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Foreword

These lecture notes contain the material relative to the courses given at the CIME

Summer School held in Cetraro, Italy, from August 29 to September 3, 2011. The

topic was Hamilton–Jacobi Equations: Approximations, Numerical Analysis and

Applications

The courses dealt mostly with the following subjects: first-order and second-

order Hamilton–Jacobi–Bellman equations, properties of viscosity solutions,

homogenization and asymptotic behaviours, mean field games, approximation and

numerical methods, and idempotent analysis. The content of the courses went from

an introduction to viscosity solutions to quite advanced topics, at the cutting edge

of the research in the field. We believe that they opened perspectives on new and

delicate issues.

This volume contains four courses

• Finite Difference Methods for Mean Field Games

Yves Achdou

• An Introduction to the Theory of Viscosity Solutions for First-Order Hamilton–

Jacobi Equations and Applications

Guy Barles

• A Short Introduction to Viscosity Solutions and the Large Time Behavior of

Solutions of Hamilton–Jacobi Equations

Hitoshi Ishii

• Idempotent/Tropical Analysis, the Hamilton–Jacobi and Bellman Equations

Grigory L. Litvinov

A fifth course held at the workshop by Panagiotis E. Souganidis of the University

of Chicago (Homogenization and Approximation for Hamilton–Jacobi Equations)

is not included in this volume.

The participants came from several countries (ordered decreasingly with the

number of participants): Italy, France, the USA, Argentina, Austria, Chile, China,

Germany, Japan, Greece, Iran, Rumania, Russia, Sweden and Vietnam.

v



vi Foreword

On September 1st, Paola Loreti, Elvira Mascolo and Nicoletta Tchou organized

a session open to the younger researchers. This “CIME-young” session allowed the

doctoral students and posdoctoral researchers to present their new results.

Young Speakers

• Moreno Concezzi

Università Degli Studi Roma Tre, Italy

Numerical methods and applications-dynamic programming for HCS and frac-

tionary laplacian approximation

• Jean-Paul Daniel

Laboratoire Jacques-Louis Lions—Université Paris 6, France

A game interpretation for fully non linear equations with Neumann condition

• Tiziano De Angelis

Sapienza Università di Roma, Italy

Optimal stopping of a Hilbert space valued diffusion process

• Joscha Diehl

University of Berlin, Germany

Pathwise approach to rough Burger’s PDEs

• Benjamin Fehrman

University of Chicago, USA

Homogenization of systems of viscous Hamilton–Jacobi equations

• Giulio Galise

Università degli Studi di Salerno, Italy

Viscosity solutions of uniformly elliptic equations without boundary and growth

conditions at infinity

• Anna Chiara Lai

Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Univer-

sità di Roma, Italy

A multi-phalanx self-similar robot finger

• Roberto Mecca

Dipartimento di Matematica “G. Castelnuovo”, Sapienza Università di Roma,

Italy

Shape from shading via photometric stereo technique a new differential approach

• Cristina Pocci

Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Univer-

sità di Roma, Italy

Propagation of fronts in nonlinear diffusion equations

• F.J. Silva,

Dipartimento di Matematica “G. Castelnuovo”, Sapienza Università di Roma,

Italy

A semi-Lagrangian scheme for a 1st order-infinite horizon mean field game

model
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Via A. Scarpa n.16

00161 Roma

Italy

Nicoletta Tchou

IRMAR
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Finite Difference Methods for Mean Field

Games

Yves Achdou

Abstract Mean field type models describing the limiting behavior of stochastic

differential game problems as the number of players tends to C 1 , have been

recently introduced by J-M. Lasry and P-L. Lions. They may lead to systems of

evolutive partial differential equations coupling a forward Bellman equation and a

backward Fokker–Planck equation. The forward-backward structure is an important

feature of this system, which makes it necessary to design new strategies for

mathematical analysis and numerical approximation. In this survey, several aspects

of a finite difference method used to approximate the previously mentioned system

of PDEs are discussed, including: existence and uniqueness properties, a priori

bounds on the solutions of the discrete schemes, convergence, and algorithms for

solving the resulting nonlinear systems of equations. Some numerical experiments

are presented. Finally, the optimal planning problem is considered, i.e. the problem

in which the positions of a very large number of identical rational agents, with a

common value function, evolve from a given initial spatial density to a desired target

density at the final horizon time.

1 Introduction

Mean field type models describing the asymptotic behavior of stochastic differential

games (Nash equilibria) as the number of players tends to C 1 have recently been

introduced by Lasry and Lions [25–27]. In some cases, they lead to systems of

evolutive partial differential equations involving two unknown scalar functions: the

density of the agents in a given state x, namely m D m.t; x/ and the potential

u D u.t; x/. Since the present work is devoted to finite difference schemes, we
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2 Y. Achdou

will assume that the dimension of the state space is d D 2 (what follows could

be generalized to any dimension d , although in practice, finite difference methods

require too many computing resources when d � 4). In the periodic setting,

typical such model comprises the following system of evolution partial differential

equations

@u

@t
.t; x/ � ��u.t; x/CH.x;ru.t; x// D ˚Œm.t; �/�.x/; (1)

@m

@t
.t; x/C ��m.t; x/C div

�

m.t; �/@H
@p
.�;ru.t; �//

�

.x/ D 0; (2)

in .0; T / � T
2, with the initial and terminal conditions

u.0; x/ D u0.x/; m.T; x/ D mT .x/; (3)

in T
2, given a cost function u0 and a probability densitymT .

Let us make some comments on the boundary value problem (1)–(3).

First, note that t is the remaining time to the horizon, (the physical time is in fact

T � t), so u0 should be seen as a final cost or incitation, whereas mT is the density

of the agents at the beginning of the game.

Here, we denote by T
2 D Œ0; 1�2 the two-dimensional unit torus, by � a

nonnegative constant and by �, r and div, respectively, the Laplace, the gradient

and the divergence operator acting on the x variable. By working on the torus T2, we

avoid the discussion of the boundary conditions, but other boundary value problems

can be considered, for example, Dirichlet conditions or Neumann conditions if

� > 0.

The system also involves the scalar Hamiltonian H.x; p/, which is assumed to

be convex with respect to p and C 1 regular w.r.t. x and p. The notation @H
@p
.x; q/ is

used for the gradient of p 7! H.x; p/ at p D q.

Finally, in the cost term ˚Œm.t; �/�.x/, ˚ may be:

• Either a local operator, i.e. ˚Œm.t; �/�.x/ D F.m.t; x// where F is a C 1 regular

function defined on R C . In this case, there are existence theorems of either

classical (see [15]) or weak solutions (see [26]), under suitable assumptions on

the data,H and F .

• Or a non local operator which continuously maps the set of probability measures

on T
2 (endowed with the weak * topology) to a bounded subset of Lip.T2/,

the Lipschitz functions on T
2, and for example maps continuously C k;˛.T2/ to

C k C 1;˛.T2/, for all k 2 N and 0 � ˛ < 1. In this case, classical solutions of

(1)–(3) are shown to exist under natural assumptions on the data and some

technical assumptions on H .

Consider the important special case when the Hamiltonian is of the form

H.x;ru/ D sup



�


 � ru � L.x; 
/
�

:
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In this case, if u and m solve the system above, then Dynamic Programming

arguments, see Bardi–Capuzzo Dolcetta [8], Fleming–Soner [17], show that the

solution u of the forward in time Hamilton–Jacobi–Bellman equation (1) is the value

function of an optimal control problem for the controlled dynamics defined on T
2 by

dXs D �
s ds C
p
2� dWs;

(here s is the physical time, t D T � s is the time to the horizon, .Ws/ is a Brownian

motion), and running cost density L.Xs; 
s/ C ˚Œm.s; �/�.Xs/ depending on the

position Xs , the control 
s and the probability density m.s; �/. On the other hand,

(2) is a backward Fokker–Planck equation with velocity field @H
@p
.x;ru/ depending

on the value function itself.

We have chosen to focus on the case when the cost ujt D 0 depends directly on x.

In some realistic situations, the final cost may depend on the density of the

players, i.e. ujt D 0 D ˚0Œmjt D 0�.x/, where ˚0 is an operator acting on probability

densities, which may be local or not. This case can be handled by the methods

proposed below, but we will not discuss it in the present work.

System (1)–(2) consists of a forward Bellman equation coupled with a backward

Fokker–Planck equation. The forward-backward structure is an important feature of

this system, which makes it necessary to design new strategies for its mathematical

analysis (see [26, 27]) and for numerical approximation.

The following steady state version of (1)–(3) arises when mean field games with

infinite horizon are considered (ergodic problem):

� ��u.x/CH.x;ru.x//C � D ˚Œm.�/�.x/; in T
2; (4)

���m.x/� div

�

m
@H

@p
.�;ru/

�

.x/ D 0; in T
2: (5)

with the additional normalization of uW
R

T2
u D 0. The unknowns in (4)–(5) are the

densitym, the function u and the scalar �.

We refer to the mentioned papers of J-M. Lasry and P-L. Lions for analytical

results concerning problems (1)–(3) and (4)–(5) as well as for their interpretation in

stochastic game theory. Let us only mention here that a very important feature of

the mean field model above is that uniqueness and stability may be obtained under

reasonable assumptions, see [25–27], in contrast with the Nash system describing

the individual behavior of each player, for which uniqueness hardly ever occurs. To

be more precise, uniqueness for (1)–(3) is true if ˚ is monotonous in the sense that

for all probability measuresm and Qm on T
2,

Z

.˚Œm�.x/ � ˚Œ Qm�.x//.dm.x/ � d Qm.x// � 0 ) m D Qm: (6)

Examples of MFG models with applications in economics and social sciences

are proposed in [19, 20, 23]. Many important aspects of the mathematical theory

developed by J-M. Lasry and P-L. Lions on MFG are not published in journals or
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books, but can be found in the videos of the lectures of P-L. Lions at Collège de

France: see the web site of Collège de France [29]. We also refer to [14] for a nice

survey and new results in the deterministic case (� D 0), and to [7] for an interesting

paper on explicit solutions of some linear-quadratic mean field games.

In this survey, we will focus on a finite difference method in order to approximate

the solutions of (1)–(3). An important research activity is currently going on about

approximation procedures of different types of mean field games models, see [24]

for a numerical method based on the reformulation of the model as an optimal

control problem for the Fokker–Planck equation with an application in economics

and [18] for a work on discrete time, finite state space mean field games. We

also refer to [21, 22] for a specific constructive approach when the Hamiltonian is

quadratic. Finally, a semi-discrete approximation for a first order mean field games

problem has been studied in [13].

The method described below has first been proposed and discussed in [2,3]. The

numerical schemes that we use rely basically on monotone approximations of the

Hamiltonian and on a suitable weak formulation of the Fokker–Planck equation.

These schemes have several important features:

• Existence and uniqueness for the discretized problems can be obtained by similar

arguments as those used in the continuous case.

• They are robust when � ! 0 (the deterministic limit of the models).

• Bounds on the solutions, which are uniform in the grid step, can be proved under

reasonable assumptions on the data.

This survey is organized as follows: Sect. 2 is devoted to the presentation of

the finite difference schemes, to existence and uniqueness results under various

assumptions, and to a priori estimates on the solutions of the nonlinear system

arising from the discretization. An example of a convergence result is given in

Sect. 3. Section 4 is devoted to possible algorithms for solving the previously

mentioned nonlinear system, with an emphasis on some preconditioned iterative

methods for the linearized discrete MFG system. Some numerical simulations are

presented in Sect. 5. Finally, Sect. 6 is devoted to the planning problem, in which the

initial condition in (3) is replaced with m.0; x/ D m0.x/.

2 Finite Difference Schemes

The scheme presented below was originally proposed and studied in [3].

2.1 Description of the Schemes

Let NT be a positive integer and �t D T=NT , tn D n�t , n D 0; : : : ; NT .

Let T2h be a uniform grid on the torus with mesh step h, (assuming that 1=h is

an integer Nh), and xij denote a generic point in T
2
h. The values of u and m at
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.xi;j ; tn/ are respectively approximated by uni;j and mn
i;j . Let un (resp. mn) be the

vector containing the values uni;j (resp. mn
i;j ), for 0 � i; j < Nh indexed in the

lexicographic order. We may refer to such vectors as grid functions. For all grid

function z on T
2
h, all i and j , we agree that zi;j D z.i mod Nh/;.j mod Nh/

.

2.1.1 Elementary Finite Difference Operators

Let us introduce the elementary finite difference operators

.DC
1 u/i;j D uiC1;j � ui;j

h
and .DC

2 u/i;j D ui;jC1 � ui;j

h
; (7)

and define ŒDhu�i;j as the collection of the four possible one sided finite differences

at xi;j :

ŒDhu�i;j D
�

.DC
1 u/i;j ; .D

C
1 u/i�1;j ; .D

C
2 u/i;j ; .D

C
2 u/i;j�1

�

2 R
4: (8)

We will also need the standard five point discrete Laplace operator

.�hu/i;j D � 1

h2
.4ui;j � uiC1;j � ui�1;j � ui;jC1 � ui;j�1/:

2.1.2 Discrete Bellman Equation

Numerical Hamiltonian

In order to approximate the term H.x;ru/ in (1) or (4), we consider a numerical

Hamiltonian g W T2 � R
4 ! R, .x; q1; q2; q3; q4/ 7! g .x; q1; q2; q3; q4/ satisfying

the following conditions:

(g1) Monotonicity: g is nonincreasing with respect to q1 and q3 and nondecreasing

with respect to q2 and q4.

(g2) Consistency: g .x; q1; q1; q2; q2/ D H.x; q/; 8x 2 T
2;8q D .q1; q2/ 2 R

2:

(g3) Differentiability: g is of class C 1.

(g4) Convexity: .q1; q2; q3; q4/ 7! g .x; q1; q2; q3; q4/ is convex.

We will approximateH.�;ru/.xi;j / by g.xi;j ; ŒDhu�i;j /.

Standard examples of numerical Hamiltonians fulfilling these requirements are

provided by Lax–Friedrichs or Godunov type schemes, see [3]. For example, if the

HamiltonianH is of the form

H.x; p/ D H .x/C jpjˇ; (9)
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with ˇ > 1, the conditions above are all fulfilled by the discrete Hamiltonian

given by

g.x; q/ D H .x/CG.q�
1 ; q

C
2 ; q

�
3 ; q

C
4 /; (10)

where, for a real number r , rC D max.r; 0/ and r� D max.�r; 0/ and where

G W .RC/
4 ! RC is given by

G.p/ D jpjˇ D .p21 C p22 C p23 C p24/
ˇ
2 : (11)

Discrete Version of the Cost Term ˚Œm.t; �/�.x/

We introduce the compact and convex set

K h D f.mi;j /0�i;j<Nh W h2
X

i;j

mi;j D 1I mi;j � 0g (12)

which can be viewed as the set of the discrete probability measures.

We will often make the following assumptions, ˚h being local or not:

(˚h1) We assume that ˚h is continuous on K h.

(˚h2) The numerical cost ˚h is monotone in the following sense:

.˚hŒm� �˚hŒ Qm�;m � Qm/2 � 0 ) ˚hŒm� D ˚hŒ Qm�; (13)

where .u; v/2 D
P

0�i;j<Nh
ui;jvi;j . This assumption and (g4) will be a

sufficient condition for the discrete MFG system to have at most a solution,

˚h being local or not.

If ˚ is a local operator, i.e. ˚Œm�.x/ D F.m.x//, F being a continuous function

from R
C to R, then the discrete version of ˚ is naturally given by .˚hŒm�/i;j D

F.mi;j /. In this case, the operator ˚h is continuous on the set of nonnegative grid

functions.

If ˚ is a nonlocal operator, then we assume that the discrete operator ˚h has the

following additional properties:

(˚h3) We assume that there exists a constant C independent of h such that for all

grid functionm 2 K h,

k˚hŒm�k1 � C (14)

and

j.˚hŒm�/i;j � .˚hŒm�/k;`j � CdT.xi;j ; xk;`/ (15)

where dT.x; y/ is the distance between the two points x and y in the torusT2.
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(˚h4) Define K as the set of probability densities, i.e. nonnegative integrable

functions m on T
2 such that

R

T2
m.x/dx D 1. For a grid function mh 2 Kh,

let Qmh be the piecewise bilinear interpolation of mh at the grid nodes: it is

clear that Qmh 2 K . We assume that there exists a continuous and bounded

function ! W RC ! RC such that !.0/ D 0 and for all m 2 K , for all

sequences .mh/h, mh 2 Kh,

k˚Œm� �˚hŒmh� kL1.T2h/
� !

�

km � QmhkL1.T2/
	

: (16)

Let Ihm be the grid function whose value at xi;j is

1

h2

Z

jx�xi;j j1�h=2

m.x/dx:

It is clear that if m 2 K then Ihm 2 Kh and that (16) implies that

lim
h!0

sup
m2K

k˚Œm� �˚hŒIhm� kL1.T2h/
D 0: (17)

For example, if ˚Œm� is defined as the solution w of the equation �2w C w D m

in T
2, (�2 being the bilaplacian), then one can define ˚hŒmh� as the solution wh of

�2
hwh C wh D mh in T

2
h. It is possible to check that all the above properties are

satisfied.

Discrete Bellman Equation

The discrete version of the Bellman equation is obtained by applying a semi-implicit

Euler scheme to (1),

unC1
i;j � uni;j

�t
� �.�hu

nC1/i;j C g.xi;j ; ŒDhunC1�i;j / D .˚hŒm
n�/i;j ; (18)

for all points in T
2
h and all n, 0 � n < NT , where all the discrete operators have

been introduced above. Given .mn/nD0;:::;NT �1, (18) and the initial condition u0i;j D
u0.xi;j / for all .i; j / completely characterize .un/0�n�NT .

2.1.3 Discrete Fokker–Planck Equation

In order to approximate equation (2), it is convenient to consider its weak formula-

tion which involves in particular the term

Z

T2

div

�

m
@H

@p
.�;ru/

�

.x/w.x/ dx:
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By periodicity,

Z

T2

div

�

m
@H

@p
.�;ru/

�

.x/w.x/ dx D �
Z

T2

m.x/
@H

@p
.x;ru.x// � rw.x/ dx

is valid for any test function w. The right hand side in the identity above will be

approximated by

�h2
X

i;j

mi;jrqg.xi;j ; ŒDhu�i;j / � ŒDhw�i;j D h2
X

i;j

T i;j .u; m/wi;j ;

where the transport operator T is defined as follows:

T i;j .u; m/

D 1

h

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0

B

B

@

mi;j

@g

@q1
.xi;j ; ŒDhu�i;j / �mi�1;j

@g

@q1
.xi�1;j ; ŒDhu�i�1;j /

CmiC1;j

@g

@q2
.xiC1;j ; ŒDhu�iC1;j /�mi;j

@g

@q2
.xi;j ; ŒDhu�i;j /

1

C

C

A

C

0

B

B

@

mi;j

@g

@q3
.xi;j ; ŒDhu�i;j / �mi;j�1

@g

@q3
.xi;j�1; ŒDhu�i;j�1/

Cmi;jC1

@g

@q4
.xi;jC1; ŒDhu�i;jC1/ �mi;j

@g

@q4
.xi;j ; ŒDhu�i;j /

1

C

C

A

1

C

C

C

C

C

C

C

C

C

C

C

C

A

:

(19)

The discrete version of (2) is thus chosen as follows:

mnC1
i;j �mn

i;j

�t
C �.�hm

n/i;j C T i;j .u
nC1; mn/ D 0: (20)

This scheme is implicit w.r.t. to m and explicit w.r.t. u because the considered

Fokker–Planck equation is backward. Given u, (20) is a system of linear equations

for m. It is easy to see that if mn satisfies (20) for 0 � n < NT and if mNT 2 Kh,

then mn 2 Kh for all n, 0 � n < NT .

Remark 2.1. It is important to realize that the operator

m 7!
�

��.�hm/i;j � Ti;j .u; m/
	

i;j

is the adjoint of the linearized version of the operator

u 7!
�

��.�hu/i;j C g.xi;j ; ŒDhu�i;j /
	

i;j
:
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2.1.4 Summary

The fully discrete scheme for system (1)–(3) is therefore the following: for all 0 �
i; j < Nh and 0 � n < NT

8

ˆ

<

ˆ

:

u
nC1
i;j �uni;j

�t
� �.�hu

nC1/i;j C g.xi;j ; ŒDhunC1�i;j / D .˚hŒm
n�/i;j ;

m
nC1
i;j �mni;j
�t

C �.�hm
n/i;j C Ti;j .u

nC1; mn/ D 0;

(21)

with the initial and terminal conditions

m
NT
i;j D 1

h2

Z

jx�xi;j j1�h=2

mT .x/dx; u0i;j D u0.xi;j /; 0 � i; j < Nh: (22)

2.2 Existence and A priori Bounds

We recall a useful lemma that can be found in e.g. [16]. We give its proof for

completeness.

Lemma 2.1. Let v be a grid function on T
2
h and � be a positive parameter. Assume

that .g1/–.g3/ hold. There exists a unique grid function u such that

�ui;j C g.xi;j ; ŒDhu�i;j / � �.�hu/i;j D vi;j : (23)

Proof. Existence for (23) is proved by using Leray–Schauder fixed point theorem:

indeed, we consider the mapping F W RN 2
h ! R

N 2
h ,

.F .u//i;j D 1

�

�

�.�hu/i;j � g.xi;j ; ŒDhu�i;j /C vi;j
	

;

and the real number r D max.i;j /
ˇ

ˇH.xi;j ; 0/ � vi;j
ˇ

ˇ =�. From the continuity of g,

F is continuous from Br D fu 2 R
N 2
h W kuk1 � rg to R

N 2
h .

Assuming that u 2 @Br , there must exist at least one pair of indices .i0; j0/ such

that ui0;j0 D ˙r . Assuming that ui0;j0 D r , we have

�.�hu/i0;j0 � g.xi0 ;j0 ; ŒDhu�i0;j0/ � �H.xi0;j0 ; 0/;

from the monotonicity and the consistency of g. Hence,

.F .u//i0;j0 � 1

�

�

�H.xi0;j0 ; 0/C vi0;j0
	

� r;
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and .F .u//i0;j0 6D �ui0;j0 whenever � > 1. Similarly, if ui0;j0 D �r , then

.F .u//i0;j0 � �r which implies that .F .u//i0;j0 6D �ui0;j0 . Therefore F .u/ 6D �u

for all � > 1 and u 2 @Br . The Leray–Schauder fixed point theorem can be

used: there exists a solution of (23) in Br . Uniqueness for (23) stems from the

monotonicity of g. ut
We are ready to prove existence for (21)–(22) and a priori bounds if ˚ is a

nonlocal smoothing operator:

Theorem 2.1. (a) Assume that .g1/–.g3/ and (˚h1) hold, that � > 0, that u0 is a

continuous function on T
2 and that mT 2 K ; then, (21)–(22) has a solution

such that mn 2 Kh, 8n.

(b) Furthermore, under the following conditions:

• ˚h satisfies (˚h3)

• there exists a constant C such that

ˇ

ˇ

ˇ

ˇ

@g

@x
.x; .q1; q2; q3; q4//

ˇ

ˇ

ˇ

ˇ

� C.1C jq1j C jq2j C jq3j C jq4j/

8x 2 T
2; 8q1; q2; q3; q4 (24)

• u0 is Lipschitz continuous.

There exists a constant c independent of h and�t such that

max
0� n� NT

�

kunk1 C kDhunk1

	

� c:

Proof. We are going to construct a continuous mapping � W K NT
h ! K NT

h and use

Brouwer fixed point theorem. Recall that Kh can be seen as a compact and convex

subset of RN
2
h .

We proceed in several steps:

Step 1: A mapping 	 W .mn/n 7! .un/n

Given u0, consider the map 	 W .mn/0� n� NT�1 2 K NT
h 7! .un/1�n�NT , solution of

the first equation in (21), i.e.

unC1
i;j � uni;j

�t
� �.�hu

nC1/i;j C g.xi;j ; ŒDhunC1�i;j / D .˚hŒm
n�/i;j ; (25)

for n D 0; : : : NT � 1 and 0 � i; j < Nh. The existence and uniqueness of unC1,

n D 0; : : : ; NT � 1 is obtained by induction: at each step, we use Lemma 2.1 with

� D 1=�t and vi;j D uni;j=�t C .˚hŒm
n�/i;j .
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Step 2: Boundedness and continuity of 	

Looking at the proof of Lemma 2.1, we see that

kunC1k1 � max
.i;j /

ˇ

ˇ

ˇ
�t
�

H.xi;j ; 0/� .˚hŒm
n�/i;j

	

� uni;j

ˇ

ˇ

ˇ
:

From assumption (˚h1) and the compactness of Kh, we obtain that there exists a

constant C depending on h and u0 but independent of .mn/n such that kunk1 �
C.1C T /. Therefore, 	 maps K NT

h to a bounded subset of RNT �N 2
h . Moreover, by

using assumption (˚h1) and well known results on continuous dependence on the

data for monotone schemes (see e.g. [16]), we see that the mapping	 is continuous

from K NT
h to R

NT �N 2
h .

As a consequence, since all the norms are equivalent in R
NT �N 2

h , there exists a

constant L which depends on kDhu0k1, h and �t but not on .mn/n such that

kDhunC1k1 � L: (26)

Moreover, if (˚h3) holds, then kunk1 � C.1CT /, for a constant which does depend

on u0 but not on h.

Step 3: Discrete Lipschitz continuity estimates on 	..mn/nD0;:::;NT �1/ under

additional assumptions

The solution of (25) is noted

unC1 D �.un; mnC1/:

Standard arguments on monotone schemes yield that for all m 2 Kh, u;w 2 R
N 2
h ,

k .�.u; m/��.w; m//C k1 � k.u � w/Ck1; (27)

k�.u; m/��.w; m/k1 � ku � wk1: (28)

For .`;m/ 2 Z
2, call �`;mu the grid function defined by

.�`;mu/i;j D u`Ci;mCj :

It is a simple matter to check that
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.�`;mu/nC1
i;j � .�`;mu/ni;j

�t
� �.�h.�`;munC1//i;j C g.xi;j ; ŒDh.�`;munC1/�i;j /

D .˚hŒm
n�/i;j C .˚hŒm

n�/iC`;jCm � .˚hŒmn�/i;j

� g.xiC`;jCm; ŒDh.�`;munC1/�i;j /C g.xi;j ; ŒDh.�`;munC1/�i;j /;

and therefore

�`;munC1 D �.�`;mun C�te;mn/;

ei;j D
�

.˚hŒm
n�/iC`;jCm � .˚hŒmn�/i;j

�g.xiC`;jCm; ŒDh.�`;munC1/�i;j /C g.xi;j ; ŒDh.�`;munC1/�i;j /

�

:

From assumption (˚h3) and (24), there exists a constantC (independent of n, .mn/n,

h and�t) such that

kek1 � C
�

1C kDhunC1k1

	

h
p

`2 Cm2:

We conclude from (28) that

k�`;munC1 � unC1k1 � k�`;mun � unk1 C Ch�t
p

`2 Cm2
�

1C kDhunC1k1

	

:

(29)

Thanks to (29),

.1 � C�t/kDhunC1k1 � kDhunk1 C C�t:

A discrete version of Gronwall’s lemma yields that there exists a constant L which

only depends on C , T and the initial condition kDhu0k1 such that (26) holds for

all n, 1 � n � NT ; this is a discrete Lipschitz continuity estimate, uniform with

respect to .mn/0�n�NT �1, h and�t .

Step 4: A fixed point problem for .mn/0�n�NT �1

For .mn/0�n�NT �1 2 K NT
h and .un/1�n�NT D 	..mn/0�n�NT �1/ and a positive

real number �, consider the following linear problem: find . Qmn/1�n�NT such that

QmnC1
i;j � Qmn

i;j

�t
� � Qmn

i;j C �.�h Qmn/i;j C Ti;j .u
nC1; Qmn/ D ��mn

i;j ; (30)

with the terminal condition QmNT D mNT 2 Kh.

We are going to prove first that for � large enough, (30) has a unique solution

. Qmn/0�n�NT �1 2 K NT
h , then that the mapping �: .mn/1�n�NT 7! . Qmn/1�n�NT has

a fixed point. Existence for (21)–(22) will then be proved.
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Step 5: Existence for (30)

Clearly (30) is the discrete version of a linear backward parabolic equation with a

terminal Cauchy condition. It can be written

Qmn C�t.� Qmn C An Qmn/ D QmnC1 C ��tmn; (31)

where An is a linear operator depending on unC1.

Assumptions (g1) and (g3) imply that the matrix corresponding to Id C�tAn has

positive diagonal entries and nonpositive off-diagonal entries. Furthermore, from

assumption (g3), (26) implies that there exists a constant C which may depend on

h, �t and kD0
huk but not on .mn/, such that for all n, 1 � n � NT , for all i; j ,

0 � i; j � Nh, and for all ` D 1; 2; 3; 4,

ˇ

ˇ

ˇ

ˇ

@g

@q`
.xi;j ; ŒDhun�i;j /

ˇ

ˇ

ˇ

ˇ

� C: (32)

From this and the definition of the discrete transport operator T , we see that for �

large enough but independent of .mn/, the matrix corresponding to IdC�t.�IdC
An/ is a M-matrix, and is therefore invertible. The system of linear equations (31)

has a unique solution.

Moreover, since mn � 0 for all n D 0; : : : ; NT and since Id C�t.�Id C An/ is

a M-matrix for all n, 0 � n � NT � 1, Qmn � 0 for all n D 0; : : : ; NT � 1.

We are left with proving that h2
P

i;j Qmn
i;j D 1, for all n, 0 � n < NT . We see

that for two grid functions w and z, we have

.Anw; z/2 D �
X

i;j

.DC
1 w/i;j .D

C
1 z/i;j C �

X

i;j

.DC
2 w/i;j .D

C
2 z/i;j

C
X

i;j

wi;j ŒDhz�i;j � gq
�

xi;j ; ŒDhunC1�i;j
	

:
(33)

From (33) and (31), it can be proved by induction that if h2.mNT ; 1/2 D 1, then the

condition h2. Qmn; 1/2 D 1 holds for all n, 0 � n < NT .

Step 6: Existence of a fixed point of �

From the boundedness and continuity of the mapping 	 , and from the fact that g

is C 1, we obtain that � is continuous. Therefore, we can apply Brouwer fixed point

theorem and obtain that � has a fixed point.

Conclusion

Assuming that mNT 2 Kh, we have proved that the mapping � has a fixed point

that we call .mn/0�n<NT . Calling .un/1�n�NT D 	..mn/1�n�NT /, .m
n/nD0:::;NT �1
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and .un/nD1:::;NT satisfy (21)–(22). Moreover, under the additional assumptions in

the statement of Theorem 2.1, max0�n�NT

�

kunk1 C kDhunk1

	

� c for a constant

c independent of h and �t . ut

2.3 A Fundamental Identity

In this paragraph, we discuss the key identity (38) below, which leads to the stability

of the finite difference scheme under additional assumptions.

Let us define the nonlinear functional G acting on grid functions by

G .m; u; Qu/ D
NT
X

nD1

X

i;j

G n
i;j (34)

where

G n
i;j D mn�1

i;j

�

g.xi;j ; ŒD Qun�i;j / � g.xi;j ; ŒDun�i;j / � gq.xi;j ; ŒDun�i;j /

� .ŒD Qun�i;j � ŒDun�i;j /
�

:

Under Assumption (g4), it is clear that G .m; u; Qu/ � 0 if m is a nonnegative grid

function. If g is of the form (10)–(11), we have a more precise estimate.

Consider a perturbed system:

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

QunC1
i;j � Quni;j
�t

� �.�h QunC1/i;j C g.xi;j ; ŒDh QunC1�i;j / D .˚hŒ Qmn�/i;j C ani;j ;

QmnC1
i;j � Qmn

i;j

�t
C �.�h Qmn/i;j C Ti;j .QunC1; Qmn/ D bni;j :

(35)

Multiplying the first equations in (35) and (21) bymn
i;j � Qmn

i;j and subtracting, then

summing the results for all n D 0; : : : ; NT � 1 and all .i; j /, we obtain

NT �1
X

nD0

1

�t
..unC1 � QunC1/ � .un � Qun/; .mn � Qmn//2

� �.�h.u
nC1 � QunC1/;mn � Qmn/2

C
NT �1
X

nD0

X

i;j

.g.xi;j ; ŒDhunC1�i;j / � g.xi;j ; ŒDh QunC1�i;j //.m
n
i;j � Qmn

i;j /

D
NT �1
X

nD0

.˚hŒm
n� � ˚hŒ Qmn�; mn � Qmn/2 �

NT �1
X

nD0

.an; mn � Qmn/2;

(36)
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where .X; Y /2 D
P

i;j Xi;jYi;j . Similarly, subtracting the second equation in (35)

from the second equation in (20), multiplying the result by unC1
i;j �QunC1

i;j and summing

for all n D 0; : : : ; NT � 1 and all .i; j / leads to

NT �1
X

nD0

1

�
t..mnC1 �mn/ � . QmnC1 � Qmn/; .unC1 � QunC1//2

C �..mn � Qmn/;�h.u
nC1 � QunC1//2

�
NT �1
X

nD0

X

i;j

mn
i;j ŒDh.u

nC1 � QunC1/�i;j � gq
�

xi;j ; ŒDhunC1�i;j
	

C
NT �1
X

nD0

X

i;j

Qmn
i;j ŒDh.u

nC1 � QunC1/�i;j � gg
�

xi;j ; ŒDh QunC1�i;j
	

D �
NT
X

nD1

.bn�1; un � Qun/2:

(37)

Adding (36) and (37) leads to the important identity

� 1

�
t.mNT � QmNT ; uNT � QuNT /2 C 1

�
t.m0 � Qm0; u0 � Qu0/2

C G .m; u; Qu/C G . Qm; Qu; u/C
NT �1
X

nD0

.˚hŒm
n� � ˚hŒ Qmn�; mn � Qmn/2

D
NT �1
X

nD0

.an; mn � Qmn/2 C
NT
X

nD1

.bn�1; un � Qun/2:

(38)

It is important to note that under assumptions (g4) and (˚h2/, the second line of

(38) is made of three nonnegative terms. This is the key observation leading to

uniqueness for (21)–(22), but it may also lead to a priori estimates or stability

estimates under additional assumptions.

Remark 2.2. It has been proved in [1] that if:

1. g is of the form (10)–(11) with ˇ � 2 and if m is a nonnegative grid function

bounded from below by m, then

G .m; u; Qu/ � m

22ˇ�3.ˇ � 1/

NT
X

nD1

X

i;j

ˇ

ˇ

ˇ
ŒD Qun�i;j � ŒDun�i;j

ˇ

ˇ

ˇ

ˇ

: (39)
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2. if g is of the form (10)–(11) with 1 < ˇ < 2, andmn
i;j � m, then for all .Quni;j /i;j;n

such that for all n, Quni;j does not depend on i and j ,

G .m; Qu; u/ D G .m; 0; u/ � 22ˇ�6ˇ.ˇ � 1/m
NT
X

nD1

X

i;j

jŒDun�i;j jˇ :

Hence, in these cases, (38) leads to stability estimates for (21)–(22).

2.4 Uniqueness

Theorem 2.2. If (g1)–(g4) and (˚h1)–(˚h2) hold and if � > 0, then (21)–(22) has

a unique solution.

Proof. Take two solutions of (21)–(22), .u; m/ and .Qu; Qm/ and use (38): the terms

in the first line and in the right hand side of (38) are zero. The three terms in the

second line are nonnegative, so each of them is actually zero. From (˚h2),˚hŒm
n� D

˚hŒ Qmn�, for all n. From this and Assumption .g1/, which yields the uniqueness

for the discrete Cauchy problem with the Bellman equation (18), we deduce that

un D Qun for each n. Injecting this piece of information into the discrete Fokker–

Planck equations form and Qm finally implies that m D Qm. ut

2.5 A priori Estimates for (21)–(22) with Local Operators ˚

Below, we give a result similar to Theorem 2.7 in [27]; this result which was

originally proposed in [1]:

Proposition 2.1. Assume that 0 � mT .x/ � NmT , that u0 is a continuous function,

that g is of the form (10)–(11) with ˇ > 1. If .˚hŒm�/i;j D F.mi;j /, where

(F1) F is a C 0 function defined on Œ0;1/.

(F2) There exist three constants ı > 0 and 
 > 1 and C1 � 0 such that

mF.m/ � ıjF.m/j
 � C1; 8m � 0;

then there exist two constants c 2 R and C > 0 such that the solution of (21)–(22)

satisfies:

• uni;j � c, for all n, i and j

•

h2�tG . NmT ; 0; u/C h2�t

NT �1
X

nD0

X

i;j

ˇ

ˇ

ˇ
F.mn

i;j /
ˇ

ˇ

ˇ




� C (40)
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•

max
0�n�NT

h2
X

i;j

juni;j j � C (41)

• Finally, let us call U n the sum h2
P

i;j uni;j and Uh the piecewise linear function

obtained by interpolating the values U n at the points .tn/: the family of functions

.Uh/ is bounded in W 1;1.0; T / by a constant independent of h and�t .

Proof. From the two assumptions onF , we deduce thatF � infm2RC
F.m/ is a real

number and that F D minm�0 F.m/. Note that F D F.0/ if F is nondecreasing.

A standard comparison argument shows that

uni;j � min
x2T2

u0.x/C
�

F � max
x2T2

H .x/

�

tn � min
x2T2

u0.x/ � T

�

F � max
x2T2

H .x/

��

;

so uni;j is bounded from below by a constant independent of h and�t .

Consider Quni;j D n�tF. NmT / and Qmn
i;j D NmT for all i; j; n. We have

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

QunC1
i;j � Quni;j
�t

� �.�h QunC1/i;j C g.xi;j ; ŒDh QunC1�i;j / D F. NmT /C H .xi;j /;

QmnC1
i;j � Qmn

i;j

�t
C �.�h Qmn/i;j C Ti;j .QunC1; Qmn/ D 0:

Since Dh Qun D 0 for all n, identity (38) becomes

h2�tG .m; u; 0/C h2�tG . Qm; 0; u/C h2�t

NT �1
X

nD0

X

i;j

.F.mn
i;j /

� F. NmT /.m
n
i;j � NmT /

D h2�t

NT �1
X

nD0

X

i;j

H .xi;j /.m
n
i;j � Qmn

i;j /

C h2.mNT � NmT ; u
NT � T F. NmT //2 � h2.m0 � NmT ; u

0/2:

(42)

On the other hand:

1. Since the function x ! H .x/ is bounded, and mn is a discrete probability

density, there exists a constant C such that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

h2�t

NT �1
X

nD0

X

i;j

H .xi;j /.m
n
i;j � Qmn

i;j /

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� C:
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2. Since mNT � NmT is nonpositive with a bounded mass, and since un is bounded

from below by a constant, there exists a constant C such that

h2.mNT � NmT ; u
NT � TF. NmT //2 � C:

3. Since u0 is continuous on T
2 andm0 is a discrete probability density, there exists

a constant C such that

�h2.m0 � NmT ; u
0/2 � C:

4. Finally, we know that

.F.mn
i;j /� F. NmT //.m

n
i;j � NmT /

� ı
ˇ

ˇ

ˇ
F.mn

i;j

ˇ

ˇ

ˇ




� C1 � NmTF.m
n
i;j /�mn

i;jF. NmT /C NmTF. NmT /:

Moreover, since 
 > 1, there exist two constants c D ı
2

and C such that

ı
ˇ

ˇ

ˇ
F.mn

i;j /
ˇ

ˇ

ˇ




� NmTF.m
n
i;j / � c

ˇ

ˇ

ˇ
F.mn

i;j /
ˇ

ˇ

ˇ




� C . Since mn 2 Kh, summing

yields that for a possibly different constant C ,

h2
X

i;j

.F.mn
i;j / � F. NmT //.m

n
i;j � NmT / � ch2

X

i;j

ˇ

ˇ

ˇ
F.mn

i;j /
ˇ

ˇ

ˇ




� C:

We get (40) from (42) and from the four points above. Note that (40) implies that

there exists a constant C such that

h2�t

NT �1
X

`D0

X

i;j

g.xi;j ; ŒDhu`C1�i;j / � C; (43)

because, from the special form of g,

G . NmT ; u; 0/ D NmT

NT �1
X

`D0

X

i;j

�

g.xi;j ; ŒDhu`C1�i;j / � H .xi;j /
	

:

Again from the special form of g and the boundedness of H , we deduce that

h2�t

NT �1
X

`D0

X

i;j

ˇ

ˇg.xi;j ; ŒDhu`C1�i;j /
ˇ

ˇ � C: (44)

Finally, summing the first equation in (21) for all i; j , 0 � ` < n one gets that

h2
X

i;j

uni;jCh2�t
q�1
X

`D0

X

i;j

g.xi;j ; ŒDhu`C1�i;j /Dh2�t

n�1
X

`D0

X

i;j

F.m`
i;j/Ch2

X

i;j

u0i;j :
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Using (40) and (44), we get that there exists a constant C such that

h2
X

i;j

uni;j � C;

and since uni;j is bounded from below by a constant, we get (41).

Finally, remember that U n is the sum h2
P

i;j uni;j ; summing the first equations

in (21) for all i; j , we obtain that

U nC1 � U n

�
t D GnC1 � �h2

X

i;j

�

g.xi;j ; ŒDhunC1�i;j /C F.mn
i;j /
�

:

The bounds (40) and (44) imply that the piecewise linear function Uh obtained by

interpolating the values U n at the points .tn/ is bounded inW 1;1.0; T / by a constant

independent of h and �t . ut

3 Examples of Convergence Results

It is possible to obtain various convergence results depending on the assumptions

on g and ˚h. In the case when ˚ is a nonlocal smoothing operator and assumptions

(˚h1), (˚h2), (˚h3), and (˚h4) hold for ˚h, things are easier because of the uniform

Lipschitz bound given in Theorem 2.1, and it is possible to prove convergence in

various norms, in particular a uniform convergence for the potential u:

Theorem 3.1. Let us make the following assumptions on the data: � > 0, ˇ > 1;

the function x ! H .x/ is C 1 onT2, the functions u0 andmT are smooth, andmT 2
K is bounded from below by a positive number. We assume that ˚ is monotone in

the sense of (6), nonlocal and smoothing, so that there is a unique classical solution

.u; m/ of (1)–(3) such thatm > 0.

Consider a numerical Hamiltonian given by (10)–(11) and a numerical cost

function ˚h such that (˚h1), (˚h2), (˚h3), and (˚h4) hold. Let uh (resp. mh) be

the piecewise trilinear function in C .Œ0; T � � T
2/ obtained by interpolating the

values uni;j (respmn
i;j ) at the nodes of the space-time grid. The functions uh converge

uniformly and inLmax.ˇ;2/.0; T IW 1;max.ˇ;2/.T2// to u as h and�t tend to 0. If ˇ � 2

the functionsmh converge tom in C 0.Œ0; T �IL2.T2//\L2.0; T IH 1.T2// as h and

�t tend to 0. If 1 < ˇ < 2, the functionsmh converge to m in L2..0; T / � T
2/.

Proof. See [1]. ut
In the case when ˚ is a local operator, it is still possible to state convergence

results. Here, for simplicity, we are going to focus on the case when H is given

by (9) with ˇ > 1 and we make the assumption that the continuous problem has

a classical solution: existence of a classical solution can be true for local operators
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˚ : for example, it has been proved in [15] that if ˇ D 2, and F is C 1 and bounded

from below, and if the functions u0 andmT are C 2 then there is a classical solution.

Remark 3.1. For the stationary problem (4), it can be proved that, if (F2) holds with


 > 2 (2 is the space dimension) and F is nondecreasing, then (4) has a classical

solution for any ˇ > 1, by using the weak Bernstein method studied in [28].

Theorem 3.2. Let us make the following assumptions on the data: � > 0, H is

given by (9) with ˇ > 1, x ! H .x/ is C 1 on T
2 and g is given by (10)–(11), the

functions u0 and mT are C 2, and mT 2 K is bounded from below by a positive

number. We assume that (F1) and (F2) hold, and that there exist three positive

constants ı, �1 > 0 and 0 < �2 < 1 such that F 0.m/ � ımin.m�1 ; m��2/.

We assume that there is unique classical solution .u; m/ of (1)–(3) such that

m > 0.

Consider a numerical Hamiltonian given by (10)–(11). Let uh (resp. mh) be the

piecewise trilinear function in C .Œ0; T � � T
2/ obtained by interpolating the values

uni;j (resp mn
i;j ) at the nodes of the space-time grid. The functions uh converge in

Lˇ.0; T IW 1;ˇ.T2// to u as h and �t tend to 0. The functions mh converge to m in

L2��2..0; T / � T
2/ as h and �t tend to 0.

Proof. For simplicity, we give the proof in the case ˇ � 2 only. For the case

1 < ˇ < 2, the proof is a bit more complicated, and we refer to [1]. Call

Nm D maxm.t; x/ and 0 < m D minm.t; x/.

Note that mh.t; �/ 2 K for any t 2 Œ0; T �.
We call Qun and Qmn the grid functions such that Quni;j D u.n�t; xi;j / and

Qmn D Ih.m.tn; �//. The functions Qu and Qmn are solutions of (35) where a and b

are consistency errors. From the fact that .u; m/ is a classical solution of (1)–

(3), we infer from the consistency of the scheme (in particular from (17)) that

max0�n<NT .kankL1.T2h/
C kbnkL1.T2h/

/ tends to zero as h and�t tend to zero.

Step 1

As a consequence of the previous observations, the fundamental identity (38) holds,

and from (22), can be written as follows:

h2�tG .m; u; Qu/C h2�tG . Qm; Qu; u/C h2�t

NT �1
X

nD0

.˚hŒm
n� � ˚hŒ Qmn�; mn � Qmn/2

D h2�t

NT �1
X

nD0

.an; mn � Qmn/2 C h2�t

NT
X

nD1

.bn�1; un � Qun/2:

(45)

From Proposition 2.1, the a priori bound (41) holds for uh. This implies that

lim
h;�t!0

h2 max
n

j.bn�1; un � Qun/2j D 0:
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From the fact that mn 2 Kh, we also get that limh;�t! 0 h
2 maxn j.an; mn �

Qmn/2j D 0.

Therefore, since ˇ � 2, and since Qmn
i;j � m, we deduce from (45) and (39) that

h2�t

NT
X

nD1

X

i;j

ˇ

ˇ

ˇ
ŒDh Qun�i;j � ŒDhun�i;j

ˇ

ˇ

ˇ

ˇ

D o.1/: (46)

Step 2

We also obtain from (45) that

h2�t

NT �1
X

nD0

X

i;j

.F.mn
i;j / � F. Qmn

i;j /.m
n
i;j � Qmn

i;j / D o.1/: (47)

We split the sum w.r.t. .i; j / in the left hand side of (47) into

Sn1 D
X

i;j

..mn
i;j � Qmn

i;j /
�/2

Z 1

0

F 0. Qmn
i;j C t.mn

i;j � Qmn
i;j //dt;

Sn2 D
X

i;j

..mn
i;j � Qmn

i;j /
C/2

Z 1

0

F 0. Qmn
i;j C t.mn

i;j � Qmn
i;j //dt:

Call Nm D maxm.t; x/ and m D minm.t; x/ > 0; there exists a positive number c

depending on m and Nm but independent of h and �t , and .i; j; n/ such that

Sn1 � c
X

i;j

..mn
i;j � Qmn

i;j /
�/2

Z 1

0

. Qmn
i;j C t.mn

i;j � Qmn
i;j //

�1dt

D c

�1 C 1

X

i;j

..mn
i;j � Qmn

i;j /
�/.. Qmn

i;j /
�1C1 � .mn

i;j /
�1C1/

� c

�1 C 1

X

i;j

..mn
i;j � Qmn

i;j /
�/2. Qmn

i;j /
�1 :

The latter inequality comes from the nondecreasing character of the function � W
Œ0; y� ! R, �.z/ D y�1C1�z�1C1

y�z
. Thus, �.z/ � �.0/ D y�1 . Hence, there exists a

constant c depending on the bounds on the density m solution of (1)–(3) but not on

h and�t , and .i; j; n/ such that

Sn1 � c
X

i;j

..mn
i;j � Qmn

i;j /
�/2:
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On the other hand

Sn2 � c
X

i;j

..mn
i;j � Qmn

i;j /
C/2

Z 1

0

. Qmn
i;j C t.mn

i;j � Qmn
i;j //

��2dt

D c

1 � �2
X

i;j

..mn
i;j � Qmn

i;j /
C/..mn

i;j /
1��2 � . Qmn

i;j /
1��2/

� c
X

i;j

..mn
i;j � Qmn

i;j /
C/2.mn

i;j /
��2 :

But there exists a constant c such that for all y 2 Œm; Nm�: if z � y C 1

.z � y/2z��2 � .z � y/2��2 inf
z�yC1

.z � y/�2
z�2

� c.z � y/2��2 ;

and if y � z � y C 1,

.z � y/2z��2 � c.z � y/2:

Therefore there exists a constant c such that

Sn1 C Sn2 � c

0

@

X

i;j

.mn
i;j � Qmn

i;j /
21

fmn
i;j � Qmn

i;j C 1g

C
X

i;j

.mn
i;j � Qmn

i;j /
2��21

fmn
i;j � Qmn

i;j C 1g

1

A :

Then (47) implies that

lim
h;�t!0

h2�t

NT �1
X

nD0

0

B

B

@

X

i;j

.mn
i;j � Qmn

i;j /
21

fmn
i;j � Qmn

i;j C 1gC

C
X

i;j

.mn
i;j � Qmn

i;j /
2��21

fmni;j� Qmn
i;j C 1g

1

C

C

A

D 0:

A Hölder inequality leads to

lim
h;�t!0

h2�t

NT �1
X

nD0

X

i;j

jmn
i;j � Qmn

i;j j2��2 D 0: (48)

Step 3

From the previous two steps, up to an extraction of a sequence, mh ! m in

L2��2..0; T / � T
2/ and almost everywhere in .0; T / � T

2, ruh converges to ru
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strongly in Lˇ..0; T / � T
2/. Moreover, from the last point in Proposition 2.1, the

sequence of piecewise linear functions .Uh/ on Œ0; T � obtained by interpolating the

values U n D h2
P

i;j uni;j at the points .tn/ is bounded in W 1;1.0; T /, so up to a

further extraction of a subsequence, it converges to some function U in Lˇ.0; T /.

As a result, there exists a function  of the variable t such that uh ! u C  in

Lˇ.0; T IW 1;ˇ.T2//.

From the a priori estimate (40), the sequence .F.mh// is bounded in L
 ..0; T /�
T
2/ for some 
 > 1, which implies that it is uniformly integrable on .0; T / � T

2.

On the other hand, F.mh/ converges almost everywhere to F.m/. Therefore, from

Vitali’s theorem, F.mh/ converges to F.m/ in L1..0; T / � T
2/, (in fact, it is also

possible to show that F.mh/ converges to F.m/ in Lq..0; T / � T
2/ for all q 2

Œ1; 
/).

It is then possible to pass to the limit in the discrete Bellman equation, which

yields that
@ 

@t
D 0 in the sense of distributions in .0; T /. Hence  is a constant.

We are left with proving that  is indeed 0. For that, we split @uh
@t

into the sum

�h C �h, where

• �hjt 2 .tn;tnC1� is constant w.r.t. t and piecewise linear w.r.t. x, and takes the value

�.�hu
nC1/i;j at the node �i;j .

• �h is the remainder, see (18).

From the observations above, .�h/ converges in L1..0; T /�T
2/. On the other hand,

from (46), it is not difficult to see that .�h/ is a Cauchy sequence in

Lˇ.0; T I .W s;ˇ=.ˇ�1/.T2//0/ for s large enough, (here .W s;ˇ=.ˇ�1/.T2//0 is the

topological dual of W s;ˇ=.ˇ�1/.T2/).

Hence, . @uh
@t
/ converges in L1.0; T I .W s;ˇ=.ˇ�1/.T2//0/. Therefore, uh converges

in C 0.Œ0; T �I .W s;ˇ=.ˇ�1/.T2//0/; since .uh.t D 0// converges to u0, we see that

 D 0.

This implies that the extracted sequence uh converges to u inLˇ.0; T IW 1;ˇ.T2//.

Since the limit is unique, the whole family .uh/ converges to u inLˇ.0; T IW 1;ˇ.T2//

as h and�t tend to 0. ut
We give the corresponding theorem in the ergodic case, without proof, because

it is quite similar to that of Theorem 3.2.

Theorem 3.3. Let us make the following assumptions on the data: � > 0, ˇ > 1;

the function x ! H .x/ is C 1 on T
2. We assume that (F1) and (F2) hold, and that

there exist three positive constants ı, �1 > 0 and 0 < �2 < 1 such that F 0.m/ �
ımin.m�1 ; m��2/.

We assume that there is unique classical solution .u; m; �/ of (4)–(5) such that

m > 0 and
R

T2
u.x/dx D 0.

Consider a numerical Hamiltonian given by (10)–(11). Let uh (resp. mh) be the

piecewise bilinear function in C .T2/ obtained by interpolating the values ui;j (resp

mi;j ) at the nodes of T2h, where
�

.ui;j /; .mi;j /; �h
	

is the unique solution of the

following system:

for all 0 � i; j < Nh, mi;j � 0,
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8

<

:

��.�hu/i;j C g.xi;j ; ŒDhu�i;j /C �h D F.mi;j /;

��.�hm/i;j � Ti;j .u; m/ D 0;

h2
P

i;j ui;j D 0; h2
P

i;j mi;j D 1:

(49)

As h tends to 0, the functions uh converge in W 1;ˇ.T2/ to u, the functions mh

converge to m in L2��2.T2/, and �h tends to �.

4 Algorithms for Solving the Discrete Linear Systems

The algorithms described below were originally proposed in [4], among other

methods.

4.1 Newton Methods for Solving (21)–(22)

In this paragraph, we assume that p 7! H.x; p/ and q 7! g.x; q/ are C 2 regular.

This will allow us to use Newton like algorithms for (21)–(22). We also assume that

assumptions (g1)–(g3) hold and that˚ is a local operator, i.e.˚Œm�.x/ D F.m.x//,

where F is a C 1 and strictly increasing function.

System (21)–(22) can be seen as a forward discrete Bellman equation for u with

a Cauchy condition at t D 0 coupled with a backward discrete Fokker–Planck

equation for m with a Cauchy condition at final time. This structure prohibits the

use of a straightforward time-marching solution procedure.

Call U and M the vectors of R
N TN 2

such that UkN2CiNCj D uki;j and

MkN2CiNCj D mk�1
i;j . (recall that u0 and mNT are given). The system of nonlinear

equations can be written

FU .U ;M / D 0; and FM .U ;M / D 0; (50)

with

• FU .U ;M / D 0 , (18) 8n, 0 � n < NT , 8i; j .

• FM .U ;M / D 0 , (20) 8n, 0 � n < NT , 8i; j .

In order to discuss the Newton method for solving (50), we use the following

notation

AU;U .U ;M / D DU FU .U ;M /; AU;M .U ;M / D DM FU .U ;M /;

AM;U .U ;M / D DU FM .U ;M /; AM;M .U ;M / D DM FM .U ;M /:
(51)

The matrices AUU.U ;M / and AUM .U ;M / have the form
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AUU D

0

B

B

B

B

B

B

B

@

D1 0 : : : : : : 0

� 1
�
tI D2

: : :
:::

0
: : :

: : :
: : :

:::
:::

: : :
: : :

: : : 0

0 : : : 0 � 1
�
tI DNT

1

C

C

C

C

C

C

C

A

; AUM D

0

B

B

B

B

B

B

B

@

E1 0 : : : : : : 0

0 E2
: : :

:::
:::
: : :

: : :
: : :

:::
:::

: : :
: : : 0

0 : : : 0 ENT

1

C

C

C

C

C

C

C

A

: (52)

The blocks of AUU.U ;M / are sparse. The block Dn corresponds to the discrete

operator .zi;j / 7!
�

1
�t

zi;j � �.�hz/i;j C ŒDhz�i;j � gq.xi;j ; ŒDhun�i;j /
	

coming from

the linearization of the discrete Bellman equation. From the assumptions (g1) and

(g3), Dn is a M-matrix, thus AUU is invertible.

The blocks of AUM.U ;M / are diagonal matrices, (note that they would be

dense matrices if ˚ was a nonlocal operator). We have assumed that F 0 > 0 so

the diagonal entries of AUM.U ;M / are negative.

From Remark 2.1, the matrices AMM.U ;M / and AMU.U ;M / have the form

AMM D ATUU; AMU D

0

B

B

B

B

B

B

B

@

QE1 0 : : : : : : 0

0 QE2
: : :

:::
:::
: : :

: : :
: : :

:::
:::

: : : QENT �1 0

0 : : : : : : 0 QENT

1

C

C

C

C

C

C

C

A

: (53)

The block AMM corresponds to a discrete linear transport equation. Note that

V T QEnW D
X

i;j

mn�1
i;j ŒDhv�i;j � gq;q.xi;j ; ŒDhun�i;j /ŒDhw�i;j :

From the convexity of g, we see that the block QEn is symmetric and positive semi-

definite if mn�1 is a nonnegative grid function.

In [2], it is proved that under Assumptions (g1)–(g4) and if F is strictly

increasing, and if the iterate produced by the Newton method satisfies M � 0,

then the Jacobian matrix
�

AU;U AU;M
AM;U AM;M

�

is invertible. The proof is similar to that used for the uniqueness of the solution of

(21)–(22). The positivity of M is not guaranteed though, but if the initial guess is

close enough to a solution . OU ; OM / with OM > 0, then the iterates M will stay

positive.

Assuming the invertibility of the matrix, the most time consuming part of the

procedure lies in solving the system of linear equations
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�

AU;U AU;M
AM;U AM;M

��

U

M

�

D
�

GU
GM

�

: (54)

As explained above, the Newton method described above may break down if in

the Newton loop, the approximation of mh takes negative values. A similar phe-

nomenon was observed by Benamou et al. [10, 11] when they studied a somewhat

similar but simpler penalty method (using conjugate gradient iterations instead of

Newton) for computing a mixed L2-Wasserstein distance between two probability

densities. This is of course a drawback of the method. However, breakdown does not

happen if the initial guess is close enough to a solution. Therefore, it is important to

find good initial guesses for the Newton method.

A possible way of avoiding breakdowns is to start solving (21)–(22)with a rather

high value of the parameter � (of the order of 1), then gradually decrease � down

to the desired value, the solution of (13) found by the Newton method for a given

value of � being used as an initial guess for the next and smaller value of �. Doing

so in our tests, we have avoided breakdowns of the Newton method. For values of

� between 1 and 0:1, the number of iterations of the Newton method to achieve that

the `2 norm of the residual be smaller than 10�5 was found to be less than 10 and to

increase as � decreases.

In the sequel, we propose possible iterative strategies for solving (54), which are

based on eliminating U from the Bellman equation. Other iterative strategies based

on eliminating M from the Bellman equation can be designed, see [4], but we will

not present them here, since they are more involved and require efficient multigrid

preconditioners.

4.2 Iterative Strategies for Solving (54) Based on

Eliminating U

4.2.1 A Basic Iterative Method

The principle of the method is as follows:

1. First solve

AU;U QU D GU : (55)

This is done by sequentially solving

D1
QU 1 D G1

U ; (56)

then

Dk
QU k D 1

�t
QU k�1 CGk

U ; for k > 1; (57)

i.e. marching in time in the forward direction. We know that (56) and (57) have

a unique solution if (g1) and (g3) hold.
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2. Introducing U D U � QU , the vector .U ;M /T satisfies

�

AU;U AU;M
AM;U AM;M

��

U

M

�

D
�

0

GM �AM;U QU

�

; (58)

which implies

�

AM;M � AM;UA
�1
U;UAU;M

	

M D GM � AM;U QU : (59)

3. Once (59) is solved, U is obtained by solving the discrete forward linearized

Bellman equation

AU;UU D �AU;MM (60)

by the same method as for (56), (55).

The system (59) is solved by means of an iterative method, for example, the

BiCGstab algorithm [31] in all what follows; it only requires an implementation of

the matrix-vector product with the matrix AM;M �AM;UA�1
U;UAU;M . Of course, this

matrix is not assembled: the matrix-vector product involves matrix-vector products

with the matrices AM;M , AM;U and AU;M and solving a linear system of the form

(55), similar to that appearing in the first step.

Numerical tests not reported here show that, with the previously described

iterative method, the number of iterations to reduce the error by a fixed factor

increases as the size of the mesh grows; this can also be foreseen by using arguments

similar to those in Sect. 4.2.2 below: hence it is desirable to modify this basic method

by using a suitable preconditioner.

4.2.2 Preconditioned Iterative Methods

We propose to use AMM as a preconditioner for (59): it amounts to applying an

iterative algorithm (i.e. the BiCGstab algorithm) to

�

I � A�1
M;MAM;UA

�1
U;UAU;M

	

M D A�1
M;M .GM �AM;U QU / (61)

rather than to (59).

A Heuristic Interpretation in Terms of Partial Differential Operators

A heuristic explanation for this preconditioner choice is as follows: calling v and n

two functions on T
2,

• AUU is the matrix counterpart of the linearized Bellman operator (advection-

diffusion operator):

v 7! Lin-HJB.v/ WD @v

@t
� ��v C @H

@p
.x;ru/ � rv
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• AU;M is the matrix counterpart of the operator: n 7! �F 0.m/n

• AMM is the matrix counterpart of the Fokker–Planck operator (transport-diffusion

operator):

n 7! FP.n/ WD �@n
@t

� ��n � div.n
@H

@p
.x;ru//

• AM;U is the matrix counterpart of the operator: v 7! �div
�

mHpp.x;ru/rv
	

,

where Hpp.x; q/ stands for the Hessian of p 7! H.x; p/ at p D q

Let us define Lin-HJB�1.w/ as the unique solution v of the Cauchy problem

involving the linearized Bellman equation:

@v

@t
� ��v C @H

@p
.x;ru/ � rv D w in .0; T � � T

2;

vjtD0 D 0 in T
2;

(62)

and FP�1.r/ as the unique solution n of the backward Cauchy problem involving

the Fokker–Planck equation:

@n

@t
C ��nC div.n

@H

@p
.x;ru// D �r in .0; T � � T

2;

njtDT D 0 in T
2;

(63)

The matrix �A�1
M;MAM;UA

�1
U;UAU;M is the counterpart of the nonlocal operator:

n 7!
�

FP�1 ı
�

v 7! �div
�

mHpp.x;ru/rv
		

ı Lin-HJB�1
�

�

F 0.m/n
	

:

Now, assuming that u andm belong to C 1C˛=2;2C˛.Œ0; T ��T
2/, it can be shown that

the latter operator maps continuously C ˛=2;˛.Œ0; T ��T
2/ to C 1C˛=2;2C˛.Œ0; T ��T

2/,

so it is a compact operator on C ˛=2;˛.Œ0; T ��T
2/. Compactness inL2..0; T /�T

2/ is

also true. Hence I�A�1
M;MAM;UA

�1
U;UAU;M is the discrete version of the perturbation

of the identity by a compact operator. Therefore, the convergence of the BiCGstab

algorithm should not depend on the size the grid. This will be confirmed by the

numerical experiments below.

The PDE interpretation of the preconditioner also leads us to predict that the

number of iterations needed by the iterative solver should increase as � decreases to

zero, which will indeed appear clearly in the tests.

Algorithm

The matrix A�1
M;MAM;UA

�1
U;UAU;M is not assembled. The proposed method only

requires an implementation of the matrix-vector product with the matrix AM;M �
AM;UA

�1
U;UAU;M as discussed above (it does not need the matrix A�1

U;U ), and solving

systems of linear equations of the form
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AM;M QM D GM : (64)

This is done by sequentially solving

DT
NT

QMNT�1 D G
NT
M ; (65)

then

DT
k

QM k�1 D � 1

�
t QM k CGk

M ; for 1 � k < NT ; (66)

i.e. marching in time in the backward direction. It has already been seen that the

blocksDk are invertible, and so are the blocksDT
k .

Note that an iteration of the preconditioned BiCGstab method involves two

solves of systems of the type (55) and two solves of systems of the type (64).

Solving the systems (56), (57), (65), (66) (two-dimensional problems) can be

done with fast direct solvers: in our implementation, we have used the open source

library UMFPACK [30] which contains an Unsymmetric MultiFrontal method for

solving linear systems.

Numerical Tests

We consider the following case:

T D 1; (67)

H.x; p/ D sin.2�x1/C sin.2�x2/C cos.4�x1/C jpj3; (68)

˚.m/ D m; (69)

u0.x/ D 0; (70)

mT .x/ D 1; (71)

and g corresponds to a classical Godunov scheme (10)–(11).

For what follows it interesting to plot the contours ofm at time t D T=2 D 0:5: it

was observed in [2] that up to the addition of a constant to u, the solution at t D T=2

is close to the solution of the ergodic problem (4)–(6); on Fig. 1, we display the

contours of m for � D 0:6 and � D 0:08. Note that for � D 0:08, i.e. rather close to

the deterministic case � D 0, m.x/ is small (smaller than 0:01) in a large region.

In Table 1, we show the number of iterations needed to decrease the residual norm

by a factor 10�3 or 10�7 with the preconditioned BiCGstab method. In our tests,

choosing an error reduction of 10�3 instead of 10�7 had no effect on the convergence

of the inexact Newton method.

We see that, as expected, the number of BiCGstab iterations is small and does

not depend on the size of the grid, and that it increases as � decreases.
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Fig. 1 Contours of m for � D 0:6 (left) and � D 0:08 (right) at time t D 0:5

Table 1 Average (on the Newton loop) number of iterations of

BiCGstab to decrease the residual by a factor 10�3 or 10�7

Grid 32� 32� 32 64� 64 � 64 128 � 128 � 64

Rel. accur. 10�3 10�7 10�3 10�7 10�3 10�7

� D 0:6 1 2 1 2 1 2

� D 0:36 1.75 2 1.75 2 1.8 2

� D 0:2 2 3.5 2 3.5 2 4

� D 0:12 3 6 3 6 3 6.1

� D 0:046 4.9 10 5.1 10 5.1 10

Table 2 Average computing time for solving the linearized

problem

� n grid 32� 32 � 32 64� 64� 64 128 � 128 � 128

0.6 2.06 19.9 234.7

0.12 5.02 50.03 577.25

Table 2 contains the average computing times for solving the linear systems of

the form (54) for different grids, for � D 0:6 and � D 0:12, on a Dell server

with Six-core 2.93 GHz Intel(R) Xeon(R) X5670 processors. It can be seen that

the computing times are not far from scaling linearly with the total number of

unknowns. In order to achieve almost optimal complexity, it is possible to use

multigrid methods for solving (57) and (66), see [4].

Remark 4.1. It is possible to use this family of algorithms when the cost operator

˚ is non local, at least if (˚h2) holds.

Remark 4.2. It is possible to use this family of algorithms when the monotonicity

assumption on F is not fulfilled, for example F.m/ D � log.m/.
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the exit

Fig. 2 The geometry of the

problem

5 Some Simulations

We use the mean field games theory to model a situation where a population is

driven to leave a given closed room with obstacles: one can imagine for example a

situation of panic in a closed building, in which the population tries to reach the exit

door. The chosen geometry is represented on Fig. 2. The domain˝ is the unit square

.0; 1/2 perforated with three square holes whose side is 0:3. The exit door is taken

to be the line segment �D D Œ0:6; 0:8� � f0g. Let �N be given by �N D @˝n�D .

Realistic models take into account congestion, i.e. the fact that it is more difficult

for an individual to move if the density is locally high; this translates into the fact

that the running cost density is of the more complex form L.Xs; m.s;Xs/; 
s/ C
˚.m.s; .Xs// and that the Hamiltonian becomes

H.x;m.x/;ru/ D sup



�


 � ru � L.x;m.x/; 
/
�

:

The agents minimize the expectation of

c C
Z t�

0

.L.Xs ; m.s;Xs/; 
s/C ˚.m.s; .Xs/// ds

where t � is the first time when the exit door �D is reached. Here c is the exit cost.

The MFG system of PDEs becomes

@u

@t
.t; x/ � ��u.t; x/CH.x;m.t; x/;ru.t; x// D ˚.m.t; x/;

in .0; T / �˝;
@m

@t
.t; x/C ��m.t; x/C div

�

m.t; �/@H
@p
.�; m.�/;ru.t; �//

�

.x/ D 0;

in .0; T / �˝;
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We chooseH as follows:

H.x;m; p/ D H .x/C jpjˇ
.c0 C c1m/


: (72)

with c0 > 0, c1 � 0, ˇ > 1 and 0 � 
 < 4.ˇ � 1/=ˇ. For such coefficients,

existence and uniqueness was proven by Lions [29]. The function H .x/ models

the panic in the room and we have chosen H .x/ D �k, where k � 0 is called the

panic coefficient.

The boundary �N corresponds to the walls of the room, so the natural boundary

condition on �N is a homogeneous Neumann boundary condition on u: @u
@n

D 0

which says that the velocity of the agents is tangential to the walls. The same

condition holds for m, namely @m
@n

D 0, which says that nobody escapes or enters

the room through �N . To summarize, the boundary conditions on �N are

@u

@n
.t; x/ D @m

@n
.t; x/ D 0; on �N : (73)

For the numerical scheme, we add a layer of virtual nodes outside ˝ and we apply

a first order scheme at the nodes on �N to discretize the Neumann condition: this

implies that the values of u (resp. m) at the virtual nodes is the value of u (resp. m)

at their neighbor nodes in �N , and we use these values to apply the scheme (21) at

the nodes on �N .

The boundary conditions at the exit door are chosen as follows: there is a

Dirichlet condition for u at the door: u D c where c is a small enough number;

in our simulations, we have chosen c D 0. For m, we may assume that m D 0

outside the domain, so we also get a Dirichlet condition for m at �D . Hence

u.t; x/ D m.t; x/ D 0; on �D : (74)

In the numerical method, we add a layer of nodes outside ˝ and we apply the

scheme (21) at the boundary nodes on �D having fixed the value of u andm to zero

on this additional layer of node outside ˝ .

Note that it is also possible and arguably more realistic to replace the Dirichlet

condition on m by a Robin condition.

In the simulation, we have chosen

� D 0:0375; T D 6;

˚.m/ D m; H.x;m; p/ D �0:1C jpj2
.1C 4m/3=2

;

mT .x; y/ D 4.1fjx�1=4j<1=10g C 1fjx�3=4j<1=10g/1fy>4=5g;

u0 D 0:
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Fig. 3 The density at different times: the scales are adapted and differ from one time another

The grid parameters are h D 1=64 and�t D 0:015.

In Figs. 3 and 4, we have plotted the graph of the densities at different physical

times. We can give the following interpretation of these plots: the population is

initially confined in small regions near the top part of the domain, on the left and

right sides of the top obstacle. We see that the population tends first to occupy as

much space as possible instead of aiming directly at the exit door: for example, at

t D 0:9 the maximum of the density is behind the top obstacle, i.e. far from the exit

door; this is caused by the cost term ˚.m.x//, which models the fact that people do

not like to be confined in regions of high density. As a result, in a first phase, the

population gets distributed close to symmetrically with respect to the axis x D 0:5.

We also see that it takes a rather long time for the population to leave the top part

of the domain: this is caused by the congestion factor: the agents move slowlier if

the density is high. Later, people take the direction of the exit door; most of the

population goes round the right obstacle, because the exit time is smaller on these

trajectories: the densities on the right and middle corridors are of the same orders,

and higher than the density in the left corridor. Finally, there is a higher density of

people in the right side of the middle corridor which is the locus of the shortest path

to the exit. In Fig. 5, we have plotted the velocities given by v D � @H
@q
.x;m;ru/ at

time t D 1:5.
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Fig. 5 The velocity

v D �Hp.x;m;ru/ at time

t D 1:5

Finally, we keep all the parameters unchanged in the simulation, except the

Hamiltonian, which becomes

H.x;m; p/ D �0:1C jpj2
.1C 8m/1:8

: (75)

The evolution of the density is plotted on Fig. 6: congestion is stronger, which leads

to a slower exit and a more symmetric distribution of the agents.
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Fig. 6 Everything is kept unchanged but the Hamiltonian, which is given by (75): the density at

different times: the scales are adapted and differ from one time another

6 The Planning Problem

6.1 Description of the Planning Problem

In the planning problem, the system of PDEs (1)–(2) is kept unchanged, but the final

and terminal conditions become

m.0; x/ D m0.x/; m.T; x/ D mT .x/; in T
2: (76)

The difference with (3) is that the initial condition lies on m and no longer on u. If

the Hamiltonian is of the form H.x;ru/ D sup

�


 � ru � L.x; 
/
�

, conditions

(76) represent the requirement that the positions of a very large number of identical

rational agents whose dynamics is given by dXs D � @H
@p
.Xs;ru.s; Xs// ds Cp

2� dWs and running cost density is given byL.Xs; 
s/C˚Œms �.Xs/, evolve from

a given spatial density mT at s D 0 , t D T to a desired target density m0 at

s D T , t D 0.

Whereas existence (and uniqueness) results for (1)–(3) are available under fairly

general assumptions, see [26, 27], much less is known concerning (1), (2), (76).
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Indeed, as far as we know, P-L. Lions has proved existence for (1), (2), (76) in

mainly two cases:

1. � D 0 (deterministic case), H is a smooth and strictly convex Hamiltonian such

that limjpj!1
H.x;p/

jpj
D C1, ˚Œm�.x/ D F.m.x// where F is a smooth and

strictly increasing function, m0 and mT are smooth functions bounded away

from 0.

2. � > 0, H.p/ D cjpj2 or H.p/ is close to cjpj2, ˚Œm�.x/ D F.m.x// where

F is a smooth, bounded and nondecreasing function, m0 and mT are smooth

functions bounded away from 0, but existence is still an open question when

� > 0 and the Hamiltonian is more general. P-L. Lions has also proved that ifH

is sublinear with respect to p and if m0 6D mT , then there are no solutions if T

is small enough. Therefore, existence may only result from combined nonlinear

effects. It is also worth to observe that the planning problem described above can

be seen as a generalization of the simpler system, (with in particular F D 0,

� D 0),

@u

@t
C 1

2
jruj2 D 0 ;

@m

@t
C div .mru/ D 0 ; (77)

m.0; x/ D m0.x/; m.T; x/ D mT .x/ (78)

which was introduced by Benamou and Brenier [9], see also [32], as a fluid

mechanics formulation of the Monge–Kantorovich mass transfer problem. In [9],

a numerical method for the solution of (77), (78) is proposed on the basis of a

reformulation of the problem as the system of optimality conditions for a suitably

constructed primal-dual pair of convex optimal control problems for the transport

equation
@m

@t
C div .m 
/ D 0 ;

the velocity field 
.x; t/ playing here the role of a distributed control. Similarly,

the mean field games models can also be reformulated as an optimal control

problems for a density driven by a Fokker–Planck equation, see [26, 27].

In what follows, we are going to give an existence result for the discrete version

of (1), (2), (76) in the particular case when ˚ is a local operator; the main idea is

to use the optimal control formulation of the discrete schemes, following ideas in

[9, 27, 32].

6.2 The Finite Difference Scheme and an Optimal Control

Formulation

The arguments below were originally published in [2].

The finite difference scheme for the planning problem is obviously given by (21)

with the initial and terminal conditions: for 0 � i; j < Nh,
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m
NT
i;j D 1

h2

Z

jx�xi;j j1�h=2

mT .x/dx; m0
i;j D 1

h2

Z

jx�xi;j j1�h=2

m0.x/dx: (79)

We assume that ˚ is a local operator, i.e. ˚Œm�.x/ D F.m.x//, and that F D W 0

where W W R ! R is a strictly convex, coercive C 2 function. It follows that the

image of the interval .0;C1/ by F is some interval JF D .F ;C1/.

We also assume that (g1)–(g4) hold and that the numerical Hamiltonian has the

further coercivity property

(g5) Coercivity:

limq1!�1
g.x;q1;q2 ;q3 ;q4/

jq1j
D C1 uniformly w.r.t. x; q2; q3; q4;

limq2!C1
g.x;q1;q2 ;q3 ;q4/

q2
D C1 uniformly w.r.t. x; q1; q3; q4;

limq3!�1
g.x;q1;q2 ;q3 ;q4/

jq3j
D C1 uniformly w.r.t. x; q1; q2; q4;

limq4!C1
g.x;q1;q2 ;q3 ;q4/

jq4j
D C1 uniformly w.r.t. x; q1; q2; q3:

This coercivity property implies that

lim
k ŒDhU � k1!1

maxi;j g.xi;j ; ŒDhU �i;j /

k ŒDhU � k1

D C1: (80)

We are going to introduce an optimal control problem whose optimality conditions

are interpreted as the semi-implicit scheme (21), (79). In this way, using a convex

duality argument based on the Fenchel–Rockafellar Theorem, we are going to prove

the existence of a solution of (21), (79), see Theorem 6.1 below.

