a screen-
reader can interpret the meaning of that element. If a sighted user looks at a Slider
widget, she can immediately grasp what the purpose of the widget is and can determine
the slider position just by looking. But to a user operating a screenreader, the slider is
just a . ARIA enables screenreaders to provide a nonvisual interface for complex
widgets, to correctly represent the current state of the widget, to ignore markup that is
purely for visual display, and more.

Recipe 11.1 explains how to use YUI class hooks to avoid the Flash of Unstyled Content
(FOUC), an irritating side effect of using progressive enhancement.

Recipe 11.2 shows how to augment an existing widget with ARIA attributes so that it
can be used with a screenreader.

Recipe 11.3 takes the code from Recipe 11.2 and demonstrates how to wrap it up as a
reusable plugin.

Recipe 11.4 demonstrates how to use YUI and ARIA to make an accessible form, in-
cluding handling dynamic error message panes.

Recipe 11.5 introduces the Y.Intl utility.

Recipe 11.6 shows how to use Y.Intl to internationalize a widget’s user interface
strings.

11.1 Preventing the Flash of Unstyled Content
Problem
You want to provide better accessibility by using progressive enhancement to construct
your widget from markup already on the page, but you want to avoid the dreaded Flash
of Unstyled Content (FOUC). The FOUC can occur when a page adds some elements
to the DOM, but the CSS meant to style those elements is not present for some reason.

324 | Chapter 11: Universal Access

www.it-ebooks.info

http://www.it-ebooks.info/

Depending on timing, the browser might briefly display those elements unstyled, then
display correctly.

Solution
YUI provides two CSS hooks for avoiding the FOUC:

• As soon as possible, YUI stamps the root <html> element with the class yui3-js-
enabled.

• As a widget render() finishes, it removes any classes from the boundingBox or
srcNode that have the name yui3-widget-loading or yui3-widgetname-loading.

To use these hooks, first add a class such as yui3-tabview-loading to the srcNode in the
static HTML markup, and add a CSS rule like this:

.yui3-js-enabled .yui3-tabview-loading { display: none; }

If JavaScript is disabled, the root node never gets stamped with yui3-js-enabled, so
the static source markup is visible. However, if JavaScript is enabled, then YUI quickly
stamps the root, making the widget’s source markup invisible. At the end of rendering,
YUI removes yui3-tabview-loading, revealing the fully armed and operational
battlesta—er, widget.

Example 11-1 demonstrates using these classes to hide a tabview’s source markup until
the moment it is ready to be displayed.

Example 11-1. Avoiding the Flash of Unstyled Content

<!DOCTYPE html>
<title>Avoiding the Flash of Unstyled Content</title>
<style>
.yui3-js-enabled .yui3-tabview-loading { display: none; }
</style>

<body class="yui3-skin-sam">
<div>header</div>
<div id="demo" class="yui3-tabview-loading">

 A
 B

 <div>
 <div id="a"><p>This is Tab A.</p></div>
 <div id="b"><p>This is Tab B.</p></div>
 </div>
</div>
<div>footer</div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('tabview', function (Y) {
 new Y.TabView({ srcNode: '#demo' }).render();
});

11.1 Preventing the Flash of Unstyled Content | 325

www.it-ebooks.info

http://www.it-ebooks.info/

</script>
</body>

Discussion
In Example 11-1, placing the YUI seed file at the bottom of the page does mean there
is a short period of time when the markup might be visible, just before the YUI seed
file loads. If this window of time turns out to be a problem, you don’t have to wait for
YUI to stamp the root—you can be more aggressive and do it manually by adding a
tiny script to the <head>, as shown in Example 11-2.

Example 11-2. Really, really avoiding the Flash of Unstyled Content

<!DOCTYPE html>
<title>Really, really avoiding the Flash of Unstyled Content</title>
<script>document.documentElement.className = 'yui3-js-enabled';</script>
<style>
.yui3-js-enabled .yui3-tabview-loading { display: none; }
</style>

<body class="yui3-skin-sam">
....

As Example 11-2 demonstrates, yui3-js-enabled does not mean, “no JavaScript is
available until this class appears,” as any number of other scripts can run before the
root gets stamped.

Using display: none is a simple option for dealing with the FOUC, but there are a
number of variations. These include changing the visibility:

.yui3-js-enabled .yui3-tabview-loading { visibility: hidden; }

or moving the widget out of the viewport:

.yui3-js-enabled .yui3-tabview-loading { top: -10000px; left: -10000px; }

or more advanced techniques such as blocking out the region with a grey box or dis-
playing a spinner.

As a general rule, try to avoid addressing the FOUC with additional classes such as
needs-js or browser-specific hacks. The behavior YUI provides should be enough to
solve the problem without watering down semantics further.

Yet another option for avoiding the FOUC is to manually construct the URL for the
widget’s CSS and pull those resources in using a static <link> element in the <head>
of the document. This technique is fiddly and rather inflexible, but it does guarantee
that the widget CSS will be present as early as possible. If you do this, you should
configure the Loader with fetchCSS: false, so that YUI doesn’t fetch the same style-
sheets again dynamically.

326 | Chapter 11: Universal Access

www.it-ebooks.info

http://www.it-ebooks.info/

See Also
A detailed technical explanation of the FOUC concept.

11.2 Adding ARIA to Form Error Messages
Problem
You want to dynamically display error messages when a form field fails validation, but
in a way that enables screenreaders to associate the error with the right field.

Solution
When you display the error message, add the following two ARIA attributes to the
<input> field that failed:

• aria-invalid="true", indicating that the result is invalid

• aria-describedby="errorId", where errorId is the id of the element containing the
error message

When the user clears the error and you remove or hide the error message, be sure to
also remove the ARIA attributes you added previously.

Example 11-3 shows how to manage accessible error messages for a single form input.
Notice that the example applies CSS to the aria-invalid state. ARIA attributes have
semantic meaning, and there’s no reason not to reuse them for sighted users as well.

Example 11-3. Adding ARIA-enabled form error messages

<!DOCTYPE html>
<title>Adding ARIA-enabled form error messages</title>
<style>
input[aria-invalid="true"] { border: 1px solid red; }
form p { padding: 5px; max-width: 500px; font-weight: bold; }
p.success { background: #cec; color: green; border: 1px solid green; }
p.error { background: #ecc; color: red; border: 1px solid red; }
</style>

<form id="quiz">
<label for="capital">What is the capital of California?</label>
<input type="text" name="capital" id="capital" required aria-required="true">
<input type="submit" value="Submit Answer">
</form>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node-base', function (Y) {
 var quiz = Y.one('#quiz'),
 input = Y.one('#capital');

11.2 Adding ARIA to Form Error Messages | 327

www.it-ebooks.info

http://www.webkit.org/blog/66/the-fouc-problem/
http://www.it-ebooks.info/

 quiz.on('submit', function (ev) {
 var answer = ev.target.get('capital').get('value');
 ev.preventDefault();
 if (isValid(answer)) {
 showSuccess();
 }
 else {
 showErrorMessage();
 }
 });

 function isValid(answer) {
 return Y.Lang.trim(answer).toLowerCase() === 'sacramento';
 }

 function showErrorMessage() {
 var error = 'Wrong! Maybe you should just look it up on Wikipedia.';

 if (! input.hasAttribute('aria-invalid')) {
 input.setAttribute('aria-invalid', 'true');
 input.setAttribute('aria-describedby', 'err-capital');
 quiz.append('<p id="err-capital" class="error">' + error + '</p>');
 }
 }

 function showSuccess() {
 if (input.hasAttribute('aria-invalid')) {
 input.removeAttribute('aria-invalid');
 input.removeAttribute('aria-describedby');
 Y.one('#err-capital').remove();
 }
 quiz.append('<p class="success">Good job!</p>');
 }
});
</script>
</body>

Discussion
Example 11-3 illustrates how you can combine having ARIA attributes in the initial
static HTML, and then add or modify ARIA attributes to reflect state changes. Initially,
the <input> field has an aria-required attribute to indicate that the field is required.
When the form is in an error state, the code adds more ARIA attributes; when the form
returns to a non-error state, the code removes the error attributes.

In this case, the <input> field does not take an aria-labelledby attribute, since it has a
<label> attribute already. However, the aria-describedby attribute is still useful, as its
purpose is not to label the field, but to point to a relevant error message or instruction.
In fact, aria-describedby can take a list of multiple space-delimited IDs, so it can point
to an error message and an instruction. For example, the form could start out in this
state:

328 | Chapter 11: Universal Access

www.it-ebooks.info

http://www.it-ebooks.info/

<label for="capital">What is the capital of California?</label>
<input type="text" name="capital" id="capital" required aria-required="true"
 aria-describedby="hint-capital">
<p id="hint-capital" class="hint">Hint: Not Los Angeles.</p>

If the user makes a mistake, your code would add the error message and additional
ARIA attributes:

<label for="capital">What is the capital of California?</label>
<input type="text" name="capital" id="capital" required aria-required="true"
 aria-invalid="true" aria-describedby="err-capital hint-capital">
<p id="err-capital" class="error">Wrong! Maybe you should look it up on Wikipedia.</p>
<p id="hint-capital" class="hint">Hint: Not Los Angeles.</p>

In this case, the code would need to change the value of the aria-describedby attribute,
not blow it away.

See Also
Recipe 9.17; Karl Groves’s discussion of <label> versus aria-labelledby versus aria-
describedby in “Accessible Form Labeling & Instructions”; Ted Drake’s recipe for
creating dynamic form labels with ARIA; Todd Kloot’s “Easy Fixes to Common Ac-
cessibility Problems”.

11.3 Building a Widget with ARIA
Problem
You want to build a sophisticated widget that provides ARIA attributes for better
accessibility.

Solution
After creating the basic widget, add code to manage ARIA attributes throughout the
widget’s lifecycle:

1. In the widget’s initializer(), use setAttrs() or setAttribute() to add a role and
any additional aria-* attributes the widget requires to describe its initial state.
Many ARIA attributes should reside on the widget’s bounding box, although cer-
tain attributes belong either somewhere inside the widget or on some other element
entirely.

2. In the widget’s initializer(), use after() listeners to update ARIA state attributes
in response to widget state changes.

3. In the widget’s destructor(), update or clean up any ARIA attributes that do not
reside on or inside the widget itself.

11.3 Building a Widget with ARIA | 329

www.it-ebooks.info

http://www.karlgroves.com/2011/10/10/accessible-form-labeling-instructions/
http://yaccessibilityblog.com/library/dynamic-form-labels-aria.html
http://yaccessibilityblog.com/library/easy-fixes-to-common-accessibility-problems.html
http://yaccessibilityblog.com/library/easy-fixes-to-common-accessibility-problems.html
http://www.it-ebooks.info/

Example 11-4 is an advanced variation of the tooltip example from Example 8-9. The
code from Recipe 11.2 is now more formally encapsulated into a YUI widget, and the
tooltip now supports keyboard focus and blur events as well as mouseenter and mouse
leave. The widget implements two ARIA attributes:

• role="tooltip", which resides on the bounding box and never changes

• aria-describedby="id", where id is the id of the tooltip, and the attribute itself
resides on the element the tooltip is pointing to

To support aria-describedby, the widget defines a describes attribute to point to the
node it is currently describing, and sets an after() listener for describesChange events.
When the user’s mouse enters or leaves an element, or if the user navigates to an element
using the keyboard, this updates describes, which in turn updates aria-describedby.
If you decide to destroy the tooltip instance, the destructor() uses describes to prop-
erly remove aria-describedby from the tooltip’s target.

Example 11-4. Creating a tooltip widget with ARIA attributes

<!DOCTYPE html>
<title>Creating a tooltip widget with ARIA attributes</title>
<link rel="stylesheet"
 href="http://yui.yahooapis.com/3.5.0/build/cssbutton/cssbutton-min.css">
<style>
.yui3-tooltip {
 background: #ff5; padding: 3px; border: 1px #a92 solid;
 border-radius: 5px; box-shadow: 3px 3px 2px #a92;
 font: 13px lucida grande, verdana, sans-serif;
 position: absolute;
}
.yui3-tooltip-hidden { visibility: hidden; }
</style>

<button class="yui3-button"
 data-tooltip="Send your message. [CTRL+Enter]">Send</button>
<button class="yui3-button"
 data-tooltip="Cancel your message without saving. [CTRL+DEL]">Cancel</button>
<button class="yui3-button"
 data-tooltip="Save your message as a draft. [CTRL+S]">Save</button>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI.add('tooltip', function (Y) {
 Y.Tooltip = Y.Base.create('tooltip', Y.Widget,
 [Y.WidgetPosition, Y.WidgetPositionAlign, Y.WidgetStack], {

 initializer: function () {
 this.get('boundingBox').setAttribute('role', 'tooltip');

 this.handles.enter = Y.delegate('mouseenter', this.associate,
 'body', '*[data-tooltip]', this);
 this.handles.leave = Y.delegate('mouseleave', this.disassociate,
 'body', '*[data-tooltip]', this);

330 | Chapter 11: Universal Access

www.it-ebooks.info

http://www.it-ebooks.info/

 this.handles.focus = Y.delegate('focus', this.associate,
 'body', '*[data-tooltip]', this);
 this.handles.blur = Y.delegate('blur', this.disassociate,
 'body', '*[data-tooltip]', this);

 this.after('describesChange', this.toggleTooltip, this);
 },
 associate: function (ev) {
 this.set('describes', ev.currentTarget);
 },
 disassociate: function () {
 this.set('describes', null);
 },
 toggleTooltip: function (ev) {
 var ALIGN = Y.WidgetPositionAlign,
 cBox = this.get('contentBox'),
 bBox = this.get('boundingBox');

 if (ev.newVal) {
 this.align(ev.newVal, [ALIGN.TL, ALIGN.BC]);
 cBox.setHTML(ev.newVal.getAttribute('data-tooltip'));
 ev.newVal.setAttribute('aria-describedby', bBox.get('id'));
 this.show();
 } else {
 ev.prevVal.removeAttribute('aria-describedby');
 this.hide();
 }
 },
 destructor: function () {
 Y.each(this.handles, function (handle) {
 handle.detach();
 });
 if (this.get('describes')) {
 this.get('describes').removeAttribute('aria-describedby');
 }
 },
 handles: {}
 }, {
 ATTRS: {
 visible: { value: false },
 describes: { value: null }
 }
 });
}, '1.0', { requires: ['widget-position-align', 'widget-stack', 'event'] });

YUI().use('tooltip', function (Y) {
 var tooltip = new Y.Tooltip({ width: '200px' });
 tooltip.render();
});
</script>

Discussion
YUI is invaluable for implementing ARIA in dynamic content such as error panes,
widgets, and views. You can think of ARIA attributes much like CSS classes. An HTML

11.3 Building a Widget with ARIA | 331

www.it-ebooks.info

http://www.it-ebooks.info/

page arrives with some classes that represent its initial visual state, and later on, YUI is
responsible for updating those classes in response to state changes. Likewise, an HTML
page should arrive with the ARIA attributes that represent its initial state, and YUI
should then be responsible for updating ARIA to reflect state changes for screenreaders.

Even if you correctly add ARIA attributes and test the results in a variety
of environments, that still doesn’t mean your code is accessible. Another
major aspect for accessibility is adding full keyboard support. Review
Chapter 4, and see also Recipe 9.15.

See Also
Example 8-9; ARIA on the Mozilla Developer Network; WAI-ARIA roles; WAI-ARIA
states and properties; Accessible Culture’s article, “HTML5, ARIA Roles, and Screen
Readers in March 2011”.

11.4 Retrofitting a Widget with an ARIA Plugin
Problem
You have found a useful off-the-shelf widget, but it lacks ARIA attributes that would
make it accessible.

Solution
Create a plugin to alter the widget’s structure and behavior. In the plugin’s initial
izer(), use setAttrs() to add ARIA attributes to the host widget’s bounding box, and
add any after() listeners to update ARIA state attributes in response to widget state
changes, saving a reference to the subscription handle. In the plugin’s destructor(),
remove all ARIA attributes and detach all listeners.

Most of the core YUI widgets and components ship with ARIA markup, but many
widgets in the gallery do not. Example 11-5 retrofits the current ProgressBar gallery
widget with a reusable plugin. The plugin defines an addStaticARIA() method to dec-
orate the bounding box with the initial set of attributes, and an addDynamicARIA()
method to add change event listeners.

If the progress bar is already in the rendered state (because the user set the render
attribute in the constructor), the plugin adds the ARIA attributes immediately. Other-
wise, the plugin uses afterHostMethod() to safely inject its behavior directly after the
progress bar’s rendering cycle.

332 | Chapter 11: Universal Access

www.it-ebooks.info

https://developer.mozilla.org/en/ARIA
http://www.w3.org/TR/wai-aria/roles
http://www.w3.org/TR/wai-aria/states_and_properties
http://www.w3.org/TR/wai-aria/states_and_properties
http://www.accessibleculture.org/articles/2011/04/html5-aria-2011/
http://www.accessibleculture.org/articles/2011/04/html5-aria-2011/
http://www.it-ebooks.info/

To verify that the code is working, you can open the example in a screenreader that
supports these ARIA roles and states, or open your browser’s developer console and
observe the effect on the DOM as you click the Increment button.

Example 11-5. Retrofitting a widget with an ARIA plugin

<!DOCTYPE html>
<title>Retrofitting a widget with an ARIA plugin</title>
<style>
.yui3-progressbar {
 border: 1px #888 solid;
 background: #ddd;
 border-radius: 3px;
 height: 25px;
}
.yui3-progressbar-slider {
 background: #55f;
 height: 25px;
}
.yui3-progressbar-label {
 float: left; padding: 3px;
 font: 14px verdana;
}
</style>

<div id="demo"></div>
<p><button id="increment">Increment</button></p>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI.add('progressbar-aria-plugin', function (Y) {
 Y.Plugin.ProgressBarARIA = Y.Base.create('pbARIA', Y.Plugin.Base, [], {
 initializer: function () {
 var host = this.get('host'),
 box = host.get('boundingBox');

 if (host.get('rendered')) {
 this.addStaticARIA();
 } else {
 this.afterHostMethod('render', this.addStaticARIA);
 }

 this.addDynamicARIA();
 },
 addStaticARIA: function () {
 var host = this.get('host'),
 box = host.get('boundingBox'),
 descBy = box.one('.yui3-progressbar-label').get('id')

 if (box.getAttribute('role') !== 'progressbar') {
 box.setAttrs({
 'role': 'progressbar',
 'aria-valuemin': 0,
 'aria-valuemax': 100,

11.4 Retrofitting a Widget with an ARIA Plugin | 333

www.it-ebooks.info

http://www.it-ebooks.info/

 'aria-valuenow': host.get('progress'),
 'aria-describedby': descBy
 });
 }
 },
 addDynamicARIA: function () {
 var box = this.get('host').get('boundingBox');

 this.afterHostEvent('progressChange', function (ev) {
 box.setAttribute('aria-valuenow', ev.newVal);
 });
 },
 destructor: function () {
 this.get('host').get('boundingBox')
 .removeAttribute('role')
 .removeAttribute('aria-valuemin')
 .removeAttribute('aria-valuemax')
 .removeAttribute('aria-valuenow')
 .removeAttribute('aria-describedby');
 }
 }, {
 NS: 'aria',
 });
}, '1.0', { requires: ['base-build', 'plugin'] });

YUI().use('gallery-progress-bar', 'progressbar-aria-plugin', function (Y) {
 var progressBar = new Y.ProgressBar({
 width: '300px',
 layout: '<div class="{labelClass}" id="' + Y.guid() + '">'
 + '</div><div class="{sliderClass}"></div>'
 });
 progressBar.plug(Y.Plugin.ProgressBarARIA);
 progressBar.render('#demo');

 Y.one('#increment').on('click', function (ev) {
 progressBar.increment(25);
 });
});
</script>

Discussion
YUI’s DOM APIs offer some interesting possibilities for quickly retrofitting a page that
has accessibility issues. For example, some sites use <a> as a clickable JavaScript button
instead of <button>, which creates some problems. First, the screenreader will identify
the link as an anchor element rather than a button. Second, if the button has an
href="#", the screenreader will read that URL, but if the <a> lacks an href, then it will
have no tab index and so will lie out of the default tab flow. However, Y.all() can easily
fix both of these problems. Assuming the links have a class of "button", you could
sweep through the page and fix this problem with:

334 | Chapter 11: Universal Access

www.it-ebooks.info

http://www.it-ebooks.info/

Y.all('a.button').each(function (node) {
 node.setAttribute('role', 'button');
 if (! node.hasAttribute('href')) {
 node.setAttribute('tabindex', '0');
 }
});

Of course, a purist would frown on this kind of quick-fix approach. The ideal solution
is to go back and correct the markup in your server-side HTML templates.

For completeness, Example 11-5 also supplies a destructor() that tears down all the
attributes and listeners that it adds. It might seem a little odd to go to all this effort to
remove ARIA attributes from a widget, but well-designed plugins should fulfill the
contract of unplug().

To help future-proof the plugin, the initializer() checks the bounding box for a
role of "progressbar", just in case future versions of ProgressBar happen to include
ARIA attributes natively.

See Also
Recipe 7.7; Recipe 7.8; Anthony Pipkin’s gallery-progress-bar module.

11.5 Defining Translated Strings
Problem
You want to be able to define translations for various strings in your user interface.

Solution
Each YUI module has a currently active language, which you can set by calling
Y.Intl.setLang().