If � denotes the indicator function of the set fm � 0g, the Legendre–Fenchel

transform of W C � is defined by

�

W C �
	�
.˛/ D sup

m

�

˛m �W.m/� �.m/
�

:

It is clear that
�

W C�
	�

is convex, continuous and non decreasing. If ˛ 2 JF then
�

W C�
	�
.˛/ D ˛F�1.˛/�W.F �1.˛//. If ˛ … JF then

�

W C�
	�
.˛/ D �W.0/.

Consider now the convex functional�� on R
NT �N 2

h � R
4NT �N 2

h :

��.˛; ˇ/ D
NT
X

nD1

X

i;j

.W C �/�
�

˛ni;j C g.xi;j ; Œˇ
n�i;j /

	

:

where ˛ D .˛ni;j /, ˇ D .Œˇn�i;j / and Œˇn�i;j D .ˇ
1;n
i;j ; ˇ

2;n
i;j ; ˇ

3;n
i;j ; ˇ

4;n
i;j /, 1 � n � NT ,

1 � i; j � Nh. The Legendre–Fenchel transform of �� is defined by
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�.m; z/ D sup
˛;ˇ

0

@

NT
X

nD1

X

i;j

mn�1
i;j ˛

n
i;j C hŒzn�1�i;j ; Œˇ

n�i;j i

�.W C �/�
�

˛ni;j C g.xi;j ; Œˇ
n�i;j /

	

!

(81)

where m D .mn
i;j /, z D .Œzn�i;j / and Œzn�i;j D .z

1;n
i;j ; z

2;n
i;j ; z

3;n
i;j ; z

4;n
i;j /, 0 � n < NT ,

1 � i; j � Nh and hŒz�; Œˇ�i D
P4

kD1 ˇ
kzk;.

Remark 6.1. Note that in our definition, for n D 1; : : : ; NT , the dual variable of

˛ni;j ismn�1
i;j , and the dual variable of Œˇn�i;j is Œzn�1�i;j . This lag in the time index n

will prove convenient for our purpose.

Let us introduce the minimization problem

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

Minimize�.m; z/ subject to the constraint

mn
i;j �mn�1

i;j

�t
C �.�hm

n�1/i;j C divh.z
n�1/i;j D 0; 1 � n � NT ;

m
NT
i;j D .mT /i;j ;

m0
i;j D .m0/i;j ;

(82)

where .mT /i;j and .m0/i;j are the right hand sides in (79) and

divh.z
n�1/i;j D .DC

1 z1;n�1/i�1;j C.DC
1 z2;n�1/i;j C.DC

2 z3;n�1/i;j�1C.DC
2 z4;n�1/i;j

The above minimization problem is an optimal control problem for a discrete

density driven by a discrete Fokker–Planck equation. The data .m0/i;j ; .mT /i;j 2
Kh are discrete probability densities.

We are going to prove next that if the initial datum satisfies .m0/i;j > 0 for all

i; j , then the optimal control problem above has at least a solution .m; z/, that there

exists a solution .˛; ˇ/ of the dual problem and that the optimality conditions at the

saddle point coincide with the discrete scheme (21), (79). The argument is based on

convex duality and the Fenchel–Rockafellar theorem.

Let us introduce for this purpose the functionals L ; �;˙� by setting

L . / D 1

�t

0

@

X

i;j

.m0/i;j 
0
i;j �

X

i;j

mT;i;j 
NT
i;j

1

A (83)

.˛; ˇ/ D �. / ,

8

<

:

˛nC1
i;j D

 nC1
i;j �  ni;j

�t
� �.�h 

nC1/i;j ;

ŒˇnC1�i;j D ŒDh 
nC1�i;j ; 0 � n < NT ;

(84)
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and, finally,

˙�.˛; ˇ/ D

8

<

:

L . / if 9 s.t. .˛; ˇ/ D �. / and
X

i;j

 0i;j D 0;

C1 otherwise.

(85)

Lemma 6.1. The functional �� is convex and continuous. The functional ˙� is

convex and lower semicontinuous. Moreover, the following constraints qualification

property holds: there exists .˛; ˇ/ such that ˙�.˛; ˇ/ < C1 (and of course

��.˛; ˇ/ < C1).

Proof. Convexity and continuity/semicontinuity are straightforward to check. For

the constraint qualification it is enough to solve

unC1
i;j � uni;j

�t
� �.�hu

nC1/i;j C g.xi;j ; ŒDhunC1�i;j / D rnC1
i;j ;

where rnC1
i;j 2 J F for all i; j; n, with an initial datum u0i;j such that

P

i;j u0i;j D 0.

Then, take .˛; ˇ/ be such that

8

ˆ

<

ˆ

:

˛nC1
i;j D

unC1
i;j � uni;j

�t
� �.�hu

nC1/i;j ;

ŒˇnC1�i;j D ŒDhunC1�i;j ; 0 � n < NT � 1;

Thus

˙�.˛; ˇ/ D � 1

�
t
X

i;j

.mT /i;ju
NT
i;j C 1

�
t
X

i;j

.m0/i;j u0i;j < C1:

ut
Lemma 6.2. The functionals � and ˙ are convex and lower semicontinuous.

Moreover,

�.m; z/ D
NT
X

nD1

X

i;j

.W C �/.mn�1
i;j /

C sup
ˇ

(

NT
X

nD1

X

i;j

hŒzn�1
i;j �; Œˇ

n�i;j i �mn�1
i;j g.xi;j ; Œˇ

n�i;j /

)

and



40 Y. Achdou

˙.m; z/

D sup
 

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

1

�
t
X

i;j

..mT /i;j Cm
NT
i;j / 

NT
i;j � 1

�
t
X

i;j

..m0/i;j Cm0
i;j / 

0
i;j

C
NT �1
X

nD0

X

i;j

 nC1
i;j

 

mn
i;j �mnC1

i;j

�t
� �.�hm

n/i;j � divh.z
n/i;j

!

9

>

>

>

>

=

>

>

>

>

;

:

Proof. Convexity and semi-continuity are a direct consequence of the previous

lemma and the properties of the Legendre–Fenchel transform. Adding and subtract-

ing a same term in (81), we get

�.m; z/ D sup
˛;ˇ

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

NT
X

nD1

X

i;j

�mn�1
i;j g.xi;j ; Œˇ

n�i;j /C hŒˇn�i;j ; Œzn�1�i;j i

C
NT
X

nD1

X

i;j

mn�1
i;j

�

˛ni;j C g.xi;j ; Œˇ
n�i;j /

	

�.W C �/�
�

˛ni;j C g.xi;j ; Œˇ
n�i;j /

	

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

:

A simple computation shows that this can be written as

sup

;ˇ

n

NT
X

nD1

X

i;j

�mn�1
i;j g.xi;j ; Œˇ

n�i;j /ChŒˇn�i;j ; Œzn�1�i;j iCmn�1
i;j 


n
i;j�.WC�/�

�


ni;j
	

o

and the formula for � in the statement follows. As for˙ , observe that

˙.m; z/ D sup
˛;ˇ

0

@

NT �1
X

nD0

X

i;j

mn
i;j˛

nC1
i;j C hŒzn�i;j ; ŒˇnC1�i;j i �˙�.˛; ˇ/

1

A :

Thus, taking the definition of ˙� and � into account,

˙.m; z/ D sup
 

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1

�
t
X

i;j

.mT /i;j 
NT
i;j � 1

�
t
X

i;j

.m0/i;j 
0
i;j

C
NT �1
X

nD0

X

i;j

mn
i;j

 

 nC1
i;j �  ni;j
�t

� �.�h 
nC1/i;j

!

ChŒzn�i;j ; ŒDh 
nC1�i;j i

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

and the claimed formula for˙ easily follows by a discrete integration by part. ut
Using Lemma 6.2, it easy to realize that the optimal control problem (82) can be

equivalently formulated as the unconstrained minimization problem

min
m;z

�.m; z/C˙.�m;�z/: (86)
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The qualification condition is fulfilled for this problem also:

Lemma 6.3. Assume that .m0/i;j > 0 for all i; j . Then there exists .m; z/ such that

8

<

:

�.m; z/ < C1;

˙.�m;�z/ < C1;

� is continuous in a neighborhood of m; z:

Proof. Take mn
i;j D n

NT
.mT /i;j C .1 � n

NT
/.m0/i;j , and choose �n such that

�h�
n D 1

�
t.mnC1 �mn/C ��hm

n; n D 0; : : : ; NT � 1:

Since �n is unique up to the addition of a constant, one can always choose the

constant in such a way that �n < � < 0, where � is a fixed negative number.

Set then

z
1;n
i;j D

�ni;j

h
; z

2;n
i;j D �

�ni;j

h
; z

3;n
i;j D

�ni;j

h
; z

4;n
i;j D �

�ni;j

h
:

We have

divh.z
n/i;j D �.�h�

n/i;j :

Therefore

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

mnC1
i;j �mn

i;j

�t
C �.�hm

n/i;j C divh.z
n/i;j D 0; 0 � n < NT ;

m
NT
i;j D .mT /i;j ;

m0
i;j D .m0/i;j ;

mi;j � 0:

Observe that the assumption .m0/i;j > 0 implies mn � m > 0 for all n < NT .

Using Lemma 6.2, this implies ˙.�m;�z/ D 0. Also, taking the definition of z

into account,

�.m; z/ D
NT
X

nD1

X

i;j

W.mn�1
i;j /C sup

ˇ

n

NT
X

nD1

X

i;j

��n�1
i;j

h
.ˇ

1;n
i;j � ˇ2;ni;j C ˇ

3;n
i;j � ˇ

4;n
i;j /

�mn�1
i;j g.xi;j ; Œˇ

n�i;j /
�o

:

Since � < 0 andmn > m > 0, n D 0; : : : ; NT � 1, from the coercivity (g5) of g we

deduce that �.m; z/ is finite and � is continuous in a neighborhood of .m; z/. ut
The next result gives sufficient conditions for the existence of a solution of the

discrete system (15).
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Theorem 6.1. Assume that

(i) (g1)–(g5) hold.

(ii) ˚Œm�.x/ D F.m.x//, and F D W 0 where W W R ! R is a strictly convex,

coercive C 2 function.

(iii) .m0/i;j ; .mT /i;j 2 Kh with .m0/i;j > 0, 8i; j .

(iv) either � > 0 or
�

� D 0 and .mT /i;j > 0, 8i; j
�

.

Then the saddle point problem:

min
m;z

�.m; z/C˙.�m;�z/ D � min
˛;ˇ

�

��.˛; ˇ/C˙�.˛; ˇ/
	

(87)

has a solution .m; z/; .˛; ˇ/ and there exists u such that .˛; ˇ/ D �.u/. Moreover,

.m; z/ and u satisfy the optimality conditions of (87)

���.m; z/ 2 @L .u/; (88)

�.u/ 2 @�.m; z/; (89)

which are equivalent to the discrete system (21)–(79).

Proof. By applying the Fenchel–Rockafellar Duality Theorem to �� and ˙� (see

for example [5,6,12,32]) and using Lemma 6.1, there exists a solution .m; z/ of the

problem

�.m; z/C˙.�m;�z/

D inf
m;z
.�.m; z/C˙.�m;�z// D � inf

˛;ˇ

�

��.˛; ˇ/C˙�.˛; ˇ/
	

:
(90)

By applying the Fenchel–Rockafellar Duality Theorem to .m; z/ 7! �.m; z/ and

.m; z/ 7! ˙.�m;�z/, and using Lemmas 6.2 and 6.3, we deduce that there exist

.˛; ˇ/ such that

��.˛; ˇ/C˙�.˛; ˇ/ D inf
˛;ˇ
.�.˛; ˇ/C˙.˛; ˇ//

D � inf
m;z

�

�.m; z/C˙.�m;�z/
	

:
(91)

We have thus proved the existence of a solution of the saddle point problem (87).

By the optimality conditions, see [6, Theorem 2.4 page 205], we get

���.m; z/ 2 @L .u/; (92)

.˛; ˇ/ D �.u/ 2 @�.m; z/: (93)

Recalling the definition of L , (92) is seen to be in fact equivalent to
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8

ˆ

ˆ

<

ˆ

ˆ

:

mnC1
i;j �mn

i;j

�t
C �.�hm

n/i;j C divh.z
n/i;j D 0; 0 � n < NT ;

m
NT
i;j D .mT /i;j ;

m0
i;j D .m0/i;j :

(94)

On the other hand, it is easy to see that (93) is equivalent to

�.m; z/ D
NT
X

nD1

X

i;j

�

mn�1
i;j ˛

n
i;j C hŒzn�1�i;j ; Œˇ

n�i;j i

� .W C �/�
�

˛ni;j C g.xi;j ; Œˇ
n�i;j /

	

�

:

Introducing 
ni;j D ˛ni;j C g.xi;j ; Œˇ
n�i;j /, n D 1; : : : ; NT , the latter equation is

equivalent to

z
k;n
i;j D mn

i;j

@g

@qk
.xi;j ; Œˇ

nC1�i;j /; k D 1; : : : ; 4; (95)

0 D
NT
X

nD1

X

i;j

�

mn�1
i;j 


n
i;j � .W C �/�.
ni;j / � .W C �/.mn�1

i;j /
�

: (96)

Equation (96) is equivalent to

mn
i;j � 0;


nC1
i;j D

unC1
i;j � uni;j

�t
� �.�hu

nC1/i;j C g.xi;j ; ŒDhunC1�i;j / D W 0.mn
i;j /

if mn
i;j > 0;


nC1
i;j D

unC1
i;j � uni;j

�t
� �.�hu

nC1/i;j C g.xi;j ; ŒDhunC1�i;j / � W 0.mn
i;j /

if mn
i;j D 0;

(97)

for 0 � n < NT .

From (94) and (95), we deduce

mnC1
i;j �mn

i;j

�t
C �.�hm

n/i;j C Ti;j .u
nC1; mn/D 0; 0 � i; j < Nh; 0 � n < NT :

(98)

The fact that mNT 2 Kh and (98) imply that h2
P

i;j m
n
i;j D 1 for all n, 0 � n <

NT . Finally mn 2 Kh because of (98).

Finally, let us prove that mn > 0 for all 0 � n < NT . Indeed, assume that the

minimum of mn
i;j is 0 and is reached at n0 < NT , i0, j0. Equation (98) for n D n0,

i D i0 and j D j0 can be written
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0 D 1

�
tm

n0C1
i0;j0

C �

h2
.m

n0
i0C1;j0

Cm
n0
i0�1;j0

Cm
n0
i0;j0C1

Cm
n0
i0;j0�1

/

�1
h

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

m
n0
i0�1;j0

@g

@q1
.xi0�1;j0 ; ŒDhun0C1�i0�1;j0/

�mn0
i0C1;j0

@g

@q2
.xi0C1;j0 ; ŒDhun0C1�i0C1;j0/

9

>

>

>

=

>

>

>

;

�1
h

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

m
n0
i0;j0�1

@g

@q3
.xi0;j0�1; ŒDhun0C1�i0;j0�1/

�mn0
i0;j0C1

@g

@q4
.xi0 ;j0C1; ŒDhun0C1�i0;j0C1/

9

>

>

>

=

>

>

>

;

:

If � > 0, then the nonnegativity of m and the monotonicity of g imply that

m
n0
i0˙1;j0

D m
n0
i0;j0˙1

D 0. We can therefore repeat the argument for the triplets

of indices .n0; i0˙1; j0/ and .n0; i0; j0˙1/. Repeating the argument as many times

as necessary, we finally obtain that mn0 D 0, which is impossible since mn0 2 Kh.

If � D 0 and mNT > 0, a similar argument gives that m
n0C1
i0;j0

D 0. After a

finite number of steps, we get that m
NT
i0;j0

D 0, which is in contradiction with the

hypothesis.

As a consequence, (94), (95) and (97) can be written:

unC1
i;j � uni;j

�t
� �.�hu

nC1/i;j C g.xi;j ; ŒDhunC1�i;j / D F.mn
i;j /; (99)

mnC1
i;j �mn

i;j

�t
C �.�hm

n/i;j C Ti;j .u
nC1; mn/ D 0; (100)

for n D 0; : : : NT � 1 and 0 � i; j < Nh, with

m
NT
i;j D .mT /i;j ; m0

i;j D .m0/i;j ; 0 � i; j < Nh; (101)

and
mn 2 Kh; 0 � n � NT : (102)

Recognizing that (99) to (102) comprise indeed the semi-implicit finite difference

scheme (21)–(79), the proof is complete. ut

6.3 Uniqueness

System (21)–(79) also enjoys some uniqueness property, see [2] for the proof:

Proposition 6.1. Under the same assumptions as in Theorem 6.1, if .uni;j ; m
n
i;j /n;i;j

and .Quni;j ; Qmn
i;j /n;i;j are solutions of system (21)–(79), then

mn
i;j D Qmn

i;j for all n D 0; : : : ; NT ; and for all .i; j / :
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Moreover if the numerical Hamiltonian g is strictly convex, there exists a constant

cu such that

uni;j � Quni;j D cu for all n D 0; : : : ; NT ; and for all .i; j / :

6.4 A Penalty Method

We consider the penalized version of (21)–(79), namely

u
�;nC1
i;j � u

�;n
i;j

�t
� �.�hu

�;nC1/i;j C g.xi;j ; ŒDhu�;nC1�i;j / D F.mn
i;j /; (103)

m�;nC1
i;j �m�;n

i;j

�t
C �.�hm

�;n/i;j C Ti;j .u
�;nC1; m�;n/ D 0; (104)

for n D 0; : : : NT � 1 and 0 � i; j < Nh, with the terminal and initial conditions

u
�;0
i;j D 1

�
.m

�;0
i;j � .m0/i;j /; m

�;NT
i;j D .mT /i;j ; 8 0 � i; j < Nh: (105)

With this penalized version, algorithms close to those described in Sect. 4 have been

used in [2]. Note that the small parameter � makes the convergence slower.

The following result was proved in [2]:

Proposition 6.2. We make the same assumptions as in Theorem 6.1. For a sub-

sequence still called �, let .u�;n; m�;n/ be a solution of (103)–(105) and .mn/ be

a family of grid functions in Kh such that lim�!0 maxn km�;n � mnk1 D 0.

There exists a family of grid functions .un/ such that up to a further extraction

of a subsequence, lim�!0 maxn ku�;n � unk1 D 0 and .un; mn/n is a solution of

(21)–(79).
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An Introduction to the Theory of Viscosity

Solutions for First-Order Hamilton–Jacobi
Equations and Applications

Guy Barles

Abstract In this course, we first present an elementary introduction to the concept

of viscosity solutions for first-order Hamilton–Jacobi Equations: definition, stability

and comparison results (in the continuous and discontinuous frameworks), boundary

conditions in the viscosity sense, Perron’s method, Barron–Jensen solutions : : : etc.

We use a running example on exit time control problems to illustrate the different

notions and results. In a second part, we consider the large time behavior of periodic

solutions of Hamilton–Jacobi Equations: we describe recents results obtained by

using partial differential equations type arguments. This part is complementary of

the course of H. Ishii which presents the dynamical system approach (“weak KAM

approach”).

1 Introduction

This text contains two main parts: in the first one, we present an elementary

introduction of the notion of viscosity solutions in which we restrict ourselves to

the case of first-order Hamilton–Jacobi Equations (we do not present the uniqueness

arguments for second-order equations). We recall that this notion of solutions was

introduced in the 1980s by Crandall and Lions [22] (see also Crandall et al. [21]).

In the second part, we describe recent results on the large time behavior of solutions

of Hamilton–Jacobi Equations which are obtained by using partial differential

equations type arguments: this part is complementary of the course of H. Ishii which

presents the dynamical system approach (“weak KAM approach”).

Despite the main focus of this article will be on first-order equations, we point

out that the natural framework for presenting viscosity solutions’ theory is to

G. Barles (�)
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consider fully nonlinear degenerate elliptic equations (and even equations with

integro-differential operators under suitable assumptions); we will use this natural

framework when there will be no additional difficulty.

We refer the reader to the book of Bardi and Capuzzo Dolcetta [2] for a

more complete presentation of this notion of solutions including applications to

deterministic optimal control problems and differential games, to the “Users guide”

of Crandall et al. [23] for extensions to second-order equations and to the book

of Fleming and Soner [26] where the applications to deterministic and stochastic

optimal control are also described. An introduction to the notion of viscosity

solutions as well as applications in various directions can also be found in the 1995

CIME course [3].

By “fully nonlinear degenerate elliptic equations”, we mean equations which

can be written as

F.y; u;Du;D2u/ D 0 in O ; (1)

where O is a domain in R
N and F is, say, a continuous, real-valued function defined

on O � R � R
N � S N , S N being the space of N � N symmetric matrices, and

which satisfies the (degenerate) ellipticity condition

F.y; r;p;M1/ � F.y; r; p;M2/ if M1 � M2 ; (2)

for any y 2 O , r 2 R, p 2 R
N , M1;M2 2 S N . The solution u is a scalar function

and Du, D2u denote respectively its gradient and Hessian matrix.

Of course, first-order equations obviously enter in this framework since, in that

case, F does not depend on D2u and is therefore elliptic. We also point out that

parabolic/first-order evolution equations like

ut CH.x; t; u;Dxu/� "�2
xxu D 0 in ˝ � .0; T / ;

are also degenerate elliptic equations if " � 0 (including " D 0) with the domain

O D ˝ � .0; T / and the variable y D .x; t/; in other words, a classical (possibly

degenerate) parabolic equation is a degenerate elliptic equation.

The ellipticity property is a key property for defining the notion of viscosity

solutions: this fact will become clear in Sect. 3. From now on, we will always

assume it is satisfied by the equations we consider.

In fact, the notion of viscosity solutions applies naturally to (a priori) any type

of equations modelling monotone phenomenas. A famous result in this direction is

given by Alvarez et al. [1] for image analysis (see also Biton [19]): a multiscale

analysis which satisfies some locality, regularity, causality and monotonicity prop-

erties is given by a fully nonlinear parabolic pde, and even by the viscosity solution

of this pde. Furthermore, one has a geometrical counterpart of this result in [14]

for front propagation problems, where monotonicity has to be understood in the

inclusion sense. We will emphasize this monotonicity feature, starting, in Sect. 2,

with a running example on exit time control problems.
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The article is organized as follows: in Sect. 3, we provide the definition of

continuous viscosity sub and supersolutions and their first properties (different

formulations, connections with classical properties, changes of variables, : : : etc);

we also provide a first stability result for continuous solutions (Sect. 4). Section 5

describes what is called (improperly) “uniqueness results”: in fact, these are

“comparison results” of Maximum Principle type which (roughly speaking) implies

that subsolutions are below supersolutions. After describing the basic arguments

(doubling of variables and basic estimates), we show how to obtain such comparison

results in various situations (in particular for problems set in R
N � .0; T / with

or without “finite speed of propagation” type properties). In Sect. 6, we describe

the notion of viscosity solutions for discontinuous solutions and equations: the

main motivation comes from the discontinuous stability result (“half relaxed limit

method”) which allows passage to the limit with only a uniform (L1) bound on the

solutions. This last result leads us to the existence properties for viscosity obtained

by the Perron’s method (Sect. 7). In Sect. 8, we show how to prove regularity

results: Lipschitz continuity, semi-concavity, : : : etc and we conclude by the Barron–

Jensen’s approach for first-order equations with convex Hamiltonians (Sect. 9).

In a second part, in Sect. 10, we provide an application of the presented tools to

the study (by pde methods) of the large time behavior of solutions of Hamilton–

Jacobi Equations: we present the various difficulties and key results for these

problems (basic estimates, ergodic problem, : : : etc.) and we describe the two main

convergence results, namely the Namah–Roquejoffre framework [42] and what we

name as the “strictly convex” framework, even if the Hamiltonians do not really

need to be strictly convex, related to the result by Souganidis and the author [15];

while the Namah–Roquejoffre result relies on rather classical viscosity solutions’

methods, the “strictly convex” one uses a more surprising asymptotic monotone

property of the solutions in t .

2 Preliminaries: A Running Example

In this section, we present an example which is used in the sequel to illustrate

several concepts or results related to viscosity solutions. This example concerns

deterministic control problems and, more precisely, exit time control problems. We

describe it now.

We consider a controlled system whose state is described by the solution yx of

the ordinary differential equation (the “dynamic”)

�
Pyx.s/ D b.yx.s/; ˛.s// for s > 0;

yx.0/ D x 2 ˝ :
(3)

where ˝ is a bounded domain of RN (˝ or its closure ˝ represents the possible

“states of the system”), ˛.�/, the control, is a measurable function which takes its
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value in a compact metric space A and b W RN � A ! R
N is a function satisfying,

for some constant C > 0 and for any x; y 2 ˝ , ˛ 2 A

�
b is a continuous function from R

N � A into R
N .

jb.x; ˛/ � b.y; ˛/j � C jy � xj ; jb.x; ˛/j � C ;
(4)

Because of this assumption, the ordinary differential equation (3) has a unique

solution which is defined for all s > 0.

The trajectories yx depend both on the starting point x but also on the choice

of the control ˛.�/. We omit this second dependence for the sake of simplicity of

notations.

The “value function” is then defined, for x 2 ˝ (or ˝) and t 2 Œ0; T �, by

U.x; t/ D inf
˛.:/

�Z �

0

f .yx.s/; ˛.s//ds C '.yx.�//1f ��tg C u0.yx.t//1f�>tg

�
; (5)

where f; '; u0 are continuous functions defined respectively on ˝ � A , @˝ and ˝

which takes values in R. We denote by � the first exit time of the trajectory yx from

˝ , i.e.

� D infft � 0 I yx.t/ … ˝ g :

Of course, � depends on x and ˛.�/ but we drop this dependence, again for the

sake of simplicity of notations. Finally, for any set A, 1A denotes the indicator

function of the set A. For reasons which will be clear later on, we assume the

compatibility condition

u0 D ' on ˝ : (6)

In the sequel, we will say that the “control assumptions”, and we will write (CA),

are satisfied if (4) holds, if f; '; u0 are continuous functions and if we have (6).

The first remark that we can make on this example concerns the monotonicity:

keeping the same dynamic, if we consider different costs f1; '1; u
1
0 and f2; '2; u

2
0

with

f1 � f2 on ˝ � A ; '1 � '2 on @˝; u10 � u20 on ˝ ;

then the associated value functions satisfy U1 � U2 on ˝ � Œ0; T �. In other words,

the value functions depends in a monotone way of the data.

We will see that the value function U is a solution of

Ut CH.x;DU/ D 0 in ˝ � .0; T / ; (7)

where H.x; p/ WD sup˛2A f�b.x; ˛/ � p � f .x; ˛/g, with the Dirichlet boundary

condition

U.x; t/ D '.x; t/ on @˝ � .0; T / ; (8)

and the initial condition
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U.x; 0/ D u0.x/ on ˝ : (9)

We have to answer to several questions in the sequel:

– A priori, the value function U is not regular: in which sense can it be a solution

of (7)–(9)?

– How is the boundary data achieved? In which sense?

– Is the value function the unique solution of (7)–(9)?

– Are we able to prove directly that a solution of (7)–(9) satisfies the monotonicity

property?

We conclude this section by (very) few some references on exit time control

problems. The work of Soner [44] on state constraints problems is the first article

which studies this kind of problems in connections with viscosity solutions, uses

boundary conditions in the viscosity solutions’ sense and provides a general argu-

ment to prove uniqueness results. Boundary conditions in the viscosity solutions’

sense have been considered previously for Neumann/reflection problems by Lions

[37]. Pushing their ideas a little bit further, Perthame and the author [8–10] (see

also [5]) systematically study Dirichlet/exit time control problems (including state

constraints problems). For stochastic control, we refer the reader to [12] and

references therein.

3 The Notion of Continuous Viscosity Solutions: Definition(s)

and First Properties

3.1 Why a “Good” Notion of Weak Solution is Needed?

We give now few concrete examples of equations where there will be a unique

viscosity solution but either no smooth solutions or with several generalized

solutions (i.e. solutions which are locally Lipschitz continuous and satisfy the

equation almost everywhere). We refer to Sect. 5 for the proof of the uniqueness

results we are going to use.

The first example is

@u

@t
C

ˇ̌
ˇ̌ @u

@x

ˇ̌
ˇ̌ D 0 in R � .0;C1/ : (10)

We first remark that (10) enters into our framework with O D R � .0;C1/, the

variable is y D .x; t/, Du D
� @u

@x
;
@u

@t

�
1 and

F.y; u; p;M/ D pt C jpx j ;

1Here we use the notation Du for the full gradient of u in space and time but, in general, we will

use it for the gradient in space of u.
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with p D .px ; pt/.

It can be shown that the function u defined in R � .0;C1/ by

u.x; t/ D �.jxj C t/2 ;

is the unique viscosity solution of (10) in C.R�.0;C1// (see Sect. 5.3). It is worth

remarking in this example that u is only locally Lipschitz continuous for t > 0

despite the initial data

u.x; 0/ D �x2 in R ;

is in C1.R/. In particular, this problem has no smooth solution as it is generally the

case for such nonlinear hyperbolic equations.

Moreover, if we consider (10) together with the initial data

u.x; 0/ D jxj in R ; (11)

then the functions u1.x; t/ D jxj�t and u2.x; t/ D .jxj�t/C are two “generalized”

solutions in the sense that they satisfy the equation almost everywhere (at each of

their points of differentiability). This problem of nonuniqueness is solved by the

notion of viscosity solutions since it can be shown that u2 is the unique continuous

viscosity solution of (10)–(11) (see again Sect. 5.3). In that case, the notion of

viscosity solutions selects the “good” solution which is here the value-function of

the associated deterministic control problem (cf. Bardi and Capuzzo Dolcetta [2]

and Fleming and Soner [26]). An other remark (or interpretation) is that the notion

of viscosity solutions selects the solution which satisfies the right monotonicity

property: indeed the initial data is positive and therefore the solution has to be

positive since 0 is a (natural) solution.

For second-order equations, non-smooth solutions appear generally as a con-

sequence of the degeneracy of the equation. We refer to [23] for details in this

direction.

3.2 Continuous Viscosity Solutions

As we already mention it in the introduction, we are going to present the different

definitions of viscosity solutions in the framework of fully nonlinear degenerate

elliptic equations i.e. equations like (1) which satisfies the ellipticity condition (2).

In order to introduce the notion of viscosity solutions and to show the importance

of the ellipticity condition, we first give an equivalent definition of the notion of

classical solution which only uses the Maximum Principle.

Theorem 3.1 (Classical Solutions and Maximum Principle). u 2 C 2.O/ is a

classical solution of (1) if and only if

for any ' 2 C 2.O/, if y0 2 O is a local maximum point of u � ', one has
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F.y0; u.y0/;D'.y0/;D
2'.y0// � 0;

and, for any ' 2 C 2.O/, if y0 2 O is a local minimum point of u � ', one has

F.y0; u.y0/;D'.y0/;D
2'.y0// � 0 :

Proof. The proof of this result is very simple: the first part of the equivalence just

comes from the classical properties Du.y0/ D D'.y0/, D
2u.y0/ � D2'.y0/, at a

maximum point y0 of u � ' (recall that u and ' are smooth) or Du.y0/ D D'.y0/,

D2u.y0/ � D2'.y0/, at a minimum point y0 of u � '. One has just to use these

properties together with the ellipticity property (2) of F to obtain the inequalities of

the theorem.

The second part is a consequence of the fact that we can take ' D u as test-

function and therefore F.y0; u.y0/;Du.y0/;D
2u.y0// is both positive and negative

at any point y0 of O since any y0 2 O is both a local maximum and minimum point

of u � u.

Now we simply remark that the equivalent definition of classical solutions which

is given here in terms of test-functions ' does not require the existence of first and

second derivatives of u. For example, the continuity of u is sufficient to give a sense

to this equivalent definition; therefore we use this formulation to define viscosity

solutions.

Definition 3.1 (Continuous Viscosity Solutions). The function u 2 C.O/ is a

viscosity solution of (1) if and only if

for any ' 2 C 2.O/, if y0 2 O is a local maximum point of u � ', one has

F.y0; u.y0/;D'.y0/;D
2'.y0// � 0;

and, for any ' 2 C 2.O/, if y0 2 O is a local minimum point of u � ', one has

F.y0; u.y0/;D'.y0/;D
2'.y0// � 0 :

If u only satisfies the first property of Definition 3.1 (with maximum points), we

will say that u is a viscosity subsolution of the equation, while it is called a viscosity

supersolution if it only satisfies the second one. From now on, we will talk only

of subsolution, supersolution and solution considering that they will be anytime

taken in the viscosity sense. This notion of solution was called “viscosity solution”

because for first-order equations, as we will see it below, viscosity solutions were

first obtained as limits in the “vanishing viscosity method”, i.e. by an approximation

procedure involving a �"� term.

For first-order equations (otherwise this remark makes no sense), it is worth

pointing out that a solution of F D 0 is not necessarily a solution of �F D 0:

the sign of the nonlinearity plays a role. This phenomena can be understood in

the following way: the viscosity solution of the equation F D 0 when unique

can be thought as being obtained through the vanishing viscosity approximation

�"� C F D 0 and there is no reason why the other vanishing approximation
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"� C F D 0 (which leads in fact to a solution of �F D 0) converges to the

same solution.

Finally we remark that parabolic equations are just a particular case of (degen-

erate) elliptic equations: the y—variable is just the .x; t/—variable and, of course,

Du,D2u have to be understood as the gradient and Hessian matrix of u with respect

to the variable .x; t/.

3.3 Back to the Running Example (I): The Value Function U

is a Viscosity Solution of (7)

The key result is the Dynamic Programming Principle

Theorem 3.2. Under the hypothesis (CA), if x 2 ˝ , 0 < t � T , the value function

satisfies, for S > 0 small enough

U.x; t/ D inf
˛.:/

� Z S

0

f .yx.s/; ˛.s//ds C U.yx.S/; t � S/

�
: (12)

We leave the proof of this result to the reader and show how it implies that U is a

viscosity solution of (7). To do so, we assume that U is continuous (an assumption

which will be removed later on). We only prove that it is a supersolution, the

subsolution property being easier to obtain.

Let � 2 C 1.˝ � .0; T // and assume that .x; t/ 2 ˝ � .0; T / is a local minimum

point of U � �. There exists r > 0 such that, if jx0 � xj � r and jt 0 � t j � r , then

x0 2 ˝ , t 0 > 0 and

U.x0; t 0/ � �.x0; t 0/ � U.x; t/ � �.x; t/ :

Using the Dynamic Programming Principle with S small enough in order to have

S � r and jyx.S/ � xj � r (recall that b is uniformly bounded), we obtain

�.x; t/ � inf
˛.:/

�Z S

0

f .yx.s/; ˛.s//ds C �.yx.S/; t � S/

�
:

But, by standard calculus

�.yx.S/; t � S/

D �.x; t/C

Z S

0

.D�.yx.s/; t � s/ � b.yx.s/; ˛.s// � �t .yx.s/; t � s// ds :

And therefore
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0 � inf
˛.:/

�Z S

0

.D�.yx.s/; t � s/ � b.yx.s/; ˛.s// � �t .yx.s/; t � s/

Cf .yx.s/; ˛.s/// ds

�
;

or

sup
˛.:/

�Z S

0

.�D�.yx.s/; t � s/ � b.yx.s/; ˛.s//

C�t .yx.s/; t � s/ � f .yx.s/; ˛.s/// ds

�
� 0 :

Next, we remark that the integrand can be replaced by (the larger quantity)

�t .yx.s/; t � s/CH.yx.s/;D�.yx.s/; t � s//

and then, because of the regularity of � and the continuity property of H , by

�t .x; t/ C H.x;D�.x; t// C o.1/ where o.1/ denotes a quantity which tends to

0 as S ! 0, uniformly with respect to the control. Finally

sup
˛.:/

�Z S

0

.�t .x; t/CH.x;D�.x; t//C o.1//ds

�
� 0 ;

and the conclusion follows by dividing by S and letting S tends to 0, noticing that

the sup can be dropped.

Remark 3.1. The above argument is a key one and it is worth pointing out that it

just uses the fact that

u.x; t/ D G.S; x; t; u.�// ;

where G is monotone in u.�/ and consistent with the equation, in the sense that

�.x; t/ �G.S; x; t; �.�//

S
! �t .x; t/CH.x;D�.x; t/ as S ! 0 ;

for any smooth function �.2 Therefore it is a rather general argument which connects

“monotonicity” and “viscosity solutions”: it appears in various situations such as

the convergence of numerical scheme (see in particular [13]), the connection of

monotone semi-group with viscosity solutions (see, for instance, [1,19,36]), : : : etc.

2Here we have also used a less important (but simplifying) property, namely the commuta-

tion with constants: for any c 2R, S; x; t and for any function u.�/, G.S; x; t; u.�/C c/D
G.S; x; t; u.�//C c.
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3.4 An Equivalent Definition and Its Consequences

We continue by giving some equivalent definitions which may be useful.

Proposition 3.1. An equivalent definition of subsolution, supersolution and solu-

tion is obtained by replacing in Definition 3.1:

1. “� 2 C 2.O/” by “� 2 C k.O/” (2 < k < C1) or by “� 2 C1.O/”
2. “� 2 C 2.O/” by “� 2 C 1.O/” in the case of first-order equations

3. “local maximum” or “local minimum” by “strict local maximum” or “strict

local minimum” or by “global maximum” or “global minimum” or by “strict

global maximum” or “strict global minimum”.

This proposition is useful since, in general, the proofs are simplified by a right

choice of the definition. In particular the definition with “global maximum points”

or “global minimum points” in order to avoid heavy localisation arguments.

The proof of this proposition is left as an exercise (despite it is not obvious at all):

it is based on classical Analysis type arguments, some of them being rather delicate.

We give now a more “pointwise” definition using generalized derivatives (“sub

and super-differential” or “semi-jets”) which plays a central role for second-order

equations.

Definition 3.2 (Second-order sub and super-differential of a continuous

function). The second-order superdifferential of u 2 C.O/ at y 2 O is the,

possibly empty, convex subset of RN � S N , denoted by D2;Cu.y/, of all couples

.p;M/ 2 R
N � S N satisfying

u.y C h/ � u.y/� .p; h/ �
1

2
.Mh; h/ � o.jhj2/ ;

for h 2 R
N small enough.

The second-order subdifferential of u 2 C.O/ at y 2 O is the, possibly empty,

convex subset of RN � S N , denoted by D2;�u.y/, of all couples .p;M/ 2 R
N �

S N satisfying

u.y C h/ � u.y/� .p; h/ �
1

2
.Mh; h/ � o.jhj2/ ;

for h 2 R
N small enough.

As indicated in the definition, these subsets can be empty, even both as it is the

case, at the point y D 0, for the function y 7!
p

jyj sin.
1

y2
/ extended at 0 by 0.

If u is twice differentiable at y then
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D2;Cu.y/ D f.Du.y/;M/I M � D2u.y/g ;

D2;�u.y/ D f.Du.y/;M/I M � D2u.y/g ;

Now we turn to the connections between sub and super-differentials with

viscosity solutions.

Theorem 3.3. (i) u 2 C.O/ is a subsolution of (1) iff, for any y 2 O and for any

.p;M/ 2 D2;Cu.y/

F.y; u.y/; p;M/ � 0: (13)

(ii) u 2 C.O/ is a supersolution of (1) iff, for any y 2 O and for any .p;M/ 2

D2;�u.y/

F.y; u.y/; p;M/ � 0 : (14)

Before giving some elements of the proof of Theorem 3.3, we provide some easy

(but useful) consequences.

Corollary 3.1. (i) If u 2 C 2.O/ satisfies F.y; u.y/;Du.y/;D2u.y// D 0 in O
then u is a viscosity solution of (1).

(ii) If u 2 C.O/ is a viscosity solution of (1) and if u is twice differentiable at

y0 2 O then

F.y0; u.y0/;Du.y0/;D
2u.y0// D 0 :

(iii) If u 2 C.O/ is a viscosity solution of (1) and if ' W R ! R is a C 2—function

such that ' 0 > 0 on R then the function v defined by v D '.u/ is a viscosity

solution of

K.y; v;Dv;D2v/ D 0 in O ;

where K.y; z; p;M/ D F.y; .z/;  0.z/p;  0.z/M C  00.z/p ˝ p/ and

 D '�1.

The proof of this Corollary is based on the classical technics of calculus and is

left as an exercise.

This corollary is formulated in terms of “solution” but, of course analogous

results hold for subsolutions and supersolutions.

A lot of different changes can be considered instead of the one in the result (iii):

as long as signs are preserved in order to keep the inequalities satisfied by the sub

or superdifferentials or, if the minima are not transformed in maxima and vice-

versa, such result remains true. Let us mention, for example, the transformations:

v D u C , with  being of classe C 2 or v D �u C , �; being of classe C 2 and

� � ˛ > 0 : : : etc.

In the case when “signs are changed”, we have the following proposition.

Proposition 3.2. u 2 C.O/ is a subsolution (resp. supersolution) of (1) iff v D �u

is a supersolution (resp. subsolution) of

�F.y;�v;�Dv;�D2v/ D 0 in O :
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The proof of Theorem 3.3 (that Proposition 3.2 allows us to do only in the

subsolution case) relies only on two arguments; the first is elementary: if � a C 2

test-function and if y0 a local maximum point of u � � then, by combining the

regularity of � and the property of local maximum, we get

u.y/ � �.y/C u.y0/� �.y0/

� u.y0/C .D�.y0/; y � y0/C
1

2
D2�.y0/.y � y0/ � .y � y0/C o.jy� y0j

2/ :

Therefore .D�.y0/;D
2�.y0// is in D2;Cu.y0/.

The second one is not as simple as the first one and is described in the following

lemma.

Lemma 3.1. If .p;M/ 2 D2;Cu.y0/, there exists a C 2—function � W O ! R such

that D�.y0/ D p, D2�.y0/ D M and such that y0 is a local maximum point of

u � �.

The proof of this lemma uses classical but rather tricky Analysis tools, in

particular regularization arguments. We skip it since it is rather long and not in

the central scope of this course. We refer to Crandall et al. [21] or Lions [36] for a

complete proof.

4 The First Stability Result for Viscosity Solutions

There is no need to recall here that problems involving passage to the limit

in nonlinear equations when we have only a weak convergence is one of the

fundamental problem of nonlinear Analysis. We call “stability result” a result

showing under which conditions a limit of a sequence of sub or supersolutions is

still a sub or a supersolution.

We present in theses notes two types of stability results which are of different

natures: the first one looks rather classical since it requires compactness (or

convergence) properties on the considered sequences. It may be a priori of a rather

difficult use since the needed estimates on the solutions are not so easy to obtain in

concrete situations. The second one, on the contrary, will be far less classical and

requires only easy estimates but rather strong uniqueness properties for the limiting

equation: we present this second stability result in Sect. 6 since it requires the notion

of discontinuous viscosity solutions. We state both results in the framework of

second-order equations since there are no additional difficulties.

The first result is the

Theorem 4.1. Assume that, for " > 0, u" 2 C.O/ is a subsolution (resp. a

supersolution) of the equation

F".y; u";Du";D
2u"/ D 0 in O ; (15)
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where .F"/" is a sequence of continuous functions satisfying the ellipticity condition.

If u" ! u in C.O/ and if F" ! F in C.O �R�R
N � S N / then u is a subsolution

(resp. a supersolution) of the equation

F.y; u;Du;D2u/ D 0 in O :

We first recall that the convergence in the spaces of continuous functions C.O/
or C.O � R � R

N � S N / is the uniform convergence on compact subsets.

This result allows to pass to the limit in a nonlinear equation (and in particular

with a nonlinearity on the gradient and the Hessian matrix of the solutions) with

only the local uniform convergence of the sequence .u"/", which, of course, does not

imply any strong convergence (for example, a convergence in the almost everywhere

sense) neither on the gradient nor a fortiori on the Hessian matrix of the solutions.

An unusual characteristic of this result is to consider separately the convergence

of the equation—or more precisely of the nonlinearitiesF"—and of the solutions u".

Classical arguments would lead to a question like: is the convergence of u" strong

enough in order to pass to the limit in the equality F".y; u";Du";D
2u"/ D 0?”.

In this case, the necessary convergence on u" would have depended strongly on

the equations through the properties of the F". Here this is not at all the case: the

required convergences for F" and u" are fixed a priori.

The most classical example of application of this result is the vanishing viscosity

method

�"�u" CH.y; u";Du"/ D 0 in O:

This explains why we present the above result in the second-order framework. In

this case, the nonlinearity F" is given by

F".y; u; p;M/ D �"Tr.M/CH.y; u; p/ ;

and its convergence inC.O�R�R
N�S N / toH.y; u; p/ is obvious. If u" converges

uniformly to u, then Theorem 4.1 implies that u is a solution of

H.y; u;Du/ D 0 in O :

The above example shows that the solutions of Hamilton–Jacobi Equations—and

more generally of nonlinear elliptic equations—obtained by the vanishing viscosity

method are viscosity solutions of these equations, and this justifies the terminology.

In practical use, most of the time, Theorem 4.1 is applied to a subsequence of

.u"/" instead of the sequence itself. When one wants to pass to the limit in an

equation of the type (15), one proceeds, in general, as follows:

1. One proves that u" is locally bounded in L1, uniformly w.r.t " > 0.

2. One shows that u" is locally bounded in some Hölder space C 0;˛ for some 0 �

˛ < 1 or in W 1;1, uniformly w.r.t " > 0.

3. Because of the two first steps, by Ascoli’s Theorem, the sequence .u"/" is in a

compact subset of C.K/ for anyK �� O .
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4. One applies the stability result to a converging subsequence of .u"/" which is

obtained by a diagonal extraction procedure.

This method will be really complete only when we will have a uniqueness

result: indeed, the above argument shows that all converging subsequence of the

sequence .u"/" converges to A viscosity solution of the limiting equation. If there

exists only one solution of this equation then all the converging subsequences

converge to THE viscosity solution of the limiting equation that we denote by u.

A classical compactness and separation argument then implies that all the sequence

.u"/" converge to u (exercise!).

But, in order to have uniqueness and to justify this argument, one has to impose

boundary conditions and also to be able to pass to the limit in these boundary

conditions : : : (to be continued!).

We now give an example of application of this method.

Example. This example is unavoidably a little bit formal since our aim is to show

a mechanism of passage to the limit by viscosity solutions’ methods and we do not

intend to obtain the estimates we need in full details. In particular, we are to use the

Maximum Principle in R
N without justification.

For " > 0, let u" 2 C 2.RN / \W 1;1.RN / be the unique solution of the equation

�"�u" CH.Du"/C u" D f .x/ in R
N ;

where H is a locally Lipschitz continuous function on R
N , H.0/ D 0 and f 2

W 1;1.RN /. By the Maximum Principle, we have

�jjf jj1 � u" � jjf jj1 in R
N ;

because �jjf jj1 and jjf jj1 are respectively sub- and supersolution of the equa-

tion. Moreover, if h 2 R
N , since u".: C h/ is a solution of an analogous equation

where f .:/ is replaced by f .: C h/ in the right-hand side, the Maximum Principle

also implies

jju".:C h/ � u".:/jj1 � jjf .:C h/� f .:/jj1 in R
N ;

and, since f is Lipschitz continuous, the right-hand side is estimated by C jhj where

C is the Lipschitz constant of f . This yields

jju".:C h/ � u".:/jj1 � C jhj in R
N :

Since this inequality is true for any h, it implies that u" est Lipschitz continuous

with Lipschitz constant C .

Using the Ascoli’s Theorem and a diagonal extraction procedure, we can extract

a subsequence still denoted by .u"/" which converges to a continuous function u

which is, by Theorem 4.1, a solution of the equation
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H.Du/C u D f .x/ in R
N :

In this example, we perform a passage to the limit in a singular perturbation

problem without facing much difficulties; again this example will be complete only

when we will know that u is the unique solution of the limiting equation since it will

imply that the whole sequence .u"/" converges to u by a classical compactness and

separation argument.

Now we turn to the Proof of Theorem 4.1. We prove the result only in the

subsolution case, the other case being shown in an analogous way.

We consider � 2 C 2.O/ and y0 2 O a local maximum point of u��. Subtracting

if necessary a term like �.y/ D jy�y0j
4 to u ��, one can always assume that y0 is

a strict local maximum point. We then use the following lemma (left as an exercise).

Lemma 4.1. Let .v"/" be a sequence of continuous functions on an open subset O
which converge in C.O/ to v. If y0 2 O is a strict local maximum point of v, there

exists a sequence of local maximum points of v", denoted by .y"/", which converges

to y0.

One uses Lemma 4.1 with v" D u" � .� C �/ and v D u � .� C �/. Since u" is

a subsolution of (15) and since y" is a local maximum of u" � .� C �/, we have, by

definition

F"

�
y"; u".y

"/;D�.y"/CD�.y"/;D2�.y"/CD2�.y"/
�

� 0 :

Now we have just to pass to the limit in this inequality: since y" ! y0, we use the

regularity of the test-functions � and � which implies

D�.y"/CD�.y"/ ! D�.y0/CD�.y0/ D D�.y0/ ;

and

D2�.y"/CD2�.y"/ ! D2�.y0/CD2�.y0/ D D2�.y0/ :

Moreover, because of the local uniform convergence of u", we have u".y
"/ ! u.y0/,

and the convergence of F" finally yields

F"

�
y"; u".y

"/;D�.y"/CD�.y"/;D2�.y"/CD2�.y"/
�

! F
�
y0; u.y0/;D�.y0/;D

2�.y0/
�
:

Therefore

F
�
y0; u.y0/;D�.y0/;D

2�.y0/
�

� 0:

And the proof is complete.



64 G. Barles

5 Uniqueness: The Basic Arguments and Additional Recipes

5.1 A First Basic Result

In this section, we present the basic arguments to obtain “comparison results” for

viscosity solutions. In order to simplify the presentation, we begin with a simple

result and then we show (few) additional arguments which are needed in order to

extend it to different situations.

We consider the equation

ut CH.x; t;Du/ D 0 in ˝ � .0; T / ; (16)

where˝ is a bounded open subset of RN , T > 0 and, here, Du denotes the gradient

of u in the space variable x and H is a continuous function. We use the (standard)

notations

Q D ˝ � .0; T / and @pQ D @˝ � Œ0; T � [˝ � f0g :

@pQ is called the parabolic boundary of Q.

By “comparison result”, we mean the following

If u; v 2 C.Q/ are respectively subsolution and supersolution of (16) and if u � v

on @pQ then

u � v on Q:

To state and prove the main result, we use the following assumption

(H1) There exists a modulusm W Œ0;C1/ ! Œ0;C1/ such that, for any x; y 2 ˝ ,

t 2 .0; T � and p 2 R
N

jH.x; t; p/ �H.y; t; p/j � m
�
jx � yj.1C jpj/

�
:

We recall that a modulus m is an increasing, positive function, defined on

Œ0;C1/ such that m.r/ ! 0 when r # 0.

The result is the following.

Theorem 5.1. If (H1) holds, we have a comparison result for (16). Moreover, the

result remains true if we replace the hypothesis (H1) by either “u is Lipschitz

continuous in x” or by “v is Lipschitz continuous in x”, uniformly w.r.t. t .

This result means that the Maximum Principle, which is classical for elliptic and

parabolic equations, extends to viscosity solutions of first-order Hamilton–Jacobi

Equations.

At first glance, assumption (H1) does not seem to be a very natural assumption.

We first remark that, if H is a locally Lipschitz continuous function in x for any
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t 2 .0; T � and for any p 2 R
N , (H1) is satisfied if there exists a constant C > 0,

such that, for any t 2 .0; T � and p 2 R
N

j@H
@x
.x; t; p/j � C.1C jpj/ a.e. in R

N :

This version of (H1) is perhaps easier to understand.

In order to justify (H1), let us consider the case of the transport equation

ut � b.x/ � Du D f .x/ in Q : (17)

It is clear that the hypothesis (H1) is satisfied if b is a Lipschitz continuous vector

field on ˝ and the function f has to be continuous on ˝ .

In this example, the Lipschitz assumption on b is the most restrictive and

important in order to have (H1): we will see in the proof of Theorem 5.1 the central

role of the term jx�yj:jpj in (H1) which comes from this hypothesis. But it is well-

known that the properties of (17) are connected to those of the dynamical system

Px.t/ D b.x.t// : (18)

Indeed, one can compute the solutions of (17) by solving this ode through the

Method of Characteristics. Therefore the Lipschitz assumption on b appears as

being rather natural since it is also the standard assumption to have existence and

uniqueness for (18) by the Cauchy–Lipschitz Theorem.3

Remark 5.1. It is worth pointing out that, in Theorem 5.1, no assumption is made on

the behavior of H en p (except indirectly with the restrictions coming from (H1)).

For example, one has a uniqueness result for the equation

ut CH.Du/ D f .x; t/ in Q ;

if f is continuous on Q, for any continuous function H , without any growth

condition.

There are a lot of variations for Theorem 5.1: for example, one can play with

(H1) and the regularity of the solutions (as it is already the case in the statement of

Theorem 5.1).

A classical and useful corollary of Theorem 5.1 is the one when we do not assume

anything on the sub and supersolution on the parabolic boundary of Q

3In Biton [19], a non-trivial counterexample to the uniqueness for (17) is given in a situation where

the Cauchy–Lipschitz Theorem cannot be applied to (18).
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Corollary 5.1. Under the assumptions of Theorem 5.1, if u; v 2C.Q/ are respec-

tively sub and supersolutions of (16) then

max
Q

.u � v/C � max
@pQ

.u � v/C :

Moreover, the result remains true if we replace (H1) by “u is Lipschitz continuous

in x” or by “v is Lipschitz continuous in x”, uniformly w.r.t. t .

The proof of Corollary 5.1 is immediate by remarking that, if we set C D

max@pQ .u � v/C, v C C is still a supersolution of (16) and u � v C C on @pQ.

Theorem 5.1 implies then u � v C C on Q, which is the desired result.

Remark 5.2. As the above proof shows it, this type of corollary is an immediate

consequence of all comparison results with a suitable change on the sub or

supersolution which may be more complicated depending on the dependence of

H in u. We can have also more precise results by applying the comparison property

on sub-intervals.

Now we turn to the Proof of Theorem 5.1. The aim of is to show that M D

max
Q

�
u � v

�
is less or equal to 0. We argue by contradiction assuming thatM > 0.

In order to simplify the proof, we are going to make some reductions and to give

preliminary results.

First, changing u in u�.x; t/ WD u.x; t/ � �t for some � > 0 (small), we may

assume without loss of generality that u a strict subsolution of (16) since u� is a

subsolution of

.u�/t CH.x; t;Du�/ � �� < 0 in ˝ � .0; T / (19)

To complete the proof, it suffices to show that u� � v onQ for any � and then to let

� tends to 0. Notice also that we still have u� � v on @pQ. To simplify the notations

and since the proof is clearly reduced to compare u� and v, we drop the � and use

the notation u instead of u�.

Next, we consider the difficulty with ˝ � fT g: a priori, we do not know if u � v

on this part of the boundary and a maximum point of u � v (or related functions)

can be located there. It is solved by the

Lemma 5.1. If u; v 2 C.Q/ are respectively sub and supersolutions of (16) in Q,

they are also sub and supersolutions in ˝ � .0; T �. More precisely the viscosity

inequalities hold if the maximum or minimum points are on ˝ � fT g.

We leave the simple checking of this result to the reader: if .x0; T / is a strict

maximum point of u � ', where ' is a smooth function, we consider the function

u.x; t/ � '.x; t/ �
�

T�t
for � > 0 small enough. By Lemma 4.1, this function has

a maximum point at a nearby point .x�; t�/ (t� < T ) and .x�; t�/ ! .x0; T /; in

order to conclude, it suffices to pass to the limit in the viscosity inequality at the

point .x�; t�/, remarking that the term
�

T�t
has a positive derivative which can be

dropped.
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Next, since u and v are not smooth, we need an argument in order to be able to use

the definition of viscosity solutions. This argument is the “doubling of variables”.

For 0 < "; ˛ � 1, we introduce the “test-function”

 ";˛.x; t; y; s/ D u.x; t/ � v.y; s/ �
jx � yj2

"2
�

jt � sj2

˛2
:

The function  ";˛ being continuous on Q � Q, it achieves its maximum at a point

which we denote by .x; t ; y; s/ and we set M WD  ";˛.x; t ; y; s/; we have dropped

the dependences of x; t ; y; s and M in all the parameters in order to avoid heavy

notations.

Because of the “penalisation” terms
� jx � yj2

"2
and

jt � sj2

˛2

�
which imposes to

the maximum points .x; t ; y; s/ of  ";˛ to verify .x; t/ � .y; s/ if "; ˛ are small

enough, one can think that the maximum of  ";˛ looks like the maximum of u � v.

This idea is justified by the following lemma which plays a key role in the proof.

Lemma 5.2. The following properties hold

1. When "; ˛ ! 0, M ! M .

2. u.x; t / � v.y; s/ ! M when "; ˛ ! 0.

3. We have

jx � yj2

"2
;

jt � sj2

˛2
! 0 when "; ˛ ! 0 :

Moreover, if u or v is Lipschitz continuous in x, then p WD
2.x � y/

"2
is bounded

by twice the (uniform in t) Lipschitz constant of u or v.

4. .x; t / ; .y; s/ 2 ˝ � .0; T � if "; ˛ are sufficiently small.

We conclude the proof of the theorem by using the lemma. We assume that "; ˛

are sufficiently small in order that the last point of the lemma holds true. Since

.x; t ; y; s/ is a maximum point of  ";˛ , .x; t / is a maximum point of the function

.x; t/ 7! u.x; t/ � '1.x; t/ ;

where

'1.x; t/ D v.y; s/C
jx � yj2

"2
C

jt � sj2

˛2
I

but u is viscosity subsolution of (19) and .x; t / 2 ˝ � .0; T �, therefore

@'1

@t
.x; t/CH

�
x; t;D'1" .x; t/

�
D
2.t � s/

˛2
CH

�
x; t;

2.x � y/

"2

�
� �� :

In the same way, .y; s/ is a maximum point of the function

.y; s/ 7! �v.y; s/C '2.y; s/ ;
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where

'2.y; s/ D u.x; t/ �
jx � yj2

"2
�

jt � sj2

˛2
I

hence .y; s/ is a minimum point of the function v � '2; but v is viscosity

supersolution of (16) and .y; s/ 2 ˝ � .0; T �, therefore

@'2

@s
.y; s/CH

�
y; s;D'2.y; s/

�
D
2.t � s/

˛2
CH

�
y; s;

2.x � y/

"2

�
� 0 :

Then we subtract the two viscosity inequalities: recalling that p WD
2.x � y/

"2
,

we obtain

H
�
x; t ; p

�
�H .y; s; p/ � �� :

We can remark that a formal proof where we would assume that u et v are C 1 and

where we could directly consider a maximum point of u � v, would have lead us to

an analogous situation, the term p playing the role of “Du D Dv” at the maximum

point; the fact that we keep such equality here is a key point in the proof. The

only -rather important- difference is the one corresponding to the current points:

.x; t / for u, .y; s/ for v. This is where (H1) is going to play a central role.

We add and subtract the termH.x; s; p/which allows us to rewrite the inequality

as

.H.x; t ; p/ �H.x; s; p// � .H.y; s; p/ �H.x; s; p// � �� :

In the left-hand side, the first term is related to the regularity ofH in t and the second

one to the regularity of H in x, namely (H1). For fixed ", p remains bounded (say,

by at most a K=" for some constant K > 0) and denoting by m"
H the modulus of

continuity of H on Q �B.0;K="/, we are lead, using (H1) to

m"
H .jt � sj/Cm

�
jx � yj.1C jpj/

�
� �� :

But, on one hand, jt � sj ! 0 as ˛ ! 0 since the maximum point property implies

that the penalisation term
jt�sj2

˛2
is less thanR WD max.jjujj1; jjvjj1/ (see the proof

of Lemma 5.2 below) and therefore jt � sj � .2R/1=2˛ while, on the other hand,

jx � yj.1C jpj/ D jx � yj C
2jx � yj2

"2
! 0 when "; ˛ ! 0 :

In order to conclude, we first fix " and let ˛ tend to 0 and then we let " tend to 0.

The above inequality and the properties we just recall lead us to a contradiction.

In the case when u or v is Lipschitz continuous in x, uniformly w.r.t. t ,

Lemma 5.2 implies that jpj is uniformly bounded and the contradiction just follows

from the uniform continuity ofH onQ�B.0; 2 QK/, where QK denotes the Lipschitz

constant of u or v, and the proof is complete.
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Now we prove Lemma 5.2. Since .x; t ; y; s/ is a maximum point of  ";˛ , we

have, for any .x; t/; .y; s/ 2 Q

 ";˛.x; t; y; s/ �  ";˛.x; t ; y; s/ D u.x; t / � v.y; s/�
jx � yj2

"2
�

jt � sj2

˛2
D M :

(20)

Choosing x D y and t D s in the left-hand side yields

u.x; t/ � v.x; t/ � M ; for all .x; t/ 2 Q ;

and, by considering the supremum in x, we obtain the inequalityM � M .

Since u, v are bounded, we can set as above R WD max.jjujj1; jjvjj1/ and we

also have by arguing in an analogous way

M � u.x; t/ � v.y; s/ �
jx � yj2

"2
�

jt � sj2

˛2
� 2R �

jx � yj2

"2
�

jt � sj2

˛2
:

Recalling that we assume M > 0, we deduce

jx � yj2

"2
C

jt � sj2

˛2
� 2R :

In particular, jx � yj; jt � sj ! 0 as "; ˛ ! 0.

Now we use again the inequality

M � u.x; t/ � v.y; s/ �
jx � yj2

"2
�

jt � sj2

˛2
� u.x; t / � v.y; s/ : (21)

Since Q is compact, we may assume without loss of generality that .x; t/; .y; s/

converge and this is to the same point because jx � yj; jt � sj ! 0 as "; ˛ ! 0. We

deduce from this property and (21) that

M � lim inf.u.x; t/ � v.y; s// � lim sup.u.x; t/ � v.y; s// � M : (22)

As a consequence lim.u.x; t / � v.y; s// D M and using again (21)

M D u.x; t / � v.y; s/�
jx � yj2

"2
�

jt � sj2

˛2
! M :

But, since u.x; t/ � v.y; s/ ! M , we immediately deduce that

jx � yj2

"2
C

jt � sj2

˛2
! 0 ;

and we have proved the two first points of the lemma.
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For the last one, it is enough to remark that, if .x; t/ is a limit of a subsequence

of .x; t /; .y; s/, then u.x; t/ � v.x; t/ D M > 0 and therefore .x; t/ cannot be on

@pQ.

It just remains to prove the estimate on p if u or v is Lipschitz continuous in x,

uniformly w.r.t. t . We assume, for instance, that u has this property with Lipschitz

constant QK , the proof with v being analogous.

We come back to (20) and we choose x D y D y, t D t and s D s; after

straightforward computations, this yields

jx � yj2

"2
� u.y; t / � u.x; t/ � QKjx � yj :

Therefore jpj � 2 QK. This concludes the proof of lemma.

5.2 Several Variations

The first one concerns equations with a dependence in u

ut CH.x; t; u;Du/ D 0 in ˝ � .0; T / : (23)

Of course, an assumption is needed in order to avoid Burgers type equations

which do not fall into this kind of framework. The classical one is

(H2) For any 0 < R < C1, there exists 
R 2 R such that, for any .x; t/ 2 Q,

�R � v � u � R and p 2 R
N

H.x; t; u; p/ �H.x; t; v; p/ � 
R.u � v/ :

If 
R � 0 for any R, then the proof follows exactly from the same arguments.

Otherwise, the simplest way to reduce to this case is to make a change of variable

u ! u exp.
 t/ for some well-chosen 
 2 R, typically some 
R for large enough

R (larger than jjujj1). Finally we point out that, in general, (H1) is modified by

allowing the modulusm to depend on R as 
R in (H2).

Next we consider problems set in the whole space R
N where the lack of

compactness of the domain creates additional problems. The following assumption

is needed

(H3)H is uniformly continuous on R
N � Œ0; T � �BR for any R > 0.

We also introduce the space BUC.RN � Œ0; T �/ of the functions which are

bounded, uniformly continuous on R
N � Œ0; T �. The result for (16) is the

Theorem 5.2. Assume (H1) and (H3). If u; v 2 BUC.RN � Œ0; T �/ are respectively

sub and supersolution of (16) with ˝ D R
N , then
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sup
RN�Œ0;T �

.u � v/ � sup
RN

.u.x; 0/� v.x; 0// :

Moreover, the result remains true if we replace the hypothesis (H1) by either “u is

Lipschitz continuous in x” or by “v is Lipschitz continuous in x”, uniformly w.r.t. t .

We just sketch the proof since it follows the same ideas as the proof of

Theorem 5.1: for 0 < "; ˛; ˇ � 1, we introduce the test-function

 .x; t; y; s/ D u.x; t/ � v.y; s/ �
jx � yj2

"2
�

jt � sj2

˛2
� ˇ.jxj2 C jyj2/ :

The main change is with the ˇ-term: because of the non-compactness of the domain,

such term is needed for the maximum of  to be achieved. Two technical remarks

are enough to complete the proof:

1. From the proof of Lemma 5.2, it is clear that ˇ.jxj2 C jyj2/�R D max.jjujj1;

jjvjj1/ and these terms produces derivatives which are small since j2ˇxj D

2ˇ1=2.ˇ.jxj2/1=2 � 2ˇ1=2R1=2 and the same is (of course) true for 2ˇy.

(H3) takes care of these small perturbations.

2. The proof of Lemma 5.2 is not as simple as in the compact case because the result

is not true in general for any continuous functions u and v. In fact, the behavior

of the maximum of  depends on the way we play with the different parameters.

The two extreme cases are:

• If we fix ˇ and let first " and ˛ tend to 0, the maximum of actually converges

to maxQ.u.x; t/ � v.x; t/ � 2ˇjxj2// and then, if we send ˇ tend to 0, this

maximum converges to the supremum of u � v.

• But, if, on the contrary, we first let ˇ tend to 0 by fixing " and ˛ and then we

let " and ˛ tend to 0, the maximum of  does not converges to the supremum

of u � v but to lim suph#0 supj.x;t/�.y;s/j�h .u.x; t/ � v.y; s//.

In general these limits are different and therefore playing with the parameters

may be delicate. This explains the assumption “u or v is in BUC.RN � Œ0; T �/” in

Theorem 5.2: indeed all these limits are the same in this case. In the BUC.RN �

Œ0; T �/ framework, the proof follows the one of Theorem 5.1 since (21) leads to

jx � yj2

"2
C

jt � sj2

˛2
� u.x; t/ � v.y; s/ �M

� u.x; t/ � u.y; s/C u.y; s/ � v.y; s/ �M

� u.x; t/ � u.y; s/ ;

because u.y; s/�v.y; s/ � M . Ifmu denotes a modulus of continuity of u, we have

u.x; t/ � u.y; s/ � mu.j.x; t / � .y; s/j/ and therefore
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jx � yj2

"2
C

jt � sj2

˛2
� mu.j.x; t/ � .y; s/j/ :

Finally using that jx � yj � .2R/1=2" and jt � sj � .2R/1=2˛, we have a complete

estimate of the penalisation terms.

Remark 5.3. In fact, there is a technical way which allows to avoid (partially) the

above mentioned difficulty, assuming only that there exists u0 2 BUC.RN / such that

u.x; 0/ � u0.x/ � v.x; 0/ in R
N :

By a standard result (exercise!), the modulus m given by (H1) satisfies: for any

� > 0, there exists C� such that m.�/ � C�� C �=2. We then change the test-

function into

 .x; t; y; s/ D u.x; t/ � v.y; s/ � exp.C�t/
jx � yj2

"2
�

jt � sj2

˛2
� ˇ.jxj2 C jyj2/ :

The effect of the new “exp.C�t/”-term is to produce a positive C� exp.C�t/
jx�yj2

"2

term in the inequality which allows to control the “bad” dependence in
jx�yj2

"2
and

therefore allows to treat cases where we do not know that this quantity tends to 0.

Clearly the ˛-penalisation term does not create any difficulty.

5.3 Finite Speed of Propagation

An important feature of time-dependent equations is the possibility of having “finite

speed of propagation” type results which can be stated in the following way for

u; v 2 C.RN � Œ0; T �/ which are respectively sub and supersolution of (16) in

R
N � Œ0; T �

There exists a constant c > 0 such that, if u.x; 0/ � v.x; 0/ in B.0;R/ for some

R then u.x; t/ � v.x; t/ for any x in B.0;R � ct/, ct � R.

The constant c is the “speed of propagation” and, of course, B.0;R/ can be

replaced by any other ball B.z; R/. The key assumption for having such result is the

(H4) For any x 2 R
N , t 2 Œ0; T � and p; q 2 R

N

jH.x; t; p/ �H.x; t; q/j � C jp � qj :

Theorem 5.3. Assume (H1) and (H4). Then we have a “finite speed of propaga-

tion” type results for (16) in R
N � Œ0; T � with a speed of propagation equal to C .

Before giving the proof of this result, we want to point out that such result may

also be obtained for sub and supersolutions which are Lipschitz continuous in space,
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uniformly w.r.t. t by assuming only H to be locally Lipschitz continuous in p:

indeed, in that case, only bounded p and q play a role and the inequality in (H4) is

satisfied if H is locally Lipschitz continuous.

Proof of Theorem 5.3. We just sketch it since it is a long but easy proof which

borrows a lot of arguments from the proof of Theorem 5.1.

Lemma 5.3. If u; v 2 C.RN � Œ0; T �/ are respectively sub and supersolution of

(16) in R
N � Œ0; T �, the function w WD u � v is a subsolution of

wt � C jDwj D 0 in R
N � .0; T / : (24)

Formally the result is obvious since it suffices to subtract the inequalities for u and

v and use (H4). But to show it in the viscosity sense is a little bit more technical.

Again we just sketch the proof: if .x0; t0/ is a strict maximum point of w � ' where

' is a smooth test-function, we introduce the function

.x; t; y; s/ 7! u.x; t/ � v.y; s/ �
jx � yj2

"2
�

jt � sj2

˛2
� '.x; t/ :

If .x0; t0/ is a strict maximum point of w �' in B..x0; t0/; r/, we look at maximum

points of this function in B..x0; t0/; r/�B..x0; t0/; r/. Because of the compactness

of the domain, the maximum is achieved at a point .x; t ; y; s/ and one easily

shows that .x; t/; .y; s/ ! .x0; t0/ as "; ˛ ! 0; in particular .x; t /; .y; s/ are in

B..x0; t0/; r/ for "; ˛ small enough. Writing the viscosity inequalities, following

the arguments of the proof of Theorem 5.1 and using (H4), one concludes easily.

The next step consists in showing that, if w.x; 0/ � 0 in B.0;R/ for some R,

then w.x; t/ � 0 for any x in B.0;R � Ct/, Ct � R, which is equivalent to the

“finite speed of propagation” type results. To do so, it is enough to build a suitable

sequence of (smooth) supersolutions.

We introduce smooth functions �ı W R ! R such that �ı.r/ � 0 for r � R � ı,

�ı.r/ � M for r � R, where M D maxB.0;R/�Œ0;T � w.x; t/ and �ı is increasing

in R. Next we consider the functions �ı.jxj C Ct/; it is immediate to check that this

function is a smooth solution of (24) for Ct � R � ı, i.e. for t � tı WD .R � ı/=C

and that, on @B.0;R/� Œ0; tı� and B.0;R/� f0g, w.x; t/ � �ı.jxj C Ct/. Applying

Theorem 5.1 in B.0;R/� Œ0; tı�, we obtain that w.x; t/ � �ı.jxjCCt/ in B.0;R/�

Œ0; tı� and therefore, by the properties of �ı , w.x; t/ � 0 for jxj C Ct � R C ı.

Letting ı tend to 0 gives the complete answer.

Remark 5.4. In fact, we do not really need a comparison result, namely Theorem

5.1, to conclude: the last part of the proof follows from the definition of viscosity

(sub)solution. Indeed the function �ı.jxjCCt/Cıt is a smooth strict supersolution

in B.0;R/ � .0; tı/; this shows that w.x; t/ � .�ı.jxj C Ct/C ıt/ cannot achieve a

maximum point in B.0;R/ � .0; T �, which immediately leads to the conclusion.
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6 Discontinuous Viscosity Solutions, Discontinuous

Nonlinearities and the “Half-Relaxed Limits” Method

The main objective of this section is to present a general method, based on the

notion of discontinuous viscosity solutions, which allows passage to the limit in

(fully) nonlinear pdes with just an L1-bounds on the solutions. To do so, we have

to extend the notion of viscosity solution to the discontinuous setting. We refer to

Ishii [30,31], Perthame and the author [8,9] for the notion of discontinuous viscosity

solutions, the half-relaxed limits method being introduced in [8].

We use the following notations: if z is a locally bounded function (possibly

discontinuous), we denote by z� its upper semicontinuous (usc) envelope

z�.x/ D lim sup
y!x

z.y/ ;

and by z� its lower semicontinuous (lsc) envelope

z�.x/ D lim inf
y!x

z.y/ :

6.1 Discontinuous Viscosity Solutions

The definition is the following.

Definition 6.1 (Discontinuous Viscosity Solutions). A locally bounded upper

semicontinuous (usc in short) function u is a viscosity subsolution of the equation

G.y; u;Du;D2u/ D 0 on O (25)

if and only if, for any ' 2 C 2.O/, if y0 2 O is a maximum point of u � ', one has

G�.y0; u.y0/;D'.y0/;D
2'.y0// � 0:

A locally bounded lower semicontinuous (lsc in short) function v is a viscosity

supersolution of the (25) if and only if, for any ' 2 C 2.O/, if y0 2 O is a minimum

point of u � ', one has

G�.y0; u.y0/;D'.y0/;D
2'.y0// � 0 :

A (discontinuous) solution is a function whose usc and lsc envelopes are

respectively viscosity sub and supersolution of the equation.

The first reason to introduce such a complicated formulation is to unify the

convergence result we present in the next section: in fact, when O is an open subset

different from R
N , the function G may contain both the equation and the boundary
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condition. With such general formulation, we avoid to have a different result for

each type of boundary conditions. The possibility of handling discontinuous sub

and supersolutions is also a key point in the convergence proof.

To be more specific, we consider the problem

�
F.y; u;Du;D2u/ D 0 in O;

B.y; u;Du/ D 0 on @O;

where F;B are a given continuous functions.

In order to solve it, a classical idea consists in considering the vanishing viscosity

method �
�"�u" C F.y; u";Du";D

2u"/ D 0 in O;

B.y; u";Du"/ D 0 on @O:

Indeed, by adding a �"� term, we regularize the equation in the sense that one can

expect to have more regular solutions for this approximate problem—typically in

C 2.O/ \ C 1.O/.
If we assume that this is indeed the case, i.e. that this regularized problem has a

smooth solution u" and that, moreover, u" ! u in C.O/. It is easy to see, by the

arguments of Theorem 4.1, that the continuous function u satisfies in the viscosity

sense 8
<
:

F.y; u;Du;D2u/ D 0 in O;

min.F.y; u;Du;D2u/; B.y; u;Du// � 0 on @O;

max.F.y; u;Du;D2u/; B.y; u;Du// � 0 on @O;

where, for example, the “min” inequality on @O means: for any ' 2 C 2.O/, if

y0 2 @O is a maximum point of u � ' on O , one has

min.F.y0; u.y0/;D'.y0/;D
2'.y0//; B.y; u.y0/;Du.y0/// � 0:

The interpretation of this new problem can be done by setting the equation in O
instead of O . To do so, we introduce the functionG defined by

G.y; u; p;M/ D

�
F.y; u; p;M/ if y 2 O;

B.y; u; p/ if y 2 @O:

The above argument shows that the function u is a viscosity solution of

G.y; u;Du;D2u/ D 0 on O ;

and in particular on O , if

G�.y; u;Du;D2u/ � 0 on O

G�.y; u;Du;D2u/ � 0 on O
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where G� and G� stand respectively for the lower semicontinuous and upper

semicontinuous envelopes ofG. Indeed, the “min” and the “max” above are nothing

but G� and G� on @O .