For each module that needs translation, use Y.Intl.add() to register a set of translated
strings, one for each language that your module supports. Then call Y.Intl.get() to
retrieve an object containing the specified module’s translated strings, and update or
generate the relevant HTML.

Example 11-6 is a toy example that shows Y.Intl.add(), Y.Intl.get(), and Y.Intl.set
Lang() working together. The example defines a my-form module with a method for
updating the form’s labels, plus three sets of translated strings for English, French, and
Spanish. The example then loads the module, sets the module’s active language to
French, and refreshes the user interface.

For a more realistic example that shows how to lay out a widget with separate resource
files, refer to Recipe 11.6.

11.5 Defining Translated Strings | 335

www.it-ebooks.info

http://yuilibrary.com/gallery/show/progress-bar
http://www.it-ebooks.info/

Example 11-6. Defining translated strings

<!DOCTYPE html>
<meta charset="utf-8">
<title>Defining translated strings</title>

<form id="ui">
 <p><label for="name">name</label></p>
 <p><input id="name" name="name" type="text"></p>
 <p><label for="address">address</label></p>
 <p><input id="address" name="address" type="text"></p>
</form>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI.add('my-form', function (Y) {
 Y.MyForm = {};
 Y.MyForm.updateLabels = function() {
 var strings = Y.Intl.get('my-form');
 Y.one('label[for=name]').setHTML(strings.name);
 Y.one('label[for=address]').setHTML(strings.address);
 }

 Y.Intl.add('my-form', 'en', {
 name: 'name',
 address: 'address'
 });
 Y.Intl.add('my-form', 'fr', {
 name: 'nom',
 address: 'adresse',
 });
 Y.Intl.add('my-form', 'es', {
 name: 'nombre',
 address: 'dirección',
 });
}, '1.0', {requires: ['node', 'intl']});

YUI().use('my-form', function (Y) {
 Y.Intl.setLang('my-form', 'fr');
 Y.MyForm.updateLabels();
});
</script>

Discussion
Example 11-6 works, but is actually somewhat overengineered. Why bother using
Y.Intl.add()—why not just define strings in a simple JavaScript object and then pick
out the strings you need at runtime?

If that’s all you are doing, there’s not much reason to use Y.Intl. The goal of Y.Intl is
to make it easier to manage resource string definitions that have been broken out into
separate files. In YUI, you define sets of language strings for each module. As shown
in Recipe 11.6, YUI has conventions for structuring modules that enable you to define

336 | Chapter 11: Universal Access

www.it-ebooks.info

http://www.it-ebooks.info/

a module’s language resources as separate asset files, much like a module’s CSS
resources.

If a module has resource strings, you can retrieve them by calling Y.Intl.get(). The
bundle of strings you receive depends on the module’s currently set active language:

• If a module has an active language, Y.Intl.get() fetches the module’s strings for
that language.

• If a module does not have an active language, Y.Intl.get() falls back to using the
YUI instance’s lang property, which represents that instance’s list of preferred lan-
guages. This is a comma-separated string of language tags to try in order from left
to right. For example, a string of 'pt-BR,pt,en' would mean try Brazilian Portu-
guese first, then Portuguese, and then, if all else fails, English.

The intl module relies on BCP 47 language tags, a combination of RFC 5646 and RFC
4647, as keys for individual language resources. BCP 47 tags range from fairly general
(fr for French) to more specific (pt-BR for Brazilian Portuguese).

See Also
Recipe 11.6; the YUI Internationalization User Guide; “Example: Language Resource
Bundles”; Y.Intl API documentation; RFC 5646; RFC 4647.

11.6 Internationalizing a Widget
Problem
You would like to properly parameterize your widget’s UI strings according to the user’s
preferred language, so that people in France can use your widget.

Solution
For each language that you need to support, define some resource strings using
Y.Intl.add(). Then define the widget’s strings attribute to access the resource strings,
and make sure that any strings the widget displays in the UI are parameterized.

Example 11-7 enhances the Y.Electron example from Example 7-4 so that it supports
the French language. In the original example, the same HTML file both defined and
used the widget. By contrast, this internationalized example is a little more realistic—
it breaks out the Electron widget code into its own JS file, provides two separate English
and French resource bundle files, and provides YUI with the metadata it needs to stitch
the module together.

Before walking through this example, be sure you understand how to define custom
module groups, as discussed in Recipe 1.11.

11.6 Internationalizing a Widget | 337

www.it-ebooks.info

http://yuilibrary.com/yui/docs/intl/
http://yuilibrary.com/yui/docs/intl/intl-basic.html
http://yuilibrary.com/yui/docs/intl/intl-basic.html
http://yuilibrary.com/yui/docs/api/classes/Intl.html
http://tools.ietf.org/html/rfc5646
http://tools.ietf.org/html/rfc4647
http://www.it-ebooks.info/

Example 11-7 is configured to run from a real web server. If you prefer
to open widget_intl.html as a local file, change the base configuration
field to be a relative filepath such as ./js/particles/.

Example 11-7. Internationalizing a widget

The directory structure for the custom module group is:

js/
 particles/
 electron
 electron.css
 electron.js
 lang/
 electron_en.js
 electron_fr.js
widget_intl.html

Naturally, you could always add more modules alongside electron, such as proton,
neutrino, higgs-boson, and so on.

js/particles/electron/electron.css: The Electron widget’s CSS styles, to be loaded as a
separate module. Alternatively, you could organize the electron module to load its CSS
as a skin, which would eliminate the need to define a separate electron-css module,
and open up the possibility of multiple skins. For more information, refer to Recipes
7.9 and 7.10.

.yui3-electron { width: 175px; }

.yui3-electron-content { background: #ff0; border: 1px #000 solid; }

.yui3-electron-content p { margin: 5px; }

js/particles/electron/electron.js: The core Electron widget JS code. This file is similar to
the YUI.add() statement in Example 7-4, with these changes:

• Instead of hardcoding UI strings like "Charge" and "Energy", renderUI() and
syncUI() now rely on parameters stored in the strings attribute.

• The widget has a strings attribute that sets its default value with a valueFn. The
valueFn uses Y.Intl to fetch the electron module’s localized resources for the YUI
instance’s currently active language.

• The module declares dependencies on the intl module and the electron-css
module.

YUI.add('electron', function (Y) {
 var REST_ENERGY = 511.00;

 Y.Electron = Y.Base.create('electron', Y.Widget, [], {
 destructor: function () {
 this.get('contentBox').all('p').remove(true);
 },
 getSpeed: function () {
 var e_ratio = REST_ENERGY / this.get('energy');

338 | Chapter 11: Universal Access

www.it-ebooks.info

http://www.it-ebooks.info/

 return Math.sqrt(1 - e_ratio * e_ratio);
 },
 boostEnergy: function () {
 this.set('energy', 1.1 * this.get('energy'));
 },
 renderUI: function () {
 var charge = this.get('strings').charge;
 this.get('contentBox')
 .append('<p class="ch">' + charge + ': ' + this.get('charge') + '</p>')
 .append('<p class="en">')
 .append('<p class="sp">');
 },
 bindUI: function () {
 this.get('contentBox').on('click', this.boostEnergy, this);
 this.after('energyChange', this.syncUI, this);
 },
 syncUI: function () {
 var s = this.get('strings');
 var energyStr = s.energy + ': ' + this.get('energy').toPrecision(5) + ' MeV';
 var speedStr = s.speed + ': ' + this.getSpeed().toPrecision(5) + ' c';
 this.get('contentBox').one('.en').setHTML(energyStr);
 this.get('contentBox').one('.sp').setHTML(speedStr);
 }
 }, {
 ATTRS: {
 charge: {
 value: -1,
 readOnly: true
 },
 energy: {
 value: REST_ENERGY,
 validator: function (en) {
 return (en >= REST_ENERGY);
 }
 },
 strings: {
 valueFn: function () {
 return Y.Intl.get('electron');
 }
 }
 }
 });
}, '1.1_intl', {requires: ['base-build', 'widget', 'intl', 'electron-css']});

js/particles/electron/electron_en.js: Registers a resource bundle of English language
strings:

YUI.add('lang/electron_en', function (Y) {
 Y.Intl.add('electron', 'en', {
 charge: 'Charge',
 energy: 'Energy',
 speed: 'Speed'
 });
}, '1.1_intl');

11.6 Internationalizing a Widget | 339

www.it-ebooks.info

http://www.it-ebooks.info/

js/particles/electron/electron_fr.js: Registers a resource bundle of French language
strings:

YUI.add('lang/electron_fr', function (Y) {
 Y.Intl.add('electron', 'fr', {
 charge: 'Charge',
 energy: 'Énergie',
 speed: 'Vitesse'
 });
}, '1.1_intl');

widget_intl.html: Provides the HTML page that loads and uses the electron module.
The page is similar to the HTML page in Example 7-4, but with these changes:

• The page includes a <meta> element to declare a character encoding of UTF-8. This
ensures that the “É” in “Énergie” displays correctly, in case your web server is not
already providing an HTTP header of Content-Type: text/html; charset=utf-8.
Alternatively, you can design your language packs to use UTF-8 escape sequences
for non-ASCII characters.

• Instead of embedding the Y.Electron’s code and CSS directly in the HTML page,
the page defines the metadata required to load the electron and electron-css
modules. This includes the base path and filepath to electron.js, an array of module
requirements, and an array of supported languages.

Under electron, declaring lang: ['en', 'fr'] instructs the Loader to load the
resources lang/electron_en.js and lang/electron_fr.js. The order of this array does
not affect which language actually gets used; that is determined by the YUI in-
stance’s lang property.

• The YUI instance is configured with a lang property of 'fr, en', which instructs
the instance to try using French strings first, and if that fails, English. In this case,
when the widget calls Y.Intl.get('electron') to populate the strings attribute,
the attribute will contain French string resources.

<!DOCTYPE html>
<meta charset="utf-8">
<title>Internationalizing a Widget</title>

<p>Click the Y.Electron to increase its energy by 10%.</p>
<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI({
 lang: 'fr, en',
 groups: {
 'particles': {
 base: '/js/particles/',
 modules: {
 'electron': {
 path: 'electron/electron.js',

340 | Chapter 11: Universal Access

www.it-ebooks.info

http://www.it-ebooks.info/

 requires: ['base-build', 'widget', 'intl', 'electron-css'],
 lang: ['en', 'fr']
 },
 'electron-css': {
 path: 'electron/electron.css',
 type: 'css'
 }
 }
 }
 }
}).use('electron', function (Y) {
 var e = new Y.Electron();
 e.render('#demo');
});
</script>

Discussion
The strings attribute is just a convention for storing resource strings. You can param-
eterize your UI strings any way you like, but setting strings by calling Y.Intl.get() is
a standard YUI pattern.

Example 11-7 sets its language resources one time only. If you change lang to be 'en,
fr', 'en', or just remove lang entirely, the strings for all widgets will be locked to
English, not French. To change languages dynamically, you can call Y.Intl’s set
Lang() method:

Y.Intl.setLang('electron', 'en');

This method fires an intl:langChange event, which you can listen for and respond to
with:

this.set('strings', Y.Intl.get('electron'));
this.syncUI();

See Also
Recipe 1.11; Recipe 7.4; Recipe 7.9; Recipe 7.10; Recipe 11.5; the YUI Internationali-
zation User Guide; Y.Intl API documentation.

11.6 Internationalizing a Widget | 341

www.it-ebooks.info

http://yuilibrary.com/yui/docs/intl/
http://yuilibrary.com/yui/docs/intl/
http://yuilibrary.com/yui/docs/api/classes/Intl.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12

Professional Tools

With the rise of JavaScript has come a corresponding increase in the availability of tools
for developing complex JavaScript applications. Only a few years ago, these kinds of
tools were few and far between. For instance, it is a sobering thought to realize that the
Firebug plugin didn’t even exist until as late as 2006! At the time, it was something of
a revelation to be able to inspect the inner workings of your code without resorting to
alert() dialogs. Nowadays, every major browser ships with a highly capable native
console. Developers of JavaScript now expect the same kind of toolset that developers
of C, Java, Python, PHP, Perl, and other languages have enjoyed for years.

Since YUI focuses on developing sophisticated applications, it should be no surprise
that it provides additional tools designed to help you develop JavaScript professionally.
When you hear someone say “YUI,” he is usually referring to the library APIs. However,
YUI is actually a family of projects. YUI 3 is the most prominent example, but YUI also
includes utility projects such as YUI Test, YUI Compressor, and YUI Doc. These are
the same tools that the YUI team uses to build, test, maintain, and document YUI itself.

YUI tools are not coupled tightly to YUI 3 itself. You can use YUI Compressor to
compress any JavaScript code, or YUI Test to test any JavaScript code. Even if you
prefer some other JavaScript library, the standalone YUI toolset can still help you pro-
duce high-quality applications.

The bulk of this chapter focuses on testing JavaScript code. A healthy suite of high-
quality tests is vital for giving you the confidence that you can fix bugs, add features,
and refactor code without breaking things. JavaScript has historically been difficult to
test for a variety of reasons. Early JavaScript testing frameworks were clumsy. JavaScript
requires testing in multiple browsers, and browsers are tricky to automate. JavaScript
applications interact with components across slow, unreliable networks.

Fortunately, better testing tools are now available. These include YUI Test, a test library
and framework, and Yeti, a command-line test launcher that works with YUI Test,
enabling you to run large unit test suites quickly in parallel on a (potentially) very large
number of browsers.

343

www.it-ebooks.info

http://www.it-ebooks.info/

At its core, YUI Test enables you to create and organize test cases using simple, sensible
syntax. If you have used test frameworks in other languages, YUI Test supports familiar
conventions: the concepts of building test suites, calling setUp() and tearDown() meth-
ods, and mocking out slow and unreliable dependencies. But YUI Test also provides
features specific for JavaScript testing: DOM event simulation, asynchronous test sup-
port, and a full array of test events that you can subscribe to. YUI Test even provides
command-line tools for performing code coverage analysis and for incorporating your
tests into a continuous integration framework.

Recipes 12.1 and 12.2 explain how to use the YUI logging framework and how to
display log output in a YUI Console widget. If you first learned JavaScript by playing
around with alert() dialogs, you’ll be pleased to know that Y.log() is a far better
option, or at least as good as the print() and echo() statements found in other pro-
gramming languages.

Recipes 12.3 through 12.7 cover unit testing with YUI Test. Recipes 12.3 and 12.4
describe the basics of writing test cases and organizing them into test suites. Recipes
12.5, 12.6, and 12.7 cover advanced topics in JavaScript unit testing: how to simulate
clicks and other user-initiated events, how to mock out slow or unpredictable compo-
nents, and how to use asynchronous testing to wait for events to complete.

While you can view test data in a console, it’s often necessary to collect and store test
result data for later analysis. Recipe 12.8 explains how to collect YUI Test result data
at the source and POST it somewhere else for further analysis.

Recipe 12.9 introduces Yeti, a Node.js application that enables you to quickly launch
your YUI Test test suite from the command line on a wide variety of browsers. One of
the motivations behind Yeti was to make mobile testing easier.

Recipe 12.10 explains how to use Yeti with the third-party localtunnel utility to test
your code on nearly any device, including your mobile phone.

Ordinarily, you run YUI tests in a browser, either by refreshing pages yourself or by
driving browsers using Selenium, Yeti, or some other automation tool. Recipe 12.11
demonstrates how to use the yuitest command-line tool to test JavaScript specifically
designed for the server side.

Recipe 12.12 leaves the world of testing behind to take a look at compressing JavaScript
to maximize performance over the wire. YUI Compressor parses your JavaScript source
code in order to maximize the number of characters that can be safely removed from
your source file.

Rounding out our tour of YUI’s professional tools is YUI Doc. Software libraries live
and die by the quality of their documentation. Recipe 12.13 explains how to use YUI
Doc to generate complete API reference documentation from comments in source code,
similar to tools like Javadoc and Doxygen.

344 | Chapter 12: Professional Tools

www.it-ebooks.info

http://www.it-ebooks.info/

12.1 Enabling Debug Logging
Problem
You want to capture log output from your code in a flexible manner, instead of resorting
to embarrassing old-school alert() dialogs.

Solution
Use Y.log() to log messages, warnings, and errors to your browser console. By default,
Y.log() is included in the core YUI object. To enable logging to the browser console,
create a YUI instance and call the log() method, as shown in Example 12-1.

Example 12-1. Basic debug logging

<!DOCTYPE html>
<title>Basic debug logging</title>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use(function (Y) {
 Y.log('This is an informational debug message.', 'info', 'example_app');
 Y.log('This is a warning message.', 'warn', 'example_app');
 Y.log('This is a critical error message.', 'error', 'example_app');
});
</script>

Loading Example 12-1 into a browser displays a blank page, but the page is generating
log messages. By default, your browser’s error console captures YUI log output. Fig-
ure 12-1 displays an example Firefox error console with Firebug installed.

Figure 12-1. Sending log output to the browser console

For older browsers that lack an error console, you can instantiate a YUI
Console, a widget designed to display log messages. For more informa-
tion, refer to Recipe 12.2.

12.1 Enabling Debug Logging | 345

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Calling the log() method itself is straightforward. The method has the signature
Y.log(msg, cat, src, silent), where:

msg
Specifies the message to log.

cat (optional)
Specifies a message category. Some browser consoles provide a special display
mode for the categories info, warn, and error, as does the Console widget. However,
you can provide any category name that makes sense for the object consuming the
event.

src (optional)
The source of the message. This is useful if you have multiple components that are
firing log events and you need some way to distinguish the source.

silent (optional)
If true, prevents the yui:log event from firing. This enables you to decide on the
fly whether JavaScript components such as the Console widget are able to catch
and display that particular message. Interestingly, the silent parameter does not
affect whether the browser console displays the log message—this is controlled by
the YUI instance’s useBrowserConsole configuration setting, as described shortly.

When Y.log() executes, it broadcasts a custom yui:log event to Y.Global, which is
available in every YUI instance.

The YUI object provides several configuration settings that affect Y.log()’s behavior:

debug
When set to false, disables Y.log() entirely. The default is true. Logging state-
ments can slow an application down, so YUI makes it easy to disable logging in
production. YUI also provides a number of filtering capabilities that enable you to
do things like turning on only error log messages, for a single module. If you need
to leave logging enabled, you can be very fine-grained about how you do it.

If you really want to disable all logging in production, the best approach is to use
your build process to strip debug statements out of production code entirely, which
reduces code paths and minimizes bytes over the wire. In fact, the YUI Builder tool
that the YUI team uses does exactly this. For more information about how you can
use YUI Builder with your own code, refer to http://yuilibrary.com/projects/builder.

filter
Sets the default form for YUI modules to load: min, raw, or debug. The default is
min. All native YUI modules ship in three forms:

346 | Chapter 12: Professional Tools

www.it-ebooks.info

http://yuilibrary.com/projects/builder
http://www.it-ebooks.info/

module-min.js
The minified version, with variable names minimized and comments and
whitespace stripped. This is the version suitable for production use. For more
information about how to generate your own minified JavaScript, refer to
Recipe 12.12.

module.js
The raw version, which includes full variable names, comments, and white-
space. This is the version to use if you want to track down syntax and usage
errors. For example, if you misspell a method name while using a minified YUI
module, the browser will throw an unreadable error message. The raw filter
enables you to track down exceptions and errors using the full human-readable
YUI source code. Just don’t forget to remove the filter when you’re ready to
ship.

module-debug.js
The debug version, which includes all log() statements that the YUI team
included for its own debugging purposes. This is the version to use if you want
to learn about how YUI works by loading YUI components and watching log
messages fly by. If you are trying to track down an error, stepping down from
raw to debug might give you the extra information you need to figure out where
the problem lies. (Or it might just be confusing.)

The following minimal example demonstrates what the debug version has to
offer. Open this HTML file and view the results in the browser console. (The
reference to NOT_A_MODULE is an intentional error.)

<!DOCTYPE html>
<title>Using -debug files</title>
<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-debug.js"></script>
<script>YUI().use('node', 'NOT_A_MODULE', function (Y) {});</script>

filters
Specifies the form to load for specific modules, overriding the overall filter setting
for those specific modules. For example:

YUI({
 filter: 'raw',
 filters: {
 autocomplete: 'debug',
 io: 'min'
 }
}).use(...);

retrieves the debug version of autocomplete, the minified version of io, and the raw
version of all other modules.

12.1 Enabling Debug Logging | 347

www.it-ebooks.info

http://www.it-ebooks.info/

logExclude
Disables logging for any log messages with a src that matches one of the disallowed
values. For example, if you set:

YUI({
 filter: 'debug',
 logExclude: {
 'myfirstapp': true,
 node: true
 }
}).use(...);

then YUI suppresses any log message with a src of myfirstapp or node.

By convention, most YUI modules emit log messages with a src that matches the
module name. However, some modules can emit log messages with alternative
src values.

logInclude
Enables logging for any log messages with a src that matches one of the permitted
values. For example, if you set:

YUI({
 filter: 'debug',
 logInclude: {
 'myfirstapp': true,
 node: true
 }
}).use(...);

then YUI permits only log messages with a src of myfirstapp or node.

useBrowserConsole
When set to true, enables Y.log() to write to the browser console. By default, this
value is true, but instantiating a Console widget on the page sets this value to
false. For more information, refer to Recipe 12.2.

Y.log() also works with Node.js, as an alternative to Node.js’s built-in console.log.
On the server side, Y.log() supports all the familiar configuration and event behaviors
just described, plus its terminal output comes in a variety of attractive colors.

12.2 Rendering Debug Log Output in the Page
Problem
The browser console is taking up valuable screen space. You would rather test your
application in full-screen mode, displaying any log output directly in the page.

348 | Chapter 12: Professional Tools

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Instantiate a Console widget. The presence of a console causes YUI to automatically
redirect log output to the Console widget instead of the browser console.

Example 12-2 demonstrates logging with Y.log()’s extended signature. In addition to
a string log message, the calls to Y.log() include a category (such as warn) and a source
for the log message, all of which is displayed in the console instance.

Example 12-2. Rendering debug log output in the page

<!DOCTYPE html>
<title>Rendering debug log output in the page</title>

<div class="yui3-skin-sam" id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('console', function (Y) {
 new Y.Console().render('#demo');

 Y.log('This is an informational debug message.', 'info', 'example_app');
 Y.log('This is a warning message.', 'warn', 'example_app');
 Y.log('This is a critical error message.', 'error', 'example_app');
});
</script>

The results are shown in Figure 12-2.

Figure 12-2. The Console widget

Each Console widget actually has its own local useBrowserConsole attribute, defaulted
to false, that passes through to the YUI sandbox where it is instantiated. To preserve
browser console logging, just set the Console’s useBrowserConsole attribute back to
true.

12.2 Rendering Debug Log Output in the Page | 349

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Console is actually a generic widget for displaying messages, not just messages from
Y.log(). By default, a Console widget is wired to listen for yui:log events, but you can
easily reconfigure and extend it for different purposes. Key customization points for
the Y.log()/Y.Console system include:

• Changing the logSource that the console is listening to

• Filtering the messages the console displays

• Hooking into the console’s internal entry event, which fires whenever the console
transfers a message to the print loop buffer

• Manipulating the console and changing its display behavior

• Changing the event type that the console listens for from yui:log to a custom event

Some of the interesting things you can do with Console include:

• Creating a universal console. By default, a console receives log events only from the
YUI instance it belongs to. However, YUI broadcasts all yui:log events to
Y.Global, so you can capture all log events in any YUI instance in the page by setting
the console’s logSource attribute to Y.Global as follows:

new Y.Console({ logSource: Y.Global }).render();

• Enabling highly specific log filtering. While you can control Y.log()’s behavior by
setting configurables in the YUI object, you can also filter messages within the
Console widget. The simplest filtering option is the logLevel. For example, to in-
clude warn and error messages, but exclude info messages:

new Y.Console({ logLevel: 'warn' }).render();

You can also apply a logLevel to the YUI object itself, which affects all consoles
(including the browser console). Log-level filtering has no effect on custom cate-
gories, which lie outside the hierarchy.

Taking filtering one step further, you can suppress messages with custom event
logic. Example 12-3 is a console designed to display error messages specifically
related to uploads. It uses the previous logLevel technique to filter out info and
warn messages, then hooks into the entry event to filter on the message content
itself. Thus, the console displays only the third log message.

Example 12-3. Filtering log messages on console entry

<!DOCTYPE html>
<title>Filtering log messages on console entry</title>

<div class="yui3-skin-sam" id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('console', function (Y) {

350 | Chapter 12: Professional Tools

www.it-ebooks.info

http://www.it-ebooks.info/

 var demo = new Y.Console({ logLevel: 'error' }).render('#demo');
 demo.on('entry', function (ev) {
 if (! /upload/.test(ev.message.message)) {
 ev.preventDefault();
 }
 });

 Y.log('This is a critical error message.', 'error', 'example_app');
 Y.log('File upload successful', 'info', 'example_app');
 Y.log('File upload failed: server refused connection.', 'error', 'example_app');
});
</script>

You can also use the entry event to perform some custom work or relay the message
to some other listener. However, be careful not to do too much work in an entry
handler—if you have large message volumes, executing code here can get rather
expensive.

• Changing Console’s appearance and functionality. A common way to change a con-
sole is to augment it with the ConsoleFilters plugin:

new Y.Console().plug(Y.Plugin.ConsoleFilters).render();

This plugin gives the user more control over the console’s output, creating a control
pane with checkboxes that toggle messages on and off by category and source type.

To customize the console’s appearance at a deeper level, you can change the HTML
used to display messages by overriding the entryTemplate attribute.

• Listening for a different custom event. You can monitor a specific component by
changing the logEvent. For example, if you use Y.fire() to fire foo:bar events:

Y.fire('foo:bar', {'msg': 'An important message', 'cat': 'info', 'src': 'meh'});

you can configure the console to listen for those events with:

new Y.Console({ logEvent: 'foo:bar' }).render();

To listen to a widget’s attribute change events, you would also set logSource to
point to the widget instance:

new Y.Console({
 logEvent: 'tabView:selectionChange',
 logSource: myTabView
}).render('#demo');

Keep in mind that Console widgets are designed to operate on objects with prop-
erties msg, cat, and src. In the preceding tabView:selectionChange example, the
console will display log messages as you change tabs, but the message will be
undefined.

Related to the Console widget is the Test.Console widget, a specialized console designed
for use with the YUI Test unit testing framework. Console can display YUI Test results,
but it is usually better to use Console for debugging and Test.Console for visualizing
test results.

12.2 Rendering Debug Log Output in the Page | 351

www.it-ebooks.info

http://www.it-ebooks.info/

See Also
YUI Console User Guide; the ConsoleFilters plugin.

12.3 Writing Unit Tests
Problem
You want to create some assurance that a function works the way it was intended and
will continue to work properly even if you change its internal implementation.

Solution
Load the test-console module and create unit tests for your function using the YUI
Test unit testing framework. The test-console module contains the code for the
Test.Console widget and pulls in the test module, which contains the core YUI Test
libraries. Test.Console is a cousin to the Console widget, specifically designed for dis-
playing YUI Test data. If for some reason you want to display test data through some
other means, you can load the test module by itself.

Example 12-4 sets up a single test case by:

1. Providing a trim() function to test. This function could have been pulled in as a
module, but in this case it’s just defined locally.

2. Creating a test case and configuring it with an object literal containing tests. The
tests evaluate a range of possible outcomes: leading whitespace, trailing white-
space, and trailing and leading whitespace.

Each test case uses an assert method to validate results, using the convention of
“expected value first.” For example, the Y.Assert.areEqual() assert method com-
pares the first parameter (the expected value) to the second parameter (the result
of what you are testing) and fails the test if the two are not equal.

3. Creating a Test.Console widget to capture and display the test results. By default,
Test.Console summarizes test results and displays failed test results in red, al-
though you can customize this behavior.

4. Adding the test case to a test runner and invoking run() to execute the tests.

Example 12-4. Writing unit tests for a trim() function

<!DOCTYPE html>
<title>Writing unit tests for a trim() function</title>

<div class="yui3-skin-sam" id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('test-console', function (Y) {

352 | Chapter 12: Professional Tools

www.it-ebooks.info

http://yuilibrary.com/yui/docs/console/
http://yuilibrary.com/yui/docs/console-filters/console-filters-intro.html
http://www.it-ebooks.info/

 // Implementation is not quite right; regex is missing a /g
 function trim(text){
 return text.replace(/^\s+|\s+$/, '');
 }

 var testCase = new Y.Test.Case({
 name: 'trim() Tests',

 'Leading whitespace should be removed': function () {
 var result = trim(' Hello world!');
 Y.Assert.areEqual('Hello world!', result);
 },

 'Trailing white space should be removed': function () {
 var result = trim('Hello world! ');
 Y.Assert.areEqual('Hello world!', result);
 },

 'Leading and trailing white space should be removed': function () {
 var result = trim(' Hello world! ');
 Y.Assert.areEqual('Hello world!', result);
 }
 });

 new Y.Test.Console().render('#demo');

 Y.Test.Runner.add(testCase);
 Y.Test.Runner.run();
});
</script>

Because the trim() function’s regex is (intentionally) written incorrectly, the third test
fails. This is actually great news—the tests have uncovered a poorly implemented fea-
ture! To fix the broken test, change the regex to /^\s+|\s+$/g and reload the page.

Discussion
In testing terms, a unit is an isolated chunk of code that you can test independently. In
YUI Test, a unit corresponds to a method or function.

To create effective JavaScript unit tests, your code should keep method bodies small,
and avoid blocking for user input (in other words, don’t use alert() and the like). Each
method should have a single purpose or correspond to a single operation, which makes
it easier for unit tests to exercise the API and compare state before and after.

The idea behind traditional unit testing is that you are testing the implementation of a
public interface. Your tests describe a set of input and output conditions that the meth-
od must satisfy, but the actual implementation of the method is irrelevant. This is called
black-box testing. Black-box testing enables you to formally describe your input sets
ahead of time, which not only helps you plan, but also serves as a form of technical
specification. Black-box testing also gives you confidence that you can freely fix a
method’s bugs or even completely change its internals without accidentally breaking

12.3 Writing Unit Tests | 353

www.it-ebooks.info

http://www.it-ebooks.info/

other code that depends on that method. For more information about developing
enough high-quality tests to gain that assurance, refer to Recipe 12.4.

When YUI Test first debuted in 2008, the JavaScript testing landscape looked very
different than it does today. Few developers paid much attention to JavaScript testing.
The testing tools that did exist were faithful ports of frameworks designed for other
languages, so were poorly adapted to JavaScript. YUI Test evolved quickly into a more
natural JavaScript testing framework, complete with advanced features such as cross-
browser event simulation and support for asynchronous testing.

If you are working with YUI library code, it is convenient to load the test framework
as a YUI module, as in Example 12-4. However, you are also free to download and use
YUI Test separately to test any JavaScript code you like, without any dependencies on
the YUI libraries. The standalone package is referred to as “YUI Test Standalone.” It
includes a JavaScript library for testing, as well as self-contained documentation, ex-
amples, and some command-line utilities. You can install YUI Test Standalone by
downloading the files and installing them manually, or as a Node.js npm package (npm
install -g yuitest).

YUI Test also provides friendly test names, similar to “behavior-driven development”
test frameworks such as Vows. Traditional xUnit-style frameworks require test function
names to have a prefix of test, resulting in functions like testLeadingWhitespace
Removed().

The YUI Test Runner supports the xUnit convention, along with a second, more flexible
convention:

'Leading white space should be removed': function () {
 ...
}

If you bind a function to a string property that contains a space and the word “should,”
the YUI Test Runner identifies this as a test function as well. These friendly test names
are useful because they encourage you to think of your tests as behaviors that need to
be satisfied. Just imagine—test results so easy to read, even a product manager can
understand them! (Maybe this isn’t such a great feature after all.)

In addition to following a naming convention, a test function must contain one or more
assert methods to run during testing. An assert method tests whether a condition is
valid. For example, the areEqual() assert method compares two values for equality,
with an optional failure message as the third argument:

var name = 'Pat';
Y.Assert.areEqual('Pat', name, 'The name should be Pat');

If all of the conditions within a test function are satisfied, the test passes. If any condition
is invalid, the assert method throws an error, which skips all remaining assertions and
causes the test to fail.

354 | Chapter 12: Professional Tools

www.it-ebooks.info

http://www.it-ebooks.info/

YUI provides a full spectrum of assert methods, including:

• Equality and sameness assertions. In addition to areEqual() and areNotEqual(),
YUI provides areSame() and areNotSame(), which test equality without doing any
type coercion by using the === and !== operators. For example, in:

Y.Assert.areSame(2, '2');
Y.Assert.areEqual(2, '2');

the areSame() assertion would fail, since a number is not a string, but the areEq
ual() assertion would succeed thanks to type coercion.

• Data type assertions, including isArray(), isBoolean(), isFunction(), isNum
ber(), isObject(), and isString(). There are also two generic type assertions,
isTypeOf() and isInstanceOf(), which rely on the typeof and instanceof operators,
respectively. These last two operators in JavaScript are quirky, so be careful how
you use them.

• Special value assertions, including isTrue(), isNaN(), isNull(), isUndefined(), and
their opposites. These assertions do not perform any type coercion.

• Specialized assertion classes such as DateAssert and ArrayAssert, which provide
methods such as DateAssert.isTimeEqual() and ArrayAssert.containsItems().

For a complete list of available assert methods, refer to the API documentation.

There is no hard rule about the number of assertions that constitute a good test func-
tion. The goal is to verify a method’s contract, to test each expected output for each
given input. That said, some guidelines for using assertions and writing test functions
include:

• Decouple unrelated assertions into different test functions. For instance, Exam-
ple 12-4 could have had a test function that evaluated both leading whitespace and
trailing whitespace, but this approach would have tested two unrelated input-
output sets in the same function. If the first assertion fails, the second assertion is
masked and never gets tested. It is better to test both input-output sets separately
so that they don’t interfere with each other.

• Provide well-written failure messages with each assertion. In YUI Test, every assert
method takes an optional failure message as the last argument. Avoid writing fail-
ure messages that tell you what happened:

Y.Assert.areEqual('Hello world!', result, 'The result was not "Hello world!"');

This is a bad failure message, because you already know that the test failed. A good
failure message tells you what was expected:

Y.Assert.areEqual('Hello world!', result, 'Must strip leading whitespace.');

With this approach, a list of failures becomes a list of unfulfilled requirements for
you to evaluate. This way of thinking about test failures dovetails nicely with YUI
Test’s friendly test names feature.

12.3 Writing Unit Tests | 355

www.it-ebooks.info

http://www.it-ebooks.info/

• Make sure that individual test functions run quickly. Most test functions should
simply contain one or more assert methods with just enough machinery to run
those assertions. In particular, test functions should avoid dragging in real depen-
dencies or performing expensive operations.

The reason for this is that testing is effective only when it’s done on a regular basis,
so you must be able to run your tests early and often. Ideally, you should run tests
after making any substantial change, and you should definitely run them before
committing changes to source control. If your tests are slow, you won’t run them,
which leads to tests that become less and less relevant, which eventually leads to
the total decay of the test suite.

• When necessary, create mock or fake dependencies. Unit testing is about testing
small units of code in isolation. This means that you must have total control over
the inputs to your functions under test. Using mock objects rather than real de-
pendencies also has the side effect of speeding up your unit tests. For more infor-
mation about mocking objects, refer to Recipe 12.6. There is a place for using real
dependencies—this is called integration testing, and is discussed to some degree in
Recipe 12.5.

See Also
YUI Test User Guide; YUI Test API documentation.

12.4 Organizing Unit Tests into Suites
Problem
You want to group your tests into suites to help organize your test code and create more
meaningful test reports.

Solution
Create test cases to represent individual methods, and then group your test cases into
a test suite to represent an entire object. Example 12-5 creates a test suite by:

1. Loading the json module as the code to test, along with the test-console module.

2. Creating two test cases and configuring them with object literals containing tests.
The tests evaluate a range of possible outcomes: parsing a JSON string into a
JavaScript object, parsing a JSON string into a JavaScript array, and the reverse
operations (serializing JavaScript to JSON). Each test case uses assert methods to
validate results.

3. Creating a Test.Console widget to capture and display the test results.

356 | Chapter 12: Professional Tools

www.it-ebooks.info

http://yuilibrary.com/yui/docs/test/
http://yuilibrary.com/yui/docs/api/modules/test.html
http://www.it-ebooks.info/

4. Creating a test suite with a suitable name and adding the test cases to the test suite.

5. Adding the test suite to a test runner and invoking run() to execute the tests.

Example 12-5. Grouping test cases into a test suite

<!DOCTYPE html>
<title>Grouping test cases into a test suite</title>

<div class="yui3-skin-sam" id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('json', 'test-console', function (Y) {
 var parseTests = new Y.Test.Case({
 name: 'parse() Tests',

 'JSON string should be parsed to JS object' : function () {
 var result = Y.JSON.parse('{"value":"YUI3"}');
 Y.Assert.isObject(result);
 Y.Assert.areEqual('YUI3', result.value);
 },

 'JSON string should be parsed to JS array' : function () {
 var result = Y.JSON.parse('[1, 2, 3, 4, 5]');
 Y.ArrayAssert.itemsAreSame([1, 2, 3, 4, 5], result);
 }
 });

 var stringifyTests = new Y.Test.Case({
 name: 'stringify() Tests',

 'JS object should be serialized to JSON string': function () {
 var result = Y.JSON.stringify({ value: 'YUI3' });
 Y.Assert.isString(result);
 Y.Assert.areEqual('{"value":"YUI3"}', result);
 },

 'JS array should be serialized to JSON string': function () {
 var result = Y.JSON.stringify([1, 2, 3, 4, 5]);
 Y.Assert.isString(result);
 Y.Assert.areEqual('[1,2,3,4,5]', result);
 }
 });

 var testSuite = new Y.Test.Suite('Y.JSON Tests');
 testSuite.add(parseTests);
 testSuite.add(stringifyTests);

 new Y.Test.Console().render('#demo');

 Y.Test.Runner.add(testSuite);
 Y.Test.Runner.run();
});
</script>

12.4 Organizing Unit Tests into Suites | 357

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Like other test frameworks, YUI Test supports a hierarchy of test cases and test suites.
Each test suite can contain test cases and other test suites. However, only test cases can
contain actual tests (method names that contain a space or begin with the word test).

So how many tests should you write, and how should you organize them? Here is a
straightforward pattern to follow:

1. For each object you need to test, create one test suite.

2. For each method in the object to test, create one test case and add it to the object’s
test suite.

3. For each test case, create one test function for each input-output set in the method
under test.

In this way, your test hierarchy mirrors the code you’re testing. You can look at your
code and figure out where you are missing test suites, and within those suites, where
you are missing test cases.

The tricky part is the third step. How do you know how many test functions are enough?
Too few tests means you’re not actually verifying that your method works the way you
think it does. But you also can’t exhaustively test every possible combination of inputs.
For most objects, that would lead to a test suite so mindbogglingly large that you prob-
ably would need to learn special mathematical notation just to write down the number
of tests. More practically, each line of test code you write is code that could itself be
incorrect, code that you have to support. So somewhere between the number 0 and the
unfathomably large, there is some number of tests that is “good enough.” Perhaps there
is a way to reason intelligently about the number of tests that would illuminate some-
thing useful about a piece of code?

One way to look at the problem is to think about your function’s inputs and outputs.
Given an input value x, what should the output y be? What happens if you pass in an
invalid value? Does your function have any interesting boundary values to consider?
Note that some functions might take input but have no return value, instead making
changes to an object or firing an event. In these cases, the “output” is somewhat less
clear because the reaction to input can be affected by the current state of other objects.

For a slightly more formal approach to finding the minimum number of tests, you can
use structured basis testing. In his book Code Complete (Microsoft Press), Steve McCon-
nell describes structured basis testing as the idea that you must test each statement in
a program at least once. Thus, to determine the minimum number of test cases for a
function:

1. Start with the number 1. This represents the straight path through the function.

2. For each of the following tokens, increment by 1: if, while, for, &&, and ||.

3. Add 1 for each case in a switch statement.

358 | Chapter 12: Professional Tools

www.it-ebooks.info

http://www.it-ebooks.info/

For example, if you have a function that contains a for loop and an if statement,
structured basis testing indicates that you need a minimum of three tests:

• One test for the straight path through the function (all Boolean conditions are
true).

• One test for the case where the initial for condition is false (the for loop is never
executed).

• One test for the case where the if statement is false.

While you might very well need to add more tests, this analysis at least provides a
starting point. Also note that you should continue to add tests each time a new bug is
reported, to ensure that the bug stays fixed. Determining how and why a bug slipped
by the test suite can help point to better strategies for improving the test suite as a whole.

Taking a closer look at Example 12-4, we see that trim() is just a one-line regex with
no flow control statements to be found. This requires a minimum of one test. In reality,
you almost certainly need more than that, as the regular expression is a mini-language
all by itself. The three tests for the example seem reasonable. If the trim() function
contained more branches and loops, structured basis testing would indicate which
additional tests would need to be written.

If we turn our attention to Example 12-5, even before doing any analysis, it is obvious
that more tests are required. The code tests only arrays and objects, and JSON obviously
supports far more syntax than that! Looking at the json module source code and tallying
paths in the main _stringify() method alone, it is clear that the current test suite is off
by over an order of magnitude. If you really want to create a real-world, robust test
suite for the json module, there is a lot of work to do.

See Also
The YUI json-stringify module source code; Scott Aaronson’s essay on extremely
large numbers.

12.5 Testing Event Handlers by Simulating Events
Problem
You’ve written a click handler function that needs testing. Despite your lightning-quick
reflexes, it is impractical to test this code by manually clicking the button yourself.

Solution
Use YUI’s event simulation utility to test event handlers by automatically exercising
the DOM. Example 12-6 does this by:

12.5 Testing Event Handlers by Simulating Events | 359

www.it-ebooks.info

https://github.com/yui/yui3/blob/master/src/json/js/stringify.js
http://www.scottaaronson.com/writings/bignumbers.html
http://www.scottaaronson.com/writings/bignumbers.html
http://www.it-ebooks.info/

1. Loading the node-event-simulate module, along with the test-console module.

2. Providing a controller with a click handler to test. This controller could have been
pulled in as a module, but in this case it’s just defined locally.

3. Creating a test case and configuring it with an object literal containing a setup
function, a test, and a teardown function. The test simulates clicking the “button”
(actually an invisible <div>) and then evaluates the results. The setup and teardown
functions attach and detach the click handler.