6.2 Back to the Running Example (II): The Dirichlet

Boundary Condition for the Value-Function

In this subsection, we show that the value function of the exit time control problem

actually satisfy the Dirichlet boundary condition in the viscosity sense.

To do so, we use a more sophisticated version of the Dynamic Programming

Principle.

Theorem 6.1. Under the assumptions (CA), the value-function satisfies, for any

x 2 ˝, t > 0 and 0 < S < t

U.x; t/ D inf
v.:/

�Z S ^ �

0

f .yx.s/; ˛.s//ds C 1f S<� g U.yx.S/; t � S/C 1f S��g'.yx.�//

�
:

(26)

In order to understand why this formulation leads naturally to boundary condi-

tions in the viscosity solutions sense, we consider x 2 @˝ , 0< t <T and a sequence

.x"; t"/ converging to .x; t/ such that U.x"; t"/ ! U�.x; t/. We apply the Dynamic

Programming Principle at the point .x"; t"/. We argue formally assuming that there

exists an optimal control ˛".�/ in such a way that we have

U.x"; t"/ D

Z S^�"

0

f .yx" .s/; ˛".s//ds C 1fS<�"gU.yx".S/; t" � S/

C 1fS��"g'.yx".�"// :

Here there are two cases:

(i) Either �" ! 0 as " ! 0 and letting " tends to 0, we obtain (formally)

U�.x; t/ D '.x/.

(ii) Or �" remains bounded away from 0 and by choosing S small enough, we have

U.x"; t"/ D

Z S

0

f .yx" .s/; ˛".s//ds C U.yx".S/; t" � S/ ;

which, since U � U� on ˝ can be rewritten as

U�.x; t/C o".1/ �

Z S

0

f .yx".s/; ˛".s//ds C U�.yx".S/; t" � S/ ;
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a similar situation to the case when x 2 ˝ . Playing with " and S (or fixing S

and using relaxed controls to pass to the limit " ! 0), it is easy to show that the

supersolution inequality holds.

In conclusion, boundary conditions in the viscosity solutions sense are natural

from the optimal control point of view since they take into account the strategy of

the controller and/or the controlability properties of the system. Indeed, we obtain

U�.x; t/ � '.x/ [i.e. we are in the case (i)] if either it is interesting in term of cost

to pay ' (and if we can exit the domain to do it) or, on the contrary, if we are obliged

to exit the domain, even if this cost is high. Case (ii) may arise either if we want to

avoid paying the cost ' (and if some control allows to do it) or if we have no choice

but to go away from the boundary.

These interpretations for the “min” and “max” inequalities are important since

they connect the control problem and its properties with the equation and the

boundary conditions.

6.3 The Half-Relaxed Limit Method

The first key point is a stability result for discontinuous viscosity solutions. To state

it we use the following notations: if .z"/" is a sequence of uniformly locally bounded

functions, the half-relaxed limits of .z"/" are defined by

lim sup� z".y/ D lim sup
Qy!y
"!0

z". Qy/ and lim inf� z".y/ D lim inf
Qy!y
"!0

z". Qy/ :

Theorem 6.2. Assume that, for " > 0, u" is an usc viscosity subsolution (resp. a lsc

supersolution) of the equation

G".y; u";Du";D
2u"/ D 0 on O ;

where .G"/" is a sequence of uniformly locally bounded functions in O � R � R
N

�S N which satisfy the ellipticity condition. If the functions u" are uniformly locally

bounded on O , then u D lim sup� u" (resp. u D lim inf� u") is a subsolution (resp.

a supersolution) of the equation

G.y; u;Du;D2u/ D 0 on O ;

where G D lim inf� G".

(resp. of the equation

G.y; u;Du;D2u/ D 0 on O ;

where G D lim sup� G").
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Of course, the main interest of this result is to allow the passage to the limit

in fully nonlinear, degenerate elliptic pdes with only a uniform local L1—bound

on the solutions. This is a striking difference with Theorem 4.1 which requires far

more informations on the u"’s. The counterpart is that we do not have anymore a

limit but two half-limits u and u which have to be connected in order to obtain a real

convergence result.

This is the aim of the half-relaxed limit method:

1. One proves that the u" are uniformly bounded in L1 (locally or globally).

2. One applies the above discontinuous stability result.

3. By definition, we have u � u on O .

4. To obtain the converse inequality, one uses a Strong Comparison Result (SCR

in short) i.e. a comparison result which is valid for discontinuous sub and

supersolutions. It yields

u � u in O .or on O /:

5. From the SCR, we deduce u D u in O (or on O). If we set u WD u D u, then u

is continuous (because u is usc and u is lsc) and it is easy to show that, on one

hand, u is the unique solution of the limiting equation (using again the SCR) and,

on the other hand, we have the convergence of u" to u in C.O/ (or in C.O/).

It is clear that, in this method, SCR play a central role: we give in the next

subsection few indications on how to prove such results and references on the

existing SCR.

We first describe a typical example of the use of Theorem 6.2.

Example 6.1. We consider the problem

(
�"u00

" .x/C u0
".x/ D 1 in .0; 1/

u".0/ D u".1/ D 0

Of course, it is expected that the solution of this problem converges to the solution of

�
u0.x/ D 1 in .0; 1/

u.0/ D u.1/ D 0

But the solution of this problem does not seem to exist.

The solution u" can be computed explicitly

u".x/ D x �
exp."�1.x � 1// � exp.�"�1/

1 � exp.�"�1/
;

and therefore we can also compute the half-relaxed limits of the sequence .u"/"

u.x/ D x and u.x/ D

(
x if x 2 Œ0; 1/

0 for x D 1 :



First-Order Hamilton–Jacobi Equations and Applications 79

By Theorem 6.2, these half-relaxed limits are respectively sub and supersolution of

u0.x/ � 1 D 0 in .0; 1/ ;

min.u0.x/ � 1; u/ � 0 at x D 0 and 1 ;

max.u0.x/ � 1; u/ � 0 at x D 0 and 1 :

The problem is, of course, at the point x D 1 where u is 1 while u is 0. Several

remarks: this fact is a consequence of the boundary layer near 1 since u" looks like

x but it has also to satisfies the Dirichlet boundary condition u".1/ D 0. A clear

advantage of Theorem 6.2 is that we can pass to the limit despite of this boundary

layer. Of course, there is no hope here to apply Theorem 4.1. But the price to pay is

that u.1/ is different from u.1/.

In order to recover the right result, namely the convergence in Œ0; 1/ of u" to x, the

SCR has to take care of this difference and this is done by “erasing” the “wrong”

value of u at 1. This explains why we wrote above that we can compare u and u

either in O or on O: here we can do it only in O WD .0; 1/ (and even in Œ0; 1/).

Now we give the Proof of Theorem 6.2. We do it only for the subsolution case,

the supersolution one being analogous.

It is based on the

Lemma 6.1. Let .v"/" be a sequence of uniformly bounded usc functions on O and

v D lim sup� v". If y 2 O is a strict local maximum point of v on O , there exists a

subsequence .v"0/"0 of .v"/" and a sequence .y"0/"0 of points in O such that, for all

"0, y"0 is a local maximum point of v"0 in O , the sequence .y"0/"0 converges to y and

v"0.y"0/ ! v.y/.

We first prove Theorem 6.2 by using the lemma. Let ' 2 C 2.O/ and let y 2 O
be a strict local maximum point de u � '. We apply Lemma 6.1 to v" D u" � ' and

v D u � ' D lim sup� .u" � '/. There exists a subsequence .u"0/"0 and a sequence

.y"0/"0 such that, for all "0, y"0 is a local maximum point of u"0 � ' on O . But u"0 is

a subsolution of the G"0 -equation, therefore

G"0.y"0 ; u"0.y"0/;D'.y"0/;D
2'.y"0// � 0:

Since y"0 ! x and since ' is smoothD'.y"0/ ! D'.y/ andD2'.y"0/ ! D2'.y/;

but we have also u"0.y"0/ ! u.y/, therefore by definition of G

G.x; u.y/;D'.y/;D2'.y// � lim inf G"0.y"0 ; u"0.y"0/;D'.y"0/;D
2'.y"0// :

This immediately yields

G.x; u.y/;D'.y/;D2'.y// � 0;

and the proof is complete.
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Now we turn to the Proof of Lemma 6.1: since y is a strict local maximum point

of v on O , there exists r > 0 such that

8z 2 O \ B.y; r/ ; v.z/ � v.y/ ;

the inequality being strict for z ¤ y. But O \ B.y; r/ is compact and v" is usc,

therefore, for all " > 0, there exists a maximum point y" of v" on O \ B.y; r/. In

other words

8z 2 O \ B.y; r/ ; v".z/ � v".y
"/ : (27)

Now we take the lim sup for z ! y and " ! 0: by the definition of the lim sup� , we

obtain

v.y/ � lim sup
"

v".y
"/ :

Next we consider the right-hand side of this inequality: extracting a subsequence

denoted by "0, we have lim sup" v".y
"/ D lim"0 v"0.y"0/ and since O \ B.y; r/ is

compact, we may also assume that y"0 ! y 2 O \ B.y; r/. But using again the

definition of the lim sup� at y, we get

v.y/ � lim sup
"

v".y
"/ D lim

"0
v"0.y"0/ � v.y/ :

Since y is a strict maximum point of v in O \B.y; r/ and that y 2 O \B.y; r/, this

inequality implies that y D y and that v"0.y"0/ ! v.y/ and the proof is complete.

We conclude this subsection by the

Lemma 6.2. If K is a compact subset of O and if u D u on K then u" converges

uniformly to the function u WD u D u on K .

Proof of Lemma 6.2. Since u D u on K and since u is usc and u is lsc on O , u is

continuous on K .

We first consider M" D sup
K

�
u�
" � u

�
. The function u�

" being usc and u being

continuous, this supremum is in fact a maximum and is achieved at a point

y". The sequence .u"/" being locally uniformly bounded, the sequence .M"/"
is also bounded and, K being compact, we can extract subsequences such that

M"0 ! lim sup" M" and y"0 ! y 2 K . But by the definition of the lim sup� ,

lim sup u�
"0
.y"0/ � u.y/ while we have also u.y"0/ ! u.y/ by the continuity of u.

We conclude that

lim sup
"

M" D lim
"0
M"0 D lim

"0
u�
"0.y"0/ � u.y"0/ � u.y/ � u.y/ D 0 :

This part of the proof gives half of the uniform convergence, the other part being

obtained analogously by considering QM" D sup
K

.u � .u"/�/.
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6.4 Strong Comparison Results

In general, this is clearly THE difficulty when applying the half-relaxed limit

method.

The basic comparison result we have already proved, namely Theorem 5.1, is

in fact a SCR: we use the continuity of u and v only once to obtain that u.x; t / �

v.y; s/ ! M and then an estimate on the penalization terms through the inequality

jx � yj2

"2
C

jt � sj2

˛2
� u.x; t /� v.y; s/ �M ! 0 :

But, if .x; t/; .y; s/ ! .x0; t0/, we have lim sup u.x; t/ � u.x0; t0/ because u is

usc and lim infv.y; s/ � v.x0; t0/ because v is lsc, and therefore lim sup.u.x; t / �

v.y; s// � M , which is enough to obtain both the convergence of u.x; t/ � v.y; s/

to M and the right property for the penalization terms.

For problem with boundary conditions:

(a) One has general SCR for Neumann BC (even for second-order equations): see

[6, 34].

(b) Dirichlet boundary conditions present more difficulties, at least when they are

not assumed in a classical sense: we refer to [5, 9, 10] for first-order problems

and [12] for second-order problems.

We come back again to our running example and provide a Strong Comparison

Result for the Dirichlet problem of the exit time control problem.

Theorem 6.3. Under the above assumptions, if ˝ is a W 2;1-domain and if there

exists � > 0 such that, for any x 2 @˝ , there exists ˛1x ; ˛
2
x 2 V such that

b.x; ˛1x/ � n.x/ � � and b.x; ˛2x/ � n.x/ � �� ; (28)

where n.x/ is the unit outward normal to @˝ at x, then we have a Strong Compar-

ison Result for (7)–(9), namely if u and v are respectively sub and supersolution of

(7)–(9), then

u � v on ˝ :

We first comment Assumption (28): it is a (partial) controlability assumption

on the boundary; roughly speaking, it means that, in a neighborhood of each point

x 2 @˝ , the controller has both the possibility to leave ˝ by using ˛1x or to stay

inside ˝ by using ˛2x .

It is also worth pointing out that we can compare u and v only in ˝:

unfortunately, as Example 6.1 shows it, the boundary conditions in the viscosity

sense (at least in the Dirichlet case) do not impose strong enough constraints on the

boundary and one may have “artificial” values for u and/or v. This is why we have

to redefine u and/or v on the boundary in the proof of the SCR and also why the

result holds only in ˝ .
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The program to study such control problems and obtain that the value-function

is continuous and the unique solution of the associated Bellman problem is the

following:

(a) Show that one has a dynamic programming principle for the control problem:

in general, this is easy for deterministic problems, more technical for stochastic

ones because of measurability issues. An alternative solution consists in arguing

by approximation.

(b) Deduce that, if U is the value function, then U� and U� are respectively

viscosity sub and supersolution of the Bellman problem.

(c) Use the Strong Comparison Result to prove that U� � U� which shows that

U WD U� D U� is continuous since it is both upper and lower semicontinuous.

(d) Use again the Strong Comparison Result to obtain the uniqueness result.

7 Existence of Viscosity Solutions: Perron’s Method

Perron’s method was introduced in the context of viscosity solutions by Ishii [31].

We present the main arguments in the case of (16) together with the initial data

u.x; 0/ D u0.x/ in R
N ; (29)

where u0 2 BUC.RN /.

The result is the

Theorem 7.1. Assume (H1), (H3) and that u0 2 BUC.RN /. For any T > 0, there

exists a unique viscosity solution u of (16)–(29) in BUC.RN � Œ0; T �/.

Proof of Theorem 7.1. We denote byM D jju0jj1 and C D sup
RN�Œ0;T �H.x; t; 0/.

The functions u.x; t/ WD �M � Ct and u.x; t/ WD M C Ct are respectively sub

and supersolution of (16); moreover

u.x; 0/ � u0.x/ � u.x; 0/ in R
N :

We denote by S the set of all usc subsolutions w of (16) such that u � w � u in

R
N � Œ0; T � and which satisfies w.x; 0/ � u0.x/ in R

N . Then we set

u.x; t/ D supfw.x; t/ W w 2 S g :

The first step consists in showing that u� is a (possibly discontinuous) viscosity

subsolution of (16). The proof of this claim comes from three types of arguments:

1. If u1 and u2 are usc functions then D2;CŒsup.u1; u2/� � D2;Cu1 \ D2;Cu2, a

property which immediately yields that the supremum of two subsolutions (and

then of a finite number of subsolutions) is a subsolution.
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2. Next the discontinuous stability result allows to extend this result to a countable

number of subsolutions. In this case, the supremum of a countable number of usc

functions is not necessarily usc and one has to use an usc envelope: this is done

automatically by the lim sup� operation.

3. In order to prove that u� is a subsolution of (16), we have to extend Point 2 to

any set of subsolutions. We remark that, for a given point .x; t/, there exists a

sequence .wn/n of elements of S such that, if

vn.y; s/ WD sup
0�k�n

wk.y; s/ ;

then

u�.x; t/ D lim sup� vn.x; t/ D lim sup
.y;s/!.x;t/
n!C1

vn.y; s/ D

�
sup
k2N

wk.y; s/

��

:

This leads us to introduce the function Qu WD lim sup� vn which is a subsolution of

(16) by Point 2. To conclude, we use an analogous argument to the one of Point

1. If u1 and u2 are usc functions such that u1 � u2 and u1.x; t/ D u2.x; t/ for

some point .x; t/ then D2;Cu2.x; t/ � D2;Cu1.x; t/. Applying this result with

u1 D Qu and u2 D u� shows that u� satisfies the subsolution inequalities at .x; t/

since Qu does. Since this is true for any point .x; t/, we have proved that u� is a

subsolution of (16) and also that u is usc since, by definition, u � u� because

u� 2 S .

The next step consists in showing that u� is a viscosity supersolution of (16).

To do so, we argue by contradiction assuming that there exists a smooth function �

such that u� � � has a global minimum point at some .x; t / for t > 0 and

@�

@t
.x; t /CH.x; t ;D�.x; t// < 0 : (30)

We may assume without loss of generality that u�.x; t/ D �.x; t/. For " > 0, we

consider the functions

w".x; t/ D maxfu.x; t/; �".x; t/g;

where �".x; t/ WD �.x; t/C " � jx � xj4 � jt � t j4.

Since � � u� � u and u�.x; t / D �.x; t/, w" can differ from u only in a small

neighborhood of .x; t/ and more precisely where jx � xj4 C jt � t j4 � ". And we

point out that this neighborhood becomes smaller and smaller with ". Using (30),

we see that � and therefore �" are subsolution of (16) in a small neighborhood of

.x; t /. This implies that w" is still a subsolution of (16) as the supremun of two

subsolutions, if we choose " small enough.
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Next we want to prove that w" 2 S and to do so, it remains to show that w" � u,

at least if " is small enough. Since this is true for u, we have just to check it for �"
and for jx � xj4 C jt � t j4 � ", i.e. close enough to .x; t /.

By the same argument as in Point 3 above, we cannot have u�.x; t / D u.x; t /:

otherwise, since u� � u, D2;�u�.x; t / � D2;Cu.x; t/ and u� would satisfies the

supersolutions inequalities at .x; t /. Therefore u�.x; t / D �.x; t/ D �".x; t / <

u.x; t/ and, for " small enough, the last inequality remains true in a neighborhood

by the continuity of �" and u. Hence w" 2 S .

This fact is a contradiction with the definition of u: indeed,

u�.x; t / WD lim inf
.y;s/!.x;t/

u.y; s/ D lim
k

u.yk ; tk/ :

But, w".x; t / D u�.x; t/C " and by the continuity of w", it is clear that, for k large

enough, u.yk; tk/ < w".yk ; tk/.

In fact, the above argument is not completely correct since we do not take into

account the initial data. There are two ways to do it, the first one being simpler, the

second one being more general.

The first solution consists in showing that u is, in fact, continuous at time t D 0

and that u.x; 0/ D u0.x/ for any x 2 R
N . To do so, we remark that, thanks to the

property on the modulus of continuity recalled in Remark 5.3, since u0 is uniformly

continuous in R
N , we have, for any x; y 2 R

N and � > 0

u0.x/ � �=2� C�jx � yj � u0.y/ � u0.x/C �=2C C�jx � yj ;

for some large constant C� > 0. Then choosing a constant QC� > 0 large enough, the

functions

u˙.y; t/ D u0.x/˙ �=2˙ C�jx � yj ˙ QC�t ;

are respectively viscosity subsolution and supersolution of (16). We use these

functions in the following way: on one hand, if w 2 S , w � uC in R
N � Œ0; T �;

this inequality can be easily obtained by smoothing the term jx � yj and remarking

that uC being a strict supersolution of (16) for QC� large enough, w � uC cannot

achieved a maximum in R
N � .0; T � (remark also that such maximum is achieved

because uC.y; t/ ! C1 as jyj ! C1) and therefore it is achieved for t D 0

where w � uC. On the other hand, max.u�; u/ 2 S . Therefore, combining these

properties with the definition of u, we have

u� � max.u�; u/ � u � uC in R
N � Œ0; T � ;

and, since u˙ are continuous, this yields u�.x; 0/� u�.x; 0/� u�.x; 0/� uC.x; 0/,

i.e

u0.x/ � �=2 � u�.x; 0/ � u�.x; 0/ � u0.x/C �=2 :
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This property being true for any � > 0 and x 2 R
N , we have u�.x; 0/ � u0.x/ and

u�.x; 0/ � u0.x/ in R
N , which are the desired properties since they imply that u is

continuous at .x; 0/ and u.x; 0/ D u0.x/.

The second method to treat the initial data consists in understanding this initial

data in the viscosity solution sense, i.e.

min.wt CH.x; 0;Dw/;w � u0/ � 0 in R
N ; (31)

and

max.wt CH.x; 0;Dw/;w � u0/ � 0 in R
N : (32)

With few modifications, the above arguments can take into account, at the same

time, the equation in the domain and the initial data in this viscosity sense.

Hence u satisfies (31)–(32) but then we use the

Lemma 7.1. If w is an usc subsolution of (16) satisfying (31) (resp. a lsc super-

solution of (16) satisfying (32)), we have w.x; 0/ � u0.x/ (resp. u0.x/ � w.x; 0/)

in R
N .

Therefore, in non-singular situations, initial data in the viscosity sense always

reduce to initial data in the classical sense.

Using this lemma, Remark 5.3 shows that we can compare the subsolution u�

and the supersolution u�; therefore

u�.x; t/ � u�.x; t/ in R
N � Œ0; T � :

But, by definition, the opposite inequality holds and we can conclude that u is

continuous, the BUC-property for u coming from a careful examination of the

uniqueness proof. And the existence result is complete.

Proof of Lemma 7.1. We prove the result only in the subsolution case, the

supersolution one being analogous. For x 2 R
N , we introduce the function

�.y; t/ D w.y; t/ �
jy � xj2

"
� C"t ;

where " > 0 is a parameter devoted to tend to 0 and C" > 0 is a large constant to be

chosen later on.

Standard argument shows that � has a maximum point .y; t/ near .x; 0/ for small

enough " and large enough C". Since w is a subsolution of (16) satisfying (31), if

t > 0, we have

C" CH

�
y; t ;

2.y � x/

"

�
� 0:

But this inequality cannot hold if C" is chosen large enough (the size depending

on " and H but neither on y nor on t since the term
jy�xj2

"
is bounded). Therefore

t D 0 and (31) holds. But since the above inequality cannot hold, (31) implies
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w.y; 0/ � u0.y/. We conclude by remarking that, as " ! 0, w.y; 0/ ! w.x; 0/

by using the maximum point property and the upper-semicontinuity of w, while

u0.y/ ! u0.x/ by the continuity of u0.

8 Regularity Results

The aim of this section is to investigate further regularity properties for the solutions

obtained through Theorem 7.1. To do so, we first strengthen assumption (H1) into

(H1-s) There exists L1; L2 > 0 such that, for any x; y 2 ˝ , t 2 .0; T � and p 2 R
N

jH.x; t; p/ �H.y; t; p/j � L1jx � yjjpj C L2jx � yj :

Theorem 8.1. Assume (H1-s), (H3) and that u0 2 W 1;1.RN /. Then the solution of

u of (16)–(29) given by Theorem 7.1 is Lipschitz continuous in x for any t 2 Œ0; T �

and

jjDu.�; t/jj1 � exp.L1t/jjDu0jj1 C
L2

L1
.exp.L1t/ � 1/ :

Proof of Theorem 8.1. The proof is similar to the proof of the comparison result and

we just sketch it to avoid repeating the same arguments. We introduce the function

.x; y; t/ 7! u.x; t/ � u.y; t/ � C.t/jx � yj: the aim is to show that this function is

negative for some well-chosen (smooth) function C.�/; at least for t D 0, we can

choose C.0/ D jjDu0jj1 to have this property.

To do so, we argue by contradiction, assuming that its supremum is strictly

positive and in order to use viscosity solutions’ arguments, we double the variables

in time, namely

 .x; t; y; s/ D u.x; t/ � u.y; s/ � C.t/jx � yj �
jt � sj2

˛2
� ˇ.jxj2 C jyj2/ :

For ˛; ˇ > 0 small enough, the maximum of  is still strictly positive and we

denote by .x; t ; y; s/ a maximum point of  . We notice that we cannot have

x D y, otherwise  .x; t ; y; s/ would be negative. Dropping the ˇ-terms which

are not going to play any role and performing the same arguments as in the proof of

Theorem 5.1, we are lead to the inequality

dC

dt
.t /jx � yj CH

�
x; t ; p

�
�H .y; s; p/ � 0 ;

with p D C.t/
x�y

jx�yj
. Writing this inequality as

dC

dt
.t/jx � yj CH

�
x; t; p

�
�H

�
y; t; p

�
CH

�
y; t; p

�
�H .y; s; p/ � 0 ;
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and using (H1-s), we obtain

dC

dt
.t /jx � yj �L1C.t/jx � yj �L2jx � yj C o˛.1/ � 0 ;

where o˛.1/ ! 0 as ˛ ! 0. If dC
dt
.t/ � L1C.t/ � L2 > 0, we get the contradiction

by letting ˛ tend to 0.

Therefore it is enough to solve dC
dt
.t/ � L1C.t/ � L2 D ı for some ı > 0 and

with C.0/ D jjDu0jj1. This yields

Cı.t / D exp.L1t/jjDu0jj1 C
L2 C ı

L1
.exp.L1t/ � 1/ :

The above proof shows that u.x; t/ � u.y; t/ � Cı.t/jx � yj � 0 for all x; y; t and

ı > 0. Letting ı tends to 0, we obtain the right bound on jjDu.�; t/jj1.

An other way to get Lipschitz regularity is, for coercive Hamiltonians, through

an estimate of ut when H is independent of t . We recall that H.x; p/ is said to be

coercive if it satisfies

(H5)H.x; p/ ! C1 as jpj ! C1, uniformly in x.

Theorem 8.2. Assume thatH is independent of t and satisfies (H1), (H3) and (H5).

If u0 2 W 1;1.RN /, then the solution of u of (16)–(29) given by Theorem 7.1 is

Lipschitz continuous in x for any t 2 Œ0; T � and

jjDu.�; t/jj1 � K.H; u0/ :

Proof of Theorem 8.2. By the comparison result, since u.x; t/ and u.x; t C h/ for

h > 0 are solutions of the same equation, we have

jju.x; t C h/ � u.x; t/jj1 � jju.x; h/� u.x; 0/jj1 :

But u0 being Lipschitz continuous, if we set

R WD jjDu0jj1 and C WD max
RN�B.0;R/

jH.x; p/j ;

then u0.x/ � Ct and u0.x/C Ct are respectively viscosity sub and supersolution of

the equation and therefore

u0.x/ � Ct � u.x; t/ � u0.x/C Ct in R
N � Œ0; T � :

In particular, jju.x; h/�u.x; 0/jj1 � Ch and therefore jju.x; tCh/�u.x; t/jj1 �

Ch, which implies that jjut jj1 � C .
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In order to deduce the gradient bound in space, we consider any point .x; t/,

t > 0 and we want to show that u.y; t/ � u.x; t/CKjy�xj for some large enough

constantK . To do so, we consider the function

.y; s/ 7! u.y; s/ � u.x; t/ �Kjy � xj �
.t � s/2

˛2
:

The maximum of this function is achieved at some point .y; s/ since u is bounded

andKjy � xj C
.t�s/2

˛2
! C1 if jy � xj C jt � sj ! C1. Moreover s ! t when

˛ ! 0.

If y ¤ x, then the function .y; s/ 7! u.x; t/ C Kjy � xj C
.t�s/2

˛2
is smooth at

.y; s/ and since u is a viscosity subsolution of (16) we have

2
.s � t/

˛2
CH.y; p/ � 0;

with p D K
y�x

jy�xj
.

Now we claim that j2
.s�t /

˛2
j � 2C : this can be proved in an analogous way as in

the proof of Lemma 5.2 (point (3) for the estimate on j2
.x�y/

"2
j). Using (H5) and the

fact that jpj D K , the above inequality can not hold if K is large enough, namely

if H.y; p/ > 2C . Therefore y D x for ˛ small enough and also necessarily s D t

(otherwise the value at the maximum would be less than the value at .x; t/). The

maximum point property for s D t yields

u.y; t/ � u.x; t/ �Kjy � xj � 0;

which is the desired property.

We provide a last result on the semi-concavity of solutions when the Hamiltonian

is convex in p and satisfies some smoothness assumption in .x; p/. We recall that a

function u W RN � Œ0; T � ! R is semi-concave (with a uniform constant of semi-

concavity wrt t) if there exists a constant Nk such that, for any x; h 2 R
N and t 2

Œ0; T �

u.x C h; t/C u.x � h; t/ � 2u.x; t/ � Nkjhj2 :

For the Hamiltonian H , we use the following assumption which is satisfied for

example if H is W 2;1 in .x; p/ uniformly in t and convex in p

(H6) There exists constants k1; k2 > 0 such that, for any x; h; p; k 2 R
N and

t 2 Œ0; T �

H.x C h; t; p C k/CH.x � h; t; p � k/ � 2H.x; t; p/ � �k1jhj2 � k2jhjjkj :

The result is the

Theorem 8.3. Assume that H satisfies (H1), (H3) and (H6). If u0 2 W 1;1.RN /

is semi-concave, then the solution of u of (16)–(29) given by Theorem 7.1 is semi-

concave in x for any t 2 Œ0; T �, with a uniform constant of semi-concavity.
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We just give a short sketch of the proof of Theorem 8.3 which is tedious since it

requires to triple the variables (each of them corresponding to either x C h, x � h

or x). Namely we introduce the function

u.x; t/C u.y; s/ � 2u.z; �/�
jx C y � 2zj2

"2
�

jx � zj2

"2
�

jy � zj2

"2
�
.t � �/2

˛2

�
.s � �/2

˛2
� � � � ;

where we have dropped the usual “ˇ”-terms to penalize infinity. With this function,

the proof follows from straightforward but tedious computations.

9 Convex Hamiltonians, Barron–Jensen Solutions

In this section, we describe additional properties of viscosity solutions of (16) in

the case when H is convex in p. The main motivation is to extend the theory -and

in particular the uniqueness results- to the case when the initial data is only lower

semi-continuous, a natural framework for optimal control problems. The key ideas

described in this section were introduced by Barron and Jensen [17, 18] who also

consider the applications to optimal control. The simplified presentation we provide

follows the one of [4].

Our first result is the following.

Theorem 9.1. Assume that H is convex in p and (H3) holds. If u 2 W 1;1.RN �

.0; T // satisfies

ut CH.x; t;Du/ � 0 a.e in ˝ � .0; T / ;

then u is viscosity subsolution of (16).

Proof of Theorem 9.1. We are going to use a standard regularization argument. Let

.�"/" be a sequence of C1, positive, smoothing kernels in R
NC1, with compact

support in the ball of radius ". For � > 0 small enough, we are going to show that

u".x; t/ WD

Z

RNC1

u.y; s/�".x � y; t � s/dyds ;

is an approximate C 1 subsolution of the equation in R
N � .�; T � �/ if " < �.

To do so, for x 2 R
N , t 2 .�; T ��/, we multiply the equation at the point .y; s/

by �".x�y; t �s/ and we integrate over RNC1 (or, in fact, over the ball of radius ").

By the properties of the convolution, we obtain

.u"/t .x; t/C

Z

RNC1

H .y; s;Du.y; s// �".x � y; t � s/dyds � 0:
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Using (H3), we can replace, in the integral,H .y; s;Du.y; s// byH .x; t;Du.y; s//

with a small error in ". This gives

.u"/t .x; t/C

Z

RNC1

H .x; t;Du.y; s// �".x � y; t � s/dyds � o".1/ :

In order to conclude, we have just to apply Jensen’s inequality which leads to

.u"/t .x; t/CH .x; t;Du".x; t// dyds � o".1/ :

Therefore u" is a smooth subsolution of (16) in R
N � .�; T � �/, hence a viscosity

subsolution of (16) in R
N � .�; T � �/ and so is u which is the uniform limit of u",

by Theorem 4.1. Since this is true for any �, the proof is complete.

This result has several consequences which are listed in the following

Theorem 9.2. Assume that H is convex in p and that (H1), (H3) hold.

(i) The function u 2 W 1;1.RN � .0; T // is a viscosity subsolution (resp. solution)

of (16) if and only if, for any smooth function ', if .x; t/ is a local minimum

point of u � ', one has

't.x; t/CH.x; t;D'.x; t// � 0 (resp. D 0). (33)

(ii) If u1; u2 2 W 1;1.RN � .0; T // are viscosity subsolutions (resp. solutions) of

(16), then min.u1; u2/ is also a subsolution (resp. solution) of (16).

(iii) If u 2 W 1;1.RN �.0; T // is a viscosity subsolution of (16) and if (H1-s) holds

then

u".x; t/ D inf
y2RN

�
u.y; t/C e�L1t

jx � yj2

"2

�
;

is a viscosity subsolution of (16) within aO."/ error term which depends only

on the L1-norm of u.

In (iii), the function u" is obtained through an inf-convolution procedure on u. The

connections of such inf and sup-convolution with viscosity solutions were remarked

by Lasry and Lions [35]. In general, an inf-convolution is a supersolution, while sup-

convolutions are subsolutions. Therefore (iii) is a priori a rather surprising result.

Proof of Theorem 9.2. The proof of (i), (ii) and (iii) are easy: for (i), we may

assume that .x; t/ is a strict local minimum point of u � ' and we can approximate

this minimum point by minimum points .x"; t"/ of u" � ' where u" is the sequence

of smooth approximations of u built in the proof of Theorem 9.1. By the regularity

of u" and ', we have .u"/t .x"; t"/ D 't .x"; t"/ and Du".x"; t"/ D D'.x"; t"/ and

therefore, since u" is a C 1 subsolution of (16)

't.x"; t"/CH.x"; t";D'.x"; t"// � 0:

The conclusion follows by letting " ! 0.
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For (ii), we have just to use Stampacchia’s Theorem together with Theorem 9.1:

indeed

DŒmin.u1; u2/� D Du1 if u1 < u2 andDŒmin.u1; u2/� D Du2 otherwise;

and Du1 D Du2 a.e. on the set fu1 D u2g; and the same is, of course, true for the time

derivative. To get the subsolution property, we have just to argue in the a.e. sense

while the supersolution property always holds since the minimum of supersolutions

is a supersolution (exactly in the same way as the maximum of two subsolutions is

a subsolution, cf. Perron’s method).

For (iii), we just sketch the proof since it requires long but straightforward

computations. Using (i), we have look at what happens at a minimum point .x; t/

of u" � ' where ' is a smooth function. Thanks to the definition of u", this leads to

consider minimum point of the function

.y; t; z; s/ 7! u.y; t/C e�L1 t
jz � yj2

"2
� '.z; t/ :

We see that we are in a framework which is close to the proof of the comparison

result, and in the spirit of Remark 5.3. The computations are then easy using (i).

Theorem 9.2 provides all the necessary (technical) ingredients to extend the

theory and to do so, we are first going to say that a lsc function u W RN � Œ0; T � ! R

is a Barron–Jensen (BJ for short) subsolution (or solution) of (16) if and only if it

satisfies (33). Theorem 9.2 (i) shows that this is equivalent to the usual notion of

viscosity solution when u is Lipschitz continuous (and it is also the case when u is

continuous).

The extension to lsc subsolutions and solutions, and the uniqueness result are

given by the

Theorem 9.3. Assume that H is convex in p and that (H1), (H3) hold.

(i) If .u"/" is a sequence of BJ subsolution (resp. solution) of (16) then lim inf� u"
is a subsolution (resp. solution) of (16).

(ii) Assume (H1-s), (H3) and that u0 is a bounded lsc initial data. There exists a

unique lsc BJ solution u of (16)–(29) which satisfies

lim inf
.y;s/!.x;0/

s>0

u.y; s/ D u0.x/ : (34)

We just give a very brief sketch of this result. The proof of (i) follows

immediately from the arguments of the proof of the (discontinuous) stability results.

For (ii), if u is a lsc BJ solution (or even only a subsolution) of (16) then the result of

Theorem 9.2 (iii) holds (even if u is just lsc) and (34) implies that u".x; 0/ � u0.x/

in R
N . But now u" is an approximate solution of (16), which is Lipschitz continuous

in x (by its definition through the “inf-convolution” formula) and also in t (by the

equation). If v is an other solution, we can compare u" and v: clearly u".x; 0/ � v.x/
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in R
N and the Lipschitz continuity of u" allows to use the arguments of the proof of

Theorem 5.2 in a rather easy way.

10 Large Time Behavior of Solutions of Hamilton–Jacobi

Equations

10.1 Introduction

In this second part, we are interested in the behavior, as t ! C1, of the viscosity

solutions of first-order Hamilton–Jacobi Equations of the form

ut CH.x;Du/ D 0 in R
N � .0;C1/ ; (35)

with the initial data

u D u0 in R
N ; (36)

in the case when the HamiltonianH.x; p/ and the initial datum u0 are ZN -periodic

in x, i.e., for all x; p 2 R
N and z 2 Z

N ,

H.x C z; p/ D H.x; p/ and u0.x C z/ D u0.x/ : (37)

and when H is coercive, namely

H.x; p/ ! C1 when jpj ! C1, uniformly wrt x 2 R
N . (38)

In the last decade, the large time behavior of solutions of Hamilton–Jacobi Equa-

tion in compact manifold M (or in R
N , mainly in the periodic case) has received

much attention and general convergence results for solutions have been established

by using two different types of methods: in his course, H. Ishii [this volume]

describes the “weak Kam approach” which is an optimal control/dynamical system

approach and both uses and provides formulas of representation, the ones for the

asymptotic solutions being based on the notion of Aubry–Mather sets.

Our aim is to describe a second approach which relies only on partial differential

equations methods: it provides results even when the Hamiltonians are not convex

but it gives a slightly less precise description of the phenomenas compared to the

“weak Kam approach”.

In 1999, Namah and Roquejoffre [42] are the first to obtain convergence results

in a general framework, by pde arguments which we describe below. They use the

following additional assumptions

H.x; p/ � H.x; 0/ for all .x; p/ 2 M � R
N and max

M

H.x; 0/ D 0; (39)

where M is a smooth compact N -dimensional manifold without boundary.
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Then Fathi in [25] proved a different type of convergence result, by dynamical

systems type arguments, introducing the “weak KAM theory”. Contrarily to [42],

the results of [25] use strict convexity (and smoothness) assumptions onH.x; �/, i.e.,

DppH.x; p/� ˛I for all .x; p/2 M �R
N and ˛ >0 (and also far more regularity)

but do not require (39). Afterwards Roquejoffre [43] and Davini and Siconolfi in

[24] refined the approach of Fathi and they studied the asymptotic problem for

Hamilton–Jacobi Equations on M or N -dimensional torus.

The first author and Souganidis obtained in [15] more general results, for possibly

non-convex Hamiltonians, by using an approach based on partial differential

equations methods and viscosity solutions, which was not using in a crucial way

the explicit formulas of representation of the solutions: this is the second main type

of results we (partially) describe here.

All these results (except perhaps the Namah–Roquejoffre ones) use in a crucial

way the compactness of the domain: indeed either they are stated on a compact

manifold or they use periodicity which means that we are looking at equations set

on the torus. We also refer to the articles [11,27–29,33] for the asymptotic problems

in the whole domain R
N without the periodic assumptions in various situations.

Finally there also exists results on the asymptotic behavior of solutions of

convex Hamilton–Jacobi Equation with boundary conditions. Mitake [38] studied

the case of the state constraint boundary condition and then the Dirichlet boundary

conditions [39, 40]. Roquejoffre in [43] was also dealing with solutions of the

Cauchy–Dirichlet problem which satisfy the Dirichlet boundary condition pointwise

(in the classical sense): this is a key difference with the results of [39, 40] where

the solutions were satisfying the Dirichlet boundary condition in a generalized

(viscosity solutions) sense. These results were slightly extended in [7] by using an

extension of PDE approach of [15].

10.2 Existence and Regularity of the Solution

The first result concerns the (global) existence, uniqueness and regularity of the

solution.

Theorem 10.1. Assume that H satisfies (37)–(38) and that u0 2 W 1;1.RN / is

a Z
N -periodic function. Then there exists a unique solution of (35)–(36) which is

(i) periodic in x and (ii) Lipschitz continuous in x and t on R
N � Œ0;C1/.

We just sketch the proof of Theorem 10.1 since it is an easy adaptation of the

results given in the previous sections, which we can simplify here.

For the existence, we use Perron’s method: assuming first that u0 2 C 1.RN / \

W 1;1.RN /, the functions �Ct C u0.x/ and Ct C u0.x/ are respectively sub and

supersolution of (35)–(36) if C is given by

R WD jjDu0jj1 and C WD max
RN�B.0;R/

jH.x; p/j :
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Truncating H.x; p/ by replacing it by HK.x; p/ WD min.H.x; p/;K/ for some

large constantK >0, we can apply readily Perron’s method. We obtain the existence

of a continuous solution uK of the HK -equation which satisfies

� Ct C u0.x/ � uK.x; t/ � Ct C u0.x/ for any x 2 R
N ; t > 0 : (40)

Periodicity comes directly from the construction since if w is a subsolution of (35)–

(36), then it is also the case for supz2ZN Œw.� C z/� � w.�/. Therefore the supremum

of subsolutions is clearly achieved for a periodic subsolution.

The uniqueness is proved readily by the argument of the proof of Theorem 5.1

(at least if we assume periodicity) or by the slight adaptation for having the

comparison in BUC.Q/.

The time derivative .uK/t is bounded since, for any h > 0

jjuK.x; t C h/ � uK.x; t/jj1 � jjuK.x; h/ � u0.x/jj1

and �ChCu0.x/ � uK.x; h/ � ChCu0.x/ by construction. Therefore j.uK/t j � C

and, if K > C , then uK is a solution of the H -equation. We denote it by u.

Finally, since H is coercive and H.x;Du/ D �ut , we deduce immediately that

Du is bounded as well. Using that u is Lipschitz continuous, a (slight) variant of

Theorem 5.1 implies that it is the unique solution of (35)–(36).

10.3 Ergodic Behavior

The first step in the study of the large time behavior of u is the

Theorem 10.2. Under the assumptions of Theorem 10.1, there exists a constant

c 2 R such that

u.x; t/

t
! c as t ! C1 uniformly w.r.t. x 2 R

N : (41)

Proof. We set

m.t/ WD max
RN

.u.x; t/ � u0.x// :

We first have

m.t C s/ � max
RN

.u.x; t C s/ � u.x; t//C max
RN

.u.x; t/ � u0.x// ;

and then by comparison

max
RN

.u.x; t C s/ � u.x; t// � max
RN

.u.x; s/ � u.x; 0// D m.s/ :
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Thereforem.tC s/ � m.t/Cm.s/ for any t; s > 0 but the Lipschitz continuity of u

in t gives also m.t/ � �C t for some constant C . A classical result on sub-additive

functions implies

m.t/

t
! c WD inf

t>0

�
m.t/

t

�
:

Finally, it is easy to show that u.x; t/ � m.t/ is bounded independently of x and t

by using the periodicity and Lipschitz continuity in x of u, and the result follows.

For the convenience of the reader we sketch the proof of the result for m. Pick

any � > 0. If t > 0, there exists n 2 N such that n� � t < .n C 1/� . Using the

sub-additivity of m yields

m.t/ � nm.�/Cm."/ ;

where " WD t � n� 2 Œ0; 1/. Dividing by t D n� C " gives

m.t/

t
�
nm.�/

n� C "
C

m."/

n� C "
;

and letting t ! C1, we obtain

lim sup
t!C1

m.t/

t
�
m.�/

�
:

But this is true for any � , hence

lim sup
t!C1

�
m.t/

t

�
� inf

�

�
m.�/

�

�
D c :

But obviously lim inf
t!C1

m.t/

t
� c, therefore

m.t/

t
! c.

It is worth pointing out that the assumption “m.t/ � �Ct” is just used to have a

well-defined constant c.

Then we are led to several natural questions:

(a) Can we have a characterization of the constant c?

(b) Can we go further in the asymptotic behavior ? Namely: is u.x; t/�ct bounded?

does it converge to some function?

A first remark is the following: if, for large t , u.x; t/ looks like �t C v.x/, then

� and v should satisfy the equation

H.x;Dv/C � D 0 in R
N : (42)
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A key question is then: does this equation, where both the constant � and the

function v are unknown, have (periodic) solutions?

The answer is given by the following result of Lions et al., Homogenization of

Hamilton–Jacobi equations, unpublished work.

Theorem 10.3. Assume that H satisfies (37)–(38). There exists a unique constant

� such that (42) has a periodic, Lipschitz continuous solution.

An immediate consequence of Theorem 10.3 is the

Corollary 10.1. Assume that H satisfies (37)–(38). Then c D � and u.x; t/ � ct is

bounded.

The proof of this corollary is obvious since, if .�; v/ solves (42), then v.x/C �t

is a solution of (35) and by comparison

jju.x; t/ � .v.x/C �t/jj1 � jju.x; 0/� v.x/jj1 :

Therefore u.x; t/ � �t is bounded and dividing by t and letting t ! C1 shows

that c D �.

As a consequence, Theorem 10.3 gives a characterization of the ergodic con-

stant c as the unique constant such that the “ergodic problem” (42) has a periodic

(bounded) solution.

Proof of Theorem 10.3. For 0 < ˛ � 1, we consider the equation

H.x;Dv˛/C ˛v˛ D 0 in R
N ; (43)

and we set M WD jjH.x; 0/jj1. In order to prove that this equation has a unique

periodic solution v˛ , we use Perron’s method.

We first remark that � 1
˛
M and 1

˛
M are respectively sub and supersolution of

this equation and we are looking for a solution which satisfies

�
1

˛
M � v˛ �

1

˛
M in R

N :

Since H does not a priori satisfy Assumption (H1), we have to argue either as

in proof of Theorem 10.1, introducing some truncated Hamiltonians HK or we

remark that, because of (38), the subsolutions w which are bounded from below by

� 1
˛
M are equi-Lipschitz continuous: in this last case, we directly build a Lipschitz

continuous solution of (43).

In any case, we build a solution v˛ of (43) such that

jjv˛jj1 �
1

˛
M ;

which is Lipschitz continuous and an easy modification of the proof of Theorem 5.1

shows that v˛ is the unique periodic solution of (43).
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Moreover, as a consequence of (38), since ˛v˛ is bounded, H.x;Dv˛/ is also

bounded and therefore the v˛’s are equi-Lipschitz continuous.

Using this property together with the periodicity of the v˛, the functions

w˛.x/ WD v˛.x/� v˛.0/ are equi-bounded and equi-Lipschitz continuous. By

Ascoli’s Theorem, they converge (up to a subsequence) to some function

v 2W 1;1.RN /. And we may assume as well that the bounded constants ˛v˛.0/

converges to some constant �.

We have H.x;Dw˛/ C ˛w˛ C ˛v˛.0/ D 0 in R
N and we can pass to the limit

by using Theorem 4.1: � and v solves (42).

For the uniqueness of �, if .v; �/ and .v0; �0/ are solutions of the ergodic problem,

we compare the solutions v.x/C �t and v0.x/C �0t of (35)

jj.v.x/C �t/ � .v0.x/C �0t/jj1 � jjv.x/ � v0.x/jj1

or equivalently

jj.v.x/ � v0.x//C .� � �0/t/jj1 � jjv.x/ � v0.x/jj1:

Dividing by t and letting t ! C1 gives � D �0.

10.4 Asymptotic Behavior of u . x ; t / � ct

By consideringHc D H Cc and uc.x; t/ D u.x; t/�ct, we may assume that c D 0

and the solutions u of (35) are uniformly bounded and Lipschitz continuous. We are

going to do it from now on.

The main question of this section is: do the u.x; t/ always converge as t !

C1? or do we need additional assumptions? The following examples shows that

the answer is not completely obvious.

Example 1. The function u.x; t/ WD sin.x � t/ is a solution of the transport

equation

ut C ux D 0 in R � .0;C1/ ;

it satisfies very good regularity properties and uniform estimates but it does not

converge as t ! C1. This shows that convergence is not only a question of

estimates. But, of course, in this example the coercivity assumption is not satisfied.

Example 2. The same function is also a solution of

ut C jux C 1j � 1 D 0 in R � .0;C1/ :

In this example, the Hamiltonian is coercive and even convex but not strictly convex.
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These two examples shows that the convergence as t ! C1 requires additional

assumptions and/or a particular framework: we are going to show that the conver-

gence holds in two cases:

(a) The Namah–Roquejoffre framework for which a typical example is

ut C jDuj D f .x/ in R
N � .0;C1/ ;

where f .x/ � 0 and the set fx W f .x/ D 0g is non-empty.

(b) The “strictly convex” framework for which a typical example is

ut C jDu C q.x/j2 � jq.x/j2 D 0 in R
N � .0;C1/ ;

where q is (say) a periodic, Lipschitz continuous function.

Roughly speaking, the first framework is more restrictive on the structure of the

Hamiltonians but it allows to take into account HamiltoniansH.x; p/ which are not

strictly convex in p, contrarily to the second framework where the structure of the

Hamiltonians is very general but where we have to impose strict convexity.

10.5 The Namah–Roquejoffre Framework

The main assumptions are the following. In the sequel, we refer to this assumptions

as (NR).

• H.x; p/ � H.x; 0/ for any x; p 2 R
N .

• H.x; 0/ � 0 for any x 2 R
N and the set Z D fx 2 R

N I H.x; 0/ D 0g is

non-empty.

• For any ˛ > 0 (small) and for any 0 < � < 1, there exists �.˛; �/ > 0 such that

H.x;�p/ � ��.˛; �/ if H.x; p/ � 0 and if d.x; Z / � ˛ :

Remark 10.1. If H.x; p/ D jpj � f .x/ where f .x/ � 0 and the set Z WD fx W

f .x/ D 0g is non-empty, these assumptions are satisfied since

H.x;�p/ D �jpj � f .x/ D �.jpj � f .x// � .1� �/f .x/ :

� ��.˛; �/ WD �.1 � �/ min
d.x;Z /�˛

f .x/ < 0 if jpj � f .x/ � 0:

Theorem 10.4. Assume that H satisfies (37)–(38) and (NR), then c D 0 and, for

any u0 2 W 1;1.RN /, the solution u of (35)–(36) converges to a solution of the

stationary equation.
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Proof of Theorem 10.4. To show that c D 0, we have first to solve the equation

H.x;Dv/ D 0 in R
N :

We first remark that, because of (NR), 0 is a subsolution.

On the other hand, if z 2 Z , by the coercivity of H , C jx � zj is a supersolution

for C large enough: indeed this is obviously true for x ¤ z since the gradient of this

function has norm C . And this is also clear for x D z since, by (NR), H.z; p/ �

H.z; 0/ D 0 for anyp. As a consequence,Cd.x;Z / WD inf
z2Z

C jx�zj is a (periodic)

supersolution of the equation as the infimum of supersolutions.

We apply Perron’s method which provides us with a discontinuous solution. To

prove that this solution is continuous, we need a SCR.

Noticing that both the (continuous) sub and supersolution vanish on Z , the value

of the solution is imposed on Z (see the construction above) and we need a SCR

for the Dirichlet problem set in the complementary of Z , namely

�
H.x;Du/ D 0 dans O WD R

N nZ

u.x/ D 0 sur @O :

To obtain it, we use ideas which are introduced in Ishii [32] (see also [5]). If v1 is

a subsolution of this problem and v2 a supersolution with v1 � 0 � v2 on @O , we

pick some � 2 .0; 1/, close to 1. Because of the last requirement in (NR), we have

in the viscosity sense

H.x;D�v1.�// � ��.˛; �/ if d.x;Z / � ˛ ;

and following the arguments of the comparison proof, it is clear that the maximum

of �v1 � v2 can be achieved only on Z . Therefore �v1 � v2 � 0 and we conclude

by letting � tends to 1. Therefore we have a continuous solution of the stationary

equation and c D 0.

Next we examine the behavior of the solution u of the evolution equation on

Z : since H.x; p/ � 0 on Z , we have ut � 0 on Z and therefore t 7! u.x; t/

is decreasing. Recalling that u is Lipschitz continuous, this implies that u.x; t/ !

'.x/ uniformly on Z where ' is a Lipschitz continuous function.

It remains to show the global behavior: to do so, we use the half-relaxed limit

method outside Z . For " > 0, we set

u".x; t/ WD u

�
x;
t

"

�
in R

N � .0;1/ :

The function u" solves

"
@u"

@t
CH.x;Du"/ D 0 in R

N � .0;1/ :
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We introduce (as usual) the half-relaxed limits

u.x; t/ D lim sup� u".x; t/ and u.x; t/ D lim inf� u".x; t/ :

For any t > 0, u.�; t/ and u.�; t/ are respectively sub and supersolution of

H.x;Dw/ D 0 in R
N . It is worth pointing out that, here, u and u are Lipschitz

continuous in x for any t , because of the uniform Lipschitz properties of u.

A priori we do not have a strong comparison result for this equation in R
N but

we can use the additional information that we have on Z , namely u.�; t/ D u.�; t/ D

'.�/ on Z . Therefore we are lead to the same Dirichlet problem as above, except that

the boundary condition is now ' instead of 0. Applying readily the same arguments

with a slight modification due to the Dirichlet data ', we conclude that, for any

s; t > 0, u.�; t/ � u.�; s/ in R
N . This implies that u.�; t/ D u.�; s/ for any s; t > 0

and, setting w.�/ D u.�; t/ D u.�; s/, we have the uniform convergence of u.�; t/ as

t ! C1 to the continuous function w which is the unique solution of the Dirichlet

problem with ' and also solves

H.x;Dw/ D 0 in R
N :

Remark 10.2. This approach does not work for the equation

ut C jDu C q.x/j2 � jq.x/j2 D 0 in R
N � .0;C1/

which does not satisfy the (NR) assumptions.

10.6 The “Strictly Convex” Framework

In fact, like in the Namah–Roquejoffre framework, the assumptions on H we are

going to use in this section does not really imply that H is strictly convex; the title

of this section is just to fix ideas.

Our key assumption is the following.

(SCA) There exists �0 > 0 such that, for any � 2 .0; �0�, there exists a constant

 � > 0 such that if H.x; pC q/ � � andH.x; q/ � 0 for some x; p; q 2 R
N , then

for any � 2 .0; 1�,

�H

�
x;
p

�
C q

�
� H.x; p C q/C  �.1 � �/:

This assumption does not implies that H is convex but it implies that, for all x,

the set fp W H.x; p/ � 0g is convex (Ishii, personal communication) and imposes

the behavior of H in the set fp W H.x; p/ � 0g.
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Remark 10.3. If H is indeed a C 2, strictly convex function of p, i.e. if

D2
ppH.x; p/ � �Id for some � > 0, have, for any � 2 .0; 1�, a; b 2 R

N

H.x;�a C .1 � �/b/ � �H.x; a/C .1 � �/H.x; b/ � C.�/�.1� �/ja � bj2:

Choose a D
p

�
C q, b D q, �a C .1 � �/b D p C q and therefore

H.x; p C q/ � �H.x;
p

�
C q/C .1 � �/H.x; q/ � C.�/�.1� �/j

p

�
j2 ;

i.e.

H.x; p C q/ � �H.x;
p

�
C q/� C.�/�.1� �/j

p

�
j2 ;

since H.x; q/ � 0. But p is bounded away from 0 since H.x; p C q/ � � and

H.x; q/ � 0, therefore (SCA) holds.

Our result is the following.

Theorem 10.5. Assume that H satisfies (37)–(38), c D 0 and (SCA), then, for

any u0 2 W 1;1.RN /, the solution u of (35)–(36) converges to a solution of the

stationary equation.

It is worth recalling that, in this case, we actually assume that c D 0, it is not a

consequence of the assumptions on H .

The key result is this approach is the

Theorem 10.6 (Asymptotically Monotone Property). Under the assumption of

Theorem 10.5, for any � 2 .0; �0�, there exists ı� W Œ0;1/ ! Œ0; 1� such that

ı�.s/ ! 0 as s ! 1 and

u.x; s/ � u.x; t/C �.s � t/ � ı�.s/

for all x 2 R
N , s; t 2 Œ0;1/ with t � s.

The meaning of Theorem 10.6 is that the solution u is becoming more and more

increasing as t ! 1. Why should this be true?

We can first consider the Oleinik–Lax Formula. The solution of

ut C jDuj2 D 0 in R
N � .0;C1/ ;

is given by

u.x; t/ WD inf
y2RN

�
u0.y/C

jx � yj2

4t

�
:
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Formally, if y is a minimum point in this formula

Du.x; t/ D
2.x � y/

4t
and ut .x; t/ WD �

jx � yj2

4t2
:

But we know that
jx � yj2

4t
remains bounded since u0 is bounded, hence ut D

O.t�1/.

A more general remark can be made by assuming that H is strictly convex and

Hp.x; p/ � p �H.x; p/ � cH.x; p/ if H.x; p/ � 0 ;

for any x; p 2 R
N and for some c > 0. For example, one can think about quadratic

Hamiltonians like jp C qj2 � jqj2 or jpj2 � f .x/2.

In this case, we perform the Kruzkov’s change w D � exp.�u/. The function w

solves

wt � wH.x;�
Dw

w
/ D 0 in R

N � .0;C1/ :

Then we set z D wt and m.t/ D kz�k1. Differentiating the equation with respect

to t , we find that z satisfies at the same time (dropping the arguments of H and its

derivatives)

zt C .Hp � p �H/z CHp �Dz D 0 ;

z � wH D 0 :

Next looking at a (negative) minimum point of z (whereDz D 0), it follows

m0.t/C .Hp � p �H/m.t/ D 0:

But H D z=w > 0 and therefore .Hp � p �H/ � cH D cz=w. Hence

m0.t/C cŒm.t/�2=w D 0 which implies m0.t/ � QcŒm.t/�2 :

Recalling that m.t/ � 0, this inequality yields a behavior like m.t/ D O.t�1/.

We first prove Theorem 10.5 by using the Asymptotically Monotone Property.

(a) Since the family .u.�; t//t�0 is bounded in W 1;1.RN /, by Ascoli’s Theorem,

there exists a sequence .u.�; Tn//n2N which converges uniformly on R
N as

n! 1.

By comparison, we have

ku.�; Tn C �/ � u.�; Tm C �/k1 � ku.�; Tn/ � u.�; Tm/k1

for any n;m 2 N. Therefore, .u.�; Tn C �//n2N is a Cauchy sequence in C.RN �

.0;C1// and therefore it converges uniformly to a function denoted by u1 2

C.RN � .0;C1//. Moreover u1 is a solution of (35), by stability.
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(b) Fix any x 2 R
N and s; t 2 Œ0;1/ with t � s. By the Asymptotically Monotone

Property, we have

u.x; s C Tn/ � u.x; t C Tn/C �.s � t/ � ı�.s C Tn/

for any n 2 N and � > 0. Sending n ! 1 and then � ! 0, we get, for any

t � s

u1.x; s/ � u1.x; t/:

The functions x 7! u1.x; t/ are uniformly bounded and equi-continuous,

and they are also monotone in t . This implies that u1.x; t/ ! w.x/ uniformly

on R
N as t ! 1 for some w 2 W 1;1.RN / which is a solution of the stationary

equation.

(c) Since u.�; Tn C �/ ! u1 uniformly4 in R
N � .0;C1/ as n ! 1, we have

�on.1/C u1.x; t/ � u.x; Tn C t/ � u1.x; t/C on.1/;

where on.1/ ! 1 as n ! 1, uniformly in x and t .

Taking the half-relaxed semi-limits as t ! C1, we get

�on.1/C w � lim inf�
t!1

u � lim sup�

t!1
u � w C on.1/:

Sending n ! 1 yields

w.x/ D lim inf�
t!1

u.x; t/ D lim sup�

t!1
u.x; t/

for all x 2 R
N . Therefore u.x; t/ ! w.x/ uniformly as t ! 1 and the proof is

complete.

Now we turn to the Proof of the Asymptotically Monotone Property. Let v be a

periodic, Lipschitz continuous solution of H.x;Dv/ D 0.

Since u is bounded and since we can change v in v �M for some large constant

M > 0, we may assume that

u.x; t/ � v.x/ � 1 for any x 2 R
N and t > 0 :

We introduce the function

��.s/ WD min
x2RN ;t�s

�u.x; t/ � v.x/C �.t � s/

u.x; s/ � v.x/

�
:

4This is a key point: the compactness of the domain (periodicity) plays a crucial role here since

local uniform convergence is the same as global uniform convergence.
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By the uniform continuity of u and v, �� 2 C.Œ0;1// and we have 0 � ��.s/ � 1

for all s 2 Œ0;1/ and � 2 .0; �0�.

Proposition 10.1. Under the assumption of Theorem 10.5, ��.s/ ! 1 as s ! 1

for any � 2 .0; �0�.

As a consequence, for any x 2 R
N and t � s,

u.x; t/ � v.x/C �.t � s/

u.x; s/ � v.x/
� 1C os.1/ ;

where os.1/ depends on � and tends to 0 as s ! 1.

A simple computation yields

u.x; t/ � u.x; s/C �.t � s/ � os.1/ :

The proposition is a consequence of the following lemma.

Lemma 10.1. Under the assumption of Theorem 10.6, for any � 2 .0; �0�, there

exists a constant C > 0 such that the function �� is a supersolution of

max

�
w.s/ � 1;w0.s/C

 �

C
.w.s/ � 1/

�
D 0 in .0;1/ :

Using the lemma, it is easy to prove the proposition since the solution of the

variational inequality with initial data ��.0/ is given by

w.s/ WD 1 � .��.0/C 1/ exp

�
�
 �

C
s

�
:

and therefore, by comparison

��.s/ � 1 � .��.0/C 1/ exp

�
�
 �

C
s

�
;

for any s. Recalling that ��.s/ � 1, we have ��.s/ ! 1 as s ! 1.

Proof of Lemma 10.1. We fix � 2 .0; �0� and, to simplify the notations, we write �

for ��.

Let � 2 C 1..0;1// and s > 0 be a strict local minimum of � � �.

Since there is nothing to check if �.s/ D 1, we assume that�.s/ < 1. We choose

x 2 R
N and t � s such that

�.s/ D
u.x; t /� v.x/C �.t � s/

u.x; s/ � v.x/
:
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For 0 < " � 1, we introduce the function


.x; y; z; t; s/ WD
u.x; t/ � v.z/C �.t � s/

u.y; s/ � v.z/
� �.s/C

1

"2
.jx � yj2 C jx � zj2/

C jx � xj2 C jt � t j2

The function 
 achieve its minimum at a point .x; y; z; t; s/ (depending on ") and,

by classical arguments, as " ! 0, we have

x; y; z ! x and t ! t ; s ! s :

Moreover, by the Lipschitz continuity in x of u and v

jx � yj

"2
C

jx � zj

"2
� C ;

for some constant C .

With the notations

Q�1 WD u.y; s/ � v.z/; Q�2 WD u.x; t/ � v.z/C �.t � s/; Q� WD
Q�2

Q�1

and if we set

P WD
Q�1

Q�

�2.y � x/

"2

�
and Q WD

Q�1

1 � Q�

�
2.z � x/

"2

�
;

we have formally,

Dxu.x; t/ D Q�P C .1 � Q�/Q C o".1/ ;

ut .x; t/ D �� � 2 Q�1.t � t/ ;

Dyu.y; s/ D P ;

us.y; s/ D � 1
Q�
.�C Q�1�

0.s// ;

Dzv.z/ D Q:

By the definition of viscosity solutions

��C o".1/CH.x; Q�P C .1 � Q�/QC o".1// � 0;

�
1

Q�
.�C Q�1�

0.s//CH.y;P / � 0;

H.z;Q/ � 0:

Since P and Q are bounded, we may even let " tend to 0 and drop the o".1/-terms.
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With

�1 WD u.x; s/� v.x/; �2 WD u.x; t /� v.x/C �.t � s/; � D
�2

�1

we end up with

��CH.x;�P C .1 � �/Q/ � 0;

�
1

�
.�C �1�

0.s//CH.x;P / � 0;

H.x;Q/ � 0:

If p WD �.P �Q/ and q D Q, we haveH.x; pC q/ � � andH.x; q/ � 0, and

therefore, by (SCA)

1

�
.�C �1�

0.s// � H.x;P / D H.x;
p

�
C q/

�
1

�

�
H.x; p C q/C  �.1 � �/

�

�
1

�

�
�C  �.1� �/

�
:

This shows

�0.s/ �
1

�1
 �.1 � �/ ;

which is the desired conclusion.

10.7 Concluding Remarks

• The Asymptotically Monotone Property is true in a more general framework

(problems set in the whole space or with boundary conditions : : : etc) but, in

general, it does not imply the convergence as t ! 1. This shows the importance

of the periodic framework (compactness) where local uniform convergence is

equivalent to global uniform convergence.

• In the Namah–Roquejoffre case, periodicity is less important, even if one has to

avoid the infinity to play a role (by assuming that lim supjxj!C1H.x; 0/ < 0).

See, for example, [11].

• For problems set in the whole space, the behavior at infinity of u0 may determine

the asymptotic behavior as t ! 1 of u, even at the level of the ergodic constant

c (cf. [11] ).
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• If H is convex and if SH ; SHC denote respectively the semi-groups associated

to H andHC, we know that these semi-groups commutes, namely

SH .t/SHC.s/ D SHC.s/SH .t/

for any s; t > 0.

For any u0, SHC.s/u0 converges to the maximal subsolution of H D 0 which is

below u0.

If we are in a framework where we have convergence for SH .t/ as t ! 1, i.e.

SH .t/u0 ! u1 as t ! C1, then

SH .1/SHC.s/u0 D SHC.s/SH .1/u0 D u1

This shows that u1 is the same for u0 and for maximal subsolution ofH D 0 which

is below u0: in other words, given u0, u.x; t/ converges to the minimal solution

which is above the maximal subsolution which is below u0.

For such properties of commutations of semi-groups, we refer the reader to

Cardin and Viterbo [20], Motta and Rampazzo [41] and Tourin and the author [16].
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A Short Introduction to Viscosity Solutions

and the Large Time Behavior of Solutions
of Hamilton–Jacobi Equations

Hitoshi Ishii

In memory of Riichi Iino, my former adviser at Waseda

University.

Abstract We present an introduction to the theory of viscosity solutions of first-

order partial differential equations and a review on the optimal control/dynamical

approach to the large time behavior of solutions of Hamilton–Jacobi equations,

with the Neumann boundary condition. This article also includes some of basics of

mathematical analysis related to the optimal control/dynamical approach for easy

accessibility to the topics.

Introduction

This article is an attempt to present a brief introduction to viscosity solutions of

first-order partial differential equations (PDE for short) and to review some aspects

of the large time behavior of solutions of Hamilton–Jacobi equations with Neumann

boundary conditions.

The notion of viscosity solution was introduced in [20] (see also [18]) by

Crandall and Lions, and it has been widely accepted as the right notion of

generalized solutions of the first-order PDE of the Hamilton–Jacobi type and fully

nonlinear (possibly degenerate) elliptic or parabolic PDE. There have already been

many nice contributions to overview of viscosity solutions of first-order and/or
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second-order partial differential equations. The following list touches just a few

of them [2, 6, 15, 19, 29, 31, 41, 42].

This article is meant to serve as a quick introduction for graduate students or

young researchers to viscosity solutions and is, of course, an outcome of the lectures

delivered by the author at the CIME school as well as at Waseda University, Collège

de France, Kumamoto University, King Abdulaziz University and University of

Tokyo. For its easy readability, it contains some of very basics of mathematical

analysis which are usually left aside to other textbooks.

The first section is an introduction to viscosity solutions of first-order partial

differential equations. As a motivation to viscosity solutions we take up an optimal

control problem and show that the value function of the control problem is

characterized as a unique viscosity solution of the associated Bellman equation.

This choice is essentially the same as used in the book [42] by Lions as well as in

[2, 6, 29].

In Sects. 2–5, we develop the theory of viscosity solutions of Hamilton–Jacobi

equations with the linear Neumann boundary condition together with the corre-

sponding optimal control problems, which we follow [8,38,39]. In Sect. 6, following

[38], we show the convergence of the solution of Hamilton–Jacobi equation of

evolution type with the linear Neumann boundary condition to a solution of the

stationary problem.

The approach here to the convergence result depends heavily on the variational

formula for solutions, that is, the representation of solutions as the value function

of the associated control problem. There is another approach, due to [3], based on

the asymptotic monotonicity of a certain functional of the solutions as time goes

to infinity, which is called the PDE approach. The PDE approach does not depend

on the variational formula for the solutions and provides a very simple proof of

the convergence with sharper hypotheses. The approach taken here may be called

the dynamical or optimal control one. This approach requires the convexity of the

Hamiltonian, so that one can associate it with an optimal control problem. Although

it requires lots of steps before establishing the convergence result, its merit is that

one can get an interpretation to the convergence result through the optimal control

representation.

The topics covered in this article are very close to the ones discussed by

Barles [4]. Both are to present an introduction to viscosity solutions and to discuss

the large time asymptotics for solutions of Hamilton–Jacobi equations. This article

has probably a more elementary flavor than [4] in the part of the introduction to

viscosity solutions, and the paper [4] describes the PDE-viscosity approach to the

large time asymptotics while this article concentrates on the dynamical or optimal

control approach.

The reference list covers only those papers which the author more or less

consulted while he was writing this article, and it is far from a complete list of

those which have contributed to the developments of the subject.

The author would like to thank the course directors, Paola Loreti and Nicoletta

Tchou, for their encouragement and patience while he was preparing this article.
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He would also like to thank his colleagues and students for pointing out many

misprints and mistakes in earlier versions of these lecture notes.

Notation:

• When F is a set of real-valued functions on X , sup F and inf F denote the

functions on X given, respectively, by

.sup F /.x/ WD supff .x/ W f 2 F g and .inf F /.x/ WD infff .x/ W f 2 F g:

• For any a; b 2 R, we write a ^ b D minfa; bg and a _ b D maxfa; bg. Also,

we write aC D a _ 0 and a� D .�a/C.

• A function ! 2 C.Œ0; R//, with 0 < R � 1, is called a modulus if it is

nondecreasing and satisfies !.0/ D 0.

• For any x D .x1; : : : ; xn/; y D .y1; : : : ; yn/ 2 R
n, x � y denotes the Euclidean

inner product x1y1 C � � � C xnyn of x and y.

• For any x; y 2 R
n the line segment between x and y is denoted by Œx; y� WD

f.1 � t/x C ty W t 2 Œ0; 1�g.

• For k 2 N and ˝ � R
n, C k.˝;Rm/ (or simply, C k.˝;Rm/) denotes the

collection of functions f W ˝ ! R
m (not necessarily open), each of which has

an open neighborhoodU of˝ and a function g 2 C k.U / such that f .x/ D g.x/

for all x 2 ˝ .

• For f 2 C.˝;Rm/, where ˝ � R
n, the support of f is defined as the closure

of fx 2 ˝ W f .x/ 6D 0g and is denoted by suppf .

• UC.X/ (resp., BUC.X/) denotes the space of all uniformly continuous (resp.,

bounded, uniformly continuous) functions in a metric space X .

• We write 1E for the characteristic function of the set E . That is, 1E.x/ D 1 if

x 2 E and 1E.x/ D 0 otherwise.

• The sup-norm of function f on a set ˝ is denoted by kf k1;˝ D kf k1 WD
sup˝ jf j.

• We write RC for the interval .0; 1/.

• For any interval J � R, AC.J;Rm/ denotes the space of all absolutely

continuous functions in J with value in R
m.

• Given a convex HamiltonianH 2 C.˝ �R
n/, where˝ � R

n is an open set, we

denote by L the Lagrangian given by

L.x; �/ D sup
p2Rn

.� � p �H.x; p// for .x; �/ 2 ˝ � R
n:

• Let ˝ � R
n be an open subset of Rn, g 2 C.@˝;R/, t > 0 and .�; v; l/ 2

L1.Œ0; t �;Rn � R
n � R/ such that �.s/ 2 ˝ for all s 2 Œ0; t � and l.s/ D 0

whenever �.s/ 2 ˝ . We write

L .t; �; v; l/ D
Z t

0

ŒL.�.s/;�v.s//C g.�.s//l.s/�ds:
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1 Introduction to Viscosity Solutions

We give the definition of viscosity solutions of first-order PDE and study their basic

properties.

1.1 Hamilton–Jacobi Equations

Let ˝ be an open subset of Rn. Given a function H W ˝ � R
n ! R, we consider

the PDE

H.x;Du.x// D 0 in ˝; (1)

where Du denotes the gradient of u, that is,

Du WD .ux1 ; ux2 ; : : : ; uxn/ � .@u=@x1; : : : ; @u=@xn/:

We also consider the PDE

ut.x; t/CH.x;Dxu.x; t// D 0 in ˝ � .0;1/: (2)

Here the variable t may be regarded as the time variable and ut denotes the time

derivative @u=@t . The variable x is then regarded as the space variable and Dxu

(or, Du) denotes the gradient of u in the space variable x.

The PDE of the type of (1) or (2) are called Hamilton–Jacobi equations. A more

concrete example of (1) is given by

jDu.x/j D k.x/;

which appears in geometrical optics and describes the surface front of propagating

waves. Hamilton–Jacobi equations arising in Mechanics have the form

jDu.x/j2 C V.x/ D 0;

where the terms jDu.x/j2 and V.x/ correspond to the kinetic and potential energies,

respectively.

More generally, the PDE of the form

F.x; u.x/;Du.x// D 0 in ˝ (3)

may be called Hamilton–Jacobi equations.
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1.2 An Optimal Control Problem

We consider the function

X D X.t/ D .X1.t/; X2.t/; : : : ; Xn.t// 2 R
n

of time t 2 R, and

PX D PX.t/ D dX

dt
.t/

denotes its derivative. Let A � R
m be a given set, let g W R

n � A ! R
n, f W

R
n �A ! R be given functions and � > 0 be a given constant. We denote by A the

set of all Lebesgue measurable ˛ W Œ0;1/ ! A.

Fix any x 2 R
n and ˛ 2 A, and consider the initial value problem for the ordinary

differential equation (for short, ODE)

( PX.t/ D g.X.t/; ˛.t// for a.e. t > 0;

X.0/ D x:
(4)

The solution of (4) will be denoted by X D X.t/ D X.t I x; ˛/. The solution X.t/

may depend significantly on choices of ˛ 2 A. Next we introduce the functional

J.x; ˛/ D
Z 1

0

f .X.t/; ˛.t//e��t dt; (5)

a function of x and ˛ 2 A, which serves a criterion to decide which choice of ˛ is

better. The best value of the functional J is given by

V.x/ D inf
˛2A

J.x; ˛/: (6)

This is an optimization problem, and the main theme is to select a control ˛ D ˛x 2
A so that

V.x/ D J.x; ˛/:

Such a control ˛ is called an optimal control. The ODE in (4) is called the dynamics

or state equation, the functional J given by (5) is called the cost functional, and

the function V given by (6) is called the value function. The function f or t 7!
e��tf .X.t/; ˛.t// is called the running cost and � is called the discount rate.

In what follows, we assume that f; g are bounded continuous functions on

R
n � A and moreover, they satisfy the Lipschitz condition, i.e., there exists a

constantM > 0 such that

8
ˆ̂<
ˆ̂:

jf .x; a/j � M; jg.x; a/j � M;

jf .x; a/ � f .y; a/j � M jx � yj;
jg.x; a/ � g.y; a/j � M jx � yj:

(7)
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A basic result in ODE theory guarantees that the initial value problem (4) has a

unique solution X.t/.

There are two basic approaches in optimal control theory:

1. Pontryagin’s Maximum Principle Approach.

2. Bellman’s Dynamic Programming Approach.

Both of approaches have been introduced and developed since 1950s.

Pontryagin’s maximum principle gives a necessary condition for the optimality

of controls and provides a powerful method to design an optimal control.

Bellman’s approach associates the optimization problem with a PDE, called the

Bellman equation. In the problem, where the value function V is given by (6), the

corresponding Bellman equation is the following.

�V.x/CH.x;DV.x// D 0 in R
n; (8)

whereH is a function given by

H.x; p/ D sup
a2A

f�g.x; a/ � p � f .x; a/g;

with x � y denoting the Euclidean inner product in R
n. Bellman’s idea is to charac-

terize the value function V by the Bellman equation, to use the characterization to

compute the value function and to design an optimal control. To see how it works,

we assume that (8) has a smooth bounded solution V and compute formally as

follows. First of all, we choose a function a W R
n ! A so that

H.x;DV.x// D �g.x; a.x// �DV.x/ � f .x; a.x//;

and solve the initial value problem

PX.t/ D g.X.t/; a.X.t///; X.0/ D x;

where x is a fixed point in R
n. Next, writing ˛.t/ D a.X.t//, we have

0 D
Z 1

0

e��t
�
�V.X.t//CH.X.t/;DV.X.t///

�
dt

D
Z 1

0

e��t
�
�V.X.t// � g.X.t/; ˛.t// �DV.X.t// � f .X.t/; ˛.t//

�
dt

D
Z 1

0

�
� d

dt
e��tV.X.t// � e�tf .X.t/; ˛.t//

�
dt

DV.X.0//�
Z 1

0

e��tf .X.t/; ˛.t// dt:
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Thus we have

V.x/ D J.x; ˛/:

If PDE (8) characterizes the value function, that is, the solution V is the value

function, then the above equality says that the control ˛.t/ D a.X.t// is an optimal

control, which we are looking for.

In Bellman’s approach PDE plays a central role, and we discuss this approach in

what follows. The first remark is that the value function may not be differentiable at

some points. A simple example is as follows.

Example 1.1. We consider the case where n D 1, A D Œ�1; 1� � R, f .x; a/ D
e�x2 , g.x; a/ D a and � D 1. Let X.t/ be the solution of (4) for some control

˛ 2 A, which means just to satisfy

j PX.t/j � 1 a.e. t > 0:

Let V be the value function given by (6). Then it is clear that V.�x/ D V.x/ for all

x 2 R and that

V.x/ D
Z 1

0

e�t�.xCt /2 dt D ex
Z 1

x

e�t�t2 dt if x > 0:

For x > 0, one gets

V 0.x/ D ex
Z 1

x

e�t�t2 dt � e�x2 ;

and

V 0.0C/ D
Z 1

0

e�t�t2 dt � 1 <
Z 1

0

e�t dt � 1 D 0:

This together with the symmetry property, V.�x/ D V.x/ for all x 2 R, shows

that V is not differentiable at x D 0.

Value functions in optimal control do not have enough regularity to satisfy, in

the classical sense, the corresponding Bellman equations in general as the above

example shows.

We introduce the notion of viscosity solution of the first-order PDE

F.x; u.x/;Du.x// D 0 in ˝; (FE)

where F W ˝ � R � R
n ! R is a given continuous function.

Definition 1.1. (i) We call u 2 C.˝/ a viscosity subsolution of (FE) if

8
<
:
� 2 C 1.˝/; z 2 ˝; max

˝
.u � �/ D .u � �/.z/

H) F.z; u.z/;D�.z// � 0:
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(ii) We call u 2 C.˝/ a viscosity supersolution of (FE) if

8
<
:
� 2 C 1.˝/; z 2 ˝; min

˝
.u � �/ D .u � �/.z/

H) F.z; u.z/;D�.z// � 0:

(iii) We call u 2 C.˝/ a viscosity solution of (FE) if u is both a viscosity

subsolution and supersolution of (FE).

The viscosity subsolution or supersolution property is checked through smooth

functions � in the above definition, and such smooth functions � are called test

functions.

Remark 1.1. If we set F�.x; r; p/ D �F.x;�r;�p/, then it is obvious that

u 2 C.˝/ is a viscosity subsolution (resp., supersolution) of (FE) if and only if

u�.x/ WD �u.x/ is a viscosity supersolution (resp., subsolution) of

F �.x; u�.x/;Du�.x// D 0 in ˝:

Note also that .F�/� D F and .u�/� D u. With these observations, one property

for viscosity subsolutions can be phrased as a property for viscosity supersolutions.

In other words, every proposition concerning viscosity subsolutions has a counter-

part for viscosity supersolutions.

Remark 1.2. It is easily seen by adding constants to test functions that u 2 C.˝/ is

a viscosity subsolution of (FE) if and only if

8
<
:
� 2 C 1.˝/; z 2 ˝; max

˝
.u � �/ D .u � �/.z/ D 0

H) F.z; �.z/;D�.z// � 0:

One can easily formulate a counterpart of this proposition for viscosity

supersolutions.

Remark 1.3. It is easy to see by an argument based on a partition of unity (see

Appendix A.1) that u 2 C.˝/ is a viscosity subsolution of (FE) if and only if

(
� 2 C 1.˝/; z 2 ˝; u � � attains a local maximum at z

H) F.z; �.z/;D�.z// � 0:

Remark 1.4. It is easily seen that u 2 C.˝/ is a viscosity subsolution of (FE) if and

only if (
� 2 C 1.˝/; z 2 ˝; u � � attains a strict maximum at z

H) F.z; �.z/;D�.z// � 0:
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Similarly, one may replace “strict maximum” by “strict local maximum” in the

statement. The idea to show these is to replace the function � by �.x/ C jx � zj2
when needed.

Remark 1.5. The condition, � 2 C 1.˝/, can be replaced by the condition,

� 2 C1.˝/ in the above definition. The argument in the following example

explains how to see this equivalence.

Example 1.2 (Vanishing viscosity method). The term “viscosity solution” originates

to the vanishing viscosity method, which is one of classical methods to construct

solutions of first-order PDE.

Consider the second-order PDE

� "�u" C F.x; u".x/;Du".x// D 0 in ˝; (9)

where " > 0 is a parameter to be sent to zero later on, ˝ is an open subset of Rn,

F is a continuous function on ˝ � R � R
n and � denotes the Laplacian

� D @2

@x21
C � � � C @2

@x2n
:

We assume that functions u" 2 C 2.˝/, with " 2 .0; 1/, and u 2 C.˝/ are given

and that

lim
"!0

u".x/ D u.x/ locally uniformly on˝:

Then the claim is that u is a viscosity solution of

F.x; u.x/;Du.x// D 0 in ˝: (FE)

In what follows, we just check that u is a viscosity subsolution of (FE). For this,

we assume that

� 2 C 1.˝/; Ox 2 ˝; max
˝
.u � �/ D .u � �/. Ox/;

and moreover, this maximum is a strict maximum of u � �. We need to show that

F. Ox; u. Ox/;D�. Ox// � 0: (10)

First of all, we assume that � 2 C 2.˝/, and show that (10) holds. Fix an

r > 0 so that Br . Ox/ � ˝ . Let x" be a maximum point over Br . Ox/ of the function

u" � �. We may choose a sequence f"j gj2N � .0; 1/ so that limj!1 "j D 0 and

limj!1 x"j D y for some y 2 B r . Ox/. Observe that
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.u � �/. Ox/ � .u"j � �/. Ox/C ku � u"j k1;Br .Ox/

� .u"j � �/.x"j /C ku � u"j k1;Br .Ox/

� .u � �/.x"j /C 2ku"j � uk1;Br .Ox/

! .u � �/.y/ as j ! 1:

Accordingly, since Ox is a strict maximum point of u � �, we see that y D Ox.

Hence, if j is sufficiently large, then x"j 2 Br . Ox/. By the maximum principle from

Advanced Calculus, we find that

@

@xi
.u"j � �/.x"j / D 0 and

@2

@x2i
.u"j � �/.x"j / � 0 for all i D 1; 2; : : : ; n:

Hence, we get

Du"j .x"j / D D�.x"j /; �u"j .x"j / � ��.x"j /:

These together with (9) yield

�"j��.x"j /C F.x"j ; u
"j .x"j /;D�.x"j // � 0:

Sending j ! 1 now ensures that (10) holds.

Finally we show that the C 2 regularity of � can be relaxed, so that (10) holds

for all � 2 C 1.˝/. Let r > 0 be the constant as above, and choose a sequence

f�kg � C1.˝/ so that

lim
k!1

�k.x/ D �.x/ uniformly on Br . Ox/:

Let fykg � Br . Ox/ be a sequence consisting of a maximum point of u � �k . An

argument similar to the above yields

lim
k!1

yk D Ox:

If k is sufficiently large, then we have yk 2 Br . Ox/ and, due to (10) valid for C 2 test

functions,

F.yk ; u.yk/;D�k.yk// � 0:

Sending k ! 1 allows us to conclude that (10) holds.
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1.3 Characterization of the Value Function

In this subsection we are concerned with the characterization of the value function

V by the Bellman equation

�V.x/CH.x;DV.x// D 0 in R
n; (11)

where � is a positive constant and

H.x; p/ D sup
a2A

f�g.x; a/ � p � f .x; a/g:

Recall that

V.x/ D inf
˛2A

J.x; ˛/;

and

J.x; ˛/ D
Z 1

0

f .X.t/; ˛.t//e��t dt;

where X.t/ D X.t I x; ˛/ denotes the solution of the initial value problem

( PX.t/ D g.X.t/; ˛.t// for a.e. t > 0;

X.0/ D x:

Recall also that for all .x; a/ 2 R
n � A and some constant M > 0,

8
ˆ̂<
ˆ̂:

jf .x; a/j � M; jg.x; a/j � M;

jf .x; a/ � f .y; a/j � M jx � yj;
jg.x; a/ � g.y; a/j � M jx � yj:

(12)

The following lemma will be used without mentioning, the proof of which may

be an easy exercise.

Lemma 1.1. Let h; k W A ! R be bounded functions. Then

ˇ̌
ˇ̌sup
a2A

h.a/ � sup
a2A

k.a/

ˇ̌
ˇ̌ _

ˇ̌
ˇ̌ inf
a2A

h.a/ � inf
a2A

k.a/

ˇ̌
ˇ̌ � sup

a2A

jh.a/ � k.a/j:

In view of the above lemma, the following lemma is an easy consequence of (12),

and the detail of the proof is left to the reader.

Lemma 1.2. The HamiltonianH satisfies the following inequalities:

jH.x; p/ �H.y; p/j � M jx � yj.jpj C 1/ for all x; y; p 2 R
n;

jH.x; p/ �H.x; q/j � M jp � qj for all x; p; q 2 R
n:

In particular, we haveH 2 C.Rn � R
n/.
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Proposition 1.1. The inequality

jV.x/j � M

�

holds for all x 2 R
n. Hence, the value function V is bounded on R

n.

Proof. For any .x; ˛/ 2 R
n � A, we have

jJ.x; ˛/j �
Z 1

0

e��t jf .X.t/; ˛.t//j dt � M

Z 1

0

e��t dt D M

�
:

Applying Lemma 1.1 yields

jV.x/j � sup
˛2A

jJ.x; ˛/j � M

�
: ut

Proposition 1.2. The function V is Hölder continuous on R
n.

Proof. Fix any x; y 2 R
n. For any ˛ 2 A, we estimate the difference of J.x; ˛/

and J.y; ˛/. To begin with, we estimate the difference of X.t/ WD X.t I x; ˛/ and

Y.t/ WD X.t Iy; ˛/. Since

j PX.t/ � PY .t/j D jg.X.t/; ˛.t// � g.Y.t/; ˛.t//j
�M jX.t/� Y.t/j for a.e. t � 0;

we find that

jX.t/ � Y.t/j � jX.0/� Y.0/j C
Z t

0

j PX.s/ � PY .s/j ds

� jx � yj CM

Z t

0

jX.s/ � Y.s/j ds for all t � 0:

By applying Gronwall’s inequality, we get

jX.t/� Y.t/j � jx � yj eMt for all t � 0:

Next, since

jJ.x; ˛/ � J.y; ˛/j �
Z 1

0

e��s jf .X.s/; ˛.s// � f .Y.s/; ˛.s//j ds;

if � > M , then we have

jJ.x; ˛/ � J.y; ˛/j �
Z 1

0

e��sM jX.s/� Y.s/j ds

� M

Z 1

0

e��sjx � yjeMs ds D M jx � yj
� �M ;
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and

jV.x/ � V.y/j � M

� �M
jx � yj: (13)

If 0 < � < M , then we select 0 < � < 1 so that �M < �, and calculate

jf .�; a/ � f .�; a/j � jf .�; a/ � f .�; a/j�C.1��/

� .M j� � �j/� .2M/1�� for all �; � 2 R
n; a 2 A;

and

jJ.x; ˛/ � J.y; ˛/j � .2M/1��
Z 1

0

e��s.M jX.s/� Y.s/j/� ds

� .2M/1��
Z 1

0

e��s.M jx � yj/�e�Ms ds

� 2M jx � yj�
Z 1

0

e�.���M/s ds D 2M jx � yj�
� � �M

;

which shows that

jV.x/ � V.y/j � 2M jx � yj�
� � �M

: (14)

Thus we conclude from (13) and (14) that V is Hölder continuous on R
n. ut

Proposition 1.3 (Dynamic programming principle). Let 0 < � < 1 and

x 2 R
n. Then

V.x/ D inf
˛2A

�

Z �

0

e��tf .X.t/; ˛.t// dt C e���V.X.�//
�

;

where X.t/ denotesX.t I x; ˛/.
Proof. Let 0 < � < 1 and x 2 R

n. Fix 
 2 A. We have

J.x; 
/ D
Z �

0

e��tf .X.t/; 
.t// dt C
Z 1

�

e��tf .X.t/; 
.t// dt

D
Z �

0

e��tf .X.t/; ˛.t// dt C e���

Z 1

0

e��tf .Y.t/; ˇ.t// dt;

(15)

where

X.t/ D X.t I x; 
/; ˛.t/ WD 
.t/; ˇ.t/ WD 
.t C �/;

Y.t/ WD X.t C �/ D X.t IX.�/; ˇ/:
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By (15), we get

J.x; 
/ �
Z �

0

e��tf .X.t/; ˛.t// dt C e���V.X.�//;

from which we have

J.x; 
/ � inf
˛2A

�

Z �

0

e��tf .X.t/; ˛.t// dt C e���V.X.�//
�

:

Consequently,

V.x/ � inf
˛2A

�

Z �

0

e��tf .X.t/; ˛.t// dt C e���V.X.�//
�

: (16)

Now, let ˛; ˇ 2 A. Define 
 2 A by


.t/ D

8
<
:
˛.t/ if 0 � t � �;

ˇ.t � �/ if � < t:

Set

X.t/ WD X.t I x; ˛/ and Y.t/ WD X.t IX.�/; ˇ/:
We have

(
X.t/ D X.t I x; 
/ and ˛.t/ D 
.t/ for all t 2 Œ0; ��;
ˇ.t/ D 
.t C �/ and Y.t/ D X.t C �/ for all t � 0:

Hence, we have (15) and therefore,

V.x/ �
Z �

0

e��tf .X.t/; ˛.t// dt C e���J.X.�/; ˇ/:

Moreover, we get

V.x/ �
Z �

0

e��tf .X.t/; ˛.t// dt C e���V.X.�//;

and

V.x/ � inf
˛2A

� Z �

0

e��tf .X.t/; ˛.t// dt C e���V.X.�//
�
: (17)

Combining (16) and (17) completes the proof. ut
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Theorem 1.1. The value function V is a viscosity solution of (11).

Proof. (Subsolution property) Let � 2 C 1.Rn/ and Ox 2 R
n, and assume that

.V � �/. Ox/ D max
Rn
.V � �/ D 0:

Fix any a 2 A and set ˛.t/ WD a, X.t/ WD X.t I Ox; ˛/. Let 0 < h < 1. Now, since

V � �, V. Ox/ D �. Ox/, by Proposition 1.3 we get

�. Ox/ DV. Ox/ �
Z h

0

e��tf .X.t/; ˛.t// dt C e��hV.X.h//

�
Z h

0

e��tf .X.t/; ˛.t// dt C e��h�.X.h//:

From this, we get

0 �
Z h

0

e��tf .X.t/; a/ dt C
Z h

0

d

dt
.e��t�.X.t/// dt

D
Z h

0

e��t
�
f .X.t/; a/ � ��.X.t//CD�.X.t// � PX.t/

�
dt

D
Z h

0

e��t
�
f .X.t/; a/ � ��.X.t//CD�.X.t// � g.X.t/; a/

�
dt:

(18)

Noting that

jX.t/ � Oxj D
ˇ̌
ˇ
Z t

0

PX.s/ ds
ˇ̌
ˇ �

Z t

0

jg.X.s/; a/j ds � M

Z t

0

ds D Mt; (19)

dividing (18) by h and sending h ! 0, we find that

0 � ���. Ox/C f . Ox; a/C g. Ox; a/ �D�. Ox/:

Since a 2 A is arbitrary, we have ��. Ox/CH. Ox;D�. Ox// � 0.

(Supersolution property) Let � 2 C 1.Rn/ and Ox 2 R
n, and assume that

.V � �/. Ox/ D min
Rn
.V � �/ D 0:

Fix " > 0 and h > 0. By Proposition 1.3, we may choose ˛ 2 A so that

V. Ox/C "h >

Z h

0

e��tf .X.t/; ˛.t// dt C e��hV.X.h//;
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where X.t/ WD X.t I Ox; ˛/. Since V � � in R
n and V. Ox/ D �. Ox/, we get

�. Ox/C "h >

Z h

0

e��tf .X.t/; ˛.t// dt C e��h�.X.h//:

Hence we get

0 �
Z h

0

e��tf .X.t/; ˛.t// dt C
Z h

0

d

dt
.e��t�.X.t/// dt � "h

D
Z h

0

e��t
�
f .X.t/; ˛.t// � ��.X.t//CD�.X.t// � PX.t/

�
dt � "h

D
Z h

0

e��t
�
f .X.t/; ˛.t// � ��.X.t//CD�.X.t// � g.X.t/; ˛.t//

�
dt � "h:

By the definition of H , we get

Z h

0

e��t .��.X.t//CH.X.t/;D�.t// dt C "h > 0: (20)

As in (19), we have

jX.t/ � Oxj � Mt:

Dividing (20) by h and sending h ! 0 yield

��. Ox/CH. Ox;D�. Ox//C " � 0;

from which we get ��. Ox/CH. Ox;D�. Ox// � 0. The proof is now complete. ut
Theorem 1.2. Let u 2 BUC.Rn/ and v 2 BUC.Rn/ be a viscosity subsolution and

supersolution of (11), respectively. Then u � v in R
n.

Proof. Let " > 0, and define u" 2 C.Rn/ by u".x/ D u.x/ � ".hxi C M/, where

hxi D .jxj2 C 1/1=2. A formal calculation

u".x/CH.x;Du".x// � u.x/ � "M CH.x;Du.x//C "M jDhxij
� u.x/CH.x;Du.x// � 0

reveals that u" is a viscosity subsolution of (11), which can be easily justified.

We show that the inequality u" � v holds, from which we deduce that u � v is

valid. To do this, we assume that sup
Rn.u" � v/ > 0 and will get a contradiction.

Since

lim
jxj!1

.u" � v/.x/ D �1;
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we may choose a constant R > 0 so that

sup
RnnBR

.u" � v/ < 0:

The function u" � v 2 C.BR/ then attains a maximum at a point in BR, but not at

any point in @BR.

Let ˛ > 1 and consider the function

˚.x; y/ D u".x/ � v.y/ � ˛jx � yj2

on K WD BR � BR. Since ˚ 2 C.K/, ˚ attains a maximum at a point in K .

Let .x˛; y˛/ 2 K be its maximum point. Because K is compact, we may choose a

sequence f˛j g � .1; 1/ diverging to infinity so that for some . Ox; Oy/ 2 K ,

.x˛j ; y˛j / ! . Ox; Oy/ as j ! 1:

Note that

0 < max
BR

.u" � v/ D max
x2BR

˚.x; x/ � ˚.x˛ ; y˛/

D u".x˛/ � v.y˛/ � ˛jx˛ � y˛j2;
(21)

from which we get

˛jx˛ � y˛j2 � sup
Rn

u" C sup
Rn

.�v/:

We infer from this that Ox D Oy. Once again by (21), we get

max
BR

.u" � v/ � u".x˛/ � v.y˛/:

Setting ˛ D ˛j and sending j ! 1 in the above, since u; v 2 C.Rn/, we see that

max
BR

.u" � v/ � lim
˛D˛j ;j!1

.u".x˛/ � v.y˛//

D u". Ox/ � v. Ox/:

That is, the point Ox is a maximum point of u" � v. By (21), we have

˛jx˛ � y˛j2 � u".x˛/� v.y˛/� max
BR

.u � v/;

and hence

lim
˛D˛j ;j!1

˛jx˛ � y˛j2 D 0:
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Since Ox is a maximum point of u" � v, by our choice of R we see that Ox 2
BR. Accordingly, if ˛ D ˛j and j is sufficiently large, then x˛; y˛ 2 BR. By the

viscosity property of u" and v, for ˛ D ˛j and j 2 N large enough, we have

u".x˛/CH.x˛; 2˛.x˛ � y˛// � 0; v.y˛/CH.y˛; 2˛.x˛ � y˛// � 0:

Subtracting one from the other yields

u".x˛/ � v.y˛/ � H.y˛; 2˛.x˛ � y˛// �H.x˛ ; 2˛.x˛ � y˛//:

Using one of the properties of H from Lemma 1.2, we obtain

u".x˛/ � v.y˛/ � M jx˛ � y˛j.2˛jx˛ � y˛j C 1/:

Sending ˛ D ˛j ! 1, we get

u". Ox/ � v. Ox/ � 0;

which is a contradiction. ut

1.4 Semicontinuous Viscosity Solutions and the Perron Method

Let u; v 2 C.˝/ be a viscosity subsolutions of (FE) and set

w.x/ D maxfu.x/; v.x/g for x 2 ˝:

It is easy to see that w is a viscosity subsolution of (FE). Indeed, if � 2 C 1.˝/,

y 2 ˝ and w � � has a maximum at y, then we have either w.y/ D u.y/ and

.u � �/.x/ � .w � �/.x/ � .w � �/.y/ D .u � �/.y/ for all x 2 ˝ , or w.y/ D
v.y/ and .v � �/.x/ � .v � �/.y/, from which we get F.y;w.y/;D�.y// � 0.

If fukgk2N � C.˝/ is a uniformly bounded sequence of viscosity subsolutions of

(FE), then the function w given by w.x/ D supk uk.x/ defines a bounded function on

˝ but it may not be continuous, a situation that the notion of viscosity subsolution

does not apply.

We are thus led to extend the notion of viscosity solution to that for discontinuous

functions.

Let U � R
n, and recall that a function f W U ! R [ f�1;1g D Œ�1; 1� is

upper semicontinuous if

lim sup
y!x

f .y/ � f .x/ for all x 2 U:
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The totality of all such upper semicontinuous functions f will be denoted by

USC.U /. Similarly, we denote by LSC.U / the space of all lower semicontinuous

functions on U . That is, LSC.U / WD � USC.U / D f�f W f 2 USC.U /g.

Some basic observations regarding semicontinuity are the following three propo-

sitions.

Proposition 1.4. Let f W U ! Œ�1; 1�. Then, f 2 USC.U / if and only if the

set fx 2 U W f .x/ < ag is a relatively open subset of U for any a 2 R.

Proposition 1.5. If F � LSC.U /, then sup F 2 LSC.U /. Similarly, if F �
USC.U /, then inf F 2 USC.U /.

Proposition 1.6. Let K be a compact subset of Rn and f 2 USC.K/. Then f

attains a maximum. Here the maximum value may be either �1 or 1.

Next, we define the upper (resp., lower) semicontinuous envelopes f � (resp., f�)

of f W U ! Œ�1; 1� by

f �.x/ D lim
r!0C

supff .y/ W y 2 U \ Br .x/g

(resp., f� D �.�f /� or, equivalently, f�.x/ D limr!0C infff .y/ W y 2 U \
Br .x/g).

Proposition 1.7. Let f W U ! Œ�1; 1�. Then we have f � 2 USC.U /, f� 2
LSC.U / and

f �.x/ D minfg.x/ W g 2 USC.U /; g � f g for all x 2 U:

A consequence of the above proposition is that if f 2 USC.U /, then f � D f

in U . Similarly, f� D f in U if f 2 LSC.U /.

We go back to

F.x; u.x/;Du.x// D 0 in ˝: (FE)

Here we assume neither that F W ˝ � R� R
n ! R is continuous nor that ˝ � R

n

is open. We just assume that F W ˝ � R � R
n ! R is locally bounded and that ˝

is a subset of Rn.

Definition 1.2. (i) A locally bounded function u W ˝ ! R is called a viscosity

subsolution (resp., supersolution) of (FE) if

8
<
:
� 2 C 1.˝/; z 2 ˝; max

˝
.u� � �/ D .u� � �/.z/

H) F�.z; u
�.z/;D�.z// � 0

0
@resp:;

8
<
:
� 2 C 1.˝/; z 2 ˝; min

˝
.u� � �/ D .u� � �/.z/

H) F �.z; u�.z/;D�.z// � 0

1
A :
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(ii) A locally bounded function u W ˝ ! R is a viscosity solution of (FE) if it is

both a viscosity subsolution and supersolution of (FE).

We warn here that the envelopes F� and F � are taken in the full variables. For

instance, if � 2 ˝ � R � R
n, then

F�.�/ D lim
r!0C

inffF.�/ W � 2 ˝ � R � R
n; j� � �j < rg:

We say conveniently that u is a viscosity solution (or subsolution) of

F.x; u.x/;Du.x// � 0 in ˝ if u is a viscosity subsolution of (FE). Similarly,

we say that u is a viscosity solution (or supersolution) of F.x; u.x/;Du.x// � 0

in ˝ if u is a viscosity supersolution of (FE). Also, we say that u satisfies

F.x; u.x/;Du.x// � 0 in ˝ (resp., F.x; u.x/;Du.x// � 0 in ˝) in the viscosity

sense if u is a viscosity subsolution (resp., supersolution) of (FE).

Once we fix a PDE, like (FE), on a set ˝ , we denote by S � and S C the sets of

all its viscosity subsolutions and supersolutions, respectively.

The above definition differs from the one in [19]. As is explained in [19], the

above one allows the following situation: let˝ be a nonempty open subset ofRn and

suppose that the Hamilton–Jacobi equation (1) has a continuous solution u 2 C.˝/.
Choose two dense subsets U and V of ˝ such that U \ V D ; and U [ V 6D ˝ .

Select a function v W ˝ ! R so that v.x/ D u.x/ if x 2 U , v.x/ D u.x/C 1 if

x 2 V and v.x/ 2 Œu.x/; u.x/C1� if x 2 ˝n.U [V /. Then we have v�.x/ D u.x/

and v�.x/ D u.x/C 1 for all x 2 ˝ . Consequently, v is a viscosity solution of (1).

If U [ V 6D ˝ , then there are infinitely many choices of such functions v.

The same remarks as Remarks 1.1–1.4 are valid for the above generalized

definition.

Definition 1.3. Let ˝ � R
n and u W ˝ ! R. The subdifferential D�u.x/ and

superdifferentialDCu.x/ of the function u at x 2 ˝ are defined, respectively, by

D�u.x/ D fp 2 R
n W u.x C h/ � u.x/C p � hC o.jhj/ as x C h 2 ˝; h ! 0g;

DCu.x/ D fp 2 R
n W u.x C h/ � u.x/C p � hC o.jhj/ as x C h 2 ˝; h ! 0g;

where o.jhj/ denotes a function on an interval .0; ı/, with ı > 0, having the

property: limh!0 o.jhj/=jhj D 0.

We remark that D�u.x/ D �DC.�u/.x/. If u is a convex function in R
n and

p 2 D�u.x/ for some x; p 2 R
n, then

u.x C h/ � u.x/C p � h for all h 2 R
n:

See Proposition B.1 for the above claim. In convex analysis, D�u.x/ is usually

denoted by @u.x/.
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Proposition 1.8. Let ˝ � R
n and u W ˝ ! R be locally bounded. Let x 2 ˝ .

Then

DCu.x/ D fD�.x/ W � 2 C 1.˝/; u � � attains a maximum at xg:

As a consequence of the above proposition, we have the following: if u is locally

bounded in ˝ , then

D�u.x/ D �DC.�u/.x/

D � fD�.x/ W � 2 C 1.˝/; �u � � attains a maximum at xg

D fD�.x/ W � 2 C 1.˝/; u � � attains a minimum at xg:

Corollary 1.1. Let ˝ � R
n. Let F W ˝ � R � R

n ! R and u W ˝ ! R be

locally bounded. Then u is a viscosity subsolution (resp., supersolution) of (FE) if

and only if

F�.x; u
�.x/; p/ � 0 for all x 2 ˝; p 2 DCu�.x/

. resp., F �.x; u�.x/; p/ � 0 for all x 2 ˝; p 2 D�u�.x/ /:

This corollary (or Remark 1.3) says that the viscosity properties of a function,

i.e., the properties that the function be a viscosity subsolution, supersolution, or

solution are of local nature. For instance, under the hypotheses of Corollary 1.1, the

function u is a viscosity subsolution of (FE) if and only if for each x 2 ˝ there

exists an open neighborhood Ux, in R
n, of x such that u is a viscosity subsolution

of (FE) in Ux \˝ .

Proof. Let � 2 C 1.˝/ and y 2 ˝ , and assume that u � � has a maximum at y.

Then

.u � �/.y C h/ � .u � �/.y/ if y C h 2 ˝;
and hence, as y C h 2 ˝; h ! 0,

u.y C h/ � u.y/C �.y C h/ � �.y/ D u.y/CD�.y/ � hC o.jhj/:

This shows that

fD�.y/ W � 2 C 1.˝/; u � � attains a maximum at yg � DCu.y/:

Next let y 2 ˝ and p 2 DCu.y/. Then we have

u.y C h/ � u.y/C p � hC !.jhj/jhj if y C h 2 ˝ and jhj � ı

for some constant ı > 0 and a function ! 2 C.Œ0; ı�/ satisfying !.0/ D 0. We may

choose ! to be nondecreasing in Œ0; ı�. In the above inequality, we want to replace
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the term !.jhj/jhj by a C 1 function  .h/ having the property:  .h/ D o.jhj/.
Following [23], we define the function 
 W Œ0; ı=2� ! R by


.r/ D
Z 2r

0

!.t/ dt:

Noting that


.r/ �
Z 2r

r

!.t/ dt � !.r/r for r 2 Œ0; ı=2�;

we see that

u.y C h/ � u.y/C p � hC 
.jhj/ if y C h 2 ˝ and jhj � ı=2:

It immediate to see that 
 2 C 1.Œ0; ı=2�/ and 
.0/ D 
 0.0/ D 0. We set  .h/ D

.jhj/ for h 2 Bı=2.0/. Then  2 C 1.Bı=2.0//,  .0/ D 0 and D .0/ D 0. It is

now clear that if we set

�.x/ D u.y/C p � .x � y/C  .x � y/ for x 2 Bı=2.y/;

then the function u � � attains a maximum over˝ \Bı=2.y/ at y andD�.y/ D p.

ut
Now, we discuss a couple of stability results concerning viscosity solutions.

Proposition 1.9. Let fu"g"2.0;1/ � S �. Assume that˝ is locally compact and fu"g
converges locally uniformly to a function u in ˝ as " ! 0. Then u 2 S �.

Proof. Let � 2 C 1.˝/. Assume that u� �� attains a strict maximum at Ox 2 ˝ . We

choose a constant r > 0 so that K WD Br . Ox/ \˝ is compact. For each " 2 .0; 1/,
we choose a maximum point (overK) x" of u�

" � �.

Next, we choose a sequence f"j g � .0; 1/ converging to zero such that x"j ! z

for some z 2 K as j ! 1. Next, observe in view of the choice of x" that

.u� � �/.x"j / � .u�
"j

� �/.x"j / � ku� � u�
"j

k1;K

� .u� � �/.x"j /� 2ku� � u�
"j

k1;K

� .u� � �/. Ox/ � 2ku� � u�
"j

k1;K :

Sending j ! 1 yields

.u� � �/.z/ � lim sup.u�
"j

� �/.x"j / � lim inf
j!1

.u�
"j

� �/.x"j / � .u� � �/. Ox/;

which shows that z D Ox and limj!1 u�
"j
.x"j / D u�. Ox/. For j 2 N sufficiently

large, we have x"j 2 Br . Ox/ and, since u"j 2 S �,
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F�.x"j ; u
�
"j
.x"j /;D�.x"j // � 0:

If we send j ! 1, we find that u 2 S �. ut
Proposition 1.10. Let ˝ be locally compact. Let F � S �. That is, F is a family

of viscosity subsolutions of (FE). Assume that sup F is locally bounded in ˝ . Then

we have sup F 2 S �.

Remark 1.6. By definition, the set ˝ is locally compact if for any x 2 ˝ , there

exists a constant r > 0 such that ˝ \ Br .x/ is compact. For instance, every

open subset and closed subset of Rn are locally compact. The set A WD .0; 1/ �
Œ0; 1� � R

2 is locally compact, but the set A[ f.0; 0/g is not locally compact.

Remark 1.7. Similarly to Remark 1.5, if ˝ is locally compact, then the C 1

regularity of the test functions in the Definition 1.2 can be replaced by the C1

regularity.

Proof. Set u D sup F . Let � 2 C 1.˝/ and Ox 2 ˝ , and assume that

max
˝
.u� � �/ D .u� � �/. Ox/ D 0:

We assume moreover that Ox is a strict maximum point of u� � �. That is, we have

.u� � �/.x/ < 0 for all x 6D Ox. Choose a constant r > 0 so that W WD ˝ \ Br . Ox/
is compact.

By the definition of u�, there are sequences fykg � W and fvkg � F such that

yk ! Ox; vk.yk/ ! u�. Ox/ as k ! 1:

Since W is compact, for each k 2 N we may choose a point xk 2 W such that

max
W
.v�
k � �/ D .v�

k � �/.xk/:

By passing to a subsequence if necessary, we may assume that fxkg converges to a

point z 2 W . We then have

0 D .u� � �/. Ox/ � .u� � �/.xk/ � .v�
k � �/.xk/

� .v�
k � �/.yk/ � .vk � �/.yk/ ! .u� � �/. Ox/ D 0;

and consequently

lim
k!1

u�.xk/ D lim
k!1

v�
k .xk/ D u�. Ox/:

In particular, we see that

.u� � �/.z/ � lim
k!1

.u� � �/.xk/ D 0;
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which shows that z D Ox. That is, limk!1 xk D Ox.

Thus, we have xk 2 Br . Ox/ for sufficiently large k 2 N. Since vk 2 S �, we get

F�.xk ; v
�
k .xk/;D�.xk// � 0

if k is large enough. Hence, sending k ! 1 yields

F�. Ox; u�. Ox/;D�. Ox// � 0;

which proves that u 2 S �. ut
Theorem 1.3. Let ˝ be a locally compact subset of R

n. Let fu"g"2.0;1/ and

fF"g"2.0;1/ be locally uniformly bounded collections of functions on ˝ and

˝ � R � R
n, respectively. Assume that for each " 2 .0; 1/, u" is a viscosity

subsolution of

F".x; u".x/;Du".x// � 0 in ˝:

Set

Nu.x/ D lim
r!0C

supfu".y/ W y 2 Br .x/ \˝; " 2 .0; r/g;

F .�/ D lim
r!0C

inffF".�/ W � 2 ˝ � R � R
n; j�� �j < r; " 2 .0; r/g:

Then Nu is a viscosity subsolution of

F .x; Nu.x/;D Nu.x// � 0 in ˝:

Remark 1.8. The function Nu is upper semicontinuous in ˝ . Indeed, we have

Nu.y/ � supfu".z/ W z 2 Br .x/ \˝; " 2 .0; r/g

for all x 2 ˝ and y 2 Br .x/ \˝ . This yields

lim sup
˝3y!x

Nu.y/ � supfu".z/ W z 2 Br .x/ \˝; " 2 .0; r/g

for all x 2 ˝ . Hence,

lim sup
˝3y!x

Nu.y/ � Nu.x/ for all x 2 ˝:

Similarly, the function F is lower semicontinuous in ˝ � R � R
n.

Proof. It is easily seen that for all x 2 ˝ , r > 0 and y 2 Br .x/ \˝ ,

u�
" .y/ � supfu".z/ W z 2 Br .x/ \˝g:
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From this we deduce that

Nu.x/ D lim
r!0C

supfu�
" .y/ W y 2 Br .x/ \˝; 0 < " < rg for all x 2 ˝:

Hence, we may assume by replacing u" by u�
" if necessary that u" 2 USC.˝/.

Similarly, we may assume that F" 2 LSC.˝ � R � R
n/.

Let � 2 C 1.˝/ and Ox 2 ˝ . Assume that Nu � � has a strict maximum at Ox. Let

r > 0 be a constant such that Br . Ox/ \˝ is compact.

For each k 2 N we choose yk 2 Br=k. Ox/ \˝ and "k 2 .0; 1=k/ so that

jNu. Ox/ � u"k .yk/j < 1=k;

and then choose a maximum point xk 2 Br . Ox/ \˝ of u"k � � over B r . Ox/\˝ .

Since

.u"k � �/.xk/ � .u"k � �/.yk/;

we get

lim sup
k!0

.u"k � �/.xk/ � .Nu � �/. Ox/;

which implies that

lim
k!1

xk D Ox and lim
k!1

u"k .xk/ D Nu. Ox/:

If k 2 N is sufficiently large, we have xk 2 Br . Ox/\˝ and hence

F"k .xk ; u"k .xk/;D�.xk// � 0:

Thus, we get

F . Ox; Nu. Ox/;D�. Ox// � 0: ut
Proposition 1.9 can be seen now as a direct consequence of the above theorem.

The following proposition is a consequence of the above theorem as well.

Proposition 1.11. Let ˝ be locally compact. Let fukg be a sequence of viscosity

subsolutions of (FE). Assume that fukg � USC.˝/ and that fukg is a nonincreasing

sequence of functions on ˝ , i.e., uk.x/ � ukC1.x/ for all x 2 ˝ and k 2 N. Set

u.x/ D lim
k!1

uk.x/ for x 2 ˝:

Assume that u is locally bounded on ˝ . Then u 2 S �.

Let us introduce the (outer) normal coneN.z;˝/ at z 2 ˝ by

N.z;˝/ D fp 2 R
n W 0 � p � .x � z/C o.jx � zj/ as ˝ 3 x ! zg:
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Another definition equivalent to the above is the following:

N.z;˝/ D �DC1˝.z/;

where 1˝ denotes the characteristic function of ˝ . Note that if z 2 ˝ is an interior

point of ˝ , then N.z;˝/ D f0g.

We say that (FE) or the pair .F;˝/ is proper if F.x; r; p C q/ � F.x; r; p/ for

all .x; r; p/ 2 ˝ � R � R
n and all q 2 N.x;˝/.

Proposition 1.12. Assume that (FE) is proper. If u 2 C 1.˝/ is a classical

subsolution of (FE), then u 2 S �.

Proof. Let � 2 C 1.˝/ and assume that u �� attains a maximum at z 2 ˝ . We may

assume by extending the domain of definition of u and � that u and � are defined

and of class C 1 in Br .z/ for some r > 0. By reselecting r > 0 small enough if

needed, we may assume that

.u � �/.x/ < .u � �/.z/C 1 for all x 2 Br .z/:

It is clear that the function u � � C 1˝ attains a maximum over Br .z/ at z, which

shows that D�.z/ � Du.z/ 2 DC1˝.z/. Setting q D �D�.z/ C Du.z/, we have

Du.z/ D D�.z/C q and

0 � F.z; u.z/;D�.z/C q/ � F.z; u.z/;D�.z// � F�.z; u.z/;D�.z//;

which completes the proof. ut
Proposition 1.13 (Perron method). Let F be a nonempty subset of S � having

the properties:

(P1) sup F 2 F .

(P2) If v 2 F and v 62 S C, then there exists a w 2 F such that w.y/ > v.y/ at

some point y 2 ˝ .

Then sup F 2 S .

Proof. We have sup F 2 F � S �. That is, sup F 2 S �. If we suppose that

sup F 62 S C, then, by (P2), we have w 2 F such that w.y/ > .sup F /.y/ for

some y 2 ˝ , which contradicts the definition of sup F . Hence, sup F 2 S C. ut
Theorem 1.4. Assume that ˝ is locally compact and that (FE) is proper. Let f 2
LSC.˝/\ S � and g 2 USC.˝/ \ S C. Assume that f � g in ˝ . Set

F D fv 2 S � W f � v � g in ˝g:

Then sup F 2 S .

In the above theorem, the semicontinuity requirement on f; g is “opposite”

in a sense: the lower (resp., upper) semicontinuity for the subsolution f (resp.,

supersolution g). This choice of semicontinuities is convenient in practice since
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in the construction of supersolution f , for instance, one often takes the infimum of

a collection of continuous supersolutions and the resulting function is automatically

upper semicontinuous.

Of course, under the same hypotheses of the above theorem, we have following

conclusion as well: if we set FC D fv 2 S C W f � v � g in ˝g, then

inf FC 2 S .

Lemma 1.3. Assume that˝ is locally compact and that (FE) is proper. Let u 2 S �

and y 2 ˝ , and assume that u is not a viscosity supersolution of (FE) at y, that is,

F �.y; u�.y/; p/ < 0 for some p 2 D�u�.y/:

Let " > 0 and U be a neighborhood of y. Then there exists a v 2 S � such that

8
ˆ̂<
ˆ̂:

u.x/ � v.x/ � maxfu.x/; u�.y/C "g for all x 2 ˝;
v D u in ˝ n U;
v�.y/ > u�.y/:

(22)

Furthermore, if u is continuous at y, then there exist an open neighborhood V of y

and a constant ı > 0 such that v is a viscosity subsolution of

F.x; v.x/;Dv.x// D �ı in V \˝: (23)

Proof. By assumption, there exists a function � 2 C 1.˝/ such that u�.y/ D �.y/,

u�.x/ > �.x/ for all x 6D y and

F �.y; u�.y/;D�.y// < 0:

Thanks to the upper semicontinuity of F �, there exists a ı 2 .0; "/ such that

F �.x; �.x/C t;D�.x// < �ı for all .x; t/ 2 .Bı.y/ \˝/ � Œ0; ı�; (24)

and Bı.y/ \˝ is a compact subset of U .

By replacing ı > 0 by a smaller number if needed, we may assume that

�.x/C ı � u�.y/C " for all x 2 B ı.y/ \˝: (25)

Since u� � � attains a strict minimum at y and the minimum value is zero, if

.˝ \ Bı.y// n Bı=2.y/ 6D ;, then the constant

m WD min
.˝\Bı.y//nBı=2.y/

.u� � �/
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is positive. Of course, in this case, we have

u�.x/ � �.x/Cm for all x 2 .˝ \ Bı.y// n Bı=2.y/:

Set � D minfm; ıg if .˝\Bı.y//nBı=2.y/ 6D ; and � D ı otherwise, and observe

that

u�.x/ � �.x/C � for all x 2 .˝ \ Bı.y// n Bı=2.y/: (26)

We define v W ˝ ! R by

v.x/ D

8
<
:

maxfu.x/; �.x/C �g if x 2 Bı.y/;

u.x/ if x 62 Bı.y/:

If we set  .x/ D �.x/ C � for x 2 Bı.y/ \ ˝ , by (24),  is a classical

subsolution of (FE) in Bı.y/\˝ . Since (FE) is proper, is a viscosity subsolution

of (FE) in Bı.y/ \ ˝ . Hence, by Proposition 1.10, we see that v is a viscosity

subsolution of (FE) in Bı.y/ \˝ .

According to (26) and the definition of v, we have

v.x/ D u.x/ for all x 2 ˝ n Bı=2.y/;

and, hence, v is a viscosity subsolution of (FE) in ˝ n Bı=2.y/ Thus, we find that

v 2 S �.

Since v D u in ˝ n Bı.y/ by the definition of v, it follows that v D u in ˝ n U .

It is clear by the definition of v that v � u in ˝ . Moreover, by (25) we get

v.x/ � maxfu.x/; u�.y/C "g for all x 2 ˝ \ Bı.y/:

Also, observe that

v�.y/ D maxfu�.y/; u�.y/C �g D u�.y/C � > u�.y/:

Thus, (22) is valid.

Now, we assume that u is continuous at y. Then we find an open neighborhood

V � Bı.y/ of y such that

u.x/ < �.x/C � for all x 2 V \˝;

and hence, we have v.x/ D �.x/C � for all x 2 V \˝ . Now, by (24) we see that

v is a classical (and hence viscosity) subsolution of (23). ut
Proof (Theorem 1.4). We have F 6D ; since f 2 F . In view of Proposition 1.13,

we need only to show that the set F satisfies (P1) and (P2).

By Proposition 1.10, we see immediately that F satisfies (P1).
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To check property (P2), let v 2 F be not a viscosity supersolution of (FE). There

is a point y 2 ˝ where v is not a viscosity supersolution of (FE). That is, for some

p 2 D�v�.y/, we have

F �.y; v�.y/; p/ < 0: (27)

Noting v� � g� in˝ , there are two possibilities: v�.y/ D g�.y/ or v�.y/ < g�.y/.

If v�.y/ D g�.y/, then p 2 D�g�.y/. Since g 2 S C, we have

F �.y; g�.y/; p/ � 0;

which contradicts (27). If v�.y/ < g�.y/, then we choose a constant " > 0 and a

neighborhood V of y so that

v�.y/C " < g�.x/ for all x 2 V \˝: (28)

Now, Lemma 1.3 guarantees that there exist w 2 S � such that v � w �
maxfv; v�.y/C "g in˝ , v D w in ˝ n V and w�.y/ > v�.y/. For any x 2 ˝ \ V ,

by (28) we have

w.x/ � maxfv.x/; g�.x/g � g.x/:

For any x 2 ˝ n V , we have

w.x/ D v.x/ � g.x/:

Thus, we find that w 2 F . Since w�.y/ > v�.y/, it is clear that w.z/ > v.z/ at

some point z 2 ˝ . Hence, F satisfies (P2). ut

1.5 An Example

We illustrate the use of the stability properties established in the previous subsection

by studying the solvability of the Dirichlet problem for the eikonal equation

jDu.x/j D k.x/ in ˝; (29)

u.x/ D 0 on @˝; (30)

where ˝ is a bounded, open, connected subset of Rn and k 2 C.˝/ is a positive

function in ˝ , i.e., k.x/ > 0 for all x 2 ˝.

Note that the constant function f .x/ WD 0 is a classical subsolution of (29). Set

M D max˝ k. We observe that for each y 2 @˝ the function gy.x/ WD M jx � yj
is a classical supersolution of (29). We set

g.x/ D inffgy.x/ W y 2 @˝g for x 2 ˝:
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By Proposition 1.10 (its version for supersolutions), we see that g is a viscosity

supersolution of (29). Also, by applying Lemma 1.1, we find that g is Lipschitz

continuous in ˝ .

An application of Theorem 1.4 ensures that there is a viscosity solution u W
˝ ! R of (29) such that f � u � g in ˝ . Since f .x/ D g.x/ D 0 on @˝ , if

we set u.x/ D 0 for x 2 @˝ , then the resulting function u is continuous at points

on the boundary @˝ and satisfies the Dirichlet condition (30) in the classical sense.

Note that u� � g in ˝ , which clearly implies that u D u� 2 USC.˝/. Now,

if we use the next proposition, we find that u is locally Lipschitz continuous in ˝

and conclude that u 2 C.˝/. Thus, the Dirichlet problem (29)–(30) has a viscosity

solution u 2 C.˝/ which satisfies (30) in the classical (or pointwise) sense.

Proposition 1.14. Let R > 0; C > 0 and u 2 USC.BR/. Assume that u is a

viscosity solution of

jDu.x/j � C in BR:

Then u is Lipschitz continuous in BR with C being a Lipschitz bound. That is,

ju.x/� u.y/j � C jx � yj for all x; y 2 BR.

Proof. Fix any z 2 BR and set r D .R � jzj/=4. Fix any y 2 Br .z/. Note that

B3r .y/ � BR. Choose a function f 2 C 1.Œ0; 3r// so that f .t/ D t for all t 2
Œ0; 2r �, f 0.t/ � 1 for all t 2 Œ0; 3r/ and limt!3r� f .t/ D 1. Fix any " > 0, and

we claim that

u.x/ � v.x/ WD u.y/C .C C "/f .jx � yj/ for all x 2 B3r .y/: (31)

Indeed, if this were not the case, we would find a point � 2 B3r .y/ n fyg such that

u � v attains a maximum at �, which yields together with the viscosity property of u

C � jDv.�/j D .C C "/f 0.j� � yj/ � C C ":

This is a contradiction. Thus we have (31).

Note that if x 2 Br .z/, then x 2 B2r .y/ and f .jx � yj/ D jx � yj. Hence, from

(31), we get

u.x/ � u.y/ � .C C "/jx � yj for all x; y 2 Br .z/:

By symmetry, we see that

ju.x/� u.y/j � .C C "/jx � yj for all x; y 2 Br .z/;

from which we deduce that

ju.x/ � u.y/j � C jx � yj for all x; y 2 Br .z/; (32)
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Now, let x; y 2 BR be arbitrary points. Set r D 1
4

minfR � jxj; R � jyjg, and

choose a finite sequence fzi gNiD0 of points on the line segment Œx; y� so that z0 D x,

zN D y, jzi � zi�1j < r for all i D 1; : : : ; N and
PN

iD1 jzi � zi�1j D jx � yj. By

(32), we get

ju.zi / � u.zi�1/j � C jzi � zi�1j for all i D 1; : : : ; N:

Summing these over i D 1; : : : ; N yields the desired inequality. ut

1.6 Sup-convolutions

Sup-convolutions and inf-convolutions are basic and important tools for regularizing

or analyzing viscosity solutions. In this subsection, we recall some properties of

sup-convolutions.

Let u W R
n ! R be a bounded function and " 2 RC. The standard sup-

convolution u" W R
n ! R and inf-convolution u" W R

n ! R are defined,

respectively, by

u".x/ D sup
y2Rn

�
u.y/ � 1

2"
jy � xj2

�
and u".x/ D inf

y2Rn

�
u.y/C 1

2"
jy � xj2

�
:

Note that

u".x/ D � sup

�
�u.y/ � 1

2"
jy � xj2

�
D �.�u/".x/:

This relation immediately allows us to interpret a property of sup-convolutions into

the corresponding property of inf-convolutions.

In what follows we assume that u is bounded and upper semicontinuous in R
n.

Let M > 0 be a constant such that ju.x/j � M for all x 2 R
n.

Proposition 1.15. (i) We have

�M � u.x/ � u".x/ � M for all x 2 R
n:

(ii) Let x 2 R
n and p 2 DCu".x/. Then

jpj � 2

r
M

"
and p 2 DCu.x C "p/:

Another important property of sup-convolutions is that the sup-convolution u" is

semiconvex in R
n. More precisely, the function

u".x/C 1

2"
jxj2 D sup

y2Rn

�
u.y/� 1

2"
jyj2 C 1

"
y � x

�
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is convex in R
n (see Appendix A.2) as is clear from the form of the right hand side

of the above identity.

Proof. To show assertion (i), we just check that for all x 2 R
n,

u".x/ � sup
y2Rn

u.y/ � M;

and

u".x/ � u.x/ � �M:
Next, we prove assertion (ii). Let Ox 2 R

n and Op 2 DCu". Ox/. Choose a point

Oy 2 R
n so that

u". Ox/ D u. Oy/ � 1

2"
j Oy � Oxj2:

(Such a point Oy always exists under our assumptions on u.) It is immediate to see

that
1

2"
j Oy � Oxj2 D u. Oy/ � u". Ox/ � 2M: (33)

We may choose a function � 2 C 1.Rn/ so thatD�. Ox/ D Op and maxRn.u
"��/ D

.u" � �/. Ox/. Observe that the function

R
2n 3 .x; y/ 7! u.y/� 1

2"
jy � xj2 � �.x/

attains a maximum at . Ox; Oy/. Hence, both the functions

R
n 3 x 7! � 1

2"
j Oy � xj2 � �.x/

and

R
n 3 x 7! u.x C Oy � Ox/ � �.x/

attain maximum values at Ox. Therefore, we find that

1

"
. Ox � Oy/CD�. Ox/ D 0 and D�. Ox/ 2 DCu. Oy/;

which shows that

Op D 1

"
. Oy � Ox/ 2 DCu. Oy/:

From this, we get Oy D Ox C " Op, and, moreover, Op 2 DCu. Ox C " Op/. Also, using

(33), we get j Opj � 2
p
M=". Thus we see that (ii) holds. ut

The following observations illustrate a typical use of the above proposition.

Let ˝ be an open subset of R
n. Let H W ˝ � R

n ! R and u W ˝ ! R be

bounded and upper semicontinuous. LetM > 0 be a constant such that ju.x/j � M

for all x 2 ˝ . Let " > 0. Set ı D 2
p
"M and ˝ı D fx 2 ˝ W dist.x; @˝/ > ıg.
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Define u" as above with u extended to R
n by setting u.x/ D �M for x 2 R

n n˝ .

(Or, in a slightly different and more standard way, one may define u" by

u".x/ D sup
y2˝

�
u.y/ � 1

2"
jx � yj2

�
: /

By applying Proposition 1.15, we deduce that if u is a viscosity subsolution of

H.x;Du.x// � 0 in ˝;

then u" is a viscosity subsolution of both

H.x C "Du".x/; Du".x// � 0 in ˝ı; (34)

and

jDu".x/j � 2

r
M

"
in ˝ı: (35)

If we set

G.x; p/ D inf
y2Bı

H.x C y; p/ for x 2 ˝ı;

then (34) implies that u" is a viscosity subsolution of

G.x;Du".x// � 0 in ˝ı:

If we apply Proposition 1.14 to u", we see from (35) that u" is locally Lipschitz

in ˝ı.

2 Neumann Boundary Value Problems

We assume throughout this section and the rest of this article that ˝ � R
n is open.

We will be concerned with the initial value problem for the Hamilton–Jacobi

equation of evolution type

@u

@t
.x; t/CH.x;Dxu.x; t// D 0 in ˝ � .0; 1/;

and the asymptotic behavior of its solutions u.x; t/ as t ! 1.

The stationary problem associated with the above Hamilton–Jacobi equation is

stated as (
H.x;Du.x// D 0 in ˝;

boundary condition on @˝:
(36)



144 H. Ishii

In this article we will be focused on the Neumann boundary value problem

among other possible choices of boundary conditions like periodic, Dirichlet, state-

constraints boundary conditions.

We are thus given two functions 
 2 C.@˝;Rn/ and g 2 C.@˝;R/ which

satisfy

�.x/ � 
.x/ > 0 for all x 2 @˝; (37)

where �.x/ denotes the outer unit normal vector at x, and the boundary condition

posed on the unknown function u is stated as


.x/ � Du.x/ D g.x/ for x 2 @˝:

This condition is called the (inhomogeneous, linear) Neumann boundary condition.

We remark that if u 2 C 1.˝/, then the directional derivative @u=@
 of u in the

direction of 
 is given by

@u

@

.x/ D 
.x/ � Du.x/ D lim

t!0

u.x C t
.x// � u.x/

t
for x 2 @˝:

(Note here that u is assumed to be defined in a neighborhood of x.)

Our boundary value problem (36) is now stated precisely as

8
<̂

:̂

H.x;Du.x// D 0 in ˝;

@u

@

.x/ D g.x/ on @˝:

(SNP)

Let U be an open subset of Rn such that U \ ˝ 6D ;. At this stage we briefly

explain the viscosity formulation of a more general boundary value problem

(
F.x; u.x/;Du.x// D 0 in U \˝;
B.x; u.x/;Du.x// D 0 on U \ @˝;

(38)

where the functions F W .U \˝/ � R � R
n ! R, B W .U \ @˝/ � R � R

n ! R

and u W .U \ ˝/ ! R are assumed to be locally bounded in their domains of

definition. The function u is said to be a viscosity subsolution of (38) if the following

requirements are fulfilled:

8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:

� 2 C 1.˝/; Ox 2 ˝; max
˝

.u� � �/ D .u� � �/. Ox/

H)

(i) F�. Ox; u�. Ox/;D�. Ox// � 0 if Ox 2 U \˝;
(ii) F�. Ox; u�. Ox/;D�. Ox// ^ B�. Ox; u�. Ox/;D�. Ox// � 0 if Ox 2 U \ @˝:
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The upper and lower semicontinuous envelopes are taken in all the variables. That

is, for x 2 U \˝ , � 2 .U \˝/ � R � R
n and � 2 .U \ @˝/ � R � R

n,

u�.x/ D lim
r!0C

supfu.y/ W y 2 Br .x/ \ U \˝/g;

F�.�/ D lim
r!0C

inffF.X/ W X 2 .U \˝/ � R � R
n; jX � �j < rg;

B�.�/ D lim
r!0C

inffB.Y / W Y 2 .U \ @˝/ � R � R
n; jY � �j < rg:

The definition of viscosity supersolutions of the boundary value problem (38) is

given by reversing the upper and lower positions of �, the inequalities, and “sup”

and “inf” (including ^ and _), respectively. Then viscosity solutions of (38) are

defined as those functions which are both viscosity subsolution and supersolution

of (38).

Here, regarding the above definition of boundary value problems, we point out

the following: define the functionG W .U \˝/ � R � R
n ! R by

G.x; u; p/ D

8
<
:
F.x; u; p/ if x 2 ˝;

B.x; u; p/ if x 2 @˝;
(39)

and note that the lower (resp., upper) semicontinuous envelopeG� (resp.,G�) of G

is given by

G�.x; u; p/ D

8
<
:
F�.x; u; p/ if x 2 ˝;

F�.x; u; p/ ^ B�.x; u; p/ if x 2 @˝
 

resp., G�.x; u; p/ D

8
<
:
F �.x; u; p/ if x 2 ˝;

F �.x; u; p/ _ B�.x; u; p/ if x 2 @˝

!
:

Thus, the above definition of viscosity subsolutions, supersolutions and solutions of

(38) is the same as that of Definition 1.2 with F and˝ replaced byG defined by (39)

and U \ ˝ , respectively. Therefore, the propositions in Sect. 1.4 are valid as well

to viscosity subsolutions, supersolutions and solutions of (38). In order to apply the

above definition to (SNP), one may take Rn as U or any open neighborhood of˝ .

In Sect. 1.4 we have introduced the notion of properness of PDE (FE). The

following example concerns this property.

Example 2.1. Consider the boundary value problem (38) in the case where n D 1,

˝ D .0; 1/, U D R, F.x; p/ D p � 1 and B.x; p/ D p � 1. The function

u.x/ D x on Œ0; 1� is a classical solution of (38). But this function u is not a viscosity

subsolution of (38). Indeed, if we take the test function �.x/ D 2x, then u �� takes

a maximum at x D 0 while we have B.0; �0.0// D F.0; �0.0// D 2 � 1 D 1 > 0.
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However, if we reverse the direction of derivative at 0 by replacing the above B by

the function

B.x; p/ D

8
<
:
p � 1 for x D 1;

�p C 1 for x D 0;

then the function u is a classical solution of (38) as well as a viscosity solution

of (38).

Definition 2.1. The domain˝ is said to be of class C 1 (or simply˝ 2 C 1) if there

is a function � 2 C 1.Rn/ which satisfies

˝ D fx 2 R
n W �.x/ < 0g;

D�.x/ 6D 0 for all x 2 @˝:

The functions � having the above properties are called defining functions of ˝ .

Remark 2.1. If � is chosen as in the above definition, then the outer unit normal

vector �.x/ at x 2 @˝ is given by

�.x/ D D�.x/

jD�.x/j :

Indeed, we have

N.x;˝/ D ft�.x/ W t � 0g for all x 2 @˝:

To see this, observe that if t � 0, then 1˝ C t� as a function in R
n attains a local

maximum at any point x 2 @˝ , which shows that

t jD�.x/j�.x/ 2 �DC1˝.x/ D N.x;˝/:

Next, let z 2 @˝ and � 2 C 1.Rn/ be such that 1˝ � � attains a strict maximum

over Rn at z. Observe that �� attains a strict maximum over ˝ at x. Fix a constant

r > 0 and, for each k 2 N, choose a maximum .over Br .z// point xk 2 B r .z/ of

�� � k�2, and observe that �.� C k�2/.xk/ � �.� C k�2/.z/ D ��.z/ for all

k 2 N and that xk ! z as k ! 1. For k 2 N sufficiently large we have

D.� C k�2/.xk/ D 0;

and hence

D�.xk/ D �2k�.xk/D�.xk/;
which shows in the limit as k ! 1 that

D�.z/ D �tD�.z/ D �t jD�.z/j�.z/;
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where t D limk!1 2k�.xk/ 2 R. Noting that �.� C k�2/.x/ < ��.x/ � ��.z/
for all x 2 ˝ , we find that xk 62 Br .z/ n ˝ for all k 2 N. Hence, we have t � 0.

Thus, we see thatN.z;˝/ � ft�.z/ W t � 0g and conclude thatN.z;˝/ D ft�.z/ W
t � 0g

Henceforth in this section we assume that ˝ is of class C 1.

Proposition 2.1. If u 2 C 1.˝/ is a classical solution (resp., subsolution, or

supersolution) of (SNP), then it is a viscosity solution (resp., subsolution, or

supersolution) of (SNP).

Proof. Let G be the function given by (39), with B.x; u; p/ D 
.x/ � p � g.x/.

According to the above discussion on the equivalence between the notion of

viscosity solution for (SNP) and that for PDE G.x;Du.x// D 0 in ˝ and

Proposition 1.12, it is enough to show that the pair .G;˝/ is proper. From the above

remark, we know that for any x 2 @˝ we have N.x;˝/ D ft�.x/ W t � 0g and

G.x; p C t�.x// D 
.x/ � .p C t�.x// � 
.x/ � p D G.x; p/ for all t � 0:

As we noted before, we haveN.x;˝/ D f0g if x 2 ˝ . Thus, we have for all x 2 ˝
and all q 2 N.x;˝/,

G.x; p C q/ � G.x; p/: ut
We may treat in the same way the evolution problem

8
<̂

:̂

ut.x; t/CH.x; t;Dxu.x; t// D 0 in ˝ � J;
@u

@

.x; t/ D g.x; t/ on @˝ � J;

(40)

where J is an open interval in R, H W ˝ � J � R
n ! R and g W @˝ � J ! R. If

we set e̋ D ˝ � R, U D R
n � J ,

F.x; t; p; q/ D q CH.x; p/ for .x; t; p; q/ 2 ˝ � J � R
n � R;

and

B.x; t; p; q/ D 
.x/ � p � g.x; t/ for .x; t; p; q/ 2 @˝ � J � R
n � R;

then the viscosity formulation for (38) applies to (40), with ˝ replaced by e̋ .

We note here that if � is a defining function of˝ , then it, as a function of .x; t/, is

also a defining function of the “cylinder”˝�R. Hence, if we set Q
.x; t/ D .
.x/; 0/

and Q�.x; t/ D .�.x/; 0/ for .x; t/ 2 @.˝ � R/ D @˝ � R, then Q�.x; t/ is the outer

unit normal vector at .x; t/ 2 @˝ � R. Moreover, if 
 satisfies (37), then we have

Q
.x; t/ � Q�.x; t/ D 
.x/ � �.x/ > 0 for all .x; t/ 2 @˝ �R. Thus, as Proposition 2.1

says, if (37) holds, then any classical solution (resp., subsolution or supersolution)

of (40) is a viscosity solution (resp., subsolution or supersolution) of (40).

Before closing this subsection, we add two lemmas concerning C 1 domains.
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Lemma 2.1. Let ˝ be a bounded, open, connected subset of Rn. Assume that˝ is

of class C 1. Then there exists a constantC > 0 and, for each x; y 2 ˝ with x 6D y,

a curve � 2 AC.Œ0; t.x; y/�/, with t.x; y/ > 0, such that t.x; y/ � C jx � yj,
�.s/ 2 ˝ for all s 2 .0; t.x; y//, and j P�.s/j � 1 for a.e. s 2 Œ0; t.x; y/�.
Lemma 2.2. Let ˝ be a bounded, open, connected subset of Rn. Assume that˝ is

of class C 1. Let M > 0 and u 2 C.˝/ be a viscosity subsolution of jDu.x/j � M

in ˝ . Then the function u is Lipschitz continuous in ˝ .

The proof of these lemmas is given in Appendix A.3.

3 Initial-Boundary Value Problem for Hamilton–Jacobi

Equations

We study the initial value problem for Hamilton–Jacobi equations with the

Neumann boundary condition.

To make the situation clear, we collect our assumptions on ˝ , 
 and H .

(A1) ˝ is bounded open connected subset of Rn.

(A2) ˝ is of class C 1.

(A3) 
 2 C.@˝;Rn/ and g 2 C.@˝;R/.
(A4) 
.x/ � �.x/ > 0 for all x 2 @˝D.

(A5) H 2 C.˝ � R
n/.

(A6) H is coercive, i.e.,

lim
R!1

inffH.x; p/ W .x; p/ 2 ˝ � R
n; jpj � Rg D 1:

In what follows, we assume always that (A1)–(A6) hold.

3.1 Initial-Boundary Value Problems

Given a function u0 2 C.˝/, we consider the problem of evolution type

(
ut CH.x;Dxu/ D 0 in ˝ � .0;1/;


.x/ �Dxu D g.x/ on @˝ � .0; 1/;
(ENP)

u.x; 0/ D u0.x/ for x 2 ˝: (ID)

Here u D u.x; t/ is a function of .x; t/ 2 ˝ � Œ0;1/ and represents the unknown

function.
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When we say u is a (viscosity) solution of (ENP)–(ID), u is assumed to satisfy

the initial condition (ID) in the pointwise (classical) sense.

HenceforthQ denotes the set ˝ � .0; 1/.

Theorem 3.1 (Comparison). Let u 2 USC.Q/ and v 2 LSC.Q/ be a viscosity

subsolution and supersolution of (ENP), respectively. Assume furthermore that

u.x; 0/ � v.x; 0/ for all x 2 ˝ . Then u � v in Q.

To proceed, we concede the validity of the above theorem and will come back to

its proof in Sect. 3.3.

Remark 3.1. The above theorem guarantees that if u is a viscosity solution of

(ENP)–(ID) and continuous for t D 0, then it is unique.

Theorem 3.2 (Existence). There exists a viscosity solution u of (ENP)–(ID) in the

space C.Q/.

Proof. Fix any " 2 .0; 1/. Choose a function u0;" 2 C 1.˝/ so that

ju0;".x/ � u0.x/j < " for all x 2 ˝:

Let � 2 C 1.Rn/ be a defining function of ˝ . Since

D�.x/ D jD�.x/j�.x/ for x 2 @˝;

we may choose a constantM" > 0 so large that

M"
.x/ �D�.x/ � max
@˝
.jgj C j
 � Du0;"j/ for all x 2 @˝:

Next choose a function � 2 C 1.R/ so that

8
ˆ̂<
ˆ̂:

� 0.0/ D 1;

�1 ��.r/ � 0 for r � 0;

0 �� 0.r/ � 1 for r � 0:

Setting

�".x/ D "�.M"�.x/="/;

we have

(
� " � �".x/ � 0 for all x 2 ˝;

.x/ �D�".x/ � jg.x/j C j
.x/ � Du0;".x/j for all x 2 @˝;

and we may choose a constant C" > 0 such that

jD�".x/j � C" for all x 2 ˝:
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Then define the functions f ˙
" 2 C 1.˝/ by

f ˙
" .x/ D u0;".x/˙ .�".x/C 2"/;

and observe that

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

u0.x/ � f C
" .x/ � u0.x/C 3" for all x 2 ˝;

u0.x/ � f �
" .x/ � u0.x/ � 3" for all x 2 ˝;


.x/ �Df C
" .x/ � g.x/ for all x 2 @˝;


.x/ �Df �
" .x/ � g.x/ for all x 2 @˝:

Now, we choose a constant A" > 0 large enough so that

jH.x;Df ˙
" .x//j � A" for all x 2 ˝;

and set

g˙
" .x; t/ D f ˙

" .x/˙ A"t for .x; t/ 2 Q:
The functions gC

" ; g
�
" 2 C 1.Q/ are a viscosity supersolution and subsolution of

(ENP), respectively.

Setting

hC.x; t/ D inffgC
" .x; t/ W " 2 .0; 1/g;

h�.x; t/ D supfg�
" .x; t/ W " 2 .0; 1/g;

we observe that hC 2 USC.Q/ and h� 2 LSC.Q/ are, respectively, a viscosity

supersolution and subsolution of (ENP). Moreover we have

u0.x/ D h˙.x; 0/ for all x 2 ˝;

h�.x; t/ � u0.x/ � hC.x; t/ for all .x; t/ 2 Q:

By Theorem 1.4, we find that there exists a viscosity solution u of (ENP) which

satisfies

h�.x; t/ � u.x; t/ � hC.x; t/ for all .x; t/ 2 Q:
Applying Theorem 3.1 to u� and u� yields

u� � u� for all .x; t/ 2 Q;

while u� � u� in Q by definition, which in particular implies that u 2 C.Q/. The

proof is complete. ut
Theorem 3.3 (Uniform continuity). The viscosity solution u 2 C.Q/ of (ENP)–

(ID) is uniformly continuous in Q. Furthermore, if u0 2 Lip.˝/, then u 2 Lip.Q/.
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Lemma 3.1. Let u0 2 Lip.˝/. Then there is a constant C > 0 such that the

functions u0.x/ C Ct and u0.x/ � Ct are, respectively, a viscosity supersolution

and subsolution of (ENP)–(ID).

Proof. Let � and � be the functions which are used in the proof of Theorem 3.2.

Choose the collection fu0;"g"2.0; 1/ � C 1.˝/ of functions so that

8
<̂

:̂

lim
"!0

ku0;" � u0k1;˝ D 0;

sup
"2.0; 1/

kDu0;"k1;˝ < 1:

As in the proof of Theorem 3.2, we may fix a constantM > 0 so that

M
.x/ �D�.x/ D M jD�.x/j�.x/ � 
.x/
� jg.x/j C j
.x/ � Du0;".x/j for all x 2 @˝:

Next set

R D sup
"2.0; 1/

kDu0;"k1;˝ CM kD�k1;˝ ;

and choose C > 0 so that

max
˝�BR

jH j � C:

Now, we put

v˙
" .x; t/ D u0;".x/˙ .M"�.�.x/="/C Ct/ for .x; t/ 2 Q;

and note that vC
" and v�

" are a classical supersolution and subsolution of (ENP).

Sending " ! 0C, we conclude by Proposition 1.9 that the functions u0.x/C Ct and

u0.x/� Ct are a viscosity supersolution and subsolution of (ENP), respectively. ut
Proof (Theorem 3.3). We first assume that u0 2 Lip.˝/, and show that u 2 Lip.Q/.

According to Lemma 3.1, there exists a constant C > 0 such that the function

u0.x/� Ct is a viscosity subsolution of (ENP). By Theorem 3.1, we get

u.x; t/ � u0.x/ � Ct for all .x; t/ 2 Q:

Fix any t > 0, and apply Theorem 3.1 to the functions u.x; t C s/ and u.x; s/ � Ct

of .x; s/, both of which are viscosity solutions of (ENP), to get

u.x; t C s/ � u.x; s/ � Ct for all .x; s/ 2 Q:
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Hence, if .p; q/ 2 DCu.x; s/, then we find that as t ! 0C,

u.x; s/ � u.x; s C t/C Ct � u.x; s/C qt C Ct C o.t/;

and consequently, q � �C . Moreover, if x 2 ˝ , we have

0 � q CH.x; p/ � H.x; p/ � C:

Due to the coercivity of H , there exists a constant R > 0 such that

p 2 BR:

Therefore, we get

q � �H.x; p/ � max
˝�BR

jH j:

Thus, if .x; s/ 2 ˝ � .0;1/ and .p; q/ 2 DCu.x; s/, then we have

jpj C jqj � M WD RC C C max
˝�BR

jH j:

Thanks to Proposition 1.14, we conclude that u is Lipschitz continuous in Q.

Next, we show in the general case that u 2 UC.Q/. Let " 2 .0; 1/, and choose a

function u0;" 2 Lip.˝/ so that

ku0;" � u0k1 � ":

Let u" be the viscosity solution of (ENP) satisfying the initial condition

u".x; 0/ D u0;".x/ for all x 2 ˝:

As we have shown above, we know that u" 2 Lip.Q/. Moreover, by Theorem 3.1

we have

ku" � uk1;Q � ":

It is now obvious that u 2 UC.Q/. ut

3.2 Additive Eigenvalue Problems

Under our hypotheses (A1)–(A6), the boundary value problem

(
H.x;Du/ D 0 in ˝;


.x/ � Du D g.x/ on @˝
(SNP)
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may not have a viscosity solution. For instance, the HamiltonianH.x; p/ D jpj2C1
satisfies (A5) and (A6), but, since H.x; p/ > 0, (SNP) does not have any viscosity

subsolution.

Instead of (SNP), we consider the additive eigenvalue problem

(
H.x;Dv/ D a in ˝;


.x/ �Dv D g.x/ on @˝:
(EVP)

This is a problem to seek for a pair .a; v/ 2 R � C.˝/ such that v is a viscosity

solution of the stationary problem (EVP). If .a; v/ 2 R�C.˝/ is such a pair, then a

and v are called an (additive) eigenvalue and eigenfunction of (EVP), respectively.

This problem is often called the ergodic problem in the viewpoint of ergodic optimal

control.

Theorem 3.4. (i) There exists a solution .a; v/ 2 R � Lip.˝/ of (EVP).

(ii) The eigenvalue of (EVP) is unique. That is, if .a; v/; .b;w/ 2 R � C.˝/ are

solutions of (EVP), then a D b.

The above result has been obtained by Lions et al., Homogenization of Hamilton-

Jacobi equations, unpublished.

In what follows we write c# for the unique eigenvalue a of (EVP).

Corollary 3.1. Let u 2 C.Q/ be the solution of (ENP)–(ID). Then the function

u.x; t/C c#t is bounded onQ.

Corollary 3.2. We have

c# D inffa 2 R W (EVP) has a viscosity subsolution vg:

Lemma 3.2. Let b; c 2 R and v;w 2 C.˝/. Assume that v (resp., w) is a viscosity

supersolution (resp., subsolution) of (EVP) with a D b (resp., a D c). Then b � c.

Remark 3.2. As the following proof shows, the assertion of the above lemma is

valid even if one replaces the continuity of v and w by the boundedness.

Proof. By adding a constant to v if needed, we may assume that v � w in˝ . Since

the functions v.x/� bt and w.x/� ct are a viscosity supersolution and subsolution

of (ENP), by Theorem 3.1 we get

v.x/ � bt � w.x/ � ct for all .x; t/ 2 Q;

from which we conclude that b � c. ut

Proof (Theorem 3.4). Assertion (ii) is a direct consequence of Lemma 3.2.



154 H. Ishii

We prove assertion (i). Consider the boundary value problem

(
�v CH.x;Dv/ D 0 in ˝;


.x/ �Dv D g on @˝;
(41)

where � > 0 is a given constant. We will take the limit as � ! 0 later on.

We fix � 2 .0; 1/. Let � 2 C 1.Rn/ be a defining function of the domain ˝ .

Select a constant A > 0 so large that A
.x/ �D�.x/ � jg.x/j for all x 2 @˝ , and

then B > 0 so large that B � Aj�.x/j C jH.x;˙AD�.x//j for all x 2 ˝ . Observe

that the functions A�.x/ C B=� and �A�.x/ � B=� are a classical supersolution

and subsolution of (41), respectively.

The Perron method (Theorem 1.4) guarantees that there is a viscosity solution v�
of (41) which satisfies

jv�.x/j � A�.x/C B=� � B=� for all x 2 ˝:

Now, since

��v�.x/ � B for all x 2 ˝;
v� satisfies in the viscosity sense

H.x;Dv�.x// � B for all x 2 ˝;

which implies, together with the coercivity of H , the equi-Lipschitz continuity of

fv�g�2.0; 1/. Thus the collections fv� � inf˝ v�g�2.0; 1/ and f�v�g�2.0; 1/ of functions

on ˝ are relatively compact in C.˝/. We may select a sequence f�j gj2N � .0; 1/

such that
�j ! 0;

v�j .x/ � inf
˝
v�j ! v.x/;

�jv�j .x/ ! w.x/

for some functions v;w 2 C.˝/ as j ! 1, where the convergences to v and w are

uniform on˝ . Observe that for all x 2 ˝ ,

w.x/ D lim
j!1

�jv�j .x/

D lim
j!1

�j
�
.v�j .x/ � inf

˝
v�j /C inf

˝
v�j
�

D lim
j!1

�j inf
˝
v�j ;

which shows that w is constant on ˝ . If we write this constant as a, then we see

by Proposition 1.9 that v is a viscosity solution of (EVP). This completes the proof

of (i). ut
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Proof (Corollary 3.1). Let v 2 C.˝/ be an eigenfunction of (EVP). That is, v

is a viscosity solution of (EVP), with a D c#. Then, for any constant C 2 R, the

function w.x; t/ WD v.x/�c#tCC is a viscosity solution of (ENP). We may choose

constants Ci , i D 1; 2, so that v.x/ C C1 � u0.x/ � v.x/ C C2 for all x 2 ˝ . By

Theorem 3.1, we see that

v.x/ � c#t C C1 � u.x; t/ � v.x/ � c#t C C2 for all .x; t/ 2 Q;

which shows that the function u.x; t/C c#t is bounded on Q. ut
Proof (Corollary 3.2). It is clear that

c# � c? WD inffa 2 R W (EVP) has a viscosity subsolution vg:

To show that c# � c?, we suppose by contradiction that c# > c?. By the definition

of c?, there is a b 2 Œc?; c#/ such that (EVP), with a D b, has a viscosity

subsolution  . Let v be a viscosity solution of (EVP), with a D c#. Since b < c#,

v is a viscosity supersolution of (EVP), with a D b. We may assume that  � v

in ˝ . Theorem 1.4 now guarantees the existence of a viscosity solution of (EVP),

which contradicts Theorem 3.4, (ii) (see Remark 3.2). ut
Example 3.1. We consider the case where n D 1, ˝ D .�1; 1/, H.x; p/ D
H.p/ WD jpj and 
.˙1/ D ˙1, respectively, and evaluate the eigenvalue c#. We

set gmin D minfg.�1/; g.1/g. Assume first that gmin � 0. In this case, the function

v.x/ D 0 is a classical subsolution of (SNP) and, hence, c# � 0. On the other hand,

since H.p/ � 0 for all p 2 R, we have c# � 0. Thus, c# D 0. We next assume that

gmin < 0. It is easily checked that if g.1/ D gmin, then the function v.x/ D gminx is

a viscosity solution of (EVP), with a D jgminj. (Notice that

�DCv.�1/ D .�1; �jgminj � [ Œ�jgminj; jgminj �;
�D�v.�1/ D Œ jgminj; 1/:/

Similarly, if g.�1/ D gmin, then the function v.x/ D jgminjx is a viscosity solution

of (EVP), with a D jgminj. These observations show that c# D jgminj.