4. Creating a Test.Console widget to capture and display the test results.

5. Adding the test case to a test runner and invoking run() to execute the tests.

Example 12-6. Testing a click handler with event simulation

<!DOCTYPE html>
<title>Testing a click handler with event simulation</title>

<div id="button"></div>
<div class="yui3-skin-sam" id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node-event-simulate', 'test-console', function (Y) {
 var controller = {
 handleClick: function (event) {
 event.target.addClass('clicked');
 }
 };

 var testCase = new Y.Test.Case({
 name: 'Test Click Handler',
 setUp: function () {
 Y.one('#button').on('click', controller.handleClick, controller);
 },
 tearDown: function (){
 Y.one('#button').detachAll();
 },
 'handleClick() should add the class "clicked" to the button': function () {
 var button = Y.one('#button');
 button.simulate('click');

 Y.Assert.isTrue(button.hasClass('clicked'),
 'Button should have a class of "clicked"');
 }
 });

 new Y.Test.Console().render('#demo');

 Y.Test.Runner.add(testCase);
 Y.Test.Runner.run();
});
</script>

360 | Chapter 12: Professional Tools

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Methods that interact with the DOM are difficult to unit-test outside a real browser.
For this reason, YUI enables you to unit-test DOM event handlers using event
simulation.

Event simulation is a best-effort feature. Gesture events are not simulatable at all, and
even the events that are simple enough to simulate don’t always result in the exact same
behavior as a real user-initiated DOM event. Before creating tests with simulated events,
think about whether your application logic and user interface logic is too tightly cou-
pled. Ideally, you should be able to exercise most of your application by firing custom
events or setting attribute values rather than simulating user interactions.

Use event simulation only for testing, never for operating your applica-
tion in production. There is always a better way to do it.

At a certain point, event testing crosses over from unit testing into functional testing.
Unlike unit testing, functional testing has real dependencies that are not mocked or
faked. Functional testing tests the user’s experience with the product rather than input-
output sets for code. If you need to test that the user interface responds in a specific
way to user interaction, then you really want to write some functional tests rather than
unit tests.

Another “larger” kind of test is integration testing, where you are testing how well your
code works with other modules, possibly written by other people. As with functional
testing, in integration testing, you are admitting that you have real dependencies. If you
are writing JavaScript code for the browser, it often makes sense to treat integration
testing and functional testing as essentially the same thing, since it is hard to simulate
the user experience (functional testing) without depending on large chunks of other
people’s code (integration testing).

If you are unsure whether something should be a unit test or a functional test, consider
whether it is possible to write the test before the code in question actually exists. Unit
tests can be written ahead of time; functional tests often cannot, because they are so
closely tied to the particulars of the user interface.

While you can use YUI Test with YUI event simulation to write some basic functional
tests, at some point you should consider driving your application with a dedicated
functional testing tool. YUI Test includes command-line utilities designed to integrate
with Selenium, a popular open source functional testing tool. For more information
about how to drive Selenium with YUI Test, refer to the YUI Test documentation.

Returning to Example 12-6, you might be wondering, “Hey, where’s the button?” All
the browser displays is a white page with a Test.Console instance displaying test results,
similar to previous examples. The “button” is just an empty <div>, and yet the test

12.5 Testing Event Handlers by Simulating Events | 361

www.it-ebooks.info

http://seleniumhq.org/
http://www.it-ebooks.info/

passes just fine. The test code “clicks” the button, the click handler adds a class to the
button, and the assert method verifies that the class appeared as expected.

Of course, when you design your test pages, there’s nothing stopping you from creating
visible buttons. Your test buttons could even have attractive gradients and rounded
corners. But as far as an automated test system is concerned, adding that extra markup
and CSS is irrelevant. The event simulation code directly simulates a click in the DOM
without regard to the button’s aesthetics.

Example 12-6 uses both a setUp() and a tearDown() method. setUp() and tearDown()
are conventions borrowed from JUnit and other xUnit-style test frameworks. For each
test function in a test case, the YUI Test Runner runs the setUp() method before each
test and runs the tearDown() method after each test, regardless of whether the test
passed or failed. These methods are ideal for creating and destroying necessary data
objects or attaching and detaching event listeners.

You can also configure setUp() and tearDown() methods for test suites. The YUI Test
Runner calls the test suite’s setUp() method before executing the setUp() method of
the first test in the first test case. Likewise, the YUI Test Runner calls the test suite’s
tearDown() method after all tests in all child test cases and test suites have executed,
including the last test’s tearDown() method. Test suite setUp() and tearDown() methods
are useful for creating global resources that are meant to be shared by all tests in a suite.

Finally, you can define an init() and destroy() method for each test case. The YUI
Test Runner calls init() once, before calling any setUp() functions, and destroy()
once, after calling any tearDown() methods. init() and destroy() enable you to set up
and remove data that an individual test case needs. This is in contrast to defining suite-
level setUp() and tearDown(), which run for all test cases in the test suite.

When the YUI Test Runner starts, it creates an empty data object and passes it into
every init(), setUp(), destroy(), tearDown(), and test method. You can use this object
to easily share data among methods and TestCase objects.

12.6 Mocking Objects
Problem
You have an application that has several components that are expensive to load and
render. To provide a smoother user experience, you have cleverly taken advantage
of an asynchronous function queuing mechanism to render your UI in chunks. Un-
fortunately, this makes your master renderUI() function hard to unit-test, because
renderUI()’s job is to execute a queue of other rendering functions that inherently take
a long time to run.

362 | Chapter 12: Professional Tools

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Use YUI Test’s mock object facilities to create a fake asynchronous queue. In your unit
test, you don’t actually care that the “queue” renderUI() doesn’t contain any real ren-
dering functions. You just care about walking through renderUI()’s code paths.

Example 12-7 demonstrates how to use mock objects by:

1. Providing a renderUI() function to test. This function could have been pulled in
as a module, but in this case it’s just defined locally.

2. Creating a test case and configuring it with an object literal containing a test
function.

3. Populating the test function with a mock object that represents the asynchronous
queue of functions.

4. Defining the methods on the mock object that the test is expected to call, and the
arguments each method should receive.

5. Calling renderUI() and verifying that the methods on the mock object that you
expected to be called actually did get called.

6. Creating a Test.Console widget to capture and display the test results.

7. Adding the test case to a test runner and invoking run() to execute the tests.

Example 12-7. Testing with a mock object

<!DOCTYPE html>
<title>Testing with a mock object</title>

<div class="yui3-skin-sam" id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('test-console', function (Y) {
 function renderUI(renderQueue, renderFnToSkip) {
 if (typeof renderFnToSkip === 'function') {
 renderQueue.remove(renderFnToSkip);
 }
 renderQueue.run();
 }

 var testCase = new Y.Test.Case({
 name: 'UI Rendering Tests',

 'App should start rendering, but with no Twitter widget' : function () {
 var mockQueue = Y.Mock(),
 renderTweetWidget = function () {};

 Y.Mock.expect(mockQueue, {
 method: 'remove',
 args: [renderTweetWidget]
 });

12.6 Mocking Objects | 363

www.it-ebooks.info

http://www.it-ebooks.info/

 Y.Mock.expect(mockQueue, {
 method: 'run',
 args: []
 });

 renderUI(mockQueue, renderTweetWidget);

 Y.Mock.verify(mockQueue);
 }
 });

 new Y.Test.Console().render('#demo');

 Y.Test.Runner.add(testCase);
 Y.Test.Runner.run();
});
</script>

Discussion
Mock objects eliminate test dependencies on other objects. If your code depends on an
object that is simple and fast, it is acceptable to create that object directly, or perhaps
in the setUp() method of your test case or test suite, perhaps in the test function itself.
However, if your code depends on an object that:

• Relies on a network connection

• Performs some sort of expensive operation

• Returns unpredictable results

then you should use a mock object. Mock objects ensure that despite complex, unpre-
dictable, or slow dependencies, you maintain rigorous control over all test inputs, and
your tests continue to be reproducible and run quickly.

The classic case for a JavaScript mock object is for simulating XHR or some other
network call. Network operations are a great thing to remove by mocking, since net-
works can be slow and unpredictable. Example 12-7 takes a slightly different tack, using
a mock object to simulate an expensive series of rendering operations. To make the test
code a little more interesting, the renderUI() function has an additional feature—it
allows the caller to pass in a second, optional argument representing a component that
should be removed from the queue.

So how does mocking work? If your code really depends on making an expensive call
over the network, don’t you actually need to make that call? When you are unit testing,
the answer is no. Keep in mind that in a unit test, all you’re really trying to do is exercise
code paths through the function under test. Fake input data and fake responses are
fine, as long as your function responds to the fake data the way you expected.

Thus, when you use a mock object, you don’t care about its internals. What you do
care about are the methods that get called on the mock object, including inputs and
possibly any return values. You can think of Y.Mock.expect() as a kind of assertion

364 | Chapter 12: Professional Tools

www.it-ebooks.info

http://www.it-ebooks.info/

about how you expect your code to exercise the object. Instead of asserting, “This
variable should have the value 3,” or “This variable should be a number,” you are
asserting, “This object should have this method called, with this argument list, and
return this value.”

To verify these expectations, you pass the mock object as input into the function you
want to test, then call Y.Mock.verify() on the mock object. If your code calls a method
on the mock object with the wrong arguments, the test fails immediately. Calling
verify() further verifies that the method was called the correct number of times. The
upshot is that if your test failed to call a method the expected number of times, passed
in an incorrect value, or generated an incorrect return value, the test fails.

The example calls renderUI() with two arguments: the mock queue object to “run,”
and a (fake) function to “remove” from the queue. Looking at the implementation of
renderUI(), the test should end up calling two methods on the mock object: remove
(renderFnToSkip) and run(). This yields two expectations:

• The remove() method will be called with a single function argument named
renderTweetWidget.

• The run() method will be called with an empty argument list.

Since the code doesn’t use any return values, there is no reason to check for them in
the expectation. In general, an expectation object may include:

name
The string name of the method you expect to be called. (Required.)

args
An array representing the list of arguments you expect to be supplied to the method.
(Required.) If you pass incorrect arguments, the test fails even before you call
verify().

If you care only about the type of the argument and not its value, you can provide
a special Y.Mock.Value in place of an actual value. Supported types include
Y.Mock.Value.String, Y.Mock.Value.Number, Y.Mock.Value.Boolean, Y.Mock.Value
.Object, Y.Mock.Value.Function, and even Y.Mock.Value.Any (if you don’t care
about the specific type of the value). Example 12-7 doesn’t actually depend on the
value of the argument passed into remove(), just the type, so you could rewrite the
expectation as:

Y.Mock.expect(mockQueue, {
 method: 'remove',
 args: [Y.Mock.Value.Function]
});

The reason the test uses a function specifically named renderTweetWidget is simply
to make the example a little more concrete.

returns
The value you expect the method to return.

12.6 Mocking Objects | 365

www.it-ebooks.info

http://www.it-ebooks.info/

error
An error you expect the method to throw.

callCount
The number of times you expect the method to be called with the given arguments.

If any of these defined expectations is not satisfied, the test fails. You are, of course,
free to use ordinary assert methods right alongside expect() and verify().

Note that in Example 12-7, there is only a single test. An obvious second test is missing:
the case where you don’t pass in a function to skip. In that case, only the run() method
should get called. What would testing that second code path look like? See Exam-
ple 12-8.

Example 12-8. Adding a second mock object test

'The entire app should start rendering' : function () {
 var mockQueue = Y.Mock();

 Y.Mock.expect(mockQueue, {
 method: 'run',
 args: []
 });

 renderUI(mockQueue, null);

 Y.Mock.verify(mockQueue);
}

Passing null in as renderUI()’s second argument should cause renderUI() to only call
run() with no arguments on the queue object. The test in Example 12-8 verifies that
this is exactly what happens.

See Also
The AsyncQueue User Guide.

12.7 Testing Asynchronously Using wait()
Problem
You need to pause your tests and resume them later in order to evaluate some state that
will be present in the future.

Solution
Use YUI Test Case’s ability to pause and resume a running test with wait() and
resume(). Example 12-9 illustrates this by:

366 | Chapter 12: Professional Tools

www.it-ebooks.info

http://yuilibrary.com/yui/docs/async-queue/
http://www.it-ebooks.info/

1. Providing a changeToRed() function to test. This function could have been pulled
in as a module, but in this case it’s just defined locally.

2. Creating a test case and configuring it with an object literal containing a test func-
tion. This test case is special in that it is designed to suspend until after the change
ToRed() function completes its work.

3. Setting an event handler that listens for the example:red event. When the event
handler triggers, it resumes the suspended test case and checks an assertion about
the <body>’s current background color.

4. Calling changeToRed(), immediately followed by wait(). The wait() method im-
mediately suspends the test case until something calls resume().

5. Creating a Test.Console widget to capture and display the test results.

6. Adding the test case to a test runner and invoking run() to execute the tests.

Example 12-9. Testing asynchronously with wait()

<!DOCTYPE html>
<title>Testing asynchronously with wait()</title>
<style>
.foo { background: #955; }
</style>

<div class="yui3-skin-sam" id="demo">

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('test-console', function (Y) {
 function changeToRed(timeout) {
 setTimeout(function () {
 Y.one('body').addClass('foo');
 Y.fire('example:red');
 }, timeout)
 }

 var asyncTest = new Y.Test.Case({
 name: 'Asynchronous Transition Test with Events',

 'After 2 seconds, body should have class foo' : function () {
 var self = this;

 Y.on('example:red', function () {
 self.resume(function () {
 Y.Assert.isTrue(Y.one('body').hasClass('foo'));
 });
 });

 changeToRed(2000);
 this.wait();
 }
 });

 new Y.Test.Console().render('#demo');

12.7 Testing Asynchronously Using wait() | 367

www.it-ebooks.info

http://www.it-ebooks.info/

 Y.Test.Runner.add(asyncTest);
 Y.Test.Runner.run();
});
</script>

Discussion
Because changeToRed() doesn’t complete its work until some timeout has occurred, we
can’t verify its results immediately. However, you can suspend the test case until con-
ditions are right. There are two basic approaches:

• Suspend the test case until some event occurs, then resume the test case and run
some assertions.

• Suspend the test case for some fixed period of time, then resume the test case and
run some assertions, as illustrated in Example 12-10.

Since changeToRed() conveniently fires an event as soon as its work is complete, the first
option seems like the way to go. To break down the listener step-by-step:

1. Y.on() sets a listener for the example:red event.

2. When the listener detects an example:red event, it triggers the event handler. The
event handler does one thing: calls the test case’s resume() method.

3. The resume() method accepts a single argument, and does two things:

• Wakes up the test case from its suspended state.

• Executes the function that was passed into resume(). This function should be
responsible for running any assertions.

Within the event handler function, the test case’s this.resume() is no
longer in scope. However, saving this to a variable self causes the event
handler to close over the self variable, which enables the event handler
to reference the test case and its methods.

After setting the listener, Example 12-9 calls the changeToRed() function, followed im-
mediately by this.wait(), which suspends the test case. The test case remains sus-
pended until the example:red event fires 2,000 milliseconds later, which triggers the
event handler, which calls resume() to resume the test case.

You can see this in action if you load Example 12-9 in a browser and check the “status”
checkbox to display additional status messages. The test console runs some test startup
log messages, halting at the message:

Test case "Asynchronous Transition Test with Events" started

There, the test console waits until 2,000 milliseconds pass, the background changes to
red, and the test case resumes from suspension.

368 | Chapter 12: Professional Tools

www.it-ebooks.info

http://www.it-ebooks.info/

Example 12-9 called wait() with no arguments, which caused the test to suspend until
some other function calls resume(). However, similar to setTimeout(), the wait() meth-
od can take two arguments: a time period for which to suspend the test case, and a
function to execute when the time period elapses. In this case, you do not need a
resume() callback, and instead the wait() callback should contain assertions to run.

Calling wait() with a fixed time period means you are basing a test on
a race condition. This technique can fail unpredictably for various rea-
sons, such as the browser event loop being bogged down. Use this tech-
nique only if there really is no event to listen to, or perhaps if you are
trying to verify that something didn’t happen as a result of the tested
method call.

Example 12-10 is a variation where changeToRed() does not happen to fire an event on
completion. In this case, you could rewrite your asynchronous test case to look like this.

Example 12-10. Testing asynchronously with no event to listen for

YUI().use('test-console', function (Y) {
 function changeToRed(timeout) {
 setTimeout(function () {
 Y.one('body').addClass('foo');
 }, timeout)
 }

 var asyncTest = new Y.Test.Case({
 name: 'Asynchronous Transition Test with No Event',

 'After 2 seconds, body should have class foo' : function () {
 changeToRed(2000);

 this.wait(function () {
 Y.Assert.isTrue(Y.one('body').hasClass('foo'));
 }, 2100);
 }
 });

 new Y.Test.Console().render('#demo');

 Y.Test.Runner.add(asyncTest);
 Y.Test.Runner.run();
});

Now, instead of waiting for an event, the test simply waits a fixed period of time for
the body to change to red. After 2,100 milliseconds, the test case resumes and executes
a function that contains an assertion. This assertion executes in the context of the test
case object, so it still has access to all of the same data as the test that called wait(),
including any properties and methods on the test case object itself.

12.7 Testing Asynchronously Using wait() | 369

www.it-ebooks.info

http://www.it-ebooks.info/

For example, you could have your setUp() function add some data to the test case object
as this.data.someval, and the wait callback function could access that data. You can
even call this.wait() again from within the wait callback function.

Keep in mind that if you had guessed wrong and waited only 1,800 milliseconds, or if
some external factor had interfered with the browser’s timing, the background color
would not yet be red, so the test would fail.

12.8 Collecting and Posting Test Results
Problem
You want to collect raw test data and store it somewhere for later analysis.

Solution
Use the YUI Test’s Test Reporter to post test results to a remote server. Exam-
ple 12-11 reuses most of the code from Example 12-5, but instead of simply running
tests, the example now listens for the event that signals the end of testing. The event
handler collects the results in JSON format and posts the data to a URI endpoint.

Example 12-11. Collecting and posting test results

<!DOCTYPE html>
<title>Collecting and posting test results</title>

<div class="yui3-skin-sam" id="demo"></div>

<script src='http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js'></script>
<script>
YUI().use('json', 'test-console', function (Y) {
 var parseTests = new Y.Test.Case({
 name: 'parse() Tests',

 'JSON string should be parsed to JS object' : function () {
 var result = Y.JSON.parse('{"value":"YUI3"}');
 Y.Assert.isObject(result);
 Y.Assert.areEqual('YUI3', result.value);
 },

 'JSON string should be parsed to JS array' : function () {
 var result = Y.JSON.parse('[1, 2, 3, 4, 5]');
 Y.ArrayAssert.itemsAreSame([1, 2, 3, 4, 5], result);
 }
 });

 var stringifyTests = new Y.Test.Case({
 name: 'stringify() Tests',

370 | Chapter 12: Professional Tools

www.it-ebooks.info

http://www.it-ebooks.info/

 'JS object should be serialized to JSON string': function () {
 var result = Y.JSON.stringify({ value: 'YUI3' });
 Y.Assert.isString(result);
 Y.Assert.areEqual('{"value":"YUI3"}', result);
 },

 'JS array should be serialized to JSON string': function () {
 var result = Y.JSON.stringify([1, 2, 3, 4, 5]);
 Y.Assert.isString(result);
 Y.Assert.areEqual('[1,2,3,4,5]', result);
 }
 });

 var testSuite = new Y.Test.Suite('Y.JSON Tests');
 testSuite.add(parseTests);
 testSuite.add(stringifyTests);

 new Y.Test.Console().render('#demo');

 var testRunner = Y.Test.Runner.add(testSuite);

 testRunner.subscribe(Y.Test.Runner.COMPLETE_EVENT, function() {
 var results = testRunner.getResults(),
 reporter = new Y.Test.Reporter('http://localhost/report.php');
 reporter.report(results);
 });

 testRunner.run();
});
</script>

Discussion
In previous examples, the test console displayed test results. As soon as you close the
browser window, those test results disappear. This is OK for one-off testing, but if you
are running tests on a regular basis, you will likely want to store the result data some-
where for later analysis.

Since the test data is trapped on the web page, what’s the best way to get at it? The
good news is that you don’t have to roll your own XHR solution, or worse, scrape the
data off the test page. YUI Test provides a handy utility in the YUI Test Reporter. You
just need to get a results object from the Test Runner, invoke a Test Reporter instance,
and call the report() method. When you call report(), Test Reporter creates a form
and POSTs the data to the endpoint you specified with these fields:

results
The results object serialized to a string.

useragent
Your browser’s user agent string.

timestamp
The date and time the report was sent.

12.8 Collecting and Posting Test Results | 371

www.it-ebooks.info

http://www.it-ebooks.info/

custom_field
An extra custom field you added by previously calling addField(custom_field,
value) on the Test Reporter instance. You can add multiple additional fields, but
you cannot override the three built-in fields.

The form submission does not cause your test page to navigate away. Note that Test
Reporter does not receive a response back from the endpoint, so there isn’t a simple
way to ensure that your POST succeeded.

You obtain a raw test results object by calling getResults() on the Test Runner. When
you instantiate the Test Reporter, you can specify the test data format by passing in
one of these constants as the second constructor argument:

Y.Test.Format.XML
A YUI-specific representation of the test results in XML. This is the default.

Y.Test.Format.JSON
A YUI-specific representation of the test results in JSON.

Y.Test.Format.JUnitXML
A representation of the test results in JUnit XML, a format that many testing tools
heroically manage to support despite the fact that nobody is quite sure what the
specification is.

Y.Test.Format.TAP
A representation of the test results in TAP (Test Anything Protocol) format.

If you call getResults() before tests have finished running, the method returns null.
In other words, you can’t do this:

testRunner.run();
var results = testRunner.getResults();

because when getResults() executes, there is no chance that the Test Runner has
completed its work yet. That’s why Example 12-11 subscribes to the Y.Test.Runner.
COMPLETE_EVENT event, which indicates that testing is over, and it is safe to extract and
post test results.