3.3 Proof of Comparison Theorem

This subsection will be devoted to the proof of Theorem 3.1.

We begin with the following two lemmas.

Lemma 3.3. Let u be the function from Theorem 3.1. Set P D ˝ � .0; 1/. Then,

for every .x; t/ 2 @˝ � .0; 1/, we have

u.x; t/ D lim sup
P3.y;s/!.x;t/

u.y; s/: (42)
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Proof. Fix any .x; t/ 2 @˝� .0; 1/. To prove (42), we argue by contradiction, and

suppose that

lim sup
P3.y;s/!.x;t/

u.y; s/ < u.x; t/:

We may choose a constant r 2 .0; t/ so that

u.y; s/C r < u.x; t/ for all .y; s/ 2 P \ .Br .x/ � Œt � r; t C r�/: (43)

Note that

P \ .Br.x/ � Œt � r; t C r�/ D .˝ \ Br .x// � Œt � r; t C r�:

Since u is bounded on ˝ � Œt � r; t C r�, we may choose a constant ˛ > 0 so

that for all .y; s/ 2 ˝ � Œt � r; t C r�,

u.y; s/C r � ˛.jy � xj2 C .s�t/2/ < u.x; t/ if jy�xj � r=2 or js � t j � r=2:

(44)

Let � be a defining function of ˝ . Let � be the function on R introduced in the

proof of Theorem 3.2. For k 2 N we define the function  2 C 1.RnC1/ by

 .y; s/ D k�1�.k2�.y//C ˛.jy � xj2 C .s � t/2/:

Consider the function

u.y; s/ �  .y; s/

on the set
�
˝ \ B r .x/

�
� Œt � r; t C r�. Let .yk ; sk/ 2

�
˝ \ B r .x/

�
� Œt � r; t C r�

be a maximum point of the above function. Assume that k > r�1.

Using (43) and (44), we observe that for all .y; s/ 2 .˝\Br .x//� Œt � r; tC r�,

u.y; s/ �  .y; s/ < u.x; t/ D u.x; t/ �  .x; t/

if either y 2 ˝ , jy � xj � r=2, or js � t j � r=2. Accordingly, we have

.yk ; sk/ 2
�
@˝ \ Br=2.x/

�
� .t � r=2; t C r=2/:

Hence, setting

pk D kD�.yk/C 2˛.yk � x/ and qk D 2˛.sk � t/;

we have

minfqk CH.yk ; pk/; 
.yk/ � pk � g.yk/g � 0:
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If we note that


.yk/ �D�.yk/ � min
@˝


 �D� > 0;

then, by sending k ! 1, we get a contradiction. ut
Lemma 3.4. Let y; z 2 R

n, and assume that y � z > 0. Then there exists a quadratic

function � in R
n which satisfies:

8
ˆ̂<
ˆ̂:

�.tx/ D t2�.x/ for all .x; t/ 2 R
n � R;

�.x/ > 0 if x 6D 0;

z �D�.x/ D 2.y � z/.y � x/ for all x 2 R
n:

Proof. We define the function � by

�.x/ D
ˇ̌
ˇx � y � x

y � z
z

ˇ̌
ˇ
2

C .y � x/2:

We observe that for any t 2 R,

�.x C tz/ D
ˇ̌
ˇ̌x C tz � y � .x C tz/

y � z
z

ˇ̌
ˇ̌
2

C .y � .x C tz//2

D
ˇ̌
ˇ̌x � y � x

y � z
z

ˇ̌
ˇ̌
2

C .y � x/2 C 2t.y � x/.y � z/C t2.y; z/2;

from which we find that

z �D�.x/ D 2.y � z/.y � x/:

If �.x/ D 0, then y � x D 0 and

0 D �.x/ D
ˇ̌
ˇx � y � x

y � z
z

ˇ̌
ˇ
2

D jxj2:

Hence, we have x D 0 if �.x/ D 0, which shows that �.x/ > 0 if x 6D 0. It is

obvious that the function � is homogeneous of degree two. The function � has the

required properties. ut
For the proof of Theorem 3.1, we argue by contradiction: we suppose that

sup
˝�Œ0;1/

.u � v/ > 0;

and, to conclude the proof, we will get a contradiction.
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Reduction 1: We may assume that there exist a constant ı > 0 and a finite open

interval J � .0; 1/ such that

u is a viscosity subsolution of
(

ut.x; t/CH.x;Dxu.x; t// � �ı in ˝ � J;

.x/ �Dxu.x; t/ � g.x/ on @˝ � J;

(45)

max
˝�J

.u � v/ > 0 > max
˝�@J

.u � v/; (46)

and

u and v are bounded on ˝ � J . (47)

Proof. We choose a T > 0 so that sup˝�.0; T /.u � v/ > 0 and set

u".x; t/ D u.x; t/ � "

T � t for .x; t/ 2 ˝ � Œ0; T /;

where " > 0 is a constant. It is then easy to check that u" is a viscosity subsolution

of 8
ˆ̂<
ˆ̂:

u";t CH.x;Dxu".x; t// � � "

T 2
in ˝ � .0; T /;

@u"

@

.x; t/ � g.x/ on @˝ � .0; T /:

Choosing " > 0 sufficiently small, we have

sup
˝�Œ0;T /

.u" � v/ > 0 > max
˝�f0g

.u" � v/:

If we choose ˛ > 0 sufficiently small, then

max
˝�Œ0;T�˛�

.u" � v/ > 0 > max
˝�@Œ0;T�˛�

.u" � v/:

Thus, if we set J D .0; T � ˛/ and replace u by u", then we are in the situation of

(45)–(47). ut
We may assume furthermore that u 2 Lip.˝ � J / as follows.

Reduction 2: We may assume that there exist a constant ı > 0 and a finite open

interval J � .0; 1/ such that
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u is a viscosity subsolution of
(

ut.x; t/CH.x;Dxu.x; t// � �ı in ˝ � J;

.x/ �Dxu.x; t/ � g.x/ on @˝ � J;

(48)

max
˝�J

.u � v/ > 0 > max
˝�@J

.u � v/; (49)

and

u 2 Lip.˝ � J / and v is bounded on ˝ � J . (50)

Proof. Let J be as in Reduction 1. We set J D .a; b/. Let M > 0 be a bound of juj
on˝ � Œa; b�.

For each " > 0 we define the sup-convolution in the t-variable

u".x; t/ D max
s2Œa;b�

�

u.x; s/ � .t � s/2

2"

�

:

We note as in Sect. 1.6 that

M � u".x; t/ � u.x; t/ � �M for all .x; t/ 2 ˝ � Œa; b�:

Noting that
1

2"
.t � s/2 � 2M ” jt � sj � 2

p
"M (51)

and setting m" D 2
p
"M , we find that

u".x; t/ D max
a<s<b

�

u.x; s/ � .t � s/2

2"

�

for all .x; t/ 2 ˝ � .aCm"; b �m"/:

Let .x; t/ 2 ˝ � .aCm"; b �m"/. Choose an s 2 .a; b/ so that

u".x; t/ D u.x; s/ � .t � s/2
2"

:

Note by (51) that

jt � sj � m":

Let .p; q/ 2 DCu".x; t/ and choose a function � 2 C 1.˝ � .a; b// so that

D�.x; t/ D .p; q/ and max.u" � �/ D .u" � �/.x; t/. Observe as in Sect. 1.6 that

.p; .s � t/="/ 2 DCu.x; s/ and
.t � s/

"
C q D 0:



160 H. Ishii

Hence,

.p; q/ 2 DCu.x; s/:

Therefore, we have

(
q CH.x; p/C ı � 0 if x 2 ˝;
minfq CH.x; p/C ı; 
.x/ � p � g.x/g � 0 if x 2 @˝:

(52)

Moreover, we see that

jqj D jt � sj
"

� m"

"
;

and

H.x; p/ � �q � m"

"
if x 2 ˝:

Hence, by the coercivity of H , we have

jqj C jpj � R."/ if x 2 ˝; (53)

for some constant R."/ > 0.

Thus, we conclude from (52) that u" is a viscosity subsolution of

(
ut CH.x;Dxu/ � �ı in ˝ � .a Cm"; b �m"/;


 �Dxu � g on @˝ � .a Cm"; b �m"/;

and from (53) that u" is Lipschitz continuous in˝�.aCm"; b�m"/. By Lemma 3.3,

we have

u".x; t/ D lim sup
˝�.aCm"; b�m"/3.y;s/!.x;t/

u".y; s/ for all .x; t/ 2 @˝�.aCm"; b�m"/:

Since u" 2 Lip.˝ � .a Cm"; b �m"//, the limsup operation in the above formula

can be replaced by the limit operation. Hence,

u" 2 C.˝ � .a Cm"; b �m"//;

which guarantees that u" is Lipschitz continuous in ˝ � .a Cm"; b �m"/.

Finally, if we replace u and J by u" and .a C 2m"; b � 2m"/, respectively, and

select " > 0 small enough so that

max
˝�ŒaC2m";b�2m"�

.u" � v/ > 0 > max
˝�@ŒaC2m" ;b�2m"�

.u" � v/;

then conditions (48)–(50) are satisfied. ut
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Reduction 3: We may assume that there exist a constant ı > 0 and a finite open

interval J � .0; 1/ such that

u is a viscosity subsolution of
(

ut.x; t/CH.x;Dxu.x; t// � �ı in ˝ � J;

.x/ �Dxu.x; t/ � g.x/ � ı on @˝ � J;

(54)

v is a viscosity supersolution of
(
vt .x; t/CH.x;Dxv.x; t// � ı in ˝ � J;

.x/ �Dxv.x; t/ � g.x/C ı on @˝ � J;

(55)

max
˝�J

.u � v/ > 0 > max
˝�@J

.u � v/; (56)

and

u 2 Lip.˝ � J / and v is bounded on ˝ � J . (57)

Proof. Let u, v, J be as in Reduction 2. Set J D .a; b/. Let � be a defining function

of ˝ as before. Let 0 < " < 1. We set

u".x; t/ D u.x; t/ � "�.x/ and v".x; t/ D v.x; t/C "�.x/ for .x; t/ 2 ˝ � J ;

and

H".x; p/ D H.x; p � "D�.x//C " for .x; p/ 2 ˝ � R
n:

Let .x; t/ 2 ˝ � J and .p; q/ 2 D�v".x; t/. Then we have

.p � "D�.x/; q/ 2 D�v.x; t/:

Since v is a viscosity supersolution of (ENP), if x 2 ˝ , then

q CH.x; p � "D�.x// � 0:

If x 2 @˝ , then either

q CH.x; p � "D�.x// � 0;

or

.x/ � p D 
.x/ � .p � "D�.x//C "
.x/ �D�.x/

� g.x/C "
.x/ �D�.x/ � g.x/C �";

where

� D min
@˝


 �D� .> 0 /:
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Now let .p; q/ 2 DCu".x; t/. Note that .p C "D�.x/; q/ 2 DCu.x; t/. Since

u 2 Lip.˝ � Œa; b�/, we have a bound C0 > 0 such that

jqj � C0:

If x 2 ˝ , then

q CH.x; p � "D�.x// � q CH.x; p C "D�.x//C !.2"jD�.x/j/
� � ı C !.2"C1/;

where

C1 D max
˝

jD�j;

and ! denotes the modulus of continuity of H on the set ˝ � BRC2C1 , with R > 0

being chosen so that

min
˝�.RnnBR/

H > C0:

(Here we have used the fact that H.x; p C "D�.x// � C0, which implies that

jp C "D�.x/j � R.)

If x 2 @˝ , then either

q CH.x; p � "D�.x// � �ı C !.2"C1/;

or


.x/ � p � 
.x/ � .p C "D�.x// � "
.x/ �D�.x/ � g.x/ � �":

Thus we see that v" is a viscosity supersolution of

(
v";t CH".x;Dxv"/ � " in ˝ � J;

.x/ �Dxv".x; t/ � g.x/C �" on @˝ � J;

and u" is a viscosity subsolution of

(
u";t CH".x;Dxu"/ � �ı C !.2C1"/C " in ˝ � J;

 � Du" � g.x/ � �" on @˝ � J;

If we replace u, v, H and ı by u", v", H" and

minf"; �"; ı � !.2C1"/� "g;

respectively, and choose " > 0 sufficiently small, then conditions (54)–(57) are

satisfied. ut
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Final step: Let u, v, J and ı be as in Reduction 3. We choose a maximum point

.z; �/ 2 ˝ � J of the function u � v. Note that � 2 J , that is, � 62 @J .

By replacing u, if necessary, by the function

u.x; t/ � "jx � zj2 � ".t � �/2;

where " > 0 is a small constant, we may assume that .z; �/ is a strict maximum

point of u � v.

By making a change of variables, we may assume that z D 0 and

˝ \ B2r D fx D .x1; : : : ; xn/ 2 B2r W xn < 0g;

while we may assume as well that Œ� � r; � C r� � J .

We set O
 D 
.0/ and apply Lemma 3.4, with y D .0; : : : ; 0; 1/ 2 R
n and z D O
 ,

to find a quadratic function � so that

8
ˆ̂<
ˆ̂:

�.t�/ D t2�.�/ for all .�; t/ 2 R
n � R;

�.�/ > 0 if � 6D 0;

O
 �D�.�/ D 2 O
n�n for all � D .�1; : : : ; �n/ 2 R
n;

where O
n denotes the n-th component of the n-tuple O
 .

By replacing � by a constant multiple of �, we may assume that

�.�/ � j�j2 for all � 2 R
n;

jD�.�/j � C0j�j for all � 2 R
n;

O
 �D�.�/
(

� 0 if �n � 0;

� 0 if �n � 0;

where C0 > 0 is a constant.

Let M > 0 be a Lipschitz bound of the function u. Set

Og D g.0/; � D Og O

j O
 j2 and M1 D M C j�j:

We may assume by replacing r by a smaller positive constant if needed that for all

x 2 Br \ @˝ ,

j
.x/ � O
 j < ı

2.j�j C C0M1/
and jg.x/ � Ogj < ı

2
: (58)

For ˛ > 1 we consider the function

˚.x; t; y; s/ D u.x; t/ � v.y; s/ � � � .x � y/ � ˛�.x � y/ � ˛.t � s/2
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on K WD
�
.˝ \ Br .0; �/ � Œ� � r; � C r�

�2
. Let .x˛; t˛; y˛; s˛/ be a maximum

point of the function ˚ . By the inequality ˚.y˛; s˛; y˛; s˛/ � ˚.x˛; t˛; y˛; s˛/,

we get

˛.jx˛ � y˛j2 C .t˛ � s˛/
2/ �˛.�.x˛ � y˛/C .t˛ � s˛/2/

� u.x˛; t˛/� u.y˛; s˛/C j�jjx˛ � y˛j

�M1.jx˛ � y˛j2 C jt˛ � s˛j2/1=2;

and hence

˛.jx˛ � y˛j2 C jt˛ � s˛j2/1=2 � M1: (59)

As usual we may deduce that as ˛ ! 1,

8
ˆ̂<
ˆ̂:

.x˛; �˛/; .y˛; s˛/ ! .0; �/;

u.x˛; t˛/ ! u.0; �/;

v.y˛ ; s˛/ ! v.0; �/:

Let ˛ > 1 be so large that

.x˛; t˛/; .y˛; s˛/ 2 .˝ \ Br / � .� � r; � C r/:

Accordingly, we have

.�C ˛D�.x˛ � y˛/; 2˛.t˛ � s˛// 2 DCu.x˛; t˛/;

.�C ˛D�.x˛ � y˛/; 2˛.t˛ � s˛// 2 D�v.y˛ ; s˛/:

Using (59), we have

˛jD�.x˛ � y˛/j � C0˛jx˛ � y˛j � C0M1: (60)

If x˛ 2 @˝ , then x˛;n D 0 and .x˛ � y˛/n � 0. Hence, in this case, we have

O
 �D�.x˛ � y˛/ � 0;

and moreover, in view of (58) and (60),


.x˛/ � .�C ˛D�.x˛ � y˛// � O
 � .�C ˛D�.x˛ � y˛//

� j
.x˛/ � O
 j.j�j C C0M1/

>g.x˛/ � j Og � g.x˛/j � ı

2
> g.x˛/ � ı:



Introduction to Viscosity Solutions and the Large Time Behavior of Solutions 165

Now, by the viscosity property of u, we obtain

2˛.t˛ � s˛/CH.x˛; �C ˛D�.x˛ � y˛// � �ı;

which we certainly have when x˛ 2 ˝ .

If y˛ 2 @˝ , then .x˛ � y˛/n � 0 and

O
 �D�.x˛ � y˛/ � 0:

As above, we find that if y˛ 2 @˝ , then


.y˛/ � .�C ˛D�.x˛ � y˛// < ı;

and hence, by the viscosity property of v,

2.t˛ � s˛/CH.y˛; �C ˛D�.x˛ � y˛// � ı;

which is also valid in case when y˛ 2 ˝ .

Thus, we always have

(
2˛.t˛ � s˛/CH.x˛; �C ˛D�.x˛ � y˛// � �ı;
2.t˛ � s˛/CH.y˛; �C ˛D�.x˛ � y˛// � ı:

Sending ˛ ! 1 along a sequence, we obtain

q CH.0;�C p/ � �ı and q CH.0;�C p/ � ı

for some p 2 BC0M1 and q 2 Œ�2M1; 2M1�, which is a contradiction. This

completes the proof of Theorem 3.1. ut

4 Stationary Problem: Weak KAM Aspects

In this section we discuss some aspects of weak KAM theory for Hamilton–Jacobi

equations with the Neumann boundary condition. We refer to Fathi [25, 27], E [22]

and Evans [24] for origins and developments of weak KAM theory.

Throughout this section we assume that (A1)–(A6) and the following (A7)

hold:

(A7) The Hamiltonian H is convex. That is, the function p 7! H.x; p/ is convex

in R
n for any x 2 ˝ .

As in Sect. 2 we consider the stationary problem
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8
<̂

:̂

H.x;Du.x// D 0 in ˝;

@u

@

.x/ D g.x/ on @˝:

(SNP)

As remarked before this boundary value problem may have no solution in general,

but, due to Theorem 3.4, if we replace H by H � a with the right choice of a 2 R,

the problem (SNP) has a viscosity solution. Furthermore, if we replaceH byH �a
with a sufficiently large a 2 R, the problem (SNP) has a viscosity subsolution. With

a change of Hamiltonians of this kind in mind, we make the following hypothesis

throughout this section:

(A8) The problem (SNP) has a viscosity subsolution.

4.1 Aubry Sets and Representation of Solutions

We start this subsection by the following Lemma.

Lemma 4.1. Let u 2 USC.˝/ be a viscosity subsolution of (SNP). Then u 2
Lip.˝/. Moreover, u has a Lipschitz bound which depends only on H and˝ .

Proof. By the coercivity ofH , there exists a constantM > 0 such thatH.x; p/ > 0

for all .x; p/ 2 ˝ � .Rn n BM /. Fix such a constant M > 0 and note that u is a

viscosity subsolution of jDu.x/j � M in ˝ . Accordingly, we see by Lemma 2.2

that u 2 Lip.˝/. Furthermore, if C > 0 is the constant from Lemma 2.1, then we

have ju.x/ � u.y/j � CM jx � yj for all x; y 2 ˝ . (See also Appendix A.3.)

Since the function u.x/, as a function of .x; t/, is a viscosity subsolution of

(ENP), Lemma 3.3 guarantees that u is continuous up to the boundary @˝ . Thus, we

get ju.x/ � u.y/j � CM jx � yj for all x; y 2 ˝, which completes the proof. ut
We introduce the distance-like function d W ˝ �˝ ! R by

d.x; y/ D supfv.x/ � v.y/ W v 2 USC.˝/ \ S �g;

where S � D S �.˝/ has been defined as the set of all viscosity subsolutions

of (SNP). By (A8), we have S � 6D ; and hence d.x; x/ D 0 for all x 2 ˝ .

Since USC.˝/ \ S � is equi-Lipschitz continuous on ˝ by Lemma 4.1, we see

that the functions .x; y/ 7! v.x/ � v.y/, with v 2 USC.˝/ \ S �, are equi-

Lipschitz continuous and d is Lipschitz continuous on˝ �˝. By Proposition 1.10,

the functions x 7! d.x; y/, with y 2 ˝ , are viscosity subsolutions of (SNP). Hence,

by the definition of d.x; z/ we get

d.x; y/� d.z; y/ � d.x; z/ for all x; y; z 2 ˝:
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We set

Fy D fv.x/ � v.y/ W v 2 S �g; with y 2 ˝;
and observe by using Proposition 1.10 and Lemma 1.3 that Fy satisfies (P1) and

(P2), with ˝ replaced by˝ n fyg, of Proposition 1.13. Hence, by Proposition 1.13,

the function d.�; y/ D sup Fy is a viscosity solution of (SNP) in ˝ n fyg.

The following proposition collects these observations.

Proposition 4.1. We have:

(i) d.x; x/ D 0 for all x 2 ˝.

(ii) d.x; y/ � d.x; z/C d.z; y/ for all x; y; z 2 ˝ .

(iii) d.�; y/ 2 S �.˝/ for all y 2 ˝ .

(iv) d.�; y/ 2 S .˝ n fyg/ for all y 2 ˝ .

The Aubry set (or Aubry–Mather set) A associated with (SNP) is defined by

A D fy 2 ˝ W d.�; y/ 2 S .˝/g:

Example 4.1. Let n D 1, ˝ D .�1; 1/, H.x; p/ D jpj � f .x/, f .x/ D 1 � jxj,

.˙1/ D ˙1 and g.˙1/ D 0. The function v 2 C 1.Œ�1; 1�/ given by

v.x/ D
(
1 � 1

2
.x C 1/2 if x � 0;

1
2
.x � 1/2 if x � 0

is a classical solution of (SNP). We show that d.x; 1/ D v.x/ for all x 2 Œ�1; 1�. It

is enough to show that d.x; 1/ � v.x/ for all x 2 Œ�1; 1�. To prove this, we suppose

by contradiction that maxx2Œ�1;1�.d.x; 1/ � v.x// > 0. We may choose a constant

" > 0 so small that maxx2Œ�1;1�.d.x; 1/ � v.x/ � ".1 � x// > 0. Let x" 2 Œ�1; 1�
be a maximum point of the function d.x; 1/� v.x/ � ".1 � x/. Since this function

vanishes at x D 1, we have x" 2 Œ�1; 1/. If x" > �1, then we have

0 � H.x"; v
0.x"/ � "/ D jv0.x"/j C " � f .x"/ D " > 0;

which is impossible. Here we have used the fact that v0.x/ D jxj � 1 � 0 for all

x 2 Œ�1; 1�. On the other hand, if x" D �1, then we have

0 � minfH.�1; v0.�1/� "/; �.v0.�1/� "/g D minf"; "g D " > 0;

which is again impossible. Thus we get a contradiction. That is, we have d.x; 1/ �
v.x/ and hence d.x; 1/ D v.x/ for all x 2 Œ�1; 1�. Arguments similar to the above

show moreover that

d.x;�1/ D
(
1
2
.x C 1/2 if x � 0;

1 � 1
2
.x � 1/2 if x � 0;
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and

d.x; y/ D
(
d.x; 1/� d.y; 1/ if x � y;

d.x;�1/� d.y;�1/ if x � y:

Since two functions d.x;˙1/ are classical solutions of (SNP), we see that ˙1 2 A .

Noting that d.x; y/ � 0 and d.x; x/ D 0 for all x; y 2 Œ�1; 1�, we find that for

each fixed y 2 Œ�1; 1� the function x 7! d.x; y/ has a minimum at x D y. If

y 2 .�1; 1/, then H.y; 0/ D �f .y/ < 0. Hence, we see that the interval .�1; 1/
does not intersect A . Thus, we conclude that A D f�1; 1g.

A basic observation on A is the following:

Proposition 4.2. The Aubry set A is compact.

Proof. It is enough to show that A is a closed subset of ˝ . Note that the function

d is Lipschitz continuous in ˝ � ˝. Therefore, if fykgk2N � A converges to

y 2 ˝ , then the sequence fd.�; yk/gk2N converges to the function d.�; y/ in C.˝/.

By the stability of the viscosity property under the uniform convergence, we see that

d.�; y/ 2 S . Hence, we have y 2 A . ut
The main assertion in this section is the following and will be proved at the end

of the section.

Theorem 4.1. Let u 2 C.˝/ be a viscosity solution of (SNP). Then

u.x/ D inffu.y/C d.x; y/ W y 2 A g for all x 2 ˝: (61)

We state the following approximation result on viscosity subsolutions of (SNP).

Theorem 4.2. Let u 2 C.˝/ be a viscosity subsolution of (SNP). There exists a

collection fu"g"2.0; 1/ � C 1.˝/ such that for any " 2 .0; 1/,
8
<̂

:̂

H.x;Du".x// � " in ˝;

@u"

@

.x/ � g.x/ on @˝;

and

ku" � uk1;˝ < ":

A localized version of the above theorem is in [39] (see also Appendix A.4 and

[8]) and the above theorem seems to be new in the global nature.

As a corollary, we get the following theorem.

Theorem 4.3. Let f1; f2 2 C.˝/ and g1; g2 2 C.@˝/. Let u; v 2 C.˝/ be

viscosity solutions of
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8
<̂

:̂

H.x;Du/ � f1 in ˝;

@u

@

� g1 on @˝;

and 8
<̂

:̂

H.x;Dv/ � f2 in ˝;

@v

@

� g2 on @˝;

respectively. Let 0 < � < 1 and set w D .1 � �/u C �v. Then w is a viscosity

subsolution of 8
<̂

:̂

H.x;Dw/ � .1 � �/f1 C �f2 in ˝;

@w

@

� .1 � �/g1 C �g2 on @˝;

(62)

Proof. By Theorem 4.2, for each " 2 .0; 1/ there are functions u"; v" 2 C 1.˝/

such that

ku" � uk1;˝ C kv" � vk1;˝ < ";
8
<̂

:̂

H.x;Du".x// � f1.x/C " in ˝;

@u"

@

.x/ � g1.x/ on @˝;

and 8
<̂

:̂

H.x;Dv".x// � f2.x/C " in ˝;

@v"

@

.x/ � g2.x/ on @˝:

If we set w" D .1 � �/u" C �v", then we get with use of (A7)

8
<̂

:̂

H.x;Dw".x// � .1 � �/f1.x/C �f2.x/C " in ˝;

@w"

@

.x/ � .1 � �/g1.x/C �g2.x/ on @˝:

Thus, in view of the stability property (Proposition 1.9), we see in the limit as " ! 0

that w is a viscosity subsolution of (62). ut
The following theorem is also a consequence of (A7), the convexity of H , and

Theorem 4.2.

Theorem 4.4. Let F � USC(˝) be a nonempty collection of viscosity subsolutions

of (SNP). Assume that u.x/ WD inf F .x/ > �1 for all x 2 ˝ . Then u 2 Lip.˝/

and it is a viscosity subsolution of (SNP).
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This theorem may be regarded as part of the theory of Barron–Jensen’s lower

semicontinuous viscosity solutions. There are at least two approaches to this theory:

the original one by Barron–Jensen [11] and the other due to Barles [5]. The

following proof is close to Barles’ approach.

Proof. By Lemma 4.1, the collection F is equi-Lipschitz in ˝ . Hence, u is a

Lipschitz continuous function in˝ . For each x 2 ˝ there is a sequence fux;kgk2N �
F such that limk!1 ux;k.x/ D u.x/: Fix such sequences fux;kgk2N, with x 2 ˝

and select a countable dense subset Y � ˝ . Observe that Y � N is a countable set

and

u.x/ D inffuy;k.x/ W .y; k/ 2 Y � Ng for all x 2 ˝:
Thus we may assume that F is a sequence.

Let F D fukgk2N. Then we have

u.x/ D lim
k!1

.u1 ^ u2 ^ � � � ^ uk/.x/ for all x 2 ˝:

We show that u1 ^ u2 ^ � � � ^ uk is a viscosity subsolution of (SNP) for every

k 2 N. It is enough to show that if v and w are viscosity subsolutions of (SNP), then

so is the function v ^ w.

Let v and w be viscosity subsolutions of (SNP). Fix any " > 0. In view of

Theorem 4.2, we may select functions v"; w" 2 C 1.˝/ so that both for .�"; �/ D
.v"; v/ and .�"; �/ D .w";w/, we have

8
ˆ̂̂
<̂
ˆ̂̂
:̂

H.x;D�".x// � " for all x 2 ˝;
@�"

@

.x/ � g.x/ for all x 2 @˝;

k�" � �k1;˝ < ":

Note that .v" ^ w"/.x/ D v".x/� .v" � w"/C.x/. Let f�kgk2N � C 1.R/ be such

that (
�k.r/ ! rC uniformly on R as k ! 1;

0 � �0
k.r/ � 1 for all r 2 R; k 2 N:

We set z";k D v" � �k ı .v" � w"/ and observe that

Dz";k.x/ D
�
1 � �0

k.v".x/ � w".x//
�
Dv".x/C �0

k.v".x/ � w".x//Dw".x/:

By the convexity of H , we see easily that z";k satisfies

8
<̂

:̂

H.x;Dz";k.x// � " for all x 2 ˝;
@z";k

@

.x/ � g.x/ for all x 2 @˝:
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Since v ^ w is a uniform limit of z";k in˝ as k ! 1 and " ! 0, we see that v ^ w

is a viscosity subsolution of (SNP).

By the Ascoli–Arzela theorem or Dini’s lemma, we deduce that the convergence

u.x/ D lim
k!1

.u1 ^ � � � ^ uk/.x/

is uniform in ˝ . Thus we conclude that u is a viscosity subsolution of (SNP). ut
Remark 4.1. Theorem 4.2 has its localized version which concerns viscosity sub-

solutions of 8
<̂

:̂

H.x;Du.x// � 0 in U \˝;

@u

@

.x/ � g.x/ on U \ @˝;

where U is an open subset of R
n having nonempty intersection with ˝ . More

importantly, it has a version for the Neumann problem for Hamilton–Jacobi

equations of evolution type, which concerns solutions of

8
<̂

:̂

ut.x; t/CH.x;Dxu.x; t// � 0 in U \ .˝ � RC/;

@u

@

.x; t/ � g.x/ on U \ .@˝ � RC/;

where U is an open subset of Rn � RC, with U \ .˝ � RC/ 6D ;. Consequently,

Theorems 4.3 and 4.4 are valid for these problems with trivial modifications. For

these, see Appendix A.4.

Theorem 4.5. We have

c# D inf

�
max
x2˝

H.x;D .x// W  2 C 1.˝/; @ =@
 � g on @˝

�
:

Remark 4.2. A natural question here is if there is a function  2 C 1.˝/ which

attains the infimum in the above formula. See [12, 28].

Proof. Let c? denote the right hand side of the above minimax formula. By the

definition of c?, it is clear that for any a > c?, there is a classical subsolution of

(EVP). Hence, by Corollary 3.2, we see that c# � c?.

On the other hand, by Theorem 3.4, there is a viscosity solution v of (EVP), with

a D c#. By Theorem 4.2, for any a > c# there is a classical subsolution of (EVP).

That is, we have c? � c#. Thus we conclude that c# D c?. ut
Theorem 4.6 (Comparison). Let v;w 2 C.˝/ be a viscosity subsolution and

supersolution of (SNP), respectively. Assume that v � w on A . Then v � w in ˝ .

For the proof of the above theorem, we need the following lemma.
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Lemma 4.2. Let K be a compact subset of ˝ n A . Then there exists a function

 2 C 1.U \ ˝/, where U is an open neighborhood of K in R
n, and a positive

constant ı > 0 such that

8
<̂

:̂

H.x;D .x// � �ı in U \˝;
@ 

@

.x/ � g.x/ � ı on U \ @˝:

(63)

We assume temporarily the validity of the above lemma and complete the proof

of Theorems 4.6 and 4.1. The proof of the above lemma will be given in the sequel.

Proof (Theorem 4.6). By contradiction, we suppose that M WD sup˝.v � w/ > 0.

Let

K D fx 2 ˝ W .v � w/.x/ D M g;
which is a compact subset of ˝ n A . According to Lemma 4.2, there are ı > 0

and  2 C 1.U \ ˝/, where U is an open neighborhood of K such that  is a

subsolution of (63).

According to Theorem 4.2, for each " 2 .0; 1/ there is a function v" 2 C 1.˝/

such that 8
<̂

:̂

H.x;Dv".x// � " in ˝;

@v"

@

.x/ � g.x/ on @˝;

and

kv" � vk1;˝ < ":

We fix a � 2 .0; 1/ so that ı" WD �.1 � �/"C ı� > 0 and set

u".x/ D .1 � �/v".x/C � .x/:

This function satisfies

8
<̂

:̂

H.x;Du".x// � �ı" in U \˝;
@u"

@

.x/ � g.x/ � ı" on U \ @˝:

This contradicts the viscosity property of the function w if u"�w attains a maximum

at a point z 2 U \˝ . Hence, we have

max
U\̋

.u" � w/ D max
@U\̋

.u" � w/:

Sending " ! 0 and then � ! 0 yields

max
U\̋

.v � w/ D max
@U\̋

.v � w/;
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that is,

M D max
@U\˝

.v � w/:

This is a contradiction. ut
Remark 4.3. Obviously, the continuity assumption on v;w in the above lemma can

be replaced by the assumption that v 2 USC.˝/ and w 2 LSC.˝/.

Proof (Theorem 4.1). We write w.x/ for the right hand side of (61) in this proof. By

the definition of d , we have

u.x/� u.y/ � d.x; y/ for all x; y 2 ˝;

from which we see that u.x/ � w.x/.

By the definition of w, for every x 2 A , we have

w.x/ � u.x/C d.x; x/ D u.x/:

Hence, we have w D u on A .

Now, by Proposition 1.10 (its version for supersolutions), we see that w is a

viscosity supersolution of (SNP) while Theorem 4.4 guarantees that w is a viscosity

subsolution of (SNP). We invoke here Theorem 4.6, to see that u D w in ˝ . ut
Proof (Lemma 4.2). In view of Theorem 4.2, it is enough to show that there exist

functions w 2 Lip.˝/ and f 2 C.˝/ such that

(
f .x/ � 0 in ˝;

f .x/ > 0 in K;

and w is a viscosity subsolution of

8
<̂

:̂

H.x;Dw.x// � �f .x/ in ˝;

@w

@

.x/ � g.x/ on @˝:

For any z 2 ˝ n A , the function x 7! d.x; z/ is not a viscosity supersolution

of (SNP) at z while it is a viscosity subsolution of (SNP). Hence, according to

Lemma 1.3, there exist a function  z 2 Lip.˝/, a neighborhood Uz of z in R
n

and a constant ız > 0 such that  z is a viscosity subsolution of (SNP) and it is

moreover a viscosity subsolution of

8
<̂

:̂

H.x;D z.x// � �ız in Uz \˝;
@ z

@

.x/ � g.x/ � ız on Uz \ @˝:
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We choose a function fz 2 C.˝/ so that 0 < fz.x/ � ı for all x 2 ˝ \ Uz and

fz.x/ D 0 for all x 2 ˝ n Uz, and note that  z is a viscosity subsolution of

8
<̂

:̂

H.x;D z.x// � �fz.x/ in ˝;

@ z

@

.x/ � g.x/ � fz.x/ on @˝:

We select a finite number of points z1; : : : ; zk of K so that fUzi gkiD1 coversK .

Now, we define the function  2 Lip.˝/ by

 .x/ D 1

k

kX

iD1

 zi .x/;

and observe by Theorem 4.3 that  is a viscosity subsolution of

8
<̂

:̂

H.x;D .x// � �f .x/ in ˝;

@ 

@

.x/ � g.x/ � f .x/ on @˝;

where f 2 C.˝/ is given by

f .x/ D 1

k

kX

iD1

fzi .x/:

Finally, we note that infK f > 0. ut

4.2 Proof of Theorem 4.2

We give a proof of Theorem 4.2 in this subsection.

We begin by choosing continuous functions on R
n which extend the functions g,


 and �. We denote them again by the same symbols g, 
 and �.

The following proposition guarantees the existence of test functions which are

convenient to prove Theorem 4.2.

Theorem 4.7. Let " > 0 and M > 0. Then there exist a constant � > 0 and

moreover, for eachR > 0, a neighborhoodU of @˝ , a function � 2 C 1..˝ [U /�
R
n/ and a constant ı > 0 such that for all .x; �/ 2 .˝ [ U / � R

n,

M j�j � �.x; �/ � �.j�j C 1/;

and for all .x; �/ 2 U � BR,
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.x/ �D��.x; �/

8
<
:

� g.x/C 2" if �.x/ � � � ı;

� g.x/C "

2
if �.x/ � � � �ı:

It should be noted that the constant� in the above statement does not depend on

R while U , � and ı do.

We begin the proof with two Lemmas.

We fix r > 1 and set

R
2n
r D f.y; z/ 2 R

n � R
n W y � z � r�1; maxfjyj; jzjg � rg:

We define the function � 2 C1.R2nr � R
n/ by

�.y; z; �/ D
ˇ̌
ˇ� � y � �

y � z
z

ˇ̌
ˇ
2

C .y � �/2:

Lemma 4.3. The function � has the properties:

8
ˆ̂<
ˆ̂:

�.y; z; t�/ D t2�.y; z; �/ for all .y; z; �; t/ 2 R
2n
r � R

n � R;

�.y; z; �/ > 0 for all .y; z; �/ 2 R
2n
r � .Rn n f0g/;

z �D��.y; z; �/ D 2.y � z/.y � �/ for all .y; z; �/ 2 R
2n
r � R

n:

This is a version of Lemma 3.4, the proof of which is easily adapted to the present

case.

We define the function � W R
2n
r � R

n ! R by

�.y; z; �/ D .�.y; z; �/C 1/1=2 :

Lemma 4.4. There exists a constant� > 1, which depends only on r , such that for

all .y; z; �/ 2 R
2n
r � R

n,

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

z �D��.y; z; �/ D �.y; z; �/�1.y � z/.y � �/;

maxf��1j�j; 1g � �.y; z; �/ � �.j�j C 1/;

maxfjDy�.y; z; �/j; jDz�.y; z; �/jg � �;

jD��.y; z; �/j � �:

Proof. It is clear by the definition of � that

�.y; z; �/ � 1:
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We may choose a constant C > 1 so that for all .y; z; �/ 2 R
2n
r � Sn�1,

maxf�.y; z; �/; �.y; z; �/�1; jDy�.y; z; �/j; jDz�.y; z; �/j; jD��.y; z; �/jg � C;

where Sn�1 WD fx 2 R
n W jxj D 1g. By the homogeneity of the function �.y; z; �/

in �, we have

maxf�.y; z; �/; jDy�.y; z; �/j; jDz�.y; z; �/jg � C j�j2;
jD��.y; z; �/j � C j�j;

�.y; z; �/ � C�1j�j2
(64)

for all .y; z; �/ 2 R
2n
r � R

n. From this it follows that

C�1=2j�j � �.y; z; �/ � C 1=2.j�j C 1/:

By a direct computation, we get

Dx�.y; z; �/ D Dx�.y; z; �/

2�.y; z; �/
for x D y; z; �:

Hence, using (64), we get

jDy�.y; z; �/j � C j�j2
2�.y; z; �/

� C 3=2j�j:

In the same way, we get

jDz�.y; z; �/j � C 3=2j�j:

Also, we get

jD��.y; z; �/j � C j�j2
2�.y; z; �/

� C 3=2j�j:

We observe that

z �D��.y; z; �/ D z �D��.y; z; �/

2�.y; z; �/
D .y � z/.y � �/

�.y; z; �/
:

By setting � D C 3=2, we conclude the proof. ut
Let ˛ > 0. For anyW � R

n we denote byW ˛ the ˛–neighborhood ofW , that is,

W ˛ D fx 2 R
n W dist.x;W / < ˛g:
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For each ı 2 .0; 1/ we select �ı 2 C 1.˝1;Rn/, 
ı 2 C 1.˝1;Rn/ and gı 2
C 1.˝1;R/ so that for all x 2 ˝1,

maxfj�ı.x/ � �.x/j; j
ı.x/ � 
.x/j; jgı.x/ � g.x/jg < ı: (65)

(Just to be sure, note that ˝1 D fx 2 R
n W dist.x;˝/ < 1g.)

By assumption, we have

�.x/ � 
.x/ > 0 for all x 2 @˝:

Hence, we may fix ı0 2 .0; 1/ so that

inff�ı.x/ � 
ı.x/ W x 2 .@˝/ı0 ; ı 2 .0; ı0/g > 0:

We choose a constant r > 1 so that if ı 2 .0; ı0/, then

8
ˆ̂<
ˆ̂:

minf�ı.x/ � 
ı.x/; j
ı.x/jg � r�1;

maxfj�ı.x/j; j
ı.x/jg � r;

jgı.x/j C 1 < r:

(66)

for all x 2 .@˝/ı0 . In particular, we have

.�ı.x/; 
ı.x// 2 R
2n
r for all x 2 .@˝/ı0 and ı 2 .0; ı0/: (67)

To proceed, we fix any " 2 .0; 1/, M > 0 and R > 0. For each ı 2 .0; ı0/ we

define the function  ı 2 C 1..@˝/ı0 � R
n/ by

 ı.x; �/ D .gı.x/C "/

ı.x/ � �
j
ı.x/j2

;

choose a cut-off function �ı 2 C 1
0 .R

n/ so that

8
ˆ̂<
ˆ̂:

supp �ı � .@˝/ı;

0 � �ı.x/ � 1 for all x 2 R
n;

�ı.x/ D 1 for all x 2 .@˝/ı=2;

and define the function �ı 2 C 1.˝ı0/ by

�ı.x; �/ D M h�i.1� �ı.x//C �ı.x/
�
 ı.x; �/C .r2 CM/��ı.x; �/

�
;

where� and � are the constant and function from Lemma 4.4, h�i WD .j�j2 C 1/1=2

and �ı.x; �/ WD �.�ı.x/; 
ı.x/; �/. Since supp�ı � .@˝/ı0 for all ı 2 .0; ı0/, in

view of (67) we see that �ı is well-defined.
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Proof (Theorem 4.7). Let ı0 2 .0; 1/ and  ı ; �ı; �ı 2 C 1.˝ı0 � R
n/ be as above.

Let ı 2 .0; ı0/, which will be fixed later on. It is obvious that for all .x; �/ 2
.˝/ı0 � R

n, (

ı.x/ �D� ı.x; �/ D gı.x/C ";

j ı.x; �/j � r2j�j:
(68)

For any .x; �/ 2 .@˝/ı � R
n, using (66), (68) and Lemma 4.4, we get

 ı.x; �/C .r2 CM/��ı.x; �/ � �r2j�j C .r2 CM/j�j � M j�j;

and
 ı.x; �/C .r2 CM/��ı.x; �/ � r2j�j C .r2 CM/�2.j�j C 1/

� .2r2 CM/�2.j�j C 1/:

Thus, we have

M j�j � �ı.x; �/ � .2r2 CM/�2.j�j C 1/ for all .x; �/ 2 ˝ı � R
n: (69)

Now, note that if .x; �/ 2 .@˝/ı=2 � R
n, then

�ı.x; �/ D  ı.x; �/C .r2 CM/��ı.x; �/:

Hence, by Lemma 4.4 and (68), we get


ı.x/ �D��ı.x; �/ D gı.x/C "C .r2 CM/�
.�ı.x/ � 
ı.x//.�ı.x/ � �/

�ı.x; �/

for all .x; �/ 2 .@˝/ı=2 � R
n.

Next, let .x; �/ 2 ˝ı � R
n. Since

D��ı.x; �/ D M.1��ı.x//Dh�iC�ı.x/
�
D� ı.x; �/C .r2 CM/�D��ı.x; �/

�
;

using Lemma 4.4, we get

jD��ı.x; �/j � max

�
M jDh�ij; jgı.x/C "j

j
ı.x/j
C .r2 CM/�jD��ı.x; �/j

�

� maxfM; r2 C .r2 CM/�2g D .2r2 CM/�2:

(70)

Let .x; �/ 2 .@˝/ı=2 �BR. Note by (65) and (70) that

ˇ̌
.
ı.x/ � 
.x// �D��ı.x; �/

ˇ̌
� ı.2r2 CM/�2:
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Note also that if �.x/ � � � ı, then

.r2 CM/�
.�ı.x/ � 
ı.x//.�ı.x/ � �/

�ı.x; �/

� .r2 CM/�
.�ı.x/ � 
ı.x//.�.x/ � �/

�ı.x; �/
C .r2 CM/�r2Rı

� .r2 CM/�r2ı.1CR/:

Hence, if �.x/ � � � ı, then


.x/ �D��ı.x; �/ � 
ı.x/ �D��ı.x; �/C ı.2r2 CM/�2

� ı.2r2 CM/�2 C gı.x/C "C .r2 CM/�
.�ı.x/ � 
ı.x//.�ı.x/ � �/

�ı.x; �/

� g.x/C "C ı
�
1C .2r2 CM/�2r2 C .r2 CM/�r2.1CR/

�
:

Similarly, we see that if �.x/ � � � �ı, then


.x/ �D��ı.x; �/ � g.x/C "� ı
h
1C .2r2 CM/�2r2 C .r2 CM/�r2.1CR/

i
:

If we select ı 2 .0; ı0/ so that

ı
�
1C .2r2 CM/�2r2 C .r2 CM/�r2.1CR/

�
� "

2
;

then we have for all .x; �/ 2 .@˝/ı=2 � BR,


.x/ �D��ı.x; �/

(
� g.x/C 2" if �.x/ � � � ı;

� g.x/C "
2

if �.x/ � � � �ı:

Thus, the function � D �ı has the required properties, with .@˝/ı=2 and .2r2 C
M/�2 in place of U and�, respectively. ut

We are ready to prove the following theorem.

Theorem 4.8. Let " > 0 and u 2 Lip.˝/ be a viscosity subsolution of (SNP). Then

there exist a neighborhoodU of @˝ and a function u" 2 C 1.˝ [ U / such that

8
ˆ̂<
ˆ̂:

H.x;Du".x// � " for all x 2 ˝ [ U;

.x/ � Du".x/ � g.x/C " for all x 2 U;
ku" � uk1;˝ � ":

(71)
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Proof. Fix any " > 0 and a constant M > 1 so that M � 1 is a Lipschitz bound

of the function u. With these constants " and M , let � > 0 be the constant from

Theorem 4.7. Set R D M C 2�, and let U , � and ı be as in Theorem 4.7.

Let ˛ > 0. We define the sup-convolution u˛ 2 C.˝ [ U / by

u˛.x/ D max
y2˝

.u.y/� ˛�.x; .y � x/=˛//:

Let x 2 ˝ [U , p 2 DCu˛.x/ and y 2 ˝ be a maximum point in the definition

of u˛, that is,

u˛.x/ D u.y/ � ˛�.x; .y � x/=˛/: (72)

It is easily seen that

(
D��.x; .y � x/=˛/ 2 DCu.y/;

p D D��.x; .y � x/=˛/ � ˛Dx�.x; .y � x/=˛/:
(73)

Fix an ˛0 2 .0; 1/ so that

.@˝/˛
2
0 � U:

Here, of course, V denotes the closure of V . For ˛ 2 .0; ˛0/ we set U˛ D .@˝/˛
2

and V˛ D ˝ [ U˛ D ˝˛2 . Note that � 2 C 1.V ˛ � R
n/. We set W˛ D f.x; y/ 2

V˛ �˝ W (72) holdsg.

Now, we fix any ˛ 2 .0; ˛0/. Let .x; y/ 2 W˛ . We may choose a point z 2 ˝ so

that jx � zj < ˛2. Note that

u.y/ � ˛�.x; .y � x/=˛/ D u˛.x/ � u.z/ � ˛�.x; .z � x/=˛/:

Hence,

˛�.x; .y � x/=˛/ � .M � 1/jz � yj C ˛�.x; .z � x/=˛/:

Now, since M j�j � �.x; �/ � �.j�j C 1// for all .x; �/ 2 V˛ � R
n and jx � zj �

˛2 < ˛, we get

M jx � yj � .M � 1/.jx � yj C ˛2/C ˛�.jz � xj=˛ C 1/

� .M � 1/jx � yj C ˛.M C 2�/:

Consequently,

jy � xj � ˛.M C 2�/ D R˛ for all .x; y/ 2 W˛ : (74)

Next, we choose a constant C > 0 so that

jDx�.x; �/j C jD��.x; �/j � C for all .x; �/ 2 V˛0 �BR:
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Let .x; y/ 2 W˛ and z 2 BR˛.x/ \ V˛0 . Assume moreover that x 2 U . In view of

(74) and the choice of � and ı, we have


.x/ �D��.x; .y � x/=˛/

8
<
:

� g.x/C 2" if �.x/ � .y � x/ � ˛ı;

� g.x/C "

2
if �.x/ � .y � x/ � �˛ı:

We observe that

�.x/ � .y � x/

8
ˆ̂<
ˆ̂:

� ˛ı

2
C !�.R˛/R˛ if �.z/ � .y � x/ � ˛ı

2
;

� ˛ı

2
� !�.R˛/R˛ if �.z/ � .y � x/ � �˛ı

2
;

where !� denotes the modulus of continuity of the function � on V˛0 . Observe as

well that

ˇ̌

.z/ �D��.x; .y � x/=˛/ � 
.x/ �D��.x; .y � x/=˛/

ˇ̌
�C!
 .R˛/;

jg.z/ � g.x/j �!g.R˛/;

where !
 and !g denote the moduli of continuity of the functions 
 and g on the

set V˛0 , respectively.

We may choose an ˛1 2 .0; ˛0/ so that

!�.R˛1/R <
ı

2
and C!
 .R˛1/C !g.R˛1/ <

"

4
;

and conclude from the above observations that for all .x; y/ 2 W˛ and zi 2
BR˛.x/ \ V˛0 , with i D 1; 2; 3, if x 2 U and ˛ < ˛1, then


.z1/ �D��.x; .y � x/=˛/

8
<
:

� g.z2/C 3" if �.z3/ � .y � x/ � ˛ı=2;

� g.z2/C "

4
if �.z3/ � .y � x/ � �˛ı=2:

(75)

We may assume, by reselecting ˛1 > 0 small enough if necessary, that

.@˝/R˛1 � U: (76)

In what follows we assume that ˛ 2 .0; ˛1/. Let .x; y/ 2 W˛ and p 2 DCu˛.x/.

By (73) and (74), we have

maxfjpj; jD��.x; .y � x/=˛/jg � C.1C ˛/: (77)

Let !H denote the modulus of continuity of H on V˛0 � BC.1C˛0/.
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We now assume that y 2 @˝ . By (74) and (76), we have x 2 U . Let � be

a defining function of ˝ . We may assume that jD�j � 1 in V˛0 and �0 WD
infU˛0 jD�j > 0. Observe that

˛2 > �.x/ D �.x/ � �.y/ D D�.z/ � .x � y/ D jD�.z/j�.z/ � .x � y/

for some point z on the line segment Œx; y�. Hence, we get

�.z/ � .x � y/ � ��1
0 ˛

2:

If ˛ � �0ı=2, then

�.z/ � .y � x/ � �˛ı=2:
Hence, noting that jz � xj � jx � yj < R˛, by (75), we get


.y/ �D��.x; .y � x/=˛/ � g.y/C "

4
;

and, by the viscosity property of u,

0 � H.y;D��.x; .y � x/=˛// � H.x; p/ � !H ..RC C/˛/:

Thus, if !H ..RC C/˛/ < " and ˛ � �0ı=2, then we have

H.x; p/ � ":

On the other hand, if y 2 ˝ , then, by the viscosity property of u, we have

0 � H.y;D��.x; .y � x/=˛//:

Therefore, if !H ..RC C/˛/ < ", then

H.x; p/ � ":

We may henceforth assume by selecting ˛1 > 0 small enough that

!H ..RC C/˛1/ < " and ˛1 � �0ı=2;

and we conclude that u˛ is a viscosity subsolution of

H.x;Du˛.x// � " in V˛ : (78)

As above, let .x; y/ 2 W˛ and p 2 DCu˛.x/. We assume that x 2 U˛. Then

�˛2 < �.x/ � �.x/ � �.y/ � D�.z/ � .x � y/
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for some z 2 Œx; y�, which yields

�.z/ � .y � x/ < jD�.z/j�1˛2 � ��1
0 ˛

2:

Hence, if ˛ � �0ı=2, then

�.z/ � .y � x/ � ı˛

2
;

and, by (75), we get


.x/ �D��.x; .y � x/=˛/ � g.x/C 3":

Furthermore,


.x/ � p � 
.x/ �D��.x; .y � x/=˛/C ˛Ck
k1;U˛0

� g.x/C 3"C ˛Ck
k1;U˛0
:

We may assume again by selecting ˛1 > 0 small enough that

˛1Ck
k1;U˛0
< ":

Thus, u˛ is a viscosity subsolution of


.x/ � Du˛.x/ � g.x/C 4" in U˛: (79)

Let .x; y/ 2 W˛ and observe by using (74) that if x 2 ˝ , then

ju.x/� u˛.x/j � ju.x/ � u.y/j C ˛j�.x; .y � x/=˛/j � ˛.MRC C/:

We fix ˛ 2 .0; ˛1/ so that ˛1.MR C C/ < ", and conclude that u˛ is a viscosity

subsolution of (78) and (79) and satisfies

ku˛ � uk1;˝ � ":

The final step is to mollify the function u˛. Let fk�g�>0 be a collection of standard

mollification kernels.

We note by (77) or (78) that u˛ is Lipschitz continuous on any compact subset

of V˛ . Fix any � 2 .0; ˛2=4/. We note that the closure of V˛=2 C B� is a compact

subset of V˛ . Let M1 > 0 be a Lipschitz bound of the function u˛ on V˛=2 CB�.

We set

u�.x/ D u˛ � k�.x/ for x 2 V˛=2:
In view of Rademacher’s theorem (see Appendix A.6), we have

H.x;Du˛.x// � " for a.e. x 2 V˛;

.x/ � Du˛.x/ � g.x/C 4" for a.e. x 2 U˛:
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Here Du˛ denotes the distributional derivative of u˛ , and we have

Du� D k� � Du˛ in V˛=2:

By Jensen’s inequality, we get

H.x;Du�.x// �
Z

B�

H.x;Du˛.x � y//k�.y/ dy

�
Z

B�

H.x � y;Du˛.x � y//k�.y/ dy C !H .�/

� "C !H .�/;

where !H is the modulus of continuity ofH on the set V˛ �BM1 . Similarly, we get


.x/ � Du�.x/ � g.x/C 4"C !g.�/CM1!
 .�/;

where !g and !
 are the moduli of continuity of the functions g and 
 on V˛ ,

respectively. If we choose � > 0 small enough, then (71) holds with u� 2 C 1.V˛=2/,

U˛=2 and 5" in place of u", U and ", respectively. The proof is complete. ut

Proof (Theorem 4.2). Let " > 0 and u 2 Lip.˝/ be a viscosity subsolution of

(SNP). Let � be a defining function of ˝ . We may assume that

D�.x/ � 
.x/ � 1 for all x 2 @˝:

For ı > 0 we set

uı.x/ D u.x/� ı�.x/ for x 2 ˝:

It is easily seen that if ı > 0 is small enough, then uı is a viscosity subsolution of

(
H.x;Duı.x// � " in ˝;


.x/ � Duı.x/ � g.x/ � ı on @˝;

and the following inequality holds:

kuı � uk1;˝ � ":

Then, Theorem 4.8, with minf"; ıg, uı, H � " and g � ı in place of ", u, H and

g, respectively, ensures that there are a neighborhoodU of @˝ and a function u" 2
C 1.˝ [ U / such that
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8
ˆ̂<
ˆ̂:

H.x;Du".x// � 2" in ˝ [ U;


.x/ � Du".x/ � g.x/ in U;

ku" � uk1;˝ � 2";

which concludes the proof. ut

5 Optimal Control Problem Associated with (ENP)–(ID)

In this section we introduce an optimal control problem associated with the initial-

boundary value problem (ENP)–(ID),

5.1 Skorokhod Problem

In this section, following [39, 44], we study the Skorokhod problem. We recall that

RC denotes the interval .0; 1/, so that RC D Œ0; 1/. We denote by L1loc.RC; R
k/

(resp., ACloc.RC; R
k/) the space of functions v W RC ! R

k which are integrable

(resp., absolutely continuous) on any bounded interval J � RC.

Given x 2 ˝ and v 2 L1loc.RC;R
n/, the Skorokhod problem is to seek for a pair

of functions, .�; l/ 2 ACloc.RC;R
n/ � L1loc.RC; R/, such that

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

�.0/ D x;

�.t/ 2 ˝ for all t 2 RC;

P�.t/C l.t/
.�.t// D v.t/ for a.e. t 2 RC;

l.t/ � 0 for a.e. t 2 RC;

l.t/ D 0 if �.t/ 2 ˝ for a.e. t 2 RC:

(80)

Regarding the solvability of the Skorokhod problem, our main claim is the

following.

Theorem 5.1. Let v 2 L1loc.RC; R
n/ and x 2 ˝ . Then there exits a pair .�; l/ 2

ACloc.RC; R
n/ � L1loc.RC; R/ such that (80) holds.

We refer to [44] and references therein for more general viewpoints (especially,

for applications to stochastic differential equations with reflection) on the Sko-

rokhod problem.

A natural question arises whether uniqueness of the solution .�; l/ holds or not

in the above theorem. On this issue we just give the following counterexample and

do not discuss it further.
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Example 5.1. Let n D 2 and ˝ D fx D .x1; x2/ 2 R
2 W x1 > 0g. (For

simplicity of presentation, we consider the case where ˝ is unbounded.) Define


 2 C.@˝; R2/ and v 2 L1.RC; R
2/ by


.0; x2/ D .�1; �3jx2j�1=3x2/ and v.t/ D .�1; 0/:

Set

�˙.t/ D .0; ˙t3/ for all t � 0:

Then the pairs .�C; 1/ and .��; 1/ are both solutions of (80), with �˙.0/ D .0; 0/.

We first establish the following assertion.

Theorem 5.2. Let v 2 L1.RC; R
n/ and x 2 ˝ . Then there exits a pair .�; l/ 2

Lip.RC; R
n/ � L1.RC; R/ such that (80) holds.

Proof. We may assume that 
 is defined and continuous on R
n. Let � 2 C 1.Rn/ be

a defining function of ˝ . We may assume that lim infjxj!1 �.x/ > 0 and that D�

is bounded on R
n. We may select a constant ı > 0 so that for all x 2 R

n,


.x/ �D�.x/ � ıjD�.x/j and jD�.x/j � ı if 0 � �.x/ � ı:

We set q.x/ D .�.x/ _ 0/ ^ ı for x 2 R
n and observe that q.x/ D 0 for all x 2 ˝

and q.x/ > 0 for all x 2 R
n n˝.

Fix " > 0 and x 2 ˝. We consider the initial value problem for the ODE

P�.t/C 1

"
q.�.t//
.�.t// D v.t/ for a.e. t 2 RC; �.0/ D x: (81)

By the standard ODE theory, there is a solution � 2 Lip.RC/ of (81). Fix such a

solution � 2 Lip.RC; R
n/ in what follows.

Note that .d q ı �=dt/.t/ D D�.�.t// � P�.t/ a.e. in the set ft 2 RC W � ı �.t/ 2
.0; ı/g. Moreover, noting that q ı � 2 Lip.RC; R/ and hence it is differentiable a.e.,

we deduce that .d q ı �=dt/.t/ D 0 a.e. in the set ft 2 RC W � ı �.t/ 2 f0; ıgg.

Let m � 2. We multiply the ODE of (81) by mq.�.t//m�1D�.�.t//, to get

d

dt
q.�.t//m C m

"
q.�.t//mDq.�.t// � 
.�.t// D mq.�.t//m�1Dq.�.t// � v.t/

a.e. in the set ft 2 RC W � ı �.t/ 2 .0; ı/g. For any T 2 RC, integration over

ET WD ft 2 Œ0; T � W � ı �.t/ 2 .0; ı/g yields

q.�.T //m � q.�.0//m C m

"

Z

ET

q.�.s//m
.�.s// �D�.�.s//ds

D m

Z

ET

q.�.s//m�1D�.�.s// � v.s/ds:
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Here we note

Z

ET

q.�.s//m
.�.s// �D�.�.s//ds � ı

Z

ET

q.�.s//mjD�.�.s//jds;

and

Z

ET

q.�.s//m�1D�.�.s// � v.s/ds

�
�Z

ET

q.�.s//mjD�.�.s/jds
�1� 1

m
�Z

ET

jv.s/jmjD�.�.s//jds
� 1

m

:

Combining these, we get

q.�.T //m C mı

"

Z

ET

q.�.s//mjD�.�.s//jds

� m

�Z

ET

q.�.s//mjD�.�.s/jds
�1� 1

m
�Z

ET

jv.s/jmjD�.�.s//jds
� 1

m

:

Hence,

ı

"

�Z

ET

q.�.s//mjD�.�.s//jds
� 1

m

�
�Z

ET

jv.s/jmjD�.�.s//jds
� 1

m

and

q.�.T //m �
�"
ı

�m�1

m

Z

ET

jv.s/jmjD�.�.s//jds:

Thus, setting C0 D kD�kL1.Rn/, we find that for any T 2 RC,

q.�.t//m �
�"
ı

�m�1

mC0T kvkmL1.0;T / for all t 2 Œ0; T �: (82)

We henceforth write �" for �, in order to indicate the dependence on " of �, and

observe from (82) that for any T > 0,

lim
"!0C

max
t2Œ0; T �

dist.�".t/; ˝/ D 0: (83)

Also, (82) ensures that for any T > 0,

ı

"
kq ı �"kL1.0;T / �

�
ımC0T

"

� 1
m

kvkL1.0;T /:
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Sendingm ! 1, we find that .ı="/kq ı �"kL1.0; T / � kvkL1.0; T /, and moreover

ı

"
kq ı �"kL1.RC/ � kvkL1.RC/: (84)

We set l" D .1="/q ı �". Thanks to (84), we may choose a sequence "j ! 0C (see

Lemma E.1) so that l"j ! l weakly-star in L1.RC/ as j ! 1 for a function

l 2 L1.RC/. It is clear that l.s/ � 0 for a.e. s 2 RC.

ODE (81) together with (84) guarantees that f P�"g">0 is bounded in L1.RC/.

Hence, we may assume as well that �"j converges locally uniformly on RC to a

function � 2 Lip.RC/ as j ! 1. It is then obvious that �.0/ D x and the pair

.�; l/ satisfies

�.t/C
Z t

0

�
l.s/
.�.s//� v.s/

�
ds D x for all t 2 RC;

from which we get

P�.t/C l.t/
.�.t// D v.t/ for a.e. t 2 RC:

It follows from (83) that �.t/ 2 ˝ for t � 0.

In order to show that the pair .�; l/ is a solution of (80), we need only to prove

that for a.e. t 2 RC, l.t/ D 0 if �.t/ 2 ˝ . Set A D ft � 0 W �.t/ 2 ˝g. It is clear

that A is an open subset of Œ0; 1/. We can choose a sequence fIkgk2N of closed

finite intervals of A such that A D
S
k2N Ik . Note that for each k 2 N, the set �.Ik/

is a compact subset of˝ and the convergence of f�"j g to � is uniform on Ik . Hence,

for any fixed k 2 N, we may choose J 2 N so that �"j .t/ 2 ˝ for all t 2 Ik and

j � J . From this, we have q.�"j .t// D 0 for t 2 Ik and j � J . Moreover, in view

of the weak-star convergence of fl"j g, we find that for any k 2 N,

Z

Ik

l.t/dt D lim
j!1

Z

Ik

1

"j
q.�j .t//dt D 0;

which yields l.t/ D 0 for a.e. t 2 Ik . Since A D
S
k2N Ik , we see that l.t/ D 0 a.e.

in A. The proof is now complete. ut
For x 2 ˝ , let SP.x/ denote the set of all triples

.�; v; l/ 2 ACloc.RC;R
n/ �L1loc.RC;R

n/ � L1loc.RC/

which satisfies (80). We set SP D
S
x2˝ SP.x/.

We remark that for any x; y 2 ˝ and T 2 RC, there exists a triple .�; v; l/ 2
SP.x/ such that �.T / D y. Indeed, given x; y 2 ˝ and T 2 RC, we choose a curve

� 2 Lip.Œ0; T �;˝/ (see Lemma 2.1) so that �.0/ D x, �.T / D y and �.t/ 2 ˝ for

all t 2 Œ0; T �. We extend the domain of definition of � to RC by setting �.t/ D y
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for t > T . If we set v.t/ D P�.t/ and l.t/ D 0 for t � 0, we have .�; v; l/ 2 SP.x/,

which has the property, �.T / D y.

We note also that problem (80) has the following semi-group property: for any

.x; t/ 2 ˝�RC and .�1; v1; l1/; .�2; v2; l2/ 2 SP, if �1.0/ D x and �2.0/ D �1.t/

hold and if .�; v; l/ is defined on RC by

.�.s/; v.s/; l.s// D
(
.�1.s/; v1.s/; l1.s// for s 2 Œ0; t/;
.�2.s � t/; v2.s � t/; l2.s � t// for s 2 Œt; 1/;

then .�; v; l/ 2 SP.x/.

The following proposition concerns a stability property of sequences of points

in SP.

Proposition 5.1. Let f.�k ; vk ; lk/gk2N � SP. Let x 2 ˝ and .w; v; l/ 2
Lloc.RC;R

2nC1/. Assume that as k ! 1,

�k.0/ ! x;

. P�k ; vk ; lk/ ! .w; v; l/ weakly in L1.Œ0; T �;R2nC1/

for every T 2 RC. Set

�.s/ D x C
Z s

0

w.r/dr for s � 0:

Then .�; v; l/ 2 SP.x/.

Proof. For all t > 0 and k 2 N, we have

�k.t/ D �k.0/C
Z t

0

P�k.s/ds D �k.0/C
Z t

0

.vk.s/� lk.s/
.�k.s/// ds:

First, we observe that as k ! 1,

�k.t/ ! �.t/ locally uniformly on RC;

and then we get in the limit as k ! 1,

�.t/ D x C
Z t

0

.v.s/ � l.s/
.�.s/// ds for all t > 0:

This shows that � 2 ACloc.RC;R
n/ and

P�.s/C l.s/
.�.s// D v.s/ for a.e. s 2 RC:

It is clear that �.0/ D x, �.s/ 2 ˝ for all s 2 RC and l.s/ � 0 for a.e. s 2 RC.
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To show that .�; v; l/ 2 SP.x/, it remains to prove that for a.e. t 2 RC, l.t/ D 0

if �.t/ 2 ˝ . As in the last part of the proof of Theorem 5.2, we set A D ft � 0 W
�.t/ 2 ˝g and choose a sequence fIj gj2N of closed finite intervals of A such that

A D
S
j2N Ij . Fix any j 2 N and choose K 2 N so that �k.t/ 2 ˝ for all t 2 Ij

and k � K . From this, we have lk.t/ D 0 for a.e. t 2 Ij and k � K . Moreover, in

view of the weak convergence of flkg, we find that

Z

Ij

l.t/dt D lim
k!1

Z

Ij

lk.t/dt D 0;

which yields l.t/ D 0 for a.e. t 2 Ij . Since j is arbitrary, we see that l.t/ D 0 a.e.

in A D
S
j2N Ij . ut

Proposition 5.2. There is a constantC > 0, depending only on˝ and 
 , such that

for all .�; v; l/ 2 SP,

j P�.s/j _ l.s/ � C jv.s/j for a.e. s � 0:

An immediate consequence of the above proposition is that for .�; v; l/ 2 SP,

if v 2 Lp.RC; R
n/ (resp., v 2 L

p
loc.RC; R

n/), with 1 � p � 1, then . P�; l/ 2
Lp.RC; R

nC1/ (resp., . P�; l/ 2 Lploc.RC; R
nC1/).

Proof. Thanks to hypothesis (A4), there is a constant ı0 > 0 such that �.x/ �
.x/ �
ı0 for x 2 @˝ . Let � 2 C 1.Rn/ be a defining function of ˝ .

Let s 2 RC be such that �.s/ 2 @˝ , � is differentiable at s, l.s/ � 0 and

P�.s/C l.s/
.�.s// D v.s/. Observe that the function � ı � attains a maximum at s.

Hence,

0 D d

ds
�.�.s// D D�.�.s// � P�.s/ D jD�.�.s//j�.�.s// � P�.s/

D jD�.�.s//j�.�.s// �
�
v.s/ � l.s/
.�.s//

�

� jD�.�.s//j
�
�.�.s// � v.s/ � l.s/ı0

�
:

Thus, we get

l.s/ � ı�1
0 �.�.s// � v.s/ � ı�1

0 jv.s/j

and

j P�.s/j D jv.s/ � l.s/
.�.s//j � jv.s/j C l.s/jk
k1;@˝

� .1C ı�1
0 k
k1;@˝ /jv.s/j;

which completes the proof. ut
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5.2 Value Function I

We define the function L 2 LSC.˝ � R
n; .�1;1�/, called the Lagrangian of H ,

by

L.x; �/ D sup
p2Rn

�
� � p �H.x; p/

�
:

For each x the function � 7! L.x; �/ is the convex conjugate of the function p 7!
H.x; p/. See Appendix A.2 for properties of conjugate convex functions.

We consider the optimal control with the dynamics given by (80), the running

cost .L; g/ and the pay-off u0, and its value function V onQ, whereQ D ˝ �RC,

is given by

V.x; t/ D inf
n Z t

0

�
L.�.s/;�v.s//C g.�.s//l.s/

�
ds

C u0.�.t// W .�; v; l/ 2 SP.x/
o

for .x; t/ 2 Q;
(85)

and V.x; 0/ D u0.x/ for all x 2 ˝ .

For t > 0 and .�; v; l/ 2 SP D
S
x2˝ SP.x/, we write

L .t; �; v; l/ D
Z t

0

�
L.�.s/;�v.s//C g.�.s//l.s/

�
ds

for notational simplicity, and then formula (85) reads

V.x; t/ D inf
˚
L .t; �; v; l/C u0.�.t// W .�; v; l/ 2 SP.x/

�
:

Under our hypotheses, the LagrangianL may take the value 1 and, on the other

hand, if we set C D minx2˝.�H.x; 0//, then we have

L.x; �/ � C for all .x; �/ 2 ˝ � R
n:

Thus, it is reasonable to interpret

Z t

0

L.�.s/;�v.s//ds D 1

if the function: s 7! L.�.s/;�v.s// is not integrable, which we adopt here.

It is easily checked as in the proof of Proposition 1.3 that the value function

V satisfies the dynamic programming principle: given a point .x; t/ 2 Q and a

nonanticipating mapping � W SP.x/ ! Œ0; t �, we have

V.x; t/ D inf
˚
L .�.˛/; ˛/C V.�.�.˛//; t � �.˛// W ˛ D .�; v; l/ 2 SP.x/

�
:

(86)
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Here a mapping � W SP.x/ ! Œ0; t � is called nonanticipating if �.˛/ D �.ˇ/

whenever ˛.s/ D ˇ.s/ a.e. in the interval Œ0; �.˛/�.

We here digress to recall the state-constraint problem, whose Bellman equation

is given by the Hamilton–Jacobi equation

ut .x; t/CH.x;Dxu.x; t// D 0 in ˝ � RC;

and to make a comparison between (ENP) and the state-constraint problem. For

x 2 ˝ let SC.x/ denote the collection of all � 2 ACloc.RC;R
n/ such that �.0/ D x

and �.s/ 2 ˝ for all s 2 RC. The value function OV W ˝ � RC ! R of the

state-constraint problem is given by

OV .x; t/ D inf
n Z t

0

L.�.s/;�P�.s//ds C u0.�.t// W � 2 SC.x/
o
:

Observe that if � 2 SC.x/, with x 2 ˝ , then .�; P�; 0/ 2 SP.x/. Hence, we have

OV .x; t/ D inf
˚
L .t; �; P�; 0/C u0.�.t// W � 2 SC.x/

�

�V.x; t/ for all .x; t/ 2 ˝ � RC:

Heuristically it is obvious that if g.x/ � 1, then

V.x; t/ � OV .x; t/:

In terms of PDE the above state-constraint problem is formulated as follows: the

value function OV is a unique viscosity solution of

(
ut.x; t/CH.x;Dxu.x; t// � 0 in ˝ � RC;

ut.x; t/CH.x;Dxu.x; t// � 0 in ˝ � RC:

See [48] for a proof of this result in this generality. We refer to [17, 55] for

state-constraint problems. The corresponding additive eigenvalue problem is to find

.a; v/ 2 R � C.˝/ such that v is a viscosity solution of

(
H.x;Dv.x// � a in ˝;

H.x;Dv.x// � a in ˝:
(87)

We refer to [17, 40, 48] for this eigenvalue problem.

Example 5.2. We recall (see [48]) that the additive eigenvalue Oc for (87) is given by

Oc D inffa 2 R W (87) has a viscosity subsolution vg;
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For a comparison between the Neumann problem and the state-constraint problem,

we go back to the situation of Example 3.1. Then it is easy to see that Oc D 0. Thus,

we have c# D Oc D 0 if and only if minfg.�1/; g.1/g � 0.

We here continue the above example with some more generality. Let c# and Oc
denote, as above, the eigenvalues of (EVP) and (87), respectively. It is easily seen

that if  2 C. N̋ / is a subsolution of (EVP) with a D c#, then it is also a subsolution

of (87) with a D c#, which ensures that Oc � c#.

Next, note that the subsolutions of (87) with a D Oc are equi-Lipschitz continuous

on N̋ . That is, there exists a constantM > 0 such that for any subsolution  of (87)

with a D Oc, j .x/� .y/j � M jx� yj for all x; y 2 N̋ . Let  be any subsolution

of (87) with a D Oc, y 2 @˝ and p 2 DC .y/. Choose a � 2 C 1. N̋ / so that

D�.y/ D p and  � � has a maximum at y. If t > 0 is sufficiently small, then we

have y� t
.y/ 2 ˝ and, moreover, .y � t
.y//� .y/ � �.y� t
.y//��.y/.
By the last inequality, we deduce that 
.y/ � p � M j
.y/j. Accordingly, we have


.y/ �p � M j
.y/j for all p 2 DC .y/. Thus, we see that if g.x/ � M j
.x/j for

all x 2 @˝ , then any subsolution  of (87) with a D Oc is a subsolution of (EVP)

with a D Oc. This shows that if g.x/ � M j
.x/j for all x 2 @˝ , then c# � Oc. As

we have already seen above, we have Oc � c#, and, therefore, c# D Oc, provided that

g.x/ � M j
.x/j for all x 2 @˝ .

Now, assume that c# D Oc and let a D c# D Oc. It is easily seen that

f W  is a subsolution of (EVP)g � f W  is a subsolution of (87)g;

which guarantees that dN � dS on ˝
2
, where dN .�; y/ D sup FN

y , dS .�; y/ D
sup F S

y , and

FN
y .resp.;F S

y / D f �  .y/ W  is a subsolution of (EVP) . resp.; (87) /g:

Let AN and AS denote the Aubry sets associated with (EVP) and (87), respectively.

That is,

AN D fy 2 ˝ W dN .�; y/ is a solution of (EVP)g;

AS D fy 2 ˝ W dS .�; y/ is a solution of (87)g:

The above inequality and the fact that dN .y; y/ D dS .y; y/ D 0 for all y 2 ˝

imply that D�
x dN .x; y/jxDy � D�

x dS .x; y/jxDy . From this inclusion, we easily

deduce that AS � AN .

Thus the following proposition holds.

Proposition 5.3. With the above notation, we have:

(i) Oc � c#.

(ii) If M > 0 is a Lipschitz bound of the subsolutions of (87) with a D Oc and

g.x/ � M j
.x/j for all x 2 @˝ , then Oc D c#.

(iii) If Oc D c#, then dN � dS on N̋ 2 and AS � AN .
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5.3 Basic Lemmas

In this subsection we present a proof of the sequential lower semicontinuity of the

functional .�; v; l/ 7! L .T; �; v; l/ (see Theorem 5.3 below). We will prove an

existence result (Theorem 5.6) for the variational problem involving the functional

L in Sect. 5.4. These results are variations of Tonelli’s theorem in variational

problems. For a detailed description of the theory of one-dimensional variational

problems, with a central focus on Tonelli’s theorem, we refer to [14].

Lemma 5.1. For each A > 0 there exists a constant CA � 0 such that

L.x; �/ � Aj�j � CA for all .x; �/ 2 ˝ � R
n:

Proof. Fix any A > 0 and observe that

L.x; �/ � max
p2BA

.� � p �H.x; p//

�Aj�j C min
p2BA

.�H.x; p// for all .x; �/ 2 ˝ � R
n:

Hence, setting CA � max˝�BA
jH j, we get

L.x; �/ � Aj�j � CA for all .x; �/ 2 ˝ � R
n: ut

Lemma 5.2. There exist constants ı > 0 and C0 > 0 such that

L.x; �/ � C0 for all .x; �/ 2 ˝ � Bı :

Proof. By the continuity of H , there exists a constant M > 0 such that H.x; 0/ �
M for all x 2 ˝ . Also, by the coercivity of H , there exists a constant R > 0 such

that H.x; p/ > M C 1 for all .x; p/ 2 ˝ � @BR. We set ı D R�1. Let .x; �/ 2
˝�Bı . Let q 2 BR be the minimum point of the function f .p/ WD H.x; p/�� �p on

BR. Noting that f .0/ D H.x; 0/ � M and f .p/ > �ıRCM C1 D M for all p 2
@BR, we see that q 2 BR and hence � 2 D�

pH.x; q/, where D�
pH.x; q/ denotes

the subdifferential at q of the function p 7! H.x; p/. Thanks to the convexity of

H , this implies (see Theorem B.2) that L.x; �/ D � � q � H.x; q/. Consequently,

we get

L.x; �/ � ıRC max
˝�BR

jH j:

Thus we have the desired inequality with C0 D ıRC max˝�BR
jH j. ut

For later convenience, we formulate the following lemma, whose proof is left to

the reader.
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Lemma 5.3. For each i 2 N define the function Li on˝ � R
n by

Li .x; �/ D max
p2B i

.� � p �H.x; p//:

Then Li 2 UC.˝ � R
n/,

Li .x; �/ � LiC1.x; �/ � L.x; �/ for all .x; �/ 2 ˝ � R
n and i 2 N;

and for all .x; �/ 2 ˝ � R
n,

Li .x; �/ ! L.x; �/ as i ! 1:

The following lemma is a consequence of the Dunford–Pettis theorem.

Lemma 5.4. Let J D Œa; b�, with �1 < a < b < 1. Let ffj gj2N � L1.J;Rm/

be uniformly integrable in J . That is, for each " > 0, there exists ı > 0 such that

for any measurable E � J and j 2 N, we have

Z

E

jfj .t/jdt < " if jEj < ı;

where jEj denotes the Lebesgue measure of E . Then ffj g has a subsequence which

converges weakly in L1.J;Rm/.

See Appendix A.5 for a proof of the above lemma.

Lemma 5.5. Let J D Œ0; T � with T 2 RC, .�; v/ 2 L1.J;Rn/�L1.J;Rn/, i 2 N

and " > 0. Let Li 2 UC.˝ � R
n/ be the function defined in Lemma 5.3. Assume

that �.s/ 2 ˝ for all s 2 J . Then there exists a function q 2 L1.J;Rn/ such that

for a.e. s 2 J ,

q.s/ 2 B i and H.�.s/; q.s//C Li .�.s/;�v.s// � �v.s/ � q.s/C ":

Proof. Note that for each .x; �/ 2 ˝ � R
n there is a point q D q.x; �/ 2 B i such

that Li .x; �/ D � � q �H.x; q/. By the continuity of the functionsH and Li , there

exists a constant r D r.x; �/ > 0 such that

Li .y; z/CH.y; q/ � z � q C " for all .y; z/ 2 .˝ \ Br .x// � Br .�/:

Hence, as˝ �R
n is �-compact, we may choose a sequence f.xk ; �k ; qk ; rk/gk2N �

˝ � R
n �B i � RC such that

˝ � R
n �

[

k2N

Brk .xk/ � Brk .�k/
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and for all k 2 N,

Li .y; z/CH.y; qk/ � z � qk C " for all .y; z/ 2 Brk .xk/ �Brk .�k/:

Now we set Uk D .˝ \ Brk .xk// � Brk .�k/ for k 2 N and define the function

P W ˝ � R
n ! R

n by

P.x; �/ D qk for all .x; �/ 2 Uk n
[

j<k

Uj and all k 2 N:

It is clear that P is Borel measurable in ˝ � R
n. Moreover we have P.x; �/ 2 B i

for all .x; �/ 2 ˝ � R
n and

Li .x; �/CH.x;P.x; �// � � � P.x; �/C " for all .x; �/ 2 ˝ � R
n: (88)

We define the function q 2 L1.J; Rn/ by setting q.s/ D P.�.s/; �v.s//. From

(88), we see that q.s/ 2 B i and

Li .�.s/;�v.s//CH.�.s/; q.s// � �v.s/ � q.s/C " for a.e. s 2 J: ut

Lemma 5.6. Let J D Œ0; T � with T 2 RC, " > 0, i 2 N, q 2 L1.J;Rn/ and � 2
C.J;Rn/ such that �.s/ 2 ˝ for all s 2 J . Assume that kqkL1.J / < i . Let Li be

the function defined in Lemma 5.3. Then there exists a function v 2 L1.Œ0; T �;Rn/

such that

H.�.s/; q.s//C Li .�.s/;�v.s// < �v.s/ � q.s/C " for a.e. s 2 Œ0; T �: (89)

Before going into the proof we remark that for any x 2 ˝ the function Li .x; �/
is the convex conjugate of the function QH.x; �/ given by QH.x; p/ D H.x; p/ if

p 2 B i and QH.x; p/ D 1 otherwise.

Proof. The same construction as in the proof of Lemma 5.5, with the roles of H

and Li being exchanged, yields a measurable function v W Œ0; T � ! R
n for which

(89) holds. Set C D max˝�B i
jH j and observe that

Li .x; �/ � i j�j � C for all .x; �/ 2 ˝ � R
n:

We combine this with (89), to get

"C kqkL1.J /jv.s/j > i jv.s/j � 2C for a.e. s 2 J:

Hence,

kvkL1.J / � "C 2C

i � kqkL1.J /

: ut
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The following proposition concerns the lower semicontinuity of the functional

.�; v/ 7!
Z T

0

L.�.s/;�v.s//ds:

Theorem 5.3. Let J D Œ0; T � with T 2 RC, f.�k; vk/gk2N � L1.J;Rn/ �
L1.J;Rn/ and .�; v/ 2 L1.J;Rn/ � L1.J;Rn/. Assume that �k.s/ 2 ˝ for all

.s; k/ 2 J � N and that as k ! 1,

�k.s/ ! �.s/ uniformly for s 2 J;

vk ! v weakly in L1.J;Rn/:

Let  be a function in L1.J;R/ such that  .s/ � 0 for a.e. s 2 J . Then

Z

J

 .s/L.�.s/;�v.s//ds � lim inf
k!1

Z

J

 .s/L.�k.s/;�vk.s//ds: (90)

Proof. Fix any i 2 N. Due to Lemma 5.5, there is a function q 2 L1.J;Rn/ such

that q.s/ 2 B i and

H.�.s/; q.s//C Li .�.s/;�v.s// < �v.s/ � q.s/C 1

i
for a.e. s 2 J: (91)

Note that for all k 2 N,

Z

J

 .s/L.�k.s/;�vk.s//ds �
Z

J

 .s/Li .�k.s/;�vk.s//ds

�
Z

J

 .s/Œ�vk.s/ � q.s/�H.�k.s/; q.s//�ds;

and

lim
k!1

Z

J

 .s/Œ�vk.s/ � q.s/�H.�k.s/; q.s//�ds

D
Z

J

 .s/Œ�v.s/ � q.s/ �H.�.s/; q.s//�ds:

Hence, using (91), we get

lim inf
k!1

Z

J

 .s/L.�k.s/;�vk.s//ds �
Z

J

 .s/Œ�v.s/ � q.s/�H.�.s/; q.s//�ds

�
Z

J

 .s/ŒLi .�.s/;�v.s// � 1=i�ds:

By the monotone convergence theorem, we conclude that (90) holds. ut
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Corollary 5.1. Under the hypotheses of the above theorem, let ffkg � L1.J;R/ be

a sequence of functions converging weakly in L1.J;R/ to f . Assume furthermore

that for all k 2 N,

L.�k.s/;�vk.s// � fk.s/ for a.e. s 2 J:

Then

L.�.s/;�v.s// � f .s/ for a.e. s 2 J:
Proof. Set E D fs 2 J W L.�.s/;�v.s// > f .s/g. By Theorem 5.3, we deduce

that

0 � lim inf
k!1

Z

J

1E.s/ŒL.�k.s/;�vk.s//� fk.s/�ds

�
Z

J

1E.s/ŒL.�.s/;�v.s// � f .s/�ds

D
Z

J

ŒL.�.s/;�v.s// � f .s/�Cds;

where Œ� � � �C denotes the positive part of Œ� � � �. Thus we see that L.�.s/;�v.s// �
f .s/ for a.e. s 2 J . ut
Lemma 5.7. Let J D Œ0; T �, with T 2 RC, and q 2 C.˝ � J;Rn/. Let x 2 ˝ .

Then there exists a triple .�; v; l/ 2 SP.x/ such that

H.�.s/; q.�.s/; s//C L.�.s/; �v.s// D �v.s/ � q.�.s/; s/ for a.e. s 2 J:

Proof. Fix k 2 N. Set ı D T=k and sj D .j � 1/ı for j D 1; 2; : : : ; k C 1. We

define inductively a sequence f.xj ; �j ; vj ; lj /gkjD1 � ˝ � SP. We set x1 D x and

choose a �1 2 R
n so that

H.x1; q.x1; 0//C L.x1;��1/ � ��1 � q.x1; 0/C 1=k:

Set v1.s/ D �1 for s � 0 and choose a pair .�1; l1/ 2 Lip.RC; ˝/ � L1.RC; R/

so that .�1; v1; l1/ 2 SP.x1/. In fact, Theorem 5.2 guarantees the existence of such

a pair.

We argue by induction and now suppose that k � 2 and we are given

.xi ; �i ; vi ; li / for all i D 1; : : : ; j �1 and some 2 � j � k. Then set xj D �j�1.ı/,

choose a �j 2 R
n so that

H.xj ; q.xj ; sj //C L.xj ;��j / � ��j � q.xj ; sj /C 1=k; (92)

set vj .s/ D �j for s � 0, and select a pair .�j ; lj / 2 Lip.RC;˝/ � L1.RC;R/

so that .�j ; vj ; lj / 2 SP.xj /. Thus, by induction, we can select a sequence
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f.xj ; �j ; vj ; lj /gkjD1 � ˝ � SP such that x1 D �1.0/, xj D �j�1.ı/ D �j .0/

for j D 2; : : : ; k and for each j D 1; 2; : : : ; k, (92) holds with �j D vj .s/ for all

s � 0. We set ˛j D .�j ; vj ; lj / for j D 1; : : : ; k.

Note that the choice of xj ; �j ; vj ; lj , with j D 1; : : : ; k, depends on k, which

is not explicit in our notation. We define N̨k D . N�k ; Nvk ; Nlk/ 2 SP.x/ by setting

N̨k.s/ D ˛j .s � sj / for s 2 Œsj ; sjC1/ and j D 1; : : : ; k:

and

N̨k.s/ D .�k.ı/; 0; 0/ for s � skC1 D T:

Also, we define Nxk ; Nqk 2 L1.J;Rn/ by

Nxk.s/ D xj and Nqk.s/ D q.xj ; sj / for s 2 Œsj ; sjC1/ and j D 1; : : : ; k:

Now we observe by (92) that for all j D 1; : : : ; k,

L.xj ;��j / � j�j jRC max
˝�BR

jH j C 1;

whereR > 0 is such a constant thatR � max˝�J jqj. Combining this estimate with

Lemma 5.1, we see that there is a constant C1 > 0, independent of k, such that

max
s�0

j Nvk.s/j D max
1�j�k

j�j j � C1:

By Proposition 5.2, we find a constant C2 > 0, independent of k, such that

k PN�kkL1.RC/ _ kNlkkL1.RC/ � C2.

We may invoke standard compactness theorems, to find a triple .�; v; l/ 2
Lip.J;Rn/ � L1.J;RnC1/ and a subsequence of f. N�k ; Nvk ; Nlk/gk2N, which will be

denoted again by the same symbol, so that for every 0 < S < 1, as k ! 1,

N�k ! � uniformly on Œ0; S�;

. PN�k ; Nvk ; Nlk/ ! . P�; v; l/ weakly-star in L1.Œ0; S�;R2nC1/:

By Proposition 5.1, we see that .�; v; l/ 2 SP.x/. It follows as well that Nxk.s/ !
�.s/ and Nqk.s/ ! q.�.s/; s/ uniformly for s 2 J as k ! 1.

Now, the inequalities (92), 1 � j � k, can be rewritten as

L. Nxk.s/;�Nvk.s// � �Nvk.s/ � Nqk.s/ �H. Nxk.s/; Nqk.s//C 1=k for all s 2 Œ0; T /:

It is obvious to see that the sequence of functions

�Nvk.s/ � qk.s/C 1=k �H. Nxk.s/; Nqk.s//
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on J converges weakly-star in L1.J;R/ to the function

�v.s/ � q.�.s/; s/�H.�.s/; q.�.s/; s//:

Hence, by Corollary 5.1, we conclude that

H.�.s/; q.�.s/; s//CL.�.s/;�v.s// � �v.s/ � q.�.s/; s/ for a.e. s 2 J;

which implies the desired equality. ut
Theorem 5.4. Let J D Œ0; T �, with T 2 RC, and f.�k ; vk ; lk/gk2N � SP. Assume

that there is a constant C > 0, independent of k 2 N, such that

L .T; �k ; vk ; lk/ � C for all k 2 N:

Then there exists a triple .�; v; l/ 2 SP such that

L .T; �; v; l/ � lim inf
k!1

L .T; �k ; vk ; lk/:

Moreover, there is a subsequence f.�kj ; vkj ; lkj /gj2N of f.�k ; vk ; lk/g such that as

j ! 1,

�kj .s/ ! �.s/ uniformly on J;

. P�kj ; vkj ; lkj / ! . P�; v; l/ weakly in L1.J;R2nC1/:

Proof. We may assume without loss of generality that �k.t/ D �k.T /, vk.t/ D 0

and lk.t/ D 0 for all t � T and all k 2 N.

According to Proposition 5.2, there is a constant C0 > 0 such that for any

.�; v; l/ 2 SP, j P�.t/j _ jl.t/j � C0jv.t/j for a.e. t � 0. Note by Lemma 5.1

that for each A > 0 there is a constant CA > 0 such that L.x; �/ � Aj�j � CA
for all .x; �/ 2 ˝ � R

n. From this lower bound of L, it is obvious that for all

.x; �; r/ 2 @˝ � R
n � RC, if r � C0j�j, then

L.x; �/C g.x/r �
�
A � C0 max

@˝
jgj
�

j�j � CA; (93)

which ensures that there is a constant C1 > 0 such that for .�; v; l/ 2 SP,

L.�.s/;�v.s//C g.�.s//l.s/C C1 � 0 for a.e. s � 0: (94)

Set

� D lim inf
k!1

L .T; �k; vk ; lk/;
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and note by (94) that �C1T � � � C . We may choose a subsequence

f.�kj ; vkj ; lkj /gj2N of f.�k ; vk ; lk/g so that

� D lim
j!1

L .T; �kj ; vkj ; lkj /:

Using (94), we obtain for any measurable E � Œ0; T �,

Z

E

�
L.�k.s/;�vk.s//C g.�k.s//lk.s/C C1

�
ds

�
Z T

0

�
L.�k.s/;�vk.s//C g.�k.s//lk.s/C C1

�
ds � C C C1T:

This together with (93) yields

�
A� C0 max

@˝
jgj
�Z

E

jvk.s/j ds � CAjEj C C C C1T for all A > 0:

This shows that the sequence fvkg is uniformly integrable on Œ0; T �. Since j P�k.s/j _
jlk.s/j � C0jvk.s/j for a.e. s � 0 and vk.s/ D 0 for all s > T , we see easily that

the sequence f. P�k ; vk ; lk/g is uniformly integrable on RC.

Due to Lemma 5.4, we may assume by reselecting the subsequence

f.�kj ; vkj ; lkj /g if necessary that as j ! 1,

. P�kj ; vkj ; lkj / ! .w; v; l/ weakly in L1.Œ0; S�;R2nC1/

for every S > 0 and some .w; v; l/ 2 L1loc.RC; R
2nC1/. We may also assume that

�kj .0/ ! x as j ! 1 for some x 2 ˝ . By Proposition 5.1, if we set �.s/ D
x C

R s
0 w.r/dr for s � 0, then .�; v; l/ 2 SP.x/ and, as j ! 1,

�kj .s/ ! �.s/ locally uniformly on RC:

We apply Theorem 5.3, with the function  .s/ � 1, to find that

Z

J

L.�.s/;�v.s//ds � lim inf
j!1

Z

J

L.�kj .s/;�vkj .s//ds:

Consequently, we have

L .T; �; v; l/ � lim inf
j!1

L .T; �kj ; vkj ; lkj / D �;

which completes the proof. ut
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5.4 Value Function II

Theorem 5.5. Let u 2 UC.˝ �RC/ be the viscosity solution of (ENP)–(ID). Then

V D u in ˝ � RC.

This is a version of classical observations on the value functions in optimal

control, and, in this regard, we refer for instance to [43, 45]. The above theorem

has been established in [39]. The above theorem gives a variational formula for the

unique solution of (ENP)–(ID). This variational formula is sometimes called the

Lax–Oleinik formula.

For the proof of Theorem 5.5, we need the following three lemmas.

Lemma 5.8. Let U � R
n be an open set and J D Œa; b� a finite subinterval of RC.

Let  2 C 1..U \˝/ � J / and assume that

 t .x; t/CH.x;Dx .x; t// � 0 for all .x; t/ 2 .U \˝/ � J; (95)

@ 

@

.x; t/ � g.x/ for all .x; t/ 2 .U \ @˝/ � J; (96)

 .x; t/ � V.x; t/ for all .x; t/ 2 .@U \˝/ � J; (97)

 .x; a/ � V.x; a/ for all x 2 U \˝: (98)

Then  � V in .U \˝/ � J .

We note that the following inclusion holds: @.U \˝/ � Œ@U \˝�[ .U \ @˝/.
Proof. Let .x; t/ 2 .U \˝/ � J . Define the mapping � W SP.x/ ! Œ0; t � a� by

�.�; v; l/ D inffs � 0 W �.s/ 62 U g ^ .t � a/:

It is clear that � is nonanticipating. Let ˛ D .�; v; l/ 2 SP.x/, and observe that

�.s/ 2 U for all s 2 Œ0; �.˛// and that �.�.˛// 2 @U if �.˛/ < t � a. In particular,

we find from (97) and (98) that

 .�.�.˛//; t � �.˛// � V.�.�.˛//; t � �.˛//: (99)

Fix any ˛ D .�; v; l/ 2 SP.x/. Note that

 .�.�.˛//; t � �.˛// �  .x; t/

D
Z �.˛/

0

d

ds
 .�.s/; t � s/ds

D
Z �.˛/

0

�
Dx .�.s/; t � s/ � P�.s/ �  t .�.s/; t � s/

�
ds

D
Z �.˛/

0

�
Dx .�.s/; t � s/ � .v.s/ � l.s/
.�.s///�  t .�.s/; t � s/

�
ds:



Introduction to Viscosity Solutions and the Large Time Behavior of Solutions 203

Now, using (95), (96) and (99), we get

 .x; t/ � V.�.�.˛//; t � �.˛//

�
Z �.˛/

0

�
�Dx .�.s/; t � s/ � v.s/C l.s/Dx .�.s// � 
.�.s//

C  t .�.s/; t � s/
�
ds

�
Z �.˛/

0

�
H.�.s/;Dx .�.s/; t � s//C L.�.s/;�v.s//C l.s/g.�.s//

C  t .�.s/; t � s/
�
ds

� L .�.˛/; �; v; l/;

which immediately shows that

 .x; t/ � inf .L .�.˛/; �; v; l/C V.�.�.˛//; t � �.˛/// ;

where the infimum is taken over all ˛ D .�; v; l/ 2 SP.x/. Thus, by (86), we get

 .x; t/ � V.x; t/. ut
Lemma 5.9. For any " > 0 there is a constant C" > 0 such that V.x; t/ � u0.x/�
" � C"t for .x; t/ 2 Q.

Proof. Fix any " > 0. According to the proof of Theorem 3.2, there are a function

f 2 C 1.˝/ and a constant C > 0 such that if we set  .x; t/ D f .x/ � C t for

.x; t/ 2 Q, then is a classical subsolution of (ENP) and u0.x/ � f .x/ � u0.x/�"
for all x 2 ˝ .

We apply Lemma 5.8, with U D R
n, a D 0, arbitrary b > 0, to obtain

V.x; t/ �  .x; t/ � �"C u0.x/ � Ct for all .x; t/ 2 Q;

which completes the proof. ut
Lemma 5.10. There is a constant C > 0 such that V.x; t/ � u0.x/ C Ct for

.x; t/ 2 Q.

Proof. Let .x; t/ 2 Q. Set �.s/ D x, v.s/ D 0 and l.s/ D 0 for s � 0. Then

.�; v; l/ 2 SP.x/. Hence, we have

V.x; t/ � u0.x/C
Z t

0

L.x; 0/ds D u0.x/C tL.x; 0/ � u0.x/ � t min
p2Rn

H.x; p/:

Setting C D � min˝�Rn
H , we get V.x; t/ � u0.x/C Ct. ut

Proof (Theorem 5.5). By Lemmas 5.9 and 5.10, there is a constant C > 0 and for

each " > 0 a constant C" > 0 such that
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�" � C"t � V.x; t/ � u0.x/ � Ct for all .x; t/ 2 Q:

This shows that V is locally bounded onQ and that

lim
t!0C

V.x; t/ D u0.x/ uniformly for x 2 ˝:

In particular, we have V�.x; 0/ D V �.x; 0/ D u0.x/ for all x 2 ˝ .

We next prove that V is a subsolution of (ENP). Let . Ox; Ot/ 2 Q and � 2 C 1.Q/.

Assume that V � � � attains a strict maximum at . Ox; Ot/. We want to show that if

Ox 2 ˝ , then

�t . Ox; Ot /CH. Ox;Dx�. Ox; Ot // � 0;

and if Ox 2 @˝ , then either

�t . Ox; Ot/CH. Ox;Dx�. Ox; Ot// � 0 or 
. Ox/ �Dx�. Ox; Ot / � g. Ox/:

We argue by contradiction and thus suppose that

�t . Ox; Ot /CH. Ox;Dx�. Ox; Ot// > 0

and furthermore


. Ox/ �Dx�. Ox; Ot / > g. Ox/ if Ox 2 @˝:
By continuity, we may choose a constant r 2 .0; Ot / so that

�t .x; t/CH.x;Dx�.x; t// > 0 for all .x; t/ 2 .Br . Ox/ \˝/ � OJ ; (100)

where OJ D ŒOt � r; Ot C r�, and


.x/ �Dx�.x; t/ > g.x/ for all .x; t/ 2 .Br . Ox/ \ @˝/ � OJ : (101)

(Of course, if Ox 2 ˝ , we can choose r so that Br . Ox/ \ @˝ D ;.)

We may assume that .V � � �/. Ox; Ot / D 0. Set

B D
��
@Br . Ox/ \˝

�
� OJ

�
[
��
Br . Ox/\˝

�
� fOt � rg

�
;

and m D � maxB.V
� � �/. Note that m > 0 and V.x; t/ � �.x; t/ � m for

.x; t/ 2 B .

We set " D r=2. In view of the definition of V �, we may choose a point . Nx; Nt / 2
˝ \B". Ox/� .Ot � "; Ot C "/ so that .V ��/. Nx; Nt / > �m. Set a D Nt � Ot C r , and note

that a > " and dist. Nx; @Br . Ox// > ". For each ˛ D .�; v; l/ 2 SP. Nx/ we set

S.˛/ D fs � 0 W �.s/ 2 @Br . Ox/g and � D a ^ infS.˛/:
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Clearly, the mapping � W SP. Nx/ ! Œ0; a� is nonanticipating. Observe also that if

�.˛/ < a, then �.�.˛// 2 @Br . Ox/ or, otherwise, Nt � �.˛/ D Nt � a D Ot � r . That is,

we have

.�.�.˛//; Nt � �.˛// 2 B for all ˛ D .�; v; l/ 2 SP. Nx/: (102)

Note as well that .�.s/; Nt � s/ 2 B r . Ox/ � OJ for all s 2 Œ0; �.˛/�.
We apply Lemma 5.7, with J D Œ0; a� and the function q.x; s/ D D�.x; Nt � s/,

to find a triple ˛ D .�; v; l/ 2 SP. Nx/ such that for a.e. s 2 Œ0; a�,

H.�.s/;Dx�.�.s/; Nt � s//C L.�.s/;�v.s// � �v.s/ �Dx�.�.s/; Nt � s/ (103)

For this ˛, we write � D �.˛/ for simplicity of notation. Using (102), by the

dynamic programming principle, we have

�. Nx; Nt/ < V. Nx; Nt/Cm

� L .�; �; v; l/C V.�; Nt � �/Cm

� L .�; �; v; l/C �.�.�/; Nt � �/:

Hence, we obtain

0 <

Z �

0

�
L.�.s/;�v.s//C g.�.s//l.s/C d

ds
�.�.s/; Nt � s/

�
ds

�
Z �

0

�
L.�.s/;�v.s//C g.�.s//l.s/CDx�.�.s/; Nt � s/ � P�.s/� �t .�.s/; Nt � s/

�
ds

�
Z �

0

�
L.�.s/;�v.s//C g.�.s//l.s/

CDx�.�.s/; Nt � s/ � .v.s/� l.s/
.�.s//� �t .�.s/; Nt � s/
�
ds:

Now, using (103), (100) and (101), we get

0 <

Z �

0

�
�H.�.s/;Dx�.�.s/; Nt � s//C g.�.s//l.s/

� l.s/Dx�.�.s/; Nt � s/ � 
.�.s// � �t .�.s/; Nt � s/
�
ds

<

Z �

0

l.s/
�
g.�.s// � 
.�.s// �Dx�.�.s/; Nt � s/

�
ds � 0;

which is a contradiction. We thus conclude that V is a viscosity subsolution of

(ENP).

Now, we turn to the proof of the supersolution property of V . Let � 2 C 1.Q/

and . Ox; Ot/ 2 ˝ � RC. Assume that V� � � attains a strict minimum at . Ox; Ot/. As

usual, we assume furthermore that minQ.V� � �/ D 0.
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We need to show that if Ox 2 ˝ , then

�t . Ox; Ot /CH. Ox;Dx�. Ox; Ot // � 0;

and if Ox 2 @˝ , then

�t . Ox; Ot/CH. Ox;Dx�. Ox; Ot// � 0 or 
. Ox/ �Dx�. Ox; Ot / � g. Ox/:

We argue by contradiction and hence suppose that this were not the case. That is,

we suppose that

�t . Ox; Ot /CH. Ox;Dx�. Ox; Ot // < 0;
and moreover


. Ox/ �Dx�. Ox; Ot / < g. Ox/ if Ox 2 @˝:
We may choose a constant r 2 .0; Ot/ so that

�t.x; t/CH.x;Dx�.x; t// < 0 for all .x; t/ 2 .Br . Ox/ \˝/ � OJ ;

where OJ D ŒOt � r; Ot C r�, and


.x/ �Dx�.x; t/ < g.x/ for all .x; t/ 2 .Br . Ox/ \ @˝/ � OJ : (104)

We set

R D
�

.@Br . Ox/ \˝/ � OJ
�

[
�
.Br . Ox/ \˝/ � fOt � rg

�
and m D min

R
.V� � �/;

and define the function 2 C 1..Br . Ox/\˝/� OJ / by  .x; t/ D �.x; t/Cm. Note

that m > 0, inf.Br . Ox/\˝/� OJ .V� �  / D �m < 0 and V.x; t/ �  .x; t/ for all

.x; t/ 2 R. Observe moreover that

 t .x; t/CH.x;Dx .x; t// < 0 for all .x; t/ 2 .Br . Ox/ \˝/ � OJ
@ 

@

.x; t/ < g.x/ for all .x; t/ 2 .Br . Ox/ \ @˝/ � OJ :

We invoke Lemma 5.8, to find that  � V in .Br . Ox/ \ ˝/ � OJ . This means

that inf.Br . Ox/\˝/� OJ .V� �  / � 0. This contradiction shows that V is a viscosity

supersolution of (ENP).

We apply Theorem 3.1 to V�, u and V �, to obtain V � � u � V� in Q, from

which we conclude that u D V in Q. ut
Our control problem always has an optimal “control” in SP:

Theorem 5.6. Let .x; t/ 2 ˝ � RC. Then there exists a triple .�; v; l/ 2 SP.x/

such that
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V.x; t/ D L .t; �; v; l/C u0.�.t//:

If, in addition, V 2 Lip.˝ �J;R/, with J being an interval of Œ0; t �, then the triple

.�; v; l/, restricted to QJt WD fs 2 Œ0; t � W t � s 2 J g, belongs to Lip. QJt ;Rn/ �
L1. QJt ;RnC1/.

Proof. We may choose a sequence f.�k ; vk ; lk/g � SP.x/ such that

V.x; t/ D lim
k!1

L .t; �k ; vk ; lk/C u0.�k.t//:

In view of Theorem 5.4, we may assume by replacing the sequence f.�k ; vk ; lk/g
by a subsequence if needed that for some .�; v; l/ 2 SP.x/, �k.s/ ! �.s/ uniformly

on Œ0; t � as k ! 1 and

L .t; �; v; l/ � lim inf
k!1

L .t; �k ; vk ; lk/:

It is then easy to see that

V.x; t/ D L .r; �; v; l/C u0.�.t//: (105)

Note by (105) that for all r 2 .0; t/,

V.x; t/ � L .r; �; v; l/C V.�.r/; t � r/;

which yields together with the dynamic programming principle

V.x; t/ D L .r; �; v; l/C V.�.r/; t � r/ (106)

for all r 2 .0; t/.
Now, we assume that V 2 Lip.˝ � J /, where J � Œ0; t � is an interval. Observe

by (106) that for a.e. r 2 QJt ,

L.�.r/;�v.r//C l.r/g.�.r// D lim
"!0

V.�.r/; t � r/ � V.�.r C "/; t � r � "/
"

�M.j P�.r/j2 C 1/1=2 � M.j P�.r/j C 1/;

where M > 0 is a Lipschitz bound of the function V on ˝ � J . Let C > 0 be the

constant from Proposition 5.2, so that j P�.s/j _ l.s/ � C jv.s/j for a.e. s � 0. By

Lemma 5.1, for each A > 0, we may choose a constant CA > 0 so that L.y; �/ �
Aj�j � CA for .y; �/ 2 ˝ � R

n. Accordingly, for any A > 0, we get

Ajv.r/j �L.�.r/;�v.r//C CA � �l.r/g.�.r//CM.j P�.r/j C 1/C CA

�C.kgk1;@˝ CM/jv.r/j CM C CA for a.e. r 2 QJt :
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This implies that v 2 L1. QJt ;Rn/ and moreover that � 2 Lip. QJt ;Rn/ and l 2
L1. QJt ;R/. The proof is complete. ut
Corollary 5.2. Let u 2 Lip.˝/ be a viscosity solution of (SNP) and x 2 ˝. Then

there exists a .�; v; l/ 2 SP.x/ such that for all t > 0,

u.x/� u.�.t// D L .t; �; v; l/: (107)

Proof. Note that the function u.x/, as a function of .x; t/, is a viscosity solution of

(ENP). In view of Theorem 5.6, we may choose a sequence f.�j ; vj ; lj /gj2N so that

�1.0/ D x, �jC1.0/ D �j .1/ for all j 2 N and

u.�j .0//� u.�j .1// D L .1; �j ; vj ; lj / for all j 2 N:

We define .�; v; l/ 2 SP.x/ by

.�.s/; v.s/; l.s// D .�j .s � j C 1/; vj .s � j C 1/; lj .s � j C 1//

for all s 2 Œj � 1; j / and j 2 N. By using the dynamic programming principle, we

see that (107) holds for all t > 0. ut

5.5 Distance-Like Function d

We assume throughout this subsection that (A8) holds, and discuss a few aspects of

weak KAM theory related to (SNP).

Proposition 5.4. We have the variational formula for the function d introduced in

Sect. 4.1: for all x; y 2 ˝ ,

d.x; y/ D inf
˚

L .t; �; v; l/ W t > 0; .�; v; l/ 2 SP.x/ such that �.t/ D y
�

:

(108)

We use the following lemma for the proof of the above proposition.

Lemma 5.11. Let u0 2 C.˝/ and u 2 UC.Q/ be the viscosity solution of (ENP)–

(ID). Set

v.x; t/ D inf
r>0

u.x; t C r/ for x 2 Q:

Then v 2 UC.Q/ and it is a viscosity solution of (ENP). Moreover, for each t > 0,

the function v.�; t/ is a viscosity subsolution of (SNP).

Proof. By assumption (A8), there is a viscosity subsolution  of (SNP). Note that

the function .x; t/ 7!  .x/ is a viscosity subsolution of (ENP) as well.

We may assume by adding a constant to  if needed that  � u0 in ˝ . By

Theorem 3.1, we have u.x; t/ �  .x/ > �1 for all .x; t/ 2 Q. Since u 2 UC.Q/,

we see immediately that v 2 UC.Q/. Applying a version for (ENP) of Theorem 4.4,

which can be proved based on Theorem D.2, to the collection of viscosity solutions
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.x; t/ 7! u.x; t C r/, with r > 0, of (ENP), we find that v is a viscosity subsolution

of (ENP). Also, by Proposition 1.10 (its version for supersolutions), we see that v

is a viscosity supersolution of (ENP). Thus, the function v is a viscosity solution of

(ENP).

Next, note that for each x 2 ˝, the function v.x; �/ is nondecreasing in RC. Let

. Ox; Ot / 2 Q and � 2 C 1.˝/. Assume that the function ˝ 3 x 7! v.x; Ot / � �.x/

attains a strict maximum at Ox. Let ˛ > 0 and consider the function

v.x; t/ � �.x/� ˛.t � Ot/2 on ˝ � Œ0; Ot C 1�:

Let .x˛; t˛/ be a maximum point of this function. It is easily seen that .x˛; t˛/ !
. Ox; Ot / as ˛ ! 1. For sufficiently large ˛, we have t˛ > 0 and either

x˛ 2 @˝ and 
.x˛/ �D�.x˛/ � g.x˛/;

or

2˛.t˛ � Ot/CH.x˛;D�.x˛// � 0:

By the monotonicity of v.x; t/ in t , we see easily that 2˛.t˛ � Ot / � 0. Hence,

sending ˛ ! 1, we conclude that the function v.�; Ot/ is a viscosity subsolution of

(SNP). ut
Proof (Proposition 5.4). We write W.x; y/ for the right hand side of (108).

Fix any y 2 ˝ . For each k 2 N let uk 2 Lip.Q/ be the unique viscosity solution

of (ENP)–(ID), with u0 defined by u0.x/ D kjx � yj. By Theorem 5.5, we have the

formula:

uk.x; t/ D inf
˚

L .t; �; v; l/C kj�.t/ � yj W .�; v; l/ 2 SP.x/
�

:

It is then easy to see that

inf
t>0

uk.x; t/ � W.x; y/ for all .x; k/ 2 ˝ � N: (109)

Since d.�; y/ 2 Lip.˝/, if k is sufficiently large, say k � K , we have d.�; y/ �
kjx � yj for all x 2 ˝. Noting that the function .x; t/ 7! d.x; y/ is a viscosity

subsolution of (ENP) and applying Theorem 3.1, we get d.x; y/ � uk.x; t/ for all

.x; t/ 2 Q if k � K . Combining this and (109), we find that d.x; y/ � W.x; y/ for

all x 2 ˝ .

Next, we give an upper bound on W . According to Lemma 2.1, there exist a

constant C1 > 0 and a function � W ˝ ! RC such that �.x/ � C1jx � yj for

all x 2 ˝ and, for each x 2 ˝ , there is a curve �x 2 Lip.Œ0; �.x/�/ having the

properties: �x.0/ D x, �x.�.x// D y, �x.s/ 2 ˝ for all s 2 Œ0; �.x/� and j P�x.s/j �
1 for a.e. s 2 Œ0; �.x/�. We fix such a function � and a collection f�xg of curves.

Thanks to Lemma 5.2, we may choose constants ı > 0 and C0 > 0 such that

L.x; �/ � C0 for all .x; �/ 2 ˝ �Bı :
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Fix any x 2 ˝ n fyg and define .�; v; l/ 2 SP.x/ by setting �.s/ D �x.ıs/ for

s 2 Œ0; �.x/=ı�, �.s/ D y for s > �.x/=ı and .v.s/; l.s// D . P�.s/; 0/ for s 2 RC.

Observe that

L .�.x/=ı; �; v; l/ D
Z �.x/=ı

0

L.�x.ıs/; ı P�x.ıs//ds

D ı�1

Z �.x/

0

L.�x.s/;�ı P�x.s//ds

� ı�1C0�.x/ � ı�1C0C1jx � yj;

which yields

W.x; y/ � ı�1C0C1jx � yj: (110)

We define the function w W Q ! R by

w.x; t/ D inf
˚

L .r; �; v; l/ W r > t; .�; v; l/ 2 SP.x/ such that �.r/ D y
�

:

It is clear by the above definition that

W.x; y/ D inf
t>0

w.x; t/ for all x 2 ˝: (111)

Also, the dynamic programming principle yields

w.x; t/ D inf
˚

L .t; �; v; l/CW.�.t/; y/ W .�; v; l/ 2 SP.x/
�

:

(We leave it to the reader to prove this identity.) In view of (110), we fix a k 2 N so

that ı�1C0C1 � k and note that for all .x; t/ 2 Q,

w.x; t/ � inf
˚

L .t; �; v; l/C kj�.t/ � yj W .�; v; l/ 2 SP.x/
�

D uk.x; t/:

Consequently, we have

inf
t>0

w.x; t/ � inf
t>0

uk.x; t/ for all x 2 ˝;

which together with (111) yields

W.x; y/ � inf
t>0

uk.x; t/ for all x 2 ˝:

By Lemma 5.11, if we set v.x/ D inft>0 uk.x; t/ for x 2 ˝ , then v 2 C.˝/ is

a viscosity subsolution of (SNP). Moreover, since v.x/ � uk.x; 0/ D kjx � yj for

all x 2 ˝ , we have v.y/ � 0. Thus, we find that v.x/ � v.y/C d.x; y/ � d.x; y/

for all x 2 ˝. We now conclude thatW.x; y/ � v.x/ � d.x; y/ for all x 2 ˝ . The

proof is complete. ut
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Proposition 5.5. Let y 2 ˝ and ı > 0. Then we have y 2 A if and only if

inf
˚

L .t; �; v; l/ W t > ı; .�; v; l/ 2 SP.y/ such that �.t/ D y
�

D 0: (112)

Proof. First of all, we define the function u 2 UC.Q/ as the viscosity solution of

(ENP)–(ID), with u0 D d.�; y/. By Theorem 5.5, we have

u.x; t/ D inf
˚

L .t; �; v; l/C d.�.t/; y/ W .�; v; l/ 2 SP.x/
�

for all .x; t/ 2 Q:

We combine this formula and Proposition 5.4, to get

u.x; t/ D inf
n

L .r; �; v; l/ W r > t; .�; v; l/ 2 SP.x/ such that �.r/ D y
o

for all .x; t/ 2 Q:
(113)

Now, we assume that y 2 A . The function d.�; y/ is then a viscosity solution

of (SNP) and u is a viscosity solution of (ENP)–(ID), with u0 D d.�; y/. Hence, by

Theorem 3.1, we have d.x; y/ D u.x; t/ for all .x; t/ 2 Q. Thus,

0 D d.y; y/ D inf
˚

L .r; �; v; l/ W r > t; .�; v; l/ 2 SP.y/ such that �.r/ D y
�

for all t > 0:

This shows that (112) is valid.

Now, we assume that (112) holds. This assumption and (113) show that u.y; ı/ D
0. Formula (113) shows as well that for each x 2 ˝ , the function u.x; �/ is

nondecreasing in RC. In particular, we have d.x; y/ � u.x; t/ for all .x; t/ 2 Q.

Let p 2 D�
x d.x; y/jxDy . Then we have .p; 0/ 2 D�u.y; ı/ and

(

H.y; p/ � 0 if y 2 ˝;
maxfH.y; p/; 
.y/ � p � g.y/g � 0 if y 2 @˝:

This shows that d.�; y/ is a viscosity solution of (SNP). Hence, we have y 2 A .

ut

6 Large-Time Asymptotic Solutions

We discuss the large-time behavior of solutions of (ENP)–(ID) following [8,38,39].

There has been much interest in the large time behavior of solutions of Hamilton–

Jacobi equations since Namah and Roquejoffre in [53] have first established a

general convergence result for solutions of

ut.x; t/CH.x;Dxu.x; t// D 0 in .x; t/ 2 ˝ � RC (1.2)
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under (A5), (A6) and the assumptions

H.x; p/ � H.x; 0/ for all .x; p/ 2 ˝ � R
n;

max
˝
H.x; 0/ D 0;

(114)

where ˝ is a smooth compact n-dimensional manifold without boundary. Fathi

in [26] has then established a similar convergence result but under different type

hypotheses, where (114) replaced by a strict convexity of the Hamiltonian H.x; p/

in p, by the dynamical approach based on weak KAM theory [25, 27]. Barles and

Souganidis have obtained in [3] more general results in the periodic setting (i.e., in

the case where˝ is n-dimensional torus), for possibly non-convex Hamiltonians, by

using a PDE-viscosity solutions approach, which does not depend on the variational

formula for the solutions like the one in Theorem 5.5. We refer to [7] for a recent

view on this approach.

The approach of Fathi has been later modified and refined by Roquejoffre [54],

Davini and Siconolfi in [21], and others. The same asymptotic problem in the whole

domain R
n has been investigated by Barles and Roquejoffre in [10], Fujita et al.,

Ichihara and the author in [30, 34–37] in various situations.

There has been as well a considerable interest in the large time asymptotic

behavior of solutions of Hamilton–Jacobi equation with boundary conditions.

The investigations in this direction are papers: Mitake [48] (the state-constraint

boundary condition), Roquejoffre [54] (the Dirichlet boundary condition in the

classical sense), Mitake [49, 50] (the Dirichlet boundary condition in the viscosity

framework). More recent studies are due to Barles, Mitake and the author in [8, 9,

38], where the Neumann boundary conditions including the dynamical boundary

conditions are treated. In [8, 9], the PDE-viscosity solutions approach of Barles–

Souganidis is adapted to problems with boundary conditions.

Yokoyama et al. in [58] and Giga et al. in [32, 33] have obtained some results on

the large time behavior of solutions of Hamilton–Jacobi equations with noncoercive

Hamiltonian which is motivated by a crystal growth model.

We also refer to the articles [13,54] and to [16,51,52] for the large time behavior

of solutions, respectively, of time-dependent Hamilton–Jacobi equations and of

weakly coupled systems of Hamilton–Jacobi equations.

As before, we assume throughout this section that hypotheses (A1)–(A7) hold

and that u0 2 C.˝/. Moreover, we assume that c# D 0. Throughout this section

u D u.x; t/ denotes the viscosity solution of (ENP)–(ID).

We set

Z D f.x; p/ 2 ˝ � R
n W H.x; p/ D 0g:

(A9)˙ There exists a function !0 2 C.Œ0;1// satisfying !0.r/ > 0 for all r > 0

such that if .x; p/ 2 Z, � 2 D�
pH.x; p/ and q 2 R

n, then

H.x; p C q/ � � � q C !0..� � q/˙/:
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The following proposition describes the long time behavior of solutions of

(ENP)–(ID).

Theorem 6.1. Assume that either (A9)C or (A9)� holds. Then there exists a

viscosity solution w 2 Lip.˝/ of (SNP) for which

lim
t!1

u.x; t/ D w.x/ uniformly on ˝: (115)

The following example is an adaptation of the one from Barles–Souganidis to the

Neumann problem, which shows the necessity of a stronger condition like (A9)˙

beyond the convexity assumption (A7) in order to have the asymptotic behavior

described in the above theorem.

Example 6.1. Let n D 2 and ˝ D B4. Let �; � 2 C 1.RC/ be functions such that

0 � �.r/ � 1 for all r 2 RC, �.r/ D 1 for all r 2 Œ0; 1�, �.r/ D 0 for all

r 2 Œ2;1/, �.r/ � 0 for all r 2 RC, �.r/ D 0 for all r 2 Œ0; 2� [ Œ3;1/ and

�.r/ > 0 for all r 2 .2; 3/. Fix a constant M > 0 so that M � k� 0k1;RC
. We

consider the HamiltonianH W ˝ � R
2 given by

H.x; y; p; q/ D j � yp C xq C �.r/j � �.r/

C �.r/
p
p2 C q2 C .1 � �.r//

�
ˇ̌
ˇ
x

r
p C y

r
q
ˇ̌
ˇ�M

�
C
;

where r D r.x; y/ WD
p
x2 C y2. Let u 2 C 1.˝ � RC/ be the function given by

u.x; y; t/ D �.r/
�y
r

cos t � x

r
sin t

�
;

where, as above, r D
p
x2 C y2. It is easily checked that u is a classical solution of

(
ut .x; y; t/CH.x; y; ux.x; y; t/; uy.x; y; t// D 0 in B4 � RC;

�.x; y/ � .ux.x; y; t/; uy .x; y; t// D 0 on @B4 � RC;

where �.x; y/ denotes the outer unit normal at .x; y/ 2 @B4. Note here that if we

introduce the polar coordinate system

x D r cos �; y D r sin �

and the new function

v.r; �; t/ D u.r cos �; r sin �; t/ for .r; �; t/ 2 RC � R � RC;

then the above Hamilton–Jacobi equation reads

vt C eH.r; �; vr ; v� / D 0;
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where

eH.r; �; pr ; p� /

D jp� C �.r/j � �.r/C �.r/

r
p2r C

�p�

r

�2

C .1 � �.r// .jpr j �M/C ;

while the definition of u reads

v.r; �; t/ D �.r/ sin.� � t/:

Note also that any constant function w on B4 is a classical solution of

(

H.x; y;wx.x; y; t/;wy .x; y; t// D 0 in B4;

�.x; y/ � .wx.x; y; t/;wy .x; y; t// D 0 on @B4;

which implies that the eigenvalue c# is zero.

It is clear that u does not have the asymptotic behavior (115). As is easily seen,

the HamiltonianH satisfies (A5)–(A7), but neither of (A9)˙.

6.1 Preliminaries to Asymptotic Solutions

According to Theorem 3.3 and Corollary 3.1, we know that u 2 BUC.Q/. We set

u1.x/ D lim inf
t!1

u.x; t/ for all x 2 ˝:

Lemma 6.1. The function u1 is a viscosity solution of (SNP) and u1 2 Lip.˝/.

Proof. Note that

u1.x/ D lim
t!1

inffu.x; t C r/ W r > 0g for all x 2 ˝: (116)

By Lemma 5.11, if we set

v.x; t/ D inffu.x; t C r/ W r > 0g for .x; t/ 2 Q;

then v 2 BUC.Q/ and it is a viscosity solution of (ENP). For each x 2 ˝, the

function v.x; �/ is nondecreasing in RC. Hence, by the Ascoli–Arzela theorem

or Dini’s lemma, we see that the convergence in (116) is uniform in ˝ . By

Proposition 1.9, we see that the function u1.x/, as a function of .x; t/, is a viscosity

solution of (ENP), which means that u1 is a viscosity solution of (SNP). Finally,

Proposition 1.14 guarantees that u1 2 Lip.˝/. ut
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We introduce the following notation:

S D f.x; �/ 2 ˝ � R
n W � 2 D�

pH.x; p/ for some .x; p/ 2 Zg;

P.x; �/ D fp 2 R
n W � 2 D�

pH.x; p/g for .x; �/ 2 ˝ � R
n:

Lemma 6.2. (i) Z; S � ˝ � BR0 for some R0 > 0.

(ii) Assume that (A9)C holds. Then there exist constants ı > 0 and R1 > 0 such

that for any .x; �/ 2 S and any " 2 .0; ı/, we have P.x; .1 C "/�/ ¤ ; and

P.x; .1C "/�/ � BR1 .

(iii) Assume that (A9)� holds. Then there exist constants ı > 0 and R1 > 0 such

that for any .x; �/ 2 S and any " 2 .0; ı/, we have P.x; .1 � "/�/ ¤ ; and

P.x; .1 � "/�/ � BR1 .

Proof. (i) It follows from coercivity (A6) that there exists a constant R1 > 0 such

that Z � R
n � BR1 . Next, fix any .x; �/ 2 S . Then, by the definition of S , we may

choose a point p 2 P.x; �/ such that .x; p/ 2 Z. Note that jpj < R1. By convexity

(A7), we have

H.x; p0/ � H.x; p/C � � .p0 � p/ for all p0 2 R
n:

Assuming that � ¤ 0 and setting p0 D p C �=j�j in the above, we get

j�j D � � .p0 � p/ � H.x; p0/ �H.x; p/ < sup
˝�BR1C1

H � inf
˝�BR1

H:

We may choose a constant R2 > 0 so that the right-hand side is less than R2, and

therefore � 2 BR2 . SettingR0 D maxfR1; R2g, we conclude thatZ; S � R
n�BR0 .

(ii) By (i), there is a constant R0 > 0 such that Z;S � ˝ � BR0 . We set ı D
!0.1/, where !0 is from (A9)

C
. In view of coercivity (A6), replacing R0 > 0 by

a larger constant if necessary, we may assume that H.x; p/ � 1 C !0.1/ for all

.x; p/ 2 ˝ � .Rn n BR0/.
Fix any .x; �/ 2 S , p 2 P.x; �/ and " 2 .0; ı/. Note that �; p 2 BR0 . By (A9)C,

for all x 2 R
n we have

H.x; q/ � � � .q � p/C !0 ..� � .q � p//C/ :

We set V WD fq 2 B2R0.p/ W j� � .q � p/j � 1g. Let q 2 V and observe the

following: if q 2 @B2R0.p/, which implies that jqj � R0, then H.x; q/ � 1 C
!0.1/ > 1C " � .1C "/� � .q�p/. If � � .q�p/ D 1, thenH.x; q/ � 1C!0.1/ >

1C " D .1C "/� � .q �p/. Also, if � � .q �p/ D �1, thenH.x; q/ � � � .q �p/ >
.1C "/� � .q � p/. Accordingly, the functionG.q/ WD H.x; q/� .1C "/� � .q � p/
on R

n is positive on @V while it vanishes at q D p 2 V , and hence it attains a

minimum over the set V at an interior point of V . Thus, P.x; .1C "/�/ 6D ;. By the
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convexity of G, we see easily that G.q/ > 0 for all q 2 R
n n V and conclude that

P.x; .1C "/�/ � B2R0 .

(iii) Let !0 be the function from (A9)
�

. As before, we choose R0 > 0 so that

Z;S � ˝ � BR0 and H.x; p/ � 1 C !0.1/ for all .x; p/ 2 ˝ � .Rn n BR0/, and

set ı D !0.1/ ^ 1. Note that for all x 2 R
n,

H.x; q/ � � � .q � p/C !0 ..� � .q � p//
�
/ :

Fix any .x; �/ 2 S , p 2 P.x; �/ and " 2 .0; ı/. Set V WD fq 2 B2R0.p/ W
j� � .q � p/j � 1g. Let q 2 V and observe the following: if q 2 @B2R0 .p/, then

H.x; q/ � 1 C !0.1/ > 1 C " � .1 � "/� � .q � p/. If � � .q � p/ D �1, then

H.x; q/ � �1 C !0.1/ > �1 C " D .1 � "/� � .q � p/. If � � .q � p/ D 1,

then H.x; q/ � � � .q � p/ > .1 � "/� � .q � p/. As before, the function G.q/ WD
H.x; q/ � .1 � "/� � .q � p/ attains a minimum over V at an interior point of V .

Consequently, P.x; .1 � "/�/ 6D ;. Moreover, we get P.x; .1 � "/�/ � B2R0 . ut
Lemma 6.3. Assume that (A9)

C
(resp., (A9)

�
) holds. Then there exist a constant

ı1 > 0 and a modulus !1 such that for any " 2 Œ0; ı1� and .x; �/ 2 S ,

L.x; .1C "/ �/ � .1C "/L.x; �/C " !1."/ (117)

(resp.,

L.x; .1 � "/ �/ � .1 � "/L.x; �/C " !1."/ ): (118)

Before going into the proof, we make the following observation: under the

assumption that H; L are smooth, for any .x; �/ 2 S , if we set p WD D�L.x; �/,

then

H.x; p/ D 0;

p � � D H.x; p/C L.x; �/ D L.x; �/;

and, as " ! 0,

L.x; .1C "/�/ D L.x; �/C "p � � C o."/

D L.x; �/C "L.x; �/C o."/ D .1C "/L.x; �/C o."/:

Proof. Assume that (A9)
C

holds. Let R0 > 0, R1 > 0 and ı > 0 be the constants

from Lemma 6.2. Fix any .x; �/ 2 S and " 2 Œ0; ı/. In view of Lemma 6.2, we

may choose a p" 2 P.x; .1 C "/�/. Then we have jp" � p0j < 2R1, j�j < R0 and

j� � .p" � p0/j < 2R0R1.
Note by (A9)

C
that

H.x; p"/ � � � .p" � p0/C !0 ..� � .p" � p0//C/ :
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Hence, we obtain

L.x; .1C "/ �/ D .1C "/ � � p" �H.x; p"/ � .1C "/ � � p"
� � � .p" � p0/ � !0 ..� � .p" � p0//C/

� .1C "/Œ� � p0 �H.x; p0/�
C " � � .p" � p0/ � !0 ..� � .p" � p0//C/

� .1C "/L.x; �/C " max
0�r�2R0R1

�
r � 1

"
!0.r/

�
:

We define the function !1 on Œ0;1/ by setting !1.s/ D max0�r�2R0R1.r�!0.r/=s/
for s > 0 and !1.0/ D 0 and observe that !1 2 C.Œ0;1//. We have also L.x; .1C
"/�/ � .1C "/L.x; �/C "!1."/ for all " 2 .0; ı/. Thus (117) holds with ı1 WD ı=2.

Next, assume that (A9)
�

holds. Let R0 > 0, R1 > 0 and ı > 0 be the constants

from Lemma 6.2. Fix any .x; �/ 2 S and " 2 Œ0; ı/.
As before, we may choose a p" 2 P.x; .1 � "/�/, and observe that jp" � p0j <

2R1, j�j < R0 and j� � .p" � p0/j < 2R0R1. Noting that

H.x; p"/ � � � .p" � p0/C !0 ..� � .p" � p0//�
/ ;

we obtain

L.x; .1 � "/ �/ D .1 � "/ � � p" �H.x; p"/ � .1 � "/ � � p"
� � � .p" � p0/ � !0 ..� � .p" � p0//�

/

� .1 � "/Œ� � p0 �H.x; p0/�
� " � � .p" � p0/ � !0 ..� � .p" � p0//�

/

� .1C "/L.x; �/C " max
0�r�2R0R1

�
r � 1

"
!0.r/

�
:

Setting !1.s/ D max0�r�2R0R1.r � !0.r/=s/ for s > 0 and !1.0/ D 0, we

find a function !1 2 C.Œ0;1// vanishing at the origin for which L.x; .1 � "/�/ �
.1 � "/L.x; �/C "!1."/ for all " 2 .0; ı/. Thus (118) holds with ı1 WD ı=2. ut
Theorem 6.2. Let u 2 Lip.˝/ be a subsolution of (SNP). Let � 2 AC.RC; R

n/ be

such that �.t/ 2 ˝ for all t 2 RC. Set RC;b D ft 2 RC W �.t/ 2 @˝g. Then there

exists a function p 2 L1.RC; R
n/ such that

8
ˆ̂̂
<
ˆ̂̂
:

d

dt
u ı �.t/ D p.t/ � P�.t/ for a.e. t 2 RC;

H.�.t/; p.t// � 0 for a.e. t 2 RC;


.�.t// � p.t/ � g.�.t// for a.e. t 2 RC;b:
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Proof. According to Theorem 4.2, there is a collection fu"g"2.0; 1/ � C 1.˝/ such

that 8
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂:

H.x;Du".x// � " for all x 2 ˝;
@u"

@

.x/ � g.x/ for all x 2 @˝;

ku" � uk1;˝ < ";

sup
0<"<1

kDu"kL1.˝/ < 1:

If we set p".t/ D Du" ı �.t/ for all t 2 RC, then we have

8
ˆ̂̂
<̂
ˆ̂̂
:̂

u" ı �.t/ � u" ı �.0/ D
Z t

0

p".s/ � P�.s/ds for all t 2 RC;

H.�.t/; p".t// � " for all t 2 RC;


.�.t// � p".t/ � g.�.t// for all t 2 RC;b:

(119)

Since fp"g"2.0;1/ is bounded in L1.RC/, there is a sequence f"j gj2N converging to

zero such that, as j ! 1, the sequence fp"j g converges weakly-star in L1.RC/

to some function p 2 L1.RC/. It is clear from (119) that

8
<̂

:̂
u ı �.t/ � u ı �.0/ D

Z t

0

p.s/ � P�.s/ds for all t 2 RC;


.�.t// � p.t/ � g.�.t// for a.e. t 2 RC;b:

Now, we fix an i 2 N so that i > kpkL1.RC/ and any 0 < T < 1, and set

J D Œ0; T �. Using Lemma 5.6, for eachm 2 N, we find a function vm 2 L1.J;Rn/

so that

H.�.s/; p.s//C Li .�.s/;�vm.s// < �vm.s/ � p.s/C 1=m for a.e. s 2 J:
(120)

By the convex duality, we have

H.x; q/ D sup
�2Rn

.� � q � Li .x; �// for all .x; q/ 2 ˝ � Bi :

(Note that Li .x; �/ is the convex conjugate of the function H.x; �/ C ıB i , where

ıB i .p/ D 0 if p 2 B i and D 1 otherwise.) Hence, for any nonnegative function

 2 L1.J;R/ and any .j;m/ 2 N
2, by (119) we get

"j

Z

J

 .s/ds �
Z

J

 .s/H.�.s/; p"j .s//ds

�
Z

J

 .s/Œ�vm.s/ � p"j .s/ �Li .�.s/;�vm.s//�ds:
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Combining this observation with (120), after sending j ! 1, we obtain

0 �
Z

J

 .s/.H.�.s/; p.s// � 1=m/ds;

which implies that H.�.s/; p.s// � 0 for a.e. s 2 Œ0; T �. Since T > 0 is arbitrary,

we see that

H.�.s/; p.s// � 0 for a.e. s 2 RC:

The proof is complete. ut

6.2 Proof of Convergence

This subsection is devoted to the proof of Theorem 6.1.

Proof (Theorem 6.1). It is enough to show that

lim sup
t!1

u.x; t/ � u1.x/ for all x 2 ˝: (121)

Indeed, once this is proved, it is obvious that limt!1 u.x; t/ D u1.x/ for all x 2
˝, and moreover, since u 2 BUC.Q/, by the Ascoli–Arzela theorem, it follows that

the convergence, limt!1 u.x; t/ D u1.x/, is uniform in ˝.

Fix any z 2 ˝ . According to Lemma 6.1 and Corollary 5.2, we may choose a

.�; v; l/ 2 SP.z/ such that for all t > 0,

u1.z/ � u1.�.t// D L .t; �; v; l/: (122)

Due to Theorem 6.2, there exists a function q 2 L1.RC; R
n/ such that

8
ˆ̂̂
<
ˆ̂̂
:

d

ds
u1.�.s// D q.s/ � P�.s/ for a.e. s 2 RC;

H.�.s/; q.s// � 0 for a.e. s 2 RC;


.�.s// � q.s/ � g.�.s// for a.e. s 2 RC;b;

(123)

where RC;b WD fs 2 RC W �.s/ 2 @˝g.

We now show that

8
ˆ̂<
ˆ̂:

H.�.s/; q.s// D 0 for a.e. s 2 RC;

l.s/
.�.s// � q.s/ D l.s/g.�.s// for a.e. s 2 RC;b;

� q.s/ � v.s/ D H.�.s/; q.s//C L.�.s/; �v.s// for a.e. s 2 RC:

(124)
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We remark here that the last equality in (124) is equivalent to saying that

�v.s/ 2 D�
pH.�.s/; q.s// for a.e. s 2 RC;

(or

q.s/ 2 D�
� L.�.s/; �v.s// for a.e. s 2 RC:/

By differentiating (122), we get

� d

ds
u1.�.s// D L.�.s/;�v.s//C l.s/g.�.s// for a.e. s 2 RC:

Combining this with (123), we calculate

0 D q.s/ � P�.s/C L.�.s/;�v.s//C l.s/g.�.s//

D q.s/ � .v.s/ � l.s/
.�.s///C L.�.s/;�v.s//C l.s/g.�.s//

� �H.�.s/; q.s// � l.s/.q.s/ � 
.�.s//� g.�.s/// � 0

for a.e. s 2 RC, which guarantees that (124) holds.

Fix any " > 0. We prove that there is a constant � > 0 and for each x 2 ˝ a

number �.x/ 2 Œ0; �� for which

u1.x/C " > u.x; �.x//: (125)

In view of the definition of u1, for each x 2 ˝ there is a constant t.x/ > 0 such

that

u1.x/C " > u.x; t.x//:

By continuity, for each fixed x 2 ˝ , we can choose a constant r.x/ > 0 so that

u1.y/C " > u.y; t.x// for y 2 ˝ \ Br.x/.x/;

whereB�.x/ WD fy 2 R
n W jy�xj < �g. By the compactness of˝ , there is a finite

sequence xi , i D 1; 2; : : : ; N , such that

˝ �
[

1�i�N

Br.xi /.xi /;

That is, for any y 2 ˝ there exists xi , with 1 � i � N , such that y 2 Br.xi /.xi /,
which implies

u1.y/C " > u.y; t.xi //:

Thus, setting

� D max
1�i�N

t.xi /;

we find that for each x 2 ˝ there is a constant �.x/ 2 Œ0; �� such that (125) holds.
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In what follows we fix � > 0 and �.x/ 2 Œ0; �� as above. Also, we choose a

constant ı1 > 0 and a modulus !1 as in Lemma 6.3.

We divide our argument into two cases according to which hypothesis is valid,

(A9)C or (A9)�. We first argue under hypothesis (A9)C. Choose a constant T > �

so that �=.T � �/ � ı1. Fix any t � T , and set � D �.�.t// 2 Œ0; ��. We set

ı D �=.t � �/ and note that ı � �=.t � �/ � ı1. We define functions �ı , vı , lı on

RC by

�ı.s/ D �..1C ı/s/;

vı.s/ D .1C ı/v..1C ı/s/;

lı.s/ D .1C ı/l..1C ı/s/;

and note that .�ı ; vı ; lı/ 2 SP.z/.

By (124) together with the remark after (124), we know that H.�.s/; q.s// D 0

and �v.s/ 2 D�
pH.�.s/; q.s// for a.e. s 2 RC. That is, .�.s/; �v.s// 2 S for a.e.

s 2 RC. Therefore, by (117), we get for a.e. s 2 RC,

L.�ı.s/; �vı.s// � .1C ı/L
�
�..1C ı/s/; �v..1C ı/s/

�
C ı!1.ı/:

Integrating this over .0; t � �/, making a change of variables in the integral and

noting that .1C ı/.t � �/ D t , we get

Z t��

0

L.�ı.s/; �vı.s//ds �
Z t

0

L.�.s/; �v.s//ds C .t � �/ı!1.ı/

D
Z t

0

L.�.s/; �v.s//ds C �!1.ı/;

as well as Z t��

0

lı.s/g.�ı.s//ds D
Z t

0

l.s/g.�.s//ds:

Moreover,

u.z; t/ � L .t � �; �ı; vı ; lı/C u.�ı.t � �/; �/

�
Z t

0

�
L.�.s/; �v.s//C l.s/g.�.s//

�
ds C �!1.ı/C u

�
�.t/; �.�.t//

�

< u1.z/ � u1.�.t//C �!1.ı/C u1.�.t//C "

D u1.z/C �!1.ı/C ":

Thus, recalling that ı � �=.t � �/, we get

u.z; t/ � u1.z/C �!1

� �

t � �

�
C ": (126)
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Next, we assume that (A9)� holds. We choose T > � as before, and fix t � T .

Set � D �.�.t��// 2 Œ0; �� and ı D .���/=.t��/. Observe that .1�ı/.t��/ D
t � � and ı � �=.t � �/ � ı1.

We set �ı.s/ D �..1�ı/s/, vı.s/ D .1�ı/v..1�ı/s/ and lı.s/ D .1�ı/l..1�
ı/s/ for s 2 RC and observe that .�ı ; vı; lı/ 2 SP.z/. As before, thanks to (118),

we have

L.�ı.s/; �vı.s// � .1� ı/L.�..1� ı/s/; �v.1� ı/s//C ı!1.ı/ for a.e. s 2 RC:

Hence, we get

Z t��

0

L.�ı.s/; �vı.s//ds �
Z t��

0

L.�.s/; �v.s//ds C .t � �/ı!1.ı/

D
Z t��

0

L.�.s/; �v.s//ds C .� � �/!1.ı/;

and Z t��

0

lı.s/g.�ı.s//ds D
Z t��

0

l.s/g.�.s//ds:

Furthermore, we calculate

u.z; t/ � L .t � �; �ı ; vı; lı/C u.�ı.t � �/; �/
� L .t � �; �; v; l/C �!1.ı/C u.�.t � �/; �.�.t � �///

< u1.z/C �!1.ı/C ":

Thus, we get

u.z; t/ � u1.z/C �!1

� �

t � �
�

C ";

From the above inequality and (126) we see that (121) is valid. ut

6.3 Representation of the Asymptotic Solution u1

According to Theorem 6.1, if either (A9)C or (A9)� holds, then the solution u.x; t/

of (ENP)–(ID) converges to the function u1.x/ in C.˝/ as t ! 1, where the

function u1 is given by

u1.x/ D lim inf
t!1

u.x; t/ for x 2 ˝:

In this subsection, we do not assume (A9)C or (A9)� and give two characteriza-

tions of the function u1.

Let S � and S denote the sets of all viscosity subsolutions of (SNP) and of all

viscosity solutions of (SNP), respectively.
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Theorem 6.3. Set
F1 D fv 2 S � W v � u0 in ˝g;
u�
0 D sup F1;

F2 D fw 2 S W w � u�
0 in ˝g:

Then u1 D inf F2.

Proof. By Proposition 1.10, we have u�
0 2 S �. It is clear that u�

0 � u0 in ˝ .

Hence, by Theorem 3.1 applied to the functions u�
0 and u, we get u�

0 .x/ � u.x; t/

for all .x; t/ 2 Q, which implies that u�
0 � u1 in˝ . This together with Lemma 6.1

ensures that u1 2 F2, which shows that inf F2 � u1 in ˝ .

Next, we set

u�.x; t/ D inf
r>0

u.x; t C r/ for all .x; t/ 2 Q:

By Lemma 5.11, the function u� is a solution of (ENP) and the function u�.�; 0/
is a viscosity subsolution of (SNP). Also, it is clear that u�.x; 0/ � u0.x/ for all

x 2 ˝, which implies that u�.�; 0/ � u�
0 � inf F2 in ˝. We apply Theorem 3.1

to the functions u� and inf F2, to obtain u�.x; t/ � inf F2.x/ for all .x; t/ 2 Q,

from which we get u1 � inf F2 in ˝ , and conclude the proof. ut

Let d W ˝ 2 ! R and A denote the distance-like function and the Aubry set,

respectively, as in Sect. 4.

Theorem 6.4. We have the formula:

u1.x/ D inffd.x; y/C d.y; z/C u0.z/ W z 2 ˝; y 2 A g for all x 2 ˝:

Proof. We first show that

u�
0 .x/ D inffu0.y/C d.x; y/ W y 2 ˝g for all x 2 ˝;

where u�
0 is the function defined in Theorem 6.3.

Let u�
d denote the function given by the right hand side of the above formula.

Since u�
0 2 S �, we have

u�
0 .x/ � u�

0 .y/ � d.x; y/ for all x; y 2 ˝;

which ensures that u�
0 � u�

d in ˝ .

By Theorem 4.4, we have u�
d 2 S �. Also, by the definition of u�

d , we have

u�
d .x/ � u0.x/ C d.x; x/ D u0.x/ for all x 2 ˝ . Hence, by the definition of u�

0 ,

we find that u�
0 � u�

d in ˝ . Thus, we have u�
0 D u�

d in ˝ .

It is now enough to show that

u1.x/ D inf
y2A

.u�
0 .y/C d.x; y//:
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Let � denote the function defined by the right hand side of the above formula.

The version of Proposition 1.10 for supersolutions ensures that � 2 S C, while

Theorem 4.4 guarantees that � 2 S �. Hence, we have � 2 S . Observe also that

u�
0 .x/ � u�

0 .y/C d.x; y/ for all x; y 2 ˝;

which yields u�
0 � � in ˝. Thus, we see by Theorem 6.3 that u1 � � in ˝ .

Now, applying Theorem 4.1 to u1, we observe that for all x 2 ˝ ,

u1.x/ D inffu1.y/C d.x; y/ W y 2 A g
� inffu�

0 .y/C d.x; y/ W y 2 A g D �.x/:

Thus we find that u1 D � in ˝ . The proof is complete. ut
Combining the above theorem and Proposition 5.4, we obtain another represen-

tation formula for u1.

Corollary 6.1. The following formula holds:

u1.x/ D inf
˚

L .T; �; v; l/C u0.�.T // W T > 0; .�; v; l/ 2 SP.x/

such that �.t/ 2 A for some t 2 .0; T /
�

:

Example 6.2. As in Example 3.1, let n D 1, ˝ D .�1; 1/ and 
 D � on @˝ (i.e.,


.˙1/ D ˙1). Let H D H.p/ D jpj2 and g W @˝ ! R be the function given

by g.�1/ D �1 and g.1/ D 0. As in Example 3.1, we see that c# D 1. We set
QH.p/ D H.p/� c# D jpj2 � 1. Note that QH satisfies both (A9)˙, and consider the

Neumann problem

QH.v0.x// D 0 in ˝; 
.x/ � v0.x/ D g.x/ on @˝: (127)

It is easily seen that the distance-like function d W ˝2 ! R for this problem is

given by d.x; y/ D jx � yj. Let A denote the Aubry set for problem (127). By

examining the function d , we see that A D f�1g. For instance, by observing that

D�
x d.x;�1/ D

8
ˆ̂<
ˆ̂:

f1g if x 2 ˝;
.�1; 1� if x D �1;
Œ1; 1/ if x D 1;

we find that �1 2 A . Let u0.x/ D 0. Consider the problem

8
ˆ̂<
ˆ̂:

ut .x; t/CH.ux.x; t// D 0 for .x; t/ 2 ˝ � RC;


.x/ux.x; t/ D g.x/ for .x; t/ 2 @˝ � RC;

u.x; 0/ D u0.x/ for x 2 ˝:
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If u is the viscosity solution of this problem and the function v is given by v.x; t/ D
u.x; t/C c#t D u.x; t/C t , then v solves in the viscosity sense

8
ˆ̂<
ˆ̂:

vt .x; t/C QH.vx.x; t// D 0 for .x; t/ 2 ˝ � RC;


.x/vx.x; t/ D g.x/ for .x; t/ 2 @˝ � RC;

v.x; 0/ D u0.x/ for x 2 ˝:

Setting

u1.x/ D minfd.x; y/C d.y; z/C u0.z/ W y 2 A ; z 2 ˝g for x 2 ˝;

we note that u1.x/ D jx C 1j for all x 2 ˝. Thanks to Theorems 6.1 and 6.4, we

have

lim
t!1

v.x; t/ D u1.x/ uniformly on ˝;

which reads

lim
t!1

.u.x; t/C t � jx C 1j/ D 0 uniformly on ˝:

That is, we have u.x; t/ � �t C jx C 1j as t ! 1. If we replace u0.x/ D 0 by the

function u0.x/ D �3x, then

u1.x/ D min
y2˝

fjx C 1j C j1C yj � 3yg D jx C 1j � 1 for all x 2 ˝;

and u.x; t/ � �t C jx C 1j � 1 as t ! 1.

In some cases the variational formula in Corollary 6.1 is useful to see the

convergence assertion of Theorem 6.1.

Under the hypothesis that c# D 0, which is our case, we call a point y 2 ˝

an equilibrium point if L.y; 0/ D 0. This condition, L.y; 0/ D 0, is equivalent to

minp2Rn H.y; p/ D 0.

Let y 2 ˝ be an equilibrium point. If we define .�; v; l/ 2 SP.y/ by setting

.�; v; l/.s/ D .y; 0; 0/, then L .t; �; v; l/ D 0 for all t 2 RC, and Propositions 5.4

and 5.5 guarantee that y 2 A .

We now assume that A consists of only equilibrium points. Fix any " > 0 and

x 2 ˝ . According to Corollary 6.1, we can choose �; � 2 RC and .�; v; l/ 2 SP.x/

so that �.�/ 2 A and

L .� C �; �; v; l/C u0.�.� C �// < u1.x/C ": (128)

Fix any t > � C � . We define . Q�; Qv; Ql/ 2 SP.x/ by
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. Q�; Qv; Ql/.s/ D

8
ˆ̂<
ˆ̂:

.�; v; l/.s/ for s 2 Œ0; �/;

.�.�/; 0; 0/ for s 2 Œ�; � C �/;

.�; v; l/.s � �/ for s 2 Œ� C �;1/;

where � D t � .� C �/. Using (128), we get

u1.x/C " > L .t; Q�; Qv; Ql/C u0. Q�.t// � u.x; t/:

Therefore, recalling that lim inft!1 u.x; t/ D u1.x/, we see that limt!1 u.x; t/ D
u1.x/ for all x 2 ˝ .

6.4 Localization of Conditions (A9)˙

In this subsection we explain briefly that the following versions of (A9)˙ localized

to the Aubry set A may replace the role of (A9)˙ in Theorem 6.1.

(A10)˙ Let

ZA D f.x; p/ 2 A � R
n W H.x; p/ D 0g:

There exists a function !0 2 C.Œ0;1// satisfying !0.r/ > 0 for all r > 0

such that if .x; p/ 2 ZA , � 2 D�
pH.x; p/ and q 2 R

n, then

H.x; p C q/ � � � q C !0..� � q/˙/:

As before, assume that c# D 0 and let u be the solution of (ENP)–(ID) and

u1.x/ WD lim inft!1 u.x; t/.

Theorem 6.5. Assume that either (A10)C or (A10)� holds. Then

lim
t!1

u.x; t/ D u1.x/ uniformly on ˝: (129)

If we set

uC
1.x/ D lim sup

t!1
u.x; t/ for x 2 ˝;

we see by Theorem 1.3 that the function uC
1.x/ is a subsolution of (ENP), as a

function of .x; t/, and hence a subsolution of (SNP). That is, uC
1 2 S �. Since

u1 2 S C, once we have shown that uC
1 � u1 on A , then, by Theorem 4.6, we

get

uC
1 � u1 in ˝;

which shows that the uniform convergence (129) is valid. Thus we only need to

show that uC
1 � u1 on A .