So where exactly should you post the report data? If you are running some kind of third-
party test harness or continuous integration tool, it might already support the JUnit
XML or TAP formats. You can use YUI Test Reporter to POST data directly to some
endpoint in the tool; or, if your tool’s API doesn’t support POSTing report data directly,
you can always write a small proxy script that accepts POST data and then turns around
and feeds the tool properly.

Alternatively, you can write a custom report display screen. This is more work, but it
enables you to slice and dice the data any way you please. It also affords you the op-
portunity to flex your server-side JavaScript skills—or you can just bludgeon the prob-
lem into submission with PHP, as Example 12-12 demonstrates.

372 | Chapter 12: Professional Tools

www.it-ebooks.info

http://www.junit.org
http://testanything.org/wiki/index.php/Main_Page
http://www.it-ebooks.info/

Example 12-12. Quick-and-dirty PHP test report script

<?php
function escapeHTML($str) {
 return htmlentities($str, ENT_QUOTES | ENT_HTML5 | ENT_SUBSTITUTE, 'UTF-8');
}

if ($_SERVER['REQUEST_METHOD'] == "POST") {
 file_put_contents('/tmp/test_results.xml', $_POST['results']);
}
else {
 $results = simplexml_load_file('/tmp/test_results.xml');
 $tests = $results->xpath('//test');
?>

<!DOCTYPE html>
<title>Test Report for <?php echo escapeHTML($results['name']); ?></title>
<style>
 td { border: 1px #000 solid; padding: 2px }
 td.fail { background: #f33; }
</style>
<h1>
 Test Report for <?php echo escapeHTML($results['name']); ?>:
 <?php echo escapeHTML($results['total']); ?> total,
 <?php echo escapeHTML($results['failed']); ?> failed
</h1>
<table>
<tr>
 <th>Test</th>
 <th>Result</th>
 <th>Message</th>
</tr>
<?php
 foreach ($tests as $test) {
 $class = $test['result'] == 'fail' ? 'class="fail"' : '';
?>
<tr>
 <td><?php echo escapeHTML($test['name']); ?></td>
 <td <?php echo $class; ?>><?php echo escapeHTML($test['result']); ?></td>
 <td><?php echo escapeHTML($test['message']); ?></td>
</tr>
<?php } ?>
</table>
<?php } ?>

You can drop Example 12-12 into almost any web server running PHP 5. If the script
does not run properly, check your server’s INI settings: magic_quotes_gpc must be off,
and open_basedirs must permit scripts to write to /tmp (or wherever you want to write
the test result data). To see the report script in action, modify Example 12-11 so that
Y.Test.Reporter points to your PHP report script, open the HTML page in a browser
to run the tests and post the data, and then open the PHP script in a browser to view
the results.

12.8 Collecting and Posting Test Results | 373

www.it-ebooks.info

http://www.it-ebooks.info/

This minimal, self-contained report script lacks certain desirable features such as re-
producibility of results, robustness, and aesthetics. These flaws aside, the script does
illustrate some basic principles:

• You need a component that handles incoming POST requests.

• That component must store the data persistently somewhere.

• On a GET request, the app must fetch the requested report.

• Finally, you must format the raw data for display.

The report script ignores the nested test suite/test case structure in the data and just
lists the tests. If you have a large collection of test suites, you will almost certainly want
a more sophisticated visual representation. Be sure to escape or sanitize data before
displaying it to users in a browser.

See Also
JUnit; TAP.

12.9 Precommit Testing in Multiple Browsers
Problem
You want to quickly run a series of automated tests to verify that your recent changes
work in multiple browsers—before committing changes to version control.

Solution
Use the Yeti test launcher to asynchronously run tests at the command line in multiple
browsers:

1. Install Node.js and npm if you haven’t already. Then install the yeti package using
npm. Since Yeti is a tool designed to be used all over your system, consider using
the -g flag.

$ npm install -g yeti

2. Invoke Yeti as a server on port 8000:

$ yeti --server
Yeti will only serve files inside /Users/goer/Documents/yui/current/examples
Visit http://localhost:8000, then run:
 yeti <test document>
to run and report the results.

3. Open http://localhost:8000 in each browser you want to test. Each browser displays
a web page that says, “Waiting for tests.”

4. In a separate terminal window, run the yeti command-line utility on the HTML
files containing your tests. Example 12-13 uses the trim() tests from Example 12-4.

374 | Chapter 12: Professional Tools

www.it-ebooks.info

http://www.junit.org
http://testanything.org/wiki/index.php/Main_Page
http://www.it-ebooks.info/

Invoking Yeti on test_case.html causes each browser to run the tests embedded in
test_case.html in parallel. When each browser finishes, it reports the YUI Test re-
sults back to the server. As soon as each result set arrives, Yeti prints the outcome,
including any failures, to the command line. Until you stop the server with a Ctrl-
C, Yeti continues to run any additional tests you invoke for all browsers attached
to the server.

Example 12-13. Running multiple browsers with the Yeti server

$ yeti test_case.html
Waiting for results. When you're done, hit Ctrl-C to exit.
✖ yuitests1300945685398 on Safari (5.0.3) / MacOS
 2 passed, 1 failed
 in trim() Tests
 Leading and trailing white space should be removed Values should be equal.
 Expected: Hello world! (string)
 Actual: Hello world! (string)

✖ yuitests1300945686048 on Firefox (3.6.15) / MacOS
 2 passed, 1 failed
 in trim() Tests
 Leading and trailing white space should be removed Values should be equal.
 Expected: Hello world! (string)
 Actual: Hello world! (string)

✖ yuitests1300945686364 on Chrome (10.0.648.151) / MacOS
 2 passed, 1 failed
 in trim() Tests
 Leading and trailing white space should be removed Values should be equal.
 Expected: Hello world! (string)
 Actual: Hello world! (string)

Yeti caches assets while running tests, but when you run Yeti again, it
busts the cache.

Discussion
In earlier sections, such as Recipe 12.3, running tests is a manual process—you have
to load the test page in a browser and click Refresh. This isn’t too bad with a single
browser, but the more browsers you add, the clumsier this becomes. At the very least,
this experience is far less pleasant than the code/test/debug cycle for any other language.

What you need is the ability to quickly run your tests in multiple browsers, so you can
iterate on small changes before committing changes to version control. Selenium and
its cousin TestSwarm do a fine job of automating browsers, but both are heavyweight
tools that are designed for central infrastructure. While it is technically possible to drive
precommit unit tests through Selenium or TestSwarm, they require you to set up your
entire software stack, and they do not necessarily run tests quickly or provide immediate

12.9 Precommit Testing in Multiple Browsers | 375

www.it-ebooks.info

http://www.it-ebooks.info/

feedback. Therefore, these tools are more appropriate for system integration testing as
part of a continuous integration process.

By contrast, Yeti is designed for fast precommit testing. It provides you with output on
the command line as quickly as possible, advances to the next test immediately, and
runs in parallel on multiple browsers. Yeti is sometimes described as a “highly personal”
test tool because it is meant to run on your personal developer machine, and to test
your local changes as opposed to your team’s. Yeti’s server mode is ideal for working
offline. You can test any browsers running on your machine or in local virtual machines
without needing a network connection to a central test server.

Yeti does not replace tools like Selenium and TestSwarm; rather, it complements them.
A precommit test tool is designed to quickly run your tests immediately after changing
your code, so that the changes are still fresh in your mind. The goal of a post-commit
test tool is to exercise a large, integrated code base, ensuring that different components
written by different people all work together properly.

Yeti is not the first precommit JavaScript test launcher. The older JSTestDriver project
is a mature test launcher that has far more features than Yeti, and supports both pre-
commit testing and continuous integration. However, you cannot use JSTestDriver
with tests written with YUI Test. JSTestDriver requires test cases to be written with the
JSTestDriver Test Framework, and focuses on testing pure JavaScript files, as opposed
to JavaScript embedded in HTML. For this reason, Yeti was built to be a simple, fast
test launcher for running existing HTML YUI Test pages unmodified.

While Yeti requires test cases to be written with YUI Test, you can of
course use YUI Test and Yeti to test any JavaScript code you like, not
just YUI code.

Besides speed, Yeti’s main feature is simplicity. It runs with no configuration or setup.
Example 12-13 invokes Yeti as a server in order to attach multiple browsers to the test
page. However, if you care only about quickly verifying your changes in a single brows-
er, there is an even simpler method for using Yeti. You can skip steps 2 and 3 and just
invoke yeti directly on the test files.

Example 12-14. Running a single browser with Yeti

$ yeti test_case.html
✖ yuitests1300893214487 on Safari (5.0.3) / MacOS
 2 passed, 1 failed
 in trim() Tests
 Leading and trailing white space should be removed Values should be equal.
 Expected: Hello world! (string)
 Actual: Hello world! (string)

Failures: 1 of 3 tests failed. (1612ms)

376 | Chapter 12: Professional Tools

www.it-ebooks.info

http://www.it-ebooks.info/

If Yeti is not running as a server, it launches your system’s default browser, runs the
specified test pages, and exits. This simple mode still keeps you out of the browser and
as close as possible to your code.

Yeti is fault tolerant. If it encounters a syntax error, an uncaught exception, or a file
without tests, it reports the problem to you and continues running. To ensure that
DOM-related tests behave properly, Yeti also requires HTML tests to load in Standards
mode, not Quirks mode. If an HTML page lacks a doctype, Yeti reports this as an error.
For security reasons, the Yeti server refuses to serve up pages that reside outside the
directory where you started the server.

Beyond --server, Yeti also includes --port to run a Yeti server on an alternative port.
You can also incorporate the Yeti server into scripts with the --solo 1 option, which
causes the server to exit with a summary after running all tests once, rather than waiting
for an explicit interrupt. If any failures occur, Yeti exits with a nonzero status code.

12.10 Testing on Mobile Devices
Problem
You want to test your code in mobile browsers, but you can’t figure out how to get
Node.js and Yeti to run on your iPhone—at least, not without voiding your warranty.

Solution
Use localtunnel to expose your Yeti server to the outside world, then connect to the
server using your mobile device.

Using localtunnel exposes your machine to public web traffic, which
introduces serious security ramifications. This goes double if you are
tunneling from inside a VPN or corporate network to the outside world.

1. Start the Yeti server on port 8000:

$ yeti --server

2. In a separate terminal window, use gem to install localtunnel:

$ sudo gem install localtunnel

If you have not already done so, you must install Ruby and the gem package manager
first.

3. If you do not already have a public SSH key, create one by running ssh-keygen.
Then upload your key and make port 8000 public on localtunnel.com with:

$ localtunnel -k ~/.ssh/id_rsa.pub 8000
 This localtunnel service is brought to you by Twilio.
 Port 8000 is now publicly accessible from http://5832.localtunnel.com ...

12.10 Testing on Mobile Devices | 377

www.it-ebooks.info

https://github.com/progrium/localtunnel/
http://www.it-ebooks.info/

The -k option is a one-time requirement that uploads your public SSH key to lo-
caltunnel.com. Subsequently, you can create new local tunnels simply by running
localtunnel portnumber.

4. Open http://yourid.localtunnel.com in a mobile browser (or any browser). You
should see the familiar Yeti “Waiting for tests” page.

5. In yet another terminal window, run the yeti command-line utility on the HTML
files containing your tests. Example 12-15 uses the trim() tests from Example 12-4.

Example 12-15. Testing mobile devices using the Yeti server and localtunnel

$ yeti test_case.html
Waiting for results. When you're done, hit Ctrl-C to exit.
✖ yuitests1301164407717 on Safari (5.0.2) / iOS 4.2.1
 2 passed, 1 failed
 in trim() Tests
 Leading and trailing white space should be removed Values should be equal.
 Expected: Hello world! (string)
 Actual: Hello world! (string)

Once you have a Yeti server running and addressable on the Web, it is easy to create a
fairly large test cluster. Figure 12-3 is a photograph of a Yeti test cluster executing the
YUI 3.5.0 test suite, running approximately 25 browsers on 18 physical devices (not
all devices visible).

Discussion
As shown in Recipe 12.9, it is easy to test browsers running on your personal machine
using Yeti in server mode. Mobile browsers are a little trickier, but localtunnel makes
it trivial to serve up a test page over the public Web, which means you can point as
many devices as you like to your Yeti instance. You are limited only by your imagination
and your budget for purchasing mobile hardware.

In fact, Yeti was designed with the mobile world in mind. Instead of attempting to
install software on many different machines and automate individual browsers, Yeti
just serves up self-running test pages and collects test results. This model doesn’t allow
for sophisticated system integration testing à la Selenium, but it does enable you to
quickly test an enormous variety of browsers, OS platforms, and devices. At the time
of writing, YUI considers iOS 3, iOS 4, and Android 2 to be in the Browser Test Baseline,
which means that these platforms are all tested and targeted for full support.

See Also
Ruby; the gem package manager; localtunnel; Maximiliano Firtman’s list of mobile
emulators.

378 | Chapter 12: Professional Tools

www.it-ebooks.info

http://www.ruby-lang.org
http://rubygems.org
https://github.com/progrium/localtunnel/
http://www.mobilexweb.com/emulators
http://www.mobilexweb.com/emulators
http://www.it-ebooks.info/

12.11 Testing Server-Side JavaScript
Problem
You want to test your server-side code in Node.js.

Solution
Use YUI Test to run tests at the command line, purely within Node.js.

1. If you haven’t already, install Node.js and the npm package manager. Then install
the stable version of yuitest using npm:

$ npm install -g yuitest

2. Run the yuitest command-line utility on JavaScript files and directories containing
JavaScript files to test:

$ yuitest test_case.js

Figure 12-3. Yeti test cluster (image courtesy Dav Glass)

12.11 Testing Server-Side JavaScript | 379

www.it-ebooks.info

http://www.it-ebooks.info/

Example 12-16 reuses the trim() function and tests from Example 12-4. Key differences
include:

• Instead of using YUI().use() to load YUI Test as a YUI module, the script uses YUI
Test Standalone. Since there is no Y object, the script calls test methods using the
YUITest object instead of Y.Test.

• To ensure that this script could potentially run in both environments, the script
first checks whether YUITest is attached to the this object (browser context), and
if that fails, attempts to require yuitest as a Node.js module.

• Because this code might not be running in the browser, the Test.Console widget is
removed. Output will appear in the log.

• The run() method is removed; otherwise, server-side YUI Test will run tests twice.

Example 12-16. Running YUI Test on the server side

// Implementation is not quite right; regex is missing a /g
function trim(text){
 return text.replace(/^\s+|\s+$/, '');
}

var YUITest = this.YUITest || require('yuitest');

YUITest.Assert.areEqual(28, 28);

var testCase = new YUITest.TestCase({
 name: 'trim() Tests',

 'Leading white space should be removed': function () {
 var result = trim(' Hello world!');
 YUITest.Assert.areEqual('Hello world!', result);
 },

 'Trailing white space should be removed': function () {
 var result = trim('Hello world! ');
 YUITest.Assert.areEqual('Hello world!', result);
 },

 'Leading and trailing white space should be removed': function () {
 var result = trim(' Hello world! ');
 YUITest.Assert.areEqual('Hello world!', result);
 }
});

YUITest.TestRunner.add(testCase);

Discussion
The main difference between the yeti utility and the yuitest utility is:

• yeti is a specialized test runner designed to efficiently run YUI Test tests within
one or more browser environments.

380 | Chapter 12: Professional Tools

www.it-ebooks.info

http://www.it-ebooks.info/

• yuitest is a command-line utility for running YUI Test tests on Node.js.

yuitest is great for testing command-line JavaScript utilities and JavaScript libraries
that run within Node.js. However, this command-line utility cannot test JavaScript that
manipulates the DOM or does anything else browser-specific. To use YUI Test in the
browser, use one of the techniques discussed earlier in this chapter: open a test page
manually, use Yeti to attach and automate multiple browsers, or use a full-fledged
automation framework such as Selenium or Test Swarm.

12.12 Minifying Your Code
Problem
You want to make your code as small as possible so that it loads quickly over the
network. You already plan to GZIP your code, but perhaps there’s some way to actually
shrink the code that GZIP is acting upon?

Solution
Use the YUI Compressor tool to safely remove comments, remove whitespace, and
minimize local symbols where possible. A quick-and-dirty way to do this is to use the
online YUI Compressor:

1. Paste your code into the text box or upload your JavaScript as a file.

2. Click Compress. YUI Compressor converts your code into equivalent but smaller
JavaScript. For example, the function:

// Returns strings like, "Merhaba, <name>!"
function randomGreeting(name, intlStrings){
 var langs = intlStrings.getLanguages();
 var randomLang = Math.floor(Math.random() * (langs.length - 1));
 var hello = intlStrings.getGreeting(randomLang);

 return hello + ", " + name + "!";
}

compresses to:

function randomGreeting(a,e){var d=e.getLanguages();
var c=Math.floor(Math.random()*(d.length-1));
var b=e.getGreeting(c);return b+", "+a+"!"};

which is 48% the size of the original. (There are two extra newlines here so that
the line doesn’t run off the page.)

3. GZIP the minified results.

The online version of YUI Compressor is easy to use, but is really only good for one-
off conversions. To integrate YUI Compressor into your build process, you can down-
load YUI Compressor and run it on the command line:

12.12 Minifying Your Code | 381

www.it-ebooks.info

http://refresh-sf.com/yui/
http://www.it-ebooks.info/

1. Install Java and Ant on your system if you have not already done so. Then download
the latest release of YUI Compressor.

2. Unzip the file in a working directory. From the top-level yuicompressor-x.y.z/ di-
rectory, run the ant command to build YUI Compressor:

$ ~/Documents/yui/utils/yuicompressor-2.4.7 $ ant
Buildfile: /Users/goer/Documents/yui/utils/yuicompressor-2.4.7/build.xml

-load.properties:

-init:

build.classes:
 [mkdir] Created dir: ...

... (SNIP) ...

BUILD SUCCESSFUL
Total time: 6 seconds

This generates a usable JAR file in the build/ directory.

3. Run yuicompressor-x.y.z.jar on a CSS or JavaScript file. The -o option writes the
minified output to a file rather than stdout:

$ wc /tmp/electron.js
 51 161 1913 /tmp/electron.js
$ java -jar build/yuicompressor-2.4.7.jar -o /tmp/electron-min.js /tmp/electron.js
$ wc /tmp/electron-min.js
 0 17 1079 /tmp/electron-min.js

4. GZIP the minified results.

Discussion
When people speak of “compression” on the Web, they’re often referring to HTTP
compression. In HTTP compression, the server compresses source files with a scheme
such as GZIP, and clients retrieve these files using HTTP, uncompress them, and use
them. HTTP compression is an important part of your toolkit, and performance scoring
utilities such as YSlow and Page Speed take this into account.

Although GZIP works well on text files such as HTML, CSS, and Java-
Script, it has little effect on binary images such as GIFs, JPEGs, and
PNGs, as these files are already compressed. However, it is still possible
to reduce compressed image file sizes further using other techniques.
For example, try the YSlow Smush.it utility.

However, there is a second approach for reducing file sizes that complements HTTP
compression. This approach is called minification. A hand-authored JavaScript file
contains all sorts of extra characters that are useful for humans responsible for author-

382 | Chapter 12: Professional Tools

www.it-ebooks.info

http://yuilibrary.com/download/yuicompressor/
http://developer.yahoo.com/yslow/smushit/
http://www.it-ebooks.info/

ing the code, but that aren’t necessary for JavaScript engines responsible for execut-
ing the code.

For example, you might imagine writing a post-processor that strips extra whitespace
and comments, resulting in a smaller file that still has the same behavior in the browser.
This technique is straightforward and does in fact save a substantial number of bytes
on top of what HTTP compression saves. Success! But can you do better?

With a more sophisticated approach, you can minify more aggressively. JavaScript
engines do not require functions, variables, and other symbols to have long human-
readable names. Converting those symbols to single letters would provide even more
savings. However, blindly converting every variable name is dangerous. The algorithm
has to differentiate between variables that are hidden safely in a local scope and vari-
ables that are accessible outside the program. At this point, the algorithm has to operate
on JavaScript as a stream of tokens, not as a giant string.

The YUI Compressor is a Java command-line tool that relies on Mozilla’s Rhino Java-
Script engine to tokenize the source JavaScript file. This enables YUI Compressor to
analyze the source and determine which symbol names are in a local scope and therefore
safe to minify. By itself, variable renaming saves more bytes on average than simple
whitespace stripping. Beyond that, parsing JavaScript enables YUI Compressor to run
a battery of additional techniques, such as:

• Concatenating large strings by safely removing the + operator (which might have
the side effect of slightly speeding up your code execution)

• Removing comments and whitespace

• Safely replacing bracket notation with dot notation where safe (foo["bar"] be-
comes foo.bar)

• Safely replacing quoted literal property names (for instance, {"foo":"bar"}
becomes {foo:"bar"})

• Removing semicolons in places where JavaScript’s automatic semicolon insertion
would terminate the statement anyway

Some of these techniques are actually bad practice for authoring code,
precisely because they make the code hard for humans to read and
maintain. But here, this is OK—minified code is for JavaScript engines,
not humans.

In addition to JavaScript minification, YUI Compressor can also use regular expressions
to minify CSS files. The result is minification that is efficient, but conservative and safe,
typically shrinking file sizes 50% for JavaScript and 35% for CSS. Combining HTTP
compression and minification, you can expect JavaScript files to be 85% smaller, and
CSS to be about 80% smaller.