Following [21] (see also [39]), one can prove the following lemma.
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Lemma 6.4. For any z 2 A there exists an ˛ D .�; v; l/ 2 SP.z/ such that

d.z; �.t// D L .t; ˛/ D �d.�.t/; z/ for all t > 0:

Proof. By Proposition 5.5, for each k 2 N there are an ˛k D .�k ; vk ; lk/ 2 SP.z/

and �k � k such that

L .�k ; ˛k/ <
1

k
and �k.�k/ D z:

Observe that for any j; k 2 N with j < k,

1

k
> L .j; ˛k/C

Z �k

j

ŒL.�k.s/;�vk.s//C lk.s/g.�k.s//�ds

� L .j; ˛k/C d.�k.j /; �k.�k//;

(130)

and hence

sup
k2N

L .j; ˛k/ < 1 for all j 2 N:

We apply Theorem 5.4, with T D j 2 N, and use the diagonal argument, to

conclude from (130) that there is an ˛ D .�; v; l/ 2 SP.z/ such that for all j 2 N,

L .j; ˛/ � lim inf
k!1

L .j; ˛k/ � �d.�.j /; z/:

Let 0 < t < 1, and choose a j 2 N such that t < j . Using Propositions 5.4 and

4.1 (ii) (the triangle inequality for d ), we compute that

d.z; �.t// � L .t; ˛/ D L .j; ˛/ �
Z j

t

ŒL.�.s/;�v.s//C l.s/g.�.s//�ds

� L .j; ˛/ � d.�.t/; �.j // � �d.�.j /; z/ � d.�.t/; �.j //
� �d.�.t/; z/:

Moreover, by the triangle inequality, we get

�d.�.t/; z/ � d.z; �.t//:

These together yield

d.z; �.t// D L .t; ˛/ D �d.�.t/; z/ for all t > 0;

which completes the proof. ut
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The above assertion is somehow related to the idea of the quotient Aubry set (see

[46, 47]). Indeed, if we introduce the equivalence relation � on A by

x � y ” d.x; y/C d.y; x/ D 0;

and consider the quotient space OA consisting of the equivalence classes

Œx� D fy 2 A W y � xg; with x 2 A ;

then the space OA is a metric space with its distance given by

Od.Œx�; Œy�/ D d.x; y/C d.y; x/:

The property of the curve � in the above lemma that d.z; �.t// D �d.�.t/; z/ is

now stated as: �.t/ � �.0/.

Lemma 6.5. Let  2 S � and x; y 2 A . If x � y, then

 .x/ �  .y/ D d.x; y/:

Proof. By the definition of d , we have

 .x/ �  .y/ � d.x; y/ and  .y/ �  .x/ � d.y; x/:

Hence,

 .x/ �  .y/ � d.x; y/ D �d.y; x/ �  .x/ �  .y/;

which shows that  .x/ �  .y/ D d.x; y/ D �d.y; x/. ut
Proof (Theorem 6.5). As we have noted above, we need only to show that

uC
1.x/ � u1.x/ for all x 2 A :

To this end, we fix any z 2 A . Let ˛ D .�; v; l/ 2 SP.z/ be as in Lemma 6.4. In

view of Lemma 6.5, we have

u1.z/ � u1.�.t// D d.z; �.t// D L .t; ˛/ for all t > 0:

It is obvious that the same assertion as Lemma 6.3 holds if we replace S by

SA WD f.x; �/ 2 A � R
n W � 2 D�

pH.x; p/ for some .x; p/ 2 ZA g:

We now just need to follow the arguments in Sect. 6.2, to conclude that

uC
1.z/ � u1.z/:

The details are left to the interested reader. ut
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Appendix

A.1 Local maxima to global maxima

We recall a proposition from [56] which is about partition of unity.

Proposition A.1. Let O be a collection of open subsets of Rn. SetW WD
S

U2O
U .

Then there is a collection F of C1 functions in R
n having the following

properties:

(i) 0 � f .x/ � 1 for all x 2 W and f 2 F .

(ii) For each x 2 W there is a neighborhood V of x such that all but finitely many

f 2 F vanish in V .

(iii)
P

f 2F
f .x/ D 1 for all x 2 W .

(iv) For each f 2 F there is a set U 2 O such that suppf � U .

Proposition A.2. Let ˝ be any subset of Rn, u 2 USC.˝;R/ and � 2 C 1.˝/.

Assume that u � � attains a local maximum at y 2 ˝ . Then there is a function

 2 C 1.˝/ such that u �  attains a global maximum at y and  D � in a

neighborhood of y.

Proof. As usual it is enough to prove the above proposition in the case when

.u � �/.y/ D 0.

By the definition of the space C 1.˝/, there is an open neighborhood W0 of ˝

such that � is defined in W0 and � 2 C 1.W0/.

There is an open subsetUy �W0 ofRn containingy such that maxUy\˝.u ��/ D
.u � �/.y/. Since u 2 USC.˝;R/, for each x 2 ˝ n fyg we may choose an open

subset Ux of Rn so that x 2 Ux, y 62 Ux and supUx\˝ u < 1. Set ax D supUx\˝ u

for every x 2 ˝ n fyg.

We set O D fUz W z 2 ˝g and W D
S

U2O
U . Note that W is an open

neighborhood of ˝ . By Proposition A.1, there exists a collection F of functions

f 2 C1.Rn/ satisfying the conditions (i)–(iv) of the proposition. According to the

condition (iv), for each f 2 F there is a point z 2 ˝ such that suppf � Uz. For

each f 2 F we fix such a point z 2 ˝ and define the mapping p W F ! ˝ by

p.f / D z. We set

 .x/ D
X

f 2F ; p.f / 6Dy

ap.f /f .x/C
X

f 2F ; p.f /Dy

�.x/f .x/ for x 2 W:

By the condition (ii), we see that  2 C 1.W /. Fix any x 2 ˝ and f 2 F ,

and observe that if f .x/ > 0 and p.f / 6D y, then we have x 2 suppf � Up.f /
and, therefore, ap.f / D supUp.f /\˝ u � u.x/. Observe also that if f .x/ > 0 and

p.f / D y, then we have x 2 Uy and �.x/ � u.x/. Thus we see that for all x 2 ˝ ,

 .x/ �
X

f 2F ; p.f / 6Dy

u.x/f .x/C
X

f 2F ; p.f /Dy

u.x/f .x/ D u.x/
X

f 2F

f .x/ D u.x/:
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Thanks to the condition (ii), we may choose a neighborhood V � W of y and a

finite subset ffj gNjD1 of F so that

NX

jD1

fj .x/ D 1 for all x 2 V:

Ifp.fj / 6D y for some j D 1; : : : ; N , thenUp.fj /\fyg D ; and hence y 62 suppfj .

Therefore, by replacing V by a smaller one we may assume that p.fj / D y for all

j D 1; : : : ; N . Since f D 0 in V for all f 2 F n ff1; : : : ; fN g, we see that

 .x/ D
NX

jD1

�.x/fj .x/ D �.x/ for all x 2 V:

It is now easy to see that u �  has a global maximum at y. ut

A.2 A Quick Review of Convex Analysis

We discuss here basic properties of convex functions on R
n.

By definition, a subset C of Rn is convex if and only if

.1 � t/x C ty 2 C for all x; y 2 C; 0 < t < 1:

For a given function f W U � R
n ! Œ�1; 1�, its epigraph epi.f / is defined as

epi.f / D f.x; y/ 2 U � R W y � f .x/g:

A function f W U ! Œ�1; 1� is said to be convex if epi.f / is a convex subset of

R
nC1.

We are henceforth concerned with functions defined on R
n. When we are given

a function f on U with U being a proper subset of Rn, we may think of f as a

function defined on R
n having value 1 on the set Rn n U .

It is easily checked that a function f W R
n ! Œ�1; 1� is convex if and only if

for all x; y 2 R
n, t; s 2 R and � 2 Œ0; 1�,

f ..1 � �/x C �y/ � .1 � �/t C �s if t � f .x/ and s � f .y/:

From this, we see that a function f W R
n ! .�1; 1� is convex if and only if for

all x; y 2 R
n and � 2 Œ0; 1�,

f ..1 � �/x C �y/ � .1 � �/f .x/C �f .y/:
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Here we use the convention for extended real numbers, i.e., for any x 2 R, �1 <

x < 1, x ˙ 1 D ˙1, x � .˙1/ D ˙1 if x > 0, 0 � .˙1/ D 0, etc.

Any affine function f .x/ D a � x C b, where a 2 R
n and b 2 R, is a convex

function on R
n. Moreover, if A � R

n and B � R are nonempty sets, then the

function on R
n given by

f .x/ D supfa � x C b W .a; b/ 2 A �Bg

is a convex function. Note that this function f is lower semicontinuous on R
n. We

restrict our attention to those functions which take values only in .�1; 1�.

Proposition B.1. Let f W R
n ! .�1; 1� be a convex function. Assume that

p 2 D�f .y/ for some y; p 2 R
n. Then

f .x/ � f .y/C p � .x � y/ for all x 2 R
n:

Proof. By the definition of D�f .y/, we have

f .x/ � f .y/C p � .x � y/C o.jx � yj/ as x ! y:

Hence, fixing x 2 R
n, we get

f .y/ � f .tx C .1 � t/y/ � tp � .x � y/C o.t/ as t ! 0C :

Using the convexity of f , we rearrange the above inequality and divide by t > 0, to

get

f .y/ � f .x/ � p � .x � y/C o.1/ as t ! 0C :

Sending t ! 0C yields

f .x/ � f .y/C p � .x � y/ for all x 2 R
n: ut

Proposition B.2. Let F be a nonempty set of convex functions on R
n with values

in .�1; 1�. Then sup F is a convex function on R
n having values in .�1; 1�.

Proof. It is clear that .sup F /.x/ 2 .�1; 1� for all x 2 R
n. If f 2 F , x; y 2 R

n

and t 2 Œ0; 1�, then we have

f ..1 � t/x C ty/ � .1 � t/f .x/C tf .y/ � .1 � t/.sup F /.x/C t.sup F /.y/

and hence

.sup F /..1 � t/x C ty/ � .1 � t/.sup F /.x/C t.sup F /.y/;

which proves the convexity of sup F . ut
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We call a function f W R
n ! .�1; 1� proper convex if the following three

conditions hold:

(a) f is convex on R
n.

(b) f 2 LSC.Rn/.

(c) f .x/ 6� 1.

Let f W R
n ! Œ�1; 1�. The conjugate convex function (or the Legendre–

Fenchel transform) of f is the function f ? W R
n ! Œ�1; 1� given by

f ?.x/ D sup
y2Rn

.x � y � f .y//:

Proposition B.3. If f is a proper convex function, then so is f ?.

Lemma B.1. If f is a proper convex function on R
n, then D�f .y/ 6D ; for some

y 2 R
n.

Proof. We choose a point x0 2 R
n so that f .x0/ 2 R. Let k 2 N, and define the

function gk on NB1.x0/ by the formula gk.x/ D f .x/ C kjx � x0j2. Since gk 2
LSC.B1.x0//, and gk.x0/ D g.x0/ 2 R, the function gk has a finite minimum at a

point xk 2 B1.x0/. Note that if k is sufficiently large, then

min
@B1.x0/

gk D min
@B1.x0/

f C k > f .x0/:

Fix such a large k, and observe that xk 2 B1.x0/ and, therefore, �2k.xk � x0/ 2
D�f .xk/. ut
Proof (Proposition B.3). The function x 7! x � y � f .y/ is an affine function for

any y 2 R
n. By Proposition B.2, the function f ? is convex on R

n. Also, since

the function x 7! x � y � f .y/ is continuous on R
n for any y 2 R

n, as stated in

Proposition 1.5, the function f ? is lower semicontinuous on R
n.

Since f is proper convex on R
n, there is a point x0 2 R

n such that f .x0/ 2 R.

Hence, we have

f ?.y/ � y � x0 � f .x0/ > �1 for all y 2 R
n:

By Lemma B.1, there exist points y; p 2 R
n such that p 2 D�f .y/. By

Proposition B.1, we have

f .x/ � f .y/C p � .x � y/ for all x 2 R
n:

That is,

p � y � f .y/ � p � x � f .x/ for all x 2 R
n;

which implies that f ?.p/ D p �y�f .y/ 2 R. Thus, we conclude that f ? W R
n !

.�1; 1�, f ? is convex on R
n, f ? 2 LSC.Rn/ and f ?.x/ 6� 1. ut

The following duality (called convex duality or Legendre–Fenchel duality) holds.
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Theorem B.1. Let f W R
n ! .�1; 1� be a proper convex function. Then

f ?? D f:

Proof. By the definition of f ?, we have

f ?.x/ � x � y � f .y/ for all x; y 2 R
n;

which reads

f .y/ � y � x � f ?.x/ for all x; y 2 R
n:

Hence,

f .y/ � f ??.y/ for all y 2 R
n:

Next, we show that

f ??.x/ � f .x/ for all x 2 R
n:

We fix any a 2 R
n and choose a point y 2 R

n so that f .y/ 2 R. We fix a number

R > 0 so that jy�aj < R. Let k 2 N, and consider the function gk 2 LSC.BR.a//

defined by gk.x/ D f .x/C kjx � aj2. Let xk 2 BR.a/ be a minimum point of the

function gk . Noting that if k is sufficiently large, then

gk.xk/ � f .y/C kjy � aj2 < min
@BR.a/

f C kR2 D min
@BR.a/

gk ;

we see that xk 2 BR.a/ for k sufficiently large. We henceforth assume that k is

large enough so that xk 2 BR.a/. We have

D�gk.xk/ D D�f .xk/C 2k.xk � a/ 3 0:

Accordingly, if we set �k D �2k.xk � a/, then we have �k 2 D�f .xk/. By

Proposition B.1, we get

f .x/ � f .xk/C �k � .x � xk/ for all x 2 R
n;

or, equivalently,

�k � xk � f .xk/ � �k � x � f .x/ for all x 2 R
n:

Hence,

�k � xk � f .xk/ D f ?.�k/:

Using this, we compute that

f ??.a/ � a � �k � f ?.�k/ D �k � a � �k � xk C f .xk/

D 2kjxk � aj2 C f .xk/:
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We divide our argument into the following cases, (a) and (b).

Case (a): limk!1 kjxk � aj2 D 1. In this case, if we set m D min NBR.a/
f , then

we have

f ??.a/ � lim inf
k!1

2kjxk � aj2 Cm D 1;

and, therefore, f ??.a/ � f .a/.

Case (b): lim infk!1 kjxk � aj2 < 1. We may choose a subsequence fxkj gj2N

of fxkg so that limj!1 xkj D a. Then we have

f ??.a/ � lim inf
j!1

�
2kj jxkj � aj2 C f .xkj /

�
� lim inf

j!1
f .xkj / � f .a/:

Thus, in both cases we have f ??.a/ � f .a/, which completes the proof. ut
Theorem B.2. Let f W R

n ! .�1; 1� be proper convex and x; � 2 R
n. Then

the following three conditions are equivalent each other.

(i) � 2 D�f .x/.

(ii) x 2 D�f ?.�/.

(iii) x � � D f .x/C f ?.�/.

Proof. Assume first that (i) holds. By Proposition B.1, we have

f .y/ � f .x/C � � .y � x/ for all y 2 R
n;

which reads

� � x � f .x/ � � � y � f .y/ for all y 2 R
n:

Hence,

� � x � f .x/ D max
y2Rn

.� � y � f .y// D f ?.�/:

Thus, (iii) is valid.

Next, we assume that (iii) holds. Then the function y 7! � � y � f .y/ attains a

maximum at x. Therefore, � 2 D�f .x/. That is, (i) is valid.

Now, by the convex duality (Theorem B.1), (iii) reads

x � � D f ??.x/C f ?.�/:

The equivalence between (i) and (iii), with f replaced by f ?, is exactly the

equivalence between (ii) and (iii). The proof is complete. ut
Finally, we give a Lipschitz regularity estimate for convex functions.

Theorem B.3. Let f W R
n ! .�1; 1� be a convex function. Assume that there

are constantsM > 0 and R > 0 such that

jf .x/j � M for all x 2 B3R:
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Then

jf .x/ � f .y/j � M

R
jx � yj for all x; y 2 BR:

Proof. Let x; y 2 BR and note that jx � yj < 2R. We may assume that x 6D y.

Setting � D .x � y/=jx � yj and z D y C 2R� and noting that z 2 B3R,

x � y D jx � yj
2R

.z � y/;

and

x D y C jx � yj
2R

.z � y/ D jx � yj
2R

z C
�
1 � jx � yj

2R

�
y;

we obtain

f .x/ � jx � yj
2R

f .z/C
�
1 � jx � yj

2R

�
f .y/;

and

f .x/ � f .y/ � jx � yj
2R

.f .z/ � f .y// � jx � yj
2R

.jf .z/j C jf .y/j/ � M jx � yj
R

:

In view of the symmetry in x and y, we see that

jf .x/ � f .y/j � M

R
jx � yj for all x; y 2 BR: ut

A.3 Global Lipschitz Regularity

We give here a proof of Lemmas 2.1 and 2.2.

Proof (Lemma 2.1). We first show that there is a constant C > 0, for each z 2 ˝ a

ball Br .z/ centered at z, and for each x; y 2 Br .z/\˝ , a curve � 2 AC.Œ0; T �;Rn/,

with T 2 RC, such that �.s/ 2 ˝ for all s 2 .0; T /, j P�.s/j � 1 for a.e. s 2 .0; T /
and T � C jx � yj.

Let � be a defining function of ˝ . We may assume that kD�k1;Rn � 1 and

jD�.x/j � ı for all x 2 .@˝/ı WD fy 2 R
n W dist.y; @˝/ < ıg and some constant

ı 2 .0; 1/.
Let z 2 ˝ . We can choose r > 0 so thatBr .z/ � ˝ . Then, for each x; y 2 Br .z/,

with x 6D y, the line �.s/ D xCs.y�x/=jy�xj, with s 2 Œ0; jx�yj�, connects two

points x and y and lies inside ˝ . Note as well that P�.s/ D .y � x/=jy � xj 2 @B1
for all s 2 Œ0; jx � yj�.

Let z 2 @˝ . Since jD�.z/j2 � ı2, by continuity, we may choose r 2 .0; ı3=4/

so that D�.x/ � D�.z/ � ı2=2 for all x 2 B4ı�2r .z/. Fix any x; y 2 Br .z/ \ ˝ .
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Consider the curve �.t/ D xC t.y�x/� t.1� t/6ı�2jx�yjD�.z/, with t 2 Œ0; 1�,
which connects the points x and y. Note that

j�.t/� zj � .1 � t/jx � zj C t jy � zj C 6t.1 � t/ı�2jx � yjjD�.z/j

<.1C 3ı�2/r < 4ı�2r

and 4ı�2r < ı. Hence, we have �.t/ 2 B4ı�2r .z/ \ .@˝/ı for all t 2 Œ0; 1�. If

t 2 .0; 1=2�, then we have

�.�.t// � �.x/C tD�.��.t/C .1 � �/x/ � .y � x � 6.1 � t/ı�2jx � yjD�.z//
� t jx � yj.1 � 3.1 � t// < 0

for some � 2 .0; 1/. Similarly, if t 2 Œ1=2; 1/, we have

�.�.t// � �.y/C .1 � t/jx � yj.1 � 3t/ < 0:

Hence, �.t/ 2 ˝ for all t 2 .0; 1/. Note that

j P�.t/j � jy � xj.1C 6ı�2/:

If x D y, then we just set �.s/ D x D y for s D 0 and the curve � W Œ0; 0� ! R
n

has the required properties. Now let x 6D y. We set t.x; y/ D .1C6ı�2/jx�yj and

�.s/ D �.s=t.x; y// for s 2 Œ0; t.x; y/�. Then the curve � W Œ0; t.x; y/� ! R
n has

the required properties with C D 1C 6ı�2.

Thus, by the compactness of ˝ , we may choose a constant C > 0 and a finite

covering fB igNiD1 of ˝ consisting of open balls with the properties: for each x; y 2
OBi \ ˝, where OBi denotes the concentric open ball of Bi with radius twice that

of Bi , there exists a curve � 2 AC.Œ0; t.x; y/�;Rn/ such that �.s/ 2 ˝ for all

s 2 .0; t.x; y//, j P�.s/j � 1 for a.e. s 2 Œ0; t.x; y/� and t.x; y/ � C jx � yj.
Let ri be the radius of the ball Bi and set r D min ri and R D

P

ri , where i

ranges all over i D 1; : : : ; N .

Let x; y 2 ˝ . If jx � yj < r , then x; y 2 OBi for some i and there is a curve

� 2 AC.Œ0; t.x; y/�;Rn/ such that �.s/ 2 ˝ for all s 2 .0; t.x; y//, j P�.s/j � 1 for

a.e. s 2 Œ0; t.x; y/� and t.x; y/ � C jx � yj. Next, we assume that jx � yj � r . By

the connectedness of ˝ , we infer that there is a sequence fBij W j D 1; : : : ; J g �
fBi W i D 1; : : : ; N g such that x 2 Bi1 , y 2 BiJ , Bij \ BijC1

\ ˝ 6D ; for all

1 � j < J , and Bij 6D Bik if j 6D k. It is clear that J � N . If J D 1, then we

may choose a curve � with the required properties as in the case where jx � yj < r .

If J > 1, then we may choose a curve � 2 AC.Œ0; t.x; y/�; Rn/ joining x and

y as follows. First, we choose a sequence fxj W j D 1; : : : ; J � 1g of points

in ˝ so that xj 2 Bij \ BijC1
\ ˝ for all 1 � j < J . Next, setting x0 D x,

xJ D y and t0 D 0, since xj�1; xij 2 Bj \ ˝ for all 1 � j � J , we may select

�j 2 AC.Œtj�1; tj �; R
n/, with 1 � j � J , inductively so that �j .tj�1/ D xj�1,
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�j .tj / D xj , �j .s/ 2 ˝ for all s 2 .tj�1; tj / and tj � tj�1CC jxj �xj�1j. Finally,

we define � 2 AC.Œ0; t.x; y/�;Rn/, with t.x; y/ D tJ , by setting �.s/ D �i .s/ for

s 2 Œtj � 1; tj � and 1 � j � J . Noting that

T � C

J
X

jD1

jxj � xj�1j � C

J
X

jD1

rij � CR � CRr�1jx � yj;

we see that the curve � 2 AC.Œ0; t.x; y/�; Rn/ has all the required properties with

C replaced by CRr�1. ut
Remark C.1. (i) A standard argument, different from the above one, to prove the

local Lipschitz continuity near the boundary points is to flatten the boundary by a

local change of variables. (ii) One can easily modify the above proof to prove the

proposition same as Lemma 2.1, except that ˝ is a Lipschitz domain.

Proof (Lemma 2.2). Let C > 0 be the constant from Lemma 2.1. We show that

ju.x/� u.y/j � CM jx � yj for all x; y 2 ˝ .

To show this, we fix any x; y 2 ˝ such that x 6D y. By Lemma 2.1, there is a

curve � 2 AC.Œ0; t.x; y/�; Rn/ such that �.0/ D x, �.t.x; y// D y, t.x; y/ �
C jx�yj, �.s/ 2 ˝ for all s 2 Œ0; t.x; y/� and j P�.s/j � 1 for a.e. s 2 Œ0; t.x; y/�.

By the compactness of the image �.Œ0; t.x; y/�/ of interval Œ0; t.x; y/� by �, we

may choose a finite sequence fBi gNiD1 of open balls contained in ˝ which covers

�.Œ0; t.x; y/�/. We may assume by rearranging the label i if needed that x 2 B1,

y 2 BN and Bi \ BiC1 6D ; for all 1 � i < N . We may choose a sequence

0 D t0 < t1 < � � � < tN D t.x; y/ of real numbers so that the line segment

Œ�.ti�1/; �.ti /� joining �.ti�1/ and �.ti / lies in Bi for any i D 1; : : : ; N .

Thanks to Proposition 1.14, we have

ju.�.ti// � u.�.ti�1//j � M j�.ti/ � �.ti�1/j for all i D 1; : : : ; N:

Using this, we compute that

ju.y/ � u.x/j D ju.�.tN // � u.�.t0//j �
N
X

iD1

ju.�.ti// � u.�.ti�1//j

�M
N
X

iD1

j�.ti/ � �.ti�1/j � M

N
X

iD1

Z ti

ti�1

j P�.s/jds

DM

Z tN

t0

j P�.s/jds � M.tN � t0/ D Mt.x; y/ � CM jx � yj:

This completes the proof. ut
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A.4 Localized Versions of Lemma 4.2

Theorem D.1. Let U , V be open subsets of Rn with the properties: V � U and

V \˝ 6D ;. Let u 2 C.U \˝/ be a viscosity solution of

8
<̂

:̂

H.x;Du.x// � 0 in U \˝;

@u

@

.x/ � g.x/ on U \ @˝:

(131)

Then, for each " 2 .0; 1/, there exists a function u" 2 C 1.V \˝/ such that

8
ˆ̂̂
<̂
ˆ̂̂
:̂

H.x;Du".x// � " in V \˝;

@u"

@

.x/ � g.x/ on V \ @˝;

ku" � uk1;V\˝ � ":

Proof. We choose functions �; � 2 C 1.Rn/ so that 0 � �.x/ � �.x/ � 1 for all

x 2 R
n, �.x/ D 1 for all x 2 V , �.x/ D 1 for all x 2 supp � and supp � � U .

We define the function v 2 C.˝/ by setting v.x/ D �.x/u.x/ for x 2 U \ ˝

and v.x/ D 0 otherwise. By the coercivity of H , u is locally Lipschitz continuous

in U \ ˝ , and hence, v is Lipschitz continuous in ˝ . Let L > 0 be a Lipschitz

bound of v in ˝ . Then v is a viscosity solution of

8
<̂

:̂

jDv.x/j � L in ˝;

@v

@

.x/ � M in @˝;

where M WD Lk
k1;@˝ . In fact, we have a stronger assertion that for any x 2 ˝

and any p 2 DCv.x/,

(
jpj � L if x 2 ˝;

.x/ � p � M if x 2 @˝:

(132)

To check this, let � 2 C 1.˝/ and assume that v � � attains a maximum at x 2 ˝ .

Observe that if x 2 ˝ , then jD�.x/j � L and that if x 2 @˝ , then

0 � lim inf
t!0C

.v � �/.x � t
.x// � .v � �/.x/

�t

D lim inf
t!0C

v.x � t
.x// � v.x/

�t � @�

@

.x/;
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which yields


.x/ �D�.x/ � Lj
.x/j � M:

Thus, (132) is valid.

We set

h.x/ D �.x/g.x/C .1 � �.x//M for x 2 @˝;

G.x; p/ D �.x/H.x; p/C .1 � �.x//.jpj � L/ for .x; p/ 2 ˝ � R
n:

It is clear that h 2 C.@˝/ and G satisfies (A5)–(A7), with H replaced by G

In view of the coercivity ofH , we may assume by reselectingL if necessary that

for all .x; p/ 2 ˝ � R
n, if jpj > L, then H.x; p/ > 0. We now show that v is a

viscosity solution of 8
<̂

:̂

G.x;Dv.x// � 0 in ˝;

@v

@

.x/ � h.x/ on @˝:

(133)

To do this, let Ox 2 ˝ and Op 2 DCv. Ox/. Consider the case where �. Ox/ > 0,

which implies that Ox 2 U . We have �.x/ D 1 near the point Ox, which implies that

Op 2 DCu. Ox/. As u is a viscosity subsolution of (131), we have H. Ox; Op/ � 0 if

Ox 2 ˝ and minfH. Ox; Op/; 
. Ox/ � Op � h. Ox/g � 0 if Ox 2 @˝ . Assume in addition that

Ox 2 @˝ . By (132), we have 
. Ox/ � Op � M . If j Opj > L, we have both


. Ox/ � Op � g. Ox/ and 
. Ox/ � Op � M:

Hence, if j Opj > L, then 
. Ox/ � Op � h. Ox/. On the other hand, if j Opj � L, we have two

cases: in one case we have H. Ox; Op/ � 0 and hence, G. Ox; Op/ � 0. In the other case,

we have 
. Ox/ � Op � g. Ox/ and then 
. Ox/ � Op � h. Ox/. These observations together

show that

minfG. Ox; Op/; 
. Ox/ � Op � h. Ox/g � 0:

We next assume that Ox 2 ˝ . In this case, we easily see that G. Ox; Op/ � 0.

Next, consider the case where �. Ox/ D 0, which implies that G. Ox; Op/ D j Opj � L

and h. Ox/ D M . By (132), we immediately see that G. Ox; Op/ � 0 if Ox 2 ˝ and

minfG. Ox; Op/; 
. Ox/ � Op�h. Ox/g � 0 if Ox 2 @˝ . We thus conclude that v is a viscosity

solution of (133).

We may invoke Theorem 4.2, to find a collection fv"g"2.0;1/ � C 1.˝/ such that

8
ˆ̂̂
<̂
ˆ̂̂
:̂

G.x;Dv".x// � " for all x 2 ˝;
@v"

@

.x/ � h.x/ for all x 2 @˝;

kv" � vk1;˝ � ":
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But, this yields

8
ˆ̂̂
<̂
ˆ̂̂
:̂

H.x; v".x// � " for all x 2 V \˝;
@v"

@

.x/ � g.x/ for all x 2 V \ @˝;

kv" � uk1;V\˝ � ":

The functions v" have all the required properties. ut
The above theorem has a version for Hamilton–Jacobi equations of evolution

type.

Theorem D.2. Let U , V be bounded open subsets of Rn �RC with the properties:

V � U , U � R
n�RC and V \Q 6D ;. Let u 2 Lip.U \Q/ be a viscosity solution

of 8
<̂

:̂

ut .x; t/CH.x;Dxu.x; t// � 0 in U \ .˝ � RC/;

@u

@

.x; t/ � g.x/ on U \ .@˝ � RC/:

Then, for each " 2 .0; 1/, there exists a function u" 2 C 1.V \Q/ such that

8
ˆ̂̂
<̂
ˆ̂̂
:̂

u"t .x; t/CH.x;Dxu".x; t// � " in V \ .˝ � RC/;

@u"

@

.x; t/ � g.x/ on V \ .@˝ � RC/;

ku" � uk1;V\Q � ":

(134)

Proof. Choose constants a; b 2 RC so that U � R
n � .a; b/ and let � be a defining

function of ˝ . We may assume that � is bounded in R
n. We choose a function

� 2 C 1.R/ so that �.t/ D 0 for all t 2 Œa; b�, � 0.t/ > 0 for all t > b, � 0.t/ < 0 for

all t < a and minf�.a=2/; �.2b/g> k�k1;˝ .

We set

Q�.x; t/ D �.x/C �.t/ for .x; t/ 2 R
nC1;

Q̋ D f.x; t/ 2 R
nC1 W Q�.x; t/ < 0g:

It is easily seen that

Q̋ � ˝ � .a=2; 2b/ and Q̋ \ .Rn � Œa; b�/ D ˝ � Œa; b�:

Let .x; t/ 2 R
nC1 be such that Q�.x; t/ D 0. It is obvious that .x; t/ 2 ˝�Œa=2; 2b�.

If a � t � b, then �.x/ D 0 and thus D�.x/ 6D 0. If either t > b or t < a, then

j� 0.t/j > 0. Hence, we haveD Q�.x; t/ 6D 0. Thus, Q� is a defining function of Q̋ .
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Let M > 0 and define Q
 2 C.@ Q̋ ;RnC1/ by

Q
.x; t/ D
�
.1CM�.x//C
.x/; �

0.t/
�
;

where we may assume that 
 is defined and continuous in ˝ . We note that for any

.x; t/ 2 @ Q̋ ,

Q
.x; t/ �D Q�.x; t/ D .1CM�.x//C
.x/ �D�.x/C � 0.t/2:

Note as well that .1CM�.x//C D 1 for all x 2 @˝ and

lim
M!1

.1CM�.x//C D 0 locally uniformly in ˝:

Thus we can fix M > 0 so that for all .x; t/ 2 @ Q̋ ,

Q
.x; t/ �D Q�.x; t/ D .1CM�.x//C
.x/ �D�.x/C � 0.t/2 > 0:

Noting that for each x 2 ˝ , the x-section ft 2 R W .x; t/ 2 Q̋ g of Q̋ is an open

interval (or, line segment), we deduce that Q̋ is a connected set. We may assume

that g is defined and continuous in ˝ . We define Qg 2 C.@ Q̋ / by Qg.x; t/ D g.x/.

Thus, assumptions (A1)–(A4) hold with nC1, Q̋ , Q
 and Qg in place of n,˝ , 
 and g.

Let L > 0 be a Lipschitz bound of the function u in U \Q. Set

QH.x; t; p; q/ D H.x; p/C q C 2.jqj � L/C for .x; t; p; q/ 2 Q̋ � R
nC1;

and note that QH 2 C. Q̋ � R
nC1/ satisfies (A5)–(A7), with ˝ replaced by Q̋ .

We now claim that u is a viscosity solution of

( QH.x; t;Du.x; t// � 0 in U \ Q̋ ;

Q
.x; t/ � Du.x; t/ � Qg.x; t/ on U \ @ Q̋ :

Indeed, since U \ Q̋ D U \ Q and U \ @ Q̋ D U \ @Q, if .x; t/ 2 U \ Q̋ and

.p; q/ 2 DCu.x; t/, then we get jqj � L by the cylindrical geometry of Q and, by

the viscosity property of u,

(
q CH.x; p/C 2.jqj � L/C � 0 if .x; t/ 2 Q̋ ;

minfq CH.x; p/C 2.jqj �L/C; 
.x/ � p � g.x/g � 0 if .x; t/ 2 @ Q̋ :
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We apply Theorem D.1, to find a collection fu"g"2.0;1/ � C 1.V \ Q̋ / such that

8
ˆ̂<
ˆ̂:

QH.x; t;Du".x; t// � " in V \ Q̋ ;

Q
.x; t/ � Du".x; t/ � Qg.x; t/ on U \ Q̋ ;
ku" � uk1;V\ Q̋ � ":

It is straightforward to see that the collection fu"g"2.0;1/ � C 1.V \ Q/ satisfies

(134). ut

A.5 A Proof of Lemma 5.4

This subsection is mostly devoted to the proof of Lemma 5.4, a version of the

Dunford–Pettis theorem. We also give a proof of the weak-star compactness of

bounded sequences in L1.J;Rm/, where J D Œa; b� is a finite interval in R.

Proof (Lemma 5.4). We define the functions Fj 2 C.J;Rm/ by

Fj .x/ D
Z x

a

fj .t/dt:

By the uniform integrability of ffj g, the sequence fFj gj2N is uniformly bounded

and equi-continuous in J . Hence, the Ascoli–Arzela theorem ensures that it has a

subsequence converging to a function F uniformly in J . We fix such a subsequence

and denote it again by the same symbol fFj g. Because of the uniform integrability

assumption, the sequence fFj g is equi-absolutely continuous in J . That is, for any

" > 0 there exists ı > 0 such that

a � a1 < b1 < a2 < b2 < � � � < an < bn � b;

nX

iD1

.bi � ai / < ı;

H)
nX

iD1

jfj .bi / � fj .ai /j < " for all j 2 N:

An immediate consequence of this is that F 2 AC.J;Rm/. Hence, for some f 2
L1.J;Rm/, we have

F.x/ D
Z x

a

f .t/ dt for all x 2 J:

Next, let � 2 C 1.J /, and we show that

lim
j!1

Z b

a

fj .x/�.x/ dx D
Z b

a

f .x/�.x/ dx: (135)
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Integrating by parts, we observe that as j ! 1,

Z b

a

fj .x/�.x/ dx D
�
Fj�

�b
a

�
Z b

a

Fj .x/�
0.x/ dx

!
�
F�

�b
a

�
Z b

a

F.x/�0.x/ dx D
Z b

a

f .x/�.x/ dx:

Hence, (135) is valid.

Now, let � 2 L1.J /. We regard the functions fj ; f; � as functions defined in

R by setting fj .x/ D f .x/ D �.x/ D 0 for x < a or x > b. Let fk"g">0 be a

collection of standard mollification kernels. We recall that

lim
"!0

kk" � � � �kL1.J / D 0; (136)

jk" � �.x/j � k�kL1.J / for all x 2 J; " > 0: (137)

Fix any ı > 0. By the uniform integrability assumption, we have

M WD sup
j2N

kfj � f kL1.J / < 1:

Let ˛ > 0 and set

Ej WD fx 2 J W j.fj � f /.x/j > ˛g:

By the Chebychev inequality, we get

jEj j � M

˛
:

By the uniform integrability assumption, if ˛ > 0 is sufficiently large, then

Z

Ej

j.fj � f /.x/j dx < ı: (138)

In what follows we fix ˛ > 0 large enough so that (138) holds. We write fj�f D
gj C bj , where gj D .fj � f /.1 � 1Ej / and bj D .fj � f /1Ej . Then,

jgj .x/j � ˛ for all x 2 J and kbjkL1.J / < ı:

Observe that

Ij WD
Z

J

fj .x/�.x/ dx �
Z

J

f .x/�.x/ dx

D
Z

J

.fj � f /.x/ k" � �.x/ dx C
Z

J

.fj � f /.x/.� � k" � �/.x/ dx
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and

ˇ̌
ˇ
Z

J

.fj � f /.x/.� � k" � �/.x/ dx
ˇ̌
ˇ

�
ˇ̌
ˇ
Z

J

gj .x/.� � k" � �/.x/ dx
ˇ̌
ˇC

ˇ̌
ˇ
Z

J

bj .x/.� � k" � �/.x/ dx
ˇ̌
ˇ

� ˛kk" � � � �kL1.J / C 2ık�kL1.J /:

Hence, in view of (135) and (136), we get lim supj!1 jIj j � 2ık�kL1.J /: As

ı > 0 is arbitrary, we get limj!1 Ij D 0; which completes the proof. ut
As a corollary of Lemma 5.4, we deduce that the weak-star compactness of

bounded sequences in L1.J;Rm/:

Lemma E.1. Let J D Œa; b�, with �1 < a < b < 1. Let ffkgk2N be a bounded

sequence of functions inL1.J;Rm/. Then ffkg has a subsequence which converges

weakly-star in L1.J;Rm/.

Proof. Set M D supk2N kfkkL1.J /. Let E � J be a measurable set, and observe

that Z

E

jfk.t/jdt � M jEj for all k 2 N;

which shows that the sequence ffkg is uniformly integrable in J . Thanks to

Lemma 5.4, there exists a subsequence ffkj gj2N of ffkg which converges to a

function f weakly in L1.J;Rm/.

Let i 2 N and set Ei D ft 2 J W jf .t/j > M C 1=ig and gi .t/ D
1Ei .t/f .t/=jf .t/j for t 2 J . Since gi 2 L1.J;Rm/, we get

Z

J

fkj .t/ � gi .t/dt !
Z

J

jf .t/j1Ei .t/dt as j ! 1:

Hence, using the Chebychev inequality, we obtain

�
M C 1

i

�
jEi j �

Z

J

jf .t/j1Ei .t/dt �
Z

J

M 1Ei .t/dt D M jEi j;

which ensures that jEi j D 0. Thus, we find that jf .t/j � M a.e. in J .

Now, fix any � 2 L1.J;Rm/. We select a sequence f�igi2N � L1.J;Rm/ so

that, as i ! 1, �i ! � in L1.J;Rm/. For each i 2 N, we have

lim
j!1

Z

J

fkj .t/ � �i .t/dt D
Z

J

f .t/ � �i .t/dt:

On the other hand, we have

ˇ̌
ˇ
Z

J

fkj .t/ � �.t/dt �
Z

J

fkj .t/ � �i .t/dt
ˇ̌
ˇ � M k� � �ikL1.J / for all j 2 N
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and ˇ̌
ˇ
Z

J

f .t/ � �.t/dt �
Z

J

f .t/ � �i .t/dt
ˇ̌
ˇ � M k� � �ikL1.J /:

These together yield

lim
j!1

Z

J

fkj .t/ � �.t/dt D
Z

J

f .t/ � �.t/dt: ut

A.6 Rademacher’s Theorem

We give here a proof of Rademacher’s theorem.

Theorem F.1 (Rademacher). Let B D B1 � R
n and f 2 Lip.B/. Then f is

differentiable almost everywhere in B .

To prove the above theorem, we mainly follow the proof given in [1].

Proof. We first show that f has a distributional gradientDf 2 L1.B/.

Let L > 0 be a Lipschitz bound of the function f . Let i 2 f1; 2; : : : ; ng and ei
denote the unit vector in R

n with unity as the i -th entry. Fix any � 2 C 1
0 .B/ and

observe that
Z

B

f .x/�xi .x/dx D lim
r!0C

Z

B

f .x/
�.x C rei/ � �.x/

r
dx

D lim
r!0C

Z

B

f .x � rei / � f .x/

r
�.x/dx

and ˇ̌
ˇ
Z

B

f .x/�xi .x/dx
ˇ̌
ˇ � L

Z

B

j�.x/jdx � LjBj1=2k�kL2.B/:

Thus, the map

C 1
0 .B/ 3 � 7! �

Z

B

f .x/�xi .x/dx 2 R

extends uniquely to a bounded linear functional Gi on L2.B/. By the Riesz

representation theorem, there is a function gi 2 L2.B/ such that

Gi .�/ D
Z

B

gi .x/�.x/dx for all � 2 L2.B/:

This shows that g D .g1; : : : ; gn/ is the distributional gradient of f .

We plug the function � 2 L2.B/ given by �.x/ D .gi .x/=jgi .x/j/1Ek .x/, where

k 2 N and Ek D fx 2 B W jgi .x/j > L C 1=kg, into the inequality jGi.�/j �
Lk�kL1.B/, to obtain

Z

B

jgi .x/j1Ek .x/dx � L

Z

B

1Ek .x/dx D LjEkj;
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which yields

.LC 1=k/jEkj � LjEkj:
Hence, we get jEkj D 0 for all k 2 N and jfx 2 B W jgi .x/j > Lgj D 0. That is,

gi 2 L1.B/ and jgi .x/j � L a.e. in B .

The Lebesgue differentiation theorem (see [57]) states that for a.e. x 2 B , we

have g.x/ 2 R
n and

lim
r!0C

1

rn

Z

Br

jg.x C y/ � g.x/jdy D 0: (139)

Now, we fix such a point x 2 B and show that f is differentiable at x. Fix an

r > 0 so that Br .x/ � B . For ı 2 .0; r/, consider the function hı 2 C.B/ given by

hı.y/ D f .x C ıy/ � f .x/

ı
:

We claim that

lim
ı!0

hı.y/ D g.x/ � y uniformly for y 2 B: (140)

Note that hı.0/ D 0 and hı is Lipschitz continuous with Lipschitz bound L. By

the Ascoli–Arzela theorem, for any sequence fıj g � .0; r/ converging to zero, there

exist a subsequence fıjkgk2N of fıj g and a function h0 2 C.B/ such that

lim
k!1

hıjk .x/ D h0.y/ uniformly for y 2 B:

In order to prove (140), we need only to show that h0.y/ D g.x/ � y for all y 2 B .

Since hı.0/ D 0 for all ı 2 .0; r/, we have h0.0/ D 0. We observe from (139)

that

Z

B

jg.x C ıy/ � g.x/jdy D
Z

Bı

jg.x C y/ � g.x/jı�ndy ! 0 as ı ! 0:

Using this, we compute that for all � 2 C 1
0 .B/,

Z

B

h0.y/�yi .y/dy D lim
k!1

Z

B

hıjk .y/�yi .y/dy

D � lim
k!1

Z

B

gi .x C ıjky/�.y/dy

D �
Z

B

gi .x/�.y/dy D
Z

B

g.x/ � y�yi .y/dy:



Introduction to Viscosity Solutions and the Large Time Behavior of Solutions 247

This guarantees that h0.y/ � g.x/ � y is constant for all y 2 B while h0.0/ D 0.

Thus, we see that h0.y/ D g.x/ � y for all y 2 B , which proves (140).

Finally, we note that (140) yields

f .x C y/ D f .x/C g.x/ � y C o.jyj/ as y ! 0: ut
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Applications (Berlin), vol. 17 (Springer, Paris, 1994), xC194 pp

7. G. Barles, H. Ishii, H. Mitake, A new PDE approach to the large time asymptotics of solutions

of Hamilton-Jacobi equations. Bull. Math. Sci. (to appear)

8. G. Barles, H. Ishii, H. Mitake, On the large time behavior of solutions of Hamilton-Jacobi

equations associated with nonlinear boundary conditions. Arch. Ration. Mech. Anal. 204(2),

515–558 (2012)

9. G. Barles, H. Mitake, A pde approach to large-time asymptotics for boundary-value problems

for nonconvex Hamilton-Jacobi equations. Commun. Partial Differ. Equ. 37(1), 136–168

(2012)

10. G. Barles, J.-M. Roquejoffre, Ergodic type problems and large time behaviour of unbounded

solutions of Hamilton-Jacobi equations. Commun. Partial Differ. Equ. 31(7–9), 1209–1225

(2006)

11. E.N. Barron, R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations

with convex Hamiltonians. Commun. Partial Differ. Equ. 15(12), 1713–1742 (1990)

12. P. Bernard, Existence ofC 1;1 critical sub-solutions of the Hamilton-Jacobi equation on compact
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semirings and
semifields

QUANTUM

MECHANICS

MATHEMATICS

TRADITIONAL

numbers
real and complex

Fields of

N. Bohr’s Correspondence Principle

Idempotent Correspondence Principle

CLASSICAL

MECHANICS

IDEMPOTENT
MATHEMATICS

Idempotent

Fig. 1 Relations between idempotent and traditional mathematics

Tropical mathematics can be treated as a result of a dequantization of the

traditional mathematics as the Planck constant tends to zero taking imaginary

values. This kind of dequantization is known as the Maslov dequantization and it

leads to a mathematics over tropical algebras like the max-plus algebra. The so-

called idempotent dequantization is a generalization of the Maslov dequantization.

The idempotent dequantization leads to mathematics over idempotent semirings

(exact definitions see below in Sects. 2 and 3). For example, the field of real or

complex numbers can be treated as a quantum object whereas idempotent semirings

can be examined as “classical” or “semiclassical” objects (a semiring is called

idempotent if the semiring addition is idempotent, i.e. x˚xDx), see [39–42]. Some

other dequantization procedures lead to interesting applications, e.g., to convex

geometry, see below and [46, 55, 56].

Tropical algebras are idempotent semirings (and semifields). Thus tropical

mathematics is a part of idempotent mathematics. Tropical algebraic geometry can

be regarded as a result of the Maslov dequantization applied to the traditional

algebraic geometry (O. Viro, G. Mikhalkin), see, e.g., [32, 72, 73, 94–96]. There

are interesting relations and applications to the traditional convex geometry.

In the spirit of Bohr’s correspondence principle there is a (heuristic) correspon-

dence between important, useful, and interesting constructions and results over

fields and similar constructions and results over idempotent semirings. A systematic

application of this correspondence principle leads to a variety of theoretical and

applied results [39–43], see Fig. 1.

The history of the subject is discussed, e.g., in [39], with extensive bibliography.

See also [15, 17, 18, 20, 22, 40–42, 45].

Maslov’s idempotent superposition principle means that many nonlinear prob-

lems related to extremal problems are linear over suitable idempotent semirings.

The principle is very important for applications including numerical and parallel

computations. See Maslov’s original formulation in [63–65], as well as [6, 14, 15,

17, 18, 20, 22, 33, 39–43, 45], and below.
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Fig. 2 Deformation of RC

to R.h/ . Inset: the same for a

small value of h

2 The Maslov Dequantization

Let R and C be the fields of real and complex numbers. The so-called max-plus

algebra Rmax D R [ f�1g is defined by the operations x ˚ y D maxfx; yg and

x ˇ y D x C y.

The max-plus algebra can be seen as a result of the Maslov dequantization of the

semifield RC of all nonnegative numbers with the usual arithmetics. The change of

variables

x 7! u D h logx;

where h > 0, defines a map ˚hW RC ! R [ f�1g, see Fig. 2. Let the addition and

multiplication operations be mapped from RC to R [ f�1g by ˚h, i.e. let

u ˚h v D h log.exp.u=h/C exp.v=h//; u ˇ v D u C v;

0 D �1 D ˚h.0/; 1 D 0 D ˚h.1/:

It can be easily checked that u ˚h v ! maxfu; vg as h ! 0. This deformation of

the algebraic structure borrowed from RC brings us to the semifield Rmax, known as

the max-plus algebra, with zero 0 D �1 and unit 1 D 0 .

The semifield Rmax is a typical example of an idempotent semiring; this is a

semiring with idempotent addition, i.e., x ˚ x D x for arbitrary element x of this

semiring.

The semifield Rmax is also called a tropical algebra. The semifield R.h/ D˚h.RC/

with operations ˚h and ˇ (i.e.C) is called a subtropical algebra.

The semifield Rmin D R[fC1g with operations ˚ D min and ˇ D C .0 DC1;

1 D 0/ is isomorphic to Rmax.
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The analogy with quantization is obvious; the parameter h plays the role of the

Planck constant. The map x 7! jxj and the Maslov dequantization for RC give us a

natural transition from the field C (or R) to the max-plus algebra Rmax. We will also

call this transition the Maslov dequantization. In fact the Maslov dequantization

corresponds to the usual Schrödinger dequantization but for imaginary values of the

Planck constant (see below). The transition from numerical fields to the max-plus

algebra Rmax (or similar semifields) in mathematical constructions and results gen-

erates the so called tropical mathematics. The so-called idempotent dequantization

is a generalization of the Maslov dequantization; this is the transition from basic

fields to idempotent semirings in mathematical constructions and results without

any deformation. The idempotent dequantization generates the so-called idempotent

mathematics, i.e. mathematics over idempotent semifields and semirings.

Remark. The term “tropical” appeared in [89] for a discrete version of the max-plus

algebra (as a suggestion of Christian Choffrut). On the other hand Maslov used this

term in 1980s in his talks and works on economical applications of his idempotent

analysis (related to colonial politics). For the most part of modern authors, “tropical”

means “over Rmax (or Rmin)” and tropical algebras are Rmax and Rmin. The terms

“max-plus”, “max-algebra” and “min-plus” are often used in the same sense.

3 Semirings and Semifields: The Idempotent

Correspondence Principle

Consider a set S equipped with two algebraic operations: addition ˚ and multipli-

cation ˇ. It is a semiring if the following conditions are satisfied:

• The addition ˚ and the multiplication ˇ are associative.

• The addition ˚ is commutative.

• The multiplication ˇ is distributive with respect to the addition ˚:

x ˇ .y ˚ z/ D .x ˇ y/˚ .x ˇ z/

and

.x ˚ y/ˇ z D .x ˇ z/˚ .y ˇ z/

for all x; y; z 2 S .

A unity (we suppose that it exists) of a semiring S is an element 1 2 S such that

1 ˇ x D xˇ 1 D x for all x 2 S . A zero (if it exists) of a semiring S is an element

0 2 S such that 0 ¤ 1 and 0 ˚x D x, 0 ˇx D xˇ0 D 0 for all x 2 S . A semiring

S is called an idempotent semiring if x ˚ x D x for all x 2 S . A semiring S with

neutral element 1 is called a semifield if every nonzero element of S is invertible

with respect to the multiplication. For the theory of semirings and semifields the

reader is referred, e.g., to [26].
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The analogy with quantum physics discussed in Sect. 2 and below leads to the

following idempotent correspondence principle:

There is a (heuristic) correspondence between important, useful and interesting

constructions and results over the field of complex (or real) numbers (or the

semifield of nonnegative numbers) and similar constructions and results over

idempotent semirings in the spirit of Bohr’s correspondence principle in quantum

theory [40–42].

This principle can be also applied to algorithms and their software and hardware

implementations. Examples are discussed below; see also [39–42, 47–50, 53–57].

4 Idempotent Analysis

Idempotent analysis deals with functions taking their values in an idempotent

semiring and the corresponding function spaces. Idempotent analysis was initially

constructed by Maslov and his collaborators and then developed by many authors.

The subject is presented in the book of Kolokoltsov and Maslov [33] (a version of

this book in Russian was published in 1994).

Let S be an arbitrary semiring with idempotent addition ˚ (which is always

assumed to be commutative), multiplication ˇ, and unit 1. The set S is equipped

with the standard partial order �: by definition, a � b if and only if a ˚ b D b. If

S contains a zero element 0, then all elements of S are nonnegative: 0 � a for all

a 2 S . Due to the existence of this order, idempotent analysis is closely related to

the lattice theory, theory of vector lattices, and theory of ordered spaces. Moreover,

this partial order allows to model a number of basic “topological” concepts and

results of idempotent analysis on the purely algebraic level; this line of reasoning

was examined systematically in [18, 39–57].

Calculus deals mainly with functions whose values are numbers. The idempotent

analog of a numerical function is a map X ! S , where X is an arbitrary set and S

is an idempotent semiring. Functions with values in S can be added, multiplied by

each other, and multiplied by elements of S pointwise.

The idempotent analog of a linear functional space is a set of S -valued functions

that is closed under addition of functions and multiplication of functions by elements

of S , or an S -semimodule. Consider, e.g., the S -semimodule B.X; S/ of all

functionsX ! S that are bounded in the sense of the standard order on S .

If S D Rmax, then the idempotent analog of integration is defined by the formula

I.'/ D

Z ˚

X

'.x/ dx D sup
x2X

'.x/; (1)

where ' 2 B.X; S/. Indeed, a Riemann sum of the form
P

i

'.xi / � �i corresponds

to the expression
L

i

'.xi /ˇ �i D max
i

f'.xi/C �i g, which tends to the right-hand

side of (1) as �i ! 0. Of course, this is a purely heuristic argument.
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Formula (1) defines the idempotent (or Maslov) integral not only for functions

taking values in Rmax, but also in the general case when any of bounded (from above)

subsets of S has the least upper bound.

An idempotent (or Maslov) measure on X is defined by the formula m .Y / D
sup
x2Y

 .x/, where  2 B.X; S/ is a fixed function. The integral with respect to this

measure is defined by the formula

I .'/ D
Z ˚

X

'.x/ dm D
Z ˚

X

'.x/ˇ  .x/ dx D sup
x2X

.'.x/ˇ  .x//: (2)

Obviously, if S D Rmin, then the standard order is opposite to the conventional

order � , so in this case (2) takes the form

Z ˚

X

'.x/ dm D
Z ˚

X

'.x/ˇ  .x/ dx D inf
x2X

.'.x/ˇ  .x//;

where inf is understood in the sense of the conventional order �.

We shall see that in idempotent analysis measures and generalized functions

(versions of distributions in the sense of L. Schwartz) are generated by usual

functions. For example the ı-functional ıy W '.�/ 7! '.y/ is generated by the

function

ıy.x/ D

(
1; if x D y;

0; if x ¤ y:

It is clear that

'.y/ D

Z ˚

X

ıy.x/ˇ '.x/dx D sup
x

.ıy.x/ˇ '.x//:

5 The Superposition Principle and Linear Equations

5.1 Heuristics

Basic equations of quantum theory are linear; this is the superposition principle in

quantum mechanics. The Hamilton–Jacobi equation, the basic equation of classical

mechanics, is nonlinear in the conventional sense. However, it is linear over the

semirings Rmax and Rmin. Similarly, different versions of the Bellman equation, the

basic equation of optimization theory, are linear over suitable idempotent semirings;

this is Maslov’s idempotent superposition principle, see [63–65]. More generally,

the idempotent superposition principle means that although some important prob-

lems and equations (related to extremal problems, e.g., optimization problems, the

Bellman equation and its instances, the Hamilton–Jacobi equation) are nonlinear in
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the usual sense, they can be treated as linear over appropriate idempotent semirings.

For instance, the finite-dimensional stationary Bellman equation can be written in

the form X D H ˇ X ˚ F , where X , H , F are matrices with coefficients in an

idempotent semiring S and the unknown matrix X is determined by H and F , see

below and [6, 14, 15, 20, 22, 28, 29]. In particular, standard problems of dynamic

programming and the well-known shortest path problem correspond to the cases

S D Rmax and S D Rmin, respectively. It is known that principal optimization

algorithms for finite graphs correspond to standard methods for solving systems of

linear equations of this type (i.e., over semirings). Specifically, Bellman’s shortest

path algorithm corresponds to a version of Jacobi’s algorithm, Ford’s algorithm

corresponds to the Gauss–Seidel iterative scheme, etc. [14, 15].

The linearity of the Hamilton–Jacobi equation over Rmin and Rmax, which is the

result of the Maslov dequantization of the Schrödinger equation, is closely related

to the (conventional) linearity of the Schrödinger equation and can be deduced from

this linearity. Thus, it is possible to borrow standard ideas and methods of linear

analysis and apply them to a new area.

Consider a classical dynamical system specified by the Hamiltonian

H D H.p; x/ D
N
X

iD1

p2i
2mi

C V.x/;

where x D .x1; : : : ; xN / are generalized coordinates, p D .p1; : : : ; pN / are

generalized momenta, mi are generalized masses, and V.x/ is the potential. In this

case the Lagrangian L.x; Px; t/ has the form

L.x; Px; t/ D
N
X

iD1

mi

Px2i
2

� V.x/;

where Px D . Px1; : : : ; PxN /, Pxi D dxi=dt. The value function S.x; t/ of the action

functional has the form

S D
Z t

t0

L.x.t/; Px.t/; t/ dt;

where the integration is performed along the actual trajectory of the system. The

classical equations of motion are derived as the stationarity conditions for the action

functional (the Hamilton principle, or the least action principle).

For fixed values of t and t0 and arbitrary trajectories x.t/, the action functional

S D S.x.t// can be considered as a function taking the set of curves (trajectories)

to the set of real numbers which can be treated as elements of Rmin. In this case

the minimum of the action functional can be viewed as the Maslov integral of this

function over the set of trajectories or an idempotent analog of the Euclidean version

of the Feynman path integral. The minimum of the action functional corresponds to
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the maximum of e�S , i.e. idempotent integral
R ˚

fpathsg e
�S.x.t//Dfx.t/g with respect

to the max-plus algebra Rmax. Thus the least action principle can be considered as

an idempotent version of the well-known Feynman approach to quantum mechanics.

The representation of a solution to the Schrödinger equation in terms of the Feynman

integral corresponds to the Lax–Oleı̆nik solution formula for the Hamilton–Jacobi

equation.

Since @S=@xi D pi , @S=@t D �H.p; x/, the following Hamilton–Jacobi

equation holds:
@S

@t
CH

�

@S

@xi
; xi

�

D 0: (3)

Quantization leads to the Schrödinger equation

� „
i

@ 

@t
D OH D H. Opi ; Oxi / ; (4)

where  D  .x; t/ is the wave function, i.e., a time-dependent element of the

Hilbert space L2.RN /, and OH is the energy operator obtained by substitution

of the momentum operators Opi D „
i
@
@xi

and the coordinate operators Oxi W 7!
xi for the variables pi and xi in the Hamiltonian function, respectively. This

equation is linear in the conventional sense (the quantum superposition principle).

The standard procedure of limit transition from the Schrödinger equation to the

Hamilton–Jacobi equation is to use the following ansatz for the wave function:

 .x; t/ D a.x; t/eiS.x;t/=„, and to keep only the leading order as „ ! 0 (the

“semiclassical” limit).

Instead of doing this, we switch to imaginary values of the Planck constant „
by the substitution h D i„, assuming h > 0. Then the Schrödinger equation (4)

becomes similar to the heat equation:

h
@u

@t
D H

�

�h @

@xi
; Oxi
�

u; (5)

where the real-valued function u corresponds to the wave function . A similar idea

(a switch to imaginary time) is used in the Euclidean quantum field theory; let us

remember that time and energy are dual quantities.

Linearity of equation (4) implies linearity of (5). Thus if u1 and u2 are solutions

of (5), then so is their linear combination

u D �1u1 C �2u2: (6)

Let S D h ln u or u D eS=h as in Sect. 2 above. It can easily be checked that (5)

thus turns to

@S

@t
D V.x/C

N
X

iD1

1

2mi

�

@S

@xi

�2

C h

n
X

iD1

1

2mi

@2S

@x2i
: (7)
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Thus we have a transition from (3) to (7) by means of the change of variables

 D eS=h. Note that j j D eReS=h , where ReS is the real part of S . Now let

us consider S as a real variable. Equation (7) is nonlinear in the conventional sense.

However, if S1 and S2 are its solutions, then so is the function

S D �1 ˇ S1˚h�2 ˇ S2 (8)

obtained from (6) by means of the substitution S D h ln u. Here the generalized

multiplication ˇ coincides with the ordinary addition and the generalized addition

˚h is the image of the conventional addition under the above change of variables.

As h ! 0, we obtain the operations of the idempotent semiring Rmax, i.e., ˚ D max

and ˇ D C, and (7) becomes the Hamilton–Jacobi equation (3), since the third term

in the right-hand side of (7) vanishes.

Thus it is natural to consider the limit function S D �1 ˇ S1 ˚ �2 ˇ S2 as a

solution of the Hamilton–Jacobi equation and to expect that this equation can be

treated as linear over Rmax. This argument (clearly, a heuristic one) can be extended

to equations of a more general form. For a rigorous treatment of (semiring) linearity

for these equations see, e.g., [33, 43, 85]. Notice that if h is changed to �h, then we

have that the resulting Hamilton–Jacobi equation is linear over Rmin.

The idempotent superposition principle indicates that there exist important

nonlinear (in the traditional sense) problems that are linear over idempotent

semirings. The idempotent linear functional analysis (see below) is a natural tool

for investigation of those nonlinear infinite-dimensional problems that possess this

property.

5.2 The Cauchy Problem for the Hamilton–Jacobi Equations

A rigorous “idempotent” approach to the investigation of the Hamilton–Jacobi

equation was developed by Kolokoltsov and Maslov [33] (a Russian version of this

book was published in 1994); see also [71, 85, 92, 93].

Let us consider, inspired by a long tradition, the well-known Cauchy problem for

the Hamilton–Jacobi equation (3). Given the action function at time T

S.T; x/ D ST .x/ D '.x/; x 2 RN ; (9)

the Cauchy problem asks to reconstruct S.t; x/ for x 2 RN during the time interval

0 � t � T .

We shall discuss the min-plus linearity of this problem and denote by Ut the

resolving operator, i.e. the map which assigns to each given ST .x/ the solution

S.t; x/ of the Cauchy problem in the interval 0 � t � T . Then the map Ut ,

for each t , is a linear (over Rmin) operator in the space LSC.Rn;Rmin/ of lower

semicontinuous functions taking their values in Rmin. Moreover Ut is an integral

operator (in the sense of idempotent mathematics) of the form:
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.Ut'/.x/ D
Z ˚

'.y/Kt.x; y/dy D inf
y

f'.y/CKt .x; y/g; (10)

where Kt.x; y/, as a function of y 2 Rn, is bounded from below and lower

semicontinuous. See [33, 85] for details.

The operator Ut (as well as other integral operators, see Sect. 7 below) has the

following property:

Ut.
M

�

'�/ D
M

�

.Ut'�/; (11)

where f'�g is a bounded set of elements in LSC.Rn;Rmin/. So if we have such a

family of functions S�.T; x/ and S.T; x/ D
R ˚

S�.T; x/d� D inf�.S�.T; x//, then

the solution of the Cauchy problem is expressed as S.t; x/ D inf�.S�.t; x//.

Relations between the “idempotent approach”, viscosity solutions and minimax

solutions in the sense of Subbotin [92, 93] are examined, e.g., in [85] in details; see

also McEneaney [71]. To this end, let us mention that more general Hamiltonians

of the form H D H.t; x; p/ (satisfying some additional conditions) and different

kinds of solution spaces are also considered in the literature.

The situation is similar for the Cauchy problem for the homogeneous Hamilton–

Jacobi equation
@S

@t
CH.

@S

@x
/ D 0; StD0 D S0.x/;

whereH W Rn 7! R is a convex (not strictly) first order homogeneous function

H.p/ D sup
.f;g/2V

.f � p C g/; f 2 Rn; g 2 R;

and V is a compact set in RnC1. See [33].

To develop a rigorous “idempotent” approach to differential equations and other

problems, one needs an idempotent version of analysis and, especially, functional

analysis. See Sect. 7 below.

6 Convolution and the Fourier–Legendre Transform

Let G be a group. Then the space B .G;Rmax/ of all bounded functionsG ! Rmax

(see above) is an idempotent semiring with respect to the following analog ~ of the

usual convolution:

.'.x/~  /.g/ DD
Z ˚

G

'.x/ˇ  .x�1 � g/ dx D sup
x2G

.'.x/C  .x�1 � g//:

Of course, it is possible to consider other “function spaces” (and other basic

semirings instead of Rmax).
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Let G D Rn, where Rn is considered as a topological group with respect to the

vector addition. The conventional Fourier–Laplace transform is defined as

'.x/ 7! Q'.�/ D
Z

G

ei��x'.x/ dx (12)

where ei��x is a character of the group G, i.e., a solution of the following functional

equation:

f .x C y/ D f .x/f .y/:

The idempotent analog of this equation is

f .x C y/ D f .x/ˇ f .y/ D f .x/C f .y/;

so “continuous idempotent characters” are linear functionals of the form x 7! � �x D
�1x1 C � � � C �nxn. As a result, the transform in (12) assumes the form

'.x/ 7! Q'.�/ D
Z

˚

G

� � x ˇ '.x/ dx D sup
x2G

.� � x C '.x//: (13)

The transform in (13) is the Legendre transform (up to some change of notation)

[65]; transforms of this kind establish the correspondence between the Lagrangian

and the Hamiltonian formulations of classical mechanics. The Legendre transform

generates an idempotent version of harmonic analysis for the space of convex

functions, see, e.g., [61].

Of course, this construction can be generalized to different classes of groups and

semirings. Transformations of this type convert the generalized convolution ~ to

the pointwise (generalized) multiplication and possess analogs of some important

properties of the usual Fourier transform.

The examples discussed in this sections can be treated as fragments of an idempo-

tent version of the representation theory, see, e.g., [50]. In particular, “idempotent”

representations of groups can be examined as representations of the corresponding

convolution semirings (i.e. idempotent group semirings) in semimodules.

7 Idempotent Functional Analysis

Many other idempotent analogs may be given, in particular, for basic constructions

and theorems of functional analysis. Idempotent functional analysis is an abstract

version of idempotent analysis. For the sake of simplicity take S D Rmax and let

X be an arbitrary set. The idempotent integration can be defined by the formula

(1), see above. The functional I.'/ is linear over S and its values correspond to

limiting values of the corresponding analogs of Lebesgue (or Riemann) sums. An

idempotent scalar product of functions ' and  is defined by the formula
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h'; i D
Z ˚

X

'.x/ˇ  .x/ dx D sup
x2X

.'.x/ˇ  .x//:

So it is natural to construct idempotent analogs of integral operators in the form

'.y/ 7! .K'/.x/ D
Z ˚

Y

K.x; y/ˇ '.y/ dy D sup
y2Y

fK.x; y/C '.y/g; (14)

where '.y/ is an element of a space of functions defined on a set Y , andK.x; y/ is

an S -valued function on X � Y . Of course, expressions of this type are standard in

optimization problems.

Recall that the definitions and constructions described above can be extended to

the case of idempotent semirings which are conditionally complete in the sense

of the standard order. Using the Maslov integration, one can construct various

function spaces as well as idempotent versions of the theory of generalized functions

(distributions). For some concrete idempotent function spaces it was proved that

every “good” linear operator (in the idempotent sense) can be presented in the

form (14); this is an idempotent version of the kernel theorem of Schwartz; results

of this type were proved by Kolokoltsov, Dudnikov and Samborskiı̆, Singer, Shubin

and others. So every ‘good’ linear functional can be presented in the form ' 7!
h'; i, where h; i is an idempotent scalar product.

In the framework of idempotent functional analysis results of this type can be

proved in a very general situation. In [47–50, 54, 57] an algebraic version of the

idempotent functional analysis is developed; this means that basic (topological)

notions and results are simulated in purely algebraic terms (see below). The

treatment covers the subject from basic concepts and results (e.g., idempotent

analogs of the well-known theorems of Hahn–Banach, Riesz, and Riesz–Fisher)

to idempotent analogs of Grothendieck’s concepts and results on topological tensor

products, nuclear spaces and operators. Abstract idempotent versions of the kernel

theorem are formulated. Note that the transition from the usual theory to idempotent

functional analysis may be very nontrivial; for example, there are many non-

isomorphic idempotent Hilbert spaces. Important results on idempotent functional

analysis (duality and separation theorems) were obtained by Cohen, Gaubert, and

Quadrat. Idempotent functional analysis has received much attention in the last

years, see, e.g., [3, 18, 28–30, 33–57, 68, 88] and works cited in [39]. All the results

presented in this section are proved in [49] (Sects. 7.1–7.4) and in [57] (Sects. 7.5–

7.10)

7.1 Idempotent Semimodules and Idempotent Linear Spaces

An additive semigroup S with commutative addition ˚ is called an idempotent

semigroup if the relation x˚x D x is fulfilled for all elements x 2 S . If S contains a

neutral element, this element is denoted by the symbol 0. Any idempotent semigroup
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is a partially ordered set with respect to the following standard order: x � y if and

only if x˚y D y. It is obvious that this order is well defined and x˚y D supfx; yg.

Thus, any idempotent semigroup is an upper semilattice; moreover, the concepts

of idempotent semigroup and upper semilattice coincide, see [10]. An idempotent

semigroup S is called a-complete (or algebraically complete) if it is complete as

an ordered set, i.e., if any subset X in S has the least upper bound sup.X/ denoted

by ˚X and the greatest lower bound inf.X/ denoted by ^X . This semigroup is

called b-complete (or boundedly complete), if any bounded above subset X of this

semigroup (including the empty subset) has the least upper bound ˚X (in this case,

any nonempty subset Y in S has the greatest lower bound ^Y and S in a lattice).

Note that any a-complete or b-complete idempotent semiring has the zero element 0

that coincides with ˚;, where ; is the empty set. Certainly, a-completeness implies

the b-completeness. Completion by means of cuts [10] yields an embedding S ! OS

of an arbitrary idempotent semigroupS into an a-complete idempotent semigroup OS

(which is called a normal completion of S ); in addition,
OOS D S . The b-completion

procedure S ! OSb is defined similarly: if S 3 1 D supS , then OSb = OS ; otherwise,
OS D OSb [ f1g. An arbitrary b-complete idempotent semigroup S also may differ

from OS only by the element 1 D supS .

Let S and T be b-complete idempotent semigroups. Then, a homomorphism

f W S ! T is said to be a b-homomorphism if f .˚X/ D ˚f .X/ for any bounded

subset X in S . If the b-homomorphism f is extended to a homomorphism OS ! OT

of the corresponding normal completions and f .˚X/ D ˚f .X/ for all X � S ,

then f is said to be an a-homomorphism. An idempotent semigroup S equipped

with a topology such that the set fs 2 S js � bg is closed in this topology for any

b 2 S is called a topological idempotent semigroup S .

Proposition 7.1. Let S be an a-complete topological idempotent semigroup and

T be a b-complete topological idempotent semigroup such that, for any nonempty

subsemigroup X in T , the element ˚X is contained in the topological closure

of X in T . Then, a homomorphism f W T ! S that maps zero into zero is an

a-homomorphism if and only if the mapping f is lower semicontinuous in the sense

that the set ft 2 T jf .t/ � sg is closed in T for any s 2 S .

An idempotent semiring K is called a-complete (respectively b-complete) if K is

an a-complete (respectively b-complete) idempotent semigroup and, for any subset

(respectively, for any bounded subset) X in K and any k 2 K , the generalized

distributive laws kˇ .˚X/ D ˚.kˇX/ and .˚X/ˇk D ˚.X ˇk/ are fulfilled.

Generalized distributivity implies that any a-complete or b-complete idempotent

semiring has a zero element that coincides with ˚;, where ; is the empty set.

The set R.max;C/ of real numbers equipped with the idempotent addition

˚ D max and multiplication ˇ D C is an idempotent semiring; in this case, 1 D 0.

Adding the element 0 D �1 to this semiring, we obtain a b-complete semiring

Rmax D R [ f�1g with the same operations and the zero element. Adding the

element C1 to Rmax and assuming that 0 ˇ .C1/ D 0 and x ˇ .C1/D C 1

for x ¤ 0 and x ˚ .C1/ D C1 for any x, we obtain the a-complete
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idempotent semiring ORmax D Rmax [ fC1g. The standard order on R.max;C/,
Rmax and ORmax coincides with the ordinary order. The semirings R.max;C/ and

Rmax are semifields. On the contrary, an a-complete semiring that does not coincide

with f0; 1g cannot be a semifield. An important class of examples is related to

(topological) vector lattices (see, for example, [10] and [86, Chap. 5]). Defining the

sum x ˚ y as supfx; yg and the multiplication ˇ as the addition of vectors, we can

interpret the vector lattices as idempotent semifields. Adding the zero element 0 to a

complete vector lattice (in the sense of [10, 86]), we obtain a b-complete semifield.

If, in addition, we add the infinite element, we obtain an a-complete idempotent

semiring (which, as an ordered set, coincides with the normal completion of the

original lattice).

Important definitions. Let V be an idempotent semigroup and K be an

idempotent semiring. Suppose that a multiplication k; x 7! k ˇ x of all elements

from K by the elements from V is defined; moreover, this multiplication is

associative and distributive with respect to the addition in V and 1 ˇ x D x,

0 ˇ x D 0 for all x 2 V . In this case, the semigroup V is called an idempotent

semimodule (or simply, a semimodule) over K . The element 0V 2 V is called the

zero of the semimodule V if k ˇ 0V D 0V and 0V ˚ x D x for any k 2 K

and x 2 V . Let V be a semimodule over a b-complete idempotent semiring K .

This semimodule is called b-complete if it is b-complete as an idempotent semiring

and, for any bounded subsets Q in K and X in V , the generalized distributive laws

.˚Q/ˇ x D ˚.Q ˇ x/ and k ˇ .˚X/ D ˚.k ˇ X/ are fulfilled for all k 2 K

and x 2 X . This semimodule is called a-complete if it is b-complete and contains

the element 1 D supV .

A semimodule V over a b-complete semifield K is said to be an idempotent

a-space (b-space) if this semimodule is a-complete (respectively, b-complete) and

the equality .^Q/ ˇ x D ^.Q ˇ x/ holds for any nonempty subset Q in K and

any x 2 V , x ¤ 1 D supV . The normal completion OV of a b-space V (as an

idempotent semigroup) has the structure of an idempotent a-space (and may differ

from V only by the element 1 D supV ).

Let V and W be idempotent semimodules over an idempotent semiring K .

A mapping p W V ! W is said to be linear (overK) if

p.x ˚ y/ D p.x/˚ p.y/ and p.k ˇ x/ D k ˇ p.x/

for any x; y 2 V and k 2 K . Let the semimodules V and W be b-complete.

A linear mapping p W V ! W is said to be b-linear if it is a b-homomorphism of

the idempotent semigroup; this mapping is said to be a-linear if it can be extended

to an a-homomorphism of the normal completions OV and OW . Proposition 7.1 (see

above) shows that a-linearity simulates (semi)continuity for linear mappings. The

normal completion OK of the semifield K is a semimodule over K . If W D OK, then

the linear mapping p is called a linear functional.

Linear, a-linear and b-linear mappings are also called linear, a-linear and

b-linear operators respectively.
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Examples of idempotent semimodules and spaces that are the most important for

analysis are either subsemimodules of topological vector lattices [86] (or coincide

with them) or are dual to them, i.e., consist of linear functionals subject to some

regularity condition, for example, consist of a-linear functionals. Concrete examples

of idempotent semimodules and spaces of functions (including spaces of bounded,

continuous, semicontinuous, convex, concave and Lipschitz functions) see in [33,

48, 49, 57] and below.

7.2 Basic Results

Let V be an idempotent b-space over a b-complete semifield K , x 2 OV . Denote by

x� the functional V ! OK defined by the formula x�.y/ D ^fk 2 Kjy � k ˇ xg,

where y is an arbitrary fixed element from V .

Theorem 7.1. For any x 2 OV the functional x� is a-linear. Any nonzero a-linear

functional f on V is given by f D x� for a unique suitable element x 2 V . If

K ¤ f0; 1g, then x D ˚fy 2 V jf .y/ � 1g.

Note that results of this type obtained earlier concerning the structure of linear

functionals cannot be carried over to subspaces and subsemimodules.

A subsemigroupW in V closed with respect to the multiplication by an arbitrary

element from K is called a b-subspace in V if the imbedding W ! V can be

extended to a b-linear mapping. The following result is obtained from Theorem 7.1

and is the idempotent version of the Hahn–Banach theorem.

Theorem 7.2. Any a-linear functional defined on a b-subspace W in V can be

extended to an a-linear functional on V . If x; y 2 V and x ¤ y, then there exists an

a-linear functional f on V that separates the elements x and y, i.e., f .x/ ¤ f .y/.

The following statements are easily derived from the definitions and can be

regarded as the analogs of the well-known results of the traditional functional

analysis (the Banach–Steinhaus and the closed-graph theorems).

Proposition 7.2. Suppose that P is a family of a-linear mappings of an a-space

V into an a-space W and the mapping p W V ! W is the pointwise sum of the

mappings of this family, i.e., p.x/ D supfp˛.x/jp˛ 2 P g. Then the mapping p is

a-linear.

Proposition 7.3. Let V and W be a-spaces. A linear mapping p W V ! W is

a-linear if and only if its graph � in V � W is closed with respect to passing to

sums (i.e., to least upper bounds) of its arbitrary subsets.

In [18] the basic results were generalized for the case of semimodules over the

so-called reflexive b-complete semirings.
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7.3 Idempotent b-semialgebras

Let K be a b-complete semifield and A be an idempotent b-space overK equipped

with the structure of a semiring compatible with the multiplication K � A ! A so

that the associativity of the multiplication is preserved. In this case, A is called an

idempotent b-semialgebra overK .

Proposition 7.4. For any invertible element x 2 A from the b-semialgebra A and

any element y 2 A, the equality x�.y/ D 1�.y ˇ x�1/ holds, where 1 2 A.

The mappingA�A ! OK defined by the formula .x; y/ 7! hx; yi D 1�.xˇy/ is

called the canonical scalar product (or simply scalar product). The basic properties

of the scalar product are easily derived from Proposition 7.4 (in particular, the scalar

product is commutative if the b-semialgebra A is commutative). The following

theorem is an idempotent version of the Riesz–Fisher theorem.

Theorem 7.3. Let a b-semialgebra A be a semifield. Then any nonzero a-linear

functional f on A can be represented as f .y/ D hy; xi, where x 2 A, x ¤ 0 and

h�; �i is the canonical scalar product on A.

Remark 7.1. Using the completion procedures, one can extend all the results

obtained to the case of incomplete semirings, spaces, and semimodules, see [49].

Example 7.1. Let B .X/ be a set of all bounded functions with values belonging to

R.max;C/ on an arbitrary setX and let OB .X/ D B .X/[f0g. The pointwise idem-

potent addition of functions .'1 ˚ '2/.x/ D '1.x/ ˚ '2.x/ and the multiplication

.'1ˇ'2/.x/ D .'1.x//ˇ .'2.x// define on OB .X/ the structure of a b-semialgebra

over the b-complete semifield Rmax. In this case, 1�.'/ D supx2X '.x/ and

the scalar product is expressed in terms of idempotent integration: h'1; '2i D

supx2X.'1.x/ ˇ '2.x// D supx2X.'1.x/ C '2.x// D
R̊

X

.'1.x/ ˇ '2.x// dx.

Scalar products of this type were systematically used in idempotent analysis. Using

Theorems 7.1 and 7.3, one can easily describe a-linear functionals on idempotent

spaces in terms of idempotent measures and integrals.

Example 7.2. Let X be a linear space in the traditional sense. The idempotent

semiring (and linear space over R.max;C/) of convex functions Conv.X;R/ is

b-complete but it is not a b-semialgebra over the semifield K D R.max;C/.
Any nonzero a-linear functional f on Conv.X;R/ has the form

' 7! f .'/ D sup
x

f'.x/C  .x/g D
Z

˚

X

'.x/ˇ  .x/ dx;

where  is a concave function, i.e., an element of the idempotent space

Conc.X;R/ D �Conv.X;R/.
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7.4 Linear Operator, b-semimodules and Subsemimodules

In what follows, we suppose that all semigroups, semirings, semifields, semimod-

ules, and spaces are idempotent unless otherwise specified. We fix a basic semiring

K and examine semimodules and subsemimodules over K . We suppose that every

linear functional takes it values in the basic semiring.

Let V andW be b-complete semimodules over a b-complete semiringK . Denote

by Lb.V;W / the set of all b-linear mappings from V to W . It is easy to check

that Lb.V;W / is an idempotent semigroup with respect to the pointwise addition of

operators; the composition (product) of b-linear operators is also a b-linear operator,

and therefore the set Lb.V; V / is an idempotent semiring with respect to these

operations, see, e.g., [49]. The following proposition can be treated as a version

of the Banach–Steinhaus theorem in idempotent analysis (as well as Proposition 7.2

above).

Proposition 7.5. Assume that S is a subset in Lb.V;W / and the set fg.v/ j g 2 Sg
is bounded in W for every element v 2 V ; thus the element f .v/ = supg2S g.v/

exists, because the semimodule W is b-complete. Then the mapping v 7! f .v/ is a

b-linear operator, i.e., an element of Lb.V;W /. The subset S is bounded; moreover,

supS D f .

Corollary 7.1. The set Lb.V;W / is a b-complete idempotent semigroup with

respect to the (idempotent) pointwise addition of operators. If V DW , then

Lb.V; V / is a b-complete idempotent semiring with respect to the operations of

pointwise addition and composition of operators.

Corollary 7.2. A subset S is bounded in Lb.V;W / if and only if the set fg.v/ j
g 2 Sg is bounded in the semimoduleW for every element v 2 V .

A subset of an idempotent semimodule is called a subsemimodule if it is closed

under addition and multiplication by scalar coefficients. A subsemimodule V of a

b-complete semimodule W is b-closed if V is closed under sums of any subsets of

V that are bounded inW . A subsemimodule of a b-complete semimodule is called a

b-subsemimodule if the corresponding embedding is a b-homomorphism. It is easy

to see that each b-closed subsemimodule is a b-subsemimodule, but the converse

is not true. The main feature of b-subsemimodules is that restrictions of b-linear

operators and functionals to these semimodules are b-linear.

The following definitions are very important for our purposes. Assume that W

is an idempotent b-complete semimodule over a b-complete idempotent semiring

K and V is a subset of W such that V is closed under multiplication by scalar

coefficients and is an upper semilattice with respect to the order induced from W .

Let us define an addition operation in V by the formula x ˚ y D supfx; yg, where

sup means the least upper bound in V . If K is a semifield, then V is a semimodule

overK with respect to this addition.

For an arbitrary b-complete semiring K , we will say that V is a quasisubsemi-

module of W if V is a semimodule with respect to this addition (this means that the

corresponding distribution laws hold).
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Recall that the symbol ^ means the greatest lower bound (see Sect. 7.1 above).

A quasisubsemimodule V of an idempotent b-complete semimodule W is called a

^-subsemimodule if it contains 0 and is closed under the operations of taking infima

(greatest lower bounds) in W . It is easy to check that each ^-subsemimodule is a

b-complete semimodule.

Note that quasisubsemimodules and ^-subsemimodules may fail to be subsemi-

modules, because only the order is induced and not the corresponding addition (see

Example 7.6 below).

Recall that idempotent semimodules over semifields are idempotent spaces.

In idempotent mathematics, such spaces are analogs of traditional linear (vector)

spaces over fields. In a similar way we use the corresponding terms like b-spaces,

b-subspaces, b-closed subspaces, ^-subspaces, etc.

Some examples are presented below.

7.5 Functional Semimodules

Let X be an arbitrary nonempty set and K be an idempotent semiring. By K.X/

denote the semimodule of all mappings (functions) X ! K endowed with the

pointwise operations. By Kb.X/ denote the subsemimodule of K.X/ consisting of

all bounded mappings. If K is a b-complete semiring, then K.X/ and Kb.X/ are

b-complete semimodules. Note thatKb.X/ is a b-subsemimodule but not a b-closed

subsemimodule of K.X/. Given a point x 2 X , by ıx denote the functional on

K.X/ that maps f to f .x/. It can easily be checked that the functional ıx is b-linear

on K.X/.

Recall that the functional ıx is generated by the usual function

ıx.y/ D
(

1; if x D y;

0; if x ¤ y;

so '.x/ D
R ˚

ıx.y/'.y/dy D sup
y
.ıx.y/ ˇ '.y//. Note that ı-functions form a

natural (continuous in general) basis in any typical functional semimodule.

We say that a quasisubsemimodule of K.X/ is an (idempotent) functional

semimodule on the set X . An idempotent functional semimodule in K.X/ is called

b-complete if it is a b-complete semimodule.

A functional semimodule V � K.X/ is called a functional b-semimodule if it

is a b-subsemimodule of K.X/; a functional semimodule V � K.X/ is called a

functional ^-semimodule if it is a ^-subsemimodule of K.X/.

In general, a functional of the form ıx on a functional semimodule is not

even linear, much less b-linear (see Example 7.6 below). However, the following

proposition holds, which is a direct consequence of our definitions.
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Proposition 7.6. An arbitrary b-complete functional semimodule W on a set X is

a b-subsemimodule of K.X/ if and only if each functional of the form ıx (where

x 2 X ) is b-linear on W .

Example 7.3. The semimodule Kb.X/ (consisting of all bounded mappings from

an arbitrary set X to a b-complete idempotent semiring K) is a functional

^-semimodule. Hence it is a b-complete semimodule over K . Moreover,Kb.X/ is

a b-subsemimodule of the semimoduleK.X/ consisting of all mappingsX ! K .

Example 7.4. If X is a finite set consisting of n elements (n > 0), then Kb.X/ D
K.X/ is an “n-dimensional” semimodule overK; it is denoted byKn. In particular,

Rn
max is an idempotent space over the semifield Rmax , and ORn

max is a semimodule

over the semiring ORmax. Note that ORn
max can be treated as a space over the semifield

Rmax. For example, the semiring ORmax can be treated as a space (semimodule)

over Rmax.

Example 7.5. LetX be a topological space. Denote by USC.X/ the set of all upper

semicontinuous functions with values in Rmax. By definition, a function f .x/ is

upper semicontinuous if the set Xs D fx 2 X j f .x/ � sg is closed in X for

every element s 2 Rmax (see, e.g., [49, Sect. 2.8]). If a family ff˛g consists of

upper semicontinuous (e.g., continuous) functions and f .x/ D inf˛ f˛.x/, then

f .x/ 2 USC.X/. It is easy to check that USC.X/ has a natural structure of an

idempotent space over Rmax. Moreover,USC.X/ is a functional ^-space on X and

a b-space. The subspace USC.X/ \ Kb.X/ of USC.X/ consisting of bounded

(from above) functions has the same properties.

Example 7.6. Note that an idempotent functional semimodule (and even a func-

tional ^-semimodule) on a set X is not necessarily a subsemimodule of K.X/. The

simplest example is the functional space (over K D Rmax) Conc(R) consisting of

all concave functions on R with values in Rmax. Recall that a function f belongs

to Conc(R) if and only if the subgraph of this function is convex, i.e., the formula

f .ax C .1 � a/y/ � af .x/ C .1 � a/f .y/ is valid for 0 � a � 1. The basic

operations with 0 2 Rmax can be defined in an obvious way. If f; g 2Conc.R/, then

denote by f ˚ g the sum of these functions in Conc.R/. The subgraph of f ˚ g is

the convex hull of the subgraphs of f and g. Thus f ˚g does not coincide with the

pointwise sum (i.e., maxff .x/; g.x/g).

Example 7.7. Let X be a nonempty metric space with a fixed metric r . Denote by

Lip.X/ the set of all functions defined on X with values in Rmax satisfying the

following Lipschitz condition:

j f .x/ˇ .f .y//�1 jDj f .x/ � f .y/ j� r.x; y/;

where x, y are arbitrary elements of X . The set Lip.X/ consists of continuous

real-valued functions (but not all of them!) and (by definition) the function equal

to �1 D 0 at every point x 2 X . The set Lip.X/ has the structure of an idempotent

space over the semifield Rmax. Spaces of the form Lip.X/ are said to be Lipschitz

spaces. These spaces are b-subsemimodules in K.X/.
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7.6 Integral Representations of Linear Operators

in Functional Semimodules

LetW be an idempotent b-complete semimodule over a b-complete semiringK and

V � K.X/ be a b-complete functional semimodule on X . A mapping A W V ! W

is called an integral operator or an operator with an integral representation if there

exists a mapping k W X ! W , called the integral kernel (or kernel) of the operator

A, such that

Af D sup
x2X

.f .x/ˇ k.x//: (15)

In idempotent analysis, the right-hand side of formula (11) is often written as
R ˚

X
f .x/ ˇ k.x/dx. Regarding the kernel k, it is assumed that the set ff .x/ ˇ

k.x/jx 2 Xg is bounded in W for all f 2 V and x 2 X . We denote the set of

all functions with this property by kernV;W .X/. In particular, if W D K and A is a

functional, then this functional is called integral. Thus each integral functional can

be presented in the form of a “scalar product” f 7!
R ˚

X
f .x/ ˇ k.x/ dx, where

k.x/ 2 K.X/; in idempotent analysis, this situation is standard.

Note that a functional of the form ıy (where y 2 X ) is a typical integral

functional; in this case, k.x/ D 1 if x D y and k.x/ D 0 otherwise.

We call a functional semimodule V � K.X/ nondegenerate if for every point

x 2 X there exists a function g 2 V such that g.x/ D 1, and admissible if for every

function f 2 V and every point x 2 X such that f .x/ ¤ 0 there exists a function

g 2 V such that g.x/ D 1 and f .x/ˇ g � f .

Note that all idempotent functional semimodules over semifields are admissible

(it is sufficient to set g D f .x/�1 ˇ f ).

Proposition 7.7. Denote by XV the subset of X defined by the formulaXV D fx 2

X j 9f 2 V W f .x/ D 1g. If the semimodule V is admissible, then the restriction

to XV defines an embedding i W V ! K.XV / and its image i.V / is admissible and

nondegenerate.

If a mapping k W X ! W is a kernel of a mapping A W V ! W , then the

mapping kV W X ! W that is equal to k on XV and equal to 0 on X X XV is also

a kernel of A.

A mapping A W V ! W is integral if and only if the mapping i�1A W i.A/ ! W

is integral.

In what follows, K always denotes a fixed b-complete idempotent (basic)

semiring. If an operator has an integral representation, this representation may not be

unique. However, if the semimodule V is nondegenerate, then the set of all kernels

of a fixed integral operator is bounded with respect to the natural order in the set

of all kernels and is closed under the supremum operation applied to its arbitrary

subsets. In particular, any integral operator defined on a nondegenerate functional

semimodule has a unique maximal kernel.
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An important point is that an integral operator is not necessarily b-linear and even

linear except when V is a b-subsemimodule of K.X/ (see Proposition 7.8 below).

If W is a functional semimodule on a nonempty set Y , then an integral kernel

k of an operator A can be naturally identified with the function on X � Y defined

by the formula k.x; y/ D .k.x//.y/. This function will also be called an integral

kernel (or kernel) of the operator A. As a result, the set kernV;W .X/ is identified

with the set kernV;W .X; Y / of all mappings k W X � Y ! K such that for every

point x 2 X the mapping kx W y 7! k.x; y/ lies in W and for every v 2 V the set

fv.x/ˇ kx jx 2 Xg is bounded in W . Accordingly, the set of all integral kernels of

b-linear operators can be embedded into kernV;W .X; Y /.

If V and W are functional b-semimodules on X and Y , respectively, then the

set of all kernels of b-linear operators can be identified with kernV;W .X; Y / and the

following formula holds:

Af .y/ D sup
x2X

.f .x/ˇ k.x; y// D
Z ˚

X

f .x/ˇ k.x; y/dx: (16)

This formula coincides with the usual definition of an integral representation of an

operator. Note that formula (15) can be rewritten in the form

Af D sup
x2X

.ıx.f /ˇ k.x//: (17)

Proposition 7.8. An arbitrary b-complete functional semimodule V on a nonempty

set X is a functional b-semimodule on X (i.e., a b-subsemimodule of K.X/) if and

only if all integral operators defined on V are b-linear.

The following notion (definition) is especially important for our purposes. Let

V � K.X/ be a b-complete functional semimodule over a b-complete idempotent

semiring K . We say that the kernel theorem holds for the semimodule V if every

b-linear mapping from V into an arbitrary b-complete semimodule over K has an

integral representation.

Theorem 7.4. Assume that a b-complete semimodule W over a b-complete semir-

ing K and an admissible functional ^-semimodule V � K.X/ are given. Then

every b-linear operatorA W V ! W has an integral representation of the form (15).

In particular, ifW is a functional b-semimodule on a set Y , then the operatorA has

an integral representation of the form (16). Thus for the semimodule V the kernel

theorem holds.

Remark 7.2. Examples of admissible functional ^-semimodules (and ^-spaces)

appearing in Theorem 7.4 are presented above, see, e.g., Examples 7.3–7.5. Thus for

these functional semimodules and spaces V over K , the kernel theorem holds and

every b-linear mapping V into an arbitrary b-complete semimodule W over K has

an integral representation (16). Recall that every functional space over a b-complete

semifield is admissible, see above.
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7.7 Nuclear Operators and Their Integral Representations

Let us introduce some important definitions. Assume that V and W are b-complete

semimodules. A mapping g W V ! W is called one-dimensional (or a mapping of

rank 1) if it is of the form v 7! �.v/ ˇ w, where � is a b-linear functional on V

and w 2 W . A mapping g is called b-nuclear if it is the sum (i.e., supremum) of a

bounded set of one-dimensional mappings. Since every one-dimensional mapping is

b-linear (because the functional � is b-linear), every b-nuclear operator is b-linear

(see Corollary 7.1 above). Of course, b-nuclear mappings are closely related to

tensor products of idempotent semimodules, see [48].

By � ˇ w we denote the one-dimensional operator v 7! �.v/ˇ w. In fact, this

is an element of the corresponding tensor product.

Proposition 7.9. The composition (product) of a b-nuclear and a b-linear mapping

or of a b-linear and a b-nuclear mapping is a b-nuclear operator.

Theorem 7.5. Assume that W is a b-complete semimodule over a b-complete

semiring K and V � K.X/ is a functional b-semimodule. If every b-linear

functional on V is integral, then a b-linear operator A W V ! W has an integral

representation if and only if it is b-nuclear.

7.8 The b-approximation Property and b-nuclear Semimodules

and Spaces

We say that a b-complete semimodule V has the b-approximation property if the

identity operator id: V ! V is b-nuclear (for a treatment of the approximation

property for locally convex spaces in the traditional functional analysis, see [86]).

Let V be an arbitrary b-complete semimodule over a b-complete idempotent

semiring K . We call this semimodule a b-nuclear semimodule if any b-linear

mapping of V to an arbitrary b-complete semimodule W over K is a b-nuclear

operator. Recall that, in the traditional functional analysis, a locally convex space

is nuclear if and only if all continuous linear mappings of this space to any Banach

space are nuclear operators, see [86].

Proposition 7.10. Let V be an arbitrary b-complete semimodule over a b-complete

semiring K . The following statements are equivalent:

1. The semimodule V has the b-approximation property.

2. Every b-linear mapping from V to an arbitrary b-complete semimodule W over

K is b-nuclear.

3. Every b-linear mapping from an arbitrary b-complete semimodule W over K to

the semimodule V is b-nuclear.
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Corollary 7.3. An arbitrary b-complete semimodule over a b-complete semiringK

is b-nuclear if and only if this semimodule has the b-approximation property.

Recall that, in the traditional functional analysis, any nuclear space has the

approximation property but the converse is not true.

Concrete examples of b-nuclear spaces and semimodules are described in

Examples 7.3, 7.4 and 7.7 (see above). Important b-nuclear spaces and semimodules

(e.g., the so-called Lipschitz spaces and semi-Lipschitz semimodules) are described

in [57]. In this paper there is a description of all functional b-semimodules for

which the kernel theorem holds (as semi-Lipschitz semimodules); this result is due

to Shpiz.

It is easy to show that the idempotent spaces USC.X/ and Conc(R) (see

Examples 7.5 and 7.6) are not b-nuclear (however, for these spaces the kernel

theorem is true). The reason is that these spaces are not functional b-spaces and

the corresponding ı-functionals are not b-linear (and even linear).

7.9 Kernel Theorems for Functional b-Semimodules

Let V � K.X/ be a b-complete functional semimodule over a b-complete

semiring K . Recall that for V the kernel theorem holds if every b-linear mapping

of this semimodule to an arbitrary b-complete semimodule over K has an integral

representation.

Theorem 7.6. Assume that a b-complete semiring K and a nonempty set X are

given. The kernel theorem holds for any functional b-semimodule V � K.X/ if and

only if every b-linear functional on V is integral and the semimodule V is b-nuclear,

i.e., has the b-approximation property.

Corollary 7.4. If for a functional b-semimodule the kernel theorem holds, then this

semimodule is b-nuclear.

Note that the possibility to obtain an integral representation of a functional means

that one can decompose it into a sum of functionals of the form ıx.

Corollary 7.5. Assume that a b-complete semiring K and a nonempty set X are

given. The kernel theorem holds for a functional b-semimodule V � K.X/ if and

only if the identity operator id: V ! V is integral.

7.10 Integral Representations of Operators in Abstract

Idempotent Semimodules

In this subsection, we examine the following problem: when a b-complete idem-

potent semimodule V over a b-complete semiring is isomorphic to a functional

b-semimoduleW such that the kernel theorem holds forW .
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Assume that V is a b-complete idempotent semimodule over a b-complete

semiring K and � is a b-linear functional defined on V . We call this functional

a ı-functional if there exists an element v 2 V such that

�.w/ˇ v � w

for every element w 2 V . It is easy to see that every functional of the form ıx is a

ı-functional in this sense (but the converse is not true in general).

Denote by �.V / the set of all ı-functionals on V . Denote by i� the natural

mapping V ! K.�.V // defined by the formula

.i�.v//.�/ D �.v/

for all � 2 �.V /. We say that an element v 2 V is pointlike if there exists a b-linear

functional � such that �.w/ˇv � w for all w 2 V . The set of all pointlike elements

of V will be denoted by P.V /. Recall that by �ˇv we denote the one-dimensional

operator w 7! �.w/ˇ v.

The following assertion is an obvious consequence of our definitions (including

the definition of the standard order) and the idempotency of our addition.

Remark 7.3. If a one-dimensional operator � ˇ v appears in the decomposition of

the identity operator on V into a sum of one-dimensional operators, then � 2 �.V /

and v 2 P.V /.

Denote by id and Id the identity operators on V and i�.V /, respectively.

Proposition 7.11. If the operator id is b-nuclear, then i� is an embedding and the

operator Id is integral.

If the operator i� is an embedding and the operator Id is integral, then the

operator id is b-nuclear.

Theorem 7.7. A b-complete idempotent semimodule V over a b-complete idempo-

tent semiring K is isomorphic to a functional b-semimodule for which the kernel

theorem holds if and only if the identity mapping on V is a b-nuclear operator, i.e.,

V is a b-nuclear semimodule.

The following proposition shows that, in a certain sense, the embedding i� is

a universal representation of a b-nuclear semimodule in the form of a functional

b-semimodule for which the kernel theorem holds.

Proposition 7.12. Let K be a b-complete idempotent semiring, X be a nonempty

set, and V �K.X/ be a functional b-semimodule on X for which the kernel

theorem holds. Then there exists a natural mapping i W X ! �.V / such that

the corresponding mapping i� W K.�.V // ! K.X/ is an isomorphism of i�.V /

onto V .
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8 The Dequantization Transform, Convex Geometry

and the Newton Polytopes

Let X be a topological space. For functions f .x/ defined on X we shall say that

a certain property is valid almost everywhere (a.e.) if it is valid for all elements

x of an open dense subset of X . Suppose X is Cn or Rn; denote by Rn
C the set

x D f .x1; : : : ; xn/ 2 X j xi � 0 for i D 1; 2; : : : ; n. For x D .x1; : : : ; xn/ 2 X we

set exp.x/ D .exp.x1/; : : : ; exp.xn//; so if x 2 Rn, then exp.x/ 2 Rn
C.

Denote by F .Cn/ the set of all functions defined and continuous on an open

dense subset U � Cn such that U � Rn
C. It is clear that F .Cn/ is a ring (and an

algebra over C) with respect to the usual addition and multiplications of functions.

For f 2 F .Cn/ let us define the function Ofh by the following formula:

Ofh.x/ D h log jf .exp.x=h//j; (18)

where h is a (small) real positive parameter and x 2 Rn. Set

Of .x/ D lim
h!C0

Ofh.x/; (19)

if the right-hand side of (19) exists almost everywhere.

We shall say that the function Of .x/ is a dequantization of the function f .x/

and the map f .x/ 7! Of .x/ is a dequantization transform. By construction, Ofh.x/
and Of .x/ can be treated as functions taking their values in Rmax. Note that in

fact Ofh.x/ and Of .x/ depend on the restriction of f to Rn
C only; so in fact the

dequantization transform is constructed for functions defined on Rn
C only. It is clear

that the dequantization transform is generated by the Maslov dequantization and the

map x 7! jxj.
Of course, similar definitions can be given for functions defined on Rn and Rn

C.

If s D 1=h, then we have the following version of (18) and (19):

Of .x/ D lim
s!1

.1=s/ log jf .esx/j: (20)

Denote by @ Of the subdifferential of the function Of at the origin.

If f is a polynomial we have

@ Of D f v 2 Rn j .v; x/ � Of .x/ 8x 2 Rn g:

It is well known that all the convex compact subsets in Rn form an idempotent

semiring S with respect to the Minkowski operations: for ˛;ˇ 2 S the sum ˛˚ˇ

is the convex hull of the union ˛ [ ˇ; the product ˛ ˇ ˇ is defined in the following

way: ˛ ˇ ˇ D f x j x D a C b, where a 2 ˛; b 2 ˇ, see Fig. 3. In fact S is an

idempotent linear space over Rmax.
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α β

Fig. 3 Algebra of convex

subsets

Of course, the Newton polytopes of polynomials in n variables form a subsemir-

ing N in S . If f , g are polynomials, then @.cfg/ D @ Of ˇ @ Og; moreover, if f

and g are “in general position”, then @.1f C g/ D @ Of ˚ @ Og. For the semiring

of all polynomials with nonnegative coefficients the dequantization transform is a

homomorphism of this “traditional” semiring to the idempotent semiring N .

Theorem 8.1. If f is a polynomial, then the subdifferential @ Of of Of at the

origin coincides with the Newton polytope of f . For the semiring of polynomials

with nonnegative coefficients, the transform f 7! @ Of is a homomorphism of

this semiring to the semiring of convex polytopes with respect to the Minkowski

operations (see above).

Using the dequantization transform it is possible to generalize this result to a

wide class of functions and convex sets, see below and [55].

8.1 Dequantization Transform: Algebraic Properties

Denote by V the set Rn treated as a linear Euclidean space (with the scalar product

.x; y/ D x1y1 C x2y2 C � � � C xnyn) and set VC D Rn
C. We shall say that a

function f 2 F .Cn/ is dequantizable whenever its dequantization Of .x/ exists

(and is defined on an open dense subset of V ). By D .Cn/ denote the set of all

dequantizable functions and by OD .V / denote the set f Of j f 2 D .Cn/ g. Recall

that functions from D .Cn/ (and OD .V /) are defined almost everywhere and f D g

means that f .x/ D g.x/ a.e., i.e., for x ranging over an open dense subset of Cn

(resp., of V ). Denote by DC.C
n/ the set of all functions f 2 D .Cn/ such that

f .x1; : : : ; xn/ � 0 if xi � 0 for i D 1; : : : ; n; so f 2 DC.C
n/ if the restriction of

f to VC D Rn
C is a nonnegative function. By ODC.V / denote the image of DC.C

n/

under the dequantization transform. We shall say that functions f; g 2 D .Cn/ are in

general position whenever Of .x/ ¤ Og.x/ for x running an open dense subset of V .

Theorem 8.2. For functions f; g 2 D .Cn/ and any nonzero constant c, the

following equations are valid:

(1) cfg D Of C Og
(2) j Of j D Of ; ccf D f ; Oc D 0
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(3) .1f C g/.x/ D maxf Of .x/; Og.x/g a.e. if f and g are nonnegative on VC (i.e.,

f; g 2 D C.C
n/) or f and g are in general position.

Left-hand sides of these equations are well-defined automatically.

Corollary 8.1. The set D C.C
n/ has a natural structure of a semiring with respect

to the usual addition and multiplication of functions taking their values in C. The

set OD C.V / has a natural structure of an idempotent semiring with respect to the

operations .f ˚ g/.x/ D maxff .x/; g.x/g, .f ˇg/.x/ D f .x/Cg.x/; elements

of OD C.V / can be naturally treated as functions taking their values in Rmax. The

dequantization transform generates a homomorphism from D C.C
n/ to OD C.V /.

8.2 Generalized Polynomials and Simple Functions

For any nonzero number a 2 C and any vector d D .d1; : : : ; dn/ 2 V D Rn we set

ma;d .x/ D a
Q n
iD1 x

di
i ; functions of this kind we shall call generalized monomials.

Generalized monomials are defined a.e. on Cn and on VC, but not on V unless the

numbers di take integer or suitable rational values. We shall say that a function

f is a generalized polynomial whenever it is a finite sum of linearly independent

generalized monomials. For instance, Laurent polynomials and Puiseax polynomials

are examples of generalized polynomials.

As usual, for x; y 2 V we set .x; y/ D x1y1 C � � � C xnyn. The following

proposition is a result of a trivial calculation.

Proposition 8.1. For any nonzero number a 2 V D C and any vector d 2 V D Rn

we have .bma;d /h.x/ D .d; x/C h log jaj.

Corollary 8.2. If f is a generalized monomial, then Of is a linear function.

Recall that a real function p defined on V D Rn is sublinear if pD sup˛ p˛ ,

where fp˛g is a collection of linear functions. Sublinear functions defined every-

where on V D Rn are convex; thus these functions are continuous, see [61]. We

discuss sublinear functions of this kind only. Suppose p is a continuous function

defined on V , then p is sublinear whenever

1. p.x C y/ � p.x/C p.y/ for all x; y 2 V .

2. p.cx/ D cp.x/ for all x 2 V , c 2 RC.

So if p1, p2 are sublinear functions, then p1 C p2 is a sublinear function.

We shall say that a function f 2 F .Cn/ is simple, if its dequantization Of exists

and a.e. coincides with a sublinear function; by misuse of language, we shall denote

this (uniquely defined everywhere on V ) sublinear function by the same symbol Of .

Recall that simple functions f and g are in general position if Of .x/ ¤ Og.x/ for

all x belonging to an open dense subset of V . In particular, generalized monomials

are in general position whenever they are linearly independent.
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Denote by Sim.Cn/ the set of all simple functions defined on V and denote by

SimC.C
n/ the set Sim.Cn/\ D C.C

n/. By Sbl.V / denote the set of all (continuous)

sublinear functions defined on V D Rn and by SblC.V / denote the image 1SimC.C
n/

of SimC.C
n/ under the dequantization transform.

The following statements can be easily deduced from Theorem 8.2 and defini-

tions.

Corollary 8.3. The set SimC.C
n/ is a subsemiring of D C.C

n/ and SblC.V / is

an idempotent subsemiring of bD C.V /. The dequantization transform generates an

epimorphism of SimC.C
n/ onto SblC.V /. The set Sbl.V / is an idempotent semiring

with respect to the operations .f ˚ g/.x/ D maxff .x/; g.x/g, .f ˇ g/.x/ D
f .x/C g.x/.

Corollary 8.4. Polynomials and generalized polynomials are simple functions.

We shall say that functions f; g 2 D .V / are asymptotically equivalent whenever
Of D Og; any simple function f is an asymptotic monomial whenever Of is a linear

function. A simple function f will be called an asymptotic polynomial whenever Of
is a sum of a finite collection of nonequivalent asymptotic monomials.

Corollary 8.5. Every asymptotic polynomial is a simple function.

Example 8.1. Generalized polynomials, logarithmic functions of (generalized)

polynomials, and products of polynomials and logarithmic functions are asymptotic

polynomials. This follows from our definitions and formula (19).

8.3 Subdifferentials of Sublinear Functions

We shall use some elementary results from convex analysis. These results can be

found, e.g., in [61, Chap. 1, Sect. 1].

For any function p 2 Sbl.V / we set

@p D f v 2 V j .v; x/ � p.x/ 8x 2 V g: (21)

It is well known from convex analysis that for any sublinear function p the set

@p is exactly the subdifferential of p at the origin. The following propositions are

also known in convex analysis.

Proposition 8.2. Suppose p1; p2 2 Sbl.V /, then

(1) @.p1Cp2/ D @p1ˇ@p2 D f v 2 V j v D v1Cv2; where v1 2 @p1; v2 2 @p2 g.

(2) @.maxfp1.x/; p2.x/g/ D @p1 ˚ @p2.

Recall that @p1 ˚ @p2 is a convex hull of the set @p1 [ @p2.

Proposition 8.3. Suppose p 2 Sbl.V /. Then @p is a nonempty convex compact

subset of V .
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Corollary 8.6. The map p 7! @p is a homomorphism of the idempotent semiring

Sbl.V / (see Corollary 8.1) to the idempotent semiring S of all convex compact

subsets of V (see Sect. 8.1 above).

8.4 Newton Sets for Simple Functions

For any simple function f 2 Sim.Cn/ let us denote by N.f / the set @. Of /. We shall

call N.f / the Newton set of the function f .

Proposition 8.4. For any simple function f , its Newton set N.f / is a nonempty

convex compact subset of V .

This proposition follows from Proposition 8.3 and definitions.

Theorem 8.3. Suppose that f and g are simple functions. Then

(1) N.fg/ D N.f /ˇN.g/ D f v 2 V j v D v1Cv2 with v1 2 N.f /; v2 2 N.g/ g.

(2) N.f C g/ D N.f / ˚ N.g/, if f1 and f2 are in general position or f1; f2 2
SimC.C

n/ (recall that N.f /˚N.g/ is the convex hull of N.f / [N.g/).
This theorem follows from Theorem 8.2, Proposition 8.2 and definitions.

Corollary 8.7. The map f 7! N.f / generates a homomorphism from SimC.C
n/

to S .

Proposition 8.5. Let f D ma;d .x/ D a
Qn
iD1 x

di
i be a monomial; here d D

.d1; : : : ; dn/ 2 V D Rn and a is a nonzero complex number. Then N.f / D fd g.

This follows from Proposition 8.1, Corollary 8.2 and definitions.

Corollary 8.8. Let f D
P

d2D mad ;d be a polynomial. Then N.f / is the polytope

˚d2Dfd g, i.e. the convex hull of the finite set D.

This statement follows from Theorem 8.3 and Proposition 8.5. Thus in this case

N.f / is the well-known classical Newton polytope of the polynomial f .

Now the following corollary is obvious.

Corollary 8.9. Let f be a generalized or asymptotic polynomial. Then its Newton

set N.f / is a convex polytope.

Example 8.2. Consider the one dimensional case, i.e., V D R and suppose f1 D
anx

n C an�1x
n�1 C � � � C a0 and f2 D bmx

m C bm�1x
m�1 C � � � C b0, where

an ¤ 0, bm ¤ 0, a0 ¤ 0, b0 ¤ 0. Then N.f1/ is the segment Œ0; n� and N.f2/ is

the segment Œ0;m�. So the map f 7! N.f / corresponds to the map f 7! deg.f /,

where deg.f / is a degree of the polynomial f . In this case Theorem 2 means that

deg.fg/ D degf C degg and deg.f C g/ D maxfdegf; deggg D maxfn;mg if

ai � 0, bi � 0 or f and g are in general position.
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9 Dequantization of Set Functions and Measures

on Metric Spaces

The following results are presented in [56].

Example 9.1. Let M be a metric space, S its arbitrary subset with a compact

closure. It is well-known that a Euclidean d -dimensional ball B� of radius � has

volume

vold .B�/ D � .1=2/d

� .1C d=2/
�d ;

where d is a natural parameter. By means of this formula it is possible to define a

volume of B� for any real d . Cover S by a finite number of balls of radii �m. Set

vd .S/ WD lim
�!0

inf
�m<�

X

m

vold .B�m/:

Then there exists a number D such that vd .S/ D 0 for d > D and vd .S/ D 1
for d < D. This number D is called the Hausdorff–Besicovich dimension (or HB-

dimension) of S , see, e.g., [67]. Note that a set of non-integral HB-dimension is

called a fractal in the sense of Mandelbrot.

Theorem 9.1. Denote by N �.S/ the minimal number of balls of radius � covering

S . Then

D.S/ D lim
�!C0

log�.N �.S/
�1/;

where D.S/ is the HB-dimension of S . Set � D e�s , then

D.S/ D lim
s!C1

.1=s/ � log N exp.�s/.S/:

So the HB-dimensionD.S/ can be treated as a result of a dequantization of the set

function N �.S/.

Example 9.2. Let � be a set function on M (e.g., a probability measure) and

suppose that �.B�/ < 1 for every ball B�. Let Bx;� be a ball of radius � having the

point x 2 M as its center. Then define �x.�/ WD �.Bx;�/ and let � D e�s and

Dx;� WD lim
s!C1

�.1=s/ � log.j�x.e�s/j/:

This number could be treated as a dimension of M at the point x with respect to

the set function �. So this dimension is a result of a dequantization of the function
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�x.�/, where x is fixed. There are many dequantization procedures of this type in

different mathematical areas. In particular, Maslov’s negative dimension (see [67])

can be treated similarly.

10 Dequantization of Geometry

An idempotent version of real algebraic geometry was discovered in the report of

Viro for the Barcelona Congress [94]. Starting from the idempotent correspondence

principle Viro constructed a piecewise-linear geometry of polyhedra of a special

kind in finite dimensional Euclidean spaces as a result of the Maslov dequantization

of real algebraic geometry. He indicated important applications in real algebraic

geometry (e.g., in the framework of Hilbert’s 16th problem for constructing real

algebraic varieties with prescribed properties and parameters) and relations to

complex algebraic geometry and amoebas in the sense of Gelfand et al., see [25,95].

Then complex algebraic geometry was dequantized by Mikhalkin and the result

turned out to be the same; this new “idempotent” (or asymptotic) geometry is now

often called the tropical algebraic geometry, see, e.g., [32, 43, 46, 53, 72, 73].

There is a natural relation between the Maslov dequantization and amoebas.

Suppose .C�/n is a complex torus, where C� D Cnf0g is the group of nonzero

complex numbers under multiplication. For z D .z1; : : : ; zn/ 2 .C�/n and a positive

real number h denote by Logh.z/ D h log.jzj/ the element

.h log jz1j; h log jz2j; : : : ; h log jznj/ 2 Rn:

Suppose V � .C�/n is a complex algebraic variety; denote by Ah.V / the set

Logh.V /. If h D 1, then the set A .V / D A1.V / is called the amoeba of V ; the

amoeba A .V / is a closed subset of Rn with a non-empty complement. Note that

this construction depends on our coordinate system.

For the sake of simplicity suppose V is a hypersurface in .C�/n defined by a

polynomial f ; then there is a deformation h 7! fh of this polynomial generated by

the Maslov dequantization and fh D f for h D 1. Let Vh � .C�/n be the zero set

of fh and set Ah.Vh/ D Logh.Vh/. Then there exists a tropical variety Tro.V / such

that the subsets Ah.Vh/ � Rn tend to Tro.V / in the Hausdorff metric as h ! 0.

The tropical variety Tro.V / is a result of a deformation of the amoeba A .V / and

the Maslov dequantization of the variety V . The set Tro.V / is called the skeleton

of A .V /.

Example 10.1. For the line V D f .x; y/ 2 .C�/2 j xC y C 1 D 0 g the piecewise-

linear graph Tro.V / is a tropical line, see Fig. 4a. The amoeba A .V / is repre-

sented in Fig. 4b, while Fig. 4c demonstrates the corresponding deformation of the

amoeba.
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a b c

Fig. 4 Tropical line and deformations of an amoeba

11 Some Semiring Constructions and the Matrix Bellman

Equation

11.1 Complete Idempotent Semirings and Examples

Recall that a partially ordered set S is complete if for every subset T � S there

exist elements supT 2 S and infT 2 S . We say that an idempotent semiring S is

complete if it is complete as an ordered set with respect to the standard order. Of

course, any a-complete semiring (see Sect. 7.1) is complete. The most well-known

and important examples are “numerical semirings” consisting of (a subset of) real

numbers and ordered by the usual linear order �.

Example 11.1. Consider the semiring ORmax D Rmax [f1g with standard operations

˚ D max, ˇ D C and neutral elements 0 D �1, 1 D 0, x � 1, x ˚ 1 D 1

for all x, x ˇ 1 D 1 ˇ x D 1 if x ¤ 0, and 0 ˇ 1 D 1 ˇ 0. The semiring
ORmax is complete and a-complete. The semiring ORmin D Rmin [ f�1g with obvious

operations is also complete; ORmin and ORmax are isomorphic.

Example 11.2. Consider the semiring S
Œa;b�
max;min defined on the real interval Œa; b�

with operations ˚ D max, ˇ D min and neutral elements 0 D a and 1 D b.

The semiring is complete and a-complete. Set Smax;min D S
Œa;b�

max;min with a D �1

and b D C1. If �1 � a < b � C1 then S
Œa;b�

max;min and Smax;min are isomorphic.

Example 11.3. The Boolean algebra B D f0; 1g is a complete and a-complete

semifield consisting of two elements.

11.2 Closure Operations

Let a semiring S be endowed with a partial unary closure (or Kleene) operation �

such that x � y implies x� � y� and x� D 1 ˚ .x� ˇ x/ D 1 ˚ .x ˇ x�/ on its

domain of definition. In particular, 0� D 1 by definition. These axioms imply that

x� D 1 ˚ x ˚ x2 ˚ � � � ˚ .x� ˇ xn/ if n > 1. Thus x� can be considered as a
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‘regularized sum’ of the series x� D 1 ˚ x ˚ x2 ˚ : : : ; in an idempotent semiring,

by definition, x� D supf1; x; x2; : : : g if this supremum exists. So if S is complete,

then the closure operation is well-defined for every element x 2 S .

In numerical semirings the operation � is defined as follows: x� D .1 � x/�1 if

x � 1 in RC, or ORC and x� D 1 if x < 1 in ORC; x� D 1 if x � 1 in Rmax and
ORmax, x� D 1 if x � 1 in ORmax, x� D 1 for all x in S

Œa;b�

max;min. In all other cases x�

is undefined. Note that the closure operation is very easy to implement.

11.3 Matrices Over Semirings

Denote by Matmn.S/ a set of all matrices A D .aij/ with m rows and n columns

whose coefficients belong to a semiring S . The sum A ˚ B of matrices A;B 2

Matmn.S/ and the product AB of matrices A 2 Matlm.S/ and B 2 Matmn.S/

are defined according to the usual rules of linear algebra: A ˚ B D .aij ˚ bij/ 2

Matmn.S/ and

AB D

 
m
M

kD1

aij ˇ bkj

!

2 Matln.S/;

where A 2 Matlm.S/ and B 2 Matmn.S/. Note that we write AB instead of AˇB .

If the semiring S is ordered, then the set Matmn.S/ is ordered by the relation

A D .aij/ � B D .bij/ iff aij � bij in S for all 1 6 i 6 m, 1 6 j 6 n.

The matrix multiplication is consistent with the order � in the following sense: if

A;A0 2 Matlm.S/, B;B
0 2 Matmn.S/ and A � A0, B � B 0, then AB � A0B 0

in Matln.S/. The set Matnn.S/ of square .n � n/ matrices over an idempotent

semiring S forms a idempotent semiring with a zero element O D .oij/, where

oij D 0, 1 6 i; j 6 n, and a unit element I D .ıij/, where ıij D 1 if i D j and

ıij D 0 otherwise.

The set Matnn is an example of a noncommutative semiring if n > 1.

The closure operation in matrix semirings over an idempotent semiring S can be

defined inductively (another way to do that see in [26] and below): A� D .a11/
� D

.a�

11/ in Mat11.S/ and for any integer n > 1 and any matrix

A D

�

A11 A12
A21 A22

�

;

where A11 2 Matkk.S/, A12 2 Matkn�k.S/, A21 2 Matn�kk.S/, A22 2 Matn�kn�k.S/,

1 6 k 6 n, by definition,

A� D

0

@

A�
11 ˚ A�

11A12D
�A21A

�
11 A�

11A12D
�

D�A21A
�
11 D�

1

A ; (22)
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where D D A22 ˚ A21A
�
11A12. It can be proved that this definition of A� implies

that the equality A� D A�A˚ I is satisfied and thus A� is a ‘regularized sum’ of

the series I ˚ A˚ A2 ˚ : : : .

Note that this recurrence relation coincides with the formulas of escalator method

of matrix inversion in the traditional linear algebra over the field of real or complex

numbers, up to the algebraic operations used. Hence this algorithm of matrix closure

requires a polynomial number of operations in n.

11.4 Discrete Stationary Bellman Equations

Let S be a semiring. The discrete stationary Bellman equation has the form

X D AX ˚B; (23)

where A 2 Matnn.S/, X;B 2 Matns.S/, and the matrix X is unknown. Let A� be

the closure of the matrix A. It follows from the identity A� D A�A ˚ I that the

matrix A�B satisfies this equation; moreover, it can be proved that for idempotent

semirings this solution is the least in the set of solutions to equation (23) with respect

to the partial order in Matns.S/.

Equation (23) over max-plus semiring arises in connection with Bellman opti-

mality principle and discretization of Hamilton–Jacobi equations, see e.g., [71]. It is

also intimately related with optimization problems on graphs to be discussed below.

11.5 Weighted Directed Graphs and Matrices Over Semirings

Suppose that S is a semiring with zero 0 and unity 1. It is well-known that any

square matrix A D .aij/ 2 Matnn.S/ specifies a weighted directed graph. This

geometrical construction includes three kinds of objects: the set X of n elements

x1; : : : ; xn called nodes, the set � of all ordered pairs .xi ; xj / such that aij ¤ 0

called arcs, and the mappingAW� ! S such that A.xi ; xj / D aij. The elements aij

of the semiring S are called weights of the arcs, see Fig. 5.

Conversely, any given weighted directed graph with n nodes specifies a unique

matrix A 2 Matnn.S/.

This definition allows for some pairs of nodes to be disconnected if the

corresponding element of the matrix A is 0 and for some channels to be “loops”

with coincident ends if the matrix A has nonzero diagonal elements. This concept

is convenient for analysis of parallel and distributed computations and design of

computing media and networks (see, e.g., [5, 45, 69, 97]).

Recall that a sequence of nodes of the form

p D .y0; y1; : : : ; yk/



Tropical Mathematics, Idempotent Analysis, Classical Mechanics, and Geometry 285

a21
a23

a12

a2i

a1i

aij

x2

x1

xi

xj

x3

x5

x4

Fig. 5 A weighted directed

graph

with k > 0 and .yi ; yiC1/ 2 � , i D 0; : : : ; k � 1, is called a path of length k

connecting y0 with yk . Denote the set of all such paths by Pk.y0; yk/. The weight

A.p/ of a path p 2 Pk.y0; yk/ is defined to be the product of weights of arcs

connecting consecutive nodes of the path:

A.p/ D A.y0; y1/ˇ � � � ˇ A.yk�1; yk/:

By definition, for a “path” p 2 P0.xi ; xj / of length k D 0 the weight is 1 if i D j

and 0 otherwise.

For each matrix A 2 Matnn.S/ define A0 D I D .ıij/ (where ıij D 1 if i D j

and ıij D 0 otherwise) and Ak D AAk�1, k > 1. Let a
.k/
ij be the .i; j /th element of

the matrix Ak . It is easily checked that

a
.k/
ij D

M

i0Di; ikDj
16i1;:::;ik�16n

ai0i1 ˇ � � � ˇ aik�1ik :

Thus a
.k/
ij is the supremum of the set of weights corresponding to all paths of length

k connecting the node xi0 D xi with xik D xj .

Denote the elements of the matrix A� by a
.�/
ij , i; j D 1; : : : ; n; then

a
.�/
ij D

M

06k<1

M

p2Pk .xi ;xj /

A.p/:

The closure matrix A� solves the well-known algebraic path problem, which is

formulated as follows: for each pair .xi ; xj / calculate the supremum of weights

of all paths (of arbitrary length) connecting node xi with node xj . The closure

operation in matrix semirings has been studied extensively (see, e.g., [1, 2, 6–

8, 14, 15, 20–22, 26–30, 33, 34, 59] and references therein).

Example 11.4 (The shortest path problem.). Let S D Rmin, so the weights are real

numbers. In this case

A.p/ D A.y0; y1/C A.y1; y2/C � � � C A.yk�1; yk/:



286 G.L. Litvinov

If the element aij specifies the length of the arc .xi ; xj / in some metric, then a
.�/
ij is

the length of the shortest path connecting xi with xj .

Example 11.5 (The maximal path width problem.). Let S D R [ f0; 1g with ˚ D
max, ˇ D min. Then

a
.�/
ij D max

p2
S

k>1

Pk .xi ;xj /
A.p/; A.p/ D min.A.y0; y1/; : : : ; A.yk�1; yk//:

If the element aij specifies the “width” of the arc .xi ; xj /, then the width of a path

p is defined as the minimal width of its constituting arcs and the element a
.�/
ij gives

the supremum of possible widths of all paths connecting xi with xj .

Example 11.6 (A simple dynamic programming problem.). Let S D Rmax and

suppose aij gives the profit corresponding to the transition from xi to xj . Define

the vector B D .bi / 2 Matn1.Rmax/ whose element bi gives the terminal profit

corresponding to exiting from the graph through the node xi . Of course, negative

profits (or, rather, losses) are allowed. Let m be the total profit corresponding to a

path p 2 Pk.xi ; xj /, i.e.

m D A.p/C bj :

Then it is easy to check that the supremum of profits that can be achieved on paths

of length k beginning at the node xi is equal to .AkB/i and the supremum of profits

achievable without a restriction on the length of a path equals .A�B/i .

Example 11.7 (The matrix inversion problem.). Note that in the formulas of this

section we are using distributivity of the multiplication ˇ with respect to the

addition ˚ but do not use the idempotency axiom. Thus the algebraic path problem

can be posed for a nonidempotent semiring S as well (see, e.g., [84]). For instance,

if S D R, then

A� D I C AC A2 C � � � D .I � A/�1:

If kAk > 1 but the matrix I � A is invertible, then this expression defines a

regularized sum of the divergent matrix power series
P

i>0A
i .

There are many other important examples of problems (in different areas) related

to algorithms of linear algebra over semirings (transitive closures of relations,

accessible sets, critical paths, paths of greatest capacities, the most reliable paths,

interval and other problems), see [1, 2, 5–7, 12, 14–17, 20–24, 26–31, 33, 34, 58, 59,

69, 75, 76, 81–84, 87, 89, 98–101].

We emphasize that this connection between the matrix closure operation and

solution to the Bellman equation gives rise to a number of different algorithms for

numerical calculation of the closure matrix. All these algorithms are adaptations of

the well-known algorithms of the traditional computational linear algebra, such as

the Gauss–Jordan elimination, various iterative and escalator schemes, etc. This is a

special case of the idempotent superposition principle.
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In fact, the theory of the discrete stationary Bellman equation can be developed

using the identity A� D AA� ˚ I as an additional axiom without any substantial

interpretation (the so-called closed semirings, see, e.g., [7, 26, 38, 84]).

12 Universal Algorithms

Computational algorithms are constructed on the basis of certain primitive opera-

tions. These operations manipulate data that describe “numbers.” These “numbers”

are elements of a “numerical domain,” i.e., a mathematical object such as the field

of real numbers, the ring of integers, or an idempotent semiring of numbers.

In practice elements of the numerical domains are replaced by their com-

puter representations, i.e., by elements of certain finite models of these domains.

Examples of models that can be conveniently used for computer representation of

real numbers are provided by various modifications of floating point arithmetics,

approximate arithmetics of rational numbers [52], and interval arithmetics. The

difference between mathematical objects (“ideal” numbers) and their finite models

(computer representations) results in computational (e.g., rounding) errors.

An algorithm is called universal if it is independent of a particular numerical

domain and/or its computer representation. A typical example of a universal

algorithm is the computation of the scalar product .x; y/ of two vectors x D
.x1; : : : ; xn/ and y D .y1; : : : ; yn/ by the formula .x; y/ D x1y1 C � � � C xnyn.

This algorithm (formula) is independent of a particular domain and its computer

implementation, since the formula is well-defined for any semiring. It is clear

that one algorithm can be more universal than another. For example, the simplest

Newton–Cotes formula, the rectangular rule, provides the most universal algorithm

for numerical integration; indeed, this formula is valid even for idempotent integra-

tion (over any idempotent semiring, see above and [5, 33, 39, 40, 42–44, 51, 62–65].

Other quadrature formulas (e.g., combined trapezoid rule or the Simpson formula)

are independent of computer arithmetics and can be used (e.g., in an iterative

form) for computations with arbitrary accuracy. In contrast, algorithms based

on Gauss–Jacobi formulas are designed for fixed accuracy computations: they

include constants (coefficients and nodes of these formulas) defined with fixed

accuracy. Certainly, algorithms of this type can be made more universal by including

procedures for computing the constants; however, this results in an unjustified

complication of the algorithms.

Computer algebra algorithms used in such systems as Mathematica, Maple,

REDUCE, and others are highly universal. Most of the standard algorithms used

in linear algebra can be rewritten in such a way that they will be valid over any

field and complete idempotent semiring (including semirings of intervals; see below

and [58, 59, 90], where an interval version of the idempotent linear algebra and the

corresponding universal algorithms are discussed).

As a rule, iterative algorithms (beginning with the successive approximation

method) for solving differential equations (e.g., methods of Euler, Euler–Cauchy,
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Runge–Kutta, Adams, a number of important versions of the difference approxi-

mation method, and the like), methods for calculating elementary and some special

functions based on the expansion in Taylor’s series and continuous fractions (Padé

approximations) and others are independent of the computer representation of

numbers.

Calculations on computers usually are based on a floating-point arithmetic

with a mantissa of a fixed length; i.e., computations are performed with fixed

accuracy. Broadly speaking, with this approach only the relative rounding error is

fixed, which can lead to a drastic loss of accuracy and invalid results (e.g., when

summing series and subtracting close numbers). On the other hand, this approach

provides rather high speed of computations. Many important numerical algorithms

are designed to use floating-point arithmetic (with fixed accuracy) and ensure the

maximum computation speed. However, these algorithms are not universal. The

above mentioned Gauss–Jacobi quadrature formulas, computation of elementary

and special functions on the basis of the best polynomial or rational approximations

or Padé–Chebyshev approximations, and some others belong to this type. Such

algorithms use nontrivial constants specified with fixed accuracy.

Recently, problems of accuracy, reliability, and authenticity of computations

(including the effect of rounding errors) have gained much attention; in part, this

fact is related to the ever-increasing performance of computer hardware. When

errors in initial data and rounding errors strongly affect the computation results,

such as in ill-posed problems, analysis of stability of solutions, etc., it is often

useful to perform computations with improved and variable accuracy. In particular,

the rational arithmetic, in which the rounding error is specified by the user [52],

can be used for this purpose. This arithmetic is a useful complement to the interval

analysis [70]. The corresponding computational algorithms must be universal (in the

sense that they must be independent of the computer representation of numbers).

13 Universal Algorithms of Linear Algebra Over Semirings

The most important linear algebra problem is to solve the system of linear equations

AX D B; (24)

where A is a matrix with elements from the basic field and X and B are vectors (or

matrices) with elements from the same field. It is required to find X if A and B are

given. If A in (24) is not the identity matrix I , then system (24) can be written in

form (23), i.e.,

X D AX C B: (25)

It is well known that the form (25) is convenient for using the successive approx-

imation method. Applying this method with the initial approximation X0 D 0, we

obtain the solution
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X D A�B; (26)

where

A� D I CAC A2 C � � � C An C � � � (27)

On the other hand, it is clear that

A� D .I �A/�1; (28)

if the matrix I �A is invertible. The inverse matrix .I �A/�1 can be considered as

a regularized sum of the formal series (27).

The above considerations can be extended to a broad class of semirings.

The closure operation for matrix semirings Matn.S/ can be defined and com-

puted in terms of the closure operation for S (see Sect. 11.3 above); some methods

are described in [1, 2, 7, 14, 15, 26–29, 33, 37, 51, 59, 83, 84, 87]. One such method is

described below (LDM-factorization), see [45].

If S is a field, then, by definition, x� D .1 � x/�1 for any x ¤ 1. If S is an

idempotent semiring, then, by definition,

x� D 1 ˚ x ˚ x2 ˚ � � � D supf1; x; x2; : : : g; (29)

if this supremum exists. Recall that it exists if S is complete, see Sect. 11.2.

Consider a nontrivial universal algorithm applicable to matrices over semirings

with the closure operation defined.

Example 13.1 (Semiring LDM-Factorization). Factorization of a matrix into the

product A D LDM, where L and M are lower and upper triangular matrices with

a unit diagonal, respectively, and D is a diagonal matrix, is used for solving matrix

equationsAX D B . We construct a similar decomposition for the Bellman equation

X D AX ˚B .

For the case AX D B , the decomposition A D LDM induces the following

decomposition of the initial equation:

LZ D B; DY D Z; MX D Y: (30)

Hence, we have

A�1 D M�1D�1L�1; (31)

if A is invertible. In essence, it is sufficient to find the matrices L, D and M , since

the linear system (30) is easily solved by a combination of the forward substitution

for Z, the trivial inversion of a diagonal matrix for Y , and the back substitution

for X .

Using (30) as a pattern, we can write

Z D LZ ˚ B; Y D DY ˚Z; X D MX ˚ Y: (32)
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Then

A� D M �D�L�: (33)

A triple .L;D;M/ consisting of a lower triangular, diagonal, and upper triangular

matrices is called an LDM-factorization of a matrix A if relations (32) and (33) are

satisfied. We note that in this case, the principal diagonals of L and M are zero.

The modification of the notion of LDM-factorization used in matrix analysis for

the equation AX D B is constructed in analogy with a construction suggested by

Carré in [14, 15] for LU -factorization.

We stress that the algorithm described below can be applied to matrix compu-

tations over any semiring under the condition that the unary operation a 7! a� is

applicable every time it is encountered in the computational process. Indeed, when

constructing the algorithm, we use only the basic semiring operations of addition ˚
and multiplication ˇ and the properties of associativity, commutativity of addition,

and distributivity of multiplication over addition.

If A is a symmetric matrix over a semiring with a commutative multiplication,

the amount of computations can be halved, since M and L are mapped into each

other under transposition.

We begin with the case of a triangular matrix A D L (or A D M ). Then, finding

X is reduced to the forward (or back) substitution.

Forward substitution

We are given:

• L D kl ijkni;jD1, where l ij D 0 for i � j (a lower triangular matrix with a zero

diagonal).

• B D kbikniD1.

It is required to find the solution X D kxikniD1 to the equation X D LX ˚ B .

The program fragment solving this problem is as follows:

for i D 1 to n do

f xi WD bi ;

for j D 1 to i � 1 do

xi WD xi ˚ .l ij ˇ xj /; g

Back substitution

We are given:

• M D kmi
jkni;jD1, where mi

j D 0 for i � j (an upper triangular matrix with a

zero diagonal).

• B D kbikniD1.

It is required to find the solution X D kxikniD1 to the equation X D MX ˚ B .

The program fragment solving this problem is as follows:

for i D n to 1 step �1 do

f xi WD bi ;

for j D n to i C 1 step �1 do

xi WD xi ˚ .mi
j ˇ xi /; g
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Both algorithms require .n2 � n/=2 operations ˚ and ˇ.

Closure of a diagonal matrix

We are given:

• D D diag.d1; : : : ; dn/.

• B D kbikniD1.
It is required to find the solution X D kxikniD1 to the equation X D DX ˚ B .

The program fragment solving this problem is as follows:

for i D 1 to n do

xi WD .di /
� ˇ bi ;

This algorithm requires n operations � and n multiplications ˇ .

General case

We are given:

• L D kl ij kni;jD1, where l ij D 0 if i � j .

• D D diag.d1; : : : ; dn/.

• M D kmi
jkni;jD1, where mi

j D 0 if i � j .

• B D kbikniD1.

It is required to find the solution X D kxikniD1 to the equation X DAX ˚ B ,

where L, D, and M form the LDM-factorization of A. The program fragment

solving this problem is as follows:

FORWARD SUBSTITUTION

for i D 1 to n do

f xi WD bi ;

for j D 1 to i � 1 do

xi WD xi ˚ .l ij ˇ xj /; g

CLOSURE OF A DIAGONAL MATRIX

for i D 1 to n do

xi WD .di/
� ˇ bi ;

BACK SUBSTITUTION

for i D n to 1 step �1 do

f for j D n to i C 1 step �1 do

xi WD xi ˚ .mi
j ˇ xj /; g

Note that xi is not initialized in the course of the back substitution. The algorithm

requires n2 � n operations ˚, n2 operations ˇ, and n operations �.

LDM-factorization

We are given:

• A D kaij kni;jD1.

It is required to find the LDM-factorization of A: L D kl ij kni;jD1, D D

diag.d1; : : : ; dn/, andM D kmi
jkni;jD1, where l ij D 0 if i � j , and mi

j D 0 if i � j .
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The program uses the following internal variables:

• C D kcij kni;jD1

• V D kvikniD1
• d .

INITIALISATION

for i D 1 to n do

for j D 1 to n do

cij D aij ;

MAIN LOOP

for j D 1 to n do

f for i D 1 to j do

vi WD aij ;

for k D 1 to j � 1 do

for i D k C 1 to j do

vi WD vi ˚ .aik ˇ vk/;

for i D 1 to j � 1 do

aij WD .aii /
� ˇ vi ;

a
j
j WD vj ;

for k D 1 to j � 1 do

for i D j C 1 to n do

aij WD aij ˚ .aik ˇ vk/;

d D .vj /�;

for i D j C 1 to n do

aij WD aij ˇ d ; g

This algorithm requires .2n3 � 3n2 C n/=6 operations ˚, .2n3 C 3n2 � 5n/=6

operations ˇ, and n.nC1/=2 operations �. After its completion, the matricesL,D,

andM are contained, respectively, in the lower triangle, on the diagonal, and in the

upper triangle of the matrix C . In the case when A is symmetric about the principal

diagonal and the semiring over which the matrix is defined is commutative, the

algorithm can be modified in such a way that the number of operations is reduced

approximately by a factor of two.

Other examples can be found in [14, 15, 26–29, 37, 38, 84, 87].

Note that to compute the matrices A� and A�B it is convenient to solve the

Bellman equation (25).

Some other interesting and important problems of linear algebra over semirings

are examined, e.g., in [9, 12, 13, 16, 23, 24, 26–29, 31, 75–77, 79, 98–101].

Remark 13.1. It is well known that linear problems and equations are especially

convenient for parallelization, see, e.g., [97]. Standard methods (including the so-

called block methods) constructed in the framework of the traditional mathematics

can be extended to universal algorithms over semirings (the correspondence prin-

ciple!). For example, formula (22) discussed in Sect. 11.3 leads to a simple block
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method for parallelization of the closure operations. Other standard methods of

linear algebra [97] can be used in a similar way.

14 The Correspondence Principle for Computations

Of course, the idempotent correspondence principle is valid for algorithms as well

as for their software and hardware implementations [40, 42, 44, 51]. Thus:

If we have an important and interesting numerical algorithm, then there is a good

chance that its semiring analogs are important and interesting as well.

In particular, according to the superposition principle, analogs of linear algebra

algorithms are especially important. Note that numerical algorithms for standard

infinite-dimensional linear problems over idempotent semirings (i.e., for prob-

lems related to idempotent integration, integral operators and transformations, the

Hamilton–Jacobi and generalized Bellman equations) deal with the corresponding

finite-dimensional (or finite) “linear approximations”. Nonlinear algorithms often

can be approximated by linear ones. Thus the idempotent linear algebra is a basis

for the idempotent numerical analysis.

Moreover, it is well-known that linear algebra algorithms easily lend themselves

to parallel computation; their idempotent analogs admit parallelization as well.

Thus we obtain a systematic way of applying parallel computing to optimization

problems.

Basic algorithms of linear algebra (such as inner product of two vectors, matrix

addition and multiplication, etc.) often do not depend on concrete semirings, as

well as on the nature of domains containing the elements of vectors and matrices.

Algorithms to construct the closure A� D I ˚A˚A2˚� � �˚An˚� � � D
L

1

nD1A
n

of an idempotent matrix A can be derived from standard methods for calculating

.I � A/�1. For the Gauss–Jordan elimination method (via LU-decomposition) this

trick was used in [84], and the corresponding algorithm is universal and can be

applied both to the Bellman equation and to computing the inverse of a real (or

complex) matrix .I � A/. Computation of A�1 can be derived from this universal

algorithm with some obvious cosmetic transformations.

Thus it seems reasonable to develop universal algorithms that can deal

equally well with initial data of different domains sharing the same basic

structure [40, 42, 44].

15 The Correspondence Principle for Hardware Design

A systematic application of the correspondence principle to computer calculations

leads to a unifying approach to software and hardware design.

The most important and standard numerical algorithms have many hardware

realizations in the form of technical devices or special processors. These devices
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often can be used as prototypes for new hardware units generated by substitution

of the usual arithmetic operations for its semiring analogs and by addition tools

for performing neutral elements 0 and 1 (the latter usually is not difficult). Of

course, the case of numerical semirings consisting of real numbers (maybe except

neutral elements) and semirings of numerical intervals is the most simple and natural

[39,40,42–44,51,58,59,90]. Note that for semifields (including Rmax and Rmin) the

operation of division is also defined.

Good and efficient technical ideas and decisions can be transferred from proto-

types to new hardware units. Thus the correspondence principle generated a regular

heuristic method for hardware design. Note that to get a patent it is necessary to

present the so-called “invention formula”, that is to indicate a prototype for the

suggested device and the difference between these devices.

Consider (as a typical example) the most popular and important algorithm of

computing the scalar product of two vectors:

.x; y/ D x1y1 C x2y2 C � � � C xnyn: (34)

The universal version of (34) for any semiring A is obvious:

.x; y/ D .x1 ˇ y1/˚ .x2 ˇ y2/˚ � � � ˚ .xn ˇ yn/: (35)

In the case A D Rmax this formula turns into the following one:

.x; y/ D maxfx1 C y1; x2 C y2; � � � ; xn C yng: (36)

This calculation is standard for many optimization algorithms, so it is useful

to construct a hardware unit for computing (36). There are many different devices

(and patents) for computing (34) and every such device can be used as a prototype

to construct a new device for computing (36) and even (35). Many processors

for matrix multiplication and for other algorithms of linear algebra are based

on computing scalar products and on the corresponding “elementary” devices

respectively, etc.

There are some methods to make these new devices more universal than

their prototypes. There is a modest collection of possible operations for stan-

dard numerical semirings: max, min, and the usual arithmetic operations. So,

it is easy to construct programmable hardware processors with variable basic

operations. Using modern technologies it is possible to construct cheap special-

purpose multi-processor chips implementing examined algorithms. The so-called

systolic processors are especially convenient for this purpose. A systolic array is a

“homogeneous” computing medium consisting of elementary processors, where the

general scheme and processor connections are simple and regular. Every elementary

processor pumps data in and out performing elementary operations in a such way

that the corresponding data flow is kept up in the computing medium; there is an

analogy with the blood circulation and this is a reason for the term “systolic”, see

e.g., [40, 42, 44, 45, 66, 83, 84, 87].
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Some systolic processors for the general algebraic path problem are presented

in [83,84,87]. In particular, there is a systolic array of n.nC 1/ elementary proces-

sors which performs computations of the Gauss–Jordan elimination algorithm and

can solve the algebraic path problem within 5n� 2 time steps. Of course, hardware

implementations for important and popular basic algorithms increase the speed of

data processing.

The so-called GPGPU (General-Purpose computing on Graphics Processing

Units) technique is another important field for applications of the correspondence

principle. The matter is that graphic processing units (hidden in modern laptop

and desktop computers) are potentially powerful processors for solving numerical

problems. The recent tremendous progress in graphical processing hardware and

software resulted in new “open” programmable parallel computational devices

(special processors), see, e.g., [11, 78, 102]. These devices are going to be standard

for coming PC (personal computers) generations. Initially used for graphical

processing only (at that time they were called GPU), today they are used for

various fields, including audio and video processing, computer simulation, and

encryption. But this list can be considerably enlarged following the correspondence

principle: the basic operations would be used as parameters. Using the technique

described in this paper (see also our references), standard linear algebra algorithms

can be used for solving different problems in different areas. In fact, the hardware

supports all operations needed for the most important idempotent semirings: plus,

times, min, max. The most popular linear algebra packages [ATLAS (Automatically

Tuned Linear Algebra Software), LAPACK, PLASMA (Parallel Linear Algebra for

Scalable Multicore Architectures)] can already use GPGPU, see [103–105]. We

propose to make these tools more powerful by using parameterized algorithms.

Linear algebra over the most important numerical semirings generates solutions

for many concrete problems in different areas, see above.

Note that to be consistent with operations we have to redefine zero (0) and unit

(1) elements (see above); comparison operations must be also redefined as it is

described above. Once the operations are redefined, then the most of basic linear

algebra algorithms, including back and forward substitution, Gauss elimination

method, Jordan elimination method and others could be rewritten for new domains

and data structures. Combined with the power of the new parallel hardware this

approach could change PC from entertainment devices to power full instruments.

16 The Correspondence Principle for Software Design

Software implementations for universal semiring algorithms are not as efficient as

hardware ones (with respect to the computation speed) but they are much more

flexible. Program modules can deal with abstract (and variable) operations and data

types. These operations and data types can be defined by the corresponding input

data. In this case they can be generated by means of additional program modules.

For programs written in this manner it is convenient to use special techniques
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of the so-called object oriented (and functional) design, see, e.g., [60, 80, 91].

Fortunately, powerful tools supporting the object-oriented software design have

recently appeared including compilers for real and convenient programming lan-

guages (e.g. CCC and Java) and modern computer algebra systems.

Recently, this type of programming technique has been dubbed generic program-

ming (see, e.g., [8, 80]). To help automate the generic programming, the so-called

Standard Template Library (STL) was developed in the framework of CCC [80,91].

However, high-level tools, such as STL, possess both obvious advantages and some

disadvantages and must be used with caution.

It seems that it is natural to obtain an implementation of the correspondence

principle approach to scientific calculations in the form of a powerful software

system based on a collection of universal algorithms. This approach ensures

a working time reduction for programmers and users because of the software

unification. The arbitrary necessary accuracy and safety of numeric calculations can

be ensured as well.

This software system may be especially useful for designers of algorithms,

software engineers, students and mathematicians.

Note that there are some software systems oriented to calculations with idem-

potent semirings like Rmax; see, e.g., [82]. However these systems do not support

universal algorithms.

17 Interval Analysis in Idempotent Mathematics

Traditional interval analysis is a nontrivial and popular mathematical area, see,

e.g., [4, 24, 35, 70, 74, 77]. An “idempotent” version of interval analysis (and

moreover interval analysis over positive semirings) appeared in [58,59,90]. Later the

idempotent interval analysis has attracted many experts in tropical linear algebra and

applications, see, e.g., [16, 24, 31, 75, 76, 101]. We also mention the closely related

interval analysis over the positive semiring RC discussed in [9].

Let a set S be partially ordered by a relation �. A closed interval in S is a subset

of the form x D Œx; x� D f x 2 S j x � x � x g, where the elements x � x are called

lower and upper bounds of the interval x. The order � induces a partial ordering on

the set of all closed intervals in S : x � y iff x � y and x � y.

A weak interval extension I.S/ of an ordered semiring S is the set of all closed

intervals in S endowed with operations ˚ and ˇ defined as x ˚ y D Œx ˚ y; x ˚ y�,

x ˇ y D Œx ˇ y; x ˇ y� and a partial order induced by the order in S . The

closure operation in I.S/ is defined by x� D Œx�; x��. There are some other interval

extensions (including the so-called strong interval extension [59]) but the weak

extension is more convenient.

The extension I.S/ is idempotent if S is an idempotent semiring. A universal

algorithm over S can be applied to I.S/ and we shall get an interval version of

the initial algorithm. Usually both the versions have the same complexity. For the
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discrete stationary Bellman equation and the corresponding optimization problems

on graphs, interval analysis was examined in [58, 59] in details. Other problems of

idempotent linear algebra were examined in [16, 24, 31, 75, 76].

Idempotent mathematics appears to be remarkably simpler than its traditional

analog. For example, in traditional interval arithmetic, multiplication of intervals

is not distributive with respect to addition of intervals, whereas in idempotent

interval arithmetic this distributivity is preserved. Moreover, in traditional interval

analysis the set of all square interval matrices of a given order does not form even

a semigroup with respect to matrix multiplication: this operation is not associative

since distributivity is lost in the traditional interval arithmetic. On the contrary, in

the idempotent (and positive) case associativity is preserved. Finally, in traditional

interval analysis some problems of linear algebra, such as solution of a linear

system of interval equations, can be very difficult (more precisely, they are NP -

hard, see [19, 24, 35, 36] and references therein). It was noticed in [58, 59] that in

the idempotent case solving an interval linear system requires a polynomial number

of operations (similarly to the usual Gauss elimination algorithm). The remarkable

simplicity of idempotent interval arithmetic is due to the following properties:

the monotonicity of arithmetic operations and the positivity of all elements of an

idempotent semiring.

Interval estimates in idempotent mathematics are usually exact. In the traditional

theory such estimates tend to be overly pessimistic.
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Palaiseau (1986) exposé 24
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81. J.P. Quadrat, Théorèms asymptotiques en programmation dynamique. C. R. Acad. Sci. Paris

311, 745–748 (1990)

82. J.P. Quadrat, Max plus working group, Max-plus algebra software (2007), http://maxplus.org;

http://scilab.org/contrib; http://amadeus.inria.fr

http://www.arXiv.org/abs/math.FA/0609033
http://www.arXiv.org/abs/math.FA/0609033
http://www.arXiv.org/abs/math.LA/0101041
http://www.arXiv.org/abs/math.SC/0101080
http://www.arXiv.org/abs/math.AG/0312530
http://www.arXiv.org/abs/math.AG/0601041
http://maxplus.org
http://scilab.org/contrib
http://amadeus.inria.fr


Tropical Mathematics, Idempotent Analysis, Classical Mechanics, and Geometry 301

83. Y. Robert, D. Tristram. An orthogonal systolic array for the algebraic path problem.

Computing 39, 187–199 (1987)

84. G. Rote, A systolic array algorithm for the algebraic path problem. Computing 34, 191–219

(1985)

85. I.V. Roublev, On minimax and idempotent generalized weak solutions to the Hamilton-

Jacobi equation, in Idempotent Mathematics and Mathematical Physics, ed. by G.L. Litvinov,

V.P. Maslov. Contemporary Mathematics, vol. 377 (American Mathematical Society, Provi-

dence, 2005), pp. 319–338

86. H.H. Schaefer, Topological Vector Spaces (Macmillan, New York, 1966)

87. S.G. Sedukhin, Design and analysis of systolic algorithms for the algebraic path problem.

Comput. Artif. Intell. 11(3), 269–292 (1992)

88. M.A. Shubin, Algebraic remarks on idempotent semirings and the kernel theorem in spaces

of bounded functions, in Idempotent Analysis, ed. by V.P. Maslov, S.N. Samborskiı̆. Advances

in Soviet Mathematics, vol. 13 (American Mathematical Society, Providence, 1992), pp. 151–

166

89. I. Simon, Recognizable sets with multiplicities in the tropical semiring, in Lecture Notes in

Compter Science, vol. 324 (Springer, Berlin, 1988), pp. 107–120

90. A.N. Sobolevskiı̆, Interval arithmetic and linear algebra over idempotent semirings. Dokl.

Akad. Nauk 369(6), 747–749 (1999) (in Russian). Englsigh version: Dokl. Math. 60(3), 431–

433 (1999)

91. A. Stepanov, M. Lee, The Standard Template Library (Hewlett-Packard, Palo Alto, 1994)

92. A.I. Subbotin, Generalized Solutions of First Order PDE’s: The Dynamical Optimization

Perspectives (Birkhäuser, Boston, 1995)
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