12.12 Minifying Your Code | 383

www.it-ebooks.info

http://www.it-ebooks.info/

Unlike HTTP compression, minification is too slow to try to do on the fly. Minification
should be part of your build process. In the YUI build process, all core library files are
passed through both YUI Compressor and JSLint.

Certain coding practices can either help or hinder YUI Compressor’s ability to do its
job. Running YUI Compressor with the -v option displays advice on how to improve
minification. In general, these practices include:

• Using every variable you define. If you’re trying to make your program smaller, an
excellent place to start is removing all dead code.

• Defining every variable you use. Failing to define a variable creates it in the global
scope, which means it cannot be safely renamed.

• Defining a variable only once in a given scope.

• Avoiding the eval() function. The code executed in an eval() gains access to local
variables in the scope where eval() is called. Since there is no way to know if the
eval() will actually use any of these local variables, YUI Compressor cannot safely
rename any variables in this scope.

• Avoiding the with statement. Like eval(), with interferes with code minification.
Since with confuses the distinction between variables and object properties, YUI
Compressor cannot safely rename any variables in the scope where with is called.
Also note that with is no longer allowed when running in ECMAScript 5 strict
mode.

• Minimizing the use of global variables. YUI Compressor cannot rename global
variables for the obvious reason that other code on the page might be using those
variables.

• Using constants to represent repeated literal values. Storing a common message
string in a variable makes it easier to update and reuse that value later on. But as a
bonus, this practice helps out YUI Compressor. YUI Compressor does not replace
literal values, so defining common literal values as constants enables YUI to rename
values that it couldn’t rename before.

• Storing local references to objects and values. YUI Compressor can’t rename global
variables or multilevel object references, but storing these references in local vari-
ables enables YUI Compressor to rename them. In Example 12-17, YUI Compres-
sor cannot minify MyApp.MyModule.MyClass.

Example 12-17. Failing to minify multilevel object reference

function frobozz(){
 if (MyApp.MyModule.MyClass.hasSword()) {
 MyApp.MyModule.MyClass.killTrollWithSword();
 }
 else {
 MyApp.MyModule.MyClass.death();
 }
}

384 | Chapter 12: Professional Tools

www.it-ebooks.info

http://www.it-ebooks.info/

However, if you store this object reference in a local variable, MyApp.MyModule
.MyClass need only appear once at the top of this function, and YUI Compressor
can then compress all the instances of the variable myClass. See Example 12-18.

Example 12-18. Successfully minifying local variable of multilevel object reference

function frobozz(){
 var myClass = MyApp.MyModule.MyClass;
 if (myClass.hasSword()) {
 myclass.killTrollWithSword();
 }
 else {
 myClass.death();
 }
}

Finally, YUI Compressor supports special syntax that provides fine-grained control
over how minification works.

First, there are situations where you are required to preserve comments even in minified
production code, such as copyright or license statements. To preserve a multiline com-
ment, include an exclamation point as the first character:

/*! Copyright 2012, Great Underground Empire Inc. This is a very
 * important license statement. If you fail to include this license,
 * you might be eaten by a grue.
 */

Second, you can prevent individual local variables, function names, or function argu-
ments from being renamed by using a hint. A hint is a string at the very beginning of
the function definition that contains a comma-separated list of variable:nomunge
tokens, as in:

function zorkmid(frobozz, xyzzy) {
 "xyzzy:nomunge, grue:nomunge, plugh:nomunge";

 var grue = true;
 function plugh() {...}
 ...
}

This would permit YUI Compressor to rename frobozz, but preserve xyzzy, grue, and
plugh.

See Also
YUI Compressor; HTTP compression; YSlow; YSlow Smush.it; Page Speed; Rhino
JavaScript engine; Stoyan Stefanov’s analysis of minification on JavaScript and CSS file
sizes.

12.12 Minifying Your Code | 385

www.it-ebooks.info

http://yuilibrary.com/projects/yuicompressor/
http://en.wikipedia.org/wiki/HTTP_compression
http://developer.yahoo.com/yslow
http://developer.yahoo.com/yslow/smushit/
http://code.google.com/speed/page-speed/
http://www.mozilla.org/rhino/
http://www.mozilla.org/rhino/
http://www.phpied.com/reducing-tpayload/
http://www.phpied.com/reducing-tpayload/
http://www.it-ebooks.info/

12.13 Documenting Your Code
Problem
You want to make sure that people can figure out how to use your JavaScript API.
(“People” can include your teammates, customers, and even yourself six months from
now.)

Solution
Use YUI Doc to create documentation from comments in source code. Like YUI Test,
YUI Doc is a standalone project. YUI Doc can generate documentation for non-YUI
code or even languages other than JavaScript.

Example 12-19 takes the method from Recipe 12.7 and enhances it with some com-
ments to generate API documentation. To show off the capabilities of YUI Doc a little
better, changeToRed() is no longer a standalone function—it is now a method that be-
longs to a class, ColorChange, which in turn belongs to an Example module.

Example 12-19. Documenting a method

/**
 * Provides toy classes and methods used to show how unit testing
 * works in YUI Test.
 * @module example
 * @submodule example-async
 * @for ColorChange
 */

/**
 * Provides simple timed style changes that you can use to learn how
 * to write asynchronous tests.
 * @class ColorChange
 */
Example.ColorChange = {

 /**
 * After the specified timeout, changes the body of the document
 * to "rgb(255,0,0)" and fires an "example:red" event. This is a toy
 * function used to illustrate asynchronous testing.
 * @method changeToRed
 * @param {Number} timeout The number of ms to wait before changing
 * the body to red.
 */
 changeToRed: function (timeout) {
 setTimeout(function () {
 Y.one('body').addClass('foo');

 /**
 * Indicates that the background has changed to red. This is
 * the event to listen for when running an asynchronous test
 * with wait() and resume().

386 | Chapter 12: Professional Tools

www.it-ebooks.info

http://www.it-ebooks.info/

 * @event example:red
 * @type Event:Custom
 */
 Y.fire('example:red');
 }, timeout)
 }
};

To convert this into documentation:

1. Install Node.js and npm if you haven’t already. Then install the yuidocjs package
using npm. Since YUI Doc is a tool designed to be used all over your system, consider
using the -g flag:

$ npm install -g yuidocjs

The yuidocjs npm package is, at the time of writing, alpha software.
The package name is subject to change. Until the JavaScript
version of YUI Doc stabilizes, you can always use the legacy Python
version of YUI Doc.

2. Run yuidoc on the directory where your source code resides:

$ yuidoc /path/to/src

yuidoc recurses through the directory and generates a raw JSON representation of
your documentation in ./out/, along with finished HTML documentation files and
assets. The HTML output has the same look and feel as the API documentation
on yuilibrary.com. The look and feel is driven by Handlebars.js templates, and so
is completely customizable.

Discussion
YUI Doc is a documentation generator, a tool that creates API documentation from
specially formatted doc comments. The most famous tool of this type is probably
Javadoc, but there are many others, including Doxygen, phpDocumentor, and JsDoc
Toolkit.

Most documentation generators parse source code for a particular language or set of
languages. YUI Doc is different in that it just parses YUI doc comments, which means
you must explicitly declare every entity you are documenting. However, the advantage
of this approach is that YUI Doc is language-neutral; you can use it to document an
API in nearly any language, not just JavaScript.

Similar to Javadoc, YUI Doc’s syntax relies on multiline comment blocks that contain
YUI Doc tags that start with an @, such as @param or @returns. A YUI Doc comment
block:

• Must contain one and only one of these primary tags: @module, @class, @method,
@property, @event, or @attribute

12.13 Documenting Your Code | 387

www.it-ebooks.info

http://developer.yahoo.com/yui/yuidoc/
http://www.it-ebooks.info/

• May contain a plain-text description

• May contain one or more secondary tags, such as @param, @type, and @returns

For more information about the available tags and how to use them, refer to the YUI
Doc documentation.

YUI Doc represents a JavaScript library as an organized structure of modules and
classes. A module in YUI Doc is an overarching piece of a larger library, vaguely
analogous to a package in Python or Java. JavaScript does not (yet) have native modules,
but modules are an important way to organize your library, and in fact YUI Doc requires
you to define at least one module in your documentation. This focus on modules is
another key differentiator between YUI Doc and other documentation generators. YUI
Doc assumes that each module resides in its own top-level directory. Any code in a
child directory automatically belongs to that module. It is also possible to break mod-
ules into submodules. For example, node is a module, and node-base and node-event-
simulate are submodules.

Each module contains one or more classes. Although JavaScript is a prototypal lan-
guage, if you have some object that you use in a classlike way, YUI Doc provides explicit
support for this. Within classes, you can also define properties, events, and attributes
(object configuration values).

The core feature of all documentation generators is that they ensure the documenta-
tion’s source exists right next to the source code. This treats API documentation more
like source code, which in turn helps keep the documentation accurate. If you add a
parameter to a method, you are more likely to remember to update the documentation
if that documentation source sits just a line or two above the method signature.

Although documentation generators are the right tool for writing API documentation,
crafting effective doc comments is tricky. The problem is that you are serving two
audiences: people who read the generated API documentation, and people who read
the source code. Take care not to clutter your source with lots of “line noise” comments
that make it hard to read your code. Doc comments should be informative but terse.

Perhaps the most common mistake is writing doc comments that simply restate the
name of the method—for example, documentation like:

getColor(): Gets the color.

There is almost always something more useful to say than this. Focus on the “how” and
the “why” rather than the “what.” Is there an important pattern (or antipattern) to look
out for? Edge cases to consider? Your doc comments should highlight things that would
be hard to figure out simply by knowing the method signature or by reading the source
code. If all else fails, keep in mind that poor doc comments are worse than empty doc
comments.

On the other extreme, avoid writing very verbose doc comments, sprinkled with lots
of special tags and metadata. As with any type of comment, don’t let doc comments

388 | Chapter 12: Professional Tools

www.it-ebooks.info

http://www.it-ebooks.info/

overrun your source code and become clutter. One nice thing about YUI Doc is that
its syntax is relatively small, limited to a useful set of tags that describe components of
the API and how they relate to each other. Other documentation generators offer doz-
ens of additional tags that control the formatting or that duplicate metadata that is
already in your version control system. These tags seem like nifty features, but lead to
worse documentation.

Because YUI Doc does not actually parse JavaScript, it enables you to write doc com-
ments far away from the method, class, or other component being documented. Don’t
do this. The key feature of documentation generators is making maintenance easier by
keeping documentation close to the source. The only reason to break this pattern is for
modules, which might not map directly to a particular continuous chunk of source
code.

Don’t abuse YUI Doc to write tutorials, conceptual guides, or other long form docu-
mentation. This kind of material belongs in a user manual or developer guide, not an
API reference. Instead of using a documentation generator here, use a general docu-
mentation system such as DocBook or Sphinx. The good news is that raw YUI Doc
output is just JSON, which you can transform and incorporate into a larger developer
guide.

See Also
YUI Doc; DocBook XML; Sphinx.

12.13 Documenting Your Code | 389

www.it-ebooks.info

http://yuilibrary.com/projects/yuidoc/
http://docbook.org
http://sphinx.pocoo.org
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index

Symbols
.use command, 320
<a> element, 107, 240, 334
<abbr> element, 151
<applet> element, 151
 element, 151, 269
<body> element, 10, 71, 94, 154, 177, 193, 224,

225, 228, 245, 246, 334
<cite> element, 151
<code> element, 152
<div> element, 10, 53, 82–83, 93–94, 96, 98,

155
 element, 59, 151
<form> element, 132, 134, 135
<head> element, 97, 326
<html> element, 325
<iframe> element, 134, 135
 element, 240, 243
<input> element, 259, 262, 263, 265, 327,

328
<label> element, 328–329
 element, 101, 141, 184, 211
<link> element, 11, 21, 33, 150, 189, 193, 326
<mark> element, 269
<marquee> element, 300
<meta> element, 340
<p> element, 82, 107, 154, 177
<pre> element, 9, 67, 152
<script> element, 1, 5–6, 7, 22–23
<select> element, 264
 element, 180, 244, 253, 324
 element, 151, 194, 269
<table> element, 60, 89, 141
<tbody> element, 60, 89

<td> element, 141
<textarea> element, 262, 265
<thead> element, 89
<title> element, 298
<tr> element, 60, 141
 element, 25, 119, 184, 213, 225
@class tag, 387
@event tag, 387
@method tag, 387
@module tag, 387
@param tag, 387, 388
@property tag, 387
@returns tag, 387
@type tag, 388
{callback} parameter, 138

A
<a> element, 107, 240, 334
<abbr> element, 151
abort() method, 123
accessibility

ARIA attributes
adding to form error messages, 327–

329
widgets with, 329–335

defining translated strings, 335–337
internationalizing widgets, 337–341
preventing FOUC, 324–327

Accessible Rich Internet Applications (see
ARIA)

action attribute, 133
add() method, 18, 19, 22, 201, 204
addAttrs() method, 165
addClass() method, 54–57, 56, 60, 62, 93, 224
addContent() method, 80

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

391

www.it-ebooks.info

http://www.it-ebooks.info/

addDynamicARIA() method, 332
addEventListener() method, 109
addHandle() method, 83
addMethod() method, 65, 66
addTarget() method, 104, 107–108, 207–211,

213
addValue() method, 295, 296
after() method, 92, 104, 114–115, 165, 166,

167, 175, 194, 206, 207
afterHostEvent() method, 189
afterHostMethod() method, 187, 189, 332
Ajax (Asynchronous JavaScript + XML)

cross domain, 135–140
DataSource connection

normalizing responses with DataSchema
utility, 146–148

querying data with, 142–146
getting JSON data with script nodes, 135–

138
history of, 121
HTTP error codes, 126, 128
I/O module and, 121
JSONP, 135–138
loading content directly into node, 129–

132
request lifecycle, 123–126
XHR data, 122–126

errors during transport, 126–129
submitting forms with, 132–133
uploading files with, 134–135

YQL
fetching and displaying data with, 138–

140
scraping HTML with, 140–142

alert() method, 232, 343–345, 353
align() method, 229
all() method, 47, 54, 62, 269
ancestor() method, 54
ancestors() method, 54
anchors property, 240
AnnoyingCheckboxGroup class, 302
ant command, 382

(see also YUI Builder)
AOP API (aspect-oriented programming)

, 92, 119–120
append() method, 64, 224
appendChild() method, 64
Apple's Safari browser, 157, 243, 305, 323
<applet> element, 151

applications, 41
(see also Base class infrastructure)
models and views, 207–210
routing and, 219–220
structuring, 161–163
web applications versus native, 41

applications, driving with custom events, 104–
109

apply() method, 148
areEqual() method, 354, 355
areNotEqual() method, 355
areNotSame() method, 355
areSame() method, 355
ARIA (Accessible Rich Internet Applications),

324
attributes

adding to form error messages, 327–
329

widgets with, 329–332
aria-describedby attribute, 328–330
aria-labelledby attribute, 328–329
aria-required attribute, 328
arrays

filtering, 283–284
iterating over, 280–282

aspect-oriented programming (AOP API)
, 92, 119–120

Asynchronous JavaScript + XML (see Ajax)
AsyncQueue, 366
AtMostOneCheckboxGroup, 301
attachEvent() method, 109
Attribute API, 109, 163–167, 175, 207
attributes

adding, 188, 194–196, 324, 327–329
ATTRS property and, 169
broadcast, 106–108
change events from, 165–167, 195, 204
configuring, 165–167
getting, 163, 166
managing state with, 163–167
setting, 163, 166
validating, 166

AttrName property, 167
attrs parameter, 200
ATTRS property, 169
AutoComplete widgets, 262–264

results, 265–270
customizing list of, 273–275
highlighting and filtering, 265–270

392 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

with remote data, 270–273
AutoCompleteList, 264

B
 element, 151, 269
Back button, 295–299
Base API

alternative to, 316
documentation, 170
Plugin.Base, 188

Base class infrastructure
components

with Y.Base.create(), 170–172
with Y.extend(), 167–170

managing state
saving changes in URL, 213–216
with attributes, 163–167

models
managing with syncing ModelList, 201–

204
persisting with sync layer, 196–201
representing data with, 194–196

plugins
creating, 185–187
that alter host behavior, 187–189

routes, 216–220
views

rendering HTML with, 204–207
rendering ModelList with, 210–213
rendering models with, 207–210

widgets
building CSS with, 189–191
bundling CSS with, 191–193
creating, 173–178
rendering remote data with, 182–185
that use progressive enhancement, 178–

181
before() method, 116
beforeHostMethod() method, 189
bind() method, 111
bindUI() method, 175, 184
blur() method, 176
<body> element, 10, 60, 71, 89, 94, 154, 177,

193, 224, 225, 228, 245, 246, 334
bodyContent attribute, 228, 232, 237
Bookmark object, 201
BookmarkView class, 207, 211, 213
boundingBox, 175–177
BOUNDING_TEMPLATE, 176

browsers
Firefox, 15, 37, 156, 305, 323, 345
Google Chrome, 15, 46, 243, 305
Internet Explorer, 37, 60, 97–98, 109, 121,

128, 160, 269, 305
loading modules based on capabilities of,

34–37
multiple, precommit testing in, 374–377
normalizing style inconsistencies, 150–151
Opera, 305
Safari, 157, 243, 305, 323

bubbling, event, 97
buttons, consistent, 159–160

C
CacheOffline class, 36
caching

Cache class, 36, 108
CacheOffline class, 36
requests with DataSourceCache, 145
Yeti and, 375

caching function call results, 288–289
Calendar widgets, 257–260–262
CalendarBase class, 260
CalendarBase.TWO_PANE_TEMPLATE, 259
callback method, 196, 197, 200
{callback} parameter, 270–272
Cascading Style Sheets (see CSS)
categoryKey property, 255, 256
cbFunc property, 137
centered() method, 229
charCode property, 94
charts, plotting data in, 255–257
checkbox groups, 300–302
CheckboxGroup class, 301
Chrome browser, 15, 46, 243, 305
<cite> element, 151
className property, 56, 58
click events, 93–95
cloneNode() method, 63
code

documenting, 386–389
minifying, 381–385
use of examples, xv–xvi

<code> element, 152
collections of elements, 60–62
color values, converting, 294
ColorChange class, 386
command-line tools, 313–316

Index | 393

www.it-ebooks.info

http://www.it-ebooks.info/

building, 313–316
REPL (Read-Eval-Print Loop), 317–320
YUI Compressor, xiii, 343, 381–385
yuitest, 379–381

community, xiii–xiv
config object, 170
config parameter, 170
configurations, reusable, 27–30
console.log() method, 315, 348
ConsoleFilters, 351, 352
container event property, 102
contentBox property, 175–177, 225
CONTENT_TEMPLATE, 176, 259
create() method, 201, 204
CSS (Cascading Style Sheets)

applying consistent fonts, 152–154
bundling with widgets

as CSS module, 189–191
as skin, 191–193

classes, 55–57
consistent buttons, 159–160
Grids system

for responsive design, 157–159
laying out content with, 154–156

normalizing browser style inconsistencies,
150–151

rebuilding uniform Base styles, 151–152
csv table, 142
currentTarget, 93, 94, 101, 102
currentTarget property, 102
customRenderer property, 260

D
data property, 146, 251
dataProvider, 255
DataSchema utility, 146–148
DataSource, 108, 122, 142, 143, 144, 145, 146,

147, 148
and custom events, 108
compared to Model, 195
normalizing responses with DataSchema

utility, 146–148
querying data with, 142–146
remote JSON, displaying in DataTable

widget, 254–255
datasource-get, 142
DataSource.Function, 143, 145
DataSource.Get, 143, 144–146, 254, 255
DataSource.IO, 143, 145, 147

DataSource.Local, 143, 144–146
DataTable widgets, 250–251

displaying remote JSON DataSource
connection in, 254–255

formatting appearance, 251–253
DataType, 292–294
DataType.Date object, 260, 293
DataType.Date.format() method, 293
Date object, 11, 292
DateAssert, 355
DateAssert.isTimeEqual() method, 355
dates, formatting, 292–293
DD (see Drag and Drop)
DD.Drag, 81–83
debug logging

enabling, 345–348
rendering output in page, 348–352

decimalPlaces property, 291
defaultSkin property, 10
delegate() method, 100–102, 116, 118
delegating

events, 100–102
implementing with synthetic events, 92,

118
delete property, 200
dependencies, modules with, 19–22
destroy() method, 112, 170, 177, 198, 200,

362
destructor() method, 169, 170, 173, 174, 177,

188, 329, 330, 332, 335
detach() method, 104, 112, 116–118
disable() method, 177
disabledDatesRule property, 261
dispatch() method, 220
display() method, 240
displayIssues() method, 144, 146
<div> element, 10, 53, 82–83, 93–94, 96, 98,

155
Document Object Model (see DOM)
document.getElementById() method, 46, 53
document.write() method, 63, 64
DOM (Document Object Model)

manipulation
CSS classes, 55–57
elements, 52–55, 59–64
getting and setting properties, 57–59
nodes, 64–68

synthetic, 116–118
Drag and Drop (DD)

394 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

and Resize API, 85
DD.Drag, 81–83
reorganizing table row using, 86–89

dragging
elements, 81–84
Overlay widget, 231–232

E
each() method, 87, 89, 204, 281
editPost() method, 218
elements

changing content of, 59–60
collections of, 60–62
dragging, 81–84
fading, 71–73
getting references to, 52–55
hiding, 70–71
lifecycle events, 95–97
moving, 74–76
new, 62–64

 element, 59, 151
emitFacade property, 108
enable() method, 177
EnableIfAnyCheckboxGroup, 301
end() method, 269
energyChange, 175
enforceConstraints() method, 301, 302
enter() method, 237, 239
entryTemplate, 351
error messages, form, 327–329
escaping

content of table cell, 253
HTML, 194
user input, 207, 299

ev.preventDefault() method, 165
eval() method, 384
Event API, 71, 91
event handlers

controlling order of execution, 113–116
object methods as, 109–111
testing by simulating events, 359–362

Event object, 91
event subscriptions

assigning for XHR transaction, 125
detaching, 112–113
managing large numbers of, 100–102
methods for hosting, 104

events

controlling propagation and bubbling, 97–
99

custom
driving applications with, 104–109
firing and capturing, 102–104

delegating, 100–102
detaching subscriptions, 112–113
preventing default behavior, 99–100
responding to

element and page lifecycle events, 95–
97

method call with other method, 118–
120

mouse, click, and keyboard events, 93–
95

synthetic DOM, 116–118
events property, 205, 206
EventTarget, 104, 106, 109, 162, 167, 169, 170,

205
expect() method, 366

F
fadeIn, 73, 78, 131
fadeOut parameter, 73, 78, 131
fading elements, 71–73
File API, 135
files, uploading with XHR data, 134–135
fillToBelowViewport() method, 80
filter() method, 204, 261, 283
filterFunction property, 260, 261
fire() method, 104, 108
Firefox browser, 15, 37, 156, 305, 323, 345
Flash of Unstyled Content (FOUC), 324–327
focus() method, 176
focusOn, 234
fonts, applying consistently, 152–154
footerContent, 228
forEach() method, 282
<form> element, 132, 134, 135
form object, 132
format() method, 292, 293
formatter function, 253, 273
formatter property, 252
formatting

dates, 292–293
numbers, 291–292

FormManager object, 305
formmgr-message-text class, 306
forms

Index | 395

www.it-ebooks.info

http://www.it-ebooks.info/

adding ARIA attributes to error messages,
327–329

managing and validating, 305–307
modal, 234–236
submitting with XHR data, 132–133

FOUC (Flash of Unstyled Content), 324–327
<iframe> element, 134, 135
frameworks, xii
FROM table, 200

G
gallery modules, 11–13
gallery-toRelativeTime, 293
generateID() method, 80
GET parameter, 123, 132
get() method, 54, 57–59, 68
getAllResponseHeaders() method, 128
getAsHTML() method, 194, 195
getAsURL() method, 195
getAttribute() method, 58
getClassName() method, 184
getData() method, 58
getDOMNode() method, 55, 58, 80
getHTML() method, 59
getResults() method, 372
getSpeed() method, 174
getter function, 66, 68
GitHub API, 148
Google Chrome browser, 15, 46, 243, 305
grid CSS class, 154
Grids system

for responsive design, 157–159
laying out content with, 154–156

grouping custom modules, 24–27

H
halt() method, 100, 107
Handlebars templates, 320–322
_handler() method, 118
handlers

controlling order of execution, 113–116
object methods as, 109–111
testing by simulating events, 359–362

hasClass() method, 55, 56
hasOwnProperty() method, 282
<head> element, 97, 326
headerContent, 228
hide() method, 70–73, 79

hideOn attribute, 233, 234, 240
hideOverlay() method, 43
hiding elements, 70–71
history, 295–299
History object, 296, 298
history.addValue() method, 295
HistoryHash object, 295, 296, 298
host behavior, altering with plugins, 187–189
href property, 57
HTML (Hypertext Markup Language)

rendering with views, 204–207
scraping with YQL, 140–142

<html> element, 325
HTMLElement object, 80, 91
HTML_PARSER property, 63, 177–181, 207
http.createServer() method, 321
Hypertext Markup Language (see HTML)

I
idAttribute property, 201
if statement, 359
iframes, 45–48
ImageLoader, 81
 element, 240, 243
indexChange event, 249
indexOf() method, 62
infinite scroll effect, 80–81
info() method, 25
init() method, 362
initializer() method, 169, 170, 173, 181, 188,

206–210, 329, 332, 335
innerHTML property, 58–60, 63–64
innerText property, 66
<input> element, 259, 262, 263, 265, 327,

328
input fields, 304–305
inputNode, 263
insert() method, 64
insertBefore() method, 64
instances, binding to iframe, 45–48
internationalization, 206, 258, 324, 341
Internet Explorer browser, 37, 60, 97–98, 109,

121, 128, 160, 269, 305
intl:langChange event, 341
inViewportRegion() method, 80
isArray() method, 355
isBoolean() method, 355
isFunction() method, 355
isInProgress() method, 123

396 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

isInstanceOf() method, 355
isMap property, 58
isNaN() method, 355
isNew() method, 199
isNull() method, 355
isNumber() method, 355
isObject() method, 355
isString() method, 355
isTrue() method, 355
isTypeOf() method, 355
isUndefined() method, 355
item() method, 204
iterating over arrays and objects, 280–282

J
JavaScript Object Notation (see JSON)
jQuery library

JS Rosetta Stone, xiv
loading as module, 31–34

JSON (JavaScript Object Notation) data
displaying remote DataSource connection in

DataTable widget, 254–255
getting using script nodes (JSONP

protocol), 135–138
JSONP (JSON with Padding) protocol, 135–

138

K
keyboard events, 93–95, 303–304
keyCode, 94, 303

L
lang property, 29, 337, 340, 341
langChange event, 341
languages, 337–341
leave() method, 237, 239
 element, 101, 141, 184, 211
libraries, xii
lifecycle events, 95–97
Lightbox object, 244
lightboxes, 239–244
<link> element, 11, 21, 33, 150, 189, 193, 326
listPosts() method, 218
load() method, 121, 129, 131, 196–200, 204,

213
loadOptional, 21
local servers (see servers)
localStorage, 34–36, 184, 196–198, 201

location parameter, 321
log() method, 345, 346, 347
logCreate() method, 119
logEvent, 351
logging, 1

(see also debug logging)
logLevel, 350
logSource, 350–351

M
<mark> element, 269
mark() method, 111
<marquee> element, 300
maximumDate, 224, 258
<meta> element, 340
methods

custom, adding to nodes, 64–66
responding to call with another method,

118–120
Microsoft Internet Explorer browser, 37, 60,

97–98, 109, 121, 128, 160, 269, 305
minimumDate, 258
mobile devices

responsive design, 157
testing on, 377–378

mock object facilities, 362–366
modal forms (see forms)
model property, 204
model.save() method, 204
modelChange event, 208
ModelList, 201–204, 210–213
models

managing with syncing ModelList, 201–
204

persisting with sync layer, 196–201
rendering with views, 207–210
representing data with, 194–196

modules
binding YUI instance to iframe, 45–48
custom, 17–19, 24–27
defining rollups, 30–31
loading

based on browser capabilities, 34–37
default skins, 10–11
gallery modules, 11–13
individual modules, 8–10
jQuery library as module, 31–34
locally hosted builds, 14–17
on demand, 39–42

Index | 397

www.it-ebooks.info

http://www.it-ebooks.info/

predictive based on user interaction, 42–
45

rollups and modules, 4–6
simple YUI, 6–8
static, 48–49
synchronously on servers, 312–313
YUI 2 widgets, 13–14

reusable, 22–23, 27–30
with dependencies, 19–22

monkeypatching, 38–39
mouse events, 93–95
move() method, 228
moveOnEnd, 89
Mozilla Firefox browser, 15, 37, 156, 305, 323,

345

N
NAME property, 104, 106, 168, 171, 172, 176
namespace, 1, 19, 186, 263
navigation, 303–304
newSelection property, 257
newVal property, 165, 167
next parameter, 218
next() method, 54, 218
nextSibling, 97
nextSibling() method, 54
NINJA, 1
NINJA.throwShuriken() method, 1
Node API, 4, 55, 63–64, 80–81
Node objects, 46, 64, 65
Node.js (see server-side JavaScript)
nodeFormatter function, 253
NodeList, 56, 58, 60–62, 65–66
nodes, 1

(see also script nodes)
adding custom methods to, 64–66
adding custom properties to, 66–68
loading content directly into, 129–132
resizable, 84–86

notifier.fire() method, 117
NS property, 186, 189
numbers, formatting, 291–292

O
object methods, as handlers, 109–111
objects

composing and inheriting from, 285–288
iterating over arrays and, 280–282

merging, 284–285
offsetLeft, 94
ok property, 107
on object, 76
on property, 123
on() method, 93, 104, 109, 110, 111, 112, 113,

114, 115, 116, 117, 118, 119
and changing element’s background color,

93
and element and page lifecycle events, 95,

97
once() method, 43, 45, 112, 115
onceafter() method, 115
one() method, 47, 54, 62
onHostEvent() method, 189
Open Web Application Security Project

(OWASP), 300
Opera browser, 305
Overlay widgets, 225–229

aligning and centering, 229–230
draggable, 231–232
lightbox from, 239–244
tooltip from, 236–239

overlayBottom, 231
overlayLoading, 43
overlayTop, 231, 232
OWASP (Open Web Application Security

Project), 300

P
<p> element, 82, 107, 154, 177
padding, 176
page lifecycle events, 95–97
pageDown, 303
Panel widgets, 232–234
params property, 218
parentNode, 58, 176, 177
parse() method, 200
parser function, 148
parsing XML, 293–294
patching, 1

(see also monkeypatching)
pirate property, 67, 68
Pjax, 131
plug() method, 82, 170, 185, 186, 188, 231–

232
Plugin, 112, 185
Plugin.Base utility object, 187, 188
Plugin.Base utility object utility object, 161

398 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

Plugin.DataSourceJSONSchema, 254
Plugin.DataTableDataSource, 254
Plugin.DDConstrained, 83
Plugin.DDProxy, 83
Plugin.Drag API, 232
Plugin.Host API, 186, 187
Plugin.Host API API, 186
Plugin.Stats, 185
Plugin.WidgetAnim API, 239
PluginHost API, 205
PluginHost API API, 162
plugins

ARIA, retrofitting widgets with, 332–335
creating, 185–187
that alter host behavior, 187–189

pop() method, 62
position property, 74, 78
POST, 124, 134, 135
postValidateForm() method, 307
<pre> element, 9, 67, 152
precommit testing (see testing)
prepend() method, 64
preventDefault() method, 99, 100, 107, 108,

114, 115
preventedFn field, 108
previous() method, 54
previousSibling() method, 54
prevVal, 165, 167
print() method, 344
professional tools (see tools)
ProgressBar widget, 332, 335
progressive enhancement, for widgets, 178–

181
propagation, event, 97–99
properties

custom, adding to nodes, 66–68
DOM, 57–59

publish() method, 104, 106–108, 169
push() method, 62
pushState() method, 215, 216
PUT, 124

R
Read-Eval-Print Loop (REPL), 317–320
readOnly, 165
ready() method, 32
RecordSet utility object, 161
refresh() method, 184

remote connections, JSON DataSource, 254–
255

remote data
AutoComplete widgets with, 270–273
rendering with widgets, 182–185

remove() method, 62, 73, 247, 249, 365
removeAttribute() method, 58, 59
removeClass() method, 55, 56
removeRoot() method, 214
removeTarget() method, 104, 208
render() method, 175–176, 177, 180, 205–206,

209–210, 213, 223–263
rendering tweets, 365
rendering, with views

HTML, 204–207
ModelList, 210–213
models, 207–210

renderUI() method, 173–176, 180–183, 187,
338, 362–366

REPL (Read-Eval-Print Loop), 317–320
replace() method, 64, 67, 215, 220
replaceChild() method, 64
replaceClass() method, 56
report() method, 371
requestTemplate, 273
require() method, 311–313
reset() method, 204
Resize API, 85, 86
response object, 127, 128, 139, 146
responseText property, 123, 127
responseXML property, 127
responsive design, Grids system for, 157–159
result object, 263, 270, 273
resultFields, 255, 270
resultFields array, 146, 147, 148
resultFilters attribute, 265–266
resultFormatter, 273
resultHighlighter attribute, 265–266
resultListLocator, 255, 270–271
resultLocatorList, 147
resultTextLocator, 270–271
resume() method, 366, 367, 368, 369
rollups, 4–6, 5, 30–31
route() method, 220
Router, 213–220, 218, 219
Router API, 163
router.dispatch() method, 220
routes, 216–220, 216, 219
rules property, 260

Index | 399

www.it-ebooks.info

http://www.it-ebooks.info/

run() method, 352, 357, 360, 363, 365, 366,
367, 380

S
Safari browser, 157, 243, 305, 323
save() method, 196–201, 204, 213–216, 220
sayHello() method, 18, 20, 22
schema object, 146
<script> element, 1, 5–6, 7, 22–23
script nodes, getting JSON data using, 135–

138
scriptCallbackParam, 143
scrolling, 1

(see also infinite scroll effect)
scrollLeft, 94
ScrollView, ix
select, 271
<select> element, 264
SelectAllCheckboxGroup, 300–301
selectionChange event, 248–249, 257
selectionMode, 258
sendRequest() method, 143, 145, 146, 147
server-side JavaScript

command-line tools, 313–316
installing and running YUI on, 310–312
loading modules synchronously on, 312–

313
servers

loading builds from local, 14–17
REPL, 317–320
testing, 379–381
YQL

calling on servers, 316–317
constructing and serving pages with

Handlebars templates and,
320–322

set() method, 54, 57, 58, 68, 115, 120, 165, 166,
183

setAttribute() method, 58, 59, 329
setAttrs() method, 59, 200, 329, 332
setData() method, 58
setFunction() method, 307
setHTML() method, 3, 9, 38, 39, 59, 60, 63,

64
setLang() method, 341
setRegex() method, 307
setStyle() method, 56
setStyles() method, 56
setter function, 66

setTimeout() method, 369
setUp() method, 344, 362, 364, 370
setXY() method, 54, 56, 75, 94
shift() method, 62
show() method, 71–73, 79
showNextMonth, 258
showOverlay() method, 40, 42, 43
showPrevMonth, 258
silent parameter, 346
sizeIn transition, 73
sizeOut transition, 73
skin property, 10, 193
skins

bundling CSS with widgets, 191–193
default, 10–11

slice() method, 62
slideEnd event, 244
slideFadeIn transition, 78
slideFadeOut transition, 78
Slider API, 222, 244–247
slideStart event, 244
some() method, 204, 281, 282
 element, 180, 244, 253, 324
srcNode, 180, 181, 225–226, 263, 325
start() method, 269
state

managing with attributes, 163–167
saving changes in URL, 213–216

static loading, 48–49
statusText property, 128
stopDrag() method, 83
stopImmediatePropagation() method, 99, 115
stopPropagation() method, 98, 99, 100, 101,

107, 115
string substitution, templating schemes with,

289–291
String.replace() method, 67
_stringify() method, 359
strings, translated, 335–337
 element, 151, 194, 269
subAttrName property, 167
subscriptions, event (see event subscriptions)
Suitcase event, 36
suites, organizing unit tests into, 356–359
switch statement, 314
sync layer, for models, 196–201
sync() method, 162, 196–201, 204
syncUI() method, 173–176, 180, 184

400 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

T
<table> element, 60, 89, 141
table.data.indexOf() method, 251
tables, reorderable drag-and-drop, 86–89
TabView API, 222, 225, 247, 249

widgets, 247–249
tagName property, 58
TAP (Test Anything Protocol), 372
<td> element, 141
tearDown() method, 344, 362
template property, 206, 211
templates (see Handlebars templates)
templating schemes, with string substitution,

289–291
Test Anything Protocol (TAP), 372
test function, 34, 48
Test.Console widget, 351–352, 356, 360, 361,

363, 367, 380
TestCase objects, 362
testing

asynchronously with wait() function, 366–
370

collecting and posting results, 370–374
event handlers by simulating events, 359–

362
on mobile devices, 377–378
precommit in multiple browsers, 374–377
server-side JavaScript language, 379–381
unit

organizing into suites, 356–359
writing, 352–356

text property, 66, 270
Text.AccentFold API, 270
Text.WordBreak API, 270
<textarea> element, 262, 265
textContent property, 66
thousandsSeparator, 291
<thead> element, 89
<title> element, 298
title parameter, 298
titleChange event, 188, 194
titleElementChange event, 188
toggleClass() method, 56
toJSON() method, 195, 209
tools, 1

(see also command-line tools)
code

documenting, 386–389
minifying, 381–385

debug logging
enabling, 345–348
rendering output in page, 348–352

mock object facilities, 362–366
testing

asynchronously with wait() function,
366–370

collecting and posting results, 370–374
event handlers by simulating events,

359–362
on mobile devices, 377–378
precommit in multiple browsers, 374–

377
server-side JavaScript language, 379–

381
unit, 352–359

Tooltip object, 239
tooltips, from Overlay widgets, 236–239
toRelativeTime() method, 11
<tr> element, 60, 141
Transition API, 62, 69, 75
transition() method, 74, 75, 77, 79
transitions

canned, 77–79
series of, 76–77

translations
defining for strings, 335–337
internationalizing widgets, 337–341

transport, 125
TreeView, 162
trim() method, 352–353, 359, 374, 378, 380
truncate() method, 253
tweets, 184, 365

U
UIs (user interfaces)

elements
dragging, 81–84
fading, 71–73
hiding, 70–71
moving, 74–76

infinite scroll effect, 80–81
reorderable drag-and-drop table, 86–89
resizable nodes, 84–86
transitions

canned, 77–79
series of, 76–77

UI_EVENTS property, 178
 element, 25, 119, 184, 213, 225

Index | 401

www.it-ebooks.info

http://www.it-ebooks.info/

undo() method, 194, 195
unit tests

organizing into suites, 356–359
writing, 352–356

universal access (see accessibility)
universal resource locator (URL), saving state

changes in, 213–216
unplug() method, 82, 170, 186, 232, 335
upgrade() method, 220
upload property, 133
URL (universal resource locator), saving state

changes in, 213–216
url property, 296, 298
.use command, 320
use() method, 5, 9, 18–20, 22, 32, 35, 47, 48
useBrowserConsole, 346, 349
useDisabled property, 133
useMap property, 58
user input, escaping, 299–300
user interaction, enabling predictive module

loading on, 42–45
user interfaces (see UIs)
useSync() method, 310
utilities

arrays
filtering, 283–284
iterating over objects and, 280–282

assigning special behavior to checkbox
group, 300–302

automatically caching function call results,
288–289

converting color values, 294
determining variable type, 278–280
escaping user input, 299–300
formatting

dates, 292–293
numbers, 291–292

history and Back button, 295–299
implementing keyboard actions and

navigation, 303–304
managing and validating forms, 305–307
objects

composing and inheriting from, 285–
288

merging, 284–285
parsing XML, 293–294
reliably detecting input field changes, 304–

305

templating with string substitution, 289–
291

V
validate() method, 199, 200
validateForm() method, 307
validator() method, 165
valueChange event, 118, 244, 304–305
valueFn() method, 166
variables, determining type, 278–280
verify() method, 365–366
View, 163, 210
views

rendering HTML with, 204–207
rendering ModelList with, 210–213
rendering models with, 207–210

vine.leafStatus() method, 287

W
wait() method, 366–370, 366, 367, 368–370,

369
Widget, 162, 163, 171, 176
Widget API

conventions of, 176–177
lifecycle methods of, 173
purpose of, 184

widget.title.set() method, 188
WidgetAnim plugin, 239
WidgetAutohide API, 233, 236, 239, 240, 244,

303, 304
WidgetButtons API, 172, 233, 236
WidgetButtons.DEFAULT_BUTTONS, 236
WidgetChild, 249
WidgetModality API, 172, 233, 236, 239, 244
WidgetParent, 249
WidgetPosition extension, 172, 230, 232, 260
WidgetPositionAlign extension, 230, 232, 260
widgets

AutoComplete, 262–264
results, 265–270, 273–275
with remote data, 270–273

bundling CSS with
as CSS module, 189–191
as skin, 191–193

Calendar, 257–260–262
creating, 173–178
DataTable, 250–251

402 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

displaying remote JSON DataSource
connection in, 254–255

formatting appearance, 251–253
instantiating, rendering, and configuring,

223–225
internationalizing, 337–341
modal dialog or form, 234–236
Overlay, 225–229

aligning and centering, 229–230
draggable, 231–232
lightbox from, 239–244
tooltip from, 236–239

Panel, 232–234
plotting data in chart, 255–257
rendering remote data with, 182–185
sliders, 244–247
TabView, 247–249
that use progressive enhancement, 178–

181
tweets, 365
with ARIA attributes, 329–332
YUI 2, 13–14

WidgetStack API, 232
window object, 109
with statement, 384
word() method, 269

X
XDomainRequest object, 126
xdrReady event, 127
XHR (XMLHttpRequest), 122–126

errors during data transport, 126–129
submitting forms with XHR data, 132–133
uploading files with XHR data, 134–135

XML (Extensible Markup Language
YUI Test format, 372

XML (Extensible Markup Language), 127
(see also AJAX)
DataSchema and, 147
DocBook, 389
responseXML, 127
XMLHttpRequest header, 125
YQL and, 140–142

XML (Extensible Markup Language), parsing,
293–294

XMLDocument object, 293–294
XMLHttpRequest (see XHR)
XMLHttpRequest object, 124, 133

Y
Y object, 4, 8, 14, 17, 18, 19, 95, 106, 380
Y.aggregate() method, 286, 288
Y.all() method, 53, 60, 61, 64
Y.applyConfig() method, 30
Y.Array methods, 62
Y.Array.dedupe() method, 284
Y.Array.each() method, 280–283
Y.Array.filter() method, 283
Y.Array.invoke() method, 281–284
Y.Array.map() method, 273–275
Y.Assert.areEqual() method, 352
Y.augment() method, 109, 167, 187, 286–287
Y.Base, 42, 104
Y.Base.create() method, 170–172, 178, 187,

228, 230, 239, 244
Y.Base.mix() method, 230, 239, 260
Y.before() method, 116
Y.bind() method, 111
Y.cached() method, 288, 289
Y.Color, 294
Y.Color.toHex() method, 294
Y.Color.toRGB() method, 294
Y.Console, 350
Y.Cookie, 35
Y.DataSchema.JSON, 270
Y.DataSource.Get object, 143
Y.DataType.Date.format() method, 292
Y.DataType.Number.format() method, 291
Y.DataType.XML.format() method, 294
Y.DataType.XML.parse() method, 293
Y.DD.DDM, 87, 89
Y.DD.Drag, 81
Y.delegate() method, 118, 240
Y.Do, 116
Y.Do.after() method, 39, 119, 120
Y.Do.before() method, 39, 116, 119, 120
Y.DOM, 80, 81
Y.DOM.inViewportRegion() method, 70, 80
Y.Electron, 337
Y.Escape, 60
Y.Escape.html() method, 234, 299–300
Y.Escape.regex() method, 300
Y.Event.define() method, 116
Y.extend() method, 167–170, 187
Y.fire() method, 102, 103, 108, 351
Y.Frame, 48
Y.Global, 106–108, 166, 346, 350
Y.Global.on() method, 107, 108, 177

Index | 403

www.it-ebooks.info

http://www.it-ebooks.info/

Y.Hello.sayHello() method, 20
Y.Highlight, 275
Y.Highlight.all() method, 268, 275
Y.Highlight._TEMPLATE, 269
Y.Intl API, 177, 206, 324, 336–338, 341
Y.Intl.add() method, 335, 337
Y.Intl.get('electron'), 340
Y.Intl.get() method, 335–337, 341
Y.Intl.setLang() method, 335
Y.io() method, 121–122, 124–125, 127–131,

132–134, 138
Y.JSON.stringify() method, 9, 195
Y.jsonp() method, 136–138, 140, 143
Y.Lang.sub() method, 253, 273–275, 290–291
Y.log() method, 65, 108, 313, 315, 344–350,

345
Y.merge() method, 284–285, 284
Y.mix() method, 285
Y.Mock.expect() method, 364
Y.Mock.Value, 365
Y.Mock.Value.Any, 365
Y.Mock.Value.Boolean, 365
Y.Mock.Value.Function, 365
Y.Mock.Value.Number, 365
Y.Mock.Value.Object, 365
Y.Mock.Value.String, 365
Y.Mock.verify() method, 365
Y.Model, 146
Y.namespace() method, 18, 19
Y.Node, 20, 47, 63, 97, 109
Y.Node objects, 63
Y.Node.addMethod() method, 65
Y.Node.ATTRS, 66
Y.Node.create() method, 60, 63, 64, 118, 119,

206
Y.Node.DOM_EVENTS, 95
Y.NodeList, 97
Y.NodeList.addMethod() method, 66
Y.Object.each() method, 281–282
Y.Object.some() method, 281–282
Y.on() method, 95, 97, 102, 106–108
Y.one() method, 52–55, 59, 61, 64, 93, 95
Y.Plugin.AutoComplete, 262
Y.Plugin.DataSourceCache, 145
Y.Plugin.DataSourceJSONSchema, 146
Y.Plugin.DataSourceXMLSchema, 147
Y.Plugin.Drag, 82, 231
Y.Plugin.Resize, 85
Y.rbind() method, 111

Y.substitute() method, 291
Y.Test, 380
Y.Test.Reporter, 373
Y.Test.Runner.COMPLETE_EVENT, 372
Y.Text.Accentfold.fold() method, 269
Y.Tooltip, 239
Y.Transition.fx, 78, 79
Y.UA object, 37
Y.use() method, 7, 39, 40, 41, 42, 43, 47
Y.WidgetPositionAlign, 229
Y.WidgetPositionAlign.CC, 229
Y.WidgetPositionAlign.TR, 229
Y.WidgetStdMod.HEADER, 236
Y.YQL() method, 138, 140
Yahoo! Query Language (see YQL)
Yeti command, 374–377

is fault tolerant, 377
precommit testing with, 376
simplicity of, 376

YQL (Yahoo! Query Language)
calling on servers, 316–317
constructing and serving pages with, 320–

322
fetching and displaying data with, 138–140
scraping HTML with, 140–142

YUI 2
versus YUI 3, x–xii

libraries and frameworks, xii
reasons for using, x–xi

widgets, 13–14
YUI object, 5, 15, 313
YUI() method, 5, 28, 29, 313
YUI().use() method, 2, 4–9, 11, 17–18, 21, 39,

40, 41, 310–313
YUI.add() method, 2, 6, 17–21, 23, 163, 165,

190, 192
YUITest object, 380
yuitest utility, 379–381
YUI_config object, 3, 27–30

404 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author
Evan Goer is a senior technical writer at Yahoo! in Sunnyvale, California, where he
works for an engineering team that develops Yahoo!’s internal deployment infrastruc-
ture. He also works closely with the YUI core engineering team. Before that, Evan
worked for startups and corporate behemoths alike, documenting everything from how
to speed up applications on big-iron Sun hardware to how to treat cancer patients with
electron beam radiation therapy.

Evan is a Sunnyvale native and holds a bachelor’s of science in physics from Harvey
Mudd College. He is on an eternal quest for the perfect documentation format and
build system.

Colophon
The animal on the cover of YUI 3 Cookbook is a spotted cuscus (Spilocuscus macula-
tus), a reclusive, tree-dwelling marsupial. It is one of the largest members of the possum
family. When the cuscus was first discovered, it was thought to be a monkey because
of the way it moved through the trees and gripped branches with its prehensile tail.

Most spotted cuscuses can be found in New Guinea, but a small population also lives
on the northern tip of Cape York in Australia. Their habitat consists of rainforest or
dense forested areas of mangrove, eucalyptus, or other hardwood trees. These animals
are primarily arboreal and nocturnal. During the day, they rest in tree hollows or nests
they make of vegetation on tree branches. At night, they go out to feed—the cuscus’s
diet is largely made up of fruit, flowers, and leaves, but they are omnivorous and oc-
casionally eat eggs and small birds or reptiles.

Spotted cuscuses are about the size of a large domesticated cat, averaging 3–13 pounds
in weight and about 26 inches long (not counting the tail). Their tails are partially
hairless to better grip branches, and are 13–24 inches long. Their paws also help in
climbing trees: four toes have large claws, while the innermost is opposable—rather
like a human thumb. The fur of the cuscus is thick and woolly, and the color varies
between regions and gender (grey and white, or brown and white). Despite the name
of the animal, only males have spots, though these are more like large splotches.

Cuscuses are very solitary animals, and only come together to mate. However, they do
not have a specific breeding season, so can reproduce throughout the year (nor do they
mate for life). As with other marsupials, a female cuscus shelters her young within a
pouch on her stomach. The gestation period is around 13 days; after birth, the babies
(initially weighing no more than 1 gram) spend 6–7 months in the pouch. Though there
may be as many as three offspring in a litter, only one usually survives.

The cover image is from Wood’s Animate Creatures. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSansMonoCondensed.

www.it-ebooks.info

http://www.it-ebooks.info/

	Table of Contents
	Preface
	YUI 2 Versus YUI 3
	Why Use YUI?
	Library or Framework?

	Who This Book Is For
	Resources and Community
	Conventions Used in This Book
	About the Examples
	Typesetting Conventions

	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Loading Modules
	1.1 Loading Rollups and Modules
	Problem
	Solution
	Discussion

	1.2 Loading SimpleYUI
	Problem
	Solution
	Discussion

	1.3 Identifying and Loading Individual Modules
	Problem
	Solution
	Discussion
	See Also

	1.4 Loading a Different Default Skin
	Problem
	Solution
	Discussion
	See Also

	1.5 Loading Gallery Modules
	Problem
	Solution
	Discussion
	See Also

	1.6 Loading a YUI 2 Widget
	Problem
	Solution
	Discussion
	See Also

	1.7 Loading Locally Hosted Builds
	Problem
	Solution
	Discussion
	See Also

	1.8 Creating Your Own Modules
	Problem
	Solution
	Discussion
	See Also

	1.9 Creating a Module with Dependencies
	Problem
	Solution
	Discussion
	See Also

	1.10 Creating Truly Reusable Modules
	Problem
	Solution
	Discussion

	1.11 Defining Groups of Custom Modules
	Problem
	Solution
	Discussion
	See Also

	1.12 Reusing a YUI Configuration
	Problem
	Solution
	Discussion

	1.13 Defining Your Own Rollups
	Problem
	Solution
	Discussion
	See Also

	1.14 Loading jQuery as a YUI Module
	Problem
	Solution
	Discussion
	See Also

	1.15 Loading Modules Based on Browser Capabilities
	Problem
	Solution
	Discussion
	See Also

	1.16 Monkeypatching YUI
	Problem
	Solution
	Discussion
	See Also

	1.17 Loading Modules on Demand
	Problem
	Solution
	Discussion
	See Also

	1.18 Enabling Predictive Module Loading on User Interaction
	Problem
	Solution
	Discussion

	1.19 Binding a YUI Instance to an iframe
	Problem
	Solution
	Discussion
	See Also

	1.20 Implementing Static Loading
	Problem
	Solution
	Discussion

	Chapter 2. DOM Manipulation
	2.1 Getting Element References
	Problem
	Solution
	Discussion
	See Also

	2.2 Manipulating CSS Classes
	Problem
	Solution
	Discussion

	2.3 Getting and Setting DOM Properties
	Problem
	Solution
	Discussion
	See Also

	2.4 Changing an Element’s Inner Content
	Problem
	Solution
	Discussion

	2.5 Working with Element Collections
	Problem
	Solution
	Discussion
	See Also

	2.6 Creating New Elements
	Problem
	Solution
	Discussion
	See Also

	2.7 Adding Custom Methods to Nodes
	Problem
	Solution
	Discussion

	2.8 Adding Custom Properties to Nodes
	Problem
	Solution
	Discussion

	Chapter 3. UI Effects and Interactions
	3.1 Hiding an Element
	Problem
	Solution
	Discussion

	3.2 Fading an Element
	Problem
	Solution
	Discussion
	See Also

	3.3 Moving an Element
	Problem
	Solution
	Discussion
	See Also

	3.4 Creating a Series of Transitions
	Problem
	Solution
	Discussion

	3.5 Defining Your Own Canned Transitions
	Problem
	Solution
	Discussion

	3.6 Creating an Infinite Scroll Effect
	Problem
	Solution
	Discussion
	See Also

	3.7 Dragging an Element
	Problem
	Solution
	Discussion

	3.8 Creating a Resizable Node
	Problem
	Solution
	Discussion
	See Also

	3.9 Implementing a Reorderable Drag-and-Drop Table
	Problem
	Solution
	Discussion

	Chapter 4. Events
	4.1 Responding to Mouseovers, Clicks, and Other User Actions
	Problem
	Solution
	Discussion
	See Also

	4.2 Responding to Element and Page Lifecycle Events
	Problem
	Solution
	Discussion

	4.3 Controlling Event Propagation and Bubbling
	Problem
	Solution
	Discussion
	See Also

	4.4 Preventing Default Behavior
	Problem
	Solution
	Discussion

	4.5 Delegating Events
	Problem
	Solution
	Discussion

	4.6 Firing and Capturing Custom Events
	Problem
	Solution
	Discussion

	4.7 Driving Applications with Custom Events
	Problem
	Solution
	Discussion

	4.8 Using Object Methods as Event Handlers
	Problem
	Solution
	Discussion

	4.9 Detaching Event Subscriptions
	Problem
	Solution
	Discussion
	See Also

	4.10 Controlling the Order of Event Handler Execution
	Problem
	Solution
	Discussion

	4.11 Creating Synthetic DOM Events
	Problem
	Solution
	Discussion

	4.12 Responding to a Method Call with Another Method
	Problem
	Solution
	Discussion

	Chapter 5. Ajax
	5.1 Fetching and Displaying XHR Data
	Problem
	Solution
	Discussion
	See Also

	5.2 Handling Errors During Data Transport
	Problem
	Solution
	Discussion
	See Also

	5.3 Loading Content Directly into a Node
	Problem
	Solution
	Discussion
	See Also

	5.4 Submitting Form Data with XHR
	Problem
	Solution
	Discussion

	5.5 Uploading a File with XHR
	Problem
	Solution
	Discussion

	5.6 Getting JSON Data Using Script Nodes (JSONP)
	Problem
	Solution
	Discussion
	See Also

	5.7 Fetching and Displaying Data with YQL
	Problem
	Solution
	Discussion
	See Also

	5.8 Scraping HTML with YQL
	Problem
	Solution
	Discussion
	See Also

	5.9 Querying Data Using DataSource
	Problem
	Solution
	Discussion
	See Also

	5.10 Normalizing DataSource Responses with a DataSchema
	Problem
	Solution
	Discussion
	See Also

	Chapter 6. CSS
	6.1 Normalizing Browser Style Inconsistencies
	Problem
	Solution
	Discussion
	See Also

	6.2 Rebuilding Uniform Base Styles
	Problem
	Solution
	Discussion

	6.3 Applying Consistent Fonts
	Problem
	Solution
	Discussion

	6.4 Laying Out Content with Grids
	Problem
	Solution
	Discussion
	See Also

	6.5 Using Grids for Responsive Design
	Problem
	Solution
	Discussion
	See Also

	6.6 Creating Consistent Buttons
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. Infrastructure
	7.1 Managing State with Attributes
	Problem
	Solution
	Discussion
	See Also

	7.2 Creating Base Components with Y.extend()
	Problem
	Solution
	Discussion
	See Also

	7.3 Creating Base Components with Y.Base.create()
	Problem
	Solution
	Discussion
	See Also

	7.4 Creating a Basic Widget
	Problem
	Solution
	Discussion
	See Also

	7.5 Creating a Widget That Uses Progressive Enhancement
	Problem
	Solution
	Discussion
	See Also

	7.6 Rendering Remote Data with a Widget
	Problem
	Solution
	Discussion
	See Also

	7.7 Creating a Simple Plugin
	Problem
	Solution
	Discussion
	See Also

	7.8 Creating a Plugin That Alters Host Behavior
	Problem
	Solution
	Discussion
	See Also

	7.9 Bundling CSS with a Widget as a CSS Module
	Problem
	Solution
	Discussion
	See Also

	7.10 Bundling CSS with a Widget as a Skin
	Problem
	Solution
	Discussion
	See Also

	7.11 Representing Data with a Model
	Problem
	Solution
	Discussion
	See Also

	7.12 Persisting Model Data with a Sync Layer
	Problem
	Solution
	Discussion
	See Also

	7.13 Managing Models with a Syncing ModelList
	Problem
	Solution
	Discussion
	See Also

	7.14 Rendering HTML with a View
	Problem
	Solution
	Discussion
	See Also

	7.15 Rendering a Model with a View
	Problem
	Solution
	Discussion
	See Also

	7.16 Rendering a ModelList with a View
	Problem
	Solution
	Discussion
	See Also

	7.17 Saving State Changes in the URL
	Problem
	Solution
	Discussion
	See Also

	7.18 Defining and Executing Routes
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. Using Widgets
	8.1 Instantiating, Rendering, and Configuring Widgets
	Problem
	Solution
	Discussion
	See Also

	8.2 Creating an Overlay
	Problem
	Solution
	Discussion
	See Also

	8.3 Aligning and Centering an Overlay
	Problem
	Solution
	Discussion
	See Also

	8.4 Making an Overlay Draggable
	Problem
	Solution
	Discussion
	See Also

	8.5 Creating a Simple, Styled Information Panel
	Problem
	Solution
	Discussion
	See Also

	8.6 Creating a Modal Dialog or Form
	Problem
	Solution
	Discussion
	See Also

	8.7 Creating a Tooltip from an Overlay
	Problem
	Solution
	Discussion
	See Also

	8.8 Creating a Lightbox from an Overlay
	Problem
	Solution
	Discussion
	See Also

	8.9 Creating a Slider
	Problem
	Solution
	Discussion
	See Also

	8.10 Creating a Tabview
	Problem
	Solution
	Discussion
	See Also

	8.11 Creating a Basic DataTable
	Problem
	Solution
	Discussion
	See Also

	8.12 Formatting a DataTable’s Appearance
	Problem
	Solution
	Discussion
	See Also

	8.13 Displaying a Remote JSON DataSource in a DataTable
	Problem
	Solution
	Discussion
	See Also

	8.14 Plotting Data in a Chart
	Problem
	Solution
	Discussion
	See Also

	8.15 Choosing Dates with a Calendar
	Problem
	Solution
	Discussion
	See Also

	8.16 Defining Calendar Rules
	Problem
	Solution
	Discussion

	8.17 Creating a Basic AutoComplete
	Problem
	Solution
	Discussion
	See Also

	8.18 Highlighting and Filtering AutoComplete Results
	Problem
	Solution
	Discussion
	See Also

	8.19 Using AutoComplete with Remote Data
	Problem
	Solution
	Discussion
	See Also

	8.20 Customizing the AutoComplete Result List
	Problem
	Solution
	Discussion
	See Also

	Chapter 9. Utilities
	9.1 Determining a Variable’s Type
	Problem
	Solution
	Discussion
	See Also

	9.2 Iterating Over Arrays and Objects
	Problem
	Solution
	Discussion
	See Also

	9.3 Filtering an Array
	Problem
	Solution
	Discussion

	9.4 Merging Objects
	Problem
	Solution
	Discussion

	9.5 Composing and Inheriting from Other Objects
	Problem
	Solution
	Discussion
	See Also

	9.6 Automatically Caching Function Call Results
	Problem
	Solution
	Discussion

	9.7 Templating with Simple String Substitution
	Problem
	Solution
	Discussion
	See Also

	9.8 Formatting Numbers
	Problem
	Solution
	Discussion
	See Also

	9.9 Formatting Dates
	Problem
	Solution
	Discussion
	See Also

	9.10 Parsing Arbitrary XML
	Problem
	Solution
	Discussion
	See Also

	9.11 Converting Color Values
	Problem
	Solution
	Discussion

	9.12 Managing History and the Back Button
	Problem
	Solution
	Discussion
	See Also

	9.13 Escaping User Input
	Problem
	Solution
	Discussion
	See Also

	9.14 Assigning Special Behavior to a Checkbox Group
	Problem
	Solution
	Discussion
	See Also

	9.15 Implementing Easy Keyboard Actions and Navigation
	Problem
	Solution
	Discussion
	See Also

	9.16 Reliably Detecting Input Field Changes
	Problem
	Solution
	Discussion
	See Also

	9.17 Managing and Validating Forms
	Problem
	Solution
	Discussion
	See Also

	Chapter 10. Server-Side YUI
	10.1 Installing and Running YUI on the Server
	Problem
	Solution
	Discussion
	See Also

	10.2 Loading Modules Synchronously on the Server
	Problem
	Solution
	Discussion
	See Also

	10.3 Using YUI on the Command Line
	Problem
	Solution
	Discussion
	See Also

	10.4 Calling YQL on the Server
	Problem
	Solution
	Discussion

	10.5 Using the YUI REPL
	Problem
	Solution
	Discussion

	10.6 Constructing and Serving a Page with YUI, YQL, and Handlebars
	Problem
	Solution
	Discussion
	See Also

	Chapter 11. Universal Access
	11.1 Preventing the Flash of Unstyled Content
	Problem
	Solution
	Discussion
	See Also

	11.2 Adding ARIA to Form Error Messages
	Problem
	Solution
	Discussion
	See Also

	11.3 Building a Widget with ARIA
	Problem
	Solution
	Discussion
	See Also

	11.4 Retrofitting a Widget with an ARIA Plugin
	Problem
	Solution
	Discussion
	See Also

	11.5 Defining Translated Strings
	Problem
	Solution
	Discussion
	See Also

	11.6 Internationalizing a Widget
	Problem
	Solution
	Discussion
	See Also

	Chapter 12. Professional Tools
	12.1 Enabling Debug Logging
	Problem
	Solution
	Discussion

	12.2 Rendering Debug Log Output in the Page
	Problem
	Solution
	Discussion
	See Also

	12.3 Writing Unit Tests
	Problem
	Solution
	Discussion
	See Also

	12.4 Organizing Unit Tests into Suites
	Problem
	Solution
	Discussion
	See Also

	12.5 Testing Event Handlers by Simulating Events
	Problem
	Solution
	Discussion

	12.6 Mocking Objects
	Problem
	Solution
	Discussion
	See Also

	12.7 Testing Asynchronously Using wait()
	Problem
	Solution
	Discussion

	12.8 Collecting and Posting Test Results
	Problem
	Solution
	Discussion
	See Also

	12.9 Precommit Testing in Multiple Browsers
	Problem
	Solution
	Discussion

	12.10 Testing on Mobile Devices
	Problem
	Solution
	Discussion
	See Also

	12.11 Testing Server-Side JavaScript
	Problem
	Solution
	Discussion

	12.12 Minifying Your Code
	Problem
	Solution
	Discussion
	See Also

	12.13 Documenting Your Code
	Problem
	Solution
	Discussion
	See Also

	Index

